
Lecture Notes in Computer Science 1675
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Jacky Estublier (Ed.)

System Configuration
Management

9th International Symposium, SCM-9
Toulouse, France, September 5-7, 1999
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Jacky Estublier
Laboratoire Dasault Systèmes/LSR
Actimart, 2, Allée de Roumanie, 36610 Gieres, France
E-mail: jacky.estublier@imag.fr

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

System configuration management : 9th international symposium / SCM-9, Toulouse,
France, September 5 - 7, 1999. Jacky Estublier (ed.). - Berlin ; Heidelberg ;
New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo :
Springer, 1999

(Lecture notes in computer science ; Vol. 1675)
ISBN 3-540-66484-X

CR Subject Classification (1998): D.2, K.6, K.4.3

ISSN 0302-9743
ISBN 3-540-66484-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10704193 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

This workshop series is now over ten years old, which is a pretty long time for a very
focussed topic: Configuration Management. The first conference took place in 1988
(Grassau, Germany) and the topics were focussed on version control and rebuilding.

Many people consider that SCM is one of the few areas of software engineering that
can be considered to be really successful. Products, that more or less fulfill their pur-
pose, exist, and everybody agrees that they are now mandatory for a successful soft-
ware project.

Indeed, during the second half of the nineties, SCM has entered a maturation phase, in
which good commercial products have been incorporating many of the features de-
signed and discussed at previous conferences of this workshop. With the generaliza-
tion of commercial products, the question now is: What are the objectives of a scien-
tific workshop on this topic? Is there any more research to be done in SCM today?

This ninth volume in the series reflects pretty well the current state and mood in the
CM community. There are an unprecedented number of papers discussing the current
state of the art and trying to identify research directions (session 6). On some core
topics, like versioning (session 3), and following SCM8 tracks, papers present work
on unified models. Versioning models, after years of raging discussions, now seem to
have found a consensus.

Nevertheless, SCM is facing new challenges, and new solutions are required to man-
age systems consisting of tightly integrated hardware and software, dynamic systems
that change at run-time, or non-traditional artifacts such as Web sites. Moreover, new
solutions are required to deploy complex systems within large organizations, to sup-
port development teams from multiple disciplines, located in different settings, and
constrained by important quality and time objectives.

The following papers do not propose new solutions to all these issues (session 5), but
at least make an effort to identify the new needs and challenges of SCM in such a
context (sessions 1 & 3). We believe there are still many aspects to be addressed and
enhancements to be made in the area of System Configuration Management.

June 1999 Jacky Estublier
General Chair

CONTENTS

1. WEB AND DISTRIBUTION
Chair: Ian Sommerville

Content Change Management: Problems for Web Systems 1
S. Dart

Experiences: Distributed Development and Software Configuration Management 17
U. Asklund, B. Magnusson, A. Persson

Applying Software Configuration Management in Web Sites 34
Development: A Case Study
M. Leoni, M. Trainotti, A. Valerio

2. EXPERIENCE AND TOOLS
Chair: Reidar Conradi

Software Configuration Management Risk Analysis before Relocating the Porting 38
of Productís Family
M. Simoni c! , J.Györkös, I. Rozman

Why Do Some Mature Organizations Not Use Mature CM Tools? 50
I. Crnkovic

An Experience in Configuration Management in SODALIA 66
M. Banzi, , F. Macugli, S. Borion, G. La Commare,

3. VERSIONING AND MODELS
Chair: André van der Hoek

A Branching/Merging Strategy for Parallel Software Development 86
J. Buffenbarger, K. Gruell

The Unified Extensional Versioning Model 100
U. Asklund, L. Bendix, H.B. Christensen, B. Magnusson

4. WEB AND DISTRIBUTION
Chair: Susan Dart

Deployment Descriptions in a World of COTS and Open Source 123
W.J. Hansen

VTML for Fine-Grained Change Tracking in Editing Structured Documents 139
L. Bendix, F. Vitaly

Global Names: Support for Managing Software in a World of Virtual 157
Organizations
M.L. Van De Vanter, T. Murer

VIII Table of Contents

5. NEW DEVELOPMENTS
Chair: Geoff Clemm

Distributed Objects for Concurrent Engineering 172
J. Estublier

Goals for a Configuration Management Network Protocol 186
J. Whitehead, Jr.

CM Strategies for RAD 204
D. W. Weber

6. RESEARCH STATUS AND FUTURE DIRECTIONS
Chair: Boris Magnusson

Software Configuration Management: State of the Art, State of the Practice 217
K. Frühauf, A. Zeller

SCM: Status and Future Challenges 228
R. Conradi, B. Westfechtel

New Challenges for Configuration Management 232
M. Larsson, I. Crnkovic

TUTORIAL
Chair: Annita Persson

The Three SCM Implementation Levels 244
M.E. Moreira

AUTHOR INDEX 255

Content Change Management:
Problems for Web Systems

Susan Dart

Dart Technology Strategies, Inc., 1280 Bison St, PMB-510,
Newport Beach, CA. 92660. USA

sdart@susandart.com
www.susandart.com

Abstract. Behind the facade of a web site, lies the task of managing its
infrastructure and content. This is driving the Internet economy into a Web
crisis. The software community has experienced a similar crisis and knows
that configuration management (CM) is a key player in resolving it. Nine
challenges facing web systems are presented. As the entire world becomes
“webified”, content problems will be magnified. While traditional software
CM provides a static solution (such as via a centralized development
methodology creating batched, planned releases), content CM will provide a
dynamic solution (via distributed, real-time updates) in response to user
traffic monitoring. It is imperative that the lessons learned from CM be
applied to web tools. Otherwise, the Web community is doomed to
experience all the delivery, quality and complexity problems that have
plagued the software community.

1 Introduction

The World Wide Web (WWW) is a unifying force bringing the world closer to
together: Regardless of race, color, creed, skills, educational background, computer
platform, browser, nature of business, geographical location, and job position, we
all ìlookî the same. Business is being transformed into E-commerce. Such revenue
is expected to hit $220billion by 2001 (says International Data Corp.1999). Behind
the facade of e-commerce though, the Web Crisis is looming (1). That crisis is the
exponential proliferation of web content that was created, and is maintained,
without any expertise in data management techniques ñ the proliferation of ìhacked
togetherî web-based systems developed without any rigorous approach and kept
running via a continual stream of patches. Companies are desperate to ìwebifyî
their business applications. The Internet ìgold rush feverî is encouraging business
start-ups centralized around the WWW. With the advent of many, low-cost
publishing tools that are very easy to use, web system creation is now so simple that
anyone without programming skills can create one.

The demand for content creation and maintenance is escalating at an unmanageable
rate. Some analysts (Merrill Lynch Co. 1999) have predicted that by the year 2002,
the market revenue from content management tools will be around $5billion. And, even
when we have it under control, content has a multiplier effect, a snowball effect, where
we will further exploit new ways of using content. First generation web systems
have focused on providing access to any piece of information around the world. The

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 1-16, 1999.
© Springer-Verlag Berlin Heidelberg 1999

2 Susan Dart

next generation web systems will focus on knowledge management: -- managing
the semantics of, or concepts of, content, rather than just the raw information.

For now though, we see the shortcomings of first generation web systems. There
are problems with information being published on the web site at the wrong time
and information that is inaccurate, top secret, corrupt, inconsistent, unauthorized,
unchecked, garbage, stale, or inappropriate. These can have devastating
consequences for companies such as millions of dollars lost in revenue, lost
customers, and lowered stock prices (such as with software crash (13).) The causes
are easily linked back to lack of: well-defined processes, testing, cross-checking of
information, authorized changes, security checking, or responsibility for co-ordinated
changes. Essentially, the problems stem from poor configuration management (CM)
practices. The first generation of web systems were crafted from immature tools and
languages, and inexperienced staff. To properly provide Change Content Management
(CCM) -- CM for web systems -- we will have to go beyond the capabilities
traditionally provided by industrial-strength software CM tools because the
challenges presented by the emerging web economy are exceptional.

This paper is designed to raise questions about CCM for web so that we can
understand the new demands placed on companies by web systems. A web system
is a generic term for an application that can be accessed via the WWW. It
fundamentally consists of content (its data, such as a document), application server
(for executing actions on the data, such as updating document), access (its interface,
such as the clientís browser) and the web server (supporting the applications;
common ones include Apache, Internet Information Server and Enterprise Server).
The biggest challenge for the WWW community is how to build maintainable
web systems that are highly responsive to immediate, high-volume change.

This paper defines the kinds of resources in the WWW environment that are used in
web systems, specifies the classes of web systems being developed, identifies the
many challenges that companies are facing in their efforts to understand CCM,
highlights capabilities provided by software CM and web CCM tools and ends with
recommendations for approaching the solutions.

2 The World Wide Web Environment

Web systems can be huge, with millions of pages, many interconnections and with
incredibly high hit rates. Consider Figure 1 which highlights the many kinds of
resources throughout the WWW that can be a component of a web system. Figure 1
shows that users can be connected to the network via a thin client or a fat client.
A thin client means application code is resident on the server, rather than on the
client (fat client). A firewall determines the kind of access, encryption and security
levels. Web servers provide much of the application code and can have
accelerators for caching dynamic pages in order to improve user access time. The
network can be specialized into an Intranet, Extranet or Virtual Private Network

 Content Change Management: Problems for Web Systems 3

(VPN). An Intranet is an internal network behind a firewall that allows only users
within the company to access it. An Extranet allows outside partners to have
access to the Intranet. A VPN is a secure and encrypted connection between two
points across the Internet. It acts as an Intranet or Extranet except it uses the public
Internet as the networking connection rather than a companyís own wiring. This
enables, for instance, a companyís branch offices to be inexpensively connected via
the Internet.

Attached to the network can be other types of networks such as Storage Area
Networks (SANs) and Portals. SANs are networks that pool resources for
centralized data storage. They may include multiple servers working against a
centralized data store built with redundant hardware such as RAID (high volume
storage) devices. Portals (such as Yahoo!, AOL) are full-service hubs of e-
commerce, mail, online communities, customized news, search engines and
directories, all suited to the particular needs of an audience. Portals are evolving
into corporate enterprise portals. Such portals for instance, enhance corporate
decision making by integrating the companyís applications thereby removing
barriers that exist between business units.

Other resources that can make up web systems are: DBMS (Data Base
Management Systems); workflow applications used for optimizing business
processes, such as ERP (Enterprise Resource Planning) tools (e.g., SAP,
PeopleSoft, Baan); database applications such as OLAP (OnLine Analytical
Processing) systems which allow users to perform ìmulti dimensionalî analysis on
data via their browsers; document management tools (9) for providing access into
shared libraries of documents; imaging systems for optical character recognition of
documents; data warehouses containing terabytes of data; (Data warehouses
provide common interfaces to variant databases); multi-media databases for
holding archives of music, speech, videos; mainframes which contain
approximately 70% of legacy data for large companies; data-marts which are data
warehouses with their own unique interpretation of business data to suit certain
functional needs of a business unit; and, non-PC devices, such as pagers, personal
digital assistants (PDAs), webTV, and smart phones.

Web systems are made up of various combinations of the resources shown in Figure
1. Each of the resources imply content that can be dynamically added, changed,
deleted, accessed, manipulated, along with their relationships and hyperlinks. CCM
will need to control the static content which goes into the web system along with
the dynamic content that is created during execution of the web system. Different
kinds of web systems are being developed which affect the nature of CCM.

3 Types of Web Systems

It is difficult to classify the types of web systems being built today because, of
course, there is no universal blueprint for such systems, the design is still an

4 Susan Dart

immature art and the systems themselves are evolving fast. But, for the purposes of
opening up discussions about CCM, we need to understand the types of
ìarchitectureî of web systems with respect to content creation. In a broad sense, a
web system which is visible via its web site, either acts as a provider of information
or is an application. But the applications can be of different types.

From a content perspective, we are interested in types of web systems which have
data points where data can be added, changed, deleted, accessed or accumulated.
Once we understand the types of applications, we can then determine the nature of
its CCM needs, its development processes and types of tools needed to properly
maintain it. A web system can be categorized as having the properties of one or
more of the following classes:

1. Informational: information sites with read-only usage, commonly called
ìBrochurewareî e.g., information presented on a site that gives details about a
company and its products. First-generation web systems are this type and are
static.

2. Delivery system: download content to user or resource e.g., download
upgrades or plug-ins

3. Customized access: access is via a customized interface or based on userís
preferences e.g., my customized view of my ISPís (Internet Service Providerís)
home page, or favourite portal

4. User-provided information: user provides content by filling in a form e.g.,
subscription to a magazine or registering for a companyís seminar

5. Interactive: Two-way interaction between sites, users and resources e.g.,
business-to-business

6. File sharing: remote users collaborate on common files e.g., users co-ordinate
schedules

7. Transaction oriented: user buys something e.g., buys books or travel tickets

8. Service provider: rentable applications; user rents an application on a per user,
per month basis e.g., virus scan program

9. Database access: user makes queries into a database e.g., supplier looks up
catalog of parts

10. Document access: libraries of online documents are available e.g., view
corporate standards

11. Workflow oriented: a process has to be followed e.g., order entry automation

 Content Change Management: Problems for Web Systems 5

12. Automatic content generator: robots or agents automatically generate content
e.g., ìbotsî scour the WWW to bring back specific information such as best
price on products.

Given these classes, it becomes obvious that content can essentially be created by
anyone or any other resource: from the content designer, the webmaster, any user or
another database or device or other web system. From a CCM perspective, it is
straightforward to capture content that makes up a released baseline since that is
static content, but what about content that is created or changed dynamically? This
raises four key questions then: (1) What constitutes a configuration item for a
baseline with static and dynamic objects? (2) How can dynamic baselines be
captured? (3) Now that the user of the web system participates in the creation or
changing of a baseline, how does that affect the definition of the CCM lifecycle?
(4) Are CCM requirements different for each class of web system? These are some
of the questions being asked by webmasters, developers and CM managers.

Multimedia
DBMS

Data
warehouse

OLAP
system

Document
imaging
system
ERP
workflow
system

Mainframe

Web servers

Web
accelerators

INTERNET
Intranet
Extranet
Virtual Private
Network (VPN)

FIREWALL

Thin client
Fat
client

Users Users

Portals

Storage Area
Networks (SANs)

Data
mart

Non-PC devices
PDAs
Smart phones
Pagers
WebTV

Fig. 1. The WEB Environment

6 Susan Dart

4 Enterprise Challenges for Web Systems

CCM is not really a problem for small, static web systems managed by a few
developers. But it is for medium and large, enterprise systems that involve many
content developers creating many pages that will have a high hit rate involving
high-volume database accesses and updates every minute. For instance, the
NASDAQ stock exchange system (2), is a web system of types 1, 4, 5, 6,7, 9, 10
and 12, and was built to sustain 12 million hits per day with 8 web servers per
database server. When the stock market goes ìcrazyî, the NASDAQ site gets 20
million hits per day. Its content must be completely accurate, and it changes within
seconds. Boeing (3), with a web system of types 1, 2, 4, 5, 9, 10, and 11, has 1
million pages hosted by 2300 Intranet sites on more than 1000 web servers.

Developing and maintaining such large systems with large volumes of content,
offers many challenges to companies. These challenges span technical, people,
process and political issues. The major ones obvious today are the following, and
are described in detail below.
1. The dynamic, active nature of content
2. Variant explosion
3. The free-form style of development
4. The performance effect of content
5. Scaleability of content
6. The urgency and frequency of change to content
7. The outsourcing and ownership of content
8. The immaturity of tools, techniques, standards and skills
9. Corporate politics.

4.1. The Dynamic, Active Nature of Content

Web content is dynamic because it is created on-the-fly based on a userís or agentís
request. It is active because programs are executed in response to the request and to
the userís environment (browser and plug-ins on the client side). For instance,
HTML is static but when combined with active controls (such as ActiveX), it
becomes dynamic such as when the web site gives users feedback on the type of
data they are supposed to enter to make sure the input complies. Content can be
generated and changed in real-time such as with tables, forms, database queries,
documents, and code.

Content is made up data objects, component libraries and code. These can be static or
dynamic, singular or a collection, compiled or interpreted, source or binary code.
Objects include documents, images, streaming video and audio, files, or tables. Code
can be active controls and scripts such as: ActiveX controls, Java, C++, VisualBasic,
HTML, DHTML, XML, VRML, OLE controls, Active Server Pages (ASP), Java

 Content Change Management: Problems for Web Systems 7

applets., VBScript, JavaScript, and ISAPI, CGI, and Perl scripts. Scripts, or
behaviours, can be attached to web objects allowing, for instance, the user to alter
attributes, such colour, positioning and font size on objects or execute applications.
Component libraries are reusable code to be used as toolkits. Examples are
JavaBeans, Microsoft Foundation Classes and Lotusí eSuite of business applets.

An applet or a control is a compiled binary file that a field in the HTML references.
A script is executable code in a readable source language that can be embedded
directly in the HTML tag. In essence, an object becomes a container for various
pieces of content, all of which, need to be under CM control.

We are moving towards container-based, or a component bundling approach to
software development. This means CM techniques need to account for embedded
scripts and customized components. Also, the executing environment needs to be
taken into account. For example, if a browser doesnít support a certain scripting
language, then the behavior of the web system will be different. Also, HTML files
can be manually touched up. Scripts can be easily changed because they are
interpreted whereas applets or controls typically are compiled. This assumes of
course, that the source code can be accessed which isnít the case when components
are bought and reused in their binary form. Hence, changing or recompiling isnít an
option sometimes. Executing code may require a series of steps. For example: a
Java file is compiled into platform-independent bytecodes; these are then processed
by a JIT (Just In Time) compiler to yield fast native instructions for a particular
platform. All the above objects types, their relationships to intermediate forms, and
all the tools, need to be tracked for good CM practices.

Web pages are dynamically created which means that any CM control must too be
of a dynamic nature. For example, an .asp file (Active Server Page which is a
combination of static HTML and VBScript) is recognized; the VBScript is
interpreted with the appropriate database or related files being accessed; then the
server creates the full HTML on-the-fly thereby dynamically generating the web
page which is then displayed. How is all this data tracked for CM purposes? How is
a dynamic baseline captured? To add complexity, hyperlinks can be created on the
fly to point to documents for instance. This then changes the original baseline. Also,
dynamically generated pages can be customized using ActiveX, CGI scripts,
JavaScript and DHTML frames.

But there is more. Content has meta-data associated with it that must be captured:

• The separation of content and format. Companies have standard templates into
which content is published. These templates are part of the released baseline

• External structure information, such as the hierarchy and relationship of web pages

• Internal structure information, such as embedded objects

• Hyperlinks to internal or external pages, static or dynamic

8 Susan Dart

• Task objects that indicates some activity must happen to an object, such as
update the content

• Transaction, such as this data is involved in carrying out an e-commerce activity

• Security information attached to each objects

• Audit logs related to the activity on each object

• Tool compatibility information such as the version of the browser for which
this object is valid

• Bill of materials: the artifacts used to create the baseline (tools, tool options,
data, files)

• Generated or converted files, such as a Word document that is converted into
HTML

• Validation rules, such as a form requires input validation for each field

• Handler rules, such as a data base access request invokes certain tools and
operations.

There are obviously many properties about content that need to be captured. Ideally,
a company should have a well-defined CM data model that captures all the
properties and relationships of content. With that, configuration items, baselines
and releases can be defined.

4.2. Variant Explosion

Web systems imply a variant explosion problem. Consider that web systems are
either created from scratch, are re-designed or merged web systems, or are web-enabled
legacy applications. In many cases, companies must live with all these systems in
parallel. Thus, a company could easily have a nightmarish number of versions of
their latest baseline. For example, it has 4 variants of its main application available
at all times: (1) The ìdemoî version which is a partial ìweb-enabledî baseline of
the original legacy code with a minimal set of functionality as this is the textual
version (2) a full version that is the same as the first where all functionality is
available since it is the graphical version (3) the true web version which is a completely
redesigned form of the application ideally suited to the web rather than merely web-
enabled legacy code, and (4) the original legacy system for non-web use.

Each variant must work with 2 different browsers (Internet Explorer and Netscape
Navigator) including the latest three versions of those browsers ñ and support 5
different languages for international use. Hence, we have (1 * 5) + (3 * 2 * 3 * 5)
= 95 potential variants. Then add in variants for non-PC devices such as pagers,
PDAs and smart phones that have ìmicro browsersî, and the number of variants
escalates further. Most companies have different teams working on separate
variants without much communication, reuse or change propagation across

 Content Change Management: Problems for Web Systems 9

common code. With the variants, come all the complexity of parallel development
support for simultaneous changes and concurrent baselines, along with significant
change propagation to selected variants thereby demanding change set support (10),
more sophisticated change tracking along with help desk support and of course,
much better release planning and change scheduling. The ramifications are dramatic.
Variant management and change propagation have long plagued software companies.

4.3. The Free-Form Style of Development

 Web system development is different from traditional software development (7,8).
This is due the nature of the tools, languages, skills of the developers and the
dynamic nature of the Web environment. There is tremendous pressure on
developers to ìcode-and-publishî. And the web tools support this free-form style of
development. Also, the skill set of the developers is quite limited with typically no
experience in software engineering. They are guided only by the capabilities of the
tools and languages which, as we know from software engineering practices, cannot
be adequate.

Scripting languages (such as JavaScript, Jscript, Tcl, VBScript) are changing the
way that applications are developed. Most of these are interpretive languages or use
JIT (Just In Time) compilers. This leads to a style of ìchange on the flyî. There is
no process in between creating content and publishing it. Programming has gone
from a process-oriented compiler based approach, to a combine components, mix in
some new code and publish! Essentially, this squeezes down the change cycle time
dramatically because all sense of process is eliminated. This enables a faster rate of
change which is a real benefit for web systems but provides greater opportunity for
errors through lack of testing and content co-ordination and authorization of
change. The question becomes: how can testing, system integration, load testing
and release management processes be inserted into the code-and-go paradigm to
enable proper CM? Some companies use staging areas for testing before publishing
to a live site whereas many do not.

 The complexity of web system development can be seen from Table 1. The major
phases are highlighted along with who assumes responsibility for those steps. There
are at least 9 key steps involved in getting the web system functioning. At each
point, CM issues come into play such as, which release or version of the web
system is being changed or published or tested or registered or validated for
security purposes or being monitored for hits or performance improvements.
Without CCM practices and tool support, all these activities become fraught with
errors. Automated workflow along with role based activities must be supported in
web tools.

10 Susan Dart

1. MAJOR ACTIVITY IN WEB SYSTEM WHO DOES THE WORK

2. Design and creation Web Team or IT Dept. or
Outsourced

3. Infrastructure support: servers, network
connections, databases

Outsourced to network
management company, or
hosted by IT Dept.

4. Testing e.g., compatibility of content, link
accuracy, viewable by all kinds of browsers

Web Team or IT Dept.

5. Publishing of content Business Units or Web Team
or IT Dept.

6. Registering of sites on search engines Web Team or IT Dept.

7. Security checking: access control, hacker
analysis, virus detection

Web Team or IT Dept or
Security Consultant

8. Monitoring: traffic performance: intelligent
load balancing and web page redesign;
replication; web accelerators/caching; traffic
shaping capacity planning

Web Team or IT Dept.

9. Maintenance: content evolution via changes,
enhancements, deletions, redesign

Content experts or Web Team
or IT Dept.

Table 1. Typical web system lifecycle phases

4.4. The Performance Effect on Content

Performance ñ particularly response time to a userís request -- plays a major role in
influencing content design. High performance web systems have continuous traffic
monitoring. Users must have immediate access to quickly-changing content under
any load situations. If access times are not acceptable, a company makes a decision
to either, install web accelerators which enable caching to improve performance, or,
they redesign the content for better access. For instance, at the Olympics site (11),
traffic monitoring showed bottlenecks for users by having to navigate too many
pages to get to the right content. The web site was redesigned on-the-fly to make
access much easier and speedier along with adding caches.

Web accelerators, or caches, are beginning to play bigger roles in performance
enhancement with content being designed to take into account, caching techniques

 Content Change Management: Problems for Web Systems 11

for accelerators. But a dependency results between the content baseline and the
version of the caching algorithm and server that are used. Also, server crashes (such
as with the E*trade brokerage site crashes which shut out users who lost money
through lack of trading access) must be catered for in contingency plans. This
means content must be replicated across servers which in turn, means
synchronization and distribution of real-time updates.

4.5. Scalability of Content

The Olympic (11) and NASDAQ (12) web systems are huge in terms of number of
pages (million), amount of traffic (millions of hits per day), and number of database
and web servers. Millions of pages cannot be reasonably stored in a flat, file
system. Databases are obviously required for storage and are being redesigned to
suit web access. Some database companies are redesigning their products so that
web applications are stored directly in the database, such as Oracleís WebDB. This
helps with scalability, reliability and administration. It is likely that first generation
web systems will be redesigned to use web-enabled databases. This means that CM
capabilities must be integrated and synchronized with database facilities.

4.6. The Urgency and Frequency of Change

The web enables the paradigm of change at the speed of thought. The mind set is
typically: I see a problem and can, or need to, fix it immediately because it is globally
visible. Corporate embarrassment or even worse, litigation, needs to be avoided. There
may be no time to follow through a normal change lifecycle (such as with a change
request, Change Control Board, change authorization, edit, testing and re-release).
Because the change can be done so easily, process is often bypassed. All the benefits
then of change tracking are lost. Repeatability will be a difficult benefit to achieve.
Roll-back of a site may be the only options for companies. But, the corporate need of
keeping the web site accurate, takes top priority. There are changes that may need
to be propagated across all pages of a web site, or just a few pages. For example,
simply changing a copyright notice, may involve changing each of the one million
pages, whereas other changes may involve a select set of pages so an incremental
publishing capability is required along with ways of organizing files into partitions
to enable incremental updates. A company needs to define its classes and priority of
changes and decide what process should be followed for each type of change.

4.7. Outsourcing

Outsourcing is a significant trend for industry, especially for web system creation,
and sometimes maintenance. It is done for many reasons: to reduce operating costs,
share risks with others, access leading-edge technology without having to purchase
the infrastructure for it, use expertise not found in-house, do things more quickly,
and to focus more on a companyís own core competencies. But outsourcing does
require distributed management techniques along with doing CM with a third-party.

12 Susan Dart

Easy-to-use web tools and specialized commercial-of-the-shelf tools (such as
OLAP, ERP, document management) are helping to change the political
infrastructure of companies. For instance, business units no longer are forced to rely
on the Information Technology (IT) department in order to get things done. They go
out and buy the best tool that suits their need, bypassing IT. They can even go out
and rent the infrastructure for supporting the tools, and outsource its administration.
This complicates issues of who has responsibility for what, how to maintain control
and visibility over outsourced changes, and can a business unit guarantee that a
quality process was followed for the outsourced work.

4.8. The Immaturity of Tools, Techniques, Standards and Skills

 Engineering techniques for web systems are still in their infancy. Tools, standards,
and skill sets are maturing albeit slowly. Each month, new tools and new versions
of tools are being released that support easier ways of building web systems. As a
result, companies have to maintain different tool technologies in parallel. Standards
(such as XML (eXtensible Markup Language) from World Wide Web Consortium,
or WebDAV from the Internet Engineering Task Force) are slowly being developed
which in turn, will affect the tools. There are many web technology tools that
enable easy publishing of content without team co-ordination or process. Because
of the many choices, large companies will end up having their business units using
different tools. To get some control over how content is developed, and to ensure
that quality processes are followed in publishing content, companies will have to
define standards and guidelines. These standards will pertain to style templates,
component libraries, tools, languages, servers, testing processes, and CM.

Web systems require developers and content experts for their creation and
maintenance. Many web developers have little background in software engineering.
Content creators can be human resources personnel, marketing people, accounting
staff, etc. people whose core competence is not software. Their web skills then are
totally dependent on their knowledge gleaned from the web tool set and any training
class they attended. This implies that the tools need to have interfaces that suit the
content writer yet have excellent CM processes embedded to make up for the lack
of software skills.

4.9. Corporate Politics

There is confusion in companies these days as to who should have the right to
publish content to the web site. For instance, business units publish independently
from the IT department. Essentially, there is lack of control as to what goes up,
when, and how it has been tested and does it conform to standards? This is
particularly a problem when the web system has content that must be co-ordinated
and validated as a whole with other departments (such as Accounting, Marketing,
Personnel, etc.) or with other applications. Who assumes responsibility for the
accuracy of the information on the web site? Who assures that quality control

 Content Change Management: Problems for Web Systems 13

processes have been followed before information is published to the site? Who is
responsible for making changes? Who assumes the cost of change? The role of the
IT department is changing dramatically ñ from an infrastructure provider ñ to that
of a strategic advisor and standards producer. Many functions traditionally done by
IT (such as network administration) are now being outsourced. Outsourcing will
significantly change the modus operandi of IT departments. And web creation is
mostly outsourced these days. All in all, companies face a delicate balancing act in
trying to rein in the proliferation of web systems while still leaving employees
freedom to meet their business needs.

5 Software CM Is a Major Part of Content Change Management

Everything that the software community has learned about CM can be applied to the
CCM problems. Software CM spans a significant spectrum of activities and roles
within a company (5, 6) and Table 2 highlights the main goals of CM. The software
CM tool vendors are adding CCM capabilities to their tools.

GOAL explanation
Identification Identifying uniquely all content
Control Version control of all objects including baselines
Status accounting Tracking the status of all work on all objects
Audit and review Keeping an audit trail, confirming all processes followed
Cost-effective production Fast and quick builds of software releases
Quality automation Ensuring all testing, notifications, signoffs, reviews are done
Teamwork optimization Enabling teams to work in parallel in the most effective

manner
Enabling change Containing the explosion of changes

Table 2. Goals of software configuration management

Web tool vendors are beginning to realize that CM practices need to be
incorporated into their tools Advice on good web design (4) is beginning to
highlight the importance of CM but only in the sense of version control of files. On
the other hand, web engineering advice (12) completely ignores CM. Table 3 lists
some of commercial software CM tools.

Software CM vendors are taking different approaches to CCM support in their
tools. Some, such as StarTeam are web-enabled and have purchased web
technology companies with the intention of tool integration. Others such as
TrueChange have decided to build a completely new software CM tool for CCM.
Others such as Continuus and MKSIntegrity, have added on CCM support. The
formerís offering, WebSynergy and WebPT, provide a web front-end into all of its
existing CM process-oriented capabilities as well as web authoring tools with
transparent access to files. The latterís offering, WebIntegrity, integrates its version
control facilities with an authoring tool.

14 Susan Dart

6 Web Technology Tools

Web tools are marketed for web authors or web developers. As to what constitutes a
CCM tool, that is not totally clear and there is no consistency in functionality across the
tools. Suitability for large-scale development seems to determine whether it is a CCM
tool or just an authoring tool. Tools are first generation ones (with respect to CCM
support) with only one product (DynaBase) claiming that it provides configuration
management facilities. Some tools are geared to large-scale web production although it
is not clear how scaleable these tools are yet. Half a million components seems to
be the maximum so far. Table 4 lists some commercial CCM tools. If there are any
similarities or trends, they would be: support for web languages, command line inter-
faces, templates for separating content from formatting, version control of files, roll-
back of complete sites, minimal workflow support for publishing authorization, audit
logging, event triggers, commercial database interfacing, drag-and-drop component
reuse so that minimal programming is required, role support for authorizations,
minimal change tracking and concurrent site production (for multiple releases).

CM TOOL VENDOR WEBSITE

Continuus Continuus www.continuus.com

ClearCase Rational www.rational.com

Harvest Platinum Technology www.platinum.com

Perforce Perforce Software www.perforce.com

PVCS Merant www.merant.com

Source Integrity MKS www.mks.com

SourceSafe Microsoft www.microsoft.com

StarTeam Starbase Corp. www.starbase.com

TeamConnection IBM www.ibm.com

TrueChange True Software www.truesoft.com

Table 3. Some Commercial Configuration Management Tools

Some noteworthy features include: TeamSite provides visual differencing for
examining two versions of content side by side. Tasks can be assigned to authors
using notifications. Authors can be notified when content is published on the web.
Content is moved to a staging area each time it is changed or receives approval to

 Content Change Management: Problems for Web Systems 15

be published. Drumbeat gives developers guidance on targeting code to specific
browsers thereby providing variant creation support. In Raveler, teams can be set up
with pre-configured worklfows. StoryServer supports static and dynamic versioning.
Overall, more CM support needs to be provided to support CCM needs.

7 Conclusion

The web environment provides the opportunity to connect many different resources.
Whilst the resultant web systems are easily created, they are complex systems offering
many challenges for CCM. We need to understand the problems that companies are
having with web systems in order to properly define their CCM requirements. Then we
still need solutions to questions such as: What are good content development and
change processes for teams developing large-scale web systems? Are there different
processes depending on the type of web system, size of company, volume of web data?
Can the types of web systems be categorized into classes or architectures? Will com-
ponent libraries be indicative of these architectures? What factors affect the definition of
the CM process and CM items? Do we need system models, data models, architectures
of web sites in order to fully capture the appropriate CM meta information?

CONTENT TOOL VENDOR WEB SITE

ArticleBase Running Start www.runningstart.com

DreamWeaver Macromedia www.dreamweaver.com

Drumbeat 2000 Elemental Software www.drumbeat.com

DynaBase Inso www.inso.com

Frontier Userland www.userland.com

FrontPage98 Microsoft www.microsoft.com

Fusion NetObjects www.netobjects.com

Raveler Platinum
Technologies

www.raveler.com

StoryServer Vignette corp. www.vignette.com

TeamSite Interwoven www.interwoven.com

Table 4. Commercial Web content development tools

Second generation web systems will focus on knowledge management and hence
need sound engineering principles, such as CM, behind them Given the many

16 Susan Dart

challenges, much of the solution will have to be embedded in the tools because the
skill set of the developer cannot be guaranteed. This means that the CM processes
will have to be implemented in the web tools rather than relying on manual
procedures. Along with excellent variant support, change tracking, and change
propagation (especially via change sets). CM is becoming an issue for all
companies because, in order to survive beyond the first decade of the new
millenium, companies must ìwebifyî their applications.

References

1. Murugasen, S., Deshpande, Y.: Proceedings of ICSE99 Workshop on Web
Engineering, International Conference on Software Engineering, Los Angeles,
USA (May 1999)

2. Hutcheson, M.: The NT Application That Wouldn’t Die (NASDAQ.COM),
Enterprise Development. 1,1 (Dec. 1998)

3. Sliwa, C.: Maverick Intranets: A Challenge for IT. In: Computerworld (March
15, 1999)

4. Siegel, D.: Secrets of Successful Web Sites : Project Management on the World
Wide Web. Haydn Books, Indianapolis, IN, USA (1997)

5. Dart, S.: The Agony and Ecstasy of CM. A half-day tutorial given at 8TH
International Workshop on software CM, Brussels Belgium (July 20-21, 1998)
http://www.cs.colorado.edu/~andre/SCM8/dart.html

6. Dart, S.: Not All Tools are Created Equal. In: Application Development
Trends, (Oct. 1996) 7pp http://www.adtmag.com/pub/oct96/fe1002.htm

7. Gellerson, H. and Gaedke, M.: Object-oriented Web Application Development.
In: IEEE Internet Computing (Jan/Feb 1999) 60-68.

8. Lockwood, L.: Taming Web Development. In: Software Development
Magazine (April 1999)

9. Dart, S.: The Dawn of Document Management. In: Application Development
Trends (Aug. 1997)

10. Dart, S.: To Change Or Not To Change. In: Application Development Trends,
(June 1997)

11. Iyengar et al. : Techniques for Designing High-Performance Web Sites. In:
IBM Research (March 1999) 17pp.

12. Powell, T.: Web Site Engineering. Prentice Hall, NJ, USA (1998)
13. Bloomberg News: Net Shares Battered Amid Signals That Web’s Expansion Is

Slowing. In: Wall Street Journal (June 15, 1999)

Experiences; Distributed Development and
Software Configuration Management

Ulf Asklund1, Boris Magnusson1, and Annita Persson2

1 Dept. of Computer Science, Lund University; P.O. Box 118, SE-221 00 Lund, Sweden
{Ulf.Asklund | Boris.Magnusson}@cs.lth.se

2 Ericsson Microwave Systems AB; SE-431 84 Mölndal, Sweden
Annita.Persson@emw.ericsson.se

Abstract. Distributed development occurs more frequently today than only
some years ago. Distributed development states new demands on Configuration
Management and used processes. This paper describes experiences from more
than ten different Swedish companies in the area of distributed development and
software configuration management. We present definitions, experiences and
hints on Software Configuration Management from three different aspects; four
cases of distributed development, architecture, and working methods in some
key-areas.

1 Introduction

Large companies and organizations have for a long time had access to global networks,
but the rapid development of the Internet has brought about a dramatically increased
access to such services. This results in such a degree of accessibility that it is expected
at almost all kinds of work, not least in software development. Groups of developers
are now able to work all over the world on the development of the same system. From
different locations they may need to modify thousands of different files and sometimes
the same files, within a single product. The potential is considerable due to the
increased possibility of using personnel and competence in a more efficient, flexible
and comfortable manner. At the same time, this new technique has caused considerable
changes of the organization of the work place in many other respects, as well as in this
one. The way in which the work has been divided and the handling of the interactions
between different groups and individuals has been largely affected by the fact that the
staff is geographically dispersed. This creates new demands on the tools and the sys-
tems used for handling the coordination of the development, especially with concur-
rent development. Much of these demands, but not all, are within the area of Software
Configuration Management, which is the subject of this report. Other systems for com-
munication and management are of course also affected if the staff are geographically
scattered over great distances, but they are not the primary focus here.

SCM is targeted towards two target groups; management and developers [Fei91],
which have resulted in several different definitions of SCM. The main objective for
supporting management is to document and provide full visibility of the product’s
present configuration and on the status of achievement of its physical and functional
requirements. Guidelines to fulfill these objectives are documented in standards like
MIL-STD-973 [MIL], and ISO 10 007 [ISO95]. Developers need support to synchro-

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 17-33, 1999.
c Springer-Verlag Berlin Heidelberg 1999

nize their work and to be aware of what other developers are doing, etc. Support which
aims at coordinating them towards a mutual goal.

A central problem is the management of the history and development of documents
and programs over time as well as the management of branches and to support merge.
SCM was originally developed under the more or less explicit assumption that the peo-
ple as well as the files are situated at the same geographical location. This applies to
the tools that have been developed as well as to the working processes used. The gen-
eral opinion on the functionality associated with SCM has been formed from this
assumption. The support for management as well as for developers are tasks that gets
even more complicated when the staff is geographically dispersed.

Some aspects of system development, such as the creation of a general picture and
a context, the communication between developers and groups, have remained manual
and without direct tool support [AM97]. A part of the requirements is covered by indi-
vidual documents, specifications, and formal meetings where important decisions are
made. But an astonishingly large part of this requirement of information for synchroni-
zation, within, as well as between groups, is covered by informal contacts between
developers, during discussions, at review meetings, during coffee breaks, in the corri-
dor and so on. When people working closely together are geographically disperse we
need to consider how these additional aspects may be supported in the working method
and in tool support. The closer together people work (despite the geographical dis-
tance) and the more dependent their various tasks are, the more apparent the lack of
support will be.

A good strategy during all development is to try to limit the dependency between
the developers, especially if they are situated at different locations. This is often
already done during the structuring of the product to be developed. The system is
divided into modules or components, which are then developed by different groups
separately. However, it turns out that despite good structuring, dependencies between
the components remain. This becomes clear not least when interfaces need to be modi-
fied or when the components are to be integrated. These are examples of situations
when one, although one has tried to avoid it, requires an overview and synchronization
between the groups mentioned above.

Much of the discussions in this paper is not limited to software, but may be applied
to other products and documents. We will hence denote configuration management as
CM rather than SCM.

This paper presents a part of the results from a project sponsored by the Associa-
tion of Swedish Engineering Industries (VI), with the aim of focusing on the area of
CM in connection with distributed development. The study was based upon interviews
at 11 Swedish companies with experience in the introduction of distributed develop-
ment. The full result can be found in [Ask99a, Ask99b]. Our experiences from the
project can be grouped into three parts: classification of situations of distributed devel-
opment, client-server architecture of CM-tools, and working methods. We demonstrate
guidelines from the companies which can be used by other companies to better under-
stand their situations and give them practical tips how to deal with these.

Section 2 contains a number of examples where different situations of distributed
development may arise in a company. Section 3 describes different client/server archi-

18 Ulf Asklund et al.

tectures and their advantages and disadvantages regarding distributed development.
Currently used methods and tools, how they are being used at the different companies
and their experiences in doing so is presented in section 4. Conclusions ends the paper.

2 Five Cases of Distributed Development

Distributed development may arise due to several different reasons. During the investi-
gation four cases were identified. The companies interviewed recognized the cases and
could describe how they dealt with the distribution aspects related to each case. The
classification also facilitated a discussion regarding suggestions of solutions. The dif-
ferent cases that have been identified are: (1) Locally (for comparison), (2) Distant
work, (3) Outsourcing, (4) Co-located groups, and (5) Distributed groups.

The different cases occur individually or in combinations. For instance there may
be groups which are normally connected, but which may occasionally be distributed.

2.1 Locally

A fast network is characteristic of a place of work
where everyone is situated locally, allowing com-
plete development and test environments for all
developers. It is fairly easy for the project groups to
communicate and synchronize their work, by formal
meetings as well as by more informal encounters

such as at the coffee table. Informal meetings also create a team spirit, which in turn
increases the probability that the established CM process is observed.

From a CM perspective:
• A common file system.
• Complete development and test environment.
• Synchronization can to a certain degree be achieved through meetings. In par-

ticular, problems that arise can be solved through direct communication.
• Good awareness of what others are doing (group awareness).
• No particular security problems (external networks are virtually unused).

2.2 Distance Working

This kind of distant work is brief
work being performed elsewhere than
the usual place of work. Home work-
ing as a complement to the daily work
being the primary example.
When developers work at home (or
elsewhere) on a more regular basis or

Modem,
CD/Tape,
Laptop computer

19Experiences; Distributed Development and Software Configuration Management

for longer periods of time, a situation similar to that for distributed groups arises, see
further below.

A limited computer utility and a relatively slow means of communication with the
world around (for instance by data modems to the usual place of work) is characteristic
of distance working. Despite this, there is a desire to be able to start working quickly,
as the total working time on each occasion is short (typically a few hours in the
evening), which means that it must be possible to set up the working environment
quickly. As the daily contacts remain, the possibility of informal communication and
maintaining the team spirit is more or less the same as in the local situation.

Two common modes of working are: (1) Individual files are brought home and
worked on locally, or (2) remote login to the place of work and the home computer is
being used as a terminal.

From a CM perspective:
• Bringing home individual files results in the work being done locally outside of

the control and support of the CM system. The degree of impairment this can
lead to partially depends on which CM model the tool supports [Fei91]. For
instance no support is offered as to the awareness of what others are doing
simultaneously. In addition, testing is made impossible.

• Login at a terminal is similar to the local case. The slower connection makes
the work somewhat heavier going for the developers. Then there is also a ten-
dency that they may not follow the working models the way they should (for
instance to make a complete test of all platforms before check-in).

2.3 Outsourcing

Instead of developing everything by
yourself or buying existing compo-
nents (COTS - Commercial Off The
Shelf) you may have a third party
develop them for you. This is usually
called outsourcing (or subcontracting)
and gives, compared to COTS, a
greater control of the development of
the component, albeit at a higher price.

Outsourcing is based on a close collaboration between the supplier and the purchaser.
Consequently it is often possible for the developer/supplier to test the component in an
environment similar to the target environment prior to delivery. The purchaser then
usually provides the test environment.

The purchaser is ultimately responsible for the product and possible error/change
management can be reflected in changed demands on the component towards the sup-
plier. As with any order, it must be clear what should be delivered, but in this case it is
further complicated by the fact that the demands as well as the environment may
change.

copying of the
test environment

delivery of com-
ponent

possible updating
of the test envi-
ronment

supplierpurchaser

20 Ulf Asklund et al.

From a CM perspective:
• The purchaser must be able to integrate new versions of the component into the

product, which itself may have developed since the latest release of the compo-
nent.

• The supplier should be able to manage the updating of the development and test
environments.

• The purchaser and the supplier do not necessarily have the same CM tools,
which might make the updating (in both directions) difficult.

• At delivery of a source code, the generation tools must also be consistent
between the purchaser and supplier.

• With changed demands, the connection between the version of the demand and
delivery must be clear.

2.4 Co-located Groups

Developers at different affiliated com-
panies usually belong to local groups
or projects. The division of the work
has already been determined at the
structuring of the project/product to
prevent too much dependency between
the different groups. The product is
divided up into sub products, which
can be developed by different project
groups. The division makes it possible

to do most of the development locally within the groups without the requirement for
much communication with other groups. Within the group and between groups in the
same place, the situation is the same as with local development. Groups in different
places normally only have access to the latest stable versions produced by the other
groups. Due to the geographical distance, potential problems will inevitably be more
difficult to solve. Therefore, updating and distribution between the groups requires
more effort and administration, these may be considered as internal deliveries and
therefore tend to come more infrequently. Cooperation between the groups may be
facilitated if the work is planned in phases of which everyone is aware. Conversely the
redistribution or division of the work is more difficult to perform afterwards.

From a CM perspective:
• The files are stored in different file systems, but (ideally) in the same CM sys-

tem. Large companies sometimes have different CM systems in their different
affiliated companies.

• When the locations are permanent, each local group should be able to work
within a complete development environment and with the possibility of testing.

• The groups deliver (release) sub-products between them rather than develop
together.

21Experiences; Distributed Development and Software Configuration Management

• There are often few or no unplanned daily contacts between the groups. The
contact is limited to e.g. weekly meetings, which may be actual physical meet-
ings or telephone/video conferences.

• It is important to maintain the knowledge of the development status between the
groups.

• Change management of common components, such as interfaces, is of particu-
lar importance.

2.5 Distributed Groups

Distributed groups means that the
members of the group are also distrib-
uted, i.e. that the people working in the
same project, perhaps even in the same
files, are geographically dispersed.
The possibility of daily communica-
tion by formal as well as informal
meetings is lost even within the group.
Projects working towards the same
product usually use some common

libraries or components. Changes in these are unusual (simply because they are com-
mon and changes are difficult to manage), but sometimes inevitable. If group members
at different places want to make changes at the same time they face a situation similar
to that for the updating of interfaces where there are “connected groups” but in this
case the problems apply to all files.

The situation with distributed groups can usually be avoided, by considering sepa-
rate individuals as very small connected groups for example. Despite these efforts,
there are cases when the groups need to work more closely together although they are
still distributed. The obvious example is when people included in one group, have to
travel around to other groups for various reasons. Of course there is a desire to be able
to continue working with the usual project, this will then be done as a distributed
group. A similar situation arises when staff are moved to new projects but often need to
be consulted on the old project. People with special competence are often included in
several groups, which can be at different locations.

From a CM perspective:
• It is important that the members of the group receive information about what

the others in the group are doing, how the project is developing, its status,
which changes have been done and by whom etc.

• It is important to support the sharing of files and concurrent, simultaneous
changes.

• Solutions using “locking” and exclusive access to files work poorly as it is diffi-
cult to solve situations where group members, located at different sites, must
wait for each other.

22 Ulf Asklund et al.

2.6 Discussion

The situation of local development is of course preferable from a CM point of view, as
it is easier to manage than the cases of distributed development. However, there are
several other good reasons for the use of the different situations outlined above.

The situation with connected groups usually results in the work being planned in a
manner such that the dependency between groups in different places is minimized.

The situation with distributed groups is usually not desirable, but rather the plan-
ning of the work, the complete system construction, the division into components and
so on aims to avoid this. However, it can be anticipated that such a situation arises as a
consequence of the break up of connected groups.

An additional example is in using remote places of work, i.e. a place of work situ-
ated closer to home than the “real” place of work, which is therefore used most of the
week. The situation is a combination of distance working and distributed groups. Typi-
cally, formal meetings work, but informal ones, either partially or completely, fail to
occur.

3 Six Possible Architectures

To meet the demands arising from different situations (the four cases above), one can
in a number of different ways, locate workstations and repositories/servers in these
places, in different architectures. We will therefore from now on call a geographic
place (e.g. the same house), equipped with repository/server and a number of work
places, a “site”. Developers with workstations but without a repository/server are
therefore not a site. The different architectures being discussed are: (1) Locally to a
server, (2) Remote login, (3) Laptop computer to a server, (4) Several sites by Master-
Slave connections, (5) Several sites with differing areas of responsibility, and (6) Sev-
eral sites with equal servers.

3.1 Locally to a Server

All developers are situated locally and work via a
rapid network towards the same server.

3.2 Remote Login

A single server towards which everyone works.
Those situated at a different location than where
the server is located, work towards the server by
“remote login”, “telnet”, or other similar proto-
cols. Technically a developer then works as if sit-

uated locally but is limited by a slower (and possibly a less reliable) connection, for
instance over a modem or Internet.

23Experiences; Distributed Development and Software Configuration Management

3.3 Laptop Computer to a Server

The server towards which everyone works, but in
contrast to remote login, some of the product’s
files are copied to be then worked on locally.
Updating and synchronization of the files is typi-
cally done on a daily basis. The work is per-

formed without support by the CM tool. If a CM tool is available on the laptop
computer, then a situation as outlined in chapters 3.4 or 3.5 may arise.

3.4 Several Sites by Master-Slave Connections

A version of a connected sub-system is copied
from a master to another (slave) server where it is
further developed. This architecture is commonly
used without support from a common CM tool
and therefore the version history is not included
at the copying stage, nor at the following syn-
chronization stage, at “delivery” back to the mas-
ter. To avoid a complicated merge situation a sub-

system copied to a slave server can not be changed at the master or any other server. If
both servers have the same CM tool, and it supports this architecture, these limitations
can be eliminated or at least reduced. Irrespective of this, the requirement for updating
is usually relatively infrequent (weeks, months). A situation like this may occur with
outsourcing for instance.

3.5 Several Sites With Differing Areas of Responsibility

Different sites are responsible for different sub-
systems. The division can be based on the respon-
sibility for certain files or certain variants. The
variant concept must be the same for all of the
files on the servers. For those parts that a site is
not responsible for, the information can only be
read. Synchronization is achieved by the changes
in the original being transferred to the copy.

Examples of such protocols are ftp, www, e-mail or those within the CM tool. Syn-
chronization is often done automatically and at close intervals (time scale of hours) or
when needed, i.e. when changes have been made. It should be noted that a site can
have the original of one sub-system and at the same time have copies of others. This
means that updating can occur in both directions between servers holding the originals
for different sub-systems.

Compared to the master-slave architecture, this is a more permanent division and
the synchronization is usually done automatically and therefore more frequently.

Master

Slave

Original A

Copy A

Original B

Copy B

24 Ulf Asklund et al.

3.6 Several Sites With Equal Servers

This is an architecture where several equal serv-
ers are located at different sites. These are auto-
matically synchronized at close intervals (hours,
minutes, seconds) and all of the servers have
(with very little delay) the same information. The
result is that a developer can work at any site
(towards the server at that site) without noticing
any difference. The dotted line symbolizes how

the servers at the various sites are being synchronized, the outer limit symbolizing a
virtual site within which everyone works.

3.7 Discussion

The division in different architectures can serve as a guide when planning the introduc-
tion of distributed development, and as a basis for the analysis of the consequences and
limitations of different solutions. The different examples may also serve as a guide for
the manual management of the situation and to understand what different CM systems
can offer. Of course, it will never be very easy to use an architecture until there is tool
support.

The situation of remote login is often used in manual management. Situations in
which temporary branches need to be merged will most likely increase, therefore a tool
supporting this function would be of great value. The same principle applies to the sit-
uation with simple use of a laptop computer. There are also simple tools for supporting
the synchronization of directories with files existing on the server as well as on the lap-
top computer, e.g. File Assistant for Macintosh [Mac]. The Master-Slave connection is
a situation that is directly supported by the tools Teamware [Team94], which was
developed to support this particular architecture. Similarly ClearCase Multi-Site
[Clear98], Continuus [Con98], and PVCS Replicator [PVCS99] support the architec-
ture in which there are sites with differing areas of responsibility. Finally we conclude
that the ideal situation with equal servers, is unfortunately not covered by any of the
commercially available systems.

The interval between updates will impact on when changes can take effect and thus
controls the degree of awareness in and between the groups.

4 Working Methods in Two Key-Areas

In this chapter two areas are indicated where a distributed development affects the
working mode and gives rise to situations which must be solved in order to obtain an
effective and problem free development. The areas being discussed are: (1) Concurrent
development and awareness and (2) Change management.

For each area we give our definition of the area and examples of problems that may
arise or be magnified by geographical separation, we report on the experiences from
the interviewed companies, as well as advice and practical guidance.

25Experiences; Distributed Development and Software Configuration Management

4.1 Concurrent Development and Awareness

To shorten the development time, companies are increasingly developing more of their
software in a concurrent manner, i.e. a number of developers make simultaneous
changes to the same product. A prerequisite for this is that the developers can and may
make simultaneous changes. By letting developers work in different parallel develop-
ment branches they can, despite the concurrent nature of the work, work in an isolated
‘sandbox’ and in that way avoid using each others temporary changes. However, the
isolation results in the possibility that, without being aware of it, they may make
changes that are in conflict with each other. These conflicts have to be solved when the
branches are subsequently merged into a common development branch.

Concurrent development can be achieved at different levels. At the system level,
sub-products or different functions are developed in parallel (concurrent system devel-
opment), and at a lower, more detailed level, several developers can make simulta-
neous changes in different versions of the same file (concurrent software
development). The lower the level, the greater the possibility for a high degree of con-
current work, but the greater the risk of conflicting changes.

There are two main ways of reducing the risk of conflicts:

• A good product structure makes it possible to make dependencies obvious and
distribute the work to different parts of the product. The more independent the
parts are of each other, and the better their interfaces are described, the smaller
the risk of conflict. It is then relatively easy to distribute the areas of responsi-
bility, as different parts of the product, to the different developers or project
groups.

• A high degree of awareness of what other developers/project groups have
worked with and are currently working on. Concurrent development on a low,
detailed level requires more awareness than on a higher level. With concurrent
working at the system level, knowing if/when an interface is being changed
may be enough, whereas two developers working in the same module would
probably like to know if/when the other starts working in the same file.

Awareness is mainly achieved through formal and informal meetings, e-mails between
developers and through CM tools. In a distributed situation much of the information
obtained through the informal meeting disappears, in addition, the formal meetings
become less frequent and may be performed as telephone and video conferences rather
than sitting around a table. Other aspects, such as cultural differences and time zones,
also reduce the possibility of good communication. To increase the degree of aware-
ness in a distributed situation it is therefore required that this reduced communication
is compensated for by an adjusted working model and CM tool support.

An implemented process can for instance send e-mails under certain predefined
conditions, one can see who created new versions, when and so on. However, the sup-
port for increased awareness is sensitive; for instance, too large a number of messages
intended to increase awareness can hinder more than they help. That may be the case if

26 Ulf Asklund et al.

small changes far down in a sub-project, result in messages being given to developers
working higher up in the product structure.

Experience of concurrent development
Well defined tasks result in increased awareness in the sense that a person knows what
the others should be working with; this is an important aspect with collaborations over
long distances. It also reduces the risk for misunderstandings, e.g. due to cultural dif-
ferences. However, it gives no “real” awareness through system support, i.e. what actu-
ally happened yesterday, or what is happening right now. By defining the tasks for each
developer one does not decrease the reasons for concurrent work at lower levels either.

Another common technique is to allocate exclusive areas of responsibility (e.g. a
set of files/modules). Especially during new development this is often possible, by hav-
ing a suitable product structure, and to split the work between developers such that
they become responsible for different parts of a product. Clear tasks and well-defined
interfaces result in the work, particularly between locations, being done quite indepen-
dently. Despite this, awareness is important and companies are now looking for a
greater connection between development at different locations, with a possibility of
seeing on a daily basis how work is progressing, rather than as now with a regular fol-
low up of, for example, once a week. Since only one person is allowed to make
changes in a file due to the division of responsibility, branches at the file level are
rarely used.

During maintenance it is more difficult to make the same division of responsibility.
Instead of breaking down associated tasks, e.g. change requests, into too small pieces
which should be performed by different people in their respective areas of responsibil-
ity, it is better to enable a developer who notices a simple error in another persons
module to, at least temporarily (possibly in an own branch), quickly correct the error in
order to be able to test his own changes. This is particularly important when the devel-
opers are situated in different locations (although it may be more difficult to achieve).
The person responsible for the module should then be informed that somebody else
has made a proposal for a change, to be able to decide whether it should be integrated
(merged) into the main branch.

When the division of responsibility is too great, it easily becomes too static and
therefore limits the developers in what they can do. Some people also believe that the
working mode according to “new development” outlined above is only caused by an
inadequate support for distributed development and that it is a concession in order to
get simpler CM management in the absence of branches. Instead of this, the normal
working mode should be that every new functionality is implemented by a responsible
person, who then implements the complete change in all affected files. It should also
be stated that the maintenance of, and further development of a product are the greatest
part of its life cycle (at least 80% according to some sources). Therefore the formula-
tion of tools and processes just for new development rather than for further develop-
ment/maintenance is a common, and in this respect, serious mistake.

To prohibit concurrent development at the file level for example, means that two
developers will not be able to simultaneously make changes in the same file. In con-
trast, it is possible for the two to organize the work in sequence and implement their

27Experiences; Distributed Development and Software Configuration Management

changes one after the other, i.e. there is dynamic locking of the files. Areas of responsi-
bility result in a static division where (always) only one of the developers is allowed to
make changes in a particular file. The strict allocation of exclusive areas of responsibil-
ity is thus a firmer synchronization for the developers than just prohibiting concurrent
development at the corresponding level.

Some companies use a pure checkout/checkin model with locking at the file level
and do not allow the creation of branches, even during maintenance. As several files
often have to be changed to implement a complete change request, a “deadlock”
between two developers may arise when they both want to change files which the other
one has already locked. If one has locking without branches, a method to solve all aris-
ing deadlocks must be created. The most common method in local development is that
the developer who has got the longest time before his deadline (manually) reverses his
changes, after which the other developer can complete his change request. In some
way (without direct tool support) the waiting developer becomes aware that he can
continue, the previous changes are repeated and the change request is completed.

In many companies there is a fear of concurrent working at a lower level (module
or file). It is unclear whether this fear is due to the fact that they want to keep the posi-
tive aspect of clear areas of responsibility (“only the one understanding the code can
make the changes”), or whether it is due to a fear of loosing control of what is happen-
ing in the project and who does what. These fears are to a large part due to poor tool
support for awareness.

One conclusion that can be made is that two sub-products (in a well-structured
product with normal dependencies) can be developed more quickly and easily if they
are both developed at the same location rather than at different locations. However, it is
still an open question as to exactly what support is required by the CM tool to avoid
this difference or even whether it is possible to avoid it. In addition to awareness sup-
port, which was discussed previously, many tools lack an overall picture of how the
system as a whole is developed. For each individual file one can see which versions are
included as well as the differences between them. In contrast, configurations (the prod-
uct and the sub-product) are described in a configuration file and usually lack version
graph of its own where one easily can see how they have developed. In addition, a ver-
sion graph would clearly show if, for instance, a certain sub-product was at that
moment being developed concurrently by several developers.

Practical guidance

• Replicate the information at the different development locations so that every-
one can work towards a local server. Synchronize the replicates regularly and
frequently, preferably automatically using tool support.

• Do not lock files to prevent simultaneous development, particularly if the lock
restrains developers at other locations. Instead, make it possible for the devel-
opers to create a temporary branch themselves. The branch should then be
merged with its original branch as quickly as possible and finished.

• Create a good product structure that gives an early, natural division of the work.
A good structure decreases the need for branches. Where branches are still

28 Ulf Asklund et al.

being used, a good structure reduces the risk of conflict at the subsequent
merge.

• Do not use too strict a division of work with people being responsible for indi-
vidual files or modules. This easily leads to static and inflexible change man-
agement where several change requests affecting the same files, cannot be
managed concurrently, particularly if the same change request may affect areas
of responsibility in several places.

4.2 Change Management

The management from error report to actual changes must work even when the error
reports as well as the actual changes are being made in a distributed organization. Fig-
ure 1 shows an example of an architecture for the reception, storage and division of a
change request. The local support, for example in the form of the sales organization,
receives error reports and put them in a central database. The variant with only one
central support also exists, but a local department usually has a better level of contact
with the customers, knows their installations better and can directly manage human
errors, incorrect installations and such like. A central decision forum (e.g. CCB -
Change Control Board) processes the different requests (e.g. by criticallity and
urgency) and allocates them to the correct development location. The actual allocation
can be implemented by anything from letting the request stay in the central database
and just changing the status of an attribute, to physically sending the request to a local
database. The development locations also deposit error reports in the central database,
for instance when errors are discovered during a test.

What differs in the distributed architecture described compared to local develop-
ment, is that the development locations are geographically separated. This may lead to:

• it becoming more difficult for (the central) decision authorities to meet as they
consist of representatives from e.g. the development locations. If they meet

suggested changes, error
reports, new/changed demands

Fig. 1. The role of the database in change management

Local support

formal and informal cen-
tral decision authority

Development location

Local database (e.g a repli-
cate of the central data-
base)

central database (one or several)
error reports, change requests and
deviations from demands

CCB

local CCB

change
request

error report after a test

29Experiences; Distributed Development and Software Configuration Management

infrequently, it may result in a slower turn-around time for the projects and a
slower reconnection of changes that have been done. To increase the meeting
frequency, telephone conferences rather than real meetings are arranged. How-
ever, telephone conferences are not as effective and the risk of misunderstand-
ing is greater.

• a need for local decision authorities as a supplement to the central ones to com-
pensate for the point made above.

• that local databases are created. To increase the availability, replications of the
central database are made.

Maintaining error corrections to a released product can be done in the products own
maintenance branch. It is then important to also make those changes in the main devel-
opment branch and possibly in other released products containing the same error.
Additional products have to be checked to see whether a correction would be relevant.
Also, with distributed development, when products are now owned and located at dif-
ferent sites, collaboration on the reuse of the actual error reports as well as the use of
the final error corrections is important.

It is also important that each change refers back to (or starts out from) a bound con-
figuration. Following the introduction of the change, a reference as to which configura-
tion the change has been introduced should be included.

The management of changes is described in the CM plan and should follow a pro-
cedure defined therein, examples of such a procedure can be found in [Whi91]. With
distributed development, it is possible that there are several decision forums with dif-
fering areas of responsibility and perhaps also at different locations (see above). The
CM plan must clearly describe how these forums should cooperate and how much syn-
chronization there should be between the local decision making authorities.

As we have previously concluded, the awareness of what is happening at other sites
is reduced with distributed development and there is a risk that an individual does not
feel as loyal to the products derived from other places as to their own. I.e. there is a
strong need for team building and as much support as possible that makes it easy to
follow the correct procedure, both in the form of a clear procedure outlined in the CM
plan as well as in the form of tool support. This should e.g. be through awareness and
strong support for the merge of different product branches whilst maintaining the abil-
ity to track what has already been done.

Experiences of change management
Change requests can be managed by both formal and informal decision forums. One
example of a formal forum is the CCB. Examples of alternative names for error reports
include: incident report, defect, trouble report, and anomaly.

It is common that a central database is used for error reports and many people
stress the importance of a common error management system. However, distributed
local databases for error reports also exist. The advantage of local databases is that
they are easily accessible to both developers and project management. However, in the
cases where the same request is stored centrally as well as locally there is a risk that
they may be inconsistent. The risk is particularly great if it is unclear as to who is

30 Ulf Asklund et al.

allowed to make changes in these databases. Automatically synchronized databases are
rarely used.

Another risk is that the people responsible for the project keep their own error lists
separate from the common database. Such lists tend not to be made public for other
products, which of course impairs the possibility of cooperation and reuse. The best
way of avoiding this is (again) by having a well-defined working mode and tools sup-
porting the process.

An alternative to a central database is to divide the database into several parts, each
managing different types of reports. For instance, one of the companies has four levels
of databases: (1) “CCRP - Customer Complaint Report” which stores complaints from
external customers via the sales organization, (2) “PMR - Product Maintenance
Report” which manages error reports in released products, (3) “PPR - Pre-release
Problem Report” which stores error reports in beta releases and (4) “CR - Change
Request” which stores change requests.

There are several reasons for such a division, one being that the different databases
can be implemented using different tools adapted to each developer, e.g. CCRP in
LotusNotes for customers and sellers, PMR and PPR in Oracle, and CR using RCS for
the developers. They may also have different distribution. CCRP and PMR are global
whereas PPR and CR are internal. However, this results in a certain degree of overhead
and it must be possible to fully track the movement of a message between the different
databases.

