
Lecture Notes in Computer Science 1806
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Wil van der Aalst J¨org Desel
Andreas Oberweis (Eds.)

Business Process
Management

Models, Techniques, and Empirical Studies

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Wil van der Aalst
Eindhoven University of Technology
Faculty of Technology andManagement, Department of Information andTechnology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: w.m.p.v.d.aalst@tm.tue.nl

Jörg Desel
Katholische Universit¨at Eichstätt
Mathematisch-Geographische Fakult¨at, Lehrstuhl für Angewandte Informatik
Ostenstraße 28, 85072 Eichst¨att, Germany
E-mail: joerg.desel@ku-eichstaett.de

Andreas Oberweis
J.W. Goethe-Universit¨at Frankfurt am Main
Institut für Wirtschaftsinformatik, Lehrstuhl f¨ur Wirtschaftsinformatik II
Postfach 111932, 60054 Frankfurt am Main, Germany
E-mail: oberweis@wiwi.uni-frankfurt.de

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Business process management : models, techniques, and empirical
studies / Wil van der Aalst. . . (ed.). - Berlin ; Heidelberg ; New
York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ;
Tokyo : Springer, 2000
(Lecture notes in computer science ; 1806)
ISBN 3-540-67454-3

CR Subject Classification (1998): D.2, H.2, H.4, J.1

ISSN 0302-9743
ISBN 3-540-67454-3 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group.
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingraeber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN: 10720204 06/3142 5 4 3 2 1 0

Preface

Business processes are among today's hottest topics in the science and practice of
information systems. Their management comprises design and engineering efforts but
also activities later in the life-cycle (e.g., business process reengineering, continuous
process improvement, exception handling, and change management). Recent
publications on business process management consider the entire spectrum from
theoretical aspects, conceptual models and application scenarios, down to
implementation issues.

The editors of this book have organized a number of scientific events in recent
years, partly together with other colleagues, where business process management
played a central role. Amazed at the variety, novelty, and quality of contributions we
decided to share this knowledge with a wider audience. In addition, we invited other
well-known scientists from the field to contribute their respective view to the state-of-
the-art in business process management. We are very happy and proud that our efforts
have resulted in the compilation of articles in your hand.

We are convinced that the material in this book is of great interest and value for
researchers in many different areas and also for practitioners, as the authors come
from different fields inside computer science or economics and industry. Since the
topic is interdisciplinary in nature, it can only be captured by taking many different
views into account. The structure of this book does not reflect the respective authors'
backgrounds but concentrates on the three core issues in Business Process
Management: design, analysis, and application:

I Design of Business Processes

The papers of this part review modeling techniques and give concrete guidelines for
modeling business processes and their organizational context.

II Formalisms and Analysis

This part of the book discusses formal approaches to business process management,
analysis techniques for validation, verification, and performance consideration, and
the problems associated to dynamic change.

III Systems and Applications

The final part of the book focuses on IT aspects and the application of techniques for
business process management in practice. It describes practical experiences, tool
evaluations, and the application of new technologies in various application domains.

We should like to express our gratitude to all authors. Only their perfect
cooperation in providing their papers in time and in the required form allowed us to
have this book in print in a relatively short time. Also, we cordially acknowledge the
excellent cooperation with Springer-Verlag, namely with Alfred Hofmann and his
colleagues in the preparation of this book.

February 2000 Wil van der Aalst
Jörg Desel

Andreas Oberweis

VI Preface

For most contributions to this book, prior versions or abstracts appeared in one of the
following proceeding volumes:

van der Aalst, W.M.P., G. De Michelis and C.A. Ellis (eds.): Workflow
Management: Net-based Concepts, Models, Techniques, and Tools (WFM´98).
Workshop at the 19th International Conference on Application and Theory of Petri
Nets (Lisbon, 22.6.1998)

Desel, J., A. Oberweis, W. Reisig and G. Rozenberg (eds.): Petri Nets and
Business Process Management (Seminar at Schloss Dagstuhl 5.7.1998 -
10.7.1998). Dagstuhl-Seminar-Report No. 217

Paul, H. and I. Maucher (eds.): Integration von Mensch, Organisation und
Technik: eine partielle Bilanz. EMISA-Fachgruppentreffen 1998 (Gelsenkirchen,
7.10.1998 - 9.10.1998). Graue Reihe des Instituts Arbeit und Technik No. 1998-04

van der Aalst, W.M.P., J. Desel and R. Kaschek (eds.): Software Architectures for
Business Process Management. Workshop at the 11th International Conference on
Advanced Information Systems Engineering (CAiSE´99) (Heidelberg, 14.6.1999 -
15.6.1999). Institut für Angewandte Informatik und Formale Beschreibungs-
verfahren, Universität Karlsruhe, Forschungsbericht No. 390

