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Preface 

The motivation behind the conception of this monograph was to advance scientific 
knowledge about the design and control of workflow processes. A workflow proc-
ess (or workflow for short) is a specific type of business process, a way of orga-
nizing work and resources. Workflows are commonly found within large adminis-
trative organizations such as banks, insurance companies, and governmental 
agencies. Carrying out the tasks of a workflow in a particular order is required to 
handle one type of case. Examples of cases are mortgage applications, customer 
complaints, and claims for unemployment benefits. A workflow used in handling 
mortgage applications may contain tasks for recording the application, specifying 
a mortgage proposal, and approving the final policy. The monograph concentrates 
on four workflow-related issues within the area of Business Process Management; 
the field of designing and controlling business processes.  

The first issue is how workflows can be adequately modeled. Workflow model-
ing is an indispensable activity to support any reasoning about workflows. Differ-
ent purposes of workflow modeling can be distinguished, such as system enact-
ment by Workflow Management Systems, knowledge management, costing, and 
budgeting. The focus of workflow modeling in this monograph is (a) to support 
simulation and analysis of workflows and (b) to specify a new workflow design. 
The main formalism used for the modeling of workflows is the Petri net. Many ex-
isting notions to define several relevant properties have been adopted, such as the 
workflow net and the soundness notion. 

The second issue addressed in this monograph is the design or redesign of a 
workflow. Redesigning business processes has received wide attention in the past 
decade. Until this day, it has been seen as one of the major instruments available 
to companies for improving their performances. The monograph presents the 
Product-Based Workflow Design (PBWD) method, which derives a workflow de-
sign from the characteristics of the product it supports. This concept is well known 
in manufacturing where an assembly line may be determined on the basis of a 
Bill-of-Material, but is rather unorthodox in administrative settings. The method 
allows us to use context-specific design targets, such as cost reduction or respon-
siveness improvement, to determine the final design. Aside from its methodologi-
cal and technical foundation, practical experiences are presented within a large 
Dutch bank and a social security agency with PBWD. In addition, the monograph 
contains about 30 redesign heuristics. These heuristics are derived from both exist-
ing literature and practical experience. They can be used to redesign business 
processes in a more conventional, incremental way. A case description is added to 
illustrate the application of these heuristics. 
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The third issue is the performance evaluation of workflow processes. A new 
stochastic version of the Petri net is presented that addresses both the structural 
characteristics of workflows and its typical timing behavior. Two techniques are 
described that can be used to determine the stochastic behavior of a workflow de-
sign as measured in its throughput time. The throughput time of a single case is 
defined as the amount of time that passes from the start of its processing to its 
completion. Both techniques may help the designer of a workflow to determine 
whether the design targets will be achieved by the new design. The first technique 
uses basic building blocks and a well-known synthesis technique to construct a 
workflow model that can subsequently be analyzed exactly. The Fast-Fourier 
Transform is used to improve the efficiency of the analysis. The second technique 
can be applied to the subclass of sound, free-choice, and acyclic workflow nets to 
determine lower and upper bounds for the throughput time distribution of the re-
spective net. An important restriction of both techniques is that they abstract from 
resource constraints. 

The fourth and last issue addressed in this monograph is how to sensibly allo-
cate resources in an operational workflow. Once again, the performance indicator 
focused on is the throughput time. A familiar approach used in industry is to add 
extra resources at bottle-necks within the business process, i.e., the classes of re-
sources that are pressed the hardest, to reduce the throughput time. This approach 
is critically assessed and its limitations are presented. An alternative method for 
marginal allocation is presented. Its optimality is proven for a subclass of stochas-
tic workflow nets with resource constraints. To derive an inductive feeling of its 
effectiveness outside this class, a workbench of workflow nets has been devel-
oped. Simulation techniques have been used to test the method of marginal alloca-
tion on this workbench, which has led to cautious but positive conclusions. 

The common feature of the treatment of the four issues is an attempt to provide 
scientific support for Business Process Management and the management of work-
flows in particular.  

 
 
February 2003                                                                                    Hajo A. Reijers 

 



Contents 

1 Introduction .................................................................................................1 
1.1 The Business Process...............................................................................4 

1.1.1 Products and Business Processes.....................................................4 
1.1.2 Performance Targets........................................................................6 
1.1.3 Clients..............................................................................................6 
1.1.4 Orders and Triggers .........................................................................7 
1.1.5 Organization ....................................................................................7 
1.1.6 Resources.........................................................................................7 
1.1.7 Tasks and Subprocesses...................................................................8 
1.1.8 Categorizations ................................................................................9 

1.2 Business Process Management ..............................................................11 
1.3 Business Process Redesign....................................................................13 

1.3.1 Popularity ......................................................................................14 
1.3.2 Risks and Challenges.....................................................................15 

1.4 Workflows .............................................................................................18 
1.4.1 Workflow Management Systems...................................................18 
1.4.2 Workflow Characteristics ..............................................................20 

1.5 Workflow and Logistic Management ....................................................24 
1.6 Objective of the Monograph..................................................................26 

1.6.1 Modeling: Chapter 2......................................................................26 
1.6.2 Design: Chapter 3 ..........................................................................27 
1.6.3 Performance Analysis: Chapter 4 ..................................................27 
1.6.4 Resource Allocation: Chapter 5.....................................................27 
1.6.5 Redesign: Chapter 6.......................................................................28 
1.6.6 Systems and Experiences: Chapter 7 .............................................28 

2 Workflow Modeling ..................................................................................31 
2.1 Modeling Purposes ................................................................................32 

2.1.1 Training and Communication ........................................................32 
2.1.2 Simulation and Analysis ................................................................32 
2.1.3 Costing and Budgeting ..................................................................33 
2.1.4 Documentation, Knowledge Management, and Quality ................33 
2.1.5 Enactment ......................................................................................33 
2.1.6 System Development .....................................................................33 
2.1.7 Organization Design ......................................................................34 
2.1.8 Management Information ..............................................................34 

 



X      Contents 

2.2 Workflow Components ......................................................................... 34 
2.2.1 Case Component............................................................................ 36 
2.2.2 Routing Component....................................................................... 36 
2.2.3 Allocation Component................................................................... 36 
2.2.4 Execution Component ................................................................... 37 

2.3 Modeling Techniques ............................................................................ 38 
2.3.1 Purpose of the Workflow Model ................................................... 38 
2.3.2 Properties of the Workflow ........................................................... 39 

2.4 Petri Nets ............................................................................................... 40 
2.4.1 Preliminaries to Petri Nets............................................................. 41 
2.4.2 Petri Net Basics ............................................................................. 43 
2.4.3 Workflow Nets .............................................................................. 45 
2.4.4 Modeling Time .............................................................................. 49 
2.4.5 Stochastic Workflow Nets ............................................................. 53 

3 Workflow Design....................................................................................... 61 
3.1 Process and Workflow Design .............................................................. 62 

3.1.1 Tools.............................................................................................. 63 
3.1.2 Techniques..................................................................................... 63 
3.1.3 Methodology ................................................................................. 64 

3.2 Product-Based Workflow Design.......................................................... 69 
3.2.1 The Relation between Process and Product................................... 69 
3.2.2 Characterization............................................................................. 72 

3.3 PBWD Methodology............................................................................. 72 
3.3.1 Scoping.......................................................................................... 73 
3.3.2 Analysis ......................................................................................... 76 
3.3.3 Design............................................................................................ 90 
3.4.4 Evaluation.................................................................................... 118 

3.4 Review................................................................................................. 121 
3.4.1 Advantages .................................................................................. 121 
3.4.2 Critique........................................................................................ 123 
3.4.3 Drawbacks ................................................................................... 124 
3.4.4 Points of Interest.......................................................................... 125 

4        Performance Evaluation of Workflows ................................................. 127 
4.1 Context ................................................................................................ 128 

4.1.1 Formal Analysis .......................................................................... 128 
4.1.2 Throughput Time......................................................................... 129 

4.2 Analysis of Timed Petri Nets .............................................................. 130 
4.2.1 Deterministic Timing................................................................... 131 
4.2.2 Non-deterministic Timing ........................................................... 131 
4.2.3 Stochastic Timing........................................................................ 132 

4.3 Exact SWN Analysis ........................................................................... 133 
4.3.1 Basic Method............................................................................... 134 
4.3.2 The Iteration Structure................................................................. 142 
4.3.3 Other Extensions ......................................................................... 148 



Contents      XI 

4.4 Bounded SWN Analysis......................................................................154 
4.4.1 Bounds and Supporting Notions ..................................................157 
4.4.2 Correctness of Lower and Upper Bounds....................................160 
4.4.3 Efficiency ....................................................................................169 

4.5 Hybrid Approach .................................................................................171 
4.5.1 Constructing a Hybrid Net...........................................................171 
4.5.2 Analyzing a Hybrid Net...............................................................172 

4.6 Review.................................................................................................175 

5 Resource Allocation in Workflows.........................................................177 
5.1 The Resource-Extended SWN.............................................................180 
5.2 Goldratt's Conjecture ...........................................................................183 

5.2.1 The Goldratt Algorithm ...............................................................184 
5.2.2 Limits...........................................................................................184 

5.3 The Method of Marginal Allocation....................................................186 
5.3.1 Application of Marginal Allocation.............................................187 
5.3.2 Optimality....................................................................................188 
5.3.3 Limits...........................................................................................190 

5.4 Workbench ..........................................................................................192 
5.4.1 Pathological Nets.........................................................................194 
5.4.2 Big Nets .......................................................................................198 
5.4.3 Practical Nets...............................................................................201 
5.4.4 Evaluation....................................................................................205 

5.5 Conclusion...........................................................................................206 

6 Heuristic Workflow Redesign ................................................................207 
6.1 Redesign Heuristics .............................................................................208 

6.1.1 The Devil's Quadrangle ...............................................................208 
6.1.2 Task Rules ...................................................................................212 
6.1.3 Routing Rules ..............................................................................214 
6.1.4 Allocation Rules ..........................................................................217 
6.1.5 Resource Rules ............................................................................220 
6.1.6 Rules for External Parties ............................................................223 
6.1.7 Integral Workflow Rules .............................................................226 

6.2 The Intake Workflow...........................................................................228 
6.2.1 Workflow Notations ....................................................................228 
6.2.2 Initial Situation ............................................................................230 
6.2.3 Redesign ......................................................................................236 

6.3 Conclusion...........................................................................................242 

7 Systems and Practical Experience .........................................................245 
7.1 Short-Term Simulation for the GAK Agency......................................245 

7.1.1 Current State ................................................................................247 
7.1.2 Architecture .................................................................................248 
7.1.3 GAK Case....................................................................................250 

 



XII      Contents 

7.2 Product-Based Workflow Design for the GAK Agency ..................... 256 
7.2.1 Analysis ....................................................................................... 257 
7.2.2 Design.......................................................................................... 263 
7.2.3 Evaluation.................................................................................... 272 

7.3 Product-Based Workflow Design for the ING Bank........................... 273 
7.3.1 Scoping........................................................................................ 274 
7.3.2 Analysis ....................................................................................... 275 
7.3.3 Design.......................................................................................... 277 
7.3.4 Evaluation.................................................................................... 279 
7.3.5 Other Applications of PBWD within ING Bank Nederland........ 280 

7.4 Conclusion........................................................................................... 282 

8 Conclusion................................................................................................ 283 
8.1 Reflection ............................................................................................ 283 

8.1.1 Area of Application ..................................................................... 283 
8.1.2 Style............................................................................................. 284 

8.2 Future Work ........................................................................................ 285 
8.2.1 Workflow Design ........................................................................ 285 
8.2.2      Performance ................................................................................ 286 
8.2.3 Resources..................................................................................... 287 
8.2.4 Other Workflow Issues................................................................ 288 

A The Bottom-Level Workflow Model...................................................... 289 

B The Fourier Transform .......................................................................... 303 

C The Simulation of the Workbench......................................................... 305 

References .......................................................................................................... 309 
 

 
 
 
 
 
 
 
 
 
 

 



1 Introduction 

In the late eighties, the idea of process thinking emerged in industry. This was the 
time that major American companies such as IBM, Ford, and Bell Atlantic saw the 
benefit of focusing on cross-functional business processes. This contrasted with 
the traditional focus on typical functional business areas such as procurement, 
manufacturing, and sales. Process thinking should enhance the service to clients 
by extending beyond ad hoc, local decision making that pays little attention to the 
effectiveness across the process. 

The focus on business processes in organizing and managing work may seem 
quite straightforward today, but this was not always the case. In Figure 1.1, this 
historical development is given. 

 

Prehistoric
times

Ancient
times

Middle
Ages

Industrial
times

worker's
capabilities

worker's
focus

entire process
for all products

entire process
for a single

product

single part of a
process for a
single product

pure generalist intermediate
specialist

pure specialist

 
Fig. 1.1. How the focus on the process has disappeared 

In prehistoric times, people supported themselves by producing their own food, 
tools, and other items. In other words, people executed their own production proc-
esses, which they knew thoroughly. In ancient times this generalist work form 
evolved into an intermediate level of specialism. People started to specialize them-
selves into the art of delivering one specific type of goods or services, culminating 
in the guilds of craftsmen of the Middle Ages. Not only did a craftsman barter or 

H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 1-29, 2003. 
 Springer-Verlag Berlin Heidelberg 2003 



2      1 Introduction 

sell his own goods, he also mastered the skills to perform all the necessary opera-
tions to produce them. In other words, the process of delivering one type of good 
was totally executed by the craftsman himself. 

This higher degree of specialism started to shift into a form of pure specialism 
during the Industrial Revolution. In the mid-eighteenth century, the operations to 
produce a specific product were meticulously studied and unraveled. In factories, 
pure specialists were trained to carry out a single operation, which they worked on 
during their entire work period. The execution of their work was only one of the 
many steps in producing the entire product. This industrial way of organizing 
work resulted in a large boost in productivity. Not only in industry, but also in 
administrative settings it became the dominant organization form. It required the 
rise of a professional bureaucracy to manage the various specialists. The simplest 
way of differentiating responsibilities among the managers was to create within 
the company functional departments in which people with a similar focus on part 
of the production process were grouped. This type of organization dominated the 
work place for the greatest part of the nineteenth and twentieth century. The proc-
ess, by now, was scattered over the functions within a company. It was also out of 
view for organizers and decision makers.  

Today, the focus on the process is back. Everywhere around the world, in al-
most every industry, business processes are being fine-tuned, downsized, re-
engineered, value-added and re-aligned. On a more operational level, even more 
frequent process-centered decisions are made. These may concern specific orders, 
clients, people and machines. However, regardless of the decision-making level, 
many decisions are put in motion without an accurate picture of the expected earn-
ings beforehand, but rather on a "gut feeling". There may be a well-understood 
positive effect of a decision on, for example, the production cost, but a reliable 
quantitative estimate or qualitative rationalization of the intended effect is often 
lacking. Taking the cost and time that is involved with these decisions, there is a 
need for more answers in this field. 

Arguably, there is a practical interest in business processes. The scientific inter-
est is raised because managing business processes is notoriously difficult. There 
are, for example, no general and clear-cut answers about the best way to organize 
the work in a bank, insurance company, or hospital. However, some ways are bet-
ter than others, which raises the question why. On closer inspection, managing 
business processes can be much like solving a mathematical optimization prob-
lem. There often is ñ but not always ñ a clear target function, the essential aspects 
of a business process may also be suitable for representation in the form of a for-
mal model, and the answer is not straightforward as there are many degrees of de-
sign freedom with their own consequences. There is an intellectual challenge in 
thinking of methods to optimize the way in which business processes are man-
aged. 

Although knowledge from different disciplines is available on the subject of 
managing business processes, there are large gaps in this body of knowledge. 
Knowledge about organizing work has been documented for centuries, especially 
in a military context. The Romans mastered the organization of human resources 
for one of their major activities ñ conquest ñ by distinguishing decuriae, centuriae, 
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cohortis and legionis. During Napoleon's time the triage concept was invented, 
which can be found back as a business process construct within many contempo-
rary organizations (see also Section 6.1). Organizing work as a research topic 
really took off during the Industrial Age. At the end of the 19th century, Frederick 
Winslow Taylor started to use stopwatch timing as the basis of his observations of 
the cutting of metal and the shoveling of coal. These timings were further broken 
down into smaller elements to reorganize the work. Taylor referred to his time 
studies and resulting standards as scientific management (Taylor, 1947). 

Nowadays, Management Science, with supporting fields of study such as (Pro-
duction) Logistics and Operations Research, is an established scientific discipline 
focusing on the subject of organizing work, usually within an organizational con-
text. Especially in manufacturing ñ the production of physical goods ñ there is a 
strong exchange between practice and research. With the rise of popularity of the 
computer in the twentieth century and the increasing role information processing 
plays as a supporting or even primary part of business processes, the importance 
of Computing Science as a research field for organizing work has grown. The 
crossover field of study between Management and Computing Science involving 
business processes is nowadays commonly referred to as Business Process Man-
agement.  

The purpose of this monograph is to present the results of the author's research, 
which has taken place within the field of Business Process Management over the 
last five years. More specifically, the central issues in this monograph are the 
modeling, design, and analysis of workflow processes. Workflow processes are 
typically found within large administrative organizations, such as banks, insurance 
companies, and government. Examples of workflow processes are the handling of 
loan applications, the registration of new clients, or the issuing of building per-
mits. The main questions that are addressed in this monograph are as follows: 

 
− How to make a model of a workflow process. 
− How to design or redesign an effective and efficient workflow process in prac-

tice. 
− How to determine the performance of a workflow process. 
− How to allocate resources in an operational workflow process.   

 
Much of the inspiration for this monograph was derived from practice. The au-

thor has been involved in several information technology projects as a manage-
ment consultant. Projects in which he participated involved the implementation of 
workflow management systems, the analysis and redesign of business processes, 
and the building of information and decision support systems. Parts of this mono-
graph will be illustrated with this practical experience. 

In this introductory chapter, we will examine the concept of a business process. 
As may have become clear by now, this is a vital concept within this monograph. 
We will introduce the terminology to be used throughout the chapters in describ-
ing characteristics of business processes. We will subsequently identify the field 
of business processes management and present an overview of its most popular 
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contemporary branch, the redesign of business processes. Next, we will focus our 
discussion of business processes on workflow processes. We will discuss the char-
acteristics of this type of process in comparison to other business processes. Also, 
workflow management technology will be discussed, which is commonly associ-
ated with supporting workflow processes. Based on the characteristics of work-
flow processes, we will discuss the applicability of existing knowledge ñ particu-
larly from the field of production logistics ñ to the field of managing workflows. 
Finally, we will specify the purpose of this monograph and give an overview of its 
structure, building upon the terminology and concepts introduced. 

1.1 The Business Process 

The concept of a business process has been defined by Davenport and Short 
(1990) as "a set of logically related tasks performed to achieve a defined business 
outcome". This general outline has become widely adopted in the literature on the 
design and management of business processes. Hammer and Champy (1993) es-
sentially say the same thing, but they also stress the client-centered aspect of a 
business process: "a collection of activities that takes one or more kinds of input 
and creates an output that is of value to the customer". We will not try to extend or 
refine this definition as many others have proposed, but informally explore the 
commonly distinguished ingredients of a business process. 

1.1.1 Products and Business Processes 

The "business outcome" or "output" of a business process can often be described 
more explicitly as the product, which is created by the process. A common distinc-
tion is the one between goods ñ which have a physical manifestation ñ and ser-
vices ñ which do not. Examples of goods are buildings, wafer-stepping machines, 
and clothing. A strategic piece of advice, an insurance, or criminal jurisdiction are 
examples of services. Business processes producing goods are known as manufac-
turing processes. A business process that delivers services is often referred to as a 
workflow, service or administrative process. We will come back to a more specific 
interpretation of the term "workflow" in Section 1.4.  

For many business process concepts, there is a subtle but important distinction 
between their conceptual and actual manifestation. To start with, the sort of prod-
uct produced by a business process should be differentiated from actual instances 
of the product. We can say, for example, that a business process is intended to 
produce the DVC ñ 235 video camcorder, which has a 400 times zoom and a 3,5" 
liquid crystal display. In this sense, we refer to an abstract product concept, also 
known as a product type, class, or family. Only with an instance or specimen of 
this type of video camcorder, it is possible to shoot a movie. In this monograph, 
from the context of the term "product" it should be clear which interpretation is 
meant.  
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A similar distinction exists for the concept of a business process itself. We use 
the term "business process" to refer to a conceptual way of organizing work and 
resources. In this sense, a business process is not tangible. However, product in-
stances are produced by executing or instantiating the business process. A busi-
ness process execution involves real people, materials, clients, machines, com-
puters, and delivers one or more actual products. In this sense, the execution is the 
actual manifestation of a business process.  

The relations between the concepts we discussed are depicted in the UML en-
tity-relationship model in Figure 1.2.  
 

Business
Process Product type

Business
Process

execution
Product

Conceptual

Actual

1 1

1
0..*

1 0..*

1
0..*

 
Fig. 1.2. Relations between business process and product 

In such a model relevant entities are depicted as named boxes. Relations may 
hold between entities. It is common to give the cardinalities of these relations us-
ing the symbols '0', '1' and '*'. For example, between the business process and a 
business process execution a 1 on 0..* relation is in effect. The first direction of 
the relation expresses that there can be zero or more executions for one business 
process (0..*). In the other direction of the relation, for each business process exe-
cution there is exactly one business process it belongs to (1). Another example is 
the 1-on-1 relation between the business process and the product type: for each 
business process there is exactly one product type, and vice versa.  

Note that an execution of a business process may deliver one or more instances 
of a certain product. More than one delivery of a product at a time by a single 
process execution is known as batch production. A process execution may also fail 
for some reason, so that no product instance is delivered at all.  

Not graphically depicted in Figure 1.2 is the integrity constraint that the product 
that results from executing a specific business process is an instance of the product 
type that the business process is intended to produce.  

The execution of a business process passes through several stages in producing 
products. It often is convenient to distinguish the state of a business process exe-
cution. For example, to inspect whether a deadline will be met in producing a cer-
tain item, its current state of completion is relevant. Distinguishing an execution 
state is often done by referring to the operations that are already executed, the 
parts that still need to be constructed, or other milestones that are reached during 
the execution. As there may be many concurrent executions of a business process, 
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we can refer to the state of a complete business process as the collection of states 
of its individual executions.  

Finally note that the business process as a way of organizing work is a static 
concept; the state of a business process as a collection of business process execu-
tion states is dynamic. These distinctions will prove to be of the utmost use in con-
sidering the different problems in managing business processes. 

1.1.2 Performance Targets 

With the introduced terminology, we can describe the main purpose of a business 
process as a way to organize how specimens of one type of product are produced. 
On top of this, companies will try to accomplish additional performance targets in 
executing and managing the business process (see e.g., Hammer and Champy, 
1993; Sharp and McDermott, 2001). These targets may take on various forms. For 
example, a company may attempt to manufacture a product at the lowest possible 
cost with a marginally acceptable product quality. Another company may produce 
a similar product, but with as its most important characteristic that it is specifically 
tailored to the wishes of the client ñ regardless of cost. One might say that both 
companies produce the same product but with totally different performance tar-
gets. Commonly, performance targets combine specific interpretations of the four 
main dimensions of cost, time, quality and flexibility (Brand and Van der Kolk, 
1995). A very important performance target in many industries involves the 
throughput time (see Schäll, 1996; Van Hee and Reijers, 2000), also known as 
flow, response, cycle or sojourn time. One of our interests in this monograph in-
volves algorithms to determine this quantity (see Chapter 4).  

1.1.3 Clients 

Another key ingredient of business process definitions is the client. As we already 
stated in our introduction, a better service to the client was the driver behind fo-
cusing on business processes in the first place. Products are produced to satisfy an 
existing or future demand of a client, being either a person or an organization. A 
client can be external to the system that hosts the business process, but the client 
can also be part of it. An example that illustrates the latter form is a manufacturing 
department that requests an overhaul from the maintenance department of the 
same company. The client may also be rather abstract, like in many governmental 
business processes. For example, some business processes of the Department of 
Justice or Defense are not performed for one specific client, but rather aimed at 
servicing the community. 
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1.1.4 Orders and Triggers 

Clients may explicitly place an order for a product or service. For some business 
processes, the receipt of an order is the start event of each of its executions. For 
other processes, the start event may be different. For example, the production of a 
book may start before there any orders. Events that start a process are commonly 
referred to as triggers (e.g., Moldt and Valk, 2000). However, the term "trigger" is 
not exclusively used for events starting entire processes. A trigger may also be re-
quired to start a smaller part of the process. For example, the processing of finan-
cial transactions may incorporate an automatic check, which is scheduled to be 
performed during a batch operation at midnight. Even if all other processing has 
taken place, handling of the transaction is postponed until this time event takes 
place. 

1.1.5 Organization 

A concept that we have already mentioned is the organization that hosts the busi-
ness process. Commercial organizations are referred to as enterprises or compa-
nies. Non-commercial organizations may be known as agencies or institutes. An 
organization is commonly divided into departments on a functional, geographic, or 
product-oriented basis, for example: "Procurement", "Europe, Middle East, and 
Africa (EMEA)", "Fiscality". Combinations of these criteria are often seen as well. 
Each department or function of an organization may be divided into even smaller 
units. The exact web of divisions, departments, units and sub-units within an or-
ganization is often expressed in the form of an organigram. 

The basis for considering the boundaries of an organization usually is juridical. 
An organization comprises all the activities, assets, and means that fall within the 
responsibility of a legal body. Historically, processes were mostly found within 
the confinement of a single organization as such. Nowadays, business processes 
easily span these boundaries. Different parts of a business process may be exe-
cuted by different parts of different organizations. If the client is kept unaware of 
the (legal) boundaries between the partners of the business process, this is called a 
virtual organization.  

1.1.6 Resources 

The product of a business process is delivered by the commitment of resources, 
also known as "means of production". A resource is a generic term for all means 
that are required to produce a product within the settings of a business process. 
The effort to distinguish resources is made, because most of them are scarce. Their 
distinction makes it possible to handle them sensibly. Characteristically, consum-
able resources are mostly consumed when they are applied. Raw materials and 
semi-manufactures are the prime examples of consumable resources. For example, 
in producing a gardening tool, the wooden grip is a consumable resource. Reus-
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able resources can be committed for a long period of time and wear out only 
gradually. Within the context of a medical operation process, a surgeon and an 
anesthetist may be distinguished as reusable resources. The operation room and 
the medical information system can also be seen as reusable resources, as their ex-
istence is essential for an operation to be performed and they may be used time 
and again. Human resources, as a specific type of reusable resources, are also 
known as agents, participants or users. Reusable resources that are non-human are 
also referred to as the infrastructure, for example in the sense of a "technical infra-
structure". Note that resources in combination with the earlier mentioned triggers 
form the "inputs" that Davenport and Short mention in their business process defi-
nition. 

It often is convenient to classify resources with similar characteristics into re-
source classes or resource types. This facilitates a more efficient and robust way of 
organizing the responsibilities and authorizations in a business processes. For ex-
ample, instead of assigning certain individuals to a specific task, it is specified that 
any resource from a certain class may perform it. In general, two main dimensions 
are used to define resource classes: a functional and organizational one. A re-
source class based on functional characteristics is known as a role, function or 
qualification; for example, the resource class "mechanic" or "senior acceptor". An 
organizationally oriented resource class is often based on criteria already in use to 
distinguish different parts of an organization, such as departmental, geographic, or 
product divisions. Resource classifications are mostly used to classify human re-
sources.  

1.1.7 Tasks and Subprocesses 

By now we have repeatedly mentioned "parts of the process" as a frame of refer-
ence. In many approaches and definitions of business processes it is indeed very 
common to decompose a business process into smaller parts (e.g., the definition of 
Hammer and Champy (1993)). One way of decomposition is to distinguish sub-
processes, also known as subflows. Any part of a business process can be seen as 
a subprocess. Subprocesses are distinguished to divide the complexity of business 
processes into a hierarchic or network relation.  

The smallest distinguishable part of a process is often referred to as a task, but 
also as a step, activity or action. Within a business process that delivers bicycles, 
two separate tasks may be: (1) the painting of the frame and (2) the assembly of 
the wheels onto the frame. A task is a complete specification of a part of work to 
be accomplished. The "term" task resembles the term "business process" in the 
sense that it is abstract and not tangible: it is a way of organizing a small piece of 
work and its required resources. The boundaries of a task are often chosen such 
that each task is a logical unit of work. Typically, a potential transfer of work from 
one type of resource to another indicates a boundary of a task. Other aspects that 
determine the proper unit size are, for example, the involved location of the work, 
the expected time span to execute the task, all kinds of regulations, and the num-
ber of involved parties in executing the work. The so-called ACID properties (at-
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omicity, consistency, isolation, and durability), derived from transaction process-
ing, can also be used to define a logical unit of work. 

Dependencies may exist among the tasks within a business process. A common 
use of imposing a dependency between tasks is to express an execution order that 
is to be respected. For example, a dependency may be used to express the fact that 
the assembly of the wheels on a bicycle frame must be executed only after the 
frame has been painted. Dependencies may have various other semantics, express-
ing for instance an information exchange or control dependency.  

In the same spirit as in our discussion of the business process, it is possible to 
distinguish structural and dynamic manifestations of tasks. A task that has to be 
executed in the production of a specific product can be referred to as a work item. 
If a task has been executed for this product, the work item is completed. If a re-
source is actually executing a work item in the context of a business process exe-
cution we speak of an activity. Note that in contrast to some other authors we re-
serve this latter term exclusively for this specific, dynamic manifestation of a task. 

The different manifestations of tasks within a business process are summarized 
in Figure 1.3. 

 
Structural Dynamic

task

activity

work item
a task to be executed for

a specific product

a task being executed
for a specific product by

a specific resource

a specification of a part
of work within a business

process

 
Fig. 1.3. Structural and dynamic manifestations of work 

1.1.8 Categorizations 

Aside from the aspects of a business process discussed above, it is possible to 
categorize business processes in different ways. We already distinguished manu-
facturing from administrative processes. Another common classification is based 
on the execution frequency of the business process and its level of standardization 
as follows (see Van der Aalst and Van Hee, 2002): 
 
1. Customized process, ad hoc process or project: the business process is intended 

to be executed only once and it is tailored specifically to the demands of the 
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client. Examples: building of a communication satellite, defense of a client in 
court, writing a paper for a scientific journal. 

2. Mass-customization or production process: the business process is commonly 
executed with a high frequency (dozens to thousands of times a year); the proc-
ess incorporates a limited bandwidth of variation to satisfy the client's specific 
preferences. Examples: building houses within the same plan, handling requests 
for loans, issuing insurance policies. 

3. Mass-production or transaction processing: the business process is executed at 
an extremely high frequency (thousands to millions of times a year) and the 
process is fully standardized; there is no room for specific client demands. Ex-
amples: handling of financial transfers, making telephone connections, issuing 
driver's licenses.  

 
This classification will prove to be of use when we discuss the technology sup-

porting the execution and management of business processes in Section 1.4. 
Another common classification of business process takes as distinctive criterion 

the place of the business process within the hosting organization(s). The different 
classes of business processes are as follows: 

 
1. Primary or production processes: the business processes of a company that re-

alize the goods or services targeted at external parties. These processes usually 
generate the revenues for profit companies. For not-for-profit companies, these 
processes generate the products that implement their reason of existence. Ex-
amples: approving loans within a bank, electricity generation within an energy 
production company, building a block of apartments within a construction 
company. 

2. Secondary or support processes: the business processes that are there to support 
or maintain the primary business processes. A large part of the secondary proc-
esses is aimed at maintaining the means of production. Human resource and fi-
nancial management processes are also secondary processes. Examples: pur-
chasing of raw materials within a manufacturing company, house cleaning 
within an insurance company, expertise center within a government agency.  

3. Tertiary or managerial processes: the business processes that direct and coor-
dinate the primary and secondary business processes. The former processes im-
pose business targets on the latter. The management of tertiary processes is ac-
countable to the owners of the organization or to higher authorities on their 
performance. Examples: plan and control cycle, project management, and board 
meetings. 

 
The primary reason to consider a business process, its products, performance 

targets, clients, triggers, organization, resources, tasks and relations between them, 
is to support a decision of some kind. Three criteria can be used to distinguish be-
tween decision-making levels within an organization (Van der Aalst and Van Hee, 
2002). The first is the frequency of decision making. The second factor is the 
range of the decisions taken, which we make operational as the time period in 
which the effect of the decision can be experienced. The third and last factor con-
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cerns the question whether the dynamic state of the process or the static structure 
of the process is more relevant. We distinguish a hierarchy of four different levels 
of decision making as follows: 

 
1. The real-time level 

Decisions are taken with a high frequency (intervals ranging from microsec-
onds to hours), but the impact of the decision is felt for only a very short pe-
riod. The dynamics of the process are extremely relevant to take the decision, 
where the static process is only relevant on a task level. A real-time decision 
may involve the operation of a single task by handling a computer or machine.  

2. The operational level 
Decisions are taken with a considerable frequency (from hours to days) and 
their impact is limited. The dynamics of the process are very relevant to take 
the decision. The structure of the process is relevant in so far as it concerns one 
or several related tasks. An operational decision may involve how the manufac-
turing of a specific product must be continued. 

3. The tactical level 
Decisions are made periodically (from days to months) and their impact ranges 
from limited to considerable. The structure of the complete process tends to be 
as important as condensed or aggregated views on the dynamic state of the 
business process. A tactical decision may involve the allocation of resources to 
tasks within a business process. 

4. The strategic level 
Decisions are made only once or no more than every couple of years, and the 
effects are felt for a long period of time, possibly years. The dynamic state of 
the process is typically of no importance. A strategic decision may involve the 
restructuring of the complete process. 
 
Note that with respect to the previous classifications, the above levels of deci-

sion making can be distinguished within primary, secondary, and tertiary proc-
esses, as well as within mass-customization and mass-production processes. How-
ever, with respect to a customized process, strategic decision making may be 
limited. 

1.2 Business Process Management 

The focus of this monograph is the field of Business Process Management (BPM). 
Before we can formulate the purpose of this monograph in Section 1.6, we will 
explore the BPM subject in some more detail. Although it is a popular term in 
both business practice as in the sciences, there is no agreement on its meaning. 
Rather, there are topics with respect to business processes that are commonly 
gathered under this term, notably the design, analysis, modeling, implementation 
and control of business processes (Schäll, 1996; Van der Aalst et al., 2000b; Del-
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larocas and Klein, 2000; Sharp and McDermott, 2001; Van der Aalst and Van 
Hee, 2002).  

We adopt a view on Business Process Management as put forth by Leymann 
and Altenhuber (1994). They distinguish two fundamental aspects, namely the 
build time aspect and the run time aspect of managing business processes. The 
build time aspect focuses on the creation of the business process; the run time as-
pect focuses on its execution. Using this distinction we regard BPM as the field of 
designing and controlling business processes. We will briefly discuss the two di-
mensions ñ design and control ñ in this section. The distinction of the two has also 
become very common in the field of the so-called Workflow Management Sys-
tems for discussing their main functionality, see e.g., Jablonski and Bussler 
(1996); we will discuss this technology in Section 1.4. 

Within the spectrum of different decision-making levels (see Section 1.1), the 
design of business processes ñ the first dimension of our BPM definition ñ is tradi-
tionally seen as a strategic issue. Typical examples of strategic decisions that are 
relevant from a BPM view are decisions on the restructuring of a business process, 
decisions on the organization that will be involved in executing the business proc-
esses (with as a strategic alternative outsourcing), and decisions on financial, lo-
gistic, quality, and other objectives for business processes. However, there are 
many strategic decisions that do not fall within the scope of BPM. The question 
which products should be continued and which products should be abolished 
(product life cycle), the markets that should be conquered or abandoned, the pre-
ferred corporate and brand image, and the financial funding of the organization are 
not typically BPM issues. The examples indicate a part of strategic decision mak-
ing that focuses on the products and the existence of the organization as a whole, 
rather than on the business processes that are hosted by this organization. 

The other dimension of our BPM definition, the control of business processes, 
focuses more on decisions that are taken on the real-time, operational, and tactical 
levels of decision making (see Section 1.1). Activities that typically take place on 
these levels are, for example, production planning, resource assignment, budget-
ing, and exception handling. To take resource assignment as an example, it is clear 
that to decide on the best way of assigning scarce resources to the business proc-
ess, relevant variables include the following:  
 
− The number of already committed resources. 
− The expected size of the work. 
− The number of orders within the process. 
− The required skills for doing the work. 

 
There is an essential similarity and an essential difference between the design 

of a business process on the one hand and its control on the other. For decision 
making in both domains, a clear understanding of the static view of a business 
process is highly relevant. After all, if the process structure for a decision is not 
relevant it falls outside the scope of BPM by definition. However, for the design 
of a business process the dynamic view on the process in question is not relevant, 
while it is highly relevant for its control. (As stated before in Section 1.1, the static 
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view involves the structure of the process and the dynamic view the state during 
execution.) Consider, for example, the relevant variables we listed for deciding on 
the best way to assign scarce resources that involve static elements (the expected 
size of the work and the required skills) and dynamic elements (the number of 
committed resources and the number of orders).  

We would like to make two comments with respect to the above observation. 
The first is that the scope of decision making on a run-time level within a business 
process typically is constrained by a single task (see the distinction of different 
decision making levels in Section 1.1). Issues that involve the execution of a sin-
gle task hardly require a view on larger parts of the business process most of the 
time, let alone the total process. Therefore, run-time decision making, i.e., the 
proper execution of a single task, is not commonly treated as a BPM issue. In this 
monograph we will totally abstract from decision making on this level. 

The second and more important remark is that by the rapid technological de-
velopments the supposedly sharp distinction between design and control issues is 
fading. Good examples on this note are the so-called ad hoc workflow manage-
ment systems that provide capabilities to the end-user to change the structure of 
the business process during its run-time execution. Section 7.1 includes a case de-
scription that also supports the narrowing of the gap between strategic decision 
making and operational control. This case has been described earlier by Reijers 
and Van der Aalst (1999).  

In summary, the design and control of business processes are defined as the 
elementary parts of BPM. Accordingly, they will be the driving subjects of the 
chapters in this monograph. Although there is a strong conceptual difference be-
tween the two BPM dimensions, one should be cautious in using this distinction 
too rigorously. Because the design dimension of BPM has received the widest 
attention of the business and science community alike in the past twenty years, we 
will elaborate on the developments in this field in the following section. It will 
clarify the maturity state of research in the BPM field, which in its turn is relevant 
to understand the purpose of this monograph. 

1.3 Business Process Redesign 

Historically, the focus of BPM has been on the strategic level of decision making; 
in particular, on the design and redesign of business processes. The driver behind 
this phenomenon is the extreme importance of the way that corporate work is or-
ganized as overall business processes for the profitability, effectiveness, and effi-
ciency of organizations. Hammer (1990) and Davenport and Short (1990) were the 
first to report on more or less systematic approaches to produce radical perform-
ance improvement of entire business processes. Their major vehicles were the ap-
plication of information technology and the promotion of changing the structure of 
the process. This approach was coined with the terms "Business Process Reengi-
neering" by Hammer (1990) and "Business Process Redesign" by Davenport and 
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Short (1990). Their ideas were embraced by industry. It was also a first, gentle 
wave in the later flood of literature that arose on this subject. 

Hammer and Champy (1993) subsequently stressed the extreme nature of re-
design and additionally identified the intended outcome. They promoted it as the 
"fundamental rethinking and radical redesign of business processes to achieve 
dramatic improvements in critical measures of performance, such as cost, quality, 
service, and speed". Over the years, different authors have made variations on the 
original terms, e.g., Business process improvement (Harrington, 1991), Core proc-
ess redesign (Kaplan and Murdoch, 1991), Business process transformation 
(Burke and Peppard, 1993), and Business process management (Duffy, 1994). De-
spite the variations, the concepts behind these approaches are essentially so similar 
that it has led practitioners to effortlessly substitute one term for the other. We will 
refer to the general concept with "BPR".  

1.3.1 Popularity 

The popularity of BPR in industry has grown to a considerable level since its in-
troduction, although the penetration of BPR differs. An Australian software ser-
vice company conducted a client poll of 107 Australian and Asian companies and 
reported that 50 % of them were already undertaking or planning to undertake 
BPR initiatives (MIS, 1993). In 1994 the CSC Index Survey of US and European 
Companies was conducted by Champy (1995). In this study, 621 American and 
European companies with revenues of at least US$ 500 million per year were sur-
veyed. More than 69 % of these companies had already adopted BPR as a means 
to improve their business operations. As many as 88 % of the American compa-
nies were using BPR or were about to start BPR projects. In a similar study in the 
UK Grint and Wilcocks (1995) reported a percentage of 59 %. A recent study of 
Kallio et al. (1999), which included 93 large and medium-sized Finnish compa-
nies, showed that 41 % of these companies conducted one or more BPR projects. 
These and many other studies seem to suggest that BPR is more popular among 
larger companies. Zampetakis (1994) suspects that unlike North American com-
panies ñ which take on BPR as a way to demonstrate they are taking action in their 
quarterly reports ñ companies in other parts of the world (e.g., Australia) are 
slower to reengineer and, as such, also have a lower rate of failure. In practice, 
BPR is usually applied to competitive, client-facing business processes with as 
most common examples order delivery, marketing and sales processes (Kallio et 
al., 1999). 

The drivers behind the popularity of BPR are manifold. In the first place, com-
panies feel the increasing pressure of a globalizing market (Hammer, 1990; Van 
Hee and Reijers, 2000). Cost reduction has become prevalent to survive. High po-
tential benefits have tempted companies to adopt BPR, as several success stories 
on BPR have shown 70 % savings in time and cost (e.g., Belmonte and Murray, 
1993).  
A second driver is that the historically strong position of suppliers in many mar-
kets is becoming less dominant compared to that of the client (Hammer and 
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Champy, 1993; Van Hee and Reijers, 2000). Clients today are characterized by 
their relentless demands in quality, service and price; take for example their will-
ingness to act on default of contract and by their disloyalty (O'Neill and Sohal, 
1999). To win clients' repeated business, companies have to please them by short-
ening their production time, increasing their product quality and showing flexibil-
ity in handling the changes in the client's preferences. BPR is generally seen as a 
means to improve on all of these factors.  

The third and last major change driver is technology. Information technology is 
considered to be the most important enabler for BPR (Kallio et al., 1999). Infor-
mation technology offers a wide variety of new possibilities to manage the busi-
ness process better, while increasing their flexibility (Van Hee and Reijers, 2000). 
The widespread application of Enterprise Resource Planning Systems (Scheer, 
1994) and Workflow Management Systems (Van der Aalst and Van Hee, 2002) in 
industry is a strong example on this note. Also, computer-aided software engineer-
ing (CASE) and object-oriented programming has helped simplify systems' design 
around business processes (Baets, 1993; Petrozzo and Stepper, 1994). Hutchison 
(1994) recognizes groupware applications as stimulating and supporting the re-
engineering of business processes. In summary, the availability of new informa-
tion technology makes companies perceive the expected gain of a BPR project as 
attractive and its associated risk as more acceptable. 

Sharp and McDermott (2001) conjecture that "process thinking" and BPR by 
now have become main-stream thinking in industry. They suppose that this ex-
plains why the focus of research and management literature has shifted away from 
BPR in recent years.  

1.3.2 Risks and Challenges 

Notwithstanding the popularity of BPR, different studies have indicated that a 
large number of BPR programs fail. Some failure estimates are up to 70 % (e.g., 
Bradley, 1994; Champy, 1995). The interpretation of such a figure, however, is 
troublesome. Falling short of the intended objectives is an obvious mark of failure, 
but it is conceivable that in many cases no clear objectives have been formulated 
at all. This is a reason for Van der Aalst and Van Hee (2002) to insist on formulat-
ing clear and measurable objectives, as well as establishing the so-called null 
measurement at the start of a project. A null measurement establishes the score of 
the performance targets just before the redesign is carried out. Such a measure-
ment makes an ex-post evaluation possible. It is also noteworthy that in spite of 
reported failure rates of BPR projects, the presence of BPR success stories in lit-
erature exceeds the number of failure cases by far. Although this is a natural phe-
nomenon ñ what is there to gain for a company to report on a failed BPR project? 
ñ it also indicates the difficulty of correctly estimating the success/failure ratio of 
BPR projects. Finally, Peppard and Rowland (1995) put the failure rate of BPR 
projects within the context of the general tendency of most large-scale projects, 
which fail to achieve all the targets set for them at the starting point.  
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Although recent, complete and unambiguous figures on BPR success are lack-
ing, it is evidently so that BPR projects may indeed fail or come up short of expec-
tations. The risks that cause failure or shortcoming are usually divided into two 
categories: technical and organizational. These categories are related to the com-
mon view of a BPR initiative as a twofold challenge, as follows (e.g., Manganelli 
and Klein, 1994a; Carr and Johansson, 1995; Galliers, 1997): 
 
1. A technical challenge, which is due to the difficulty of developing a process de-

sign that is a radical improvement of the current design. 
2. A sociocultural challenge, resulting from the severe organizational effects on 

the involved people, which may lead them to go against those changes.  
 

Apart from these challenges, project management of a BPR initiative itself is 
also named as a common field of risk (e.g., Grover et al., 1995). Project manage-
ment is concerned with managing both the technical and sociocultural challenge 
throughout the BPR initiative. The components of a BPR initiative are depicted in 
Figure 1.4. 

preparing

explaining

motivating

designing

measuring

developing

managing
planningdeciding

Project management

Technical
challenge

Sociocultural
challenge

 
Fig. 1.4. The components of a BPR initiative 

Most literature on the risks involved with BPR initiatives identify the organiza-
tional risks as the greatest, followed by the project management risk (e.g., Bruss 
and Roos, 1993; Carr and Johansson, 1995; Galliers, 1997; O'Neill and Sohal, 
1999; Kallio et al., 1999). Commonly perceived organizational risks are, for ex-
ample, resistance to the change, lack of motivation, and improper communication. 
Commonly perceived project management problems spots, for example, include 
time schedules, required resources, and budgets. The technical risks, such as a bad 
design, identification of the wrong process and the unreliability of information 
technology (IT), are usually perceived as less severe. However, it is clear that the 
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various risks are related. For example, implementing a bad design is likely to 
cause strong opposition from the people who are forced to use it.  

The apparently settled classification and prioritization of BPR risks might very 
well explain the focus that a major part of the BPR literature has. The work that 
has been produced over the past ten years can roughly be divided into two catego-
ries. On the one hand, there is literature concerned with promoting BPR, case-
based descriptions of BPR and overviews of the BPR literature. This type of litera-
ture is predominantly of a descriptive nature. It is often amusing and sometimes 
informative, but not much good for someone who wants to execute BPR himself. 
On the other hand, there is prescriptive literature explaining how to execute BPR 
as a whole, or parts of it. This latter type of literature is dominated by the treat-
ment of project and change management issues of BPR projects (e.g., Stoddard 
and Jarvenpaa, 1995) ñ the sociocultural or project management side ñ instead of 
how to design a new business process ñ the technical side.  

Prescriptive literature is sometimes advertised as "a step-by-step guide to busi-
ness transformation" (e.g., Manganelli and Klein, 1994a) suggesting a complete 
treatment of the organizational and technical issues involved in BPR. However, 
work like this seems to be primarily aimed at impressing a business audience. At 
best it gives some directions to manage organizational risk, but usually lacks ac-
tual technical direction to redesign a business process. Even the classic work of 
Hammer and Champy (1993) devotes only 14 out of a total of over 250 pages to 
this issue, of which 11 pages are used for the description of a case. Gerrits (1994) 
mentions: "In the literature on BPR, examples of successful BPR implementations 
are given. Unfortunately, the literature restricts itself to descriptions of the 'situa-
tion before' and the 'situation after', giving very little information on the redesign 
process itself." As Sharp and McDermott (2001) commented very recently: "How 
to get from the as-is to the to-be [in a BPR project] isn't explained, so we conclude 
that during the break, the famous ATAMO procedure is invoked ñ And Then, A 
Miracle Occurs". 

In conclusion, we can establish that despite of the popularity of BPR as a field 
of research and application the developments in this field have not reached a ma-
ture state yet, especially with respect to technical issues. Rather than on the tech-
nical art or science of redesigning business processes, the focus in recent BPR lit-
erature is on the following: 
 
− Case studies, e.g., by Sarker and Lee (1999). 
− Rehashing existing BPR literature, e.g., by O'Neill and Sohal (1999) and Al-

Mashari and Zairi (2000b). 
− Boundaries of BPR, e.g., by Al-Mashari and Zairi (2000a) and Bhatt (2000).  

 
Without a rigorous presentation of the maturity of BPM as a whole, we claim 

that the field of study is still in its infancy. Especially the technical side of BPR is 
severely underexposed, although a good process design is nothing less than the 
cornerstone of any successful BPR project. Because the field of BPM is too large 
to approach within the setting of this monograph, we will focus on a specific kind 
of business process: the class of workflow processes. 
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1.4 Workflows 

The workflow process or simply workflow is a special kind of business process. 
Often the use of the terms "business process" and "workflow" is mixed up, either 
in the sense that they are explicitly used as synonyms (e.g., Van der Aalst and Van 
Hee, 2002) or that they are presented side by side without any distinctive com-
ments (e.g., Knolmayer et al., 2000). Another popular interpretation, already men-
tioned in Section 1.1, is to see a workflow as an administrative business process, 
i.e., as a business process that delivers services or informational products (e.g., 
Van der Aalst and Berens, 2001). The term "workflow" is also used to exclusively 
refer to the control dimension of a business process, i.e., the dependencies among 
tasks that must be respected during the execution of a business process (Dellarocas 
en Klein, 2000; Sharp and McDermott, 2001). A final and empirical interpretation 
is to consider those business processes as workflows that can be supported by 
Workflow Management Systems (Deiters, 2000). We already mentioned this type 
of system already in the previous section as an example of a technology driver for 
BPR. Although we are not enthusiastic about defining conceptual terms by charac-
teristics of actual technology, it is worthwhile to explore workflow management 
technology in some more detail before discussing the essential characteristics ñ in 
our view ñ of workflows.  

1.4.1 Workflow Management Systems 

The main purpose of a workflow management system (WfMS) is to support the 
definition, execution, registration and control of business processes (Van der 
Aalst, 1998). This complex of tasks is considered to be the domain of workflow 
management or alternatively office logistics. In principle, workflow management 
can be executed without the use of technology; in particular without a WfMS. In 
fact, this traditionally was the case before workflow management technology was 
developed at all ñ and probably still is in most practical business settings.  

In practice, a WfMS takes care of delivering the right piece of work to the right 
resource at the right time. Each time an essential piece of work has been com-
pleted during a business process execution, the WfMS determines how the busi-
ness process execution is to be continued by delivering the next piece of work to 
one or more resources that are capable of executing it. The WfMS can do this on 
the basis of a model of the business process, also called a workflow definition. In 
this workflow definition, all the tasks within the business process are distin-
guished, as well as their dependencies. The workflow definition also incorporates 
the information on the type of resources that are required for the execution of each 
task (see Section 1.1). In this way, the WfMS can address the right resource ñ usu-
ally a person or a computer system ñ at the right moment. Human resources are 
usually using electronic equivalents of post boxes to communicate with a WfMS, 
in particular for the purpose of accepting new work from the WfMS and notifying 
that work has been completed to the WfMS. 
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In handing out work, WfMS's are able to integrate with other types of informa-
tion technology, such as databases, document management systems and transac-
tion systems. This is efficient and it has many ergonomic advantages. For exam-
ple, along with a piece of work to be executed all relevant information can be 
handed to the human resource that will be carrying it out. Also, the WfMS can in-
voke the proper information system to execute an automated task.  

All actions of the WfMS are recorded by it. As a result, all sorts of historical 
management information on business process executions can be derived from the 
WfMS. Popular figures are, for example, the number of products produced, the 
work accomplished by personnel in specific periods, the number of rejections of a 
certain type of proposal, etc.  

Of the current business process executions under control of the WfMS, the sys-
tem also maintains a detailed real-time administration of each of its states. This 
dynamic administration is required for the WfMS to operate at all. After all, it 
would be very inefficient for the system to ignore steps already executed. The 
WfMS therefore offers a valuable window on the operational state of the process. 
Typical operational information harvested from a WfMS consists of the number of 
current business process executions and the length of queues of work items. 

The first WfMS's as generic software packages became commercially available 
in the early 1990s (Jablonski and Bussler, 1996). Workflow management func-
tionality could be distinguished within other software packages before this time. It 
could not, however, be separated from other functionality concerning the content 
of the work to be supported (e.g., specific calculations, storage and retrieval func-
tionality, etc.). In this sense, it is relevant to distinguish between the generic soft-
ware with which business processes can be managed ñ the WfMS ñ and a system 
that is used to manage a specific business process ñ a workflow system (Van der 
Aalst and Van Hee, 2002). Clearly, WfMS's can be used to build workflow sys-
tems. However, any system that incorporates knowledge about how the business 
process is executed logistically can be used for a workflow system. Today, Enter-
prise Resource Planning (ERP) and Customer Relation Management (CRM) sys-
tems are incorporating more and more workflow functionality. Also note that a 
workflow system does not execute any tasks of the business process itself. It fo-
cuses on the logistics of the work ñ not its content. 
WfMS's are typically used within the setting of mass customization (see Section 
1.1; Van der Aalst and Van Hee, 2002). This is related to the alleged advantages 
of WfMS's. As there are many possible viewpoints in discussing their merits, we 
will restrict ourselves to two of the most outspoken ones, which are as follows: 
 
1. Flexibility 

In separating the logistics of the work, to be managed by a WfMS, from the 
content of the work, which still is to be executed by humans and computers sys-
tems, it is in principle easier to change and manage the logistics of the process 
independently from the content of the tasks (and the other way around). 

2. Optimization 
By using a dedicated automated system for the logistic management of a proc-
ess, the process is executed faster and more efficiently. 
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These advantages must be set off against other IT solutions or against executing 
and managing business processes manually. The support of document manage-
ment systems and imaging facilities strongly intensify these advantages. Further-
more, both types of advantages are more strongly felt in settings where there is a 
high frequency of business process executions that require some sense of respon-
siveness to a client's preferences, i.e., a situation of mass customization (see Sec-
tion 1.1).  

Despite these advantages and the high expectations concerning WfMS's in the 
beginning of the 1990s as the "technology of the 21st century", the application of 
this type of technology has not caught on as was expected. Technological as well 
as change management issues are seen as major reasons for this. Reijers et al. 
(1999), Reijers and Goverde (1999b), Grinter (2000), Agostini and De Michelis 
(2000), and Joosten (2000) explore some of the reasons for this disappointing de-
velopment. It is not a subject of this monograph. 

1.4.2 Workflow Characteristics 

A workflow as a special kind of business process has some distinctive characteris-
tics that set it apart from other business processes. Also, there are some character-
istics that workflows typically share, although they are not essential. We will suc-
cessively discuss both categories. 

Essential Characteristics 

Essential for a workflow is that it is a case-based and a make-to-order business 
process. The case-based character of a workflow refers to the case concept. A case 
is defined as the subject of operations in a business process execution. Examples 
of cases are subscription requests, mortgage applications, and hospital admissions. 
A business process is case-based if during its execution each activity can be at-
tributed to one single, discrete case. The singularity of the case means that it is 
uniquely distinguishable from all other cases. The workflow case is discrete in the 
sense that there is a clear moment of the case coming into existence and a clear 
moment of completion of the case. Neither of these two aspects ñ singularity and 
discreteness ñ are universally present in actual business processes. Within mass-
production processes (see Section 1.1) there is often no clear distinction of cases 
during their execution. For example, it is not always known beforehand which two 
actual subassemblies will be assembled in the end to produce a specific final 
product. The discrete character of a case is violated in processes that have no clear 
start or end. 

The make-to-order characteristic of a workflow means that the trigger starting a 
process execution is an order. A workflow cannot be executed to produce a good 
or service in advance of the actual order (make-to-stock). As we have discussed in 
Section 1.1, an order is a common but in general not the only possible way of 
starting a business process. The order and case concepts are highly related in 
workflows. More precisely, there is one order for each case; there is one workflow 
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execution for each case. For example, an order may be a specific application for a 
mortgage. The receipt of this order is a unique trigger. This trigger initiates the 
creation of a unique case: a mortgage application. The handling of the case in the 
form of calculations, tenders and decisions is performed as a specific execution of 
the mortgage workflow. When the application has been completely handled (the 
case is complete), the workflow execution ends and a product is possibly deliv-
ered. Obviously, one order may simultaneously involve any quantity of products 
of various types.  

The most common end-state of a business process is the completion of the case 
in the form of a product. This is, however, not the only possibility. In many work-
flow processes, there are ways of ending its execution while not delivering a prod-
uct. For example, a mortgage application may not be acceptable for a bank given 
the financial situation of the applicant or applicants. Alternatively, the client may 
revoke the order halfway through the workflow execution. Either way, the appli-
cation will not result in closing the mortgage, i.e., the actual product. A workflow 
execution may therefore lead to no or exactly one product.  

Combining the essential characteristics of a workflow with the general business 
process relations as depicted in Figure 1.2, we come up with the relations depicted 
in Figure 1.5.  
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Fig. 1.5. Relations between the workflow concepts 

For the sake of completeness, the concepts of tasks, work items, activities, re-
sources, and resource classes discussed earlier are also included in the model. In 
doing this, the relations between the most important concepts for this monograph 
are present. We will briefly discuss the relations not treated before. 

In Figure 1.5 we see that a workflow consists of one or more tasks (see Section 
1.1). A tasks occurs in one workflow only. Resources are grouped into resource 
classes, which in turn can be used to specify who is both capable and authorized to 
perform a task. For each task, this may be a number of resource classes. An indi-
vidual resource itself may be a member of several resource classes. 

Both types of dynamic manifestations of tasks ñ activities and work items ñ are 
also included in the model (see Section 1.1). A work item is a task that has to be 
performed for a specific case. In the depicted model, an activity is a work item 
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that is executed by a specific resource. If no resource is required, i.e., it is auto-
matic, no resource is required. 

It should be clear that the depicted model is a simple approach to structure the 
important workflow concepts. More complex situations can be imagined. For ex-
ample, the same task may occur in more than one workflow, i.e., it is shared. Also, 
the given model expresses that several resource classes may be assigned to a task, 
although only one resource at a time will actually work on a work item. In reality, 
more than one resource at a time may work on a work item. Take, for example, a 
medical team that carries out an operation. The model is not complete either. As 
we remarked in Section 1.1, all kinds of dependencies may be in effect between 
tasks, e.g., precedence relations, and the same holds for resource classes, e.g., hi-
erarchical relations. Not graphically depicted either are the constraints for each 
cycle within the entity relationship. Obviously, relations between the same in-
stances are expressed. However, the model is useful to indicate the scope of the 
topics addressed in each of the chapters to follow. 

Common Characteristics 

Next to the essential characteristics there are others, usually found with workflow 
processes. To start with, many workflow processes mostly incorporate administra-
tive or informational operations ñ calculating, writing, storing, deciding, commu-
nicating ñ and these processes often deliver services ñ advices, loans, permits. The 
reason for this phenomenon is that specific information about the case plays an 
important role during the business process execution from the start. It is this in-
formation that has to be processed and compared, leading to the creation of other 
information with similar processing steps as result. For example, in a workflow 
process that handles requests for construction permits, all the following informa-
tion is relevant before the process may start: the size of the intended building, its 
purpose, its exact location, the construction method, the building period, etc. 
Unlike many manufacturing processes it is not possible to anticipate the exact case 
characteristics by producing a variety of products in advance. For example, a stock 
of construction permit rejections makes no sense. 

The informational character of a workflow, however, is not essential. There are 
workflow processes that incorporate physical operations. For example, conditional 
to the issuing of a mortgage, Dutch banks demand a physical copy of the contract 
of sale. In addition, banks are required by the Dutch Bank Law to physically ar-
chive these for a certain period. Also, it is perfectly possible ñ although not always 
the most productive way ñ to produce goods in a make-to-order and case-based 
way. 
Another common but not essential characteristic of workflows is the fact that hu-
mans form a large part of the required resources for its execution. This in contrast 
to many manufacturing and mass-production processes where most of the opera-
tions are automated. Workflows typically involve decision-making steps that can-
not be totally formalized, because they require a human value judgment or inter-
pretation. An example of this decision can be found in how Dutch social security 
agencies decide on granting unemployment allowances. The judgment whether the 
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applicant is to blame for his discharge is highly relevant within this context. If 
there are conflicting statements of different parties, a specialist has to make a 
judgment weighing the credibility of these statements. Another example is the de-
cision of a bank whether the purpose of a loan is commercially attractive to sup-
port. Many factors determine this attractiveness in practice, but there is no algo-
rithmic way of combining these factors into a standardized decision-making task.  

The human factor in workflow processes, however, is not essential. It is easy to 
imagine practical workflows that require no human interference at all. In fact, 
many organizations that host workflows are considering measures to fully auto-
mate these processes, so that they can be offered to clients via the Internet. Com-
mon terms for this trend are Straight-Through-Processing and Unattended Work-
flow (MacSweeney, 2001). As will be shown in the GAK case of Chapter 7, it 
often is possible to automate many steps within a workflow that were formerly 
performed by humans. Even if completely automated processing is not possible, 
large categories of cases may be identified that do not require human judgments. 

A final, common characteristic of a workflow is that the business process in 
question is often repetitively executed (e.g., Schäll, 1996). The workflow structure 
may be changed once in a while, but after each change it is used as the basis for 
delivering multiple products. We already established that a considerable part of 
the resources in a workflow are human, indicating that workflows usually are not 
fully standardized. Using the presented classification based on the execution fre-
quency of the business process and its level of standardization in Section 1.1, it is 
therefore fair to say that workflows are mostly of the mass-customization type. 
Less frequently, workflows are used for high-volume transaction processing. This 
requires the tasks in the workflow to be fully automated. Although it is much more 
infrequent, it is also possible to use a workflow as a customized process, i.e., for 
the production of only one product. A concern that may cause one to prefer this al-
ternative despite the cost is that complete control of the process execution is re-
quired. An example would be the construction of a large infrastructural work that 
is to be delivered under tight quality procedures. 

Discussion 

Having discussed the characteristics of workflows, we return our attention to the 
definitions of workflows as special business processes in the introduction of this 
section. As discussed, the interpretation of a workflow as an administrative proc-
ess is slightly narrow. However, the empirical interpretation of workflows as busi-
ness processes that can be supported by WfMS's makes some sense. WfMS's are 
founded on the concept of unique, discrete cases and they do recognize orders as 
starting triggers of the process (see Van der Aalst and Van Hee, 2002).  

We must be cautious, however, in identifying workflows as those processes that 
can be supported by WfMS's. We name three reasons for this. The first is that 
there are workflows that cannot be easily supported by WfMS's, because their 
structure is unclear or very complex. The issuing of a permit in a corrupt country 
may be difficult to support because of the lack of transparency in the process. 
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Also, the decision-making process during the weekly meeting of a board may be 
too difficult to capture in a workflow definition.  

The second reason is more empirical. In their treatment of workflow modeling 
Jablonski and Bussler (1996) explicitly distinguish between system-related and 
unrelated perspectives on workflows. This indicates that there are perspectives on 
a workflow that are more and less related to the characteristics of a WfMS. 
Thirdly, it is interesting to note that there are other types of systems such as ERP, 
CRM and case-handling systems ñ of which the vendors claim that they are essen-
tially different products from WfMS's ñ that do focus on the support, definition, 
control and execution of workflows. This phenomenon allows us to state that 
workflows include those processes that can be supported by WfMS's, but that 
processes outside this arena also may qualify as workflows. 

Finally, at the beginning of this section we also considered the notion of a 
workflow as the control dimension of a business process. In Section 2.2 we will 
return to this specific interpretation when we discuss the different conceptual as-
pects of a workflow model. We will see that this view coincides with a narrow in-
terpretation of one of the components of a workflow model that we will distin-
guish. 

1.5 Workflow and Logistic Management 

The science of Business Process Management has particularly evolved itself in the 
field of manufacturing processes. As a consequence of the essential and practical 
characteristics of workflows (see Section 1.4), we will discuss the applicability of 
logistic concepts applied in manufacturing processes for the management of work-
flows. 

A large part of the manufacturing theory focuses on the design and manage-
ment of stock, such as its proper geographical and logical location, the proper 
stock level, the speed of stock replenishing, etc. Because a workflow essentially is 
a make-to-order process, this theory is largely inapt for workflows. Some of its 
concepts and terminology are, however, still usable. For example, if larger busi-
ness processes are composed as chains of subsequent workflows, decoupling 
points can be distinguished between the end of a workflow and the start of the 
next. Take, for example, the goods flow of a production company in Figure 1.6. 
Despite the decoupling points "raw materials" and "end products", the receipt, as-
semble, and dispatch steps may be treated as separate workflows.  

AssembleReceipt Dispatch

Raw
materials

End
products

 
Fig. 1.6. Goods flow of a production company 
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In addition, an in-process inventory is created during the execution of work-
flows, so the concept of stock is not totally absent in workflows. The work in pro-
gress may be a significant figure, especially with respect to the performance 
measurement of workflows. 

The practical aspects of workflows ñ in contrast with their essential characteris-
tics ñ usually determine the applicability of other manufacturing theory. A rough 
comparison between manufacturing processes and workflows is as follows. In a 
manufacturing process, physical objects are produced like cars, clothing, construc-
tion materials, computers, etc. Principal resources in manufacturing are machines, 
robots, humans, conveyor belts and trucks. These resources are typically involved 
with assembling, inspecting, processing, and transporting materials. In a work-
flow, products are often ñ but not necessarily ñ informational. Moreover, in work-
flows some tasks may be executed completely by computer applications, but a 
substantial part of the work in administrative processes involves human experts. 
As a result, the common form of workflows differs from a manufacturing process 
from a logistic point of view in some subtle aspects (Van der Aalst et al., 2001), as 
follows:  

 
− Making a copy is easy and cheap. In contrast to making a copy of a product like 

a car, it is relatively easy to copy a piece of information, especially if the in-
formation is in electronic form. 

− There are no real limitations with respect to the in-process inventory. Informa-
tional products do not require much space and are easy to access, especially if 
they are stored in a database. 

− There are less requirements with respect to the order in which tasks are exe-
cuted. Human resources are flexible in comparison with machines; there are 
few technical constraints with respect to the lay-out of the administrative proc-
ess. 

− Quality is difficult to measure. Criteria to assess the quality of an informational 
product are usually less explicit than those in a manufacturing environment. 

− Quality of end products may vary. A manufacturer of goods usually has a 
minimal number of components that any product should incorporate. However, 
in an administrative process it might be attractive to skip certain checks in pro-
ducing the informational product to reduce the workload. For example, in 
checking a tax declaration the inspection of deductible loans may be skipped; a 
specific car must contain an air bag for the driver. 

− Transportation of electronic data is timeless. In a network information travels 
almost at the speed of light; in a manufacturing environment, the transportation 
of parts is an essential share of the total lead-time.  
 
In spite of these subtle differences, there also are many similarities between 

manufacturing processes and administrative processes (Platier, 1996). In both do-
mains, managing the process focuses on the routing of work and the allocation of 
work to resources. There also is a common notion of a process as a set of tasks 
that have to be executed in an order that is fixed at some level and incorporates 
some degree of flexibility as well. Additionally, the performance of both types of 
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processes is measured in highly similar ways with indicators such as throughput 
time, waiting time, client satisfaction and utilization. For example, management in 
both domains is concerned with the delivery of their product to their clients in the 
right amount of time. Concepts that originate from manufacturing to affect the 
performance of a process are frequently seen to be applied in workflows as well. 
For example, in manufacturing, different policies have emerged to order the flow 
of similar work items from the perspective of the resources, like First-In-First-Out 
(FIFO) and Earliest Due Date (EDD). These concepts have now been integrated in 
WfMS's (Van der Aalst and Van Hee, 2002).   

There is one more difference between manufacturing processes and most work-
flows worth mentioning. Within manufacturing, the relation between the product 
and the process is very explicit in the process itself. This is much less so in most 
workflow processes. We will exploit this gap to consider a new way of designing 
workflows, as described in Chapter 3. 

1.6 Objective of the Monograph 

Based on the presented concepts so far we can express the objective of the re-
search that underlies this monograph as follows: 
 
to advance scientific knowledge of Business Process Management 
by providing methods and techniques for the design and control of workflows. 
 

Because of the extent of the BPM field of study, we will focus on four areas, 
which are the following:  

 
− How to make a model of a workflow process. 
− How to design or redesign an effective and efficient workflow process. 
− How to analyze the performance of a workflow process. 
− How to sensibly allocate resources in a workflow process. 
   

In this section, we will give an overview of the content of this monograph. We 
will describe the various chapters and classify them with respect to the above ar-
eas.  

1.6.1 Modeling: Chapter 2 

For many process design and process control decisions it is necessary to have a 
clear idea of the business process or workflow at hand. A convenient way of rea-
soning about business processes or workflows is to capture the relevant ingredi-
ents in the form of a model. Throughout this monograph we will often turn to a 
model of the workflow at hand. In Chapter 2 we will present the conceptual as-
pects of a workflow model. We will also introduce the Petri net formalism that is 
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the basis for the modeling of these aspects. The new contribution of this chapter is 
an abstract classification of the components of a workflow model and a specific 
timed version of the workflow net. 

1.6.2 Design: Chapter 3 

Arguably, the design of business processes is the area within BPM that has re-
ceived the widest attention over the past two decades. This is understandable as 
the way in which business processes are structured has a large impact on the cost, 
speed, and quality of the products produced with it. As we have discussed in Sec-
tion 1.3, the technical side of designing business processes is rather undeveloped. 
In Chapter 3 we will address this strategic issue by presenting an approach to de-
sign workflows that is inspired by manufacturing principles.  

1.6.3 Performance Analysis: Chapter 4 

The analysis of a future workflow is essential for build-time decision making ñ the 
subject of Chapter 3. Before such a newly designed workflow is put into practice, 
it is desirable to predict whether the set of performance targets will be met in prac-
tice. It will facilitate the choice between different designs. In Chapter 4, we will 
present two new analytical methods that can be used to analyze workflows. The 
methods that are presented focus on determining a specific type of performance 
target, namely the throughput time. This is a common and popular performance 
target in practice (see Section 1.1). 

1.6.4 Resource Allocation: Chapter 5 

An important tactical issue in the field of BPM is how to allocate resources within 
an existing business process in the most effective way. The strategic issue of re-
designing a new business process is also involved. Usually, a new business proc-
ess is designed by first deciding on a new structure for the process ñ which typi-
cally involves the definition of tasks and their dependencies ñ and secondly the 
allocation of resources to these tasks. In Chapter 5 we will present a new alloca-
tion method that yields optimal results with respect to minimizing the throughput 
time for a specific class of workflows. It will be compared to an existing approach 
as it is applied in manufacturing. Simulation experiments are used to investigate 
the effectiveness of the allocation method for classes of workflows for which op-
timality could not be proven. 
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1.6.5 Redesign: Chapter 6 

There is various fragmentary knowledge available in the form of heuristics about 
organizing work within business processes at a micro-level. An example of such a 
heuristic is that small subsequent tasks that require similar skills are best com-
bined. This kind of knowledge is often applied to justify decisions on several lev-
els of decision making, particularly concerning the strategic issue of designing a 
new process. The contribution of Chapter 6 is that it gives an overview of this 
body of knowledge. We will also illustrate the effectiveness of some of these heu-
ristics with a realistic example. 

1.6.6 Systems and Experiences: Chapter 7 

A substantial part of the approaches, techniques, methods, and theory that is pre-
sented in this monograph has been applied in practice, as we mentioned in the in-
troduction of this Chapter. In fact, practice was the origin of most of the presented 
approaches. In Chapter 7 we will present our practical experiences by applying 
BPM concepts in the design and control of workflows.  

Modeling of workflows
Chapter 2

Design of workflows
Chapter 3

Analysis of workflows
Chapter 4

Resource allocation in workflows
Chapter 5

W orkflow heuristics
Chapter 6

strategic

tactical

tactical,
operational

Introduction
Chapter 1

Systems and practical experience
Chapter 7

Conclusion
Chapter 8

 
Fig. 1.7. Dependencies and levels of the monograph subjects 

 
The relations between the subjects of the various chapters are presented in Fig-

ure 1.7. Each chapter is depicted as a black box. Each arrow leading from a box to 
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another means that the former subject can be used to support the subject of the lat-
ter. For example, knowledge about allocating resources is useful in for the design 
of new workflows. Knowledge about modeling workflows is applicable to all 
other subjects. Some subjects are not only subordinate to others, but are also di-
rectly applicable to support decision making. In such a case, the appropriate deci-
sion-making level is on the right hand side of the box. 

Note that Chapter 7 contains case descriptions where the various pieces of 
knowledge and techniques of the other chapters are applied. Chapter 8 includes an 
evaluation of the presented material and directions for further research. 

 



2 Workflow Modeling 

For the purpose of process-oriented decision making it often is convenient to use a 
model of a workflow. A workflow model is a simplified representation of a past, 
actual or future workflow process. The focus on workflow models as supporting 
decision making is prevalent in this chapter, but it should be realized that work-
flow modeling in general has a wider purpose. For example, a workflow model 
may be used to familiarize new personnel with daily operations. We will briefly 
consider in Section 2.1 the various applications of workflow models. In particular, 
we will regard the application of a workflow model to parameterize a Workflow 
Management System. 

In Section 2.2 we present our view on the conceptual parts of a workflow 
model. We will distinguish four basic workflow components and the types of data 
that can be used for modeling the various components.  

Next, in Section 2.3, we will briefly highlight some of the techniques that are 
used in modeling workflows. We will discuss the backgrounds of the various 
techniques, their application and some of their limitations. 

We will end this chapter with the presentation of the Petri net. Its basic notions 
will be presented, as well its specific application to the modeling of workflows. 
We will devote special attention to the modeling of time in Petri nets and the defi-
nition of a timed workflow model.  

A considerable part of this chapter contains already existing theory, such as the 
various modeling techniques (Section 2.3) and Petri net concepts (Section 2.4). 
The knowledgeable reader may want to skip these and focus on the three new con-
tributions, which are as follows:  

 
− The overview of workflow modeling purposes (Section 2.1). 
− The conceptual workflow meta-model with its four components (Section 2.2). 
− The stochastic workflow net (Section 2.4). 

 
The basic workflow net and its stochastic variant form the heart of this chapter. 

These notions will be used in most of the following chapters. They formalize the 
aspects of the business process with respect to workflows, as discussed in the pre-
vious chapter.  

H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 31-59, 2003. 
 Springer-Verlag Berlin Heidelberg 2003 
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2.1 Modeling Purposes 

As we have pointed out in Section 1.1, it is essential to the notion of a business 
process in general and a workflow in particular that work is not carried out at ran-
dom. Instead, all kinds of procedures and structures are in effect. These involve 
the order of the work, the responsibilities of the staff, the interaction between the 
resources, the exchange of information, etc. The goal of modeling a workflow is to 
incorporate all relevant aspects of a workflow, while abstracting from irrelevant 
others.  