Change management must follow strict routines. Errors discovered in a product
will result in change requests in one or several components, at one or several places. It
is also important to have clear rules as to who closes/finishes a change request when
the error has been corrected. This is particularly important if the changes are per-
formed in different locations, which makes it more difficult to control whether things
that should have been done, have actually been done. It must be possible to follow up
these matters and the status of each change must be made public. For instance, one of
the companies have a www interface for their Oracle database to increase their accessi-
bility via the intranet.

Another company has introduced support into their system to keep changes
together belonging to the same change request. If a change request affects several
modules, which therefore have to be modified (new versions created), a new version of
a module cannot be used in a particular configuration until all of the modules are fin-
ished. In that way, the use of inconsistent module configurations is prevented.

In large projects, hierarchical CCB’s may be necessary, i.e. central as well as local
ones both being responsible for their own developed product. Only matters affecting
several CCB responsibility areas are managed in the central CCB. This reduces the
burden on the central CCB, which may find it difficult to have as frequent meeting as
otherwise required.

Practical guidance

• Regularly check all opened, ongoing change requests and their status.

31Experiences; Distributed Development and Software Configuration Management

• The CM plan should describe the change management process. With distributed
development it is particularly important to carefully describe how changes are
finished (closed).

• In cases when relocated projects have their own CM plans, it is good to have a
generic CM plan to which the project's CM plans refer, indicating differences
from the generic CM plan.

• Avoid using several different databases for the same kind of change requests.
For example, the product management and the software development should
not have separate databases for error reports, and the project leaders should not
have their own lists separate from the database.

• Let each change refer to the bound configuration in which the error was discov-
ered as well as the configuration in which the change is implemented.

5 Conclusions and Implications for SCM Research

We have demonstrated, by using a number of examples, different situations when dis-
tributed development may arise in a company. We classified some different cases of
distributed development and highlighted their specific merits. Furthermore, we have
described different architectures and working processes. By using company interviews
as the underlying information, we demonstrate guidelines and characterize the cur-
rently used methods, how they are being used at the different companies and their
experiences in doing so. We believe that theses classifications and practical hints can
be used by a company to better understand its situation and how the new requirements
should be treated. For example can a self evaluation, based on the defined cases, be
used as a first step towards the introduction of the suggested routines and tools into an
existing environment.

We have also noticed that current tools not fully support distributed development.
There is a strong connection between the different work situations described and the
architectures. Here, the situation with distributed groups is problematic as, in practice,
it requires the most advanced architecture, i.e., symmetric servers, which is not yet
supported by existing CM tools. Thus in finding oneself in this situation, one is forced
to manage it by partially manual methods.

It is evident that allowing concurrent work is key to efficient work in distributed
development. However, the potential merge problems at the file level makes many
companies use a more conservative strategy. There is thus a need for techniques to sup-
port merge in a better way that provides overview and flexibility during the process.

The trend seen is an increase of all cases of distributed development. Higher
demands on lead-time due to shorter time-to-market implies higher demands on con-
current development. Many companies have, or are planning to, implement tool sup-
port for distributed development. To date companies have found themselves in
different situations with geographically distributed developers. We see now, however,
that distributed development is a more planned situation for a better use of resources
independent where they are located.

32 Ulf Asklund et al.

Acknowledgments

This work has been supported by NUTEK, the Swedish National Board for Technical
Development, and VI, the Association of Swedish Engineering Industries.

References

[AM97] U. Asklund and B. Magnusson. A Case-Study of Configuration Management
with ClearCase in an Industrial Environment. In Proceedings of SCM7 -
International Workshop on Software Configuration Management, R. Conradi
(Ed.), Boston, May 1997, LNCS, Springer Verlag.

[Ask99a] Ulf Asklund. Distribuerad utveckling och Configuration Management. Project
report nr V040073, The Association of Swedish Engineering Industries,
http://www.vi.se

[Ask99b] Ulf Asklund. Configuration Management for Distributed Development -
Practice and Needs. Licentiate thesis, Dept. of Computer Science, Lund
University, Sweden. 1999. http://www.cs.lth.se/~ulf

[Clear98] http://www.rational.com/products/clearcase
[Con98] http://www.continuus.com
[Fei91] P. Feiler. Configuration Management Models in Commercial Environments.

Technical report CMU/SEI-91-TR-7, Software Engineering Institute,
Carnegie Mellon Institute, mars 1991.

[ISO95] ISO 10 007 Quality management - Guidelines for configuration management,
European Standard

[Mac] http://www.macevolution.com/
[MIL] MIL-STD-973, Military standard 17 April 1992; Notice of change MIL-STD-

973 13 January 1995
[PVCS99] http://www.intersolv.com
[Team94] TeamWare user’s guides, Sun Microsystem, 1994.
[Whi91] David Whitgift. Method and Tools for Software Configuration Management.

ISBN 0-471-92940-9. John Wiley & Sons. 1991.

33Experiences; Distributed Development and Software Configuration Management

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 34-37, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Applying Software Configuration Management in
Web Sites Development: A Case Study

Matteo Leoni1 , Michele Trainotti1, and Andrea Valerio2

1WebPower Networking Solutions s.n.c.
via F. Filzi 10/2, 38060 Aldeno (TN), Italy
Matteo.Leoni@webpower.net

Michele.Trainotti@webpower.net
2 COCLEA s.n.c.

via Magazol, 32, 38068 Rovereto (TN), Italy
Andrea.Valerio@coclea.it

Abstract. Due to the need of making quick business and reducing the
time-to-market, a small enterprise does not generally rely on solid and
highly methodological software engineering bases. However, the
necessity for clear and replicable methodologies for electronic
archiving of the history of software products has been individuated by
WebPower as a milestone for achieve better quality and satisfy the
increasing number of customers. To this purpose, a Process
Improvement Experiment, co-founded by the European Union and
aimed at the introduction of Configuration Management in the software
development process (mainly Web sites), has been conducted. The
experiment will be briefly outlined and some first results presented and
commented.

1 Introduction

The recent explosion of Internet and the fact that every day more and more people and
organisations are connected to the global network have produced an incredible growth
of the information technology and telecommunications fields. The market constantly
demands better services and higher quality, and the software companies respond with
new or modified products. The software life cycle has to be controlled in all its
phases, in particular in the delivery and maintenance activities.
Configuration Management (CM) is a solution, consisting in the application to the
software process of procedures, standards and practices, for monitoring and managing
the evolution of the product. It can thus be part of a total quality program, for example
in the framework of ISO 9000 certification. The benefits of CM can be fully
expressed also when the software product is an Internet-based application such as a
Web site, etc. Actually this market and the related architecture are very dynamic and,
due to the lack of global standardisation, increasingly complex. Moreover, each
product is tailored on the customer needs and often requires a frequent update.
WebPower s.n.c. is a small Italian company involved in this Internet-related business.
Despite the company dimension, the management had grown the opinion that a more

Applying Software Configuration Management in Web Sites Development 35

dynamic response and better satisfaction of the customers can be achieved through
better software engineering practices, and as a first milestone, in the use of proper
configuration management methods and tools. In this paper we report on the SPICE
project, a Process Improvement Experiment (PIE) co-founded by the European Union
and aimed to the introduction of configuration management in the development and
maintenance process of a typical WebPower product.

2 Initial Context and Execution of the Experiment

The software development process of WebPower is highly dynamic and based on the
skill of the single programmer. The programming languages and implementation
methodologies are very heterogeneous and problem-specific; frequently, a more
traditional top-down approach (C and HTML languages) coexist with the event-
driven object oriented one (C++ and Java). The resulting code is thus very often
scarcely documented, scarcely traceable and heterogeneous. In general, it lacks a
proper action plan for the projects and there is not an archive of historical information
concerning the evolution of products.
The SPICE project is a direct response to the lack of well organised software process
tracking and monitoring activities; it aims to increase the product quality, decrease the
development and maintenance costs and time, and obtain a better exploitation of
human resources.
The project was studied to be minimally invasive: the starting development
environment and daily practices were analysed to provide the frame in which to insert
a suitable CM method. Various methods proposed in literature, together with the
consideration of the guidelines identified by different standards (IEEE [1,2] and SEI
CMM [3]) were considered. An adequate set of CM guidelines was produced,
prescribing only the strictly necessary requirements for the achievement of our goals.
A reasoned analysis of the market, lead to the choice of Visual Source Safe (VSS) by
Microsoft as CM tool. It is based on the check-out/check-in model where the files,
grouped as “projects” into directories, are the basic items.
Suitable training was then started; it was crucial for the experiment since it can
motivate people, presenting benefits/advantages of the new techniques and tools.
Subsequently, the application of CM to a typical WebPower project, the development
of a complete Web-site for a company that wishes to open a commercial activity on
the net, was started. A suitable project layout was defined in order to match the
requirements of the CM tool: in particular we found the need for a uniform naming
convention of the various basic project units (components) and for the directories
where the project will be stored. The application need to be considered in term of
interacting subsystems framed in a tree structure. The definition documents were
introduced in the system with the check-out/check-in paradigm.
The team worked to the translation of the design documents into executable code with
the same procedures, checking-out the assets they have to work on in their private
environment and re-introducing them in the public space with the check-in procedure.
As a result, each time a new artefact or a new version was ready, it was commented
and versioned in the system and we have a complete trace of the evolution and of the
main activities carried out during the project.

36 Matteo Leoni et al.

3 Analysis of the Results

During the experiment, a continuous monitoring based on the Goal-Question-Metrics
proposed by Basili [4] has been conducted. We present here a first analysis of the
collected data and of the achieved results.
As expected, an extra effort was necessary in the execution of the CM procedures: we
can estimate in 20-30% the initial overload given by the combined effect of the
introduction of the CM procedures and tool. This could be due to the learning process
and to need to prepare the naming schema, the archive structure and setting up the
environment for the use of the tool. In the design phase we highlighted a slightly less
incidence in the performance of the process, and in the implementation phase the CM
procedures had an influence estimated less than a 10% of the total effort employed.
Even if the tool demonstrated to be sufficiently robust and efficient, we have to argue
a possible deficiency in handling big-sized Web site projects since these objects differ
from traditional software products for which VSS is created. In a Web site we have in
fact a small number of software components and many pages of information, both
static and dynamic, possibly interacting through a database. The effects of the PIE on
the organisational environment have been limited and confined to the baseline project
where CM was experimented. SPICE showed that CM introduces a few changes in
the daily work, in particular considering the new practices for the planning and
recording the relevant activities influencing the product under development. These
include the definition of the project structure, the identification of the configuration
items and the use of the support tool for storing and retrieving the artefacts.
A significant aspect regards the importance of a formal definition of roles and
responsibilities for what concerns the CM. The IEEE 1042 standard indicates in
details role and responsibilities that have to be considered, but in a small organisation
we must consider that very often there are no resources that can be allocated full-time
on CM activities. That is why a distributed mechanism for responsibilities was
implemented: each people were responsible for one or more specific activities, and a
centralised control intervention was required only in specific and critic situations.
We found fundamental to grow up self-consciousness in each person of its role and
responsibility in the organisation, since the software process is still mainly based on
the work of the people. The impact on the culture of the people involved in the
experiment was quite relevant; the core of CM can be synthesised with the words
‘plan what you want/must do and record what you plan and do’.
This approach has a great impact on a small sized firm; the schedule is often very
strict, and support activities (including planning and documenting activities) are
seldom carried out completely. CM imposes a way of work based on planning and
recording every activity and this is a remarkable benefit we feel we have achieved in
this experiment.
Another important lesson we learnt relates to the motivation of people. CM is a
support practice that could be seen as an overhead by personnel, in a way similar to
metrics and measures. There could be resistance to its adoption and this can
negatively influence the success of the project. In our context we acted through the
motivation of people and the definition of a CM method adequate to our context,
strictly centred on the objectives we had. Personnel reported during the experiment
that they gained a broader perspective on the software process. The SPICE staff has

Applying Software Configuration Management in Web Sites Development 37

grown specific competencies and expertise on software engineering and, in particular,
on CM issues, important achievement, in a small company, where the production and
its rhythms are the primary concern. Besides, the introduction of CM stimulates
people to think to their daily routine, to better structure and organise it. The personnel
are the most important resource of WebPower and a strong motivation and
involvement of it is a necessary condition for the success of the organisation.
We think these key lessons learnt during the project are an important knowledge
source for other small and medium size organisations in Europe that want to introduce
CM in their process. Even if they cannot be generalised, the experiences we made
represent a starting point for others, and some hints and suggestions are likely
applicable to their situations.

4 Conclusions

Some results of a Process Improvement Experiment aimed at the introduction in
WebPower, a small Italian software company, of Configuration Management (CM)
practices and tools, have been presented. The impact of the experiment on the
organisation of WebPower has been analysed and described.
The next step in SPICE will be the quantitative analysis of the information gathered
during the experimentation, deepening a cost-benefit evaluation, too.
These figures will allow deciding how the achieved results, lessons learnt and the new
acquired tool VSS will be integrated inside the software process of WebPower.
After the completion of the experiment, the maintenance process for the product
developed during the experiment, will be monitores in order to analyse the effects of
configuration management as a support method and tool in the medium term.

Acknowledgements

The SPICE project is co-financed by the European Commission under the framework
of the Esprit ESSI PIE (reference: 27418).

References

1. ‘IEEE Standard for Software Configuration Management Plans’, 1990,
IEEE/ANSI Standard 828-1990.

2. ‘IEEE Guide to Software Configuration Management’, 1987, IEEE/ANSI
Standard 1042-1987

3. Paulk, M., Curtis, B., Chrissis, M., Weber, C., ‘Capability Maturity Model for
Software – version 1.1’, Technical Report, Software Engineering Institute,
1993.

4. Victor Basili, ‘Software Modeling and Measurement: the Goal-Question-
Metric Paradigm’, Computer Science technical report CS-TR-2956, University
of Maryland, 1992.

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 38-49, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Software Configuration Management Risk Analysis
before Relocating the Porting of Product’s Family

Marjan Simoni�1, Jozsef Gy�rk�s2, and Ivan Rozman2

1 Hermes SoftLab, Litijska 51, 1000 Ljubljana, Slovenia
Marjan.Simonic@hermes.si

2 Faculty of Electrical Engineering and Computer Science
University of Maribor

Smetanova 17, 2000 Maribor, Slovenia
{Gyorkos,I.Rozman}@uni-mb.si

In a real life example selected from a number of experiences that
HERMES SoftLab has had, we show what major challenges software
development companies face when establishing a virtual enterprise due
to the need to relocate part of the porting of product's family. The
analyses of what we have experienced to be the major Software
Configuration Management (SCM) related risks are given, why
sometimes such efforts fail, and what the key factors are to success with
guidelines for addressing such SCM risks. We point out major problems
that often arise but also advantages of doing business this way. We
show that a late transition from one to more dislocated sites brings
additional challenges when not planned correctly from the beginning. In
this we assume the usage of a modern configuration management tool.

1 Introduction

Software engineering is still one of the most rapidly growing industrial areas. The
lack of skilled engineers has become one of the biggest issues in the leading software
engineering countries over the past few years (Presently, just the USA has a need for
approximately 300.000 software engineers as mentioned in [17]).

One of the solutions to this problem is to bring into their business contracts foreign
companies that take over parts of the software development and maintenance.
Because doing this may also significantly reduce costs due to a cheaper labor force in
countries like India it is of no surprise that more and more companies are looking for
ways of establishing a so-called virtual enterprise. An example of such virtual
enterprise is depicted in figure 1.

However, if this is really such a great thing to do, then why isn’t it a common
practice and not just a trend for doing business? The answer is straightforward. There
are many serious risks associated with doing business this way.

The processes a company or a team has developed might be extremely well suited
for their current needs, but in this new situation, they are probably largely inadequate.
They can be even among the reasons for a future failure unless some serious changes

Software Configuration Management Risk Analysis 39

take place. Majority of companies usually starts working on a project at a single
location without much thinking about the possible ways for the future expansions of
their business. Therefore, adapting them to geographically dispersed locations may
cause them many unexpected problems.

Company B

Team B4

Company C

Team C2

Company A

Team A3

Team A2

Team A1

Fig. 1. Teams A3, B4, and C2 from the respective companies A, B, and C work on the same
joined project. They have agreed upon their roles, and might even use a single organization
chart. Regardless of how far apart the teams (companies) are they could constitute successful
virtual enterprise

Based on the experience that HERMES SoftLab has had, we learned that the
importance of software configuration management (SCM) can never be stressed
enough as a key factor in the successful transition of work to relocated sites. In the
following sections, we use a common real life example from HERMES SoftLab to
show what the SCM related risks are, what troubles can be expected on both sides,
and how to avoid them.

2 Related Works

Traditionally, SCM related risk analysis has been associated with the introduction of
new CM tools to a company. Susan Dart and Joe Krasnov in their paper [7] present
potential problems based on a number of experiences. There are several
works: [4,10], … that discuss parallel development across distributed environments
in general or in a specific way. However, these papers usually focus on the
technology rather than presenting complete CM solutions with associated activities.
The authors of paper [7] have shown that the percentage of technology-related issues
is as low as 10-25%. Mostly they also assume that we start applying the CM solution
right from the beginning when no or possibly, a simple version control tool was used.

We focus on risks associated with such a decision to relocate a part of the software
development and maintenance when a company has already set up a modern CM tool
and CM processes but only for one site.

40 Marjan Simonic et al.

3 A Real Life Challenge

Let’s describe an example of an increasingly common situation that many successful
software development companies find themselves in increasingly often.

3.1 Lack of Human Resources

A company that has developed many consecutive versions of a successful product
family of system software that covers a wide range of variations of a number of
platforms must face a serious challenge. They have several contractual obligations:

– support of existing generation of their products on all supported platforms with
patch releases for a number of years,

– introduction of new releases of the product as new versions of the pertinent
operating systems are released,

– releases of the product on some brand new platforms.

Nevertheless, they also have to think about the future. They need to start working on
the next generation of the product’s family soon enough to stay competitive in the
marketplace of the future.

Their major problem is that they do not have enough available human resources to
do it all. What should they do?

3.2 Possible Innovative Solution

They may consider moving parts of their business to some other company. All
together, it is also a chance to lower their costs by choosing a company from India,
for example.

They can achieve that by gradually transferring all current generation-related work
in order to be able to focus completely on the development of the next generation
product. However, they first have to make sure the transition can be done
successfully. So the best idea would be to start porting the product to a newer version
of an already supported operating system (OS) and only when successfully
completed, the rest could follow. Thus, the engineers from India would be able to
become familiar with the product’s source code, SCM, existing processes, the product
itself, etc. After the first release, the probability of failure would be significantly
reduced. We can look at it also as some kind of trial project. Successful completion
would be the key for a long-term relationship between companies.

Until all the current generation tasks are not completely transferred to this
relocated site, the development and maintenance will take place in a way
simultaneously. While the off-site team works on a product port to support the new
OS release on platform X, our company would still need to be engaged on several
simultaneous projects. For example, porting to some new platform Y, preparing
patches with fixes of escalated or otherwise critical bugs. The last stage would be to
completely transfer current generation-related responsibilities to this company and
focus exclusively on a product’s new generation.

Software Configuration Management Risk Analysis 41

3.3 Risks

Parallel development across two or even more dislocated sites, distributed work, and
parallelism may seriously endanger the project. Since such transfers would entail
many risks, both companies need to make sure it’s done as smooth as possible and
certainly without any negative impact on their customers. In the following section, we
analyze SCM-related risk.

4 SCM Risk Analysis

At that point, those in the company would need to ask themselves many questions.
We believe that when preparing for distributed ports, special attention needs to be
paid to the following major SCM-related issues listed below. We analyze them with
the purpose of describing why you have to consider these issues most of all. We give
guidelines what both companies should do in order to reduce SCM risks and how to
accomplish the relocation of the porting as smoothly as possible. We show that there
are many more SCM risks than purely technological.

4.1 Technological Issues

Undoubtedly, they have to raise technological issues first. They have to be sure that
their CM solution supports multiple-site capabilities. Even if it does not, there is still
large probability nowadays that there is an available, add-on product from their CM
solution vendor that should add this additional functionality without a wider negative
impact.

As discussed in a number of papers: [1], [2], … automated CM tools have been
accepted as a necessity for software development enterprises. Thus, let’s assume the
company has been using such tool when developing the current generation of its
product’s family. Let’s assume it supports distributed development teams as well.
Therefore, we can avoid dealing with serious technological problems when preparing
the transition in the case of the example using simple version control solutions.

Searching for Solution. However, the road to success is still not clear. Below is a list
of a few questions that should definitely be asked:

• Would the way both of us used to do it need to be changed?
• Could we expect repository synchronization problems?
• What other infrastructure would need to be set up in place on both sites?
• How the tool supports parallel development of files shares with other distributed

sites? Is simultaneous development in the not-owned branches allowed?

Unfortunately, as we can see, it is not just enough to know that the tool we have
supports simultaneous parallel development across multiple sites. We have to
understand how this is supported and what could be other potential technology-related
risks. Authors of the paper [7] have shown that the percentage of technology-related
issues is as low as 10-25%. Therefore, one has to focus on mitigation of a whole set of
risks and not just the obvious - technological ones.

42 Marjan Simonic et al.

4.2 Additional SCM Customization / Automation Scripts

However, having a perfect CM tool won’t just make distributing the ports painless.
Modern CM tools are designed to fit into wide variety of environments. Since nearly
every organization is different, it is simply not possible for vendors to develop such
CM solutions that would not require any customizations, or the implementation of
additional scripts.

In order to automate often-repeated manual tasks, a company might have invested
a lot of effort. Very often, such scripts, usually in a form of triggers or pre/post-
operations, become almost built-in features of their CM technology where no one
remembers what might actually be behind it. And even if they have it very well
documented, there are still plenty of possibilities that the scripts may be either
machine or platform dependent or have some other site specifics built in.

Solution. Our experiences have proven that even careful checking in advance does
not secure a smooth transition. Testing of tools in simulated new distributed working
environment is the only secure way to go. Of course, it may very well be that
everything is up and running shortly after an intervention or two, but here we have to
stress the importance of proper design and implementation. Just a little more time
spent when preparing such automations can save as a lot of troubles, if the distributed
environment might be required in the future. Although this is very common statement
in software development theory, it seems to be quite natural to overlook potential
future usage in order to have it done just a bit sooner.

4.3 Build Automation

A basic message from the previous section can be applied to this almost literally. It is
rarely the case that only manual builds take place. Especially in the case of parallel
development on several platforms at once, there is often a need for nightly builds,
thought this is usual in other development situations as well. On top of that, special
care has to be taken in establishing and maintaining baselines, sometimes even
automatic merges. For these purposes, special scripts still have to be implemented
regardless of what build or release management our CM technology has integrated.
Since with modern complex software products is often the case, several compilers,
linkers and other tools have to be run before a complete product is built. It may be
possible that a complete build process is even distributed over several different
machines.

An Example. The contract company an ocean or two away wants to start with
upgrade of some product to a newer version of the operation system. The first thing to
do is to reproduce the build of the product on an already supported OS version. By
repeating the build, they can be at least sure that whatever problems they might
experience later during the build, the process itself is not a cause of them.

Software Configuration Management Risk Analysis 43

Possibilities. They can decide to do remote builds and use the same old build
machines or configure their own machines to be able to execute the builds locally.
Both options have some positive and negative sides. When settling for the remote
option, there are plenty of chances that something might go wrong. The telephone
lines might be down. Something could go wrong with one of the remote machines. As
it might be the case that there is a 10-hour time difference, there is practically no way
that somebody could reboot such a machine. The only thing they can do is wait. Even
without mentioning other scenarios, it is clear that completely depending on remote
site hardware is a serious option only in very special cases. So, what is left? Build
environment just has to be replicated.

Risks. When planning for replication of the existing development environment arise
many risks associated with the build process arise because of the “site” dependencies
(different machine names and/or configurations, special build users/permissions are
required, etc). As one could note, they closely relate to some risks related to
configuration identification.

4.4 Packaging

It is extremely rare that developers are allowed to be creative when preparing
packages nowadays. Almost every platform has its own specific packaging tool.
Therefore, several extra configuration files are required to make it work. Binaries,
documentation and other product files often need to be at special locations before the
packaging can be started. In order to speed up this process or often to automatically
produce additional information about the produced packages, many companies
develop or sometimes even buy additional tools. The output of such packaging tools
may be much more than a newly created packages at a specified location. Packages
may be automatically archived, baselined, etc. Extra web pages with information
about the contents of the packages, the dates of creation, the configuration
specification, Release notes, etc may be created.

Risks. The more complex the software to be ported is and the more refined process
automation is, the more careful we have to be when preparing to replicate the whole
SCM environment at multiple sites. Again, the reasons are hidden environmental
dependencies, not enough documented descriptions of customized processes or, at the
bottom end, the absence or the turnover rate of knowledgeable engineers.

However, there is always a way to ignore the existing infrastructure, processes,
tools, etc, and to focus on the development of new processes, add-on tools, and scripts
at each new location in the virtual enterprise. Unfortunately, this would require
significant effort, not to mention that virtual enterprises prefer to have common
processes across all geographic locations, which has numerous advantages especially
when long-term relationships are planned.

44 Marjan Simonic et al.

4.5 Configuration Identification

We believe that proper configuration identification is an extremely critical activity.
The company that is mentioned in this report should worry about it the most
especially in the earliest stages of transition. Among other things, a successful
replication of the development environment completely relies upon it. Only a 100 %
replication is the guarantee for success.

Risks. We have to remember that the company is not at the beginning of preparing
SCM strategy. Configuration items (CI) had been selected a long time ago before they
even considered establishing such virtual enterprise. However, all they had had to
worry about at that time was single location development. We all know that a
selection of CIs should not be any different when development takes place at one site
than in the case of multiple sites. Nevertheless, in practice, it is still hardly the case.
From our experience, we learned that major CIs-related risks are as follows:
1. Some engineers tend to avoid using CM tool whenever possible and secretly stick

with at least a few private files. Especially, various source files needed for creating
different product documentation are often critical! Before going distributed, you
have to ensure nothing is missing in a shared software development library (SDL)
repository. Such files might have gotten by unnoticed before but now the problem
will get high visibility.

2. Least attention is usually paid to all the tools we need to make the product:
compilers, linkers, translators, utilities, … and to summarize, a bunch of various,
often publicly available programs. These tools and utilities were often installed on
machines years ago and they are taken for granted now. From our experience with
major software companies, such information is often lost or not evident enough,
especially when talking about noncommercial utilities. When dealing with only
one site it would hardy become an issue since backup, nearness of other installed
machines and concentration of knowledgeable engineers is often a guarantee for
solving such problems quickly. However, when preparing for relocated ports, it is
no longer a simple issue.

3. Due to the complexity of SCM when dealing with product’s family the following
CI-related issues are often raised:

– versioning schema of the product’s files,
– versioning schema of the product itself,
– naming conventions for the various identifiers, baselines, branches,
– agreement regarding the locations for storing new files in shared SDL

repository.

Now, all that becomes much more visible than it used to be. Good documentation,
especially a software configuration management plan (SCMP) is crucial. Unless
there is a clear common understanding of how to handle all that and availability of
useful documentation, both sites will face serious problems for a while. Organizing
phone/video conferences whenever one of the above issues is not clear will not
bring long term success. When the new company starts messing around in a now
shared SDL repository without a good enough understanding of the concepts
previously used, it may suddenly become pretty confusing for both sides.

Software Configuration Management Risk Analysis 45

4.6 Configuration Control (CC) with File Merges

Since the development on both sites will take place simultaneously for some time
until the current generation of the product’s family is completely taken over by
contract company, this topic becomes a serious challenge.

There are several risks associated with it. Certainly, we would not like to be fixing
the same bugs or implementing the same enhancements repeatedly just because the
code was not in the same branch, for example.

However, there is no need to look at the CC and file merges much differently as
done before. Unless there are some technological issues that would require them to do
it differently from how they used to when there was only one site, nothing needs to
change. Of course, a little more coordination would be required. However, otherwise,
all the processes may exist as they presently are. Our experience has shown that when
all parties understand and follow the existing procedures for changes, there is very
little to be afraid of, as modern CM solutions offer good support for CC.

Merging. When both sites have made changes to the same file, the merging has to be
initiated and performed according to previously agreed procedure, which would still
need to be defined. Since [4] gives an extensive in-depth analysis of possible
solutions and even methodologies on how to solve this issue we believe that it should
not be too hard to find the right solution that would suit ones needs.

Change Configuration Board (CCB). Although the contract company may even
take over all port-related work, both companies will still need to take part in deciding
what has to be implemented and sometimes even how to do it. As porting software is
about changes, both sides have to put a lot effort in making the changing process as
efficient as possible.

Poor CC Implementation Risks. If the procedures for configuration control,
branching and merges were not properly implemented before, it could cause a lot of
pain to both sides now. Although the problems may not have been that visible in the
past, a confused history of the files’ changes and irregular merges will become serious
challenges when trying to coordinate further work. The more previous development
history, baselines and merges are confusing, the less chances are that both companies
will be able to proceed with success in the long run.

Again, detailed SCM plans and/or other documentation are necessary. Strictly
following procedures during everyday activities is extremely important as well.
Having that entirely in mind will enable both companies to work efficiently.
Especially the one that is not yet familiar with the product will work much easier and
consequently cheaper, thus making virtual enterprise a success story.

4.7 Configuration Status Accounting (CSA)

Through an efficient CSA, all essential and important information regarding SCM
activities are distributed to the involved staff. Making smart decisions may become

46 Marjan Simonic et al.

much easier with the proper CSA. Lab and test environments need a rapid and simple
change process. The difference between dealing with one or multiple sites can
become a serious obstacle for the existing implementation of CSA. We have to think
about making changes to the existing solution to make it work transparently on both
sites.

Since CSA solutions often include World Wide Web publishing on the companies
Intranets, they have to find a way both to integrate the Intranets and to overcome
companies’ firewalls. Although there are first signs of commercial solutions available
on the market that promise to overcome all such problems, some effort still has to be
put to make it work with the existing CM solution.

4.8 Configuration Audits (CA) and Reviews

Primarily CA should make sure that all CIs are present and available in baselines. As
the analysis in configuration identification section has shown, it is one of the most
critical potential risks for not being able to reproduce the build. When preparing for
relocated ports, a careful CA should be among first things to do.

Since this issue will become increasingly important as distributed parallel
development proceeds, a substantial effort needs to be invested in assuring the future
reproducibility of the builds and packages.

4.9 Configuration Management Plan (CMP)

The CMP would have to be upgraded with several topics. Here we want to mention
defining a set of new procedures regarding who should authorize what, when and
how.

All standards related to CM clearly specify that planning is the key to success. But
there are plenty of companies out there that still believe that preparing a CMP is waste
of time and money though they may have the most powerful set of CM tools. Since
different certification programs require some sort of documented CMP, many of those
companies have prepared brief documentation just to fulfil the formal requirements in
some way. However, the quality of the CMP and existing processes is really
challenged when a company is about to start such transition.

4.10 Additional Soft Issues

Here we would like to stress the importance of some other soft issues that we have to
mention as well. These are: organizational, infrastructure, politics, process
reengineering, environment, people management, and cultural issues.

Besides technical issues, we have analyzed here all but the people and cultural
issues so far. We have also shown that when preparing for transition from one to
multiple sites we have to deal much more with existing processes, environment and
infrastructure than solely technological issues.

Software Configuration Management Risk Analysis 47

People. Here we have very interesting situation regarding people management. By
transferring less complex work to some other company, engineers will become more
motivated since they can focus furthermore on creative development rather than
repetitive ports of an existing product without major changes.

Culture. When talking about culture, we just cannot ignore the extreme differences
between the culture in the US and India, for example. We do not want to give any
personal opinions judging this difference since it is the task of ethnology, but there are
probably quite a number companies out there who are confronted with it. Anyhow,
besides India there are plenty of other countries that match the USA culturally much
closer. So, if this seems to you as an issue, try Slovenia.

5 Solution with Further Research/Work

In the previous section, we identified SCM-related risks that a company faces when
preparing for relocation the porting of a product’s family. SEI Risk Taxonomy at that
point suggests that we estimate the likelihood of an event with losses as negative
consequences associated with that event, where risk exposure is the probability times
the loss. By calculating the risk exposure on some understandable scale, like dollars it
is much easier to justify spending a certain amount of money on risk mitigation.
Unfortunately, the estimating of useful probabilities is an extremely difficult task
even for an experienced SCM expert. Nevertheless, the figures depend completely on
the specifics of the case. Our analysis has shown:

– major SCM risks arise because our SCM solution was planned for single site
development exclusively,

– activities were not implemented strictly enough.

What we would like to stress here is the importance of an early enough, proactive
behavior. However, things are sometimes unpredictable. Occasionally companies will
still face the presented challenge unprepared. At that point, we would like to
recommend the methodology described below for addressing SCM risks in such case.

5.1 Evaluate the Implemented SCM Solution

This would include many thins. First, site specifics have to be determined followed by
assessment of technological issues and the state of automation. Then the company
would have to check available SCM related documentation, the maturity of its
processes in order to determine to what extent it are prepared for such a move
including the available human resources to support it. Preparing a thorough
questionnaire that each involved employee should complete, estimating the current
state of SCM, and listing possible problems would be a great thing to do. By doing all
that, the company gains an in-depth understanding of the challenge and is ready to
proceed to next steps of addressing the SCM risks.

48 Marjan Simonic et al.

5.2 Evaluate Contract Company

Since both parties matter, we have to determine the suitability of the candidate
company. From our experience, we learned that it has to do equally with company’s
maturity, the CM awareness of its employee, and established communication than just
technical issues. Of course, we all know that programming skills of its engineers,
familiarity with product’s family to be ported, or experience with the CM tool that we
are using count even more. However, do not neglect the former criteria.

5.3 Determine Critical Weaknesses

Based on the results from the questionnaire, individual expertise, and past
experiences, the most critical weaknesses can be determined. The purpose of doing
that is to determine what might go wrong. Moreover, in its optimum, we would like to
estimate the probabilities of happening so. When this is known, we can focus on what
the reasons are for potential problems, showstoppers or even failures and we can
focus on risk mitigation.

5.4 Risk Mitigation

Risk identification, evaluation and awareness means a lot but it just won’t solve the
problems. Proper risk mitigation is required. Risk mitigation can be considered as the
foundation for change. Deciding what has to be changed to make the future virtual
enterprise successful (enable parallel distributed development, etc) is as crucial here
as the question of how to do it. In a way paper [7] and partially [2] address necessary
steps to take. Paper [7] describes a typical life cycle of risk mitigation as follows:

1. Mitigation assignment process
2. Mitigation implementation and risk tracking process
3. Mitigation rejection process
4. Risk completion process

However, it is not enough that only one party is involved in this process. It should
concern both parties. They should work together to prepare the best solution for future
CM solution of the virtual enterprise. The best way to look at it is to treat it as an
opportunity for improvement in general.

6 Conclusions

Although modern SCM tools are very powerful, the presented transition still brings
many challenges because technology is not the only thing that matters here. This
paper, based on several real-life experiences from Hermes SoftLab, shows that
establishing such virtual enterprises from the SCM point of view is not always
straightforward especially when it was not planned from the beginning. Major risks
arise because of the lack of planning, the absence of defined procedures and
especially poor documentation. The more complex a product’s family from
development/maintenance point of view is, the more carefully you need to identify
and evaluate potential risks of failures followed by the mitigation of identified risks.

Software Configuration Management Risk Analysis 49

However, if the tools provide a strong support for shared parallel development
across dislocated sites and transition of work is executed step by step with activities
carefully planned and performed in a systematic manner, we would recommend it as a
good thing to do. Especially, if long-term business relationship is planned.

References

1. Continuus/CM: Change Management for Software Development, Available
via the World Wide Web at http://www.continuus.com

2. Susan Dart, “Adopting An Automated Configuration Management Solution”,
Conference: Software Technology Center ‘94, Utah, 1994

3. NASA Software Technology Division, NASA Software Configuration
Management Guidebook, 1995

4. Brad Appleton, Stephen Berczuk, Ralph Cabrera, and Robert Orenstein,
Branching Patterns for Parallel Software Development, PLoP ‘98 conference,
1998

5. Continuus/CM: Successfully Managing the Rapidly Changing Corporate
Intranet, Available via World Wide Web at http://www.continuus.com

6. Martin Cagan, Untangling Configuration Management Mechanism and
Methodology in CM Systems, Continuus Software Corporation

7. Susan Dart and Joe Krasnov, Experiences in Risk Mitigation with
Configuration Management, Continuus Software Corporation, 4th SEI Risk
Conference, Nov, 1995

8. Martin Cagan, An Architecture for Change Management: Mechanisms for the
Support of Process-Based Software Configuration Management", Continuus
Software Corporation, 1994.

9. Continuus/CM: Managing Corporate Intranet, Available via World Wide Web
at http://www.continuus.com

10. MacKey, Stephen A., The State of the Art in Concurrent, Distributed CM,
proceeding of the 1995 International Workshop on Computer-Aided Software
Engineering, 1995

11. Susan Dart, Concepts in Configuration Management Systems, Software
Engineering Institute, Carnegie Mellon University

12. C. Jones, Assessment and Control of Software Risks, Prentice-Hall, 1994.
13. Nadine M. Bounds, Susan A. Dart, Configuration Management (CM) Plans:

The Beginning to Your CM Solution, Software Engineering Institute, Carnegie
Mellon University, July, 1993

14. International Standard: IS0 10007, Quality management – Guidelines for
configuration management

15. IEEE Std. 828 - Standard for Software Configuration Management Plans
16. Capability Maturity Model, Carnegie Mellon University
17. Tausende fehlen, Fachkraftemangel: Informatiker sind dringend gesucht,

Suddeutsche Zeitung, Nr. 39 / Seite 27, February 17th, 1999

Why Do Some Mature Organizations Not Use Mature CM
Tools?

Ivica Crnkovic
Mälardalen University, Department of Computer Engineering,

S-721 23 Västerås, Sweden
ivica.crnkovic@mdh.se

Abstract: This paper presents a case-study of a Configuration Management
(CM) tool evaluation. The evaluation was performed in a company with a long
tradition of using CM tools. Although several generations of CM tools have been
developed internally, different reasons led to a decision not to use CM tools
internally developed but to buy a tool available on the market. A detailed evalu-
ation was performed on the basis of the company's experience. The investigation
procedure, the criteria for the evaluation, and the results are presented in the
paper. The results of the evaluation, taken to the final selection of a tool, have
shown the superiority of one tool, but another tool, considerably inferior to the
first has been chosen. Why? This paper analyses the background of the decision
and points out the factors, not always of a technical nature, which significantly
influence d the decision, and which are sometimes forgotten by the tool suppli-
ers.

1 Introduction

ABB Automation Products, a $340-million company, is responsible for developing
automation products within ABB and employs 2000 people. The automation products
encompass several families of industrial process-control systems including both soft-
ware and hardware.

The main characteristics of the products are reliability, high quality and compatibility.
These features are results of responses to the main customers requirements: The cus-
tomers need stable products, running around the clock year after year, which can be
easily upgraded without impact on the existing process. The requirements on the high
quality and long life of the products have made corresponding demands on Configura-
tion Management. Indeed, the company has a long tradition in using CM. Several CM
tools, internally developed, have been used systematically for more than 15 years.
Three major CM products have been developed and used on different platforms, VAX/
VMS, Unix and Windows NT. The Unix and NT products, SDE (Software Develop-
ment Environment) and WinSDE (SDE for Windows) are compatible and very similar,
yet with certain differences in functions, with GUI and API adjusted to the develop-
ment platforms [4], [5]. A stable and accurate CM process has been established during
the 15 years of using, developing and maintaining the CM tools.

In recent years customers’ requirements and development circumstances have changed
dramatically. In addition to standard requirements, customers have presented new

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 50-65, 1999.
c Springer-Verlag Berlin Heidelberg 1999

requirements related to standard products, and demand the possibility of integrating of
real-time process systems with office and administration tools. The Web and Internet
technology has also placed new demands on the products. These factors and other
changes in software and hardware technology [1] have introduced a new paradigm in
the development process: From complete proprietary monolithic systems with inter-
nally developed hardware and software, the development process has focused on the
use of standard and de-facto standard components, outsourcing and COTS (commer-
cial-off-the-shelf). The final products are no longer closed monolith systems, but are
instead component-based products which can be integrated with other products avail-
able on the market.

The changes in the development process and the importance of the time-to-market fac-
tor have particular influence on the CM process and its support. The company has no
resources to develop and maintain tools which do not directly belong to the core inter-
est of the development. The outsourcing of development of some parts of the products
has introduced new requirements with regard to CM tools. The subcontract-partner
companies wish to use the same CM tool as the main company, but wish, at the same
time they to use a standard CM tool, established on the market. The internally devel-
oped tool may be a very good solution for internal development, but it can be too com-
plicated and too difficult for external developers.

Although the theoretical aspects of CM technology have not been dramatically
changed in recent years, CM tools have been significantly improved. They are more
user-friendly, more closely integrated with other tools, faster, etc. The general aware-
ness of CM issues has also increases, and a number of new CM tools, or tools related
to the CM process have appeared. These reasons have together introduced the manage-
ment to decide to replace internally developed CM tools with a new CM tool available
on the market.

This paper describes the evaluation process, the decision taken and an analysis of the
decisions. Chapter 2 describes the evaluation project and the evaluation criteria. Chap-
ter 3 shows the results of the evaluation of certain tools in comparison with the internal
tool. Chapter 4 presents the decision, partially based on the results of the evolution, but
also based on other factors. The decision and the characteristics of the tools, in relation
to the decisions, are discussed. The decision indicates that some other factors, different
from the pure CM functions, do play a significant role in the selection of a CM tool.

2 The Evaluation Process

The evaluation of CM tools was a continuous process in the company even during the
development of internal CM tools. Existing CM tools and methods have been com-
pared with internal CM tools and processes, especially when new versions of the tools
have been developed. When the decision to use of a commercial tool was made, a new
evaluation process was started. The activities concerned are managed within the frame
of a project.

51Why Do Some Mature Organizations Not Use Mature CM Tools?

2.1 The Evaluation Project

Several groups of developers, the management and the quality assurance group, were
involved in the process. The goal of the project was to find the most suitable CM and
Defect Tracking tool and to propose its deployment. In this paper, only issues related
to CM will be presented.

The project members were selected from the CM group, a group which is responsible
for the CM process in the company, and which has previously developed the com-
pany’s CM tools

The tasks of the project groups were:

• Write the requirement specification for the CM tools;
• Investigate the market and find the most appropriate CM tools;
• Collect experiences of using specific CM tools from other companies and other

sources;
• Evaluate the most interesting tools;
• Write the evaluation report;
• Recommend a CM tool;
• Recommend the deployment process.

Other groups were also involved in the project. SEPG (Software Engineering Process
Group) was instructed to discuss the evaluation report, relate it to other development
processes, analyze the economical aspects and correlate the results from the report
with the company's development strategy. One development project group has tested
the most interesting tools in their environment. Their task was to determine what
efforts would be needed to adjust the project environment for the new tool, and how
the tool could respond to the project's requirements. Representatives of other ABB
companies took part in the evaluation process. Finally, a decision group consisting of
the development managers, a representatives of SEPG and the CM group were
required to make the final decision.

The project has completed within four months requiring approximately 30 man-weeks
work. Certain external help was provided in the form of presentations, courses and
consulting help from the suppliers of the tools.

2.2 The Evaluation Criteria

As the company had considerable experience in using CM tools in large development
projects, and as the CM process was already well defined, there was no problem in
specifying what are the most important requirements. The requirements were classi-
fied according to the main CM disciplines, and other requirements relating to integra-
tion, flexibility, the possibilities of modification and adding new functions, etc.

• Version Management (VM)
• Configuration (CM)
• Build Management (BM)

52 Ivica Crnkovic

• Work Space Management (WM)
• Change Management (ChM)
• Release Management (RM)
• Parallel Development, team support (PD)
• Distributed Development (DD)
• Integration with other tools - first of all on the NT platform (Int)
• Integration of CM tool with internal development environment (Int)
• Conversion structures from WinSDE (Adm)
• Administration of the tool and data (Adm)
• Possibility to migrate from the current tools to the new tools
• Possibility of using the same CM tool in partner companies
• Possibility of delivering the development environment together with the CM

tool to the customers
• Training and Maintenance Support
• Costs

An evaluation table with items of the most interest for the company's CM process was
created from the requirement list. The evaluation table with points for the evaluated
CM tools is shown in chapter 3.

2.3 Market Investigation

A market investigation has begun when the requirement specification was completed
and approved. The goal of this phase was to select the most interesting CM tools. The
process was relative simple, and was completed in a short period because there are
many sources of information related to CM tools. Configuration Management Yellow
pages [13] is the best place to start with. A good overview of almost all well-known
CM tools is presented in “Ovum Evaluates” report [11]. The project group also
received information about the use of CM tools from other companies, such as Erics-
son and several ABB companies. One source of valuable information was the project
“Distributed Development and CM”, organized by Swedish industrial companies
(ABB, Ericsson, Volvo, SAAB, etc.). Finally, much of information in form of opinions
and experiences with different CM tools was collected from the CM news group.

The result of the investigation was a list of the most interesting CM tools. In the first
round, four tools were selected, then three. These three tools were investigated further,
in one [3] case by means of a one-day presentation. Finally two tools were selected as
major candidates, Rational ClearCase (CC) [7],[8],[10] and Microsoft SourceSafe
(VSS). These tools are quite different and the selection of a tool would determine the
CM and development strategy in general. CC is a powerful and complex tool, which
makes possible a total control over the CM process. VSS is a simple tool, easy to
deploy and efficient for use in small projects without requiring the use of sophisticated
CM processes.

53Why Do Some Mature Organizations Not Use Mature CM Tools?

3 Tool Selection and Results of the Evaluation

The two tools selected have been systematically evaluated. The evaluation was related
to the existing company’s CM process and the existing CM tools. Different types of
evaluation were performed: a test of functional characteristics, the market position of
the tools and suppliers, requirements on the company in order to use the tools in the
most efficient way, and finally the costs and return on investments.

3.1 Functional Characteristics of the Selected Tools

A number of evaluation items were defined and each item has been assigned by a
grade. The items were not defined to measure the “absolute” values of characteristics
of the tools, but characteristic interesting to the company. For example, the company
was not interested in using tools on several platforms, the Windows NT platform was
of the only interest. The tools were also compared with WinSDE, to show the possible
advantages and disadvantages of another tool.

The classification of the grades is as follows:

0 - no function, 2 - poor functionality, 5 - should be improved, 7 - acceptable as it is, 10
- excellent

Generally, grade 7 denotes an acceptable function which can be directly used without
additional effort.

Evaluation Table:

Item
Cat.

CC VSS Win
SDE

Item Description
Comment on the tools

1
Adm

8 9 9 Installation (client and server part)

2
Adm

10 5 10 Conversion from WinSDE structures
CC takes the complete information
VSS can take a snapshot

3
Adm

10 10 5 Conversion from VSS
CC takes the complete information
WinSDE can take a snapshot

4
Adm

10 10 10 Implementation of the WinSDE or a similar structure

5
VM

7 7 7 Check in/check out process

6
VM

7 5 5 History information
CC - missing history information in the files
VSS- possible to see the history of only one file
WinSDE- not possible to see history per project

54 Ivica Crnkovic

7
VM

7 2 6 Version attributes
CC- two steps in defining attributes (define and set)
VSS- possible to set only labels in a limited way
WinSDE-Labels and Status available

8
CM

8 4 7 Configuration and baselining process
CC- two steps in doing baselines (define and set)
VSS- not proper support. Managing labels and pins compli-
cated and limited and may easily lead to errors. Files do not
have branches. Projects have them instead.
WinSDE- not possible to see baselines for a project

9
CM

7 5 4 Possibility of finding differences between two baselines
VSS- problem with managing baselines
WinSDE- no support for showing the difference in the entire
structure

10
CM

8 5 4 Possibility of merging differences between two baselines
(on the entire or on the individual file level).
VSS- problem with merging structures
WinSDE - problem with merging structures

11
BM

6 0 0 Generation and usage of ClearCase Make (omake) VSS and
WinSDE do not have special support for make, instead
Developer Studio is used for the building.

12
BM

10 0 0 Configuration Control of derived objects from the binary
pool for the build purpose

13
ChM

6 4 6 Change and maintenance process: Finding items belonging
to a specific product release. Finding changes (“change
requests”) implemented in a release. Possibility of propagat-
ing of a change (logical changes and physical changes
between files) between two releases (baselines).

CC - Change Request (CR) support missing
VSS - limited possibilities of managing old file versions, no
CR support, some problems when checking out files from
Developer Studio
WinSDE - Limited possibilities of change propagation
between two releases

14
ChM

3 2 8 Integration between CM tool and a Change Request tool.
How can information be passed between these two tools?

15
ChM

7 3 8 Statistics and metrics - Possible usage of data saved in CM
repositories.

16
ChM

7 3 6 Possibility to implement a CM Process
CC- good possibilities to control a CM process
VSS- additional programming is required
WinSDE- a CM process is already supported

Item
Cat.

CC VSS Win
SDE

Item Description
Comment on the tools

55Why Do Some Mature Organizations Not Use Mature CM Tools?

17
DD

7 2 3 Distributed development
CC - Multisite features- replication of databases. Possibility
of moving data between databases. References to different
databases from environment development. There are some
limitations in using branches.
VSS- possible to copy the entire database or send a snapshot
WinSDE- possible to copy entire or part of a structure or
send a snapshot

18
PD

9 5 5 Teamwork- coordination between project members

19 Int 7 9 6 Integration with other tools- in particular Developer Studio
and Visual Basic. Possible integration with other tools
(VxWorks/Tornado) on the command and COM/API-level.

20 Int 7 5 4 Possible integration of other tools in the CM tool (automatic
invocation of other tools with some specific events).

21 Int 7 5 4 Possibility of extracting/importing structures placed outside
CM tool. Possibility of updating of data for outsourced soft-
ware. Coordination with other CM tools

22
GUI

7 8 7 User Interface
CC - DS and VB as SourceSafe, Additional GUI OK but
some features are missing (drag/drop, too many instances of
windows, not automatically update in details window). Too
many functions connected only to line commands
VSS- limited possibility to see file versions
WinSDE- Some features missing in DS and VB integration

23
Gen

9 5 6 Additional functionality
CC-powerful line commands
VSS-a lot of functions are missing and must be implemented
or integrated with other tools.
WinSDE- Include CR-management, some metrics, a process
support.

24
Gen

8 6 6 Batch processing (automate actions)

25
Gen

6 8 7 Efforts to start using the tool
CC- Education for CM responsible required, good planning
required, powerful servers required
VSS- easy to start for small projects
WinSDE- education required, support is available

26
Gen

7 6 7 Reliability
CC- known as a stable product, but not completely tested
VSS- a lot of small bugs, some serious reports with larger
data bases (according to reports)
WinSDE- small bugs exist, but there is a direct support

Item
Cat.

CC VSS Win
SDE

Item Description
Comment on the tools

56 Ivica Crnkovic

The graphical presentation of the characteristics can be seen in Figure 1.

Fig. 1. Tools functional characteristics

The table and figures show the obvious superiority of ClearCase in functional charac-
teristics as compared with VSS. Version Management, Configuration and Build Man-
agement, and Change Management,i.e. those disciplines that are essential for
configuration management, in particular are inadequate in VSS. Parallel and distrib-
uted development is not sufficiently supported. Build management is under the control
of development tools, such as Visual Studio, and this support is known to be conve-
nient for individual programmers and inconvenient for large groups. On the other
hand, VSS is very well integrated in the Microsoft development tools (being part of
them), and also provides a very good support for integration with other tools where
both command lines and OLE Automation interfaces is available.

ClearCase satisfies almost all requirements. A weak point is Change Management, as
this does not support the management of changes on a logical level. To achieve better
support for Change Management and for a CM process in general, ClearCase is sup-
posed to be integrated with ClearGuide [8], or ClearQuest. Unfortunately, integration
with ClearQuest did not met the expectations. ClearGuide, in spite of its systematic
approach to the CM process, has not reached the dominant position on the market as,

ClearCase

0

2

4

6

8

10

1
2

3

4

5

6

7

8

9

10

11

12
13

14
15

16

17

18

19

20

21

22

23

24

25
26

Adm

VM

CM

BM
ChM

DD

PD

Int

GUI

Gen

VSS

0

2

4

6

8

10

1
2

3

4

5

6

7

8

9

10

11

12
13

14
15

16

17

18

19

20

21

22

23

24

25
26 Adm

VM

CM

BM
ChM

DD

PD

Int

GUI

Gen

WinSDE

0

2

4

6

8

10

1
2

3

4

5

6

7

8

9

10

11

12
13

14
15

16

17

18

19

20

21

22

23

24

25
26 Adm

VM

CM

BM
ChM

DD

PD

Int

GUI

Gen

57Why Do Some Mature Organizations Not Use Mature CM Tools?

for example, ClearCase. The project group felt that it would be difficult to motivate the
additional investments required for ClearGuide.

The analysis of the tools technical characteristic has shown that the company can
achieve a significant improvement in Configuration Management by using ClearCase.

3.2 Other Characteristics of the Selected Tools

Other parts of the evaluation show the non-technical issues. General characteristics,
advantages and disadvantages have been reported. The tables below list some of the
characteristics analyzed:

Other characteristics of ClearCase (+ Advantages, - Disadvantages)

+ ClearCase is a very good CM tool for large organizations and especially for
those organizations which wish to follow CMM level 2 and 3 and to retain
control over the CM process.

+ The tool makes the implementation the defined CM model possible and
ensures that the model is used as designed. It is difficult to perform some
actions which are not under control of the defined process. Yet, the pro-
grammers do not feel the inflexibility ñ on the contrary, programmers see
very little from the CM in the daily development process.

+ ClearCase support from Rational is very good. Courses, the consultant sup-
port, etc. are excellent.

+

-

The successful deployment and implementation of ClearCase requires a
good organization around CM. A certain level of organization maturity is
required for successful implementation.

-

+

ClearCase requires considerable resources ñ in addition to powerful serv-
ers, trained staff with both responsibility and authority are necessary for
successful CM support. However, the hidden costs in the projects around
CM are minimal.

- Integration with MS Developer Studio is good but there is the risk that
Rational will not be able to follow the changes in new releases of MS
Developer Studio.

- Integration with ClearQuest is inadequate.

- he ClearCase position on the market is very strong today, but competition
from MS Visual SourceSafe will present Rational with a serious challenge
in the future (although these tools are not in the same category).

58 Ivica Crnkovic

3.3 Costs and Return on Investment

ClearCase license costs are significantly larger than VSS licenses. This is especially
the case when using the Visual Studio Enterprise Edition which includes VSS as a
standard part. The initial costs of ClearCase are also larger because of the requirements
of powerful servers.

License costs are however not the total costs. An analysis of the total costs has been
performed. The following costs have been discussed:

• product/licence cost
• maintenance cost
• general support cost
• training
• deployment
• hardware costs (servers)
• additional internal development
• additional software required.

Other characteristics of VSS (+ Advantages, - Disadvantages)

+ VSS is a tool easy to install and deploy.

+ VSS is the integral part of MS Visual Studio Enterprise Edition. No addi-
tional efforts are required for the installation, no additional costs are
required.

+ VSS is a Microsoft product, which means that is used by a large number of
programmers. There is a probability that VSS will become the de facto stan-
dard CM tool. The same is valid for VSS API. Even some other CM provid-
ers use VSS API.

+
-

A good product for small projects where maintenance is not very important.
It prefers a “bottom-up” approach allowing developers considerable flexi-
bility. It has limited support for keeping an SCM-process under control.
Easy to use within small groups.

- VSS is not sufficient for the CM process defined by CMM. For example,
VSS has no support for change management or release management. A
Change Management tool must be integrated with VSS to provide this sup-
port.

- VSS is not sufficient for a more complex CM process. Additional functions
(commands or applications) must be built upon it or additional program
packages must be bought.

-
+

Support from Microsoft is inadequate, but much help can be obtained from
news and other groups.

59Why Do Some Mature Organizations Not Use Mature CM Tools?

The costs are of two kinds, external, with costs of external support paid for by the com-
pany, and internal, the costs for internal activities. The initial costs and annual costs for
each year have also been estimated. Figure 2, shows the initial costs estimated for the
company.

Fig. 2. Initial costs for CC and VSS

Surprisingly, the initial costs for SourceSafe were only approximately 25% less than
those for ClearCase. Most of the costs for VSS were internal costs, since additional
development was required to achieve at least similar functions which existed in
WinSDE. The analysis has shown that the maintenance costs for VSS are about 60% of
the maintenance costs for ClearCase.

The initial costs for ClearCase are visibly higher, but return on investment is of greater
importance. According to some reports [6], the increase of the development productiv-
ity can be up to 20%, assuming that the development time takes 50% of the total time.
Of course, this is a very high percentage, and having in mind that the company already
has an established and well working CM process, the savings would not be of that
order of magnitude. However, even a 10% increase in productivity, the estimate of the
project group, would make significant savings.

Unfortunately, no source of such information was not found for VSS. Having no infor-
mation, the project group has made no estimate for return on investments for VSS.

60 Ivica Crnkovic

Figure 3 shows the estimation of the project group the dynamics of the investment, uti-
lized CM functionality and expected return on investment.

Fig. 3. Estimated investments and return on investments

In the case of internal, WinSDE, development, it is expected that the efforts and func-
tionality will raise, but the return on investments will get down. In a case of using a
commercial tool, the expectations are that the functionality will raise faster. The
investments will be in the begging higher, and the new functions will not be used opti-
mally, but with time the efforts will be lower an the return on the investments will be
considerable higher. ClearCase costs are estimated to be higher, especially in the
beginning. The time where ClearCase return on investment reaches the WinSDE curve
is estimated to one year.

Time

Functionality

VSS + other tools

WinSDE

CC + CQ

Time

Efforts CC + CQ

VSS + other tools

WinSDE

Time

Return on investment

WinSDE

VSS + other tools

CC + CQ

61Why Do Some Mature Organizations Not Use Mature CM Tools?

4 The Decision and Its Analysis

When the evaluation was completed, the following conclusion was reached by the
project group:

• ClearCase is technically superior to VSS.
• If the company wishes to improve the CM process considerably, ClearCase

should be used.
• The costs, especially initial costs for ClearCase are higher, but a higher return of

investment is expected.
• It would be easier to persuade the customers of our products with development

environment, to use VSS than to use ClearCase.
• Our subcontractors prefer VSS.
• Our pilot-project participants prefer VSS.

The final decision was made within the decision group, i.e. the management and the
representatives of the groups involved in the evaluation process.

The decision was as follows:

1. Visual SourceSafe (VSS) shall be used as a CM tool for development and mainte-
nance purpose.

The decision was made because:

• The participants believe that VSS will be improved and a many new tools
related to VSS will appear on the market.

• The organization cannot afford large large initial costs for CC.
• The organization has not reached the maturity level required to introduce

and utilize all the features which CC supports.

2. A new project should be started as soon as possible. The goal of the project is:
Implement and deliver a product for the CM process based on VSS.

The decision has shown that not only the pure CM features are important for selection
and deployment of a CM tool. In this case the following factors played the most impor-
tant roles:

• Deployment Scaleability

As the development accelerates and delivery cycles shorten, the pressure to deliver
products in short time, leaves no time available for other activities. This is espe-
cially the case when an extra time is required for a tool deployment. The tools
which could manage a single and simple installation and its use, and could support
a smooth growth of usage within small and later larger groups, etc., have greater
chances to of acceptance on a large scale.

62 Ivica Crnkovic

• Simple Use

Many advanced CM-tools are very CM-oriented. This means that the users of these
tools must execute explicitly the CM commands to access objects with which they
are work. As CM is not the goal itself in a development process, but a tool which
help to achieve a goal, it should be no more visible than necessary and as simple to
use as possible in its usage. For this reason simple CM tools, such as RCS, are still
widely used. This is to a degree the strength of ClearCase with its virtual file sys-
tem which allows users to work on the standard file structure which encapsulates
the version and configuration functions. However, too much efforts is required to
learn the administration part, and to design a CM process. Proper default values in
structures and process definitions, not necessarily optimized, would simplify the
tool usage.

• Integration with other tools and the development platform

CM tools should be integrated as far as possible with other tools. No additional
installations or special actions should be required to achieve the integration. The
CM tool should be a “natural” part of development tools and the developers should
hardly be aware of the presence of the CM tool. Similarly, the integration with the
development platform, “look and feel”, must work perfectly. If some standard func-
tions, such as cut and paste, short cuts, drag and drop, or mouse functions, are
absent, the developers may feel irritated and the tool may not be accepted. Some
CM tools try to keep the same GUI through several platforms, but a more important
factor is to have the same “look and feel” of the current platform. Another impor-
tant factor is the function implementation style. While most Unix users accept and
even prefer a line-command interface, Windows users prefer mouse-functions.

• Costs

Although it is generally considered that the real costs, or the total costs, are those
which count, among of the most important factors are the initial visible costs - i.e.
license and resource costs. Suppliers who begin with low prices, or even with no
prices at all, and than gradually increase the prices, have more chances of introduc-
ing their products and persuading developers to use them.

• Requirements on CM functions

As the development cycles become shorter, some new CM functions increase in
importance while others become less significant. For example, there is a general
trend toward faster replacement or updating of software with less requirements on
software compatibility. Instead, standard formats of persistent objects, for example
documentation, are used to make it possible to use different tools, or incompatible
versions of the tools. A consequence of this is that the maintenance factor, and in
particular version management, especially identification of older versions,
becomes less important. On the other hand, the more frequent updating increases
the demands on the configuration management, not only in the development envi-

63Why Do Some Mature Organizations Not Use Mature CM Tools?

ronment, but also in the run-time environment. CM tools which will be able to
cover configuration functions in both environments will become more attractive.
An increasing trend toward the use of standard components, and thereby, achieving
a high degree of composeability in a product line, introduces tremendous chal-
lenges in configuration management [2].

5 Conclusion

A case of an evaluation of CM tools, and a decision a decision to use a particular CM
tool is described in this paper. The study has shown that a tool, despite its superiority
with respect to CM functions, which were actually required, was not selected because
of other factors, more of an organizational and psychological nature. The company
decided to use a low-level CM tool, which implies that additional software, or internal
development will be required. In that sense the new paradigm, to buy instead of to
develop, has not been fully realized. The case has also shown that CM functionality is
not the only criteria for selecting a tool. Other factors, such as integration with other
tools, usability, simple deployment, etc., are as important as the “classic” CM features.

6 References

[1] M. Aoyama: New Age of Software Development: How Component-Based Soft-
ware Engineering Changes the Way of Software Development, 1998 Interna-
tional Workshop on CBSE

[2] Alan W. Brown, Kurt C. Wallnau: An Examination of the Current State of CBSE:
A Report on the ICSE Workshop on Component-Based Software Engineering,
1998 International Workshop on CBSE

[3] Continuus Software Corporation, Task-Based Configuration Management, Ver-
sion 2.0,http://www.continuus.com/developers/developersACEA.html

[4] Ivica Crnkovic, Experience with Change Oriented SCM Tools, Software Config-
uration Management SCM-7, Springer Verlag, ISBN 3-540-63014-7, 1997,
pages 222-234

[5] Ivica Crnkovic, Per Willför, Change Measurements in an SCM process, System
Configuration Management SCM-8, Springer Verlag, ISBN 3-540-64733-3
1998, pages 26-32

[6] Jens-Otto Larsen, Helge M. Roald, Introducing ClearCase as a Process Improve-
ment Experiment, Lecture Notes 1439, Springer Verlag 1998, SCM-8

[7] David B. Leblang, The CM Challenge: Configuration Management that Works,
Configuration Management, edited by Walter F. Tichy, John Wiley & Sons,
ISBN 0 471 9424

[8] David B. Leblang, Managing the Software Development Process with Clear-
Guide, Software Configuration Management SCM-7, Springer Verlag, ISBN 3-
54063014-7, 1997, pages 66-80

64 Ivica Crnkovic

[9] Steve McConnell, Rapid Development: timing wild software schedules,
Microsoft Press, 1996, ISBN 1-55615-900-5

[10] Rational http://www.rational.com/products/clearquest/index.jtmpl, 1998

[11] CliveBurrows, Ian Wesley, Ovum Evaluates Configuration Management, Ovum
Ltd, ISBN 1 898972 24 9

[12] Darcy Wiborg Weber, Change Sets versus Change Packages, Software Configu-
ration Management SCM-7, Springer Verlag, ISBN 3-54063014-7, 1997, pages
25-35

[13] André van der Hoek, Configuration Management Yellow Pages, http://
www.cs.colorado.edu/~andre/configuration_management.html

65Why Do Some Mature Organizations Not Use Mature CM Tools?