Table of Contents

Part I: Design of Business Processes

Techniques for Modeling Workflows and Their Support of Reuse 1

Gerrit K. Janssens, Jan Verelst, Bart Weyn

Modeling Processes and Workflows by Business Rules... 16

Gerhard Knolmayer, Rainer Endl, Marcel Pfahrer

Guidelines of Business Process Modeling .. 30

Jörg Becker, Michael Rosemann, Christoph von Uthmann

A Knowledge-Based Approach for Designing Robust Business Processes................ 50

Chrysanthos Dellarocas, Mark Klein

The "Organized Activity" Foundation for Business Processes

and Their Management ... 66

Anatol W. Holt

Evaluation of Generic Process Design Patterns: An Experimental Study 83

Michael Zapf, Armin Heinzl

Management-Oriented Models of Business Processes.. 99

Anastasia Pagnoni Holt

Part II: Formalisms and Analysis

Validation of Process Models by Construction of Process Nets 110

Jörg Desel

Modeling, Simulation and Analysis of Business Processes.................................... 129

Jörg Desel, Thomas Erwin

Using Formal Analysis Techniques in Business Process Redesign 142

Kees M. van Hee, Hajo A. Reijers

Workflow Verification: Finding Control-Flow Errors

Using Petri-Net-Based Techniques... 161

Wil M.P. van der Aalst

Compositional Modeling and Verification of Workflow Processes 184

Marc Voorhoeve

VIII Table of Contents

A Workflow Change Is a Workflow... 201

Clarence A. Ellis, Karim Keddara

Improving Flexibility of Workflow Management Systems 218

Alessandra Agostini, Giorgio De Michelis

Inter-operability of Workflow Applications:

Local Criteria for Global Soundness... 235

Ekkart Kindler, Axel Martens, Wolfgang Reisig

Object Oriented Petri Nets in Business Process Modeling 254

 Daniel Moldt, Rüdiger Valk

Part III: Systems and Applications
Information Gathering and Process Modeling in a Petri Net Based Approach....... 274

Wolfgang Deiters

Why Modellers Wreck Workflow Innovations... 289

Stef M.M. Joosten

The Effects of Workflow Systems on Organizations: A Qualitative Study............ 301

Peter Kueng

On the Practical Relevance of an Integrated Workflow Management System

- Results of an Empirical Study .. 317

Martin Meyer

Configurable Business Objects for Building Evolving

Enterprise Models and Applications ... 328

Mike P. Papazoglou, Willem-Jan van den Heuvel

Workflow Management Between Formal Theory and Pragmatic Approaches....... 345

Stefan Jablonski

Documentary Petri Nets: A Modeling Representation

for Electronic Trade Procedures ... 359

Ronald M. Lee

ARIS Architecture and Reference Models for Business Process Management 376

August-Wilhelm Scheer, Markus Nüttgens

Author Index .. 391

Techniques for Modelling Workflows
and their Support of Reuse

Gerrit K. Janssens, Jan Verelst, Bart Weyn

University of Antwerp - RUCA
Information Systems & Operations and Logistics Management

Middelheimlaan 1, B-2020 Antwerp, Belgium
E-mail: {gerritj, verelst, bweyn}@ruca.ua.ac.be

Abstract. Several authors propose their own technique based on Petri Nets to
model workflow processes. Most of them recognise the adaptability problem
inherent to workflows, viz. the frequently and/or radically changing character
due to changing business process rules, but suggest totally different solutions.
Because the proposed techniques are fundamentally different, eleven of these
techniques are briefly discussed and compared. Next, we survey approaches to
reuse in the workflow field and we classify them in a framework derived from
the information systems literature.

1 Introduction

Recently, both the domain of workflow modelling by using Petri Nets and the area of
reuse in software engineering have gained much attention. We share the opinion that
it could be opportune to take a closer look at the application of the reuse concept to
workflow modelling. It is our intention to make an informal introduction to the
subject and an attempt to make a broad outline of desirable future developments and
some topics that need further research. First we summarise the different topics
concerning this field that have already been covered and treated by several authors.

2 Definition of Basic Workflow Concepts

Despite the increased interest in the domain of workflow management, the field still
lacks precise definitions for some of the concepts. Little agreement exists upon what
workflow exactly stands for and which specific features a workflow management
system must provide. For an overview of existing definitions and interpretations of
workflow and workflow management systems we refer to Georgakopoulos et al. [21].
In the following we will use the formal definition of workflow presented by the
WfMC [25].