Obviously, what is relevant for one type of decision may be irrelevant for the 
other. For example, in Chapter 1 we made a distinction between strategic decision 
making on the one side and tactical, operational, and real-time decision making on 
the other. We established that the build time structural aspect of a workflow is 
relevant for both types of decisions, while the run time dynamic aspect of a work-
flow is required for tactical, operational, and real-time decisions only. Also, stra-
tegic decision making generally requires a less detailed view on a workflow than 
the other types of decision making, although its scope may be broader. 

In this monograph, we approach workflow modeling primarily as a means to 
support decision making within the context of Business Process Management (see 
Section 1.2). However, workflow models can have various other purposes. It can 
be easily imagined that the way in which a workflow is modeled is strongly driven 
by its specific purpose. Without claiming completeness, we present an overview 
of these different purposes.  

2.1.1 Training and Communication  

Workflow models may be used to introduce new employees with the overall struc-
ture of the business process they will take part in, the products that are delivered 
by it, and the dependencies with other parts of the company (see Sierhuis, 2001). 
Changes in existing procedures may also be communicated within a company by 
distributing updated workflow models.  

2.1.2 Simulation and Analysis 

An executable specification of a workflow can be used to simulate the behavior of 
the workflow under different circumstances. This application is a typical example 
of decision support in matters as BPR (see e.g., Hansen, 1994) and operational 
control (see e.g., Reijers and Van der Aalst, 1999). Various qualitative and quanti-
tative analytical methods have been developed to assess the effectiveness of exist-
ing or new workflows. The development of some of these algorithms is the subject 
of Chapter 4. The application of simulation for tactical decision making is the sub-
ject of Chapter 5. 
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2.1.3 Costing and Budgeting 

Many contemporary costing and budgeting approaches are based on the Activity 
Based Costing (ABC) method (Kaplan and Atkinson, 1989). The goal of ABC is 
to measure and then price out all the resources used for activities that generate 
goods and services for clients. A workflow model ñ more specifically its listing of 
the different tasks and their interdependencies ñ can be used a basis for ABC. 

2.1.4 Documentation, Knowledge Management, and Quality 

A workflow model can be used as a backbone for work instructions on each of its 
tasks. Such instructions can be consulted by the resources responsible for their 
execution. When knowledge is incorporated into the model about, for example, 
exceptions and involved regulations the model is extended into an operational 
knowledge base.  

Workflow models can also support the implementation of Total Quality Man-
agement (TQM). TQM emphasizes the importance of business process codifica-
tion as a means to reduce role conflict and ambiguity, thereby increasing work sat-
isfaction and reducing feelings of alienation and stress. For a review, see Jackson 
and Randall (1985). A documentation purpose of workflow models also worth 
mentioning is the recording of a BPR outcome, a new workflow design (see Chap-
ter 3). 

2.1.5 Enactment  

On the basis of a workflow model, a workflow can be managed and controlled in 
real-time by an enterprise system such as a WfMS or Enterprise Resource Plan-
ning System. As we have mentioned in Section 1.4, such a workflow model is of-
ten referred to as a workflow definition. In actual WfMS's, the modeling of the lo-
gistical structure of a workflow and the modeling of the types of resources has 
been divided into separate models. 

2.1.6 System Development 

A workflow model may be used as input for system development activities, speci-
fying functional requirements for the supporting systems that have to be modified 
or build (see e.g., Bond, 1999; Reijers and Van der Toorn, 2002). Especially when 
a workflow has been redesigned, the new layout and the specific content of newly 
engineered tasks may require a different support from information systems. Sharp 
and McDermott (2001) claim that a redesign of a workflow is hardly ever exe-
cuted without application development being a large part of the effort. 
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2.1.7 Organization Design 

A workflow model may be the first step in the design of an organization (see e.g., 
Ott and Nastansky, 1998). From the tasks in a workflow model the qualifications 
of the required personnel can be derived, which in their turn may be used to define 
job descriptions. The structure of the workflow may also help to identify how re-
sources are efficiently grouped into departments, case teams, etc. Quantitative 
analysis of a workflow model may help to determine the number of different types 
of personnel required to deliver a desired level of performance (see Chapter 5). 

2.1.8 Management Information 

A workflow model may be used to identify and specify the key mile stones within 
a workflow from a manager's perspective (see e.g., Van der Aalst, 2001). Actual 
information on work progress with respect to these mile stones may be generated 
from a WfMS that enacts the particular model or may be determined by manual 
count. 
 

It is clear that workflow models that serve different purposes will also vary in 
content and detail. For example, a workflow model that is used for system devel-
opment will focus much more on an information-oriented description of the tasks 
in a workflow than is the case for a work instruction. A model that is used for the 
simulation of a workflow will incorporate the interaction behavior of a client, al-
though this will be left out in a workflow enactment model where real clients 
place orders, respond to inquiries, etc. Finally, the level of detail of a model that is 
used to communicate a change in a workflow will not necessarily incorporate fi-
nancial information, although this is a must for a model that is used for ABC cost-
ing. 

Within this monograph, we clearly focus on workflow modeling (a) to support 
the purposes of simulation and analysis and (b) as a means of documenting a BPR 
design. In Chapter 7, we will briefly return to the specific purposes of a workflow 
model to support system development activities. In the next section we will distin-
guish the conceptual parts of a workflow model. These parts may be appropriately 
shaped with respect to the modeling purpose. 

2.2 Workflow Components 

Various authors have considered the essential parts of a workflow model, e.g., 
Koulopoulos (1995), Kobielus (1997) and Sharp and McDermott (2001). The most 
thorough and detailed view is by Jablonski and Bussler (1996), who have pre-
sented the Mobile workflow model. Within Mobile different perspectives are dis-
tinguished. Perspectives are different, orthogonal views one can have on a work-
flow model. The recognition of various perspectives does justice to the various 
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deployment areas of workflow models and the resulting differences. Jablonski and 
Bussler make a first principal distinction between factual and systemic perspec-
tives. A factual perspective exists independently from the characteristics of the ac-
tual WfMS that may enact the workflow model. Systemic perspectives come into 
view because of a special form of enactment, i.e., the specific, mostly technical 
properties of the system that takes care of the workflow enactment. The focus of 
the Mobile model is on factual perspectives, because of their more generic nature. 
Jablonski and Bussler further categorize these into five "fundamental" factual per-
spectives as follows: 
 
1. The function perspective, which describes the (recursive) composition of a 

workflow out of its subflows and tasks. 
2. The operation perspective, which describes for each part of the workflow (i.e., 

the subflows and tasks) which operations it supports and which applications 
implement these operations. 

3. The behavior perspective, which defines the execution order of the workflow 
parts (subflows and tasks) of a workflow. 

4. The information perspective, which describes which data is consumed and pro-
duced by the workflow. 

5. The organization perspective, which specifies which resource is responsible for 
each of the tasks in the workflow. 
 
In addition, they distinguish six more perspectives, which respectively focus on 

the reasons of executing a workflow (causality), the constraints that have to be ful-
filled (integrity), the time and cost dimension of the workflow (quality), the his-
tory of the workflow executions (history), the authorizations within a workflow 
(security) and independency aspects (autonomy). 

The attractiveness of the Mobile framework is its explicit goal to be extensible 
with other perspectives. The orthogonality of the perspectives should allow for 
this. Jablonski and Bussler deliberately present Mobile as not exhaustive, because 
"the deployment area of workflow management is pervasive and new perspectives 
or extensions to existing perspectives will most probably be encountered". Yet, 
each of the perspectives is clearly focused on the role of a workflow model as a 
basis for workflow enactment. This is one of the modeling purposes we distin-
guished in the previous section. As a result of the enactment-orientation, Mobile 
seems to be too fine-grained for analysis-oriented purposes, while at the same time 
the fundamental perspectives are too limited for supporting all the purposes of our 
modeling efforts. As our interest is in workflow modeling within the context of 
BPM, we present a simpler but more focused view on the conceptual parts of a 
workflow model.  

We distinguish four basic functions that together can capture both the build 
time and the run time aspects of a workflow model. We will refer to these func-
tions as workflow components. We will distinguish the case, routing, allocation 
and execution components.  
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2.2.1 Case Component 

The case component in a workflow model describes which cases exist, how new 
cases are created and what each case looks like. Cases are specific instances of the 
"thing" that the workflow in question can handle, like tax forms, insurance claims, 
service complaints, production orders, etc (see Section 1.4). Most of the time, a 
workflow is capable to process one type of case; between each case slight varia-
tions may exist in their properties. The case component addresses what is to be 
handled by the workflow.  

Within the Mobile framework, the case component is absent. This can be ex-
plained by the fact that a WfMS does not need a component to create cases, as this 
is performed by its environment. For simulation and analysis purposes, the case 
component is indispensable. Moreover, the notion of cases is needed to describe 
the behavior of the other components. 

2.2.2 Routing Component 

The routing component determines how cases are routed through the workflow. 
When considering a workflow, we are usually interested in a breakdown of it into 
smaller parts: primarily its tasks and possibly its subflows (see Section 1.1). Al-
though a workflow in itself is structured, it can be flexible in the sense that one 
case will be handled differently from another. For example, when a case is more 
complex, more parties have to take a look at it. The routing component will fix for 
each case, depending on its properties, which set of tasks within the workflow are 
to be carried out and in what order.  

The routing component can be seen as a condensed version of the function, op-
eration, behavior and information perspectives of Mobile. Depending on the spe-
cific purpose of the workflow model, accents of all of these perspectives may ap-
pear in the routing component. For example, the exact manipulation of 
information may be very important for a systems development purpose, but less so 
for a workflow performance analysis. Note that additional information on the cost 
and time associated with the workflow execution (Mobile's quality perspective) 
are also part of the routing component. Also note that the strict interpretation of 
workflows as being control flows (see Section 1.4) refers only to the routing work-
flow component. 

2.2.3 Allocation Component 

The allocation component specifies which classes of reusable resources exist, be-
ing either human or non-human (e.g., machines), and which of these will take care 
of which work items. A work item in a workflow consists of a task that has to be 
performed for a specific case (see Section 1.1). Depending on the workflow, the 
allocation of work to resources can be driven by very different circumstances. For 
example, rush orders are handed out to a specific class of resources. The allocation 
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component addresses the issue of who will be performing the work during execu-
tion of a workflow. 

The allocation component coincides with the organizational perspective within 
Mobile. 

2.2.4 Execution Component 

Finally, the execution component determines when the resources will actually 
execute the work that has been allocated to them. The existence of this component 
stresses the difference between the decision to whom work is assigned ñ specified 
by the allocation component ñ and the decision to really perform it ñ taken by the 
execution component. As we will see, in some workflows resources themselves 
decide upon the order in which they execute the work that is assigned to them. 
Circumstances may also result in work being postponed.  

A comparable perspective in Mobile is not present. This can be explained from 
the fact that the behavior of resources is not part of a workflow specification for a 
WfMS, the major aim of the Mobile model. A critique as put forth by Sierhuis 
(2001) is that precisely the execution behavior of humans is often inadequately 
modeled in workflow models. Especially, the "off-task behavior" of resources and 
their multi-tasking is omitted. These aspects can be modeled within the execution 
component, although it should be clear that adding this detailed execution behav-
ior in fact serves the modeling purpose. 

 
By now we have identified the case, routing, allocation, and execution compo-

nents and discussed how they respectively address the what, how, by whom, and 
when questions (see Table 2.1). Other views on the conceptual parts of a work-
flow model focus primarily on the routing and allocation components. For exam-
ple, Koulopoulos (1995) and Kobielus (1997) describe a workflow as distinguish-
ing routes, roles, and rules. Sharp and McDermott's (2001) variation is by 
distinguishing roles, responsibilities and routes. 

Table 2.1. How each of the components addresses one of the basic process questions 

What? How? By whom? When? 
Case Routing Allocation Execution 

 
Adequate modeling of each of these components with respect to the purpose of 

the model is the basis for each workflow model throughout this monograph. Note 
that a component involves the distinction, the structure, and the behavior of vari-
ous entities. In Chapter 7 we will give a detailed example of the modeling of the 
workflow components in a practical setting of operational control support.  
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2.3 Modeling Techniques 

For the modeling of a workflow, a multitude of modeling techniques ñ also known 
as languages ñ has been proposed. A few examples are data processing spheres, 
case plans, life-cycle diagrams, process algebra's, flowcharts, structure charts, 
business rules, Petri nets, activity diagrams, speech acts, PERT networks, and data 
flow diagrams. For wider and motivated enumerations, see e.g., Leymann and Al-
tenhuber (1994) or Schäll (1996). The various existing techniques differ in the 
modeling constructs they offer, their notation, ease of use, and other aspects. The 
presentation of more suitable, expressive or intuitive modeling techniques is a be-
loved ñ and probably non-exhaustive ñ topic of research. We can broadly distin-
guish two reasons for the variety in modeling techniques, respectively related with 
the purpose of the workflow model and the characteristics of the workflow to be 
modeled.  

2.3.1 Purpose of the Workflow Model 

Just as the purpose of a workflow model will be of influence on the desired con-
tent of the model, the content of the model itself will make one type of modeling 
technique more suitable for the occasion than another. We will discuss a few char-
acteristic relations between the purpose of the model and the suitability of the 
technique. 

Communication 

The first situation we distinguish concerns the situation when a workflow model is 
used primarily as a communication means among practitioners of various back-
ground within a company. In this case, the ability of the modeling technique for 
graphical expression is valued. The swim lane diagram of Sharp and McDermott 
(2001) is a typical example of a highly graphical type of model. Merz et al. (1995) 
call the graphical aspect as an important advantage of a modeling technique. 
However, the trap of communicative pictures is their lack of a precise meaning. 
This is why Van der Aalst (1996) also stresses the importance of a formal seman-
tics of the modeling technique. A typical example of a business process modeling 
technique that lacks a complete and precise semantics is the Event-Driven Process 
Chains (Scheer, 1994).  

Enactment 

A second characteristic situation concerns the modeling of a workflow with an ex-
plicit enactment purpose. One effect of this purpose is that modelers often turn to 
the proprietary modeling technique that is provided by the WfMS. This is under-
standable as it minimizes the translation effort of a workflow model into an en-
actable model. It may, however, seriously impede the validation of the model with 
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naive end-users. Porting a workflow model from one WfMS to another also be-
comes cumbersome (Meyer-Wegener and Böhm, 1999). If workflow models are 
built with an enactment purpose, modeling techniques that simplify their mainte-
nance are valuable. After all, workflow models that are used for enactment will be 
subject to frequent updates due to changes in organizational structures and proce-
dures. Bin Lee et al. (1999) propose, for example, knowledge representation 
schemes which enable a fast propagation of changes in their models. 

Due to the enactment purpose of workflow models substantial attention in re-
search is paid to the incorporation of information modeling capabilities into work-
flow modeling techniques. After all, the exchange and control of all types of in-
formation by a WfMS with other systems is crucial (see Jablonski and Bussler, 
1996). Both Wirtz et al. (2000) and Moldt and Valk (2000) propose extensions of 
the process modeling capabilities of Petri nets with object oriented concepts for 
structuring information objects and their relations.  

Analysis 

The last situation we discuss concerns the analyzability of the model. If attractive 
analysis theories or techniques exist that can be used within the analysis purpose 
of the workflow process, a modeling technique that corresponds with the analysis 
framework is clearly advantageous. Van der Aalst (1996) and Oberweis et al. 
(1997) identify the existence of theoretically proven analysis techniques as one of 
the main reasons for selecting a corresponding modeling technique. Merz et al. 
(1995) also name the possibility to carry out simulations and verifications on a 
workflow model as a benefit for its modeling technique. An illustration of this 
phenomenon is the language Aw, which was developed by Trajcevski et al. 
(2000). It explicitly aims at exploiting existing action theories on reasoning about 
robot control programs and logical formalization of active databases in analyzing 
workflows. 

2.3.2 Properties of the Workflow 

The second main reason for the debate on techniques for workflow modeling con-
cerns the properties of the object itself, the workflow process. We will give a few 
examples to illustrate this effect too.  

Complex Routing 

Clearly, a workflow process with a complex routing behavior including concurrent 
tasks, repetitions and branching will require a more expressive modeling tech-
nique than workflow processes that only incorporate linear sequences of tasks. For 
example, the very popular flowchart modeling technique does not support the 
modeling of concurrent behavior.  
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Structure 

Similarly, the degree of structure in a workflow is of a great importance for the fit 
of the modeling technique. Probably the clearest watershed in workflow modeling 
techniques is between the task-oriented view on workflow processes and the lan-
guage/action approach. In a task-oriented view, a workflow is considered as a set 
of interrelated tasks with process inputs and outputs. Examples of modeling tech-
niques within this tradition are by e.g., Ellis and Nutt (1993), Gruhn (1995), and 
Van der Aalst (1998). The language/action approach focuses on the conversations 
and negotiations between workflow participants (Flores et al., 1988; Michelis and 
Grasso, 1994; Van Reijswoud et al., 1999). The task-oriented view seems more 
appropriate for modeling structured workflows, while the language/action ap-
proach has merits for modeling unstructured workflows (Schäl, 1996; Bin Lee et 
al, 1999). The watershed is also present in WfMS's: Staffware and Cosa follow the 
task-oriented view, Action Workflow follows the language/action approach (see 
e.g., Van der Aalst and Van Hee, 2002)  

Specific Properties 

Very specific properties of a workflow may influence the modeling technique too. 
Bricon-Souf et al. (1999) describe the proprietary modeling approach of the 
PLACO system. It is used within the setting of medical intensive care units within 
hospitals. It explicitly distinguishes the urgency of the matter in determining the 
authorization of a resource to perform a task.   
 

In the next section we will explain our choice for the Petri net formalism as the 
basis for our modeling technique. 

2.4 Petri Nets 

In this monograph we will use Petri nets as the basis for modeling workflows. 
Since Zisman (1977), who used Petri nets to model workflows for the first time, 
several authors have modeled workflows in terms of Petri nets, amongst which 
Ellis (1979), Lee (1992), Ellis and Nutt (1993), Merz et al. (1995) and Van der 
Aalst and Van Hee (1996). 

The choice for Petri nets is consistent with a task-oriented view on workflows 
(see previous section). This view is in our opinion best suited for the purpose of 
BPM. A strong argument for this is the orientation of BPR, one of the most influ-
ential fields within BPM (see Section 1.3). The founders of BPR, Davenport and 
Short (1990) and Hammer and Champy (1993), explicitly use the task distinction 
as a primary ordering concept for business processes and not ñ which would have 
suited a language/action approach ñ on the participants within a workflow and 
their conversational behavior. As a consequence, we have to accept that our ap-
proach may be less suitable for the modeling of less structured workflows (see 
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previous section). In fact, Pagnoni Holt (2000) suggests as a basic condition for 
Petri nets to be useful for workflow modeling that all workflow parts can be de-
scribed as well-defined pieces of reality. 

Another attractive feature of the Petri net modeling technique is that it allows 
for a clear distinction between the structure of a workflow and its dynamic state. 
Like we have explained in Section 1.2, for different types of decisions structural 
and/or dynamical aspects of a business process are of importance. The use of Petri 
nets makes it possible to use the same modeling technique of workflows for these 
decisions. As we will see in the formal treatment of Petri nets in Section 2.4, the 
distinction between the structure and the dynamics is one of its basic properties. 
Van der Aalst (1996) also recognizes this as an important advantage of Petri nets. 

Additional benefits of the Petri net modeling technique are: their formal seman-
tics (Merz et al., 1995; Van der Aalst, 1996), their graphical notation (Merz et al., 
1995), support for complex process constructions ñ in particular concurrency 
(Oberweis et al., 1997), and the availability of many analysis techniques (Merz et 
al., 1995, Van der Aalst, 1996; Oberweis et al., 1997). 

Petri nets in their basic form, however, lack the expressive power to model a 
complete workflow model, covering all the workflow components in detail which 
we have discussed in Section 2.2. One obvious shortcoming is the lack of power-
ful data modeling capabilities. It can be imagined that these capabilities are re-
quired to specify the exact operations that take place within a workflow task. This 
need has been partially satisfied by the introduction of High-Level Petri Nets and, 
more specifically, the addition of color to Petri nets (e.g., Jensen, 1992; Van Hee, 
1994). As stated before, both Wirtz et al. (2000) and Moldt and Valk (2000) also 
have proposed object-oriented extensions to improve the data modeling capabili-
ties of Petri nets. Another shortcoming is that Petri nets do not explicitly distin-
guish resources. In Chapter 5, we will nonetheless show how their availability and 
behavior can be incorporated in Petri nets. Finally, the timing of the model ñ 
which is importance for performance evaluation purposes of workflow models ñ is 
not part of the basic Petri net. 

In summary, we appreciate Petri nets as a good modeling technique, especially 
of the workflow routing component and ñ slightly less graceful ñ of the workflow 
allocation component. We will explicitly mention in each chapter where we apply 
Petri nets how the relevant components for the purpose of the chapter can be mod-
eled at the appropriate level of detail, possibly using additional Petri net and other 
concepts. In the next sections, we formally describe the basic Petri net notions and 
their extensions with workflow concepts. We end this section with a wider debate 
of the modeling of time in Petri nets. This timed workflow net is crucial for the 
subject of Chapter 4. 

2.4.1 Preliminaries to Petri Nets 

For the definition and application of Petri nets for workflow modeling we use the 
basic notions of bags, relations, and sequences. 
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Bags 

A bag is defined as a finite multi-set of elements from some alphabet A. A bag 
over alphabet A can be considered as a function from A to the natural numbers N 
such that only a finite number of elements from A is assigned a non-zero function 
value. For some bag X over alphabet A and a ∈ A, X(a) denotes the number of oc-
currences of a in X, often called the cardinality of a in X. The set of all bags over 
A is denoted B(A). The empty bag, which is the function yielding 0 for any ele-
ment in A, is denoted 0. For the explicit enumeration of a bag, a notation similar to 
the notation for sets is used. Square, double brackets are used instead of curly 
brackets and superscripts are used to denote the cardinality of the elements. For 
example, denotes the bag with two elements a, one b, and three ele-
ments c. For any bag X over alphabet A and element a ∈ A, a ∈ X iff X(a) > 0. The 
sum of two bags X and Y , denoted , is defined as 

. The difference of X and Y, denoted X \ Y, is de-
fined as ! . Bag X is a subbag of Y over A, 
denoted , iff for all a ∈ A, 

2 3, ,a b c!

A∈ ∧ n X
|na a A∈ ∧

X Y⊆

"

X Y!
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Bags will be used in the definition of stochastic Petri net version as discussed 
later on in this section. 

Relations 

A relation R on a set A is a subset of the Cartesian product A × A. We use the fol-
lowing notations for some special relations: 

 
− idA = {(a, a) | a ∈ A} is the identity relation, 
− R-1 = {(b, a) | (a, b) ∈ R} is the inverse of R, 
− for k ∈ {1, 2, 3, Ö}, Rk is inductively defined by R1 = R and, for k > 1: 

 Rk = {(a, c) | (a, b) ∈ Rk-1 and (b, c) ∈ R for some b ∈ A}, 
− R+ = R1 ∪ R2 ∪ R3 ∪ Ö is the transitive closure of R, 
− R* = idA ∪ R+ is the reflexive and transitive closure of R, and 
− (R ∪ R-1)* is the symmetric, reflexive, and transitive closure of R. 

 
Relations will be used in the definition of stochastic Petri net version as dis-

cussed later on in this section. 

Sequences 

Let A be a set. A finite sequence on A is a mapping {1,Ö, n} → A, including the 
mapping ∈: ∅→ A, called the empty sequence. We represent a finite sequence 
σ:{1,Ö, n} → A by the string a1a2Öan of elements of A, where ai = σ(i) for 1 ≤ i 
≤ n. The length of σ is n, and the length of ∈ is 0. If σ = a1a2Öan and τ = 
b1b2Öbm are finite sequences then the concatenation of σ and τ, denoted by στ, is 
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the sequence a1a2Öanb1b2Öbm of length n+m. A sequence σ is a prefix of a se-
quence τ if either σ = τ or σσ' = τ for some sequence σ'. We will denote with |Bσ  

the restriction of the sequence to the set B. It can be recursively defined by ∈  = 
∈ and 

|B

( | )            if ,
( ) |

   |              if .
B

B
B

a a
a

a B
σ ∈

σ =  σ ∉

B  

2.4.2 Petri Net Basics 

The Petri net was invented by Carl Adam Petri (1962). The basic notions we pre-
sent in this section are mostly derived from Desel and Esparza (1995). The inter-
ested reader is referred to their work for a rigorous treatment of many classical 
Petri net concepts. 

Definition 2.1 (Petri net). A Petri net is a triplet (P, T, R): 
− P is a finite set of places, 
− T is a finite set of transitions (P ∩ T = ∅), 
− R ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation). 

A place p is called an input place of a transition t iff there exists a directed arc 
from p to t. Place p is called an output place of transition t iff there exists a di-
rected arc from t to p. We use •t to denote the set of input places for transition t. 
The notations t•, •p and p• have similar meanings, e.g., p• is the set of transitions 
sharing p as an input place. 

Definition 2.2 (Node, path, connected, strongly connected).  For a Petri net 
PN = (P, T, R), any element x ∈ P ∪ T of is called a node. A path of PN is a non-
empty sequence x1Öxk of nodes which satisfies (x1, x2),Ö, (xk-1, xk) ∈ R. A path 
x1Öxk is said to lead from x1 to xk. We denote path(xi→xk) iff there is a path from 
x1 to xk. PN is called weakly connected (or just connected) if every two nodes x, y 
satisfy (x, y) ∈ (R∪R-1)*. PN is strongly connected if (x, y) ∈ R*, i.e., for every 
two nodes x, y there is a path leading from x to y.  

Definition 2.3 (Cluster). Let x be a node of a Petri net PN = (P, T, R). The 
cluster of x, denoted [x], is the minimal set of nodes such that: 
− x ∈ [x], 
− if a place p belongs to [x] then p• is included in [x], and 
− if a transition t belongs to [x] then •t is included in [x]. 

 
A Petri net can be used to expresses the structure of a system, process, or pro-

cedure. Its dynamic state is expressed with the marking of a Petri net. 
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Definition 2.4 (Marking). A marking of a Petri net (P, T, R) is a mapping M: 
P → N. A marking is represented by the vector (M(p1)ÖM(pn)), where p1, p2, Ö, 
pn is an arbitrary fixed enumeration of P. A place p is marked at a marking M if 
M(p) > 0. A set of places R is marked if some place of R is marked. 
 

In graphical depictions of Petri nets, places are mostly represented by circles 
and transitions by boxes. At any time a place contains zero of more tokens, drawn 
as black dots. The marking of a Petri net is the allocation of tokens over places. As 
a marking is a bag, we will represent a marking as follows: 2

1 2 4, ,p p p! "  is the 
marking with one token in p1, two tokens in p2, 1 token in p4 and no tokens in 
other places. In Figure 2.1, a Petri net is depicted. Note that the places of a Petri 
net are used to determine the state of the system. 

The allocation of tokens ñ the dynamic state of the system which is modeled 
with the Petri net ñ may change during the execution of the net. Transitions are the 
active components in a Petri net: they change the marking of the net according to 
the following firing rule. The firing rule specifies that a transition is enabled if all 
its input places are marked. It can fire then, consuming a token from each of its 
input places and producing a token for each of its output places. 

Definition 2.5 (Firing rule). A marking M of Petri net (P, T, R) enables a tran-
sition t ∈ T if it marks every place in •t. If t is enabled at M, then it can fire, and 
its firing leads to the successor marking M′ (written ) which is de-
fined for every place p ∈ P by 

'tM M→

( ) if and , or and
'( ) ( ) 1 if and

( ) 1 if and

M p p t p t p t p t
M p M p p t p t

M p p t p t

∉ • ∉ • ∈ • ∈
= − ∈ • ∉ •
 + ∉ • ∈ •

•

1t→ 2t nt

 

A marking M is called dead if it enables no transition of the net. 

Definition 2.6 (Firing sequences, reachable markings, alphabet). Let M be a 
marking of Petri net (P, T, R).  If  M M1, M1 →  M2, Ö, Mn-1 →

*

Mn are 
transition firings then σ = t1t2Ötn is a firing sequence leading from M to Mn. The 
set { t1, t2Ötn} is called the alphabet of σ, denoted A(σ). We write M M ′, 
and call M ′ reachable from M, if M M ′ for some firing sequence σ. The set 
of all markings reachable from M is denoted by [M〉. 

→
σ→

Definition 2.7 (Conflict). If a marking M of Petri net (P, T, R) enables transi-
tions t and u, and firing of either of these transitions would disable the other, both 
transitions are said to be in conflict. 

 
The integrating concept of a Petri net structure with a state is called a system. 

For Petri net systems, various properties have been defined which are useful in 
their analysis. 
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Definition 2.8 (Petri net system, initial and reachable markings). A Petri net 
system (or just a system) is a pair (PN, M0) where: 
− PN is a connected Petri net having at least one place and one transition, and 
− M0 is a marking of PN called the initial marking. 

A marking is called reachable in a system if it is reachable from the initial 
marking. 

Definition 2.9 (Liveness). A system is live if, for every reachable marking M 
and every transition t, there exists a marking M' ∈ [M〉 which enables t. 

Definition 2.10 (Boundedness, safeness). A system is bounded if for every 
place p there is a natural number b such that M(p) ≤ b for every reachable marking 
M. The bound of a place p in a bounded system (N, M0) is defined as: max { M(p) | 
M ∈ [M0〉 ∧ p ∈ P }. A system is called b-bounded if no place has a bound greater 
than b. A system is called safe iff it is 1-bounded. 

Definition 2.11 (Free-choice). A Petri net (P, T, R) is free-choice iff for every 
two transitions t and u either •t ∩ •u = ∅ or •t = •u. 

Definition 2.12 (Acyclic net). A Petri net (P, T, R) is acyclic iff there is no path 
ñ except for the empty path ñ with node t ∈ P ∪ T as both its start and its end. 
 

To conclude the general Petri net notions, we present a general theorem will be 
of use in the coming chapters, especially in Chapter 4. 

Theorem 2.1 (Exchange Lemma). Let PN = (P, T, R) be a Petri net and U 
and V disjoint subsets of T, satisfying •U ∩ V• = ∅. Let σ be a (finite or infinite) 
sequence of transitions such that A(σ) ⊆ U ∪ V. Then: 

1. If 'M Mσ→ is a finite firing sequence, then U V| | 'M Mσ σ→ . 
2. If  is an infinite firing sequence and M σ→ U|σ is finite, then M . U V| |σ σ→

3. If  is an infinite firing sequence and M σ→ U|σ is infinite, then . U|M σ→
Proof. See Desel and Esparza (1995). □ 

2.4.3 Workflow Nets 

The workflow net was defined by Van der Aalst (1998). The following definitions 
and results are derived from his work. 

Definition 2.13 (Workflow net). A Petri net PN = (P, T, R) is a workflow net if 
and only if: 
− PN has two special places: i and o; place i is a source place, i.e., •i = ∅; place o 

is a sink place, i.e., o• = ∅, 
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− if transition t* would be added to the set of transitions T (t* ∉ T) and the arcs 
(o, t*) and (t*, i) would be added to the flow relation R of PN, the resulting net 
is strongly connected.  

The first requirement in the definition of a workflow net reflects the typical be-
gin and end of a workflow: a typical start situation can be established, after which 
the workflow is carried out in such a way that a desired end situation is reached. 
The second requirement in the definition ensures that there are no dangling transi-
tions or places. By modeling tasks in a workflow as transitions, it is ensured that 
tasks which do not contribute to the processing are not considered in the model. 

If a workflow net PN is extended in the sense of the second part of this defini-
tion we refer to it as the extended workflow net PN. Similar to the Petri net jargon, 
we call a workflow net with a marking a workflow net system. 

In Figure 2.1 an example workflow net system is depicted, which is a con-
densed version of an example by Van der Aalst (1998). The workflow net depicts 
the routing component of a workflow that is used to process complaints. The tasks 
register, notify, check, manual, time-out, process, automatic, finalize, and return 
have been modeled as transitions. To model the states between the tasks, places 
have been added. For example, if place c2 is true (i.e., it contains a token), then 
the complaint is ready to be checked. 

 

register

notify

check

time-out

process

manual

automatic

finalize

return
i

c1

c2

c3

c4

c5

c6

c7

o

 
Fig. 2.1. An example workflow net system 

Using the introduced notions, we make a few observations about the depicted 
workflow net system as follows:  
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− The workflow net marks i, which exclusively enables the register task. 
− Marking  is a reachable state that ñ in particular ñ does not enable the 

finalize task. 
3 5,c c! "

)* o

− Marking !  is a reachable and dead state.  o"
− The workflow net system is not live, but the extended workflow net marked at 

 would be. i! "
− The workflow net system is safe (and therefore also bounded). 
− The workflow net is not free-choice and not acyclic; by, for example, removing 

the flow relations between c6 and the finalize task the remaining net is free-
choice and acyclic. 

A workflow net can be seen as the life-cycle of a single case. In general, there 
can be many cases which are handled according to the same workflow net. Each 
of these cases corresponds to one or more tokens. If tokens of multiple cases re-
side in the same Petri net, then these tokens may get mixed. For example, transi-
tion return may consume two tokens which correspond to different cases. Clearly, 
this is undesirable. There are two ways to solve this problem. First of all, it is pos-
sible to use a High-level Petri net where each token has a value (color) which con-
tains information about the identity of the corresponding case (case identifier). 
Transitions are not allowed to fire if the case identifiers of the tokens to be con-
sumed do not match, i.e., a precondition inspects and compares token values.  

Another way to solve this problem is the following. Each case corresponds to a 
unique instance of the Petri net. If there are n cases, then there are n instances of 
the Petri net. One can think of such an instance as a layer. If these layers are put 
on top of each other, it is possible to see the cases in the same diagram. The latter 
is interesting from a decision making point of view, because one gets an overview 
of the state of the workflow. For example, if a place contains a lot of tokens, this 
might indicate a bottleneck.  

In the remainder of this paper, we consider Petri nets which describe the life-
cycle of a single case in isolation. In this way, we can use the classical Petri net 
notions. A great advantage of using the classical Petri net in modeling is that stan-
dard analysis techniques can be applied directly (Van der Aalst, 1998). 

One way to handle the interpretation of the correctness of a workflow net is the 
soundness property. The soundness property expresses the desirable situation of a 
workflow process that it can be continued under all circumstances to a desirable 
end situation. This specific end situation is the state of the net where the sink place 
is marked, but no tokens are left in other places. 

Definition 2.14 (Soundness). A workflow net W = (P, T, R) is sound if and only 
if: 
− for every marking M reachable from marking ! , there exists a firing se-

quence leading from marking M to ! . Formally:  
i"

o"
     , (completion option), ( ) (*

M i M M∀  → ⇒  →! " ! "
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− is the only reachable marking from ! with at least one token in place o. 
Formally: 

o! " i"
( ) ( )* ( ) 1M i M M o M→ ∧ ≥ =! " ! "o

M

∀   (proper completion), and ⇒

− there are no dead transitions in (W, ! ). Formally:  i"
     . *

T , '
t

t M M i M∈∀ ∃ → →! "
 

The soundness property prohibits, for example, the undesirable situation where 
a workflow comes into a deadlock. Another banned situation is that the end situa-
tion is reached multiple times. For example, if the end situation represents the 
state where a single payment order has been successfully executed, multiple to-
kens are undesirable. 

In general, the soundness property can be used in two ways. It is a check for 
modeling an existing workflow whether it is modeled correctly, as operational 
business processes are unlikely to be not sound. The second check is for a new de-
sign, when a designer can easily introduce an error ñ especially if the model is 
large.  

The following theorems give the relation between some general Petri net prop-
erties on the one hand and the specific soundness property for workflow nets on 
the other hand. 

Theorem 2.2 (Soundness equals liveness and boundedness). A workflow 
net W is sound if and only if the extended system (W, ! ) is live and bounded. i"
Proof. See Van der Aalst (1998). □ 

Theorem 2.3 (Safeness of sound, free-choice workflow nets). If the work-
flow-net W is sound and free-choice, then the system (W, ! ) is safe.   i"
Proof. See Van der Aalst (1998). □ 
 

On the basis of Theorem 2.2 we can establish that the workflow net depicted in 
Figure 2.1 is sound. We can also see that the already established safeness and free-
choice property of this net is consistent with Theorem 2.3. 

For the composition of a workflow net, the following results are of interest. 
They have been derived from Van der Aalst (2000a). In Chapters 3 and 4, the so-
called synthesis step will be used to compose complex workflow nets from sim-
pler ones. 

Definition 2.15 (Synthesis step). Let PN1 = (P1, T1, R1) and PN2 = (P2, T2, R2) 
be two workflow nets such that T1 ∩ T2 = ∅, P1 ∩ P2 = {i, o} and t+ ∈ T1. The 
synthesis step of replacing transition t+ in PN1 by PN2  yields the workflow net 
PN3 = (P3, T3, R3) with: 
− P3 = P1 ∪ P2,  
− T3 = (T1 \ {t+}) ∪ T2, and  
− R3 = {(x, y) ∈ R1 | x ≠ t+ ∧ y  ≠ t+} ∪  
   {(x, y) ∈ R2 | {x, y} ∩ {i, o} = ∅} ∪ 
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 {(x, y) ∈ P1 × T2 | (x, t+) ∈ R1 ∧ (i, y) ∈ R2} ∪  
 {(x, y) ∈ T2 × P1 | (t+, y) ∈ R1 ∧ (x, o) ∈ R2}. 

Theorem 2.4  (Compositionality). Let PN1 = (P1, T1, R1) and PN2 = (P2, T2, 
R2) be two workflow nets such that T1 ∩ T2 = ∅, P1 ∩ P2 = {i, o} and t+ ∈ T1. If 
PN3 = (P3, T3, R3) is the workflow net obtained by a synthesis step of replacing 
transition t+ in PN1 by PN2, then for PN1, PN2 and PN3 the following statements 
hold: 
1. If PN3 is free-choice, then PN1 and PN2 are free-choice. 
2. If (PN1,! ) is safe and PNi" 1 and PN2 are sound, then PN3 is sound. 
3. (PN1,! ) and (PNi" 2, ! ) are safe and sound iff (PNi" 3, ! ) is safe and sound. i"
4. PN1 and PN2 are free-choice and sound iff PN3 is free-choice and sound. 
Proof. See Van der Aalst (2000a). □ 
 

From this result, it follows that this specific replacement procedure which is de-
scribed in this theorem ensures the preservation of many important Petri net prop-
erties for workflow nets and systems. 

2.4.4 Modeling Time 

The concept of time was intentionally avoided in the classical Petri net as intro-
duced by Petri (1962), as timing constraints may prevent certain transitions from 
firing. Since the early seventies there has been a discussion within the Petri net 
community on the addition of time. From an analysis viewpoint, timing con-
straints undermine the attractive property that all possible behavior of a real sys-
tem is represented by the structure of the Petri net. More theory-oriented research-
ers oppose or simply ignore timing issues. However, over the course of years, 
timing has been recognized by more application-oriented researchers as crucial to 
examine the efficiency of real applications in areas like computer architecture de-
sign, communication protocols, manufacturing, logistics, software system analy-
sis, and workflow redesign, e.g., Van der Aalst (1992), Jensen (1992), Van Hee 
(1994), Van der Aalst and Van Hee (1996). 

Many different ways of incorporating time in Petri nets have been proposed. 
This is due the fact that different trade-offs can be made between the analyzability 
of the Petri net on the basis of the underlying net structure and the user's wish to 
adequately represent real-life phenomena. In the next sections, we will discuss the 
different aspects of incorporating time in Petri nets. 

Location of the Delay 

As described in this section, a Petri net consists of places and transitions con-
nected via arcs. Therefore, time can be associated with places, transitions, or arcs. 
In most timed Petri net models, transitions determine time delays. In only a few 
models, time delays are determined by places and/or arcs. Although traditionally 
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time is associated with transitions, authors such as Sifakis (1977, 1980) argue that 
it is more convenient to associate time to places since this leaves the original firing 
rule intact: enabling and firing are instantaneously. For high-level Petri nets with 
colored tokens (i.e., tokens carry a data value), it is most natural to attach time-
stamps to tokens, as done by Jensen (1992), Van der Aalst (1993) and Van Hee 
(1994). The timestamp indicates the time a token becomes available for consump-
tion. In the models presented by Jensen (1992), Van der Aalst (1993) and Van Hee 
(1994) transitions set the timestamps of produced tokens, i.e., time delays are de-
termined by transitions. 

Type of Delay 

Independent of the choice where to put the delay (i.e., transitions, places, or arcs), 
several types of delays can be distinguished. We can make a distinction between 
deterministic, non-deterministic, and stochastic delays. Many of the early timed 
Petri net models by authors such as Ramchandani (1973), Sifakis (1977), Zuberek 
(1980), Wong et al. (1985), and Van Hee et al. (1989), use deterministic delays. 
This means that the delay assigned by a transition, place, or arc is fixed. Determi-
nistic delays allow for simple analysis methods but have limited applicability. In 
real applications, delays correspond to the duration of activities which are typi-
cally variable. Therefore, fixed delays are often less appropriate. There are two 
ways to describe intrinsic variability in delays: non-deterministic and stochastic 
delays. Non-deterministic delays are specified using constraints, for example: it 
takes less than 15 minutes to type a letter. Stochastic delays are sampled from 
probability distributions. 

Most of the models handling non-deterministic delays use time intervals to 
specify the duration of the delay. Merlin (1974, 1976) introduced such a model in 
the early seventies. Other models using interval timing have been proposed by 
Berthomieu and Menasche (1983), Berthomieu and Diaz (1991), Van der Aalst 
(1993, 1994), and Van der Aalst and Odijk (1995). However, most of the timed 
Petri net models use stochastic delays. In these models each delay is described by 
a probability distribution. To make analysis tractable, typically, only a restricted 
set of probability distributions is allowed. In the SPN model by Florin and Natkin 
(1982), only exponential delays (i.e., delays sampled from a negative exponential 
probability density function) are allowed. The widely used GSPN model by Mar-
san et al. (1984) allows for both immediate transitions (i.e., transitions with no de-
lay) and timed transitions (i.e., transitions with exponential delays). Other types of 
probability distributions may only be applied if the topology of the net conforms 
to strict conditions, see Marsan et al. (1985). 

Preselection and Race Semantics 

Adding time to Petri nets requires a redefinition of the enabling and firing rules. In 
a classical Petri net the following statements holds: a transition is enabled if each 
of the input places contains enough tokens (typically one), only enabled transitions 
can fire, and firing is instantaneously (i.e., the moment tokens are consumed from 
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the input places, tokens are added to the output places). Transitions are said to be 
in conflict if they share input places. Note that firing a transition in conflict with 
other transitions may disable some or all of these transitions. The choice between 
several enabled transitions in conflict with each other is resolved in a non-
deterministic manner.  

When adding time to a Petri net the enabling and firing rules need to be modi-
fied to specify how conflicts are resolved (i.e., the relation between enabling and 
firing) and whether firing is instantaneous or not (the semantics of the firing rule). 
Clearly, these two issues are related. Assume that transitions determine the delays. 
If firing is instantaneous (i.e., it does not take any time), then it is necessary to as-
sociate time to the enabling of a transition. But then, there is no need to explicitly 
define how conflicts are resolved. After all, enabled transitions "race" against each 
other and the one that is scheduled to fire first will fire. This firing/enabling se-
mantics is called the race semantics. In Figure 2.2 the race semantics is illustrated.  

In each of the three depicted situations, transitions t and u become enabled at 
the moment of the first small vertical bar. Each transition is timed to fire at the 
time depicted by its second vertical bar. With a dotted line, the moment that a con-
flict arises between these two transitions is depicted. In the situations (i), (ii), and 
(iii) transition t becomes respectively enabled before, simultaneously with, or after 
transition u becomes enabled. According to the race semantics, in each of the 
situations transition t will fire, because it is scheduled to fire first. 

t tt

uu u

(i) (ii) (iii)
 

Fig. 2.2. The race semantics 

It is also possible to specify the way conflicts are resolved more explicitly. This 
latter firing/enabling semantics is called the preselection semantics. For example, 
priorities or probabilities can be used to resolve conflicts. In the preselection se-
mantics there is no race between enabled transitions: the moment transitions be-
come enabled one of the enabled transitions is selected. Race semantics are typi-
cally combined with instantaneous firing, i.e., time is in the enabling of 
transitions. Therefore, we also use the term enabling delays to refer to these se-
mantics. Preselection semantics are typically combined with holding times, i.e., 
tokens reside for some time inside a place or transition. Note that for race seman-
tics the resolution of conflicts and the delay are handled by the same mechanism. 
For preselection semantics the mechanism to resolve conflicts is separated from 
the actual delay. Most of the stochastic Petri nets use race semantics, such as the 
nets by authors such as Florin and Natkin (1982), Marsan et al. (1984, 1985, 1986, 
1995), Marsan (1990), and Balbo and Silva (1998). As established by Van der 
Aalst (1992), race semantics allow for a more direct translation to Markov chains. 
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Timed Petri nets using race semantics also are more expressive than timed Petri 
nets using preselection semantics. For example, race semantics allow for a com-
pact representation of time-outs. Preselection semantics are more intuitive and 
easier to use. Therefore, most of the high-level Petri nets such as the ones de-
scribed by Jensen (1992), Van der Aalst (1993) and Van Hee (1994) and support 
preselection semantics. Other authors such as Razouk and Phelps (1984) propose a 
mixture of race and preselection semantics.  

For preselection semantics the delays (i.e., holding times) can be associated to 
the firing of a transition (e.g., Berthomieu and Diaz, 1991) or the minimal time a 
token spends in a place (e.g., described by Sifakis, 1980).  

For race semantics the delays are associated to the enabling time. Note that an 
enabled transition can be disabled by another transition in case of a conflict. Such 
a transition loses the race and will not fire. If the transition becomes enabled 
again, a new race starts. In this new race there are several possibilities for the new 
enabling time of this transition. Authors such as Balbo and Silva (1984), Marsan 
et al. (1985, 1995) typically distinguish three so-called memory policies: age 
memory, enabling memory, and reset memory. For age memory, the remaining 
enabling time is frozen the moment the transition becomes disabled and is re-
sumed the moment the transition becomes enabled again. For enabling memory, a 
new enabling time is sampled every time a transition becomes enabled, i.e., previ-
ously interrupted transitions have to start from scratch. For reset memory, a new 
enabling time is sampled every time a transition fires. This means that also transi-
tions not in conflict with the transition that fired are interrupted and have to re-
sample a new enabling time. It is interesting to note that for stochastic Petri nets 
with just exponential delays the three memory policies coincide. The memoryless 
property of the negative exponential probability density function makes the resid-
ual enabling time statistically equivalent to the originally sampled enabling time.  

Capacity, Priority, and Queuing Policy  

For timed Petri nets, the capacity of places and transitions is relevant. Places can 
have a limited capacity to restrict the number of tokens residing in a place at the 
same moment in time. Transitions can have a capacity to limit the number of con-
current enablings/firings of the same transition. Consider a transition with one in-
put place containing three tokens. Is this transition enabled three times under race 
semantics? Can the transition fire concurrently with itself under preselection se-
mantics? To answer these questions, we identify three types of capacity related 
semantics: single server semantics, multiple server semantics, infinite server se-
mantics. For single server semantics the capacity of a place/transition is 1, for 
multiple server semantics the capacity of a place/transition is some integer k, and 
for infinite server semantics there are no capacity restrictions. Most timed Petri net 
models assume infinite server semantics. 

Several timed net models allow for a priority mechanism. In other words, if 
multiple transitions compete for the same token, the transition with the highest 
priority fires. Note that the priority mechanism can be used for preselection pur-
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poses. In the widely used GSPN model by Marsan et al. (1984) immediate transi-
tions (i.e., transitions with no delay) have priority over timed transitions.  
Some Petri net models allow for the specification of queuing policies. However, 
since tokens in the same place (of the same color) are indistinguishable, it often 
does not make any sense to choose a queuing discipline. In general, priorities (i.e., 
not transition priorities but token priorities), random selection, and processor shar-
ing are easy to handle in a stochastic Petri net, as established by Balbo and Silva 
(1984). State-dependent queuing disciplines such as first-come-first-served, last-
come-first-served, longest-job-first, and earliest-due-date-first are more difficult to 
represent and analyze. 

Network Topology 

Another commonly applied trade-off that already has been mentioned previously 
is to restrict the topology of the net in favor of its analyzability. For event graphs, 
a Petri net subclass, Ramamoorthy and Ho (1980) and Chretienne (1983) have 
shown how their time behavior can be efficiently analyzed. The CPM and PERT 
modeling techniques (Evarts, 1964; Moder and Philips, 1964; Levin and 
Kirkpatrick, 1966) suppose acyclic event graphs with infinite server semantics and 
deterministic timing. The PERT technique additionally allows for delays on the 
basis of the beta distribution. With its successor, GERT (Graphical Evaluation and 
Review Technique) (Pritsker and Happ, 1966; Pritsker and Whitehouse, 1966; 
Neuman and Steinhardt, 1979), it is possible to model a wider variety of stochastic 
networks, using many different logical relations for the input and output sides of 
the nodes. The GERT technique extends the range to nets with (limited) parallel 
behavior, with specific types of cycles, and with arbitrary distributions. This sub-
class is called the STEOR network. GERT also supposes an infinite-server seman-
tics. 

2.4.5 Stochastic Workflow Nets 

In this monograph we will use a stochastic workflow net model, as presented in 
this section. It is based on our definition of a Stochastic Petri net, which itself is a 
restricted version of the general Petri net model by Van Hee (1994). There are 
some important differences between the Stochastic Petri net model as defined in 
this paragraph and other timed Petri net models which we have discussed in the 
previous sections. These differences involve the following: 

 
1. The resolution of conflicts. 
2. The characterization of the delays. 
3. The domain of the delay probability distributions. 
 

In our Stochastic Petri net model a preselection semantics is used for the resolu-
tion of conflicts on the basis of the weights of the enabled transitions (see part c. 
of 0). This in contrast to the race semantics applied in, for example, the GSPN 
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model. A race semantics is not very appropriate in applications such as the model-
ing of workflows for two important reasons, which are as follows: 

 
1. Activities in a workflow are often performed by human resources whose work 

typically cannot (or will not) be cancelled upon completion of other activities. 
2. Time is mostly not the argument on which conflicts are settled/choices are 

made; rather, conflicts are resolved on the basis of e.g., explicit properties of 
the work at hand. 

 
The second important difference is that our Stochastic Petri Net model allows 

for arbitrary instead of merely negative exponential probability distribution func-
tions in the GSPN model. The latter restriction is not very appropriate in settings 
such as workflows, where work is performed by both human resources and ma-
chines. As a result, the time patterns of the performed activities may be capricious. 
Approaches do exist to approximate general distribution functions with a combi-
nation of negative exponential probability distribution functions, the so-called 
Phase-Type distributions (e.g., Cumani, 1985). This approach requires the logical 
net structure to be adapted to reflect an approximately correct time behavior of the 
system. Our approach has the advantage that the analysis model can also be used 
to validate its complete behavior with naive users. This application of the process 
model is important in the redesign of workflows, the subject of Chapter 3. 

Finally, the domain of the stochastic delay for each transition is discrete instead 
of continuous, unlike in most other timed Petri net models. In other words, delays 
will be measured in discrete units. The motivation is one of numerical and nota-
tional convenience. More specifically, the presented computational approaches in 
Chapter 4 can be illustrated and applied with more ease. The computations to be 
presented are, however, fundamentally the same for continuous and discrete time 
domains. In practice, the choice for a discrete time domain is never a limitation. It 
is always possible to use a fine-grained discrete time domain to approximate a 
continuous time domain, although this may have computational drawbacks. 
Whenever this is convenient, we will uniquely specify the probability density 
function ft by giving its related probability distribution function Ft.  

Note that the definition of our Stochastic Petri net does not take resource con-
straints on the firing of transitions into account. We say that the Stochastic Petri 
net has an infinite server semantics. The (un)availability of resources is in general 
an important factor in the total time that is required to handle a case with an actual 
workflow. Within this model, the focus is on the intrinsic quality of the workflow 
by not regarding resources. In Chapter 5 we will extend the presented model to in-
vestigate the optimal allocation of resources.  

Another, minor observation that can be made is that there are no priorities used 
in the definition of our Stochastic Petri net. It is not hard to extend the model in 
this direction, but the need does not arise for our purpose. Finally, it is noteworthy 
that tokens are uncolored. The firing of a transition is possible if each of its input 
places is filled with an indistinct token. As stated earlier in this section, this will 
not obstruct the analysis of workflows as each case will be treated separately. 
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Definition 2.16 (Stochastic Petri Net). A Stochastic Petri net is a tuple (P, T, R, 
W, f): 
− (P, T, R) is a Petri net (see Definition 2.1), 
− W: T → N+ (weight function), 
− f : T → (N → [0,1]) (delay function) such that for t ∈ T, ft is a probability den-

sity function over N. 
A transition t ∈ T is called timed if ft(n) > 0 for some n > 0, n ∈ N. A transition 

t ∈ T is called immediate if ft(0) = 1. 
 

The weight function W is added to the standard Petri net to resolve conflicts 
during the execution of a Stochastic Petri net, as will be shown in Definition 2.19. 
The delay function f will be used to sample transition delays that represent the ser-
vice time of actual task executions. Timed transitions may impose delays, while 
immediate transitions always have a zero delay. There is no formal distinction be-
tween these types of transitions with respect to conflict resolution, priority, etc., 
but for computation purposes their distinction will prove to be convenient. 

In Figure 2.3 an example Stochastic Petri net is depicted. Recall that timed 
transitions may impose a positive delay; they are depicted as transparent blocks 
labeled with their identity. Places are also labeled with an identifier. Immediate 
transitions are depicted as black bars and are usually not labeled. Alongside a tran-
sition, its weight is given. Weights that equal 1 are usually omitted from a figure.  

 

t c u

b
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Fig. 2.3. A Stochastic Petri net example 

A central notion to characterize the dynamic behavior of a Stochastic Petri net 
is its timed state. A timed state gives for each place the number of tokens it con-
tains. Each token carries its own time stamp. 

Definition 2.17 (Timed State). For a Stochastic Petri net SP = (P, T, R, W, f) the 
timed state space S: P → (N → N) is defined. Any state of SP can be character-
ized with a timed state s ∈ S. For any p ∈ P, s(p) is a finite bag (multi-set) of time 
labels over the alphabet N.  
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The two black dots in place c of the example net in Figure 2.3 indicate a timed 
state with two tokens. We usually do not mention their labels in a figure. The 
availability of two tokens with time label 12 in place c for the example net can be 
represented by the state s with s(a) = s(b) = 0 and s(c) = ! " . 212

Definition 2.18 (General initial timed state). For a Stochastic Petri net (P, T, R, 
W, f) with timed state space S, its general initial timed state 0M ∈ S is defined as: 

                     for p ∈ P, 0 ( )M p = 
0 if ,  

otherwise.
p i=


 0
! "

 

 
The timed state 0M represents the state of the system where the special source 

place i contains exactly one token, which carries the time stamp zero. As we will 
see, this is a convenient initial state for analysis purposes. 

A timed state gives for each place of a Stochastic Petri net a specification of the 
number of tokens that reside in it, along with their time stamps. With the timed 
state, we can describe the stochastic process that a Stochastic Petri net brings 
forth.  

Definition 2.19 (Stochastic Petri net behavior). A Stochastic Petri net (P, T, R, 
W, f) with time space S and initial timed state M induces a stochastic process SP = 
{ (Xn, Yn, Zn) | n = 0, 1, 2, Ö }. Xn is the timed state of the Stochastic Petri net af-
ter the n-th firing of a transition, Yn is the transition that fires in timed state Xn, 
and Zn is the delay that this transition imposes on the tokens it produces. The sto-
chastic process SP is defined on an abstract probability space (Ω, F, P) using the 
functions first, time, fire and g as follows: 
1. The function first is an auxiliary function to identify for each place in a certain 

timed state the earliest time stamp of the (possibly many) tokens that reside in 
it: for s ∈ S and p ∈ P, ( ( ) )firs t s p = min({ n ∈ N | s(p)(n) ≠ 0 }). 

2. The function time gives for each timed state the first moment in time that a 
transition may fire:  
for s ∈ S, time(s) = 

T
min max ( ( ))

t p t
first s p

∈ ∈•
. 

3. If a transition is a member of the set fire(s), this indicates that it is a candidate 
for firing for a given timed state s:  
for s ∈ S, fire(s) = 

   { t ∈ T | time(s) ∈ N ∧ max ( ( )) ( )
p t

first s p time s
∈•

= }. 

4. If a transition t fires, it removes from each of its input places one token with the 
earliest time stamp and it adds to each of its output places a token with a time 
stamp that equals the moment of firing added with a certain delay: 
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for s ∈ S, t ∈ T, d ∈ N and p ∈ P, g(s, t, d) (p)= 

  

( )                        if and ,
( ) - ( ( )) if and ,
( ) ( ) if and ,
( ) - ( ( )) ( ) ) if and .

s p p t p t
s p first s p p t p t
s p time s d p t p t
s p first s p time s d p t p t

∉• ∉


•
∈• ∉

 + ∉•


•
∈ •

+ ∈• ∈ •

! "
! "
! " ! "
!

!   
 

For the stochastic process SP holds the following: 
a. X0 = M. 
b. Xn+1 = g(Xn, Yn, Zn) for n = 0, 1, 2, Ö. 
c. The probability that a candidate transition fires is determined by its relative 

weight within the set of other candidates: 

P[Yn = t | Xn = s] = 
( )

( )  if ( ),
( )

0                   otherwise,
u fire s

w t t fire s
w u

∈

 ∈




∑   

with Yn, given Xn, independent of Xk, Yk and Zk for k < n. 
d. The delay of a firing transition is independently sampled from the probability 

distribution that belongs to that transition: 
P[Zn = d | Yn = t ]= ft(d), with Zn given Yn, independent of Xk, Yk and Zk for 
k<n. 

 
Note that if for any timed state s holds that time(s) = ∞ then the Petri net has 

reached a dead state: no further firing of transitions is possible. After all, the set 
fire(s) is empty. Also note that a stochastic Petri net is eager, i.e., if time(s) < ∞ 
then some transition t from fire(s) will actually fire at time(s). Although the firing 
of transitions is ordered, multiple transitions may fire at time(s). For example, 
suppose that g(s, t, d) = s' and g(s', t', d') = s'' then time(s) may equal time(s'). Fi-
nally, note that SP is a discrete Markov chain. 

Workflows 

We will evaluate the performance of a workflow by analyzing a model of it in the 
form of a Stochastic Workflow Net.  

Definition 2.20 (Stochastic Workflow net). A Stochastic Workflow net (SWN) 
is a tuple (P, T, R, W, f): 
− (P, T, R) is a workflow net (see Definition 2.13), 
− (P, T, R, W, f) is a Stochastic Petri net (see Definition 2.16). 
 

Some important time notions can be defined on Stochastic Workflow nets.  
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Definition 2.21 (Marking time). If the SWN WF = (P, T, R, W, f) with general 
initial timed state 0M  induces the stochastic process { (Xn, Yn, Zn) | n = 0, 1, 2,  
Ö }, the random variable ϑ(p) for any place p ∈ P, the marking time of p, is de-
fined as follows: 

                   ϑ(p) = ( )min , : X ( )( ) 0 :kk m p m m∈ ≠N . 

If confusion can arise about the context of the marking time, we denote ϑWF(p). 
 

The marking time is the earliest time that a certain place is marked. It evaluates 
to ∞ if the place is never marked. 

We focus the performance analysis in this monograph on one of the most im-
portant performance indicators in industry, the throughput time. Although authors 
from different disciplines use different terminology for this concept such as pas-
sage, response, sojourn, cycle, completion, and traversing time, we stick to our 
term for reasons of popularity in the field of workflow management. The through-
put time of a specific case is the total amount of time spent from the moment that 
the handling of the case started until the moment it is completed.  

Definition 2.22 (Throughput time). For the sound SWN WF = (P, T, R, W, f) 
with general initial timed state 0M  that induces the stochastic process { (Xn, Yn, 
Zn) | n = 0, 1,2, Ö }, the random variable Γ ñ the throughput time of WF ñ is de-
fined as the marking time of the sink place, ϑ(o). If confusion can arise about the 
context of the throughput time, we denote ΓWF. 
 

If an SWN is sound, then we know that eventually a dead state will be encoun-
tered on the basis of the general initial timed state. This dead state is the timed 
state where there is exactly one token in the sink place o with some time stamp. 
This is the throughput time that we are usually interested in. 

The throughput time of a workflow is characterized by a distribution function 
that expresses the probability that an arbitrary case will require a certain through-
put time. 

Definition 2.23 (Throughput time distribution). For a sound SWN WF = (P, 
T, R, W, f) with initial timed state 0M that induces the stochastic process              
{ (Xn, Yn, Zn) | n = 0, 1, 2, Ö }, the throughput time distribution FWF is defined as 
follows: 

                                               FWF(n) = P(Γ ≤ n). 
 

The throughput time distribution carries the complete information on the sto-
chastic throughput time behavior of an SWN. Given a throughput time distribution 
F for some SWN, it is easy to compute throughput time characteristics such as ex-
pectation, variance, maximum, minimum, modus, etc. We end this paragraph with 
the definition of the throughput time density that at convenient places will be used 
instead of the throughput time distribution. 
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Definition 2.24 (Throughput time density). For a sound SWN WF = (P, T, R, 
W, f) with initial state 0M that induces the stochastic process { (Xn, Yn, Zn) | n = 
0, 1, 2, Ö }, the throughput time density fWF is defined as follows: 

                    
                                               fWF(n) = P(Γ  = n). 

 
This definition ends the introduction of the Petri net models used throughout 

this monograph for the modeling of workflows. 
 



3 Workflow Design 

In this chapter we will present a new approach for the design of a workflow, one 
of the main contributions of this monograph. The approach is product-based, 
which means that the characteristics of the product are pivotal for determining the 
structure of the workflow. It is in some sense similar to the approach used in 
manufacturing, where the Bill-of-Material of a product is used to arrange a pro-
duction line. It is different from traditional workflow design approaches, which 
take an existing workflow as starting point and change it incrementally.  

In general, designing a new workflow that aims at satisfying multiple, often 
conflicting performance targets is a complex job. To manage this complexity we 
will apply a separation of concerns. We adopt in this monograph the approach to 
first deal with distinguishing and specifying the tasks in a workflow and their in-
terdependencies. In Section 2.2, we have called this the routing component of a 
workflow process, which can be seen as the structure of the workflow. Only then 
do we turn to the specification of the type of resources that will take care of carry-
ing out the tasks, the exact responsibilities/functionality of these resources, and 
their availability. Confronted with real cases, the combined routing and allocation 
component determine the dynamics of the workflow.  

The design of the structure of a workflow on the basis of product characteristics 
is the focus of this chapter, which is depicted as the thickly lined box in the top-
right corner of Figure 3.1. The model describes the relevant entities in a workflow; 
it has been introduced in Section 1.4. 

The particular order in designing the routing and allocation workflow compo-
nents we propose cannot guarantee that the designed workflow is optimal from all 
viewing points. However, a simultaneous design is generally too complicated to 
handle, as the mutual influence of routing and allocation design decisions is large. 
For example, the shortage of one type of resource may influence the boundaries 
and ordering of tasks. Conversely, a specific structuring of tasks may make a spe-
cific type of resources obsolete. Although it can even be imagined that a reverse 
design order is followed ñ first specifying the resource quality, structure, and 
quantity and only then the task structure ñ it seems to be a more natural way to do 
it the other way around. In actual projects that we conducted (see Reijers and 
Goverde, 1999a; Van der Aalst et al., 2001; De Crom and Reijers, 2001) we prac-
ticed this approach. 

 

H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 61-126, 2003. 
 Springer-Verlag Berlin Heidelberg 2003 
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Fig. 3.1. Focus of chapter 

Indeed, many documented BPR projects (e.g., Hammer and Champy, 1993) fo-
cus on redesigning the structure of the business process first. Note that approaches 
exist that mostly focus on redesigning the job profiles and responsibilities of re-
sources, e.g., by Hupp et al. (1995). Typically, an existing routing component is 
then taken as the framework for such approaches. Such an approach may very well 
follow the task structure design approach that we propose in this chapter. 

The workflow model as introduced in Chapter 2 will be used for specifying 
workflow designs throughout this chapter. One of the important phases in the 
overall method that we describe, is the thorough evaluation of a new workflow de-
sign (see Section 3.3). The performance evaluation algorithms of Chapter 4 can be 
used for this purpose. Chapter 5 can be seen as a logical sequel to the product-
based design of the structure of a workflow, as the presented method can be used 
to assign resources to such a structure. Chapter 6 describes an alternative, heuristic 
way of redesigning workflows. In Chapter 7 we present case descriptions of the 
application of a product-based design in a Dutch social insurance company and a 
Dutch bank. These projects have been carried out by Deloitte & Touche Bakkenist 
in the years 1999 until 2001. 

We start this chapter with a reflection on other business process design ap-
proaches. Next, we will discuss in Section 3.2 the essential idea behind a product-
based design. In Section 3.3 the design method will be described in more detail. 
We end this chapter with Section 3.4, which is a review of the approach. 

3.1 Process and Workflow Design 

We have distinguished the actual design of a business process as the technical 
challenge of a BPR initiative (see Section 1.3). Although not each new process de-
sign takes place within a BPR project, it is the most common context for literature 
in this field. We include in this overview all methods that can be used for the di-
agnosis, redesign, modeling and evaluation of business processes. Most of the 
work does not explicitly focus on the design of workflows; we will explicitly men-
tion it when this is the case. 
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We use the classification by Kettinger et al. (1997) who distinguish three levels 
of abstractions for methods with respect to business process design: methodolo-
gies, techniques, and tools. A methodology, the highest level of abstraction, is de-
fined as a collection of problem-solving methods governed by a set of principles 
and a common philosophy for solving targeted problems. At the next level of ab-
straction, a technique is defined as a set of precisely described procedures for 
achieving a standard task. At the lowest, most concrete level a tool is defined as a 
computer software package to support one or more techniques. Obviously, meth-
odologies, techniques, and tools can be linked in different ways. We will succes-
sively discuss tools, techniques, and methodologies. 

3.1.1 Tools 

There is much literature available devoted to the presentation and discussion of 
specific design tools, e.g., Hansen (1994), Jarzabek and Ling (1996), Min et al. 
(1996). The majority of the tools identified by Kettinger et al. (1997) focuses on 
the modeling of a business process, be it existing or new. A large number of tools 
is also available for the evaluation of business process models, in particular sup-
porting the technique of simulation. An example is the tool ExSpect (Van Hee et 
al., 1989; Van der Aalst et al., 2000a). Fewer tools are available to structurally 
capture knowledge about the redesign directions or to support existing creativity 
techniques. Tools are often presented as "intelligent" or "advanced" (e.g., Calvert, 
1994; Min et al., 1996), although they do not actively design business processes. 
The tool KOPeR-lite which generates alternative designs on the basis of a given 
business process model may be the exception; in some respects it even outper-
forms redesigns by humans with a novice BPR knowledge and experience (Nis-
sen, 2000). 

3.1.2 Techniques 

With the survey conducted by Kettinger et al. (1997) a set of 72 techniques tar-
geted at designing processes were identified. Among the encountered techniques 
for process diagnosis were e.g., fishbone diagramming, Pareto diagramming, and 
cognitive mapping. To support the activity of redesigning, creativity techniques 
like out-of-box-thinking, affinity diagramming, and the Delphi method (brain-
storm) are available. For the modeling and/or evaluation of business processes, 
techniques are in use as flowcharting, IDEF, speech act modeling, data modeling, 
activity-based costing, time motion studies, Petri nets, role-playing, and simula-
tion. Research in the field of developing new techniques is still very popular, as 
indicated by recent work of e.g., Janssens et al. (2000) and Sharp and McDermott 
(2001).  
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3.1.3 Methodology 

According to Kettinger et al. (1997), design methodology is primarily the field of 
consulting firms who have developed proprietary BPR methods. Some researchers 
even question the need for or possibility of a design methodology, as they see 
process design as an inherent creative pursuit. Simision (1994) ridicules the devel-
opment of a design methodology as follows: "To write a piano concerto, first take 
an HB pencil, select a keyÖ". Hammer and Champy (1993) state: "Redesign [of a 
new process] is the most nakedly creative part of the entire reengineering proc-
ess...  it is not algorithmic and routine. There are no seven- or ten-step procedures 
that will mechanically produce a radical new process design." Research-oriented 
methodologies or initiatives for methodologies do exist, but there are relatively 
few of them. In saying this, we ignore mere listings of activities that should take 
place within a BPR project without describing in some detail: the activities them-
selves, the dependencies between these activities, the techniques that should be 
applied, and the deliverables of the activities. 

We will use two criteria to further classify and discuss the technical BPR litera-
ture on design methodology. The first criterion is the starting point of a new busi-
ness process design. The second criterion is the method of designing the process, 
which we see as the core of any BPR methodology. As we will see, dependencies 
exist between these criteria. Other but less distinctive comparison factors would be 
the way of strategy forming and process selection. These will not be discussed. 

Starting Point 

There are three possibilities for the developing of a new business process. One can 
do either of the following: 
 
1. Take a clean sheet approach, i.e., the process is designed from scratch. 
2. Take the existing process as a starting point. 
3. Use a reference model as a template for the new process. 
 

There is considerable discussion in literature on the choice between the first 
and second alternative (see e.g., O'Neill and Sohal, 1999). The opponents of the 
clean sheet approach identify four major drawbacks, leading them to advocate us-
ing the existing process as a starting point, which are as follows: 
 
− There is the danger of designing another inefficient system (O'Neill and Sohal, 

1999). 
− The clean sheet approach fails to build on knowledge and experience which has 

been built up over time and risks mistakes of the past (Manganelli and Klein, 
1994b; Peppard and Rowland, 1995; O'Neill and Sohal, 1999). 

− Workers may be unable to relate to the new process as it bears little resem-
blance to the work that is being done (Peppard and Rowland, 1995). 
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− By designing a process completely from scratch the scope of the redesign prob-
lem is not appreciated (Manganelli and Klein, 1994b; Petrozzo and Stepper, 
1994; O'Neill and Sohal, 1999). 
 
On the other hand, Peppard and Rowland (1995) identify as a drawback from 

taking the existing process as starting point that process innovations are less likely 
to happen, although they are not impossible. Hammer and Champy (1993) are 
very clear about their preference: "Reengineering is about beginning again with a 
clean sheet of paper. It is about rejecting the conventional wisdom and received 
assumptions of the past. Reengineering is about inventing new approaches to 
process structure that bear little or no resemblance to those of previous eras". In 
favor of the clean sheet approach, Gulden and Reck (1991) state that the secrets of 
designing a process "lay not so much in intimately understanding the way it is per-
formed today, but rather in thinking about how to reshape it for tomorrow". Pep-
pard and Rowland (1995) identify the dangers of analyzing existing processes in 
too great a depth and becoming constrained by them when trying to think of new 
ways of working.  

Taking the existing process as a starting point is in practice the most common 
way of developing a new business process, as observed e.g., by Aldowaisan and 
Gaafar (1999). Peppard and Rowland (1995) suggest that the clean sheet approach 
has more attraction to Western companies, while Japanese manufacturers try to 
work from the existing processes. This may be due to cultural and economic dif-
ferences. They also note that it is common to see organizations occasionally start 
the design of a new process from a clean sheet, after which they apply several 
smaller improvement projects to the newly designed process, as a means of con-
tinuous improvement.  

The third, possible start point for a new process design ñ which we have not 
discussed so far ñ is a so-called reference model. The reference model serves as a 
template for a business process design that can be subsequently refined to match 
the specific demands or objectives on the business process. The MIT Center for 
Coordination Science (Dellarocas and Klein, 2000) maintains a repository of this 
kind of business process templates for specific fields of operations. Reference 
models are usually derived from earlier process design outcomes and typically de-
scribe essential process ingredients on an abstract level. Therefore, a reference 
model approach can be seen as a compromise between a clean sheet and an exist-
ing process approach. Existing processes are the inspiration for the redesign, al-
though it may be radically new for the organization in question. 

Method  

Concerning the method of designing the process a possible classification of the ex-
isting BPR methodology is as follows: 
 
1. Participative: based on involving and stimulating a group of experts in the de-

sign of a new business process. 
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2. Analytical: based on an explicit recognition of design parameters and degrees 
of freedom, using algorithms or logic to yield a new business process.  

 
Obviously, these characteristics are not completely mutually exclusive. The 

common practice of designing business processes is to use a participative method-
ology. Reijers and Voorhoeve (2000) have observed this in practice, but it can also 
be concluded from the abundance of creativity techniques aimed at supporting a 
participative BPR methodology. In fact, Kettinger et al. (1997) list creativity tech-
niques such as brainstorming and out-of-box-thinking as the only techniques 
available to support the redesign stage within a BPR project. A common, partici-
pative approach to design a new business process is that management consultants 
encourage specialists, employers and managers within the setting of a workshop to 
think of alternatives to the existing business process or to think of completely new 
processes. The role of the external consultants is to manage the workshop and to 
stimulate people to abandon the traditional beliefs they may have about the proc-
ess in question. A well-chosen delegation of internal specialists and managers 
should ensure that all expertise is available that is required to make a process de-
sign. Sometimes, consultants or academics are also hired for their intrinsic knowl-
edge of a specific field of operations. Both Peppard and Rowland (1995) and 
Sharp and McDermott (2001) describe such a workshop-centered approach to de-
sign business process.  

An analytical methodology builds upon analytical techniques to come up with a 
new process design. Hansen (1994) argues that the complexity of BPR efforts re-
quires scientific, analytical techniques, as non-analytical, informal approaches 
lead to many failures of BPR projects. He claims that business process behavior 
depends on many interrelated parameters, which cannot be dealt with in an infor-
mal way. However, most of the material that relates to analytical BPR methodol-
ogy does not really qualify as mature methodology. Rather, these are technical 
principles or heuristics that may be used to render superior new business process. 
In this sense, they are sometimes close to BPR techniques. Hammer and Champy 
(1993) present technical BPR principles, for example: tasks in a business process 
should be combined into larger tasks, a case manager is appointed as a single point 
of contact, and the number of checks and controls in a process should be reduced. 
Similar principles are presented by the following researchers:  

 
− Rupp and Russell (1994) who give a summary of 16 principles, e.g., avoid in-

tra-organizational dependencies and shared responsibilities, create more multi-
skilled workers, design activities to run in parallel paths. 

− Peppard and Rowland (1995) who identify and break down four core groups of 
principles that must lead to the elimination, simplification, integration and 
automation of work. 

− Berg and Pottjewijd (1994) who identify and illustrate six forms of process im-
provement: elimination, integration, broadening, parallelization, volume in-
crease, and effectiveness increase. 

− Poyssick and Hannaford (1996) who list 36 process improvement rules. 
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− Van der Aalst and Van Hee (2002) who list 15 heuristic rules for the redesign 
of workflows, e.g., initially ignore the existence of resources when designing, 
consider specialization of generalized tasks, let resources work on the same 
case as much as possible. 