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 66-85, 1999.
© Springer-Verlag Berlin Heidelberg 1999

An Experience in Configuration Management
in SODALIA

M. Banzi, F. Macugli, S. Borion, G. La Commare

Sodalia Spa
Via V. Zambra 1
38100 – Trento

ITALY

Abstract. In this paper we describe how Configuration Management (CM)
activities are organized and performed in Sodalia’s Network and Application
Management Department. Here a group is called to provide cross-department
CM activities according to SEI CMM level 3 requirements. Rational ClearCase,
as main CM tool, and ClearDDTS, for change request tracking, have been
enriched with several additional scripts and customization to suit our needs. In
order to facilitate information sharing among software engineers, a CM Web
Page has been made available via Sodalia Intranet to allow easy access to
constantly up to date information. CM services have reached an excellent
quality, providing the department areas with a globally recognized, reliable
foundation that supports all phases of the software development life cycle. As a
consequence, CM culture is widespread within all the personnel involved in the
development process, ensuring a good cooperative environment from which the
CM team itself benefits considerably.

1. Introduction

A software firm aimed at delivering high quality products, according to an accepted
model, e.g. the Software Engineering Institute Capability Maturity Model (SEI
CMM), needs to implement an effective Configuration Management (CM)
environment. This is mandatory and can be gained defining procedures detailing the
process to be followed in performing standard CM actions such as Identification,
Versioning, Status Accounting and Change Management. The main challenge is
making this environment more and more efficient and globally accepted.
Once the process is defined, tools adaptable to it have to be chosen, to support
Configuration Manager activity. These tools will require a tailoring on the process
whose cost will depend on the complexity of the defined process.
Then a constant effort has to be paid to always improve the usability of the CM
environment. Core business for developers is to produce code and often whatever
possible obstacle to their activity is unpopular. The consciousness that with low effort
great benefits can result, creates that CM culture that contributes in increasing
efficiency. Moreover if CM environment is sufficiently automated, certain simple

 An Experience in Configuration Management in SODALIA 67

actions can be delegated to developers thus reducing possible bottlenecks imposed by
CM actions.
Another very important aspect is the supply of a constantly updated accounting on the
status of the system under development. As obvious, Configuration Manager has to
deliver reports on the status of the configuration, but in case of concurrent
development of several products, which is the case of an efficient firm, it is
necessary to provide constantly up-to-date information. Facilities implementing this
task should capture actions when they are performed, and make them available to
everyone in a gathering point, such as a web page.

2. Context

SODALIA is a telecommunication software development company founded in 1993
and part of the Telecom Italia Group (the main Telecom Operator in Italy). The
mission of Sodalia is to provide advanced Telecommunications Products, Solutions,
and Services to Telecommunications Companies worldwide. Currently the company
has a staff of about 300 employees, the majority of them involved in software
engineering. Since the beginning, Sodalia has developed a strong commitment to
quality, defining a productive software development process SIMEP (Sodalia
Integrated Management and Engineering Process), and a complete set of Quality
System Procedures that earned it in few years ISO 9001 certification and SEI CMM
Level 3. Within SIMEP, Configuration Management has the central role of
effectively and efficiently support software development as detailed in Sodalia
Software Engineering Process Guidelines (see Figure 1).
The experience described in this paper regards the Configuration Management
activities performed within one of Sodalia’s production departments, Network
Administration Management (NAM) department, which is in charge of the
development of Operation Support Systems (OSS) in the field of telecommunication
Network and Service Management. Our solutions are based both on internally
developed and third party products that are customized to provide customer specific
solutions. We often run into concurrent development of several versions at different
development and maintenance stages of core products as well as their customizations
The department is organized in four main areas: one in charge for product line
definition, two responsible for product development and one responsible for the
implementation of the final solution.
The CM group provides cross project services to the various department areas (see
Figure 2).

68 M. Banzi et al.

Doc: Review,

Approv. & Distrrib.
Project
Master

R i

Quality
Records List

Templates &
Forms

Sodalia
Glossary

DocId:Defined
Chars Groups

SQS Docum.
List

Utilities
Sodalia Quality Policy

Sodalia Quality Manual

Quality
System

M

Rules &
Standards for

Equipment
Management

Purchasing

Sys
Admin

Training

Servicing Qualification
and Delivery

Configuration
Management

TDPP

Concept
Exploration

V&V Review

C++
Programming

Analysis

System
Architecture

System
Requirements

SIMEP
Model

R & S Document
Identification

User
Documentati

Sodalia Software

R & S Template
Usage

R & S Document
Production &

Editing

R & S Control &
Management

Internal
Quality Audit

Supporting

Qualification
& Delivery Sodalia Sw

Metrics

SAJ & Pj
Tab. de Bord

Project
Management

Tailoring

Configuration
Management

V& V
Testing

Training

Purchasing

Level 1
P li

Level 2

Level 3 Operational

Level 4

Company

Project
Management

Contract
Management

Software
Process

Figure 1. Sodalia Quality System

C ore

S PT C u stom

E A M

N A M D ep .

S Q S

Figure 2. arrows represent code movements between projects. Each of which is mediated

by CM group

 An Experience in Configuration Management in SODALIA 69

3. CM Organization

CM services are crucial for the ordinary activity flow in such a complex environment.
Ordinary CM needs of software development projects, are further complicated due to
the interrelated dependencies between artifacts belonging to product lines and custom
developments.
Efficiency and effectiveness of CM activities have been two major objectives in our
experience. CM needs to be effective since it is aimed at reducing complexity both in
software development and in process implementation. CM has also to be efficient,
and thus achieved in a cost-effective way, since it cannot overload project budgets
and require too much effort from software developers.

To achieve both these goals, the CM group has performed three major steps:
• CM environment definition. A standard project repository structure across the

various areas in the department and a common tailoring of Sodalia CM policies,
enables the use of common CM tools and facilitates cross-area artifact delivery
and communication. In addition, tools ensure easier maintenance of existing
projects and startup of new ones, and keep software engineers needs of CM
training low in case of reallocation.

• The adoption of an adequate set of tools. Sodalia has currently adopted two major
tools: ClearCase for configuration management and ClearDDTs for change
management. A significant customization effort was invested to integrate the
tools and adapt them to the company and department needs. Reaching a
significant level of CM and Software Engineering process automation and
productivity improvement. The use of these tools is described in better detail in
the next sections.

• The implementation of an adequate set of instruments for CM users. As described
in the next sections, a relevant set of scripts and Web based information points
have been implement to facilitate the use of CM facilities and to provide up to
date information to the community of software developers (see Figure 3).

As a result, only two configuration managers support the activity of more than 80
software engineers. CM operations have reached a considerable level of automation
and the CM culture is spread among the development teams.

70 M. Banzi et al.

Figure 3. Main page of Core Project CM web site

CM Activities

The CM group performs the following activities
• Repository and Development environment Management
• Status accounting
• Identification of documentation and code artifacts
• Versions management
• Change management
• Build of products released either internally and externally
• Packaging and delivery.
Details on their implementation in our context are given in the following paragraphs.

 An Experience in Configuration Management in SODALIA 71

3.1. Repository and Development Environment Management

When a new project is started, the first activity performed by the CM team is to set up
the artifact repository and give the developers controlled access to it.
The most common development environment involves at least two platforms: Unix
and Windows NT. This requires concurrent access to the project repository from
different run-time environment types. The repository is implemented on Unix
volumes, placed on server machines and is made accessible (i.e. mounted) from the
different types of development workstations (e.g., NT clients). Project wide UNIX
accounts, imported in a common NT domain, are used, to ensure a first level of
protection.
The standard set of accounts includes:
• an administrator profile
• a development profile
• a testing profile.
They all share the same configuration files to ensure a common set up of the
environment.

Role Ownership Account Conf.fi
les

Administrator
Owner of the repository main
structure, of all VOBs and of
administrations views

<project>-
adm

Development
engineer

Owner of all development and product
views

<project>-
dev

Test engineer
Owner of test views <project>-

tst

.profile

.kshrc

Figure 4. accounts, roles and ownership within a project

The subsequent step in setting up a new project consists in creating the ClearCase
Versioned Objects Base (VOB), which is the physical repository of the versioned
files. Several personal and product views are then created and shared by UNIX and
NT clients. This ensures a further level of security, preventing users (who use
common project accounts) from undesired modification of configured artifacts.
Through ClearCase clients, development tools gain transparent distributed access to
files physically maintained inside VOB/view (e.g. tools access files under
configuration control as regular NFS files). CM is in charge to carefully identifying
the correct resource allocation to such common VOB servers, to prevent performance
lowering and LAN overload.
Further details on the organization of the code development environment and on
documentation management, is given in the following paragraphs.

72 M. Banzi et al.

3.1.1. Code Management
A standardized structure for the code development environment has been adopted,
since it provides several advantages, for identification and delivery purposes, build
management and for script development and reuse.
A basically recursive structure for the repository of the whole system, its components,
and component modules, allows the use of the same general CM policy, and
consequently of the same set of scripts and commands, possibly only slightly
customized.
Product views on VOB server were created for reference build and personal ones
were supplied to developers to ensure independent working environments. However,
during the development phase, it was noted that often engineers working on the same
component, usually small groups localized in the same room, would distribute their
personal views among the various customizations. This avoided frequent switching
among the environments on the same view. Substantially they were using product
ones. This approach had not initially been adopted fearing conflicts of concurrent
development on the same files, however the easy communication among developers,
prevented against it.
From here the provisioning of each group with product views instead of personal
ones. These can be also supported by local views on personal workstations.
In a very dynamic environment, where developers have to switch frequently among
different versions of the product, (recall of the product views, pre-configured to see a
specific version of the product), it is necessary to give them not only source code of a
specific version, but also all the internal libraries previously built within that version.
These are not configured elements, but just private objects of the build view, usually
inaccessible outside it. A solution is necessary to identify and preserve the complete
set of libraries and executables built during a build session. This results in the need
for sufficient disk space to archive all such information, but ensures a very quick and
safe context switching.
The ClearCase derived objects facility and winkin command, suitably governed by
a set of ad hoc scripts, ensure this service at the cost of just one set of libraries per
product. Before this, developers used to keep their own version of libraries in their
private environment. Apart from disk occupation that was often multiplied by the
number of development tasks, this caused uncontrollable misalignment among sets
of libraries used by the different tasks.
ClearCase allows to keep the list of all objects build during a common build (better to
use ClearCase language saying "created by a common clearaudit process") these are
the Derived Objects (DO). DOs are kept inside a particular VOB archive from which
they can be extracted by each view using winkin command. This is the method used
to gather in a common set and then identify all the products of the build of a specific
version of the system. The clearmake command provided by ClearCase,
automatically generates DOs, but it is not currently used because of its
incompatibility with UNIX make on which our environment is currently based.

 An Experience in Configuration Management in SODALIA 73

3.1.2. Documentation Management
All documents developed within a project are kept under configuration control, so
that their files are uniquely identified, localized and protected. These include
technical and management documents, but also external contributions, memos,
reports and so on.
All technical documents produced undertake the same versioning process as for
source code. This allows the use of the same policies adopted for the source code
also for documentation, ensuring a consistent tracking of all documents associated to
the various versions of a product. Unfortunately, unlike code text files, for which
deltas between versions are saved by the CM tool, document binary file versions are
handled by the tool as copies, possibly compressed, of the whole file. This causes a
considerable use of disk resources and requires periodical cleaning of obsolete
versions to prevent exhausting disk space.
Solutions developed in NAM are often made of products and customizations
developed by different areas. Thus a solution may contain documents owned by a
number of contributors (e.g. architects, development managers, requirement
managers, technical writers) belonging to different areas. Further more, it is common
practice for product level and solution level documentation to be packaged together.
Documents are identified using a unique identification code (DocId) which encodes
information about the project it belongs to and the document type (e.g. component
design, user manual, …). Such codes are constructed and managed by the CM
(according to the company’s documentation management process) so that the proper
level of control is assured.
Each document is initially configured, that is, a set of attributes is assigned to the
directory containing the document files. Such attributes define the title of the
document, its status (draft or final), last delivered version of the same, the product
which it belongs to and so on.
Attributes are updated automatically by triggers (actions associated to the execution
of commands) at file check in and at document release. The release of a document is
performed by the document author through a command which labels and locks the
files and copies them into the protected archive directory updating a link to a delivery
directory containing the last delivered version. In this delivery directory, all
documents belonging to a specific product version, delivered by different projects,
are collected and rendered available to everyone even outside the CM environment.

3.2. Status Accounting

Status accounting is a key CM activity which consists in producing periodical reports
detailing the status of configuration within a project.
In this section the various accounting activities are described in detail.

3.2.1. Environment and adopted policies accounting
According to Sodalia Quality System (SQS), each project/area delivers a project/area
plan containing a CM plan subsection where roles (CM and its staff, Change
Management Group, Configuration Control Board) are listed together with audits and

74 M. Banzi et al.

major baselines. The plans references the Repository Description Document (ReDD)
which describes the project repository structure, the development environment, the
equipment and tools adopted, and lists all codes used to identify the products,
components, and tasks. Moreover the ReDD contains the tailoring of SQS
Procedures and Sodalia guidelines for specific project needs.
The ReDD contains information with different time scope that would potentially
force the release of a new version just to capture minor information. Moreover, the
presence of a Department CM with cross-department policies and good practices,
introduces different applicability scope within the ReDD. To facilitate ReDD
maintenance and to avoid duplication of information, each project ReDD has been
split into several documents. Each refers to a global document where cross
department policies adopted for the project configuration are described. Within each
ReDD, describing just specific situations, frequently changing information are
extracted in Addenda just referenced by the ReDD itself. These are delivered as
required, independently by the ReDD.

3.2.2. Products and components structure accounting
Within a scenario as the one described it is necessary a constantly up to date
information on newly released software.
For this reason the same scripts that perform the release of code at whatever level
(system, component, module) record the structure of the delivered artifact in several
files and notify by e-mail the interested groups. Log files are then processed by
scripts supplying a complete description of the new product structure in
Configuration Management web page, thus ensuring online accounting.
In this way developers working in a very dynamic scenario are constantly informed
on availability of the planned new libraries and modules to be used in their activity as
soon as these are released.

3.2.3. Change Request status accounting
ClearDDTS has been chosen to implement Sodalia change management process
using suitably customized flow diagrams. CM group uses the information stored in
the tool database to report on status of CRs in its periodic report. The necessary
information is extracted from the database in text files by cron scripts, which ensure
updated information at very low cost.
These files are also made available to everyone in the CM web (see Figure 5). Further
improvement would be to integrate this page directly with ClearDDTS Web Interface
thus ensuring direct and dynamic access to ClearDDTS repository.

 An Experience in Configuration Management in SODALIA 75

Figure 5. Change requests status accounting through web interface

3.3. Identification of documentation and code artifacts

Identification, in our case, means associate to artifacts one or more identification
labels to aggregate set of files. The higher level of identification is the baseline that
identifies that consistent set of artifacts which constitutes the product. These labels
contain information such as the name of the artifact or its identification code and its
version. The latest is a version code assigned by Configuration Manager according to
the artifact history and development phase, nothing to do with versioning associated
to the tool, which is a device to keep modification history for each file.

3.3.1. Documentation
Compared to software, documents are structurally simple artifacts, although their
number is considerable when developing complex products: requirements,
architecture, designs, manuals. Without an adequate set of tools, documentation
management can be an extremely costly activity for CM.
As a consequence, the documentation management process has been synthesized in a
set of scripts, partially triggered by ClearCase commands and partially to be
executed directly by document owners. This synergy among CM and developers

76 M. Banzi et al.

results in an increasingly efficient documentation management, without reducing
confidence in the result. This approach has been possible because of the relatively
simple documentation management process, but we are planning to extend it to code
management too.

3.3.2. Code
Code artifacts are distributed in a multilevel directories structure which reflects their
architectural organization. For this reason it may result useful to identify each
architectural module. This means that each lowest module has an identification code
as the system itself (Figure 6).

Figure 6. Hierarchical identification: system VNMS is made of various components
among which VNM-TAM, whose modules are identified too.

Clearly this allows the substitution of a single module within an installed product or
also the composition of new version of a product by merely modifying some of its
modules. The advantage of such an approach when developing customization of a

 An Experience in Configuration Management in SODALIA 77

same product is evident. It is also evident that the complexity of the identification
process requires great care.

Identification of code artifacts is achieved using ClearCase labels attached recursively
to all releasing artifact files. The use of a self-similar tree-structure for the system,
components, and modules ensures the use of the same delivery script at every level:
Such labels are locked to the identified versions and only the administrator has the
rights to remove them.
The labeling process also updates the version files compiled during the build process
and used to create hard-coded strings embedded in libraries and executables.
Identification of installed code is thus automatically aligned to its source.
Identification scripts also generates a whole set of log files used for accounting on
delivered components and on the structure of each system version. These files, loaded
by CM web page as soon as they are produced, are also used for a better integration
with ClearDDTS forcing the opening of CR using exactly the identifier of the
impacted module.

3.3.3. Baselines
Once a product is to be delivered, the complete set of related code and documentation
artifacts is to be identified as a whole with a unique label that ensures its recovery.
This is the baseline that collects the exact version of each Configuration Item (CI)
composing the product.
Baselining is also achieved using labels. Once identified all artifacts (code and
documentation) belonging to a common baseline, a new label is attached by a script
using each single artifact identification label as a handle. As usual the scripts also
update log files: describing the structure of the newly created baseline but also
recording the performed action.

3.4. Version management

When dealing with many versions of a product developed concurrently, several
considerations can play relevant roles in choosing the policy to be adopted to manage
the development.
It may be necessary to branch all the files of a product because that specific version is
in deployment and patching is to be done exactly on the deployed version awaiting
for a new release. This way, bug fixings have to be ported to the concurrently
developed versions. We conventionally call this a “maintenance” branch.
During the development phases, when customizations of the product are concurrent,
the approach described can be substituted with a more efficient one. Here branches
are performed only on files to be really customized among the various versions. This
ensures bug fixing just once at least on shared files.
ClearCase allows the creation of branches in each file/directory version tree. Access
to branches is governed by a careful use of views whose configuration is set
accordingly to the specific use. The case of maintenance branching is very simple:

78 M. Banzi et al.

developers have to simply operate on a branch other than the standard ‘main branch’.
Also the rules for the view to be used are very simple. In the case of development
branching the view may have configuration specification files very complex that
developers are not requested to manage. In this case, product views are also used to
simplify such access and prevent casualty errors due to hurry switching among
versions.
In both cases, on all files in case of maintenance or just on customized ones in the
other case, merging is used for porting fixes among versions. This is a very strong
feature in the CM tool, but one that requires great care in its application. Nevertheless
we found it very useful for porting bug fixing else than editing files on all branches.
This because ClearCase recalls this action through merge arrows thus updating what
it calls the ‘base contributor’ of the merge: the version from which the code of the file
is diverging. Complex merges will result easier and safer.

3.5. Change Management

Change management involves handling modifications of baselined artifacts. Such
modifications can be triggered by external inputs (e.g. servicing calls form a
customer) or internal inputs (e.g. refinements of a design document). Different
change requests involve different authorities for their management: for instance,
changes on functionalities require a Configuration Control Board (CCB), which
includes a customer representative; defects, on the other hand, are handled by the
Change Management Group (CMG). In order to properly support the change
management process, a customization of ClearDDTS has been adopted. This tool
provides the concept of class, which is a flow diagram which defines transitions
enabled to specified roles identified by personal accounts (e.g. who can open,
approve, implement a change request. Three ClearDDTS classes are used for change
request management: one for the servicing calls, another for changes to requirements
and/or to improved/added functionalities, and a third to track defects. Due to the
different authorities involved, and the different process each request goes through,
ClearDDTS has been customized to work as a simple work flow tool for change
management. The management process has been modeled as a finite state automata
with encoded the various stages a request goes; to each state are associated the
members that can authorize a state transition; finally, when a state transition occurs,
the next personality involved is automatically notified (e.g. via e-mail).
Tracking of the status of change requested is obtained through queries on ClearDDTS
database that regularly update log files as explained in the accounting paragraph.

3.6. Build

The build of a final product is performed under configuration control in a view
configured to allow access to exactly the needed source code.. The execution of a
product level makefile ensures the building of each module with common compile
options.

 An Experience in Configuration Management in SODALIA 79

Build views are created on the same build server to ensure optimization of
compilation time.

3.6.1. CM charged with build activities
The CM group is responsible for both builds of products to be delivered internally,
for instance for Verification and Validation (V&V) and builds of a validated product
to be delivered to the end customer. Product builds are executed in a controlled
environment using a specifically configured view. This ensures the necessary
isolation required to avoid that uncontrollable development temporary settings can
reduce the confidence in the final product.
Since code the given to system build has to be identified by CM, the group first
knows the configuration of the system as a whole and defines the specifications of the
view to be used for the build. For this reason it was decided to task the CM group
with system build.

3.6.2. Dependencies
When dealing with highly structured components, the risk of dependencies
misalignment is very high. Centralization of dependency information helps its
control.
A file, unique for all components, lists the dependencies (all the libraries used, their
version and location in the file system); while another defines all the common
compiler options and variables to be used for the build of the whole system.
Developers are supplied with makefile templates, including the above files, that
they use to give instance to generic definitions, placing them in the final components
directory and thus building their modules.

3.7. Packaging and Delivery

Delivery is approached in two ways, depending on the final user. Internal releases (to
integration or system test within the project) are performed by simple copy of the
executables and their configuration from the build environment to a well defined
target set of directories. Deliveries to the end customer, on the other hand, are
performed by taking advantage from the standard packaging tools provided by the
various vendors (e.g. HP-UX swpackage, Windows NT environment Install
Shield.The product is stored on CD-ROMs, DATs or other media on the basis of the
customer preferences. Packages are carefully structured in bundles, products, and
filesets to allow multilevel and partial installation procedures. Control scripts are also
provided so that pre- and post- installation controls are performed.

80 M. Banzi et al.

P r o j e c t s
S f f

P r o j e c t s
S f f

P r o j e c t s
S f f

U N I X / N T f s

P r o j e c t < n n > R e p o s i t o r y

P r o j e c t U N I X / N T f s

P r o j e c t < n n > R e p o s i t o r y

P r o j e c t

R e D D

C M

V O B s

s c r i p

W W W

D e f e c t
D B

C l e a r C a s e

C l e a r D D T S

C u s t o m i z .

E d i t

C M E n v i r o n m e n t

D e v e l o p eD o c T e s t E n g .

V i e w s

V O B S

I m p l e m e n t s

L o g f i l e s

U N I X / N T f s

P r o j e c t < n n > R e p o s i t o r y

P r o j e c t

S Q S
S Q S

B u i l d e r

S Q S

D e s c r i b e s

C M

D e s c r i b e s

d e l e g a t e s

o p e r a t eo p e r a t eo p e r a t eo p e r a t e

S Q S

o p e r a t e

p e r a t e

i n f o r m s

S Q S

Configuration Management Effort
To assess the impact of the CM organization, a sample tracking of one year of Configuration
Management activities is analyzed. CM activity in that period (the first complete year with the
current CM organization) has involved the release (internal or external) of about 520 software
modules and about 100 document versions. Data provided in picture (reference to Figure 8),
reports the effort needed to manage four projects during 1998. Two projects are steady
(identified as Core and Custom), one started that year (SPT) and having had its first major
release in the last quarter of the year, and a fourth still in the its initial phase (EAM). The
diagram seems to reveal that the trend of CM effort required to support a project approaches a
common value for all mature projects. An explanation for this behavior can be found in the
uniform and stable set of CM procedures and tools which are shared by all projects. It can be
noted that SPT did not have the initial startup load, necessary for setting up the environment
that one can expect. This is probably due to the fact that it could benefit of an environment
already enough steady. CM Effort trend for four projects two already matures (Core and
Custom), one in growth (SPT), and a fourth in its initial phase. The second diagram (Figure

 An Experience in Configuration Management in SODALIA 81

8) represents the distribution of effort among the various activities of CM group. It
can be noted the cost of CM environment setting up, enough high, but great part of
the scripts for baselining, documentation management and for the creation of CM
web page have been encoded during the first quarter of that year. Moreover the effort
for the number of releases cited above would have been higher if it was not supported
by the environment.

Project's CM cost trend for year 1998

0.0

5.0

10.0

15.0

20.0

25.0

Month

EAM
Custom
Core
SPT

Figure 7. distribution CM Effort trend for four projects two already matures (Core and
Custom), one in growth (SPT), and a fourth in its initial phase.

82 M. Banzi et al.

CM Env.
16%

Core
30%

Custom
26%

SPT
15%

EAM
10%

Training
3%

Figure 8. CM activity distribution

4. Further improvement

The following items are just ideas we are going to implement in our CM
environment:
• State transition in ClearDDTS can trigger activation of processes performing

directly operation on ClearCase environment e.g. recording in the file descriptor
the defect id fixed in a newly created version of a file. This is a way to better use
ClearCase-ClearDDTS integration.

• Use of ClearCase attributes to record in files metric information. By applying a
simple, intelligent line counter to a file, the results can be frozen in the
description of its active version. This way a query on the attributes of files
belonging to a specific product can give its size in a repeatable way.

• Performance can be further improved by using distributed built. This is a feature of
ClearCase currently not used, that can reduce build times.

• Better tracking of dependencies between libraries: we still have to implement an
effective mechanism to produce the list of libraries really linked by executables.

• Improvement in the centralized set of makefile: this useful build environment
should be improved to be compliant with ClearCase build tool (clearmake)
and to implement new requirements arisen during the development currently
hard-coded in terminal component makefiles.

 An Experience in Configuration Management in SODALIA 83

5. Conclusions

In implementing a CM solution, it has been very useful to use a reference model upon
which create a complete set of guidelines. We used SEI CMM where CM is a key
process area of level 2. It is important to start with a theoretical framework defining
procedures to be followed. In this way we ensure effectiveness. But this framework
has to be sufficiently adaptable to all possible situations. This ensures efficiency.
However efficiency is a target that can be reached progressively, through experience
and trials. In the following paragraphs some lessons we learned while trying to reach
this target are described.

5.1. CM Tools

CM activity has to be supported by one or more tools and on the market several ones
can be found to fulfill CM requirements. However, in defining a CM solution, it has
to be chosen whether to adapt a solution to the tool or to acquire a customized tool
and tailor it to the company process.
The second approach, which is the one adopted in Sodalia, is clearly more flexible,
but certainly it requires considerable effort to ensure a CM solution user friendly,
efficient, and accepted by the final user.
The commands supplied by whatever tool, are many, certainly complex, and not
easily usable by developers who cannot be requested to know details of CM tool.
This is a task for the Configuration Manager. Customization has to reduce the skill
requested to final users, in this way they will found the real value of CM solution
without feeling too much its constraints.
Another aspect to be considered is the cost of the tool. Whatever you choose, its cost-
per-license is certainly high and a compromise is to be found between safety and
burden for the project. From here, in our approach, the use of project accounts and of
personal and product views. The first reduces the security re-gained by a careful use
of the seconds that also contribute to the success of the chosen CM solution by
answering to a specific developers need, as previously seen.
In any case the effort spent in the implementation of this Configuration Management
environment can be earned in the reduction of time required to perform CM actions
and in ensuring, contemporarily, an higher degree of confidence in them.

5.2. Department CM

CM activity requires considerable specific skill especially if a complex tool is used in
support of it. Moreover CM activity is not uniformly distributed along project life-
cycle. After an initial peak of effort required to set up the environment, produce all
necessary documentation and train developers on it, a low-load activity period
follows, up to first deliveries. Our statistics show that CM activity costs to project

84 M. Banzi et al.

about half a person per month. And the other half? Of course a Configuration
Manager can also develop code or collect requirements, but skill optimization and the
task of Configuration Manager that pursues a control over development, suggest to
keep these roles disjoined. Hence the Department Configuration Management Group
which revealed itself to be a good solution.

5.3. CM / developers synergy

To enhance project efficiency, CM must be felt as a support to development, not as a
constraint. Developers should be enabled to cooperate with CM activity thus creating
a widespread CM culture. This can be gained only if CM environment is friendly and
everyone completely understands that effort spent in these activities results in a safer
development and in higher quality product. Conversely badly implemented CM
results in an unpleased overhead for development. Additional advantage of this
approach is that routine activities can be delegated to developers without reducing
confidence in the product. This produces the side-effect of training developers in
simple CM actions, so that, if necessary, personnel can be easily temporarily staffed
to CM activity.

5.4. Development versus CM

Development environment structure and CM solution are strictly correlated. Almost
every CM action shall operate on the environment and a modification in its overall
structure may require a modification on the scripts. Thus, great care has to be paid in
designing both the development environment structure and CM scripts interfaces to it.
CM activity has always to fit project needs, but has also to lead to solutions always
more effective in the interest of the project itself. So project’s own solutions, even if
temporarily implemented to answer to contingency, must be generalized and made
available to every other project: standardization remains a key target.
Product view else than project or personal ones, seems to be the correct approach in
every CM action and setting. This in customizing the CM tools, in organizing the
Archive and in CM metrics.
In developing several version of a product concurrently, customization ones and
maintenance ones, branching code rather than duplicating it, is effective approach,
but great care has to be used in its managing as well as in merging of changes among
the various versions.
Personal workstations can efficiently support servers for development purposes:
reduce server and LAN load and improves compilation time, but this achievement
can be easily lost if no reciprocal alignment is constantly ensured.

 An Experience in Configuration Management in SODALIA 85

5.5. Up to date accounting

 In complex and very dynamic environments, the time scope of reports is usually tool
long to draw from them useful information. The use of automatic mechanism for
information deployment is a must. When designing macros to perform actions either
directly through CM tool or by customized scripts, the action itself should record its
result in a file open to everyone. In this way up-to-date information is always
available not only internally to a project, but also outside development groups, to all
other roles directly interested such as other projects with dependencies or Quality
System area. Better is if all the information is gathered in a single reference point
well organized and where it is simple to navigate through only essential information.

6. Acknowledgments

We wish to thank Patricia Chiasera, for her precious comments and suggestions; and
Annalisa Mattuzzi for her help and contributions.
Special thanks to Michele Marini for his revision and his consense to the effort
necessary in the writing of the paper.

A Branching/Merging Strategy
for

Parallel Software Development

Jim Buffenbarger’ and Kirk Gruell*

Boise State University
and

Hewlett-Packard Company
buff0cs.boisestate.edu
Hewlett-Packard Company

gruel1Qboi.hp.com

Abstract. In many software configuration management (SCM) systems,
branching and merging are fundamental operations, supporting isolation
and integration (respectively). Unfortunately, the obvious branching and
merging strategies have unpleasant consequences. This paper presents a
less obvious branching and merging strategy, for parallel software de-
velopment, which does not suffer these consequences. In particular, it
presents a way of updating an active branch from a new baseline. The
strategy can be described as “merging at a label.” It has been successful
at managing unnecessary branch proliferation and change isolation in an
industrial SCM environment.

1 Introduction

Software configuration management (SCM) systems can be partitioned into
version-oriented and change-oriented systems [3]. Version-oriented systems are
represented by SCCS [9], Rcs [Ill, CVS [7], and CLEARCASE [2]. Change-oriented
systems are less popular; one such system is AIDEDECAMP [lo]. This paper fo-
cuses on version-oriented SCM systems.

In a version-oriented SCM system, branching and merging are fundamental
operations. A software system is typically created and maintained by multiple
developers working simultaneously, often modifying the same file a t the same
time. Branching provides isolation, while merging provides subsequent integra-
tion. The idea seems simple, and the literature promotes this simplicity, but the
obvious strategies have unpleasant consequences. Some of these side-effects are
well known [13]. Others are described here, along with a less obvious strategy
that is free from the side-effects. This new strategy has been successful in an
industrial SCM environment.

The strategy described here is applicable to SCM systems supporting ver-
sions, branches, and merging. This set includes many popular systems (e.g.,
SCCS, RCS, CVS, and CLEARCASE). The strategy is particularly suitable for

J. Estublier (Eds.): SCM-9, LNCS 1675, pp. 86-99, 1999.
© Springer-Verlag Berlin Heidelberg 1999

A Branchinghferging Strategy for Parallel Software Development 87

projects composed of many tasks, where each task adds a feature to the product
or fixes a bug. Many projects fit this profile.

The problem with the obvious strategies is that they conflict with the rea-
sonable philosophy of isolating independent changes on separate branches. It
is a somewhat subtle problem, but there are two symptoms: independent work
that cannot be merged, removed, or analyzed independently; and too many files
with a particular branch. The former symptom might produce the complaint “I
couldn’t just merge. I had to cut-and-paste some of my previous changes onto
my new branch.” The latter symptom might provoke the invective “Hey! When
I updated my branch from the new baseline, the merge tool checked-out a zillion
files on my branch.”

A successful strategy for branching and merging is important to a software-
development project. At one level, it accomplishes the Project Plan, supporting
multiple serial and parallel subprojects and their integration milestones. At an-
other level, it mirrors the genealogy of product families [4].

A multiple-developer project is considered here, but the strategy scales easily
to a multiple-team project.

Section 2 reviews terminology, Section 3 discusses a developer’s requirements
for a branching/merging strategy, Section 4 describes obvious strategies, Sec-
tion 5 presents a less obvious strategy with several advantages, Section 6 con-
siders implementation with two popular SCM tools, and Section 7 concludes the
paper.

2 Terminology

lince SCM is a relatively new field, its terminology is still developing. Never-
heless, precise definition of terms is beneficial. These definitions are consistent
iith those of CLEARCASE, but should be familiar to users of other tools.

Version An SCM data structure, representing the value of a file or
directory at a particular time. In some systems, a new version is created
by a check-out operation; in others, by a check-in. In all systems, a new
version’s content is finalized by a check-in operation. Once a version is
checked-in, its value does not change.

Element An SCM data structure, representing all versions of a partic-
ular file or directory. In its simplest form, an element is a tree, with one
node per version. The predecessor/successor relationship of versions is
represented by arcs. An arguably better name for this concept is version

Branch One of an element’s many subtrees. Starting at the root, or a
node with multiple successors, a branch is all nodes and arcs on a path
between the start node and a leaf (inclusive).

Label An identifier associated with one version of an element.

group [12].

88 Jim Buffenbarger and Kirk Gruel1

Merge The process of creating a new version of an element from a
predecessor version and at least one other contributor version. The con-
tributor/result relationship can be represented, in the element tree, by
special arcs.

Configuration A set of versions: one for each member of a set of el-
ements. A configuration is typically thought of a as a “version” of an
entire system.

Baseline A labeled configuration, often the result of integrating other
configurations, and often with desirable characteristics (e.g., “tested” or
“released”).

3 Requirements

This section describes the portion of a typical software-development lifecycle
relevant to a strategy for branching and merging. The sub-lifecycle induces a set
of requirements for any branching/merging strategy.

A developer begins a task by selecting a labeled configuration upon which
to work. The configuration may be a baseline, or it may be another developer’s
labeled configuration. For different elements, a label may select versions on dif-
ferent branches.

For example, given the elements in Figure 1, a developer may begin working
with a configuration labeled M e m l . Meml is evidently baseline R e 1 1 plus some
memory enhancements (i.e., Meml is a descendant of R e l l) .

The notation in Figure 1 is like that of CLEARCASE. The element name is
on top (e.g., main. c). A circle represents a version. The integer in a circle is the
version number. A string near a circle represents a label. A rectangle represents
the start of a branch. The string in a rectangle is the branch name. The selected
configuration is bold circled.

m a i m ui.c i0.c uti1.c mem.c

T e l l Meml

6 M e m l 6 M e m l

Fig. 1. A developer begins a task.

A Branchinghferging Strategy for Parallel Software Development 89

These five elements are used in examples throughout the paper. Initially,
their version trees fall into two structural categories, but they diverge in later
examples. Furthermore, the development on each branch is artificially simple, to
compress the figures. A reader should imagine a longer sequence of versions on
each branch.

While a developer performs a task, changes are isolated from other tasks and
other developers [15] . This requires a task’s changes to occur on a task branch.

A developer changes an element by creating a new version of the element. A
new version is created at the lower tip of a task branch. If the task branch does
not yet exist, it is created. A task branch is created at the version whose label
made it part of the starting configuration.

For example, Figure 2 shows the elements from Figure 1, after ui. c and
uti1.c have been changed as part of as task named gui , which might add a
graphical user interface. As before, the selected configuration is bold circled.

main.c ui.c i0.c u1il.c mems

0
Meml Meml

mem

0
0 “‘1““““

Fig. 2. A developer changes elements.

After a developer has finished a task, or reached a milestone, the selected
configuration may be labeled. As before, for different elements, a label may
select versions on different branches.

For example, Figure 3 shows the elements from Figure 2, after labeling as
Guil. As before, the selected configuration is bold circled.

Some tasks are “simply” integrations of other tasks. In particular, the task of
making a baseline may consist of merging labeled configurations from multiple
task branches. An integration task may use an existing branch (e.g., main) as
its task branch.

90 Jim Buffenbarger and Kirk Gruel1

main.c ui.c i0.c Uti1.C mem.c

6 R e l l Meml e 6 Meml Meml Rell
Guil Guil

@ @
Q&

mem

L g Guil Meml

8 Guil

Fig. 3. A developer finishes a task

For example, Figure 4 shows the elements from Figure 3, after integration to
branch main and labeling as Re12. A dashed arc represents a merge contribution.
The selected configuration, after the merge, is bold circled.

4 The Problem

Now, go back in time to Figure 2. The gui developer is working on a task,
creating new versions of elements on her task branch.

Suppose someone produces a configuration, and the gui developer wants to
“update” her configuration from the other configuration. The other configuration
may be a recent baseline, or it may be the result of someone’s work on another
task branch. This is a very common scenario (e.g., pages 113, 379, and 386 of

For example, in Figure 5, another baseline Re12 has become available, and
the gui developer would like to incorporate its changes.

An obvious way for the gui task to incorporate Re12 changes is for the gui
developer to merge from versions labeled Re12. For example, such a merge would
transform Figure 5 into Figure 6.

Unfortunately, this merge causes every element changed between Re11 and
Re12 to have an gui task branch, regardless of whether the element is actually
changed as part of the gui task (e.g., io. c and mem. c in Figure 6).

The io. c case represents the vast majority of elements, and is especially
distressing. Typically, the number of elements changed for a task is relatively
small, compared to the number of elements changed between baselines. There-
fore, a merge like that of Figure 6 typically creates an overwhelming number

PI).

A BranchingMerging Strategy for Parallel Software Development 91

maiu.c ui.c i0.c uti1.c mem.c

_ _ - - -

Fig. 4. A developer makes a baseline.

main.c

T e l l Meml Re12

ui.c

Rell

Re12

i0.c

main T
uti1.c a
0

Meml

Re12

mem.c

0
Rell I’ Meml

Re12

Fig. 5. A developer wants to update her configuration

92 Jim Buffenbarger and Kirk Gruel1

main.c ui.c i0.c uti1.c mem.c

Re12

Re12 Meml Meml

Re12 Re12

Fig. 6. An obvious merge to update a configuration

of branches that are not really related to the task of adding a graphical user
interface.

An obvious alternative to merging from versions labeled Re12, is to select
versions labeled Re12 rather than Meml (which was based on Rell). For example,
such a change in selection would transform Figure 5 into Figure 7. These figures
differ only in the versions selected for i o . c and mem. c.

Unfortunately, this selection change does not incorporate all of the Re12
changes, because the task-branch version is preferred over the labeled version
(e.g., ui. c and util. c in Figure 7). Furthermore, it removes some of the changes
made for the mem task (e.g., mem.c in Figure 7).

Another alternative, which is perhaps not so obvious, is to:

1. Merge from versions labeled Re12, but only for elements with branches mem
or gui . While this sounds difficult, CLEARCASE merge commands support
it.

2. Select versions labeled Re12 rather than Meml (which was based on Rell).

For example, such a merge and change in selection would transform Figure 5
into Figure 8. This alternative enjoys the advantage of creating a minimum of
new branches, but it suffers from the disadvantage of adding some of the Re12
changes to the gu i branch. Such an addition is a disadvantage because once
changes are added they are difficult to remove. Removal could be required if
a serious defect is subsequently discovered in the Re12 changes. Similarly, the

A Branchinghferging Strategy for Parallel Software Development 93

main.c ui.c i0.c uti1.c mem.c

E e l 1 Meml Re12

main 7

Re12

0

Re12

Rell

Re12

Fig. 7. An obvious selection change to update a configuration.

gui changes might be needed elsewhere, without (some of) the Re12 changes.
Fundamentally, the gui task is separate from the task of integrating the gui and
Re12 changes, so they should be performed on separate branches.

Thus, the obvious solutions have unpleasant consequences.

5 A Solution

Consider Figure 5 again, where a developer has created a task branch named
gui, from a configuration labeled Meml, which is based on baseline Rell. As
before, when another baseline Re12 becomes available, the gui developer would
like to incorporate its changes. A better way to add the Re12 changes to the gui
changes is to:

Choose a new task branch upon which to work, say gui2.
Select versions labeled Re12 rather than Meml (which was based on Rell).
Merge from the old task branch gui, creating the new task branch gui2, at
the version labeled Re12. In addition to the gui changes, this merge adds
some of the mem changes to gui2 (e.g., util. c in Figure 5).
Merge from the label Meml, perhaps creating the new task branch gui2, at
the version labeled Re12. This merge adds the rest of the mem changes to
gui2 (e.g., mem.c in Figure 5).

This process is colloquially called “merging at a label” and is shown in Figure 9.
Creating a new branch is reasonable, because it is for a new task. Branch

gui2 contains the integration of the Meml configuration, the gui changes, and the

94 Jim Buffenbarger and Kirk Gruel1

m a k c ui.c i0.c mem.c

Re12

Re12

uti1.c

@ main 7
Meml

Re12

Fig. 8. A merge and selection change to update a configuration.

Re12 baseline. Furthermore, it is the starting point for additional gui2 changes.
If a defect is detected during work on the gui2 branch, the pre-integration con-
figuration can be easily tested for the defect, because no post-integration work
occurs on the gui branch. In other words, it is easy to reselect the configuration
of Figure 5.

Creating a branch for each element changed for a task is much better than
creating a branch for each element changed for a baseline. This is because a
task typically changes far fewer elements than a baseline. Comparing Figure 9
to Figures 6, 7, and 8:

There is no difference for stable elements, like main. c.
A new task branch is created for elements changed in the old task, like u i . c
and uti1.c. This is acceptable, because there should be few such elements.
A new task branch is not created for elements changed only in the new base-
line, like io. c. This is good, because there should be many such elements.
Either way, a new task branch is created for elements that did not select the
old baseline, like mem. c.

On the surface, this strategy appears similar to the strategy of Template
Regulated Alternative Development (TRAD) [5]. TRAD is merge protocol that
determines if a merge from a “private” branch to a “public” branch can be
performed safely. If so, it is. Otherwise, the merge automatically makes a new
private branch, which is merged to instead. After the new private branch has

A Branchinghferging Strategy for Parallel Software Development 95

main.c

main 7
Re11
Meml
Re12

ui.c i0.c

Re12

Re12 I

uti1.c

main

%I

mem.c

main 7

Fig. 9. An better way to update a configuration

been reviewed and tested, it can then be merged to the public branch. The
difference, then, is that merging at a label simplifies integration from a public
branch to a private branch, while TRAD regulates integration from a private
branch to a public branch.

Merging at a label is a low-level integration mechanism, but it is well-suited
to today’s version-oriented SCM systems. While the strategy can certainly be
employed directly, one can imagine a tool layer based upon RCS or CLEARCASE
(for example), which implements the strategy. Such a tool would present a more
abstract environment to a user, who typically thinks in terms of “my changes”
and “their changes,” and has a vague desire to combine them. The tool would
accept arguments naming tasks and labels and transform a user’s environment
appropriately. In this way, an SCM system could offer some of the benefits of
“change sets” or “change packages” [lo] [6] [14], without too much overhead.

6 Implementation

The merge-at-a-label strategy is easy to implement with CLEARCASE, but it can
also be implemented with RCS (or one of its variants).

96 Jim Buffenbarger and Kirk Gruel1

6.1 Clearcase

A developer can begin work, as in Figure 1, with the config spec:

element * Meml
element * /main/LATEST

Then, a developer can work on a task branch, as in Figure 2, with the config
spec:

element * CHECKEDOUT
element * . . . /@/LATEST
element * Meml -mkbranch gui
element * /main/LATEST -mkbranch gui

Finally, after a new baseline becomes available, a developer can incorporate the
new baseline's changes by merging from the old branch and label, as in Figure 9,
to a view with the new config spec:

element * CHECKEDOUT
element * . . . /gui2/LATEST
element * Re12 -mkbranch gui2
element * /main/LATEST -mkbranch gui2

6.2 RCS
The following commands assume a shell like BASH [8] and reasonable values for
the shell variables AllFiles, FilesToChange, and FilesToMerge.

A developer can begin work, as in Figure 1, with the command:

co -uMeml $AllFiles

Then, a developer can work on a task branch, as in Figure 2, with the commands:

for f i n $FilesToChange ; do
ci -f -u$(version $ f) . l $f #make branch
rcs -ngui:$(branch $f) $f #name branch
co -1gui. $f #check out

done

where version determines a working file's version:

ident $1 I awk 'NF==8 {print $3;) '

and branch determines a working file's branch:

version $1 I awk '{sub(/\. [- . I+$/ ,"") ; print;)'

Finally, after a new baseline becomes available, a developer can incorporate the
new baseline's changes by merging from the old branch and label, as in Figure 9:

A BranchinglMerging Strategy for Parallel Software Development 97

co -uRel2 $AllFiles
for f i n $FilesToMerge ; do

ci -f -u$(version $f).l $f #make branch
rcs -ngui2:$(branch $f) $f #name branch
co -1gui2. $f #check out
rcsmerge . . . #merge

done

7 Summary and Conclusion

Branching and merging are rather siniple operations, when viewed from a low-
level perspective, but the high-level problems of task and integration manage-
ment can be more difficult to solve. The obvious techniques for updating a task
branch with a new baseline -merging from the new label or selecting the new
label- are unsatisfactory. Instead, the technique of merging at the new label,
thus creating a new task branch, is more effective.

This strategy has been successfully employed at Hewlett-Packard’s (HP)
Workgroup Color Division (WCD) in Boise, which develops firmware for HP’s
color laser printers. WCD is a CLEARCASE and MULTISITE [l] shop, with about
one hundred developers. The following narrative, from WCD’s integration engi-
neer, describes their initial recognition of the problem.

At the beginning of our project, we were changing about 600 to 900 ver-
sions per release, with release intervals being typically a week. Most of
the changes were due to drops of code from different partners. Usually,
the developers in our lab were just consumers of the drops of code and
had no intention of changing, let alone looking at, the drops of code.
With our first strategy, we quickly found problems of, what appeared
to be, branching files for no reason, basically creating duplicate versions
for most of the elements. These problems were coupled with the con-
fusion of having files on the development branch that were not related
to the developers’ tasks. One such case, I recall, was a team of about
4 developers trying to update their team’s development branch with a
new baseline. They had been working on their branch in isolation for the
course of about three releases. When it came time to update, they were
amazed to find out that about 800 files ended up being merged to their
branch, especially since there were only about 35 files on their branch
before the merge.

Initially, WCD was using the first obvious strategy described in Section 4. Af-
ter a couple of months, to alleviate the problem, the second obvious strategy
described in Section 4 was tried. Gradually, after another couple of months, the
merge-at-a-label strategy was adopted. None of these strategies were enforced
processes. Rather, they were simply recommended methods of integration. Inte-
gration is a difficult process, and most developers are more than willing to listen
to suggestions for improvement.

98 Jim Buffenbarger and Kirk Gruel1

The strategy has likewise been employed at HP Boise’s Workgroup LaserJet
Division (WLD), which also uses CLEARCASE and MULTISITE. WLD devel-
ops firmware for some of HP’s monochrome laser printers. An experiment was
performed about a week before the camera-ready version of this paper was sub-
mitted. The experiment involved a task requiring changes to one source file. The
task began from the latest release of the firmware, corresponding to label Re11
of Figure 5. Before the task was finished, the task branch was updated from a
new release, corresponding to label Re12 of the same figure. The first obvious
strategy created 449 branches, whereas the merge-at-a-label strategy created
only one branch. The other strategies discussed in Section 4 would have created
zero branches and one branch (respectively), but would have suffered from the
problems described in that section.

The merge-at-a-label strategy is particularly applicable to a project whose
product is constructed by performing a set of many tasks, where a typical task
adds a feature to the product. This is related to the idea of change sets and
change packages. By isolating tasks on separate branches, a developer can inte-
grate at the task level. This is important, because once multiple tasks are inte-
grated to a branch, it is very difficult to separate them. In a multiple-product
code base, a feature may not be valid in all products, so it is not vcry wise to mix
the development of a product-specific feature with the devclopnicnt of a feature
destined for all products.

References

1. Atria Software, Inc. ClearCase MultiSite Manual, 1996.
2. Atria Software, Inc. Clearcase User’s Manual (Unix/Release 3.0), 1996.
3. P. Feiler. Configuration management models in commercial environments.

Technical Report CMU/SEI-91-TR-7, Software Engineering Institute, Carnegie
Mellon University, 1991.

4. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software
Engineering. Prentice Hall, 1991.

5. J. Hunt, F. Lamers, J. neuter, and W. Tichy. Distributed configuration
management via Java and the World Widc Web. In Proceedings of the
International Conference on Software Engineering, 7th Workshop on Software
Configuration Management, pages 161-174. Springer-Verlag, 1997. Also: Lecture
Notes in Computer Science #i235.

6. D. Leblang. Managing the software development process with ClearGnide. In
Proceedings of the International Conference on Software Engineering, 7th
Workshop on Software Configuration Management, pages 66-80. Springer-Verlag,
1997. Also: Lecture Notes in Computer Science #1235.

http://uuv.delorie.com/gnu/docs/cvs/cvs_toc.html.

ftp://psep.ai.mit.edu/pub/gnu/bash.

Engineering, pages 364-370, December 1975.

7. R. Pesch. CVS - Concurrent Versions System.

8. C. Ramey and B. Fox. Bash Reference Manual.

9. M. Rochkind. The source code control system. IEEE Dansactions on Software

A Branching/Merging Strategy for Parallel Software Development 99

10. Software Maintenance and Development Systems, Inc. Aide-de-camp Product

11. W. Tichy. RCS: A system for version control. Software: Practice and Ezperience,

12. W. Tichy. Tools for software configuration management. In Proceedings of the
International Workshop on Software Version and Configuration Control, pages
1-20, Teubner-Verlag, 1988.

13. s. Vance. Advanced SCM branching strategies. In 1998 Perforce Users
Conference, 1998.
http://uuw.vance.com/steve/perforce/Branching_Strategies.html.

14. D. Weber. Change sets versus change packages: Comparing implementations of
change-based SCM. In Proceedings of the International conference on Software
Engineering, 7th Workshop on Software Configuration Management, pages 25-35.
Springer-Verlag, 1997. Also: Lecture Notes in Computer Science #f 235.

15. L. Wingerd and C. Seiwald. High-level best practices in software configuration
management. In Proceedings of the 8th International Workshop on Software on
Configuration Management. Springer-Verlag, 1998.
http://uuu.perforce.com/perforce/bestpractices.html.

Overview, 1995.

15(7):637-654, July 1985.

The Unified Extensional Versioning Model

Ulf Asklund1, Lars Bendix2,
Henrik B. Christensen3, and Boris Magnusson1

1 Department of Computer Science, Lund University, Sweden. {ulf | boris}@cs.lth.se
2 Department of Computer Science, Aalborg University, Denmark. bendix@cs.auc.dk
3 Department of Computer Science, University of Aarhus, Denmark. hbc@daimi.au.dk

Abstract. Versioning of components in a system is a well-researched field where
various adequate techniques have already been established. In this paper, we
look at how versioning can be extended to cover also the structural aspects of a
system. There exist two basic techniques for versioning - intentional and exten-
sional - and we propose a unified extensional versioning model for versioning of
both components and structure in the same way. The unified model is described
in detail and three different policies that can be implemented on top of the gen-
eral model are exemplified/illustrated by three prototype tools constructed by the
authors. The model is analysed with respect to the number of versions and con-
figurations it generates and has to manage. Finally, the unified extensional model
is compared to more traditional intentional models on some important parame-
ters. The conclusions are that the unified model is indeed viable. It not only pro-
vides the functionality offered by the intentional model with respect to flexibility
during development and management of combinatoric complexity, but also
offers a framework for management of configurations that enables systems to
provide much more advanced support than is commonly available.

1 Introduction

Many models for configuration management [Tic88, CW98], as well as available tools,
e.g. ClearCase [Clear] and CVS [Ced93], make a clear separation between how they
handle atomic entities (versioned objects, modules, etc.) and composites (configura-
tions, libraries, systems). In these models, atomic entities are version controlled indi-
vidually while configurations are formed by applying selection mechanisms. When
considering all atomic entities at the same time the number of possible combinations
of their versions and variants is overwhelming. Using rules (such as the 'latest') is an
attempt to automate this selection process.

We present experience from using another model, the Unified Extensional Version-
ing Model, where both atomic entities and configurations are version controlled exten-
sionally. This model relies on a mechanism, version concentration, to reduce the
number of combinations that need to be considered. These combinations, i.e. versions
of configurations, that arise are the subset of versions that the user actually explore and
are thus the ones that are, or have been, interesting and meaningful for the user.

The unified extensional versioning model has several interesting features compared
to models that combine extensional versioning of atomic entities and intentional selec-
tion of configurations:

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 100-122, 1999.
c Springer-Verlag Berlin Heidelberg 1999

• Simple conceptual framework: Basically developers/users have to learn only
one single concept namely “a version of an entity”.

• Modularization principle: As any version of an entity embodies the bound sub-
configuration that is rooted in it, it allows the well-known principle of encapsu-
lation and abstraction to be applied at the SCM level.

• Scaleability: It is general in the sense that it can be used recursively - configura-
tions can form parts of new configurations.

• Consistency: The versions of configurations that are encountered are the ones
explicitly created, and thus likely to be interesting; in contrast to a combination
generated by a (potentially flawed) ruleset.

• Architectural traceability: A configuration in a particular version uniquely
defines the version of all its constituent parts; thereby not only the evolution of
atomic data (like source-code or document text) is traced, but just as important
also the evolution of the very structure and architecture of the system, that is,
changed, added, and deleted relations between entities.

Elements of the unified extensional versioning model has independently been devel-
oped and explored by the authors while building three different systems with different
aims and motivations.

COOP/Orm is a configuration management prototype system that has been
designed explicitly to support development in distributed groups, people that work
tightly together, but are geographically distributed [Ask99, AMP99]. Some of the
demands from this situation - collaborative awareness and supporting both synchro-
nous and asynchronous interaction - have been reflected in the design: a very explicit
version control system, support for fine-grained version control and support for hierar-
chical structures.

CoEd is a research prototype for supporting collaborative writing of hierarchically
structured documents. It was designed to solve the specific problems students had
when writing their semester reports. In particular, focus is put on providing overview
of the document and communicating information through version histories. Further-
more, it is possible to directly modify the structure of the document under full version
control.

Ragnarok is an architecture based software development environment prototype.
The logical architecture of a software project is used as framework for version- and
configuration management; this leads to an SCM model that minimizes the gap
between the architecture oriented design domain and the SCM domain. Furthermore, it
provides strong traceability of the architectural evolution.

In all three systems we have arrived at models that share a common foundation. In
some cases, the prototypes we build do not support all the same functionality. This is
because we have focused on different aspects but in each case the systems can (at least
in principle) be extended to support the full unified extensional versioning model. We
thus argue, that the model has proved useful in these different situations and has a
value also in its generality, and simplicity.

In the rest of this paper, we first characterize the traditional models and identify
some of their drawbacks. Then we present a unified extensional versioning model, both

101The Unified Extensional Versioning Model

in its general version and the particulars of its three different instantiations. In chapter
4, we discuss the implications of the model and compare it with the intentional model.
Finally, we draw our conclusions.

2 Existing Versioning and Configuration Models

One of the fundamental problems when dealing with configurations is that with
already a small number of components - each in a number of versions and variants -
the number of possible combinations get very large. Mathematically, the number of
combinations grow exponentially with the number of components and versions and
any attempt to deal manually with all of them is unmanageable. This problem of com-
binatorical explosion has to be dealt with in every model. First we survey and evaluate
existing solutions before presenting our model in the next chapter.

At this point we also need to be precise about how we use the term 'configuration'.
A configuration is a named collection of atomic entities and other configurations. Two
versions of the same configuration may differ in that they include different entities and/
or the same entity in different versions. Other authors would see what we call ‘versions
of configurations’ as different configurations. We see a set of selection rules as a spec-
ification of a configuration while others would identify the specification with the con-
figuration it might result in. In our terminology a configuration is always bound, while
a configuration specification can be bound or generic. Our use of the terms is consis-
tent with the common CM-view on atomic entities where a file has identity and might
exist in several versions (which is in contrast to non-version-aware tools that see differ-
ent versions as different files).

2.1 Dealing with configurations - Intentional versioning

Many existing CM-systems (ClearCase, CVS, etc.) and models use what is sometimes
called 'intentional versioning' of configurations in order to handle the problem of com-
binatorical explosion. The approach builds on formulating selection rules which are
then used to choose the particular variant and version of an atomic entity. Often these
rules are evaluated on demand when the atomic entity, a file, is needed - for viewing,
editing or translation. Although this approach is one way to limit the selection prob-
lem, it has some drawbacks.

• The representation of a configuration is indirect, embedded in the formulation
of the rules (e.g. in a small script file), and in the build information (often in a
'makefile'). Given such a rule-based specification, the only way to find out what
the configuration really is, in terms of what files are included and in what ver-
sions, is to actually build it and register the result.

• Differences between configurations in terms of what files are included in what
versions are hard to find out since that can not be deduced from comparing the
sets of rules. The only way to find out is to evaluate the different sets, register
them and then compare the results.

102 Ulf Asklund et al.

• Consistency is hard to guarantee since incompleteness or 'errors' in the rules
may go unnoticed for a long time, and only show when a new version of some
file is created and then result in an unintentional (wrong) configuration. As a
consequence there is never a guarantee that a given rule will result in the same
set of files in the same versions when evaluated at a later time. For important
configurations, such as releases, it is often paramount to be sure that all
included files can be found and recreated in exactly the relevant version. As a
safeguard all files included in such configurations are often copied and stored
separately.

• Tagging is a way to label versions of individual files and when used methodi-
cally can be used to pin the files and their versions as included in a configura-
tion. Unfortunately this is a rather primitive mechanism since there is not
always a guarantee that such lables are not changed afterwards. There is no sup-
port for relating configurations registered in this way to each other or to calcu-
late the difference between them.

• The rules can include generic facilities such as selecting the 'Latest' version of a
file which change over time, resulting in so called 'generic' configuration speci-
fications. The same rule-based specification of a configuration can thus over
time result in many different resulting configurations. This mechanism can thus
be seen as a further way to limit the effects of the combinatorical explosion
problem, but it creates a new problem since it defeats traceability. It is impossi-
ble to guarantee that the same system will be build from the same generic rules
at a later time. In the extreme case one can not be sure that the versions of the
files just compiled are the same as the ones viewed in an editor.

Intentional versioning of configurations is used by most traditional, state-based CM
systems as well as by change-based systems. Based on the analysis above and the obvi-
ous lack of support for rather common situations we have found it motivated to explore
other ways to solve the problem of combinatorical explosion. Before outlining the
solution presented in this paper we will first review how versioning of atomic entities,
files, are handled.

2.2 Dealing with atomic entities - Extensional versus Intentional versioning

Change-based systems, e.g. Aide-de-Camp [Crn92, AdC90], COV [GKY91,
MLG+93], name deltas between versions of atomic entities rather than the versions
themselves. An advantage of this mechanism is that the deltas can be combined in
many more ways than there are typically versions in a state-based systems and also in
ways not foreseen by the creators of the deltas. The possible combinations are some-
what limited by restrictions among some of the deltas that might exclude or presume
each other, but the difference is still big. For example all versions that in a state-based
system can be created through a trivial merge can here be created directly. A needed
version of an atomic entity (a file) is put together on demand when needed (for view-
ing, editing, translating). In existing changed based systems this task is handled
through rules and selection, thus using intentional versioning also for atomic entities.

103The Unified Extensional Versioning Model

In a change-based system the number of potential versions of each atomic entity is
larger. The number of possible combinations is thus also larger. The combinatorical
explosion problem of configurations thus gets even worse in change-based systems. In
existing systems this problem is again handled through use of selection rules. 'Inten-
tional versioning' is thus used consistently for atomic entities as well as for configura-
tions.The criticism we formulated above for handling configurations with intentional
versioning thus applies both when dealing with configurations and atomic entities. The
change based approach might have other advantages, but when combined with inten-
tional versioning as commonly done it does not improve on the situation described
above.

In contrast to change-based systems, state-based systems use 'extensional version-
ing' when dealing with atomic entities, e.g. files. Extensional versioning means that all
the versions of the entity are explicitly represented. They can for example be presented
as a version graph and a given version can be retrieved by identity at a later time in
exactly the form it was created. Versions of entities can be compared and related to
each other, e.g. by the partial relation 'derived from'.The problems we listed above for
configurations when using intentional versioning are thus not present when dealing
with atomic entities using extensional versioning.

A fundamental criticism of traditional state-based systems is that they offer very
different mechanisms for dealing with atomic entities and with configurations. Unfor-
tunately this leads not only to proliferation of concepts, but also to a weak support for
managing configurations.

New approach: The Unified Extensional Versioning Model
Traditional state-based systems and change-based systems are similar in that they use
intentional versioning for handling configurations. In this paper we put forward a radi-
cally different approach - using explicit versioning also for configurations. We will
show how we with this approach counter the problem of combinatorical explosion both
in general, and further with different mechanisms in the three prototype systems we
have built. The model we present also avoids the problems discussed above in connec-
tion with intentional versioning of configurations. Finally it has the advantage of offer-
ing one unified version model for atomic entities as well as for configurations.

Atomic entities (files) Configurations

Intentional versioning
(rules)

Change-based systems Change-based systems
Traditional, state-based

systems

Extensional versioning
(explicit versions)

Traditional, state-based
systems

UNIFIED MODEL

UNIFIED MODEL

104 Ulf Asklund et al.

3 The Unified Extensional Versioning Model

In this chapter we first present the unified model, both from a somewhat formal per-
spective and illustrate with examples. We then describe how the model has been used
in three systems we have built.

3.1 The model

Document model
A 'document' in this model is structured and the structure can be expressed in a gram-
mar as shown in Figure 1. Relations between documents is also part of the model
through the notion of links. 'Document' is here used in a general sense of a file, data-
set, that can contain any form of information, e.g. program source, English text, graph-
ics, etc.

• N-nodes support storing data. It can be text, source code, graphics or any other
information which is thus of no concern to the model. Different N-nodes can
contain different types of data, so the model supports documents with mixed
data.

• C-nodes support Composition, whole-part relations. This is introduced in rec-
ognition of the need for support of hierarchies commonly used to structure text
documents (chapters, sections, paragraphs), programs (modules, classes rou-
tines) and many other kinds of information.

• L-nodes support Reference semantics, arbitrary relations between documents.
This is introduced in recognition of a need to share common parts between con-
figurations (libraries, modules, classes in programs, and illustrations, appendix,
quotations etc. in textual documents). The 'name' attribute stored in an L-node
is the information needed to link to another document. The 'version' attribute is
the information needed to denote a specific version of the document which will
be explained in the next section.

The model supports structure in two ways, through C-nodes and L-nodes. There is thus
some redundancy in the model since composition, tree-structures, can be built out of a
restricted use of L-nodes. The motivation to include C-nodes and explicit support for
composition in the model is that tree-structures is a fairly common case and that we
view composition and reference semantics as distinct cases.

D ::= T
T ::= C|L|N
C ::= T* [‘local data’]
L ::= ‘name’ ‘version’
N ::= ‘local data’

Fig. 1. Grammar specifying the document structure

D - document (abstract node, non-terminal
T - tree (abstract node, non-terminal)
C - composite node (concrete node, production
L - link node (concrete node, production)
N - atomic node (concrete node, production)

105The Unified Extensional Versioning Model

Traditional document models can be understood in our model as documents which
only contain one N-node. Such models does not support internally structured docu-
ments and do not support relations between documents.