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 1-15, 2000.
 Springer-Verlag Berlin Heidelberg 2000

3 Workflow Concepts Translated into Petri Nets

Since Zisman [53] used Petri Nets to model workflow processes for the first time in
1977, several authors have made attempts to model workflows in terms of Petri Nets,
amongst which De Cindio et al. [10,12], Ellis and Nutt [13,14], Nutt [40], van der
Aalst [3], Ferscha [16], Wikarski [50], Li et al. [33], Adam et al.[7], Oberweis et al.
[41], Badouel and Oliver [9], Merz et al. [35,36], and Schömig and Rau [45].

3.1 Why Petri Nets to Model Workflow?

Van der Aalst [2] identifies mainly three reasons for using Petri Nets for workflow
modelling. The first reason is the fact that Petri Nets possess formal semantics despite
their graphical nature. The second reason is that instead of being purely event-based,
Petri Nets can explicitly model states. In this way, a clear distinction can be made
between the enabling and execution of a task. The final reason lies in the abundance
of available and theoretically proven analysis techniques.

Oberweis et al. [41] identify five different reasons to opt for using Petri Nets when
modelling workflows. They are:
– Integration of data and behaviour aspects,
– Support for concurrent, cooperative processes,
– Different degrees of formality,
– Availability of analysis techniques,
– Flexibility.

Merz et al. [35] finally state that the combination of a mathematical foundation, a
comprehensive graphical representation, and the possibility to carry out simulations
and verifications is the main strength of Petri Nets when modelling workflows.

Han [23], however, warns and states that despite the popularity of Petri Nets to
model workflows, he does not believe that Petri Nets are directly applicable for
modelling workflows, mainly due to their fixed structures. The author criticises the
lack of flexibility of most of the proposed net models and indicates the mechanisms to
support abstraction and compositionality as the main reason.

3.2 High Level Versus Low Level Petri Nets

In this section we give a brief overview of the Petri Net classes proposed by various
authors. Because of the problematic nature of modelling business processes, Petri
Nets in their conventional form are not well suited as a modelling language. Common
problems encountered when modelling workflows include high complexity when
dealing with other than just toy models and lack of flexibility, especially where
structural changes are necessary.

As already mentioned, the structure of workflows is extremely volatile as a
consequence of changing business process rules. Business environment and

2 G.K. Janssens, J. Verelst, and B. Weyn

conditions change very quickly. System evolution is unavoidable because business
processes evolve continuously caused by internal organisational reforms, external
environmental changes, etc.

Hence, business models are subject to mainly two types of changes: on the one
hand changes in the data of the workflow systems and on the other hand changes in
the rules of the workflow systems.

In order to deal with these issues, various authors propose their own Petri Net
class. We synthesise the different approaches of various authors and compare them in
Table 1.

Author Petri Net class Brief description

Van der Aalst W.M.P [1] Workflow-nets (WF-nets)

Abstraction into P/T-nets
of High Level Petri Nets
with two special places i
and o, indicating
beginning and end of the
modelled business
procedure.

Ellis C.A., Nutt G.J. [13] Information Control Nets
(ICN)

High Level Petri Net
variant intended to
represent control flow
and data flow.

Oberweis A., et al. [41] INCOME/WF

High Level Petri Nets are
used to describe the so-
called core workflows on
a relatively abstract level.
Integration of a relation-
like data model,
considering tokens as
database tuples.

Adam N. R., et al. [7] Temporal Constraint Petri
Net (TCPN)

Ordinary Petri Net
extended with an interval
function and a timestamp
function to model
absolute as well as
relative time.

Agostini A., et al. [8]
Subclass of Elementary Net
Systems

A WFMS consists of two
basic components:
namely a WF model and
a WF Execution model.
Simplicity of the WF
model is stressed because
it enhances the flexibility
and adaptability of the
WF Execution Module.

3Techniques for Modelling Workflows

Wikarski D. [50] Modular Process Nets

Low Level Petri Nets
provided with a
hierarchic module
concept and with
constructions designed to
realise communication
between net instances and
their environment and
constructions to create
and destroy the net
instances.

Schömig A.K., Rau H.
[45]

Coloured Generalised
Stochastic Petri Nets
(CGSPN)

CGSPN are used as a tool
to measure performance
and to model dynamic
behaviour.

Merz M., et al. [35] Coloured Petri Nets (CPN)

CPN are used to
introduce dynamic
workflow modelling in
the distributed systems
architecture COSM

Ferscha A. [16] Generalised Stochastic
Petri Nets (GSPN)

GSPN are used to model
and quantify WF
(performance and
structural analysis).

Badouel E., Oliver J. [9] Reconfigurable Nets
Extension of the WF-nets
of van der Aalst [1],
intended to support
dynamic changes in
Workflow systems.

Wikarski D., Han Y.,
Löwe M. [51,23]

Higher Order Object Nets
(HOON)

In contrast to Modular
Process Nets [50], which
are used to model
workflow processes, this
approach is intended to
model additionally the
structure of the
organisation and the
organisational resources.