 
Most of these directions are characterized by the tacit assumption that an exist-

ing business process is taken as the starting point of a new design. By locally ap-
plying a reengineering principle, the performance of the total business process is 
boosted. The principles presented are often derived from experience gained within 
large companies or by consultancy firms with repetitive application of these prin-
ciples in BPR engagements. For example, the rules as proposed by Peppard and 
Rowland (1995) are derived from the experiences of the Toyota Company. Gener-
ally, many of the BPR principles lack an adequate (quantitative) support, as noted 
by e.g., Van der Aalst (2000a). Buzacott (1996), Seidmann and Sundararajan 
(1997), Van der Aalst (2000b), and Zapf and Heinzl (2000) provide analytical or 
quantitative support for the superiority of some of the BPR principles available. 
Chapter 6 gives a more thorough overview of these principles. 

Analytical Approaches 

Approaches that exceed merely summarizing BPR principles and come close to an 
analytical design methodology are provided by Orman (1998), Aldowaisan and 
Gaafar (1999), Van der Aalst (2000b) and Hofacker and Vetschera (2001). We 
will discuss each of these and make a comparison with the product-based design 
approach presented in the remainder of this chapter. 

Orman (1998) presents a so-called model management approach, which could 
be seen as the basis of an analytical BPR methodology. In this approach, business 
processes are seen as decision models. The purpose of a business process is to 
limit an initially wide search space until a decision can be made. Tasks in a busi-
ness process reduce uncertainty as to which final decision should be made. For ex-
ample, the tasks in a business process to decide whether a mortgage loan should 
be granted may involve checking whether an applicant is a homeowner and 
whether he or she has a sufficient salary. Only applicants that satisfy both criteria 
may be granted a mortgage loan. Based on a given set of tasks, each with a spe-
cific cost and an expected reduction rate of uncertainty, an optimal ordering of 
tasks can be given in terms of expected cost. The model management approach 
also incorporates the issue whether tasks within a business process should be 
shared across different processes. These results are less convincing, as Orman be-
lieves that sharing may lead to different orderings. This is not quite justified in the 
light of WfMS's (see Section 1.4). Note that the model management approach 
does not take an initial process structure as starting point. 

Aldowaisan and Gaafar (1999) present an approach, that takes a process design 
structure as a set of logically related tasks on the one hand and resources that yield 
a certain output on the other. In the first phase of their approach, the heuristics of 
Hammer (1990) are used to eliminate, integrate, and automate tasks within an ex-
isting business process to create a better design. In the second phase it is assumed 
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that the search space for a further improved design structure is defined by two pa-
rameters: the number of employee types and the number of process tasks. In their 
approach, all different mappings of tasks on resource types are evaluated, the so-
called process mappings. They proceed to show how to find the optimal process 
structure by balancing a quantitative cost and qualitative profit interpretation. Cost 
is expressed as the amount of training required to let resources perform tasks for 
which they were not initially capable. Profit is measured in terms of a simplified 
resource structure (fewer resource types) and the degree in which the case man-
ager principle can be implemented (as few persons as possible execute tasks for a 
specific case; see also Section 6.1). A final check on the feasibility of the process 
map is executed by checking whether a sufficient number of resources is avail-
able. Note that Aldowaisan and Gaafar follow the same route of designing the 
routing component first and successively the allocation component as we have 
proposed in the introduction of this chapter. 

Van der Aalst (2000b) focuses on the design of a typical pattern found within 
many workflow processes in practice, a so-called knock-out process. A knock-out 
process consists of a set of tasks that are used to decide whether a specific case 
should be accepted or rejected. Each task may lead to a rejection ñ the knock-out ñ 
and only if all tasks have a positive result the case is accepted (see also Section 
6.1). Van der Aalst gives a heuristic rule to order tasks within the same resource 
class to minimize the throughput time, given the rejection and failure rates of all 
tasks, as well as their average processing time. The applied model and optimiza-
tion rule is similar to that of Orman (1998). Van der Aalst extends this heuristic to 
the case where different resource classes are available and an unbalanced occupa-
tion rate may affect the throughput time negatively. Heuristics are provided also 
when to combine tasks so that by reducing set-up times the average throughput 
time is minimized (see also Section 6.1). Finally, heuristic conditions are distin-
guished when tasks should be put in parallel, possibly yielding a shorter through-
put time but also increasing the resource utilization (see also Section 6.1). 

Hofacker and Vetschera (2001) approach a process design effort as the problem 
of selecting the right subset of tasks out of a set of potential tasks. In their basic 
model, a task consumes one input and produces one output. They refer to these in-
puts and outputs as "resources". At the start of a process design, an initial set of 
resources is available and another set of resources is desired as the global output 
of the process. A process design is a totally ordered subset of tasks, which is said 
to be feasible if (a) for each task its input is available when it starts (either because 
it is part of the initial set or because it is produced by a preceding task) and (b) all 
global outputs are produced by executing the tasks in the design. Three solution 
strategies are investigated for finding such a subset, respectively mathematical 
programming, direct branch and bound methods, and genetic algorithms. They 
show that the first two strategies deliver results with an acceptable performance 
for rather small models. Although the formalization of the problem in their ap-
proach is rather elegant, it is characterized by an overly simple structure of the 
optimization function. In particular, the specific ordering of the tasks does not 
affect this function; it only takes into account the membership of a task in the 
process design. So, for example, the effect of parallel executions of tasks on the 
speed of processing cannot be measured. Also, alternative paths cannot be 
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processing cannot be measured. Also, alternative paths cannot be incorporated in 
their notion of feasible processes, which is a strict abstraction of real workflows. 

The focus for the four described approaches differs. We will elaborate on these 
differences by using the phases in a BPR effort as distinguished by Van der Aalst 
and Van Hee (2002). Orman (1998), Van der Aalst (2000b), and Hofacker and 
Vetschera (2001) focus on deriving an optimal routing component. On the other 
hand, the main point of the approach by Aldowaisan and Gaafar (1999) is on de-
termining an allocation component on the basis of a given routing component. In 
the view of Van der Aalst and Van Hee (2002), designing the process structure 
should precede the allocation of resources, so in this sense these two types of ap-
proaches are supplementary. Typical for all four described approaches is that a no-
tion of tasks should exist before the approach is applied. Aldowaisan and Gaafar 
(1999) do allow for an initial phase where task elimination, integration and auto-
mation can take place and Van der Aalst (2000b) even gives guidance on the con-
ditions when to combine tasks. However, the analytical framework does not in-
corporate the evaluation on what should be done: which tasks are relevant for 
successfully executing the business process. This is one of the major distinctive 
factors of the approach that we will present in the following sections. We argue 
that this aspect is required for any approach to be applied as a design methodol-
ogy. 

3.2 Product-Based Workflow Design 

3.2.1 The Relation between Process and Product 

The Industrial Revolution at the end of the eighteenth century called for a new 
type of organization: labor became divided into specialties. This principle allowed 
for a fantastic increase in production output on the factory floor. Soon afterwards, 
this principle was applied in the growing field of office work and with similar suc-
cess. Product-Based Workflow Design (PBWD) is a workflow design methodol-
ogy that also translates a typical manufacturing concept to office work ñ the com-
mon context of workflows. In Section 1.5 we already explored some of the 
differences and similarities between workflow and logistical management. A typi-
cal characteristic in manufacturing is that the structure of the product is used to de-
rive the manufacturing process. This principle is illustrated in Figure 3.2.  

The figure represents how the structure of a product is used to determine the 
steps that should be taken to manufacture it, i.e., the process. The product in Fig-
ure 3.2 is schematically depicted as a large box. This box consists of three smaller 
black, white and gray boxes, which are combined in a specific way. The depicted 
process to produce such a product first fits together the black and white box (step 
1.), after which this subassembly is placed on top of the gray box (step 2.). It is 
clear that this simple production process indeed delivers boxes of the desired ele-
ments and composition. Note that without further restrictions it seems possible to 
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design alternative production ways composing the same product, e.g., first fitting 
together the black and gray boxes and then placing the white box between them. 

?

 

1.
2.

Process

Product
 

Fig. 3.2. The relation between product and process 

The structure of the product in manufacturing is specified with a Bill-Of-
Material (BOM) (Orlicky, 1972). The BOM is a tree-like structure with the end 
product as root and raw materials and purchased products as leafs. In the resulting 
graph, the nodes correspond to products, i.e., end-products, raw materials, pur-
chased products, and subassemblies. The edges are used to specify composition 
relations (i.e., is-part-of relations). The edges have a cardinality to indicate the 
number of products needed. Figure 3.3 shows the simplified BOM of a car, which 
is composed of an engine and a subassembly. The subassembly is composed of 
four wheels and one chassis. 

 
 

car 

engine sub 
assembly

wheel chassis

4

 
Fig. 3.3. The BOM of a car 

If we take a look at, for example, Material Requirements Planning (often re-
ferred to as MRP-I), we see that it determines the production schedule based on 



3.2 Product-Based Workflow Design      71 

the ordered quantifies, current stock, and the composition of a product as specified 
in the BOM. Contemporary Enterprise Resource Planning (ERP) systems such as 
SAP also take resource availability into account and use more refined algorithms.  

The important observation here is that the manufacturing process is driven by 
the structure of the product. For example, in the production line for cars with a 
BOM like in Figure 3.3 the sub-assembly of the wheel and chassis will precede 
the final assembly step of the entire car.  

In contrast to manufacturing, the product and the process have often diverged in 
actual workflow processes. Workflows found in banks and insurance companies 
for products like credit, savings and mortgages, damage and life insurance, etc. 
may well exist for decades. Since their first release, those processes have under-
gone an organic evolution. For example, historical problems in performing certain 
computations have resulted in the addition of calculatory checks. Another example 
is the effect that a historical case of fraud may have on a process. A very restric-
tive type of control may be added in answer. Aside from the evolutionary changes 
of the process, the state of technology of some decades ago has considerably in-
fluenced the structure of these workflows permanently. For example, it used to be 
laborious to make a copy of a client file. Therefore, in many actual workflows a 
highly sequential structure of tasks can be distinguished, where at most one person 
at a time works on an order. It is difficult to migrate from this original set-up of a 
workflow in an evolutionary way. In summary, the structure of an actual workflow 
may not be related to the product characteristics any more.  

Clearly, for manufacturing process and workflows alike, there is a relation be-
tween the product and the process: the very justification of a workflow's existence 
is the generation of a specific type of product. As we have argued in Section 1.4 
workflows are mostly of the mass-customization type. On the basis of a clear a 
priori notion of a standard product, product instances are delivered to clients, 
which may be slightly customized to the preferences of the client in question. The 
characteristics of the standard product are often described in administrative proce-
dures, marketing material, internal regulations and product development materials. 
Mass customization is also accompanied by a high turnover volume. Financial in-
stitutions, utility companies, and government agencies are typical sectors that de-
liver mass customized products. The loose coupling between the product notion 
and the process structure in this setting is, at closer inspection, rather mysterious. 
We propose that analyzing the product specification may be a feasible and attrac-
tive starting point for designing workflow processes in this area. This is the fun-
damental idea behind PBWD. 

To see how this would work, consider for example the processing of insurance 
claims. The product to be delivered on the basis of an actual claim is basically a 
decision: either the claim is accepted ñ followed by a payment ñ or the claim is re-
jected. (Note that this way of looking at a workflow as a knock-out process is 
similar to some of the design methodologies we presented at the end of the previ-
ous section.) All kinds of information elements may play a role in making this de-
cision, like the amount of damage, the claim history of the claimant, and the cov-
erage of the insurance. For example, one of the standard conditions of the 
insurance policy may specify that if the amount of damage is below a certain 
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threshold, the claimant has not issued a claim for over a year and the damage is 
covered, then the claim is accepted and the damage paid. This hypothetical condi-
tion can be seen as a part of the insurance product specification. The information 
elements can be seen as raw materials or subassemblies for the production of a de-
cision. The workflow process should "manufacture" the decision by distinguishing 
tasks to retrieve and asses the required information elements, while taking criteria 
such as average throughput time, service level, handling costs, and product quality 
into account. The latter are typically no characteristics of the product, but per-
formance targets (see Section 1.1). 

3.2.2 Characterization 

PBWD is a prescriptive methodology that is concerned with the technical side of 
BPR. It is not a project management approach, nor does it pretend to cover the 
change management issues of innovations. (Note that the development of proto-
types on the basis of PBWD deliverables may be an effective support of managing 
the change, see Section 3.3.4.) We defined the technical side of BPR in Section 
1.3.2 as the issue of developing a process design that is a radical improvement of a 
current design. We identified the starting point and the method as distinguishing 
features of BPR methodologies in this field. Considering these features, PBWD 
takes a clean sheet approach; it explicitly does not take the existing process as a 
starting point. Furthermore, it is analytical in its approach in contrast to popular, 
participative approaches. Based on our literature survey (see Section 3.1), we con-
clude that it is one of the very few existing methodologies with these characteris-
tics.  

PBWD builds upon an idea as published by Van der Aalst (1999), where en-
hanced BOM's are described that allow for an automatic generation of workflows. 
Verster (1998) already described the decomposition of an informational product 
into data elements within the context of business process redesign. Although he 
proposes the structuring of this type of data for the purpose of simplifying the 
product and the process, no methodical derivation or optimization of the workflow 
from this structure is presented. These are specific characteristics of the PBWD 
design methodology, as will become clear from the following sections. 

3.3 PBWD Methodology 

In this section we will first outline the PBWD methodology. Then, we will discuss 
each of the phases in more detail, including a description of their deliverables. The 
phases that can be distinguished within a PBWD effort are as follows: 
 
1. Scoping 

In this initial phase the workflow is selected that will be subject to the redesign. 
The performance targets for this workflow are identified, as well as the limita-
tions to be taken into consideration for the final design. 
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2. Analysis 
A study of the product specification leads to its decomposition into information 
elements and their logical dependencies. The existing workflow ñ if any ñ is di-
agnosed to retrieve data that is both significant for designing the new workflow 
and for the sake of evaluation. 

3. Design 
Based on the reengineering objectives, the product specification decomposition 
and estimated performance figures, several alternative workflow structures are 
derived. A workflow structure consists of tasks that retrieve or process informa-
tion elements. 

4. Evaluation 
The alternative workflow structures are verified, validated with end-users and 
their estimated performance is analyzed in more detail. The most promising de-
signs are presented to the commissioning management to assess the degree in 
which objectives can be realized and to select the most favorable workflow de-
sign. 

 
These phases are presented in a sequential order, but in practice it is very plau-

sible and sometimes desirable that iterations will take place. For example, the 
evaluation phase is explicitly aimed at identifying design errors, which may result 
in rework on the design. The focus of this section will be on the analysis and de-
sign phases of PBWD. 

3.3.1 Scoping 

Workflow Selection 

An important aim for the scoping phase is to select the workflow that is to be de-
signed or redesigned. More specific, it aims at identifying the product of which the 
corresponding workflow is to be designed. 

The selection of a product-workflow combination can be made on various 
grounds (see Hammer and Champy, 1993; Hupp et al., 1995; Sharp and McDer-
mott, 2001). If there is a new product developed by e.g., the marketing and prod-
uct management departments, then the motivation for designing the workflow is 
clear. If an existing workflow is taken to be redesigned, selection criteria may be 
as follows: 

 
− Dysfunctionality of the workflow. Typical symptoms of dysfunctional processes 

are: extensive information exchange, data redundancy, long throughput times, 
high ratio of controls and iterations, many procedures for exception handling 
and special cases, poor service quality and client satisfaction, and conflicts 
across departments. Benchmarks or experience may be used to decide on the 
seriousness of these figures. 
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− Importance of the workflow. A workflow may contribute more or less to the 
critical success factors of a company, its profitability, client satisfaction, market 
share, etc. 

− Feasibility of redesign. A redesign effort is more likely to succeed when the 
workflow is directly linked to the needs of clients, when the scope of the work-
flow becomes smaller (but then the pay-off drops), when expected redesign 
costs become less, and when knowledge about the product, design approach 
and the existing workflow are available in larger quantities. 
 
In practice, the various criteria for selecting a workflow to be redesigned are 

different for each company and even for each BPR effort. 

Workflow Boundaries 

After selecting the proper product/workflow combination it is important to fix the 
boundaries of the workflow to be redesigned. Important for these boundaries are 
the logical, locational, and client-centered viewpoints. We will briefly discuss 
each of these viewpoints. Note that in actual settings, other criteria may be more 
relevant. 

In practice, what different departments may see as the logical start and end of a 
workflow may differ. For a sales person, the workflow for mortgage applications 
is ended when a signed contract is returned by the client. However, various opera-
tions in the back-office may be required to fulfill the mortgage offering. A logical 
start state and end state should be determined for the workflow that is to be redes-
igned prior to the design itself. 

The second viewpoint for the boundaries concerns the location of the work-
flow. Similar existing workflows may be executed at different locations, e.g., in 
different offices or countries. The question should be solved for which locations 
the redesign will be effectuated. This issue will determine the types of systems 
that are incorporated, which kind of regulations are in effect, which performance 
is desirable, and which people are involved. 

The last important viewpoint for the boundaries of a workflow concerns the cli-
ent. Similar products may be offered to different types of clients. A typical distinc-
tion within a banking environment is to distinguish between well-to-do and other 
clients. Depending on the type of client, different procedures or product character-
istics can be relevant.  

Redesign Objectives 

An important and often neglected activity during the scoping phase of a redesign 
initiative is to explicitly formulate the redesign objectives (see Van der Aalst and 
Van Hee, 2002). Aside from the performance targets such as throughput time, op-
erational cost, and required labor hours that should be met by the newly designed 
workflow, the redesign initiative itself may have to be executed within a certain 
time, quality, and budget framework. Something that is even less frequently exe-
cuted is so-called null measurement (see Van der Aalst and Van Hee, 2002). A 
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null measurement establishes the score of the performance targets just before the 
redesign is carried out. Such a measurement enables the formulation of sensible 
target values and makes an ex-post evaluation possible. 

Feasibility 

The discussed elements of the scoping phase so far are general and applicable for 
all kinds of redesign efforts. To determine the feasibility of the PBWD approach 
to design a particular workflow it is of the utmost importance that there is a well-
defined notion of the product to be delivered by this workflow. Actual manifesta-
tions of such a product notion are handbooks, internal regulations, procedure codi-
fications, legislations, product specifications, etc. It is inevitable for a proper as-
sessment of the feasibility of a redesign of PBWD that during the scoping phase a 
collection takes place of the materials that define the product specification. 

Even if there is no physical manifestation of a product specification, it may 
very well be that the concept of a product does exist with e.g., marketers, product 
managers, or general management. It is important to check the maturity and con-
creteness of these notions. If they are sufficiently mature, it is required before the 
next phase of analysis starts that an explicit product specification is defined.  

Black Boxes 

Another specific aspect of the PBWD approach is found within the definition of 
the boundaries of the workflow. More specific, it is important to establish which 
existing information processing applications that support the current workflow are 
to be maintained in their existing form.  

In many settings where the redesign of workflows is due, the workflow is pri-
marily involved with information processing, aside from some limited physical 
operations (see Section 1.4.2). Therefore, computer applications may implement 
major parts of a workflow by carrying out specific tasks. As computer systems 
may be used in different workflows and also have a limited score on the maintain-
ability scale, it often is considered unattractive to change existing systems as part 
of a redesign initiative. It is then important to distinguish the exact functionality 
that is to be preserved, the so-called black boxes. Distinguishing black boxes has 
its effect on the design effort. On the one hand a black box will simplify the analy-
sis and design of the corresponding information processing part in the workflow. 
On the other hand, too many black boxes will obstruct a radical redesign of the 
workflow. 

An example of a black box that we encountered during the redesign of a credit 
loan workflow was a system that was used to generate benchmarks on the basis of 
financial information on clients. This system was used in workflows for many 
other products, such as mortgages and insurances. The system was treated as a 
black box. Only its inputs and its outputs were analyzed.  

A summary of the activities in the scoping phase is given in Figure 3.4. The de-
liverables of the scoping phase are as follows: 
 



76      3 Workflow Design 

Scoping
General PBW D specific

Select workflow :
dysfunctionality, importance, feasibility

Fix boundaries:
logical, locational, customers

Determine performance targets:
zero setting, objectives

Asses feasibility:
establish product specification

Fix boundary:
establish black boxes

 
Fig. 3.4. The scoping phase 

− A precisely demarcated workflow process to be designed. 
− Performance targets for the new design. 
− A product specification. 
− Black boxes within the workflow. 

3.3.2 Analysis 

The Product Data Model 

In the analysis phase, all distinguished materials that classify as product specifica-
tion are analyzed to identify information elements, their dependencies, and the 
logic involved. For a proper representation of this information the traditional 
BOM found in manufacturing is not entirely suitable. This is due to several differ-
ences between informational products and physical products (see Section 1.5). 
These differences lead to two important updates of the traditional BOM. First, the 
same piece of information may be used to manufacture various kinds of new in-
formation. Therefore, also non-tree-like structures are possible. For example, the 
age of an applicant for a life insurance may be used to estimate both (a) the in-
volved health risks and (b) the risks of work related accidents. Secondly, there are 
no physical constraints and therefore there are typically multiple ways to derive a 
piece of information. For example, health risks may be estimated using either a 
questionnaire or a full medical examination.  

Before we present a formal product data model that incorporates the required 
information with the above observations, we present a graphical example of such a 
model in Figure 3.5. All nodes in this figure correspond to information elements 
that are may be used to decide whether a candidate is suitable to become a heli-
copter pilot in the Dutch Air force. We will refer to this model throughout this 
chapter as the Helicopter Pilot product data model. Arcs are used to express the 
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dependencies between them. Unlike the BOM in Figure 3.3 there are no cardinal-
ities. (The method does not fundamentally exclude cardinalities, so they may be 
added if required.) The meaning of the information elements is as follows: 

 
− a: suitability to become a helicopter pilot. 
− b: psychological fitness. 
− c: physical fitness. 
− d: latest result of suitability test in the previous two years. 
− e: quality of reflexes. 
− f: quality of eye-sight. 
 
 

cb

e

a

f

d

 
Fig. 3.5. Helicopter Pilot product data model 

Each incoming arc of a node signifies an alternative way of determining a value 
for the corresponding information element. If outgoing arcs of multiple nodes are 
joined, this means that values of all of the corresponding information elements are 
required to determine a value for the information element the arrow leads to. 
One of the things that is expressed in the figure is that there are three ways to de-
termine information element a. The suitability of a candidate (a) can be deter-
mined on the basis of either of the following: 
 
1. The combined results of the psychological test (b) and the physical test (c). 
2. The result of a previous suitability test (d). 
3. The candidate's eye-sight quality (f). 
 

In reality, these different ways may be applicable under different conditions. It 
can be imagined that if a pilot's eye-sight is extremely bad (f), then this directly 
gives a result that the candidate is not suitable (a). However, in a more common 
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case, the eye-sight quality is one of the many aspects that are incorporated in a 
physical test (b), which should be combined with the outcome of the psychologi-
cal test (c) to determine the suitability result (a). Also, not for each candidate that 
applies a previous test result (d) is available. But if there is one of a recent date, it 
can be used directly. 
From the Helicopter Pilot product data model, it becomes clear how the depend-
encies between data may be used to derive a favorable design. For example, if the 
target is to minimize the cost it may be wise to check first whether there is a pre-
vious test result and next to check the eyes of the candidate. Only if these checks 
do not lead to rejecting the candidate, a full examination is additionally required. 
Obviously, the expected cost of all these activities really determine whether this is 
a good design. 

Note that the figure resembles an AND/OR graph, as used in Artificial Intelli-
gence research: a graph or tree structure describing the decomposition of a goal in 
terms of alternative subgoals (OR nodes) or combinations of subgoals that must all 
be satisfied (AND nodes) (APDST, 1995). 

To formalize the model of related information elements, we introduce the prod-
uct data model. 

 
Definition 3.1 (Product data model). A product data model is a tuple (D, C, 
pre, F, constr) with: 
− D: a set of information elements, with a special top element: 

− top ∈ D, 
− C: a set of constraints; a constraint can be any Boolean function; the function 

that always yields true ñ denoted true ñ is part of C: 
− true ∈ C, 

− the function pre gives for each information element the various ways of deter-
mining a value for it on the basis of the values of (different) sets of other in-
formation elements: 

pre : D → P(P(D)), such that 
− there are no 'dangling' information elements and a value of a information ele-

ment does not depend on itself: 
R = {(p, c)∈ D×D | c ∈ } is connected and acyclic, 

( )es pre p

es
∈
∪

− the top element cannot be used for determining the value of any other informa-
tion element: 

( , ) :p c R c∀ ∈ ≠ top, 
− if there is a set of information elements that can be used for the value of an-

other, this set is not empty: 
: (e D pre e∀ ∈ ∅∉ ) , 

− F: a set of production rules, based on the definition of pre, extended with 
'empty' rules for elements that do not require values of other information ele-
ments:  
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F = { (p, cs) ∈  D × P(D) | cs ∈ pre(p) } ∪  
{ (p, ∅) | p ∈ D ∧  pre(p) = ∅}, 

− the function constr that associates a constraint to each production rule: 
constr : F → C, such that 

− there are no constraining conditions on producing elements that do not re-
quire values of other information elements: 

: ( )e D pre e∀ ∈ = ∅ ⇒ ( , )constr e true∅ =  
 

The product data model identifies information elements, represented by the set 
D, and expresses the relations between them with the function pre. These relations 
are relevant for producing a value for the information element top. Determining a 
value for this element will be seen as the goal of the workflow to be designed. For 
analysis purposes it is convenient to identify a single top element, as will become 
clear. Note that it is always possible to distinguish exactly one information ele-
ment top: if there is more information that should be available at the end of exe-
cuting a workflow, an imaginary top information element may be distinguished 
that combines all this information. Note that in the example of Figure 3.5, infor-
mation element a is the top element. 

The pre function of the product data model yields for each information element 
d one or more ways to determine a value for d. If for information elements d, e, 
f ∈ D, we suppose that {e, f } ∈ pre(d), then a value of d may be determined on 
the basis of values of e and f. We say that (d, {e, f}) is a production rule for d. We 
will consider e and f as inputs for a calculation of output d. Note that in the exam-
ple of Figure 3.5, three production rules are in effect to determine a value for the 
top element a. 

Note that each production rule for an information element d with pre(d) = ∅ is 
special. The information element d is called a leaf. Note that the information ele-
ments b, e, f and d in the example of Figure 3.5 are leafs. No other information 
elements are required to determine the value of a leaf. There are also no con-
straints to determine the value of a leaf. Leafs represent information elements of 
which the values cannot be produced from the values of other information ele-
ments that fall within the reengineering scope. Typically, these values have to be 
retrieved from a client or a third party. They may even already be available to the 
workflow owner.  

Just as there can be different production rules for the same information element, 
the production rules may be applicable under different circumstances as well. For 
the rule (d, {e, f}), constr(d,{e, f }) yields a Boolean function. For example, sup-
posing that the value of information element is a numerical, constr(d,{e, f }) may 
take on the form 'the value of e is larger than 5'. Only if this function evaluates to 
true when the production rule is attempted to be applied with real values of e and 
f, the rule (d, {e, f}) can indeed be applied. As in the example, typically aspects of 
other information elements play a role in this evaluation. Although in reality these 
dependencies may be very complex, we abstract from these dependencies by al-
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lowing only references in a constraint to values of the inputs of the respective pro-
duction rule. Note that constraints are not depicted in the example. 

The model as presented is the basic form of the product data model. Later in 
this section, we will discuss two types of extensions. The first is administrative by 
nature and facilitates the use of the product data model in a practical encounter. 
The second extension formalizes performance data involved with the application 
of the specific production rules (see Definition 3.2). This data is used for design-
ing efficient workflows.  

Note that for black boxes established in the analysis phase it is also required to 
distinguish their inputs and outputs. For example, within the project we conducted 
for a Dutch bank, there was a system in use for determining the market rate. This 
system was no subject to reengineering. Because of the valuable information it 
produced, the system's inputs had to be obtained as well.  

Product Specifications 

A product data model must be derived from the product specification that has been 
established in the scoping phase. Internal procedures at banks, insurance compa-
nies, and government agencies often already have as a feature that they have some 
structure. This is typically the field of the Administrative Organization / Internal 
Control. Although there are no guarantees, such a structure often implies that 
when an information element is mentioned for the first time either a procedure 
may follow shortly that explains how it is determined or a reference can be found 
to a definition elsewhere. This is especially the case in legal settings, where law 
books may be the actual product specifications. It is very important to stick as 
closely as possible to official documentation that expresses the workflow owner's 
policy. Obviously, experts may be consulted when there is difficulty in interpret-
ing the product specification. This must be balanced against the risk of incorporat-
ing operational instead of factual information in the product data model. 

 
Example 1 
 
The following is an excerpt of the stipulations of a Dutch bank 
concerning medium length business loans:  
 
The funds for a medium length loan that is made available to a cli-
ent but which is not withdrawn by the client must be placed on the 
money market. If the funding cost of the loan is higher than the 
rewards of the temporary placing, this difference is the basis for 
the monthly disposal provisionÖ The disposal provision amounts 
to half of this difference with a minimum of 1/12 % per monthÖ 
The disposal provision should be part of the loan proposal. 
 
In this excerpt, the "disposal provision" is defined as a relevant in-
formation element for bringing out a loan proposal to a client, 
which we take as the top element for the involved proposal proc-
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ess. Note that this element depends on other elements such as the 
"funding cost" and the "temporary placing rewards" which are not 
fully defined in this text.  

 
Example 2 
 
The excerpt that follows is part of article 17 of the Dutch Unem-
ployment Law: 
 
The right for an unemployment allowance arises for an employee 
if he has worked as an employee at least 26 weeks of the 39 weeks 
immediately preceding the first day of unemployment, and Ö 
 
If we assume the right for an unemployment allowance as an es-
sential piece of information to determine the size of the unem-
ployment allowance for an applicant, we gather a part of its defini-
tion from this excerpt. Other relevant information elements are: 
"employee", "first day of unemployment". Based on this excerpt, it 
is still an open question what kind of activity qualifies as "work-
ing". 

 
When analyzing a product specification it is a good idea to distinguish the top 

information element first. Examples of typical top elements are as follows: 
 

− For a banking process: the decision whether a loan should be granted to a com-
pany and - if so - under which conditions and for which amount. 

− For a claim process of a social security agency: the decision whether an appli-
cant should receive an unemployment allowance and - if so -  for what reasons, 
for which period, and for which amount. 

− For an intake process of an insurance company: the decision whether a family 
can be accepted as the holders of a health insurance policy. 
 
Using the top element as the desired end result, it is a logical exercise to iden-

tify the information that can be used to directly render a value for the top informa-
tion element. Obviously, this approach can be repeated for the newly found infor-
mation elements. Instead of this backward analysis, it may seem attractive to start 
at the beginning of the existing process, for example by analyzing application 
forms, complaint forms, and request forms that are in use to start the process. This 
is not good practice as this may lead to the inclusion of superfluous information 
elements in the product data model. In a practical application of PBWD for a 
Dutch bank, we compared a posteriori the amount of information that was origi-
nally obtained in the business process and the information that was obtained in the 
final design. This comparison showed that almost 30 % of the originally obtained 
information was superfluous (see Section 7.3). 
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Administration and Selection of Information Elements 

Distinguishing information elements and their dependencies is a start, but there is 
more to follow. Although not formally defined in the product data model, it is 
wise when applying PBWD to distinguish for each information element the fol-
lowing: 
  
− An identifying label: this label simplifies searching the product data model and 

referencing to later documents, for example system specifications that may be 
developed to support the produced workflow design.  

− A name: the name should be chosen such that it can be easily used by project 
members without being (too) ambiguous, for example: "periodic redemption 
sum", "reason for discharge", "trading name", etc. 

− A short description: a verbal but unambiguous description of the information 
element, for example: "the total amount of directly available funds a client has 
at bank X and X's subsidiaries at the time of application". 

− Its type, for example: date, free text, integer, real, Boolean, etc.; if the type of 
the information element is numerical, its quantity should be specified also (e.g., 
days, months, guilders, euros).  

− The range of possible values (if known), for example the values of the informa-
tion element "client's legal form" may be either "natural person" or "legal 
body".  

− An explicit reference to the material where the definition of the information 
element can be found; this is extremely useful for keeping the product data 
model up to date and to justify its recognition at different times during the pro-
ject. 
 
The above information may not be required to make a workflow design, but its 

availability simplifies the use of the gathered data in a project team setting. After 
all, several people may want to consult and reference the same information during 
their analysis activity.  

Another issue is how to pick the right information elements in a product data 
model. The following aspects are of relevance for this choice: 

 
− An information element is chosen too large if different parts of it are used in 

different production rules; the information element should be broken up to en-
able the application of production rules without determining irrelevant informa-
tion.  

− Information elements should not be necessarily associated with their physical 
manifestation, nor is it necessary that physical information carriers have an in-
formation element counterpart (e.g., "intake form"). 

− Information elements may be atomic, for example a name, a credit score, etc. 
but they may be composite as well; examples are: all the members of a family, 
a listing of all the requested products with their characteristics, an overview of 
all the payment conditions that are in effect, etc.; the type of a composite in-
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formation element is composed type, e.g., a set of numericals, free text, Boo-
leans, etc. 

Production Logic 

The next step in completing the product data model is describing as accurately as 
possible the involved production logic. This step may either follow on the com-
plete identification of all production rules, or as soon as a new production rule has 
been distinguished. The production logic specifies how the value of an output in-
formation element may be determined on the basis of the values of its inputs. 
(Note that some of the inputs may not actually be used in every calculation; they 
may be required for specific cases or to test the constraint.) The description of 
production logic may be given in pseudo code or any other semi-formal specifica-
tion language. In several applications, we used a combination of Dijkstra's 
Guarded Command Language extended with first order predicate logic (see Ex-
ample 3) or the functional language of ExSpect. Languages for a similar purposes 
are described by Wang (1997) and Joosten (2000). The most important criteria on 
any language for this purpose are univocality, expressiveness, and clarity.  

A representation of the production logic for each production rule is valuable for 
at least four reasons, which are as follows: 

 
1. Writing out the full specification is a direct validation on the distinguished in-

puts of the involved production rule: forgotten inputs or bad data types can be 
detected. 

2. An analysis of the production logic is relevant for the estimation of perform-
ance characteristics when actually determining information with this production 
rule: labor/computer cost, speed, accuracy, etc. These characteristics are useful 
ñ as will be shown ñ in designing the workflow. 

3. A representation of production logic that is of an algorithmic nature can be used 
as a functional specification for the information system that can execute this 
production rule. This is an important stepping stone for system development ac-
tivities that may follow up the workflow redesign. 

4. If the production logic is not totally algorithmic, it is likely that a human opera-
tor must execute it in practice. Then, the production logic is of use to develop 
task instructions for these operators. 
 
The most accurate descriptions of production logic can be given when it in-

volves an exact algorithm. In such a case, we will speak of a formal production 
rule. However, the production of many information elements in office settings is 
often not or not completely formal. It may be relevant, required or even the only 
option that a human passes a judgment without following a totally formalized de-
cision making process. A typical example would be the question whether some-
body is responsible for his or her own discharge. If there is a dispute, opposite ex-
planations of different parties must be taken into account. A human should 
determine the plausibility of these explanations, as there are no known algorithms 
to do this. Another example is whether the purchase of some good is ethically ad-
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missible, which is a relevant piece of information in determining whether a loan 
should or should not be granted for this purpose. This decision may suppose a 
value system that is hard to describe formally. If a production rule is not of a for-
mal nature it is important to at least check if all the required inputs are identified. 
As noted before, describing as precisely as possible how the output must be pro-
duced on the basis of its inputs also is a valuable step in determining working in-
structions for non-formal production rules. These working instructions can be pro-
vided to the people who will actually be responsible for determining the involved 
information in practice, that is to say: when the designed workflow is put into pro-
duction. These rules may very well signal where knowledge management systems 
can be beneficial. 

Although a complete univocal procedure may not exist for a production rule, it 
often is the case that ñ under specific circumstances ñ this decision is formal. For 
example, in determining whether someone qualifies for an unemployment allow-
ance it is relevant to determine what the usual pattern of labor hours for this per-
son was during a week. In general someone's actual labor pattern may be whimsi-
cal, e.g., due to a combination of different jobs or seasonal labor. So, determining 
the usual pattern is best done by using human interpretation. However, if the ap-
plicant has a steady pattern of working hours for a long period of time, e.g., eight 
hours per day from Monday to Friday over the last five years, determining the 
usual labor pattern is straightforward and can be described formally. Another ex-
ample is the authorization function that must be performed to determine whether a 
loan proposal may be sent to a client. Generally, this function is a matter of human 
judgment that takes a large number of factors into account. On the other hand, if 
the loan sum is small, the client is a known client with sufficient coverage, and the 
purchasing goal is standard, the proposal can be accepted with no further inspec-
tion. 

In cases where there is a mix of formal and non-formal logic, there are two 
specification options. The first option is that within the production rule a formal 
and a non-formal part are distinguished, of which their combined logic forms one 
specification. The other option is that both cases are converted into separate pro-
duction rules, each with its own constraint identifying its domain of application. 
Splitting the logic up into separate production rules will simplify the exploitation 
of the differences in the workflow design. For example, the formal production rule 
may be applied as soon as the process starts because it is relatively cheap. How-
ever, if the gain is low in terms of shorter processing time or if the actual cases 
that correspond with the additional rule are scarce, the product data model be-
comes overly complex. This complicates finding an optimal workflow design. 

We have had some good experiences with distinguishing separate production 
rules for determining the same information element, one of them being formal, the 
other informal. This was mainly because the field of application for the formal 
part proved to be relatively large. For example, for a workflow within a social se-
curity agency an important information element expressed whether the former 
employments of an applicant could be seen as consecutive from a legal and tem-
poral point of view. The logic was hard to capture, as in some cases it had to be 
decided whether different jobs could be seen as logical successors within the same 



3.3 PBWD Methodology      85 

discipline. This required a human evaluation. However when an applicant never 
had more than one job at a time, temporally consecutive employments could be 
considered as legally consecutive jobs. In other words, under this condition the 
production rule could be described formally. Closer inspection indicated that in 
85 % of all cases this formal rule could be applied. Applying this approach for all 
production rules indicated that 10 % of all cases could be handled by using formal 
procedures only. We will come back to determining such fractions later on in this 
section. 
 

Example 3 
 
If a client applies for a property-related loan, a bank will try to se-
cure such a loan. The logic to determine the required types of secu-
rities is partly formal and partly not. If the property is of a specific 
type, the required securities are fixed. Otherwise, a human judg-
ment is necessary. The inputs for the presented production rule are 
the finance goal (fgl), the client's risk profile (rprf) and the desired 
credit product (cred). Below the semi-formal specification is given 
for the production rule required_securities to determine the securi-
ties: the value of information element sec. The specification of the 
production rules for these inputs is not given here. For the sake of 
readability, not all data types have been formally defined (e.g., the 
"security list" is a set of 125 known security types).  

 
proc  required_securities(fgl, rprf, cred, sec) 
in fgl: "purchase goal", rprf: N, cred: "product list" 
out sec: "security list" 

 
 sec :=  if fgl = "Register bound good"  
    then "Mortgage registration" 
  elif fgl ∈{"Company outillage", "Inventory", "Stock"}  
    then "Pawnage" 
  else 

 "One or more securities should be picked from the 
security list such that a reasonable coverage may be 
expected taking into account the finance goal, the 
risk profile of the client and the credit product. Cov-
erage by third parties is thereby allowed and a sur-
plus value on the property may be used if a second 
mortgage registration is issued". 

  fi 
corp 

 
Note that the black boxes that have been established in the analysis phase are 

explicitly no subject to extensive production logic analysis. 
When all information elements, their inter-dependencies and the production 

logic have been described a final analysis step follows. This last step is required to 



86      3 Workflow Design 

identify all the characteristics that are relevant to design a workflow that is effi-
cient in terms of cost, reliability, speed, etc. The final analysis step consists of 
three steps, which are as follows: 

 
− A source analysis.  
− A production analysis.  
− A fraction analysis. 

Source Analysis 

The source analysis is aimed at identifying the sources of all leaf elements in the 
product data model. As stated before, leaf values cannot be determined on the ba-
sis of other information elements. Therefore, they should be obtained from other 
sources. Typically, multiple sources are available to obtain the same piece of in-
formation. For example, a record of historical grants of unemployment allowances 
may be obtained from an applicant himself or from the agencies that have pro-
vided these allowances in the past. Another example is somebody's payable debt 
position. In the Netherlands a bank may obtain this information from different 
commercial (e.g., Experian, Equifax) and non-commercial credit scoring agencies 
(e.g., Bureau Kredietregistratie). 

Different ways of obtaining information may have different characteristics. A 
client may be very willing to submit information about his own credit position, but 
this information may not be very reliable. Similarly, local authorities may provide 
correct domestic information at a very low cost, but their response time may be 
considerable. Depending on the criteria that are identified in the scoping phase, it 
is wise to first identify the possible sources for each leaf element and subsequently 
score them on relevant points of comparison. Assuming general BPR goals like 
improving efficiency, bringing back throughput time while maintaining (or im-
proving) an existing quality level, relevant points of comparison for each leaf are: 
cost of obtaining it, delivery speed of the information, availability of the specific 
information and reliability of the provided information. We will come back to the 
way this information is used in the description of the design phase. 

Production Analysis 

The production analysis focuses on the identified production rules with the aim to 
estimate the involved cost, speed and quality of producing the new information. 
As there may be different ways to obtain a piece of information, similarly different 
production rules typically exist for the same piece of information. Designing the 
workflow is for a large part concerned with selecting the right set and the right 
execution order of production rules given a set of performance targets. From these 
targets it becomes clear which optimization criteria are prevailing. For example, 
suppose that an important performance target aims at a reduction of the labor cost. 
If there is a formal and an informal production rule for the same piece of informa-
tion, the first rule may be preferred. After all, the formal production rule may be 
automated. Obviously, this efficiency gain should be set off against the cost and 
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time, which is involved with developing the software. The PBWD project that was 
conducted for the involved agency showed that 75 % of all production rules could 
be formalized (Reijers and Goverde, 1999a). Automating the execution of formal 
rules is therefore a major efficiency driver for designing workflows with PBWD. 

For non-formal production rules the production analysis should yield as accu-
rately as possible the involved service time. The service time is a good basis for 
determining the efficiency of a design. In combination with labor cost, it can also 
be used to determine the operational cost of the workflow execution. The required 
type of information on the service time is dependent on the optimization criterion. 
For example, if average cost should decrease, average service times suffice as ba-
sis information. More complex types of performance targets may require more in-
formation on the service times. For example, if 90 % of the products are to be de-
livered within a specific amount of time, the average service time is not sufficient. 
A complete distribution of the service time is then preferable. If possible, the 
causes for the fluctuation in the service time should be established as well. For ex-
ample, higher service times for determining a proposed interest rate may be due to 
temporal turbulence on the money market. Many times the exact causes of a ser-
vice time pattern are not known, but they will make the evaluation of a workflow 
design in following phases more reliable. Often, the service time pattern itself is 
not even known. Many companies do not have a detailed time registration of their 
business operations. Notable exceptions are those companies that use WfMS's for 
the management and execution of their workflows (see Section 1.4). A WfMS of-
fers a wealth of information about business operation performance. (In Chapter 7 
we will describe how this information can be used for operational control.) In 
most other companies, time information on an aggregated level of some sort does 
exist, mostly for planning purposes. It is the job of the analyst to decompose exist-
ing figures in these reports to their constituents. This can be done in cooperation 
with business professionals who are responsible for actually executing the work. 
An approach that we conducted in a project is to organize workshops with busi-
ness professionals where they were asked individually to estimate minimal, nor-
mal, and maximal service times for individual business operations. Other ap-
proaches are interviews, surveys, observations in practice and time scoring by 
professionals during their daily activities (see e.g., Sackett, 1978). 

It should be noted here that the production analysis is a very time-consuming 
part of the analysis phase, even more so when there is a poor tradition of opera-
tions measurement within the company at hand. The time that should be invested 
in obtaining reliable information should be balanced against the desired reliability 
of the quality estimates of the workflow design.  

Fraction Analysis 

The fraction analysis involves a study of the distribution of information element 
values. As we already explained, an information element may carry specific val-
ues. For example, the value of the information element "travel insurance required" 
may be either "yes" or "no". The figures on the likelihood of information elements 
taking on specific values are very relevant to design an efficient workflow. In 
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combination with the figures from the production analysis (cost, speed, etc), fa-
vorable orderings of executing production rules may be determined. For example, 
suppose that there are two production rules for the same information element with 
different applicability domains, with very different input elements, but with a 
similar cost structure to obtain values for them. In such a case, it may be wise 
from a cost perspective to aim at executing the rule with the widest applicability 
first. Only if this production rule does not yield an outcome, applying the other 
rule may be tried. 

In the discussion of the product data model, we already discussed the applica-
bility domain of a production rule specified by constraints. The fraction analysis 
should yield an indication of the general probability that a production rule can be 
used for determining its corresponding information element. In other words, this is 
the probability that the constraint evaluates to true assuming that all information is 
available. Like in the case of the production analysis, reliable figures may be gen-
erally hard to obtain. In legal settings the legitimacy of decision masking may be 
such that there are detailed registrations of cases with all their specifics. This is an 
excellent source for information gathering. For situations where this type of regis-
tration is not available, a sample analysis may be executed. During a certain pe-
riod of time all cases are observed and it is scored how many times the different 
production rules may be successfully applied.  

In practice, the applicability of a production rule is often related to the value of 
another piece of information. Although it would be best to understand the exact 
situation when a production rule is applicable, it is generally not possible to 
fathom the dependencies between all the values of information elements. That is 
why the fraction analysis should focus on obtaining probability information as if 
these entities are independent.  

Extended Product Data Model 

At this point we will present an extended form of the product data model where 
information from the source analysis, production analysis, and fraction analysis is 
added to the basis product data model. This is not the only form a product data 
model may have in an actual BPR encounter. After all, the type and detail of in-
formation that is gathered ñ especially from the production analysis ñ depends on 
the chosen performance targets and optimization criteria. For example, if the de-
sign should be focused primarily on speed of the derived workflow, the cost of 
process execution may be less relevant and therefore no part of the product data 
model.  

In the model that we present, we have added the ingredients for the design of a 
workflow model where three criteria are relevant: cost, throughput time and qual-
ity. We have chosen these criteria because of their popularity in actual BPR en-
counters (Hammer and Champy, 1993; Reijers and Goverde, 1999a; Sharp and 
McDermott, 2001). We will discuss later in this section how the information can 
be used to derive a favorable design.  
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Definition 3.2 (Extended product data model). The extended product data 
model is a tuple (D, C, pre, F, constr, cst, flow, prob): 
− (D, C, pre, F, constr) is a product data model (Definition 3.1),  
− a function cst, which gives the cost of using a production rule: 

cst : F → N, 
− a function flow, which gives the time it takes to use a production rule: 

 flow : F → N, 
− a function prob, which gives the probability that a production rule will be suc-

cessful when used: 
prob : F → (0..1], such that: 

− if there are no constraints on using the production rule, then it will always be 
successful: 

( , ) : ( , )p cs F constr p cs true∀ ∈ = ⇒ ( , ) 1prob p cs = . 
 

Because of the definition of the function prob and because there are no con-
straints on producing a value for a leaf (see Definition 3.1), a leaf value is always 
successfully obtained. Note that there may be costs associated with obtaining the 
value of a leaf ñ just as is the case for any other information element.  

The events that determine whether production rules are successful are assumed 
to be independent. Because the probability of success for a rule can be less than 1, 
it is generally not ensured that the information element top can be determined for a 
given set of information element values. For example, suppose for the Helicopter 
Pilot product data model that for each of the three production rules for the top 
element there is a probability of 0,9 that it is successfully applied. Even if the val-
ues of the required information elements are all available, then there is still a 
probability of (1-0,9)⋅(1-0,9)⋅(1-0,9)  = 0,001 that it cannot be determined whether 
someone is a suitable helicopter pilot. This somewhat odd assumption is caused by 
the fact that in practical situations interdependencies are generally not very well 
understood. We propose a practical use of the available information by treating 
these as independent. Obviously, if the real dependencies are known this informa-
tion may be used in the derivation of actual process designs on the basis of the 
product data model. This kind of knowledge is not supposed in the further descrip-
tion of PBWD. Neither are the statistical techniques that may be used to identify 
significant dependencies. 

Note that the specifications of the production rules are no part of the extended 
product data model. A formal specification of a language to express such specifi-
cations is beyond the scope of this chapter, but - as  argued before - these specifi-
cations are of the utmost importance for validation, performance estimation, func-
tional specifications and task instructions. However, the exact content of the 
production rules are not directly of importance to determine the best way of exe-
cuting them. We will treat this subject in more detail in the a following part of this 
section. 

We end this part with an extension of the product data model example that has 
been presented earlier. Associated with each production rule in the Helicopter Pi-
lot product data model are the constraints, cost, throughput time, and probabilities. 
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The relations constr, cst, flow, and prob for each of the eight production rules of 
this example are as listed in Table 3.1. If x is an information element, the value of 
x is denoted with *x. 

Table 3.1. Relations for testing a helicopter pilot candidate 

Index x constr(x) cst(x) flow(x) prob(x) 
1. (a,{ b, c }) True 80 1 1,0 
2. (a,{ d }) *d ∈ {suit-

able, not suit-
able} 

10 1 0,1 

3. (a,{ f }) *f < -3,0 or *f > 
+3,0 

5 1 0,4 

4. (b, ∅) true 150 48 1,0 
5. (c, { e, f }) true 50 1 1,0 
6. (d, ∅) true 10 16 1,0 
7. (e, ∅) true 60 4 1,0 
8. (f, ∅) true 60 4 1,0 

 
From this table it follows that in this example obtaining values for leafs is much 

more time-consuming than other values. This represents a common phenomenon 
that actions that involve communication with external parties take more through-
put time than internal actions. 

Furthermore, it can be concluded that if a candidate's eyes are worse than ñ3,0 
or +3,0 dioptres this information can be used as a direct knock-out for the test re-
sult, i.e., the execution of a task that establishes this information may be directly 
followed by a completion of the workflow. This is the production rule (a, {f}). 
The probability that this will happen for an arbitrary case is 0,4. 

A summary of the activities in the analysis phase is given in Figure 3.6. The de-
liverables of the analysis phase are as follows: 

 
− An extended product data model. 
− An information element administration, which is optional. 

3.3.3 Design 

By now we have described the first two phases of the PBWD methodology. The 
third is the design phase, which we describe in this section. Within the setting of a 
valid product data model, any successive execution of production rules that re-
spects the dependencies within this model is a valid and feasible workflow design. 
As stated before, establishing a value of the top element is the ultimate goal of the 
execution of a workflow. An obvious way to connect the concepts of a workflow 
model with those of a product data model, is to regard a workflow design as a par-
tially ordered  set of  tasks and each of these tasks as an ordered list of  production  
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Analysis

Analyze product specifications
information elements and dependencies

Determine production logic
formal, informal, combined production rules

Determine design characteristics
source, production, fraction analysis

 
Fig. 3.6. The analysis phase 

rules. If we say that for some case a task is executed, then we mean by this that all 
of the production rules that are part of this task are (attempted to be) executed. We 
will characterize the structure and behavior of a workflow with a workflow model 
based on Petri nets (see Section 2.4).  

Until now, we left open what qualifies as a favorable design. Obviously, the 
choice for performance targets ñ which should be chosen by the process owner ñ 
determines for a large part which workflow designs are better than others. How-
ever, we have not discussed yet whether the evaluation of the best workflow exe-
cution should consider a specific case or a common case. Obviously, big differ-
ences may exist between the two. Handling a specific case in the way that is best 
fit to treat most members of a population may be inefficient or not very effective 
for this particular case. For example, suppose that an applicant for a loan com-
monly has only a modest capital. Then, the most sensible way of deciding whether 
someone can pay back the loan is to determine his capacity to earn the money in 
the near future in a profession. However, suppose that a millionaire applies for a 
loan, for example for fiscal reasons. Then the effort of the bank to determine his 
capacity of earning money by labor may be inefficient from the viewpoint of the 
bank and not service-minded from the viewpoint of the client. In general, different 
types of checks and information may be required for a specific case than in the 
common case.  

In this section we will discuss two design approaches. The first and primary 
part of this section is aimed at deriving a workflow that is suitable for the common 
case. On average, i.e., taken a large number of cases in account, this approach will 
yield the best results. The approach means that at build time, before the execution 
of a process for a specific case starts, the exploration probabilities through the 
graph are limited to one or more preferred routes. Usually, figures are derived 
from a large population of cases to determine the best lay-out of this type of work-
flow. 
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The second approach is aimed at providing optimal flexibility in process execu-
tion for each single case. The largest possible space for exploration of the product 
data model is continuously offered, so that it can be decided ad hoc which next 
production rule is executed. The focus in describing this approach is not so much 
on the design of a workflow, but on the support of office workers by technology. 
We believe that a contemporary focus in industry on delivering specific, flexible 
service to individual clients (e.g., Sharp and McDermott, 2001) justifies a short 
discussion of this topic.  

Our presentation of a workflow design approach that aims at servicing the 
common case is as follows. First, we will present a workflow model that specifies 
on an abstract level what the workflow looks like. This workflow model is used as 
an outline of the ordering pattern between production rules. Its attractiveness lies 
in its compact form and explanatory power to end-users. We will informally dis-
cuss its semantics. In Appendix A, we will show how the semantics of the net can 
be specified in a more formal way, using classical Petri nets. Then, we show how 
a favorable workflow model may be designed on the basis of a given extended 
product data model and specific performance targets. This approach includes a 
heuristic to limit the search space for a favorable design.  

The Workflow Model 

As stated in the introduction of this section, a workflow model is used as an out-
line of the ordering pattern of production rules in a workflow.  
 
Definition 3.3 (Workflow model). A workflow model PM on an extended 
product data model (D, C, pre, F, constr, cst, flow, prob) is defined by (P, T, R, 
prod) where: 
− (P, T, R) is a workflow net (see Definition 2.13), 
− prod: T → F ∪ { skip }, the production rule that may be applied in the task.  
 

For the sake of simplicity, to each transition in a workflow model at most one 
production rule is assigned. Obviously, it is not hard to extend this notion to e.g., 
an ordered list of production rules. Although this extension will not increase the 
expressiveness of the model, it may decrease the size of a workflow model as 
measured in the number of transitions. After all, simple sequences of transitions 
may be combined into a single transition. Note furthermore that a transition t for 
which prod(t) = skip does not attempt to apply a production rule. Such a transition 
is incorporated in the model for routing purposes, i.e., to ensure a proper flow. 

To guarantee that some level of agreement exists between the product data 
model used and the workflow model that is derived from it, we present a correct-
ness notion. 

Definition 3.4  (Conformance). A workflow model (P, T, R, prod) conforms to 
the extended product data model (D, C, pre, F, constr, cst, flow, prob) if and only 
if: 
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1. a production rule can only be applied if all its inputs are available and these in-
puts - if not empty - can only be obtained by applying other production rules: 
for each firing sequence σ =  t1t2Ötk within (P, T, R) such that " # M for 
some reachable marking M holds that  

i σ→

2. [ 1 ,( , )i k p cs F∀ ≤ ≤ ∈ : ( ) ( , )iprod t p cs= ⇒

 ( ): 1c cs j i∀ ∈ ∃ ≤ < , ( ) : ( jds D prod t∈P ) ( , )c ds =  , 

3. the top element may be produced by executing the workflow model: 
there is a firing sequence σ =  t1t2Ötk in (P, T, R) such that " # M and i σ→

1 , ( ) : ( ) ( ,ii k cs D prod t top cs∃ ≤ ≤ ∈ =P ) , and 
4. the underlying workflow net is correct: 

(P, T, R) is a sound workflow net (see Definition 2.13 and Definition 2.14). 

Note that due to the semantics of a product data model it is in general not en-
sured that all production rules are executed successfully in executing a conformant 
workflow. Also note that the second requirement makes the observation opera-
tional that it is no use to design a workflow that is incapable of reaching this goal. 
The third requirement is a general correctness notion for a workflow net. Sound-
ness is in practice a very reasonable requirement for workflow nets (Van der 
Aalst, 1998). When soundness holds, many concepts can be defined on workflow 
nets that assume "normal" executions of a workflow net. 

An example of a workflow model on the basis of the Helicopter pilot product 
data model introduced in this section earlier is given in Figure 3.7. 

It is not hard to verify that the example workflow model conforms to the Heli-
copter Pilot product data model. After all, each task is associated with a produc-
tion rule of which its inputs are produced by rules of preceding tasks, there is at 
least one production rule for the top element, and the workflow net is sound. Note 
that not each production rule of the product data model is present in the model, 
e.g., (a, {d}). Also note that to transitions t1 and t5 the same production rule is as-
sociated. We have yet to address the semantics of this double occurrence. 
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Fig. 3.7. Example workflow model 

 
A workflow model specifies the order in which production rules are applied for 

a single case. The workflow model, however, leaves a couple of semantic ques-
tions unanswered. To start with, we have defined the extended product data model 
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such that the application of a production rule may be limited. In the first place, re-
quired for the application of a production rule is that all its inputs are available. 
Secondly, the constraint for the production rule should evaluate to true. Only when 
both of these conditions are fulfilled, the production rule is applicable. But even 
then, there is a probability associated that influences the success of its application. 
So, even if a production rule is applicable, it may be either successful or not. In 
addition to the issues of applicability and success, the definition of the workflow 
model does not rule out that a production rule is associated with zero, one, or more 
transitions of the product data model. In the example of Figure 3.7, to transitions t1 
and t5 the same production rule is assigned. This raises the question whether mul-
tiple applications of a production rule are allowed and ñ if so ñ whether they have 
the same applicability restrictions and whether they will deliver the same output 
values. 

We will at this point informally answer these questions. If a transition in a 
workflow model fires to which a production rule (p, cs) is associated, this firing 
should be interpreted as an application of the production rule if at the time of fir-
ing all of the following is true: 

 
− The constraint for (p, cs) holds. 
− The values for each of the information elements in cs are known. 
− No value for p is already known. 
− No value for the information element top is already known. 
− No task to which the production rule (p, cs) is associated has already fired. 
− In all other cases, the production rule (p, cs) is not applied. In other words, al-

though the transition fires, the production rule is skipped.  
 
Furthermore, when a production rule is applied there is a probability of prob(p, 

cs) that it is successful, and a probability of 1- prob(p, cs) that it is not. If the pro-
duction rule (p, cs) is successfully applied, a value for p becomes known. Initially, 
no values of information elements are known at all.  

In Appendix A, a formal description of these semantics are given in the form of 
a so-called bottom-level workflow model. It is shown how this bottom-level work-
flow model can be derived from a workflow model as defined with Definition 3.3. 
The bottom-level workflow model is defined in Appendix A as an SWN (see 
Definition 2.20). It gives a more explicit semantics of actual executions of produc-
tion rules than the workflow model it has been derived of. Although this is an ad-
vantage from the viewpoint of actually applying the design in practice or for 
analysis and evaluation purposes, a bottom-level workflow model quickly be-
comes quite large. This is why we prefer the use of the simpler workflow model 
for the sake of analysis and presentation in the remainder of this chapter.  

An important notion for the rest of this chapter is the interpreted firing se-
quence. 
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Definition 3.5 (Interpreted firing sequence). Given a workflow model (P, T, 
R, prod) that conforms to the product data model (D, C, pre, F, constr, cst, flow, 
prob) and a firing sequence τ in the underlying workflow net " # , the in-
terpreted firing sequence ρ = (p

i τ→" #o
1, cs1)(p2, cs2)Ö(pm, csm), m ∈ N,  for 1 ≤ j ≤ m 

(p1, cs1) ∈ F, is the corresponding sequence of production rules that are success-
fully applied. 
 

The interpreted firing sequence is closely related to the dynamics of the bot-
tom-level workflow model of Appendix A, which also includes a formal definition 
of it. Crucial is that although a firing sequence of the workflow model may incor-
porate a number of transitions, the number of successfully applied production 
rules may be much smaller. After all, production rules may be skipped. The suc-
cessful application of a production rule is an important determinant for the cost of 
a workflow execution, as will be discussed in the following sections. 

This concludes the treatment of the used workflow model. We return our atten-
tion to the derivation of efficient workflow models on the basis of a product data 
model. 

Limiting the Search by Cost Optimal Plans 

In general, given a product data model there is an infinite number of conformant 
workflow models. In practice, it is not possible to investigate all workflow model 
designs on their suitability to implement the required performance targets. In this 
section we present a heuristic approach that limits the number of models to be in-
vestigated using so-called plans, subsets of the elements in the product data 
model. Within the confinement of an attractive plan, favorable designs of the 
workflow model are derived analytically.  

For illustrating the plan heuristics we consider the following three design crite-
ria: (1) quality, (2) costs, and (3) time. Costs and time are defined according to the 
functions cst and flow, as will be shown. Quality is defined as the probability that 
the value of the top element can be determined. This is obviously a rather re-
stricted view of quality. Note that this interpretation depends on the structure of 
the product data model (i.e., the function pre) and the probability that a production 
rule leads to a value. To allow for a formal definition of these design criteria we 
formally introduce the notion of a plan first. 

 
Definition 3.6 (Plan). Let (D, C, pre, F, constr, cst, flow, prob) be an extended 
product data model. Any subset S of D is called a plan. 
 

One can think of a plan as a sub-graph of the graph denoting the product data 
model. The elements of the plan S are the information elements that should be 
produced. The set {a, d} is a plan corresponding to the product data model shown 
in Figure 3.5. In this plan the production rules (d,{∅ }) and (a,{d}) are executed 
in some order. The set {a, e} is also a plan, although this plan will never lead to a 
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value for information element a. For any given plan, we can determine the prob-
ability that a value for the top element is determined. 
 
Definition 3.7 (Quality of a plan). Let (D, C, pre, F, constr, cst, flow, prob) be 
an extended product data model. The quality of a plan  is defined as 
p_quality(S) = q

S D⊆
top, with qd defined for all d ∈ S as: 

( , ) { }

1 1 ( , ) (d e
d cs F e cs

q prob d cs q δ
∈ ∈ ∪ ∅

  
= − − ⋅ ⋅     

∏ ∏ )e , 

where ( )eδ =
0,
1, .

e S e
e S e

∉ ∧ ≠ ∅
 ∈ ∨ = ∅

 

 
The quality of a plan is the probability that the value of the top element can be 

determined successfully, assuming that each production rule with inputs and out-
put in S is executed. Note that for any production rule (p, cs) ∈ F holds that all 
elements in cs should be part of the plan in order to contribute to qp. 

Consider the product data model shown in Figure 3.5 and three plans S1 = {a, 
d}, S2 = {a, b, c, e, f} and S3 = {a, e}. For plan S1 holds that the quality of this plan 
is p_quality(S1) = qtop = qa. According to Definition 3.7, qa = 1- (1-
prob(a,{d}).qd.δ(d)) with qd = 1-(1-prob(d, ∅)⋅ q∅⋅ δ(∅)) = 1. So, p_quality(S1) = 
qa = 0,1 (see Table 3.1). Similarly, for plan S2, p_quality(S2) = 1 and for plan S3, 
p_quality(S3) = 0. 

Another point to evaluate the performance of a plan is its cost. 
 

Definition 3.8 (Costs of a plan). Let (D, C, pre, F, constr, cst, flow, prob) be 
an extended product data model. The costs of a plan are: S D⊆

              
( , ) { }

_ ( ) ( , ) ( ) ( )
p cs F e cs

p csts S cst p cs p eδ δ
∈ ∈

= ⋅ ⋅∑ ∏
∪ ∅

 

 
The costs of a plan are simply given by the sum of all production rules costs 

relevant for the plan. Note that again it is assumed that production rule (p, cs) is 
executed if {p} ∪ cs is a subset of plan S. The costs of a plan can be interpreted as 
the maximum costs that are associated with the execution of a plan. Each produc-
tion rule is assumed to be executed once, in accordance to the semantics of the 
workflow model. 

Using the example of the Helicopter Pilot case again, the costs of plans S1 = {a, 
d}, S2 = {a, b, c, e, f} and S3 = {a, e} are as follows. For plan S1 the only relevant 
production rules are (a, {d}) and (d, ∅). So, according to Definition 3.8,  
p_csts(S1) = cst(a,{d})⋅ δ(a)⋅δ(d)⋅δ(∅) + cst(d, ∅)⋅δ(d)⋅δ(∅) = 20 (see Table 3.1). 
Similarly, p_csts(S2) = 405 and p_csts(S3) = 60.  

The last design criterion is the throughput time of a plan. 
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Definition 3.9 (Throughput time of a plan). Let (D, C, pre, F, constr, cst, 
flow, prob) be an extended product data model. The throughput time of a plan 

is: S D⊆
            p_through(S) =

( , ) { }

( , ) ( ) ( )
p cs F e cs

flow p cs p eδ δ
∈ ∈

⋅ ⋅∑ ∏
∪ ∅

 

 
With this notion of the throughput time, we focus on a worst-case scenario 

where all production rules of the plan are executed once in a sequential order. 
Note that this is in accordance with the presented semantics of a workflow model. 
Although several tasks with the same production rule can be incorporated, only 
one of these will be executed. The actual time required to produce all information 
elements of a plan depends on the order in which the production rules are exe-
cuted. By executing some of the production rules of the plan in parallel, the actual 
throughput time can be reduced with respect to this worst-case scenario. 

Consider again the helicopter example with plan S4 = {a, b, c, d, e, f}. Assume 
that this plan is executed in the following order: (d,∅), (a,{d}), (f,∅), (a,{f}), 
(e,∅), (c,{e,f}), (b,∅), (a,{b,c}). Then the average worst case p_through(S4) = 
flow(a, {b, c})⋅δ(a)⋅ δ(b)⋅δ(c)⋅δ(∅)  + flow(a, { f })⋅δ(a)⋅δ(f)⋅δ(∅)  + flow(a, {d})⋅ 
δ(a)⋅δ(d)⋅δ(∅)  + flow(b, ∅)⋅δ(b)⋅δ(∅) + flow(c, {e, f}) ⋅δ(c)⋅δ(e)⋅δ(f)⋅δ(∅)  + 
flow(f, ∅)⋅δ(f)⋅δ(∅) + flow(e, ∅)⋅ δ(e)⋅δ(∅) + flow(d, ∅)⋅δ(d)⋅δ(∅) = 76 time 
units. Now suppose that the production rule (a, {d}) leads to a value for a, then the 
p_through(S4) = flow(a, {d})⋅δ(a)⋅δ(d)⋅δ(∅)  + flow(d, ∅)⋅δ(d)⋅δ(∅) = 17 time 
units only. So, the average throughput time of a plan may be much smaller be-
cause a value for a information element can be obtained before all elements of the 
plan are derived. 

From the definition of the introduced notions, it follows that it is easy to calcu-
late for a plan S its quality p_quality(S), the associated costs p_costs(S) and the 
throughput time p_through(S). It is much more complex to calculate the actual 
throughput time of a workflow model, because of the effect of the orderings of 
tasks. Note that a plan is not a workflow model: it is merely a subset of informa-
tion elements.  

Different combinations of the formulated design criteria on plans can be made 
to restrict the search space for an attractive workflow design. The actual choice for 
these design criteria as well as their specific combination should obviously be 
chosen in an appropriate way for the project at hand. We will introduce a com-
bined criterion based on the design criteria p_quality(S) and p_costs(S). Our heu-
ristic allows for the definition of a so-called cost optimal plan, given a certain 
minimal quality level. The notion of a cost optimal plan enforces a common start 
requirement on the design of a workflow: costs should be kept down, but a mini-
mal level of quality should be maintained. The tension between these characteris-
tics is apparent and deliberately chosen. After all, aiming purely at a workflow 
with low cost will yield the empty workflow. This is obviously unattractive from a 
quality perspective. 
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Definition 3.10 (Cost optimal plan). Let (D, C, pre, F, constr, cst, flow, prob) 
be an extended product data model and q ∈ [0, 1] be a quality level. Plan S ⊆ D is 
cost optimal if and only if  
1. plan S attains the minimally required quality level: 

p_quality(S) ≥ q,  
2. each other plan than S that minimally delivers the same quality is at least as 

costly: 
∀S' ⊆ D: p_quality(S') ≥ q ⇒ p_csts(S') ≥ p_csts(S), and 

3. no information elements are part of S that do not contribute to the quality of S: 
∀S' ⊂ S: p_quality(S') < p_quality(S). 
 
We will illustrate the cost optimality notion with an example. Consider R the 

set of plans that can be derived from the product data model of Figure 3.5 to de-
termine a top value. R = {S1, S2, S3, S4, S5} where S1 = {a, d}, S2 = {a, b, c, e, f}, S3 
= {a, e}, S4 = {a,b,c,d,e,f} and S5 = {a, f}. Let the minimum quality to be obtained 
be defined as q = 0,8. We obtained the quality levels of plans S1, S2 and S3 earlier: 
p_quality(S1) = 0,1, p_quality(S2) = 1, and p_quality(S3) = 0. It is easy to calculate 
the quality level of plans S4 and S5: p_quality(S4) = 1 and p_quality(S5) = 0,4. Only 
plans S2 and S4 fulfill the minimal quality requirement. For those plans, costs are 
p_csts(S2) = 405 and p_csts(S4) = 425. According to the definition of cost optimal-
ity, it appears that plan S2 is the cost optimal plan.  

A cost optimal plan gives the least costly subset of information elements that 
needs to be calculated to obtain a given quality level. Note that the costs associ-
ated to such a plan are the maximal costs, i.e., the costs that are made if all corre-
sponding production rules need to be calculated.  

Finding the Design 

The best way to order the production rules is dependent ñ as stated before ñ upon 
the chosen performance targets for the workflow design. We have used notions of 
cost and time in evaluating plans, as they are often applied in practice (see e.g., the 
case description in Sections 7.2 and 7.3). Given these two specific criteria, there 
are two extreme ordering approaches for finding a favorable workflow design, 
which are as follows: 

 
1. Breadth-first. Start with the leaf nodes in the plan and execute as many produc-

tion rules in parallel as possible. 
2. Depth-first. Start with the part of the plan that has the best quality/cost ratio, 

i.e., execute the production rules sequentially and start with the most promising 
branches first. 

 
Assuming sufficient capacity the breadth-first approach optimizes the workflow 

with respect to throughput time but at high costs (in principle all production rules 
associated to the plan are executed). The depth-first approach minimizes the ex-
pected costs but may result in substantial longer throughput times.  
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We will present approaches for deriving both the breadth-first and the depth-
first workflow model. A breadth-first workflow model can be easily generated on 
the basis of a product data model, as will be shown. To find the depth-first work-
flow model, a brute-force approach is proposed. We will indicate why a more effi-
cient search for the depth-first workflow model is problematic.  

The cost optimal plan as described can be used to make a first, heuristic shift in 
the production rules to be considered for either type of workflow model. It is, 
however, not obligatory to use the cost optimal plan. In what is to follow, we will 
simply refer to a "plan", which may be understood by the reader as the cost opti-
mal plan or any subset of the information elements of the product data model. It 
will become clear that using the cost optimal plan is especially useful in a situation 
where a depth-first workflow model is sought for a large product data model. 

Both the derivation of the breadth-first and the depth-first workflow model are 
based on the notion of a solution. A solution is a minimal set of production rules 
on the basis of which a value for an information element can be determined. 
 
Definition 3.11 (Solution). Given a product data model (D, C, pre, F, constr) 
and a plan S, the set of production rules G ⊆ F is said to be a solution for an in-
formation element d ∈ D ñ denoted sol(G, d) ñ iff: 
1. all inputs of a production rule can be produced by others: 

( )( )( , ) : : : ( , )p cs G q cs ds D q ds G ∀ ∈ ∀ ∈ ∃ ⊆ ∈  , 

2. a production rule adds value by either producing the desired information ele-
ment or the input of another production rule: 

( )( , ) : ( , ) :p cs G p d q ds G p ds∀ ∈ = ∨ ∃ ∈ ∈   , 

3. there is at most one production rule for each output 
[ ]( , ),( , ) :p cs q ds G p q cs ds∀ ∈ = ⇒ = , and 

4. all production rules of the solution must be confined within the plan S:  
( )( , ) :p cs G p S cs cs S∀ ∈ ∈ ∧ = ∅ ∨ ⊆   . 

 
A simple way of deriving all solutions is to translate the product data model in 

a Petri net. Each information element that is part of the confining set, as well as 
the empty set should then be represented as a place. Each production rule should 
be included as a transition, with its input information elements as output places 
and its (single) output information element as an input place. Take, for example, 
the net as depicted in Figure 3.8. It represents a net that could be used to find the 
solutions of the top element for the Helicopter Pilot product data model, confined 
by the cost optimal plan S2 = {a, b, c, e, f}. 

Each firing sequence that leads from the marking of the top element place to a 
dead state gives a sequential ordering of a solution. For example, (a, {b, c})(b, 
∅)(c, {e, f}) (e, ∅)(f, ∅) is such a firing sequence, which is an ordering of the so-
lution {(a, {b, c}), (b, ∅), (c, {e, f}), (e, ∅), (f, ∅)}. The firing sequence (a, {b, 
c})(c, {e, f})(b, ∅)(f, ∅) (e, ∅) is also an ordering of this solution. The only other 
solution is {(a, {f}), (f, ∅)}. 
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Fig. 3.8. Finding the solution for cost optimal plan S2. 

Note that although this type of Petri net has the structure of a workflow net, it is 
in general not sound. 

On the basis of the solutions definition, we can define the notion of fulfillment. 
A fulfilling workflow model implements all solutions of a confined product data 
model in a correct way. 

 
Definition 3.12 (Fulfillment). Given an extended product data model (D, C, pre, 
F, constr, cst, flow, prob) a workflow PM = (P, T, R, prod) model fulfills a plan 
S ⊆ D if: 
1. it is correct: 

PM conforms to (D, C, pre, F, constr, cst, flow, prob) (see Definition 3.4), and 
2. each production rule that is part of a solution for the top element will be at-

tempted to be applied in executing the workflow: 
for each firing sequence σ in (P, T, R) such that " #  holds that i σ→" #o

, : ( , )G F n sol G top∀ ⊆ ∈ ⇒ N  

( )( )( , ) : ( ) : ( ) ( , )p cs G t prod t p csσ ∀ ∈ ∃ ∈ = A . 

The second condition is very important, because all solutions together realize 
the quality of the plan that is used to confine the solution (see Definition 3.7). Es-
pecially when a cost optimal plan is used, it is reasonable to at least execute each 
production rule that follows from the cost optimal plan.  

We will show in the following sections how to obtain the breadth-first and 
depth-first workflow model on the basis of a product data model.  
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Breadth-First Workflow Model 

A breadth-first workflow models allows for the greatest degree of parallelism to 
achieve a value of the top element of the underlying product data model. We 
would like to make one remark before we start with the presentation of the deriva-
tion of such a workflow model. As follows from the definition of a workflow 
model (see Definition 3.3) we allow for several tasks to which the same produc-
tion rule is associated. This may seem rather odd at first glance, but it is clear that 
one production rule may be part of different solutions. Even when a production 
rule appears more than once in a workflow model, it will be executed at run time 
at most once due to the specific semantics of the workflow model (see the discus-
sion of the workflow model, earlier in this section).  

The general principle that we will apply in the construction of a breadth-first 
workflow model is as follows. All solutions are determined on the basis of the 
product data model and a cost optimal plan or other plan. At the highest level of 
the breadth-first workflow model each of these solutions is pursued. On the high-
est level of the breadth-first workflow model, this can be seen as an equal number 
of parallel paths. Within each path, the involved set of production rules is subse-
quently unfolded, while respecting the dependencies from the product data model 
and maintaining the highest possible level of parallelism. In summary, all minimal 
combinations of production rules are executed in parallel that can possibly yield a 
value for the top element. 