Examples of structured documents
Figure 2 depicts examples of document structures. The left hand example shows a sin-
gle tree-structured document. The right hand example shows three structured docu-
ments linked together. Lines indicate composition in a document while arrows are
references between documents.

A more concrete example of a tree structure is a book. The left hand example in
Figure 3 depicts such a book consisting of three chapters, where chapter one and three
both have two sections respectively. The relation between the book, the chapters, and
the sections are 'consists of' or 'contains' and the total structure represents one entity -
the book.

A concrete example of a structure also using L nodes is Java source code for an
application consisting of classes and packages. The small right hand application in
Figure 3 consists of one class and it imports two classes, A and B. The class-to-opera-
tion relation is of the same type as the relations used in the book, i.e. 'consists of' or
'contains'. The relations import-to-class and su.cl-to-class (super class) is, however,
references i.e. links. It would e.g. be wrong to say that class B consists of class A.
Moreover, both class A and B might be included in many other applications. The
semantic difference between composition and reference semantics will also show up in
versioning of documents discussed below.

Versioning
Both structure and contents of a Document will evolve over time. In the extensional
model all node types (N, L, or C in the grammar) are explicitly versioned. Creation of
a new version of a node is triggered by any of the following conditions:

Fig. 2. Composite document and configuration represented in the Unified Extensional
Versioning Model.

C

C

C

N

N N

N
N N N

C

L L

L

C

C CN

N N N N

106 Ulf Asklund et al.

• N,C-nodes - a new version is created when its 'local data' is changed
• L-nodes - when name, or version is changed
• C-nodes - also when any of its sons is added, deleted, or changed

Changes to a document occurs during a 'session', a long transaction. The extent of a
session is defined by the user who explicitly or implicitly controls when a session starts
and ends. During one session there is created at most one new version of each node if
needed according to the rules above. Repeated edits to local data in one node are thus
part of the same change to that node. Several additions, deletions and changes to the
sons of a C-node also result in only one new version of the node. The length of a ses-
sion, and thus the amount of changes that go into the same version, can be used to con-
trol the granularity of the versioning. When a session is ended the created versions of
the nodes can no longer be modified.

Versions are related through the derived-from relation and can form arbitrary DAG
structures. The version mechanism thus can represent concurrent development and
merge of Documents, atomic entities as well as configurations.

For a document a session means that a new version of the document is created. For
each node changed during the session a new version of the node is created (but only
one). The rule that C-nodes are considered changed also when only their sons are
changed results in an effect know as 'change propagation' [Kat90]. Any change will
result in new versions of all father nodes of the changed node up to the top node (if not
already changed in the same session). The effect that there is only one new version of a
father-node during a session can be seen as a version concentration mechanism.

This automatic change propagation mechanism for documents is consistent with
how changes of compositions are perceived. For example a change to a paragraph in
this paper means the whole paper is changed. It also means that a version of a docu-
ment uniquely determines which internal nodes to include and for these which version.

For relations between documents the version attribute of an L-node determines the
version of the referenced document. If another version of the referenced document is
wanted the version attribute of the L-node needs to be changed (and thus the L-node
itself, all enclosing C-nodes, and ultimately the document where it resides).

Appl

Import Class 1

Class A
Class B

Import

Op 1 Op 2

Op 1

Op 1 Op 2

Op 2 Op 3

Su.Cl.

Ch 1 Ch 2 Ch 3

Book

Sec 1.2Sec 1.1 Sec 3.1 Sec 3.2

Fig. 3. Example of structured documents: A book and Java source code.

107The Unified Extensional Versioning Model

The model thus implies that updating a link to another (for example newer) version
of a document means that the referencing document must be changed. When and how
this is done is not specified in the model, but can be supported in a tool by different
convenient mechanisms to administer updates between documents. Examples of such
mechanisms are illustrated by the tools present below. Again the session mechanisms
and long transactions can be used by the user to limit the number of such versions that
actually occurs.

Example, versions of structured document
Figure 4 depicts the evolution of a tree structured document. In Figure 4b the local data
in the N-node '3.1' (sons numbered from left to right) is modified and a new version of
that node is created. As a consequence also a new (intermediate) version of its father
node is created (node '3') and of the root node, i.e. the entire document is considered
changed. In Figure 4c the user has continued the session by also modifying node '2',
thus creating a new version of it. Since a new version of its father node already exists
change propagation has no effect in this case. It is thus possible to make many related
modifications to the document, all included in one and the same version of the docu-
ment. The user controls when a session is ended and thus when and what versions are
actually created.

An example where the structure shown in Figure 4 might arise is a book with three
chapters, see Figure 3. A change in one of its paragraphs results in a new version of the
book and so does several modifications during the same session. This situation is con-
sistent with the situation that would arise if the versioning model would not acknowl-
edge structure and the three chapters would be maintained as one single file.
Versioning of compositions using change propagation coincide with the situation when
more primitive composition mechanisms are used. A document can also be seen as a
bound configuration of its nodes. Given a version of the document - the version of all
its nodes are directly determined.

Example, versions of configurations of documents
In this example we consider a situation with three documents, one (D1) importing the
other two (D2, D3) as shown in Figure 5. Modifications to D2 and D3 results in new
versions of these, one for each session depending on how the user chooses to organize
his work. In Figure 5 we show the situation after one edit session with D2 and two ses-

C

C C

CC

N

N N N N N N N N NN NNN N

NNC CC

CC

C CN C

a) Initial situation of
structured document

b) Node 3.1 has been
changed

c) Also node 2 is
changed

Fig. 4. Many changes within the same version.

1

1 1

2

2 2

2

3.1 3.1

3

108 Ulf Asklund et al.

sions with D3. In order to use the newer versions of D2 and D3 also a new version of
D1 needs to be created where its link nodes are changed. The user can here decide to
move to the latest version of D2 and D3 (as shown in the Figure) or to use any other
combinations of versions of D2 and D3. The structure is in this case a small graph, but
links can be used to build higher trees and indeed arbitrary directed acyclic graphs and
the same mechanisms applies. Situations where structures as the one presented in
Figure 5 can occur is for example in software development where the documents are
source modules, depending on each other such as in the situation illustrated in
Figure 3.

Summary
We have presented the unified extensional versioning model and explained how it han-
dles structured information, versioned relations between documents, and how the
extensional versioning work for these documents. We have also shown how the combi-
natorical explosion problem is countered, by the use of long transactions, called ses-
sions, and the effect that hierarchies limits the number of combinations of its
components, version concentration.

It still remains to show how this model can be used in tools and to see if it is viable
in practice. One can immediately foresee two potential problems. If, for example, ses-
sions in practice are very short the number of versions created can still be very large
and this would defeat the version concentration mechanism. Our experience presented
below shows that this is not the case. Another possible problem would occur if the
overhead to update a link to use a new version of a referenced document would be
large, since this will be a fairly common operation. Again the presentation of our tools
below show that this is not the case. Mechanisms to swiftly perform such updates over
sets of files have been designed and tried out in practice.

C

C

C
C

CC

C

C

CC
CC

C

CC

NN

NNNN
NNN

NNNNN
NN

NNN

NN N N

L L

L

L L

L

LL LL

N

CC

NNNLL N

C

Fig. 5. Editing an L-node often means rebinding to a new version.

D1 D1 D1

D2 D2 D2
D3 D3 D3

109The Unified Extensional Versioning Model

3.2 Prototype implementations

In this section we will briefly present the three prototype system we have developed
based on the extensional versioning model. We will concentrate on the aspects of the
prototypes that are directly related to the model and ignore much of other, although
important, aspects of the systems. The systems are not in all cases supporting the full
model, but only need some of its facilities. They also differ in their interpretation of
when and how versions are created. The three presentations illustrate how the model
can be implemented and combined with different facilities to create flexible and easy
to use systems for different purposes.

COOP/Orm

Background The starting point for the development of the COOP/Orm research pro-
totype [MA93, MAM93, MA95, MA96] has been the aim to support teams of pro-
grammers working together, providing a collaborative editing environment, an area
that combines problems from both CSCW (Computer Supported Cooperative Work)
and SE (Software Engineering). From the CSCW perspective the requirements collab-
orative awareness and support for concurrent work have resulted in fine grained ver-
sioning (both spatial and temporal), optimistic check-out and strong support for merge.
COOP/Orm is built as an on-line system with a built in editor. Everything is thus stored
in the repository rather than in separate workspaces. SE issues have lead to better sup-
port of hierarchical structures, and sharing of common parts between applications.

Document model The COOP/Orm environment implements the grammar as defined
in Figure 1. The size of a document is user defined. Typically the granularity of a doc-
ument could be an article, a class, a package, etc. Within the document the granularity
of atomic N-nodes can for example be a section, a method, or even the body of a
method (e.g. dividing a method into head, body and documentation), as desired by the
user.

Versioning of one document All changes to a document are made during a session,
which involves three steps, (1) selecting an originating version of the document and
creating a new version from it, (2) making a sequence of edits to, changing/adding/
deleting, one or several nodes within the document, and finally (3) terminating the ses-
sion by 'freezing' the new version. Both the creation and 'freezing' of versions are
explicit operations by the user who thus determines the length of a session.

Versioning of configurations of documents Relations between documents are
implemented through link-nodes, which are nodes within the internal structure of a
document and can thus only be changed during a session. In a structure of documents
each document has its own sessions, during which its link-nodes can be modified.

A user can choose to modify documents in short sessions thus giving detailed con-
trol and traceability, but new versions of configurations for each edit. It is also possible
to use long sessions and let versions of documents remain open allowing many

110 Ulf Asklund et al.

changes of their (link) nodes. If this model is mixed with the manual (more frequently
freezing versions) a balance of strong version concentration and traceability can be
obtained.

CoEd
CoEd [BLNP97, BLNP98] is a prototype environment that supports collaborative writ-
ing through the use of advanced version control policies. CoEd manages hierarchically
structured textual documents only, where the relation between the parts is that of com-
position. This means that CoEd does not support the L-nodes of the general model. In
the specifying grammar the L-production is removed and the T-production simplified
accordingly: T::=C|N. When changes have to be propagated, new versions are created
of all nodes on the path from the node that was changed to the root of the document.

CoEd works as a repository only, which means that the user cannot directly edit the
bound configurations of the document, as they are immutable. So a traditional check-
out-edit-checkin way of working has to be followed. A session starts when a structure
is checked out from CoEd. It is possible to check out just a part of the document by
indicating the C-node that forms the root of the subpart. When the (sub)structure has
been checked out, a single file containing all the LaTex text for the (sub)structure will
exist in the users file system. This file is mutable and the user can edit it as he wishes,
changing even the structure of the document. After the editing, the file representing the
(sub)structure is checked back into CoEd. The file is parsed and if it represents a valid
LaTex structure, CoEd discovers what has changed. Changes are propagated all the
way up to the root of the document. When the document is in the user’s file system, its
structure is not explicit anymore, but only indicated by the respective LaTex com-
mands. However, whenever the document is inside the repository, its structure is
explicit and it is kept as a series of versions of bound configurations that can be
browsed and retrieved.

Even though CoEd has no explicit notion of a workspace, it does implement the
possibility to work directly on the structure of a document inside the repository. If we
want to ‘promote’ section 3.2 of this paper to become chapter 4, this can easily be done
by dragging the section to the new chapter’s place. This creates a new bound configu-
ration of the document, where section 3.2 is deleted from its original place in the struc-
ture and inserted at the new place. Presently, there is no explicit session concept when
working inside CoEd’s repository even though all changes are versioned. This means
that if we make several modifications to the structure this will result in several new
bound configurations being created, even if they might conceptually be considered as
one change.

Ragnarok
Ragnarok [Chr99c, Chr99b, Chr99a, Chr98b, Char98a] is a software development
environment with focus on software architecture and architectural evolution. In Ragn-
arok, a document represents a software abstraction in a software system. A document
may have one C-node only, and multiple N- and L-nodes. N-nodes store the implemen-
tation of the abstraction (source code), and L-nodes architectural relations (like com-
position, depend-on (import) or subclass-of) between abstractions. Ragnarok simulates

111The Unified Extensional Versioning Model

composition using reference semantics (L-node links) and the tree-structure require-
ment is ensured by checking at the user interface level.

Ragnarok uses a traditional repository/workspace model. A session takes place
locally in a workspace, and ended (changes are committed back to repository) by a
check-in operation. Ragnarok has transitive change propagation over L-nodes. Thus, if
a document, A, is changed then any document that includes A in its transitive, reflex-
ive, closure of L-links is considered changed; but only locally in the workspace where
the change was made. Ragnarok creates new, local, copies of all affected nodes and
rebinds L-nodes to reflect the changed architecture.1

The session concept is highly flexible; essentially each document has its own ses-
sion. A document’s session is started by the first change to the document, directly (edit
of N- or L-nodes) or indirectly (something in its transitive closure changed). A docu-
ment’s session is terminated by a check-in; and the check-in is propagated to all docu-
ments in its transitive closure. Thus, changes are committed to the repository and all
sessions closed in the sub-configuration that is rooted in the document. However, doc-
ument sessions higher in the hierarchy (documents not in the closure of the document,
but related to the document) remains open, which is how version concentration is made
in Ragnarok. As a concrete example, less than 30 versions of the root document in the
ConSys system (see data below) was made over a two year period where the system’s
size more than tripled in terms of KLOC.

Finally, Ragnarok allows new configurations to be constructed intensionally in a
workspace, as it provides a rule-based check-out. An example is given in section (4.4
Supporting concurrent work)

Ragnarok is currently used in three real development projects, outlined in the table
below and detailed in [Chr98a]:

3.3 Summary

In this chapter we have presented the Unified Extensional Versioning model and three
systems that use the model. The model improves on the observations regarding tradi-
tional models that we mentioned above.

1 This propagation and rebinding mechanism simulates ordinary development where
module relations are inherently generic: “A imports B” and thus any change in B in-
directly affects A.

ConSys BETA Compiler Ragnarok

Used since Mar. 96 Feb. 97 Feb. 96

No. developers 3 4 1

No. files 1340 290 160

No. lines (KLOC) 240+binary 120 45

112 Ulf Asklund et al.

• Representation of configurations is direct. A configuration can be represented
with a document that contains links to the other documents included in the con-
figuration.

• Configurations are versioned. As any other document a configuration exists in
versions. Versions of configurations are explicit, they can be named and orga-
nized.

• Versions of configurations are related to each other so their development can be
traced. They can be compared and differences can be presented as components
being added, deleted or changed. There is no need for auxiliary support such as
'Tagging'.

• Consistency is provided in the versioning sense. A version of a configuration
can always be reproduced in exactly the same form. There is no need to copy
systems in order to provide reproducibility.

In the presentation of the three systems we have highlighted how the model can be
used and tailored to three common, but rather different situations: in a CM tool sup-
porting software development in a traditional Unix tool-based setup, in an integrated
tool for authoring papers, and in an integrated environment providing synchronous and
asynchronous interaction for development in a geographically distributed setting. The
Unified model go beyond traditional models in that it provide more support in a num-
ber of important situations.

• Version concentration. The number of versions of a configuration that has to be
considered is greatly reduced compared to the possible combinations given by
mathematics.

• Architectural traceability. From any level of configurations the exact changes
that has been made over time, can be traced down to the individual file.

• Modularization. Configurations can be handled as modules where the internals
and its detailed development is separated from its interface and its development
from external point of view.

• Scaleability. Configurations can be included as elements in larger configura-
tions thus forming hierarchies is directly supported. This is an essential prop-
erty when managing any complex system.

These and other aspects of the model will be further discussed in the next chapter.

4 Discussion and Comparison

In this chapter we will discuss some effects and consequences of the unified exten-
sional versioning model and its use and compare with the intentional model.

4.1 The Unified Extensional Versioning Model from the users perspective

A consequence of the unified extensional model is that the concepts ‘versioned compo-
nent’ and ‘bound configuration’ are unified. Extensional versioning is used in both

113The Unified Extensional Versioning Model

cases which means that the user can use the same model for versioning components as
well as for versioning configurations. In the same way as a user can decide what
changes go into a new version of a component s\he can control through the session
mechanism what goes into a new version of a configuration. In both cases the version
represents what the user regards as a meaningful state. The versions of configurations,
including content and structure, are explicitly represented in the version database. This
allows the user to identify, inspect, compare and reason about the properties of the con-
figurations both in terms of content and structure: How and when new sections or
chapters have been added or removed, how the dependency structure between software
modules have evolved, etc. The hierarchical formulation of the model allows the user
to organize the system in layers of libraries, sub-systems and systems all explicitly rep-
resented and versioned.

In a software engineering context, the extensional model implies that a version of a
module not only embodies the source of that module but also contains information
about the modules that it depends upon, which can be characterized as the SCM equiv-
alent of the modularization principle. The developer creates what s\he thinks are mean-
ingful and consistent combinations of versions of the included documents. The user of
such a configuration (a library, module etc.), who have less insight in its internals, are
thus confronted with choosing among a small number of meaningful versions of its
configuration.

Builds of a system is always made from a bound configuration which in the exten-
sional model is explicitly available as a version of the system configuration. Likewise,
bill-of-material facilities are directly supported since the structure of the system and
version of all components are given from a version of the system. What remains to
capture is external aspects such as versions of used tools, options, etc.

In comparison the intentional versioning scheme is more complex from a user
point of view. In order to specify configurations the user needs to master a separate
selection mechanism for versions of configurations, often a small, specialized, lan-
guage. (Languages that are often error-prone to use and does not deal gracefully with
structural changes.) Encapsulation is weak since selection is performed over entire sys-
tems, also over parts not known in detail by the developer. Resulting, bound, configu-
rations can be labled, but there is no support for comparing or relating such
configurations to each other. As a result users are directed to produce and store listings
of components and their versions in order to support bill-of-material facilities.

4.2 Managing the combinatorical explosion of configurations

The problem of combinatorical explosion is one of the fundamental problems which
has to be countered in every model. In the extensional model this is achieved through
the effect called ‘version concentration’. Consider first the tiny example in Figure 5c.
On the document level, in D3 there are 2**3=8 possible configurations of versioned
nodes of which only 3 have been created. On the relation level there are 2*3=6 possi-
ble configurations of the existing versions of D2 and D3, but here only 2 have been
created. The fact that mathematical combinatorics give that there are in all 32 possible
combinations of the versions of the leaf nodes in this small example is thus of no inter-

114 Ulf Asklund et al.

est since the user have control over which combinations to explore and only these, for
him/her interesting configurations, are created. Furthermore, the two-session update of
D3 is only reflected as one new version of the configuration, D1. The hierarchical
structuring in combination with the session mechanism is thus helpful in reducing the
number of versions of configurations - version concentration also on the configuration
level. For the rest of the system, using D1, the number of combinations of the files in
this sub-system that needs to be considered is thus decreased from 32 to 2. Should,
however, a user want to use another configuration of D1, say using the middle version
of D3, the model makes it easy to represent such a configuration as another version of
D1.

In realistic situations the numbers are much higher, 100 files in 10 versions each
result in 10*100 mathematically possible combinations which are concentrated to per-
haps 100 interesting versions of the configuration. Of these only a small number are
relevant at any given time, often the last in each sequence of versions resulting from
concurrent work (branch).The version concentration mechanism works in the same
way at each level of configuring sub-systems into larger sub-systems and so on. At the
system level there are comparatively few versions of the configuration corresponding
to interesting versions of the system as a whole; releases, test-versions and so on.

In the intentional model the problem of combinatorical explosion is countered by
using selection rules, ideally choosing the intended version of each file. Such rules are
not directly depending on the number of revisions of files (i.e. the age of the system)
which makes this approach scale up over time. The rules do, however, depend on the
size of the system since the number of modules, each with its branches and labled con-
figurations, will grow with the system. Selection rules are global and need to reflect all
the modules at the same time. In contrast the hierarchical composition used in the
extensional system scales well as illustrated with the Ragnarok experience. A system
with 1340 files resulted in only 30 versions on the system level during a period of 2
years. A period when the system was heavily modified and trippled in size and the
number of possible configurations would be uncountable.

4.3 Supporting and managing changes

A CM system must support simple and low-overhead facilities for developers to
change and extend a system. Ideally such support should be possible to offer staying
within the used versioning model. The main mechanism in the intentional model for
this is generic selection rules, such as ‘Latest’, selecting the latest created revision of a
modified file, which often is what the user intends to use. A configuration specification
using generic rules will not need to be changed in order to include a new revision of
yet another updated file and is thus convenient to use for a developer.

The corresponding mechanism in the extensional model is the session mechanism
which allows several changes to a component as well as to a configuration to be
included in one revision. Using this mechanism the developer will create a new revi-
sion of a component (or configuration) indicating that this part of the system is under
revision. All changes the user makes to the component in this revision will be accumu-
lated. When the user so decides the session is concluded and the version of the compo-

115The Unified Extensional Versioning Model

nent is closed and can no longer be modified. When dealing with components, the
situation in the extensional and intentional models for the developer comes fairly
close. Check-out and check-in corresponds to creating and closing a revision of a com-
ponent.

When dealing with configurations the situation is, however, different. In the exten-
sional model the user needs to create revisions also of configurations in order to
include revisions of its components, thus also if the component itself is not explicitly
revised. Thanks to the session mechanism, the user can leave a revision of a configura-
tion open and thus accumulate revisions of several of its components and also several
revisions of the same component. Again, when the user so decides, the session is con-
cluded and the user can thus control the granularity of the revision, for example to let a
revision of a configuration represent a logical change. The experience from the use of
Ragnarok shows that sessions tend to be longer the higher up the hierarchy the compo-
nent is, and thus very long on the system level.

There are situations where a number of revisions needs to be created or closed at
the same time. When the user decides to finish a session and close a revision of a con-
figuration, all open revisions of its components that it uses must also be closed in order
to form a bound configuration. This could be a tedious operation, involving many com-
ponents. The Ragnarok system has demonstrated how it can find and close the relevant
revisions of the components leaving to the user only to close a revision of the configu-
ration acting as the root in a sub-graph. The users of Ragnarok has been interviewed
[Chr98a] and they state that the ‘intermediate’ versions created were not problematic.
‘It is the job of the tool’ to handle the internal, possibly complicated, bindings, but the
tool was reported to handle this adequately, and they did not find the presence of inter-
mediate versions a problem. The ‘intermediate’ versions are, however, essential in
order to facilitate full traceability in all situations. In the intentional model this opera-
tion corresponds to checking in components, labeling the configuration, and updating
the selection rules (making sure generic rules are replaced), seemingly a heavier oper-
ation.

The extensional model trivially supports reconstruction of a version of a configura-
tion that has been closed since it can no longer be modified. In the intentional model
this takes a correctly formulated, and stored, set of selection rules, which is hard to
guarantee in particular in presence of heavy restructuring of the system. Alternatively
one has to store the full list of components and versions for the entire system. On top
of this the extensional model offers full traceability among the explicitly stored ver-
sions of configurations. It supports relations between such versions of configurations
and a tool can show how they are derived from each other, compare them, show the
differences down to every included component.

4.4 Supporting concurrent work

In projects involving many developers it is often a necessity that work can be done
concurrently by several developers, including revising the same documents and config-
urations. To make this a practical possibility, it must be simple and swift to merge the
result of concurrent work affecting both the component and configuration level. Merg-

116 Ulf Asklund et al.

ing concurrently developed revisions, temporary variants, of a component is an estab-
lished technique. Here tools make use of the known content of the two temporary
variants and their common ancestor to perform a three-way-merge, suggesting the
resulting merge and detecting lexically interfering changes in the two variants. Dealing
with configurations the work is often structured so development starts from a common
alternative, but done in a separate alternative. When such a task is concluded the revi-
sions are made available by updating the common alterative. In case of concurrent
work, any changes in the common alterative must first be merged with the new changes
in the separate alterative, tested etc., and then used to update the common alternative.
Thus the last developer to conclude his concurrent work will have to deal with merging
with earlier work.

In the intentional model concurrent work is often aided by workspace areas where
the revisions of changed files are stored and visible for the local developer. The tool
then aides in updating the common alterative as well as merging parallel work, i.e.
updating the workspace with files changed in the common alterative and initiating
merge of files that has been changed in both places.

In the extensional model configurations are explicitly versioned and concurrent
work is represented as variants in its versiongraph. Merge is thus achieved in the same
way as for components - a new version is created with the variants as predecessors.
With the same rules as in the intentional system a tool will select the latest revision of
a component changed in only one of the alternatives and initiate a merge of a compo-
nent that has been modified in both alteratives. Since the model is recursive a compo-
nent might be a new configuration and the process repeated until all components have
been merged (the same ones as in the intentional model), and the affected configura-
tions have been facilitated with a new version representing the merge. The difference
between the models thus lies in the last point. The explicit versioning of configurations
makes it simple to explore the history of configurations which is particularly useful in
the context of concurrent work and merges.

In the merge-case above we notice that all the versions of the involved configura-
tions are a consequence of the model and can be automatically managed by a tool. A
similar situation occurs when one want to integrate with changes to the system unre-
lated to the concurrent development. In the intentional model this is provided through
the generic rules (e.g. the ‘latest’ rule of ClearCase, and the CVS command ‘cvs
update’). As an example of similar functionality in the extensional model, the Ragn-
arok prototype provides a command, ‘gettip’, that specifies that the latest version of
any component should be used in the users workspace. This command retrieves the lat-
est revision of all components from the version database, updates the bindings between
the components and configurations in the workspace, creating new versions of config-
urations as needed. This is a proven and often used technique to merge parallel work of
different parts of a software system.

4.5 Implementation aspects and some usage experience

Storage space overhead is an important aspect when managing large systems. When
storing components, standard delta storage techniques can be used as usual for com-

117The Unified Extensional Versioning Model

pact storage of revisions. On top of that, the model presented in this paper can repre-
sent internal structure in a document, which can be used to share common nodes and
subtrees between variants facilitating compact storage and fast retrieval of variants.
The representation of bindings between documents, L-nodes, is comparable to what is
already present in form of external declarations (or comparable mechanisms) in
source-files. The representation of explicit versions of these bindings is an additional,
but very small cost and to store differences of these bindings is very compact. It should
be compared to label all files in a system using the traditional approach. Although we
have not made a careful study of this we are confident that our approach will come out
favorable in a comparison due to the hierarchical structure (even if the labels are cho-
sen very short).

In all long-lived systems the version history becomes long-winded and partially
uninteresting. In particular long sequences of successive updates tend to be of little
interest after a while. This is a general problem that can be observed already with com-
mon tools for versioning components. In the extensional model the effect of ‘interme-
diate’ versions may contribute to make such sequences for configurations even longer.
In any case the problem is general and in a graphical interface (such the one used by
some of the systems described earlier) may have to consider techniques where such
sequences are collapsed, but still accessible, in the presentation.

In this paper we have argued that the ‘version concentration’ effect will eliminate
the potential overhead created by the intermediate versions of configurations. This
effect is created by the session mechanism (collecting revisions over time) and the ver-
sion propagation mechanism (collecting revisions over a sub-tree/sub-graph of the sys-
tem). The last mechanism will work better with a certain fan out at each configuration
and will clearly not help in the unlikely situation of a system built as a linear list of
components. In order to see how ‘version concentration’ worked in practice, the Ragn-
arok prototype was in early February 1997 equipped with two additional house-keep-
ing attributes, that allows the actual amount of proliferation in the version database to
be assessed quantitatively. During check-in each new version stores two boolean val-
ues: 1) if this version has a change in the ‘local data’ attribute compared to the ancestor
version, and 2) if this version was created as a result of a directly issued check-in com-
mand. In Figure 6 below, data for these attributes is shown for every quarter of the year
in the period 1997 to 1998. Column T shows the total number of versions entered into
the version database during the indicated period. S is the percentage of T where
attribute 1) is true, i.e. the percentage of versions where ‘local data’ was changed. Sim-
ilarly, O is the percentage of T where attribute 2) is true, i.e. the percentage of versions
created by a direct command. Thus 100%-S is the percentage of intermediate version,
versions that would not have been created in an intentional model.

The important point is the stability over time of the percentages O and S. The num-
ber of version nodes in the repository is proportional to the number of check-ins and to
the number of changes; thus there is no combinatorial explosion. Furthermore, the
numbers tells us that there is roughly one ‘intermediate’ version for each ‘essential’
version. For each explicit check-in there is 3-8 files checked in (which means 1.5-4
‘essential’ versions). Thus rather than creating more work for the user having to check

118 Ulf Asklund et al.

in ‘intermediate’ versions the situation is that in Ragnarok a user have to handle fewer
explicit check-ins than in a traditional system.

4.6 Support for variant selection

The presentation of the Unified Extensional Versioning Model in this paper has
focused on its support for versioning, including temporary variants for concurrent
work. The presentation has not considered support for permanent variants. The inten-
tional model has an advantage here in that its selection rules can be used both to select
among revisions and variants. The extensional model thus needs to be extended in
order to support representation and selection of variants. The authors do, however, feel
that an interesting approach would be to include facilities in the tradition of ‘condi-
tional compilation’ and thus provide conditional parts of a document. This would make
it possible to keep variant parts close together, often preferred by developers, rather
than enforcing them to be separate files (or separate variants of a file). Integrating sup-
port for variants in the model is for the time being left as future work.

5 Conclusions

In this paper we have described a new model for versioning of both components and
structure of a system. In our analysis of existing approaches we came to the conclusion
that in general it is better to use the same concept for the versioning of structures as for
the versioning of components. Furthermore, we identified some weak points in the

Quarter T O S T O S T O S

1997 I - - - - - - 13% 12% 44%

1997 II 405 20% 29% 255 34% 53% 447 13% 36%

1997 III 332 43% 58% 505 30% 55% 457 12% 39%

1997 IV 290 24% 33% 366 23% 62% 138 11% 32%

1998 I 289 31% 43% 253 34% 66% 111 11% 54%

1998 II 499 25% 32% 624 29% 64% 106 12% 36%

1998 III 478 44% 51% 385 26% 52% 207 10% 35%

1998 IV 349 19% 46% 147 32% 60% 73 13% 57%

Sum 2438 32% 45% 2518 30% 60% 1648 13% 40%

ConSys BETA Compiler Ragnarok

Fig. 6. Data from use of Ragnarok

119The Unified Extensional Versioning Model

intentional model for versioning of structures and that it had some weaknesses com-
pared to the extensional model used for atomic entities. This led us to propose our uni-
fied extensional versioning model using extensional versioning for both atomic entities
and configurations. We have shown that the good aspects of the intentional model,
flexibility in development and reducing the problems of combinatorical explosion, can
also be achieved in the extensional model. On top of that we also have shown that it
facilitates a number of other essential aspects. The applicability and use of the model
have been demonstrated by presenting three different systems built using the model.

We have also shown that the unified model is superior in several important aspects.

• It offers the Version Concentration mechanism to counter the combinatorical
explosion of versions.

• The explicit representation of Configurations makes it possible to organize con-
figurations hierarchical, and to modularized configuration management,

• The explicit versioning of configurations makes it possible to guarantee repeat-
ability, a version of a configuration is well defined and can always be recreated.
This makes it unnecessary to make dedicated copies of important configura-
tions - such as releases. It support architectural traceability which is achieved
through comparing versions of configurations, and it also directly support
grouping related changes together into logical changes.

• The model is general since it does not restrict the tool-implementor and the
model in itself does not impose any specific policy or process on the user.

The use of the model in three systems for rather different situations support the claims
on generality and of cause also of the usefulness of the model. Experience and data
from in particular one of the implementations support the claim that version concentra-
tion works also in practice.

On a more subjective level we think it is a benefit that the problem of managing
configurations and atomic entities can be handled through one set of concepts and
mechanisms rather than two. Rather obviously we find the concepts we have developed
natural and simple, but more importantly we have found them easy to explain and to
adapt by users. This makes us believe that the model we have presented is to some
extent 'natural' and since it also powerful, as argued above, we like to suggest it as an
alterative for others building CM systems.

References

[AdC90] Software Maintenance and Development Systems. Aide-de-Camp Product
Overview. Software Maintenance and Development Systems, Concord, MA
1990.

[Ask94] Ulf Asklund. Identifying Conflicts During Structural Merge. In Magnusson et
al. MHM94.

[Ask99] Ulf Asklund. Configuration Management for Distributed Development -
Practice and Needs. Licentiate thesis, Dept. of Computer Science, Lund
University, Sweden. 1999.

120 Ulf Asklund et al.

[AM97] U. Asklund and B. Magnusson. A Case-Study of Configuration Management
with ClearCase in an Industrial Environment. In Proceedings from SCM7 -
International Workshop on Software Configuration Management, R. Conradi
(Ed.), Boston, May 1997, LNCS, Springer Verlag.

[AMP99] U. Asklund, B. Magnusson, and A. Persson. Experiences; Distributed
Development and Software Configuration Management. In Proceedings from
SCM9 - International Symposium on System Configuration Management,
J. Estublier (Ed.), Toulousem France, Sept. 1999, LNCS, Springer Verlag. To
appear.

[BLNP97] Lars Bendix, Per N. Larsen, Anders I. Nielsen, Jesper L. S. Petersen: CoEd -
A Tool for Cooperative Development of Hierarchical Documents, Technical
Report R-97-5012, Department of Computer Science, Aalborg University,
Denmark, September 1997.

[BLNP98] Lars Bendix, Per N. Larsen, Anders I. Nielsen, and Jesper L. S. Petersen. CoEd
- A Tool for Versioning of Hierarchical Documents. In Magnusson [Mag98].

[Ced93] Per Cederqvist. Version Management with CVS. Available from
infosignum.se, 1993.

[Chr98a] Henrik Bærbak Christensen. Experiences with Architectural Software
Configuration Management in Ragnarok. In Magnusson [Mag98].

[Chr98b] Henrik Bærbak Christensen. Utilising a Geographic Space Metaphor in a
Software Development Environment. In Prasun Dewan, editor, Proceedings of
EHCI'98, IFIP Working Conference on Engineering for Human-Computer
Interaction, Crete, Greece, September 1998. Kluwer. To appear.

[Chr99a] Henrik Bærbak Christensen. The Ragnarok Architectural Software
Configuration Management Model. In Jr. Ralph H. Sprague, editor,
Proceedings of the 32nd Annual Hawaii International Conference on System
Sciences, Maui, Hawaii, January 1999.

[Chr99b] Henrik Bærbak Christensen. The Ragnarok Software Development
Environment. Nordic Journal of Computing, 6(1), Jan 1999.

[Chr99c] Henrik Bærbak Christensen. RAGNAROK: An Architecture Based Software
Development Environment. PhD thesis, Department of Computer Science,
University of Aarhus, Denmark. 1999.

[Clear] http://www.rational.com/products/clearcase
[Crn92] R. D. Cronk. Tributaries and deltas. BYTE, pages 177-186, January 1992.
[CW98] Reidar Conradi and Bernhard Westfechtel. Version Models for Software

Configuration Management. ACM Computing Surveys, 30(2):232--282, June
1998.

[GKY91] B. Gulla, E.-A. Karlsson, and D. Yeh. Change-oriented version descriptions in
EPOS. Soft. Eng. J. 6, 6 (Nov.), 378-386. 1991.

[HM88] G. Hedin and B. Magnusson. The Mjölner environment: Direct interaction
with abstractions. In S. Gjessing and K. Nygaard, editors, Proceedings of the
2nd European Conference on Object-Oriented Programming (ECOOP'88),
volume 322 of Lecture Notes in Computer Science, pages 41-54, Oslo, August
1988. Springer-Verlag.

[Kat90] Randy H. Katz. Toward a Unified Framework for Version Modeling in
Engineering Databases. ACM Computing Surveys, 22(4), December 1990.

[MA95] Boris Magnusson and Ulf Asklund: Collaborative Editing - Distributed and
replication of shared versioned objects. Presented at the Workshop on

121The Unified Extensional Versioning Model

Mobility and Replication, held with ECOOP 95, Aarhus, August 1995.
Available as: LU-CS-TR:96-162, Dept. of Computer Science, Lund, Sweden.

[MA96] Boris Magnusson and Ulf Asklund. Fine Grained Version Control of
Configurations in COOP/Orm. In Sommerville, I., editor, Proceedings of the
6th International Workshop on Software Configuration Management, LNCS,
Springer Verlag, Berlin. 1996

[Mag98] Boris Magnusson, editor. System Configuration Management, Lecture Notes
in Computer Science 1439. ECOOP'98 SCM-8 Symposium, Springer Verlag,
1998.

[MAM93] Boris Magnusson, Ulf Asklund, and Sten Minör. Fine-Grained Revision
Control for Collaborative Software Development. In Proceedings of ACM
SIGSOFT'93 - Symposium on the Foundations of Software Engineering, Los
Angeles, California, 7-10 December 1993.

[MHM94] Magnusson, Hedin, and Minör (eds). Proceedings of Noridc Workshop on
Programming Environment Research. Lund, June, 1994.

[MLG+93] B.P. Munch, J.-O. Larsen, B. Gulla, et. al.. Uniform versioning: The change-
oriented model. In Proceedings of the 4th International Workshop on Software
Configuratino Management. Baltimore, MD, May 1993.

[MM93] Sten Minör and Boris Magnusson. A Model for Semi-(a)Synchronous
Collaborative Editing. In Proceedings of the Third European Conference on
Computer Supported Cooperative Work, Milano, Italy, 1993. Kluwer
Academic Publishers.

[MMAxx] Boris Magnusson, Sten Minör and Ulf Asklund: A Model for Semi-
(a)Synchronous Collaborative Editing. To appear in Journal of Computer
Supported Collaborative Work.

[Ols94] Torsten Olsson. Group Awareness Using Fine-Grained Revision Control. In
Magnusson et al. MHM94.

[Tic88] Walter F. Tichy. Tools for software configuration management. In
Proceedings from International Workshop on Software Version and
Configuration Control, Grassau, Germany, February 1988.

122 Ulf Asklund et al.

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 123-137, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Deployment Descriptions in a World of COTS and
Open Source

Wilfred J. Hansen

Software Engineering Institute, Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA

wjh@sei.cmu.edu

Abstract. Deploying software to a user environment now involves
much more than copying a few files. The deployer—software or
human—must test for needed COTS components and modify various
system files to establish the conditions needed for the new package.
With the advent of “open source” distributions, deployment expands to
encompass building the system as well as installing it. Describing this
process for automated execution entails writing statements in languages
for describing the environment, dependencies thereon, and requisite
actions. We consider requirements for these three languages in light of
our experience with developing an open source distribution at the
Software Engineering Institute.

Keywords: COTS, deployment, system build, software build, Makefile,
make, imake, open source, system construction scripts, system
modeling, module interconnection language

1 Introduction

“Open source” software available in source form now augments the burgeoning set of
COTS (Commercial-off-the-shelf) software products already available. Both
introduce new complexities to configuration management. Other projects such as
Adele [2] and PCL [9] have concerned themselves with the problems of modeling and
managing the complexity arising from externally initiated, asynchronous upgrades;
this paper explores the impacts on the task of describing system construction and
deployment. Occasionally, deployment can be done with a simple file transfer, but
usually it also requires updates to system information, emplacement of icons,
initiation of background processes, and the like. We will consider all these
deployment difficulties here in the light of some experience with creating scripts for
GEE, a pedagogical prototype at the Software Engineering Institute. In particular,
this paper will focus on three languages needed to express aspects of the deployment
task—languages for expressing environmental conditions, dependencies, and actions.

The main “theme” of the effort to create the construction/deployment system for
GEE was Avoidance of Duplication. The goal was that each piece of information be
specified in one of a few central definition files and derived from there wherever it
was needed. All of the following and more were centralized:

124 Wilfred J. Hansen

- GEE version number
- directory and file locations
- URLs, host names, and port numbers
- Java CLASSPATH
- command sequences for compilation and testing
- platform dependent flags for system commands

While there is certainly some saving in not repeating lengthy command sequences, the
real benefit of Avoiding Duplication is that changes can be made in the definition
files and will be consistently reflected throughout the system.

The bulk of the utilization of centralized information was for the generation of the
construction/deployment scripts in the form of Makefiles. Most configuration
managers offer some mechanism for automatic generation of Makefiles, but
descriptions of these systems do not make clear how this occurs. From our
experience, no simple scheme where processing is dependent strictly on file
extensions is likely to be satisfactory; indeed, seven of the nine Makefiles for GEE
components required GEE-specific processing above and beyond compilation and
installation. COTS software was accommodated in the system sources by additional
directories with idiosyncratic Makefile provisions for

- installation
- addition of libraries to the Java CLASSPATH
- server initiation
- connection between GEE and the COTS product

In what follows, the deployment problems will be largely expressed in terms of
deployment of GEE, although the same considerations will apply to any COTS or
open source system.

This paper will use the term transmittal for an incoming package containing software
to be deployed. A transmittal includes the files to be deployed, instructions for their
deployment, and various user documentation such as a description of the features and
improvements in the new software.

To simplify the recipient's task, the instructions for deployment should be
automated by software which we will call a deployment processor. Its input is the
newly released transmittal; its result is an operational system on the target computer.
Use of the deployment processor avoids manual command entry, a process which is
tedious, time consuming, error-prone and difficult to document due to the abundance
of options and the diversity of possible target environments. Indeed, we suspect that
creating deployment processor instructions may be easier than writing accurate and
comprehensive, easily-followed instructions for manual deployment.

A critical part of a transmittal is the control files to instruct the deployment
processor. Hall, Heimbigner, and Wolf [6] (hereafter, “HHW”) identify five
categories of such information—assert constraints, dependency constraints, artifacts,
configuration, and activities—and have implemented a system supporting them [5].
Assert constraints describe dependencies on pre-existing COTS software at the site;
dependency constraints do the same but additionally specify actions that can be taken
to ameliorate unresolved constraints. The artifacts describe the files in the
distribution. The configuration defines system file changes needed to describe the
installation. Finally the activities category is a catchall for arbitrary additional
activities.

Deployment Descriptions in a World of COTS and Open Source 125

The HHW categories are mainly descriptive/declarative rather than executable. As
such they offer opportunities for automatic processing to aid extensively in building
and understanding the installation of the transmittal. However, a purely descriptive
interface is insufficient for distribution of software in open source form; there must
be greater resort to the executable specifications in the “activities” category.
Examining the five HHW categories more closely we can find three sublanguages in
which portions are written:

Environment Description Sublanguage - A statement in this language is part of
the environment and describes what facilities pre-exist. At the end of a
deployment, this statement will be modified to include the changes wrought by
the newly installed transmittal. This is also the language of the “artifacts”
category.

Dependency Description Sublanguage - Statements in this language specify how
the transmittal depends on the environment. What other COTS software must
be present? What conditions require the dependency processor to invoke
specific actions? This is the language of the “assert constraints” and the
preconditions on the “dependency constraints.”

Action Description Sublanguage - When a dependency detects that some
adjustment is needed--whether a change to the environment or an alteration of
the files in the transmittal--the action is specified by statements in this
sublanguage. This language is clearly the language of the “activities” category
and some subset is needed for the “configuration” category.

Requirements for these sublanguages form the last section of this paper.
Environment Description Sublanguage definitions have been the recent work of

two initiatives, Software MIF (now superseded by CIM[1]) and OSD [11]. HHW
paints an unpromising picture of these, demonstrating that both are inadequate, even
without the added complexity of open source distributions. For the vast majority of
users, the issue is moot; they will continue to receive transmittals in object file format
and the considerations of HHW will continue to dominate the problem. However,
some recipients—we can call them adjunct developers--will receive the package in
source form, modify it if necessary, build it, and install the result. The source form of
the package must carry with it all the information to enable building and testing the
system in addition to deploying it.

2 The Deployment Process

Deployment of a COTS product is described by HHW as a life cycle with eight
activities:

• Release - The transmittal is assembled by the vendor, typically as an archived
collection of files.

• Install - The files are unpacked from the archive and inserted into appropriate
directories on the destination system.

126 Wilfred J. Hansen

• Activate - System files are modified as necessary to allow the user to utilize
the product. Icons are added to menus. Initiation of background processes
may be arranged.

• Deactivate - Remove the modifications made by Activation.
• Deinstall - Remove files inserted by Installation.
• Derelease - The world is notified of the withdrawal of the product, although

sites may continue to use it.
• Update - The transmittal is a set of revised files. Appropriate subsets of Install

and Activate are performed to incorporate the new files into the system.
• Adapt – Definition files are modified to tailor the product to local needs and

desires. Files such as document boilerplate may be modified or added.

Open source distributions still require all the above activities, but three new ones must
be added: source modification, system build, and test. Rather than try to describe
these in a life cycle, I have expressed them in the flow diagram of Figure 1, where the
data being operated on are named explicitly.

In this Figure, ovals are sets of files, round rectangles are manual processes, and
rectangles are activities carried out by the deployment processor under control of its
instructions (which are part of the Source Files). Corresponding to each rectangle is
another activity which undoes the action of the rectangle: Build is undone by Clean,
Install by Deinstall, Test by Exit, Activate by Deactivate, and Update by Revert.
These additional activities are omitted here to reduce complexity.

The most comprehensive viewpoint on Figure 1 is that of a vendor developer who
has been asked to add a feature to the system. He or she begins by extracting from a
source manager the sources for the subsystem to be changed. The steps continue thus:

The Modify step is the manual process of changing the source files as desired.
The result is a different version of the source files: some changed, some added,
some deleted.

The Build step compiles the source files to produce the object files. This may
use a specialized deployment processor like make. Note that the programmer
may build only a single component instead of the entire system.

Adapt, as with HHW, modifies definition files to tailor the package to the needs
and desires of the deployment site. For testing, our developer may add
temporary control file entries. Ideally, for neither tester nor deployer will these
modifications include specifying the locations of existing COTS products; this
information should come from statements in the Environment Description
Sublanguage.

To conduct a Test, the deployment processor initiates the product's execution,
but in such a way that the newly built object files supplant those of the same
component in the released system. This permits testing to proceed even while
the currently released version is in use.

Under control of dependency-action description files, the Install and Activate
steps put the files in suitable locations and initiate any necessary background
processes.

Deployment Descriptions in a World of COTS and Open Source 127

Executing
Processes

Build

Source
Files

Object
Files

Installed
Files

Install

Activate

Release
Process

Test

Modify

Adapt Release
Process

Extract
Changes

Changes

Update

Transmittal

Release

Fig. 1. Deployment Process. The two “release process” hexagons are instances of the process
shown on the right.

Figure 1 shows separate instances of "Release Process" for source and object files;
both proceed through the steps shown on the right in the Figure. The ExtractChanges
activity determines what files have changed. The Release activity takes those files,
adds human readable explanations, and creates the transmittal, most likely as a web
site or CD-ROM. Finally, the Update activity modifies the collection of sources or
objects at the destination.

A second viewpoint on Figure 1 is that of a typical destination site. Here there are
no Source Files, no Changes, and no activities are performed for Modify, Build, Test,
Extract Changes, or Release. The Release Process reduces to receiving the
Transmittal and Updating (or initially creating) the Object Files. The administrator
then goes through the activities of Adaptation, Installation, and Activation to arrive at
a working system. Subsequent Updates are triggered by the arrival of a transmittal
package containing either a new system or replacement files.

The last viewpoint is that of destination sites having one or more local adjunct
developers who modify the Source Files to improve the package or adapt it for local
requirements. At such sites all the blocks of Figures 1 are active. The developer may
even Extract Changes from the sources and create a Transmittal for return to the
vendor. (The version control issues are enormous!) The local developer uses the Test
activity to do tests independently from the working system, just as a vendor developer
would do.

128 Wilfred J. Hansen

3 Existing Deployment Processors

Since deployment is not a new problem, a number of existing systems provide at least
partial solutions. We consider them here in order of increasing capability and
complexity.

Projects. Least complex are the various code development environments which
support "projects." In Java versions, each file in the project is a Java source file and
the project is built by compiling all those files. This mechanism is completely
inadequate for serious projects written in multiple source languages or utilizing
generator programs to produce sources for later parts of the build. For instance, there
is no way to preprocess Java files. This is not supported in the Java philosophy, but is
sometimes necessary.

InstallShield for Microsoft Windows [7] copies files to various destinations in the
system and makes appropriate changes to certain well known operating system files.
This is satisfactory for object file releases, but useless for source releases. Creation of
the delivery package utilized by InstallShield is inherently a manual process since it is
driven by a GUI user interface. This renders the InstallShield generator unsuitable for
the most general case since it cannot be driven from a script or Makefile

Software Dock [5] provides a complete architecture for deployment. A “field dock”
at each deployment site keeps track of all software installed thereon. A “release
dock” is created for each deployable system. When a user wishes to deploy a piece of
software advertised by a release dock, he or she initiates an agent which negotiates
between the local field dock and the desired release dock. The two collaborate to
install the software and arrange for notification of future update availability. The
current implementation has no provision for building from an open source
distribution.

Scripting languages. IBM systems have long had the REXX macro language which
provides very expressive string handling; Unix systems have various scripting/macro
languages like TCL and Perl. All these systems lack an explicit notion of
dependencies, but can simulate dependencies with if-then-else. These systems have
the same power to solve the deployment problems as any other programming
language; their one advantage is in close ties to the shell so program initiation can
readily be incorporated in script execution.

Make. The granddaddy of all dependency processor is make [3] and its variants like
gnumake and nmake. In these systems, a dependency and its actions are expressed in
a Makefile with the syntax

target-file: source-file(s)
actions to build target from source-file(s)

Deployment Descriptions in a World of COTS and Open Source 129

When the make process is invoked, the target-file is checked to see if it is older than
one or more of the listed source-file(s). If so, the actions are executed and are
assumed to produce a newer version of target-file. Since the actions are passed to a
shell, absolutely any action can be taken, so make is very general in this respect and
has been used for many tasks other than compilation initiation. For instance in a
deployment process based on make would there would be a target for each of the
activities shown in Figure 1.

Despite its power, make suffers a number of shortcomings:
(a) At least one process and often two are initiated for each action. This

overhead becomes non-trivial when many actions are needed.
(b) The supported dependency mechanism is ill-equipped to deal with the large

variety of dependencies required in practice.
(c) It may be necessary to specify different variants of the actions depending

on the host platform.
(d) Makefiles can be tediously repetitious due to its limited mechanisms for

avoiding repeated actions for multiple target files.
We will see below that various alternative systems solve one or more of these
problems, but there is no comprehensive solution to them all.

Autoconf/Configure. Make’s shortcoming (c), platform dependencies, is addressed
by the Free Software Foundation's autoconf tool [8], which read a specification of
required system capabilities and generates a configure script. This script is distributed
with the source and executed to initiate a build; its output is a Makefile. With this
approach, a developer need not create a new system definition file for each of a large
number of platforms. Instead, the configure script automatically tests for the
presence and semantics of libraries in order to create the system definition file and
also a definitions file to be included into each C or C++ source file. (Cleverly,
configure itself uses this definitions file in each of a series of executions which test
for one or more capabilities. Thus the file being generated is simultaneously serving
as input to the generation process.) Anyone who has tried porting C or C++
programs, without benefit of autoconf or some alternative, understands completely the
passion of Java proponents for write-once-run-anywhere compatibility.

Imake. Make's shortcoming (d), repetition, is addressed by the X Consortium's
imake [4]. At heart, the imake command itself does nothing more than invoke the C
preprocessor on a specified template file. This template #includes first a macro
definition file and then a directory-specific file called Imakefile. For each source
file or collection of similar source files, the Imakefile calls one of the defined macros
which expands to an entire make rule including target-file, source-file(s), and actions.
In general, an Imakefile is less than 5% of the size of the corresponding
Makefile. With imake, shortcoming (c), platform dependencies, is solved by
having alternate versions of the definition files for each platform. A combination of
imake and autoconf would have made life much simpler for C developers.

Qed/qef. The most general alternative to make is the qed/qef system [10]. As with
imake, make’s shortcoming (d), repetition, is solved with macro expansion of a tiny

130 Wilfred J. Hansen

control file in each source directory. A further capability of qed/qef is the provision
of several small languages for text processing. These are all interpreted by one
process, eliminating much of the system call overhead for actions in make’s
shortcoming (a).

4 The GEE Project

The GEE project—the name stands for Generic Enterprise Ensemble—is an ensemble
of COTS products and application code that implements a model enterprise-level
information system. Customers are expected to study GEE to understand how the
COTS products can be used together and may then subsume some generic portions of
GEE into their own systems. Accordingly, GEE is distributed in open source form.
In a sense, GEE provides a sort of fill-in-the-blanks enterprise information system;
we called it a "genotype" because in addition to the functions of a prototype it also
serves as a framework for building a real-life system. COTS products used GEE
include Java, Netscape servers and browsers, the Visibroker CORBA tool, an Oracle
data base, and Live Software's Jrun tool for Java servlets.

As part of GEE, we implemented a system for build and install that supports both
local development and eventual distribution. It addresses many needs:

• Multiple versions. Old versions must remain buildable and installed in
order to maintain our history and resolve issues raised by users of those
versions.

• Partial build. Permit independent builds of components so we can test
local changes without rebuilding the entire system.

• Independent testing. Allow each developer to test a newly revised
component without installing it into a full-blown version of the system.

• Developer full build. Let each developer have a separate full installation of
the system, if desired.

• Full build and install. Rebuild the system every night to ensure that the
released version is current.

• Multiple platforms. Support building on different hardware and operating
systems.

• Build at foreign site. Enable a distribution recipient to build and install the
system.

In the make tradition, build and install are driven from a single control file. The
install operation checks first that all object files are up-to-date and, if not, does any
necessary compilations

To be able to build GEE on multiple platforms and at foreign sites, our policy of
Avoidance of Duplication was employed. Environmental dependencies are
segregated into a small number of files that are referenced from everywhere else in
the system. The first of these, gee.properties, is a typical Java properties file.
However, some of its information is needed also by the build commands and by
program modules written in other languages, such as HTML or C. To cope, a small
tool was written to read gee.properties and produce gee.h and gee.sed
suitable for use as, respectively, a C includes file and a sed control file. With their

Deployment Descriptions in a World of COTS and Open Source 131

aid, any file can be converted from a generic version to one tailored by
gee.properties. The imake dependency processor was chosen as the basis for
the build command mechanisms. Its template file, as written for GEE, utilizes the
gee.properties definitions via the C includes file.

To support both full builds and component builds, the source tree was split by
component, which we defined as roughly the amount of code a developer would
create in a week. There is an Imakefile in each component directory and each
super-directory contains its own Imakefile with instructions for recursive builds.
Distinct make targets in all Imakefiles provide separate operations for building,
testing, and installation.

Alongside the tree of source components is another tree called external/ and
containing installation instructions for each of the COTS products utilized.
Performing imake and make in these directories does whatever is necessary to install
that product and utilize it for GEE.

5 Requirements for the Three Description Sublanguages

On the basis of our experience with GEE and other projects we can suggest a number
of attributes that the three Description Sublanguages must have. In support of each
suggestion, we recount some of our experiences with constructing the GEE
build/deployment system.

5.1 Environment Description Sublanguage

Most of what is needed for the Environment Description Sublanguage is covered by
CIM [1]. It provides a rich set of attributes and an object oriented structure. Version
numbers, for example, are described as three integers separated with decimal points.
For GEE itself we support multiple versions and need multiple versions of Java, so
CIM provides attributes that could be tested if GEE and Java were described in CIM.

Treating the environment description as solely a tool for deployment processing
means that additional mechanisms are necessary if values from the environment are to
be utilized in deployed systems. In GEE, for instance, the gee.sed file is utilized
to tailor HTML files and shell scripts. This means that the system must be built and
installed from sources unless it is to be installed into directory paths chosen by the
original developers. Various techniques are available for deferral of this value
fetching, including server-side-includes for HTML files, but all such techniques add
complexity. Moreover, each must be able to fetch values at run-time from the
Environment Description.

A single system-wide description of the environment will not suffice. The GEE
testing regime attempts to allow each developer a separate environment so there can
be independent testing. When two developers are using different versions of Java,
their environments are best described in separate environment descriptions. Other
tester specific environment information that should be (but sometimes isn’t) allowed
in GEE include distinct Visibroker ports, web page areas, Java class paths, servlet
collections, and data bases.

132 Wilfred J. Hansen

New Java distributions were not painless for GEE. Package name changes meant
that Java source files using those packages had to be revised. The vendor omitted
sending an automated tool for this task and it was small enough for us to do by hand.
These changes, however, require us to retain the several Java distributions used by
various GEE versions.

In order to be able to utilize environment descriptions, there must be well-known
sets of attributes names and for each an expected range of values so dependency
descriptions can know what information will be available and the precise meaning for
each value. It would be too bad if a deployment looked for Netscape and the
environment description said that Mozilla (Netscape's internal name for its browser)
was available. The definitions of attributes, expected values, and hierarchies must be
ever evolving as new technologies and products appear. Since this evolution must be
recorded and maintained by some standards organization, it will be interesting to see
how this activity is financed and how that financing affects its stability.

5.2 Dependency Description Sublanguage

In make, dependencies are expressed in terms of the relative timestamps of source and
target files. Clearly the dependency language must also allow expressions referring to
attributes and their values from the Environment Description. In addition to the usual
arithmetic expressions, the Dependency Description Sublanguage should also offer
tests of set membership and numeric range inclusion. Some additional requirements
follow.

Better timestamps. When the GEE Imakefiles were first used to unpack distributions
of Jrun, JDBC, etc., timestamps failed to prevent repetition of this step because the
unpacked files had timestamps preceding that of the archive. From this we suggest
that there must also be some form of note that a particular action, say unpacking, has
been done to a particular file, in this case the archive. With make this is typically
done by creating an empty marker file, say .unpacked. This fails, however, when a
new archive is installed and the marker file is inadvertently left in place; an easy
error since files named .xxx are not normally listed among the files of a Unix
directory.

Call signature dependencies. In C++, a class #includes the definitions file for any
other class it references. This makes it possible to automatically determine which
object files need to be recompiled when the definition of a class has changed. In Java,
there are two uncertainties: it is unclear if a change to a source file has changed the
class’s definition and it is unclear what classes a source file depends upon. There is
provision for declaring what classes are utilized, but this can be side-stepped by using
fully qualified names or names from classes in the same package--which may be a
large number of source files and need not be qualified or imported at all. These
conditions make it much more difficult to determine accurately whether a given
source file needs to be recompiled due to a change in another source file; it cannot be
done with the simple timestamp processing of make.

Deployment Descriptions in a World of COTS and Open Source 133

Multi-file compilation. Java supports simultaneous compilation of any number of
source files, which is essential to resolve circularities that cannot be resolved with
one-at-a-time compilation. This does not mesh well with the standard make approach
which assumes single-source-file compilation. For GEE, we implemented a little
program which checks a list of Java class files and determines that the corresponding
source file needs to be recompiled if it is more recent. If a change alters a class
definition any client class which is not recompiled will encounter a run-time error.
Fortunately, this is infrequent because developers usually remember to change all
clients when a class definition changes and changes to those source files will ensure
their recompilation.

Platform description. It may be necessary to specify different variants of the actions
depending on the host platform. This is not the case with Java, but is an important
consideration for systems including components written in C or C++.

Recursive component processing dependencies. Java provides a javadoc function to
produce a set of web pages describing the interfaces to packages. In preparation for
running this command, a list of all source files to be processed is needed. Running
javadoc for a single directory is fairly easy, but to get full documentation of all
packages, a single invocation of javadoc over the entire set of sources is needed. The
full documentation for GEE had to be produced from the build system, and it was also
necessary to be able to create the web pages for a single component or subtree of
components. Providing all these capabilities under make’s limited dependency
language proved to be a challenge. It required five rules in the template file, another
rule for each Java package, a separate make target to build a list of Java source files,
and two variables defined in each recursive invocation of make.

One large challenge in design of the Dependency Description Sublanguage is to
arrange to permit the sort of precedence ordering done by make. As far as possible,
the user should not have to sequence the instructions in the description file so as to
produce an appropriate order of execution for builds and installs. This and other
processing are simplified if the Dependency Description Sublanguage is declarative
rather than procedural.

5.3 Action Description Sublanguage

Doubtless, the Action Description Sublanguage can be as trivial as that in make
wherein every action is the invocation of a program; indeed, this capability must be
made available as the ultimate fallback. We consider this option below after first
describing a number of other less general, but more useful facilities.

Built-in Actions. Rather than initiate a process for every action—as is done in make—
it seems preferable that the deployment processor provide some set of actions that can
be performed directly. These would be available in any environment and would
always have the same semantics. A prime example of a desirable built-in action is

134 Wilfred J. Hansen

that of installing a file into a directory. Not only is this capability lacking from make,
but it is provided in Unix by two programs both called install but having different
command line syntaxes. Thus install had to become one of the GEE properties; it is
specified the imake template file. Other useful specialized commands would modify
system configuration information as for specifying icons, specifying MIME types,
and updating the Environment Description.

Installation of COTS components for GEE could have been more easily
implemented if each used a standard install built-in command. As it was, they
differed. Oracle’s distribution of its JDBC interface was accompanied with a list of
thirteen steps necessary for installation. Jrun installation initiated an interactive
program which further required that the web server be shutdown and restarted.
Visibroker and Java had conflicting ORBS which—after much fiddling—was solved
by specifying the Java bootclasspath switch. Each COTS product also had
idiosyncratic setup steps that were necessary in order to connect between itself and
GEE.

Macro processing Despite the macro processing done by imake to create
Makefiles from Imakefiles, many problems remained in GEE that could have
been solved with a more powerful text processing language available as an integral
part of the Action Description Sublanguage. In addition to the uses of gee.sed for
macro expansion, GEE even needs to preprocess a Java source file:
GeeProperties.java is preprocessed so its source code contains the default
location for gee.properties.

Trying to utilize an external macro processor was especially difficult for generating
commands to process Java files. Trickiest was the fact that some Java file names
contain dollar signs, which have special, and different, meanings to both make and the
shell. These files had to be listed for processing by the Java jar utility. Moreover,
another list with the same files but different directory prefixes had to be created as an
additional input. Ultimately, a small program had to be written to massage the jar
argument list, but despite this every dollar sign in a file name must be represented
with four(!) dollar signs in the Imakefile.

Since the C preprocessor, make, the shell, and awk have overlapping quote
characters, some tasks were tricky to code. For example, to set the ownership and
group of a file it was necessary to write:

(df=dest/file; \
cmd=`${LSLD} dest | ${AWK} '/^d/\
{print "${CHOWN} " $$3 " '"$$df"';";\
print "${CHGRP} " $$4 " '"$$df"'"}'`;\

${SH} -c "$$cmd")

In this fragment, `dest' and `file' are macro expanded into a destination directory and
the name of a file therein. The ${LSLD} command runs ls on the destination
directory and the output is processed through awk to generate a shell command which
is executed by the last line. Maddeningly, it is essential to have each and every dollar
sign and the quote marks in all three flavors. (The example can be written more
naturally if awk is invoked twice. But I wanted to use only the most efficient method
for a pedagogical example.)

Deployment Descriptions in a World of COTS and Open Source 135

Makefiles can be tediously repetitious due to make’s limited mechanisms for
avoiding repeated actions for multiple target files. In a situation where a Java
compilation is a six step process, those same six steps must be repeated for every
compilation request. This problem was of course solved by using imake, but would
have been better solved if make itself better supported macros.

Deferred Actions. The external/ directories in GEE each contain a target
`SystemInstall’ which is to be executed by the system administrator account. Under
this target are those installation steps which cannot normally be done by developers.
Commands under this target install other COTS products, arrange initiation of
background processes, and so on. They proved their worth when new versions of
Jrun and Visibroker were installed, integrated into the environment and connected to
GEE via the facilities of their respective subtrees of external/. However, since
ordinary installers and developers should not utilize administrator privileges as a
matter of course, the best way to implement these sorts of actions would be some sort
of deferred action queue that the system administrator could review and act on
appropriately.

Arbitrary programs. As an ultimate fallback, execution of arbitrary programs is
necessary in any build/install language, but there are disadvantages. The program
must be found and executed, usually requiring more system resources of memory and
processes. There is also a heavy reliance on details of the deployment environment,
which may be altered even by such peculiarities as individual deployer's idiosyncratic
definitions of system commands. In GEE it proved necessary to use the full path name
of every system command in order to avoid such definitions. Having no tools except
arbitrary programs leads to tiny helper programs which must themselves be source-
managed, built, and made executable for at least the duration of the deployment.
Each such tool increases the risk of conflict with some such tool introduced for
another product.