Table 1. Overview of the proposed Petri Net classes

3.3 High Level Petri Nets

Ellis and Nutt [13] and van der Aalst [6] make a resolute choice in favour of High
Level Petri Nets. They both state that High Level Petri Nets are an indispensable

4 G.K. Janssens, J. Verelst, and B. Weyn

necessity when modelling real world applications because Low Level Petri Net
models tend to become extremely complex and very large. Moreover, Ellis and Nutt
[13] state that, when modelling large sets of office procedures, Low Level Petri Nets
lead to "an exponential explosion" of the model.

The Workflow nets (WF-nets) proposed by van der Aalst [1] are an abstraction into
P/T-nets of High Level Petri Nets with two special places i and o, indicating the
beginning and the end of the modelled business procedure. These WF-nets are
suitable not only for the representation and validation but also for the verification of
workflow procedures.

The question: "Given a marked Petri Net graph, what structural changes can or
cannot be applied while maintaining consistency and correctness", is an important and
pressing problem which has also been recognised by Ellis and Nutt [13]. However,
van der Aalst [4] provides a partial answer to this question for Workflow nets in the
shape of transformation rules. These rules should not be confused with the more
common reduction rules. Eight basic transformation rules allow the designer to
modify sound WF-nets while preserving their soundness.

Badouel and Oliver [9] extend the WF-net formalism of van der Aalst [1] and
propose the Reconfigurable Nets. These Reconfigurable Nets intend to support
dynamic changes in Workflow systems. A Reconfigurable Net consists in fact of
several Petri Nets which constitute the different possible configurations of the system.
Each configuration gives a description of the system for some mode of operation. The
authors denote that Reconfigurable Nets are self-modifying nets, meaning
generalisations of P/T-nets where the flow relation between a place and a transition
depends on the marking. The authors conclude that it might be interesting to extend a
Reconfigurable net with a control part to regulate the flow in the system.

Ellis and Nutt [13,14] and Nutt [40] propose Information Control Nets (ICN),
derived from High Level Petri Nets to represent office workflows. By adding a
complementary data flow model, generalising control flow primitives and simplifying
semantics, ICN are in fact a generalisation of Coloured Petri Nets. ICN represent
control flow as well as data flow. The authors provide an exception handling
mechanism. They note, however, that the mechanism allows users to escape the
model, rather than helping them to analyse and cope with the exceptions.

Finally, Merz et al. [35,36] use Coloured Petri Nets in order to enhance the
distributed systems architecture Common Open Service Market (COSM), with
concurrent workflow modelling. The authors introduce the Coloured Petri Nets which
were developed by Jensen [27], as a modelling and simulation technique for
concurrent activity management and control.

3.4 Stochastic Petri Nets

Ferscha [16] proposes Generalised Stochastic Petri Nets (GSPN) to model workflows.
The author exploits the natural correspondence between the GSPN enabling and firing
rules and the dynamic behaviour of workflow systems. With respect to quantitative

5Techniques for Modelling Workflows

analysis, the Markovian framework is used within the GSPN formalism to derive the
performance metrics. For qualitative analysis the author refers to the available broad
body of Petri Net structural analysis techniques.

Schömig and Rau [45] propose a variant of the above GSPN, i.e. the Coloured
Generalised Stochastic Petri Nets (CGSPN). CGSPN are based upon Coloured Petri
Nets as pure Petri Net formalism instead of Place/Transition Petri Nets. Compared to
the classical approach which is based on P/T Petri Nets, this approach requires more
sophisticated analysis techniques.

3.5 Low Level Petri Nets

Wikarski [50] states that complex Petri Net classes with various kinds of tokens, arc
or place inscriptions, were developed to increase the expressiveness of the net models.
He further states that the introduction of High Level Petri Nets has created a number
of problems amongst which is the reduction of the intuitive aspect when modelling
and the impossibility to describe dynamic or changing behaviour. To counter these
problems, Wikarski proposes Modular Process Nets, which can be described as
Elementary Net Systems with minimal syntactic extensions. Elementary Net Systems
(EN-systems) have originally been introduced by Rozenberg and Thiagarajan [44].

Like Wikarski [50], Agostini et al. [8] plead for simplicity of workflow modelling
and also opt for Elementary Net Systems. Their final objective is to create a workflow
model that allows its users to design workflows having little or no experience with
computer science, programming or formal languages. For this purpose, they define a
subclass of these Elementary Net Systems. The authors stress that EN-systems
possess adequate mathematical properties which allow the modeller to generate a
large class of behaviours. They state that a WFMS consists of two basic components:
a WF model and a WF Execution model. Simplicity of the WF model is stressed
because it enhances the flexibility and adaptability of the WF Execution Module.