We will give a small, stylized example to illustrate the approach. We assume a 
product data model such as depicted in Figure 3.9, i.e., with a set of production 
rules F = { (x, {a, b}), (a, ∅), (b, {a}), (b, {c}), (x, {d}), (c, ∅), (d, ∅) } with top 
element x.  

If we assume that the restricting (cost optimal) plan includes all information 
elements, then there are three solutions (Definition 3.11), which are as follows:  

 
1. { (x, {a, b}), (a, ∅), (b, {a}) }.  
2. { (x, {a, b}), (a, ∅), (b, {c}), (c, ∅) }.  
3. { (x, {d}), (d, ∅) }. 

x

b

a c d
 

Fig. 3.9. Product data model example 
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Note that although there are two knock-outs, i.e., (x, {a, b}) and (x, {d}), there 
are three different solutions. After all, the inputs of production rule (x, {a, b}) can 
be obtained in two different ways. 

For the creation of the breadth-first workflow model on the basis of the solu-
tions of a top element we will use the two auxiliary workflow nets of Figure 3.10.  

We will refer to the nets in the figure as auxiliary nets I and II. If we instantiate 
an auxiliary net, we call into existence a yet incomplete workflow model with 
unique identifiers and the structure of the respective auxiliary net. For each transi-
tion t of the workflow model that bears in the auxiliary net the label skip, its asso-
ciated production rule will be skip, i.e., prod(t) = skip. For instantiating auxiliary 
net I, the number of parallel transitions n is of importance. We have to specify 
which production rules are associated with transitions with the labels u1, u2, Ö, un 
(for auxiliary net I) and v (for both auxiliary nets) to make it complete. Note that 
the execution of an instantiated auxiliary net I where u1, u2, Ö, un are associated 
with the skip production rule is equivalent from an interpreted firing sequence per-
spective (see Definition 3.5) to the execution of an instantiated auxiliary net II. In 
other words, the second auxiliary net is a specific case of the first. Its distinction 
will help to render small workflow models, as will be shown. 

 

..........

..........

..........

u1 u2 un 

skip

v  v  

I II
 

Fig. 3.10. Auxiliary nets for the construction of a breadth-first workflow model 
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Furthermore, for determining the breadth-first workflow model we use an aux-
iliary function synth. Suppose workflow models WM1 = (P1, T1, R1, prod1) and 
WM2 = (P2, T2, R2, prod2) such that T1 ∩ T2 = ∅, P1 ∩ P2 = {i, o} and t ∈ T1. 
Then synth(WM1, t, WM2) yields the workflow model (P3, T3, R3, prod3) where: 

 
1. (P3, T3, R3) is the workflow net obtained by a synthesis step of replacing transi-

tion t in PN1 by the net PN2 without its source and sink place (see Definition 
2.15) 

2. for t ∈ T3 ∩ T1, prod3(t) = prod1(t) and for t ∈ T3 ∩ T2, prod3(t) = prod2(t). 
 

The auxiliary function head is defined on a product data model (D, C, pre, F, 
constr) and G ⊆ F, (p, cs) ∈ G: head(G) = (p, cs) ⇔ sol(G, p). 

For any (p, cs) ∈ F the auxiliary function in is defined as follows: in(p, cs) =   
cs ∩ D. Note that for any d ∈ D, in(d, ∅) yields ∅. 

Finally we present the algorithm create_bf, which we have described as a pro-
cedure in pseudo-code. By calling this procedure and providing it with all solu-
tions for the top element of the product data model, it recursively constructs a 
breadth-first workflow model using the auxiliary nets. 

 
proc  create_bf(rule, PG, wm) 
in   rule: F ∪ { skip }, PG : P(P(F)) 
out   wm: "workflow model" 
local G, G': P(F), j: N, hm: "workflow model", PG': P(P(F)) 
   
 if PG  = ∅ then 
  "wm is the workflow model (P, T, R, prod) with unique identifiers on the basis of 

an instantiated auxiliary net II where prod(v) = rule" 
 else 
  "wm is the workflow model (P, T, R, prod) with unique identifiers on the basis of 

an instantiated auxiliary net I with n =| PG |, prod(v) = rule and for each 1 ≤ i ≤ 
n, prod(un) = skip"; 

  j := 1; 
  while j ≤ n do 
   G :∈ PG; PG := PG \ {G}; 
   PG ' := { G ' ⊆ G | d ∈ D ∧ sol(G ', d) ∧ d ∈ in(head(G)) };  (*) 
   create_bf(head(G), PG ', hm); 
   wm := synth(wm, uj, hm); 
   j := j + 1 
  od 
 fi 
corp 

 
The crucial part of this procedure is the statement that is marked with (*). On 

the basis of a solution G ∈ PG for some d ∈ D the set of solutions is determined 
for one of the inputs of the single production rule in G which has d as output. In 
other words, in a recursive fashion a solution of an information element is stripped 
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into its subparts. The breadth-first workflow model can be found by calling the 
procedure create_bf as follows. 
 
Definition 3.13 (Breadth-first workflow model). Given an extended product 
data model (D, C, pre, F, constr, cst, flow, prob) and a cost optimal plan S ⊆ D, 
the breadth-first workflow model WF is derived by the procedure call create_bf( 
skip, top_solutions, WF) with: 
                                        top_solutions = { G ⊆ F | sol(G, top) }. 
 

The set top_solutions incorporates all solutions for the top element of the prod-
uct data model which stay within the confinements of the defined (cost optimal) 
plan. 

 

u1 u2

skip

skip

v1 v2

skip

(a , {b , c})

 
Fig. 3.11. Workflow models WF1 and WF2 

We will demonstrate the derivation of a breadth-first workflow model on the 
basis of the Helicopter Pilot data model introduced earlier and cost optimal plan S2 
= {a, b, c, e, f}. We will use indexed variables for the multiple instances of the 
create_bf procedure, e.g., the set PG2 represents the set PG in the second instantia-
tion of the create_bf procedure. Successively created workflow models that arise 
because of a create_bf or synth operation, are numbered consecutively, e.g., WF1, 
WF2, etc.  
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Next, we assume ñ without loss of generality ñ that { (a, {b, c}), (b, ∅), (c, 
{e,f}), (e, ∅), (f, ∅)} is selected from PG1. The second call of create_bf yields an 
intermediate workflow model WF2 as depicted on the right-hand side of Figure 
3.11. 

Note that for notational convenience we label a transition with the associated 
production rule, as soon as it is clear which one it is. PG2 consists of {(b, ∅)} and 
{(c, {e, f}), (e, ∅), (f, ∅) }. Suppose that the former is selected first. The follow-
ing call of the create_bf procedure yields the workflow model WF3 as depicted on 
the left-hand side of  Figure 3.12. PG3 is empty because (b, ∅) has no inputs that 
are part of D. 

 

(b , ∅ ) v2 

skip

(a , {b , c}) 

(b, ∅ ) 

 
Fig. 3.12. Workflow models WF3 and WF4 

The first synthesis step can now take place. It replaces transition v1 in WF2 with 
WF3 without its sink and source place. The resulting workflow model WF4 is de-
picted on the right-hand side of Figure 3.12. 

The next iteration within the second instance of the create_bf procedure will 
take place on the basis of {(c, {e, f}), (e, ∅), (f, ∅) }. Successive creation and syn-
thesis steps will yield workflow models WF5, WF6,Ö,WF9. The latter ñ again 
without its source and sink place ñ will take the place of v2 in the workflow model 
WF4 resulting in a workflow model WF10. WF10 in its turn will substitute transi-
tion u1 in the workflow model WF1, resulting in workflow model WF11. WF9 and 
WF11 are depicted in respectively the left-hand and right-hand side of Figure 3.13. 
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(e, ∅ ) 

skip  

(c, {e, f}) 

(f, ∅ ) 

skip

(e, ∅ ) 

(c, {e, f})

skip

(a, {b,c}) 

skip

u2

skip

(b , ∅ ) (f, ∅ ) 

 
Fig. 3.13. Workflow models WF9 and WF11 

The final creation and synthesis steps will yield workflow models WF12, WF13, 
and WF14. Each of these models is a further specification of the behavior of the 
transition u2 in workflow model WF11. The final workflow model on the basis of 
the presented algorithm is WF15 such as depicted in Figure 3.14. 
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skip

(c, {e, f})

skip

(a, {b,c}) 

skip

skip

skip

(a, {f}) (b, ∅ ) (e, ∅ ) (f, ∅ ) 

(f, ∅ ) 

 
Fig. 3.14. Workflow model W15 

From the product data model and the cost optimal plan S2 it follows that there 
are two different solutions to derive a value for the top element a. For each pro-
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duction rule for a, there is exactly one solution (unlike the example of Figure 3.9). 
Both paths can be clearly seen in the workflow model as two concurrent branches. 
The inputs for both production rules ñ b and c for the one, f for the other ñ are 
placed in parallel. Note that to obtain a value for c the recursive nature of the algo-
rithm ensures that input values for the production rule (c, {e, f}) are obtained in 
parallel. 

Also note that the execution of W15 will enable simultaneously two transitions 
to which (f, ∅) is associated. Because of the semantics of the workflow model, the 
production rule will be executed at most once in any execution of the workflow.  

The breadth-first workflow model yields the highest possible level of parallel-
ism to obtain a value for the top element, regardless of cost. It is clear to see that a 
breadth-first workflow will always yield the fastest way to obtain a value for the 
top element. After all, each of the solutions for the top element within the scope of 
the plan is incorporated in it ñ including the fastest path for each particular case. A 
breadth-first workflow also fulfills the (cost optimal) plan that is used for confin-
ing the set of production rules of the used product data model.  

Lemma 3.1 (Fulfillment of breadth-first workflow model). Given an ex-
tended product data model (D, C, pre, F, constr, cst, flow, prob) and a cost optimal 
plan S ⊆ D, the breadth-first workflow model WF = (P, T, R, prod) fulfills S. 
Proof. We successively consider the two requirements of Definition 3.12, i.e., (i) 
the conformance and (ii) the inclusion of each production rule.  

Ad (i). It is trivial that the workflow model created with the procedure create 
satisfies the first two requirement of the conformance definition (see Definition 
3.4). Each workflow net with a structure of either of the auxiliary nets (see Figure 
3.10) is free-choice and sound. Because the synth algorithm applies a synthesis 
step on the basis of Definition 2.15, soundness of the workflow net (P, T, R) fol-
lows directly from the compositionality result (Theorem 2.4). 

Ad (ii). Each production rule that is part of some solution of the top element is 
associated with a transition. This is due to the definition of the top_solutions set in 
Definition 3.13 and the unfolding of each of its elements by the procedure create.  
□ 
 

This concludes the treatment of the breadth-first workflow model. Note that the 
breadth-first workflow model not only delivers the fastest throughput time on av-
erage for an entire population, it also does so for each specific case. The depth-
first workflow model that we will derive next is exclusively aimed at finding a 
workflow that on average will be optimal for a large population of cases. 

Depth-First Workflow Model 

A depth-first workflow model is a strictly sequential ordering of transitions to 
achieve at a low cost a value for the top element of the underlying product data 
model. In theory, there is an infinite number of sequential workflow models that 
fulfill the cost optimal plan of a given product data model. After all, multiple tran-
sitions may be added with the same production rule. From a practical point of 
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view, all conformant permutations of production rules may be worth considering. 
After all, production rules will be applied at most once due to the semantics of the 
workflow model. 

We distinguish two approaches to obtain a favorable member of this collection. 
The first approach, which we will present in some detail, is a rather brute-force 
generation of a finite set of sequential workflow models. All these models are sub-
sequently evaluated, after which the best one is chosen. The second approach is a 
pragmatic variation of this approach. Depending on the specific content of the 
product data model it may be possible to find with relative ease the optimal path 
through the product data model. For example, if there are very few dependencies 
between production rules it may be easy to find such a smart ordering. As this ap-
proach is extremely dependent on the specific values of the product data model, 
we will not discuss it in this chapter. In Section 7.2, we will provide a case de-
scription of the design of a depth-first workflow that exploited the specific charac-
teristics of the found product data model.  

The brute-force approach also depends on the distinction of the solution and 
fulfillment notions (see Definition 3.11 and Definition 3.12). First all purely se-
quential workflow models are generated, each of which is ordered in an arbitrary 
sequential way. Next, all the permutations of these ordered solutions are consid-
ered. So, if there are n solutions, n! orderings are considered. For each of these or-
derings, the expected cost is calculated. The one with the lowest expected cost is 
the depth-first workflow model we have been looking for. We will now describe 
how the production rules in a solution may be ordered. 
 
Definition 3.14 (Ordering of solution). If G ⊆ F is a solution of information 
element d ∈ D within a product data model (D, C, pre, F, constr), then a sequence 
µ = (p1, cs1)(p2, cs2)Ö(pm, csm) over F for some m ∈ N is an ordering of G iff: 
1. the length of the sequence equals the size of the solution: 

m = |G|, 
2. all production rules of the solution appear in the sequence: 

{ (pi, csi) | 1 ≤ i ≤ m } = G, and 
3. no production rules appear in the sequence of which the inputs are no outputs 

of previous rules in the sequence: 

{ }1 : |1i ji m cs p j i ∀ ≤ ≤ ⊆ ≤ <  . 

 
In general many orderings are possible for a given solution of a information 

element d. Note that the first production rule of an ordering has no inputs and that 
its last production rule has d as output. Also recall the example of Figure 3.8, 
which shows how all ordered solutions can be found for a product data model. 

The creation of all depth-first workflows on the basis of models is generated by 
using an auxiliary net as depicted in Figure 3.15. 
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1u 2u mu..........
 

Fig. 3.15. Auxiliary net for depth-first workflow models 

We will simply refer to the net in the figure as the auxiliary net. If we instanti-
ate it, we call into existence a (yet incomplete) workflow model with unique iden-
tifiers and the structure of the auxiliary net. For instantiating the net, the number 
of sequential transitions n is of importance. We have to specify for an instantiated 
workflow model which production rules are associated with transitions with the 
labels u1, u2, Ö, un to make it complete. 

We present the algorithm create_df, which we have described as a procedure in 
pseudo-code: 

 
proc  create_df(PG, Pwm) 
in   PG : P(P(F)) 
out   Pwm: "set of workflow models" 
local S: "sequence over F ", hm: "workflow model",  
  PS, PS ': "set of sequences over F ", G: P(F), τ: "sequence over F" 
 
 PS := ∅; 
 while PG ≠  ∅ do 
  G :∈ PG; PG := PG \ {G}; 
  τ :∈ { σ | σ is an ordering of solution G cf. Definition 3.14};    (*) 
  PS := PS ∪ { τ } 
 od; 
 PS ' := { µ1µ2Ö µk | k = |PS| ∧ [ ]1 : Pii k Sµ∀ ≤ ≤ ∈ ∧  

  ( )P : 1 : iS i kσ µ σ∀ ∈ ∃ ≤ ≤ =    };  (**) 

 while PS ' ≠  ∅ do 
  S :∈ PS '; PS ' := PS ' \ {S};  
  "hm is the workflow model (P, T, R, prod) with unique identifiers on the basis of 

an instantiated auxiliary net with n =| S | and for each 1 ≤ i ≤ n, prod(un) = S(i)" 
 od 
corp 

 
The procedure consists of four parts. In the first place, PG consists of all solu-

tions for the top element. Secondly, for each solution G ∈ PG, an arbitrary order-
ing is determined. The statement involved is marked with (*). Thirdly, all permu-
tations of the ordered solutions are generated. The statement involved is marked 
with (**). Fourthly, all these permutations are subsequently used for the creation 
of all sequential workflow models. We can now give a formal definition of the 
creation of a set that contains the depth-first workflow model. 
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Definition 3.15 (Depth-first set). Given an extended product data model (D, C, 
pre, F, constr, cst, flow, prob) and a cost optimal plan S ⊆ D, the depth-first set of 
workflow models PWF is derived by the procedure call create_df(top_solutions, 
PWF) with: 
                            top_solutions = { G ⊆ F | sol(G, top) }. 
 

Clearly, each workflow model that is part of the set that is generated by cre-
ate_df has a purely sequential underlying workflow net due to the structure of the 
auxiliary net. It is trivial that each workflow model from this set is sound and that 
it fulfills the used (cost-optimal) plan. We claim that one of the members of this 
set of workflow models is the one that minimizes the average cost in servicing an 
entire population. Before we formalize this claim we want to consider the effi-
ciency of the approach. 

The depth-first set of Definition 3.15 can become quite large. Its number of 
elements can be expressed as n! where n is the number of elements of 
top_solutions. However, to appreciate the algorithm this figure should be com-
pared with the number of different conformant permutations of all production 
rules that fall within the confinement of a (cost optimal) plan. These permutations 
could also be used to create a set of candidates for the depth-first workflow. This 
set is in general much larger. For example, take the Helicopter Pilot product data 
model and cost optimal plan S2 = {a, b, c, e, f}. We already established that the set 
of solutions for this example consists of { (a, {b, c}), (b, ∅), (c, {e,f}), (e, ∅), (f, 
∅)} and { (a, {f}), (f, ∅) }. Therefore, our approach yields a set Pwm of only two 
workflow models. Two workflow models that could be delivered by a call of the 
procedure create_df, based on the same, arbitrary orderings of the members of the 
solutions set, are depicted in Figure 3.16. 

The number of permutations of the 6 different production rules that are used in 
the set of solutions is 6! = 120. Of these 120 permutations, 33 comply with the de-
pendencies of the product data model. This is the number of workflow models that 
should be considered using the approach of ordering all production rules, in con-
trast to the two workflow models in our proposed approach.  

At this point we return to the issue of finding the depth-first workflow model. 
We will only sketch how the expected cost may be determined for a specific work-
flow model, as it is a rather straightforward procedure. For each workflow model, 
each different combination of success probabilities of the production rules gives 
another interpreted sequence. The expected cost of a workflow model is the 
weighted sum of the cost of each interpreted sequence. The weight of an inter-
preted sequence is the product of the probabilities in effect. The process of deter-
mining the interpreted firing sequences and their associated cost is purely analyti-
cal and can be easily automated. The number of interpreted firing sequences one 
may expect at most on the basis of a workflow model that contains n different 
production rules is 2n, taking into account for each production rule the possibility 
that it is successful or unsuccessful. Now consider the workflow models in Figure 
3.16. 

In both depicted models, 6 different production rules are in use. This means that 
there are at most 26 = 64 interpreted firing sequences of each model. As follows 
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from the extended product data model of the Helicopter Pilot example as intro-
duced earlier this section, only production rule (a, {f}) will not always succeed. 
Therefore, the number of different interpreted firing sequences for each workflow 
model equals 2 at most. For the model on the right-hand side of Figure 3.16, only 
one interpreted firing sequence is of interest, as production rule (a, {f}) will never 
be executed. After all, { (a, {b, c}), (b, ∅), (c, {e,f}), (e, ∅), (f, ∅)} will always 
render a value for a. So, the expected cost of the workflow model on the left-hand 
side in the figure is 266 (= 0,4 * 65 + 0,6 * 400); the cost of the right-hand side 
model 400. The workflow model on the left-hand side is therefore the depth-first 
workflow model.  

At this point we will present our result for the depth-first workflow model we 
have derived.  

Lemma 3.2 (Depth-first workflow model). The depth-first workflow model 
derived from the depth-first set (Definition 3.15) yields the lowest expected cost 
of any fulfilling workflow model. 
Proof. We start with an observation about the orderings of solutions. Consider a 
solution of the top element, i.e., a minimal set of production rules that can be used 
to deliver a value for the top element. If we consider two arbitrary orderings that 
are used to create two workflow models, both workflow models have the same ex-
pected cost. After all, each ordering (Definition 3.14) contains each production 
rule from the solution exactly once. Because the precedence relations of the prod-
uct data model are respected within an ordering, each production rule in any order-
ing has the same probability to succeed and, hence, to create cost.  

Suppose now that we could create a workflow model for each individual new 
case. Assume then ñ without loss of generality ñ that for each production rule it is 
determined a priori whether it will be successful. Then, there may be zero or more 
solutions of the top element that will yield a value for the top element. If there are 
no such solutions, then each fulfilling workflow model that sequentially orders all 
the production rules will yield the same result. The depth-first workflow model is 
such a model, so the claim holds for the case that there are no successful solutions. 

If there is at least one such solution, then it is wise to use the one with the low-
est cost. Obviously, for a specific case we do not know a priori which production 
rules will be successful. To decrease the expected cost, we should use for an arbi-
trary case with unknown success probabilities for the production rules the solution 
with the lowest expected cost first. If it will not succeed, the second least costly 
solution should be used, next the third lest costly etc. The algorithm create_df 
generates all possible permutations of the same (but arbitrary) orderings of the so-
lutions. As we observed in the start of this proof, it is of no importance which par-
ticular ordering is used for each solution. We conclude that the workflow model 
with the lowest expected cost from all sets generated indeed has the lowest ex-
pected cost of all fulfilling workflow models. □ 
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Fig. 3.16. Example set of depth-first workflow models 
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Discussion 

A few remarks can be made about Lemma 3.2. It may seem rather expensive to 
generate all permutations of (ordered) solutions for the top element. Why not 
compute the expected cost of each solution and subsequently order them in a se-
quence of decreasing expected cost? This is the approach as described for ordering 
tasks with independent execution cost by Van der Aalst (2000b). Although this 
approach is certainly more efficient, it will not in general yield the best result. 
Consider, for example, the three solutions for a top element with respect to pro-
duction rules p1, p2, Ö, p8 as depicted in Figure 3.17 as ovals. Assume that the 
rules p1, p4, and p8 have no cost and that they can deliver a value for the top ele-
ment with a probability of 1 ñ q, i.e., they are knock-outs. These are represented in 
bold. All other rules are always successful and have a cost of 1 unit. 
 

p1
p2

p3
p4

p5 p6

p7 p8

A

B

C

 
Fig. 3.17. Three overlapping solutions 

If we purely consider solutions A and B for making a depth-first workflow, 
then doing A before B has a lower average cost (= 2 + 3q) than doing B before A 
(= 4 +q) with q < 1. Note that the cost of executing p3 has to be made only once in 
each scenario. If C is, however, the first solution to be pursued, it is on average 
cheaper (with q < 1) continuing with B and then A (= 3 + q + q2), than continuing 
with A and then B (= 3 + 2q). This is explained by the fact that in doing C first, it 
takes a small additional cost to do B because of the large overlap between B and 
C. 

In general, the overlap of solutions may be rather large, so that it is more profit-
able to order in succession of a solution another solution with a large overlap. If 
the first solution does not yield a value for the top element, the second solution 
may do this after all, without much additional cost. In a probabilistic sense, the 
expected cost of a solution as part of a sequential workflow model is dependent 
upon the preceding executed solutions. This observation may help to design a 
workflow model in a heuristic sense if the number of different solutions is large. 
Without considering such an approach in detail, a sense of similarity between so-
lutions may be used to reduce from the set of workflow models to be considered 
those ones that do not subsequently order very similar models. 

We would like to illustrate another point of interest using again the example 
product data model of Figure 3.9. We established that this product data model has 
the following solutions: 
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1. { (x, {a, b}), (a, ∅), (b, {a}) }. 
2. { (x, {a, b}), (a, ∅), (b, {c}), (c, ∅) }. 
3. { (x, {d}), (d, ∅) }. 
 

Suppose that for some cost and probability functions of the extended product 
data model the depth-first workflow model WF orders solutions 1 and 2 directly in 
succession. Suppose further that for some execution of WF production rules (a, ∅) 
and (b, {a}) of the first solution will succeed, but that (x, {a, b}) fails. Execution 
will continue with an ordering of the second solution. This means that production 
rule (c, ∅) will certainly be applied (note that the production of a leaf is always 
successful on the basis of Definition 3.2). However, this cost can be seen as super-
fluous. After all, (x, {a, b}) has already failed and will not be applied a second 
time. This undesirable effect is the direct result of our notion of fulfillment (see 
Definition 3.12). This requires the inclusion of each production rule in each firing 
sequence of a fulfilling workflow model. In other words, there is no possibility to 
skip a production rule once its application becomes superfluous. The presented 
heuristic approach does not take into account this type of dependencies. (Note that 
a similar argument could be formulated for a breadth-first workflow model.) 

From a technical viewpoint it is possible to adapt the algorithm that creates the 
depth-first set of workflow models to incorporate the dependencies as described in 
selecting the optimal depth-first workflow model. Prior to each transition in a 
workflow model that is delivered by the procedure create_df, a selection transition 
should be added that determines whether it is useful to proceed with the solution 
that this transition is part of. Note that this can be decided at any point during the 
execution of a workflow model if we add to such a workflow model an admini-
stration of production rules that were unsuccessful. In determining the depth-first 
workflow model out of the set of such models, this added functionality should ob-
viously be incorporated to determine the expected cost. It is clear that this will 
blow up the number of interpreted firing sequences of these types of models con-
siderably. A brute-force approach as we have described will proportionally be-
come less attractive. Incorporating heuristics such as described by Orman (1998) 
or Van der Aalst (2000b) to order the production rules will then be more attrac-
tive. 

We will not further describe such approaches as described. This is a matter of 
balance between the complexity of the computations/models on the one hand and 
the gains they may offer on the other hand. For product data models (a) that are 
relatively small, (b) where the solutions have a large overlap, (c) where the com-
mon production rules are close to the top element, and (d) where the cost of lower 
production rules is high, the extension of the described approach may be consid-
ered. In the opposite case, the described approach may already deliver satisfactory 
results. Especially because product data models can become quite large, e.g., with 
500 information elements, more fine-grained approaches may become infeasible. 
The expected cost of a depth-first workflow model or even that of the cost optimal 
plan also may already be acceptable for the organization that hosts the process. In 
other words, the performance target may be already met. In these cases, the effort 
for additional optimization is probably not justified or infeasible.  
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We end the discussion of designing optimal workflows for the common case 
with the remark that the design of a workflow on the basis of a product data model 
must be driven by the optimization criteria that are relevant for the BPR initiative. 
These criteria should also drive the analysis phase to gather useful logical and em-
pirical data for the design. Although the criteria of cost, speed, and quality we 
used are important and much applied in practice, a different list or prioritization 
may be encountered for specific BPR initiatives. For example, Sharp and McDer-
mott (2001) mention as alternative goals for a new process: flexibility in meeting 
needs of individual clients, easier to adopt for an entry-level workforce, fewer cli-
ent interactions, absolute auditability, easier to maintain at international locations, 
and more suitable for support by commercial off-the-shelf (COTS) software. It is 
not possible to discuss a design strategy for each of these various cases. In the fol-
lowing section we will nonetheless discuss an approach aimed at delivering a 
flexible process for each individual client.  

The important principle in designing a workflow with PBWD is to find an ex-
ploration of the product data model in such a way that its expected performance 
implements the set targets. At occasions where the product data model is relatively 
small, it may be feasible to generate all or a large number of different models for 
the sake of comparison. By this, we mean an even larger number than the de-
scribed brute-force approach offers. This effort would be greatly simplified by an 
automated support of tools. It is always good practice to deliver more than just one 
process design for the evaluation phase. Process designs may be comparable in 
terms of the primary BPR goals, but may be different from additional relevant 
viewing points. We will discuss the topic in more detail in the description of the 
evaluation phase. 

Specific Case 

Instead of specifying the optimal route through the product data model a priori on 
the basis of the common characteristics of a case, a more flexible, ad hoc approach 
is also feasible. This may lead to a process execution where for each case and at 
any state during the process execution for this case, it may be decided what the 
exploration of the (rest of the) product data model looks like. More specific, this 
means that at any time a decision may be made which following production rule(s) 
should be executed, as long as this execution conforms to the product data model.  

There may be different degrees in this type of flexibility. For example, as long 
as a certain time limit is not exceeded a depth-first strategy is chosen for each case 
to minimize cost. If for an individual case the time limit approaches, the explora-
tion policy is switched to a breadth-first policy to speed up the work. This is a 
level of flexibility that implies the same policy for all cases. A stronger form of 
flexibility is that depending on the client's own preferences a different exploration 
route is chosen. A client who is interested in a high quality of the delivered service 
may be willing to pay for more costly production rules. For another client who has 
fundamental objections to the participation of specific parties in the process some 
production rules may be excluded. 
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This flexibility is different from designing a workflow that just incorporates a 
very large number of alternative routes. Although the latter approach may also 
lead to a flexible process execution, it is different in the sense that the flexibility is 
thought out at build time instead of at run time. Another way of looking at it, is to 
favor a pull mechanism ñ where an office worker decides on the process exception 
- over a push mechanism ñ where a system implementing a design prescribes 
every action. Only when the degree of variability to explore the product data 
model is really small, a workflow that incorporates a very large number of alterna-
tive routes may render the same level of operational flexibility. The combinatorial 
explosion of different combinations of production rule executions is in practice 
such that they cannot be incorporated in a build time design. The complexity and 
maintainability of such a design would be very questionable. 

With regard to the question for a high level of operational flexibility the answer 
should not be found in the design of the workflow, but in the support of office 
technology that supports the execution of the process. The desirable system must 
be able to manage the product data model and control for each case whether the 
execution of production rules conforms to it. At any reachable state during the 
processing of a case, this system also must be aware of all the available informa-
tion. Given this information and the product data model, it should present to the 
relevant end-users which of the production rules can be potentially executed. It is 
up to these end-users which of the production rules are selected for subsequent 
execution. Considerations that may be relevant to this choice are: the client's indi-
vidual whishes or characteristics, the company's operational guidelines, external 
conditions, or the individual preference of the end-user. Van der Aalst and Berens 
(2001) describe a system that may be usable for such an approach.  

Although the operational flexibility of a system as described is high, we make 
some critical notes as follows: 

 
− The individual processing of cases may become so diverse that it is impossible 

to compare them; such a comparison may be valuable for improving the per-
formance of the overall process execution or migrating onto new product data 
models. 

− Operational flexibility may intervene with other goals such as cost reduction 
and speed enhancement; a well-chosen balance is required. 

− Office workers must be able to handle the higher level of responsibility and de-
sired control of the workflow execution; acquiring these skills by training or 
employment may be required. 
 
We end this part of our description of the design phase by stating that the de-

velopment of alternative workflow designs is primarily the goal of a design for a 
population of cases. After all, the described support for flexibly handling arbitrary 
cases supposes the same product data model for each case. 

The design for a specific case, together with the important notions in this phase, 
is once more given in Figure 3.18. The obvious deliverables of this phase are one 
or more workflow models, which will be examined in the evaluation phase. 



118      3 Workflow Design 

Design

Create alternative workflow models
Cost optimal plan, breadth first workflow model, depth-first workflow model

 
Fig. 3.18. The design phase 

3.4.4 Evaluation 

By now we have discussed the scoping, analysis, and design phases. The final 
phase of the PBWD methodology is the evaluation phase. The evaluation phase 
takes as input the alternative workflow designs derived in the design phase. There 
are four important steps that should be taken, which are as follows: 

 
1. The correctness of the workflow models should be verified. 
2. The workflows should be validated with experts. 
3. The performance of the workflows should be established. 
4. The results of the previous steps should be presented to management. 

 
We will discuss these respective steps in this section.  

Verification 

Verification involves the checking of the syntactical correctness of a workflow 
model. In contrast to the context of programming languages where syntax only re-
fers to the language, we incorporate in our notion of syntactical correctness both 
the structure and the behavior of the workflow model. Although workflow models 
that have been derived in the way as described in this section already implement 
some notions of syntactical correctness, models may be extended or changed by 
human intervention before they are considered complete. Typically, human errors 
in designing the workflow on the basis of the product data model may cause dead 
tasks, deadlocks, livelocks, etc. Especially when a workflow model becomes 
large, i.e., when it incorporates hundreds of tasks, it is difficult for human design-
ers to oversee the complete model. We will not extensively treat the subject of 
workflow verification here. A discussion is given by Van der Aalst and Ter 
Hofstede (2000). The tool Woflan, which supports the verification of workflows, 
is described by Verbeek and Van der Aalst (2000) and Verbeek et al. (2001).  
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Validation 

Perhaps the most important step in the evaluation phase is the validation of the de-
rived workflow designs by experts. Validation involves the semantic correctness 
of the model: are the right things being done? Although the product specification 
is the proper source for deriving what should be done, misinterpretations or im-
proper use of may be the cause of a faulty workflow design. Note that semantic 
correctness supposes a syntactic correctness of the workflow involved, as checked 
in the verification step. 

From a system development point of view, it is important to validate a process 
design prior to the implementation of the workflow and the automation of process-
ing steps. It is well known that design errors that are found late in the project are 
very costly to correct. Martin (1991) estimated that in software development find-
ing a design error during the programming, testing, and maintenance phases is re-
spectively 3, 10 and 100 times more costly than finding it during the design. From 
a change management perspective, it is also valuable to confront end-users with a 
design before further development takes place. This approach involves users in the 
design and it enables them to give feedback. It is also desirable that end-users real-
ize that although the new process design may be structurally different from the 
process they are used to, it can be used for delivering the same type of products as 
before.  

For all named validation purposes, there are different means available. Som-
merville and Sawyer (1997) name formal inspections, developing draft manuals, 
paraphrasing, validation checklists, and prototyping. Casimir (1995) also names 
the gaming concept as a means for system design validation.  

The particular approach we would like to devote some attention to is the use of 
a prototype as a basis for validation. The idea is then to confront end-users with a 
system that shows them both the ordering logic of production rules and their con-
tent. Usually, implementing a workflow design is a large effort due to the required 
integration with working transaction systems and the development of new soft-
ware to implement the production rules. Instead of awaiting these actions, end-
users may already develop a good conception of the new workflow by experienc-
ing the handling of partly pre-defined cases. As much as possible, end-users 
should be enabled to make autonomous decisions in handling these case and ac-
cordingly enter information in the system. This is possible as long as this involves 
relatively simple production logic, which may be either automated within the pro-
totype or done by the end-user himself. Also, pre-defined information can be 
shown to the end-users if it affects computations that cannot be performed by the 
prototype. Consistent pre-defined information can be determined off-line on the 
basis of the product data model and established production rules. A high degree of 
realism of the workflow to be implemented is nonetheless obtained, because all 
the tasks and involved information are presented. 

Aside from the validation aspect of prototyping it has as additional advantage 
that it allows end-users to generate meaningful feedback on the design. From a 
change perspective, it is important that people feel they can influence the end-
result of the design project.  
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In Chapter 7 we will extensively describe a case in which a prototype is used 
within the context of validating a workflow model rendered with PBWD.  

Performance 

The design of the workflow with PBWD is driven by design criteria that are spe-
cific for the design effort supported. As accurately as possible, relevant perform-
ance figures should be estimated as input for the design. Some of these figures 
may in practice be dependent on many factors that cannot all be taken into account 
during the design. For example, the throughput time of a workflow is dependent 
on the response speed of external parties, the actual availability of resources, the 
types of cases encountered, etc. It is wise to analyze in more depth the perform-
ance of the verified and validated workflow design to obtain more reliable infor-
mation on their performance. We will not in detail treat the performance analysis 
of workflow models at this place. Simulation may be used for this purpose. An 
analytical approach for establishing the expected performance of a workflow 
model that incorporates stochastic delays instead of fixed delays (such as is the 
case in the extended product data model, see Definition 3.2) is the subject of 
Chapter 4.  

To support the decision process that should take place in the following presen-
tation activity, it is appropriate to compare the performance results of the new de-
sign with those of the current process. Especially when the design objectives have 
been formulated in relative terms to the current performance, this is a necessity. 

Presentation 

The last step within the evaluation phase - and with it the last step within the 
PBWD method - is to present the verified and validated workflows to the commis-
sioning management of the design effort. Supporting information from the per-
formance analysis can be used to argue the probability that the design effort will 
lead to the set goals of the scoping phase. The commissioning party is responsible 
for selecting and accepting one or none of the presented models to be used for the 
implementation of the redesign. Typically system development and integration, 
training of end-users, the development of instruction and procedure manuals, etc. 
are the follow-up of a process design. In Chapter 7 we will describe a case on how 
application development may take place on the basis of the deliverables of 
PBWD. 

The evaluation phase is summarized in Figure 3.19. The deliverable of the 
evaluation phase is a verified and validated workflow model, which is expected to 
meet the set performance targets and which can be used as a framework to imple-
ment the workflow. 
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3.4 Review 

In this section we will critically review the PBWD methodology. We will use the 
results of the BPR survey of Section 3.1 as a basis for comparison, as well as our 
practical experience with PBWD in designing workflows (see Sections 7.2 and 
7.3).  

 

Evaluation

Verify workflow models
structure, behavior

Validate workflow models
prototyping, gaming, inspections

Establish performance workflow models
simulation, analytical methods

Present workflow models
selection, implementation

 
Fig. 3.19. The evaluation phase 

3.4.1 Advantages 

The specific features of PBWD concerning its specific clean sheet and analytical 
nature (see Section 3.2) have three major advantages, which are the following: 

 
1. Radicalism: the clean sheet approach allows for maximal space to establish per-

formance improvements. 
2. Objectivity: the analytical nature is the next best thing to a guarantee for an ob-

jective materialization of the workflow design. 
3. System integration: the analytical approach renders detailed deliverables suit-

able to use for systems development purposes. 
 

We will elaborate on each of these advantages. Approaches that use the existing 
process will to some extent copy constructions from the current process that do 
not support the BPR objectives. This is justified by its mere existence within the 
current process, which is a questionable basis. Typically, all kinds of constructions 
such as checks, validations, etc. are added to a workflow to prevent a historical in-
cident from happening again. The loss of performance that these measures cause, 
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however, is never considered again. Applying redesign heuristics to cut out these 
kinds of inefficiencies may partly elevate the "copy bug". However, applying heu-
ristics will never question the main course of the process. Workflows designed 
with PBWD may take on any form that conforms to the product specification 
driven by the redesign objectives.  

The second major advantage of PBWD is its objectivity. In the first place, be-
cause the product specification is taken as the basis for the design of the new 
workflow, each recognized information element and each production rule can be 
justified and verified with this specification. As a consequence, there are no un-
necessary tasks in the resulting workflow. Secondly, the ordering of (tasks with) 
production rules themselves is completely driven by the performance targets of the 
design effort. PBWD is aimed at generating the favorable workflows and discard-
ing the unfavorable ones by means of analytical assessment. We demonstrated 
how performance notions may be formalized and assessed in Section 3.3.  

These two points are in sharp contrast with the results of participative ap-
proaches. Then, workshop participants are responsible for summing up all relevant 
information and logic. The probability that a piece of information is missed or that 
irrelevant information is included is much greater in this way. The decisions on 
ordering tasks within a workflow also must be taken on the basis of common 
sense. It requires workflow participants to estimate and evaluate large amounts of 
information to asses all the performance consequences of each issue. Very few 
people may be capable of doing so. Their decision making will rather be driven by 
"gut feeling" than rationality. Obviously, the selection of necessary information 
elements and the formulation of involved production rules may involve some sort 
of subjectivity as well. However, on a level of scale the objectivity of the PBWD 
approach exceeds that of participative approaches.  

The third and last advantage, the integration with a systems development effort, 
is not extensively discussed in this chapter. However, it can easily be imagined 
that on the basis of the PBWD deliverables it is possible to develop functional 
models of the information systems to be developed for (or integrated with) the 
new workflow design. Production rules can then be seen as functional specifica-
tions for services an application should offer. Information elements can be seen as 
attributes of entities that have to be modeled in a data model. Even then, not the 
mere speed up of the development process is the beneficial factor, but rather that 
the workflow model and the systems design is tightly integrated. The PBWD de-
liverables render information that is a direct translation of business needs on a de-
tail level that is hardly ever encountered by system developers in practice. In par-
ticipative approaches, which are much, more common, participants of various 
backgrounds take part in workshops to design a workflow. The great variety in the 
background of the participants improves the probability that all relevant factors 
are addressed in the workflow design. At the same time, it prevents that much time 
can be spend on detailing the workflow, because of the risk of loosing the interest 
of one or more participants. Also, because the forming of consensus is a major is-
sue in workshop settings, it is tempting to mask the specifics of a workflow design 
and with it, the related disputes. As a result, workflow designs resulting from par-
ticipative approaches typically carry too little information for system developers to 
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be useful. A methodology that prescribes how component-based application de-
velopment can take place on the basis of the deliverables of PBWD is described 
by Reijers and Van der Toorn (2002). In the cases of PBWD applications in Chap-
ter 7, we will devote some attention to the development of information systems on 
the basis of PBWD deliverables. 

3.4.2 Critique 

Because of the controversy over clean sheet approaches it is at this point perhaps 
fair to evaluate to which extent the commonly formulated claims against them ap-
ply to PBWD. Our survey yielded the following (see Section 3.1): 

 
1. There is the danger of designing another inefficient system. 
2. The clean sheet approach fails to build on knowledge and experience which has 

been built up over time and risks mistakes of the past. 
3. Workers may be unable to relate to the new process as it bears little resem-

blance to the work that is being done. 
4. By designing a process completely from scratch the scope of the redesign prob-

lem is not appreciated. 
 

We will address each of these points. The danger of designing an inefficient 
system is always present. However, taking an inefficient existing process as a 
starting point does not appear to be a remedy. By incorporating sufficient compe-
tence and experience in a project team that designs the workflow with PBWD, the 
danger of designing another inefficient system may be constrained. The evaluation 
phase also should point out whether the new design can indeed live up to its ex-
pectations. 

Concerning the second point of critique, it would be very serious indeed if rele-
vant knowledge were omitted from the design effort. We believe, however, that it 
is more applicable to participative approaches than to PBWD. It may very well be 
that the popularity of taking the existing process as a starting point is a weak alter-
native for securing that product characteristics are not violated in the new process. 
Especially when workshop participants have to come up with all important work-
flow ingredients, chances are that relevant information is forgotten. 

Let us consider the third point of critique. That workers will find it hard to re-
late to a new process design is inherent to radical change. Because PBWD allows 
for radical change, it is especially applicable to this method. We believe that there 
should always be a balance between the expected gain of a new workflow design 
and the likelihood that the design is workable and agreeable. There are two addi-
tional remarks that should be made. Firstly, a radically new workflow layout may 
be inevitable to achieve a radical performance improvement. The question, then, is 
whether the design should be implemented. However, this is not an issue that con-
cerns PBWD. Secondly, even though a workflow is radically different, people 
may still be willing to work in this way if they see the benefits and recognize that 
the essence of the process is maintained ñ generating a specific product. Using 
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prototypes as a means of showing these aspects has proven to be very effective in 
our experience (see De Crom and Reijers, 2001). Other effective measures include 
simulation, training and involving people in the implementation phase, etc. 

The last point we have to address is the risk of using the wrong scope. Using 
the existing process, it may be easier to encounter all dependencies with other 
processes and stakeholders because these are ñ in the best case ñ already present in 
the current process. In any case, the fourth drawback to a clean sheet approach can 
be partly elevated by deeply considering beforehand the exact scope of the redes-
ign. This is in fact the first phase of PBWD. However, what may take place with 
PBWD is that historic services delivered by the current process are not recognized 
as supporting the generation of its corresponding product, for example delivering 
information to third parties. The question is: are these services really required for 
delivering the product? We think that applying PBWD is a perfect way of elimi-
nating beforehand all these dependencies if they are not explicitly included within 
the scope of the product. Really important dependencies will be found anyway and 
may then be rationally considered for inclusion in the final design. 

3.4.3 Drawbacks 

From the above discussion it may become clear that traditional disadvantages to 
clean sheet approaches only partially apply to PBWD. This is not to say that there 
are no drawbacks at all. During the various projects we have conducted, we identi-
fied the following issues: 

 
1. The application of PBWD presupposes a clear concept of the product to be de-

livered. After all, if there is no product specification the basis for PBWD is 
missing. 

2. The application of PBWD is an intensive effort. A thorough analysis is required 
of the product specification, followed by a formal design approach and an ex-
tensive evaluation of the workflow delivered. A PBWD project may require an 
organization awaiting the new design to stand on hold for some time. 

3. PBWD breaks with the leading role of the Technology discipline. In many or-
ganizations, the Information Technology department initiates and carries BPR 
efforts. But instead of starting with technology-oriented analyses and ap-
proaches, a business-oriented analysis starts the PBWD project. This changes 
the role of people and departments historically connected with BPR. 

4. For internal experts that become involved with the PBWD effort, it is hard to 
"forget" the existing process. Not everyone ñ even after some habituation ñ is 
suitable to make this mental leap.  

 
From the first issue it becomes clear that the application of PBWD is restricted 

to fields where a clear concept of the products to be delivered exists. This means 
that PBWD is more likely to be applied in legislative settings or within companies 
that already have some tradition on administrative records, such as banks and in-



3.4 Review      125 

surance companies. It also means that a company should know first what to do, 
before it can consider how to do it best.  

The second issue is an important factor in the selection of the proper methodol-
ogy at the dawn of a BPR effort. The benefits in terms of improvement outcomes 
should be balanced against the duration of the project. If only gradual gains are 
desired from a redesign project, PBWD may not be the right methodology to carry 
it out. 

The third issue requires that a clear understanding with the Information Tech-
nology department is established about the responsibilities of the various stake-
holders. In particular, it should be stressed that prior to any information system 
development effort at least a product data model should be derived. This establish-
ing of responsibilities is also a change management issue, although it does not 
center on the population that is commonly concentrated on, the end-users.  

The fourth and final issue has as a consequence that considerable time should 
be invested in training and explaining the PBWD concepts to internal experts. 
Even so, it should be reckoned with that not each professional end-user is able to 
make a valuable contribution to the PBWD effort. This may limit the use of 
PBWD to areas of business professionals with a higher educational or technical 
background. 

3.4.4 Points of Interest 

By now, we have discussed the major advantages and drawbacks of PBWD. At 
the conclusion of our treatment of PBWD we would like to point out some other 
interesting aspects of PBWD. Two more or less neutral differences between 
PBWD and other design approaches are as follows: 

 
1. PBWD works backward: the end product is taken as starting point and unrav-

eled into the required processing steps to produce the end product; other design 
approaches may work forward, starting with the first necessary steps in the 
process and deduce all the necessary steps to the end. 

2. PBWD is data-centered: first the relevant data is determined, after which proc-
essing steps are defined on the basis of the data manipulations; other design ap-
proaches are more process-centered as they may typically start with defining 
abstract processing steps, which are detailed in a later phase of the redesign. 

 
Another interesting issue that we have seen in practice is that as a side effect to 

the analysis of the product specifications, involved analysts become semi-experts 
in the field. As a consequence, they are able to discuss and counter criticism on 
their work from skeptical parties involved. Moreover, because of the detailed frac-
tion analysis (see Section 3.3), analysts get a grip on the impact and plausibility of 
exceptions that may occur. The emphasis on exceptions that undermines a pre-
liminary workflow design is in our opinion the most common critique on any new 
workflow design that end-users have. A rational treatment of this critique is 
greatly assisted with objective figures. 
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PBWD directly links the content of the final workflow design with the product 
specification that is used to derive it. End-users that are responsible for carrying 
out specific tasks can always check on the original source for their justification 
and explanation. Should the product specification change, it becomes clear from 
the documentation of the workflow which parts of it are affected by this change. 
(Note that this requires the non-formal part of the product data model). Changing 
product specifications are far from hypothetical. In fact, the Unemployment Law, 
which was the basis for one of the workflow designs we have made, is updated 
monthly. Minor changes in production rules can be easily incorporated in the ex-
isting workflow design. End-users can be informed about the changes each time 
they are about to execute a task with a new specification. Major changes that 
deeply affect the dependencies within the product data model may lead to the 
derivation and evaluation of completely new workflow design. From all of this, it 
becomes clear that the deliverables of a PBWD are of value even after the result-
ing workflow has been implemented. Their relation with the product specification 
should be maintained allowing for flexibility and adaptability of the workflow in 
effect.  

The final aspect of discussion is related to one of the critical points we detected 
about the application of PBWD: a clear product specification should be present. 
Although it is limiting the application of PBWD, this rigorous need for a product 
specification can be an advantage as well. In settings where one is used to admin-
istrative records on products, the application of PBWD can be used to identify 
breaches in the existing product specifications. In the regulations that were used 
for the design of an unemployment workflow, we found circular references and 
pointers to out-of-date regulations. At the large Dutch Bank for which we applied 
PBWD, we found out that the approval procedures within a credit loan process 
- although effectuated for decades by specialists -  were not documented at all. 
This raised the possibility to reflect on this procedure and to develop a company 
policy on this point. In general, a close inspection of the product specification may 
bring to light flaws of it. This gives the organization the opportunity to reflect and 
even correct them. 
 

 



4 Performance Evaluation of Workflows 

In this chapter two analytical methods are presented for the performance evalua-
tion of workflows. Typically, these methods can be applied to assess whether a 
workflow design meets a performance target with respect to its throughput time. 
These methods are meant as a support for the designer of workflows, particularly 
within the setting of a BPR initiative. In particular, if a workflow is designed using 
the product-based method as described in Chapter 3, the presented algorithms are 
of use during the evaluation phase when a performance evaluation is due (see Sec-
tion 3.3). For the specification of a workflow design, we will once again use the 
Stochastic Workflow net (SWN) as defined in Chapter 2, as well as the notion of 
throughput defined there. The analysis in this chapter focuses on the routing com-
ponent of a workflow model (see Section 2.2).  

Both presented methods assume an infinite amount of resources, i.e., a lack of 
available resources does not cause queuing. This assumption typically reflects the 
first stage of designing a workflow. Only when the intrinsic quality of the routing 
component is sufficient, the allocation component is put into place (see the intro-
duction of Chapter 3). 

The focus of this chapter is depicted as the thickly lined box in the center of 
Figure 4.1. The overall model describes the relevant entities in a workflow; it has 
been introduced in Section 1.4. 
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Fig. 4.1. Focus of chapter 

The structure of this chapter is as follows. We first consider in Section 4.1 the 
field of formal analysis techniques. We will reflect also in this section upon the 
importance of the throughput time as performance target. In Section 4.2, we dis-
cuss available analysis techniques of other timed, formal models, in particular sto-
H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 127-176, 2003. 
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chastic Petri nets. This discussion builds upon the overview of timed Petri net 
models in Section 2.4. In Section 4.3, we will describe an analysis approach that 
renders exact analysis results for the throughput time behavior of a business proc-
ess model that fits within our framework. A special construction method is pre-
sented that guarantees that such results can be obtained. In Section 4.4 we will de-
scribe an alternative method that, instead of exact results, yields bounds for the 
throughput time behavior of an SWN. The application area of the approximation 
method can be expressed in terms of standard properties on Petri nets. Finally, in 
Section 4.5 we will describe a hybrid approach combining some attractive proper-
ties of both approaches. 

4.1 Context 

4.1.1 Formal Analysis 

In general, there are two different categories of formal analysis techniques that can 
be used in the context of redesigning business processes in general and workflows 
in particular: qualitative and quantitative techniques. Qualitative techniques focus 
on the question whether a process design meets a specific property. Quantitative 
techniques are used to calculate or approximate the size or level of a specific 
property. For example, a qualitative question may be whether a process design 
meets the demand that a bank employee can never validate a cash transfer that he 
has initiated himself. To determine how long clients have to wait before their tele-
phone call is responded to by the call-center typically a quantitative analysis is re-
quired. 

Quantitative techniques can be categorized further into simulation and analyti-
cal techniques. During a simulation of a workflow, at specified intervals cases 
(e.g., new orders) are generated for the model in execution. In response, each of 
the components within the model will behave in accordance with its pre-defined 
specification. For instance, on receipt of a new order the computer will simulate 
an employee inspecting the order on completeness. The actions performed by the 
model in execution copy the real-life actions. However, they may be not exactly 
the same or may not take place at exactly the same moment as in real life. During 
execution, information is gathered on items that result from the interaction of the 
modeled components. For example, the frequency of message exchanges between 
two specific components is measured or the accumulation of work in front of an 
overloaded resource. For the simulation of business processes, see e.g., Desel and 
Erwin (2000) or Van der Aalst et al. (2000a). 

An analytical technique, on the other hand, is based on an algorithm that yields 
an exact result on the basis of both the formal model and some well-understood re-
lationships between the specified components. For example, a business process 
can be modeled as a network of nodes connected to each other by arcs, expressing 
precedence relations. On the basis of such a network model, the shortest path lead-
ing from a new order to fulfillment can be calculated. Popular formalisms and 
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mathematical theories to model and analyze business processes in this analytical 
way are, for example, Petri nets, Markov chains, queuing networks theory, CPM, 
PERT and GERT. 

Often, an analytical approach is preferred over simulation. However, the com-
plexity of a specific workflow model can be such that a simulation approach is the 
only feasible means of analysis. Given a specific process model, there are several 
aspects that determine whether an analytical approach is feasible at all and ñ if so 
ñ preferable over simulation. For example, if both the synchronization structures 
within a process (e.g., parallelism) and the behavior of resources is too complex, 
no known general analytical techniques are available to determine the throughput 
times of cases. Simulation is then the only possible alternative to obtain quantita-
tive results. Although simulation is a very flexible technique suited to investigate 
almost any type of business process, a common disadvantage is that, in non-trivial 
situations, numerous and lengthy simulation runs have to be carried out to obtain 
reliable results. This is particularly troublesome when a large number of different 
alternative workflow models has to be investigated.  

For both qualitative and quantitative types of analysis holds that a formal model 
of the business process underlies the analysis. Depending on the set of properties 
that is taken into consideration in the redesign effort, elements of the real business 
process are incorporated in the model. If, for example, the redesign effort is pri-
marily concerned with the optimization of the logistics of the process, elements 
typically found in a process model are buffers, resources, routings of cases, ser-
vice times, and order arrivals. If, for example, the accent is on cost reduction, ele-
ments such as labor time, material costs, and depreciation factors will be part of 
the model. 

4.1.2 Throughput Time 

One of the most important performance indicators in industry is the throughput 
time. The throughput time of a specific case is the total amount of time spent from 
the moment that the case is initiated until the moment it is completed (see Section 
2.4). The throughput time of a case is in general a combination of service, queue, 
and wait times. Service time involves the time that is spend on actually handling 
the case by executing tasks. Queue times arise because of the unavailability of suf-
ficient resources to work on a case, i.e., a case has to queue. Wait time is all other 
time a case spends waiting, for example because synchronization must take place 
with another process.  

The wide-spread use of the throughput time as a performance target can be ex-
plained from the fact that it is concerned with the "flowing" of work through the 
business process, rather than with the exact manipulations that take place. [Simi-
larly, workflow management is concerned with the management of the "flow of 
work" and not with the execution of individual tasks.] Very often, a low or stable 
throughput time is a desirable or even necessary characteristic of a business proc-
ess. Imagine, for instance, a government agency that handles tax forms and de-
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cides whether they are valid. National regulations may be violated when the proc-
essing of a case takes over one year.  

The throughput time of a workflow ñ in contrast to that of a specific case ñ can 
be expressed in several ways. After all, cases that are handled by the same work-
flow often do not share the same throughput time. In other words, there is 
throughput variance. An ordinary cause for this phenomenon is that resources do 
not deliver constant productivity. Another cause may be fluctuations in market 
demand that possibly flood the system, leading to long queues. Finally, cases carry 
different characteristics causing different routes through the process or tasks being 
skipped. A very common approach is to express the throughput time of a process 
as the average throughput time of the cases it handles. Although this may be fine 
as an approximation, this average is not always a good reflector of the perform-
ance of the process. For example, if minimal and maximal throughput times of 
cases are far apart, the average throughput time is hardly suitable to give clients 
guarantees about delivery times. An alternative sometimes used, is to define the 
throughput time of a process by means of a fraction percentage and a cut-off 
value. For example, 90 % of the cases going through a specific business process 
are finished within 6 weeks. If the throughput of cases varies, the most detailed 
expression of the throughput time is as a histogram or a probability distribution of 
the case throughput times.  
Regardless of the exact definition used, the computation of the throughput time for 
an operational workflow is straightforward. Actual figures on cases can be used. A 
problem arises when the throughput time is to be determined of a newly designed 
process. By depending solely on historic information the designer is in an awk-
ward position. He cannot design a process with desirable throughput characteris-
tics without putting the process to work first. Especially when redesign alterna-
tives are to be compared this is not very practical.  

In the Sections 4.3, 4.4, and 4.5 we will describe several approaches to charac-
terize the throughput time of a newly designed workflow. Workflow designs are 
modeled as SWN's, allowing for arbitrary service times and complex routing pat-
terns. No resources are incorporated in the models, reflecting the typical first stage 
of designing a workflow. Only when the intrinsic quality of the routing component 
is sufficient, the allocation component is put in place (see Chapter 3). In the next 
section, we will give an overview of other approaches for performance evaluation 
such as networking techniques. The focus in this overview is on timed Petri nets in 
particular. 

4.2 Analysis of Timed Petri Nets 

As described in Chapter 2, there are many ways to introduce time in Petri nets. In 
Section 2.4 we gave an overview of existing timed Petri net models. In this sec-
tion, we will focus on their analysis. 

All timed Petri net models are executable. That is to say, it is possible to con-
struct a trace of the modeled system. Therefore, simulation can be used to analyze 
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the model. If all non-determinism is replaced by stochastic measures (i.e., delays 
and conflict resolution), then simulation can be used to obtain confidence intervals 
for performance measures such as the utilization and throughput. We already dis-
cussed some of the drawbacks of simulation in Section 4.1. In the remainder of 
this chapter, we will focus on analytical analysis techniques to overcome the limi-
tations of simulation approaches. Since analysis techniques are typically restricted 
by the type of delay, we first consider timed Petri nets with deterministic timing, 
then timed Petri nets with non-deterministic timing, and finally timed Petri nets 
with stochastic timing. 

4.2.1 Deterministic Timing 

There are several methods to calculate upper and lower bounds for the cycle time 
of a timed Petri net with deterministic delays, for example: Sifakis (1980), Rama-
moorthy and Ho (1980), Ramchandani (1984), and Murata (1992). The cycle time 
is a criterion for the performance of the system. For the so-called Timed Event 
Graphs, the exact cycle time can be computed quite efficiently, see Ramamoorthy 
and Ho (1980) or Chretienne (1983). Other researchers such as Zuberek (1980) 
analyze deterministic timed Petri nets by building the reachability graph. Although 
this requires a lot of computing effort, such a graph can be used to answer a vari-
ety of questions. The analysis of PERT type of networks (marked graphs) with de-
terministic timing is straightforward. 

4.2.2 Non-deterministic Timing  

Most timed Petri net models using non-deterministic delays, such as described by 
Merlin (1974), Merlin and Faber (1976), Berthomieu and Diaz (1991), Ber-
thomieu and Menasche (1993), Van der Aalst (1993, 1994), and Van der Aalst and 
Odijk (1995), use intervals to describe lower bounds and upper bounds for the du-
ration of activities. The method presented by Berthomieu, Diaz and Menasche 
(1983, 1991) uses Merlin's (1974) timed Petri net model. The method generates a 
reachability graph where nodes represent state classes instead of states. Sets of 
linear equations are solved to calculate these state classes. The method allows for 
a reduction of the number of states by using a relative time scale. Another method 
using interval timed colored Petri nets was presented by Van der Aalst (1993). 
This method uses an absolute time scale and allows for colored tokens. The 
method also generates a reachability graph where nodes represent state classes. 
The number of states is reduced by exploiting "timed" specialization and generali-
zation properties. Van der Aalst and Odijk (1995) describe an application of this 
method and Van der Aalst (1992) gives two additional analysis methods based on 
interval timing. 
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4.2.3 Stochastic Timing 

The majority of stochastic Petri net models uses a continuous time domain. In 
these models, each delay is characterized by a probability density function. For ar-
bitrary probability density functions, usually only simulation and approximation 
are feasible analysis techniques. Therefore, many stochastic Petri net models im-
pose restrictions on the type of delay distribution that can be used. In the Stochas-
tic Petri Net (SPN) model as described by Molloy (1981) and Florin and Natkin 
(1982) only exponential delays are allowed. Molloy (1981) and Florin and Natkin 
(1982) show that due to the memoryless property of the exponential distribution 
and the race semantics, SPN's are isomorphic to continuous time Markov chains. 
The number of states of the Markov chain corresponds to the number of reachable 
markings of the SPN.  

The Generalized Stochastic Petri Net (GSPN) model extends the SPN model 
with immediate transitions. Immediate transitions fire without any enabling time 
and have priority over timed transitions (i.e., transitions with exponential enabling 
times under the race semantics). A marking is vanishing if an immediate transition 
is enabled. A marking is tangible if only timed transitions are enabled. The GSPN 
model distinguishes between these two types of markings, only transitions from 
tangible markings consume time. In other words, the average sojourn time of van-
ishing states is zero and the average sojourn time of tangible states is positive. The 
dynamics of a GSPN corresponds to a semi-Markov process: the embedded 
Markov chain which ignores the sojourn time in each state is a discrete time 
Markov chain. By using the embedded Markov chain, it is fairly straightforward to 
calculate various performance measures. Because only the tangible states consume 
time, the vanishing markings are not relevant for most performance measures. 
Therefore, as shown by Balbo and Silva (1984) and Marsan et al. (1985, 1995), it 
is possible to reduce the number of states by eliminating the vanishing markings in 
the embedded Markov chain. 

The GSPN model has been extended in various directions. First of all, the 
GSPN model has been extended with marking dependent transition probabilities 
and enabling delays. It is easy to see that such an extension can be handled by us-
ing an embedded Markov chain as long as immediate and timed transitions do not 
interfere. Second, the GSPN model has been extended to allow for other, non-
exponential types of delay distributions. Basically, there are two ways to incorpo-
rate non-exponential delays. First of all, it is possible to introduce transitions with 
arbitrary delay distributions, as long as none of these transitions can be enabled 
concurrently. The work of Marsan and Chiola (1987) on the DSPN model is an 
example of this approach, which allows for timed transitions with either fixed (i.e., 
deterministic) or exponential enabling times. The DSPN model can be analyzed as 
a semi-Markov process as long as only one deterministic transition is enabled at 
the same time and the enabling memory policy is assumed (see Section 2.4). Sev-
eral variations and refinements of the DSPN have been proposed in literature 
(pointers are given by Balbo and Silva, 1998). Another approach to incorporate 
non-exponential delays is to allow for delay distributions which can be repre-
sented by a continuous time Markov chain. Examples of such delays are the Er-



4.3 Exact SWN Analysis      133 

lang, the hyperexponential, and the phase-type distribution. The possibility to in-
corporate such delays was already mentioned by Molloy (1981) and Florin and 
Natkin (1982). The relation between the various memory policies and phase-type 
distributed transitions is discussed by Balbo and Silva (1984) and Marsan et al. 
(1995). Using non-exponential delays which are expanded to multiple phases in 
the corresponding Markov chain typically results in Markov chains which are dif-
ficult to analyze. In the worst case, the size of the Markov chain grows exponen-
tially in the number of phases. 

The most advanced networking techniques, GERT, allows for arbitrary distri-
butions and a wide variety of network topologies. Assuming an infinite server se-
mantics, the conditional moment generating function (MFG) of the elapsed time 
required to traverse between any two nodes in the network is determined. Combin-
ing these functions with the probabilities for each node that it is being executed 
and a network topology equation, an overall MFG characterizations of a closed 
network can be derived. From such a characterization an overall time distribution 
function can be obtained using inversion integrals, Pearson curves, or Gram-
Charlier series. Depending on the chosen time distributions and the topology of 
the network, obtaining the overall distribution function may be inefficient. Less 
complex performance criteria, such as the sensitivity of the found solution in a 
given parameter, may be easier to derive for specific cases. 

4.3 Exact SWN Analysis 

In this section an exact analytical method is presented to compute the throughput 
time density or distribution of an SWN. This section is based on earlier papers of 
Van Hee and Reijers (1999) and Van der Aalst et al. (2000c). The method pre-
sented supposes that the designer of the workflow composes the SWN to be ana-
lyzed by extending a simple workflow net in an iterative fashion with the elements 
of a set of building blocks. Because the behavior of these individual building 
blocks is known and it is ensured that this construction yields a correct model, it is 
possible to compute a characterization of the throughput time in an efficient way. 

Somewhat similar approaches are by Pritsker and Happ (1966), Pritsker and 
Whitehouse (1966), Neuman and Steinhardt (1979), and Guo et al. (1992), who 
have been using moment-generating functions to handle this type of problem. 
However, such an approach complicates the application of peculiar distribution 
functions, as differentiation is required to obtain results. Moreover, with the de-
scribed approach in this section it is possible to characterize a complete through-
put distribution function instead of just the expected throughput time mean and 
variance. 

We will first describe the construction method and introduce three basic build-
ing blocks. We will illustrate the approach with an example. In the sections fol-
lowing, we will introduce additional, sophisticated building blocks. 
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4.3.1 Basic Method 

We will construct SWN's by applying a synthesis method as introduced by Valette 
(1979) and applied by e.g., Van der Aalst (2000a) and Voorhoeve (2000) in the 
composition of workflow nets. The construction of an SWN takes place by first 
constructing a workflow net and then assigning a proper delay and weight function 
to transform it into an SWN. As the starting point of each SWN construction we 
will use a so-called simple net. A simple net is structurally equivalent to the net as 
depicted in Figure 4.2. 
 
 

 
Fig. 4.2. A simple net 

A simple net consists of one transition, a source place, a sink place, and rela-
tions between them. It is trivial that each simple net is a workflow net and that a 
simple net with marking   is safe. The construction method is based on replacing a 
transition in a workflow net by an entire workflow net. Such a replacement is 
called a synthesis step (see Definition 2.15.). Net synthesis can informally be de-
fined as follows: 

 
1. Obtain a net by defining a simple net. 
2. If the obtained net is satisfactory, then end the net synthesis. 
3. Otherwise, apply a synthesis step ñ which replaces a transition with a workflow 

net ñ and return to step 2. 
 
In our construction of SWN's, we will initially allow three basic forms of work-

flow nets that can be used to replace transitions during net synthesis. In other 
words, a workflow net used in a synthesis step to replace a transition should have 
a specific net structure. The three net structures of workflow nets that we will al-
low are depicted in Figure 4.3.  

The basic workflow structure that implements parallelism is achieved by se-
quencing a so-called AND-SPLIT with an AND-JOIN (see Figure 4.3). Likewise, 
the basic workflow structure that implements a choice is achieved by sequencing 
an OR-SPLIT and OR-JOIN control (see Figure 4.3). The choice for the basic 
workflow structures therefore seems to be consistent with the identification of the 
sequence, OR-SPLIT, OR-JOIN, AND-SPLIT, and AND-JOINS as primary con-
trols in workflow management systems to manage business processes, for example 
by Van Hee and Reijers (1999) and Kiepuszewski et al. (2001). 
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OR SPLIT

OR JOINAND JOIN

AND SPLIT

 
Fig. 4.3. Basic structures: sequence (a), parallelism (b), and choice (c) 

Note that the workflow management coalition, the most important standardiza-
tion organization in the field of workflow management, also identifies another ba-
sic control: the iteration construct (see Lawrence, 1997). Similarly, Knolmayer et 
al. (2000) state that "with respect to modeling the control flow [of a workflow], 
the following situations have to be covered: sequence of actions, parallel actions, 
alternate actions, and iterations of actions". These views reinforce the importance 
of the sequence, parallelism, and choice structures we already identified. The dif-
ferent possibilities to extend our SWN construction method with the iteration con-
struct is the subject of Section 4.3.  

For each workflow net that has a net structure of one of the basic forms, a so-
called initial transition can be distinguished. 

Definition 4.1 (Initial transition). For a workflow net (P, T, R) with i• = { t } 
for some t ∈ T, transition t is called its initial transition. 

 
As we will see, the initial transition will play an important role in computing 

the throughput time distribution of a constructed SWN. 
It is not hard to verify that for each workflow net WN with a sequence, parallel-

ism, or choice net structure holds that WN is sound and (WN, ! ) is a safe sys-
tem. From the result of Van der Aalst (2000) about the composition of workflow 
nets (see Theorem 2.4), it can be derived that a synthesis step which replaces a 
transition in a sound and safe workflow net by a sound and safe workflow net 

i"
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yields again a sound and safe workflow net. So, safeness and soundness are pre-
served by recursively applying synthesis steps with workflow nets of the three ba-
sic forms on an initial simple net.  
 

∇

∇

∇

∇

 
Fig. 4.4. The synthesis of a workflow net 

In Figure 4.4 we can see the synthesis of a workflow net in four synthesis steps 
(see Definition 2.15). Each synthesis step is depicted by a black arrow. Each of the 
depicted synthesis steps replaces a transition marked with the symbol "∇" with a 
workflow net with respectively a sequence, choice, parallelism, and sequence 
structure. 

The final step in an SWN construction is to assign both a proper delay and 
weight function to the workflow net that is synthesized. Recall that the definition 
of an SWN allows for arbitrary weights and probability distributions (see Defini-
tion 2.16). Because the synthesized workflow net is sound, the throughput time 
distribution is defined for a constructed SWN (see Definition 2.22).  

We will now show how the throughput time density (or distribution) of a con-
structed SWN may be derived on the basis of the throughput time densities (or dis-
tributions) of its substituting components. Consider an SWN WN1 = (P1, T1, R1, 
W1, f 1) that has been constructed by assigning a weight function W1 and delay 
function f 1 to a workflow net (P1, T1, R1). Assume that this workflow net is the re-
sult of net synthesis. Then, the net (P1, T1, R1) is the result of replacing in some 
workflow net (P2, T2, R2) the transition t+ ∈ T2 by some workflow net (P3, T3, R3) 
with has an initial transition t* ∈ T3. Let WN3 = (P3, T3, R3, W3, f 3) be the SWN 
on the basis of (P3, T3, R3), with for each t ∈ T3, W3(t) = W1(t) and f 3(t) = f 1(t). 
Now suppose that we can compute the throughput time density 3WN

f (see Defini-
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tion 2.24) of the SWN WN3. Let WN2 = (P2, T2, R2, W2, f 2) be the SWN such that 
for each t ∈ T2: 
−  
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Then, it is not hard to see that the throughput time density equals the 
throughput time density . After all, SWN WN

2WN
f

1WN
f 2 is almost identical to the SWN 

WN1 except that transition t+ takes the place of the subnet SWN3. Transition t+ has 
the same weight as the initial transition of (P3, T3, R3) in SWN1. So, t+ is selected 
with the same probability in WN2 as the subnet WN3 is selected in WN1. More-
over, the probability that t+ imposes some delay d in WN2 equals the probability 
that the throughput time of WN3 equals this delay. So, the throughput time behav-
ior of WN2 is the same as that of WN1. 

The process of simplifying a constructed SWN WN into an SWN WN' where 
the time behavior of one of the transitions of WN' equals that of an entire subnet 
of WN can be followed back along the synthesis steps that have been taken. This 
process ends when an SWN has been derived that has the net structure of a simple 
net. The value of the delay function of the sole remaining transition of this SWN is 
exactly the throughput time density of WN.  

The applicability of the described derivation depends on the computability of 
the throughput time densities of all SWN's with a net structure of one of the basic 
forms. We will now show how these can be computed. For each of the basic forms 
we will either describe how the throughput time density or distribution can be cal-
culated. It is a trivial exercise to transform one characterization into the other. 

Sequence  

Consider an SWN B with a sequence network structure as depicted in Figure 4.5, 
two timed transitions t and u with delay probability distributions ft and fu and gen-
eral initial timed state M0 (see Definition 2.18).  
 

t u

 
Fig. 4.5. Sequential SWN 

SWN B induces the stochastic process SP = { (Xn, Yn, Zn) | n = 0, 1, 2, Ö } 
(see Definition 2.19). Note that each transition fires at most once. For each transi-
tion v ∈ {t, u}, we define random variable v which is the delay that transition v 
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imposes if it fires. Formally, v = e : Y Zn nn v e⇔ ∃ ∈ = ∧ =N . We consider the 
throughput time density fB. 

 

Let y∈N, ( )Bf y =
0
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( )t uf f y⊗ . 
 
To constrain the computation effort, the convolution ft ⊗ fu can be computed 

with the Fast Fourier Transform and its inverse (see Appendix A). As a result, we 
can compute a vector representation of ft ⊗ fu in O(n log n) time, with n the small-
est power of two that is at least twice as large as the maximal delay for which ei-
ther ft(n) or fu(n) is unequal to zero. Note that a straightforward computation would 
have required n2 steps. 

Parallelism 

Consider an SWN B with the a parallelism network structure as depicted in Figure 
4.6. Assume that B has initial timed state M0. For the moment, also assume that the 
initial transition s of the underlying workflow net, as well as the transition v with 
{v} = •o are both immediate. The remaining transitions t and u are timed with de-
lay probability distributions Ft and Fu. SWN B induces the stochastic process SP = 
{ (Xn, Yn, Zn) | n = 0, 1, 2, Ö } (see Definition 2.19). Given the net structure and 
the general initial time state, each transition fires at most once. For each transition 
w ∈ {s, t, u, v}, we define random variable w which is the delay that transition w 
imposes if it fires. Formally, v = e : Y Zn nn v e⇔ ∃ ∈ = ∧ =N . We consider the 
throughput time distribution FB. 
 

u

t

s v

 
Fig. 4.6. Parallel SWN 

Let y ∈ N, ( )BF y = (t y u y≤ ∧ ≤P ) = Ft(y) ⋅ Fu(y). 
 

The computation of the distribution function FB can be performed in n steps, 
with n the minimal delay for which both  Ft(n) and Fu(n) are equal to 1.  
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For the general case where transitions s and v are timed, let f *
 (y) be the 

throughput time density in y that can be derived from the throughput time distribu-
tion Ft(y) ⋅ Fu(y). On the basis of the throughput time density expression for a 
workflow net with a sequence structure, we may derive that if s and v are timed 
and we use fB as the throughput time density of the entire SWN B, then: 

 
for y ∈ N, *( ) ( )B s vf y f f f y= ⊗ ⊗ . 
 
This convolution can be computed in O(n log(n log n)) time, with n the smallest 

power of two that is at least twice as large as the maximal delay for which fs(n), 
f *(n) or fv(n) is unequal to zero. Note that a straightforward computation would 
have required m3 steps, with m ∈ N the maximal time unit for which either  fs(m), 
f *(m) or fv(m) is unequal to zero. 

Choice 

The final block to consider is the choice block. Let B be an SWN initially marked 
at initial timed state M0 with a choice network structure (see Figure 4.3).  

Assume that the initial transition s of the underlying workflow net is immedi-
ate. The other two transitions t and u are timed with delay probability densities ft 
and fu and weights wt and wu. Let SWN B induce the stochastic process SP = { 
(Xn, Yn, Zn) | n = 0, 1, 2, Ö } (see Definition 2.19). 

 

u

t

s

wt 

wu  
Fig. 4.7. SWN with choice structure 

Given the net structure and the general initial timed state, each transition fires 
at most once. For each transition v ∈ {s, t, u}, we define random variable v which 
is the delay that transition v imposes if it fires. Formally, v = e 

. We consider the throughput time density f: Y Zn nn v⇔ ∃ ∈ = ∧ =N e B. 
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From this expression follows that we can compute Bf in O(n) time, with n equal 
to the maximal delay for which either ft(n) or fu(n) is unequal to zero.  