Smart Executor. Our problems in GEE with interference from developer definitions
leads to the notion that a deployment system, or even the full system, can offer a
“smart executor.” This tool would be cognizant of the environment description and
would chose the appropriate version of a tool for each requestor. Among the other
GEE problems that this would solve are that one tool, the Visibroker idl2java, needs
to execute under Java 1.1 while the rest of GEE is designed for Java 1.2. The smart
executor would notice this from the description of idl2java. As another instance, GEE
introduced special commands gj, gjc, and vbstart for running Java, compiling Java,
and starting Visibroker, respectively. These were necessary to incorporate all the
environment information from gee.properties into the execution; environment
information which should have been in an Environment Description were one
available.

136 Wilfred J. Hansen

6 Conclusion

COTS and the advent of open source distributions place new requirements on the
deployment processor and its sublanguages for describing the environment,
dependencies, and actions. The paper has illustrated these problems with examples
from the GEE project undertaken at the Software Engineering Institute.

We have shown that the deployment process itself must be extended to include
building and testing the software. These must be provided for by either the
deployment processor or an adjunct which serves the role of make. Alternatively, the
entire deployment may be conducted by the latter, as it is in GEE. In any case, the
processor will permit deployment with a minimum of manual processing, leading to
less effort, fewer errors, and more seamless operations.

The main theme of the GEE scripts effort was to Avoid Duplication; as far as
possible specifications and data were moved to a few central definition files from
which all other instances of these values are derived. This produced a flexible
construction system, but one in which names are bound too early. Based on the GEE
script effort the paper has pointed out a number of characteristics that would be of
value in the description sublanguages for environments, dependencies, and actions.
Among other factors, we discovered a great diversity in the requirements imposed by
COTS systems: They differed in their mechanisms for installation and
interconnection to the application and other COTS products and all added Java
libraries that had to be in the CLASSPATH. This complexity would be reduced if all
were deployed by a common mechanism.

Do all these experiences suggest that it is time to abandon make? It certainly
would be pleasant to avoid some of make’s quoting nightmares. However, make is
well known and widely available and still provides enormous flexibility, so it is
difficult to see what advantages a new system can offer to wean-away make’s existing
users.

Acknowledgements
I am indebted to the other members of the GEE team: Scott Hissom, Fred Long, and
Robert Seacord under the leadership of Kurt Wallnau.

References

1. Desktop Management Task Force, “Common Information Model (CIM); Core
model white paper”, Version 1, August 5th, 1998 (http://www.dmtf.org/spec/-
cims.html)

2. Estublier, J., R. Casallas, “The Adele Configuration Manager,” in Configuration
Management, Ed. W. Tichy, J. Wiley and Sons, 1994 (ftp://ftp.imag.fr/pub/-
ADELE/Conf-Manager.Book.ps.gz)

3. Feldman, S. I., “Make – a program for maintaining computer programs,” UNIX
Programmer’s Supplementary Documents Vol. 1 (PS1), USENIX Assn. (1986),
pp. PS1:12-1--PS1:12-9.

Deployment Descriptions in a World of COTS and Open Source 137

4. Fulton, Jim, “Configuration Management in the X Window System,” X
Consortium, MIT Laboratory for Computer Science, (Cambridge, MA, 1989) pp.
12. (http://www.primate.wisc.edu/software/imake-stuff/fulton.txt)

5. Hall, Richard S., D. Heimbigner, A. van der Hoek, A. Wolf, “An architecture for
postdevelopment configuration management in a wide area network,” Proc. 1997
Intl. Conf. on Distributed Configurable Systems, IEEE Computing Society,
(May, 1997) pp. 269-278

6. Hall, Richard S., Dennis Heimbigner, Alexander L. Wolf, “Software deployment
languages and schema”, Dept. of Computer Science, U. of Colorado, CU-SERL-
203-97, December 18, 1997 (http://www.cs.colorado.edu/users/rickhall/-
deployment/SchemaPaper/Schema.html)

7. InstallShield, “InstallShield Software Corporation of Schaumberg, IL”, April,
1999 (http://www.installshield.com)

8. MacKenzie, David, Ben Elliston, Autoconf: Creating Automatic Configuration
Scripts, Edition 2.13, Cygnus Solutions, 1998 (http://sourceware.cygnus.com/-
autoconf/autoconf_toc.html)

9. Sommerville, I. G. Dean, PCL: A configuration language for modeling evolving
software architectures, Computing Department, Lancaster University, 1995
(ftp://ftp.comp.lancs.ac.uk/pub/proteus/PCL/PCL_overview.ps)

10. Tibrook, D., “An architecture for a construction system,” Software
Configuration Management, ECOOP'96 SCM-6 Workshop, Berlin, Germany,
March, 1996, Springer, Lecture Notes in Computer Science # 1167, pp. 76-87
(http://www.iptweb.com/tools/stdprod/qef/qef.html) (Although the paper lists
“Tibrook” as author, it was written by Dave Tilbrook.)

11. van Hoff, H. Partovi, and T. Thai. "The Open Software Description format
(OSD)," Microsoft Corp. and Marimba, Inc., Aug. 13, 1997(http://www.w3.org/-
TR/NOTE-OSD.html)

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 139-156, 1999.
 Springer-Verlag Berlin Heidelberg 1999

VTML for Fine-Grained Change Tracking in Editing
Structured Documents

Lars Bendix1 and Fabio Vitali2

1 Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark

bendix@cs.auc.dk
2 Computer Science Department, University of Bologna

Mura Anteo Zamboni 7, I-40121 Bologna, Italy
fabio@cs.unibo.it

Abstract. The task of creating documents collaboratively is complex
and it requires sophisticated tools. Structured documents provide a
semi-organised writing environment where collaboration may assume
more controlled forms than with other document types. CoEd is a writ-
ing environment that provides integrated structure support, content
overview and version management for complex and hierarchical docu-
ments (e.g. technical documentation). The present implementation has,
however, limitations in the efficient management of disk usage and in
providing more sophisticated collaboration functionality. This led us to
consider the VTML change tracking language as a backend for im-
proving the performance and feature set of CoEd. This paper explores
the advantages of using a sophisticated change-tracking language in a
versioning system for collaborative writing.

1 Introduction

Collaborative writing of documents requires great care and discipline from the partici-
pants to avoid coordination problems. On the other hand extreme flexibility must still
be possible in what can be a highly creative and unpredictable process. This poses
great demands on tools that have to support such work. Organising the document in a
hierarchical way provides enough structure to control how the collaboration develops.
Under such conditions environments can make assumptions that make the task easier.

The CoEd system [BLNP98] was born to provide support for collaborative writing
to teams of students at the University of Aalborg needing to prepare Latex reports for
software projects connected with their courses. The available tools were felt lacking in
facilities for global overview, co-ordination, version control and communication
among writers.

The first prototypes [BNLP97] built at the University of Aalborg provided over-
view of the structure of the texts and version management of the basic text units of the

140 Lars Bendix and Fabio Vitali

students’ reports. Thus, CoEd was able to solve many problems connected to the
mentioned tasks. Students could carry out satisfactorily the processes connected to
writing their reports and the availability of a sophisticated tool such as CoEd reduced
the efforts for creating and correcting them.

On the other hand, CoEd implements an unsatisfactory management of persistent
data, by storing whole versions and ignoring the inherent structure of the documents
handled. Furthermore, many useful features are not implementable given the current
underlying data model, such as support for managing and visualising differences in the
structure, querying of attributes or comparison of parallel versions. Evolving the CoEd
system to handle this kind of information and to provide the functionality requires
deciding on a mechanism for improved internal data management.

VTML (Versioned Text Markup Language, [VD95]) is a markup language for de-
scribing changes occurred to arbitrary sequential data types. It allows to specify arbi-
trary attributes to each change, such as authors and dates, and to build arbitrarily com-
plex version graphs detailing the development of a document. A VTML-based system
rely on the VTML format to provide support for efficient data management, version
branching, lock-free concurrent access to shared documents [SVWD98], version
identification, easy comparison of versions, and reliable addressing space for the
document’s content.

VTML seems adequate for providing intelligent data management to CoEd, and to
provide support for much of the sophisticated functionality mentioned. Other engines
were judged inadequate because they are not capable of dealing with structured texts
as easily as VTML can. Additionally, the generality of VTML with regard to version-
ing policies allows an easy adaptation to CoEd’s specific policies and collaboration
styles among the team members contributing to a document. Finally, additional infor-
mation, in the form of attributes, is handled in a straightforward way by VTML.

We will create a new prototype for handling change tracking in collaborative writ-
ing efforts. It will rely on the old CoEd to provide the user interface and the version-
ing model, behaving as the front-end of the system, and use VTML to provide the
versioning engine and work as the back-end. The new prototype is supposed to give
better change tracking than previous systems and better change tracking helps improve
the co-ordination and communication in collaborative writing efforts.

In this paper, we describe the goals of our current research project aimed at:
• specifying the requirements for a collaborative writing environment
• specifying the interface between CoEd and VTML
• designing the new integrated prototype
• implementing the services that were not implemented with the old back-end
• testing the flexibility and generality of VTML through the implementation of

specific versioning policies
The rest of the paper is structured as follows: In section 2, we describe the problem

area and the existing CoEd system and the results that were obtained by using it. In
section 3, the VTML language is described and a simple session is analysed to provide
insight into the actual working of the language. Section 4 describes the analysis of the
problems in implementing CoEd policies using VTML mechanisms and sketches the
design of the integrated system. In section 5 we draw some conclusions, draft our
plans for future work in the project and state some preliminary results.

VTML for Fine-Grained Change Tracking in Editing Structured Documents 141

2 Collaborative Writing
CoEd is a collaborative tool aimed at supporting teams in writing shared structured
documents. For years the students at the Department of Computer Science at Aalborg
University have encountered numerous problems when they had to work together to
write reports. Each semester these students spend the major part of their time devel-
oping a system, enabling them to put the theory they are taught during the courses into
practice. They work in groups of 3-8 people over a period of four months. The theory
and the process, as well as the final product, have to be documented in a report, which
is usually between 80 and 120 pages long. The major part of this report is written
during the last three weeks of the project period.

The students experienced problems, not so much during the programming process
where existing tools seem to be of sufficient help, as during the writing process which
is usually short and hectic and characterised by a very dynamic organisation of tasks
and responsibilities. They especially had problems in keeping an overview of the
document and how its structure develops through new versions. This caused them to
have problems in establishing baselines of the document, to track structural changes
and to find proper use of version histories. Finally, communication of information
about the development is important as these students often work in a distributed way.
Some students in a group may work from home, while others work from the room that
each group has at the university, and others yet work from the computer labs at the
department. This fact led to creating an environment called CoEd [BLNP97].

The problems of these students are typical examples of the problems present in
collaborative writing efforts. Instead of buying a new tool or trying to solve the gen-
eral problem, our strategy was to try to solve the specific problems of the students in
their given context, and to gain experience from the students actually using a proto-
type of our tool.

All groups of students use Latex for producing their project reports. Some groups
have so far used self-imposed group discipline to be able to manage the development,
dividing the document up into disjoint parts with respect to responsibility. They have,
however, usually encountered serious problems, both because parts of the report are
inherently interdependent and because of the complete absence of versioning of the
compound document. Most groups have used either RCS [Tichy85] or CVS [Ber-
liner90] as their tool of choice to manage the development, usually based on whether
they liked a strict locking mechanism or not. This enabled them to version the devel-
opment of the single parts of the document, but they still had problems in keeping an
overview of the entire document and in manipulating its structure.

2.1 The Problems in Collaboration

The work on CoEd [BLNP98] took its origin in the problems that students had re-
ported from their co-operative work on developing textual documents. The problems
experienced were many and varied, but can roughly be grouped into three categories.
One that has to do with the lack of overview and co-ordination, both of the document
and of what everyone else is doing. Another category that has to do with problems
doing version control and change tracking the way that they want and need. And,
finally, there are problems that have to do with the communication of information.

142 Lars Bendix and Fabio Vitali

Problems that have to do with the lack of overview and co-ordination manifest
themselves in several ways. It is very difficult to organise the structure of the report
and to have the structure visualised while working in front of the screen. As a result,
indices or entire reports are printed on paper to gain overview and much work is lost
in manually changing Latex commands (and/or file names) to reflect a reorganisation
of the report. This also implies that groups rarely change their way of working. If they
work in a top-down fashion, the structure of the paper remains fixed right from the
start. Groups working in a bottom-up way remain in a limbo until the very last mo-
ment where finally all the pieces can be put together.

These problems are, in part, due to the fact that if we divide the document up into
several files, reflecting its hierarchical structure, then the version control tool is treat-
ing those just as single pieces and not as a whole too. In part, the problems are due to
the lack of a proper GUI that can visualise the structure of the document. Version
control tools permit us to divide the document in logic entities, like chapters and sec-
tions, reflecting also the division of responsibilities. However, without a proper GUI it
is difficult to get a quick overview of the entire document. Furthermore, the fact that
the structure is only implied by a directory structure, means that we must manually
change this structure every time the organisation of the document is to be changed.

To remedy this problem the CoEd system has knowledge of Latex, so it can auto-
matically create (and maintain) the storage organisation from that implied by the Latex
code. Furthermore, the GUI is capable of visualising documents using the Latex
structures. Finally, it is possible to visualise - and work with – both the document as a
whole and its individual parts.

In the second category of problems we find misfits between the version control
needs of the students and the functionality provided by the tools they use. Their needs
for version control are not very sophisticated. They do not develop variants and do not
have to maintain old versions, as it is usual in software development. Still they have
troubles in finding help from traditional version control tools. They have problems
identifying and retrieving old versions. Often confusion arises when the supervisor
comments on a document and the students find out that it is not the version they
printed out just before the meeting. When a section or a chapter is split into two, the
version history for one of the parts is lost. These problems are similar to the problems
in version selection, baselining and change tracking pointed out in [Tichy88].

Again the problems are, in part, due to the lack of a GUI, and, in part, to problems
with the data model that the version tools build on. An adequate GUI makes version
selection far easier because one immediately sees what one selects, at least with ver-
sions of the individual parts. Baselining the entire document is a cumbersome and
sometimes error prone process. This is due to the fact that it is a manual task where
the document is viewed as a collection of versioned parts. As such, there is no explicit
versioning of the collection as a whole. Furthermore, as the tools are unaware of op-
erations like splitting a unit, this becomes something that is unsupported and has to be
carried out outside of the tool's control.

To avoid these problems we made the versioning of a document’s structure an inte-
gral part of the tool, treated on equal footing with the versioning of the individual
parts. Furthermore, we supported splitting of units as a basic functionality. Finally, the
GUI facilitates identification and selection, and visualises the result immediately.

VTML for Fine-Grained Change Tracking in Editing Structured Documents 143

2.2 The Architecture of CoEd

The architecture of CoEd is built around the principle that a Latex document has a
hierarchical structure and as such consists of a set of leaves and internal nodes, each of
which can contain text. Leaves and nodes are the smallest granularity of the system
and are called units. For the versioning of a unit we use the traditional approach of
creating a version group for the unit and let the development of versions be reflected
by a version graph. The root node has a special status as it represents the whole docu-
ment. The root node is versioned just like all other nodes and this provides us with
versioning of the document as a whole. A given version of the whole document is
called a bound configuration in accordance with the terminology used in software
configuration management.

Figure 1. How CoEd presents itself to the user.

CoEd has four browsers which each shows a different aspect of the internal data
structure. This makes it possible to look at the data structure (i.e. the document) at
varying levels of details allowing for a flexible granularity. Figure 1 shows the GUI of
the CoEd system.

144 Lars Bendix and Fabio Vitali

The hierarchy browser is found at the bottom left. It shows the hierarchical struc-
ture of the document as it is implied by the Latex commands. Icons can be expanded
and compressed by double-clicking them. This makes it easy to get a quick overview
of the document at the desired level of detail. We find the text browser at the bottom
right. Here is shown a contiguous piece of text that corresponds to the icon selected in
the hierarchy browser and the text that immediately precedes or follows the selection.

At the top left, we find the version browser, which consists of two windows. The
top window shows all the versions of the bound configuration, which is equivalent to
showing the version group of the root. In the bottom window is shown the version
graph for the unit that is selected in the hierarchy browser.

At the top right, we find the baseline browser. This browser was introduced in or-
der to solve the lack of overview caused by the high number of bound configurations.
As can be seen in the version browser window, bound configurations can be named to
distinguish important ones. These named bound configurations are the ones that ap-
pear in the baseline browser. The selection of one of these baselines will cause the
icon of the corresponding bound configuration to be selected and highlighted in the
version browser.

From figure 1, we can see that initially the user selected the "5. December" baseline
in the baseline browser. This caused CoEd to find and select that version of the docu-
ment (version 19) and highlight it in the upper window of the version browser. CoEd
also finds and displays the structure of this bound configuration version in the hierar-
chy browser. Then the user selected "\subsection{RCS}" as the unit he is interested in
and CoEd found and displayed the text of this unit (and of immediately surrounding
units to fill out the text window) in the text browser, highlighting it. CoEd also dis-
played the version group for the selected unit (version 5) in the lower window of the
version browser.

2.3 How CoEd Is Used

A typical scenario for the use of CoEd will find us starting with (a piece of) a docu-
ment which we now want to continue to develop using CoEd. Using the file menu, we
will ask CoEd to check in the file containing the document. CoEd parses the Latex
code and, if successful, constructs the implied hierarchical structure, otherwise it re-
fuses the text.

Using the version browser, we now select the bound configuration we want to
change (usually the latest). We can now use either the hierarchy browser or the text
browser to select the contiguous piece of text we want to change (it can span several
logic units) and ask CoEd to check it out to a single file.

This file we can edit using our favourite editor and when we have finished editing
the text, we ask CoEd to check it in again. CoEd automatically discovers which units
have been changed - creating new versions - and which have not - leaving them un-
touched. It will even discover if units have been added or deleted and react corre-
spondingly.

VTML for Fine-Grained Change Tracking in Editing Structured Documents 145

2.4 Advanced Functionality in CoEd

CoEd also has some more advanced functions that work at the structural level of the
document. These are split of a unit, creation of meta-versions and direct manipulation
of the structure.

The students create many versions of their documents during the writing phase. Be-
cause we consider the document as a whole, each change to one of its parts means that
a new version of the whole document is created. The baseline browser reduces this
high number of bound configurations, such that it becomes manageable. If changes to
more than one unit is carried out in the same edit session, this will create more than
one version of the document. This is not a consequence of the extensional versioning
used at the document level, but due to the lack of a session concept in CoEd. Meta-
versions were introduced to automatically group together all the versions created in
one single edit session. Meta-versions can be opened such that the single versions in
the meta-version can be accessed.

Let us assume that we have chapters A, B and C, and want to split chapter A into
two chapters A1 and A2. When we check in the result - A1, A2, B and C - CoEd will
discover that there is one more chapter than was checked out. It will, however, also
recognise that A1 and A2 were parts of the original chapter A and create two new
version groups and connect them with the version group of the original A in a seam-
less way, in order not to loose continuity in the compound version history.

It is also possible to directly manipulate the structure and in this way permute units.
It is possible to move both single units and parts of the structure. We simply select
what has to be moved and then drag it to the place where it has to be inserted. In this
way, we can change a chapter to a section (including its sub-structure) or vice versa,
and CoEd will make the necessary changes to the Latex code for us.

2.5 Experience with CoEd

We have implemented a working prototype of CoEd and students at Aalborg Univer-
sity have used it for developing their project reports. The results from these experi-
ments are rather promising. The average number of pages handled by CoEd was about
80 pages per project. Some groups just used it to play around because they did not
trust the stability of CoEd and were afraid of loosing their data. These groups had
relatively little text (about 50 pages), while a few groups used it seriously and had
about 120 pages under the control of CoEd. In the end, CoEd turned out to be amaz-
ingly stable and very little data was lost the few times it crashed.

The average number of units per project was 147, again with serious user going
higher. The number of bound configurations was 2 to 6 times the number of units.
That the students were able to maintain an overview anyway, proves the value of the
baseline browser and the meta-version concept. There were about 9 versions in meta-
versions, but up to 20-30 versions were seen. Especially for groups that brought larger
pre-written pieces of text into CoEd rather than using CoEd from the very beginning.

Development was mostly linear with very few branches and merges. Split of units
was used but not extensively. The direct manipulation of the structure, on the other
hand, was used very extensively and was rated by the students as one of the strongest

146 Lars Bendix and Fabio Vitali

points about CoEd. And, above all, the fact that direct manipulation could be carried
out under full version control and therefore could be undone very easily.

Students also felt that this kind of version control and change tracking lowered the
need for face-to-face meetings for exchanging information. This indicates that in the
past many such meetings were held mainly for communicating information and for co-
ordination purposes, and that by using CoEd they were able to reduce the needs for
co-ordination.

The improved support for handling entire documents led to the discovery of new
functionality that was desired. The students asked for better visualisation of differ-
ences in structure between versions of documents. They wanted to be able to compare
parallel versions, both at the structural and the textual level. And, finally, they wanted
to be able to attach more information to versions of documents and units. These exten-
sions were difficult to carry out in the current implementation of CoEd. This, and the
fact that fine granularity and versioning of structures is not well supported by tradi-
tional version engines like RCS, caused us to look for a version engine that was better
suited to the requirements of CoEd for supporting change tracking.

3 Change Tracking

VTML is a descriptive data format for fine-grained change tracking. It is not a ver-
sioning system, but a flexible data format that can be used by systems that implement a
wide range of versioning styles. It was born from the tentative of determining an ade-
quate versioning style for hypermedia documents in a collaborative environment
([DHHV94] and [HHDV95]). The versioning styles allowed by VTML can vary from
extremely informal and unstructured asynchronous collaboration patterns among crea-
tive writers, to the formalised and controlled sequential actions of a team of program-
mers, to the synchronous access to a shared blueprint by a team of architects and de-
signers. It can be flexibly used with a large number of system architectures, varying
from flexible editing clients and dumb storage servers, to extremely dumb clients
interacting with a sophisticated versioning server.

The format is designed to be consumed by programs, and so it is relatively terse
and simple to parse. Although we are currently applying VTML to the management of
text, any text or binary format can be directly represented in a VTML document. In
particular, VTML was designed initially to handle the management of versions for
HTML documents [VD95], and in general for managing versions of all kinds of
markup languages (such as SGML, XML and all other derived languages).

VTML-based systems may make use of the features of VTML to obtain a few in-
teresting features, such as:

• the version history may branch, creating a tree of variants. The version history
may also converge, creating a master version that inherits from several different
variants by some form of user-guided or automatic merge.

• locks to control accesses to authors are not necessary. This is a consequence of
allowing branching versions: conflicting check-in operations can always be al-
lowed, automatically creating new branches of the version tree if necessary. The
versions can then be “harmonised” with a merge operation.

VTML for Fine-Grained Change Tracking in Editing Structured Documents 147

• a check out operation is not necessary: users may use copies without synchroni-
sation control by a server or a distributed consistency algorithm, for instance by
using a local copy on the client’s file space.

• full sequential undo can be easily provided. Since each operation is logged and
identified, it is easy to rebuild the state of the document at any point in time. In
Palimpsest [Durand93], VTML is even used to allow arbitrary undo: by explic-
itly expressing the existence context of each change, one can accept or reject ar-
bitrary past operation regardless of their sequence in time.

• automatic version identification is supported, according to a series of numbering
schemata. Four numbering schemata can be used, each having equivalent expres-
sive power.

• VTML versions provide a consistent and reliable addressing mechanism for
document spans, that requires no modification to the document and can survive
unmonitored changes to the document itself. One important service that a
VTML-based versioning system can provide is to precisely locate the position of
data designated by an offset into a previous version of the document. This is an
important operation for the support of external link bases that refer to changing
data. The same mechanism can also be used to provide flexible document frag-
ment re-use, with little additional machinery.

VTML stores information about all single modifications to the shared document. It
is able to report that something as simple as an insertion has taken place, or something
as complex as a sort. Since the list of possible operations is open, VTML describes
every complex change as a list of simple operations: insertions, deletions and modifi-
cations. Thus the basic purpose of the language (i.e., to be able to build a given ver-
sion of a document according to the changes it has incurred into since its creation) is
preserved even if the meaning of the actual operations is unknown.

Attributes are associated to single changes. This allows an extreme flexibility in de-
scribing them. In order to avoid overloading of repeated data, shorthand facilities are
provided. The list of data items that can be associated to every change is also open,
and possibly very large. Thus, instead of listing extensively the kind of attributes, only
a few necessary ones are determined, and a way to add new ones is provided. The
necessary attributes are basically used to univocally determine the whereabouts and
the correct grouping of the changes. Everything else, from the author or the date of the
change to the comments about a given change, or to the author's shoe size, for that
matters, is an additional attribute that is not part of the language.

VTML comes in two equivalent formats: the internal format stores side by side the
modifications in the positions they have happened. The external format stores them in
the chronological order they have happened. A VTML document is composed of one
or more VTML blocks, contained within a {VTML} {/VTML} set of tags. VTML
blocks are composed either of internal markup (using the elements ATT, USROP,
INS, and DEL) or external markup (using the elements ATT, USROP, EXTINS,
EXTDEL). The same document may contain VTML blocks of both types.

All change commands that are described with internal tags are stored within a sin-
gle VTML block, while external tags may be stored in as many blocks as needed.
Applications that require support for both internal and external changes in a single file
may concatenate multiple blocks together.

148 Lars Bendix and Fabio Vitali

VTML is meant to provide change tracking support to markup languages such as
HTML and XML. HTML 4.0 [RLJ98] includes two new tags, INS and DEL, that are
meant to express changes from previous versions of the same document (e.g., in legal
texts); On the contrary, VTML lies on a completely different layer, having the markup
as content of its tags. This is due to several reasons:

Different handling of tags and content: users don’t simply add content during
edits, but may modify tags and attributes. If versioning tags are at the same level as
content tags, and parsed at the same time, it is impossible for them to keep information
about modifications of content tags. The duplication of tags, and the need for the ver-
sioning tags and the document tags to create a legal (extended) HTML document also
creates problems with ensuring proper nesting of tags.

Potential for misuses, hacking, and manual modifications: if the document is
edited by a versioning-unaware editor, or, even worse, manually, versioning informa-
tion will inevitably become outdated, inconsistent and possibly will generate a corrupt
HTML document.

Complexity of resulting document: HTML is an SGML DTD thought for simple
content markup, hypertext links and the like. Versioning tags do not modify the ap-
pearance or role of the parts of the document but perform a more pragmatic and low-
level chore: helping determine whether a piece of the document belongs to a specific
version or not. Mixing semantic and rendering markup with content-determination
tags creates extremely complex and unreadable documents.

In summary, adding special tags to a markup language does not help change-
tracking: being part of the markup language, these tags cannot express changes in the
markup itself or changes that disrupt the correct nesting of the markup (e.g., two para-
graphs that have been joined, or a link destination that has been changed). The only
solution we find acceptable is to foresee two independent parsing steps, the first of
which considers and activates just the change-tracking information, building a com-
plete marked-up document, and the second that parses the specific document markup
and creates its visual representation.

3.1 A Complete Example Using VTML

Basically, VTML tags are meant to describe the editing operation performed on the
document, and describe operations that are not the result of changes in the document
data, but rather the selection of some existing changes. Let us suppose we have the
following situation: David and Lars are collaborating on writing a document.

First version: Lars inserts the string: “The quick brown fox jumps over the lazy
dog.”

Second version: David substitutes “quick” with “speedy”, and removes “lazy“:
“The speedy brown fox jumps over the dog.”

Third version: Lars substitutes “brown” with “red” and inserts “sleepy” before
“dog”: The speedy red fox jumps over the sleepy dog”.

For reasons known to the VTML engine, version 1 and 2 are stored together with
the internal markup, while version 3 is stored externally (maybe the engine hasn’t had

VTML for Fine-Grained Change Tracking in Editing Structured Documents 149

the time yet to import the new version). Versions 1 and 2 correspond to the following
VTML block:

{VTML NAME=“Hunting” CVERS=2 _AUTHORS=“Lars, David”}
{ATTR ID=1 vers=1 _author=“Lars”}
{ATTR ID=2 vers=2 _author=“David”}

{INS ATT=1} The {INS ATT=2} speedy {/INS} {DEL ATT=2}
quick {/DEL} brown fox jumps over the {DEL ATT=2} lazy
{/DEL} dog. {/INS}{/VTML}

Each VTML tag describes the shared context given, at least, by the document
name, and the current version, and, in this case, also by the group of legal authors. The
ATTR tag stores a few attributes that should be repeated several times in the docu-
ment tags, and that are associated with the ATT attribute of the actual tags. Therefore,
writing

{ATTR ID=1 vers=1 _author=“Lars”}
{ATTR ID=2 vers=2 _author=“David”}
{INS ATT=1} The {INS ATT=2} speedy {/INS} {DEL ATT=2}
quick {/DEL} brown fox jumps over the {DEL ATT=2} lazy
{/DEL} dog. {/INS}

is equivalent to writing:

{INS vers=1 _author=“Lars”} The {INS vers=2
_author=“David”} speedy {/INS} {DEL vers=2
_author=“David”} quick {/DEL} brown fox jumps over the
{DEL vers=2 _author=“David”} lazy {/DEL} dog. {/INS}

INS and DEL represent the actual changes that were performed on the text. Since
the text is a linear sequential format, there is no need for modification operations, but
we can safely restrict to insertions (INS tags) and deletions (DEL tags).

On the other hand, this is an external representation of version 3:

{VTML NAME=“Hunting” CVERS=3 _AUTHORS=“Lars, David”}
{ATTR ID=1 SOURCE=“Hunting” VERS=3 _author=“Lars”}
{EXTDEL ATT=1 POS=15 LENGTH=5}
{EXTINS ATT=1 POS=15}red{/EXTINS}
{EXTINS ATT=1 POS=42}sleepy {/EXTINS}{/VTML}

This VTML block contains an external description of the changes leading to ver-
sion 3. In this case, insertions (stored as EXTINS tags) specify their position, while
deletions (EXTDEL tags) specify both their position and the number of removed char-
acters.

Separately, Fabio opened version 2 of the "Hunting" document and made some
other modifications: he substituted “jumps over” with “is not caught by” and inserts
“Today” at the beginning of the sentence: “Today the speedy brown fox is not caught
by the dog.” Therefore, the following is the result of his modifications:

150 Lars Bendix and Fabio Vitali

{VTML NAME=“Hunting” CVERS=3 _author=“Fabio,Lars,David”}
{ATTR ID=1 SOURCE=“Hunting” VERS=3 _author=“Fabio”}
{USROP ATT=1 REF=2 NAME=“SUBSTITUTION”}
{EXTDEL POS=29 LENGTH=10}jumps over{/EXTDEL}
{EXTINS POS=29}is not caught by{/EXTINS}{/USROP}

{EXTINS ATT=1 POS=1}oday t{/EXTINS}{/VTML}

This version, besides making use of the external representation of changes, uses the
USROP command, which collects into a single operation a sequence of basic editing
commands (insertions, deletions, modifications). In the external format, the USROP
tag groups together the basic operations it is composed of, and labels them with a
human-understandable name.

The first problem with accepting this version is that both versions claim to be ver-
sion 3, since both were created from version 2 in absence of other derived versions.
Lars decides that his own version will remain in the main branch of the version tree.
This affects the numbering of the versions, as Fabio’s version is renumbered and be-
comes 3.1. Then Lars merges Fabio’s contributions into a new version: he accepts the
substitution of the verb, but NOT the insertion of “Today”.

This is a structure of the version tree:

Version 1
Lars

Version 2
David

Version 3
Lars

Version 4
Lars

Version 3.1
Fabio

Figure 2. The version tree of the VTML example.

The engine easily generates the following internal representation:

{VTML NAME=“Hunting” CVERS=CURRENT AUTHORS=“Lars,David,
Fabio”}
{ATTR ID=1 ref=1 vers=1 _author=“Lars”}
{ATTR ID=2 ref=2 vers=2 _author=“David”}
{ATTR ID=3 ref=3 vers=3 _author=“Lars”}
{ATTR ID=4 ref=4 vers=3.1 _author=“Fabio”}
{ATTR ID=5 vers=CURRENT _author=“Lars”}
{USROP ATT=4 NAME=“Substitution” REF=6 INCLUDES="5"}
{USROP ATT=5 NAME=“Merge” EXCLUDES="7"}
{INS ATT=1} T{INS ATT=4 REF=7}oday t{/INS}he {INS ATT=2}
speedy {/INS} {DEL ATT=2} quick {/DEL} {DEL ATT=3} brown
{/DEL} {INS ATT=3} red {/INS} fox {DEL REF=5} jumps over
the {/DEL} {INS REF=5}is not caught by {/INS} {INS ATT=3}
sleepy {/INS} {DEL ATT=2} lazy {/DEL} dog. {/INS}{/VTML}

VTML for Fine-Grained Change Tracking in Editing Structured Documents 151

The main features of this version are that the internal form of USROP has been
used and that a merge has been performed. The internal format of the USROP tag
specifies the basic operations it is composed of by listing their REF number in an
INCLUDES attribute or listing the other ones in an EXCLUDES attribute. A merge is
just another USROP operation where the relevant operations are either accepted or
ignored in the merged version. Thus, in this case, version 4 is composed of a single
operation that merges all previous operations except for the one with REF = 7.

This new block can either be stored as such by the VTML engine or divided again
into elements and stored separately. When the engine saves the document, it will sub-
stitute the CURRENT value with the appropriate version number (in this case, 4).

4 Integrating CoEd and VTML

In this section we briefly describe the reasons for integrating CoEd and VTML, the
interface between the two systems, and a few example scenarios where using VTML
can provide additional functionality to the CoEd collaborative system.

CoEd has proven itself a strong and flexible tool to use for supporting collaborative
writing through change tracking, versioning of whole documents and management of
document structure. We have, however, found some things to improve through our
experiments with the prototype. While CoEd's interface and model layers (see figure
3) work rather well, the engine layer is far too simple, since it does basically nothing
but system calls to the file system. CoEd stores each version of a unit in its entirety
and does not even try to use space-saving delta mechanisms. This means that using
CoEd becomes prohibitive in a larger scale as it really burns up disc space. We made
this initial choice because we wanted to put emphasis on the concepts and develop-
ment of an experimental prototype rather than on an efficient implementation.

In order to further develop the functionality of CoEd and to make it a more efficient
tool that can be used for real projects, a more powerful and flexible engine is needed.
We have looked into traditional tools for version control, like RCS [Tichy85], and we
found that they are simply not powerful enough. Such tools are very efficient in repre-
senting version groups in as little space as possible, but they are limited in that they do
not go beyond version groups. This still leaves the versioning model of CoEd the task
of managing the structure of the document and of versioning this structure.

VTML efficiently represents changes in a versioned text, so that VTML-aware ap-
plications may make use of the change-tracking facilities of the language to provide
sophisticated versioning support to its users: version selection, branching, comparison,
and merge. VTML therefore seems like an optimal choice for the engine component
of the next CoEd prototype since it can handle and version both contents and struc-
ture. VTML is a language, not a tool, so we had to decide what kind of VTML-
enabled application we were looking for. A VTML engine can provide basic parsing
and storage functionality. By adding a simple interface layer for the CoEd applica-
tions, we can easily provide sophisticated versioning functionality.

In figure 3, we show the overall architecture of the foreseen application.

152 Lars Bendix and Fabio Vitali

CoEd

VTML-engine

CoEd-VTML
interface

User
Interface

Versioning
Model

Versioning
Engine

Figure 3. The conceptual architecture of CoEd with VTML.

The interface layer provides the operational interface between CoEd and the
VTML engine, and consists of the following operations:

Put_version(data:Data_structure,
depends_on:Version_name) ->
Version_name;

The Put_version operation appends a new version to an existing document. This
corresponds to a check-in operation for the VTML engine that generates a diff be-
tween the specified version name and the new one submitted. Based on that, the en-
gine determines the VTML coding and the version number corresponding to the new
version. The VTML engine will then decide autonomously whether to store the new
version using the external format in an autonomous file, or to insert it as internal cod-
ing in the existing one. Finally, it will return the new version name for CoEd to update
its internal database.

Get_version(version:Version_name) -> Data_structure;

The Get_version operation creates the required version. This corresponds to a
check-out operation for the VTML engine. The engine will retrieve all the versions
leading up to the requested one, and will perform the change operations stored in them
necessary to build the requested version. It will then return the data corresponding to
the requested version.

Compare_versions(versions:Version_group_list,
deleted_data: Boolean) ->
Comparison_data_structure;

A comparison structure is simply a text document that contains some colour coding
information. The CoEd model will request a list of versions to be displayed together to
ease the comparison. For each version, it will suggest a colour. In the deleted_data
parameter, it will then specify whether deleted data should be displayed or not. This
corresponds for the VTML to a multiple check-out operation where instead of simply

VTML for Fine-Grained Change Tracking in Editing Structured Documents 153

building the requested versions, each version is assigned a colour coding that will be
used to specify the display of each document bit. If deleted data are requested, the
deletion operations are not performed, but the corresponding data are left in the
document with an additional special colour coding.

To clarify the working of the CoEd+VTML system, we examine four possible sce-
narios where the system is used and provides sophisticated collaborative functionality:

I - Creating a New Document

Student A places a sharable and existing document under the wings of CoEd.
In this case CoEd will parse the text of the document and create the hierarchical

structure implied by the Latex commands. For each of the leaves and internal nodes in
this tree, it will create a new version group and insert the text of the unit as a first
version in this version group.

II - Getting and Modifying a Document

Student B makes a modification to the document's latest bound configuration and
saves it.

When the text is checked in, CoEd discovers which parts have been modified. For
all the modified units it calls the VTML engine to have new versions created and
stored.

VTML handles and stores each single change that has happened to a document
between saves. This means that, after each editing session, the VTML engine must
determine what has changed since the last saved version. Since there are presently no
plans of integrating a VTML-aware editor into CoEd, the difference is determined by
making a diff of the two versions. The output of the diff program is then converted
into VTML commands, and passed back to the VTML engine. The VTML engine
now can choose between using the internal format, and creating a single VTML file
containing all the existing versions of the document, and using the external format,
which can then be stored independently of the rest of the document, in an autonomous
file. The choice is done according to reasons of efficiency and availability of the new
version.

III - Comparing Different versions

Student C accesses student B's bound configuration and wants to compare it with a
previous bound configuration.

The CoEd interface transforms this command in a request to the VTML engine for
two different versions of the document. The VTML engine verifies whether those
versions of the document are stored externally. In this case internalises them and gen-
erates the compact internal representation of the selected versions of the document.
Then it transforms the relevant change instructions in colour choices for the text of the
document display, thereby allowing the comparison of the two versions. This is simply
done by eliminating version information for those bits that belong to both version, and

154 Lars Bendix and Fabio Vitali

converting the version information into colour instructions for those bits that have
been modified in either version.

This information is then visualised in a separate window by the CoEd GUI.

IV - Parallel Access to a Document

Students A and C want to make modifications to the same bound configuration at the
same time.

Any check out of text in CoEd is done within the context of a bound configuration.
It is possible to make more than one check out from the same bound configuration –
either in parallel or sequentially. CoEd notices that a branch has to be created and
handles it at both the structural and the textual level. The structural level is handled
internally, while managing parallel variants of text is handled by the VTML engine.

Since the VTML engine easily allows branching, neither student is blocked from
accessing in write mode the document. We are not planning to use VTML-aware edi-
tors or notification mechanisms, so at save time the two versions are autonomously
accepted by the VTML engine and put in two parallel variants. Since VTML allows
parallel variants to coexist without requiring to merge the incompatibilities, and since
VTML is able to provide any selection of versions even if belonging to different ver-
sion branches, there is no pressure to resolve the inconsistencies that may have been
created during the parallel edits. Once the need to harmonise the differences becomes
paramount, the merge operation can be activated from the CoEd GUI. A merge can
either be done automatically or manually. In both cases a person or an algorithm will
select, for each edit that appears in either relevant branch, whether it should belong to
the final version or not. The merge version therefore is an optional operation that
reconciles different version branches of the same document without loosing informa-
tion on each composing branch.

5 Conclusions

The CoEd environment has proven to be robust and useful in many collaborative
situations. On the other hand, the simplicity of the underlying storage engine has pre-
vented interesting functionality to be added.

It was an important decision to maintain CoEd interface characteristics and ver-
sioning policies, and improve on the underlying storage and composition mechanisms.
VTML provides the sophistication needed in the management of the versions, and thus
allow to improve the feature set of CoEd. Furthermore, the significant space savings
available with the VTML format may easily make CoEd usable in heavily real-life
situations.

CoEd is currently a monolithic working environment. Work is in progress to move
it to a client-server architecture. The WebDAV extensions to HTTP for distributed
authoring ([SVWD98] and [GWF*]) would help by providing a standard way for
clients and servers to interoperate. The Delta-V working group, derived from the
WebDAV working group, is currently establishing the extensions to HTTP needed for

VTML for Fine-Grained Change Tracking in Editing Structured Documents 155

versioning and configuration management. Within both groups, VTML has been pro-
posed and extensively discussed. Unfortunately, the consensus within the working
group has been that change management operations, being media-dependent, are out
of scope, and will not be covered by the forthcoming standards [AC99].

Acknowledgement

This work has been supported, in part, by the Danish Research Council, grant
no. 9701406.

References

[AC99]: J. Amsden, G. Clemm: Web Versioning Model, INTERNET DRAFT,
draft-ietf-webdav-versionmodel-00.html, in the version of February 1, 1999 expiring
August, 1999. http://www.ics.uci.edu/pub/ietf/deltav/model/model990209/
[BLNP97]: L. Bendix, P. Larsen, A. Nielsen, J. Petersen: CoEd - A Tool for
Cooperative Development of Hierarchical Documents, Technical Report R-97-5012,
Department of Computer Science, Aalborg University, Denmark, September 1997.
[BLNP98]: L. Bendix, P. Larsen, A. Nielsen, J. Petersen: CoEd - A Tool for
Versioning of Hierarchical Documents, in Proceedings of SCM-8 (Bruxelles, Bel-
gium, July 1998), Lecture Notes of Computer Science, Springer Verlag.
[Berliner90]: B. Berliner: CVS II: Parallelizing Software Development, in Pro-
ceedings of USENIX Winter 1990 (Washington, DC, 1990).
[Durand93]: D. Durand: Cooperative Editing without Synchronization, in Hy-
pertext ’93 Workshop on Hyperbase Systems (Seattle, WA), Technical Report n.
TAMU-HRL 93-009, Hypertext Research Lab, Texas A&M University, College Sta-
tion TX
[DHHV94]: D. Durand, A. Haake, D. Hicks, F. Vitali (eds.): Proceedings of the
Workshop on Versioning in Hypertext Systems, held in connection with The European
Conference on Hypertext, ECHT94. Available as GMD Arbeitspapiere 894, GMD -
IPSI, Dolivostrasse 15, 64293 Darmstadt, Germany.
[GWF*]: Y. Goland, J. Whitehead, A. Faizi, S. Carter, D. Jensen: HTTP Ex-
tensions for Distributed Authoring - WEBDav, Internet Informational Request for
Comments(IETF RFC) 2518, ftp://www.ietf.org/rfc/rfc2518.txt
[HHDV95]: D. Hicks, A. Haake, D. Durand, F. Vitali (eds.): Proceedings of the
ECSCW'95 Workshop on the Role of Version Control in CSCW Applications, avail-
able as
http://www.cs.bu.edu/techreports/96-009-ecscw95-proceedings/Book/proceedings_txt.
html,Boston University Technical Report 96-009.
[MA96]: B. Magnusson, U. Asklund: Fine Grained Version Control of Con-
figurations in COOP/Orm, in Proceedings of SCM-6 (Berlin, Germany, March 1996),
Lecture Notes of Computer Science, Springer Verlag.
[RLJ98]: D. Ragget, A. Le Hors, I. Jacobs: HTML 4.0 Specification, W3C
Recommendation, http://www.w3.org/TR/PR-html40/

156 Lars Bendix and Fabio Vitali

[SVWD98]: J. Slein, F. Vitali, E. J. Whitehead, Jr., D. Durand: Requirements for
a Distributed Authoring and Versioning Protocol for the World Wide Web, Internet
Informational Request for Comments(IETF RFC) 2291. February, 1998. Also as ACM
StandardView 1 (5), 1997, p. 17-24. ftp://www.ietf.org/rfc/rfc2291.txt
[Tichy85]: Tichy, W. F. RCS - A System for Version Control, Software - Prac-
tice and Experience, Vol. 15 (7), July 1985.
[Tichy88]: Tichy, W. F. Tools for Software Configuration Management, in
Proceedings of SCM-1 (Grassau, Germany, January 1988).
[VD95]: Vitali F., Durand D., Using versioning to support collaboration on
the WWW, in The World Wide Web Journal, 1(1), O'Reilly, 1995.

Global Names: Support for Managing Software in a
World of Virtual Organizations

Michael L. Van De Vanter1 and Tobias Murer2

1Sun Microsystems Laboratories, 901 San Antonio Road
Palo Alto, CA 94303 USA

Michael.VanDeVanter@Eng.Sun.COM
2TIK (Computer Engineering and Networks Laboratory)

ETH Zürich, 8092 Zürich, Switzerland
murer@acm.org

Abstract. Emerging technologies such as the Internet, the World Wide Web,
JavaTM technology, and software components are accelerating product life
cycles and encouraging collaboration across organizational boundaries. The
familiar coordination problems of large scale software development reappear in
a context where tools used by collaborators must be less tightly coupled to one
another than before. To the traditional notion of scale, based on the size of soft-
ware systems, must be added a new dimension of scale: organizational complex-
ity. Designing configuration management systems that scale well over both
dimensions requires difficult trade-offs between reliability and flexibility. At the
heart of these trade-offs is the aggregate information shared by collaborators:
how it is represented, maintained, and understood by the people and tools using
it. While designing a prototype development environment intended to scale in
both dimensions, we have revisited the role played by naming. A proposed
extension to the prototype’s naming system addresses issues such as which
objects should be named and how the shared naming system is constructed.

1 Introduction

Software product life cycles are accelerating and increasingly take place within so-
called virtual organizations that require cooperation across a variety of organizational
boundaries [4]. This trend is supported and encouraged by emerging technologies: the
World Wide Web, software components, and JavaTM technology [6]. Consequently
ever more software is shared across organizational boundaries and assembled in
increasingly dynamic and varied ways, such as with components and plug-ins.

Highly evolved tools for configuration management, which address familiar prob-
lems of scale, have become indispensable. However, these tools, even when reworked
for the Internet, often fail to address the diversity of collaborating organizations. To the
traditional notion of software size, which we characterize as compositional complexity,
must be added a new dimension of scale: organizational complexity. Tools must now
address both dimensions.

The Forest project at Sun Microsystems Laboratories has been developing JP, a

prototype environment designed for reliable development of compositionally complex
systems written in the Java programming language. Complementary issues of organi-

J. Estublier (Eds.): SCM-9, LNCS 1675, pp. 157-171, 1999.
© Springer-Verlag Berlin Heidelberg 1999

zational complexity and the broader software life cycle are being addressed, in collab-
oration with the Virtual Software House project at ETH Zürich, by the application
web. The application web supports the software life cycle across organizational bound-
aries, striking a balance between autonomy and collaboration [13].

It became clear that the application web depends critically upon global naming of
shared information. JP supports a simple naming system that operates both in the small
(editing based on names for individual sources [15]) and in the large (configurations of
arbitrary size and complexity shared across multiple JP repositories [9]). Sharing data
among multiple organizations and tools, however, demands a richer naming system.

It also became clear that design decisions for such a naming system encounter
trade-offs between reliability and flexibility: for example what to name at what granu-
larity and how to support reliable bindings. These decisions require careful thought
about the roles played by naming.

A design strategy was adopted in which names are only given to objects as needed,
and whose bindings are as reliable as possible. The results of this strategy reflect goals
for different parts of the system:

− core configuration management and build systems are designed for utmost reli-
ability, and rely on object structures, not names;

− development tools use a simple, global naming system for JP environments,
designed to make information intelligible; and

− the application web uses names to support dynamic and flexible information shar-
ing across organizational boundaries.

The system is cast as an instance of a general framework for naming, the Java Naming
and Directory InterfaceTM (JNDI) standard [8].

This paper discusses the design issues that arose in the development of this strat-
egy, as well as the resulting concrete proposal. Section 2 begins with background on
scaling issues, in particular the different demands of compositional vs. organizational
scale. Section 3 takes a closer look at specific design issues concerning names in JP
and the application web. Section 4 describes the proposed extension to JP naming, fol-
lowed by a discussion of related work and conclusions.

2 Technologies for Scale in Software Development

The JP programming environment and the application web are designed to solve prob-
lems of scale for tools supporting the software life cycle, but along fundamentally dif-
ferent dimensions.

2.1 Compositional vs. Organizational Scale

“Scale” for programs was once measured in lines of code, but the real issue here is
complexity. Configuration management systems (including JP) address the composi-
tional complexity of systems: the number of modules, versions, variants, platforms,
and languages that it takes to construct them. Organizational complexity, on the other

 Michael L. Van De Vanter and Tobias Murer158
hand, arises in the presence of virtual organizations (dynamic networks of organiza-
tions that cooperate for mutual benefit [4]) and involves the whole life cycle of prod-

ucts. Autonomy drives organizational complexity; single software development
organizations don’t face the differences of culture, infrastructure, methods, tool prefer-
ences, and skills one finds at organizational boundaries in virtual organizations. The
application web addresses these aspects of scale.

Tools for compositional complexity must be reliable; tools for organizational com-
plexity must be flexible. Tools that address both aspects of scale (organizational com-
plexity often implies compositional complexity too) face design trade-offs. For
reliability, information is best managed in a tightly coupled fashion, as if in a single
global data structure with complete referential integrity and type safety. Flexibility, on
the other hand, requires information that is less tightly coupled and more open [13] so
that information may be created and managed by autonomous organizations, selec-
tively shared, and structured simply for intelligibility. General naming systems, for
example URLs, achieve flexibility at the cost of reliability.

The challenge is to find a useful balance. JP was designed to scale with composi-
tional complexity; the application web addresses the additional requirements of orga-
nizational complexity.

2.2 The JP Programming Environment

JP is a prototype programming environment for the collaborative, reliable development
of compositionally complex systems written in the Java programming language. It is
based on close coupling among federated JP repositories, and tool integration via
object-oriented interfaces. Implementation simplicity and reliability derive from archi-
tectural orthogonality among core services, functional programming, and aggressive
use of abstract object interfaces.

Central to the JP approach is the notion of uniquely named, reusable, indepen-
dently versioned packages [9]. JP packages play many roles:

− System Structure. Package versions act as software modules: they contain human-
created artifacts such as source code and can use specific versions of other pack-
ages by importing them.

− Storage Management. Package versions and derived objects built from them, as
well as tools such as compilers and editors, reside in repositories of orthogonally
persistent objects [1].

− Building. A package version is built by interpreting its build script: a functional
program that recursively invokes the scripts of imported packages. Previously
derived objects are reliably shared via function caching, a mechanism that is
largely orthogonal to the type of objects and the tools that create them.

− Versioning. Versions of a package are managed by a simple version system that is
orthogonal to version content.

− Configuration Management. JP configurations are implemented as packages
whose role is to import particular versions of other packages, including other con-
figurations. Each version of a configuration specifies an immutable, arbitrarily
large, aggregation of packages.

− Analysis. Tools for analyzing and visualizing software need not be separately con-

Global Names: Support for Managing Software in a World of Virtual Organizations 159
figured, since they have direct access to configuration contents and derived results.

2.3 The Application Web

The application web complements JP by addressing problems of organizational scale
[13]. Organizational boundaries discourage tool-based collaboration, in the absence of
which information must be copied and shared manually. The application web fills the
gap between the informality of copying and the tight coupling of conventional tools.

The application web provides an infrastructure for sharing information and sup-
porting collaboration across boundaries within virtual organizations. This brings the
character of the WWW into the software life cycle, where information can be autono-
mously maintained at its origin, but can also be shared through simple protocols. A
software application can consist of parts originating at many sites.

The application web provides rich connectivity that spans the life cycle of software
products, beginning with construction and continuing through deployment and ongo-
ing management. For example a deployed, possibly running, application can be que-
ried for complete, precise, and relevant information about its configuration, available
via links back to the organizations in which the parts were created.

Autonomy is just as important. Shared data models are as simple as possible, fol-
lowing the lead of the World Wide Web, enabling dynamic and loosely coupled collab-
oration.

Flexible collaboration is supported by multiple layers of access. Closely related
organizations might construct software jointly, using distributed authoring tools or JP’s
federated build system. Loosely related organizations might have limited HTTP access
to the others’ repositories. In between might be application loading services, bug
reporting and tracking, querying for component interoperability, and reference infor-
mation in support of debugging.

3 Naming Systems: Roles and Requirements

Naming is central to the shared information upon which the application web is built.
The design strategy adopted for the naming system reflects the importance of a balance
between competing requirements for reliability and flexibility. This section discusses
general issues, as well as choices made for different parts of the system.

3.1 Design Issues for Naming

The first question when providing name-based access to complex data is whether to do
it at all.

Closely coupled tools access data via object references, whose referential integrity
and type safety derive from modern programming languages. The persistent object
system used by JP makes object references suitable for reliable, long-term data stor-
age, but such references are not available outside system boundaries.

In contrast, a naming system typically offers access to data from “outside” system
boundaries. Names are legible to people (names often encode contextual information
and may be redundant) and portable (they can be written down and emailed), but this

160 Michael L. Van De Vanter and Tobias Murer
flexibility comes at the cost of decreased reliability when compared to object refer-
ences.

At one extreme, every object might be named, mirroring an object reference struc-
ture; for example, every element in a hierarchical file system is named. Conversely,
only a small number of objects might be named, as with “persistent root” objects in
object-oriented databases, requiring that further access be structural. These choices
depend on the information clients need and what they know about the structure of the
data. Other design issues include the lifetime and mutability of name bindings as well
as lookup mechanisms and accessibility guarantees.

Unfortunately developers routinely suffer too many naming systems that are badly
suited for the task: one for the target language (e.g. class names), another for storage
(location dependent file names), possibly a third for modules (often modeled weakly as
directories), and others for versioning and configuration. Not only must developers
understand all these naming systems, they must keep them arranged in complex rela-
tionships just to keep the tools working. The problem is made worse by naming too
many things, for example by cluttering the name spaces for sources with derived
objects.

The proposed strategy is to name as few objects as possible, depending on specific
requirements. The rest of this section describes the roles played by names in different
parts of the system. Whereas the JP build system uses no names at all, the JP tool inter-
face layer uses a unified naming system that spans multiple JP repositories. The former
approach permits reliable building for configurations of arbitrary complexity, and the
latter provides a comprehensible user model that abstracts away inessential informa-
tion. Extending JP into the application web, requires a third approach to naming, one
that will serve also as a bridge to non-JP tools.

3.2 Naming in the JP Build System

At the heart of JP is a build system that provides stronger guarantees of reliable and
repeatable builds than is now common. Several technologies support these guarantees,
but naming is not among them.

In order to be built, a package version must be committed to the repository, and it
must completely specify its build computation. In its build script (a functional pro-
gram) source objects (those created by humans using tools such as editors) appear as
literal data values of the scripting language in declarations equivalent to:

JavaSource myStack = <the text written by a developer>;

JP source objects, known as parts, are implemented with functional objects: they
are immutable and can be treated as pure values whose object identity plays no role
[2]. JP parts are context-free and not intrinsically named and can thus be safely shared
by many contexts.

Perhaps surprisingly, it is also necessary that package versions themselves be rep-
resented as functional objects; they participate in build scripts as literal values in
import declaration equivalent to:

import <reference to contents of an existing package ver.>;

Global Names: Support for Managing Software in a World of Virtual Organizations 161
To the extent that parts do have names in the build system, it is only for the internal
purposes of the computation, for example as in the declaration of myStack in the first

example. These local bindings, within the computation engendered by each JP pack-
age version, are isolated from the rest of the environment and from other versions.

Objects created during building are likewise bound for the duration of the computa-
tion. Such bindings persist only to the extent that they are captured in a returned build
result. The result is generally not named; tools invoke the build() method on pack-
age versions and operate structurally on the returned value.

3.3 Local Names in the JP Environment

It is one thing to exploit the power of a purely functional build system computing over
a repository of context-free objects treated as values; it is quite another to help devel-
opers create, understand, and manage such objects. People and their work are inher-
ently contextual and must be able to understand data in their own context.

Tools in a JP repository use a simple, unified name system for versioned packages
and their contents [9], as shown in Example 1 and described further in Section 4.1.

These are the only names a developer normally sees, based on the design decision that
names do not need to carry any other information, and that no other objects need
names.

Unlike many naming systems, these names are reliable: name bindings, once cre-
ated, are eternal, immutable, and always accessible. This makes names redundant,
strictly speaking, but they help make a crucial connection between abstract, buildable
values and the work being done by developers. This separation between internal repre-
sentation and user-visible names permits the design of each to be optimized for its own
purposes. For example, the package name space is aligned with names in the Java pro-
gramming language, eliminating any distinction between storage and language names.
The version name space in JP supports a simple branching and numbering model, but
any name space would do; version names can therefore be aligned with local software
development processes, once again eliminating name distinctions.

Names are used to good advantage by JP’s framework for editor coordination [15].
This framework allows JP developers to commit new package versions, which can then
be built if desired. Constructing a version involves creation of new source objects,
based on editing activity, as well as new folder-like containers that represent changed
contents. The framework makes this process nearly transparent, even in the presence of
multiple editors that are not version-aware. It also arranges that unedited parts be
shared by successive versions. Although the framework operates structurally, editors
appear to be operating in the JP name space. Other tools, for example for navigating,

Example 1. JP Names

com.sun.labs.forest.jp.util a JP package

com.sun.labs.forest.jp.util/7 a JP package version

com.sun.labs.forest.jp.util/7#Stack a source (“compilation unit”)
in a JP package version

162 Michael L. Van De Vanter and Tobias Murer
searching, and creating new objects, operate similarly.

3.4 Implementation Challenges

Supporting both structural and name-based access to information has its costs. JP
exploits the implementation of parts as immutable values and permits a value to be
bound to many names, for example in successive versions of a package in which the
part has not been touched. Consequently, any human view of a part must supply appro-
priate context.

For example, from the perspective of the build system an import is bound to the
content (value) of a package version, not a name for the content. A person examining a
build script, on the other hand, expects to see the human intention behind the import,
which is best captured by the name used when the import was created. Thus, the inter-
nal representation of a build script import must carry this extra contextual information,
however inessential to the builder.

Likewise, build errors cannot be reported usefully when a compiler sees source
code only as byte arrays embedded in a graph of functional objects. Each invocation of
the build system must be given a way to “re-contextualize” any parts mentioned in
communication with humans, for example so that programming errors can be located
and corrected.

JP editors, like the builder and compilers, traffic only in object values: old values
are copied into buffers, and new parts are created when needed. The editor coordina-
tion framework maintains context that explains the meaning of data in each editor
buffer. The framework informs each editor of the current name for each buffer, which
routinely changes as versioning progresses, even though its only purpose is to give the
developer contextual information.

Bridging different areas of JP’s architecture has deeper implications in the underly-
ing implementation, since a JP repository must be able to manage parts created by dif-
ferent versions of editors and derive results using different versions of compilers. This
requires, in effect, a separate type system for each configuration, the consequences of
which are beyond the scope of this paper. These issues do not arise, of course, in sys-
tems where tools and data are not strongly typed.

3.5 Global Names in the JP Environment

In order to support development of large systems, JP must permit collaboration among
developers using multiple, federated JP repositories. The challenge is to approximate
as closely as possible the guarantee of reliable, repeatable builds made by JP in single
repositories.

The organizational aspect of the problem requires a global naming policy. JP aligns
package names with the emerging global name space for Java packages, which begins
with reverse DNS names. This grants organizations exclusive authority to create names
in owned domains, which they can subdivide as needed. JP makes the aggressive pre-
sumption that a name, once created, has constant meaning, viewed from any JP envi-
ronment, anywhere in the world, for all time.

JP imports are permitted to cross repository boundaries, which presents implemen-
tation choices for the representation of a non-local import. Two solutions are being

Global Names: Support for Managing Software in a World of Virtual Organizations 163
explored, functionally similar but with very different architectural implications:

− At the platform level, an experimental mechanism supports persistent remote ref-
erences to persistent objects.

− At the application level, package version names can, when combined with a loca-
tor service, implement the same binding.

Although neither of these mechanisms can guarantee that remotely implemented bind-
ings are either eternal or accessible, it is possible to check that bindings are immutable.
Object fingerprints, upon which JP’s function caching is based, can be stored with the
representation of an import, making it possible to verify that the retrieved value of a
remote import, if available at all, is the intended one.

3.6 Naming Requirements for the Application Web

Whereas JP embeds names in a closed world designed for reliable, federated building,
the application web is designed for more flexible forms of collaboration that span orga-
nizations, phases of the life cycle, and tools [13]. The application web captures inter-
connected information associated with software development, and makes it available
via a variety of tools throughout the software life cycle. Collaboration requires some
common understanding about software systems and their structure, as reflected in a
shared naming system. Such a naming system must balance requirements for expres-
siveness (for effectiveness), reliability (for compositional scale), and flexibility (for
organizational scale). The goal of expressiveness suggests that the JP name space be
extended by naming objects that otherwise would only be treated structurally. Exam-
ples include build results and the internal structure of configurations.

The World Wide Web is an example of a scalable, global name system that meets
many of these requirements. However, the application web presents additional require-
ments such as versioning and configurations, such as those used in JP.

Equally important is the reliability of names in a well-defined life cycle, where
names are guaranteed to persist and be immutably bound. Confidence that bindings
will be available and will not change encourages effective and efficient communication
among people and tools by reference to objects. It also permits reliable name-based
caching. On the other hand, it must be understood that bindings can be subject to ser-
vice interruptions and expirations.

Authentication, trust, and access control are also essential, but are beyond the
scope of the current work.

4 The Extended JP Naming System

The extended JP naming system addresses the goals of the application web and is
based on experience with a simple prototype. This required recasting the original as a
composite naming system, making some syntax adjustments for scalability. It also
involved extending its scope, and defining more carefully such issues as the life cycle
of names.1

164 Michael L. Van De Vanter and Tobias Murer
1. This description uses the terminology of the Java Naming and Directory Interface (JNDI)
standard [8]. Name syntax is described on an EBNF notation that includes ‘[’..‘]’ for
options and ‘{’..‘}’ for zero or arbitrary repetitions.

4.1 Package Versions and Contents

Editing, versioning, system modularity, and building all operate at the granularity of
package versions.

− Every package and package version has a canonical name that identifies it
uniquely in the global package name space.

− Every part within a package version may also have a canonical name that identi-
fies it uniquely.

− This composite naming system includes separate naming systems for packages,
package versions, and parts.

Canonical_Name = Package_Name [‘/’ Version_Name [‘#’ Part_Name]]

The Package Naming System. This naming system mirrors the increasingly accepted
global name space for Java packages [6], based on reverse DNS names. The hierarchy
implies no inclusion relationships, either in the Java programming language or in JP;
for example a and a.b name unrelated packages.

Package_Name = Atomic_Name { ‘.’ Atomic_Name }

The Version Naming System. This naming system identifies each version relative to
its package. JP version names are hierarchical, with alternating numbers and names, as
in Example 3. However, other versioning models can be used to suit particular devel-
opment processes, as mentioned in Section 3.3. This freedom permits organizations to
share information based on names, even when the semantics of particular version
names are not shared.

A canonical name includes at most one version name, reflecting the decision to ver-
sion packages only in toto. Packages in which contents are to be versioned indepen-
dently must be constructed as configurations of other packages.

Version_Name = Number { ‘.’ Atomic_Name ‘.’ Number }

The Part Naming System. This naming system identifies human created source
objects within the content of a version. In contrast to package names, hierarchy does
imply inclusion. Version content is managed as a single compound document, whose
root part name is null, and in which embedded parts may or may not be named.

Example 2. Package Naming System

COM.sun.labs.forest.jp canonical package name

Example 3. Version Naming System

1.murer.4 version name

COM.sun.labs.forest.jp/1.murer.4 canonical package version
name

Global Names: Support for Managing Software in a World of Virtual Organizations 165
Part_Name = Atomic_Name { ‘.’ Atomic_Name }

Alternatives. The above syntax is influenced by URLs. Other approaches could be
used, so long as package names match the name space for Java packages, and compos-
ite names can be parsed unambiguously. An earlier JP naming system used the separa-
tor ‘.’ exclusively, as in Example 5:

The simplicity of the old approach is appealing, but it promised to become confus-
ing with increasing richness of the naming system, since boundaries between the indi-
vidual naming systems are not immediately obvious.

4.2 Configurations

An extension to the JP naming system makes more of the internal structure of configu-
rations visible through naming.