Adam et al. [7] state that an ordinary Petri Net fulfils the basic needs to model the
control flow and value dependencies of a workflow system. In order to model the
temporal dependencies between two tasks in a workflow, however, the authors
propose a Temporal Constraint Petri Net (TCPN). According to the authors, existing
Timed Petri Nets are not capable of modelling both relative and absolute time. Their
functionality is limited to modelling relative time. The definition of a TCPN states
that each place and each transition is associated with a time interval and a token with
a time stamp.

3.6 Petri Nets Extended with Object-Oriented Concepts

Modular Process Nets proposed by Wikarski [50], have sensor transitions which can
detect triggering signals from the external environment. These signals, however, only
contain control information in a predefined context. In contrast to Modular Process
Nets, resource management is explicitly embodied in Higher-Order Object Nets

6 G.K. Janssens, J. Verelst, and B. Weyn

(HOON), the other formalism proposed by Wikarski et al. [51]. The central idea of
HOON is to arrange net models and their surrounding environments in a client/server
manner and to model the client/server interfaces explicitly [23].

Moldt and Valk [38] propose the use of Object-oriented Petri nets in the context of
workflows. Their work is an integration of earlier work by Moldt and Wienberg [39]
and the concept of Elementary Object Nets by Valk [49].

4 The Reuse Concept for Workflow Modelling

4.1 Real World Workflow Modelling

In contrast to the field of software engineering where the concept of reuse is widely
explored, few authors have developed a theoretical framework to reuse in workflow
modelling by Petri Nets. Nevertheless, the concept of reuse is definitely encountered
or applied in practice by many modellers of real world workflows. This is due to the
fact that specifying and modelling real world workflows is highly complicated and
complex and that they are usually not developed in a single step.

As Oberweis [42] stated, there are mainly two potential strategies for the
development of large, real world workflow models. A first strategy is incremental
construction by iteratively refining, evaluating and formalising net fragments. This
strategy can be based upon composing certain elementary net building blocks from an
existing Petri Net library. Another strategy is adapting application-specific reference
process models and reference object models to the requirements of a specific case.
These application-specific reference models are sometimes denoted as generic models
because they have always captured a certain generic process knowledge.

In both cases, the importance of a well-documented library in which the reference
models or the Petri Net fragments are stored cannot be underestimated in any way.
Since the whole concept of both approaches is based upon the library, the quality of
the library is a discriminating factor between failure or success of both systems.

Van der Aalst [1] also states that when dealing with the high complexity of real
world workflows, designers can refer to reuse on the basis of hierarchical
decomposition, especially in communicating with end-users.

4.2 Approaches to Reuse of Petri Nets for Workflow Modelling

In this section, the existing approaches to reuse of Petri Nets for workflow modelling
are discussed and classified into a framework used in the information systems (IS)
literature (see Table 2).

7Techniques for Modelling Workflows

The classification used in this paper is a summarised version of the classification
framework by Krueger [28], which was later adopted and refined by Mili et al. [37].
We choose this framework because, as Mili explicitly states, it focuses on the «
paradigmatic differences between the various reuse methods ». A classification
according to fundamental differences allows us to explore to what extent current
approaches to Petri Net-reuse cover the whole reuse-spectrum.

Krueger’s [28] framework distinguishes between two main types of reuse: the
building blocks approach (compositional approach) and the generative approach. The
building blocks approach is further subdivided into the reuse of software patterns and
into software architectures.

4.2.1 Patterns
A (software) pattern is a proven solution to a certain standard type of problem. It is
described by four essential elements:
– a pattern name
– a problem description, which clarifies in which situations the pattern can be used
– the solution to the problem
– the consequences and trade-offs involved in applying the pattern.

A limited amount of design patterns [19] and analysis patterns [18,24] has been
published. An example of an analysis pattern is an Object-Oriented (OO)-conceptual
model for the concept of a ‘customer’ or a ‘bookkeeping account’. Although these
patterns tend to be domain-specific, many of them can be used outside of their
original domains [18]. For example, a pattern of a bill of material can also form the
basis for modelling an organisation’s hierarchy. Design patterns are situated at a
lower level of abstraction. An example is the observer-pattern [19]. An observer is an
object which monitors the state of a certain ‘subject’. When the subject changes state,
the observer notifies all interested objects of this change. A typical application of the
observer pattern is found in spreadsheets. When a graph is produced based on data in
a spreadsheet, it is important that the graph is notified of any changes in the
underlying data. The observer-pattern describes how an observer can be built to
achieve this goal.

Many of the existing approaches to reuse of Petri Nets for workflow modelling can
be interpreted as reuse of a pattern. Especially approaches discussing compositionality
of Petri Nets fall into this category: these authors implicitly assume that some existing
elements (workflows) are composed. We interpret these existing elements as patterns.

However, before we enumerate which authors fall into this category, we add a
level in the classification: black-box vs. white-box reuse of patterns.