 
For the general case where s is timed, we denote with f *

 (y) the throughput time 

density ( )t t

t u

w f y
w w

⋅
+

+
 ( )u u

t u

w f y
w w

⋅
+

. On the basis of throughput time density expres-

sion for a workflow net with a sequence structure, we may derive that if s is timed 
and we use fB as the throughput time density of the entire SWN B, then: 

 
for y ∈ N, *( ) ( )B sf y f f y= ⊗ . 
 

This computation has a similar complexity as the computation required for an 
SWN with a sequence structure. 

We will illustrate here the approach to compute the throughput time density of 
a constructed SWN. We use as basis for this construction the rightmost workflow 
net as synthesized in Figure 4.4. The SWN that has been constructed is depicted at 
the left-hand side of Figure 4.8. Recall that ordinary transitions in an SWN are 
timed and are depicted as transparent blocks labeled with their identity; immediate 
transitions are depicted as black bars and are usually not labeled (see also Figure 
2.3). 
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Fig. 4.8. Computation of the throughput time density of an SWN 

Only two transitions of the leftmost SWN in Figure 4.8 have been assigned 
weights that are unequal to 1. Three transitions have been assigned delay functions 
such that their time behavior is immediate; these transitions are not labeled. The 
other transitions t, u, v, w, and x are probability density functions as depicted in 
Figure 4.9.  
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Fig. 4.9. Probability densities  ft, fu, fv, fw, and fx 

 
The first step in computing a throughput time density of the entire SWN is to 

replace the sequence subnet of transitions t and u with a transition tu. (Recall that 
the last step in the synthesis of the underlying workflow net inserted this sequence 
structure.) The probability density function of tu is computed using the previously 
found relation. This step is depicted in Figure 4.8 as the leftmost arrow. Next, the 
parallelism subnet of w and x is replaced by transition wx. This replacement as 
well as the computation of the probability density function of wx is depicted as the 
second arrow from the left in Figure 4.8. The choice subnet of transitions tu and 
wx is subsequently replaced by transition uvwx. Finally, the sequence subnet of 
transitions t and uvwx is replaced by a transition tuvwx. The probability density 
function ftuvwx is exactly the throughput density function of the SWN. This and the 
other, intermediate probability density functions are depicted in Figure 4.10. 

It is straightforward to extend the presented basic structures of sequence, paral-
lelism, and choice to structures with n transitions in sequence, n transitions in par-
allel or n alternative transitions. The expressions for the associated throughput 
density (distribution) functions can be found as generalizations of the presented 
expressions for the basic structures. This extension adds no additional expressive 
power in the construction of an SWN, but it reduces the number of intermediate 
probability distributions in the computation of the throughput density (distribu-
tion) function of the constructed SWN.  
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Fig. 4.10. Probability densities  fuv, fwx, fuvwx, and ftuvwx 

4.3.2 The Iteration Structure 

As mentioned in the previous section, the iteration structure can be considered as 
another basic structure with which a workflow net can be synthesized. With an it-
eration it can be represented that some work that already has been done for a spe-
cific case must be redone and possibly some additional work too. In workflows, 
the reason for an iteration is commonly that a party does not agree with the quality 
of the earlier delivered work. For example, a junior clerk may determine the con-
ditions under which a loan is granted to a client; on checking these conditions, his 
superior may decide that the junior clerk should constrict these conditions.  

Note that if the basic set of network structures introduced in this section is 
augmented with the iteration structure, the same expressive power is attained as 
the process algebra ACP, as described by Bergstra and Klop (1984). Process-
algebraic expressions with ACP can be constructed using the merge (||), choice 
(+), sequential ( ⋅ ), and star ( ∗ ) operators which correspond with the parallelism, 
choice, sequence, and iteration structure. 

A common way of modeling an iteration with Petri nets is presented in Figure 
4.11. It is easy to check that a Petri net PN with an iteration structure is a work-
flow net, that it is sound, and that the system (PN, ! ) is safe. For reasons we de-
scribed in the previous section, the use of a net with a structure like this in the syn-
thesis of a workflow net yields a safe and sound workflow net again. 

i"

It is worthwhile to consider the semantics of the iteration construct in more de-
tail. The stochastic process that is imposed by an SWN with an iteration part may 
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not end. Once the part of the SWN with the iteration construct is initiated it is not 
guaranteed that the iterations will stop. Because all weights of the transitions are 
positive, there is always a probability that another iteration is initiated.  

 

t v

u

s

 
Fig. 4.11. The iteration construct 

In our model, the issue whether a new iteration is started is independent of the 
number of previous iterations. This may in fact be a realistic way of modeling 
when, for example, the probability to re-iterate is relatively low, the time that is 
involved with rework is relatively low, or the iteration decisions are relatively in-
dependent. In an actual workflow this may not be the case. For example, a deci-
sion to re-iterate may be highly dependent on the number of iterations already en-
countered. It can be expected in a realistic workflow that after a fixed number of 
iterations (the cut-off number) a new iteration may be excluded or the process may 
be completely aborted. These options respectively represent the operational deci-
sion to lower the quality criteria or the conclusion that an acceptable quality level 
will never be obtained for this part of the work. 

We will study in this section the time behavior of a conventional iteration con-
struct as depicted, and a special version with a cut-off number. As we will see, the 
conventional iteration, which we will simply refer to as iteration, requires a spe-
cific approach to obtain a throughput time characterization with a finite domain. 
The other type of iteration, which we will call the n-iteration, requires an exten-
sion of the stochastic behavior that can be induced by an SWN. Both structures are 
recognized by Kiepuszewski et al. (2001) as possible ways to model an iteration. 

Iteration  

Consider an SWN B = (P, T, R, W, f) with T = {s, t, u, v} and an iteration network 
structure, such as depicted in Figure 4.11. Assume that B has the general initial 
timed state M0. For the moment, also assume that the initial transition s of the un-
derlying workflow net, as well as the transition v with {v} = •o are both immedi-
ate. Let t and u be the transitions such that s• = •t and s• = u•. Let their delay 
probability densities be given by ft and fu. Given the net structure and the general 
initial timed state, transitions s and v fire one time, transition t fires one or more 
times and transition u fires one time less than t. SWN B induces the stochastic 
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process SP = { (Xn, Yn, Zn) | n = 0, 1, 2, Ö } with throughput time Γ (see Defini-
tion 4.19 and Definition 2.22). For each transition w ∈ {s, t, u, v}, we define ran-
dom variable wi (i ∈ N\{0}) which is the delay that transition w imposes if it fires 
for an ith time. We consider the throughput time density fB. 
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In general, this exact representation does not allow for a convenient computa-

tion of  although this depends on the properties of f( )Bf y t and fu.  
At this point, we will discuss a generally applicable method to efficiently de-

termine a finite representation of . We will use the Discrete Fourier Trans-
form for this purpose, which is explained in some detail in Appendix B. When the 
vector  is the Discrete Fourier Transform of vector 

( )Bf y

y# a#  with length n we write 
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with l = ∞. 
 
We do not know a finite size l of the vectors we have to "feed" the DFT. We 

cannot expect that there is an upper bound for the delay. Or, in other words, that 
there is a value x ∈ N such that for all y > x, fB(y) = 0. After all, t and u can be 
executed infinitely often as wu > 0. We will show how a relevant length of 

#
can 

be determined before actually computing 
B

B
#

. As a starting point, we would be 
most pleased to find a value such that it is highly improbable that the throughput 
time exceeds it. In other words, we are looking for a q ∈ N such that for some 
very small ε holds that . We recall Chebyshev's inequality (see e.g., ( )qΓ ≥ ≤ εP
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Thomasian, 1969): for any random variable x for which exists 2E x holds that 

2

var( ) xx E x c
c

− ≥ ≤P . Using this inequality, and the expected throughput time 

and its variance, it can be determined which part of the probability density falls 
before and which part falls behind a hypothetical border. We will denote the ex-
pected delay of transition w ∈ {t, u} by Ew and the variance of the firing delay by 
var w. The expected value and variance of the throughput time Γ of B are given 
by: 
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so that we can derive using Chebyshev and our desired value ε that: 
 

varq E Γ
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ε
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Given ft and fu, we can compute Et, Eu, var t, and var u. But then we can also 

calculate a vector representation of fB for the iteration block by using the DFT: 
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With the DFT we can compute a vector representation of fB in (q log q) time, 

with q as specified. To appreciate its efficiency we have to establish the comput-
ing time of calculating fB in a straightforward manner. The complexity of this cal-
culation depends on the maximal number of successive times that transitions t and 
u can be executed. We know that if both ft(0) and fu(0) are equal to zero (their im-
posed delay is positive), at most q executions of these transitions are of interest. 
Any more executions of transitions t and u would result in throughput times that 
we do not take into consideration. As a result, a straightforward approach requires 
the convolution of q times the function ft and fu. This is an operation requiring 
O(nq) time, with n the smallest value such that for all m > n, ft(m) = fu(m) = 0. A 
comparison with the O(q log q) time required by the earlier found computation 
method illustrates the efficiency of the latter. Note that our choice for a discrete 
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time domain for the delay functions (see Definition 2.16) has considerably simpli-
fied the application of the Fourier Transform.  

N-iteration  

We will first make the semantics operational of an n-iteration with an example, 
before we analyze the throughput time characterization of such a net. Consider the 
Stochastic Petri net B = (P, T, R, W, f) as depicted on the upper side of Figure 
4.12. The initial timed state of B is M with M(p) = ! , M(q) = ! and for all 
other places 0. The Stochastic Petri net B induces the stochastic process SP = { 
(X

0" 30 "

n, Yn, Zn) | n = 0, 1, 2, Ö } On the basis of the initial timed state it is ensured 
that transition t fires at most 4 times and transition u fires at most 3 times. Because 
(P, T, R) is not a workflow net, its throughput time is not defined. Suppose, how-
ever, that we are interested in the unsound throughput time U: for n ∈ N, U = n ⇔ 
∃m ∈ N: time(Xm) = ∞ ∧ Xm(o)(r) = 1 as a way of making the duration of the 
process SP operational. The Stochastic Petri net with arbitrary weights and 
throughput densities implements a 3-iteration of which we are interested in its un-
sound throughput time. 

Note that if our definition of workflow nets (Definition 2.13) would have al-
lowed so-called weighted arcs, then the upper model could be translated into an 
SWN by making q an output place of s with weight 3. 

Now consider the SWN B' = (P', T', R', W', f ') as depicted on the lower side of 
Figure 4.12.  
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Fig. 4.12. Stochastic Petri net and SWN implementing a 3-iteration 

The initial timed state of B is M0. The SWN B' induces the stochastic process 
SP' = { (X'n, Y'n, Z'n) | n = 0, 1, 2, Ö }. As (P', T', R') is a sound workflow net, the 
throughput time T is defined for B'. Furthermore, suppose that: 

− f '(s1) = f (s),  
− f '(t1) = f '(t2) = f '(t3) = f (t),  
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− f '(u1) = f '(u2) = f (u),  
− f '(v1) = f '(v2) = f '(v3) = f (v), 
− w'u1 = w'u2 = wu, and 
− w'v1 = w'v2 = w'v3 = wv. 

 
Then, it is not hard to see that although the stochastic processes SP and SP' dif-

fer, the unsound throughput time U of B exactly equals the throughput time T of 
B'. In other words, we can use B' to determine a throughput time characterization 
of a Stochastic Petri net that implements a 3-iteration. Without formally proving it, 
we claim that it is always possible to construct an n-iteration with an SWN on the 
basis of a workflow net, following the lines of the example. Obviously, the as-
signment of similar weights and throughput densities to the relevant transitions is 
essential. So, our "construction box" can be extended with the n-iteration. 

To characterize the throughput time of an SWN with an n-iteration structure, 
we consider a Stochastic process B with a network structure as the one in the up-
per half of Figure 4.12. The initial timed state of B is M with M(p) = ! , M(q) = 

and for all other places 0.  For now, we will assume that transitions t and u 
are timed with delay probability densities f

0"
0n! "

t and fu and the other transitions are 
immediate. Given the net structure and the initial timed state, transitions s and v 
fire one time, transition t fires one up to n +1 times and transition u fires zero up to 
n times. SWN B induces the stochastic process SP = { (Xn, Yn, Zn) | n = 0, 1, 2, 
Ö } with unsound throughput time U: for n ∈ N, U = n ⇔ ∃m ∈ N: time(Xm) = ∞ 
∧ Xm(o)(r) = 1. For each transition w ∈ {s, t, u, v}, we define random variable wi 
(i ∈ N\{0}) which is the delay that transition w imposes if it fires for an ith time 
and ∞  otherwise. We consider the unsound throughput time density fB. 
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If we define ( )m
tuf y =

1
( )

m

t t uj
f f f y

=
⊗ ⊗⊗ , then it is not hard to see that 

1( )m
tuf y+ = t uf f⊗ ⊗ ( )m

tuf y . Once the convolution t uf f⊗ (y) is determined 
for all y ∈ N, the convolution for iteration m + 1 can be determined on the basis of 
the convolution for iteration m. So, for the n-iteration we require the computation 
of n + 1 convolutions. Each convolution requires O(l log l) steps with l the small-
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est power of two that is at least twice as large as the maximal delay for the prob-
ability densities that are being convoluted.  

For the general case where s and v are timed, we denote for y ∈ N with f *
 (y) 

the throughput time density 
( ) 1

0

( )m mn
v u tu

m
m u v

w w f y
w w +

= +
∑ . On the basis of the network struc-

ture of the Stochastic Petri Net B, we may derive that if s and v are timed and we 
use fB as the unsound throughput time density of the entire Stochastic Petri Net B, 
then: 

 
for y ∈ N, *( ) ( )B s vf y f f f y= ⊗ ⊗ . 
 
This computation has a similar complexity as the computation required for an 

SWN with a parallelism structure. As we have argued before, the unsound 
throughput time density of a Stochastic Petri net with the structure and marking 
such as depicted in the upper half of Definition 4.12 equals the throughput time 
density of an SWN with the structure and marking such as depicted in the lower 
half of the same figure. 

4.3.3 Other Extensions 

It is possible to extend the set of structures that can be used to synthesize work-
flow nets in the construction of SWN's in several directions. The main require-
ment on such a structure would be that it is a sound workflow net which is safe on 
the basis of marking ! , so that soundness and safeness are preserved during net 
synthesis. In the section we will discuss two further, simple extensions. We will 
also illustrate a possible extension of the approach with a rather complex repeater 
structure. As we will see, the latter extension is based on a class of Petri nets that 
incorporates so-called inhibitor arcs. The notion of soundness for such a net will 
be discussed, so that the repeater structure may be applied in our approach. 

i"

The first two structures that we will discuss are the interleaving and the logic 
choice structures. Two workflow nets with these respective structures are depicted 
at the top and bottom side of Figure 4.13. 

Both structures are recognized by Kiepuszewski et al. (2001) as control patterns 
that are applied in models to be used for the execution of Workflow Management 
Systems. It is not hard to see that a workflow net with either structure is sound and 
that it is safe on the basis of the initial marking ! . The proof could easily be 
given by a finite reachability graph. As a result, safeness and soundness are pre-
served in net synthesis on the basis of these net structures. Note that a net with an 
interleaving structure is, however, not free-choice. We will subsequently discuss 
the semantics and throughput characterization of both structures. 

i"
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Fig. 4.13. Workflow nets with interleaving and logic choice structure 

Interleaving 

The interleaving structure can be used to specify that two tasks are to be executed 
one after another, although it is not deterministically specified which task should 
be executed first or second. The tasks are said to be interleaved. This kind of 
structure is typically relevant in situations where resources are to be shared among 
tasks. When an SWN is constructed on the basis of the workflow net at the top 
side of Figure 4.13 the tasks that are interleaved are represented by transitions u 
and v. By assigning (un)equal weights to t and u, the probabilities of the different 
orderings are (a)symmetric. 

Let B be an SWN initially marked at general timed state M0 on the basis of the 
workflow net at the top side of Figure 4.13. Assume that transitions t and w are 
immediate. The other two transitions u and v are timed with delay probability den-
sities fu and fv and weights wt and wv. Let SWN B induce the stochastic process SP 
= { (Xn, Yn, Zn) | n = 0, 1, 2, Ö }. Given the net structure and the initial timed 
state, each transition fires at most once. For each transition s ∈ {t, u, v, w}, we de-
fine random variable s which is the delay that transition s imposes if it fires. We 
also define random variable x, which takes on either the value u or v, depending 
on which transition fires first. (Note that all transition firings are ordered, see 
Definition 2.19.) We consider the throughput time density fB.  
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This computation is identical to that of the sequence construction that we dis-
cussed before and it has an identical complexity. The extension of this specific 
case to the general case where transitions t and w are also timed is straightforward. 

Logic Choice 

The logic choice structure can be used to specify that, considering two tasks a and 
b, one of the following events may happen: 

− Exactly one of these tasks is executed (either a or b). 
− Both tasks are executed. 

We may say that a ∨ b is executed, hence the name logic choice. When an 
SWN is constructed on the basis of the workflow net at the bottom side of Figure 
4.13, a logic choice between two tasks can be modeled using the transitions w and 
x. By assuming an initial marking !  of the corresponding workflow net, the 
model has the following semantics: 

i"

− Execution of transition t means that transition w is to be executed, but not x. 
− Execution of transition u means that both transition w and x are to be executed. 
− Execution of transition v means that transition x is to be executed, but not w. 

To represent a correct time behavior of this logical construction within an 
SWN, transitions w and x are assigned proper delay probability densities, while all 
other transitions are modeled as immediate transitions. Transitions are assigned 
proper weights to express the probabilities of each of the three possible executions 
of the net. Let B be such an SWN, with delay probability distributions Fw and Fx 
and weights wt, wu, and wv. Let SWN B induce the stochastic process SP = { (Xn, 
Yn, Zn) | n = 0, 1, 2, Ö }. Given the net structure and the initial timed state, each 
transition fires at most once. For each transition r ∈ {s, t, u, v, w, x, y}, we define 
random variable r which is the delay that transition r imposes if it fires. We con-
sider the throughput time distribution FB. 

Let y ∈ N, ( )BF y =  
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The computation of the distribution function FB can be performed in n steps, 
with n the minimal delay for which both  Fw(n) and Fx(n) are equal to 1. The ex-
tension of this specific case to the general case where the other transitions are also 
timed is straightforward. 

Repeater 

We end this part by considering the repeater network structure. A repeater is an-
other recognized common control in workflow processes (see Kiepuszewski. 
2001). It should be possible to execute some task one or more times, without a 
build-time confinement on the maximal number of executions. Furthermore, the 
multiple instantiations of this task may be executed in parallel. A Petri net with 
this structure is depicted in Figure 4.14. The task that can be repeated is modeled 
by the transition w. 
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Fig. 4.14. Workflow net with repeater structure 

In the depicted Petri net, a new kind of arc - an inhibitor arc - is used connect-
ing place c with transition x. It is represented by a line terminating with a small 
circle at the transition instead of an arrowhead. An inhibitor arc disables the transi-
tion when the input place has a token and enables the transition when it has no to-
ken and other (normal) input places contain at least one token. No tokens are 
moved through an inhibitor arc when the transition fires. A class of Petri nets with 
inhibitor arcs is referred to as extended Petri nets (see e.g., Murata, 1989). The ex-
tended Petri net may very well be used as the basis for notions such as the ex-
tended workflow net, the Stochastic Extended Petri net (SEPN), and the Stochastic 
Extended Workflow net (SEWN). We will not formally define these notions here, 
but confine ourselves to an informal discussion of the modifications required.  

We suppose that an extended Petri net can be characterized by a tuple (P, T, R, 
E), where E is an inhibitor relation similar to R, the flow relation. E represents the 
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inhibitor arcs in effect, which may only lead from places to transitions. For each 
inhibitor arc leading from place p to transition t, place p is said to be an inhibitor 
place of t. Standard notions such a safeness, liveness, etc. apply to extended Petri 
nets. Any extended Petri net (P, T, R, E) can be considered to be an extended 
workflow net iff (P, T, R) is a workflow net. In other words, if by disregarding the 
inhibitor arcs the remaining net is a workflow net, we consider the original net to 
be a valid extended workflow net. We will identify the special source place and 
sink place of such an extended workflow net with the common identifiers i and o. 
The soundness property for an extended workflow can be formulated in exactly 
the same terms as for common workflow nets.  

An SEPN (P, T, R, E, W, f) is an extended Petri net (P, T, R, E) with weights 
(W) and a delay function (f) associated with it. The weights and delay function are 
similarly defined as in the definition of a Stochastic Petri net (see Definition 2.16). 
The state of an SEPN may be characterized also by the common notion of a timed 
state. The stochastic behavior that is induced by an SEPN is, however, different 
from that of a Stochastic Petri net. In particular, the original function fire (see 
Definition 2.19) that is used in the characterization of the induced stochastic proc-
ess needs some modification. In an SEPN with some timed state s, only those tran-
sitions qualify to be part of fire(s), if their inhibitor places (if any) are empty. Fi-
nally, an SEPN (P, T, R, E, W, f) is a valid SEWN iff (P, T, R, E) is an extended 
workflow net. Because soundness is defined for extended workflow nets, the 
throughput time is defined as well.  

Now we return our attention to the net in Figure 4.14 which is clearly an ex-
tended workflow net. It can be used to construct an SEWN to analyze the time be-
havior of (a part of) a workflow where a particular task is executed repetitively, 
without a prior specification of the number of times it is executed. This particular 
task should be modeled by assigning to transition w the appropriate delay charac-
terization. The weights that are assigned to the transitions t and v in such an 
SEWN determine the likelihood that w is executed multiple times. If it is to be en-
sured that the multiple executions of transition w are enabled at exactly the same 
time, transitions t and v should be immediate. Although it is not strictly necessary 
for obtaining a throughput characterization of an SEWN on the basis of this re-
peater structure, we will assume that transitions s, w,  x and z are always the only 
timed transitions. 

It is not hard to see that the extended workflow net in Figure 4.14 is not safe if 
it is initially marked at ! . In particular, places c, d, and f are not bounded. The 
net, however, is sound. We will use a graph of the relations between the reachable 
markings from  as depicted in Figure 4.15 to argue the soundness. 

i"

i! "
In the graph 6 states are recognized, labeled with Mi for i ∈ [0..5]. A soon as 

transition s fires on the basis of state !  (Mi" 0), state M1 is reached with K = 0 and 
L = 0. So, the first time state Mi is encountered the marking equals ! . Each 
time that transition u fires in a state M

,a g"
1 for some K, L ∈ N, a state M2 is reached 

where both K and L are raised by one. The firing of transition t in state M2 for 
some K,  L  ∈  N  brings the system back  in  state  M1  with unchanged  K  and  L.  
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Fig. 4.15. Reachable markings of the repeater net 

Analogously, the firing of transition v in state M2 for some K, L ∈ N brings the 
system to state M3 with unchanged K and L. In state M3 holds that if K = 0, then 
transition x may fire bringing the system to state M4 and, by firing z, in the final 
state o (M5). For each of the states M1, M2, and M3 with some K and L holds that if 
L > 0, then transition w may fire. The firing of w lowers the value of L by 1. Simi-
larly, for each of the states M1, M2, and M3 with some K and L holds that if K > 0 
and K ñ L > 0 then transition y may fire. The firing of y lowers the value of K by 1. 

From the graph of reachable states, it may be concluded that for each state M1, 
M2, and M3 holds that K ≥ L ≥ 0. The probability that v will never fire is equal to 
zero, because the net is eager and the weight of v positive. Therefore, it is ensured 
that M3 is reached eventually. As long as L > 0, the only transitions that may fire 
in this state are y and w. Their firing respectively lower the values of K and L until 
L = 0. Then, only transition x may fire followed by the firing of z. So, there is only 
one final state, it will always be reached, and this final state is ! . Hence, the ex-
tended workflow net with a repeater structure is sound. At this point, it is clear 
that we may consider the throughput time behavior of an SEWN on the basis of a 
repeater network structure. 

i"

Now we turn to the formal analysis of the repeater structure. Let B be an 
SEWN constructed on the basis of an extended workflow net with a structure such 
as in Figure 4.14. B has a delay probability distribution Fw and weights wt and wu. 
Assume furthermore that all other transitions are immediate. Let SEWN B induce 
the stochastic process SP = { (Xn, Yn, Zn) | n = 0, 1, 2, Ö }. Given the net structure 
and the initial timed state, transitions t, u, w, and y may fire multiple times. Every 
other transition fires at most once. For each transition r ∈ {s, t, u, v, w, x, y}, we 
define random variable ri (i ∈ N\{0}) which is the delay that transition r imposes 
if it fires for an ith time. Note that although the multiple firings of w take place at 
the same time, there is a firing order that can be distinguished (see Definition 
2.19). We also define random variable n, which is the number of times that w is 
executed before the final state is reached. We consider the throughput time distri-
bution FB. 

 



154      4 Performance Evaluation of Workflows 

Let z ∈ N, ( )BF z = 
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The computation of the distribution function FB can be performed in m steps, 

with m the minimal delay for which Fw(m) is equal to 1. The extension of this spe-
cific case to the general case where transitions s, v, x, and z are also timed is 
straightforward. 

Note that because an extended workflow net with a repeater structure initially 
marked at !  is not safe, it is not ensured by applying a synthesis step on an arbi-
trary transition in such a net that another sound extended workflow net is obtained 
(see Theorem 2.4). Note also that we have considered one of several ways to 
model a net with a repeater structure. A similar network may also be constructed 
by adding priorities to the standard Petri net or by introducing recursion. 

i"

The discussion of the repeater network ends this section. In the next section we 
will discuss an approach that delivers probabilistic bounds for the throughput time, 
instead of exact results. 

4.4 Bounded SWN Analysis 

In this section we present a computational approach that determines for any place 
in a sound, free-choice, and acyclic SWN an upper and lower bound for the prob-
ability that a token arrives in it at a specific time, assuming the general initial 
timed state M0 (see Definition 2.18). In other words, given a specific time value 
we have bounds for the probability that a token arrives at or before that time. Ob-
viously, for the special sink place o of a workflow net this yields a characteriza-
tion of the throughput time.  

The bounds that we present in this section are based on two ideas. The first idea 
is that a lower bound for the probability that a token arrives at or before a specific 
time can be obtained by treating the arrival times of tokens in places as independ-
ent events. This is, in general, not the case. Take, for example, two places that are 
the output places of the same transition (and only of this transition). The arrivals 
of tokens in these places will always take place at the same time. Assuming this 
independency will give a pessimistic estimation of the firing times of transitions 
that synchronize these tokens, i.e., to fire later. On an abstract level, this idea can 
be seen as an application of a theorem by Barlow and Proshan (1975). They 
proved that if X is a vector of associated random variables, then its independent 
version is stochastically greater than X.  

The other idea exploits that a transition can never fire until tokens for all its in-
put places have arrived. Considering the arrival of tokens in only one of these in-
put places will always give an optimistic estimation of the firing time of such a 
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transition, i.e., to fire earlier. To prevent from being overly optimistic, the place is 
taken that probably has the latest arrival time. 

Consider the example SWN WF = (P, T, R, W, f)  in Figure 4.16. The SWN 
WF has a delay function f as given in Table 4.1. All weights equal 1. Note that for 
each transition s, fs is a probability density function over N. So for each fs(v) with 
v ∈ N that is not listed holds that  fs(v) = 0.  

 

b v

a u

d

c

i ot

 
Fig. 4.16. Example SWN for bounds 

Table 4.1. Delay densities 

transition   s fs(0) fs(1) fs(2) fs(3) fs(4) 
t 0 1/2 0 1/2 0 
u 0 1/2 0 1/2 0 
v 0 0 1/2 0 1/2 

 
If we define for each transition s ∈ T the random variable s as the delay of its 

firing and for each place p ∈ P the random variable p as the arrival time of a to-
ken, it can be easily determined that Table 4.2 describes the complete time behav-
ior of WF. Each entry of this table links a combination of possible delays of transi-
tions t, u and v to the arrival times of tokens in the places of WF. Each 
combination of delays is equally probable (= 1/8). 

Table 4.2. Time behavior of WF 

t u v i a b c d o 
1 1 2 0 1 1 2 3 3 
1 1 4 0 1 1 2 5 5 
1 3 2 0 1 1 4 3 4 
1 3 4 0 1 1 4 5 5 
3 1 2 0 3 3 4 5 5 
3 1 4 0 3 3 4 7 7 
3 3 2 0 3 3 6 5 6 
3 3 4 0 3 3 6 7 7 
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On the basis of this time behavior it is possible to compute for places c and d 
distribution functions Fc and Fd . For example, the probability that a token arrives 
in c at or before the time of 4 is 6/8, as 6 out of the 8 possible and equally prob-
able events satisfy this property (see Table 4.2). The distribution functions are 
given in Table 4.3. Note that for each time value below 2 either distribution func-
tion yields 0 and for each value above 7 either function yields 1. 

Table 4.3. Probability distributions for c and d 

x Fc(x) Fd(x) 
2 2/8 0 
3 2/8 2/8 
4 6/8 2/8 
5 6/8 6/8 
6 1 6/8 
7 1 1 

 
The computation of the lower bound treats the arrival times in places such as c 

and d as independent random variables. If this was true in the case of the example, 
the value of the throughput time distribution of WF for time value x, FWF(x), could 
be computed as the product of Fc(x) and Fd(x) (see the parallelism structure in Sec-
tion 4.3). The upper bound takes for each time value x the minimum of the distri-
bution functions Fc(x) and Fd(x). The outcomes of the approaches are given in Ta-
ble 4.4, as well as the real distribution function. Note that for each time value 
below 2 all functions yield 0 and for each value above 7 all functions yield 1. 

Table 4.4. Pessimistic, real, and optimistic throughput time distributions for WF 

x Fc(x)⋅ Fd(x) FWF(x) min(Fc(x),Fd(x)) 
2 0 0 0 
3 4/64 1/8 2/8 
4 12/64 2/8 2/8 
5 36/64 5/8 6/8 
6 6/8 6/8 6/8 
7 1 1 1 

 
For this example, it can be verified that the pessimistic approach indeed renders 

a lower bound for the throughput time distribution of WF and that the optimistic 
approach renders an upper bound. Note that the example SWN has the parallelism 
structure as discussed in Section 4.3. We already presented an approach to give an 
exact solution for this case. The bounds that we discuss in this section, however, 
are applicable to the entire class of SWN's with a sound, free-choice, and acyclic 
underlying workflow net. 

In the remainder of this section we will first formally define the bounds as in-
formally introduced. Before we prove the correctness of these bounds on the basis 
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of the stochastic process an SWN induces, we will present some supporting prop-
erties and lemmas. In the last subsection we will illustrate the approach with a 
more complicated example. 

4.4.1 Bounds and Supporting Notions 

The bound functions F*#  and F
*#

 that can be used to approximate the throughput 
time behavior of an SWN are defined as follows.  

Definition 4.2 (Lower arrival bound F*# ). Given a sound, free-choice, and 
acyclic SWN WF = (P, T, R, W, f) that is marked at general initial timed state M0, 
for each place p ∈ P the lower arrival bound pF*#  is defined as: 

− ( ) 1pF m =*# , for m ∈ N and p = i, 

− ( )pF m =*#
0

[ ] T

( )( )
( )

m

t
n t p

u t

w tf n
w u= ∈•

∈ ∩

⋅∑∑ ∑
(q

q t

)F m n
∈•

⋅ −∏ *# , for m ∈ N and p ≠ i. 

If confusion can arise about the SWN context of F*# , we use the notation WFF*# . 

Definition 4.3 (Upper arrival bound F
*#

F

). Given a sound, free-choice, and 
acyclic SWN WF = (P, T, R, W, f) that is marked at general initial timed state M0, 
for each place p ∈ P the upper arrival bound p

*#
 is defined as: *#

− ( ) 1pF m = , for m ∈ N and p = i, 

− ( )pF m =
*#

0
[ ] T

( )min ( ) ( )
( )

m

qtq t
n t p

u t

w tf n F m
w u∈•

= ∈•
∈ ∩

 
 ⋅ ⋅ 
 
 

∑∑ ∑
*#

n− . 

*#
If confusion can arise about the SWN context of F , we use the notation WFF

*#
. 

 
We claim for any SWN WF with initial timed state 0M , special sink place o 

and m ∈ N that is a lower bound and ( )oF m*# ( )pF m
*#

 is an upper bound for the 
value of the throughput time distribution FWF(m) (see Definition 4.22). We will 
formalize and prove this claim further in this section. First we focus on the com-
putation of these bound functions F*#  and F

*#
, which can be computed for any 

sound, free-choice and acyclic SWN by making one pass through the net and in-
specting each of its nodes exactly once. We will first informally describe such a 
computation. 

First, an upper bound N ∈ N for the total throughput time must be established. 
A simple upper bound for the maximal throughput time is, for example, |T|⋅d, with 
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|T| the number of transitions of the SWN under consideration and d the maximal 
delay any of these transitions may impose. Obviously, the bound functions for any 
place may safely be set to 1 for each value that supercedes the maximal through-
put time: the probability that a token arrives before this time in any place is 1. 

Next, for each place in the net the value of the bound functions for domain val-
ues between 0 and N must be established. An efficient way of computing the val-
ues for the bound functions is to distinguish an ordered set of layers in the net and 
compute the bounds of the places per layer. The first layer consists of place i only, 
the second layer consists of all places that are output places of transitions that have 
places from the former layer as input places, etc. Distinguishing layers like this is 
feasible as the SWN's under consideration are acyclic. By this layer-wise inspec-
tion, each place is inspected exactly once. When the highest layer ñ that consists 
of place o only ñ is inspected the computation is finished. In Figure 4.17, the SWN 
that has been constructed in Section 4.3 is once more depicted (see Figure 4.4). 
Each place is assigned to one of the ordered layers 0 to 6 in the above described 
fashion. 

Before we will prove the correctness of the defined bounds on the basis of the 
stochastic process an SWN induces, we consider some properties of the underly-
ing workflow nets that will prove to be useful. We start with observations about 
the number of firings and the number of times that places are marked. 

 
0 1 2 3 4 5 6

 
Fig. 4.17. Layers in an acyclic SWN 

Lemma 4.1 (Single firing of transitions.) Given a safe and acyclic work-
flow net W = (P, T, R) initially marked at ! , it holds that if M Mi" 1t→

t t

i"

1, 
M1 2→  M2, Ö, Mn-1 n→ Mn are transition firings with M reachable from the 
initial marking ! , then each transition will fire at most once:  

(∀ i, j: 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n: ti = tj ⇒ i = j). 
Proof. Consider transition firings Mi-1 it→  Mi and Mj-1 jt→  Mj and suppose 
that ti = tj. Without loss of generality, also assume that 1 ≤ i < j ≤ n. Given is that if 
σ = titi+1ti+2..tj-1tj, then Mi-1  Mσ→ j. Define V = { tl | i ≤ l ≤ j ∧ path(ti→tl) } and 
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U = { tl | i ≤ l ≤ j } \ V. Suppose that there are v ∈ V and u ∈ U such that  v• ∩ •u 
≠ ∅; then there is a path from v to u and therefore from ti to u; so u ∈ V which 
leads to a contradiction. We conclude that V• ∩ •U= ∅. On the basis of the Ex-
change Lemma (see Theorem 2.1) we may now deduce  Mi-1 U V| |σ σ→  Mj. Con-
sider the first possible case: tj ∈ V. Because we assumed that ti = tj, there must be 
a path from tj to tj on the basis of the definition of V, i.e., there is a cycle. Because 
the net is acyclic, this leads to a contradiction. Consider the second possible case, 
tj ∈ U.  Note that the last element of U|σ is tj and the first element of V|σ is ti. Let 

V' = V\{ ti } and U' = U\{ tj }. Then Mi-1  MU V| |σ σ→

nt→

2t→

j can be rewritten as Mi-1 
 MU' V'| |j it tσ σ→ j. Because there are no causal relations between tj and ti (acyclic-

ness) and ti = tj this means that there is a marking M' such that Mi-1 M'U'|σ

i"
nt→

→  and 
tj and ti both enabled at M'. As ti = tj this means that ti is enabled multiple times. 
Because the system (W, ! ) is safe, this leads to a contradiction. As ti" j is neither 
part of U or V, our assumption that ti = tj while i ≠ j must be invalid. □ 

i"

Definition 4.4 (Single-marking workflow net). A workflow net W = (P, T, R) 
is said to be single-marking if for any place p ∈ P and for each sequence of transi-
tion firings M M1t→ t

1t

i"

1, M1 2→  M2, Ö, Mn-1 Mn where M marks p and 
M is reachable from initial marking !  holds that place p will not be marked 
again after it becomes unmarked:   

(∀i :1 ≤ i ≤ n: M(p) > 0 ∧ Mi(p) = 0) ⇒ (∀j : i < j ≤ n: Mj(p) = 0). 
 
The following lemma gives the relation between the introduced notions. 

Lemma 4.2 (Single-firing of place predecessors follows from single-
marking). If the workflow net W = (P, T, R) initially marked at !  is single-

marking, it holds that if M M→ 1, M1  M2, Ö, Mn-1 Mn are tran-
sition firings with M reachable from the initial marking ! , then for each place p 
∈ P at most one transition t ∈ •p will fire: 

(∀ i, j: 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n: ti• ∩ tj• ≠ ∅ ⇒ i = j). 
Proof. Suppose there are transitions ti and tj such that ti• ∩ tj• ≠ ∅ and i ≠ j. Then 
there is at least one place p ∈ P, p ∈ ti• ∩ tj• that will be marked more than once. 
This leads to a contradiction. □ 

 
Lemma 4.2 states that in a single-marking workflow net each transition can fire 

at most once. The single-marking property can be derived from other standard 
properties of workflow nets. 

Lemma 4.3 (Single marking lemma.) A sound, free-choice, and acyclic 
workflow net W = (P, T, R) is single-marking.  
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Proof. Consider an arbitrary place p ∈ P and arbitrary transition firings 
M M1t→ 1, M1 2t→  M2, Ö, Mn-1 nt→ Mn where M marks p and M is 
reachable from initial marking ! . For p = o follows that this place will never 
become empty after it becomes marked (soundness). Now consider the case p ≠ o. 
On the basis of the soundness and free-choice property of W, we deduce that (W, 
i) is safe (see Theorem 2.3). Suppose a marking M

i"

i, 1 ≤ i ≤ n, such that Mi(p) = 0 
and it is the first one too. Also suppose a marking Mj, i < j ≤ n, such that Mj(p) = 1. 
Then, place p is marked, unmarked and marked again. Define E = [p] ∩ T (the set 
of transitions with p as input place). On the basis of the firing rule, ti ∈ E. Because 
the net is sound, there must also be a transition firing Mk-1  Mkt→

1 2 ..t t t

k, j < k ≤ n, 
which removes the token from the non-sink place p. Obviously, tk ∈ E. But be-
cause the net is free-choice, Mk-1 enables all transitions in E including ti. So, a fir-
ing sequence ρ = t1t2..ti..tj..ti can be constructed such that M M' is a 
firing sequence for some marking M' with t

.. ..i j it t→
i occurring twice. But we know that 

each transition can fire at most once in a safe and acyclic net (see Lemma 4.1). So, 
the existence of markings Mi and Mj must be in error. □ 
 

On the basis of this lemma, we can establish for each sound, free-choice, and 
acyclic SWN that during the stochastic process induced by it, it is ensured that 
there is at most one, unique time stamp for each of its places for all the timed 
states encountered. 

We end this section by the presentation of a general result which is used in the 
proof in the following section of the correctness of the bounds as defined with 
Definition 4.2 and Definition 4.3.  

Theorem 4.1 (Monotonicity inequality). Let f and g be either monotonic 
nondecreasing or monotonic nonincreasing, positive functions on N and let x be a 
random variable. Then for random variables f(x) and g(x) holds that:  

E f(x) g(x) ≥ E f(x) E g(x). 
Proof. See Ross (1996). □ 

4.4.2 Correctness of Lower and Upper Bounds 

We introduce in this section two types of random variables on the stochastic proc-
ess an SWN induces:  
 
a. Ap is the value (time stamp) of the token if a token ever arrives in place p and 

it equals ∞ if no token ever reaches place p, 
b. Bt is the delay that transition t imposes if it fires and it equals ∞  if the transi-

tion will never fire. 
 

Their formal definitions are as below. 
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Definition 4.5  (Random variables A, B). Given an SWN WF = (P, T, R, W, 
f) with general initial timed state M0 and the stochastic process it induces, SP = { 
(Xn, Yn, Zn) | n = 0, 1, 2, Ö } (see Definitions 2.16 and 2.19), random variables A 
and B are defined as follows, k, e ∈ N: 
1. for p = i, Ap = 0, 

for p ∈ P\{ i }, Ap = k  
2. : ,t p e n⇔ ∃ ∈• ∃ ∈ N : Y (X ) Zn nt time k e en= ∧ = − ∧ =

e

, 
3. for t ∈ T, Bt = e . : Y Zn nn t⇔ ∃ ∈ = ∧ =N

 
With these random variables we can express the goal of the functions F*# and  

as: for each place p and for any time value n ∈ N, 

F
*#

( )pF n*# [ ( )pF n
*#

] gives a lower 
bound [upper bound] for the probability that Ap equals or is less than n. These 
claims will be formalized as Theorems 4.2 and 4.3. The value of random variable 
Ap for any place p depends on the delay of the transition that marked p and the 
time stamps of its input places. 

Lemma 4.4 (Arrival time depends on firing). Given an SWN WF = (P, T, 
R, W, f) with general initial timed state M0, the stochastic process it induces, SP = 
{ (Xn, Yn, Zn) | n = 0, 1, 2, Ö } (see Definitions 2.16 and 2.19), and random vari-
ables A and B (Definition 4.5), for each place p ∈ P\{ i } and k ∈ N holds that 
A p = k ⇔ ∃ . : max A Bq tq t

t p
∈•

∈• + = k

Proof. First we prove A k ⇒ p = : max A Bq tq t
t p k

∈•

 ∃ ∈• + =  
.  

(1) Definition 4.5.1 states that  
Ap = k [ : ,t p e n⇔ ∃ ∈• ∃ ∈N : Y (X )n nt time k e= ∧ = − ]Zn e ∧ = , 

(2) From Definition 4.5.2 follows that 
Y Zn nt e= ∧ =  ⇒ , Bt e=

(3) (1) and (2) lead to:  
Ap = k ⇒ [ : ,t p e n∃ ∈• ∃ ∈N : Bt e= ∧ ]Y (X )n nt time k e= ∧ = − , 

(4) So, Ap = k ⇒ 
[ : :t p e∃ ∈• ∃ ∈N Bt e= ∧ ]: Y (X )n nn t time k e∃ ∈ = ∧ = −N . 

 
We need the following property: 

(5) max Aqq t
l

∈•
= ⇔ [ ]: (X ) Y [n nn time l t∃ ∈ = ∧ ∈N ]  

The proof of this property is as follows: 
− because the net WN is free-choice, one of the transitions in cluster [t] will fire 

if ma because only transitions in cluster [t] are enabled by •t, x Aqq t
l

∈•
=
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− from the definition of g follows that SP is eager. In other words, if a transition 
t can fire at time l it will fire at time l, unless a conflicting transition u fires, 
disabling t.  

 
(6) On the basis of (4) and (5):  

[ ]: Y (X )n nn t time k∃ ∈ = ∧ = −N

[ ]: (X ) Y [n nn time k e t∃ ∈ = − ∧ ∈N
e

]
⇒

 ⇒ max Aqq t
k e

∈•
= − , 

(7) Ap = k ⇒  ⇔ : : B max At qq t
t p e e k e

∈•

 ∃ ∈• ∃ ∈ = ∧ = −  
N

 . : max A Bq tq t
t p k

∈•

 ∃ ∈• + =  
This is the first part of the proof.  

Now we prove that  ⇒ : max A Bq tq t
t p k

∈•

 ∃ ∈• + =  
A p = k. 

(8) ⇔ 

, 

: max A Bq tq t
t p k

∈•

 ∃ ∈• + =  

: : Bt p e e∃ ∈• ∃ ∈ =N max At qq t
k e

∈•

 ∧ = −  
(9) On the basis of (5) and (8):  

: max A Bq tq t
t p k

∈•

 ∃ ∈• + =  
[ : :t p e∃ ∈• ∃ ∈N Bt e

⇒  

= ∧ ]: (X ) Y [n nn time k e ]t∃ ∈ = − ∧N ∈  
(10) Because Bt = e, transition t fires and only one transition in [t] can fire, 

[ :t p e∃ ∈• ∃ ∈N : Bt e= ∧ 

]: (X ) Y [n nn time k e∃ ∈ = − ∧ ∈N ]t  

 ⇒ [ : :t p e∃ ∈• ∃ ∈N Bt e= ∧  

   , ]: (X ) Yn nn time k e∃ ∈ = − ∧ =N t
(11) From Definition 4.5.2 follows that Bt = e [ ]: Y Zm mm t⇒ ∃ ∈ = ∧ =N e  

and because t fires at most once (results from the single-marking property 
of WN, Lemma 4.3), it holds that m = n, so we can conclude that  
[ :t p e∃ ∈• ∃ ∈N : Bt e= ∧ 

]: (X ) Yn nn time k e∃ ∈ = − ∧ =N t  ⇒ 

 [ : ,t p e n∃ ∈• ∃ ∈N : Bt e= ∧ 

   ](X ) Y Zn ntime k e t en= − ∧ = ∧ = .  
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(12) From (9), (10), (11) and Definition 4.5.1 we conclude 

 ⇒: max A Bq tq t
t p k

∈•

 ∃ ∈• + =  
A p = k.  

□ 
 

At this point, we can express the probability that a place p is marked with time 
stamp k. 

Lemma 4.5 (Arrival probability). Given an SWN WF = (P, T, R, W, f) 
with general initial timed state M0, its stochastic process SP = { (Xn, Yn, Zn) | n = 
0, 1, 2, Ö } (see Definitions 2.16 and 2.19) and random variables A and B (see 
Definition 4.5), for each place p ∈ P\{ i } and k ∈ N holds that: 

P[Ap= k] =
0

[ ]

( )( )
( )

k

t
l t p

u t

w tf k l
w u= ∈•

∈

−
∑∑∑ max Aqq t

l
∈•

 =  
P  

Proof.  
 P[Ap = k] 
= { Lemma 4.4 } 

  : max A Bq tq t
t p k

∈•

 ∃ ∈• + =  
P

= { because WN is a single-marking workflow Lemma 4.2 applies: there is at 
most one transition t ∈ •p that fires; therefore, probabilities may be summed } 

  max A Bq tq tt p

k
∈•

∈•

 + =  ∑ P

= { calculus } 

  
0

B max A
k

t qq tl t p

k l l
∈•

= ∈•

 = − ∧ =  ∑∑ P

= { apply auxiliary lemma (5) used in the proof of Lemma 4.4 } 

 [
0

B : (X
k

t n
l t p

k l n time l
= ∈•

= − ∧ ∃ ∈ = ∧∑∑ P N ) ]Y [ ]n t∈  

= { Definition 4.5.2 } 

 [
0

: Y Z
k

n n
l t p

n t k
= ∈•

∃ ∈ = ∧ = − ∧∑∑ P N l ](X ) Y [ ]n ntime l t= ∧ ∈  

= { because WN is a single-marking workflow Lemma 4.2 applies: there is just 
one n such that Yn = t; so, probabilities may be summed } 

 [
0

Y Z
k

n n
l t p n

t k
= ∈• ∈

= ∧ = − ∧∑∑ ∑
N

P l ](X ) Y [ ]n ntime l t= ∧ ∈  

= { probability calculus } 
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 [
0

Z | Y
k

n n
l t p n

k l t
= ∈• ∈

= − = ∧∑∑ ∑
N

P ](X ) Y [ ]n ntime l t= ∧ ∈ ⋅

 [ ](X )n l= ⋅Y | Y [ ]n nt t time= ∈ ∧P  

 [ ]Y [ ] (X )n nt time l∈ ∧ =P  
= { definition of Zn and Yn, see Definition 2.19; conditional independence of Zn; 

Yn ∈ [t], so fire(Xn) ⊇ [t] } 

 
0

[ ]

( )( )
( )

k

t
l t p n

u t

w tf k l
w u= ∈• ∈

∈

− ⋅∑∑ ∑ ∑N

⋅ [ ]Y [ ] (X )n nt time l∈ ∧ =P  

= { calculus } 

 
0

[ ]

( )( )
( )

k

t
l t p

u t

w tf k l
w u= ∈•

∈

− ⋅∑∑ ∑
⋅  [ ]: Y [ ] (X )n nn t time l∃ ∈ ∈ ∧ =P N  

= { again apply auxiliary lemma (5) used in proving Lemma 4.4 } 

 
0

[ ]

( )( )
( )

k

t
l t p

u t

w tf k l
w u= ∈•

∈

− ⋅∑∑ ∑
max Aqq t

l
∈•

 ⋅ =  
P   

□ 
 

On the basis of Lemma 4.5, we can define the probability that a place p is 
marked at or before time k. 

Lemma 4.6 (Accumulated arrival probability). Let WF = (P, T, R, W, f) 
be an SWN with general initial timed state M0, that induces the stochastic process 
SP = { (Xn, Yn, Zn) | n = 0, 1, 2, Ö } (see Definitions 2.16 and 2.19) with random 
variables A and B (see Definition 4.5). For each place p ∈ P\{ i } and m ∈ N: 

P[Ap ≤ m] = 
0

[ ]

( )( )
( )

m

t
n t p

u t

w tf n
w u= ∈•

∈

⋅∑∑ ∑
max Aqq t

m n
∈•

 ⋅ ≤ −  
P . 

Proof.  
 P[Ap ≤ m] 
=  { probability calculus } 

  
0

[A ]
m

p
k

k
=

=∑P

=  { apply Lemma 4.5 } 

0 0
[ ]

( )( )
( )

m k

t
k l t p

u t

w tf k l
w u= = ∈•

∈

− ⋅∑∑∑ ∑
max Aqq t

l
∈•

 ⋅ =  
P  

= { introduce variable n = k ñ l, so l = k ñ n ; change order of summation k and n: 
n = 0Öm, k = nÖm } 
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0
[ ]

( )( ) max A
( )

m m

t qq tn t p k n
u t

w tf k l k n
w u ∈•

= ∈• =
∈

 − ⋅ ⋅ = −  ∑∑ ∑∑
P  

= { calculus } 

 
0

[ ]

( )( ) max A
( )

m

t qq tn t p
u t

w tf k l m n
w u ∈•

= ∈•
∈

 − ⋅ ⋅ ≤ −  ∑∑ ∑
P  

□ 
 

Random variable Ap depends on the delays of transitions that have led to the 
specific time stamp encountered. Together with Theorem 4.1, this lemma will be 
used to prove that ( )pF m*#  is a correct lower bound (Theorem 4.2). 

Lemma 4.7 (Dependency of arrival on delays). Given an SWN WF = (P, 
T, R, W, f) with general initial timed state M0, its stochastic process SP = { (Xn, 
Yn, Zn) | n = 0, 1, 2, Ö } (see Definitions 2.16 and 2.19) and random variables A 
and B (see Definition 4.5), the time stamp of place p can be expressed as a mono-
tonic, nondecreasing function of the delays imposed by a set of transitions, each 
of which is on a path from the initial place to place p. Formally,  

∀ p ∈ P: Ap = ( )1 2
B , B ,..., B

np t t th , 

for some hp: Nn → N, n ∈ N and {t1, t2, ..., tn} ⊆ { t ∈ T | (i, t) ∈ R* ∧ (t, p) ∈     
R* }. 
Proof. Ap is defined for each p ∈ P. We apply induction on the order of the places 
of the net.  For each node n ∈ P ∪ Ti ∪ Tt: 
− or(n) = 0, if n = i, 
− or(n) = (max m: m ∈ •n: or(m) + 1), if n ≠ i. 
Base. For place i, Ap = 0 (Definition 4.5), so the claim holds. 
Step. Suppose that for each place q ∈ P with or(q) ≤ j, or(i) ≤ j < or(o), holds that: 
− Aq =  ( ),1 ,2 , ( )

B , B ,..., B
q q q n qq t t th with { }⊆{ t ∈ T | (i, t) ∈ R,1 ,2 , ( ), ,...,q q q n qt t t * ∧ 

(t, q) ∈ R*}, n(q) ∈ N, and  
− hq is monotonic nondecreasing in each of its parameters.  
Now consider place p ∈ P with or(p) = j + 1. Then Ap =  max A Bqq t∈• t+ for some t 

∈ T (Lemma 4.4). As or(q) < or(p), Ap= ( ), ( )
,...,B

q n qt

,1 ,2 ,
, B ,..., B

q qt t

,1 ,2
ax B ,B

q qq t tq t
h

∈•

B

m + Bt. Because 

for each q ∈ •t,  hq is monotonic and nondecreasing, this expression for Ap is 
monotonic and nondecreasing in the parameters Bt and for each 

q ∈ •t. Also,  ∪ { t } ⊆ { t ∈ T | (i, t) ∈ R
qt nq

,1 ,2 , ( ){ , ,..., }q q q n q
q t

t t t
∈•
∪ * ∧ (t, p) ∈ R* }: 

all referred transitions in the expression for Ap are on a path from i to p.  □ 
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We now formally express our claim that F*#  and F
*#

are correct lower and upper 
bounds for the arrival times of tokens in sound, free-choice, and acyclic workflow 
nets. At this point, we can also give the proof. 

Theorem 4.2  (Lower bound for arrival probability). Let WF = (P, T, R, 
W, f) with general initial timed state M0 be an SWN that induces the stochastic 
process SP = { (Xn, Yn, Zn) | n = 0, 1, 2, Ö } (see Definitions 2.16 and 2.19) with 
random variables A and B (see Definition 4.5). If (P, T, R) is a sound, free-choice, 
and acyclic workflow net, then for each place p ∈ P and for each m ∈ N holds 
that: 

P[Ap ≤ m] ≥ ( )pF m*# . 

Proof. Ap is defined for each p ∈ P. We apply induction on the order of the places 
of the net.  
Base. For place i, Ap = 0 (Definition 4.5), P[Ap ≤ m] = 1 for any m ∈ N. So the 
claim holds. 
Step. Suppose that for each place q ∈ P with or(q) ≤ j, or(i) ≤ j < or(o), holds that 
P[Aq ≤ m] ≥ ( )qF m*#  for any m ∈ N. Let p ∈ P with or(p) = j + 1 and m ∈ N. Then,  

P[Ap ≤ m] = 
0

m

n t p= ∈•
∑∑

[ ]

( )( )
( )t

u t

w tf n
w u

∈

⋅ ⋅
∑

 max Aqq t
m n

∈•

 ≤ −  
P  on the basis of Lemma 

4.6 [equality (i)]. We focus on the last part of equality (i) and substitute l for m ñ 
n: 

  max Aqq t
l

∈•

 ≤  
P

= { calculus } 
 P     : Aqq t l∀ ∈• ≤

= { order the set •t as {q1, q2,Ö, qc}; suppose on the basis of Lemma 4.7 for each 
qi, 1 ≤ i ≤ c, a function h  such that =  and  monotonic nondecreasing 
in its parameters } 

iq A
iq c

iqh

 P ( ),1 ,2 , ( )1
max B , B ,..., B

i i i i n iq t t ti c
h l

≤ ≤
 ≤ 

 

= { consider q1 and let B = { } be the delays used as parameters of 

 such that each delay B
1 2

B , B ,..., B
bt t t

1qh
jt

B

, 1 ≤ j ≤ b, is also used as a parameter for a function 

, 2 ≤ i ≤ c. Define h  = 
iqh , ( )1 ..., B

n
q t1 1

,..., B , B ,
b bt t t + (1) (1 1,1 1,2

B , B ,q t th    

(reordering and renaming of delays) }  
)1, ( )

..., B
n it

 P , ( )1 1 1 (1)
B ,..., B , B ,..., B max

b b n
q t t t th

+



 ( ),1 ,2 , ( )2
ax B , B ,..., B

i i i i n iq t t ti c
h l

≤ ≤
m ≤ 

 

= { Define =  ( )1 (1) 1 (1) 2 (1) ( )
H B ,..., B , B , B ,..., B

b n n n n ht t t t t+ + +
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( ,1 ,2 , ( )2
max B , B ,..., B

i i i i n iq t t ti c
h

≤ ≤
) for a suitable n(h) ∈ N  (reordering and renaming of 

delays) } 
 P , ( )1 1 1 (1)

B ,..., B , B ,...,B max
b b n

q t t t th
+

1 (1) 1 (1) 2 (1)
H B ,..., B , B , B ,..., B

b n n nt t t t+ +




 ( )( )n ht l
+

≤ 
 

= { probability calculus } 
, ( )1 1 (1)

1 2

1
, ,...,

,..., , B ,..., B
b n

b

q b t t
b b b

h b b l
+

∈

 ≤ ∧∑
N

P

( )(1) 1 (1) 2 (1) ( )1H ,..., , B ,B ,..., B
n n n n hb t t tb b l

+ + +
≤ 

1 21 2B , B ,..., B
bt t t bb b b= = =

⋅ 

 P     

= { on the basis of B and H: independence of B and 

} 
1 (
,..., B

b nt + 1)t

h(1) 1 (1) 2 (1) ( )
B , B ,..., B

n n n nt t t+ + +

, ( )1 1 (1)

1 2

1
, ,...,

,..., , B ,..., B
b n

b

q b t t
b b b

h b b l
+

∈

 ≤ ⋅ ∑
N

P

( )(1) 1 (1) 2 (1) ( )1H ,..., , B , B ,..., B
n n n n hb t t tb b

+ + +
 l≤ P ⋅ 

  P     
1 21 2B , B ,..., B

bt t tb b b= = = b

≥ { on the basis of Lemma 4.7 it can be verified that h and H are monotonic 
nondecreasing functions in their parameters; apply Theorem 4.1 } 

,
1q

 , ( )1 1 (1)1,..., ,B ,...,B
b n

q b t th b b l
+

 ≤ ⋅ P

(1) 1 (1) 2 (1)1H ,..., , B , B ,...,B
n nb t t tb b

+ +( )( )n n h
l

+
 ≤ P  

=  { definitions and H } ,
1qh

 ( ),1 ,2 , ( )2
max B , B ,..., B

i i i i n iq t t ti c
h l

≤ ≤
 ≤ P  

≥ { successively consider the delays of q2, q3, Ö, qc in a similar fashion as for q1} 
  ( ),1 ,2 ,

1

B , B ,..., B
i iq i i i c

i c

h l
≤ ≤

 ≤ P∏  

= { definition h } 
iq

 Aq
q t

l
∈•

 ≤ ∏P  

≥ { induction hypothesis }  
 ( )q

q t

F l
∈•
∏ *#   

We will refer to this derivation as inequality (ii).  
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We consider now again equality (i): P[Ap ≤ m] =  

 
0

[ ]

( )( )
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t
n t p

u t

w tf n
w u= ∈•

∈

⋅
∑∑∑ max Aqq t

m n
∈•

 ⋅ ≤ −  
P  

≥ { apply inequality (ii) with m ñ n = l } 

 
0
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( )( )
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t
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u t

w tf n
w u= ∈•

∈

⋅∑∑ ∑
( )q

q t

F m n
∈•

⋅ −∏ *#  

= { Definition 4.2 } 
 ( )pF m*#  
□ 

Theorem 4.3 (Upper bound for arrival probability). Let WF = (P, T, R, 
W, f) with general initial timed state M0 be an SWN that induces the stochastic 
process SP = { (Xn, Yn, Zn) | n = 0, 1, 2, Ö } (see Definitions 2.16 and 2.19) with 
random variables A and B (see Definition 4.5). If  (P, T, R) is a sound, free-
choice, and acyclic workflow net, then for each place p ∈ P and for each m ∈ N: *#

P[Ap ≤ m] ≤ ( )pF m . 
Proof. Again we apply induction on the order of the places.  
Base. For place i, Ap = 0 (Definition 4.5), P[Ap ≤ m] = 1 for any m ∈ N. So the 
claim holds. 
Step. Suppose hat for each place q ∈ P with or(q) ≤ j, or(i) ≤ j < or(o), holds that 
P[A

t
q ≤ m] ≤ ( )pF m

*#
 for any m ∈ N. Let p ∈ P with or(p) = j + 1 and m ∈ N. 

Then,  
 P[Ap ≤ m]  
= { Lemma 4.6 }  
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 = { Definition 4.3 } *#
 ( )pF m  
□ 

4.4.3 Efficiency 

To illustrate the approach as presented in the previous sections, we use the SWN 
WF (P, T, R, W, f) as depicted in Figure 4.18.  
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Fig. 4.18. SWN WF for computation of bounds 

Note that in contrast to the example we used in the introduction of Section 4.4 
the workflow net structure of WF could not have been synthesized on the basis of 
the basic structures as discussed in Section 4.3. The reason for this is that the net 
cannot be completely partitioned in parts that can be analyzed locally. For exam-
ple, the behavior of the upper part of the net (transitions u, v, x; places a, c, f) can-
not be isolated from the lower part of the net (transitions w, y; places b, e, g), be-
cause of place d that connects both parts. 

The SWN WF has a delay function f and a weight function W as given in Table 
4.5. Note that for each transition s, fs is a probability density function over N. So 
for each fs(v) with v ∈ N that is not listed holds that  fs(v) = 0. 

If we apply the algorithm on WF, we obtain the upper and lower bounds as de-
picted in Figure 4.19. The exact distribution function is obtained by calculating all 
possible executions of the net. Note that the latter is only feasible for this example 
because of the small size of the net and the small number of different delays that 
are feasible. 
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Table 4.5. Time and weight function for WF 

 ftask(0) ftask(1) ftask(2) ftask(3) ftask(4) ftask(5) ftask(6) Wtask 
t 0 ¼ 1/8 5/8 0 0 0 1 
u 0 ¼ ¾ 0 0 0 0 1 
v 0 0 0 ¾ ¼ 0 0 2 
w ½ ¼ ¼ 0 0 0 0 1 
x 0 0 ¼ 3/8 3/8 0 0 1 
y 0 ½ 0 0 0 0 ½ 1 
 
On the basis of this example, we cannot say anything decisive about the quality 

of the bounds. This quality is highly influenced by the chosen delay functions, the 
chosen weights, and the network structure. In a net without parallelism, the 
bounds exactly match the exact data distribution. In a net with parallel branches 
that are highly balanced, i.e., for each execution the branches take almost as much 
time to complete, the bounds become very loose. 

This larger example does give us the opportunity to reflect on the efficiency of 
calculating the exact probability distribution in comparison with calculating the 
bounds. The exact distribution can be computed on the basis of all different delay 
combinations of the transitions. If we denote the largest used delay with d and the 
number of transitions with |T|, then the number of delay combinations equals d|T|. 
The number of required multiplications is therefore O(|T|⋅ d|T|). For this small ex-
ample alone, this means that a brute force approach requires over 5⋅106 multiplica-
tions. 
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Fig. 19. Lower/upper bounds for, and exact probability distribution function FW 

To compute either an upper or lower bound, we have to perform for each place 
a number of calculations that equals the number of discrete delays between zero 
and the maximal throughput time. After all, for each of these values a token arrival 
may be possible. If we use as bound for the maximal throughput time the figure 
|T|⋅d (see Section 4.4) and if we assume further that the number of input places is 
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of the order of the total number of place |P|, then the number of multiplications is 
O(|P|2⋅|T|⋅d). For the used example, this figure is less than 5⋅103. Further compari-
son is possible if we realize that in practical situations often |P| ≈ |T| and that this 
figure usually ranges from a couple of dozens to one or two hundreds. 

This example illustrates that the presented approximation method can give ap-
proximations for nets for which no exact results can be computed with the exact 
approach of Section 4.3. Clearly, the application of both methods also overlap for 
some part. In the following section we will discuss a hybrid approach. 

4.5 Hybrid Approach 

In Sections 4.3 and 4.4 we presented respectively an exact and approximated ana-
lytical approach to determine the throughput time behavior of SWN's. In this sec-
tion we will discuss how to combine the accuracy of the former approach with the 
application area of the latter. We will refer to this combination as the hybrid ap-
proach. The basis for the hybrid approach is similar to that of the exact approach, 
which is as follows: 

 
1. A workflow net is synthesized.  
2. An SWN is constructed on the basis of this workflow net. 
3. A throughput characterization for this SWN is determined on the basis of the 

followed synthesis order and the throughput characterization of the smaller 
parts of the SWN. 

 
In the hybrid approach both the constructions as used in the exact and approxi-

mated approaches can be used. In determining a throughput time characterization 
of the SWN, both the exact computation as the computation of bounds can be 
used. We will discuss each of these aspects. 

4.5.1 Constructing a Hybrid Net 

For the hybrid approach, both the net synthesis and the notion of a synthesis step 
are equivalent to the definitions in Section 4.3. A transition in the workflow net 
under synthesis may be replaced (cf. Definition 2.15) by one of two following 
types of workflow nets: 
 
a. A workflow net with of one of the structures as discussed in Section 4.3 

(choice, sequence, parallelism, logic choice, etc). 
b. An arbitrary sound, free-choice and acyclic workflow net with an initial transi-

tion. 
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This in contrast to the exact approach of Section 4.3 where only the first option 
is taken into account. The soundness of the synthesized net is guaranteed under the 
conditions of the Compositionality Theorem (see Theorem 2.4). 

After a satisfactory, hybrid workflow net is synthesized, a corresponding SWN 
is constructed by adding an appropriate weight function W and delay function f to 
it.  

4.5.2 Analyzing a Hybrid Net 

We will now show how approximations of the throughput time density (or distri-
bution) of a constructed SWN may be derived on the basis of exact or approxi-
mated characterizations of the throughput time densities (or distributions) of its 
substituting components. Obviously, if only the known blocks of the exact analy-
sis approach are used, then an exact throughput time characterization can be com-
puted. In the more general case where at least one synthesis step takes place of 
type (b) (see the previous section), the analysis of a hybrid net yields an upper and 
lower bound for the throughput time density (or distribution) of the complete, con-
structed net.  

We consider the situation as shown in Figure 4.20. We suppose that net A is the 
net in which we are interested in. It could be either that it is the original, con-
structed hybrid net or that it is an intermediate net of which the throughput behav-
ior gives an adequate bound for this original net. This is not of any importance for 
the analysis. We suppose that net A is constructed on the basis of net B, where net 
C ñ without its source and sink place ñ has replaced transition t+.  
 

t+

A B C  
Fig. 4.20. Relations between net in the analysis of a hybrid net 

In general ñ not considering the specific structure of net C in the example ñ 
there are now two possibilities as follows:  

 
1. Either an exact throughput time density can be computed of net C (see Section 

4.3), or 
2. Lower and upper bound probability density functions can be computed for the 

throughput time density of C (see Section 4.4). 
 
Possibilities 1. and 2. respectively coincide with a synthesis step where either a 

type (a) or (b) workflow net has been used (see the previous section).  
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In the first case, net B has exactly the same throughput time behavior of net A 
when for transition t+ a delay function is taken that equals the throughput time 
density of C. This has been argued in Section 4.3. Note that it is essential that t+ 
also assumes the weight of the initial transition of net C. 

In the second case ñ which is the new element of the hybrid approach ñ we 
claim that the (exact) throughput time distribution of the net B that uses as a delay 
function for t+ the lower bound throughput time density of net C is a lower bound 
throughput time distribution for net A. Similarly, using the upper bound through-
put time density of net C for the delay function of  transition t+ in net B, we obtain 
an upper bound throughput time distribution for net A. We will formalize and 
prove this claim with the following lemma. 

Lemma 4.8 (Bounds for a hybrid net). Consider an SWN WN1 = (P1, T1, 
R1, W1, f 1) that has been constructed by assigning a weight function W1 and delay 
function f 1 to a workflow net (P1, T1, R1). Let this workflow net be the result of 
net synthesis (see Definition 2.15), where (P1, T1, R1) is the result of replacing in 
some workflow net (P2, T2, R2) the transition t+ ∈ T2 by some workflow net (P3, 
T3, R3) with has an initial transition t* ∈ T3. Let WN3 = (P3, T3, R3, W3, f 3) be the 
SWN on the basis of (P3, T3, R3), with for each t ∈ T3, W3(t) = W1(t) and f 3(t) = f 

1(t). Let WN = (P2 2
low

2, T2, R2, W2, lowf ) and = (P2 2WNup
2, T2, R2, W2, upf ) be 

SWN's such that for each t ∈ T2:  
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*#
with f*#  and f  the density functions that correspond respectively with the bound-

ing distribution functions  and F
*#

F*# as defined in Definition 4.2 and Definition 
4.3. Then: 

2 1( ) ( ) ( )
low upWN WN WN 2F k F k F k≤ ≤  for k ∈ N. 

Proof. First we prove that F k2 ( ) ( )
lowWN WN

F k1≤ . Let SPi = { ( X , Y ,i i
n n

i
nZ ) | n = 0, 

1, 2, Ö} be the stochastic process induced by WNi for i ∈ {1, 2, 3} as defined 
above and let SP = { (4 4 4 4Y ,n n nX , Z ) | n = 0, 1, 2, Ö } be the stochastic process in-

duced by . For each stochastic process SP2
lowWN

Ai

i, i ∈ {1, 2, 3, 4}, the random 
variable p is defined for each place p ∈ Pi as in Definition 4.5. Let T2 = { t1, 
t2,Ö, tq}, t+ = tq, and T3 = {tq+1, tq+2,Ö, tq+r}. So, T1 = { t1, t2,Ö, tq-1, tq+1,Ö, tq+r}. 
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For each stochastic process SPi the random variable  is defined for each transi-
tion t ∈ T

Bi
t

3 3,B
q qt t

i as in Definition 4.5.  

1,b=

1 2

2 2
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1 2

2 2
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1 21 Bt
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Analogously we can prove that 1 2( ) ( )
upWN WN

F k F k≤ . So,  

2 1( ) ( ) ( )
low upWN WN WN 2F k F k F k≤ ≤  for k ∈ N.  

□ 
 

The proof of the lemma that treats the replacement of type (b) may cause the 
reader to suppose that the number of SWN's that is necessary to estimate the 
throughput time behavior of the original SWN can grow exponentially in the 
number of synthesis steps: each time that a synthesis step of type (b) has been ap-
plied this requires the analysis of two other SWN's. This is, however, not the case. 
If at a certain point two SWN's have been distinguished to approximate the 
throughput behavior of the original net SWN WF, one of these SWN's ñ say WFlow 
 ñ is used to compute a lower bound, the other ñ say WFup ñ for an upper bound of 
FWF. If during the analysis of, for example, WFlow another  synthesis step of type 
(b) is encountered, two more SWN's may be constructed. One of these SWN's ñ 
say WFlow-low ñ is used to compute a lower bound, the other ñ say WFlow-up ñ for an 
upper bound of . It is guaranteed for each n ∈ N that because  

lowWFF
)( ) (

lowWF WFF n F≤ n and ( ) ( )
low low lowWF WFF n F n

−
≤ that ( ) ( )

low lowWF WFF n F n
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≤ . But 

on the basis of  and  ( )
low

F n ( )WFF n≤
low upWFWF ( ) ( )

lowWFF n F n

( )WFF n (
low upWF

−
≥  for n ∈ N nothing 

conclusive may be said about the relation between and )F n
−

. So, 

only the SWN WFlow-low is of interest to compute a lower bound for FWF. Analo-
gously, during the analysis of WFup at most one SWN will be used to utterly de-
termine the upper bound for FWF. 

By following the opposite route of the net synthesis it is always possible to ob-
tain two nets ñ one if the exact approach is totally applicable ñ with the structure 
of the simple net (see Figure 4.2). One of these nets has a delay function which is 
a lower bound for the throughput time density of the hybrid SWN; the other gives 
the upper bound.  

By now, we have shown how the throughput behavior of an SWN can be ana-
lyzed that has been constructed with a hybrid approach. The approach synthesizes 
a workflow net out of both basic blocks and arbitrary sound, free-choice and 
acyclic workflow subnets. The synthesis rules are similar to those of the basic ap-
proach sketched in Section 4.3. The bounding functions that are obtained are com-
parable with the approach described in Section 4.4. The resulting, hybrid approach 
exploits the synthesis capabilities of the former method, while the application area 
is extended with that of the latter. 

4.6 Review 

In Section 4.3 we discussed a variety of network structures of workflow nets that 
may be used to synthesize another workflow net, ultimately leading to the con-
struction of an SWN. In Section 4.4 we described an approach for computing 
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throughput time bounds for a general class of workflow nets. All workflow nets as 
discussed in the previous sections share an important characteristic: their sound-
ness. This property guarantees a meaningful interpretation of the throughput time 
of the process induced by the constructed SWN. We have seen that many of the 
structures discussed in the exact approach were safe and free-choice, but these are 
not necessary characteristics to be applied in the synthesis of a workflow net (e.g., 
check the logic choice or repeater). Obviously, many more structures may be 
added.  

As a final note, all presented approaches assume an infinite server capacity. We 
claim that this assumption is more or less natural during the first stages in design-
ing a workflow. If a new design without resource constraints (i.e., no queuing can 
take place) does not satisfy the desired performance requirements, a workflow 
with resource constraints (i.e., queuing takes place if all resources are occupied) 
will utterly fail these requirements. The design should then be improved. How-
ever, for estimating the performance of a workflow in a practical setting, condi-
tions such as the availability and responsiveness of people, information systems, 
and computer networks play a very important role. The presented algorithms can 
be of limited use only in such a case, for example by hard-coding estimated queue 
and wait times in the model as delays. Such an approach obviously offers very 
small explanatory power or accuracy. Other evaluation methods such as simula-
tion or prototyping will prove to be much more helpful. 

The behavior of resources is also indispensable for actually controlling a work-
flow. The control topic of assigning resources in a workflow with respect to 
minimizing the throughput time in an operational workflow is the subject of the 
following chapter. 

 
 



5 Resource Allocation in Workflows 

The subject of this chapter is the allocation of resources in a workflow. In Section 
1.1 the resource dimension of a business process has already been introduced. A 
resource is a generic term for all means that are required to produce a product 
within the setting of a business process. With respect to the model as introduced in 
Section 1.4, the focus of the chapter is depicted as a thickly lined box at the left 
side of Figure 5.1. 
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Fig. 5.1. Focus of Chapter 5 

A proper resource allocation ensures that each activity is performed by a suit-
able resource. As expressed in Figure 5.1, an activity is an actual manifestation of 
a task that is performed for a specific case by a specific resource. In other words, 
the resource allocation takes care of handing out so-called work items to re-
sources, which ñ within the setting of a workflow ñ are often people (see Section 
1.4). The rules that implement the preferred allocation of resources are known as 
allocation principles (Van der Aalst and Van Hee, 2002). The model of Figure 5.1 
assumes that allocation principles are specified on the level of resource classes, in-
stead of individual resources. A resource class is a group of resources with similar 
characteristics. For each task, the allocation principles in use determine one or 
more resource classes of which their members ñ the individual resources ñ have 
the qualifications and the authorization to perform it. In practice, all kinds of crite-
ria may be taken into account by allocation principles. For example, if there is a 
call for urgent medical assistance, the geographic location of the emergency may 
be used to find the nearest general practitioner's practice.  