Projections. The global package name space is immense. Developers work in subsets
that include just the package versions aggregated into systems under development.
These subsets are defined by configurations: package versions that recursively aggre-
gate other package versions, as in Example 6:

The contents of a configuration version can be treated as a projection of the global
name space in which names can be used that have meaning only relative to the particu-
lar context of the configuration, as in Example 7. In this example a part appears in a
configuration version because its containing package version is explicitly imported;
three different names refer to the same part:

− The canonical name, which is independent of any configuration.
− A configuration-relative name, based on an extended syntax as shown. All such

Example 4. Part Naming System

model.layout part name

COM.sun.labs.forest.jp/1.murer.4#model.layout canonical
part name

Example 5. Old JP Naming System

COM.sun.labs.forest.jp.1.murer.4.model.layout canonical
part name

Example 6. Configuration Names

CH.ethz.ee.tik.vsh/8 configuration version
name

import COM.sun.java.JDK/2.mac.3
import COM.sun.labs.forest.jp/4
import CH.ethz.ee.tik.vsh.services/9

imports of package ver-
sions in the configuration

166 Michael L. Van De Vanter and Tobias Murer
names can be unambiguously translated to canonical names.

− A configuration-sensitive name that only identifies the part uniquely in a context
where the configuration version is implied. These shorter names are the ones JP
tools might display when a developer is working in the context of an evolving con-
figuration. In situations where even more context is implied, even shorter names
might appear, for example jp#Main.

The particular projection used in Example 7 is only one of many that could be
designed to suit various needs for visualizing and working within the context of con-
figurations.

Complete system descriptions. Configurations capture more than sources. For exam-
ple, they contain a complete prescription for building it, including the precise version
of a compiler (which also comes from a JP package version), compiler options, and
which version of important libraries it is compiled against. These are all examples of
meta-information relevant to the configuration. Other kinds of parts might also be
present, for example design documents and test case specifications. Some kinds of
information might not be naturally represented as parts, in which case the naming sys-
tem might be extended explicitly.

4.3 Derived Parts

Information created by building a configuration, although guaranteed by JP to be well-
defined, is not canonically named and is understood to have no meaning outside of its
originating configuration. For the purposes of the application web, any build result
should contain enough information to identify its configuration, perhaps by links lead-
ing back to the repository in which it was originally created.

Access to derived information is structural within the JP environment, but access
can also be provided by describing each build result as a new name space in the com-
posite naming system, relative to its configuration version. This might name such use-
ful information as compiled classes and Javadoc HTML files. A function applied to a
given configuration builds the naming context for a derived parts naming system. This
is another hierarchical naming system, for example:

Derived_Part_Name = Atomic_Name { ‘.’ Atomic_Name }

Example 7. Configuration-relative Names

CH.ethz.ee.tik.vsh/8 configuration name

COM.sun.labs.forest.jp/4#Main canonical part name

CH.ethz.ee.tik.vsh/8/COM.sun.labs.for-
est.jp#Main

part name embedded in
configuration context

COM.sun.labs.forest.jp#Main part name relative to
implied configuration
context

Global Names: Support for Managing Software in a World of Virtual Organizations 167
In Example 8 compile is a distinguished name that refers to the derived name
space. The names that follow can be simple, in situations where build scripts explicitly

define such names, or they might be expressions whose evaluation would provide
something approximating structural access to the information. The names are reliable
in either case, a considerable advantage when caching derived information.

4.4 The Life Cycle of Names

The use of global names within the application web requires a set of rules about how
names are created and managed. These rules may be summarized in terms of the life
cycle for canonical names; projected and derived names are always well-defined in
terms of canonical names, as discussed earlier.

− Creation. A new name is explicitly created by an autonomous organization partic-
ipating in the application web. Intellectual work is recorded in JP by committing a
package version to a repository, and this requires that it be named; likewise, infor-
mation cannot be shared in the application web until it is named.

− Uniqueness. A newly created name is presumed never to have been used before.
The authority to create valid names is managed at the topmost level by partitioning
the global name space into DNS domains that organizations own and can subdi-
vide as needed.

− Persistent Binding. A name is bound to a value when created, and this binding may
never change. This permits loosely coupled organizations to communicate reliably
using names, and permits reliable caching of bindings.

− Unavailability. No non-local lookup service can be constantly available. The
bound value of a name may not be available in situations where there are system
failures and there is no local cache available.

− Eternal Names. A name, once created, must live forever. Even if a binding expires
at its source (see below) caches may live on; names must be remembered so that
they will not be rebound.

− Binding Expiration. Although names live forever, the storage of accumulated
bindings may not always be practical or desirable. Expiration dates would help
organizations negotiate the lifetime of their storage services, much as other arti-
facts in the software business eventually expire.

The rules of the life cycle for names cannot be strictly enforced in the world for
which the application web is designed. The success of names used this way must rely
on the motivation of participating organizations to follow the rules for their own inter-
est, combined with end-to-end tests to ensure that bound values never change.

5 Related Work

Example 8. Derived Part Naming System

util.Connection derived part name

CH.ethz.ee.tik.vsh/8/com-
pile#util.Connection

derived part name in context of a con-
figuration’s build result

168 Michael L. Van De Vanter and Tobias Murer
The Vesta project [10], from which JP’s core build technology is derived, implemented

functional building over a repository of immutable versioned packages. Its package
name space is flat, local, and not related to language names, and there is no integrated
support for integrated editing.

Distributed configuration management systems have been developed, some com-
mercial such as ClearCase Multisite [3]. These generally presume every site is running
the same tools. This restriction can be lifted by designing middleware to glue together
different systems, for example by Kaiser and Dossick [5]. These approaches address
compositional complexity, but often neglect the difficulties of organizational complex-
ity.

Noll and Scacchi address much the same goals as ours with a shared distributed
CM system that connects to each organization’s tools with adapters [14]. Their design
emphasizes a shared model to be understood by all organizations, whereas the applica-
tion web address a much simpler, open ended model; the application web is less
expressive, but may have greater potential for organizational scale. The GIPSY project
addresses organizational complexity by proposing a simple, unified model that repre-
sents software product, process and organization form [12].

Collaborative authoring tools presume close organizational coupling, although
WebDAV aims to bring some of this functionality to the more loosely coupled World
Wide Web [16]. Although this is necessarily embedded in a less expressive name space
than is needed for the application web, WebDAV could serve as an appropriate infra-
structure for parts of the application web.

The application web proposes life cycle connectivity of software to its origin; this
permits copying to be replaced by reliable caching. These features allow for reliable
software deployment as well as other business opportunities within a Virtual Software
House. Such opportunities might include consistent, up-to-date, connected software
catalogues as well as component seeking and matching. The Software Dock proposes a
sophisticated deployable software description format and an agent based deployment
engine to support the software deployment life cycle [7]. Castanet, a product of
Marimba, offers incremental software deployment services based on channels, mirror-
ing and fingerprinting technology [11]. In contrast to more sophisticated approaches,
the application web promotes the simple “web” idea of connectivity where information
relevant for the whole software life cycle is directly accessed from its original source.

6 Conclusions

Reliable, scalable configuration management is essential for developing the next gen-
eration of large software systems. Traditional tools fail to help organizations cooperate
in emerging models for virtual organizations. Java technology makes some of this eas-
ier, but reliable, scalable tools are still needed. Tool strategies for software require a
balance between addressing compositional and organizational complexity; names play
an important role in these strategies.

The application web, an extension to a reliable, scalable development environment
for Java software, addresses the emerging challenge of organizational complexity. It

Global Names: Support for Managing Software in a World of Virtual Organizations 169
does this in a simple, scalable, collaboration framework based on global naming that
permits connecting a wide variety of services, applicable to many phases of the soft-

ware life cycle. This approach presumes that reliable configuration management and
repeatable building are among the core services, but it also conspires to make available
a wide variety of related meta-information about software.

Early versions of the JP environment are in use, and a simple prototype of the
application web, based on HTTP-coupled tools, has been developed for demonstration
purposes. It supports several of the anticipated services, for example loading and run-
ning applications directly out of their originating repositories, and navigating via infor-
mation present in running applications back to the sources and documents in the
precise configuration in which they were built.

7 Acknowledgments

This work benefits greatly from the vision of Mick Jordan, Principal Investigator of the
Forest Project at Sun Microsystems Laboratories and coauthor of JP. The VSH project
is supported by Professor Albert Kündig at ETH Zürich and funded by the Swiss Prior-
ity Program of the Swiss National Science Foundation. Yuval Peduel and anonymous
reviewers made helpful comments on this paper.

8 Trademarks

Sun, Sun Microsystems, Java Naming and Directory Interface, and Java are trade-
marks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

References

1. Atkinson, M., Daynès, L., Jordan, M., Printezis, T., Spence, S.: An Orthogonally Persistent
Java. ACM SIGMOD Record 25 (1996) 68-75

2. Baker, H.: Equal Rights for Functional Objects or, The More Things Change, The More
They Are the Same. ACM OOPS Messenger 4,4 (October 1993) 2-27

3. ClearCase MultiSite http://www.rational.com/products/cc_multisite/

4. Davidow, W., Malone, M.: The Virtual Organization: Structuring and Revitalizing the Cor-
poration for the 21st Century. Burlingame Books (1992)

5. Kaiser, G., Dossick, S.: Workgroup Middleware for Distributed Projects. IEEE Seventh
International Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (June 1998) 63-68

6. Gosling, J., Joy, W., Steele, G.: The JavaTM Language Specification. Addison-Wesley
(1996)

7. Hall, R., Heimbigner, D., Wolf, A.: A Cooperative Approach to Support Software Deploy-
ment Using the Software Dock. Proceedings of the International Conference on Software

170 Michael L. Van De Vanter and Tobias Murer
Engineering, Los Angeles, CA. (May 1999)

8. JAVA NAMING AND DIRECTORY INTERFACETM(JNDI),
http://java.sun.com/products/jndi/, Sun Microsystems, Inc. (1999)

9. Jordan, M., Van De Vanter, M.: Modular System Building With Java Packages. In: Ebert, J.,
Lewerentz, C. (eds.): Proceedings 8th Conference on Software Engineering Environments.
IEEE Computer Society Press, Los Alamitos, CA, USA (1997) 155-163

10. Levin, R., McJones, P.: The Vesta Approach to Configuration Management. Research
Report 105. Digital Equipment Corporation Systems Research Center (1993)

11. Marimba Inc. Castanet Product Family. http://www.marimba.com/ (1998)

12. Murer, T., Scherer, D.: Structural unity of product, process and organization form in the
GIPSY process support framework. In: Ebert, J., Lewerentz, C. (eds.): Proceedings 8th Con-
ference on Software Engineering Environments. IEEE Computer Society Press, Los Alami-
tos, CA, USA (1997) 93-100

13. Murer, T., Van De Vanter, M.: Replacing Copies With Connections: Managing Software
across the Virtual Organization. 2nd Workshop on Coordinating Distributed Software Devel-
opment Projects at IEEE Eighth International Workshops on Enabling Technologies: Infra-
structure for Collaborative Enterprises WETICE-8, Stanford University (June 1999)

14. Noll, J., Scacchi, W.: Supporting Distributed Configuration Management in Virtual Enter-
prises. Proceedings 7th International Workshop Software Configuration Management (ICSE
97 SCM-7), Lecture Notes in Computer Science, Vol. 1235. Springer-Verlag, Berlin Heidel-
berg New York (1997) 142-160

15. Van De Vanter, M.: Coordinated editing of versioned packages in the JP programming envi-
ronment. Proceedings System Configuration Management, ECOOP ’98 SCM-8 Sympo-
sium. Lecture Notes in Computer Science, Vol. 1439. Springer-Verlag, Berlin Heidelberg
New York (1998) 158-173

16. IETF WebDAV Working Group, World Wide Web Distributed Authoring and Versioning,
http://www.webdav.org/

Global Names: Support for Managing Software in a World of Virtual Organizations 171

Distributed Objects for
Concurrent Engineering

Jacky Estublier
Laboratoire Dassault Systèmes / LSR.

Actimart, Bat 8, Av de Vignate
38610 Gieres France

Jacky@imag.fr

Abstract. The growing size of Software Engineering teams (up to a thou-
sand people), combined with shrinking software life cycle duration (a few
months) have created considerable pressure to increase concurrency.
Concurrent work in Software Engineering. leads to find the same “object”
simultaneously in multiple copies, locations and formats. Concurrent
engineering support means the definition, control and automation of all
these copies and how cooperative work policies are defined and managed.

We believe the paper contributes in two ways, first in showing that the
SCM community has to break with some traditional approaches, if scala-
bility and efficiency issues really are of concern; secondly that the
approach we propose is a step toward making a new service available on
top of conventional middleware (CORBA like), which could constitute a
new and wide commercial field for SCM vendors.

1 Introduction

The growing size of Software Engineering teams (up to a thousand people), combined
with shrinking software life cycles (a few months) have created considerable pressure
for more concurrent work in Software Engineering. We have addressed this issue from
a configuration management perspective, but the experience shows that the problem
spans in almost all areas of computer supported concurrent activity.

In SCM, each engineer needs a large number of files (for exemple for compiling), and
changes only a tiny sub-set of these files. Apparently unchanged files can be shared; but
experience shows this is not realistic for three reasons:

• Efficiency. With many files and high performance demand (compilation),
only local copies of all files can provide enough efficiency.

• Name and directory. The same file can be located under different names and
directories depending on the platform (NT or Unix) or on the product version
(restructuring).

• Internal format. Some file need to be translated from a format to another de-
pending on the tool and activity which use it.

J. Estublier (Ed.): SCM-9’99, LNCS 1675, pp. 172-185, 1999.
c Springer-Verlag Berlin Heidelberg 1999

These reasons make that each file, even when not changed, has to be physically copied
on the machine and workspace where it is used.

Objects of concern are distributed over the network (because the Software Engineers
who manipulate them are spread over the network), in multiple copies (because of the
concurrent work), and stored in different repositories (because many tools own or
require specific storage).

2 Object management in concurrent engineering

One of the major difficulties in Software Engineering is to define each representation,
the evolution rules governing the whole environment, and to enforce these definitions.

The requirement is to have, for a given object:

1 Multiple locations (the users and tools locations)
2 Multiple representations (needed by tools and environments)
3 Multiple copies (one for each involved user)
4 Evolution control (for disciplined concurrent work)
5 Synchronization control (for synchronizing concurrent work).

Unfortunately, the current technologies do not provide the expected services.

2.1 Current technologies for distributed objects

Techniques like NFS (in a LAN) allow an object (in fact a file) to be shared between
different machines and different platform, but this applies only for file system represen-
tations and for sharing policies. It only solves point 1.

In a Corba like approach, objects have a single definition (its IDL definition) and a
single location at any point in time. An object does not move; Corba allows distributed
access to a single copy of an object. Object changes are performed by applications
which know only the IDL format. Each application may transform the object from IDL
to its local format if required. Corba, to some extent, provides the opposite of our
requirements. Each object has:

X,Y X,Z

Application 2Application 1

Software Bus
Objects

Repository and

Application 3

Repository
required by
Appl. 2 & 3representation

required by
Appl 1

Figure 1: Multiple copies in Sofware Engineering

Multiple copies &
Representation Mng

Multiple copies &
Representation Mng

173Distributed Objects for Concurrent Engineering

1 A single location.
2 A single representation (the IDL)
3 A single copy.
4 No evolution control (applications are free to make the object evolve)
5 No synchronization (since there is a single copy).

Corba is designed to build distributed applications, not to build Software engineering
environments. None of our requirements are satisfied.

Software configuration management systems. The technology that comes closer to
our requirements can be found in SCM systems using the work space concept [5]
[12][13] [17]. However, the services provided are far from sufficient. SCM systems,
generally, manage files rather than objects, and thus know a single representation: the
file system. Moreover a single file system representation is allowed: there is no way to
define, for an object X, a representation in a Unix file system different from an NT file
system; a fortiori, there is no way to define a test representation different from a devel-
opment one, or a process representation in another DB repository. Finally, evolution
constraints are missing or un clearly stated[6].

Requirements 1 and 3 are satisfied, partially 5.

Databases. The view technology, developed in Databases share some aspects of the
problem: an object may be seen simultaneously through different definitions. Unfortu-
nately it is still the same object. Some work has defined sub-databases, which looks
similar to SCM work spaces, [2][3], which allows different copies to evolve differently,
but still with a predefined format and location. There is a single evolution strategy: the
transaction!.

Application 1

Y

Object AdapterObjet Adapter

Application 2

Figure 2: Corba Approach

SCM system

Application 1 Application 2

File Systems

Database
Persistent Storage

Figure 3: SCM Approach

X X

174 Jacky Estublier

Current databases satisfy only requirement 4 limited to a single strategy: serialization.

2.2 Proposed architecture

The architecture we propose consists in four layers (Figure 4). The first one deals with
the problem of presenting to each user (and his/her tools) at current location, the needed
objects in the right format; it is the basic Work Space manager. The second layer
provides basic functions for transferring / synchronizing objects between any two work-
space. The third layer provides concepts for concurrent activities consistency, for struc-
turing the workspaces, and for defining and enforcing cooperative work policies which
satisfy some consistency requirements. The fourth layer deals with general process
support, and will not be developed here; see [1][4][7] [14][15].

2.3 Concepts and definitions

An object is an instance of a class in which is defined the content and the behavior of
each instance. An object instance contains attributes. Attributes domains can be literals
(i.e. strings, integers, file), or another object type; in the later case we say the attribute
is a composition attribute, and the object a complex or composed object.

We adhere to this definition, and have added a few features like explicit relationships
and versioning (revisions only), as exemplified bellow (Java extension).

class SoftComponent extends Component ;
relation SourceFile sourceCode inverse inObject;
relation File set Binary ;
Common Stringowner ;
Common Date creationdate ;
relation SoftComponent set components {boolean shared} inverse partOf ;
....

That language is not the point of this paper and will not be described, it extends java and
borrows some aspects from ODMG [16], but relationships have attributes in our case.
Unless preceded by key word Common, attributes pertains to revisions. Navigation on
relations in both directions is allowed.

However, even with the above extensions, this definition is too imprecise in our context,
because an object type may have a different definition in each different WS type and an

1 Basic work space manager

2 Basic synchronization services

3 Concurrent Engineering control

4 General process support

Figure 4: Layered architecture

175Distributed Objects for Concurrent Engineering

object instance may simultaneously have different values and definitions (its coopera-
tive versions).

A Workspace (WS) is a sub-set of a public repository1 in which (part of) the objects to
be controlled are stored.

We call repository any system which can store persistent information. It can be a file
system or any kind of DB.

An object representation is an object instance found in a WS. A single object instance
may have simultaneously different representations; one in each WS which contains it.

An abstract object, or simply an object, is the whole of all its current representations.

Three levels of versioning apply to each abstract object [8]:

Each object representation is a cooperative version of that object. By definition, coop-
erative versions are still the «same» object; they are intended to converge toward a
single persistent logical version.

A historical version of an object (also called revision or state) is a stored snapshot of a
cooperative version of that object. A WS may or may not provide historical versioning
capabilities.

Logical versions of an object (also called variants) are different objects sharing some
logical or historical properties. In this framework, only cooperative versions are of
concern.

3 Basic WS manager

In our architecture, no repository is the main one, no one owns objects. An object has a
(potentially different) definition in each WS (attributes may be missing, others may be
specific to that WS); and a WS manages a single object representation.

The fundamental goal of the basic WS manager is to provide the objects in the represen-
tation required by the tools working in this WS, irrespective of the other possible repre-
sentations, and let applications change the object in that specific format, (apparently)
irrespective of the changes performed by other applications on the same object in other
WSs.

A WS manages two areas. The first one is a part of a public repository i.e. directly acces-
sible by users and tools, in which some of the objects attributes are mapped; the other
area contains the objects stored in an internal format only accessible through specific

1. Access to the objects in the public repository is performed by tools and users using the
native repository functions without any need to be wrapped. It does not prohibit the
representation for controlling these accesses, nor prevent undesired access, as long as this
is done in a transparent way.

176 Jacky Estublier

functions provided by the WS. The former is called the projection, the later the local
store.

A WS type is defined by:

• Object types definitions, for objects allowed to be contained in this WS.
• Repository type (Unix FS, NTFS, Oracle,...).
• Projection functions. Manages the relationships between the object part

and the projection part.

For each type of object, the following projection functions must be provided:

• Projection: A function translating an instance of that type from its object
definition into the local repository and may apply filters to change the con-
tent format. In general it is a partial function; some attributes may not be
mapped, others can be added.
Example: attribute content of object foo of type c, is mapped to file foo.c; at-
tribute owner is not mapped, attribute protection is added.

• Reverse projection: A function translating entities of the local repository
into objects and attributes in the object format. If the repository data model
is weaker than the object one, this function will require conventions or addi-
tional information.
Example: File foo.c is attribute content of object foo, which is a component
of X through relationship partOf (partOf and X may not be projected).

• Change mapper: A function translating a change performed on the entities
of the local repository to changes on the corresponding object(s). If the re-
pository data model is weaker than the object one, this function is in theory
non deterministic. This function usually requires conventions and heuristics
or changes to be performed through a specific interface.
Example: If file foo.c is renamed or is moved into another directory, what
does that mean for object foo?

X,Y X,Z

Application 2Application 1

Software Bus
Objects

Repository and

Application 3

Repository
required by
Appl. 2 & 3representation

required by
Appl 1

Figure 5: Basic WorkSpace manager

Projection Mng

ObjectsFile

Projection Mng

ObjectsFile

Local storage

177Distributed Objects for Concurrent Engineering

Existing SCM systems support a single WS type where these functions are predefined
and trivial. Either there is no object model at all, thus the local model is the repository
model, or conventions are simple enough to compute the functions trivially. For
example name identity (object foo of type c maps to file foo.c); a single composition
relationship mapped into the relationship between directory and file (e.g. if foo.c is
under directory X then object foo is a component of object X). The direct consequence
is that (1) the object models are poor, and (2) WS type is unique[9].

In our system, WS types are formally defined, and projection functions are part of the
type definition of each object type. There is no restriction on the WS types that can be
defined in our system. In particular, WS types proposed by SCM vendors can be defined
easily which allows any product managed under any current SCM system to be inte-
grated. It provides also for linking the work done on a product under an SCM system
with the work done on the same product, under another representation, by another SCM
system. This way we aim to address the virtual enterprise problem.

This approach is in complete opposition with current work in SCM (as well as our own
previous work [9]) on at least the following:

• There is no longer any central repository. Experience have shown that no
centralized approach can scale to very large projects (like the Dassault Sys-
tèmes one).

• There is no generic WS manager, because there is no generic projection
function, and because efficiency requires WS manager to be tailored to take
benefit from current company conventions.

• Basic WS managers are indeed SCM systems providing simple functionality
at almost no cost. They can be compatible with current habits and revision
control tool like RCS or CVS.

Basic WS managers can be simple, but unlike RCS or CVS, our solution is scalable
toward high functionality levels, huge software products and very large and distributed
teams. This is the topic of the next chapters.

4 Basic synchronization services

There is a need to define the way different WSs communicate. In our approach, all
communications between WSs, whatever their type, relies on a normalized definition of
the objects described in our Interface Definition Language (IDL). Each basic WS
manager must be capable of translating an object from its IDL definition to its local defi-
nition (often much simpler).

The fact we enforce a definition to be “universal” may be seen as a scalability limiting
factor. We believe this is not true for at least two reasons. First, we do not expect an
object definition to be shared by the whole world (we are “only” addressing SCM for a
world wide company). Second, remember that each WS manager only has the knowl-
edge of a sub-set of the objects it manages.

178 Jacky Estublier

In our prototype, the IDL is simply a Java interface defining an SCM meta model. It
slightly extends Java with file attributes, historical object (a sequence of object states),
relationships (to/from objects or object states) and complex object (with multiple
composition relationships) concepts. A product model is an interface making use of the
SCM meta model. We provide a Java pre-processor which generates standard Java from
these few new keywords.

Note that not only the approach applies to any meta model (other than SCM), but it also
includes Java itself. The prototype can be used, as is, as a general upper layer to Corba
and Java for multiple copy / multiple representation management.

When WS1 asks WS2 for object X, it sends the relevant definition of X to WS2 i.e.
which attributes and components of X it needs. WS2 only sends these attributes back to
WS1. For example, a test WS manager may want only the binary attribute of X and X
test-suite components; a development WS may require instead the source attributes and
all its components. This facility is required for any large development and/or distributed
development.

Concurrent changes imply there is a way to reconcile different values of an attribute. We
call that function the merge function. If we note A1,... Ai the different value of attribute
A, and Ai = Ci(A0) the value of A after change Ci is performed on A0, then a merge
function M is such that M(A1, A2) = C1(C2(A0)) = C2(C1(A0)).

This means the result of the merge is the same as if changes C1 and C2 has been
performed in sequence, on A0, irrespective of the order. If an exact merge function
exists for each attribute, concurrent engineering always leads to consistent results!.
Unfortunately, for a given attribute, such a merge function either (1) exists, (2) is an
approximation, or (3) does not exist at all. In our example, partOf attribute has an exact
merge, file merge is an approximate function, owner has no merge.

Merge, in our work, is understood at the IDL object level. We provide the functions to
merge complex object (composition relationship merge) as a standard feature, as well as
the usual file merge. This contrasts with SCM traditional approaches where only file
merge is available.

This approach contrasts with current work in SCM, on at least the following aspects.

Java

SCM Meta Model

SCM Product Model WS 2WS 1

Transfert

T
ransfer

&
 M

erge

T
ransfer

&
 M

erge

Figure 7: Basic coordination

(Java + Relships,

Your software product.
revision, files)

179Distributed Objects for Concurrent Engineering

(1) The meta model is high level, but since it relies on a standard language, we have
compilers, interpreters, and object transfer (Java IDL) “for free”. A WS manager is
simple to implement.

(2) Each WS manager ignore the formats and models used by the other WS managers;
SCM system heterogeneity is possible.

(3) Transfers are partial. Only the relevant information is transferred, which is critical
in distributed work.

(4) We provide object merge instead of file merge. Our customers are unanimous in
saying that object merge is a major enhancement (the composition relationship merge is
an exact merge).

5 Concurrent engineering control

Nothing prevents each WS to perform any change on any object, thus at a given point
in time, each attribute of each object may have a different value in each WS in which it
is present.

Concurrent engineering control means ensuring that collectively performed work is
consistent. Unfortunately, for concurrent access to information, there is a single real
consistency criteria: serialization i.e. ACID transactions as found in databases i.e.
conrurrent changes are prohibited.

These values apply only to files while, in this work, we deal with objects (files are
atomic attributes in our object model). Our experience shows that concurrent changes to
the same attribute (like file or composition) as well as different attributes of the same
object (like responsible, state, name, namefile, protection etc) are very common.
Merging must address the two levels of granularity : the same attribute and the different
attributes of an object. For example, restructuring, renaming and changing files are
common and independent activities. Raising the granularity from file to object makes
appear new kinds of concurrent changes, which may produces new kinds of merges. It
is our claim that object concurrent change control subsumes traditional file control and
provides homogeneous and elegant solutions to many difficulties which currently
hamper concurrent software engineering.

5.1 The group approach

We call a group, a set of Work Spaces (WS) the goal of which is to make an object
evolve in a “consistent” way. Each group contains a WS playing the role of reference
repository for the group called the integration WS.

For consistency to be enforced in a group, it must behave in a way similar to an ACID
transaction applied to the integration WS, each WS playing the role of local transaction
caches.

180 Jacky Estublier

In Figure 8, Transaction T1, executed on V0 (in W1) provides value V13, while transac-
tion T2 provides value V23 (in W2). Concurrent changes by T1 and T2 are consistent
only if it is possible to compute the value V2, the result of applying T2 to V1 instead of
V0. If this is possible, the group G = (I, W1, W2) behaves as a single WS, (I) to which
all the transactions really performed concurrently on the different WSs of that group are
applied in sequence.

Let us call O/Wi and O.A/Wi the current values of object O and attribute A of O as found
in WS Wi. We have defined the following atomic functions:

P(O/Wi), for propose O, informs that the current value for O in Wi is available to become
the current value of the group.

I(O/Wi), for integrate O, merges O/Integration with O/Wi, providing a new value for O
in the Integration WS.

S(O), for synchronize O, when performed by Wi merges in Wi O/Wi with O/Integration.

R(O.A/Wi) and F(O/Wi), for Reserve and Free A, together define a critical section for
attribute O.A. At any point in time, a single WS can be in the critical section for a given
attribute.

For the sake of simplicity let us denote C(A) any change performed on attribute A, and
«,» any other action (involving or not O).

5.2 Basic policies in a group

A basic concurrent engineering policy means defining and enforcing

• who has right to perform a change on what (not anyone on anything at any
time),

• what is to be merged and when,
• who has to merge.

V0 IntegrateW1 W2

Figure 8: Consistent Concurrent

I

T1
T2

T1

T2
V2

V1 V13

V12

V11

V23

V23

V22

V21

Logical view Reality

V2

Synchronize
Promoted copy
Private copyV2

V23

181Distributed Objects for Concurrent Engineering

Experience shows that merge control is a central point when the merge function is
missing or approximate. More specifically, file merge is an approximation which
requires, potentially, manual work (for conflicts) and to validate if the result is
consistent.

This becomes even more critical as soon as in a group the integration task is performed
by a dedicated person. That person, the integrator, does not necessarily know the
changes performed and would not be able to solve merge problems, nor is it its duty to
fix the bugs that can result from the merge.

We claim that basic concurrent engineering policies can be defined as the valid
sequences of operations performed on objects and attributes in a group. A definition of
a few of the most useful policies follows:

Exclusion. O.A: (SR),C,PIF.
This sequence states that the policy to be applied to attribute O.A in a group of WSs. It
means that before changing A (C), a WS must first synchronize (S) then reserve (R) A.
If reserve fails, the couple SR must be repeated at a later time. After the change, the WS
promotes (P), integrates (I) and frees (F) the object. This policy implements an ACID
transaction; Integrate and Synchronize simply replace the old value by the new one (no
merge). In practice any attribute for which no merge function exists should be managed
in this way.

Delayed reserve: O.A: C,R,C,S,C,PIF.
This sequence states that changes on attribute A can be done before to reserve it. As a
consequence the synchronize operation (S) may require a merge (because meanwhile, a
change on A may have been integrated). But since S is performed in the critical section
(i.e. between R and F), operation I (integrate) will never require a merge (because since
the reserve only that WS can integrate a change on A). That policy has the property to
never produce any merge in the integration WS for attribute A. This is a consequence
of any sequence in which S is before P and in a critical section.

Delayed reserve and integration. O.A: C,RSP,I,F.
This sequence expresses that attribute A can be changed concurrently, but it must be
reserved immediately before being proposed. As soon as all reservations for O are
obtained, the object is resynchronized (i.e. updated) and immediately proposed. Integra-
tion however is deferred; which means the integrator is free to select which proposed
change to integrate, when and in which order. Since the free operation can also be
delayed, it means the integrator has the opportunity, for example, to run the test suite
before validating the changes (F). With respect to the previous policy, flexibility is
provided to integrators, not to developers.

Note that no merges are ever needed in the Integration WS. In other words, multiple
concurrent changes are allowed but their integration is sequentialized and merges are
performed in the WS which performed the changes, never in the integration WS.

Remember that a policy is defined on an attribute basis. For example, the management
of source code objects in development groups can use exclusion for the filename

182 Jacky Estublier

attribute, Delayed reservation and integration for sourceCode attribute and default
(no control) for the components attribute.

This approach contrasts with all other SCM cooperation strategies in the following
ways:

• A policy can be defined independently for each attribute (default means no
control). For instance, in a development group, it is possible, for the same
object, to have three WS changing the file (sourceCode) another one chang-
ing that file name (fileName) and a third one changing which complex object
it pertains to (components). Subsequent synchronization will consistently
merge all these changes.

• A policy is declared on a group type basis i.e. all WSs in a group share the
same policies; but each group can have different policies over the same ob-
jects. Typically, the development groups have more relaxed policies than the
release group.

• A policy is formally defined (as the valid sequence of commands), and some
“classic” policies have been studied so that their properties have been proved
and used to optimize the implementation. In the above policy examples, each
command involves only 2 WSs, not all the group WSs, which is critical in
distributed development.

The integration WS plays the role of the coordinator for the whole group, it knows the
policies and thus enforces and optimizes the controls, based on the properties of each
policy.

5.3 Company concurrent work policies

The integration WS behaves as the representative of the whole group, and can thus be
a component of another higher level group (potentially of another type). In this way, the
whole company can be organized in a hierarchy of WSs.

It can be proven that the properties identified inside a single group hold for any sub-hier-
archy with the single condition that reserving an attribute in a WS is considered as
reserving that attribute in the integration WS of that group. It makes the reserve
command transitive between groups which include the reserve command for that
attribute in their policy.

The strict application of the previous strategy leads to a tree of groups, with data flow
following the edges. Experience have shown this strategy is too limited. Data flow
between siblings is common and needed, as well as data flow between almost any arbi-
trary groups (as long as it is accepted by the process in place).

We have shown that synchronization between siblings in a group is possible, while still
satisfying the coordination properties, provided some constraints, but at the cost of more
inefficient algorithms (many optimizations are no longer valid); demonstration is out of
the scope of this paper.

The system keeps track of “abnormal” object synchronization (any synchronization that
does not follows the tree). This is needed since it invalidates the assumptions used for

183Distributed Objects for Concurrent Engineering

optimization, and is required for performing subsequent merges (relationship merges
require to store information). This “simple” enhancement, as well as the facility
allowing to “undo” complex operations like synchronize or integrate are responsible for
significantly increase the complexity of the whole system (remember that these
commands can involve very complex object, often the whole WS, which amounts to
hundred of thousands files).

6 Conclusion

A major issue faced by SE is that time to market pressure, combined with the increasing
size of software teams make concurrent engineering critical. To face that issue, copies
of the same object are created and given to SE engineers, with modification rights for
everyone.

In many fields like databases, operating systems or networks, creating and managing
object copies is usual, but in a transparent way (in caches) in order to provide the user
the illusion that a single object copy exists. In SE the issue is different, users want to be
able to ask for a private copy, to say for how long, to decide when changes performed
by others are to be integrated, and when their changes are ready to be used by others.
Copy management must be explicit and part of the working paradigm. Further, each
copy of an object may have a different structure, content and format depending on the
tools, operating system, or platform on which it will be used.

It is shown that a copy facility, to be realy usable, must provide the services we have
identified in the three layers of Figure 4: basic work space manager, resynchronization
and concurrent engineering control. We believe this kind of copy facility is needed each
time concurrent object management is required, which covers a very wide range of
applications. We also think that this papers have shown that such a facility is far from
trivial to design and implement, at least if generality and efficiency are of concern. It is
a waste of energy to redo that work in each application domain and even in each vendor
tool.

The large community around CORBA is designing a number of general purpose serv-
ices and facilities, but none adressing our issues. We claim that a copy management
facility, similar to what is presented in this paper, should become a Corba/OMG facili-
ties. Currently no work we know goes in that direction.

We illustrate the approach in a specific area: Software Configuration Management. But
this paper claims that a new generation of SCM systems, breaking with most traditional
approaches, can provide general and efficient concurrent engineering facilities as a
“natural” extension of current middleware.

The paper has shown the approach, architecture and concepts that have been put in place
and investigated. We think that our experience shows at least two things: (1) SCM
systems have to be redesigned if scalability, efficiency and generality issues faced in that
field are to be solved, (2) Instead of focussing on a specific area, anew generation of

184 Jacky Estublier

system should target a much wider commercial segment: middleware supporting
concurrent object modification.

References

[1] “ClearGuide: Product Overview”. Technical report, Atria Software, Inc.

[2] A. Bjornersledl and C. Hullen. Version control in an Object-Oriented Architecture. In
Won Kim and Frederick H. Lochowsky. editors. Objects-Oriented concepts, databases
and application. Chapter 18, pages 451-485, Adisson-Wesley. 1990.

[3] E. Bratsberg. Unified Class Evolution by Object Oriented views. Proc of the 11th Conf on
the relationship approach. LNCS N0645, Spronger Verlag, Oct 1992.

[4] S. Dami, J. Estublier and M. Amiour. “APEL: a Graphical Yet Executable Formalism for
Process Modeling”. Automated Software Engineering journal, January 1998.

[5] S. Dart. “Concepts in Configuration Management Systems”. Proc. of the 3rd. Intl. Work-
shop on Software Configuration Management. Trondheim, Norway, june, 1991.

[6] J. Estublier. “Workspace Management in Software Engineering Environments”. in SCM-
6 Workshop. Springer LNCS 1167. Berlin, Germany, March 1996.

[7] J. Estublier and S. Dami and M. Amiour. High Level Process Modeling for SCM Systems.
SCM 7, LNCS 1235. pages 81--98, May, Boston, USA, 1997

[8] J. Estublier and R. Casallas. “Three Dimensional Versioning”. In SCM-4 and SCM-5
Workshops. J. Estublier editor, September, 1995. Springer LNCS 1005.

[9] J. Estublier and R. Casallas. “The Adele Software Configuration Manager”. Configura-
tion Management, Edited by W. Tichy; J. Wiley and Sons. 1994. Trends in software.

[10] B. Gulla, E.A. Carlson, D. Yeh. Change-Oriented version description in EPOS. Software
Engineering Journal, 6(6):378-386, Nov 1991.

[11] M. Hardwick, B.R. Dowine, M. Kutcher, D.L. Spooner, “Concurrent Engineering with
Delta Files’, IEEE Computer Graphics and Applications, January 1995, pp. 62-68.

[12] D. B. Leblang. and G.D. McLean. Configuration Management for large-scale software
development efforts. In Proceedings of the workshop on Software Environments for
Programming-in-the-Large. Pages 122-127. Harwichport, Massachussets, Jume 1985.

[13] D. B. Leblang. “The CM Challenge: Configuration Management that Works”. Configu-
ration Management, Edited by W. Tichy; J. Wiley and Sons. 1994. Trends in software.

[14] D.B. Leblang. Managing the Software Development Process with ClearGuide. SCM 7,
LNCS 1235. pages=66, 80, May, Boston, USA, 1997

[15] J. Micallef and G. M. Clemm. “The Asgard System: Activity-Based Configuration
Management”. In SCM-6 Workshop, Berlin, Germany, March, 1996.

[16] R.G.G Catell & All. The Object Database Standard: ODMG 2.0. Morgan Kaufmann
Publisher. ISBN 1-55860-463-4, 1997.

[17] Walter F. Tichy. Tools for software configuration management. In Proc. of the Int. Work-
shop on Software Version and Configuration Control, pp. 1–20, Grassau, January 1988

185Distributed Objects for Concurrent Engineering

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 186-204, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Goals for a Configuration Management Network
Protocol

E. James Whitehead, Jr.

Dept. of Information and Computer Science, University of California, Irvine
Irvine, CA 92697-3425 USA

Tel: +1 949 824 4121
ejw@ics.uci.edu

Abstract. Experience from research on integrating versioning and
configuration management support to the Web has shown that building
such support on the basic Web infrastructure leads to undesirable
architectural choices. This paper presents goals for a standardization
effort called Delta-V which is extending the Web infrastructure,
specifically the core network protocols HTTP and WebDAV, with
capabilities for remote versioning and configuration management.
Important goals include providing equal support for all content types,
allowing versioning unaware applications to participate, supporting
both mutable and immutable revisions, ensuring that human-readable
strings are internationalizable, and provision of strong authentication
and transport security. These goals are currently being used to develop
the Delta-V protocol within the Internet Engineering Task Force.

1 Introduction

What if you were an employee of a small design firm called DesignHaus, working on
a Web site update for a client whose pages are very time sensitive. To benefit from a
broad pool of design talent, DesignHaus draws its designers from around the world,
and youíre working in a team active 24 hours a day ó Kenji supplies graphics and
icons from Tokyo, Denise provides page layout in Paris, while simultaneously Peter
writes custom JavaScript in New York. Youíre in Los Angeles, in charge of content,
working closely with the client to fine tune the Web siteís message.

Though unaware of this fact, you are using a network protocol called Delta-V, a
series of extensions to the Webís core protocol, the Hypertext Transfer Protocol
(HTTP) [9] and the WebDAV protocol [13] (itself an extension of HTTP) which open
the Web for collaborative authoring and versioning. From your perspective, you are
simply collaborating over the Internet using your favorite tools. After finishing a
phone call with the client, you start your Web page editor, and start editing a product
information page by typing its URL into the ÑFile... Openì dialog box. Behind the
scenes, the tool makes a network protocol request to check out the Web page from the
groupís work area located in the URL space of a Web server at the DesignHaus
corporate headquarters in New York. The editor learns this check out will result in
parallel development, so it pops up a dialog box indicating that Denise is also working
on this Web page at the same time. Not a problem ó you decide to work in parallel

Goals for a Configuration Management Network Protocol 187

with Denise. In the background, the editor sends a network request to download the
Web page, and you see the Web page quickly appear on screen, ready for changes.

Once youíve finished altering the content based on the clientís feedback, you save
it using the ÑFile... Commitì dialog in the editor. The editor saves the final version by
writing over the network directly to the URL, and then sends a network request to
perform a check in. The check-in succeeds, and the editor discovers that Denise has
also committed her latest changes. It pops-up a dialog box asking you if you want to
merge your changes with Deniseís. You select yes, and the tool brings up a merge
utility. The editor already has a copy of your latest changes, but it has to perform a
network request to retrieve Deniseís latest revision, and then check-out the Web page
to make the merged revision. Since Denise was altering layout while you were
altering content, there are few conflicts which are easily resolved. When done, you
select ÑFile... Commitì, and the editor makes two network requests to write back the
Web page to its URL, and check in the new merged revision.

Since youíve been editing directly in-place on the Web, youíre now ready to call
back your client, tell them the URL, and get their feedback on the new revision.

Developing the network protocol which makes this scenario possible is the goal of
the Delta-V working group of the Internet Engineering Task Force (IETF). While
work on the Delta-V protocol is still underway, and the final design is still in flux,
there are many interesting preliminary results. This paper reports on the initial
experience of the Delta-V working group in developing a network protocol for remote
versioning and configuration management of Web sites, software projects, and other
complex information artifacts.

Adding versioning support to WebDAV will support the following capabilities:
• Development teams can collaboratively develop complex information artifacts in-

place on the Web, using locking to prevent overwrite conflicts, and versioning to
support parallel development. Due to the distributed nature of the Web, these
workgroups can have members from within the same organization, or across
organizational boundaries.

• All the types of artifacts in a typical software development lifecycle or encountered
in a typical Web site can be remotely versioned, including requirements, design
documents, test cases, code, GIF and JPEG images, CGI scripts, Java code, and
much, much more. The protocol will support versioning of HTML and XML just
as easily as it supports versioning of existing word processing, spreadsheet, text,
graphics, and all other formats.

• The protocol will provide a common interface to a wide range of repositories, such
as configuration management systems, file system based versioning systems (e.g.
RCS [26]), databases, document management systems, etc. In essence, WebDAV
makes the Web look like a versioned, large-grain network-accessible file system.
But, unlike a conventional file system, a WebDAV-enabled repository provides
Internet access, and allows all Ñfilesì to be viewed using a standard Web browser.

The paper is organized as follows. It begins with highlights of the Web's client-
server architecture, including a description of the existing capabilities of HTTP and
WebDAV. Next is a presentation of key high-level goals that have been identified by
the Delta-V group, interspersed with some discussion of significant technical
challenges and initial design choices. The paper ends with discussion of related work.

188 E. James Whitehead, Jr.

2 Delta-V, a Client-Server Architecture

The Delta-V protocol is a series of extensions to the WebDAV protocol, which itself
extends HTTP, a client-server protocol. Figure 1 shows three different Delta-V clients
interacting via the HTTP/DAV/Delta-V protocol with a hypothetical Web server that
provides interfaces to several different storage repositories. The advantage of this
client-server architecture is distribution. In the case of WebDAV and Delta-V, by
allowing the client/server information flow to take place over the Internet, clients,
which author and version Web resources, and servers, which provides persistent
storage for these resources, can be physically separated by thousands of miles.
Furthermore, the network protocol in a client/server system acts as a bridge across
organizational and system boundaries, allowing remote cooperative authoring by
collaborators located in different organizations (or different divisions of the same
organization), using different hardware platforms.

To perform an action in HTTP, a client opens a network connection to a server,
then creates a request message, which is divided into three parts, the request-line, a
series of headers, and a request body. The client issues a command, called a method,
by encoding the command in the request line. Parameters for the method are passed in
two forms, as attribute-value pairs, called headers, and as Extensible Markup
Language (XML) [7] in the message request body. Once the request is complete, it is
sent to the server, which unpackages the request and executes the command. After
processing the request, the server creates a response message, which contains a status
line, a series of headers, and a response body. Success or failure is indicated by a
status code, a three digit number located in the status line.

Fig. 1. This diagram shows three versioning capable remote authoring tools communicating via
the HTTP protocol using WebDAV and Delta-V extensions to a Delta-V capable server. The
server shows three different persistent storage interfaces, highlighting the ability to map
Delta-V operations across a wide variety of repositories. Typically no one server will
implement so many storage interfaces simultaneously.

Text
editor

Word
proc.

HTML
editor

HTTP + WebDAV + Delta-V Network Protocol Layer

SCM
Repository

File-based
Version Store

Document
Management
Repository

WEB SERVER

Goals for a Configuration Management Network Protocol 189

The basic object within HTTP/WebDAV/Delta-V is the resource, which represents
a network accessible data item which provides a set of operations, its methods. A
resource contains two kinds of state, state associated with the body, and property
state. The body is the content retrieved by a read request on a resource, and is a
representation of the body of the resource, not necessarily the exact contents of the
body state. This extra abstraction permits dynamic behavior of resources, allowing a
read request response to be the output of a computational process, like a CGI script or
an active server page (ASP). A resource also contains properties, name/value pairs,
where the value of a property is a sequence of well-formed XML.

Table 1. Methods supported by HTTP and WebDAV

HTTP METHODS

GET Retrieve a resource and simple metadata, such as its
length, MIME type, and cache tag.

HEAD Retrieve just the simple metadata, but not the
contents of a resource.

POST Submit form data. Often used for tunneling other
RPC schemes.

PUT Write a resource.

DELETE Remove a resource.

OPTIONS Discover which methods are supported by a
resource.

TRACE Debug method.

WEBDAV METHODS

PROPFIND Retrieve properties (complex metadata) from a
resource, or a tree of resources.

PROPPATCH Set and remove properties on a resource.

MOVE Move a resource, or a tree of resources.

COPY Copy a resource, or a tree of resources.

MKCOL Create a new collection.

LOCK Lock a resource, or a tree of resources, preventing
overwrite conflicts.

UNLOCK Remove a lock.

As Table 1 highlights, HTTP provides operations for retrieving Web resources, the
most frequently used HTTP operations. HTTP also provides basic authoring
capabilities with the PUT and DELETE methods, which are only now starting to

190 E. James Whitehead, Jr.

enjoy widespread client support as WebDAV is adopted. WebDAV extends base
HTTP with capabilities for overwrite prevention, properties, and namespace
management, which are described briefly below, with details available in [28].

Overwrite prevention. Keeping more than one person from working on a
document at the same time. This prevents the Ñlost update problemì in which
modifications are lost as first one developer, then another writes changes without
merging the other developerís work.

WebDAV provides overwrite prevention via its shared and exclusive lock
capability. This dual lock support provides sufficiently flexible locks to accommodate
a wide range of collaborations, with shared locks best supporting collaborators who
have a lot of awareness of each otherís activities, and exclusive locks providing a
more stringent guarantee of conflict avoidance for less aware collaborators, or during
periods of high contention for a resource. Locks may have a scope of a single resource
or a hierarchy of resources, such as a source code tree. A lock discovery mechanism
(a WebDAV property) allows authors to find out if any locks exist on a resource.
Since the Web is designed so that no lock is required to read a Web page, there is no
concept of a read lock.

Properties. Creation, removal, and querying of information about resources, such
as its author, last modified date, etc. Also included is the ability to make hypertext
links between resources of any content type.

WebDAV properties are name, value pairs where the name is a URI, and the value
is a sequence of well-formed Extensible Markup Language (XML) elements. Using
URIs as property names provides a globally unique property namespace. Since
property names can be URLs, which have a domain name as a component of the
URL, property names can be given uniqueness without central registration by using
URL property names chosen from within a domain whose name is controlled by the
party defining the property. So, for example, a company which controls a given
domain name, like Ñwidgets.comì can chose a property name from within this
domain, like Ñwidgets.com/properties/colorì.

Name space management. Creation, removal, and automatic consistency
maintenance of the membership of collections containing sets of Web resources. Also,
the ability to copy and move Web-accessible artifacts, and to receive a listing of
resources in a collection (similar to a directory listing in a file system).

Functional goals for the capabilities which will be provided by the Delta-V
protocol are described in the next section.

3 Functional Goals for a Web Versioning and Configuration
Management Protocol
This section describes the primary functional goals for the Delta-V protocol. Due to
space limitations, it is not possible to list all goals. A complete listing is given in the
Delta-V working groupís consensus goals document [24]. Where appropriate, text in
this section is quoted from the working groupís goals document.

Throughout this paper, the terms revision and versioned resource will be used.
Informally, a versioned resource is an abstraction representing all of the revisions of a
particular resource over time, such as all of the revisions of the HTML page
"index.html" over its lifetime. A revision is a persistently stored specific instance of a

Goals for a Configuration Management Network Protocol 191

resource, for example, the contents of "index.html" as checked-in at a specific
moment in time. Formally, a versioned resource is an abstraction for a resource which
is subject to version control, a resource having a set of revisions, relationships
between those revisions, revision identifiers and labels, and named branches that track
the evolution of the resource. A revision is a particular version of a versioned resource

3.1 Equal Support for all Content Types

The Web is composed of documents, images, and objects of many content, or Internet
media types [11]. The Web is composed of more than just text. It must be possible to
version resources of any media or content type, that is, a Web versioning and CM
protocol must treat all content types equally.

A protocol which only provides operations for resources of one preferred content
type, such as HTML, would have limited applicability due to its lack of support for
the wide variety of other content types. Furthermore, since many common content
types are in constant evolution, in order to ensure stability of the protocol a strict
separation between the protocol, and the format of the objects operated upon by the
protocol, must be maintained. For example, during the development of the WebDAV
protocol itself, new standards for HTML 3.2, 4.0, and XML were issued, highlighting
how quickly these document formats can develop and evolve. Tailoring an authoring
protocol too closely to any one content type would rapidly make the protocol
obsolete.

3.2 Versioning Aware and Non-versioning Aware Clients Must Be Able to
Interoperate

Many WebDAV authoring clients are expected to be in use by the time the Delta-V
protocol is supported in shipping products. There are also some authoring tools which
just use HTTP, and are not even WebDAV aware. To aid adoption of the Delta-V
protocol, it is important to provide a minimal level of versioning support to these
clients, so they can interact with a versioning server without having any knowledge of
the versioning protocol. This allows people to gain versioning capability without
having to change their tools, and provides a ready-made base of clients when
versioning servers first become available. It does, however, raise the design challenge
of ensuring that versioning-aware and versioning-unaware clients can smoothly
interoperate, preventing unforeseen negative interactions.

Non-versioning aware clients should be able to request the contents of a versioned
resource without specifying a revision and receive a well-defined default revision. A
non-versioning aware client should be able to write to a versioned resource and have a
new revision automatically be created. It is expected that a write operation will
perform an implicit check-out, write, and check-in to maintain versioning semantics
and avoid lost updates. A subsequent read on the same versioned resource by this
client will return the new revision. However, the versioning operations available to
non-versioning clients will be very limited. For example, such clients will not be
capable of submitting comments or properties on check-in or check-out, and will be
limited to either linear versioning, or working on only a single branch.

192 E. James Whitehead, Jr.

3.3 Configuration Management Capability Is an Optional Extension to
Versioning Capability

Two kinds of clients are expected to support the Delta-V protocol. The first is an
authoring client, such as a text editor or a word processor, which will only provide
versioning capabilities, allowing a check-out, edit, check-in style of interaction. The
second type of client is a configuration management Ñcontrol panelì application,
which understands all of the configuration management capabilities of Delta-V. For
Delta-V, a configuration is a versioned resource that contains a set of specific
revisions of versioned resources, thus making a each versioned resource a
configuration item. One example of a configuration is a snapshot of a Web site, where
the configuration records the revision of every Web page and graphic image in the
site. A Delta-V configuration management control panel application can perform
actions like creating configurations, check-out and check-in of configurations, and
reverting to a previous configuration. Though these control panel operations are not
expected to appear in authoring tools, it should be noted there is nothing to prevent an
authoring tool from supporting these configuration management capabilities.

The major benefit of this two-tier approach is that it provides a simple initial set of
functionality which, if supported, provides useful versioning features. By limiting the
scope of functionality initially required to be Delta-V compliant, it is much easier to
convince tool makers to add Delta-V support, thus boosting adoption of the protocol.
The same logic works on the server side too. Since some use situations do not require
configuration management support, such as a small set of artifacts being developed by
a small, closely knit team, a versioning-only server might provide all the support they
need. Existing versioning systems can provide Delta-V support without having to add
configuration management capabilities to their system, thus creating a versioning-
only server which can be used by these smaller projects.

However, as sometimes happens when projects grow, if a versioning-only team
discovers they need configuration management capabilities, using their versioning-
only authoring tools, they can trade up to a server which supports configuration
management capabilities in addition to versioning operations. The only additional
tool required is a configuration management control panel. Thus, supporting this
requirement creates two stable plateaus of functionality, a versioning level, and a
configuration management level, which give tool and server makers an easy, full-
featured entry level for small to medium scale projects, and a clear upgrade path to
configuration management capability for large-scale projects.

3.4 Revisions May Be Mutable or Immutable

Versioning support for software development has traditionally emphasized the
creation of revisions which, once checked-in to the control of the versioning system,
can never be modified again, making them immutable. This makes sense for software
development due to the machine-readable nature of program code, where every
change needs to be tracked. However, versioning support for documents within
document management systems is often more relaxed about tracking every possible
change. In these systems, it is more important to maintain the logical name of a

Goals for a Configuration Management Network Protocol 193

revision (e.g., ÑJune Sales Brochureì) than to track every small change that has been
made. As a result, these systems do allow changes to a revision, even after it has been
checked-in. Users of these systems appreciate the ability to make minor changes to
these mutable revisions, like fixing a spelling error, without having to create an entire
new revision. For these use cases, the immutable style of versioning is just not
appropriate.

A common, but misguided, approach to mutable revisions is to simulate mutable
revisions using immutable revisions. One technique is to provide a mechanism that
performs a check-out, modification, and check-in in one convenient operation, thus
preserving the immutability of revisions, while still allowing easy changes. However,
the ease of making changes isnít the main point. The intent of mutable revisions is to
avoid creating a new revision for a small change, and to have each revision maintain a
stable logical value. For example, with mutable revisions, a version history for a
monthly sales brochure need only have 12 revisions, one for each month. In many use
environments where there are minimal archival storage requirements, there is little
need for storing intermediate revisions as the next monthís brochure is developed.
Similarly, if minor spelling or grammatical errors are fixed in a brochure before a
second printing is made, storing the original, error-containing document has little
value.

Since configuration management systems have a fundamental constraint that
revisions must be immutable, it is expected that a mutable revision will not be a
permissible member of a configuration. In fact, it is likely that servers which support
mutable revisions will only support versioning, and will not provide any configuration
management support. This is due to the semantics of configurations that require the
ability to revert to a previous revision of the configuration and get exactly the
previous contents. For many use environments, especially software and system
configuration control, the ability to revert and get exactly the previous contents is
critical for providing control over large systems. However, there are many use
environments where such stringent control is not needed, and is in fact burdensome.
Since the Delta-V protocol is intended to be used in environments that vary in their
configuration control requirements, both immutable and mutable styles of versioning
should be supported.

3.5 Revision History Support

Storing previous revisions of resources, along with descriptive comments for each
revision, is a major benefit for versioning Web resources. Therefore, retrieving a
revision history which lists all of the revisions of a versioned resource, details
predecessor relationships among the revisions, lists comments submitted on each
revision, and gives the URL for each revision, is an important feature. This
information can be used by versioning-aware clients to display a graphical
representation of the version history, and allow direct navigation to an individual
member of the revision history.

A significant design choice in Delta-V is to make the Web server the control point
for consistency maintenance of the predecessor and successor relationships in the
revision history of a versioned resource. Some systems, such as NUCM [14] and the

194 E. James Whitehead, Jr.

NTT web versioning system [19] place the client in control of creating and updating
these relationships, providing the significant benefit of allowing version histories to
span multiple servers. However, an implicit design goal of Delta-V is to provide a
Web gateway to existing configuration management and document management
systems, where the expected use environment will have some people using these
systems via the Delta-V protocol interface while others simultaneously use the system
via its local access interface. Since these existing systems maintain the consistency of
predecessor and successor relationships that are stored within their repository, they
were unwilling to cede this consistency control to clients. Furthermore, if consistency
control were the purview of clients only, the possibility exists that a single poorly
implemented, or poorly behaving client could disrupt version histories created by
other, well-behaved clients. This was considered unacceptable.

One implication of having the versioning relationships controlled by the server is
the difficulty of providing version histories which span servers. Indeed, in the server-
controlled scheme, server-spanning version histories require a server-to-server
protocol for transmitting messages to coordinate these histories. Since no such
protocol exists or is planned, server-spanning version histories are a feature awaiting
future work. However, it is a goal to ensure that nothing in the current design of
Delta-V makes it impossible to add cross-repository version histories in the future,
primarily requiring Delta-V to ensure identifiers used in version histories are unique
across all servers, not just a single server.

3.6 A Revision Is a Resource with Its Own URL

The HTTP protocol operates on resources, hence this goal has the result of making
each revision an object which can be operated on by the HTTP/WebDAV/Delta-V
protocol. This provides two important benefits. The biggest benefit is that a revision
can be the target of an HTML link, allowing hypertext browsing of previous revisions
of a resource. Close behind is the ability to perform other protocol operations on
revisions, such as retrieving properties.

3.7 A Mechanism Must Exist for Giving a Human Readable Name to a Single
Revision

Version control systems often reserve the right to give individual revisions an
identifier (e.g., Ñ1.5ì), and this identifier may not be intelligible to a human user. As a
result, it is useful to be able to associate a human-readable label to a revision. This
label is unique within a revision history, and can be used to identify a specific
revision.

The introduction of labels may seem confusing at first, since, due to the previous
requirement, a revision must have its own URL, and one of the design requirements
for a URL is human readability. Hence it might seem that the per-revision URL meets
this requirement. However, labels and URLs differ in their uniqueness requirements.
The URL for a revision must be globally unique, since it identifies just a single
resource. In contrast, a label need only be unique within a versioned resource,

Goals for a Configuration Management Network Protocol 195

identifying a single revision among the set of revisions in a versioned resource. The
same label is expected to be used across multiple versioned resources on the same
server, and can be used in revision selection rules by workspaces and configurations
to select, for example, all the revisions that make up a particular release. Furthermore,
while revision URLs are expected to refer to the same revision over time, a label may
be moved across revisions of a versioned resource.

3.8 Versioning Should not Disrupt Relative URLs

Documents on the Web in HTML format often employ hypertext links or image tags
whose target location is expressed relative to the URL of the current resource. One
typical use of this feature is to create a directory of images and icons containing a
common appearance for a site. A link to one such image might look like
Ñ../images/logo.gifì. To ensure that versioning support will not break links in HTML
documents containing relative URLs, versioning support should not disrupt relative
URLs. A corollary of this requirement is, if a set of resources is arranged in a URL
hierarchy before they are placed under version control, then this hierarchy should be
the same after the resources are version controlled.

The primary effect of this requirement is to constrain the types of changes that can
be made to the URL namespace to support versioning. URLs do not have any support
for adding revision identifier information, and several schemes have been proposed to
address this deficiency. One commonly suggested scheme is to place all the revisions
of a versioned resource in a collection that has the original name of the resource. In
this scheme the URL for revision 1.1 of Ñindex.htmlì would be Ñindex.html/1.1ì.
However, such a scheme would disrupt relative URLs, since it introduces an extra
hierarchy layer. This particular scheme also has the drawback of not handling
versioned collections well.

In the design of the protocol, there is a tension between giving every revision its
own URL, and not disrupting relative URLs. Since URLs do not have provisions for
expressing revision identifier information, once each revision is given its own URL,
every resource which used to have a single URL before it was versioned now has
multiple URLs, one for each revision. These URLs need to go someplace in the URL
namespace, and it is likely they will not end up at the original URL of the resource.
Current designs address this tension by creating separate spaces for the revision URLs
and the Ñeditì URL, the location where the resource is actually edited. At the edit
URL location, the behavior of relative URLs in links will be preserved, while relative
URL links may not work at the revision URL location.

Providing configuration management support for Web sites containing relative
URL links has the implication that these links depend on a specific hierarchical
structure of the site. Since the site hierarchy is expected to change over time, it does
raise the possibility that a configuration of web pages could be created where the
relative URL links are broken. This could occur in a snapshot of a Web site that is in
the middle of modifications during a site redesign. As a result, the requirement that
versioning should not disrupt relative URLs is interpreted as meaning if the relative
URLs worked when the resources were not versioned, then once the same set of
resources is placed under version control, relative URLs in the same configuration

196 E. James Whitehead, Jr.

should still work. Or, put another way, if the relative URL links do not work, this
should be the result of an operator action, and not the result of URL namespace
restrictions imposed by the Web versioning system.

Once a separation is made between the edit URL space, and the revision URL
space, the edit URL becomes a window, or a view, onto a versioned resource,
associated with one of the revisions in a versioned resource. This leads to the
following requirements on the capabilities supported by the edit URLs.

3.9 Read Requests on a URL to a Versioned Resource Should Return a
Default Revision

If a non-versioning aware client, such as a current generation Web browser, makes a
read request at the URL for a versioned resource (a.k.a., an edit URL), it is desirable
for the server to reply with some default revision. Likewise, it is desirable to be able
to set this default revision. This goal is a subset of the following, more general
requirement.

3.10 A Mechanism Must Exist for Associating a Particular Revision to a URL
for a Versioned Resource

When a request is made against a URL for a versioned resource (a.k.a., an edit URL),
which specific revision is returned? The answer to this question depends on the
current work being performed. When making a change, the answer will be the latest
stable configuration, except for the changes just made.

To address this goal, the Delta-V design employs the notion of a workspace, which
acts as a mediator between the edit URL space and the revision URL space by using a
set of revision selection rules to choose a specific revision for each edit URL. The
expectation is that each user will have their own workspace, and as a result,
workspaces support parallel development since each user can have the semblance of
their own private working space. The server performs the action of evaluating the
revision selection rules of the workspace, associating a revision URL with each edit
URL. To perform an action inside a workspace, a client passes both an identifier for
the workspace (as the value of an HTTP header) and a specific edit URL to the server.
The server evaluates the revision selection rule, and applies the operation to the
selected revision.

3.11 Some Properties on Revisions May Be Changed without Creating a New
Revision

This goal is motivated by the recognition that there are two types of properties. The
first type contains metadata about the resource, and this metadata is directly
dependent on the content of the resource. The second type of property is used for
protocol operations, typically to expose some system-maintained information about
the resource. Access control permissions are a commonly discussed example of this
kind of property, motivated by the desire to modify the access permissions of a
revision even after it has been checked-in.

Goals for a Configuration Management Network Protocol 197

3.12 A Mechanism Must Exist for Logically Grouping Sets of Changes to One
or More Versioned Resources

Frequently a single logical change, such as updating a link whose destination has
changed, requires modifications to multiple resources. A mechanism for mapping a
logical change to actual changes provides several benefits. It allows these mappings to
be preserved; without it, this information would need to be stored in comments, and
would be difficult to reconstruct. This mechanism can also be used to merge together
parallel work.

The Delta-V design makes use of the activity concept to support this goal. An
activity contains a set of versioned resources, and for each of these, one or more
revisions. An activity is not versioned. The Delta-V protocol allows an activity to be
merged into a workspace, supporting parallel work. If the act of merging an activity
into a workspace causes change conflicts, a conflict report is generated. A client is
expected to resolve these conflicts.

3.13 A Mechanism Must Exist for Creating Versioned Sets of Specific Revisions
of Versioned Resources

A primary feature of configuration management system is the ability to freeze
important configurations of the system for later retrieval and manipulation. While
similar to activities, configurations do have some differences. A configuration is
versioned, an activity is not. A configuration is used to create and store persistent
views of the state of an entire system, while an activity is used to represent a single
logical change to a part of the system.