Black-box reuse is defined as the reuse of existing software components without
any modification. White-box reuse does allow adaptation of the components, usually
using the mechanism of inheritance.

In the IS-literature, a preference for black-box reuse has developed over the years.
For instance, Fayad [15] claims that black-box reuse leads to systems that are easier to

8 G.K. Janssens, J. Verelst, and B. Weyn

use and extend. Zweben [54] provides experimental evidence: his experiments show
that black-box reuse is superior to white-box reuse in terms of required effort and
correctness of the resulting system. The main disadvantage of white-box reuse is that
the inheritance mechanism violates the encapsulation-principle. The aim of this
principle is to minimise interdependencies between modules by defining strict
interfaces. A subclass, however, has access to some of the data and code of its
superclass. The subclass is allowed to change the values of these data items, to call
functions of the superclass etc. As a consequence, several dependencies between the
super- and subclass are introduced. These dependencies compromise reusability, as
changes in a superclass frequently induce changes in the subclass. [19, 47].

In the context of Petri-Nets, white-box reuse is discussed by Lakos [30,31], who
defines the notion of inheritance for Object Petri Nets. Black-box reuse, through the
notion of compositionality of Petri Nets, is discussed by Christensen [11], Han [23],
Holvoet [26], Kruke [29], Wikarski [50] and van der Aalst [1,3].

For example, van der Aalst [1] briefly draws attention to reuse of WF-nets on the
basis of ‘task refinement’ which is the refinement of a task by a subflow. In this way
it becomes possible to decompose a complex workflow into subflows which, in their
turn, can be built up from other subflows. In other words, one achieves a hierarchical
decomposition.

Compositionality is an important property for hierarchical construction of WF-nets
and more in particular for the reuse of subflows. The author [1] proves seven
characteristics about compositionality with regard to verifying the correctness of
subflows in the same way as verifying the entire workflow on a more abstract level.

4.2.2 Software Architectures
A Software Architecture is a high-level design of a software system, i.e. the
subsystems and their interactions [46]. Examples of architectures are compiler
architectures (consisting of analysers, parsers and code generators), database
architectures and rule-based architectures for expert systems. Software architectures
are similar to very large-scale patterns. However, patterns tend to focus on a small
part of a system whereas an architecture contains the overall structure of the system.

In the context of reuse of Petri Nets for workflows, both Han [23] and van der
Aalst [3] define software architectures for workflow management systems.

4.2.3 Application Generators and Very High-Level Languages
Application generators and very high-level languages constitute the class of
generative reuse. Forms of generative reuse are based on reusing the process of
previous software development, rather than reusing existing products (such as patterns
or software architectures) [37].

Application generators and very high-level languages allow the user to specify the
requirements at a very high level of abstraction. From these requirements, code is
automatically generated. This approach to reuse is considered, in the long term, to

9Techniques for Modelling Workflows

have the highest potential payoff. However, at the current moment, it remains very
difficult to build generators that scale up to industrial production [43].

In the context of Petri Nets for workflow modelling, only van der Aalst [3]
describes a number of Petri Net tools that belong to this category.

4.2.4 Evaluation
By far the most common approach to reuse of Petri Nets for workflow modelling is
black-box reuse of patterns. Most authors discuss this kind of reuse implicitly through
the notion of compositionality.

However, very few authors, if any, discuss the notion of reusability explicitly
and/or in great detail. In other words, questions such as which advantages exactly can
be achieved or which type of reuse leads to these advantages, remain unanswered.

Reuse Type Authors

Black-box reuse
Christensen [11], Han [23], Holvoet
[26], Kruke [29], Wikarski [50], van der
Aalst [3]Software Patterns

White-box reuse Lakos [30]

Software Architectures Han [23], van der Aalst [3]

Application Generators and very high
level languages

van der Aalst [3]

Table 2. A classification of techniques for reuse of Petri Nets for workflow modelling

4.2.5 A Critical Remark Concerning Reuse in the IS-Literature
The idea of building software by assembling reusable components dates back to 1968
when Doug McIlroy proposed the idea of libraries of shared components at the NATO
Conference of Software Engineering [34].

Since then, most programmers have continued to informally reuse their own code,
but in an ad hoc way. Up to now, it has remained extremely difficult to realise a
systematic approach to reuse [43,32,17]. Also, Prieto-Diaz [43] observes that the
state-of-the-practice is still source code reuse, in spite of numerous claims that reuse
at the design- or even analysis-level would have higher payoffs. Finally, Szyperski
[48], for example, observes that at this moment, relatively few catalogues of reusable
objects actually exist.

The literature contains a wide variety of potential reasons for the lack of systematic
reuse: some technical, but many are managerial (relating to management

10 G.K. Janssens, J. Verelst, and B. Weyn

commitment, organisational issues etc.) [52]. We now focus on one of the
fundamental technical problems that underlie reuse.