H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 177-206, 2003. 
 Springer-Verlag Berlin Heidelberg 2003 
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Allocating resources in a workflow can be seen as both a build-time and a run 
time issue in BPM decision making (see Section 1.2). It is a build-time issue when 
a workflow is still in its design phase. If one has a design of the routing structure 
of a workflow, for example derived with the PBWD methodology (see Chapter 3), 
it needs to be decided who will carry out the distinguished tasks before the design 
can be put to work. Allocating resources is a run-time issue when we consider a 
workflow during execution, e.g., when an extra resource becomes available that 
has to be assigned to a resource class. Either way, the allocation of resources is 
clearly to be settled by the allocation component of a workflow model (see Sec-
tion 2.2). Note that we have argued in the introduction of Chapter 3 the particular 
design order of specifying the routing structure first and the allocation component 
second. 

When the allocation component is to be given its initial form, i.e., at build-time, 
several issues have to be settled. In the first place, the required qualifications of 
the resources have to be determined. These qualifications should be matched to 
those of the available workforce to decide whether it can do the job or that addi-
tional resources have to be hired. This subject is treated by Aldowaisan and Gaafar 
(1999). From a systems perspective, these qualifications may also be used as func-
tional requirements on existing or future information systems. Other important is-
sues in creating the allocation component are the proper distinction of resource 
classes and the allocation principles that will be used to allocate work items to 
member of a resource class. Another issue is how individual resources themselves 
decide upon the order in which they process work items assigned to them. We will 
not discuss either of these issues, but refer the interested reader to Van der Aalst 
and Van Hee (2002) for a more detailed description.  

In this chapter, we focus on determining the proper number of resources within 
each resource class. This decision should balance the performance targets on the 
one hand and the cost involved in hiring (for human resources) or buying/building 
(for non-human resources) on the other. Clearly, determining resource numbers 
presupposes the existence of a workflow's routing structure, identified resource 
classes, and allocation principles. We will assume these issues to be settled for the 
specific cases we describe. 

In this chapter we will present an algorithm to determine the right allocation of 
resources with the aim to minimize the average throughput time of the workflow. 
The algorithm was introduced in this context by Van Hee et al. (2001). It can be 
used to support both build-time and run-time decision making. The presented al-
gorithm is a marginal allocation strategy, which means that a proper allocation of 
resources is determined by assigning them one by one. To make the analysis of 
such an algorithm feasible, we adhere to a very simple allocation situation. Its ba-
sic characteristics are given in Table 5.1, where they are compared to more realis-
tic circumstances. 



5.1 The Resource-Extended SWN      179 

Table 5.1. Comparison of the used model with reality 

 Used allocation 
model Reality 

Number of resource 
classes a single resource 

is part of 
1 any number 

Number of resource 
classes allocated to a sin-

gle task 
1 any number 

Number of tasks for a sin-
gle resource class 1 or 2 any number 

Selection policy for work 
items by resources 

First-Come-First-
Served various 

Availability resource 
within the same workflow 100 % any percentage 

Willingness resources to 
start work when free eager less than eager 

Allocation principles dur-
ing workflow execution fixed variable 

 
Obviously, the throughput time that is to be minimized by the presented algo-

rithm is yet one of the many interesting performance indicators, although it is in-
deed a very important one (see Section 4.1). We will show that the presented algo-
rithm in this chapter is optimal for a class of workflows that have, among other 
characteristics, a state machine net structure, i.e., that exclude concurrent behav-
ior. We will also give an idea of the effectiveness of the algorithm by applying it 
on a number of workflow models that do not fall within this class. Simulation will 
be used for this purpose. The set of models considered include some notoriously 
difficult constructions, as well as some models derived from practice.  

The structure of this chapter is as follows. First we will informally present an 
extension of the Stochastic Workflow Net as presented in Section 2.4, that can be 
used to realistically model the effect of a limited number of resources in a work-
flow. Next, we will discuss in Section 5.2 an allocation strategy as described by 
Goldratt and Cox (1984). This strategy has served as an inspiration for developing 
our algorithm as presented in Section 5.3. The latter section also includes a discus-
sion of the optimality of the algorithm. In Section 5.4, we will present a work-
bench of workflow models to which the presented allocation strategy has been ap-
plied. 
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5.1 The Resource-Extended SWN 

The SWN model (see Definition 2.20) does not incorporate a notion of resources. 
It was useful in this form in Chapters 3 and 4, where a situation of an infinite 
number of available resources was assumed. Also, up till this point we have con-
sidered SWN's as reflecting the life-cycle of a single case (see Section 2.4). How-
ever, when resources will work on multiple cases, the handling of cases will affect 
each other's throughput time. So, to realistically model this effect we have to allow 
for more cases within the context of the same workflow model.  

For these reasons, the SWN model used so far needs an extension, which we 
will now informally discuss. We will assume that the workflow model is modeled 
as an SWN first, with appropriate weights and delay distributions. Given a transi-
tion in such an SWN that is used to model a task, that same task is modeled in the 
resource-extended SWN by a start transition, an end transition, a busy place, and 
an idle place as follows:  

 
− The start transition indicates that the task becomes an activity; it takes on the 

weight and delay characteristics of the original transition. 
− The end transition indicates that the activity is completed; it has an arbitrary 

weight but it is immediate (i.e., consumes no time). 
− The busy place holds a combination of a case and a busy resource and indicates 

that the task is an activity. 
− The idle place holds the idle resources. 

 
The net in Figure 5.2 is a task that was modeled in an SWN by a single timed 

transition with two input places and two output places. Because there is a token in 
the busy place, this task is an activity for the case associated with that token. 

 

idle

busy

 start endinput output  
Fig. 5.2. The task model in a resource-extended SWN 
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Note that cases are associated with tokens and that the start transition needs to 
be able to distinguish tokens from different cases: it should be enabled only if each 
input place contains a token associated with the same case. For this reason, we as-
sume some color to exist in the resource-extended SWN: each case has a unique 
identity, tokens associated with a case have the color of that case, and transitions 
are only allowed to use case tokens (resource tokens have no identity) with the 
same identity during one execution. With respect to the example of Figure 5.2, if 
one of the tokens in the upper input place of the start transition has the same iden-
tity as the token in the other input place, the task is a work item for the case asso-
ciated with both tokens. Otherwise, the task is not a work item for any case. Note 
also that the depicted task contains four available resources: three idle and one 
busy. If resources can work on more than a single task, the idle places of the re-
spective tasks should be joined. This is, for example, required for the analysis of 
the big nets in Section 5.4.2. 

For ease of use, we will use boxes to visualize tasks quite similar to the model 
of an SWN, but we will suppose an internal behavior as discussed. Immediate 
transitions will still be depicted as black bars (see Section 2.4.5). 

To analyze a workflow's throughput time, we will need an arrival pattern of 
new cases. Note that this was not required when we looked at single cases in isola-
tion. We will allow for arbitrary arrival patterns to be in effect. Each new case ar-
rives at the source place of the workflow. 

In summary, the resource-extended SWN is characterized as follows:  
 

− Tasks are modeled as boxes, each of which has an internal behavior with a start 
transition, end transition, busy, and idle place. 

− Each initial transition has an arbitrary service time distribution that is inde-
pendently sampled each time it is executed; other transitions are immediate. 

− All tokens are colored except for the uncolored resource token, i.e., each token 
has a value denoting the identity of the corresponding case. 

− The firing rule of an SWN is extended with the requirement that tokens in input 
places must have the same color, except for the uncolored resource tokens. 

− For each task, there is positive number of available resources, which are ini-
tially idle (i.e., reside in the initial places). 

− Each initial transition of a task has a weight: if a choice is to be made between 
two (or more) enabled initial transitions then these weights are taken into ac-
count to determine which one is executed first conform the firing rule of an 
SWN. 

− The process has an arbitrary arrival time distribution, which specifies the arri-
val pattern of new cases; each new case is assumed to arrive at the source place 
of the workflow. 

 
The performance indicator that we will consider in this chapter can now be de-

fined as the average time it takes the resource-extended SWN net to move a case 
from the source place to the sink place. Note that the soundness of the net and the 
positive number of resources for each task do not themselves ensure a meaningful 
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interpretation of this figure. The system may get clogged when the in-flow of 
cases is larger than its out-flow, so that the number of tokens in input places of 
tasks grow infinitely large. We will in this chapter only consider resource-
extended SWN's that have a steady state. The throughput time of a case through 
an SWN is then the sum of the following:  

 
− Service time: the time that somewhere within the SWN the case is being proc-

essed, i.e., there is at least one token with the case's identity that resides in some 
task's "busy" place. 

− Queue time: the time during which no work item that belongs to this case is be-
ing processed within the SWN, i.e., not one of the case tokens resides in some 
task's "busy" place. 
 
Note that "queue time" derives its name from the cause of the absence of any 

processing: somewhere queuing takes places. Aggregated service and queue times 
of cases are often used as a quality criterion for the complete workflow. 

It often is interesting to consider the service and queue times from a task per-
spective, instead of from the case perspective. For a task the following holds: 

 
− Its service time is the time that it takes to process a work item, i.e., the time that 

a token stays in the "busy" place". 
− Its queue time is the time that a work item must wait for this task before it can 

be executed because of a lack of resources for this task, i.e., the time between 
the last arrival of a case token in the task's input places until the time the case 
arrives in the "busy" place. 

− Its wait time is the time it takes for a work item to become complete, i.e., the 
time between the first arrival of a case token in an input place until the arrival 
of the last one. 

 
Service, queue, and wait times of individual tasks are relevant to identify "traf-

fic jams" within a workflow. The "bottleneck" concept which is discussed in Sec-
tion 5.2 is an example on this note. 

We illustrate the introduced time notions with Figure 5.3. On the left-hand side 
of the figure, a simple resource-extended SWN is shown. On the right-hand side 
of the figure, the execution of this workflow for one particular case is schemati-
cally depicted, both from the case and the task perspective.  

With respect to the task perspective, one can see the following in the upper part 
of the right-hand side of the figure. For each of the tasks A, B, C, and D its rela-
tive start and end time are given in Figure 5.3 by horizontal lines. Parts of these 
lines are labeled with identifiers "q", "w", and "s", denoting respectively queue, 
wait and service times of each task in its execution for this particular case. At time 
x1 the case arrives within the process. It queues until a resource become available 
to execute task A, which happens at time x2. Task A is being executed until time 
x3. Following the completion of A, for both tasks B and C, the case has to queue. 
At time x4, a resource becomes available for the execution of C. At time x5, this 
happens for task D, which is completed at time x6. At time x7, task C is also com-
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pleted. From x7 until x8 the case queues because of a lack of resources for task D. 
From x8 until x9, task D is executed, which ends the processing of the case. Note 
that from x6 until x7, there is wait time for task D: not all its inputs are already 
available. During this time, task C is still being executed. 

 

A

B

C

D D

C

B

A
q s

w q s

q s

q s

x1 x2 x3 x4 x5 x6 x7

q s q s q s

task perspective

case perspective

x8 x9 

 
Fig. 5.3. Service, queue,  wait, and throughput times 

With respect to the case perspective, the throughput time is given as a horizon-
tal line in the lower part of the right-hand side of the figure. The throughput time 
of this particular case is the time that elapses between x1 and x9. This throughput 
time is the sum of smaller parts of queue time ("q") and service time ("s"). A part 
of the throughput time is considered as service time from the case perspective 
when at least one of the tasks is being executed for this particular case. Queue 
time is the remaining part of the throughput time. 

According to the introduced notions, it is clear that the throughput time of a 
case in general does not equal the sum of the service times of the tasks that were 
executed for it. In a workflow where parallel executions of tasks can take place, 
the summed service times of tasks may exceed that of individual cases.  

Also note that wait times can only occur at synchronizing transitions, i.e., tran-
sitions with multiple input places (task D in Figure 5.3). The practical relevance of 
distinguishing between queue and wait time from a task perspective will become 
clear in Section 5.3. 

5.2 Goldratt's Conjecture 

In 1984, Goldratt published "The Goal", a textbook in the form of a novel 
(Goldratt and Cox, 1984). This bestseller quickly gained popularity with manufac-
turing and logistic industries. "The Goal" describes various techniques to improve 
the performance of business processes. Because the nature of the descriptions is 
informal, the semantics of these techniques is ñ to some extent ñ up to the reader. 
Goldratt's view on the logistic structures of business processes is very much like 
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the workflows that can be build using the elementary sequential, choice and paral-
lelism structures as described in Section 4.3.1. An interesting, explicitly stated 
claim to improve the rate at which cases are being completed is to add resources at 
so-called bottlenecks. We will refer to it as the Goldratt algorithm, although it is 
not described as such by Goldratt and Cox.  

5.2.1 The Goldratt Algorithm 

The Goldratt algorithm starts to identify a bottleneck within the process among the 
so-called work centers. A work center is any group of which its members are ca-
pable of executing the same operations. Note that this "work group" concept is 
very similar to our notion of a "resource class" (see Section 1.1.6). The bottleneck 
is principally defined by Goldratt as the work group that has a utilization that ex-
ceeds 1. Obviously, in this situation there is no steady state for the process (queues 
grow infinitely large) and the mean throughput time is meaningless. For these rea-
sons, we turn this definition aside and focus on the secondary definition Goldratt 
provides: "work centers that have the largest amount of work-in-process sitting in 
front of it are the bottlenecks". This is obviously a rather ambiguous specification. 
We do not think that Goldratt suggests the physical size of a queue or even the 
number of cases in a queue as accurate indicators of the pressure on a work group, 
as they are clearly not. We will distinguish two interpretations of this bottleneck 
definition, as follows: 

 
1. Mean queue time:  

the bottleneck is the resource class that is assigned to the task where the mean 
queue time is maximal. 

2. Utilization:  
the bottleneck is the resource class with the highest mean utilization. 

 
The Goldratt algorithm ends by stating that if an extra resource is available it 

should be placed at the bottleneck to increase the overall performance of the proc-
ess measured in the throughput rate. Clearly, the latter figure is the inverse of our 
throughput time notion. 

5.2.2 Limits 

The intuition behind the Goldratt algorithm is apparent: increase the number of re-
sources that are pressured the hardest to improve the throughput rate. However, 
consider the following example. A telephonist of a service organization handles 
incoming complaints. The telephonist can handle 90% of all incoming complaints. 
On average, this takes him two and a half minutes. For the remaining 10%, one of 
the ten service men has to visit the complainant. On average, a visit takes three 
hours and 50 minutes (230 minutes). So, the mean service time of an arbitrary 
complaint is 25,25 minutes. The service times of tasks T ("Telephonist") and S 
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("Service men") have a negative exponential distribution. The arrivals of com-
plaints is Poisson-distributed. On average, every two and a half minutes a new 
complaint arrives (λ = 1/2,5). This workflow is depicted as a resource-extended 
SWN in Figure 5.4.  
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Fig. 5.4. Example of a service organization 

The number of service men and telephonists will be denoted with nS and nT re-
spectively. The intensity of the arrival is denoted with λ; the intensities of the ser-
vice times of handling the call by phone (T) or by visit (S) are respectively given 
by µt and µs. 

As all probabilities in the depicted resource-extended SWN are independent, 
the performance of this workflow can be analytically determined by splitting it up 
into two well-known queuing systems: an M/M/10 and an M/M/1 queuing system, 
with respective Poisson arrival rates of 1/25 and 9/25. The respective mean service 
time of each separate system is 230 minutes and of the system  

The mean queue time for task S, WS, is approximately 209,7 minutes and the 
mean queue time for task T, WT, equals 22,50 minutes. Combined with the mean 
service time of 25,25 minutes, the mean throughput time is therefore about 41,22 
minutes. We will first consider the first interpretation of the bottleneck in applying 
Goldratt's algorithm. Then, the bottleneck turns out to be task S, as its mean queue 
time exceeds that of task T. 

Now suppose that the service company's management is not content with the 
current throughput time and that there are sufficient funds to hire another resource. 
Also suppose that hiring a telephonist or service men is just as expensive. Hiring 
an eleventh service man yields a mean queue time WS of 60,75 minutes. This is a 
local gain of almost 150 minutes. While the processing in the other part of the sys-
tem does not change, this results in a mean queue time of approximately 26,33 
minutes. Given the mean service time of handling a complaint of 25,25 minutes 
this leads to a mean throughput time of 51,58 minutes. 
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However, if the management had hired a second telephonist instead of an elev-
enth service man, then the mean queue time WT would be 0,635 minutes. This is a 
local gain of more than 20 minutes, resulting in a mean queue time of 21,54 min-
utes and a mean throughput time of 46,79 minutes. These are lower figures than 
the former scenario, making the hire of a second telephonist more attractive. 

The results from this example are summarized in Table 5.2.  

Table 5.2. Results service organization 

nS nT WS WT mean  
queue time 

mean 
throughput time 

10 1 209,7 22,50 41,22 66,47 
10 2 209,7 0,635 21,54 46,79 
11 1 60,75 22,50 26,33 51,58 

 
It is clear from the table that Goldratt's algorithm is not optimal for the first in-

terpretation of the bottleneck. It is possible to gain more time at other places in the 
process than at the bottleneck. The effect is obtained by the following: 

 
1. The higher marginal effect of one extra telephonist, where there is just one 

telephonist working, compared to the benefit of adding a service man to the ten 
service men already working.  

2. The higher execution frequency of the telephonist task. 
 

Note that if we had used the utilization rate as criterion to identify the bottle-
neck, task S would still have been the bottleneck: the utilization rate of the service 
men initially equals 92%, where the utilization rate of the telephonist equals 90%. 

5.3 The Method of Marginal Allocation 

As an alternative to the Goldratt algorithm, we propose a method of marginal allo-
cation. We consider a resource-extended SWN that consists of N tasks. The ser-
vice times of the tasks t1, t2,Ö,tN are arbitrarily distributed, characterized by Λ = 
[µ1, µ2,Ö µN] with µi for 1 ≤ i ≤  N containing all parameters to characterize the 
service time distribution of task ti. The arrival process of new cases is arbitrarily 
distributed with characterization λ. We suppose that initially a sufficiently large 
number of resources is allocated to each task to ensure that the mean queue time is 
finite for every queue in the system. This is a number that in general can be easily 
determined by using the frequency of each task execution and its mean service 
time. M additional resources are available to be freely allocated amongst the tasks 
(M ∈ N\0). Each resource can be allocated to any of the tasks. However, after its 
allocation, a resource can only work on work items that are to be executed for the 
task it has been allocated to. Let ni for 1≤ i ≤ N be the number of resources that is 
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dedicated to task i after M additional resources have been allocated to the process. 
We denote Γ = [n1, n2,Ö nN]. The mean throughput time of the process after add-
ing M extra servers can then be expressed as a function f(λ, Λ, Γ). Suppose that af-
ter marginally allocating M-1 resources the number of resources at task i is mi. We 
denote for 1≤ k ≤ N with ϑk the allocation [n1, n2,...,nN] where nk = mk + 1 and nj = 
mj for j ≠ k and 1≤ j ≤ N. The method of marginal allocation is to allocate the Mth 
resource to a task l such that 

 
 f(λ, Λ, ϑl) = ( )( )min :1 : , , kk k N f≤ ≤ λ Λ ϑ   (i) 

 
In some cases the quantity f(λ, Λ, ϑk) can be calculated from an explicit for-

mula; in other cases it can be estimated by simulation. If M additional servers are 
to be applied, the marginal allocation requires N ⋅ M evaluations of the throughput 
time. If, instead of marginal allocation all possible allocations were to be tried, 

 evaluations are required. 
-1

-1
M N

N
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5.3.1 Application of Marginal Allocation 

We use the setting of the service organization again (see Figure 5.4) to demon-
strate the method of marginal allocation. Table 5.2 shows the mean throughput 
times of three possible resource allocations: [nT, nS] = [1, 10] and both possible 
successors of this allocation. From this table, we deduce that an additional tele-
phonist should be hired, because an extra telephonist reduces the mean throughput 
time most. Suppose the service organization's management can hire six additional 
employees. Table 5.3 shows the mean throughput times of the workflow for allo-
cations up to 17 employees in total.  

Table 5.3. Mean throughput times service organization 

nS  
10 11 12 13 14 15 16 

1 41,22 26,33 22,70 21,33 20,74 20,47 20,35
2 21,54 6,65 3,02 1,66 1,07 0,80  
3 21,04 6,15 2,52 1,06 0,57   
4 20,98 6,09 2,46 1,09    
5 20,97 6,08 2,45     
6 20,97 6,08      

 nT 

7 20,97       
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From this table, we deduce that the first employee to hire would be a telephon-
ist (because 21,54 < 26,33), the second would be a service man (21,04 > 6,65), the 
third a service man (6,15 > 3,02), etc. In the end, three telephonists and fourteen 
service men are employed. Note that this is the optimal solution with regard to the 
throughput time for seventeen employees. The allocation decisions are graphically 
depicted as a path that has been accentuated with gray. 

Using Goldratt's algorithm, we first hire three service men, then a telephonist, 
and then two more service men, resulting in a non-optimal situation. This final al-
location is shown as a box with curved lines. If we use the utilization as a criterion 
for the bottleneck, we first hire a service man, then a telephonist, and then four 
service men, resulting in the same, non-optimal, situation. 

5.3.2 Optimality 

In this section we prove that the marginal allocation strategy is optimal for two 
subclasses of resource-extended SWN's. Both classes of SWN's have a state ma-
chine net structure. 

Definition 5.1 (State machine). A Petri net (P, T, R) is a state machine iff for 
each transition t ∈ T holds that |•t| = |t•| = 1. 

Theorem 5.1 (Optimality of marginal allocation for SWN's with only 
source and sink places). Let WF be a resource-extended SWN with net structure 
(P, T, R), T = t1, t2,Ö, tN, and P = (i, o). Let the service times of the tasks t1, 
t2,Ö,tN be arbitrarily distributed, characterized by Λ = [µ1, µ2,Ö µN]. The arrival 
process of new cases is arbitrarily distributed with characterization λ. Suppose that 
the initial resource allocation Γ = [n1, n2,Ö nN] of K resources ensures that the 
mean queue time is finite for every queue in the system. Then, the marginal allo-
cation strategy leads to an allocation Γ' = [n'1, n'2,Ö n'N] that minimizes the ex-
pected throughput time for WF for each M > K such that M = n'1 + n'2 Ö + n'N  and 
n'1 ≥ n1, n'2 ≥ n2Ö n'N ≥ nN . 
Proof. Because P = (i, o), (P, T, R) is a state machine. So, the wait time for each 
task is zero. As a result, the mean throughput time equals the sum of the mean to-
tal service time and the mean total queue time. This implies that minimizing the 
mean queue time for WF suffices to minimize its mean throughput time. After all, 
the mean service time is constant. Because there is only one input and one output 
place, immediately after a case arrives at the source place i, it is routed to one of 
the N tasks after which processing ends. So, WF can be divided into N independ-
ent G/GI/m queuing systems. Using the notation as introduced in Section 5.3 and 
denoting the expected queue time at task t after allocating M servers to the total 
system by W  with ( ), ,t t t tλ µ n tλ  the expected arrival rate of cases at task t, the al-
location problem can then be formulated as: 
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Fox (1966) showed that for this kind of problem a marginal allocation algorithm is 
optimal if the function W  is non-increasing and convex in n( , ,t t t tλ µ )n t. In other 
words, for any task t:  

 
 ( ) ( ), , , , 1t t t t t t t tW n W nλ µ − λ µ + ≥  

 ( ) ( ), , 1 , , 2 0t t t i t t t tW n W nλ µ + − λ µ + ≥   (iii) 
 

This condition expresses that the marginal effect of adding another resources de-
creases. This ensures that it is never necessary to remove already placed resources. 

Weber (1980) proved that a G/GI/m queue is convex and non-increasing in the 
number of servers m. So, in combination with Fox' result, we can determine that 
marginal allocation is optimal for WF. □ 

 
The resource-extended SWN in Figure 5.4 is an example of a resource-

extended SWN that falls within the scope of Theorem 5.1. The class of nets cov-
ered by Theorem 5.1 is rather small, because of its limited structure. However, 
note that the arrival pattern, the weights, and delay characterizations may be of 
arbitrary form. In comparison, the class of resource-extended SWN's that we will 
discuss next has a more restricted type of arrival pattern and delay characteriza-
tions, but allows for more complex network structures. 

Theorem 5.2 (Optimality of marginal allocation for state machine SWN's 
with a product-form). Let WF be a resource-extended SWN with net structure 
(P, T, R), such that (P, T, R) is a state machine and T = t1, t2,Ö, tN. The service 
times of the tasks t1, t2,Ö, tN have a negative exponential distribution, character-
ized by Λ = [µ1, µ2,Ö µN]. The arrival process of new cases is Poisson with inten-
sity λ. Suppose that the initial resource allocation Γ = [n1, n2,Ö nN] of K resources 
ensures that the mean queue time is finite for every queue in the system. Then, the 
marginal allocation strategy leads to an allocation Γ' = [n'1, n'2,Ö n'N] that mini-
mizes the expected throughput time for WF for each M > K such that M = n'1 + n'2 

Ö + n'N  and n'1 ≥ n1, n'2 ≥ n2Ö n'N ≥ nN . 
Proof. First, we consider the well-known open Jackson queuing network. Such a 
network consists of M nodes, each of which has an infinite storage capacity and 
operates according to a first-come-first-served queuing discipline. Node j, j = 1, 
Ö, M, consists of mj servers, each with exponentially distributed service time with 
parameter µj. External customers may arrive at node j from the outside world ac-
cording to a Poisson process with rate rj. In addition, internal customers may ar-
rive from other servers in the network. Upon completing service at node j, a cus-
tomer is routed to node k with probability pjk. The outside world is often indexed 
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by 0, so that the fraction of customers leaving the network after service at j is de-
noted by pj0.  
It is straightforward to see that WF can be mapped onto a (single class) open Jack-
son queuing network. For Jackson networks it is a well-known result that the equi-
librium distribution can be determined analytically (Jackson, 1957; Jackson, 
1963). In steady state, each node in a Jackson network behaves as if it were in iso-
lation and subject to Poisson arrivals, although the arrivals may in fact not be 
Poisson. Using the Jackson equilibrium formula and Little's law, it is possible to 
express the mean queue time at each task t as a function of the arrival rate of cases 
for this particular task (λt), its service rate (µt), and the number of resources work-
ing on that task (nt) (see e.g., Chao et al., 1999): 

 

 ( ) 11
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!(1 / ) ! !(1 / )

t ttn nn j
t t t t t t t t

jt t t t t t t t

n
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∑ . (iv) 

 
This is the standard expression for the expected queue time of an M/M/nt queue. 
In steady state, λt can be determined on the basis of the arrival rate of new cases 
and the weights applied; µt and nt are given. Note that these parameters are inde-
pendent of the other queues in the network. Dyer and Proll (1977) proved that the 
expected queue time for an M/M/m queue (formula iv) is a non-increasing and 
convex function of m. But then, the proof follows from the proof of Theorem 5.1.  
□ 
 

For both classes of resource-extended SWN's we exploited the property that ar-
rival and queuing processes for each task within a net of each class may be treated 
as if it were independent of arrivals and queues at other tasks. This is not generally 
the case in resource-extended SWN's. In the first place, the arrival and queuing 
processes among the tasks in such a net are in general not independent. The struc-
ture of the net, as well as the service time distributions of the tasks may influence 
the arrival and queuing processes at other tasks. In the second place, minimal 
queue times a tasks do not guarantee a minimal throughput time, which will be il-
lustrated by the example in Section 5.3.  

5.3.3 Limits 

From the following example it becomes clear that the marginal allocation strategy 
is in general not optimal if concurrency is allowed in the process. Figure 5.5 
shows a resource-extended SWN. Note that to prevent this system from getting 
clogged, we need initially at least three resources at each task. 

Because of the synchronization following tasks P1 and P2, we cannot compute 
results for this example analytically using queuing theory. Note that because cases 
can overtake each other, it is essential to take the color of the tokens into account 



5.3 The Method of Marginal Allocation      191 

when synchronizing. We used simulation with the software package ExSpect (Van 
Hee et al., 1989; Van der Aalst et al., 2001a) to get approximated results.  

 

µ = 13.5

µ  = 13.0

µ  = 13.5

S

P1

P2

λ  = 2.5

 
Fig. 5.5. Counter example for both strategies 

To clearly show the characteristics of the example we used as service time dis-
tribution for each transition a beta distribution with modus (and, because the dis-
tribution is symmetric, mean) µ, minimum 9µ/10, maximum 11µ/10, and variance 
µ/900. The beta distribution is often very well suited to express the variance in 
time behavior for tasks that are executed by humans. (Similar results for this ex-
ample could have been obtained with e.g., negative exponential service times, but 
then the confidence intervals would have been wider.) 

Using ExSpect as the simulation tool, we simulated for several resource alloca-
tions 52 subruns of length 40.000 time units each. Only the latter 50 subruns were 
taken into account for the simulation results, i.e., the first two were seen as start-
up phase. 

We obtained the results as shown in Figure 5.6, which covers five different re-
source allocations. For the tasks S, P1, and P2 the queue times are expressed (see 
Section 5.1). For the synchronizing transition following P1 and P2, its wait time is 
shown (see Section 5.1). Finally, for each allocation the mean throughput time is 
given.  

Note that these results clearly show that allocation [4,3,3] performs better than 
allocation [3,3,4]. The simulation results indicate that the optimal allocations for 
9, 10 or 11 resources are [3,3,3], [4,3,3] and [3,4,4]. So, if we have one additional 
resource available, then the optimal allocation would be [4,3,3]. If we would have 
two extra resources, then it would be [3,4,4]. Apparently, for an optimal allocation 
strategy we need to be able to reallocate resources. Both the Goldratt algorithm 
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and the marginal allocation strategies lack this possibility and are hence not opti-
mal in this case.  
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Fig. 5.6. Simulation results counter example 

 
Note that the distinction of wait time clearly helps to explain why the through-

put time of scenario [3,3,4] is hardly less than that of the initial situation [3,3,3]. 
Although the queue time at task P2 sharply decreases, the wait time at the syn-
chronization task increases with almost the same amount. 

5.4 Workbench 

In Section 5.3 we demarcated a class of resource-extended SWN's for which the 
marginal allocation algorithm is optimal and we gave an example of a net for 
which the algorithm did not work. In this section we explore the applicability of 
the algorithm further by applying it to a set of resource-extended SWN's. This so-
called workbench consists of three categories of nets: 

 
1. pathological nets: these are artificial, small nets that incorporate a special fea-

ture which causes expectations to be that marginal allocation is troublesome, 
2. big nets: these are artificial nets with a simpler structure than the pathological 

nets, but with a larger number of tasks, 
3. practical nets: these nets are derived from actual workflows used in practice. 
 

Application of the marginal allocation on the workbench is not expected to ex-
tend our knowledge about the applicability of the algorithm in a mathematical 
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sense. Contrary to a solid proof, the approach is inductive rather than deductive, 
i.e., experiments are used to gain insight. Nonetheless, using a workbench may 
help to develop the intuition to distinguish more and less attractive area's of prac-
tical application of the algorithm.  

Most of the nets of the workbench do not allow for an analysis with known ana-
lytical techniques, e.g., because of the structure and/of the net or the stochastic 
characterizations of the delays. Therefore, we use simulation to determine the 
formula f(λ, Λ, Γ) of Section 5.3, i.e., the mean throughput time of the net in ques-
tion with a specific allocation of resources. With the package ExSpect, Petri net 
models are specified that implement the properties of the resource-extended SWN 
as described in Section 5.1. The simulation of each model with a specific alloca-
tion was split up into 50 subruns with a length of 20.000 time units, including 10 
start runs. (If minutes are used as time unit, a start run amounts to more than eight 
working weeks of 40 hours). A more detailed description of the technical side of 
the use of ExSpect to support the experimentation in this chapter is given in Ap-
pendix C. 

Using simulation to obtain our results implies that we have no exact knowledge 
about the optimal solution. This imposes a methodological problem: it is in gen-
eral not possible to decide on the basis of a simulation which allocation is optimal. 
The computation of confidence intervals on the simulation results ñ supported by 
ExSpect ñ does allow for statements with a certain statistic confidence. However, 
confidence intervals of different scenario's may be overlapping, so that no order-
ing of scenario's is possible. If this situation occurs, we adopt a practical strategy. 
Of all simulations scenario's, the optimal scenario is the one with the lowest 
(simulated) mean throughput time. This is the approach which reflects a strategy 
that can be generally used in practice. A list of historical occurrences of new cases 
may then be used to simulate the new allocation scenario. The scenario which 
leads to the lowest expected mean throughput time over this fixed number of cases 
is then seen as the optimal one. This seems to be acceptable if the list of historical 
occurrences is representative for the future workflow's work load. Note that an-
other practical procedure could be to compare each subrun among the candidates 
and select the one with the largest number of subruns with the lowest average 
throughput time ("wins"). Yet another procedure would be to treat allocations 
similar when their confidence intervals on the mean throughput time overlap. (A 
transitive notion of equality could be used to define proper equivalence classes.) 
This would allow for more than one optimal solution.  

In the following subsections we will introduce the nets of the different catego-
ries, discuss their structure, and the simulation results. We will assess the quality 
of the strategies based on both of the two interpretations of the Goldratt algorithm 
and on the marginal allocation strategy. For each net, the situation is considered of 
a steady-state resource-extended SWN for which two (or more) extra resources are 
available to be freely allocated. A situation is considered to be a steady state if for 
each resource class the utilization rate is less than 1. Note that we again assume 
that resources are equally expensive to hire; it is not difficult to extend the strategy 
with weights to reflect asymmetric resource costs.  



194      5 Resource Allocation in Workflows 

5.4.1 Pathological Nets 

The Tandem Net 

The first of the pathological nets is the tandem net as depicted in Figure 5.7. It 
consists of three tasks and an equal number of disjunctive resource classes. The 
particular characterizations of the stochastic delays in effect are given alongside 
each task, just as the number of resources (servers) that are initially available. 
Each task has the internal structure as explained in Section 5.1. Recall that weights 
equal to 1 are omitted (see Section 2.4).  

Poisson arrival with

NE distribution, µ = 5/14,
initially 1 server.

A

C

B
Erlang distribution, k = 20,
m = 25/4, initially 1 server.

1 / 2λ =

Erlang distribution, k = 20,
m = 25/4, initially 1 server.

 
Fig. 5.7. The tandem net 

The tandem net leads cases with equal probability to the execution of either 
task A or both task B and C, the latter of which are executed in tandem. As each 
resource class is allocated to exactly one task and vice versa, we will refer to the 
resource classes as A, B, and C. 

The structure of the tandem net is similar to that of the class of workflow nets 
for which the optimality of the marginal allocation strategy is proven (see Section 
5.3). However, the used delays do not have a negative exponential distribution, so 
that optimality is not ensured.  

Initially, the utilization of the resource (server) in B is 0,8 (= 1/4 ⋅ 20 ⋅ 4/25); 
similar for the server working on C. The utilization for the server of A is 0,7 (= 
1/4 ⋅ 14/5). Because of these utilization rates, the net is in steady state.  

In Figure 5.8, resource allocations are represented as follows: for a, b, c ∈ N, 
[a, b, c] denotes a resource allocation of a resources in class A, b in B, and c in C. 
For a given allocation [a, b, c], the allocation [a', b', c'] is considered to be a (po-
tential) successor if a'+b'+c' = a+b+c+1 where there is a d ∈ { a, b, c} such that d' 
= d + 1 and for all e ∈ { a, b, c}\d holds that e' = e.  
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Fig. 5.8. Allocation decisions for tandem net 

Three allocation strategies are considered: ma indicates the path of allocations 
decisions taken when the marginal allocation strategy is applied (see Section 5.3), 
ga1 the path for the Goldratt algorithm with the first interpretation of the bottle-
neck, and ga2 the path for Goldratt algorithm with the second interpretation of the 
bottleneck (see Section 5.2). An arrow always leads from an allocation to a suc-
cessor. An arrow is labeled with one or more allocation strategy identifiers, indi-
cating which resource class would be extended with another resource according to 
this strategy. 

Under each resource allocation, the lower and upper bound of the 90 % confi-
dence interval on its mean throughput time are given between parentheses. A 
strategy identifier is followed by another index, when this strategy is at some place 
ambiguous for deciding on the next allocation decision. For example, in Figure 5.8 
strategy identifiers ga2a and ga2b occur because at the initial allocation [1, 1, 1] 
both resource classes B and C have an equal utilization. Note that the exact utiliza-
tion of a resource class can always be determined. For the marginal allocation 
strategy and the first interpretation of the Goldratt algorithm, an allocation deci-
sion is considered ambiguous if for two or more successors of an allocation the 90 
% confidence intervals on respectively the mean throughput time or the mean 
queue time overlap. 

Recall that we use the mean throughput time as optimality algorithm. All allo-
cations of one, two, or three extra resources have been considered to decide upon 
this optimality, although for the sake of clarity not all of them have been depicted 
in Figure 5.8. The number of different allocations of one, two, or three resources 
to three classes equals respectively 3, 6, and 10. 

Analysis of the tandem net shows that for one additional resource the marginal 
allocation decision is optimal, for two additional resources the Goldratt algorithm 
(with either interpretation), and for three additional resources all strategies lead to 
the optimal allocation. The marginal allocation strategy for the tandem net 
"misses" the dependency between tasks B and C. The strategy will initially not 
propose to add an additional resource to resource classes B or C, as it will not de-
crease the overall throughput time. But by deciding for class A, it cannot find the 
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optimal allocation of two additional resources. After all, [1, 2, 2] is not a successor 
of [2, 1, 1]. The marginal allocation strategy by definition lacks the ability to re-
place an already placed server. Because of the slight stochastic variation in the 
service times of working on task B and C, it eventually does lead to the right allo-
cation. This would have been different if tasks B and C were characterized by 
similar but deterministic service times or if there had been a deterministic arrival 
pattern. Note that the use of negative exponential distributions would have put this 
net in the class of nets for which optimality of the marginal allocation is proven.  

The N-construction 

The net in Figure 5.9 incorporates a so-called "N" structure, which derives its 
name from the resemblance of the middle part of the net with the respective up-
percase letter. It can be proved that partially ordered multisets composed with se-
quential, choice, and concurrency primitives cannot include this construction 
(Basten, 1997). Because of the semi-concurrency of the tasks A and C on the one 
hand and tasks B and D on the other, one may expect that the discussed allocation 
strategies for this net will perform badly.  
 

A B

C D

Poisson arrival with

NE distribution, µ = 5/16,
initially 2 servers.

NE distribution, µ = 5/16,
initially 2 servers.

NE distribution, µ = 5/16,
initially 2 servers. NE distribution, µ = 5/16,

initially 2 servers.

1 / 2λ =

 
Fig. 5.9. The N-construction 
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As each resource class is allocated to exactly one task and vice versa, we will 
refer in this section to the resource classes as A, B, C, and D. 

In Figure 5.10, only decision paths through allocations are depicted for the 
marginal allocation algorithm and the first interpretation of the Goldratt algorithm.  

The use of the utilization rate as a criterion to identify the bottleneck leads to 24 
different allocations of three resources over four resource classes, as the utilization 
rates of all classes are initially equal. These paths are not depicted. Similar to the 
tandem net we already discussed, all allocations of 1, 2, and 3 additional resources 
have been considered in the analysis. 
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Fig. 5.10. Allocation decisions for N-construction 

From the analysis of the N-construction net it follows that the marginal alloca-
tion strategy leads to the optimal allocation of the three extra resources for this 
case. The first interpretation of the Goldratt algorithm leads to an inferior alloca-
tion, even though it has several decision paths. For example, the next resource al-
location at allocation [3, 2, 2, 2] is ambiguous, as the 90 % confidence intervals on 
the mean queue times at task B and C overlap. Also note that taking the decision 
path labeled with ga1b from the initial allocation leads to a resource allocation of 
two extra resources that is somewhat comparable with [3, 2, 2, 3], as the confi-
dence intervals on the throughput times overlap slightly. 

The second Goldratt interpretation ñ which is not depicted ñ may by chance 
lead to the optimal allocation, as [3, 3, 2, 3] belongs to the 20 possibilities that the 
application of this algorithm allows for. If arbitrary choices are made in ambigu-
ous situations, then the likelihood of finding the optimal allocation is rather small.  

Contrary to our expectations the marginal allocation algorithm performs quite 
well in this net with concurrency. The marginal allocation algorithm seems to ap-
preciate that initially task A is crucial in the overall performance of the net, as 
both tasks C and D rely on the speed of its processing. After a first allocation of an 
extra resource to this task, task D becomes the bottleneck because of its dependen-
cies on both task A and B. Both other algorithms are rather blind for these de-
pendencies. 
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5.4.2 Big Nets 

Parallel Sequential 

To investigate the effects of the allocation strategies on rather large nets, the net in 
Figure 5.11 was designed.  
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Fig. 5.11. Parallel sequential net 

The figure contains three parallel sequences of tasks and four resource classes. 
The size of this somewhat artificial net was chosen such that accurate simulation 
results could be obtained within reasonable time. Therefore, the number of re-
source classes is chosen smaller than the number of tasks. After all, the number of 
different allocation scenario's grows exponentially in the number of resource 
classes. The number of tasks is still small in comparison with some actual work-
flows found in banking and insurance companies, but not uncommon. On the other 
hand, the number of resources, the number of resource classes, and the multiple 
tasks assigned to each resource class are quite realistic.  
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As each resource class works on several tasks, we will refer to the three classes 
as AFH, BGL, CIJ, and DIK (in this particular order) with obvious semantics. In 
Figure 5.12, the subsequent resource allocations have been depicted that result 
from applying the various allocation strategies. For the sake of readability, not all 
four possible allocations of one additional resource and not all 10 possible alloca-
tions of two additional resources to the four resource classes have been depicted.. 
The analysis of this net did, however, include each of these, to decide upon the 
overall optimality of the outcomes of the considered allocation strategies.  

 
[7,16,5,10]

(138,17-154,04)
ma
ga1

[7,17,5,10]
(96,57-104,95)

ga2a
ga2b

[7,17,6,10]
(72,43-75,95)

[7,17,5,11]
(79,28-85,21)

ma
ga1

ga2b
ga2a

 
Fig. 5.12. Allocation decisions for parallel-sequential net 

From the analysis it followed that both the marginal allocation and the first in-
terpretation of the Goldratt algorithm lead to the optimal allocation of two addi-
tional resources. The second interpretation of the Goldratt algorithm leads to two 
outcomes, one of which the optimal one. At allocation [7, 17, 5, 10], the utilization 
rate for resource classes CEJ and DIK is equal (= 0,9). Placing an extra resource in 
class CEJ leads to the same optimal allocation as the other strategies; placing one 
in class DIK leads to an inferior allocation. So, for this particular net the different 
allocation strategies seem to act almost similarly. 

Alternative Sequential 

Another "big" net is the one as depicted in Figure 5.13. Its structure resembles that 
of Figure 5.11, save for the fact that the three sequences of tasks are alternatives 
for each case. On the basis of the optimality result for the marginal allocation as 
discussed in Section 5.3, a good performance of the marginal allocation algorithm 
was expected because of the lack of concurrency within this net. The net does not 
obviously fall in the category of nets for which optimality is proven, because of 
the multiple tasks that resource classes work on. There are four separate resource 
classes, to which we will refer for obvious reasons as AFH, BGL, CEJ, and DIK.  
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Fig. 5.13. Alternative sequential net 

The outcome of the different allocation strategies is depicted in Figure 5.14. 
The number of resources is between straight brackets using the order AFH, BGL, 
CEJ, and DIK. As before, not all resource allocations have been depicted, al-
though they are all included in the analysis. 
 

[7,16,5,10]
(65,76-70,59)

ma1

[7,16,6,10]
(48,18-51,21)

ga2a
ga2b

[7,17,6,10]
(36,72-37,99)

[7,17,5,11]
(41,22-42,85)

ma1 ga2b

[7,17,5,10]
(48,84-51,62)

ma2
ga1

ma2
ga2a

[7,18,5,10]
(43,53-45,68)

ga1

 
Fig. 5.14. Allocation decisions for alternative-sequential net 

The analysis of the different allocations showed that the marginal allocation 
strategy leads to the optimal allocation. This in spite of the ambiguous alternatives 
initially, where the mean throughput times of [7, 16, 6, 10] and [7, 17, 5, 10] are 
similar. The application of the Goldratt algorithm using the mean queue time as 
the bottleneck selection criterion (ga1) quite definitely leads to an inferior alloca-
tion, namely [7, 18, 5, 10]. Using the utilization rate for the bottleneck identifica-



5.4 Workbench      201 

tion, the Goldratt algorithm leads to two alternative allocations of which one is the 
optimal one (ga2) and the other an inferior one (ga1). 

In accordance to our expectations the marginal allocation algorithm performs 
well for this net. The other allocation strategies lead to an overall disappointing re-
sult. 

5.4.3 Practical Nets 

Handling Appeals 

The workflow that is in use with the Gemeenschappelijk Administratie-Kantoor 
(GAK) to handle appeals against one type of its decisions is depicted in Figure 
5.15. The main task of the GAK is to decide upon claims for allowances with re-
spect to unemployment or labor disability. Tasks A, B, C, and E are in use for the 
registration of an appeal against such a decision and to ensure a formal complete-
ness of the appeal. Task D is used to decide whether an intermediary hearing is 
due or that a formal decision can be taken immediately. The outcome of a hearing 
may be that the appeal is withdrawn or that a formal decision can be made; a hear-
ing may be adjourned several times (tasks F, G, H, I, J). 

The displayed resource-extended SWN is a simplification of the actual work-
flow, as in reality a more complex allocation is used with e.g., overlapping re-
source classes. We will distinguish for each task a separate resource class. Note 
that some tasks are part of the net that consume time, but do not require a re-
source. Task C, for example, signifies a time-out when additional information of 
the plaintiff is not returned in time. We will refer to the resource classes with the 
identifiers of the tasks that require a resource, respectively A, D, E, F, I, J, and K. 
All depicted time-units are in minutes. 

The allocation decisions taken by following either interpretation of the Goldratt 
algorithm are depicted in Figure 5.16. The initial resource allocation [7, 4, 1, 3, 1, 
1, 5] gives the initial number of resources in the respective classes A, D, E, F, I, J, 
and K. The application of the marginal allocation strategy is not depicted, as it is 
rather troublesome. All 7 resource allocations of 1 additional resource have an 
overlapping 90 % confidence interval on the throughput time. This also holds for 
all 28 allocations of two resources and all 84 allocations of three additional re-
sources. In other words, the differences between the resource allocations are too 
small to make a proper decision on the basis of the marginal allocation algorithm. 

Both Goldratt applications lead to the optimal allocation of three resources to 
seven resource classes. Recall that we consider as optimal allocation the one with 
the lowest absolute mean throughput time, regardless of its confidence interval. It 
is noteworthy to consider the same absoluteness in selecting a successor according 
to the marginal allocation strategy, i.e., taking the successor with the absolute 
lowest mean throughput time regardless of its confidence interval. This strategy 
would have led to the same optimal allocation [8, 5, 1, 3, 1, 1, 6]. It is, however, 
improbable (p = 1/84) that making random choices between similar successors, 
i.e., with overlapping mean throughput time confidence intervals, would have the 
same result. 
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Fig. 5.15. Handling of appeals 

The results of the marginal allocation algorithm are disappointing. The cause 
for this is the large portion of the total throughput time that consists of time that is 
not dependent upon the number of resources, see e.g., task B. If an infinite number 
of resources within each class is assumed, the mean throughput time is 4482,03 
time units. With respect to this net, the figures of mean queue time and resource 
utilization did allow for their unambiguous interpretation. 
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[7,4,1,3,1,1,5]
(4491-4503)

[7,5,1,3,1,1,5]
(4488-4501)

[8,5,1,3,1,1,6]
(4482-4494)

[7,5,1,3,1,1,6]
(4484-4497)

ga1
ga2

ga1
ga2

ga1
ga2

 
Fig. 5.16. Allocation decisions for appeals handling 

Money Transfers 

In Figure 5.17, a resource-extended SWN is depicted that is in use to process 
complex money transfers at the Postbank, a Dutch bank. The workflow involves 
several checks that have to be satisfied (A and B), before a preliminary money 
transfer can be made (task C). Task E attempts to finalize the transfer, but this 
may fail if several financial requirements are not met. If it fails, the final transfer 
may be retried the next working day (task D) or it may be rejected. In case of re-
jection, task H corrects the preliminary booking. If the transfer is successful, some 
after-processing is required (tasks F and G).  

Just as is the case for the workflow depicted in Figure 5.15, some tasks do not 
require a resource but do consume time. For example, task D represents a time pe-
riod of 1 working day (8 hours) that has to pass before a transfer is again at-
tempted to be executed when it has failed before because of a deficit. As each re-
source class is allocated to exactly one task and vice versa, we will refer in this 
section to the resource classes with the identifiers tasks. Only resource classes ex-
ist for tasks that require a resource, respectively A, B, E, F, and H. 

The decision paths through the subsequent allocations taken by all considered 
allocation strategies are depicted in Figure 5.18. The initial resource allocation [6, 
4, 5, 2, 1] denotes the initial availability of 6 resources in class A, 4 in class B, 5 in 
class E, 2 in class F and 1 in class H. Not all resource allocations have been de-
picted, although they were all included in the analysis.  

The analysis of the different resource allocations showed that two of the three 
paths that are consistent with the marginal allocation strategy lead to the optimal 
solution of [6, 6, 5, 3, 1]. The three paths are labeled with ma1, ma2, and ma3. 
Note that there are three of these paths, because the 90 % mean throughput time 
confidence intervals of allocations [6, 5, 5, 3, 1] and [6, 6, 5, 2, 1] are overlapping, 
as well as those of the allocations [6, 5, 6, 3, 1] and [6, 6, 5, 3, 1]. Neither of the 
routes that implements a Goldratt strategy leads to the optimal scenario. Note the 
two alternatives for applying the Goldratt algorithm with the recourse utilization 
as selection criterion (ga2a and ga2b).  
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Fig. 5.17. Complex money transfers 
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Fig. 5.18. Allocation decisions for complex money transfers 
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For this practical net, the marginal allocation performs rather well. According 
to the marginal allocation algorithm, resource class E is not so important to extend 
with an extra resource. This in contrast with the applications of the Goldratt algo-
rithm. The effectiveness of the marginal allocation algorithm is not impaired by 
large influences on the throughput time by tasks without resources, like it was the 
case for the previous practical net ("handling of appeals"). Do note that the confi-
dence intervals on the allocations [6, 5, 6, 3, 1], [6, 6, 5, 3, 1] and [6, 6, 6, 2, 1] ei-
ther overlap or are very close. Only the absoluteness of our optimality criterion al-
lows for a proper selection. 

5.4.4 Evaluation 

The most important conclusion that can be drawn from the workbench experimen-
tation is that the application of the marginal allocation is limited when throughput 
times depend only slightly on queue times (see the "handling of appeals" net in 
Section 5.4). For practical situations, this will very often be the case. In many 
practical situations a large part of the throughput time depends on communications 
with external parties, fixed schedules for carrying out some part of the work, etc. 
The "intake workflow" that is yet to be introduced in the following chapter (see 
Section 6.2) is another illustration of these characteristics in practice.  

For a relative overall comparison of the marginal allocation algorithm with the 
Goldratt algorithm, the following procedure is applied. For each of the treated nets 
in the workbench, the probability is determined for each allocation strategy that it 
leads to the optimal allocation of one, two, or three additional resources. (For the 
big nets, only the probabilities for one or two additional resources have been com-
puted.) Once again recall that we have applied the lowest absolute mean through-
put time as optimality criterion. Because the strategies are sometimes ambiguous 
in the selection of an allocation successor, we assume an equal probability for se-
lecting one out of more alternatives. For example, there is an 0,5 probability that 
resource allocation [6, 6, 5, 2, 1] is chosen as successor for the allocation [6, 5, 5, 
2, 1] when following the marginal allocation strategy in the "money transfer" net 
of Section 5.4. The probability figures for each net are depicted in Table 5.4.  

The results of this table give a mixed view. For the N-construction, the parallel 
sequential net, and the alternative sequential net the marginal allocation delivers 
the best results. For the tandem net and the money transfers there is no obvious 
best strategy. For the handling of appeals net, the marginal allocation makes the 
worst score. An optimistic conclusion may be that the marginal allocation delivers 
comparable or better results than the Goldratt strategies, except when queue time 
makes only a small portion of the throughput time (e.g., in the case of the handling 
of appeals). Obviously, such a conclusion assumes equal importance of all sce-
nario's. 
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Table 5.4. Probabilities of finding the optimal allocation for different numbers of additional 
servers. MA = Marginal Allocation; GR1 = Goldratt 1 (queue time); GR2 = Goldratt 2 
(utilization). 
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5.5 Conclusion 

As we have remarked in the introduction of this chapter, the allocation of the right 
number of resources to resource classes is just one element in the overall field of 
resource allocation in the design and control of workflow. It is nonetheless an im-
portant one, where guidance in practice is much in demand. This demand is also 
the justification for allowing the very simple model of the way that resources are 
allocated in a workflow (see Table 5.1). Clearly, the evaluation of the type of al-
gorithms as presented is much more complicated for models which are less sim-
ple.  

Other important issues within the field of resource allocation are the selection 
of resource classes and the specification of allocation principles such that the re-
quirements on the execution of a workflow can be met. These subjects are not 
treated here. In the following chapter, some heuristics are proposed that may help 
to make this type of decisions. A framework is also introduced to assess the im-
pact of a (resource allocation) decision, which takes a wider viewpoint than con-
sidering the throughput time only. 

 
 



6 Heuristic Workflow Redesign 

In this chapter we will give an overview of heuristics that can be used to improve 
a workflow. The character of the chapter is rather informal. We will not try to 
prove or quantify in general terms the superiority of the design measures we dis-
cuss. Instead, we will illustrate a heuristic redesign of workflows by presenting a 
realistic example workflow to which we will apply these measures. A heuristic re-
design of a workflow contrasts rather sharply with the product-based workflow 
design approach that we have discussed in Chapter 3. We characterized the latter 
as an analytic and clean sheet approach. The approach of this chapter takes an ex-
isting workflow as starting point. The heuristics that we apply are also typically on 
a check-list of a team that redesigns a workflow in a participative way. 

The scope of this chapter is very broad. Almost all relevant concepts in a work-
flow context (see Chapter 1) are touched by one or more of the heuristics pre-
sented. We have visualized the scope of the chapter with the thickly outlined 
shape in Figure 6.1. The original, underlying model was introduced in Section 1.4. 
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Fig. 6.1. Focus of Chapter 6 

The purpose of this chapter is twofold. In the first place, it is an attempt to 
bring together known workflow redesign rules. In the second place, the presenta-
tion and application of the heuristics on the example may serve as an inspiration 
for a better quantification and rationalization of the redesign measures in future re-
search.  

H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 207-243, 2003. 
 Springer-Verlag Berlin Heidelberg 2003 
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6.1 Redesign Heuristics 

In this section we will present about thirty workflow redesign heuristics and dis-
cuss their supposed effects. The main part of the heuristics we present have been 
derived from literature (Hammer and Champy, 1993; Rupp and Russell, 1994; 
Klein, 1995; Peppard and Rowland, 1995;  Poyssick and Hannaford, 1996; Berg 
and Pottjewijd, 1997; Seidmann and Sundararajan, 1997; Van der Wal, 1997; Van 
der Aalst, 2000b; Zapf and Heinzl, 2000; Van der Aalst and Van Hee, 2002). A 
smaller part is based on our own experiences, which has been partly described in 
earlier work (e.g., Reijers and Goverde 1998; Reijers and Goverde, 1999a) or in 
this monograph (see Chapter 7).  

Not each heuristic which we have encountered in our literature survey is incor-
porated in this overview. Some of them focused more on the strategic level, e.g., 
on the selection of products to be offered, or were too much concerned with manu-
facturing processes. We  also thought some heuristics to be of very limited general 
application.  

Before we discuss the various heuristics, we will describe a model that serves 
as a frame of reference in their assessment. The other parts of this section contain 
the descriptions of the heuristics, using a breakdown as follows: 

 
− Task rules, which focus on optimizing single tasks within a workflow. 
− Routing rules, which try to improve upon the routing structure of the workflow. 
− Allocation rules, which involve a particular allocation of resources. 
− Resource rules, which focus on the types and number of resources. 
− Rules for external parties, which try to improve upon the collaboration and 

communication with the client and third parties. 
− Integral workflow rules, that apply to the workflow as a whole. 

 
Note that this distinction is not mutually exclusive. In other words, it is to some 

degree arbitrary to which category a heuristic is assigned. 

6.1.1 The Devil's Quadrangle 

Brand and Van der Kolk (1995) distinguish four main dimensions in the effects of 
redesign measures: time, cost, quality, and flexibility. Ideally, a redesign of a 
workflow decreases the time required to handle the case, it decreases the required 
cost of executing the workflow, it improves the quality of the service delivered, 
and it improves the ability of the workflow to react to variation. The appealing 
property of their model is that, in general, improving upon one dimension may 
have a weakening effect on another. For example, reconciliation tasks may be 
added in a workflow to improve on the quality of the delivered service, but this 
may have a drawback on the timeliness of the service delivery. To signify the dif-
ficult trade-offs that sometimes have to be made they refer to their model as the 
devil's quadrangle. It is depicted in Figure 6.2. 
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Fig. 6.2. The devil's quadrangle 

Awareness of the trade-off that underlies a redesign measure is very important 
in a heuristic redesign of a workflow. Sometimes, the effect of a redesign measure 
may be that the result from some point of view is worse than the existing work-
flow. The application of several redesign rules may also result in the partly deacti-
vation of the desired effects of each of the single measures.  

Each of the four dimensions of the devil's quadrangle may be made operational 
in different ways. For example, there are several types of cost and even so many 
directions to focus on when attempting to decrease cost. The translation of the 
general concepts time, cost, quality, and flexibility to a more precise meaning is 
context sensitive. The key performance indicators of an organization or ñ more di-
rectly ñ the performance targets formulated for a redesign effort should ideally be 
formulated as much more precise applications of the four named dimensions.  

In our discussion of the effects of redesign measures we will not try to assess 
their effectiveness in every thinkable aspect of each of the four dimensions. We 
will focus on some particular issues of interest.  

Time 

An important performance concept of a workflow is the throughput time, which 
we have discussed before at several points during this monograph. It is the time 
that it takes to handle a case from start to end. Although it is usually the aim of a 
redesign effort to reduce the throughput time, there are many different ways of 
further specifying this aim. For example, one can aim at a reduction of the average 
throughput time or the maximal throughput time. Both of these entities are abso-
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lute measures. It is also possible to focus on the ability to meet throughput times 
that are agreed upon with a client at run time. This is a more relative interpretation 
of the throughput time dimension. Yet another way of looking at the throughput 
time is to focus on its variation (see Buzacott, 1996; Seidmann and Sundararajan, 
1997). 

Other aspects of the time dimension come into view when we consider the con-
stituents of throughput time as we have described them in Section 2.4, which are 
as follows:  

 
− Service times: the time that resources spend on actually handling the case.  
− Queue times: the time that a case spends waiting in queue because there are no 

resources available to handle the case.  
− Wait times: all other time a case spends waiting, for example because synchro-

nization must take place with another process.  
 
In general, there are different ways of measuring each of these constituents. An 

elegant way of coping with these notions is given in Section 5.1 (see also Figure 
5.3). 

Cost 

The most common performance targets for redesign projects are of a financial na-
ture. Brand and Van der Kolk (1995) have chosen to distinguish the cost dimen-
sion, but it would also have been possible to put the emphasis on turnover, yield, 
or revenue. Obviously, an increase of yield may have the same effect on an or-
ganization's profit as a decrease of cost. However, redesign is more often associ-
ated with reducing cost and not so much with increasing the yield. (We will men-
tion in our overview one redesign measure which is more involved with yield than 
cost.)  

There are different perspectives on cost. In the first place, it is possible to dis-
tinguish between fixed and variable cost. Fixed costs are overhead costs which are 
(nearly) not affected by the intensity of processing. Typical fixed costs follow 
from the use of infrastructure and the maintenance of information systems. Vari-
able cost is positively correlated with some variable quantity, such as the level of 
sales, the number of purchased goods, the number of new hires, etc.  

A cost notion which is closely related to productivity is operational cost. Opera-
tional costs can be directly related to the outputs of a workflow. A substantial part 
of operational cost is usually labor cost, the cost related to human resources in 
producing a good or delivering a service. Within BPR efforts, it is very common 
to focus on reducing operation cost, particularly labor cost. The automation of 
tasks is often seen as an alternative for labor. Obviously, although automation may 
reduce labor cost it may cause incidental cost involved with developing the re-
spective application and fixed maintenance cost for the life time of the application. 
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Quality 

The quality of a workflow can be viewed from at least two different angles: from 
the client's side and from the worker's side. This is also known as the distinction 
between external quality and internal quality.  

The external quality can be measured as the client's satisfaction with either the 
product or the process. Satisfaction with the product can be expressed as the extent 
to which a client feels that his specifications or expectations are met by the deliv-
ered product. A client's satisfaction with the workflow concerns the way how it is 
executed. A typical issue is the amount and quality of the information that a client 
receives during execution on the progress being made.  

The internal quality of a workflow involves the condition of working in the 
workflow. Typical issues are: the level that a worker feels he or she is in control of 
the work performed, the level of variation experienced, and whether working in 
the particular workflow is felt as challenging. 

It is interesting to note that there are various direct relations between the quality 
and other dimensions. For example, the external process quality is often measured 
in terms of time, e.g., the throughput time. 

Flexibility 

The least noted criterion to measure the effect of a redesign measure is the work-
flow's flexibility. Flexibility can be defined as the ability to react to changes. 
These changes may concern various parts of the workflow as follows: 
 
− The ability of resources to execute different (numbers of) tasks.  
− The ability of a workflow as a whole to handle various cases and changing 

workloads. 
− The ability of the workflow's management to change the used structure and al-

location rules.  
− The organization's ability to change the structure and responsiveness of the 

workflow to wishes of the market and business partners. 
 
Another way of approaching the flexibility issue is to distinguish between run 

time and build time flexibility (see Section 1.2). Run time flexibility concerns the 
possibilities to handle changes and variations while executing a specific workflow. 
Build time flexibility concerns the possibility to change the workflow structure.  

It is important to distinguish the flexibility of a workflow from the other dimen-
sions, as will be clear from the discussion of the various heuristics in the next sec-
tions.  

 
We will present in the following subsections the rules. Each of the sections 

concerns one category of heuristic rules as distinguished at the begin of Section 
6.1. For each heuristic, we will present an acronym (in capitals, between brackets), 
its general formulation, its desirable effects and possible drawbacks. For each of 
the rules ñ except for the integral workflow rules ñ a symbolic depiction of its es-
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sence is given. We will also indicate similarities in heuristics and provide refer-
ences to their origin.  

6.1.2 Task Rules 

Task Elimination (ELIM) 

The heuristic of task elimination runs as follows: eliminate unnecessary tasks from 
a workflow (see Figure 6.3).  
 

1 2 3

 
Fig. 6.3. Task elimination 

A common way of regarding a task as unnecessary is when it adds no value 
from a client's point of view. Typically, control tasks in a workflow do not do this; 
they are incorporated in the model to fix problems created or not elevated in ear-
lier steps. Control tasks can often be found back as iterations and reconciliation 
tasks. The aims of this heuristic are to increase the speed of processing and to re-
duce the cost of handling a case. An important drawback may be that the quality 
of the service deteriorates.  

The heuristic is widespread in literature, for example see Peppard and Rowland 
(1995), Berg and Pottjewijd (1997), and Van der Aalst and Van Hee (2002). 
Buzacott (1996) illustrates the quantitative effects of eliminating iterations with a 
simple model. 

Task Addition (ADD) 

The task addition heuristic is: check the completeness and correctness of incoming 
materials and check the output before it is send to clients (see Figure 6.4). 
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Fig. 6.4. Task addition 

This heuristic promotes the addition of controls to a workflow. It may lead to a 
higher quality of the workflow execution and, as a result, to less required rework. 
Obviously, an additional control will require time and will absorb resources. Note 
the contrast of the intent of this heuristic with that of the task elimination heuristic. 

The heuristic is mentioned by Poyssick and Hannaford (1996).  
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Task Composition (COMPOS) 

The content of the task composition heuristic is: combine small tasks into compos-
ite tasks and divide large tasks into workable smaller tasks (see Figure 6.5).  
 

1 + 2 3

 
Fig. 6.5. Task composition 

Combining tasks should result in the reduction of setup times, i.e., the time that 
is spent by a resource to become familiar with the specifics of a case. By execut-
ing a large task which used to consist of several smaller ones, some positive effect 
may also be expected on the quality of the delivered work. Making tasks too large 
may result in (a) smaller run-time flexibility and (b) lower quality as tasks may 
become unworkable. Both effects are exactly countered by dividing tasks into 
smaller ones. Obviously, smaller tasks may result in longer set-up times. 

This is probably the most cited heuristic rule, mentioned by Hammer and 
Champy (1993), Rupp and Russell (1994), Peppard and Rowland (1995), Berg and 
Pottjewijd (1997), Seidmann and Sundararajan (1997), Reijers and Goverde 
(1999a), Van der Aalst (2000b), and Van der Aalst and Van Hee (2002). Some of 
these authors only consider one part of the heuristic, e.g., combining smaller tasks 
into one. Buzacott (1996), Seidmann and Sundararajan (1997) and Van der Aalst 
(2000b) provide quantitative support for the optimality of this heuristic for simple 
models. 

Task Automation (AUTO) 

The task automation heuristic is: consider automating tasks (see Figure 6.6). 
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Fig. 6.6. Task automation 

The positive result of automating tasks in particular may be that tasks can be 
executed faster, with less cost, and with a better result. An obvious disadvantage is 
that the development of a system that performs a task may be costly. Generally 
speaking, a system performing a task is also less flexible in handling variations 
than a human resource. Instead of fully automating a task, an automated support 
of the resource executing the task may also be considered. This heuristic is a spe-
cific application of the technology heuristic, which we have yet to discuss. 
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The heuristic is specifically mentioned as a redesign measure by Peppard and 
Rowland (1995) and Berg and Pottjewijd (1997). 

6.1.3 Routing Rules 

Resequencing (RESEQ) 

The content of the resequencing heuristic is: move tasks to more appropriate 
places (see Figure 6.7). 
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Fig. 6.7. Resequencing 

In existing workflows, actual tasks orderings do not give full information on the 
logical restrictions that have to be maintained between tasks. Therefore, it is some-
times better to postpone a task if it is not required for immediately following tasks, 
so that perhaps its execution may prove to become superfluous. This saves cost. A 
task may be moved into the proximity of a similar task also, in this way diminish-
ing set-up times. Specific applications of the resequencing heuristics are the 
knock-out heuristic, control relocation and the parallelism heuristic which we will 
subsequently discuss. 

The resequencing heuristic is mentioned as such by Klein (1995). 

Knock-Out (KO) 

The knock-out heuristic is: order knock-outs in a decreasing order of effort and in 
an increasing order of termination probability (see Figure 6.8). 
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Fig. 6.8. Knock-out 

A typical part of a workflow is the checking of various conditions that must be 
satisfied to deliver a positive end result. Any condition that is not met may lead to 
a termination of that part of the workflow, the knock-out. If there is freedom in 
choosing the order in which the various conditions are checked, the condition that 
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has the most favorable ratio of expected knock-out probability versus the expected 
effort to check the condition should be pursued. Next, the second best condition, 
etc. This way of ordering checks yields on average the least costly workflow exe-
cution. There is no obvious drawback on this heuristic, although it may not always 
be possible to freely order these kinds of checks. Implementing the heuristic also 
may result in a (part of a) workflow that takes a longer throughput time than a full 
parallel checking of all conditions. 

Reijers and Goverde (1999a) and Van der Aalst (2000b) mention this heuristic. 
Van der Aalst (2000b) also gives quantitative support for its optimality.  

Control Relocation (RELOC) 

The control relocation heuristic means: move controls towards the client (see Fig-
ure 6.9). 
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Fig. 6.9. Control relocation 

Different checks and reconciliations that are part of a workflow may be moved 
towards the client. Klein (1995) gives the example of Pacific Bell that moved its 
billing controls towards its clients eliminating in this way the bulk of its billing er-
rors. It also improved client satisfaction. A disadvantage of moving a control to-
wards a client is higher probability of fraud, resulting in fewer yields.  

The heuristic is named by Klein (1995). 

Parallelism (PAR) 

The parallelism heuristic runs as follows: consider whether tasks may be executed 
in parallel (see Figure 6.10).  
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Fig. 6.10. Parallelism 

The obvious effect of applying this heuristic is that the throughput time may be 
considerably reduced. The applicability of the heuristic in workflow redesign is 
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large. In practical experiences we have had with analyzing existing workflows, 
tasks were mostly ordered sequentially without the existence of hard logical re-
strictions prescribing such an order. We already discussed the causes for this in 
Section 3.2. The advantage of parallel workflows in terms of throughput time is 
the basis for the breadth-first workflows that are designed with PBWD (see Sec-
tion 3.3.)  

A drawback of introducing more parallelism in a workflow that incorporates 
possibilities of knock-outs is that the cost of workflow execution may increase. 
The management of workflows with concurrent behavior can become more com-
plex also, which may introduce errors (quality) or restrict run-time adaptations 
(flexibility). 

The heuristic is mentioned by Rupp and Russell (1994), Berg and Pottjewijd 
(1997), and Van der Aalst and Van Hee (2002). Van der Aalst (2000b) provides 
quantitative support for this heuristic.  

Triage (TRI) 

The main interpretation of the triage heuristic is: consider the division of a general 
task into two or more alternative tasks (see Figure 6.11). Its opposite (and less 
popular) formulation is: consider the integration of two or more alternative tasks 
into one general task. 

When applying the heuristic in its main form, it is possible to design tasks that 
are better aligned with the capabilities of resources and the characteristics of the 
case. Both of these improve the quality of the workflow. Distinguishing alterna-
tive tasks also facilitates a better utilization of resources, with obvious cost and 
time advantages. On the other hand, too much specialization can make processes 
become less flexible, less efficient, and cause monotonous work with repercus-
sions for quality. This is lifted by the alternative interpretation of the triage heuris-
tic.  
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Fig. 6.11. Triage 

A special form of the triage heuristic is to divide a task into similar instead of 
alternative tasks for different subcategories of the case type. For example, a spe-
cial cash desk may be set up for clients with an expected low processing time.  

The triage heuristic is related to the task composition heuristic in the sense that 
it is concerned with the division and combination of tasks. Note that the heuristic 
differs from it in the sense that alternative tasks are considered. 
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The triage concept is mentioned by Klein (1995), Berg and Pottjewijd (1997), 
and Van der Aalst and Van Hee (2002). Zapf and Heinzl (2000) show the positive 
effects of triage within the setting of a call center. 

6.1.4 Allocation Rules 

Case Manager (MAN) 

The case manager heuristic runs as follows: appoint one person as responsible for 
the handling of each case, the case manager (see Figure 6.12).  
 

321

 
Fig. 6.12. Case manager 

The case manager is responsible for the case, but he or she is not necessarily 
the (only) resource that will work on work items for this case. The most important 
aim of this heuristic is to improve upon the external quality of a workflow. The 
workflow will become more transparent from the viewpoint of a client as the case 
manager provides a single point of contact. This positively affects client satisfac-
tion. It may also have a positive effect on the internal quality of the workflow, as 
someone is accountable for correcting mistakes. Obviously, the assignment of a 
case manager has financial consequences as capacity must be devoted to this job.  

The heuristic is mentioned by Hammer and Champy (1993) and Van der Aalst 
and Van Hee (2002). Buzacott (1996) has provided some quantitative support for 
a specific interpretation of this heuristic. 

Case Assignment (ASSIGN) 

The case assignment heuristic is: let workers perform as many steps as possible 
for single cases (see Figure 6.13). 
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Fig. 6.13. Case assignment 
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This heuristic is different from the case manager heuristic we mentioned be-
fore. Although a case manager will be responsible for a case, he or she does not 
have to be involved in executing the workflow. By using case assignment in the 
most extreme form, for each work item the resource is selected from the ones ca-
pable of performing it that has worked on the case before ñ if any. Rather confus-
ingly, this person is sometimes also referred to as case manager. The obvious ad-
vantage of the rule is that this person will get acquainted with the case and will 
need less set-up time. An additional benefit may be that the quality of service is 
increased. On the negative side, the flexibility of resource allocation is seriously 
reduced. A case may experience substantial queue time when its "case manager" is 
not available. 

The case assignment heuristic is described by Rupp and Russell (1994), Reijers 
and Goverde (1998), and Van der Aalst and Van Hee (2002). 

Customer Teams (TEAM) 

The customer team heuristic is: consider assigning teams out of different depart-
mental workers that will take care of the complete handling of specific sorts of 
cases (see Figure 6.14). 
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Fig. 6.14. Customer teams 

This heuristic is a variation of the case assignment heuristic. Depending on its 
exact desired form, the customer team heuristic may be implemented by the case 
assignment heuristic. A customer team may involve more workers with the same 
qualifications also, in this way relaxing the strict requirements of the case assign-
ment rule. 

Advantages and disadvantages are similar to those of the case assignment heu-
ristics. In addition, work as a team may improve the attractiveness of the work and 
a better understanding, which are both quality aspects. 

The heuristic is mentioned by Peppard and Rowland (1995) and Berg and 
Pottjewijd (1997). 

Flexible Assignment (FLEX) 

The flexible assignment heuristic runs as follows: assign resources in such a way 
that maximal flexibility is preserved for the near future (see Figure 6.15). For ex-
ample, if a work item can be executed by either of two available resources, assign 
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it to the most specialized resource. In this way, the possibilities to take on the next 
work item by the free, more general resource are maximal. 
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Fig. 6.15. Flexible assignment 

The advantage of this heuristic is that the overall queue time is reduced: it is less 
probable that a case has to await the availability of a specific resource. Another 
advantage is that the workers with the highest specialization can be expected to 
take on most of the work, which may result in a higher quality. The disadvantages 
of the rule can be diverse. For example, work load may become unbalanced result-
ing in less job satisfaction. Possibilities for specialists to evolve into generalists 
are reduced also. 

This heuristic is mentioned by Van der Aalst and Van Hee (2002). 

Resource Centralization (CENTR) 

The resource centralization heuristic is: treat geographically dispersed resources 
as if they are centralized (see Figure 6.16). 
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Fig. 6.16. Resource centralization 

This heuristic is explicitly aimed at exploiting the benefits of WfMS's. After all, 
when a WfMS takes care of handing out work items to resources it has become 
less relevant where these resources are located geographically. In this sense, the 
heuristic is a special form of the technology heuristic. Moreover, it can also be 
seen as the opposite of customer teams heuristic. The specific advantage of this 
measure is that resources can be committed more flexibly, which gives a better 
utilization and possibly a better throughput time. The disadvantages are similar to 
that of the technology heuristic. 

This heuristic is mentioned by Van der Aalst and Van Hee (2002). 
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Split Responsibilities (SPLIT) 

The split responsibilities heuristic is: avoid assignment of task responsibilities to 
people from different functional units (see Figure 6.17).  
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Fig. 6.17. Split responsibilities 

The idea behind this heuristic is that tasks for which different departments 
share responsibility are more likely to be a source of neglect and conflict. Reduc-
ing the overlap in responsibilities should lead to a better quality of task execution. 
A higher responsiveness to available work items may be developed also, so that 
clients are served quicker. On the other hand, reducing the effective number of re-
sources that is available for a work item may have a negative effect on its 
throughput time, as more queuing may occur. 