3.14 Revision Operations

Goals for operations that should be supported by revisions are:

• Create a versioned resource from an unversioned resource and set its initial
revision to the contents of the unversioned resource.

• Check-out a revision in an activity
• Check-in a resource and either create a new revision (immutable revisions) or

update the existing revision in place (mutable revisions)
• Cancel a check-out
• Describe a revision with human-readable comments

These goals provide the operations needed to place an unversioned resource under
version control. A Delta-V enabled Web server will typically have part of its URL
namespace that is not versioned, part that is versioned, and part that is a mix of
versioned and unversioned resources.

Delta-V will use the library model for versioning, using a check-out operation to
make a versioned resource suitable for editing, and check-in operation to create a new
revision. It will be possible to cancel a check-out, if the entire edit operation needs to
be cancelled. Since it is a typical versioning operation to associate human-readable
comments with a particular revision, Delta-V will also provide this capability.

198 E. James Whitehead, Jr.

3.15 Label Operations

Goals for operations that should be supported by labels are:

• Apply a label to a particular revision
• Change the revision to which a label refers
• Retrieve all labels on a particular revision

An important use of labels is to provide a consistent, human-readable name that can
be used to decorate specific revisions in multiple versioned resources. These labels
can then be used within a revision selection rule by a workspace to create a consistent
set of resources that can be edited.

3.16 Activity Operations

Goals for operations that should be supported by activities are:

• Create and name an activity
• Check-out a revision in an activity
• Merge an activity into a workspace, possibly creating a conflict report
• Get a list of the resources modified in an activity
• Apply a label operation to all resources in an activity

Within Delta-V, activities are created by authors to organize related changes to
resources, and to provide a basis for parallel development and merging concurrent
changes to the same resource. An activity can contain revisions of multiple versioned
resources, and/or multiple revisions of the same versioned resource along a single
line-of-descent. The activity operations listed above give the critical functions a
protocol must support to provide activity functionality.

3.17 Configuration Operations

Goals for operations that should supported by configurations are:

• Create/delete a configuration
• Add/remove revisions from a configuration
• Use a configuration in a workspaceís revision selection rule to choose revisions

in that configuration.
• Determine the differences between two configurations by listing the activities in

one and not the other.

These operations provide the base set of capabilities needed to support configurations.
They allow a configuration to be created and populated with revisions. Once created,
a configuration can be used by a workspace's revision selection rule so to only select
revisions within the configuration, thus providing the ability to revert to a previous
configuration.

Goals for a Configuration Management Network Protocol 199

3.18 Internationalization

Since the Internet is in use around the world, it would be arrogant and inappropriate to
hard-code dependencies on any human language into the protocol. For the Delta-V
protocol, internationalization support means that any string used within the protocol
that would typically be displayed to a human operator must store sufficient
information such that it can display that string in most known human character sets.
Recent protocol specifications have met this requirement by supporting one of the
encodings of the ISO 10646 [16] standard, which encodes most known human
character sets. The contents of the string also needs to be augmented with the human
language of the string, so that it can be properly displayed, an issue with ideographic
languages where the display of the same character may vary across languages.

One aspect of the protocol affected by this requirement is revision labels, which are
definitely exposed to a human operator. Instead of using just an ASCII string,
internationalization requirements require a label to be a tuple of string, encoding, and
language. Storing multiple variants of each string (e.g., a Japanese and an English
representation of the same label) is not a requirement.

3.19 Security

Typically, configuration management systems operate within a single organization
where most users are known, and have often met other users in person. There is
inherently more trust in this situation than will exist on the Internet, where
collaboration may be taking place across organizations, or within a virtual
organization comprised of people from diverse geographic locations. These
collaborators may never have met each other in person. As a result, a protocol for
versioning and configuration management over the Internet needs to support strong
authentication so users can correctly be identified. This needs to be backed-up by
operational procedures that ensure authentication credentials are given to appropriate
people.

Furthermore, on the Internet the possibility exists that the traffic across a
connection may be spied upon. Since source code is often proprietary, and may
contain trade secrets, it is important that source code contents not be exposed during
transmission across the Internet.

The Delta-V protocol intends to leverage existing HTTP technologies to address
the dual problems of authentication and transport security. Digest authentication [10],
developed as an alternative to HTTP Basic authentication and mandated by
WebDAV, allows a client to send a multiply one-way hashed username/password pair
to the server to authenticate the client to the server. Since Delta-V uses HTTP, the
Transport Layer Security (TLS, more widely known as SSL) [8] standard can be used
to encrypt a connection between client and server to prevent eavesdropping.

200 E. James Whitehead, Jr.

4 Related Systems and Protocols

Systems which are similar to those which would employ the Delta-V protocol can
roughly be categorized as either Web-based or distributed versioning and
configuration management systems. Though the Web-based systems can rightly be
viewed as a subset of the class of distributed systems, they are examined here
separately due to the focus on Web support in this paper. Selected systems from each
category are described below to highlight their differences and similarities to the
Delta-V work.

4.1 Web-Based Systems

There has been interest in providing versioning support for the Web from its very
inception. Tim Berners-Lee, in his original design notes on the Web describes as
important the issue, Ñkeeping track of previous versions of nodes and their
relationships.ì [6].

Initial work on Web versioning concentrated on browsing the contents of version
repositories. An early paper describing this capability is [20], where the authors
highlight the need for version support in digital libraries, and provide this support via
a CGI script which interprets Ñ,{version identifier}ì at the end of a URL as a request
to retrieve that revision from an RCS repository. This idea has recurred in the
literature, most recently in [25], which presents a module for the popular Apache Web
server [2] that interprets URLs appended with a Ñ:{version identifier}ì or a Ñ:{date}ì
as a request to retrieve either the specific revision, or the revision that was current as
of the date. This approach suffers from two drawbacks which preclude their use in a
versioning protocol standard. First, URLs are intended to be opaque, with no meaning
encoded into their syntax. Since there are relatively few reserved characters in URLs,
if meaning is encoded into URLs, this extra meaning will likely use these reserved
characters, and over time lead to semantic collisions between extensions. While an
individual server may choose to constrain its URL namespace and use one of these
extensions, it is improper for a standard to constrain all server namespaces in this
way. The second drawback is that the interior path elements of a URL cannot be
easily extended, and hence the technique falls short when identifying a specific
revision of a versioned collection.

Another common architecture for adding versioning services to the Web is the
Ñform fill-inì style. Examples of this type of system are BSCW [4] and WWRC [23].
These systems share the approach of using HTML pages to create the user interface to
a revision control system. Commands are either appended to URLs, or sent to the
system using the HTTP POST method, which has a sufficiently broad definition that
different remote procedure call mechanisms can tunnel through it. Internet content
types attuned to helper applications on the client side help the transfer of information
from server to client for editing.

A more sophisticated architecture for adding versioning to the Web is the ÑJava
helper app.ì approach. In this technique, a Java application is downloaded into the
browser, and acts as an intermediary between a version control repository and the
userís local environment. This technique is employed in the WWCM [15] and MKS

Goals for a Configuration Management Network Protocol 201

WebIntegrity [18] systems. Similar to these is the WebRC system [12], which uses
the CORBA RMI protocol instead of HTTP. WWCM will be discussed as an
exemplar of this approach. In WWCM, a Java application running in the browser
initiates most versioning and CM operations, but due to the security model of Java
which prevents a browser-based application from writing to the local filesystem, it
also requires the use of a second helper application which is free from this restriction.
Since direct communication between the browser application and the helper
application is not permitted, WWCM must employ a circuitous sequence of three to
four network round trips to perform check-out and check-in operations. While
WWCM is an exemplar of the kind of CM functionality which can be integrated with
the Web using only existing standards, the awkwardness of the two applications and
the multiple network round trips highlights the need for developing extensions to the
core standards to better support this capability.

Web-based versioning and CM systems assume that the Web server is responsible
for maintaining the predecessor and successor relationships between revisions.
However, one proposal [19], based on research at NTT Labs., suggested using the
(now deprecated) LINK method in HTTP to have client-maintained relationships
between resources in a version history. Though not adopted by the Delta-V effort, the
idea has the advantage that version graphs can span multiple servers without requiring
cooperation between these servers. However, it has the drawback of making
operations that span the version history expensive. For example, in such a system it
would be difficult to use labels, since ensuring the uniqueness of a label requires a
traversal of the version history, an action which may span many servers, some of
which may be unavailable due to network outages at any given moment. It also has
the drawback that clients must be well-behaved ó a single misbehaving client could
corrupt a revision history.

A different take on client-side versioning is VTML [27], which augments HTML
to store all modifications to an HTML file internal to the HTML file, essentially
making each HTML file its own version store. Clients which support authoring of
VTML documents are responsible for maintaining the internal revision structure. One
major benefit of this approach is that it easily supports simultaneous collaborative
authoring of the same HTML file. Since VTML stores all changes to a file, no locking
is necessary as the overwrite problem cannot occur because no data is ever
overwritten.

4.2 Distributed Configuration Management

A common problem faced by Delta-V, ClearCase [22], and by n-DFS [3], is the desire
to improve a pre-existing system by adding CM support. Both ClearCase and n-DFS
add this support to the filesystem, and hence the low-level interface to data stored in
the system is via operating system library calls. In contrast, since Delta-V is building
upon the Web, access to data is via HTTP, not operating system calls, and this
introduces new design flexibility ó for example, the semantics of namespace
bindings (akin to Unix hard links) can be tailored to the needs of versioning.
However, unlike ClearCase multisite [1], and n-DFS, Delta-V is not initially planning
on providing facilities for repository to repository replication, although one design

202 E. James Whitehead, Jr.

goal for Delta-V is to ensure adding such services in the future is not prohibitively
difficult.

NUCM [14] is a client-server CM system in which a NUCM client interacts with a
remote NUCM repository server using primitive operations, upon which are
implemented higher-level CM styles. In this respect, NUCM is similar to the NTT
Labs. work [19] in that the client is responsible for maintaining the consistency of
relationships in the remote repository.

Remote CVS [5] is a client-server CM tool in wide use on the Internet today, with
a proven track record of supporting open source development projects. It uses its own
human-readable non-HTTP protocol [17], which consists of a stateful connection
where the client issues one-line commands that may elicit a reply, depending on the
command. The cvsweb [29] utility provides a Web forms-based interface to a CVS
repository. Another recent non-HTTP protocol for remote CM is [21] which presents
a client-server protocol which uses ASN.1 as its marshalling syntax.

Acknowledgements

The discussion of goals in this document was based on the consensus goals document
developed by the Delta-V design team, Jim Amsden, Alan Babich, Geoff Clemm,
Bruce Cragun, Chris Kaler, Jeff McAffer, Bradley Sergeant, John Stracke, and the
author. The author has contributed to, but is not solely responsible for the content of
this consensus goals document. The current goals document is itself based on an
earlier goals document by Judith Slein, Fabio Vitali, and David Durand. Discussions
on versioning with the WebDAV design team, Yaron Goland, Asad Faizi, Steve
Carter, and Del Jensen also helped crystallize my understanding of these issues.

References

1. L. Allen, G. Fernandex, K. Kane, D. Leblang, D. Minard, J. Posner,
ÑClearCase MultiSite: Supporting Geographically-Distributed Software
Development.ì In J. Estublier (ed.) Proc. SCM-4 and SCM-5, Software
Configuration Management: Selected Papers, LNCS 1005, Springer-Verlag,
SCM-4 and SCM-5, 1995, pages 194-214.

2. Apache Server Project, ÑApache Projectì Web site. http://www.apache.org/,
April, 1999.

3. D. Belanger, D. Korn, H. Rao, ÑInfrastructure for Wide-Area Software
Developmentì In I. Sommerville (ed.), Proc. SCM-6, Software Configuration
Management: Selected Papers, LNCS 1167, Springer-Verlag, ICSEí96, SCM-
6, Berlin, Germany, March 25-26, 1996, pages 154-165.

4. R. Bentley, T. Horstmann, J. Trevor, ÑThe World Wide Web as enabling
technology for CSCW: The case of BSCWì In Computer Supported
Cooperative Work: The Journal of Collaborative Computing, vol. 6, nos. 2-3,
1997, pp. 111-134.

Goals for a Configuration Management Network Protocol 203

5. B. Berliner, ÑCVS II: Parallelizing software developmentì In Proc. Winter
1990 USENIX Conference, January 22-26, 1990, Washington, DC, pages 341-
352.

6. T. Berners-Lee, ÑVersioningì, A Web page that is part of the original design
notes for WWW. http://web1.w3.org/DesignIssues/Versioning.html

7. T. Bray, J. Paoli, C. M. Sperberg-McQueen, ÑExtensible Markup Language
(XML) 1.0ì World Wide Web Consortium Recommendation REC-xml,
February, 1998.

8. T. Dierks, C. Allen, ÑThe TLS Protocol Version 1.0ì Certicom. Internet
Proposed Standard Request for Comments (RFC) 2246, January, 1999.

9. R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, T. Berners-Lee, ÑHypertext
Transfer Protocol -- HTTP/1.1ì U.C. Irvine, DEC, MIT/LCS. Internet Request
for Comments (RFC) 2068, January 1997.

10. J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, L.
Stewart, ÑAn Extension to HTTP: Digest Access Authenticationì
Northwestern University, CERN, Spyglass, Microsoft, Netscape, Spyglass,
Open Market. Internet Request for Comments (RFC) 2069, January, 1997.

11. N. Freed, N. Borenstein, ÑMultipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodiesì Innosoft, First Virtual. Internet
Request for Comments (RFC) 2045, November, 1996.

12. P. Fröhlich, W. Nejdl, ÑWebRC: Configuration Management for a Cooperation
Toolì In R. Conradi (ed.), Proc. SCM-7, Software Configuration Management,
LNCS 1235, ICSEí97, SCM-7, Boston, MA, May 18-19, 1997, pages 175-185.

13. Y. Goland, E. Whitehead, A. Faizi, S. Carter, D. Jensen, ÑHTTP Extensions for
Distributed Authoring -- WEBDAVì Microsoft, U.C. Irvine, Netscape, Novell.
Internet Proposed Standard Request for Comments (RFC) 2518, February,
1999.

14. A. van der Hoek, ÑA Generic Peer-to-Peer Repository for Distributed
Configuration Managementì In Proc. 18th International Conference on
Software Engineering (ICSE 18), Berlin, Germany, March, 1996, pages 308-
317.

15. J. J. Hunt, F. Lamers, J. Reuter, W. F. Tichy, ÑDistributed Configuration
Management via Java and the World Wide Webì In R. Conradi (ed.), Proc.
SCM-7, Software Configuration Management, LNCS 1235, ICSEí97, SCM-7,
Boston, MA, May 18-19, 1997, pages 161-174.

16. ISO/IEC, ÑInformation Technology ó Universal Multiple-Octet Coded
Character Set (UCS) ó Part 1: Architecture and Basic Multilingual Planeì,
May, 1993, with amendments.

17. J. Kingdon (and others at Cygnus Support), ÑCVS Client/Serverì, a description
of the CVS client/server protocol distributed in the CVS source distribution in
file Ñcvsclient.psì, initially written 1994, with ongoing revision.

18. Mortice Kern Systems, ÑWeb Integrityì Web site.
http://www.mks.com/solution/wi/, April, 1999.

19. K. Ota, K. Takahashi, K. Sekiya, ÑVersion management with meta-level links
via HTTP/1.1ì Internet-Draft (expired), draft-ota-http-version-00, November,
1996. http://www.ics.uci.edu/pub/ietf/webdav/draft-ota-http-version-00.txt

204 E. James Whitehead, Jr.

20. R. Pettengill, G. Arango, ÑFour lessons learned from managing World Wide
Web digital librariesì In Proc. of the Second Annual Conference on the Theory
and Practice of Digital Libraries, Austin, TX, June 11-13, 1995.

21. S. Ramaswamy, ÑVersion Control Protocolì Internet-Draft, work-in-progress,
draft-ramaswamy-version-control-00, February, 1999.
http://www.ics.uci.edu/pub/ietf/webdav/ versioning/draft-ramaswamy-version-
control-00.txt

22. Rational Software, ÑClearCase: Configuration Management, Software
Development Teamsì Web page. http://www.rational.com/products/clearcase/,
April, 1999.

23. J. Reuter, S. Hänßgen, J. J. Hunt, W. F. Tichy, ÑDistributed Revision Control
Via the World Wide Webì In I. Sommerville (ed.), Proc. SCM-6, Software
Configuration Management: Selected Papers, LNCS 1167, Springer-Verlag,
ICSEí96, SCM-6, Berlin, Germany, March 25-26, 1996, pages 166-174.

24. J. Stracke, J. Amsden, ÑGoals for Web Versioningì Internet-Draft, work-in-
progress, draft-ietf-webdav-version-goals-00, February, 1999.
http://www.ics.uci.edu/pub/ietf/webdav /versioning/draft-ietf-webdav-version-
goals-00

25. J. Simonson, D. Berleant, X. Zhang, M. Xie, and H. Vo, ÑVersion augmented
URIs for reference permanence via an Apache module designì In Proc.
WWW7, Computer Networks and ISDN Systems, vol. 30, nos. 1-7, Brisbane,
Australia, April 14-18, 1998, pages 337-345.

26. W. Tichy, ÑRCS - A System for Version Controlì Software - Practice and
Experience, vol. 15, no. 7, July 1985, pages 637-654.

27. F. Vitali, D. Durand, ÑUsing Versioning to Provide Collaboration on the
WWWì In Proc. WWW4, Fourth Intíl World Wide Web Conference
Proceedings, World Wide Web Journal, Vol. 1, No. 1, Boston, MA, USA,
1995, pages 37-50.

28. E. J. Whitehead, Jr., Y. Y. Goland, ÑWebDAV: A network protocol for remote
collaborative authoring on the Webì In Proc. of the Sixth European Conf. on
Computer Supported Cooperative Work (ECSCWí99), Copenhagen, Denmark,
September 12-16, 1999.

29. H. Zeller, B. Fenner, and H. Nordström, ÑHenís cvsweb CVS Repositoryì
Web page, http://linux.fh-heilbronn.de/~zeller/cgi/cvsweb.cgi/, April, 1999.

CM Strategies for RAD
Version 1.0

Darcy Wiborg Weber
darcy@continuus.com

Continuus Software Corporation
108 Pacifica, 2nd Floor

Irvine, CA 92618

Abstract. SCM provides many well-known benefits for traditional software devel-
opment. It enables software teams to develop quality software in a timely and pre-
dictable manner. However, some teams who are doing Rapid Application
Development, also known as RAD, sometimes feel that standard SCM processes
have too much overhead for their quickly moving team members. In fact, some
teams choose to forego SCM altogether when in rapid development mode, because
they think it slows them down. Is RAD really incompatible with SCM? This paper
explores the relationship between SCM and RAD, provides some strategies to keep
SCM from hindering RAD, and describes some ways in which SCM can help
teams develop applications more rapidly.

1 Introduction

Software is being developed more quickly than ever before. Environments such as
Visual Studio provide fully integrated development tools and packaged controls that
enable rapid prototyping of complex applications. Tools such as Rational Rose can
generate application code based on system models. GUI builders abound, both for
traditional software development and web development. Software that once took
months or years to develop can be put together in just weeks or even days. Companies
publish changes to their web sites daily, sometimes hourly.

These rapid methods of software development are known as Rapid Application
Development, or RAD. RAD teams may have many of the following characteristics:

• They are working on a new product that has not yet been shipped.

• Developers often must work closely together on new features.

• Team members are adding new files on a regular basis.

• They have a general sense of the tasks that need to be done, but often discover
additional tasks as the features they implement become better defined. The
project plan may not be as detailed or well-defined as for traditional software
projects.

• Developers may be using tools to quickly prototype or generate their software,
such Microsoft's Visual Studio or FrontPage, or Rational Rose.

• The team is not doing exhaustive product testing, and may not even have a regu-
J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 204-216, 1999.
c Springer-Verlag Berlin Heidelberg 1999

lar build cycle yet.

The benefits of SCM are well known. However, some RAD teams feel that standard
SCM processes have too much overhead for their quickly moving team members.
Typical SCM capabilities such as tracking each change individually, insulating
developers from each others' untested changes, and managing build areas may be
more than a RAD team needs at a given point in time, especially when developing a
new application. RAD teams need to be able to relax tight SCM restrictions when it
makes sense; likewise, it is important for them to understand the tradeoffs of doing so,
so they can make informed decisions about the risks involved. In addition, some
processes that look like overhead can actually help you develop more rapidly.

This paper describes some SCM process alternatives for RAD teams and discusses the
tradeoffs of using those strategies. Ultimately, the paper offers some ways that SCM
tools can help teams meet their rapid application development goals.

2 SCM Process Alternatives for RAD

One option for RAD teams is no SCM at all. Although most of us would never even
consider this an option, many RAD teams do, because they feel that SCM practices
slow them down. Of course, the drawbacks of this decision are numerous: the team
has no insurance against lost work, bugs may reappear in later versions of the software
after they were fixed, developers may overwrite each others' changes, the product
quality may suffer, and the team may not be able to reproduce and maintain the
software after it is released. To be successful, it is essential for a RAD team to follow
some SCM practices even if they do not use an SCM tool.

At Continuus, we've noticed that RAD is becoming much more common at our typical
customer site, and we've spent some time working with those teams to find ways they
can be successful while using SCM. Although we cannot recommend these
alternatives as best practices for SCM, they are practices that enable RAD teams to
accomplish their goals and yet incorporate some important benefits of SCM. These
practices are not specific to any particular SCM tool, although some of them assume
the SCM tool or environment has certain features.

The process alternatives for RAD teams discussed here fall into the following
categories:

• Alternative build and test cycles

• Less formal change management

• Closer sharing between developers

• Ways to manage rapid configuration changes

Each of these topics is discussed in detail on the following pages.

2.1 Alternative Build and Test Cycles

Mature traditional software development teams often have a process that incorporates
two or more stages of testing. The first stage might be categorized as integration
testing, where changes from different developers are gathered and tested together.

205CM Strategies for RAD

Later stages might involve regression testing, system testing, performance testing, and
so on. [Con98a] SCM enables you to configure the software that will be tested in each
of these phases and implement the build-and-test process. All these test stages are
probably overkill for some RAD teams, especially those working on prototypes or
brand new systems.

• Add Test Stages as Needed. Although most teams will need a full test process
before the software is eventually released, you will probably want to start out
small and grow the build-and-test process as you need it. You can start out with
only unit testing by the developers. Later, as developers start to spend a fair
amount of time solving integration problems when they get each others' changes,
or when it becomes difficult for each developer to build the system for unit test-
ing, it is probably time to add an integration testing stage to the process. Later, as
your team needs to prepare for a release, you can add more testing stages as
needed, in order to insulate a particular configuration of the system and add only
the changes that are approved for the release.

For each testing stage, all the standard SCM principles apply: the integration
build process should be automated and repeatable, it should use a clean environ-
ment, it should analyze dependencies and rebuild everything that has changed,
and so on. [Con98a] Many commercial SCM tools can help you implement the
build-and-test process, whether you have one test stage or ten.

• Have a Way to Roll Back. If your team doesn't have time for in-depth testing
before releasing changes, it is critical to have a way to roll back to the last good
configuration. This is typical for teams who develop and maintain web sites; they
may publish updates to the live site multiple times per day, sometimes without
even trying the change in the context of the entire site. In case of a critical error,
a saved copy of the last good configuration can save the day.

2.2 Less Formal Change Management

Here the term change management means the overall process of managing changes to
software [Con98b]. This includes a combination of change tracking (tracking
software defect reports and enhancement requests) and change packages (the actual
code changes, grouped into packages that represent logical changes) [Ovum96].

• Use Relaxed Change Tracking. Most RAD teams don't need a complex lifecy-
cle for tracking changes or a formal change review process; rather, they want the
developers to be able to fix problems immediately upon finding them and proto-
type enhancements as they get new ideas. They need a simple, lightweight repre-
sentation for logical changes: not much more than a short description of the
change and a reference to the files that have changed. (We will call this a task.)
For RAD, the task lifecycle could be very simple: its only states might be
assigned and completed. Developers must be able to create and assign their own
tasks, preferably in one step.

The drawback here is that there is not much control over what changes go in - but
that's exactly the point! The change management policies can change when there
is a need for tighter control.

206 Darcy Wiborg Weber

• Use Less Granular Change Packages. Some developers in RAD mode will
find using one task for every individual software change too much overhead.
Developers may be working quickly, working out details of designs that were not
broken down into specific tasks, making unanticipated changes, or switching
between many different changes in progress. While there are many benefits to
tracking every change by task, it is extra work for developers to remember to cre-
ate new tasks when needed, and to remember to use the appropriate task every
time they switch to working on a different change. In this case, a developer may
choose to use one task for multiple changes, for example, one task for a group of
loosely related changes that take a day or two to implement. He would create a
task when he starts the set of changes, and then complete the task (thus checking
in its related code changes) when he reaches a logical breaking point. This way
he doesn't need to do so much "accounting," but his changes are kept together
and are made available to other users on a regular basis.

Developers should be sure to check in sets of changes that are complete and will
build, so as not to break other developers' work areas. They should also complete
their tasks frequently, every day or two if possible, to prevent divergence from
and ensure ongoing integration with other developers' changes. [Ber96] (These
issues are not so important if developers are working on modular sections of the
application and don't need each others' code in order to build, or if they are work-
ing on an application such as a web site where their changes don't deeply affect
the quality of other users' work.)

The main drawback is that you won't see the complete benefits of change pack-
ages, since the units of work represented by these tasks are not as meaningful as
they would normally be. For example, you cannot pull out or propagate an indi-
vidual change that is bundled in with others; a developer must do it by hand.
Likewise, the system cannot report on exactly which changes are included in a
configuration, and will not be able to detect configuration conflicts on a detailed
level. In addition, you won't be as successful at tracking the progress of tasks
against your project plans and schedules. These drawbacks may be insignificant
during the early development stage of your project, and you can use more mean-
ingful tasks later in your project.

• Work Offline and Reconcile Changes. Some developers may find working
directly in an SCM environment to be too much overhead, especially if they are
in a prototyping phase where it is common to throw away changes and start over
frequently, or if they use a tool that generates unpredictable numbers of files,
files with unpredictable names, or both. They don't want to track every change or
check in every new file until they reach a point where they are ready to save what
they have developed. In this case, they may choose to work offline from the SCM
system, perhaps in a work area that was prepared by their SCM system, and then
reconcile the differences between the work area and the SCM repository when
they reach a point where they want to save those changes. [Con98c] This is a
variation of the last option (use less granular change packages) because the task
represents the set of changes made between reconciliations.

207CM Strategies for RAD

This methodology includes the drawbacks described earlier for less granular
change packages, plus a more serious one: users may lose valuable changes and
cannot fall back to intermediate versions. However, this may be an acceptable
risk for the sake of less overhead. Teams who use this methodology should
ensure that their work areas are backed up on a regular basis.

• Don’t Use Change Packages. Some teams may choose to forego using change
packages altogether, and simply check in individual objects. In doing so, they
give up a myriad of benefits: the relationships between the objects that changed
and which depend on each other, the ability to easily share a specific change with
another developer or build a configuration containing a particular set of changes,
progress tracking, reporting, automated conflict detection, and the conveniences
provided by tasks, such as the ability to check in a set of changes in one step.
[Web97]

2.3 Closer Sharing between Developers

Typical SCM methodologies insulate developers from each others' changes until the
changes have passed testing, or at least until the changes are complete. (It is very
difficult to test your own changes when your work area is changing without your
knowledge. [Con98b, Per98]) However, in RAD, it is common for developers to work
closely on features, and to want to share changes with one another before those
features have passed testing or even before they are complete. Also, some RAD
projects, such as web development, do not share the same need for insulation as
traditional software development. [Con98c]

You will probably want developers to share changes using one of the following
alternatives:

• Share Completed Changes. When you update your personal work area, include
all tasks that have been checked in by other users, regardless of whether they
have been tested. Often, RAD projects have no formal integration testing pro-
cess, so this is necessary. The drawback is that a developer's productivity can be
affected by quality problems in other users' work, and he may end up spending
significant time integrating incompatible changes that aren't even his.

• Share Partial Changes. When you update your personal work area, pick up all
individual objects that have been checked in up to the moment. Note the differ-
ence between this alternative and the previous one: with this alternative, develop-
ers will pick up each others' changes even for tasks that are still assigned, as long
as the individual object associated with the task has been checked in. They will
not see each others' checked-out objects (those objects that are still changing) in
either case.

The drawback is that it is even more likely for developers to break each others'
work areas, because they will be seeing partial changes. However, they can coor-
dinate with each other by checking in only those changes that others need to see,
and keeping the rest checked out until the change is complete and will build cor-
rectly.

208 Darcy Wiborg Weber
• Share Changes in Progress. Note in the previous scenario that developers saw

each others' changes only after the changes were checked in. If your team needs
to work together even more closely, you may choose to share code even while
others are still modifying it.

Of course, including objects in your work area that other developers are still
modifying is likely to break your builds on a regular basis. Only developers who
truly need to work this closely should use this methodology. (This alternative is
safer for certain types of projects, such as web content development, where there
is no build process and incompatibilities do not typically have a catastrophic
effect on team members.)

• Share Work Areas. It is possible for two or more developers to share a single
work area for their work. In this case, they see all of each others' changes imme-
diately. This works well only for projects in which developers do not need to
build (for example, a web site), or projects that are modularized such that each
developer works in his own area and the areas do not overlap. It is important to
select an "owner" for each shared work area who is responsible for administra-
tion activities such as updating the work area. He can coordinate with the other
team members so that these activities do not interfere with their work. At Contin-
uus we've found that shared work areas work well for web content developers,
but not very well for more traditional software development. It is important to
understand the issues and consider carefully before trying this alternative.
[Con98c]

2.4 Ways to Manage Rapid Configuration Changes

When a team is working on a new software application, developers often create new
files frequently, perhaps many per day. Developers may be generating new files or
creating them manually.

Some advanced SCM systems manage your directories as well as your files. They can
keep track of which files are contained in each directory. Whenever a file is added to a
directory, the directory will be checked out, since it is being modified. [Con98b]
(Some SCM systems let you use other types of groupings in addition to directories,
but the issues - and recommended solutions - are the same.)

Therefore, if your site allows parallel check out, it is possible for several developers to
check out parallel versions of a given directory if they need to add files to that
directory at about the same time. For example, if Chris adds the file colors.h to the incl
directory, and before he has checked in his change, Gennie adds the file defaults.h to
the same directory, each will have a checked out version of the directory, and the
versions will be parallel. Alternatively, if your site does not allow parallel check out,
Gennie would need to wait until Chris has checked in his change before she could add
her new file.

Managing directories in this way enables the SCM system to save earlier versions of
your configuration, and to detect missing files that should be in a directory. [Web98]
However, you can imagine that the notion of having parallel versions of a directory
and of merging two directories is pretty foreign to most developers. Likewise, waiting
until someone else checks in his change before you can make yours does not make for

209CM Strategies for RAD

rapid development. Because of this, you should consider one of the following
strategies to help your team either avoid creating parallel directories or ensure that
they get merged.

• Create Files Up Front. Think about your project structure ahead of time and
create all the files up front. Create them empty, and developers can check out
from them to add the contents later. This is the best strategy for handling this sit-
uation; however, it is not always possible to anticipate every file you will need,
or to know the names of the files if you are using a tool to generate the files.
Even if you are able to create many of the files up front, consider one of the strat-
egies below for handling parallel versions of directories if they should occur.

• Add the New File First, then Update It. Whenever a developer adds a new file,
have him add the new file first, then check in the task (and associated empty file
and updated directory) immediately. After that, he can check out from the empty
file to make his changes. This way the directory is checked in and available to
other developers immediately, so they are less likely to create parallel versions
and will not need to wait to make their changes.

• Work Offline and Reconcile Changes. This methodology was described on
page 4. It is worth mentioning again here because it enables the developer to
make a change and unit test it without checking out any directories. The directo-
ries get checked out when the developer is finished and reconciles the work area
with the repository. This works well in Java development environments where
the number and names of the files that will be produced by the compiler are
unpredictable. [Gei98]

• Appoint a Directory Merge Guru. Appoint one team member (possibly the
team lead) to keep an eye on directories and merge any parallel versions he finds.
This user needs to understand why parallel directories can occur and how to
merge them. He should check for parallel checked-in directory versions at least
once per day and merge them at that time, so that other developers will get all the
latest changes when they update their work areas.

• Use Open Directories. It may be possible in your SCM system to set up directo-
ries so that all developers can modify them. This prevents parallel directories
from occurring. However, before choosing this strategy, you should be aware
that it has some serious drawbacks: it may be possible for developers to over-
write each others' changes if they modify the directory at exactly the same time.
It is also possible that developers will break each others' builds, since they will
get changes to these directories immediately as they occur, before the other
developer's change is complete or tested.

3 How SCM Can Help

The previous section described some ways to keep SCM from hindering your team on
a RAD project. At this point, SCM may seem like the antithesis of RAD! Luckily, it's
not. We've found that there are many ways SCM can make application development
more rapid.

210 Darcy Wiborg Weber

There are a number of well-known best practices for developing high-quality software
as quickly as possible. They may not necessarily speed the individual developer's
personal tasks, but they do cut overall development time and improve productivity for
the team. They cross a wide variety of activities, from software development to
planning to scheduling to tools. These practices can enable you to deliver software
faster, reduce schedule risks and overruns, and make progress visible, dispelling the
appearance of slow development. [McC96a]

This section describes a number of practices that you can implement with SCM. You
will see immediate results from some of the practices, while others have a learning
curve or require some investment in infrastructure before you begin to see the
benefits. If your team is already using an SCM tool or process, you have already made
an investment in infrastructure that can be leveraged to help you develop software
faster and more efficiently. If your team is not using SCM, this section highlights the
benefits it can help you achieve. The practices described here include:

• Choose a software lifecycle.

• Don't make developers stop working while the software is tested.

• Build and test the software daily.

• Set small milestones.

• Use a stretch list.

• Measure your progress.

• Inspect your software.

• Reuse components.

Each of these practices is discussed in detail below.

3.1 Choose a Software Lifecycle

A software lifecycle describes the process you go through to plan, develop, test and
release your software. The benefit of a software lifecycle is that it provides a roadmap
for all team members, so that everyone knows how they fit into the big picture and
what happens next. [McC96a]

This practice decreases schedule risk by helping to define the steps in the schedule
and ensure that none are overlooked, and by avoiding confusion about what activities
should be happening at different phases of the project.

SCM directly supports the development, testing, and release portion of the lifecycle. It
can also help you integrate the planning phase with development, since tasks on your
schedule map to tasks that will become software changes. You can also use SCM to
version your requirements and functional specification documents, and then relate
those documents to the corresponding code for traceability. Some SCM tools provide
out-of-the-box development methodologies that support a variety of lifecycle models;
some also are integrated with scheduling or planning tools.

211CM Strategies for RAD

3.2 Don’t Make Developers Stop Working While the Software is Tested

When preparing software for a release or delivery, your goal is to achieve a particular
quality standard. To do so, you must restrict ongoing changes to the software while it
is being tested; the only changes that should be added are those that are approved for
that release. Unless you lock down the changes, your team may very well continue
introducing and fixing defects long past your scheduled release date. [Con98a]

On some teams, when it's time to lock down the code for testing, the developers must
stop checking in their changes; developers may do nothing in this phase but wait to be
assigned bug fixes that are approved for the release. The whole team comes almost to
a standstill while the release wraps up.

SCM can provide insulated areas for building and testing configurations, so that
developers can continue developing and checking in changes without affecting the
software to be released. It enables teams to work on parallel code streams in order to
develop two or more releases at the same time. Essentially, it enables your team to
multi-task.

3.3 Build and Test the Software Daily

\This involves building your entire software product on a daily basis and running a
series of tests (sometimes called "smoke tests" [McC96b]) to verify its basic
operations. If defects are found, developers fix them immediately.

This process has several significant benefits. The first is that your team finds basic
defects immediately after they are introduced. It is much easier to isolate the cause of
defects, and developers can fix the defects while the code changes are still fresh in
their minds. Another benefit is that your team integrates their changes on a daily basis,
rather than putting off integrations until late in the cycle. Integrating on a daily basis is
much less time-consuming than waiting, and minimizes schedule risks. One more
benefit is that your team can use the result of the build as a public test area, and see the
state of the software at that point in time. [McC95] This provides progress monitoring,
since everyone can immediately see how close the software is to completion. Overall,
this practice improves product quality and reduces the risk of schedule overruns due
to unexpected integration or quality issues.

Setting up insulated build/test areas and automating the daily build and test cycle is an
integral part of SCM.

3.4 Set Small Milestones

Small milestones are fine-grained targets on a schedule. Rather than tracking the
schedule by milestones that are weeks or months apart, you can set small milestones
by breaking every project into one- or two-day tasks.

In order to break down a project into one- or two-day tasks, you must analyze the
project well enough to understand each task and how long it will take. This lowers
your risk of having an inaccurate schedule. Another benefit is that you can see slips in
your schedule as they occur, and immediately take steps to correct the situation. You
can identify unrealistic estimates or bottlenecks early in your project, and recalibrate

212 Darcy Wiborg Weber

your schedule or adjust resources accordingly. A third benefit is that the visibility of
the milestones will help to motivate developers to meet their targets. Not only will it
be obvious when a developer misses his targets; it will also be visible when he meets
them.

Each small milestone can be treated as a task (a logical change) within SCM. If you
can store additional properties on a task, you can mark tasks with information such as
the priority and the estimated and actual time to complete each task. You can report on
the time estimates for all tasks assigned to a particular release or developer. You can
use the assigned tasks and their time estimates to measure progress against your
schedule, and possibly even to sync up your schedule with the current state of the
project.

3.5 Use a Stretch List

A stretch list is a list of enhancements that you'd like to include in a release but that
are not strictly required. These enhancements are typically scheduled near the end of
the development phase, so that they can be safely dropped off the schedule if the team
runs out of time.

A stretch list creates a safety buffer for your team in case of schedule slips or
changing requirements. More important, it makes hard decisions at the end of the
development cycle easier, because the team has agreed up front which items can be
cut.

If you treat each scheduled change as a task within SCM (as described earlier), you
can set a lower priority on stretch list tasks. Developers can use the priority to decide
which tasks to work on first.

3.6 Measure Your Progress

Software products and projects can be measured in a number of different ways. Such
measurements are often referred to as metrics. Examples of some useful metrics
follow:

• Milestone progress

• Accuracy of time estimates for development tasks

• Areas of code that have many defects or change frequently

• The rate of defects being found in the software both before and after release

• How quickly defects are addressed

Metrics give you information that helps you improve your software and process. This
benefit may not be fully realized right away, but it will pay off in the long run. It helps
you analyze which practices work well and which don't, and where you should devote
more resources to get certain types of gains. For example, software teams who are
working on a product release typically track the rate of defects detected in the
software over the final QA cycle. Although many teams don't even realize it, they are
using metrics to predict how many defects are still in the product to determine when
the software is stable enough to ship to customers.

213CM Strategies for RAD

When you begin using SCM, you begin accumulating raw data that can be used to
measure the team's results. For example, you might track estimated and actual time to
complete each task. This information enables you to note how accurately your team is
estimating its work and use it to adjust your estimates. If you find that the whole team
is falling behind schedule, you should review the estimation process used to create the
schedule. You can use this experience to improve your team's estimating skills and
correct schedule errors early in the project.

Your SCM system also provides valuable data on potential improvements to areas of
the code:

• Review areas of code that have many defects or change frequently for excessive
complexity or design flaws.

• Review areas with many enhancement requests or rejected problems (defects
closed as "working as designed") to identify potential usability problems.

• Determine which areas have many open problems but few closed ones, signify-
ing possible neglect.

You will probably want to inspect the code to look for potential improvements or
consider whether it needs a rewrite.

3.7 Inspect Your Software

An inspection is a formalized review of software or related artifacts. Prior to the
meeting, participants inspect the review materials using checklists of common errors.
During the meeting, they discuss the errors and point out potential problems. The
responsible developer uses this information to fix any defects that were found and
investigate potential issues.

Data shows that inspections are more effective at finding defects than execution
testing. Well-run inspections typically find between 50% and 70% of the defects in a
program. In addition, it takes less time to fix a defect found in a code review than one
found in execution testing, because execution testing finds only the symptom; the
developer must still locate the source of the error. And possibly the most compelling
reason for inspections is that the average cost of finding and fixing a defect increases
about 10 times with every step of the development process. [Hum97] Ultimately,
inspections will help you produce a higher quality product and minimize schedule
risks due to quality problems. In addition, inspections help to cross-train your team
and encourage code sharing and reuse.

SCM can make inspections a part of your process. It can trigger inspections by
informing users when a task is completed (and the corresponding objects are checked
in). You can also measure the effectiveness of your inspections by tracking the defects
in a change tracking system, marked as having been discovered during inspections.

3.8 Reuse Components

This involves building a repository of useful components and using them in different
software products. This practice enables you to quickly assemble new programs from
existing components.

214 Darcy Wiborg Weber

Reuse takes initial investment and planning. Before you can employ this practice, you
must develop (or purchase) a reuse library. The components must be developed in a
generic and standard manner. But in time, planned reuse can produce significant
schedule and effort savings. [McC96a]

By storing software and artifacts in a repository, SCM systems typically enable you to
reuse or share objects that were created by someone else. SCM systems also enable
you to store and track vendor code, helping you to customize it and merge your
changes into later releases.

4 Conclusion

This paper has suggested some ways RAD teams can use SCM without hindering
their rapid development. It also discussed some ways that SCM helps teams develop
applications more rapidly.

The moral of this story for SCM tool vendors is that SCM tools must be flexible
enough to let users employ a variety of processes, from simple to advanced. This
flexibility enables a team to start out with a simple process that requires only
minimum overhead, and grow into a more mature process later when they need it,
perhaps as their software nears release and maintenance.

The moral for RAD teams is not to give up on SCM, but instead consider alternative
methodologies. However, while doing so, it is important to consider the tradeoffs of
these alternative processes in order to recognize the risks and make an educated
decision about what is best for your team. And finally, SCM processes that, at first
glance, look like almost pure overhead can help you ship quality code faster.

Above all, remember that a process is not permanent. If an approach doesn't work
well for your team, you can reconsider and try a different approach. Pick an SCM tool
that is flexible enough to handle different alternatives and support ongoing process
improvement.

References
[Ber96] Steve Berczuk. Configuration Management Patterns. Proceedings of the

1996 Pattern Languages of Programs Conference. Washington University
Technical Report# WUCS-97-07. Available online at http://

world.std.com/~berczuk/pubs/PLoP96/plop96.html.

[Con98a] Continuus Software Corporation. 1998. Build Manager's Guide.

[Con98b] Continuus Software Corporation. 1998. Change Management for Software
Development. Available online at http://www.continuus.com/

developers/developersACED.html.

[Con98c] Continuus Software Corporation. 1998. Shared Projects.

[Dart96] Susan Dart. Not All Tools Are Created Equal. Available online at http://
www.adtmag.com/pub/oct96/fe1002.htm.

215CM Strategies for RAD

[Gei98] Barry Geipel. 1998. Java in the Enterprise: Managing Java Development
with Continuus/CM.

[Hum97] Watts Humphrey. 1997. Introduction to the Personal Software Process.
Addison Wesley Longman Inc. Reading, MA.

[McC96a] Steve McConnell. 1996. Rapid Development: Taming Wild Software
Schedules. Microsoft Press. Redmond, WA.

[McC96b] Steve McConnell. 1996. Best Practices: Daily Build and Smoke Test. IEEE
Software, Vol. 13, No. 4. Available online at http://

www.construx.com/stevemcc/bp04.htm.

[McC95] Jim McCarthy. 1995. Dynamics of Software Development. Microsoft
Press. Redmond, WA.

[Ovum96] Clive Burrows, George George, and Susan Dart. 1996. Ovum Evaluates
Configuration Management. Ovum Limited. London.

[Per98] Laura Wingerd and Chris Seiwald. 1998. High-Level Best Practices in
Software Configuration Management. Available online at http://

www.perforce.com/perforce/bestpractices.html.

[Web97] Darcy Wiborg Weber. 1997. Change Sets Versus Change Packages.
Software Configuration Management ICSE '97 SCM-7 Workshop
Proceedings. Available online at http://www.continuus.com/

developers/developersACEG.html.

[Web98] Darcy Wiborg Weber, 1998. Techniques for Detecting and Resolving
Conflicts in Software Configurations.

216 Darcy Wiborg Weber

Software Configuration Management:
State of the Art, State of the Practice

Karol Friihauf’ and Andreas Zelle?

I INFOGEMAG
lnfonnatiker Gemeinschaft fur Unternehmensberatung

Riitistrasse 9, CH-5401 Baden, Switzerland
Karol-Fruehauf@compuserve.com

Lehrstuhl fur Softwaresysteme
lnnstrabe 33, D-94032 Passau, Germany

zeller@acm.org

Universitat Passau

Abstract. Which are the open problems in Software Configuration Management
(SCM)? The purpose of this paper is to ignite a discussion on current and future
SCM directions. Based on the findings of a Dagstuhl Seminar on the current state
of Software Engineering, we assess the state ofSCM with the goal to identify
effective SCM tasks and solutions, to establish a core body of SCM knowledge,
and to denote remaining real-world SCM problems.

1 Introduction: An Assessment of SCM

Which are the open problems in SCM‘? Software Configuration Management (SCM)
is one of the few success stories in Software Engineering. All software organizations
admit the importance of SCM as a prerequisite for a coordinated software development.
Consequently, SCM is widely used-and with success. Already, the SCM tools market
is expected to be worth over a billion dollars [4].

The 1999 Dagstuhl Seminar on “Software Engineering Research and Education:
Seeking a new Agenda” [7] has joined experts in several Software Engineering fields to
take stock of the current state of Software Engineering research and education. Within
this Seminar, we have addressed this task for the SCM area-assessing the state of So@-
ware Conjguration Management. In particular, we have attempted to cover the ques-
tions:

What do we know? Which are the SCM tush and solutions that every practicing soft-

What should we teach? Which is the core body ofSCM knowledge that has been vali-

What should we know? What are the most important open SCMproblems?

ware engineer should be able to perform?

dated as useful in practice?

In contrast to earlier approaches, we have not searched for novel ideas “that should
keep researchers busy for the next several years” [31] or examined possible similarities
between some area X and SCM [10,341, but attempted to identify remaining real-world
SChfproblems-problems faced by today’s practitioners, yet not sufficiently addressed
by SCM research. This paper summarizes our results; its purpose is to ignite a discussion
on current and future SCM directions.

J. Estublier (Eds.): SCM-9, LNCS 1675, pp. 217-227, 1999.

© Springer-Verlag Berlin Heidelberg 1999

218 Karol Friihauf and Andreas Zeller

History
Traceability

Logging

CONSTRUCTION STRUCTURE

7 '

Workspaces
Conllicl ReSolmOn

Families
Conneclwi~

AUDITING

TEAM

Slatisliw
Status

Repons

ACCOUNTING

Access Control
Change RwUeStS

Bug Tracking
Change Propagation

Panilloning

PROCESS

CONTROLLING

Syslnm Model
Interfaces

Relaliolahipe
SeCectron

Consistency

Installation
Paramelerizatioon

lnstanl;atioon
Re-Configuralioo

1 DEPLOYMENT

Yereions
Configurations

Versions of Conllguralions
Baselines

Project Contexts
Repository

Kinds of Companents
_ ~ _ _ ~

COMPONENTS

Fig. 1. SCM Functionality Areas (after Dart [6])

2 Assessing SCM Solutions

In this paper, we have focused on those SCM solutions that are provided or supported
by some automated SCM tool or system, be it a research prototype or a full-fledged
commercial system. (This is just a matter of economy; if some solution has only been
proposed, but never realized, we will not regard it here.) Note that we do not consider
SCM organisational matters. The reason is not their irrelevance; in fact we are convinced
that SCM work procedures need to be defined in an organisation before any SCM tool
can be selected (which will of course backfire on the work procedures). The difficulty
is that as every organisation has its own flavour of work procedures, there is no such
thing as a solution.

Relying on Dart's survey [6], the functionality of SCM systems can be grouped into
two majorfitnctionality areas, as shown in Figure 1 .' The team-centered functionality
areas deal with the technical aspects of SCM:

Components. Identify, classify, store and access the components that form the product.
Structure. Represent the architecture of the product.
Construction. Support the construction of the product and its artifacts.
Team. Enable a project team to develop and maintain a family of products.

' Areas in italic are areas not covered in [6] that are now considered part of SCM

Software Configuration Management: State of the Art, State of the Practice 219

Deployment. Support the remote installation and maintenance of the product.

In contrast to the team-centered areas, theprocess-centered functionality areas cover
management issues:

Auditing. Keep an audit trail of the product and its process.
Accounting. Gather statistics about the product and its process.
Controlling. Control how and when changes are made.
Process. Support the management of how the product evolves.

For each of these areas, we shall discuss the state of the art, assessing available and
proposed SCM solutions-means that solve specific SCM tasks. Following the assess-
ment categories as elaborated at the Dagstuhl seminar [7], each SCM solution is ranked
according to five categories:

Effectiveness. How well does the solution work? This considers factors such as how
much of the task it covers and how good a solution it is to the problem posed by
accomplishing the task. Ratings are
- high (the solution is very effective),
- medium (the solution is somewhat effective), and
- low (the solution is hardly effective at all).

Affordability. The extent to which a typical software development organization can
afford to perform the solution. (Note that it may be that a solution is high cost, but
that an organization cannot afford not to use it.) Ratings are
- high (the solution is very affordable),
- medium (the solution is somewhat affordable), and
- low (the solution requires relatively high investment).

Teachability. The extent to which the solution can be taught in a university, includ-
ing the body of knowledge that must be conveyed to students and how well we
understand how to convey that body of knowledge. Ratings are
- high (we know how to teach the solution very well),
- medium (we know how to teach the solution to some extent), and
- low (we do not really know how to teach the solution).

Use in Practice. The class of users who have adopted the solution:
- laboratory users (LU) - researchers developing prototypes and models,
- innovators (IN) - willing to use early prototypes of the solution,
- early adopters (EA) -willing to use advanced prototypes
- earb majority (EM) - willing to be the first users of industrial-quality versions

- late majority (LM) - not willing to use the solution until there is considerable

Research Potential. The extent to which further research is supposed to increase ef-

of the solution

industrial experience with it.

fectiveness, affordability, teachability, or use in practice. Ratings are
- high (major breakthroughs can be expected),
- medium (substantial improvements are likely), and
- low (details may be improved).

220 Karol Friihauf and Andreas Zeller

3

We begin with a discussion of the solutions available in the team functionality area;
Table 1 on the next page summarizes our findings.

SCM Team Tasks and Solutions

3.1 Team

The notion of a workspace that isolates a developer from other’s work is crucial to
SCM. Generally, workspaces should provide their own structure, states for the config-
uration items and configurations, and access rights for the different functions in the
project [14]. The extent to which these requirements are met by SCM systems varies
from file-based checkmhheckout mechanisms as in RCS [28] over virtual file systems as
in CLEARCASE [181 or in n-DFS [131 to database-supported workspaces in ADELE [9].

However, since every SCM system provides means to generate, propagate, and apply
changes, every SCM system allows to simulate workspaceseven if the “workspace”
is but a developer’s private directory or a branch in the version graph. This problem is
thus considered solved.

With an uncontrolled propagation of changes, the chances for two or more people’s
changes interfering with each other are high; this leads to conJicts that must be resolved.
This merging of changes is still manual work. Textual merging is considered too unsafe
for many environments; the effectiveness of syntactic merging [33,3] and semantic
merging [16,2] has not yet been validated. Any solutions that ease the pain of manual
conflict resolution are likely to save valuable developer time; here is still work to do.

A group working together needs connectivity to propagate changes. Given a small
group with good interconnection, a central repository suffices for all project sizes.
Things get more difficult for multi-site, multi-organization software developments (so-
called virtual software corporations). Here, local copies of shared resources must be
replicated and cached; remote access must be designed such that cooperation is pos-
sible while avoiding total project disclosure. Although several commercial SCM tools
such as CLEARCASE [18] offer support for wide-area connectivity, the area remains
subject to further research.

3.2 Components

Managing the history of individual components is a well-understood SCM task. Tools
like SCCS [25] and RCS [28] are being used for more than two decades now. Efficient
means to store and retrieve huge amounts of versions in a repository are available and
have been thoroughly validated [171. Identzfiing and reconstructing a configuration by
means of its components or changes applied to a baseline is a task easily solved with all
available SCM tools. SCM at the component level may well be the SCM area that is best
understood of all.

3.3 Structure

Versioning of structures, i.e. systems of related components, is still not completely
solved. Let us start with the inventory of components-the system model. Most SCM

Software Configuration Management: State of the Art, State of the Practice 221

Ranking of SCM Solutions

Team
- Workspaces (individuals, groups) high high high LM low
- Conflict resolution (parallel work as the rule, low low med? IN high

- Local area connectivity high med high LM low
- Wide area connectivity (remote access, replication, med med med EA med

caching)
Components
- krsion management for components (revisions, high high high LM low

automated merging)

branches, checkoutkheckin, identification)
- Repository (storage issues, deltas) high high high LM low
- Configurations (baselines, parts lists, identification) high high high LM low
Structure
- System model (interfaces, relationships) med? low low LU med
- Version management for structures (renaming, med high high EA med

reorganization, retiring of subsystems with whole
history)

configurations)
- Selection (baselines plus change sets, generic high high high EM low

- Consistency (compatible versions) med? low low LU med
Construction
- Building (snapshots, optimization, dependencies) high high high LM low
- Regeneration (integrated with SCM) high med med IN med
Deployment
- Replication (on a medium) high high high LM low
- lnslallatron (in a consistent manner) med med low EM high
- Parameterization (customizing) med med low IN med
- Instantiation (running) med med low IN med
- Reconfiguration (dynamically) low low low IN high

Table 1. SCM Team Tasks

222 Karol Friihauf and Andreas Zeller

systems do not go beyond simple part lists; relationships and interfaces are barely sup-
ported, let alone versioned. (Exception to this rule are build dependencies, as discussed
in Section 3.4.) The extent to which system modeling is part of SCM is still being dis-
cussed [32].

Although several commercial SCM systems and even free tools like CVS [1 J allow
decent versioning of file hierarchies, issues like renaming or reorganizing structures are
still not handled in a fully satisfying manner.

All SCM systems offer methods to select specific configurations; the range goes
from tags as in RCS or CVS to elaborated rules as in CLEARCASE [I81 or ADELE [9] .
The organization of versions (or changes) within an SCM system, the version model, has
considerable impact on the way users interact with an SCM system [5] . Although it has
been shown that all existing versioning models can be unified to applying constrained
changes [37], the quest for user-friendly and intuitive SCM interaction continues.

A still open problem is how to identify and denote consistent configurations in pres-
ence of multiple variants. So far, systems like ICE [36] or CMA [24] are confined to lab
use only. On the other hand, one must ask whether variability at construction time-that
is, permanent variants-is still an SCM issue. In general, product variability is best han-
dled by theproduct and within the product. The more we design for change, the more
we abstract from system issues, the less variability we have at construction time, and the
more variability we have at run time. Although consistency issues may rise again within
the scope of dynamic reconzguration (see Section 3.5), efforts spent in variability may
thus better be directed towards software design.

3.4 Construction

The SCM task of building products can be summarized as “MAKE rules”. Virtually ev-
ery software product is built using MAKE [12] or one of its numerous descendants.
Significant improvements on the original MAKE include smart recompilation [29], par-
allel and distributed building [27], automatic dependency tracking [18], or caching of
derived versions [181. All of these are widely used today, and it is difficult to see room
for further improvements.

A more important problem is the traditional distinction between construction tools
(i.e. MAKE) and SCM tools (i.e. RCS), as this separation hampers the regeneration of de-
rived files. A notable exception and an example of good integration is the build facility
integrated in CLEARCASE [18].

3.5 Deployment

Deployment is a new field of SCM, traditionally subsumed under “maintenance”. Ac-
cording to Heimbigner and Wolf [151, deployment encompasses installation, parame-
terization. instantiation. and reconzguration; IS0 9000-3 also lists replication.

Replication means to make sure that the intended configuration is correctly and
completely copied on the medium chosen for delivery. Copying from master to an
EPROM, preparing a package with CD and paper documents, and putting the files
to an area from where they are electronically transferred to the customer site are all

Software Configuration Management: State of the Art, State of the Practice 223

techniques for replication. This is evidently a topic for process engineering in an orga-
nization. The main challenge is to define (and apply) it as a process with self-check so
that the mistakes can be detected before delivery. We cannot see research opportunities
in this area.

Installation is the task of transferring the product to the user. Basic installation is
easy-a set of files is copied to places reachable by users. But this task becomes the
more difficult the more the product depends on other products, maybe in specific ver-
sions. Managing these dependencies and denoting consistency is only partially solved
today; the more applications depend on each other, the more the need for installation
support will increase.

Parameterization is the task of adapting the product to the user’s context-a task
either done on site (by the user) or in the factory (especially when hardware is part of
the delivery). Parameterization is traditionally carried out by customization files and
environment variables; more recently. tools like GNU AUTOCONF [I91 are used to de-
termine system properties automatically. In future, such checks will be increasingly
carried out at run time and will thus need system support; the Windows registry is a yet
rudimentary form of such capabilities.

Instantiation is the task of starting the product into execution. This is trivial (and
solved) for simple, monolithic applications, but becomes a challenge as soon as mul-
tiple components interact with each other; trading services like the ones specified for
CORBA [22] can serve as base for determining a consistent configuration.

Reconjguration means adapting the product to new requirements while it is execut-
ing. This includes all decisions made during installation, parameterization, and instan-
tiation, and may also mean that the product entirely re-creates and replaces itself. This
problem is well-understood when speaking of isolated applications: uploading software
releases dynamically to space probes or telecommunication switches is common usage.
However, dynamic reconfiguration will gain even more importance as more and more
software products interact with each other for an undetermined time. The challenge for
SCM is to see how far classical SCM concepts can be applied dynamically.

Our observation is that the aspects of deployment are considered late in the life cycle
of a software product, usually after the software is finished and somebody discovers
that it has to be shipped to the customer site. Very few requirements specifications
contain paragraphs for requirements on deployment issues. Most software producers
can improve in this area; complex software systems offer new research issues.

4 SCM Process Tasks and Solutions

Let us now turn to the process functionality area. Our findings are summarized in Ta-
ble 2 on the following page.

4.1 Process

How far should the SCM system support the user’s lifecycle model and their organiza-
tion’s policies? Although every SCM system comes with a built-in process in the small

224 Karol Friihauf and Andreas Zeller

Ranking of SCM Solutions -
.- m

- Lifecycle Support (process enforcement) low? low med LU med
- Task management (identify current and pending med high high EM low

- Communication (relevant events) high high high IN low
Auditing (history, traceability, logging)
- of individual items high high high LM low
- of sfructum (related documents) high? med? low LU med?
Accounting (status, statistics, reports) high high high LM low
Controlling
- Access control (no unwarranted changes) high high high EM low
- Change requests (automatically) med high high EM low
- Bug tracking (automatically) high high med IN med

activities)

Table 2. SCM Process Tasks

(i.e. checkidcheckout-cycle, long transactions, etc.), the degree to which large-scale
processes are supported varies.

Our experience tells us that the big leap forward is the clear definition of software
processes. Use of tools is beneficial only if they are really supportive; often they take
the role of bureaucrats increasing the number of required interactions for the developers.
Consequently, SCM systems that are too rigid in enforcing a process will be cursed by
developers and reduce effectiveness. The distinction between support and discipline and
thus the effectiveness of lifecycle support remains to be validated.

Rather than enforcing activities, more advanced SCM systems offer means to track
current and pending activities. Tusk management is an area overlapping with (project)
management. If tools are used it must be carefully decided which type of information
is kept in the SCM tool and which in aproject management tool. The interface is thin if
the SCM system handles the states of the configuration items (and configurations) and
this information is used by the (project) management for the progress control. Tight
coupling of work activities with the state control of the work results leads to sluggish
SCM systems.

Ultimate process support is achieved with automated workflow systems. These are
not widely used (yet); their validation is a pending research topic. In practice, work
flow is typically organized by informal communication. Most SCM systems support
triggers that are associated with specific events-such as automatic notification by e-
mail whenever a change occurred. These communication features are well-understood,
cheap and effective means for a simple work flow support [9].

Software Configuration Management: State of the Art, State of the Practice 225

4.2 Auditing

Every SCM system provides features to inquire the change history of specific config-
uration items; these features are mature and widely used. A yet unsolved problem is
the traceability of related documents: How does one trace a change in implementation
back to the design and back to the requirements? How is a change in the implementa-
tion related to a change in the documentation? Although change-based versioning or
activity-based SCM [21] allows these changes to be associated with each other, there is
still room for improvement here.

4.3 Accounting

Accounting facilities let users (and managers) inquire about the status of a product.
SCM systems at least allow classifying components and versions according to specific
properties (i.e. experimental, proposed, or stable); it may well be this simple tagging
method is already sufficient. Again, we h o w of no research that has addressed pending
problems in this area.

4.4 Controlling

Access control is one of the fundamental principles of automated SCM. Every SCM
system features some kind of access control, typically via locks (only one user at a time
can edit a file). Several SCM systems also support access control lists (only specific
users are allowed to do changes); others rely on the security features of the underlying
repository. Access control is widely used; it has never been a SCM research topic.

Tracking of change requests and defect reports is at the heart of the maintenance
process, starting as soon as independent testing begins. The process of handling these,
especially responsibility for decisions and definition of records to be kept, determines
the responsiveness of an organization on user needs. In small organizations, a simple
Excel sheet will provide enough support; bigger organizations require an elaborated
data base with dedicated queries.

Advanced SCM systems like LIFESPAN [35] offer an elaborated management of
change requests; in fact, the whole development process is organized along the pro-
cessing of change requests. Although the effectiveness of the process remains to be
validated, improvements are more likely to come from SCM vendors than from SCM
researchers.

An important SCM topic is the tracking ofproduct defects, as it provides immediate
insight on the current product quality. Bug-tracking tools frequently come as stand-
alone tools, from the freely available GNATS [23] to elaborated commercial systems.
However, the integration with SCM repositories as well as automated testing facilities
still leaves to be desired-a challenge for SCM vendors and researchers.

5 Conclusion

SCM is a mature discipline. It is mature in practice, as it is successfully used. And
it is mature in research, since there is much to be taught-and not so much left to

226 Karol Friihauf and Andreas Zeller

be researched. The only two research areas that are considered to have high potential
are automated change integration and deployment issues; major improvements are also
feasible in wide area connectivity, version management of structures, system modeling,
consistency issues, lifecycle support, and integration issues.

Although several well-understood solutions are available, no single SCM system
provides a solution to all problems. Integration and flexibility are thus still issues for
SCM users and SCM vendors-maybe also for SCM researchers, provided they find a
way to validate the practical benefits of new SCM models.

Validation is also an issue for this paper, and the state of SCM in general. Upon
compiling the tables, it was amazing to see how few hard facts were available to back
specific judgements. The most important result of our assessment is that many more
SCM experience reports and experiments are needed-we need to know what we know
before we can move on. We thus encourage the SCM community to prove us right or
wrong and look forward to fruitful discussions.

Acknowledgments. We thank the participants and organizers of the Dagstuhl Work-
shop on Software Engineering Research and Education [7] for their suggestions and
contributions. Gregor Snelting provided useful comments on an earlier revision of this
paper. Walter F. Tichy initiated the discussion on the state of SCM and helped a lot in
ranking the individual SCM solutions.

References

I . BERLINER, B. CVS 11: Parallelizing software development. In Pmc. of the 1990 Winter
USENIX Conference (Washington, D.C., 1990).

2. BINKLEY, D., HORWITZ, S . , A N D REPS, T. Program integration for languages with proce-
dure calls. ACM Transactions on Sofrware Engineering and Methodology 4, 1 (Jan. 1999,
3-35.

3. BUFFENBARGER, J . Syntactic software merging. In Estublier [8], pp, 153-172.
4. BURROWS, C., A N D WESLEY, I. Ovum Evaluates: ConJiguration Management. Ovum,

Inc., Burlington, MA, 1999.
5. CONRADI, R., AND WESTFECHTBL, B. Version models for software configuration man-

agement. ACM Computing Surveys 30,2 (June 1998), 232-282.
6. DART, S. Concepts in configuration management. In Feiler [I I], pp, 1-18.
7. DENERT, E., HOFFMAN, D. M., LUDEWIG, J., A N D PARNAS, D. L. Softwareengineering

research and education: Seeking a new agenda. Workshop Report 230, Dagstuhl, Feb. 1999.
8. ESTUBLIER, J., Ed. Softwarn Configuration Management: selected papers / ICSE SCM-

4 and SCM-5 workshops (Seattle, Washington, Oct. 1995), vol. 1005 of Lecture Notes in
Computer Science, Springer-Verlag.