4.2.6 Hidden Assumptions
A fundamental problem of software reuse is the problem of the hidden assumptions.
This problem refers to the fact that software components make assumptions about
their intended environment which are implicit and either don’t match the actual
environment or conflict with those of other parts of the system. Such conflicting
assumptions make reuse extremely difficult or even impossible [20].

For example, Garlan [20] describes an example in which several software packages
were combined in order to build a software engineering tool. However, the
assumptions that the different packages made about which program held the main
thread of control, were incompatible, which drastically complicated building the new
system. As these assumptions tend not to be documented, they are extremely difficult
to detect when deciding which software components could be reused.

Glass [22] provides an example in which a sort program was reused. However, the
program performed extremely slowly when sorting strings. The undocumented
assumption was that the structure of the sort program was far more appropriate for
sorting numbers than strings.

Garlan [20] suggests possible solutions for the hidden assumptions-problem:
amongst others, make architectural assumptions explicit, provide techniques for
bridging mismatches between assumptions and develop sources of architectural
design guidance. Although we agree with these suggestions, it is clear that these
solutions are more workarounds to the problem than an elimination of it.

4.2.7 Final Remarks
We have briefly shown in this paragraph that, in the IS-field, systematic reuse has
been pursued for up to 30 years, but that the practical state-of-the-art is still rather
disappointing. Realising a systematic form of reuse has proven to be a very ambitious
goal with a wide variety of problems (technical and managerial) along the way. Good
modelling constructs alone (such as objects) have been insufficient to reach this goal.

It is our impression that the field of workflow modelling with Petri Nets is
currently making quick progress towards deciding which modelling constructs are
most appropriate. In order to determine whether this will be sufficient to realise
systematic reuse in the workflow field, empirical and experimental studies are
required. We have yet to find these in the literature.

5 Conclusion

In this paper we have tried to identify the existing Petri Net formalisms proposed by
various authors used for modelling workflow. We found that, at the moment, there is
not yet unanimity about which class of Petri Nets suits best the specific needs of

11Techniques for Modelling Workflows

workflow modelling. Especially the different approaches between Low Level Petri
Nets and High Level Petri Nets can in this view be mentioned as exemplary.

An interesting remark, however, is that even a very good Petri Net formalism for
modelling workflows is not worth much if there are no Workflow Management
Systems or other computer tools based on it. This has also been stated by van der
Aalst [5] concerning the usability of High Level Petri Nets. The author [5] notes that
the availability of adequate computer tools is a critical factor in the practical use of
High Level Petri Nets and related analysis methods.

Compared to database models, workflow models are far from being mature. There
is definitely a need for standards in workflow modelling (like in the field of
conceptual modelling with Entity Relationship Modelling). This has also been
recognised by van der Aalst [1]. In our opinion, when speculating about the best
formalisms to serve as a possible standard, it is likely that the Petri Net formalism
which is best supported by computer tools, turns out to become the standard.

With respect to reuse, much progress is being made towards developing an
adequate modelling construct for modelling workflows using Petri Nets. However, we
have the impression that adequate modelling constructs alone were not sufficient to
achieve systematic reuse in the IS-field. Whether the same applies to the workflow
field should be further investigated.

6 References

1. W. M. P. van der Aalst, Structural Characterizations of Sound Workflow Nets, Eindhoven
University of Technology, Computing Science Reports 96/23, 1996.

2. W. M. P. van der Aalst, Three Good Reasons for using a Petri Net based Workflow
Management System, in Proceedings of the International Working Conference on
Information and Process Integration in Enterprises (IPIC '96), T. Wakayama, S. Kannapan,
C. M. Khoong, S. Navathe and J. Yates, Eds., Cambridge, Massachusetts, pp.179-201,
1996.

3. W. M. P. van der Aalst, The Application of Petri Nets to Workflow Management, The
Journal of Circuits, Systems and Computers, pp. 1-53, 1998.

4. W. M. P. van der Aalst, Verification of Workflow Nets, in Proceedings of 18th
International Conference, ICATPN'97; Toulouse, France; 23-27 Jun 1997, P. Azema and
G. Balbo, Eds., Lecture notes in Computer Science, Application and theory of Petri nets
1997, vol. 1248, Springer-Verlag, pp. 407-426, 1997.

5. W. M. P. van der Aalst, and K. van Hee, Framework for Business Process Redesign in
Proceedings of the Fourth Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 95), J. R. Callahan, Ed., IEEE Computer Society
Press, Berkeley Springs, pp. 36-45, 1995.

6. W. M. P. van der Aalst and K. van Hee, Business Process Redesign: A Petri-net-based
approach, Computers in Industry, vol. 29, no. 1-2, pp. 15-26, 1996.