This specific heuristic is mentioned by Rupp and Russell (1994) and Berg and 
Pottjewijd (1997).  

6.1.5 Resource Rules 

Numerical Involvement (NUM) 

The numerical involvement heuristic runs: minimize the number of departments, 
groups and persons involved in a workflow (see Figure 6.18). 
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Fig. 6.18. Numerical involvement 

Applying this heuristic should lead to less coordination problems. Less time 
spent of coordination makes more time available for the processing of cases. Re-
ducing the number of departments may lead to less shared responsibilities, with 
similar pros and cons as the split responsibilities heuristic. In addition, smaller 
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numbers of specialized units may prohibit the build of expertise (a quality issue) 
and routine (a cost issue).  

The heuristic is described by Hammer and Champy (1993), Rupp and Russell 
(1994), and Berg and Pottjewijd (1997).  

Extra Resources (XRES) 

The extra resources heuristic is: if capacity is not sufficient, consider increasing 
the number of resources in a certain resource class (see Figure 6.19).  
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Fig. 6.19. Extra resources 

This straightforward heuristic speaks for itself. Note that the subject of Chapter 
5 of this monograph is concerned with the optimal allocation of additional re-
sources. The obvious effect of extra resources is that there is more capacity for 
handling cases, in this way reducing queue time. It may also help to implement a 
more flexible assignment policy. Of course, hiring or buying extra resources has 
its cost. Note the contrast of this heuristic with the numerical involvement heuris-
tic. 

The heuristic is mentioned by Berg and Pottjewijd (1997). 

Specialist-Generalist (SPEC) 

The specialist-generalist heuristic is: consider making resources more specialistic 
or more generalistic (see Figure 6.20).  
 

 
Fig. 6.20. Specialist-generalist 

Resources may be turned from specialists into generalists or the other way 
round. A specialist resource can be trained for other qualifications; a generalist 
may be assigned to the same type of work for a longer period of time, so that his 
other qualifications become obsolete. When the redesign of a new workflow is 
considered, application of the heuristic comes down to considering the specialist-
generalist ratio of new hires.  
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A specialist builds up routine more quickly and may have a more profound 
knowledge than a generalist. As a result he or she works quicker and delivers 
higher quality. On the other hand, the availability of generalists adds more flexi-
bility to the workflow and can lead to a better utilization of resources. Depending 
on the degree of specialism or generalism, either type of resource may be more 
costly. 

Note that this heuristic differs from the triage concept in the sense that the fo-
cus is not on the division of tasks. 

Poyssick and Hannaford (1996) and Berg and Pottjewijd (1997) stress the ad-
vantages of generalists. Rupp and Russell (1994), Seidmann and Sundararajan 
(1997), and Reijers and Goverde (1998) mention both specialists and generalists. 
Van der Wal (1997) provides some insight into the use of generalists ("butter-
flies"). For the example he uses, it follows that a small number of generalists may 
indeed improve the performance of a system, but increasing this number does not 
yield additional benefits.  

Empower (EMP) 

The empower heuristic is: give workers most of the decision-making authority and 
reduce middle management (see Figure 6.21). 
 

 
Fig. 6.21. Empower 

In traditional workflows, substantial time may be spent on authorizing work 
that has been done by others. When workers are empowered to take decisions in-
dependently, it may result in smoother operations with lower throughput times. 
The reduction of middle management from the workflow also reduces the labor 
cost spent on the processing of cases. A drawback may be that the quality of the 
decisions is lower and that obvious errors are no longer found. If bad decisions or 
errors result in rework, the cost of handling a case may actually increase compared 
to the original situation. 

The heuristic is named by Hammer and Champy (1993), Rupp and Russell 
(1994), and Poyssick and Hannaford (1996). Buzacott (1996) shows with a simple 
quantitative model that this heuristic may indeed increase performance. 
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6.1.6 Rules for External Parties 

Integration (INTG) 

The integration heuristic is as follows: consider the integration with a workflow of 
the client or a supplier (see Figure 6.22). This heuristic can be seen as exploiting 
the supply chain concept known in production. In practice, the application of this 
heuristic may take on different forms. For example, when two parties have to 
agree upon a product they commonly produce it may be more efficient to perform 
several intermediate reviews than performing one large review when both parties 
have completed their part.  
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Fig. 6.22. Integration 

In general, integrated workflows should render a more efficient execution, both 
from a time and cost perspective. The drawback of integration is that dependence 
grows and therefore, flexibility may decrease 

Both Klein (1995) and Peppard and Rowland (1995) mention this heuristic. 

Outsourcing (OUT) 

The outsourcing heuristic is: consider outsourcing a workflow in whole or parts of 
it (see Figure 6.23). 
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Fig. 6.23. Outsourcing 
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Another party may be more efficient in performing the same work, so they 
might as well perform it. The outsourcing heuristic is similar to the workflow in-
tegration heuristic in the sense that it reflects on workflows of other parties.  

The obvious aim of outsourcing work is that it will generate less cost. A draw-
back may be that quality decreases. Outsourcing also requires more coordination 
efforts and will make the workflow more complex. 

The heuristic is mentioned by Klein (1995) and Poyssick and Hannaford 
(1996). 

Interfacing (INTF) 

The interfacing heuristic is: consider a standardized interface with clients and 
partners (see Figure 6.24). 
 

 
Fig. 6.24. Interfacing 

The idea behind this heuristic is that a standardized interface will diminish the 
probability of mistakes, incomplete applications, unintelligible communications, 
etc. A standardized interface may result in fewer errors (quality), faster processing 
(time), and less rework (cost). The interfacing heuristic can be seen a specific in-
terpretation of the integration heuristic. 

This principle is mentioned by Hammer and Champy (1993) and Poyssick and 
Hannaford (1996). 

Contact Reduction (REDUC) 

The contact reduction heuristic is: reduce the number of contacts with clients and 
third parties (see Figure 6.25). The exchange of information with a client or third 
party is always time-consuming. Especially when information exchanges take 
place by regular mail, substantial wait times may be involved. Each contact also 
introduces the possibility of intruding an error. Hammer and Champy (1993) de-
scribes a case where the multitude of bills, invoices, and receipts creates a heavy 
reconciliation burden. Reducing the number of contacts may therefore decrease 
throughput time and boost quality. Note that it is not always necessary to skip cer-
tain information exchanges, but that it is possible to combine them with limited 
extra cost. A disadvantage of a smaller number of contacts might be the loss of es-
sential information, which is a quality issue. Combining contacts may result in the 
delivery or receipt of too much data, which involves cost. 
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Fig. 6.25. Contact reduction 

Note that this heuristic is related to the interfacing heuristic in the sense that 
they both try to improve on the collaboration with other parties.  

The heuristic is mentioned Hammer by and Champy (1993) and Reijers and 
Goverde (1999a). The heuristic is used in the redesign case in Chapter 7. Buzacott 
(1996) has investigated this heuristic quantitatively.  

Buffering (BUF) 

The buffering heuristic runs as follows: instead of requesting information from an 
external source, buffer it by subscribing to updates (see Figure 6.26). 
 

 
Fig. 6.26. Buffering 

Obtaining information from other parties is a major, time consuming part in 
many workflows. By having information directly available when it is required, 
throughput times may be substantially reduced. This heuristic can be compared to 
the caching principle microprocessors apply. Of course, the subscription fee for 
information updates may be rather costly. This is especially so when we consider 
the situation that an information source may contain far more information than is 
ever used. Substantial cost may also be involved with storing all the information.  

Note that this heuristic is a weak form of the integration heuristic. Instead of di-
rect access to the original source of information ñ the integration alternative ñ a 
copy is maintained.  

This heuristic is mentioned by Reijers and Goverde (1999a). 
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Trusted Party (TRUST) 

The trusted party heuristic is as follows: instead of determining information one-
self, use results of a trusted party (see Figure 6.27). 
 

 
Fig. 6.27. Trusted party 

Some decisions or assessments that are made within workflows are not specific 
for the workflow they are part of. Other parties may have determined the same in-
formation in another context, which ñ if it were known ñ could replace the deci-
sion or assessment part of the workflow. An example is the creditworthiness of a 
client that bank A wants to establish. If a client can present a recent creditworthi-
ness certificate of bank B, then bank A will accept it. Obviously, the trusted party 
heuristic reduces cost and may even cut back throughput time. On the other hand, 
the quality of the workflow becomes dependent upon the quality of some other 
party's work. Some coordination effort with trusted parties is also likely to be re-
quired. 

Note that this heuristic differs from the outsourcing heuristic. When outsourc-
ing, a work item is executed at run time by another party. The trusted party heuris-
tic allows for the use of a result in the recent past. It is different from the buffering 
heuristic, because the workflow owner is not the one obtaining the information. 

This heuristic rule results from our own reengineering experience. 

6.1.7 Integral Workflow Rules 

Case Types (TYP) 

The case types heuristic can be formulated as: determine whether tasks are related 
to the same type of case and, if necessary, distinguish new workflows and product 
types. 

Especially Berg and Pottjewijd (1997) convincingly warn for subflows that are 
not specifically intended to handle the case type of their umbrella workflow (the 
superflow). Ignoring this phenomenon may result in a less effective management 
of this subflow and a lower efficiency. Applying the heuristic may yield faster 
processing times and less cost. Distinguishing common subflows of many differ-
ent flows may yield efficiency gains also. Yet, it may also result in more coordina-
tion problems between the workflow (quality) and less possibilities for rearranging 
the workflow as a whole (flexibility). 

Note that this heuristic is in some sense similar to the triage concept. The main 
interpretation of the triage concept can be seen as a translation of the case type 
heuristic on a task level. 
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This heuristics has been mentioned in one form or another by Hammer and 
Champy (1993), Rupp and Russell (1994), Peppard and Rowland (1995), and Berg 
and Pottjewijd (1997). 

Technology (TECH) 

The technology heuristic is as follows: try to elevate physical constraints in a 
workflow by applying new technology. 

In general, new technology can offer all kinds of positive effects. For example, 
the application of a WfMS may result in less time that is spent on logistical tasks. 
A Document Management System will open up the information available on cases 
to all participants, which may result in a better quality of service. New technology 
can also change the traditional way of doing business by giving participants com-
plete new possibilities.  

The purchase, development, implementation, training, and maintenance efforts 
related to technology are obviously costly. In addition, new technology may 
arouse fear with workers or may result in other subjective effects; this may dete-
riorate the quality of the workflow.  

The heuristic is mentioned by Klein (1995), Peppard and Rowland (1995), Berg 
and Pottjewijd (1997), and Van der Aalst and Van Hee (2002). 

Exception (EXCEP) 

The exception heuristic is: design workflows for typical cases and isolate excep-
tional cases from normal flow. 

Exceptions may seriously disturb normal operations. An exception will require 
workers to get acquainted with a case although they may not be able to handle it. 
Setup times are then wasted. Isolating exceptions, for example by a triage, will 
make the handling of normal cases more efficient. Isolating exceptions may possi-
bly increase the overall performance as specific expertise can be build up by 
workers working on the exceptions. By filtering out all exceptions, it may be pos-
sible to offer Straight-Through-Processing (MacSweeney, 2001). The price paid in 
isolating exceptions is that the workflow will become more complex, possibly de-
creasing its flexibility. Also, if no special knowledge is developed to handle the 
exceptions (which is costly) no major improvements are likely to occur. 

The heuristic is mentioned by Poyssick and Hannaford (1996). 

Case-Based Work (CASEB) 

The case-based work heuristic is: consider removing batch-processing and peri-
odic activities from a workflow. 

Although workflows are essentially case-based and make-to-order (see Section 
1.4), several features may be present in practical workflows that are on bad-terms 
with these concepts. The most notable examples are (a) the piling up of work 
items in batches and (b) periodic activities, depending on computer systems which 
are only available for processing at specific times. Getting rid of these constraints 
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may significantly speed up the handling of cases. On the other hand, efficiencies 
of scale can be reached by batch processing. The cost of making information sys-
tems permanently available may be costly also. 

This heuristic rule results from our own reengineering experience. 

6.2 The Intake Workflow 

In this section we will illustrate the redesign of an existing workflow, using the 
heuristics as described in Section 6.1. We introduce a workflow which is used at a 
mental health care institute to process new requests for non-urgent treatment. It 
will be referred to as the intake workflow. The intake workflow is a slightly 
adapted version of an actual workflow as described by Reijers (1994). Before we 
will give a description of the original workflow and possible redesign measures, 
we will describe how we represent the workflow. 

6.2.1 Workflow Notations 

For a convenient description and manipulation of the intake workflow, we will use 
the process modeling tool Protos (Pallas Athena, 1997). A Protos model extends 
the graphical notation of workflow nets as introduced in Section 2.4 with trigger-
ing symbols and conditions on outgoing arcs. The description of both triggers and 
preconditions we will now give is informal, which fits the illustrative character of 
this section.  

Triggers 

The trigger concept has been introduced in Section 1.1. A trigger is an event 
which is additionally required for the execution of a task. For a transition in a sto-
chastic workflow net, a trigger symbol in its immediate proximity specifies that 
the occurrence of the trigger is required in addition to the other conditions of the 
firing rule as described in Section 2.4. We distinguish two types of triggers, which 
are as follows: 

 
1. The time trigger, for example the start of a new working day, the termination of 

the regular maintenance interval, or the expiration of a deadline. 
2. The external trigger, for example an electronic document that is delivered by e-

mail, a filled out form that arrives by regular post, or a client that arrives at a 
counter. 

 
Examples of both types of triggers have been respectively modeled at the left-

hand side and the right-hand side of Figure 6.28. At the left-hand side, a transition 
is modeled that expresses the task of assigning intakers to a specific patient. The 
assignment can only take place at the staff meeting which is scheduled every 
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Wednesday morning. This latter condition is modeled with a time trigger 
"Wednesday morning".  

Wednesday 
morning

Assign intakers

Patient to be assigned

Intakers assigned

Medical file

Update patient 
file

Patient file requested

Patient file received

 
Fig. 6.28. Triggers 

At the right-hand side of Figure 6.28, a transition is modeled that represents the 
task of updating a patient file with the medical information received by a doctor. 
This task can only be performed when the medical file has been actually received. 
This is modeled using an external trigger of the name "Medical file". 

We will use the convention that a transition with no triggers is supposed not to 
require an external or time event in addition to its normal enabling conditions. In a 
description that accompanies a workflow net, the meaning of each depicted trigger 
is clarified.  

Conditional Arcs 

A conditional arc leading from a transition to a place in a workflow net can be 
seen as a specification when the firing of this transition will indeed mark this 
place. Normally, all output places of a transition are marked when it fires. So, a 
condition on an arc limits the normal behavior of a workflow net. The precondi-
tion is expressed textually along the arc. Note that the use of conditional arcs sup-
poses some color to exist within the Petri net. We will only use conditions that re-
fer to characteristics of the case; not to the specific marking of the net. The 
description of a condition should speak for itself, but will always be explained in 
the accompanying text of the workflow net. Arcs that lead from a transition to one 
of its output places without conditions will be supposed to indicate places that will 
always be marked when a transition fires. An example of the use of conditions is 
given in the workflow net of Figure 6.29. 

The transition "Store and print notice" has two outgoing arcs leading to output 
places, both of which are labeled with a condition. The model represents the situa-
tion that only for new clients the creation of a new patient file is required. For 
known clients, the existing file can be used to which a print of the notice is added. 
Note that the conditions "Patient is known" and "Patient is unknown" are mutually 
exclusive, so exactly one of the output places of the transition "Store and print no-
tice" will be marked when it fires. This exclusiveness is, however, not required for 
the use of conditions. 
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Fig. 6.29. The use of conditions 

6.2.2 Initial Situation 

In this section we will describe the intake workflow, starting with a verbal account 
of the followed procedure. 

Procedure 

The intake workflow starts with a notice by telephone at the secretarial office of 
the mental health care institute. This notice is done by the family doctor of some-
body who is in need of mental treatment. The secretarial worker inquires after the 
name and residence of the patient. On the basis of this information, the doctor is 
put through to the nursing officer responsible for the part of the region that the pa-
tient lives in.  

The nursing officer makes a full inquiry into the mental, health, and social state 
of the patient in question. This information is recorded on a registration form. At 
the end of the conversation, this form is handed in at the secretarial office of the 
institute. Here, the information on the form is stored in the information system and 
subsequently printed. For new patients, a patient file is created. The registration 
form as well as the print from the information system are stored in the patient file. 
Patient files are kept at the secretarial office and may not leave the building. At the 
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secretarial office, two registration cards are produced for respectively the future 
first and second intaker of the patient. The registration card contains a set of basic 
patient data. The new patient is added on the list of new notices. 

Halfway the week, at Wednesday, a staff meeting of the entire medical team 
takes place. The medical team consists of social-medical workers, physicians, and 
a psychiatrist. At this meeting, the team-leader assigns all new patients on the list 
of new notices to members of the team. Each patient will be assigned to a social-
medical worker, who will act as the first intaker of the patient. One of the physi-
cians will act as the second intaker. In assigning intakers, the team-leader takes 
into account their expertise, the region they are responsible for, earlier contacts 
they might have had with the patient, and their case load. The assignments are re-
corded on an assignment list which is handed to the secretarial office. For each 
new assignment, it is also determined whether the medical file of the patient is re-
quired. This information is added to the assignment list. 

The secretarial office stores the assignment of each patient of the assignment 
list in the information system. It passes the produced registration cards to the first 
and second intaker of each newly assigned patient. An intaker keeps this registra-
tion with him at times when visiting the patient and in his close proximity when he 
is at the office. For each patient for which the medical file is required, the secretar-
ial office prepares and sends a letter to the family doctor of the patient, requesting 
for a copy of the medical file. As soon as this copy is received, the secretarial of-
fice will inform the second intaker and add the copy to the patient file.  

The first intaker plans a meeting with the patient as soon as this is possible. 
During the first meeting, the patient is examined using a standard checklist which 
is filled out. Additional observations are registered in a personal notebook. After a 
visit, the first intaker puts a copy of these notes in the file of a patient. The stan-
dard checklist is also added to the patient's file. 

The second intaker plans the first meeting only after the medical information of 
the physician ñ if required ñ has been received. Physicians use dictaphones to re-
cord their observations made during meetings with patients. The secretarial office 
types out these tapes, after which the information is added to the patient file.  

As soon as the meetings of the first and second intaker with the patient have 
taken place, the secretarial office puts the patient on the list of patients that reach 
this status. For the staff meeting on Wednesday, they provide the team-leader with 
a list of these patients. For each of these patients, the first and second intaker to-
gether with the team-leader and the attending psychiatrist formulate a treatment 
plan. This treatment plan formally ends the intake procedure. 

Workflow Components 

In Chapter 2 we have described the different components that constitute a work-
flow model. We will identify and model each of these components for the intake 
procedure as described in some more detail before we proceed with redesigning 
the workflow. 
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Fig. 6.30. The intake workflow 
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With respect to the case component of this workflow, we can determine that 
this workflow is in use to handle all non-urgent notices for mental health-care to 
people who reside in the region that this institute is responsible for. In a real work-
flow model that is used for the enactment of the described procedure, at the begin-
ning of the workflow a selection should take place that ensures that only these 
types of cases are admitted to be handled. We leave this selection implicit. 

The routing component of the described procedure is depicted as a workflow 
net in Figure 6.30. Note the use of the triggers "Wednesday morning" and 
"Wednesday morning 2". They refer to the same event and indicate that the re-
spective tasks "Assign intakers" and "Determine treatment" have to await the first 
staff meeting, which takes place every Wednesday. 
 

With respect to the allocation component (see Section 2.2), we can distinguish 
the following roles: 

 
− Secretarial worker. 
− Nurse officer. 
− Medical team member. 
− Social-medical worker. 
− Physician. 
− Psychiatrist. 
− Team-leader. 
− First intaker. 
− Second intaker. 
 

These roles and their inter-dependencies are depicted in Figure 6.31. Each role 
is depicted as a cap with its corresponding name. An arrow that leads from one 
cap to another signifies that each person that fulfills the former role also fulfills 
the latter role.  
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Social-medical 
worker

Physician PsychiatristTeam leader

First intaker Second intaker

Medical team 
member

 
Fig. 6.31. Roles within the intake workflow 

Note that roles are not the only important characteristic to classify the resources 
in this workflow. Next to the different roles, there is also an organizational charac-
teristic which is used to distinguish resource classes. After all, the nurse officer 
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that will have the first contact with the family doctor is associated with the region 
that the client lives in. Also, the treatment plan of a patient is determined by a 
team of persons with different roles. We will refer to it as the treatment team, 
which consists of the first intaker, the second intaker, the (medical) team-leader, 
and the psychiatrist. 

The allocation principles ñ which form an essential part of the allocation com-
ponent ñ are outlined in Figure 6.32 (see also the introduction of Chapter 5). Each 
black dot at the intersection of a role and a task signifies that work items corre-
sponding to the latter will be allocated to the former. Arrows between dots show 
the precedence relations that are in effect according to the routing component. 
Note that for the special task of determining the treatment plan, work items are as-
signed to the whole treatment team. This is signified by a dotted line behind this 
task, which encompasses all roles that are part of the treatment team.  
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Fig. 6.32. Allocation principles 
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The depicted assignment logic does not give all the information on the assign-
ment logic in use. After all, work items for the same case should be handled by the 
same first intaker and the same second intaker. The treatment team that will de-
termine a treatment plan for a patient has to contain the first and second intakers 
that have talked with the patient also. There are no such requirements for other re-
sources.  

For the execution component we will simply assume that a First come ñ First 
served discipline is maintained by all resources. 

Performance 

Within the setting of this workflow, the medical team consists of 16 people: eight 
social medical workers, four physicians, two team-leaders, and two psychiatrists. 
Each member of the medical team works full-time and spends about 50 % of his 
time on the intake of new cases, except for the psychiatrists who spend 10 % of 
their time on the intake of new cases. (Most of the resources' remaining time is 
spent on the treatment of patients). The secretarial office consists of eight workers, 
who work full time. About 50 % of their time is spent on the intake of new cases. 

The current performance of the workflow is measured in two ways. As a way of 
making the external quality of the workflow operational, the average throughput 
time is taken. For the internal efficiency, the average total service time per case is 
taken.  

The average throughput time is slightly more than 10 working days. On each 
case, the following time is spent on average:  

 
− By the secretarial office: 46 minutes. 
− By the social-medical workers: 65 minutes. 
− By the physicians: 37 minutes. 
− By the team-leaders: 15 minutes. 
− By the psychiatrists: 10 minutes.  
 

Therefore, the total time spent on a new case averages two hours and 52 min-
utes. This means that the total service time makes up slightly less than 4 % of the 
total throughput time. Each day, slightly less than 20 cases arrive. By using Little's 
law, we can deduce that at any time there are on average some 200 new, non-
urgent requests for treatment in process. 

This concludes the description of the initial situation. Note that we did not give 
full information on the durations of tasks, the variation of their durations, and the 
routing fractions of the cases. Instead of merely summing these up, we will pre-
sent these figures when discussing the effects of the investigated redesign meas-
ures. (Some of these figures will turn out to be surprising on closer inspection.) 
Each unmentioned figure is used ceteris paribus for each situation described. Each 
figure that is expected to change due to a redesign measure is explicitly stated 
when describing a redesign scenario. 
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6.2.3 Redesign 

We will discuss in this section several scenarios. Each of these is an alternative to 
the intake workflow. The effect of each scenario with respect to the total average 
service time follows directly from the described changes or from exact analysis of 
the workflow model. Changes in throughput times follow from simulation ex-
periments with the alternative workflow design. The reliability of these results is 
reported upon at the end of this section. 

Post 

A considerable part of the throughput time in the intake workflow is taken by the 
wait time for the medical file to arrive by post. On the basis of the integration 
(INTG) and technology (TECH) heuristics we consider the alternative that medical 
files become on-line available to the mental health care institute. (In practice, this 
should presumably be restricted to read-only access for patients that are indeed re-
ported to the mental health-care institute.) Note that this alternative supposes a 
considerable application degree of technology: doctors should store their patient 
information electronically and communication facilities should be present. 

By the direct availability of the medical file, the task "Ask for medical file" in 
Figure 6.30 is replaced by a task "Access medical file" which is performed by the 
secretarial office. The same time they used to spend on preparing and sending a 
request letter is now assumed to be required for accessing and printing the patient 
file. The task "Update client file" stays in place, but it loses the external trigger 
"Medical file". 

The wait time for the medical file is completely reduced, which leads to an av-
erage throughput time of approximately 8,5 days. This is a reduction of 16 %. The 
total service time spent on a case is not reduced. 

Periodic Meetings 

In the intake workflow the staff meeting is planned at regular weekly intervals on 
the Wednesday. During a staff meeting two important things take place, which are 
as follows: 

 
1. For new cases, the first and second intakers are assigned. 
2. For cases for which both intake interviews have taken place, treatment plans are 

determined. 
 

From a workflow perspective, periodic restrictions on activities are rather odd. 
Additional analysis of the intake workflow points out that the first activity does 
not really require a meeting context, provided that the team-leader has sufficient 
information on the criteria used for new assignments. On the other hand, the sec-
ond activity is indeed best performed in the context of a meeting. This is because 
of the limited availability of the psychiatrists which prohibits more flexible meas-
ures. 
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On the basis of the case-based work heuristic (CASEB) we consider as an al-
ternative for the current workflow that the team-leader will carry out new case as-
signments as soon as they are due; the weekly meeting is strictly used for deter-
mining treatment plans. The workflow structure as depicted in Figure 6.30 then 
changes in the sense that the time trigger is removed from the task "Assign intak-
ers". Because the information is available to the team-leader to base his assign-
ment decision on, we expect that the original duration of the task also decreases 
from 5 to 2 minutes on average. This time includes the report of the assignment to 
the secretarial office. Both the social-medical worker and the physician will no 
longer spend this time on the case.  

The throughput time of an average case will drop by about 2,5 working days, as 
this is the expected time a new case has to wait before it is assigned (half a work-
ing week). This is a reduction of 25 %. The reduction of the total service time is 
13 minutes, an 8 % reduction. 

Note that a similar result could be achieved by doubling the frequency of the 
staff meetings (assuming this is possible). For each meeting, the expected wait 
time of 2,5 workdays drops to 1,25 days, which leads to an overall reduction of the 
throughput time of 2,5 working days.  

Social-Medical Worker  

We consider on the basis of the extra resources heuristic (XRES), the hire of an 
additional resource within the setting of the intake workflow. Because the social-
medical worker spends on average the most time on each new case, the choice for 
hiring an extra social-medical worker is made. He or she will exclusively work on 
the intake of new cases. 

The average time spent on a case does not change on the basis of this measure. 
Also, the throughput time does not notably decrease either. This is due to the fact 
that most of the throughput time in the intake workflow is determined by wait time 
ñ not by queuing. 

Medical File  

For each new case it is decided whether his or her medical file will be asked for. 
This information is then requested from the family doctor. The family doctor is 
also the one who notifies the new case at the start of the workflow. This raises the 
question whether the contact reduction heuristic (REDUC) may be applicable. 
Closer inspection of the routing of individual cases shows that in 95 % of all new 
cases the medical file is requested for. This extremely high figure justifies consid-
eration of the exception heuristic (EXCEP). After all, not requiring the medical in-
formation seems to be the exception.  

A combined application of the contact reduction heuristic, the exception heuris-
tic and the resequencing heuristic (RESEQ) leads to an alternative workflow de-
sign where the secretarial office directly asks for the medical file after the family 
doctor makes contact with the mental health care institute. The routine to deter-
mine for each case at a staff meeting whether medical information is required is 
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dropped, which in itself does not lead to a reduction of service time. The workflow 
structure of this alternative is depicted in Figure 6.33.  
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Fig. 6.33. Direct request for medical file 
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Note that in this case, the exception heuristic coincides with the secondary in-
terpretation of the triage heuristic (TRI). The once alternative task of asking for 
medical information has become a general part of the workflow. 

The average total service time increases by one extra minute, as the secretarial 
office will have to request for each case ñ and not for 95 % only ñ the medical in-
formation. This is an increase of 1 %. The average throughput time is reduced by 
1,4 working days, which is a reduction of 13 %.  

Notice Recording  

Within the intake workflow, the nurse officer records the notice by the family doc-
tor on a conventional form. This information is subsequently entered in the infor-
mation system of the institute. On the basis of the task automation heuristic 
(AUTO) we investigate the following alternative. An electronic version of the reg-
istration form is designed that is used by the nursing officer to record the new 
case. The information from a completed electronic form will be automatically 
transferred into the information system of the institute. It will also be automati-
cally printed at the secretarial office and the new application checks whether the 
patient is already known. 

Compared to the original structure of the workflow as depicted in Figure 6.30, 
the complete task "Save and print file" can be omitted. We can interpret this as an 
application of the task elimination heuristic (ELIM). This elimination reduces the 
work effort of the secretarial office on storing and printing, which on average took 
10 minutes. The task "Record notice" is now assumed to be supported in the way 
as described. We do not expect significant changes in the service time of this task 
spent by the nursing officer. 

The average throughput time is not notably influenced by this measure. The to-
tal service time is reduced by ten minutes, which is a reduction of 6 %.  

Registration Cards  

The secretarial office in the intake workflow produces the registration cards for 
the future first and second intaker of the new case, completes the patient file with 
the registration form, and adds the patient on the list of new notices. These three 
actions are combined in the "Close case" task. On the basis of the task composition 
heuristic (COMPOS) we question the composition of this task. If we consider the 
registration cards for a case, it is clear that they are only required after the intakers 
are assigned. Only the addition of the patient on the list is required for assigning a 
new case. We assume that the completion of the file will be required just before 
the cards are handed out. 

Dividing the "Close case" into its separate parts allows us to put the production 
of the registration cards and the completion of the patient file in parallel to the as-
signment subflow of the workflow. This is an application of the parallelism heu-
ristic (PAR). We assume that the original average service time of the "Close case" 
task of 4,5 minutes is equally divided over the three new tasks, but we expect an 
additional set-up time for each of these tasks of 1 minute. The resulting workflow 
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structure is depicted in Figure 6.34. Note that for routing reasons a transition la-
beled "Skip" is added; it represents no real task. 
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Fig. 6.34. Division and parallelism of the completion task 
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In spite of the parallelism, the throughput time in this scenario is not reduced. 
This can be explained from the fact that the effect of parallel executions of the 
new tasks "List case", "Produce cards", and "Update file" do not speed up the av-
erage wait time of 2,5 days for the staff meeting. The service time does increase 
with 3 minutes, which is a 2 % change for the worse. 

Treatment Plan  

In the original workflow, the treatment plan is determined by a team of the first in-
taker, the second intaker, the psychiatrist, and the team-leader. Closer inspection 
on how a treatment actually comes about in the intake is that the first and second 
intaker propose a treatment plan, which is usually approved of by the psychiatrist 
and team-leader. On the basis of the empower heuristic (EMP), we consider as a 
design alternative the situation that the intakers themselves determine the treat-
ment plan. Note that in reality, this kind of measure may not conform to accepted 
medical protocols. However, it can be envisioned that the treatment plan is only 
checked by the team-leader and psychiatrist afterwards. 

As a result of this measure, the intakers have to meet with each other to deter-
mine a treatment plan. It is reasonable to expect that this meeting takes approxi-
mately as long as the discussion during the staff meeting, on average 10 minutes. 
It is expected also that because of planning reasons this meeting is maximally de-
layed with one day after the last intake interview has taken place. The wait time of 
2,5 working days on average for the staff meeting is on the other hand eliminated. 
As a result, the total throughput time is reduced by 2 days, which is a reduction of 
20 %. The total service time is reduced by 20 minutes, because the team-leader 
and the psychiatrist are ejected from the decision making process. This is a 12 % 
reduction. 

Results 

The results of the various redesign scenarios we considered in this section are 
summarized in Table 6.1.  

For the reduction of the throughput time, the "Periodic meetings" scenario is 
the most favorable one. This scenario was based on application of the case-based 
work heuristic. A cut of service time is best accomplished by the "Treatment plan" 
scenario, based on the empower heuristic. Both scenarios eliminate traditional 
workflow structures, respectively non-case based work and hierarchy. 

The application of the extra resources heuristic in the form of the "Social-
medical worker" scenario is rather disappointing. It does not speed up the work-
flow. The automation of a task in the "Notice recording" scenario also has no ef-
fect on the throughput time. The important thing that can be learned from these re-
sults is that throughput times may consist for only a small part of queue time and 
for an even smaller part of service time. 
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Table 6.1. Summary redesign alternatives results 

Redesign  
scenario 

Gain avg. 
throughput 
time (days)

Gain avg. 
throughput 

time (%) 

Gain avg. total 
service time 

(min.) 

Gain avg. 
total ser-
vice time 

(%) 
Post 

INTG & TECH 1,6 16 0 0 

Periodic meetings 
CASEB 2,5 25 13 8 

Social-medical 
worker 
XRES 

0 0 0 0 

Medical file 
REDUC, EXCEP, 

RESEQ & TRI 
1,4 13 -1 -1 

Notice recording 
AUTO & ELIM 0 0 10 6 

Registration 
cards 

COMPOS & PAR 
0 0 -3 -2 

Treatment plan 
EMP 2 20 20 12 

 
The most unsatisfactory scenario is the "Registration cards" scenario. Although 

it exploits one of the most powerful heuristics available ñ the parallelism heuristic 
ñ it renders no result. Yet, the scale of parallelism in this case was small. Actual 
benefits from this heuristic can be rather expected in settings where substantial 
parts of the workflow are put in parallel. 

We end this chapter with a justification of the throughput time results of the 
various scenarios. These results have been obtained by simulation using the pack-
age ExSpect (Van Hee et al., 1989; Van der Aalst et al., 2000a). Each simulation 
of a scenario has been split up into 2 start runs and 10 subruns of 20 working days 
each. 

Presented in Table 6.2 are the 99 % confidence intervals of the measured aver-
age throughput time for each simulation. For other measurements, this type of in-
formation is not given. From this table it follows that the confidence intervals of 
the original situation, the "Social-medical worker" scenario, the "Notice re-
cording" scenario, and the "Registration cards" scenario overlap. In other words, 
the named scenarios are no improvements of the throughput time of the intake 
workflow. 

6.3 Conclusion 

The former section illustrates the application of some heuristic rules and their pos-
sible effects. However, the results were very specific for the case presented. Fur-
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thermore, their selection was rather intuitive. It seem that there is a clear practical 
use for more quantitative and explicit guidance in the selection of the type of heu-
ristics and their expected gain. 

Table 6.2. Simulation analysis throughput times 

 Simulations Left bound 99 % 
confidence      

interval of avg. 
throughput time 

(days) 

Avg. throughput 
time (days) 

Right bound 99 % 
confidence        

interval of avg. 
throughput time 

(days) 
Original situation 10,13 10,20 10,27 
Post 8,45 8,59 8,73 
Periodic meetings 7,59 7,66 7,73 
Social-medical 
worker 

10,11 10,16 10,21 

Medical file 8,80 8,91 9,02 
Notice recording 10,04 10,14 10,19 
Registration cards 10,05 10,18 10,30 
Treatment plan 8,09 8,18 8,26 

 
 



7 Systems and Practical Experience 

We present in this chapter three cases that illustrate the practical application of the 
workflow modeling, design, analysis, and control concepts that were presented in 
the previous chapters. The emphasis in this chapter is on the application of PBWD 
for the redesign of a workflow (see Chapter 3).  

In Section 7.1, a case description is given of an innovative application of mod-
eling, simulation, and workflow management tools for the sake of operational con-
trol. This application is labeled with the term "short-term simulation". In particu-
lar, it is shown how a simulation model can be built on the basis of information 
from a process definition tool and operational workflow management data. The 
workflow components as introduced in Section 2.2 are used to discuss the various 
aspects of the model. The first description of a workflow redesign is discussed in 
Section 7.2. The actual project was carried out for the GAK agency. The presenta-
tion of the case focuses on the technical derivation of a workflow structure from a 
product specification. This case clearly illustrates how the technical analysis and 
design theory of Chapter 3 can be put into practice.  

The case description of the workflow redesign for the ING Bank in Section 7.3 
gives a broader treatment of the application of PBWD than the previous case, 
highlighting each of its phases (see Section 3.3). This description gives an idea of 
the various organizational, technical, and project management issues that are typi-
cally related to business process redesign.  

All case descriptions are derived from actual projects that were carried out on 
behalf of Deloitte & Touche management consultants during the years 1998-2001. 
The author was involved in all three projects. Some experiences on the application 
of PBWD to which the author was only indirectly involved are given in the last 
part of Section 7.3. 

7.1 Short-Term Simulation for the GAK Agency 

Before we present the actual case description, the concept of short-term simulation 
is explained. Traditionally, simulation of business processes in general and of 
workflows in particular is used to support strategic decision making. Simulation is 
then used as a tool to analyze long-term effects of certain decisions (see e.g., 
Shannon, 1975; Szymankiewicz et al., 1988). Simulation is hardly used for opera-
tional control, because building a simulation model takes too much time to evalu-
ate short-term effects. However, an increasing number of workflows is executed 

H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 245-282, 2003. 
 Springer-Verlag Berlin Heidelberg 2003 
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under the control of a WfMS (see Section 1.4). These systems have an up-to-date 
description of the structure of the workflow and its current state. This raises the 
opportunity to generate a simulation model that can be used to evaluate the short-
term effects of a decision, without building such a model from scratch.  

In this section, a case description is presented that illustrates the use and appli-
cability of short-term simulation, as introduced by Reijers and Van der Aalst 
(1999). One can think of short-term simulation as a quick look in the near future, 
i.e., a kind of "fast forward" button. By pushing this button, it is possible to see 
what happens if the current situation is extrapolated some time in the future, typi-
cally hours or days. It is also possible to see the effect of certain decisions (e.g., 
hiring additional employees or renounce new orders) in the near future. This way 
short-term simulation becomes a powerful tool for operational control. In particu-
lar, imbalances between work supply and resource capacities can be spotted and 
the effects of counter measures can be investigated.  

Imagine, for example, a company that carries out repairs on television sets. It 
guarantees its clients that repairs will be carried out within 24 hours. A short-term 
simulation may indicate that given the actual amount of work, new repairs are im-
possible to complete within three days. The manager of this company may decide 
not to take on new orders for a while, to hire extra resources, or to let his engi-
neers work over time. Another option would be to organize the repair workflow 
somewhat differently to buy time. For example, clients may be asked to pick up 
their repaired TV-set themselves instead of having it delivered to their houses. 
Again, the effects of each of these alternatives can be examined using a short-term 
simulation.  

There are several differences between short-term simulation and the more tradi-
tional long-term simulation. First of all, a short-term simulation is concerned with 
the effects of a decision in the near future. Second, the impact of the decisions that 
are evaluated is limited. Third, the simulation does not start in an artificial initial 
state but in the actual current state of a process. Fourth, simulation is not used to 
analyze the steady-state behavior of the workflow execution: there is no steady 
state because of the length of the simulation period and the dependency on the ini-
tial state. In case of short-term simulation, we are particularly interested in the 
transient phase. Figure 7.1 illustrates the difference between short-term and long-
term simulation. 

For short-term simulation, the initial state is vital. Because of the short simula-
tion period, the results highly depend on the initial state. The longer the simulation 
period, the smaller the effect of the initial state. 

Before we present the actual case description, we reflect upon the content of the 
workflow model used for the short-term simulation, in particular on the notion of 
the current state. We will refer to this workflow model throughout this section as 
the simulation model. Finally, the case description follows which includes the de-
veloped architecture that facilitates short-term simulation, as well as aspects of an 
actual model.  
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Fig. 7.1. Impact of initial state on simulation results 

7.1.1 Current State 

Important for a short-term simulation is the notion of the current state. It is this 
current state that forms part of the initial state of the short-term simulation. Obvi-
ously, the current state of a workflow execution has a great impact on the dynam-
ics of the workflow during the period immediately following that point of time. 
There are two parts of a current state that we distinguish: (i) the actual work dis-
tribution and (ii) the case characteristics.  

The actual work distribution specifies for each case under processing what the 
exact work status is. Recall that for a workflow we use a breakdown of tasks to 
express the work that has to be carried out for each case (see Section 2.2). Fur-
thermore, we have identified work items as tasks for specific cases and activities 
as work items in execution (see Section 1.1). At any given point, we can identify 
different phases for the different manifestations of tasks. When we "freeze" the 
workflow execution, we may distinguish one or more tasks that have already been 
routed, which means that it has been decided that these tasks are to be performed 
for the case in question. For some of these tasks, it has already been decided to 
whom the task is allocated. In other words, they have become work items. A yet 
smaller subset of these work items has already been selected by either the WfMS 
or a specific resource to be performed. In other words, they have become activi-
ties. Once again, a finer distinction can be made. Some of these activities are al-
ready started, while an even smaller part of them has ended too. In the latter case, 
a new routing decision may be required. We have depicted the different phases in 
Figure 7.2. 

The second aspect of the current state consists of the characteristics of the cases 
in processing. Just as a WfMS has to know the characteristics of a new case to de-
termine the initial route it has to follow, the system will need to know the charac-
teristics of the cases already being processed to determine the rest of the route. An 
actual record of these characteristics is required, as the workflow may have 
changed the initial characteristics during execution so far.  
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Fig. 7.2.  Status of tasks in progress 

Information about the current state of the WfMS is most of the time available in 
the run-time part of the database that supports the system. Usually, there is no di-
rect export facility for this kind of information. Many WfMS's are supported by 
relational databases for the storage of data. So, database specific query tools can 
be used to extract the required state data. It has to be noted, however, that not 
every WfMS presents a clear external notion of its state at any given moment, so 
extraction may be somewhat complex. 

7.1.2 Architecture 

In this section we will present a system architecture that integrates operational 
control and simulation facilities. Our starting point is the reference model as de-
veloped by the Workflow Management Coalition (WfMC) (Lawrence, 1997). The 
reference model of the WfMC distinguishes the enactment service as a central 
component with several interfaces to five specific other components of a work-
flow system. These components are: (1) the process definition tools, (2) the work-
flow client applications, (3) the invoked applications, (4) other workflow engines, 
and (5) the administration and monitoring tools. These components are depicted in 
the lower, right part of Figure 7.3. Also depicted at the top-left of the figure is the 
simulation engine, of which the functionality is comparable to the workflow en-
gine: it enacts the simulation model for the purpose of simulation. The rest of the 
figure consists of extensions of the model that we will subsequently discuss.  

With the process definition tools of a WfMS, workflow definitions, resource 
classes, allocation rules, etc. are defined. In the depicted extended reference 
model, there is a link from this type of information to the simulation engine (I). 
This signifies the use of this information for simulation purposes. Additional in-
formation with an exclusive simulation purpose may also be recorded in this store. 
Usually, the proprietary WfMS definition or configuration file must be converted 
into a format that is understandable by the simulation tool. This is a relatively 
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simple exercise. We have practical experience with translations of both ERP (e.g., 
BAAN) and WFM (e.g., COSA) system definition files into simulation models.  
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Fig. 7.3. Short-term simulation embedded in the reference model of the WfMC 

To obtain historical information for the purpose of a simulation, a link is avail-
able from the administration tools ñ that can be used to access the administration 
of the WfMS ñ to the simulation engine (II). Not every WFM system is equally 
well equipped to extract this kind of data using its standard tools. Usually, a direct 
extraction from the enterprise system database is possible. Depending on the de-
sired level of re-use of historical information, the data may be aggregated or ab-
stracted from. The results may be directly used during simulation, or they can be 
used to adapt the simulation model as translated from the definition data. The lat-
ter is typically applicable when we use historical information to derive simulation 
parameters, e.g., for routing probabilities. 

When we want to perform a short-term simulation we have to tap into the cur-
rent information a WfMS uses (III). This kind of tap is not explicitly foreseen by 
the WfMC, although it can be compared with the exchange of operational infor-
mation with other workflow systems (Interface 4). Any WfMS will maintain this 
kind of information, as it is required for proper operation. However, it may be 
rather tricky to obtain this information by lack of documentation or openness of 
the particular system. Furthermore, a proper translation of the system's notion of a 
current state to that of the simulation system must be made. 

Finally, to enable the analysis of the simulation results, the results of the simu-
lation may be stored in a separate component (IV). 
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7.1.3 GAK Case 

In this section, the actual application of short-term simulation is described for the 
Gemeenschappelijk Administratie-Kantoor (Social Security Administration Of-
fice) or GAK for short in 1998-1999. The GAK is one of the agencies that imple-
ments the social security legislation in the Netherlands. It handles on a daily basis 
large amounts of requests for unemployment benefits and occupational disability 
allowances. Social security laws as well as contracts with employer organizations 
impose restrictions on the way these requests are handled. Within the workflows 
of the GAK, many different tasks can be distinguished. These include administra-
tive checks, registration acts, interviews with applicants, granting allowances, etc. 
Various kinds of resources are involved in these workflows also, such as parale-
gals, clerks, back-office workers, jurists, etc.  

At the end of 1997 the GAK initiated the 'ESPRIT' project with the intent to de-
sign a framework to improve the management, control, and support of their work-
flows. One of the outcomes of the project was an architecture to integrate the fol-
lowing: 

 
1. Workflow modeling capabilities. 
2. Workflow management capabilities. 
3. Simulation capabilities.  
 

During the first part of 1998 a number of tools was selected to fulfill the capa-
bilities distinguished in this architecture. The architecture, as well as the chosen 
tools are schematically depicted in Figure 7.4. Several pilot workflows were se-
lected to put this architecture to the test, among which the workflow in Figure 7.5.  

With respect to the architecture, the tool Protos (Pallas, 1997) was selected for 
covering the workflow modeling capabilities. The WfMS COSA (Cosa, 1996) was 
selected for carrying out the workflow management tasks in the pilot projects. For 
the workflow simulation, the tool ExSpect (Van Hee et al., 1989; Van der Aalst et 
al., 2000a) was chosen. 
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Fig. 7.4. Workflow framework and tools for GAK 
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Fig. 7.5. GAK workflow for unemployment benefits 
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Principal to the architecture of Figure 7.4 is the central management of work-
flow definitions with Protos. Workflow definition files that are native for the 
workflow management and the simulation tools can be automatically generated on 
the basis of a central Protos file, thus creating consistency between them. The 
'ESPRIT' project designated simulation as the main instrument to carry out fore-
casting and capacity planning on the operational and tactical level. The underlying 
idea is to accurately copy the current state of a workflow, including operational 
data, to a simulation model. With simulation runs it can be examined how this 
state evolves in the near future, possibly under the assumption of different capac-
ity scenarios. Results from the simulation runs may in their turn be used to adapt 
the original workflow definition. Apart from their proprietary form, Protos work-
flow definitions could also be exported for reporting purposes in an HTML for-
mat. 

A subproject within the 'ESPRIT' project was initiated to test the technical fea-
sibility of this concept on the basis of the selected tools. At the start of this subpro-
ject, the Protos tool already incorporated some basic export facilities to COSA and 
ExSpect. During the subproject, these export facilities were extended and the other 
integrating links were built. The integration among the tools was simplified be-
cause of a conceptual link between them: Protos models could be mapped onto 
high-level Petri nets (see Section 2.4), which also forms the basis of both the 
COSA WfMS and the ExSpect simulation tool.  

To illustrate the application of this architecture in practice, we will consider one 
of the GAK workflows under study of the 'ESPRIT' project. This workflow, as de-
picted in Figure 7.5, is concerned with handling initial requests for unemployment 
benefits.  

On the basis of a telephonic request, the GAK invites the person in question for 
an interview. During that interview a preliminary assessment is made on the cir-
cumstances of the request. Next, all relevant persons and organizations are asked 
to submit additional information on this case. When all information is available 
- possibly after several reminders - the right for an unemployment benefit is de-
termined. [Note that the task "Determine right" has a special notation in this fig-
ure. It represents a subworkflow within the overall unemployment benefits work-
flow. Its is this subworkflow that is being redesigned with PBWD, as described in 
Section 7.2.] 

We will present the content of the various components of the workflow model 
(see Section 2.2) to show the information that is required for a short-term simula-
tion model of this workflow. 

Case 

The generation of cases, i.e., unemployment benefit requests, was filled in the Ex-
Spect simulation model by the content of the Protos definition file. Protos allows 
the end-user to use one of many available probability distributions to realistically 
grasp the occurrence pattern of new requests. By using the automatic export facil-
ity of Protos, an ExSpect model is generated which is parameterized by this in-
formation. Although the historical occurrence pattern as stored by the WfMS 
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could have been used to create this occurrence listing, no direct system coupling 
was used. However, historical occurrences of requests logged by the WfMS were 
used to validate the estimated parameters of the simulation model. 

For actual simulation, an almost complete abstraction from case characteristics 
was pertained. Although case characteristics have a significant effect on the way 
actual requests are processed, at each possible moment where these characteristics 
could have played a role a probabilistic estimation was applied. For example, 
whether or not activation was required after execution of the "Intake" task is de-
termined this way. As a consequence, the case generator in ExSpect was not re-
quired to generate realistic case characteristics. 

Routing 

The existing automatic Protos export was capable of generating an ExSpect model 
that incorporates the actual tasks and the order between those tasks. The export of 
triggers was not yet supported. Although a Protos model can also incorporate the 
true business logic used to determine e.g., the choice of alternative routings, for 
the purpose of simulation a probabilistic binomial function was specified for each 
conditional task. For example, it was specified that in 30 % of all cases a repeated 
call for additional information was to take place. For this type of approximation, 
historical information was used that encompassed about a year of workflow exe-
cutions. The particular information was extracted during the project from several 
traditional information systems in use at the GAK.  

The modeling and automatic export of triggers was tackled by developing spe-
cific Petri net patterns that reflect these dynamics. The export facility maps the 
distinguished event and trigger types onto small workflows that simulate the re-
ceipt of external triggers and sending of triggers to the outer world. Such an event 
takes place on probabilistic grounds in relation to the case under processing. For 
example, when an organization asked to supply additional information it can be 
specified in ExSpect that an answer is returned in 85 % of the cases, taking eight 
days on average from the moment the request is sent out. This type of dynamic 
behavior was also estimated using the historical records mentioned earlier. No 
data accompanying the triggers was simulated, because the routing and allocation 
were based on probability functions during the simulation.  

Allocation 

The workflow definition in Protos can incorporate a great deal of information on 
the resources. An automatically generated ExSpect model on the basis of such a 
workflow definition can contain the distinct resource classes as well as the actual 
allocation rules in effect. In the workflow under consideration (see Figure 7.5), 
two resource classes were distinguished. Both the classes and the allocation rules 
as specified in the Protos model were actually used by the WfMS to allocate work. 
As the allocation rules and the relationships between the resource classes in the 
workflow under consideration were relatively simple, the export facility supported 
their translation into the simulation model too. More sophisticated allocation rules 
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and/or relationships would have required a manual extension of the generated Ex-
Spect simulation model.  

For the availability of resources within each class, a fixed number was specified 
in the model for each resource class. This information was included in the auto-
matic export. The information used was based on physical records of the respec-
tive departments on the presence of the employees. Prior to an actual simulation of 
the generated model, the ExSpect user interface supported the specification of an 
alternative availability scenario. This option is used to carry out what-if-scenarios. 
In other words, with the simulation model it could be investigated what would 
happen in the short term if the availability of resources changed.  

Execution 

The resource behavior was, for the greater part, specified within the ExSpect 
model. For this particular project, a "greedy" behavior of the resources was mod-
eled. This means that a resource takes on work as soon as it becomes available. 
Furthermore, a First-In-First-Out policy was implemented reflecting the actual 
policy used within the workflow. (The richness of ExSpect environment would 
also allow for other policy types.)  

To capture realistic service times for each task, specific SQL queries were con-
structed to obtain historical service time averages and variances from the COSA 
WfMS database. These figures were used for modeling the service times in the 
simulation model as normally distributed random variables. A converter written in 
the AWK language combines an ExSpect model as generated by Protos with these 
figures obtained from the WfMS history. This in accordance with the architecture 
as depicted in Figure 7.3. As an alternative to the end user, the default estimations 
of these service times within the Protos model were also available. This allowed 
for additional what-if analysis possibilities. Note that Protos offers a wide range of 
mathematical functions to accurately model these service times. 

Current State 

Finally, the actual work distribution, the current state, was required to perform a 
short-term simulation. As the workflow models of the various tools could be 
mapped onto Petri nets, it was possible to capture and transfer the current state of 
work very accurately.  

For each case under processing we distinguished a subset of relevant tasks. In 
the first place, this subset contained each task that was already being executed; 
secondly, it contained each tasks that was already routed. In the terminology of 
Section 1.1, these are respectively the work items and activities for each case. For 
the purpose of the experiment, a more fine-grained distinction between the status 
of work conform Figure 7.2 was not required. We developed one single SQL 
query that extracts the fore-mentioned list from the database used by COSA for its 
internal administration. For each activity, this query also yields its start time. On 
the basis of the query result, a converter written in the AWK processing language 
then creates an initial state file. It is this file that can be used as a starting point for 
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an actual simulation run. The ExSpect model uses this file as a so-called initial 
state. For activities, the simulation takes their start times into account for deter-
mining realistic remaining service times. For the work items, all information is 
available within the simulation model to make the proper allocation and execution 
decisions. 

To give an idea of the output that is generated with the type of simulations per-
formed in the GAK setting, we present Figure 7.6.  

 

 
Fig. 7.6. Screen dump of the dashboard during simulation 

The table in the top-left corner of Figure 7.6 indicates the number of resources 
available to each of the two resource classes within the simulated workflow, BBB 
and MV. It is this number which can be set at the start of each simulation. The ta-
ble in the middle and at the right side of the screen provide information on respec-
tively the cost per subrun and the resource occupation per subrun. Note that a 
simulation with ExSpect is split up into subruns to determine confidence intervals 
for the determined figures. The graph at the bottom of the screen indicates the 
throughput time for each processed request. For an actual application of short-term 
simulation, the manager's preferences for performance indicators are the starting 
point for developing a dashboard as the one depicted. 

The subproject supported the view that short-term simulation is technically fea-
sible in a practical environment. In a laboratory setting at the GAK, short-term 
simulations were used for determining the effects of different capacity planning 
schedules for several workflows including the workflow of Figure 7.5. Current 
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states and simulation parameters could be automatically extracted from an opera-
tional WfMS. This information was automatically incorporated in simulation 
models, of which the process structure, resource classes, and allocation rules were 
generated by the workflow definition tool. Field experts have used and evaluated 
the prototypes delivered by the project. In these experiments, they could at run-
time assess the effects of rearranging the workforce.  

On the level of the 'ESPRIT' project, the workflow framework was accepted as 
an architecture for workflow modeling, enactment, and simulation within the 
GAK. Due to a drastic reorganization of the social security field within the Neth-
erlands, the GAK postponed at the end of 2000 all innovative application of in-
formation technology. This with the exception of implementing WfMS's for the 
operational support of some major workflows. When the several separate Dutch 
social security agencies have merged during 2002, it is expected that budgets for 
innovative office work technologies will be re-opened. Short-term simulation may 
be one of the projects that will be prolonged into actual application. 

7.2 Product-Based Workflow Design for the GAK Agency 

The method of Product-Based Workflow Design (PBWD) was applied for the first 
time in 1999 within the setting of the GAK agency (see the previous section). The 
informational product under consideration during this project was the decision if 
an claimant is entitled to unemployment benefits when he or she claims to have 
become unemployed. The GAK has 20 regional offices handling this type of 
claims. The sizes of these offices vary. The reference office for this project was a 
medium-sized office of 10 FTE's working on this decision, on average handling a 
little less than 10.000 claims a year. The procedure to make this decision is a sub-
workflow of the overall unemployment benefits workflow in effect (see Figure 
7.5). The subworkflow was treated as autonomous within the setting of the overall 
workflow. In particular, the retrieval of information required for the decision mak-
ing was considered to be the responsibility of the subworkflow itself. 

Regulations regarding the unemployment benefits decision are mainly laid 
down in the Dutch Unemployment Law. The GAK also maintains operational in-
terpretations of it in handbooks. The GAK furthermore maintains a detailed ad-
ministration of causes for denying unemployment benefits to individual cases, as 
well as other statistical figures on its operations. 

In a period of three months, a new workflow design has been derived for the 
described product. The main driver for the final design was the GAK's wish to de-
crease the expected average effort in terms of human labor hours. Opportunities to 
automate processing steps within the decision making process were explicitly tar-
geted. An additional requirement to the design was that the workflow should be 
optimized for the application of the case assignment heuristic: the same resource 
executes each step within the workflow for each particular case (see Section 6.1). 
The third and last design directive was that the number of contacts with clients 
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should be minimized (compare this with the contact reduction heuristic of Section 
6.1). 

In this section we will describe workflow design case using PBWD, illustrating 
how the theory of Chapter 2 is applied in practice. We will focus on the heart of 
the PBWD methodology, the analysis and design phases of the PBWD. The treat-
ment of the redesign in this section is precise, but not very formal. The emphasis 
is rather on illustrating the approach without too much attention for formula ma-
nipulation. The figures provided and the verbal derivation are nonetheless such 
that it is easy to verify the correctness and optimality of the design.  

7.2.1 Analysis 

The analysis phase yielded an initial number of 51 information elements, which 
were numbered as i1, i2, ..., i51. The earlier named law and handbooks were used 
as the source for these information elements. Closer inspection of these elements 
led to the elimination on logical grounds of six of these elements from the product 
data model (i12, i19, i20, i22, i26, i46). These did not add value to the ultimate 
decision making. The relations between the remaining information elements are 
given in Figure 7.7.  

Each information element is depicted in this figure as a box, labeled with its 
identity, e.g., i11. Each incoming arrow of an information element represents a 
production rule for this information element. An arrow may have multiple starts, 
signifying all the information elements that are required to apply it. These are the 
so-called inputs of the production rule in question. In the figure, multiple starts of 
an arrow are joined into one by small black dots. For example, the outgoing ar-
rows of information elements i29, i40 and i48 are joined into one single arrow 
pointing to information element i31. It represents a production rule for i31 with in-
formation elements i29, i40 and i48 as inputs.  

Crossings of arrows that are not covered by a black dot have no semantics. For 
example, information element i25 is not in use as an input for the (single) produc-
tion rule for i3, although an arrow leading from i25 crosses an arrow leading to i3. 

Most information elements are represented precisely once in the figure. There 
are two exceptions: information elements i25 and i36. These are both depicted 
twice to prevent too much entanglement of arrows. Their double occurrences are 
indicated by the bold and italic form of their identifiers.  

Six production rules are depicted like dashed lines. These six are production 
rules for the information i11, i16, i34, i40, i42, and i43. We return to their special 
characteristics in the detailed discussion of the production rules. We will then also 
explain the technical reasons why the information elements i38, i50 and i51 are 
not depicted. 

From the figure, it follows that from a total of 42 depicted information 
elements 18 information elements are leafs and 24 information elements are 
nodes. Furthermore, 32 production rules are depicted. Note that the production 
rules for obtaining values of the 18 leafs are not represented. It can also be derived 
from the figure that for some information elements more than one production rules  
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Fig. 7.7. Production rules of the product data model 

exist. For example, for information elements i15 three production rules exist, rep-
resented by the similar number of incoming arrows. Analogously, the number of 
production rules in which an information elements play a role as an input can be 
deduced from the total number of its outgoing arrows. For example, information 
element i37 is used in 11 production rules. 

 The top element in this figure is i18, which represents the decision whether 
someone is entitled for (pay-related) unemployment benefits. There are 8 knock-
out production rules: their execution may lead to the determination of a value for 
the top element after which the processing can end. We will informally discuss 
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these knock-outs here to illustrate the model. A straightforward way of decision 
making is to check whether the claimant is insured against becoming unemployed 
(i9), whether the claimant satisfies a so-called "refer requirement" (i11), and 
whether the claimant satisfies a so-called "labor history requirement" (i15). If all 
these conditions apply, the claimant will receive his or her periodical unemploy-
ment benefits. Either unsatisfactory outcome of one of these three conditions will 
disqualify the claim. The latter 3 production rules are represented by the single ar-
rows leading from respectively i9, i11, and i15 to i18. There are 4 more conditions 
which may also stop the processing if their outcome is unsatisfactory. These three 
conditions directly depend on the values of respectively i1, i2, i8 and i10. For ex-
ample, if the claimant is unemployed while he or she is on a holiday the claim will 
not be rewarded. This can be deduced from the value of information element i8.  

Finally, its should be noted that 7 production rules are omitted from the figure. 
These are all direct knockouts on the basis of respectively i3, i4, i5, i6, i7, i27 and 
i28. Although the logical relations exist, an occurrence analysis on the basis of the 
historical cases showed that it was applied in less than 1 out of 10.000 cases. 

The informal description of the meaning of each of the information elements is 
given in Table 7.1. We will not discuss the meaning of these elements in detail 

Table 7.1. Meaning of the information elements 

Inf. element Description 
i1 period in which claimant receives illness benefits 
i2 period in which claimant receives combined social benefits 
i3 period claimant lives/resides outside the Netherlands 
i4 period in which claimant does not rightfully live in the Netherlands 
i5 period in which claimant is detained/imprisoned 
i6 period in which the claimant is 65 years or older 
i7 period in which the claimant has legal scruples against insurance 
i8 period in which claimant enjoys holiday 
i9 period in which claimant is an employee 
i10 period in which claimant is unemployed 
i11 claimant satisfies refer requirement  
i13 date from which claimant lost the right for payment 
i14 data from which the claimant is available to accept labor 
i15 claimant satisfies labor history requirement 
i16 claimant satisfies 4-out-of-5-years requirement 
i17 claim is directly following labor disablement benefits 
i18 claimant is entitled to (pay-related) unemployment benefits 
i21 birth date of the claimant 
i23 claimant's holiday administration 
i24 registration of unemployment insurance 
i25 registration of social benefits 
i27 claimant's unemployment is caused by strike/ work stoppage 
i28 period in which applicant receives re-integration benefits 
i29 refer period for claimant 
i30 first day of unemployment of claimant 
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i31 number of weeks claimant worked in refer period 
i32 first week of unemployment of claimant 
i33 registration of housing 
i34 average number of labor hours per week of claimant 
i35 first day of labor history for applicant 
i36 day status survey of claimant's labor history 
i37 loss pattern of labor hours of claimant  
i38 care data on claimant 
i39   employment function of which the claimant has become unemployed 
i40 employment functions that have been followed up by the employ-

ment function of which the claimant has become unemployed 
i41 earlier employment functions of the claimant 
i42 approved labor courses for unemployed 
i43 common first labor day for claimant 
i44 list of claimant's yearly worked days 
i45 register of convictions 
I47 claimant's courses that precede or follow on the loss of labor hours 
I48 weeks in refer period already taken into account 
I49 labor pattern of claimant 
I50 register of special classes of employment functions 
I51 claimant has taken care of underñage children 

 
A further analysis of the product data model focused on the following ques-

tions: 
 

1. Could its content be specified in the form of an algorithm? 
2. Under which conditions is it applicable? 
3. With which probability does it render a result? 
4. What is the involved cost of its execution? 

 
We will discuss the issues involving these questions briefly before we present 

the specific outcomes for each of the production rules.  

Algorithms 

Considering question 1, a far-reaching automation of production rules was very 
welcome for the GAK because of the expected gain in efficiency. The application 
of information systems in the prior setting of the decision making process only 
concerned storage and retrieval. It was expected that a large part of the processing 
would be suitable for automation. As it turned out, most of the 32 depicted pro-
duction rules proved to be of an algorithmic nature. In fact, 26 production rules of 
these were algorithms and only 6 production rules could not be (completely) 
specified in the form of an algorithm. The latter are the earlier stated production 
rules for the information elements i11, i16, i34, i40, i42, and i43. However, even 
the logic of these production rules could be specified in the form of a formal algo-
rithm if the values of their inputs agree to specific values. For example, the com-
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putation of i34 (average number of labor hours) can be formalized when the 
claimant had a constant number of labor hours for each job he or she holds when 
becoming unemployed. Otherwise, a non-algorithmic production rule is involved 
which relies for a large part on human judgment. Then, a GAK clerk should de-
cide on the number of labor hours which may be incorporated in the computation 
of the average number of labor hours. Therefore, for each of the six special pro-
duction rules, a combined production rule was derived, existing of a formal and a 
non-formal part. The three information elements which are omitted from the figure 
(i38, i50 and i51) all concern the decision whether a production rule can be speci-
fied formally. In this case, they are not treated. 

As far as the production rules were concerned that obtain values for the 18 leaf 
nodes (not depicted in Figure 7.7), an analysis has taken place of the various sup-
pliers of this information. This selection process involved issues of quality, reli-
ability and cost. As it turned out, 10 of the leaf information elements are directly 
and permanently available to the GAK itself (i21, i24, i25, i33, i35, i41, i44, i45, 
i48, i49). This either because the GAK maintains the data itself or because it has 
access to data of third parties. For example, for each insured employee his or her 
date of birth is known (i21). No production rules are required for these informa-
tion elements and no cost for obtaining it is applied. For each of the other 8 leaf 
information elements, exactly one production rule was specified which is used 
throughout the project. the source of the information is in all cases the claimant 
self. The characteristics of the final production rules for each of the leafs are in-
cluded in the presentation of all the production rules (see Table 7.1). 

Applicability of the Production Rules 

The analysis of the conditions under which the production rules are applicable 
(question 2) proved to be straightforward. The law and handbooks were the source 
for this information. Where interpretation issues arose, experts of the GAK as well 
as precedents were studied. 

Probabilities 

Thanks to the aggregated administration of historical cases the GAK maintained, a 
quantitative survey could be easily executed after the probabilities under which 
the production results produce the desired result (question 3). Although these 
probabilities are actually not independent of each other, there were no records of 
the dependencies among them. 

Cost 

As far as the cost of the production rules was concerned (question 4), it was de-
cided to express it in terms of the average time in minutes a GAK clerk has to 
spend on it. For the execution of production rules that could be specified in the 
form of an algorithm, no cost figures were imposed. Although the actual develop-
ment of information systems that support these rules is obviously a costly affair, 
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the redesign issue was to minimize the operational labor cost. Evidently, a deci-
sion on the implementation of the ultimate workflow design should balance the 
improved operational labor cost against other issues, such as the IT development 
effort, training cost, etc. These issues are not treated here. 

 
For the part of the production rules that incorporates a manual part ñ the 6 

"special" production rules and a further 8 of all the production rules obtaining leaf 
values ñ actual and standard figures of the GAK were available which were ex-
tended with experimental figures. For the six special production rules, the total av-
erage cost was determined on the basis of the weighted cost for manual and auto-
mated cost. For example, the production rule for information element i11 must be 
executed manually in 15 % of the cases; in 85 % of the cases there is no labor 
cost. As the average cost for manual execution of this production rule is 4 labor 
minutes, the weighted average is 0,15 * 4 = 0,6 minutes. 

The outcomes of the latter part of the analysis are represented in Table 7.2. 
Each production rule is listed. The column "automatic?" indicates for a production 
rule for a node element whether it can be specified in the form of an algorithm. 
For a production rule for a leaf element it indicates whether it is available and ac-
cessible. For both types of rules, a positive answer to this question implies that it 
can be automatically made available to the workflow. Hence, no labor cost is in-
volved. For information rules for node elements, it may be the case that it is not 
completely algorithmically specifiable. Partly handwork is still required. It is indi-
cated by the value "partly" in the "automatic?" column. The other columns are di-
rectly derived from the formal product data model. 

Table 7.2. Production rules 

production rule automatic? constraint cost probability 
(i1, {i25, i37}) yes true 0 1,0 
(i2, {i25, i37}) yes true 0 1,0 
(i3, {i33, i37}) yes true 0 1,0 
(i4, {i33, i37}) yes true 0 1,0 
(i5, {i37, i45}) yes true 0 1,0 
(i6, {i21, i37}) yes true 0 1,0 
(i7, {i24, i37}) yes true 0 1,0 
(i8, {i23, i37}) yes true 0 1,0 
(i9, {i24, i39}) yes true 0 1,0 

(i10,{i13,i14, i34, i37, i42}) yes true 0 1,0 
(i11, i31) partly true 0,6 1,0 
(i13, ∅) no true 0,08 1,0 
(i14, ∅) no true 0,08 1,0 
(i15, {i16}) yes i16 = true 0 0,997 
(i15, {i17}) yes i17 = true 0 0,003 
(i15, {i16, i17}) yes true 0 1,0 

(i16,{i25,i30,i35,i36,i44}) partly true 5,61 1,0 
(i17, {i25, i30}) yes true 0 1,0 
(i18, {i1}) yes i37 in i1 0 0,009 
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(i18, {i2}) yes i37 in i2 0 0,013 
(i18, {i8}) yes i37 in i8 0 0,016 
(i18, {i9}) yes i9 = false 0 0,002 
(i18, {i10}) yes i10 not defined 0 0,068 
(i18, {i11}) yes i11 = false 0 0,079 
(i18, {i15}) yes i15 = false 0 0,21 
(i18, {i9, i11, i15}) yes true 0 1,0 
(i21, ∅) yes true 0  1,0 
(i23, ∅) no true 0,67 1,0 
(i24, ∅) yes true 0  1,0 
(i25, ∅) yes true 0  1,0 
(i27, ∅) no true 0,08 1,0 
(i28, {i25, i37}) yes true 0 1,0 

(i29, {i25, i30, i35, i36}) yes true 0 1,0 
(i30, {i32, i37, i43}) yes true 0 1,0 
(i31, {i29, i40, i48}) yes true 0 1,0 

(i32, {i1, i2, i3, i4, i5, i6, i7, 
i8, i10, i27, i28}) 

yes true 0 1,0 

(i33, ∅) yes true 0  1,0 
(i34, {i36, i37, i41}) partly true 4,2 1,0 
(i35, ∅) yes true 0  1,0 
(i36, ∅) no true 1,0 1,0 
(i37, ∅) no true 1,67 1,0 
(i39, ∅) no true 0,17 1,0 
(i40, {i39, i41}) partly true 0,3 1,0 
(i41, ∅) yes true 0  1,0 
(i42, {i47}) partly true 0,3 1,0 
(i43, {i39, i49}) partly true 0,6 1,0 
(i44, ∅) yes true 0  1,0 
(i45, ∅) yes true 0  1,0 
(i47, ∅) no true 0,33 1,0 
(i48, ∅) yes true 0  1,0 
(i49, ∅) yes true 0  1,0 

 
The exact specifications of the production rules are not presented here, con-

cerning its sheer size (30 pages). They are described in the design report produced 
for the GAK (Reijers and Goverde, 1999a). 

7.2.2 Design 

The design of the workflow focused on the average case. Aside from the product 
data model, the design was driven by the earlier stated design objectives, summa-
rized as follows: 
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− A minimization of cost. 
− A maximal automation of production rules. 
− Usage of the case assignment heuristic (see Section 6.1). 
− A minimum number of contacts with the claimant. 

 
We will discuss the results of these objectives for our design approach. The ob-

jective to minimize the cost puts a high-level depth-first strategy in favor for ex-
ploring the product data model (see Section 3.3). The maximal automation of pro-
duction rules objective works out for the design as follows: all production rules 
that can be automatically executed are supposed to be available as functionality of 
yet-to-be-build information systems. As a result, production rules which are auto-
matically executable and which can be performed simultaneously will be put in 
parallel. This does not affect the cost of the design and it speeds up the processing. 
Note that this mixed high-level depth-first, low-level breadth-first strategy nicely 
goes along with the case assignment heuristic, which in its ultimate form requires 
(human) tasks to be performed sequentially. The objective to minimize the number 
of contacts with the claimant is made operational by the decision to gather all in-
formation elements that must be supplied by the claimant as soon as one informa-
tion element is required. 

We approached the design by considering one imaginary case. This is valid as 
all cases will be treated equally. Even if the claimant has not issued the claim al-
ready, we will assume a notion of it to make reasoning about it simpler. We will 
refer to production rules that have a positive labor cost as "manual production 
rules" and to all others as "automatic production rules". As a start situation, the 
GAK always holds the information i21, i24, i25, i33, i35, i41, i44, i45, i48, i49. 
The available information elements are depicted as hatched boxes in Figure 7.8. 

No automatic production rules can be performed on the basis of this informa-
tion. After all, at least one piece of information from the claimant should be avail-
able. For example, if i37 would be available then production rule (i5, {i37, i45}) 
can be applied. Recall that all leafs that are not readily available to the GAK have 
to be provided by the claimant. So, we may deduce that in the first step of the 
workflow, all other 8 leaf production rules are executed. Having done that, the 
workflow execution up to that point has an average cost of 4,08 minutes (= 
0,08+0,08+0,67+0,08+1+1,67+0,17+0,33) and the following information is avail-
able: i13, i14, i21, i23, i24, i25, i27, i33, i35, i36, i37, i39, i41, i44, i45, i47, i48, 
i49. The available information elements at this point are depicted as hatched boxes 
in Figure 7.9. 
 

On the basis of this information, the following (automatic) production rules 
may be applied without any cost: 
 
1. (i1, {i25, i37}) 
2. (i2, {i25, i37}) 
3. (i3, {i33, i37}) 
4. (i4, {i33, i37}) 
5. (i5, {i37, i45}) 
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Fig. 7.8. Initially available information 

 
6. (i6, {i21, i37}) 
7. (i7, {i24, i37}) 
8. (i8, {i23, i37}) 
9. (i9, {i24, i39}) 
10. (i28, {i25, i37}) 
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Fig. 7.9. Information available after consult of claimant 

The total available information is now: i1, i2, i3, i4, i5, i6, i7, i8, i9, i13, i14, 
i21, i23, i24, i25, i27, i28, i33, i35, i36, i37, i39, i41, i44, i45, i47, i48, i49. The 
available information elements at this point are depicted as hatched boxes in Fig-
ure 7.10. 

Already, we now have a probability of 0,04 (= 0,009+0,013+0,016+0,002) that 
the processing may end by an additional execution of one of the knock-outs (i18, 
{i1}), (i18, {i2}), (i18, {i8}) or (i18, {i9}) in case either i1, i2, i8 or i9 not satis-
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fied. So, for 4 % of the cases an average cost of only 4,08 minutes may be ex-
pected. 
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Fig. 7.10. Information after automatic production rules 

In case there is no knock-out, processing must proceed. By now, there is no 
other option than to execute a (partly) manual production rule. We recall that these 
are as follows: 
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1. (i11, {i31}) 
2. (i16, {i25, i30, i35, i36, i44}) 
3. (i34, {i36, i37, i41}) 
4. (i40, {i39, i41}) 
5. (i42, {i47}) 
6. (i43, {i39, i49}) 

 
Would these production rules be totally independent of each other, 6! different 

orderings should be considered for the rest of the workflow design. However, we 
can limit the number of alternatives by inspecting the dependencies of the product 
data model. The optimal choice for a production rule is the one that increases the 
probability of a knock-out at the lowest possible cost (compare the knock-out heu-
ristic, Section 6.1). On the basis of the product data model it can be concluded that 
there are two manual production rules which are always required for any of the 
remaining knock-out possibilities: (i34, {i36, i37, i41}) and (i42, {i47}).  