9. ESTUBLIER, J., A N D CASALLAS, R. The Adele configuration manager. In Tichy [30], ch. 4,
pp. 99-133.

10. ESTUBLIER, J., FAVRE, J.-M., A N D MORAT, P. Towards scm/pdm integration? In Mag-
nusson [20], pp. 95-1 06.

11 . FEILER, P. H., Ed. Pmc. 3rd lnternalional Workshop on Sofrware Configuration Manage-
ment (Trondheim, Norway, June 1991), ACM Press.

12. FELDMAN, S. 1. Make-A program for maintaining computer programs. Sofhvare-
Practice and Experience 9 (Apr. 1979), 255-265.

13. FOWLER, G., KORN, D., AND RAO, H. n-DFS: The multiple dimensional file system. In
Tichy [30], ch. 5, pp. 135-154.

Software Configuration Management: State of the Art, State of the Practice 227

14. FRUHAUF, K. Hygiene in software workssoftware configuration management. In Pm-
ceedings of the Second Eumpean Conference on Software Quality (Oslo, 1990), pp. 1-17.

15. HEIMBIGNER, D., AND WOLF, A. Post-deployment configuration management. In Som-
merville [26], pp. 272-276.

16. HORWITZ, S . , PRINS, J., A N D REPS, T. Integrating noninterfering versions of programs.
ACM Transactions on Programming Languages and System$ I I, 3 (July 1989), 345-387.

17. HUNT, J. J., Vo, K.-P., A N D TICHY, W. F. Delta algorithms: An empirical analysis. ACM
Transactions on Sofhyare Engineering and Methodology 7,2 (Apr. 1998), 192-214.

18. LEBLANG, D. B. The CM challenge: Configuration management that works. In Tichy [30],
ch. I , pp. 1-37.

19. MACKENZIE, D., A N D ELLISTON, B. Autoconf-Creating Automatic Confguration
Scripts. Free Software Foundation, Inc., Dec. 1998. Distributed with GNU autoconf.

20. MAGNUSSON, B., Ed. Pmc. 8th Symposium on System Configuration Managemenf (Brus-
sels, Belgium, July I998), vol. I349 of Lecture Notes in Computer Science, Springer-Verlag.

21. MICALLEF, J., A N D CLEMM, G. M. The Asgard system: Activity-based configuration
management. In Sommerville [26], pp. 175-1 86.

22. OBJECT MANAGEMENT GROUP. The Common Object Request Bmker: Architecture and
Specijication, Aug. 1991.

23. OSIER, J . M., A N D KEHOE, B. Keeping Track: Managing Messages With GNATS. Cygnus
Support, 1996.

24. PI.OEDEREDER, E. , AND FERGANY, A. The data model of the configuration management
assistant. In Proc. 2nd International Workshop on Software Conjigwarion Management
(Princeton, New Jersey, Oct. 1989). W. F. Tichy, Ed., ACM Press, pp. 5-13.

25. ROCHKIND, M. J. The source code control system. IEEE Transacrions on Software Engi-
neering SE-I, 4 (Dec. 1975), 364-370.

26. SOMMERVILLE, I . , Ed. Proc. 6th lnternational Workshop on sojiware Configuration Man-
agement (Berlin, Germany, Mar. 1996), vol. I167 of Lecture Notes in Computer Science,
Springer-Verlag.

27. STALLMAN, R., A N D MCGRATH, R. GNUMake-A Pmgram forDirectingRecompilation,
0.48 ed. Free Software Foundation, Inc., 1995. Distributed with GNU Make.

28. TICHY, W. F. RCS-A system for version control. Software-Practice and Experience 15,
7 (July 1985), 637-654.

29. TICHY, W. F. Smart recompilation. ACM Transactions on Software Engineering and
Methodology 8, 3 (July 1986), 273-29 1 .

30. TICHY, W. F., Ed. Configuration Management, vol. 2 of Trends in Sofmare. John Wiley &
Sons, Chichester, UK, 1994.

31. VAN DERHOEK, A, , HEIMBIGNER,D., AND WOLF, A. L. Doesconfigurationmanagement
research have a future? In Estublier [8], pp. 305-3 10.

32. VAN DER HOEK, A,, HEIMBIGNER, D., A N D WOLF, A. L. System modeling resurrected.
In Magnusson [20], pp. 140-145.

33. WESTFECHTEL, 8. Structurc-oriented merging of revisions of software documents. In
Feiler [1 I], pp. 86-79.

34. WESTFECHTEL, B., A N D CONRADI, R. Software configuration management and engineer-
ing data management: Differences and similarities. In Magnusson [20], pp. 95-1 06.

35. WHITGIFT, D. Methods and Toolsfor Software Configuration Management. John Wiley &
Sons, Chichester, UK, 1991.

36. ZELLER, A. Smooth operations with square operators-The version set model in ICE. In
Sommerville [26], pp. 8-30.

37. ZELLER, A,, A N D SNELTING, G. Unified versioning through feature logic. ACM Transac-
tions on Software Engineeringand Methodology 6 , 4 (Oct. 1997), 398-441.

SCM: Status and Future Challenges

Reidar Conradi1 and Bernhard Westfechtel2

1 Norwegian University of Science and Technology (NTNU),
N-7034 Trondheim, Norway.

conradi@idi.ntnu.no
2 Computer Science III, Aachen University of Technology,

Ahornstrasse 55, D-52074 Aachen, Germany.
bernhard@i3.informatik.rwth-aachen.de

This paper summarizes the state-of-the-art in softw arecon�guration manage-
ment (SCM). Ten SCM themes are discussed and relevant research questions are
proposed for each theme. The full version of this paper may be retrieved under
http://www-i3.informatik.rwth-aachen.de/private/bernhard/westfechtel.html.

1. The v ersion and product model: one or separate? These tw omod-
els con trol the version space and product space, respectively. There are several
researc h questions to clarify:

{ Q1.1: What product model to apply? Most SCM tools are still based on
�les. It is highly desirable to support more sophisticated data models for
representing t yped objects, relationships, and attributes.

{ Q1.2: What version model to apply? E.g. choose state-based versioning (vari-
ants and revisions) or change-based versioning (conditional compilation with
more liberal delta combinations)? The tw o authors have proposed a unifying
version model [CW97], capable of supporting both state- and change-based
versioning { but limited experience exists.

{ Q1.3: Should the version model and product/object model be orthogonal to
each other? In many proposals, version model and product/object model are
in termingled. Separating product/object model and version model appears
attractive because the same version model can be combined with di�erent
product/object models. How ever, the implications on database design have
still to be explored more thoroughly.

2. How to manage and evolv ethe meta-information, such as v ersion

rules? A softw areproduct may evolve into many revisions and varian ts,and
many changes may be applied during its lifetime. Rule-based version construc-
tion supports the construction of consistent con�gurations from an inten tional,
high-level description. The result of version construction heavily depends on the
qualit yof the version rules and the underlying deductive version engine. Not
only does the product evolve; the v ersion rules evolve likewise.

R esearch questions: Q2.1: T o better understand the problem space (under-
standing the requir ements, colle cting empirical data on the structure of and evo-
lution of version rules). Q2.2: To better understand the solution space (improving

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 228-231, 1999.
c Springer-Verlag Berlin Heidelberg 1999

the deductive capabilities of rule-based version engines and assisting the user in
managing the version rules). Q2.3: Give e�ective user assistance in managing
the combinatorial space of con�gurations and the interplay between product and
version structure. Q2.4: In all this, collect empirical data on the structure and
evolution of such rules, both for the version and the product space.

3. New media and delta techniques Traditionally, SCM has been applied
to sequential texts only, i.e. \source programs" or other lifecycle documents.
E�cient delta techniques exist for such texts, reducing the storage demand to
2-3% of the original one [HVT98]. E�cient di�/merge tools are also available.
Later on, delta algorithms have been generalized to binary �les.

Focusing on text and binary �les is no longer su�cient. Multi-media data
such as sound, pictures, and video also have to be stored e�ciently. So far, this
is addressed by compression techniques decoupled from versioning. In addition,
we should also consider high-level deltas exploiting structural knowledge about
software objects (e.g., deltas for HTML documents [WW98]).

Research questions: Q3.1: To develop new delta techniques for multi-media
data. Q3.2: To explore the potential of more high-level structure-oriented deltas.

4. Workspace management and transaction control Central issues here
are high-level (intentional) con�guration descriptions that are expanded into
low-level (extensional) part-lists to control check-out and check-in of workspaces,
either shared ones for groups or private ones for individuals.

Recently some pragmatic tools have emerged for dynamic (re)con�guration
of �les on distributed computers (e.g., �le docking, incremental downloading of
executables (web-applets), e-mail attachments). In all this, there is weak control
in de�ning and maintaining local con�gurations.

Research questions: Q4.1: To develop exible workspace architectures. Q4.2:
To develop e�cient and pragmatical con�guration descriptions to control the
above.

5. Distributed and cooperative work and relation to groupware SCM
tools provide workspaces for organizing distributed and cooperative work. For
example, ClearCase can support distributed workspaces with controlled check-
out/in and mutual noti�cations. In addition, we may need temporary workspaces
(bulletin boards) for short-term and dedicated communication and negotiation.
Finally, SCM tools may provide cooperative transactions that allow for informa-
tion interchange before check-in.

SCM tools tend to provide product-centered support for distributed and co-
operative work. Conversely, groupware tools usually do not consider product
structures, when organizing actors, groups, processes, and cooperation patterns.
Thus, we have to investigate how to combine groupware and SCM support.

Research questions: Q5.1: To experiment with and assess the support from
groupware tools on typical, cooperative SCM-scenarios. Q5.2: To con�gure and

229SCM: Status and Future Challenges

evolve groupware support based on SCM-maintained information. Q5.3: To de-
velop and validate exible models for cooperating database transactions.

6. Process support issues Most SCM processes are well established and
repetitive, thus ripe for computerized support. Indeed, the more advanced SCM
tools o�er facilities for process support, e.g. Adele, Continuus and ClearCase.

At least �ve process areas must be supported: (1) change control and sta-
tus reporting, which is already supported in many SCM tools; (2) management
(project planning, cost estimation, etc.), which is covered by project manage-
ment tools; (3) QA and auditing, which is supported by many methods and
tools with weak coupling to SCM; (4) regeneration, which is well supported by
Make and related tools; (5) cooperation/negotiation support, which is provided
by groupware tools and some advanced SCM tools. All in all: some of the total
process support is supported by the SCM tools, some by a spectrum of other
tools.

Research questions: Q6.1: Can required process support for SCM be made in-
dependent of basic product/versioning management? Q6.2: What are the mutual
dependencies and interfaces of SCM and process tools?

7. SCM tool architecture Software architectures have attracted much atten-
tion recently. Since current SCM tools tend to grow larger and larger, developers
of such tools would clearly bene�t from a well-de�ned architecture. However, vir-
tually no such proposal exists, although we have outlined a layered architecture
with coarse-grained components, such as: a versioned database (the \facts"), a
rule base, a version engine for de�ning and evaluating rules, a workspace man-
ager, a transaction manager, etc. in an earlier paper [CW97]. The layering is still
subject to debate | as well the scope of SCM (e.g., to what extent is process
support included?).

Research questions: Q7.1: What are kernel SCM functionalities? Q7.2: How
should the layering and interfaces be?

8. Industrial Experiences SCM is an established and recognized area of
software engineering, with a spectrum of methods, techniques and tools available.
We should then expect that there is a huge body of empirical data to demonstrate
its e�ectiveness { but not so.

Much data has been collected to assert the e�ectiveness of delta storage on
the low end. At the high end, it is much more di�cult to obtain measures of
productivity improvement resulting from the introduction of SCM tools. Some
work has been done e.g. in the European ESSI program, where several process
improvement experiments were concerned with the introduction of SCM tools.
One of these reported a 36 % reduction in external reports of major errors after
ClearCase had been installed, although no strict causality can be assumed.

Research questions: Q8.1: Design a common and moderate metrics to assess
the impact of SCM tools, both on the product and process side. Q8.2: Perform
empirical studies from industry, using such metrics.

230 Reidar Conradi and Bernhard Westfechtel

9. SCM Maturity Models Both ISO-9001 and CMM (level 2) require prod-
uct management, i.e. SCM. However, there are many aspects to consider when
introducing a SCM tool into an organization. Thus, it makes sense to distinguish
between levels of SCM maturity, e.g.:

1. No SCM procedures { chaos.
2. Get the overall process in shape. Organize old/new versions in di�erent cat-

alogs.
3. Introduce simple SCM tools, such as RCS / SCCS and Make. Improve the

process.
4. Upgrade to a medium-level SCM tool, like CVS, with explicit product de�-

nitions. Consolidate the process.
5. Finally introduce a more complete SCM tool, like ClearCase. Also allow a

distributed process.
6. Total SCM, with complete support processes across projects and products.

Research questions: Q9.1: How to design such an maturity scale? Q9.2: How
to use and validate such an maturity scale?

10. SCM technologies also for CAD/CAM, VLSI and o�ce automa-
tion Managing consistent con�gurations of versioned documents is a problem
that occurs not only in software engineering, but also in electrical, mechanical
or chemical engineering, in o�ce automation, etc. Although many similarities
do exist, disciplines such as SCM and EDM/PDM (engineering/product data
management) and corresponding tools have evolved fairly independently.

Research questions: Q10.1: To investigate whether common version- and
con�guration management are applicable on hybrid hw/sw products. This may
assume a common base model, and how to separate domain-independent from
domain-speci�c aspects.

Acknowledgements Thanks go to our nearest colleagues and to many discus-
sions in the SCM workshop series.

References

[CW97] Reidar Conradi and Bernhard Westfechtel. Towards a Uniform Version
Model for Software Con�guration Management. In Reidar Conradi (Ed.):
\Proc. Sixth International Workshop on Software Con�guration Management
(SCM'7)", pages 1{17, Boston, USA, 18{19 May 1997. Springer Verlag LNCS
1235.

[HVT98] James Hunt, Kiem-Phong Vo, andWalter Tichy. Delta algorithms: An empir-
ical evaluation. ACM Transactions on Software Engineering and Methodology,
7(2):192{214, April 1998.

[WW98] E. James Whitehead and Meredith Wiggins. WEBDAV: IETF Standard for
Collaborative Authoring on the Web. IEEE Internet Computing, pages 34{40,
Sep/Oct 1998.

231SCM: Status and Future Challenges

New Challenges for Configuration
Management

Magnus Larsson1, Ivica Crnkovic2

1 ABB Industrial Products AB, LAB,
S-721 67 Västerås, Sweden

Magnus.Larsson@mdh.se
2 Mälardalen University, Department of Computer Engineering,

S-721 23 Västerås, Sweden
Ivica.Crnkovic@mdh.se

Abstract. More and more systems are developed using components. There is a
move from monolithic to open and flexible systems. In such systems,
components are upgraded and introduced at run-time, which affects the
configuration of the complete system. Keeping up-to-date information about
which components are installed is a problem. Updating a component also
affects the compatibility of the system. It is therefore important to keep track of
changes introduced in the system. In the product life cycle, CM is traditionally
focused on the development phase, in particular on managing source code. Now
when changes are introduced in systems at run-time and systems are
component-based, a new discipline, component configuration management is
required. This paper analyses component management and highlights the
problems related to component configuration. Requirements on component
configuration management are outlined, and some directions to possible
solutions of the problems are given.

1 Introduction

In recent years we have recognized a new paradigm in the development process: From
a complete in-house development, to a development process which has focused on the
use of standard and de-facto standard components1, outsourcing, COTS (commercials
off the shelf). The final products are not closed, monolithic systems, but are instead
component-based products which can be integrated with other products available on
the market [3]. Developers are not only designers and programmers, they have
become integrators and marketing investigators. The new paradigm increases the
efficiency of development and the flexibility of delivered products, but at the same
time increases the risk of losing product configuration consistency. The higher risk
reduces the product reliability, which is a critical factor for certain types of systems,
such as real-time and safety-critical systems. Configuration Management (CM) is a
discipline, which controls the consistency between the parts of the entire system, and
can increase the reliability of component-based products.

1 Definitions of components are presented in chapter 3.

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 232-243, 1999.
c Springer-Verlag Berlin Heidelberg 1999

Software systems based on standard components are the results of a combination of
pure development and integration of components. The requirements for conventional
use of CM remains, but new requirements related to component management appear
in all phases: in the design, integration and run-time. We can expect that the source
code management will become less critical, because there is less internal development
and because of the fact that source code management in CM is very well established
in both theory and implementation. The integration part, i.e. configuration, and
version management of the components becomes more important. New aspects of CM
arise in the run-time phase, as components are usually loosely coupled, and their
update is allowed in the run-time environment.

The importance of CM, and challenges in research and implementation of CM
support, are emphasized in the 1998 CBSE (Component-based Software Engineering)
workshop [1], as quoted: "In particular, high composeability in a product line setting
amounts to mass customization and this introduces tremendous configuration
management challenges and support challenges."

Although CM provides good support in the development phase, especially in the
coding phase, there is a lack of CM disciplines managing components already
developed. This paper points to certain new aspects of CM in managing components.
Chapter 2 shows different phases in component development processes and run-time
environments and their relations to CM activities. The different compatibility levels
of the components are discussed in chapter 3. Chapter 4 gives an overview of the
component characteristics related to CM issues. The problems, which appear due to
the lack of proper CM support, are presented. Chapter 5 outlines certain models for
improving the support and improving the reliability of products.

2 Using CM in Component-based Product Life Cycles

Configuration management is applied in different phases of a component-based
product life cycle. Fig. 1 shows an example of a development and run-time process. In
the development phase we build libraries from the source code. A component is built
by assembling libraries and collecting other types of items such as documentation and
executable files. Finally, a typical component-based product consists of a set of
components.

233New Challenges for Configuration Management

Foobar

Components

Foo.dll

Bar.dll

Foobar

product.exe

UI

Source code Dynamic libraries Products

Development

Run-time

Foo.dll

Bar.dll

common.dll

UI

Comp2

product.exe

Prod2.exe

Version
management

Build and
configuration

Configuration Packaging

On-line Configuration

Fig. 1. CM activities in different phases of a component-based product life cycle

In the first development phase, source code management is used to track the
introduction of different versions of source code, to enable parallel development, etc.
Many CM tools supporting this are available today. The building phase is also
supported by CM tools such as different variants of make and configuration tools, the
results of the building procedures being connected to the source code. One step closer
to CM for components is to use description logic, to describe configurations, in
combination with make to build a product[10]. However, this does not solve the run-
time issues.

Having control over the source code and producing the system entirely from the
source code makes it possible to control the target system configuration. When using
imported components, we lose this control, because we only partially know their
behavior. It is possible however to manage versions and configurations if we place the
components under version control and deliver them as a part of the product.

When delivering components or products, which are part of a target system, we
face two problems:

• We cannot predict the behavior of the entire environment of the target system. The
system may contain another product, which uses the same component as our

234 Magnus Larsson and Ivica Crnkovic

product. The relations between components, and the changes we may obtain by
introducing a new version of a component, are uncertain.

• A more serious problem is the dynamic behavior of the system configuration in the
run-time environment. If we permit component-updating during the run-time, by
updating dynamic libraries, we could be facing a situation in which a new
component version works for one product, but not for another. There are also
different aspects of updating, such as moving or copying an application from one
computer to another, or automatically generation of code.

CM can provide solutions to these problems, and those are new challenges for CM.
To cope with the problem, the research and practical implementations must focus on
the component management. The following chapters describe the mechanisms of
component management and point at the problems related to their identification.
Finally an outline of possible solutions for improvement of the component version
and configuration management are presented.

3 Component Compatibility

There are different definitions of software components [1]: A component is a non-
trivial, nearly independent, and replaceable part of a system which fulfills a clear
function. A component conforms to and provides the physical realization of a set of
interfaces. A run-time software component is a dynamically bindable package of one
or more programs managed as a unit and accessed through documented interfaces
which can be discovered at run-time. A component can be deployed independently
and is subject to composition by third party.

The importance of components becomes significant where technologies for their
development and integration are being standardized. The most prominent component
technologies today are Java Beans, COM/DCOM and ActiveX, and CORBA. In this
paper, we illustrate component-management problems using COM/DCOM
technology, but the same principles are valid with other technologies.

A new component version might be added to introduce new functions in a system,
or only to change its behavior, (better performance, better stability), without changing
the interface. When replacing a component or a component version we must consider
which type of change is permitted, and which type of compatibility is required. We
define three levels of compatibility:

• Input and Output compatibility. A component requires input in a specific format
and produces results in a defined format. The internal characteristics of the
component are of no interest. An example of this type of compatibility is provided
by different word-processors producing the same document format. This type of
compatibility does not ensure that the interfaces or the behavior are preserved.

• Interface compatibility (at development time and at run time). The interface
remains the same, but the implementation can be different. A typical example is
given by different implementations of ActiveX objects, with the same interface.

235New Challenges for Configuration Management

Interface compatibility is more demanding than input and output compatibility, but
it does not need to have the same behavior.

• Behavior compatibility. Internal characteristics of the components, such as
performance, resource requirements, etc., must be preserved. Such requirements
can be appropriate for real-time systems. This is the strongest compatibility
requirement and it includes the previous ones.

The compatibility criteria can be used in deciding if a component can be replaced or
not. This decision can be especially important in case of a replacement "on the fly" in
a run-time environment. It is important to maintain the required level of compatibility
to avoid the risk of interrupting the whole system.

4 Managing Components

Components typically consist of shared libraries, where the component functions are
implemented. The programs using components do not refer to the libraries directly but
to the component interfaces. The libraries are implementations of the interfaces. We
need to keep track of changes on both logical and physical levels as well as their
relations. Both libraries and interfaces must be identified. Component Configuration
Management must work on both levels. Versioning of interfaces is a more difficult
task, because the interface is an abstraction without information about the physical
representation. For this reason, we separate the problem of managing components
onto two levels: Managing libraries and managing interfaces.

4.1 Libraries

Historically there were less problems in this area as all libraries were statically linked
into the executables. This prevented the executable from being updated when a new
version of the library was released. An advantage of this approach is that the
executables are protected from uncontrolled use by the new version of the library. A
disadvantage is the necessity to re-link the executable only to incorporate a new
version of the library, which is unnecessary work when the library is interface-
compatible. Another disadvantage is that all executables which shared the same
library must be linked with their own copies of the library. The concept of shared
libraries was introduced to avoid this. This was a significant improvement since we
could now share libraries and make updates without re-linking the executables while
functions were interface-compatible. In Microsoft platforms, shared libraries are
designated dynamic link libraries or dlls, which can be loaded and unloaded whenever
needed. On other platforms, such as different Unix platforms, shared libraries are
loaded together with the main executable.

Unfortunately, the concept of shared libraries introduces new problems related to
the consistency of the system, as illustrated by Fig. 2.

236 Magnus Larsson and Ivica Crnkovic

Version 2

Foo.exe Bar.exe

Common.dll

Bar.exe

Version 1

Common.dll

Old version 1 used
this version

Foo.exe Bar.exe

Common10.dll

Version 2

Common20.dll

Fig. 2. Foo.exe stops work when the new incompatible version of Common.dll is introduced.

The figure shows how a new version might damage the system. Common.dll version
1 will be overwritten with version 2 when the new version of bar.exe is introduced.
The replacement could be successful if version 2 of Common.dll is interface-
compatible with version 1, but definitely not if the compatibility level is less. There is
a risk that Foo.exe will stop working after the new version of Common.dll is
introduced.

The new interface-compatible version of Common.dll may contain undetected
errors as it was tested with Bar.exe only and not with Foo.exe. Foo.exe may then
access some erroneous code and crash even if the library was interface-compatible.

One way to handle multiple versions of libraries is to insert version information
into the actual library name as Microsoft does in MFC [9]. For example, names such
as MFC40.dll and MFC42.dll can be used for version 4.0 and 4.2. This prevents name
collisions problems such as developed in Fig. 2. With different names for different
version, the situation may be as in Fig. 3.

Fig. 3. Common10.dll can now coexist with Common20.dll

This solution is to some extent similar to the static linking of executables, because an
executable always uses the same version of the shared library. The solution however

237New Challenges for Configuration Management

becomes cumbersome when several versions and variants must be installed in the
system. There are, for example MFC42d.dll, MFC42u.dll and MFC42ud.dll which are
respectively debug, Unicode and debug/Unicode versions of the MFC library. This
tight coupling emerges from the design of the C/C++ compilation model, which was
not intended to support independent binary components.

Another way to circumvent the problems is to upgrade all executables dependent
on a particular library when the new release is ready. This means that both Foo.exe
and Bar.exe will be updated instead of Bar.exe only (Fig. 2). This approach can be
taken on the assumption that complete control over the whole deployment exists, and
from that perspective is very limited.

Suitable support can be achieved with the help of CM functions which keeps track
of changes, and by checking which changes are permitted for an executable or a
component.

4.2 Interfaces

An interface is a connection between a component and its user. If an interface is
changed, the user needs to know that it has been changed and how to use the new
version.

Functions exposed to the user are usually designated Application Programmable
Interfaces (API). If a change is made in the API, the user must recompile his code.
This is the case for compiled languages such as C/C++ but not for interpretative
languages such as Smalltalk or Java.

In an object-oriented world, an interface is a set of the public methods defined for
an object. Usually the object can be manipulated only through its interface. In C++
the user need only recompile the code when an interface, referred to from the code, is
changed.

A disadvantage is that the user of the object must use the same programming
language throughout the whole development.

Separation of the interface from the implementation is a means of avoiding this
tight coupling. This kind of separation is performed with binary interfaces as in
CORBA [3] and COM [6]. Binary interfaces are defined in an interface definition
language (IDL) and an IDL compiler, which generates stubs and proxies to make the
applications location transparent.

COM solves the interface versioning problem by defining interfaces as
unchangeable units. Each time a new version of the interface is created a new
interface will be added instead of changing the older version. A basic COM rule is
that an interface cannot be changed when it has been released. This makes couplings
between COM components very loose and it is easy to upgrade parts of the system
indifferent from each other. Fig. 4 shows that it is possible to run new clients together
with old server components or vice versa.

238 Magnus Larsson and Ivica Crnkovic

Word processor
version 1

Word processor
version 2

Dictionary
version 2ISynonyms

ISpellCheck

Dictionary
version 1

ISpellCheck

Fig. 4. Possible combinations between old and new clients and their server component.

Even if an interface has not been changed, its implementation can be changed. This
increases the flexibility of possible updates, but also introduces the possibility of
resultant uncontrolled effects. For this reason, it is of interest to know if the
implementation has been changed.

Today there is no support for the handling of components in the configuration
management perspective. CM functions should provide information about the changes
on the interface level.

5 Proposed CM for Libraries and Components

No or insufficient information is available when a system is assembled from
components. There is no standard way to track the dependencies between
components. When a system is upgraded with a new program, the programs running
already might be affected without notice because the new program may introduce new
versions of existing components in the system (see Fig. 2). It is necessary to
determine which interfaces (i.e. components) are used by a program or a component.

As a component is placed in a set of shared libraries some control may be obtained
by keeping the libraries under control. We propose a component configuration
management on two levels, the library level and the component level.

5.1 CM for libraries

Which shared libraries are linked to another library or program can be seen. This
can be used to list the dependencies between different programs and libraries. When
installing a new program containing libraries the following steps shall be taken:

1. Take a snapshot of the current system configuration.

2. Install the new modules.

3. Take a snapshot of the new system configuration.

239New Challenges for Configuration Management

Kernel32

ntdll

MSVCRT

OleAut32

Rpcrt4

Ole32

AdvApi32 User32 GDI32

The contents of a snapshot are all programs and libraries installed in the system and
are treated as nodes in a graph. A number of different attributes are associated with
each library. The information for each node in the graph uniquely identifies the
module. We propose that at least date, time, size and name shall be stored. Other
attributes are which compatibility change is allowed or if a warning is to be given
when a particular module is updated.

A snapshot of the system is presented as a dependency graph. Fig. 5 shows an
example of how one of the COM libraries depends on other libraries.

Fig. 5. A dependency graph for OleAut32.dll.

Different versions of snapshots are placed under version control and treated as
configuration items. A tool which could browse this information would present the
differences graphically to the end user. The user would now gain an understanding of
the effects of the introduction of new and updated libraries in the system. An alarm
would be activated if a library which should not have been affected is changed. The
configuration tool could browse different configurations and could label components
as changeable or not changable.

240 Magnus Larsson and Ivica Crnkovic

User32

Kernel32 ntdll

Ole32

AdvApi32

 ntdll

 user32
Component changed

Component changed

Fig. 6. A dependency graph that shows all changed versions.

This kind of knowledge is useful if the cause of malfunction in the system is to be
traced. An incorrect version of a library may have been installed by mistake. This
kind of identification gives no direct information about which components are
changed and which can be affected by the change, but indirect information is
available since the physical representation of components are libraries.

5.2 CM for components

In this chapter, we discuss COM as an example. COM treats interfaces in a manner
unlike other object models such as CORBA.

COM components expose themselves and communicate through COM interfaces
only. Moreover, COM is designed to work with loose references between
components. There is no requirement that the clients shall know the class declaration
since every class declaration contains implementation details. Components should be
able to add or remove interfaces without affecting existing clients.

As components are loosely coupled there is no information connecting different
versions of components with each other. A COM component finds its fellow
components through the Windows registry in which all installed components store
their activation data, such as Interface id, class id, library locations and where to find
their stubs and proxies. Connections between components are set up first at run-time.
A client uses a unique key to find the server component in the registry and then the
COM run-time will load the corresponding component or stub into the client memory.

Unfortunately, there is no capability in the target system for finding which
interfaces are used by a component. This prevents us from getting proper information
about all dependencies in the system.

If we do not know which components a program uses in run-time, we must request
that knowledge. This can be obtained if the provider of the components implements a
specific interface for version management, which we designate IVersion (Fig. 7). The
IVersion interface can return facts about version, name, creation date,
compatibility change, interfaces provided and components used. If the components

241New Challenges for Configuration Management

had such an interface, it would be possible to write a tool that could browse and
record the dependencies between the components.

interface IVersion : IUnkown
{
 HRESULT Name([out , retval] BSTR *name);
 HRESULT Version([out , retval] VERSION *version);
 HRESULT CreationDate([out , retval] DATE *date);
 HRESULT TypeOfChange([out , retval] BSTR *name);
 HRESULT History([in] LONG size,
 [out, size_is(size)] HISTORY history[*]);
 HRESULT HasInterfaces([in] LONG numOfElements,
 [out, size_is(numOfElements)] IID
interfaces[*]);
 HRESULT UsesInterfaces([in] LONG numOfElements,
 [out, size_is(numOfElements)] IID
interfaces[*]);
}

Fig. 7. IDL specification of IVersion.

• Name, Version and CreationDate identifies the component.

• TypeOfChange indicates the compatibility level affected by the change.

• History informs about previous versions of the component and which type of
change applied between them.

• HasInterfaces shows all interfaces provided by the component.

• UsesInterfaces lists all interfaces used. This list makes possible the building
of the dependency tree of the components.

In the absence of a standard version interface, another method is to parse in some way
the dependency data from source code files to provide a list of dependencies with the
release of a new product. This has some major disadvantages. Firstly, it cannot be
applied to third party components. Secondly, it might work for the first level of
dependencies where there is source code, but if other third party components are
included, no information can be obtained because of the lack of source code.

A possible partial solution to the problem finding dependencies between
components is to track the interfaces from the registry repository. All interfaces are
registered in the Windows registry with information about where to find the dynamic
link library which implements the stubs and proxies for that particular interface. This
mechanism provides us with the information we need to see if an interface has been
changed during an update. The snapshot browsing tool has a list of all interfaces apart
from the libraries and programs installed. The tool can now warn if the
implementation of an interface has been changed. It is possible, using this method, to
determine if new interfaces have been registered or if old interfaces have changed
implementation.

242 Magnus Larsson and Ivica Crnkovic

6 Conclusion

We consider that there is a need for component configuration management, especially
during the run-time when components can be changed on the fly. In this paper we
have highlighted the different phases in component management in which CM is
needed. Support from CM related to component management is rudimentary today
and we propose beginning work in a new area, Component Configuration
Management.

For want of standardized techniques in component management, we have proposed
certain relatively simple methods to identify components and possible changes they
can cause in the system. Further work will include a deeper investigation of how to
snapshot a system for an insight into the interrelationships between different
components. A tool capable of browsing and analyzing an existing system for this
should be developed.

7 References

[1] Don Box, Essential COM, Addison-Wesley, ISBN 0-201-63446-5
[2] Alan W. Brown, Kurt C. Wallnau: An Examination of the Current State of CBSE: A

Report on the ICSE Workshop on Component-Based Software Engineering, 1998
International Workshop on CBSE, http://www.sei.cmu.edu/cbs/icse98/summary.html

[3] Continuus Software Corporation, http://www.continuus.com/homepage.html, 1999
[4] CORBA, http://www.corba.org
[5] Ivica Crnkovic, Magnus Larsson, Managing Standard Components in Large Software

Systems, Position paper on Second International Workshop on Component-Based
Software Engineering, Los Angeles, May 1999

[6] Microsoft corporation, http://www.microsoft.com/com
[7] Microsoft Source Safe, http://msdn.microsoft.com/ssafe
[8] Rational http://www.rational.com/products/clearcase/index.jtmpl, 1999
[9] Dale Rogerson, Inside COM, Microsoft Press, ISBN 1-57231-349-8
[10] Andreas Zeller, Versioning System Models Through Description Logic, Proceedings

ECOOP’98 SCM-8 Symposium, vol 1439 of Lecture Notes in Computer Science,
Springer-Verlag.

243New Challenges for Configuration Management

J. Estublier (Ed.): SCM-9, LNCS 1675, pp. 244-254, 1999.
 Springer-Verlag Berlin Heidelberg 1999

The 3 Software Configuration Management
Implementation Levels

Mario E. Moreira

Fidelity Investments, Boston, MA, USA
mario_e_moreira@yahoo.com

Abstract. In order to deploy effect Software Configuration
Management (SCM) technology and practices, it is important to follow
a roadmap of SCM tasks and to align the SCM tasks with the
appropriate target level within an organization. The three primary target
levels include implementing SCM tasks at the organization; the
application; and the project level. By aligning SCM tasks to the
appropriate level, the chances for a more effective SCM implementation
may increase. It is also important to implement SCM in a practical
sequence of events so that past SCM tasks can lead to more effective
completion of future SCM tasks. This paper will; 1) provide a brief
analysis of success & failure criteria; 2) identify SCM tasks to the
appropriate target level; and 3) provide a practical sequence of SCM
tasks (along with templates, procedures, policy, guidelines, etc.) to help
SCM personnel improve their chances of implementing SCM
successfully.

1 Introduction

This paper is based on the experience of performing 10+ years of over 50 SCM
implementation efforts covering the commercial, DoD, and financial industries. After
performing these implementations, an analysis1 of the success criteria and of the tasks
used to implement these efforts occurred. The common success criteria for an SCM
implementation effort include:
• Sponsorship - management commitment to the effort
• Funding - money to purchase appropriate SCM tools and infrastructure (e.g.,

servers, etc.)
• Skilled SCM personnel - persons trained and experienced in the areas of SCM tools

and process
• SCM Implementation Plan - a plan detailing the tasks that lead to the

implementation of SCM practices (tools & process) and effective tracking and
management of the plan

1 The author does not claim to have performed full and in depth study of every aspect of the 50

SCM implementation efforts he has experience with.

The 3 Software Configuration Management Implementation Levels 245

 Also, it then became clear that after an analysis of the tasks and task structures, there
were 3 primary levels in which SCM can be focused to ensure an increased possibility
of success. The 3 levels include:
• Organization level - initial tasks targeted toward upper management to attain

commitment and raise awareness of SCM
• Application level - tasks targeted toward the application owner, SCM, and

infrastructure personnel to build the appropriate SCM infrastructure for the
application

• Project level - tasks targeted toward project & SCM personnel to continue usage of
SCM tools and process

 2 Approach

 For the past 2 years, I have focused on SCM implementation efforts that had a
reasonable level of sponsorship, funding, and skilled SCM personnel. This allowed
me to focus on the SCM Implementation Plan and accompanying
management/tracking aspects. I constructed an SCM planning approach that
structured the organization and application level SCM tasks into a standard SCM
Implementation Plan and the project level SCM tasks intoan SCM Task List (to be
incorporated in a projectís project plan). While the SCM Implementation Plan
provides guidance for a successful implementation of SCM tools and process, the
SCM task list ensured a continuation of usage of the SCM tools and process.

 During the past 2 years, this approach has been used to successfully implement
SCM in 8 of 12 efforts. Success criteria constitutes the adoption of SCM tools and
process for 1+ years. While the data may yet be too sparse to be statistically
significant, it is becoming evident that when an SCM effort manages and tracks to a
roadmap of SCM tasks targeted at the appropriate level, it produces a high percentage
of successful implementations.

 2.1 Background Data

 While this paper is not intended to primarily focus on the specifics of the 12 SCM
Implementation efforts referenced above, it is important to provide attributes of these
efforts. The attributes include:
• Industry: technology side of financial industry
• Population base: Client/Server development organizations
• Population size: range from 25-70 per organization
• Technical OS Environment: NT & UNIX
• SCM Tool: ClearCase or PVCS

246 Mario E. Moreira

 2.2 Reasons for Failure

 While 8 of the SCM implementation efforts succeeded based primarily on meeting the
success criteria stated above, 4 efforts failed. One effort failed due to the application
being decommissioned for business reasons. After some analysis of the remaining 3
efforts, the reasons for failure were derived:

• Failure 1: While the SCM Implementation Plan was prepared, it was not followed
and eventually the effort lost motivation. The SCM tools were not consistently
implemented and SCM procedures were not developed. The team did not consider
the effort to be a project, in and of itself, so therefore did not feel the need to follow
a plan. Also, most of the organizational level SCM tasks did not get completed.

• Failure 2: While the SCM Implementation Plan effort completed successfully
where SCM tools and process were developed, SCM project tasks were not added
to project plans and SCM tasks did not occur on a regular basis. While the SCM
tool was properly implemented, it was not used properly (the process was not
followed) and not all code entered the SCM tool repository in order to prepare a
traceable release. Subsequent releases suffered due to regression and problems of
maintenance.

• Failure 3: This effort had the same failure result as Failure 2 with the addition of
the fact that once it was clear that developers where not following the SCM
procedures, the SCM personnel found other positions in the company and simply
left this organization. This led to additional concerns when developers were
required to act as SCM tool administrators & release engineers. This can lead to
the ìfox guarding the hen houseî scenario because, in most cases, developers were
not trained in this area and, typically did not like to do this type of work. Short cuts
to releases occurred as a result and typically found lacking in traceability of code
back to the repository.

 Other common failure scenarios observed over the past 10 years include:
• Where the need for effective SCM Implementation tends to focus on the SCM tool

installation. The SCM tool installation is a concrete task that will have an
immediate impact on the developers and the working environment (for better or for
worse). This is typically a very tactical and short sighted event, that allows a
manager to ìcheck offî a implementation goal, but can fail in the long run without
developing and following appropriate checkout/checkin, build, and release
procedures.

• When the SCM task is focused at the inappropriate level of the organization. For
example, trying to implementan SCM Policy at the project level without the
backing of the application owner or senior management can lead to resistance to the
policy, a perception that the policy is not seen as important by upper management.
It may be more appropriate to focus on the SCM Policy task at the organization or
application level. This typically ensures a higher level of management commitment
to the SCM Policy. While grassroots efforts lead to occasional effective
implementations, it is typically because of the high quality and effort of the SCM
personnel.

The 3 Software Configuration Management Implementation Levels 247

 3 The 3 SCM Implementation Levels

 With the background data and success & failure criteria in mind, this paper focuses on
developing a framework of SCM tasks for establishing Software Configuration
Management (SCM). It focuses on targeting these tasks at the appropriate SCM level:
establishing the SCM practice at the organization level; implementing an SCM
infrastructure at the application level; and determining appropriate SCM tasks at the
project level.

 3.1 Organization vs Application vs Project

 At this point, it is important to examine the difference between the following
terminology: Organization, Application, and Project.

 While most people understand the definition of an organization, it is important to
understand the level within the organization that is being referred to. For clarification,
are you referring to the whole company as the organization or a division within the
company as the organization. In this scenario, an organization is typically a company
or division which may own multiple applications and develops and produces multiple
releases of each application.

 When focusing on the terms, application and project, it is not uncommon for people
within an organization to use these 2 words interchangeably, when, in fact, they are
very different. Below are brief definitions as they relate to the discussions in this
paper:
• An Application is accumulation (+/-) of code deliverables in production that make

up a functioning product.
• A Project is a set of activities whose aim is to deliver a changed set of functionality

(otherwise known as a release)
 Some confusion lies when the beginning of an Application lifecycle (e.g., the first

time the application gets developed) also coincides with the initial project.
 Also, the term ìproductî was not included in this comparison. In relation to the

above terms, a product may be considered a set of applications. For example,
Microsoft Office is a product that is made up of several applications including Word,
Excel, PowerPoint, etc.

 3.2 The Organization SCM Implementation Level

 When an organization, as a whole, has adopted SCM as an important practice, then it
typically becomes easier to implement SCM at the lower levels (application and
project level). It is the recommendation of the author to consider implementing the
following SCM tasks prior to or, at least, in parallel with the application level SCM
tasks. By implementing the SCM tasks focused at the organization level, it will
improve the chances of implementing SCM at the lower levels (application and
project).

248 Mario E. Moreira

 The primary SCM role best suited to implement these tasks are the SCM Manager
(if one exists) or an SCM champion (someone who is versed in the area of SCM and is
committed to provide leadership in this area). This person(s) will work primarily with
management to complete the tasks and should be prepared to ensure the meetings with
management are as effective and productive as possible.

 The SCM tasks at the organization level include:
• Raising Awareness of Software Configuration Management ñ benefit: this helps

establish a common understanding of SCM within the organization and to ensure
people are aware of the effort being proposed.

• Determining Management Commitment & Support - determine what level of
management commitment exists. Benefit: this lets you know if management is truly
serious about the SCM effort and can help you focus on ways to increase
management commitment.

• Establishing an SCM group or Function - hirean SCM person or group (determine
how many resources are needed and focus on where to recruit and/or train them)
and establish SCM Roles & Responsibilities. Benefit: - having dedicated personal
will increase your chances of a success SCM implementation.

• Creating an SCM Policy - establish a standard set of guidelines for implementing
SCM within an organization. Benefit: this document, if approved by management,
will show to the rest of the organization that there is commitment to SCM.

• Establishing the SCM Terminology - develop an SCM glossary or set of
terminology that can be commonly used throughout the organization. Benefit: this
helps to facilitate more effective discussion in the SCM arena. Typically within any
organization, people use a variety of terms when discussing SCM. They can
include version control, source management, release engineering, library
management, and numerous other terms. Having standard SCM terminology can
facilitate more effective discussions and progress in the SCM arena.

 3.3 The Application SCM Implementation Level

 Every application must have a solid and effective SCM Technology & Process
Infrastructure. An application may remain viable for a number of years and through
many releases. The more effective the applicationís SCM infrastructure, the better
your chances for a more efficient, repeatable, and traceable project release process.

 The primary SCM roles best suited to implement tasks at this level are the SCM
Manager, SCM Engineer, and SCM Coordinator. However, participation and
cooperation must occur with the Application owner and Lead Technical personnel.

 The SCM tasks at the application level include:
• SCM Analysis - provide a review of the current environment (platform, tools,

processes, etc), determine the level of maturity, and provide improvement
opportunities that will allow for appropriate SCM planning.

• SCM Planning - provide a road map of the tasks and activities needed to
implementan SCM technology infrastructure (tools & process) effectively.

The 3 Software Configuration Management Implementation Levels 249

• SCM Tool Selection - provide work products needed to make an objective decision
on the best SCM tool for your needs. Determine SCM tool functionality, customer
service, and cost requirements; evaluate tools; and determine benefits/risks of tools.

• SCM Strategy & Design - provide SCM roles & responsibilities, tool profile,
environment profiles, capacity planning, training & procedure definition. Also,
focus on the definition and design of tools (design, development, test, defect
tracking tools) that will be integrated with the SCM tools

• SCM Technical Implementation - establish the SCM tool environment. Install the
SCM tool, create repositories, import code, integrate the SCM tool with other tools,
establish build procedure structure, etc.

• SCM Procedural Implementation - provide the best SCM practices (develop
appropriate change control, checkout/checkin, build, release procedures, etc) for
the product development.

• SCM Training - Provide training guidelines for establishing solid SCM practices.
This includes SCM Overview sessions (roles & responsibilities, tools overview,
procedure overview), an SCM Tool User Training, SCM Tool Admin training
(vendor or in-house), and various SCM Procedure training.

• SCM Transition - provide support during the transition of staff to new SCM
technology.

 3.4 The Project SCM Implementation Level

 The objective at the Project Level is to define a common set of SCM tasks performed
during a project to produce the release. This provides control over configuration
items such as requirements, design, source, executables/binaries/programs, documents,
etc. and have a repeatable process for build and release.

 The primary SCM roles best suited to implement these tasks at the project level are
the SCM Manager, SCM Engineer, and Release Engineer. However, participation
and cooperation must occur with the Project Manager, Lead Development personnel,
and the Test personnel.

 The goal at this level is to identify a customizable set of appropriate SCM tasks for
each project (AKA, an SCM Project Plan template). This includes defining the
appropriate set and size of SCM tasks per size of project. The typical SCM tasks
include:
• Assign SCM personnel to the project
• Provide SCM Awareness at the project level (SCM tool used, procedures used,

roles, etc.)
• Identify Change Control Board (CCB) membership
• Perform Change Control Board process and activities
• Version documents (requirements lists, designs, specifications, test reports, etc.)
• Build the release
• Branch/merge activities
• Prepare Release Notes
• Package the release
• Install the release

250 Mario E. Moreira

4 Approaching an SCM Implementation Effort

Approaching an SCM implementation is always a challenge. However, the key to a
successful SCM implementation is to define (then follow) your roadmap
(implementation path) from the beginning of the effort to completion. In a nutshell,
think of the SCM Implementation effort as a project and prepare an SCM
Implementation Plan.

With this in mind, consider following these steps in order to build an SCM
Implementation Plan or SCM Task List.

4.1 Step 1 ñ Organization and Application Level or Project Level

It is very important to determine which level(s) of guidance is required (e.g.,
Organization, Application, Project). This will help you target which SCM tasks to
review first. However, if SCM is new to you and/or the organization, it is
recommended that you review all SCM tasks before determining which level(s) is
appropriate for your SCM effort.

Organization and Application Level: It is important to understand that the SCM
tasks in the organization level and in the application level may be placed into the same
SCM Implementation plan. The SCM tasks at this level, in many cases, are a one-
time-only task (e.g., you only create one Change Control procedure for an application)
and specifically not intended to be rapidly repeated.

Project Level: The SCM tasks at the project level, are suited as more rapid and
repeative tasks. For example, builds occur, perhaps, daily and the Change Control
Board may meet weekly. Due to the different temporal difference between the tasks at
the project level, they are meant to be separate from the SCM tasks in the organization
or application level (e.g., instead, part of the SCM Task List which is added to the
projectís Project Plan).

4.2 Step 2 ñ Identify Tasks for the Effort

Once you have determined which level(s) of guidance you require, it is important to
walk through each section and review each task. Identify which tasks that you will
undertake for your particular effort according to the level of maturity of your
organization or project team. In other words, try not to take on more than an
organization, application, or project can handle. You may consider reviewing the
C/R column in the examples below, which refer to whether the author believes a task
is a Core or required task for success or whether it is a Recommended task.

4.3 Step 3 ñ Create the Plan

From the set of tasks you selected, create an SCM Work Breakdown Structure
(WBS) (this could be either the SCM Implementation Plan or the SCM Task List).

The 3 Software Configuration Management Implementation Levels 251

Note: you may customize the task name with a name more suitable or better
understood by your organization. You may also include an expected output column
for each task, the role responsible for that task, dependencies, and other items that will
help with planning.

4.4 Examples of an SCM Implementation Plan and an SCM Task List

Below are examples of both an SCM Implementation Plan (Table 1) and an SCM
Task List (Table 2).

Table 1. Example of an SCM Implementation Plan

SCM Implementation Plan
C/R Phase Task

ID
Task

R Organization 0rg1 Provide an SCM Awareness session for Management

C 0rg2 Determine Senior Management
Commitment/Sponsorship to SCM

C 0rg3 Establish an SCM Function/Group

C 0rg4 Create an SCM Policy

C 0rg5 Get Senior Management approval for SCM Policy

R 0rg6 Prepare SCM Terminology glossary

R 0rg7 Provide an SCM Awareness session for all employees
(with SCM Policy and SCM Glossary)

R 0rg8 Create a common SCM organizational repository
(SCM Website)

C Analysis Ana1 Scope the SCM Infrastructure Implementation Effort

C Ana2 Perform Analysis of the current environment
C Planning Pla1 Determine SCM Technology Requirements (HW, SW,

Resources, etc.)
C Pla2 Develop SCM Infrastructure Implementation Plan
R Tool Selection ToS1 Review SCM Tool Candidates

C ToS2 Demo SCM Tools
R ToS3 Evaluate Tools (install and test)
R ToS4 Analyze Solution Alternatives
C ToS5 Select Tool

C Strategy & Design Str1 Determine Network Considerations

C Str2 Perform Capacity Planning (Diskspace, RAM , etc.)
C Str3 Perform Identification Process (identify all pieces that

go under SCM)
C Str4 Define Repository & Workspace Standards
C Str5 Define Labeling Standards
C Str6 Determine Naming Conventions for Releases
C Str7 Define Branching & Merging Strategy

252 Mario E. Moreira

C Str8 Determine Location of Tool, Repositories, and
Workspaces

R Str7 Define needed integration(s) of SCM tool to other
tools (design, development, test, defect tracking tools)

R Str8 Design the integration(s) of SCM tool to other tools
(design, development, test, defect tracking tools)

C Installation Ins1 Acquire Tool

C Ins2 Install Tool
C Ins3 Manage Licensing
C Implementation Imp1 Select Applications for Conversion

R Imp2 Evaluate/Restructure Application Code Structure
C Imp3 Determine Access to Code (permission groups)
C Imp4 Build outside of SCM Tool
R Imp5 Verify Application Functionality
C Imp6 Import Application into SCM Tool

C Imp Prepare Build process in SCM Tool

C Imp8 Build in SCM Tool
R Imp9 Verify Application Functionality
C Imp10 Prepare Release Migration Path
R Procedure Pro1 Prepare Checkout/Checkin Procedure

R Pro2 Prepare Build Procedure

C Pro3 Prepare Release Procedure

C Pro4 Prepare Backup & Recovery Procedure
R Pro5 Prepare User Training
C Pro6 Train Users
R Pro7 Prepare Admin Training & Procedures
C Pro8 Train Admin
R Testing Tes1 Verify Checkout/Checkin Procedure

R Tes2 Verify Build Procedure

C Tes3 Verify Backup & Recovery Procedure

C Tes4 Verify Release Procedure

C Tes5 Review Final System

C Tes6 Accept System

C Transition Tra1 Cutover to SCM Tool

C Tra2 SCM Technical Transition Support (2-4 weeks)

The 3 Software Configuration Management Implementation Levels 253

Table 2. Example of an SCM Task List (to be incorporated into the Projectís Project Plan)

SCM Task List
C/R Project Phase Task Role
R Requirements &

Planning
SCM Initiation to Team (tool used, process,
expectations, training available)

SCM Manager,
Project Team

C Establish CCB Project Members Project Manager,
SCM Manager

C Approve Requirements & track changes to
Requirements

CCB

R SCM Capacity Planning for project SCM Engineer,
Technical Lead

R Prepare Application Inventory (if one does
not exist

Project Manager,
SCM Engineer

R Setup Document Repository (if one does not
exist)

SCM Engineer

C Design Establish Project Code Baseline (starting
point)

Project Manager,
SCM Engineer

C Establish Branching/Merging Process for
project

SCM Engineer

R Verify the SCM Build Procedure (ensure
you can build, compile, or link from the
code baseline)

SCM Engineer,
Technical Lead

C Create required User workspaces SCM Engineer,
Project Team

C Train Users in the tool (as necessary) SCM Engineer to
Project Team

C Development Perform Integrated/Milestone Build(s) as
needed

SCM Engineer

C Perform Release Build SCM Engineer
C Perform merging activities (as needed) Project Team, SCM

Engineer
C Create initial Release Package (e.g., version

control the deliverables)
SCM Engineer

R Create draft Release Notes Project Manager

C Test Populate the Test area(s) from the SCM
repository

SCM Engineer, Test

C Finalize Release Package SCM Engineer
C Finalize Release Notes Project Manager

C Release Approve Release CCB

C Install Release Release Engineer
C Verify Release installation Release Engineer
R Create Maintenance Branch SCM Engineer
R Cleanup old workspaces & branches SCM Engineer,

Project Team

254 Mario E. Moreira

5 Who May Use this Paper

This paper is primarily intended for the individual or group that intends on
implementing SCM into an organization, application, and/or project(s). The people
who may benefit from using this paper include: SCM personnel (SCM Managers,
SCM Engineers, Release Engineers), Project Managers, Product Managers, QA
personnel (QA Managers or QA Engineers), and Director/VP of QA, Development,
or Technology, or any equivalent roles.

The benefit of using this paper is that it will provide you with a step-by-step
approach to implementing SCM.

6 Conclusion

After more than a decade of over 50 SCM Implementations throughout the
commercial, government, military, technology, and finance sectors, the author has
drawn on these experiences in an attempt to provide a practical sequence of SCM
tasks focused on the organization level, the application level, and the project level.
While the authors places SCM tasks into particular SCM implementation levels, it is
important to stress that one needs to be flexible in allowing the SCM task to move to
another level where appropriate. Also, in many instances, not all tasks need to occur
in an SCM implementation effort, but if tasks are discarded, it is important to
understand the risk of doing so and the impact to other SCM tasks.

Overall, this paper was written with the intention to improve your chances of
success when implementing SCM. Hopefully, it can be a good starting point and will
reduce the time needed to identify what SCM tasks would go into an SCM
Implementation Plan or Project Plan (via the SCM Task List).

References

1. Charles R. Myers, Jr; John H. Maher, Jr; and Betty L. Deimel: Managing
Technology Change, Software Engineering Institute, Carnegie Mellon
University, (1995)

2. Adler & Shenhar: Adapting your Technological Base: The Organizational
Challenge, in the Sloan Management Review, (Fall, 1990)

Author Index

Asklund, U. 17, 100

Banzi, M. 66

Bendix, L.. 100, 139

Borion, S. 66

Buffenbarger, J. 86

Christensen, H.B. 100

Conradi, R. 228

Crnkovic, I. 50, 232

Dart, S. 1

Estublier, J. 172

Frühauf, K. 217

Gruell, K. 86

Györkös, J. 38

Hansen, W.J. 123

La Commaren G. 66

Larsson, M. 232

Leoni, M. 34

Macugli, F. 66

Magnusson, B. 17, 100

Moreira, M.E. 244

Murer, T. 157

Persson, A. 17

Rozman, I. 38

Simoni c! , M. 38

Trainotti, M. 34

Valerio, A. 34

Van de Vanter, M.L. 157

Vitaly, F. 139

Weber, D. W. 204

Westfechtel, B. 228

Whitehead Jr, E.J. 186

Zeller, A. 217

	Front matter
	Lecture Notes in Computer Science
	Preface
	Table of Contents

	Chapter 1
	Introduction
	The World Wide Web Environment
	Types of Web Systems
	Enterprise Challenges for Web Systems
	The Dynamic, Active Nature of Content
	Variant Explosion
	The Free-Form Style of Development
	The Performance Effect on Content
	Scalability of Content
	The Urgency and Frequency of Change
	Outsourcing
	The Immaturity of Tools, Techniques, Standards and Skills
	Corporate Politics

	Software CM Is a Major Part of Content Change Management
	Web Technology Tools
	Conclusion
	References

	Chapter 2
	Introduction
	Five Cases of Distributed Development
	Locally
	Distance Working
	Outsourcing
	Co-located Groups
	Distributed Groups
	Discussion

	Six Possible Architectures
	Locally to a Server
	Remote Login
	Laptop Computer to a Server
	Several Sites by Master-Slave Connections
	Several Sites With Differing Areas of Responsibility
	Several Sites With Equal Servers
	Discussion

	Working Methods in Two Key-Areas
	Concurrent Development and Awareness
	Change Management

	Conclusions and Implications for SCM Research
	References

	Chapter 3
	Introduction
	Initial Context and Execution of the Experiment
	Analysis of the Results
	Conclusions
	Acknowledgements
	References

	Chapter 4
	Introduction
	Related Works
	A Real Life Challenge
	Lack of Human Resources
	Possible Innovative Solution
	Risks

	SCM Risk Analysis
	Technological Issues
	Additional SCM Customization / Automation Scripts
	Build Automation
	Packaging
	Configuration Identification
	Configuration Control (CC) with File Merges
	Configuration Status Accounting (CSA)
	Configuration Audits (CA) and Reviews
	Configuration Management Plan (CMP)
	Additional Soft Issues

	Solution with Further Research/Work
	Evaluate the Implemented SCM Solution
	Evaluate Contract Company
	Determine Critical Weaknesses
	Risk Mitigation

	Conclusions
	References

	Chapter 5
	Introduction
	The Evaluation Process
	The Evaluation Project
	The Evaluation Criteria
	Market Investigation

	Tool Selection and Results of the Evaluation
	Functional Characteristics of the Selected Tools
	Other Characteristics of the Selected Tools
	Costs and Return on Investment

	The Decision and Its Analysis
	Conclusion
	References

	Chapter 6
	1. Introduction
	2. Context
	3. CM Organization
	CM Activities
	3.1. Repository and Development Environment Management
	3.1.1. Code Management
	3.1.2. Documentation Management

	3.2. Status Accounting
	3.2.1. Environment and adopted policies accounting
	3.2.2. Products and components structure accounting
	3.2.3. Change Request status accounting

	3.3. Identification of documentation and code artifacts
	3.3.1. Documentation
	3.3.2. Code
	3.3.3. Baselines

	3.4. Version management
	3.5. Change Management
	3.6. Build
	3.6.1. CM charged with build activities
	3.6.2. Dependencies

	3.7. Packaging and Delivery
	Configuration Management Effort

	4. Further improvement
	5. Conclusions
	5.1. CM Tools
	5.2. Department CM
	5.3. CM / developers synergy
	5.4. Development versus CM
	5.5. Up to date accounting

	6. Acknowledgments

	Chapter 7
	Introduction
	Terminology
	Requirements
	The Problem
	A Solution
	Implementation
	ClearCase
	RCS

	Summary and Conclusion
	References

	Chapter 8
	Introduction
	Existing Versioning and Configuration Models
	Dealing with configurations - Intentional versioning
	Dealing with atomic entities -Extensional versus Intentional versioning

	The Unified Extensional Versioning Model
	The model
	Prototype implementations
	Summary

	Discussion and Comparison
	The Unified Extensional Versioning Model from the users perspective
	Managing the combinatorical explosion of configurations
	Supporting and managing changes
	Supporting concurrent work
	Implementation aspects and some usage experience
	Support for variant selection

	Conclusions
	References

	Chapter 9
	Introduction
	The Deployment Process
	Existing Deployment Processors
	The GEE Project
	Requirements for the Three Description Sublanguages
	Environment Description Sublanguage
	Dependency Description Sublanguage
	Action Description Sublanguage

	Conclusion
	Acknowledgements
	References

	Chapter 10
	Introduction
	Collaborative Writing
	The Problems in Collaboration
	The Architecture of CoEd
	How CoEd Is Used
	Advanced Functionality in CoEd
	Experience with CoEd

	Change Tracking
	A Complete Example Using VTML

	Integrating CoEd and VTML
	Conclusions
	Acknowledgement
	References

	Chapter 11
	1 Introduction
	2 Technologies for Scale in Software Development
	2.1 Compositional vs. Organizational Scale
	2.2 The JP Programming Environment
	2.3 The Application Web

	3 Naming Systems: Roles and Requirements
	3.1 Design Issues for Naming
	3.2 Naming in the JP Build System
	3.3 Local Names in the JP Environment
	Example 1. JP Names

	3.4 Implementation Challenges
	3.5 Global Names in the JP Environment
	3.6 Naming Requirements for the Application Web

	4 The Extended JP Naming System
	4.1 Package Versions and Contents
	4.2 Configurations
	4.3 Derived Parts
	4.4 The Life Cycle of Names

	5 Related Work
	6 Conclusions
	7 Acknowledgments
	8 Trademarks
	References

	Chapter 12
	Introduction
	Object management in concurrent engineering
	Current technologies for distributed objects
	Proposed architecture
	Concepts and definitions

	Basic WS manager
	Basic synchronization services
	Concurrent engineering control
	The group approach
	Basic policies in a group
	Company concurrent work policies

	Conclusion
	References

	Chapter 13
	Introduction
	Delta-V, a Client-Server Architecture
	Functional Goals for a Web Versioning and Configuration Management Protocol
	Equal Support for all Content Types
	Versioning Aware and Non-versioning Aware Clients Must Be Able to Interoperate
	Configuration Management Capability Is an Optional Extension to Versioning Capability
	Revisions May Be Mutable or Immutable
	Revision History Support
	A Revision Is a Resource with Its Own URL
	A Mechanism Must Exist for Giving a Human Readable Name to a Single Revision
	Versioning Should not Disrupt Relative URLs
	Read Requests on a URL to a Versioned Resource Should Return a Default Revision
	A Mechanism Must Exist for Associating a Particular Revision to a URL for a Versioned Resource
	Some Properties on Revisions May Be Changed without Creating a New Revision
	A Mechanism Must Exist for Logically Grouping Sets of Changes to One or More Versioned Resources
	A Mechanism Must Exist for Creating Versioned Sets of Specific Revisions of Versioned Resources
	Revision Operations
	Label Operations
	Activity Operations
	Configuration Operations
	Internationalization
	Security

	Related Systems and Protocols
	Web-Based Systems
	Distributed Configuration Management

	Acknowledgements
	References

	Chapter 14
	1 Introduction
	2 SCM Process Alternatives for RAD
	2.1 Alternative Build and Test Cycles
	2.2 Less Formal Change Management
	2.3 Closer Sharing between Developers
	2.4 Ways to Manage Rapid Configuration Changes

	3 How SCM Can Help
	3.1 Choose a Software Lifecycle
	3.2 Don’t Make Developers Stop Working While the Software is Tested
	3.3 Build and Test the Software Daily
	3.4 Set Small Milestones
	3.5 Use a Stretch List
	3.6 Measure Your Progress
	3.7 Inspect Your Software
	3.8 Reuse Components

	4 Conclusion
	References

	Chapter 15
	Introduction: An Assessment of SCM
	Assessing SCM Solutions
	SCM Team Tasks and Solutions
	Team
	Components
	Structure
	Construction
	Deployment

	SCM Process Tasks and Solutions
	Process
	Auditing
	Accounting
	Controlling

	Conclusion
	References

	Chapter 16
	The version and product model: one or separate?
	How to manage and evolve the meta-information, such as version rules?
	New media and delta techniques
	Workspace management and transaction
	Distributed and cooperative work and relation to groupware
	Process support issues
	SCM tool architecture
	Industrial Experiences
	SCM Maturity Models
	SCM technologies also for CAD/CAM, VLSI and office automation
	References

	Chapter 17
	Introduction
	Using CM in Component-based Product Life Cycles
	Component Compatibility
	Managing Components
	Libraries
	Interfaces

	Proposed CM for Libraries and Components
	CM for libraries
	CM for components

	Conclusion
	References

	Chapter 18
	1 Introduction
	2 Approach
	2.1 Background Data
	2.2 Reasons for Failure

	3 The 3 SCM Implementation Levels
	3.1 Organization vs Application vs Project
	3.2 The Organization SCM Implementation Level
	3.3 The Application SCM Implementation Level
	3.4 The Project SCM Implementation Level

	4 Approaching an SCM Implementation Effort
	4.1 Step 1 – Organization and Application Level or Project Level
	4.2 Step 2 – Identify Tasks for the Effort
	4.3 Step 3 – Create the Plan
	4.4 Examples of an SCM Implementation Plan and an SCM Task List

	5 Who May Use this Paper
	6 Conclusion
	References

	Back matter
	Author Index