If the execution of (i34, {i36, i37, i41}), (i42, {i47}) and (i10, {i13, i14, i34, 
i37, i42}) did not facilitate a knock-out, the automatic production rule (i32, {i1, i2, 
i3, i4, i5, i6, i7, i8, i10, i27, i28}) may be executed. This makes the following in-
formation available: i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i13, i14, i21, i23, i24, i25, 
i27, i28, i32, i33, i34, i35, i36, i37, i39, i41, i44, i45, i47, i48, i49. The available 
information elements at this point are depicted as hatched boxes in Figure 7.11. 
 

Again, a choice has to be made which manual production rule must be applied. 
All remaining knock-outs rely on the result of (i43, {i39, i49}), so this is our ob-
vious next choice. It will facilitate the automatic execution of (i30, {i32, i37, i43}) 
followed by the parallel execution of automatic production rules (i17, {i25, i30}) 
and (i29, {i25, i30, i35, i36}). On the basis of the information on i17, there is a 
slight probability of 0,003 that i15 can be determined on the basis of (i15, {i17}). 
If so, the probability for a knock-out is also there using (i18, {i15}).  

At this point we have to make an important remark. Until now, we completely 
abstracted from the content of the production rules and its constraints. However, 
by using this information it becomes clear that the former execution is impossible. 
If (i15, {i17}) can be applied, i17 will evaluate to true due to the specific content 
of the production rule. The constraint for using (i18, {i15}) is, however, that i17 
evaluates to false. [Note that this is a derivation of the theoretical requirements on 
the constraint as posed in Section 3.3.] So, the scenario does not exist. Although 
we could have ignored it, it would not lead to a better workflow. Instead, we are 
satisfied with the observation that if (i15, {i17}) can be applied, the execution of 
production rule (i16, {i25, i30, i35, i36, i44}) is superfluous. The obvious sequel 
in this case would be to execute (i40, {i39, i41}), (i31, {i29, i40, i48}), (i11, 
{i31}), and (i18, {i9, i11, i15}). This will be incorporated in the final design. Note 
that the production rule (i18, {i11}) is not interesting, because (i18, {i9, i11, i15}) 
has a wider applicability at no cost. 

Assuming the general case ñ (i17, {i25, i30}), (i29, {i25, i30, i35, i36}), (i30, 
{i32, i37, i43}), (i43, {i39, i49}) are executed and (i15, {i17}) cannot ñ we have 
the following information available: i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i13, i14, i17,  
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Fig. 7.11. Information available after first choice of manual production rules 

i21, i23, i24, i25, i27, i28, i29, i32, i33, i34, i35, i36, i37, i39, i41, i43, i44, i45, 
i47, i48, i49. The available information elements at this point are depicted as 
hatched boxes in Figure 7.12. 
 

 



270      7 Systems and Practical Experience 

i18

i15 i9i11

i16 i17 i31

i36i44 i25 i30

i29 i48

i35

i40

i32 i43

i49

i1 i2 i3 i4 i5 i6 i7 i8 i10 i27 i28

i25

i23

i14

i37

i33 i45 i21 i24

i13 i34

i41 i36

i42

i47

i39

 
Fig. 7.12. Information available after second choice of manual production rules 

Another manual production rule must now be executed. We recall that the only 
remaining manual production rules are as follows:  

 
1. (i11, {i31}), 
2. (i16, {i25, i30, i35, i36, i44}), 
3. (i40, {i39, i41}). 
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Inspecting their dependencies, it is obvious that (i40, {i39, i41}) must precede 
(i11, {i31}). What is more, the scenario of subsequent executions of (i40, {i39, 
i41}), (i16, {i25, i30, i35, i36, i44}), and (i11, {i31}) is not a smart one. After all, 
if (i16, {i25, i30, i35, i36, i44}) is executed, a knock-out may follow making the 
prior effort to execute (i40, {i39, i41}) superfluous. The only sensible scenario's to 
order the remaining manual production rules are as follows: 

 
1. (i40, {i39, i41}), (i11, {i31}), (i11, {i31}), (i16, {i25, i30, i35, i36, i44}). 
2. (i16, {i25, i30, i35, i36, i44}), (i40, {i39, i41}), (i11, {i31}), (i11, {i31}).  

 
Note that the actual execution of these scenarios would obviously also require 

the execution of some automatic production rules. We will consider the merits of 
both scenarios. 

   
Scenario 1. This scenario will start with the subsequent execution of (i40, {i39, 
i41}), (i31, {i29, i40, i48}) and (i11, {i31}). With a probability of 0,079, the 
knock-out (i18, {i11}) can take place. With a probability of 1-0,079, subsequent 
execution of (i16, {i25, i30, i35, i36, i44}), (i15, {i16, i17}) and (i18, {i9, i11, 
i15}) is still required. Note that the knock-out (i18, {i15}) is of no relevance in 
this scenario, as the production rule (i18, {i9, i11, i15}) always yields a value for 
i18 without any cost. The total average cost of this (partial) scenario is 6,07 min-
utes (= 0,3+0,6+(1-0,079)*5,61). 

 
Scenario 2. This scenario will start with the execution of (i16, {i25, i30, i35, i36, 
i44}), followed by the automatic production rule (i15, {i16, i17}). With a prob-
ability of 0,21, the knock-out (i18, {i15}) can take place. With a probability of 1-
0,21, subsequent execution of (i40, {i39, i41}), (i31, {i29, i40, i48}), (i11, {i31}) 
and (i18, {i9, i11, i15}) is still required. Note that the knock-out (i18, {i11}) is of 
no relevance in this scenario, as the production rule (i18, {i9, i11, i15}) always 
yields a value for i18 without any cost. The total average cost of this (partial) sce-
nario is 6,32 minutes (=5,61+(1-0,21)*(0,6+0,3)).  
 

As can be seen, the cost of these scenario's are not very different from each 
other. The most preferable alternative is scenario 1. After its execution, all infor-
mation including the top element is available for all cases.  

This concludes the design of the GAK workflow. The complete model is de-
picted as a workflow net in Figure 7.13. The notation of the figure is similar to 
that of Figure 6.4 with the notations as explained in Section 6.2. Alongside or in-
side each task, an ordered enumeration of production rules is listed. The produc-
tion rules are executed in this order when the corresponding task is executed. In 
italics, the condition is expressed for the corresponding routing of each alternative 
path. These conditions are derived from the constraints in Table 7.2. 
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Fig. 7.13. Final workflow design 

7.2.3 Evaluation 

For the sake of validation, a simulation model of the newly designed workflow 
was developed using the ExSpect tool. The workflow design was transformed into 
a prototype in the form of an interactive simulation model. Furthermore, the algo-
rithms were specified with the ExSpect specification language. To the end-user of 
the prototype four different, predefined cases were presented that referred to real 
cases and included real data. When using the prototype to enact the handling of 
such a case, automatic tasks were executed by ExSpect itself; manual tasks were 
to be performed by the end-user of the prototype using the dashboard facility of 
ExSpect and graphical user interfaces build with Visual Basic.  

GAK professionals of the Venlo office have used this prototype in workshops 
held during the last weeks of 1999. Aside from some minor remarks, the prototype 
was accepted as reflecting a way of working that was sufficient and acceptable to 
determine the right for an unemployment allowance. In Section 7.3, which de-
scribes the application of PBWD for the ING Bank Nederland, we will describe 
the use of a prototype like this in more detail. 

Analytical evaluation of the validated workflow design pointed out that all de-
sign objectives were met by it. In particular, cost was drastically minimized. The 
average execution cost of the new workflow design for a single case turned out to 
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be 14,58 minutes. This is a 73 % reduction of the original average throughput time 
of 53,8 minutes of the real workflow. This reduction was mainly due to the high 
level of automation within the design. In comparison with the existing workflow 
in operation, about 75 % of its operations was automated. To a lesser degree, the 
specific ordering of knock-outs contributed to this decrease. As a side-effect it was 
observed that for 10 % of all cases no human intervention at all would be required 
to determine the right for a claim. In this situation, we can speak of Straight-
Through-Processing or Unattended Workflow (see Section 1.4). 

Additional performance evaluation of the model with simulations indicated an 
expected reduction of the throughput time in between 32 % and 97 %, depending 
on the specific resource scenario. In other words, this part of the overall workflow 
which lasted on average 6,2 working days would be reduced to a period of 0,2 and 
4,2 working days using the new design. The respective resource scenario's were 
designed by the GAK professionals themselves and included various capacity 
numbers and levels of responsiveness. Reduction of the throughput time was pri-
marily contributed to by the design objective of combining the points of external 
contacts. Note that the reduction of the throughput time was not a primary design 
objective. 

On a higher level, the PBWD methodology was positively evaluated by the pro-
ject team as follows: 

 
− The evaluation of the workflow design was positive. 
− The methodology proved to be useful to identify tasks that could be automated. 
− Intermediate deliverables of the methodology (product data model, algorithms 

in pseudo code, etc.) proved to be effective communication means with busi-
ness professionals. 

− Clarification of the purpose of all operations was attained by linking them to ei-
ther regulations or business objectives. 
 
On the other hand, the methodology proved to be rather labor intensive. Not 

only did this apply to the analysis of the regulations in effect, but especially to ob-
taining the information for realistically estimating probabilities, durations, etc.  

The methodology has been recommended to the GAK agency by Deloitte & 
Touche as its workflow design methodology.  

7.3 Product-Based Workflow Design for the ING Bank  

The second application of PBWD was a large-scale workflow redesign for the 
ING Bank Nederland (IBN). The IBN is part of the ING Group, which is a global 
financial institution of Dutch origin, active in the field of banking, insurance, and 
asset management in 65 countries with more than 100.000 employees. The project 
in which we participated took place during the years 2000 and 2001. Its primary 
aim was to redesign the IBN's workflow for handling credit applications of com-
mercial parties. The workflow that was to be redesigned is executed at all the 350 
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Dutch offices the IBN. With this type of workflow, some 25.000 applications for 
loans and credit facilities are handled on a yearly basis. The project also involved 
the development of new applications, systems integration with existing applica-
tions, and the introduction of a WfMS to support the process execution. Overall, 
the size of the project team consisted of some 40 full-time equivalents. The project 
is still underway in 2002, rolling out the redesigned processes and new applica-
tions throughout the Dutch offices. Because of the sheer size of the project, it is 
only possible to highlight some of our experiences with the application of PBWD. 
We will use the phases of the PBWD methodology as introduced in Section 3.3 as 
a structure for the case description. 

7.3.1 Scoping 

The credit application workflow was selected for reengineering because of the 
IBN's top management suspicions that considerable cost reduction could be 
achieved within this workflow; earlier projects indicated large inefficiencies in 
current working practice. 

The initial boundaries of the redesign project were subsequently determined by 
selecting two products out of a range of six similar credit products: the current ac-
count credit (RCK) and the loan with fixed interest (RVL). At the time of selec-
tion, the two products generated 70 % of the total credit facility turnover of the 
IBN. After the initial workflow design would be completed for these two products, 
the redesign of the other products would follow during the project. 

Initially, considerable effort had to be paid to further specify the scope of the 
redesign project. Illustrative for the involved issues is the following further speci-
fication of the redesign scope: 

 
− Increases of credit limits on existing RCK and RVL contracts were included in 

the redesign scope. 
− Within the redesign project the workflows would be considered for handling 

applications for RCK and RVL products until the moment that the first parcel of 
the credit would be available to the client; processes to support the use of the 
credit facility were excluded. 

− The client segments within the redesign scope were all commercial parties, ex-
cluding the top multinational accounts and the private banking accounts. 

− The primary channel to be considered for the application of credit were those 
that stream in through the standing offices; all other channels (e.g., Internet) 
were initially excluded from the scope of the project. 

 
Considering this scope, the redesign objective for the project was formulated as 

follows: 
 
Realize a substantial efficiency increase of the processes within the offices and 
operations for handling applications of RVL and RCK credit and shorten the 
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throughput time of those processes by redesigning them from client to client using 
automation, outplacement, or rendering superfluous.  

 
The "substantial efficiency increase" was not formally made operational, but 

among the project members and project management a figure of 30 % was consid-
ered as a minimal requirement. With respect to the throughput time, an average of 
2 working days was thought to be a fine result. 

A short feasibility study was performed to assess the applicability of the PBWD 
methodology. This study focused on two issues, which are as follows: 

 
1. The adequateness of the material to base the PBWD analysis upon. 
2. The adequateness of the expected gains of applying PBWD in this particular 

project. 
 

With respect to the first issue the information specified in the form of formal 
procedures, circulars, commercial objectives, etc. seemed in general adequate to 
describe most of the involved product specifics. One notable exception pertained 
to the authorization part of the workflow: under what conditions would an account 
manager's tender for a credit loan be authorized for disclosure to a client? As it 
turned out, this part of the workflow was rather governed by custom than by for-
mal procedure. A special workgroup was established to formulate the company's 
policy in this area. 

The second issue was addressed with the outcomes of a previous project, 
ZORRO, which identified as a primary source of inefficiency that similar informa-
tion was entered multiple times during the workflow execution. It was expected 
that a workflow design based upon a non-redundant product data model would 
elevate this inefficiency for the greatest part. ZORRO also indicated that consider-
able time and effort was spent on writing an explanatory memorandum that ac-
companied the credit proposal. From a preliminary study of the product specifica-
tion, the need for the memorandum did not become clear. 

Finally, a considerable number of information systems were identified that 
were not allowed to be subject to system development efforts. In other words, 
these systems should be left unchanged (see the "black boxes" of Section 3.3). The 
primary reason for these systems being treated as black boxes was that most of 
these systems were either in use to support workflows delivering other products, 
that they did not belong to the IBN, or that their content was used by other sys-
tems. The most prominent examples were the RR system, which was used for stor-
ing client information, and the FINAN system, which includes most of the finan-
cial information on clients, for example used by the IBN's general ledger system. 

7.3.2 Analysis 

The major part of the product specification analysis of the RCL and RVL products 
was carried out in three months by a mixed team of seven consultants and banking 
professionals. Considerable effort was required and spent on training all team 
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members with the PBWD way of information analysis and reporting. It proved to 
be hard for people familiar with the existing workflow to release the existing con-
ceptions on the ordering and content of work. Moreover, business people tended to 
find the information-driven analysis not always that appealing. Some attention 
also had to be paid in maintaining a comparable level of detail in the description 
of information elements delivered by different members. Finally, periodic meet-
ings and inspections were required to ensure that information elements were speci-
fied only once. 

The initial, complete product data model comprised 580 information elements. 
Somewhat over 120 information elements were linked to the initial application for 
credit and the characteristics of the client. Almost half of all the information ele-
ments were associated with the tender sent to a client in response to a credit appli-
cation, which specified the conditions under which the loan could be granted. 
Other information elements were the result of e.g., checks, intermediate credit cal-
culations, and internal communications.  

Initially, a spreadsheet was maintained for the administration of information 
elements and their specific attributes. When the number of information elements 
grew, updates of earlier established information had to take place, and project 
team members were increasingly distributed over several locations, the need for a 
more sophisticated storage and retrieval means grew. The application Zakinthos 
was developed in response to this need, build with the Microsoft Access tool. Zak-
inthos offered general facilities to store different versions of information elements, 
their descriptions, and the specification of production rules. Also, it included the 
possibility to group information elements on virtual windows to facilitate the logi-
cal design of user interfaces, but this functionality was not much used. The general 
functionality of Zakinthos was exploited when it was re-used in another PBWD 
project for the IBN. 

After the initial analysis and design phase, the decision was taken to determine 
the overlap of information element structures of the RCK and RVL products on 
the one hand, and the remaining credit loan products on the other. This was to de-
termine whether the workflow design on the basis of the initial product data model 
could be used for handling other credit products. Large similarities were found, 
which resulted in so-called generic product data models. In a generic product data 
model, information elements are depicted that may be used by a single product or 
by more products. In the depiction of such a model, an information element is 
tagged by a label that indicates its application. Note that this way of making ge-
neric product data models is not generally applicable. It supposes a large overlap 
in the structure of the production rules. 

A specific part of the analysis phase concentrated on the information exchange 
with the black box systems. As we explained in the previous section, these sys-
tems were to be left unchanged. However, these systems provided relevant infor-
mation for credit loans, e.g., current credit rates, creditworthiness scores, etc. So, 
in order to obtain this information to handle actual loan applications it was vital to 
obtain the information that was required to operate these systems first.  

When the analysis phase was concluded, a comparison was made between the 
information found elements and the information being processed in the existing 
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workflow. It showed that almost 30 % of the originally obtained pieces of infor-
mation was superfluous, i.e., they could not be justified on the basis of the credit 
product specification. Likely reasons for this part of information were system mi-
grations, temporary (marketing) needs, etc. 

7.3.3 Design 

The design of the first workflow version took place during the next two months of 
the project. On the basis of the product data model, an initial workflow design was 
derived.  

First, a set of workable tasks was determined that each incorporated one or 
more production rules. At the highest level, the design pursued a depth-first strat-
egy, ordering the existing knock-out tasks in a sequential and optimal way. A cer-
tain knock-out within the process was, for example, the applicant's appearance on 
a black list.  

In between the knock-out tasks of the workflow, tasks that were not causally re-
lated were structured sequentially when there were strong ergonomic reasons for 
this and put in parallel otherwise. For example, the respective tasks of entering 
general proposal data and entering data for the proposal on the specific credit 
products were sequentially ordered, because account managers thought this be a 
natural order. However, on the basis of the product-data model there were no rea-
sons to order them. An example of tasks that were put in parallel are the issuing of 
the order for the credit availability, the actual release, and the reporting to the 
Dutch National Bank (DNB).  

So, at a low level, a breadth-first strategy was pursued with the design when 
this did not interfere with logical wishes of the workflow executors. A simplified 
version of the designed workflow is depicted in Figure 7.14. For the sake of read-
ability, production rules and place labels are omitted. 

An interesting side-effect of the commercial intent of the IBN, was that there 
were almost no absolute knock-outs. Rather, when a particular application be-
comes less attractive from the bank's viewpoint, conditions are tightened on the 
loan from the applicant's viewpoint. It is left to the applicant to decide whether the 
loan proposal is still attractive enough to accept it. 

One important additional measure was made that had an impact on the design. 
This decision involved the authorization procedure and the memorandum we men-
tioned earlier. Empirical study showed that the memorandum was in many cases 
not used by people authorizing credit proposals. Only for the really difficult 30 % 
of credit applications, the memorandum was seen by the people authorizing the 
proposals as adding value. As a result, the formal policy proposed by the special 
workgroup included a triage for simple and difficult applications. Difficult appli-
cations would require an accompanying memorandum, where simple ones would 
not. This distinction resulted in a similar distinction within the workflow design 
with a so-called Fast Track for simple applications and a Regular track for com-
plex ones (see the task "Determine track" in Figure 7.14).  
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Fig. 7.14. Workflow design for credit applications 
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The development of the new application, KRETA, actually simplified the en-
forcement of this new policy, as account managers writing the proposals did not 
get the opportunity to specify this kind of information anymore: the user-interface 
of KRETA simply did not include space for it when it was determined that the 
credit application was simple. 

The next stage of the design phase of the project involved the extension of the 
derived workflow model with the other credit products. 

7.3.4 Evaluation 

The evaluation of the workflow design took place on several levels. In the first 
place, the workflow model was checked with the tool Woflan (Verbeek and Van 
der Aalst, 2000) to detect logical errors. Manual inspections on the ordering of the 
production rules were performed to check their consistency with the product-data 
model. The latter activity was rather laborious, which gave rise to the need for 
automated support.  

With respect to the validation of the derived workflow model, the first valida-
tion step took place within the project group. Halfway the project, the project 
group was extended with business professionals from office branches that worked 
on handling credit applications and had deep knowledge of the existing process 
and common work practice. On the basis of their comments, stricter orderings 
were made within the workflow to enhance its usability. A second validation step 
took place by designing Graphical User Interfaces (GUI) windows of the yet to be 
designed KRETA system. For each task of the workflow, one or more GUI win-
dows were designed. A GUI window displayed all the information elements that 
were available for carrying out the corresponding task and also displayed the in-
formation elements of which the values should be determined within this task. Al-
though the windows were "dumb", i.e., no production logic was involved, this way 
of validation indicated a number of information elements (+/- 20) that were not 
completely well defined, and a smaller number of missing information elements. 
The design was corrected in response to these findings. 

A thorough performance evaluation of the designed workflow with respect to 
the work capacity took place with the tool ExSpect. The simulation study indi-
cated an expected decrease of labor hours of 40 %. Alternative workflow designs 
with e.g., different orderings of tasks were also studied, but did not yield signifi-
cantly higher expected savings. The single entry of each piece of information, the 
identification of the "Fast Track" and the automated, integrated support to the 
workforces by the new KRETA system were identified as the major sources of ef-
ficiency gains.  

On a minor scale, a more focused definition of tasks contributed to the effi-
ciency gains. A simultaneous independent evaluation of the Human Resources 
task group of the BPR project group on the basis of the new task descriptions ren-
dered almost the same expected gain. 

The final step in the evaluation phase was a pilot project for the Dordrecht and 
Zeeland Districts during the last months of 2000. This project was conducted 
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when the KRETA system was being developed, so the new procedure ñ including 
the single recording of information and the different tracks ñ was used in handling 
some 140 new applications. The pilot evaluation indicated an efficiency increase 
of 15 % and a reduction of the throughput time to an average of less than 1 work-
ing day. On a more qualitative level, the workflow design was evaluated by the 
business professionals as workable and agreeable. The throughput time and the 
qualitative evaluation were highly satisfactory given the project goals, but the effi-
ciency increase was slightly disappointing ñ despite the lack of automated support 
of the new workflow. Closer inspection indicated that the ratio of simple and 
complex applications during the pilot project was 41:59 instead of the 70:30 as-
sumed during the design and performance evaluation. Not only was there a coin-
cidental increase of difficult applications, it was also found that people were rather 
reluctant to decide that a application was simple, even when the formal definition 
was satisfied. A considerable learning effect had taken place also. This could be 
established on the basis of the number of calls to the support desk, which steeply 
declined when the pilot project continued. Overall, the results of the pilot project 
were thought to be convincing enough to decide on a roll-out of the new workflow 
design throughout the Dutch IBN branches and further development of the new 
KRETA application. These activities have continued throughout 2001 and 2002. 

7.3.5 Other Applications of PBWD within ING Bank Nederland 

Aside from the major redesign project of the loans and credit facilities, two other 
applications of PBWD took place within the IBN. We were not actively involved 
in carrying out these projects, so their treatment will be brief. 

Bank Bonds 

For the bank bond product of the IBN, the PBWD method was applied in 2000. 
Bank bonds are continuously offered by banks in the form of obligations with a 
yearly interest payment. Bank bonds have a varying issuing course and are trans-
ferable through the stock exchange. The purpose of applying PBWD was to de-
termine whether an already derived workflow redesign by the IBN itself was cor-
rect and complete. The project that resulted in the existing design had already 
started before PBWD was introduced within the IBN. Because of PBWD's suc-
cessful application in other areas, the question arose whether the existing efforts 
had become superfluous. Instead of starting from scratch, it was proposed to use 
the information analysis of PBWD to check whether the existing design was com-
plete and correct. The project was performed by a single consultant of Deloitte & 
Touche Bakkenist in a time period of four weeks. 

All relevant information for the bank bond product was systematically derived 
from existing product specifications, such as procedures and product descriptions. 
The partial application of PBWD rendered in an information element structure of 
almost 200 information elements. A comparison with the existing workflow de-
sign indicated that 5 % of these were not distinguished. Moreover, 10 % of the de-
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rived information elements proved to be incorrectly specified in the checked 
workflow design. The workflow design was updated with this information and the 
project implemented the updated design within the IBN. 

This application shows a peculiar application of PDWD. Rather than a cost-
effective tool for the evaluation of the outcomes of other approaches, we think that 
the political circumstances gave rise to this occasion. While some viewed other 
process design methods with some suspicion during the project as described, oth-
ers were wavering to disband already reached results. Understandably, we would 
favor the direct application for workflow design over its use as a validation 
method when the circumstances allow for it.  

Payments and Savings 

In 2001 a new design was derived for the workflow that is used by the IBN to 
handle applications for standard payment and savings facilities, such as private ac-
counts, check guarantee cards, credit cards, and interactive banking facilities. The 
goal of the project was to realize a workflow that would efficiently integrate the 
use of several information systems that play a role within this workflow: all kinds 
of conditions are to be checked when a client applies for a payment and savings 
facility and, in case of acceptance, these facilities have to be specified and ar-
ranged for. The duration of the project was 3 months; the product-data model con-
tained some 300 information elements.   

Peculiar for this project in comparison with a pure application of PBWD was 
that instead of the existing product specifications of the payment and savings fa-
cilities being the starting point of the project, rather the information "needs" of the 
existing systems and the information "supplied" by the forms in use were driving 
the design. As a consequence, no reflection on the optimality and efficiency of the 
processing and storage of these systems could take place. On the other hand, this 
approach enabled quick results as the information elements could be easily identi-
fied from system manuals and paper forms. Despite the straightforward determina-
tion of the information elements, it was possible to derive a much more efficient 
flow along the several information systems. Evaluation of the design indicated 
savings of labor hours in the order of 100 Full Time Equivalents per year, which is 
a 15 % reduction in comparison to prior practice. 

Another interesting aspect was the thorough validation that has taken place of 
the derived workflow design using prototyping, as reported on by De Crom and 
Reijers (2001). To validate the design, a total of 5 prototype sessions with account 
managers and their assistants was held in 2001 at local IBN offices. In each ses-
sion, an average number of 10 of this type of personnel participated. The work-
shop attendees had no problem at all in understanding the created prototype. A 
small introductory talk proved to be sufficient. On the question if they would like 
to work with the proposed application, one of the attendees responded with: "Yes. 
This is exactly what we are looking for!". The strength of the PBWD prototype is 
that is very much looks and reacts like a real application, that it is fed with real 
data, and that it leads the participant through all the process steps in the new busi-
ness process (De Crom and Reijers, 2001).  
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After the prototype sessions the optimal process was modified on a consider-
able number of points. From the removal of unneeded information elements, the 
addition of information elements that were forgotten, to the rearranging of steps, 
groups and fields on the user-interface of the prototype. In general, the lay-out of 
the derived workflow was kept untouched, but the specific content of some indi-
vidual tasks was improved. 

The current status of the project is that the new workflow design is to be im-
plemented during 2002 at all branches that process applications for payment and 
savings facilities. 

7.4 Conclusion 

This chapter has shown the application of Business Process Management in prac-
tice from different angles. Both design and control issues were presented. In par-
ticular, this chapter contained two case descriptions where the PBWD method has 
been applied. Both cases indicate that substantial actual gains may be accom-
plished by workflow designs derived by it. Different ways of extending the ap-
proach will be discussed in the following chapter. 
 

 



8 Conclusion 

This final chapter is split into two parts. The first part is a short reflection on the 
presented research, with a special emphasis on its application area and the style of 
the thesis. The second part presents the encountered open questions and possible 
directions for future research. 

8.1 Reflection 

8.1.1 Area of Application 

Although the context of the research is the business processes found within large 
administrative organizations, some of the techniques and results are applicable 
within other areas. A good example is the construction of software, for which 
Component-based Development (CBD) is currently a popular paradigm (Szyper-
ski, 1998). Instead of programming software programs from scratch, components 
with a well-defined functionality are interconnected. Petri nets and, more specifi-
cally, workflow nets ñ the subject of chapter 2 ñ can also be used to represent the 
dynamic behavior of those components (see e.g., Van der Aalst et al., 2002). More 
importantly, typical logistic constructions found in business processes can be use-
ful for specifying the interaction between components. The algorithms of chapter 
4 may, therefore, be applicable to the performance evaluation of software assem-
bled from components. In fact, the assumption of infinite resources (i.e., no queu-
ing) of these algorithms may be less restrictive within this area. On the other hand, 
time scales in software development are very different to those in business process 
management, but this should be no real restriction. 

It is also conceivable that the concept of PBWD, as explained in chapter 3, is 
applicable to component-based software development. The desired post-condition 
of handling a transaction by a 'componentized' software system may then be used 
as a starting point. This specification can be used to select the appropriate compo-
nents and to derive a favorable method for them to interact.  

Another obvious area in which the concepts of this thesis may be applied is 
project planning. A project plan that consists of interrelated activities may also in-
corporate typical elements of the workflow net that we considered.  

Finally, resource planning within manufacturing may use the insights that are 
were gained from chapter 5. The algorithms that were presented to allocate re-
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sources in a workflow can also be used to decide how to dedicate discrete re-
sources in a manufacturing setting. 

8.1.2 Style 

In this thesis, business process management issues have been handled from a typi-
cal engineering perspective. What is characteristic here is that it is not the business 
process itself that has been subjected to analysis and manipulation, but a formal 
process model. A model is by definition an abstraction of reality. For something as 
complex as a business process ñ which involves clients, procedures, workers, in-
formation technology, documents etc. ñ this means that some parts receive more 
attention than others, while some other parts are omitted altogether.  

An important aspect that has only been touched upon is the human factor. In 
chapter 1 we discussed the sociocultural effects of changing a business process. 
We mentioned the intrinsic variability of people's work speed in discussing the 
stochastic workflow model in chapter 2. In chapter 6 we spoke about quality is-
sues of a business process from a worker's perspective. However, the human factor 
is at the background of this thesis. This in no way qualifies the human factor as 
being unimportant in business process management. In fact, the complexity of 
human behavior, in general, and in a business context, in particular, is such that 
we either do not fully understand it or are incapable of capturing it in a formal 
model.  

The dangers of oversimplifying the human factor in BPM are evident, as treated 
by Sierhuis (2001) for example. In this thesis, the choice has been made to deviate 
from unknown or overly complex human factors in favor of a comprehensive view 
on the business process. For example, in chapter 6 a simple machine metaphor 
was used to model human performance within the setting of a business process. 
People carry out tasks that are assigned to them and they perform these tasks 
whenever they are available (although their working speed varies). Of course, an 
important issue in the mind of some managers is how to make people work at all. 
So, in a sense, we have treated the human aspect from an overly optimistic, engi-
neer's perspective.  

Does the exclusion or simplified modeling of human behavior nullify the con-
tributions of the work in this thesis? In our opinion it does not. Knowledge often 
arises from simple models with simple approaches that are gradually refined and 
extended, or that lead to insights for totally different approaches. Each step results 
in a better fit of theory to reality. For example, the stochastic workflow model of 
chapter 2 is a much better vehicle for timing specification in workflows than the 
General Stochastic Petri net (Marsan et al., 1984). If we consider the opposite ap-
proach to ours ñ starting by describing reality as precisely as possible ñ this seems 
much less fruitful. For example, by using a completely realistic model of resource 
behavior in chapter 5, an analytical evaluation of the marginal allocation algo-
rithms would have been impossible. We would not have gained much insight by 
using such an approach. We have always looked for techniques, algorithms, guide-
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lines and methodologies that make a practical contribution to the field, although 
we are aware of their limits. 

A last point that we feel is worth mentioning is the computing science influence 
on this work. This is best noted in chapter 3, which discusses a design methodol-
ogy for workflows. Finding values for pieces of related information is the corner-
stone of this methodology. Obviously, the metaphor of a workflow process as an 
information processor is used. We realize that this is just one of the metaphors 
available to look at a business process or organizations (see e.g., Morgan, 1986). 
However, there is considerable merit in this focus. On the basis of our industrial 
experience, we have the impression that workflow design is often an intuitive ac-
tivity. In practice workflow design aims rather at outlining than specifying the new 
design. We may conjecture that many BPR projects fail because they lack (i) ra-
tional support for changes in a workflow and (ii) precision in prescribing the in-
tended changes. The essence of computing science precisely is to develop algo-
rithms in a formal and well-founded manner. Even though the PBWD method of 
chapter 3 has its own drawbacks, computing science offers a valuable perspective 
on many BPM issues. 

Finally, this thesis tips to the side of breadth, rather than depth. Instead of se-
lecting one BPM issue and exploring it to its fullest extent, gentle headway has 
been made with a number of problems. In the next section we will explain that 
some of these problems are not solved and that many more issues await further re-
search. 

8.2 Future Work 

8.2.1 Workflow Design 

In this thesis, we have basically concentrated on two ways of workflow design and 
redesign. The PBWD method is a completely new approach to design a workflow 
from scratch, as described in chapter 2. A list of redesign heuristics is also pre-
sented in chapter 6, which mainly originates from existing literature and partly 
from our own reengineering experience. These heuristics can be used to incremen-
tally redesign an already existing workflow. We will discuss the directions for fur-
ther work in both fields separately.  

With respect to PBWD, the most obvious need for extension is a practical one: 
the development of supporting software tools. As the analysis of information ele-
ments may result in a large administrative burden, ways of systematically filing 
the various versions of these elements and their relations is highly desirable. Im-
plementations of the algorithms to find cost-optimal plans, as well as depth-first 
and breadth-first designs, would also be helpful in practical situations. Finally, a 
tool to check the conformance of a manually edited workflow with the underlying 
product data model would be valuable, especially when the workflow model 
grows large. A totally different way of extending the PBWD method is to integrate 
it with system development methodologies. Software development and systems in-
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tegration are major ingredients for almost any actual redesign effort in practice. 
Obviously, the characteristics of the PBWD method can form a solid basis for 
these activities, due to the central role of data and data processing. 

From a research perspective on PBWD, an interesting direction would be to 
improve the search for favorable depth-first workflows. A rather brute force algo-
rithm is given in section 3.3.3. A more efficient yet heuristic way of finding such a 
design might be to exploit the level of overlap between the various solutions. In 
that sense, solutions would be pursued to be carried out closely after one another if 
the overlap of information is great. Experimentation and simulation may be useful 
for finding an appropriate heuristic.  

As far as the heuristic redesign is concerned, much work still needs to be done. 
To start with, most of the presented rules in chapter 6 lack quantitative support for 
their effectiveness. An interesting research direction is to establish the conditions 
under which each rule is applicable, the exact implementation of the rule, and the 
expected effects. An empirical assessment of the popularity of these rules could be 
useful to prioritize research into these rules. On a more abstract level, given some 
redesign targets, it would be interesting to establish which rules are needed and in 
which order they should be applied. This step could be the start of an overall re-
design methodology for changing existing workflows.  

8.2.2  Performance 

Part of the presented work focuses on the computation of either the exact or ap-
proximated performance of models of workflow processes, as measured in 
throughput time (see chapter 4). It should once again be noted that the throughput 
time is merely one of the many performance indicators of interest in the area of 
BPM. Another important restriction of the presented models is that they do no take 
the effect of scarce resources into account, i.e., there is no queuing. As stated ear-
lier, this type of algorithm is valuable in the early stage of developing a new work-
flow. From an algorithmic point of view, the absence of resources can be seen as a 
trade-off of the permitted very general structures of the underlying model, as well 
as the arbitrary timing information that can be defined. It does not seem likely that 
both exact and efficient algorithms can be developed for similar underlying mod-
els with resource restrictions. The de facto limits in queuing network analysis in 
the form of BCMP networks (Baskett et al., 1975) seem to support this observa-
tion. Efforts should actually be aimed at finding useful analytical approximations 
of the performance of such workflow models.  

We also have some specific remarks about the performance algorithms of chap-
ter 4. The first of them was based on using building blocks to construct a work-
flow model (see section 4.3). An open question is how to determine whether a 
given workflow model can be composed using a set of well-defined building 
blocks and ñ if it can ñ what subsequent synthesis steps are needed. The answer to 
this question would be of considerable practical value. It may result in a set of 
analyzable workflow nets that are not constructed by iteratively applying the 
building blocks. The addition of other building blocks to the ones already pre-
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sented is another obvious extension. The workflow patterns as presented by 
Kiepuszewski et al. (2001) may be a source of inspiration for such new building 
blocks. Furthermore, in the presented iteration building block, the use of Cheby-
shev's inequality may be replaced by a sharper criterion. Finally, the use of dis-
crete time enabled the use of the efficient Fast Fourier Transform (Appendix B). If 
continuous time is applied to specify the delays within the workflow nets, it will 
be no straightforward matter to find an efficient alternative. One way of dealing 
with this issue may be to exploit the properties of Phase-Type distributions, simi-
lar to the efforts of Cumani (1985).  

The most obvious extension of the analysis of performance bounds (see section 
4.4), is to determine the precision of the computed bounds. We have already indi-
cated some of the factors that influence this precision in section 4.4.3.  

8.2.3 Resources  

In the introduction of chapter 5, we described the various aspects of the allocation 
component of a workflow model. We addressed only a single aspect in the re-
mainder of that chapter, the proper allocation of resources to minimize the 
throughput time of the workflow. There are two important directions for further 
research. The first is to search for algorithms that may be helpful in facing this 
separate issue with a wider applicability than the algorithms presented in sections 
5.2 and 5.3. One idea would be to exploit the maximal level of concurrency in a 
workflow to decide on the number of resources that are allocated simultaneously. 
This would be much less efficient than the marginal allocation algorithm, but it 
would circumvent the problem of the counter example of section 5.3.3. In this ex-
ample, the effect of adding an extra resource to only one of the two concurrent 
parts of the workflow did not speed up the entire process. From the experimenta-
tion with the workbench, we also learned the relative effect of the marginal alloca-
tion algorithm. When queuing time accounts for only a small part of the overall 
throughput time (e.g., because of lengthy communications with the outer world) 
another approach is required. The effectiveness of the presented allocation algo-
rithms under more realistic conditions is also of interest. For example, important 
restrictions in effect in chapter 5 are that each task is carried out by at most one 
class of resources and that a resource is part of at most one resource class. In real-
ity, people work on more than one task in a workflow, and even in multiple work-
flow processes. 

The second direction for further research is given by the other aspects of the al-
location component. An open question is how organizations should define the 
boundaries between resource classes, and how they should choose the right alloca-
tion principles. In the practice of workflow management, the facilities of WfMS's 
in this area are hardly exploited. Some WfMS's incorporate ample facilities for 
sophisticated allocation principles. We may conjecture that the neglect of this 
functionality is caused by the limited insight into their effects. Similarly, the disci-
pline that resources may use to order the work that is allocated to them is not in-
vestigated well in the area of workflows (e.g., First-In-First-Out, Earliest-Due-
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Date, etc.). Much inspiration can be derived from existing manufacturing knowl-
edge, for both the allocation principles and ordering disciplines. 

8.2.4 Other Workflow Issues 

Even if we only consider workflows, BPM is broader than the areas that have been 
dealt with in the previous chapters. Without claiming completeness, we will 
briefly consider some other interesting issues at the end of this thesis. A large por-
tion of research efforts in the field of workflow management is currently directed 
at handling the dynamics of a workflow execution. In particular, different com-
promises are pursued between supporting a standardized way of working, on the 
one hand, and deviating from this standard in the case of exceptions, on the other 
hand. Both formal and practical ways of dealing with this flexibility issue are 
emerging (e.g., Agostini and De Michelis, 2000; Van der Aalst and Berens, 2001). 

In addition to flexibility, verification of workflows is another hot topic. This 
area of research focuses on answering the question of whether a given workflow 
model agrees with some formal notion of correctness, such as the soundness crite-
rion (Definition 2.14). A very obvious gap in the functionality of existing WfMS's 
is the absence of such checks, with obvious practical consequences. Research in 
the area of verification and correction has been carried out by e.g., Verbeek et al. 
(2001) and Dehnert (2002). 

In the past few years, attention has also been moving away from workflows 
within a single organization towards inter-organizational workflows (e.g., Grefen 
et al., 2001; Lazcano et al., 2001). It is apparent that business processes do not ex-
ist in isolation. For example, a large part of the throughput time of workflows in 
practice consists of wait time for external events. An important issue is how to en-
sure that workflows cooperating across different organizations yield correct and 
efficient results. Future research could be aimed at predicting and improving the 
performance of inter-organizational workflows, e.g., by restructuring workflows in 
such a way that wait times for external events can be reduced. 

Yet another direction that is receiving more attention is empirical research in 
the area of workflow management. A joint effort by the Technische Universiteit 
Eindhoven and Deloitte & Touche Bakkenist is currently investigating the effects 
of workflow management technology in practice (Molenaar, 2002). Logistic pa-
rameters such as throughput time, resource utilization, and service time are meas-
ured within approximately ten Dutch service organizations, both before and after 
workflow implementations. From an analysis and comparison of these outcomes, 
we hope to deduce the effectiveness of the workflow technology itself. Aside from 
the scientific light this may shed on the (presumed) advantages of workflow tech-
nology, this type of research may also help to unleash the true power of workflow 
technology in business.  

 
 



A The Bottom-Level Workflow Model 

The workflow model as introduced in Definition 3.3 in Section 3.3 specifies on an 
abstract level what a workflow design looks like. It is an outline of the ordering 
pattern of production rules. Its attractivity lies in its compact form and explanatory 
power to end-users. This appendix describes the bottom-level workflow model.  

A bottom-level workflow model may be derived from a workflow model and 
the product-data model it conforms to (Definition 3.4). Its primary purpose is the 
specification of the exact semantics of the workflow model. In other words, the 
bottom-level workflow model makes the workflow model operational. Its secon-
dary use is that it allows for automated support for execution and evaluation pur-
poses. An intermediate workflow model ñ the so-called stretched workflow model 
ñ is presented to partition the transformation of a model into a bottom-level model 
in two manageable parts. The different models are depicted in Figure A.1. 
 

workflow model

stretched workflow model

bottom-level workflow model

used for presentation and
design

} used for exact semantics,
execution and evaluation

 
Fig. A.1. Workflow models in design 

We recall the semantics of the workflow model, as informally described in Sec-
tion 3.3. If a transition in a workflow model to which a production rule (p, cs) is 
associated fires, this firing should be interpreted as an application of the produc-
tion rule if at the time of firing the following is true: 

 
1. The constraint for (p, cs) holds. 
2. The values for each of the information elements in cs are known. 
3. No value for p is already known. 
 
H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 289-302, 2003. 
 Springer-Verlag Berlin Heidelberg 2003 
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4. No value for the information element top is already known. 
5. No task to which the production rule (p, cs) is associated has already fired. 
 

In all other cases, the production rule (p, cs) is not applied. In other words, al-
though the transition fires, the production rule is skipped.  

Furthermore, when a production rule is applied there is a probability of prob(p, 
cs) that it is successful, and a probability of 1- prob(p, cs) that it is not. If the pro-
duction rule (p, cs) rule is successfully applied, a value for p becomes known. Ini-
tially, no values of information elements are known at all.  

The bottom-level workflow model enforces this behavior by modeling the sepa-
rate states and dependencies in a classical Petri net way. It would also have been 
possible to use a High-level Petri net formalism to model a bottom-level model. 
The availability of information elements, for example, would then be modeled as 
the color of the tokens in the net. We prefer, however, the Stochastic Workflow 
net which we have defined in Section 2.4. The use of the Stochastic Workflow net 
enables us to use the already defined stochastic and timing mechanisms of this net. 
Also, standard classical Petri net analysis methods are available to evaluate the 
underlying workflow net of the Stochastic Workflow net which is a classical Petri 
net. Lastly, the semantic of the bottom-level workflow model is almost totally de-
fined by its graphical presentation. The disadvantage of our choice is that a bot-
tom-level workflow model may become rather large.  

We allow for one particular High-level Petri net construct in the bottom-level 
workflow model, the precondition. The incorporation of preconditions enables a 
meaningful structural analysis of the bottom-level workflow model. In non-trivial 
practical cases, it will be hard to model all different values of the preconditions 
used in a product-data model as classical Petri net places. Even if this would be 
possible, structural analysis becomes awkward because of the resulting complex-
ity.  

Note that if a transition becomes enabled in a Stochastic Workflow net, the 
probability that it will fire is determined by its weight relative to that of other tran-
sitions that are enabled at the same time state (see Definition 2.19). By the exten-
sion with preconditions, the firing probability condition of a transition is strength-
ened by requiring also that its precondition should evaluate to true. Although it is 
possible to give a formal definition of such a Petri net, we believe that at this place 
it would take the attention too far away from the subject of designing a workflow. 
We will return to the specific consequences of adding preconditions when we 
want to determine classical Petri net properties of the bottom-level workflow 
model.  

The formal derivation of a bottom-level workflow model from a workflow 
model takes place in two steps. Firstly, a so-called stretched workflow model is 
derived that reveals the behavior of the workflow model without any timing or 
probabilities. Secondly, the stochastic properties are added to this model, which 
completes the translation.  

For the stretched workflow model we will start with its formal definition. Next, 
we will explain the various part of this definition. Finally, we will illustrate the no-
tion of a stretched workflow model with an example. 
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Definition A.1 (Stretched workflow model). If PM = (P, T, R, prod) is a work-
flow model that conforms to the extended product data model (D, C, pre, F, 
constr, cst, flow, prob) then the stretched workflow model PM' = (P', T', R', prod') 
is defined as follows, using the following abbreviations: 
−  = { t ∈ T | prod(t) ∈ F } (transitions with a production rule not equal to 

skip} 
*T

− *F  = { }
*T

( )
t

prod t
∈
∪  (all production rules in use) 

− D* = { }*| ( , ) : ( )d D p cs F d p d cs∈ ∃ ∈ = ∨ ∈  (all used information ele-

ments) 

− C* =   (all used constraints) {
*T

( )
t

constr t
∈

 

 
∪ }

The set P' of places of PM is defined by: 
− P1 = { ) | (p, cs) ∈  } (positive places of production rules)  ( ,p csq *F

− P2 = { ( , )p csq | (p, cs) ∈  } (negative places of production rules) *F
− P3 = { dq | d ∈ D* } (positive places of information elements) 

− P4 = { dq | d ∈ D* } (negative places of information elements)  

− P5 = { | t ∈ T } (to indicate that the rule associated with t can be applied) app
tq *

− P6 = { suc
tq | t ∈ } (to indicate that the rule associated with t is successfully 

applied) 

*T

− P7 = { fin
tq | t ∈ } (to indicate that the rule associated with t is finished) *T

− P' = {iinit}∪ P   
7

1

Pn
n=

∪ ∪
The set of transitions T' is defined by: 
− T1 = { , dt qu | t ∈  * *T d D∧ ∈ ∧

*( , ) : ( ) ( , )p cs F prod t p cs d cs∃ ∈ = ∧ ∈ } (transitions for each missing in-
put elements) 

− T2 = { ,( , )t p csu | t ∈ T (* *, ) ( ) ( , )p cs F prod t p cs∧ ∈ ∧ = } (transitions for al-
ready applied production rules) 

− T3 = { , pt qu | t 

∈ } (transitions for 
known output elements) 

* *T p D∧ ∈ ∧ *( , ) : ( ) ( , )d cs F prod t d cs d p∃ ∈ = ∧ =

− T4 = { , topt qu | t ∈ * *T ( , ) : ( ) ( , )p cs F prod t p cs p top∧ ∃ ∈ = ∧ ≠ } (transi-
tions for the case that the top element is already known) 
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− T5= { 
con
tu | t ∈  

* * *T ( , ) , : ( ) ( , ) ( , )p cs F c C prod t p cs c constr p cs∧ ∃ ∈ ∈ = ∧ = } (transi 
tions for the case that the constraint is not satisfied) 

− T6 = { u t } (transitions used for attempting to apply a pro-
duction rule) 

*
, | T 1t n n∈ ∧ ≤ ≤ 5

− T' = {tinit} ∪ T ∪  
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Tn
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Relations R' are defined by: 
− R1 = {(q, 

con
tu ) | ( , }  ) Rq t q i∈ ∧ ≠

− R2 = {(iinit, 
con
tu ) | } ( , ) Ri t ∈

− R3 = {( dq , 
con
tu )  

 | t ∈ ∧ }  * * *T ( , ) : ( ) ( , )d D p cs F prod t p cs d cs∈ ∧ ∃ ∈ = ∧ ∈

− R4 = {(
con
tu , q) | ( , } ) Rt q ∈

− R5 = R  -1
3
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*)
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 } * *( , ) R ( , ) : ( ) ( , )i t d D p cs F prod t p cs d cs∈ ∧ ∈ ∧ ∃ ∈ = ∧ ∈

− R8 = {( dq , , dt qu ) |  

 } * * *T ( , ) : ( ) ( , )t d D p cs F prod t p cs d cs∈ ∧ ∈ ∧ ∃ ∈ = ∧ ∈

− R9 = {( , dt qu ,q)|  

 } * *( , ) R ( , ) : ( ) ( , )t q d D p cs F prod t p cs d cs∈ ∧ ∈ ∧ ∃ ∈ = ∧ ∈
− R10 =  -1

8R
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 } *( , ) R ( , ) ( ) ( , )q t p cs F prod t p cs q i∈ ∧ ∈ ∧ = ∧ ≠
− R12 = {(iinit, ,( , )t p csu ) | } *( , ) R ( , ) ( ) ( , )i t p cs F prod t p cs∈ ∧ ∈ ∧ =
− R13 = {( , ( , )p csq ,( ,u p cs)t ) | t p }  * *T ( , ) ( ) ( ,cs F prod t p∈ ∧ ∈ ∧ = )cs
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− R15 =   -1

13R



A The Bottom-Level Workflow Model      293 

− R16 = 
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The function prod' is defined by: 
− prod': T' → F ∪ { skip } such that for t ∈ T',  
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 ∉
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A stretched workflow model maintains a detailed administration about the in-
formation elements and production rules. For each information element d  that is 
in fact used (D*), there is a place that signifies the existence of a value for d (P3) ñ 
the positive place of d ñ and a place that indicates the lack of such a value (P4) ñ 
the negative place of d. Similarly, there are places for each used production rule 
(F*) to signify whether it has been applied (P1) or not (P2), the positive and nega-
tive places for the production rules. These values are used to determine whether a 
task that incorporates a production rule (T*) can be executed and ñ if so ñ what the 
result is of its execution. We distinguished five conditions that are to be met for 
applying a production rule when its corresponding transition is enabled. We also 
indicated that even when these conditions are met, the application of the rule does 
not necessarily succeed. The firing in the stretched workflow net of a transition t 
∈ T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 indicates that the production rule associated with t was 
not applicable. Firing of a transition  indicates that the production rule associ-

ated with t is applicable. Actual firing of a transition t ∈ T indicates a successful 
application of its production rule ñ if any. Firing of a transition u  indicates that 
t's production was not successful, although it was applicable.  

,1tu

,5t

To illustrate the notion of a stretched workflow model we will use the example 
of a workflow model used in Chapter 3, once more depicted in Figure A.2.  
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( , { } )a f( , )f ∅

( , )e ∅ ( , )b ∅ ( , )f ∅ ( ,{ , })a b c

o

skip

1p 2p 3p

4p 5p 6p 7p 8p 9p

1t 2t

3t 4t 5t 6t 7t

 
Fig. A.2. Workflow example 

We will not present the entire stretched workflow model on the basis of the 
workflow example. It would result in stretched workflow model of more than 50 
places and 80 transitions, with an intricate web of flow relations. For the sake of 
readability, we restrict ourselves to two interesting parts of the stretched workflow 
model. 

In Figure A.3 the part near the source place of the stretched workflow model 
can be seen. The original source place is now the only input of the special transi-
tion tinit, which has as output places all the negative places of information elements 
and production rules. This is the initial situation of any workflow execution. Also, 
the special place iinit is an output place of tinit. In Definition A.1, the relations of 
this part of the stretched workflow model are given by R54, R55, and the elements 
(i, tinit) and (tinit, i) that are part of R'. 
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i

aq

iinit

tinit 

bq

cq

eq fq

( ,{ , })a b cq

( ,{ })a fq

( , )bq ∅

( ,( , })c e fq

( , )eq ∅( , )fq ∅

 
Fig. A.3. Start of stretched workflow 

Next, we will consider the other characteristic part of the stretched workflow 
model, by focusing on the single transition t6 in Figure A.2. It is characteristic for 
any translation of a transition in a workflow model to a stretched workflow model. 
To transition t6, the production rule (c, {e, f}) is associated. In Figure A.4 the 
translation of t6 can be seen.  

The transition t6 in the middle of the figure is the central transition in this part 
of the stretched workflow model. Its firing represents a successful application of 
the production rule (c, {e, f}).  
The transitions on the left-hand side of the figure each express one of the five 
conditions that may not be met, so that the production rule is not applicable. We 
will briefly consider each of these. The transition 6

con
tu is used to represent the 

situation that the precondition is not met, although all inputs are available (rela-
tions R1ÖR5 of Definition A.6). Transitions 6 , et qu and 

6 , ft qu represent the absence 
of a value for respectively e and f, so that the production rule is not applicable 
(R6ÖR10). Transition 6 ,( ,{ , })t c e fu  fires when the production rule (c, {e, f}) is al-

ready applied (R11ÖR15). Transition 6 , ct qu fires when a value for the output c has 

already been established (R16ÖR20). Finally, transition 6 , at qu fires when a value 
for the top element a has already been established (R21ÖR25). 
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6 ,1tu
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cq
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8p

6t
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6

app
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suc
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6

fin
t

6 ,1tu

,2tu

Fig. A.4. Translation of transition t6 

The right-hand side of the figure is used to represent the situation that all five 
conditions are met, but that it still needs to be settled whether the application of 
the production rules is successful. Five special transitions u Ö u are used for 

its modeling, as well as three special places q ,   and q . Transition 

fires if all conditions are met for the production rule to become applicable 
(R26.. R36). In particular, it marks the place q(c, {e, f}) to signify that it has been at-
tempted to apply the production rule (R32), which will prevent any following at-
tempt. Then, either transition t6 fires to represent the successful application of (c, 
{e, f}) (R37, R38) or transition  to represent the opposite case (R

6
39, R40). Tran-

sitions u and are used to administrate that a value for c is now known, tak-
6 ,3t 6 ,4tu
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ing into account that it could have been updated (almost simultaneously) by an-
other transition (R41ÖR48). The final transition u properly ends this part of the 
net (R

6 ,5t

49, R50). 

,( , )t p cs

( ,p cs

All relations maintained by transitions of the original workflow net that do not 
have a production rule associated with it, i.e., each transition t ∈ T such that 
prod(t) = skip, are preserved in the stretched workflow model (R51ÖR53).  

Note that in the figure the precondition of (c, {e, f}) and its negation are also 
depicted. They are not, however, a formal part of the stretched workflow model. 
We will assume that the firing of transitions u and u for a transition t with 
prod(t) = (p, cs) nonetheless respect these conditions.  

,1t

 
Before we proceed with the final part of defining the bottom-level workflow 

model, we want to indicate some properties of a stretched workflow model. 

Lemma A.1 (Properties of the stretched workflow model). If PM' = (P', T', 
R', prod') is a stretched workflow model of the workflow model PM = (P, T, R, 
prod) then: 
a. (P', T', R') is a workflow net,  
b. for each used information element, the sum of tokens in its positive and nega-

tive places is equal to one for each reachable marking from "  ñ excluding 
 itself; formally: for each d ∈ D

i#
i" #
i" #

*  and for each reachable marking M from 
 in (P', T', R') holds that M(qd) + M( dq ) + M( i ) = 1,  

c. for each used production rule, the sum of tokens in its positive and negative 
places is equal to one for each reachable marking from "  ñ excluding  
itself; formally: for each (p, cs) ∈ F

i# i" #
* and for each reachable marking M from 

 in (P', T', R') holds that M(qi" # (p, cs)) + M( )q ) + M( i ) = 1. 
Proof a. The workflow net is defined in Definition 2.13. Inspection of  Definition 
A.1 yields that there is only one source place and one sink place. The source place 
is the input place of the new transition tinit; the output place is the same as in (P, T, 
R). All other places have at least one preceding and one succeeding transition. For 
each node n ∈ (P ∪ T) holds that there is a path in (P, T, R) from i to o (confor-
mance).  For every node n ∈ (P' ∪ T') \ (P ∪ T) there is a path to a node r ∈ (P ∪ 
T) and a path from s ∈ (P ∪ T). Hence, the net is a workflow net. 
b. Consider the workflow net system (P', T', R', " ) and let M be such that 

for the special transition t

i#
initti →" # M init. Then the claim holds for M on the ba-

sis of R' of Definition A.1. Corresponding to the definition of R', each other transi-
tion that removes a token from either a negative or positive place of a specific in-
formation element takes one token from exactly one of these two places. That 
same transition puts one token back in either the positive or the negative place of 
that same information element. Hence, the equality holds. 
c. Similar to the proof of part b., respectively for the positive and negative places 
of production rules. □ 
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This result shows that the administration of the stretched workflow model of 
obtained information elements and executed production rules is proper. The 
stretched workflow model enforces a certain correctness property as well. 
 
Definition A.2 (Limited soundness). A workflow net (P, T, R) is said to be 
limited sound with respect to a set S ⊆ P if and only if: 
− for every marking M reachable from marking " , there exists a firing se-

quence leading from marking M to a marking M' which marks o. Formally: 
i#

( ) ( )( )o ≥* *
' ' ' 1M Mi M M M M ∀ → ⇒ ∃ → ∧ " #  (completion option), 

and 
− for every marking M reachable from marking "  which marks o holds that 

there is exactly one token in o and each other place that is marked by M is no 
part of S:  

i#

 

( )*
, P' ( ) 1 ( ) 1 ( ) 1 SM p i M M o M p p o M o p∈

 ∀ → ∧ ≥ ∧ ≥ ∧ ≠ ⇒ = ∧ ∉ " #   

(proper completion).  
 

 
If we compare this with Definition 2.14, it is clear that the proper completion 

requirement is relaxed, i.e., in the end state tokens may reside in places outside S. 
The original requirement in the soundness notion of the liveness of all transitions 
is omitted. Practically, we do not require this notion, but it would be hard to verify 
whether it is satisfied for a given case.   

Lemma A.2 (Limited soundness of stretched workflow model). If PM' = 
(P', T', R', prod') is a stretched workflow model of the workflow model PM = (P, 
T, R, prod) and PN = (P, T, R) is sound then PN' = (P', T', R') is limited sound 
with respect to P ⊆ P'. 
 
Proof 'Completion option'. Let M be a marking of PN' such that " # , 
where M does not mark o. Without loss of generality, we assume that for each t ∈ 
T with prod(t) ≠ skip holds that neither , 

i Mρ→

app
tq suc

tq , or fin
tq is marked at M. (Clearly 

such a marking is reachable from any other marking that does not satisfy this 
property, because the translation of each transition in a stretched workflow model 
is a state machine that can always proceed until it marks the output places of that 
transition). Consider the mapping MPN = (M(p1)ÖM(pn)) and the firing sequence 
τ, with τ = ρ$ , ∈ = ∈ and T T$
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The firing sequence τ consists of transitions that are part of T only. The sequence 
τ contains the transitions of the original workflow model PM in the order that their 
production rules ñ if any ñ are considered for application in the firing of the 
stretched workflow, regardless of it actual application or success. Note that firing 
of the transition  for any t ∈ T with prod(t) ≠ skip is sufficient as an indication 
of its production rule to have been applicable. On the basis of the definition of the 
stretched workflow net (Definition A.1), we must conclude that 

,1tu

PNi Mτ→" # in 
PN. On the basis of the soundness of PN, there is a firing sequence σ in PN such 
that 'PN PNM Mσ→

'

 and . But then, on the basis of the definition of 
the stretched workflow net (Definition A.1), there is also a firing sequence θ in 
PN' with 

'( ) 1PNM o ≥

M M→θ  and  σ = θ$  such that (M '(pT 1)ÖM '(pn)) = . Obvi-
ously, such a marking M ' marks o.  

'PNM

'Proper completion'. Let M be a dead state in PN' such that " # . 
Clearly, for no t ∈ T, q , 

i Mρ→
app
t

suc
tq , or fin

t

T

q  can be marked at M, as it is dead. Now 
suppose that there is a place p ∈ P\{o} such that M(p) is marked or that M(o) > 1. 
Let P = (p1, p2Öpn) for some n ∈ N. Consider the mapping MPN = (M(p1)ÖM(pn)) 
and the firing sequence τ, with τ = ρ$ . On the basis of the definition of the 
stretched workflow net, we must conclude that PNi Mτ→" # in PN. But because 
we assumed that M is a dead state with either M(p) marked for some p ∈ P or 
M(o) > 1, the net PN cannot be sound. Clearly, this is a contradiction. We con-
clude that if M is a dead state in PN', M(p) is marked for no p ∈ P and M(o) = 1 on 
the basis of the soundness of PN. □ 
 

The limited soundness of a stretched workflow model guarantees us that the 
execution of a stretched workflow model is sound from a high-level perspective, 
the perspective of the overarching workflow model. The only tokens that reside in 
the net as soon as the sink place is marked have to do with the administration of 
information elements and production rules. When implementing the workflow as 
an operational way of working, the logistics of the workflow will be carried out 
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correctly. Only information about the used information is still available, e.g., in 
the form of stored values in a database. It is now clear that it is possible to extend 
the definition of the stretched workflow model in such a way that it is sound itself. 
After all, "vacuum-cleaning" transitions could be added for each distribution of  
tokens over the administrative places which consume the remaining tokens. Obvi-
ously, the bottom-level workflow model would indeed be larger still, so we leave 
the subject here with this observation. 

The final step for defining the bottom-level model can now be made, which 
adds the probability and timing logic to the stretched workflow model.  
 
Definition A.3 (Bottom-level workflow model). If PM' = (P', T', R', prod') is 
the stretched version of the workflow model PM = (P, T, R, prod) conforming to 
the extended product data model (D, C, pre, F, constr, cst, flow, prob), then the 
bottom-level workflow model OM = (P', T', R', W, f) of PM is a Stochastic Work-
flow net (see Definition 2.20) where:  
− for t, u ∈ T' where prod(t) = (p, cs) ∈ F and •t = •u , W(t) ∈ N and W(u) ∈ N 

are chosen such that W(t) / (W(t) + W(u)) = prob(p, cs), 
− for t ∈ T' where prod(t) = skip and there is no u ∈ T' such that prod(u) = (p, cs) 

∈ F and •t = •u, W(t) = 1,  
− for t ∈ T',  

  ft(x) = 
  

( )
1      if ( , ) (( , )),
0     if ( , ) (( , )) .

t p cs F x flow p cs
t skip t p cs F x flow p cs

= ∈ ∧ =

= ∨ = ∈ ∧ ≠
 

The weights are assigned to a transition t in such a way that if the applicable 
place q  is reached in the attempted application of a production rule (p, cs), then 
there is a probability prob(p, cs) that this application will succeed (and a probabil-
ity of 1 - prob(p, cs) that it will fail). In Figure A.4, this is represented by the re-
spective transitions t

app
t

6 and u . All other transitions have a weight equal to one.  
6 ,2t

Each transition t in the bottom-level workflow model that also occurs in the 
stretched workflow model with prod'(t) = (p, cs) will exactly last flow(p, cs) time 
units.  

Note that we implicitly transfer the existing preconditions of the transitions in 
the stretched workflow model to the bottom-level workflow model. Once again, a 
formal definition could be given but this would result in elaborate definitions. The 
definition of the Stochastic Petri net (Definition 2.16) would need to be extended, 
and its firing rule would require a strengthening (Definition 2.19). 

Note that the costs of production rules as specified in the product data model 
have not been incorporated in the bottom-level model. The reason is that the cost 
of a production rule has no consequence for the execution of the bottom-level 
workflow model. This in contrast to e.g., the success probability of a production 
rule and the flow time which is associated with it.  

The bottom-level workflow model has the same structure as the stretched level 
workflow model. Although the structure of the bottom-level workflow model is 
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not free-choice, the timing of the net will not obstruct a proper completion in the 
sense of the limited soundness we discussed. Although blocking may occur, most 
blocking conditions are lifted instantaneously. For example, checking a place for 
the existence of an information element by one transition may block that same 
checking by another, but this will only affect the ordering of transitions ñ not the 
timing of the net or a routing decision.  

The bottom-level workflow model gives a more explicit semantics of actual 
executions of production rules than the workflow model it has been derived of. Al-
though this is an advantage from the viewpoint of actually applying the design in 
practice or for analysis and evaluation purposes, a bottom-level workflow model 
quickly becomes quite large. This is why we preferred the use of the workflow 
model for the sake of analysis and presentation in Chapter 3. The bottom-level 
workflow model, especially because we have molded it into a Stochastic Work-
flow net is suitable for evaluation purposes.  

We end this appendix with a definition of the interpreted firing sequence, which 
is informally defined in Definition 3.5.   
 
Definition A.4 (Interpreted and factual firing sequences). If OM = (P', T', R', 
W, f) is the bottom-level workflow model of the workflow model PM = (P, T, R, 
prod) that conforms to the extended product data model (D, C, pre, F, constr, cst, 
flow, prob) and induces a stochastic process SP = { (Xn, Yn, Zn) | n = 0, 1, 2, Ö }, 
then the sequence of production rules ρ is the interpreted firing sequence of PM, 
which can be recursively defined as ρ = Y1Y2Ö with ∈{ T | ( ) }

prod
t prod t skip∈ ≠$ f

B$ = ∈ and  

                                    ( )
( )( )            if ,

                     if .

f
Bf

B f
B

f a a
a

a B

 Bσ ∈σ = 
σ ∉

$
$

$
 

 
An interpreted firing sequence is an ordering of successively applied produc-

tion rules. From this definition it can be seen how the exact semantics of the bot-
tom-level workflow model can be used to derive a concept which is meaningful 
for the original workflow model. The interpreted firing sequence is used in the de-
sign phase of Chapter 3 to determine the expected cost of a workflow model.  

This concludes the specification of the semantic of a workflow model. 
 



B The Fourier Transform 

To enable an efficient computation of the throughput time of the sequential and 
the iteration block in Chapter 4, the Fast Fourier Transform is applied. In this ap-
pendix a brief explanation of this algorithm will be given, based on an in-depth 
description by Cormen et al. (1990). 

The convolut on of two vectors i a!  and b
!

 of length n - also denoted as - 
yields a vector c of length 2n, where for each of its elements , 0 ≤ j ≤ 2n, holds: 

a b⊗
!!

!
jc

0

j

j k
k

c a b −
=

= ∑ j k
.  

Computing the convolution of two vectors of length n in a straightforward ap-
proach takes θ(n2) steps. This effort can be reduced by taking a stepwise approach. 
The first step consists of efficiently determining the Discrete Fourier Transforms 
of the vectors involved; the next step consist of multiplying the resulting vectors, 
and the last step of determining the result by an inverse transformation.  

 
Definition B.1 (Discrete Fourier Transform, inverse Discrete Fourier 
Transform) The Discrete Fourier Transform (DFT) of the vector a! = (a0, a1,Ö, 
an-1) is given by the vector 0 1 1( , ,..., )ny y y y −=

!  with 
1

0

n
kj

k j
j

y a
=

= ω∑ n

−

, for 0  and ω = . k n≤ < 2 /i n
n e π  

!The inverse Discrete Fourier Transform ( 1DFT − ) of the vector !  is given by the vector 0 1 1( , ,..., )ny y y y −= 0 1( , ,..., na a −1)a a= with 
1

0

1 n
kj

j k
k

a y
n

−
−

=

= ω∑ n
,  for  0 k n≤ <  and ω = . 2 /i n

n e π  

! 
When the vector is the Discrete Fourier Transform of vector y a! with length n we 
also write ( )nFT a=y D! ! . It is easy to verify that 1( ( ))n nDFT a a− =DFT ! ! . The 

elements  used to compute the DFT of a vector of length n are the 
nth roots of unity. It can be easily shown that if n is positive and even, then the 
squares of the nth roots of unity are the (n/2)th roots of unity. This implies that if 
all the nth roots of unity are squared, then each (n/2)th root of unity is obtained 
exactly twice. This result is known as the halving lemma. 

0 1 1, n
n n n

−ω ω ω,...,
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Now consider polynomials p and q in x, with coefficients a! = (a0, a1,Ö, an-1) 
and b

!
= (b0, b1,Ö, bn-1) respectively. Let r be defined by r(x) = p(x) q(x). Then r is 

a polynomial with coefficients c
 !

= a! ⊗b
!

. Note that (n )DFT a!  = 0 1( ( ), ( ),n np pω ω  

 and similarly for b1..., ))n
n

−(p ω
!

and c! . On the one hand, due to r(x) = p(x) q(x), 

we have ( ) (n n ) ( )nDFT c DFT a D= ⋅ FT b
!! ! where ⋅ denotes the pointwise product. 

On the other hand, due to c a b= ⊗
!! ! ,  we have that ( ) ( )n nDFT c DFT a b= ⊗

!! ! . 
This results in the following theorem. 

Theorem B.1 (Convolution theorem) For any two vectors a!  and b
!

of length 
n, where n is a power of 2, 

2 2( ) ( ) (n nDFT a b DFT a DFT b⊗ = ⋅
! !

2 )n
! ! ,  

where the vectors a and b are padded with 0ís to length 2n and ⋅ denotes the com-
ponentwise product of two vectors. 

 
The Fast Fourier Transform (FFT) computes the DFT of a vector by taking ad-

vantage of the halving lemma. Doing so, ( )nDFT a! can be computed in θ( n n ) 

ti e θ( ) time of the straightforward method. To determine 
 with each of its elements , 0 ≤ k < n, with n even and positive, 

and ω = , the following equality is used: 

log
me, as opposed to th!

1

1

2n
( )ny DFT a=

!

2 /i n
n e π

ky

1 / 2 1 / 2 1
2 2

2 2( ) ( )
n n n

kj kj k kj
k j n j n n j ny a a a

− − −

+
= = =

= ω = ω + ω ω∑ ∑ ∑ .  
0 0 0j j j

The problem of determining a point-value representation in the points 
 on the basis of n coefficients has now been reduced to evaluating 

two point-value representations in the points  on the basis 
of n/2 coefficients and combining them according to the above equation. On the 
basis of the halving lemma, we know that the list consists 
only of n/2 distinct values. These values are exactly the (n/2)th roots of unity, with 
each root occurring twice. The original

0 1, ,..., n
n n n

−ω ω ω
0 2 1 2 1 2( ) , ( ) ,..., ( )n
n n n

−ω ω ω

0 2 1 2( ) , ( ) ,..., ( n
n nω ω

n

1 2)n
−ω

DFT  computation has now been divided 

into two / 2nDFT computations. At this point it is also clear that the convolution 
theorem requires n to be a power of two, so that an ultimate division of the com-
putation effort can be accomplished. The FFT will perform the DFT and inverse 
DFT operations in θ( ) time. logn n

 



C The Simulation of the Workbench 

In Chapter 5, a so-called "workbench" of resource-extended SWN's has been used 
to investigate the effects of various resource allocation strategies. For the simula-
tion of the workflows in question, the package ExSpect was used (Van Hee et al., 
1989; Van der Aalst et al., 2000a). This appendix goes deeper into the technical 
details of the simulation. 

For each of the workflows as described in Section 5.4, the effects of assigning 
either two or three additional resources has been studied. For this purpose, each 
incremental addition of one extra resource up to the total number of "free" re-
sources was simulated. In Table C.1, for each workflow the information in the 
columns show the following: 

 
− The number of resource classes. 
− The total number of resources that can be freely allocated within the considered 

scenario. 
− The number of different allocations with one, two or three extra resources over 

the available resource classes (if considered for the specific workflow). 
− The total number of simulated, different resource allocations (excluding initial 

allocations). 
 

From the table it follows that a total number 285 different resource allocations 
have been considered in the evaluation of the workbench, aside from the six initial 
allocations. 

The approach to simulate each of the various different allocations was as fol-
lows. For each of the considered workflows, an ExSpect model was developed 
that represented its specific structure and timing behavior. The graphic representa-
tion of one such model can be seen in Figure C.1. Different shades of gray in this 
figure represent whether a transition requires a resource or not, and whether the 
transition is part of the original model or not. Some transitions were added for 
modeling reasons. 

Aside from each of the workflow-specific ExSpect models, a generic frame-
work has also been developed within ExSpect. This framework could incorporate 
any of the workflow-specific ExSpect models. In other words, one part of the 
framework could be parameterized with a specific model of one of the workflows. 

If the general framework was instantiated with (a) one workflow-specific Ex-
Spect model and (b) a specific initial resource allocation successively it took care 
of the following: 
 
H.A. Reijers: Design and Control of Workflow Processes, LNCS 2617, pp. 305-308, 2003. 
 Springer-Verlag Berlin Heidelberg 2003 
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Table C.1. Number of simulated allocations 

 # res. 
classes 

# total 
re-
sources 

# alloc. 
one 
extra 
re-
source 

# alloc. 
two extra 
resources 

# alloc. 
three 
extra re-
sources 

# total 
simulated 
allocations 

tandem 
net 3 3 3 6 10 19 

N-
construc-
tion 

4 3 4 10 20 34 

parallel 
sequential 4 2 4 10 - 14 

alternative 
sequential 4 2 4 10 - 14 

handling 
appeals 7 3 7 28 84 129 

money 
transfers 5 3 5 15 35 75 

 
 

 
Fig. C1. ExSpect model of "handling of appeals" workflow 
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1. Scenario creation 
The instantiated framework created a scenario that could be used to replay a 
large set of the same executions of the specific workflow regardless of the exact 
allocation of resources; for a large number of executions, the scenario deter-
mined a partially ordered list of tasks that were executed and the service time of 
each transition. 

2. Scenario execution for initial and successor allocations 
On the basis of an earlier created scenario, the instantiated framework simu-
lated the execution of this scenario taking the available resources into account 
of the following: 
− The initial resource allocation. 
− Each resource allocation of a successor of the initial allocation, i.e., the ini-

tial allocation with one extra resource in one of the resource classes (see 
Section 5.3). 

To save effort in the creation of different models, the initial resource allocation 
and each of the successors was processed in parallel (but independently). 

A graphic representation of an instantiated framework can be seen in Figure 
C.2. The box labeled "System0" contains the workflow-specific ExSpect model 
with the initial resource allocation. A transition labeled "SystemX" contains the 
workflow-specific ExSpect model with a resource allocation that extends the ini-
tial resource allocation with one additional resource in resource class X. 

 
Fig. C2. Instantiated ExSpect framework for "handling of appeals" 
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As stated before, for each workflow the allocation of two or three additional re-
sources was considered. After execution of an instantiated framework on the basis 
of the initial resource allocation of the workflow ñ which delivered the informa-
tion on the effects of assigning one additional resource ñ each successor allocation 
itself was used as an initial allocation of an execution of an instantiated framework 
ñ which delivered the information on the effects of assigning two additional re-
sources. This was analogously done for the scenario's where three additional re-
sources were considered. For example, for the "handling of appeals" where the 
addition of three additional resources was considered, a total of 57  (= 1 + 7 + 49) 
instantiated frameworks were executed. This approach obviously yields redundant 
results, but double results were used as checks. 

Each simulated resource allocation for each of the simulated workflows was di-
vided into 50 subruns of 20,000 time units each (simulation time), including 10 
start runs. The duration of a simulation of an instantiated framework varied con-
siderably, caused by the varying complexity of the different workflow models. 
The simulation of one instantiated framework for the "handling of appeals" 
(which, as explained, included all seven successors of an initial resource allocation 
including the initial allocation itself) took about one and a half hour on a PC sys-
tem with a clock-speed of 1Ghz and 1024 Mb internal memory. 

An interesting property of the described approach is that it is possible to evalu-
ate more than the regular comparison of different simulation experiments. Because 
of the same scenario that underlies each simulation for the same workflow model, 
an analysis of the exact differences of two or more outcomes is also possible. The 
analysis as presented in Chapter 5 did not include such an analysis.  

Also note that the sketched approach was only feasible because all used work-
flow nets were free-choice. In other words, the set of tasks in an execution did not 
depend on the exact duration of each task's execution. 
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