7. N. R. Adam, V. Atluri, and W. K. Huang, Modeling and Analysis of Workflows Using
Petri Nets Journal of Intelligent Information Systems: Special Issue on Workflow and
Process Management, M. Rusinkiewicz and S. H. Abdelsalam, Eds., vol. 10, no. 2, pp. 1-
29, 1998.

12 G.K. Janssens, J. Verelst, and B. Weyn

8. A. Agostini, G. De Michelis and K. Petruni, Keeping Workflow Models as Simple as
Possible, in Proceedings of the Workshop on Computer-Supported Cooperative Work,
Petri Nets and Related Formalisms within the 15th International Conference on
Application and Theory of Petri Nets, Zaragoza, Spain, June 21st, pp. 11-29, 1994.

9. E. Badouel and J. Oliver, Reconfigurable Nets, a Class of High Level Petri Nets
Supporting Dynamic Changes within Workflow Systems, Publication Interne IRISA PI
1163, 1998.

10. L. Bernardinello and F. De Cindio, A survey of Basic Net Models and Modular Net
Classes, G. Rozenberg, Ed., Lecture Notes in Computer Science, Advances in Petri Nets
1992, vol. 609, Springer-Verlag, pp.304-351, 1992.

11. S. Christensen and L. Petrucci, Towards a Modular Analysis of Coloured Petri Nets, in
Proceedings of the 13th International Conference Sheffield, UK, June 1992, K. Jensen,
Ed., Lecture notes in Computer Science, Application and Theory of Petri Nets 1992, vol.
616, Springer-Verlag, pp. 113-133, 1992.

12. F. De Cindio, C. Simone, R. Vassallo and A Zanaboni, CHAOS: a Knowledge-based
System for Conversing within Offices, Office Knowledge Representation, Management
and Utilization, W. Lamersdorf, Ed., Elsevier Science Publishers B.V., North-Holland, pp.
257-275, 1988.

13. C. A. Ellis and G. J. Nutt, Modeling and Enactment of Workflow Systems, in Proceedings
of the 14th International Conference Chicago, Illinois, USA, June 1993, M. A. Marsan,
Ed., Lecture notes in Computer Science, Application and Theory of Petri Nets 1993, vol.
691, Springer-Verlag, pp. 1-16, 1993.

14. C.A. Ellis and G. J. Nutt, Workflow: The Process Spectrum, in Proceedings of the NSF
Workshop on Workflow and Process Automation in Information Systems: State-of-the-Art
and Future Directions, Athens, Georgia, pp. 140-145, 1996.

15. M. A. Fayad and D. C. Schmidt, Object-oriented Application Frameworks, Computers in
Industry, vol. 40, no. 10, pp. 32-38, 1997.

16. A. Ferscha, Qualitative and Quantitative Analysis of Business Workflows using
Generalized Stochastic Petri Nets, in Proceedings of CON '94: Workflow management -
Challenges, Paradigms and Products, Linz, Austria, October 19-21, 1994, G. Chroust, A.
Benczur (Eds.), pp. 222 - 234, Oldenbourg Verlag, 1994.

17. R. Fichman, C. Kemerer, Object Technology and Reuse : lessons from early adopters,
IEEE Computer, pp. 47-59, October 1997.

18. M. Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.
19. E. Gamma and R. Helm, Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, 1995.
20. D. Garlan, Architectural mismatch: why reuse is so hard, IEEE Software, pp 17-26,

November 1995.
21. D. Georgakopoulos, M. Hornick and A. Sheth, An Overview of Workflow Management:

From Process Modeling to Workflow Automation Infrastructure, Distributed and Parallel
Databases, vol. 3 (2), pp. 119-153, 1995.

22. R. Glass, A word of warning about reuse, ACM SIGMIS Database, vol. 28 no. 2, pp. 19-
21, Spring 1997.

23. Y. Han, HOON - A Formalism Supporting Adaptive Workflows, Technical Report #UGA-
CS-TR-97-005, Department of Computer Science, University of Georgia, November 1997.

24. D. Hay, Data model patterns: conventions of thought, Dorset House Publishers, pp. 268,
1996.

25. D. Hollingsworth, Workflow Management Coalition: The Workflow Reference Model, 4-
29-1994, The Workflow Management Coalition, Brussels, Belgium.

26. T. Holvoet and P. Verbaeten, Petri Charts, An Alternative Technique for Hierarchical Net
Construction in Proceedings of the 1995 IEEE Conference on Systems, Man and
Cybernetics (IEEE-SMC'95), pp. 1-19, 1995.

27. K. Jensen, Coloured Petri Nets: Vol. 1, Springer-Verlag, 1992.

13Techniques for Modelling Workflows

28. C. W. Krueger, Software Reuse, ACM Computing Surveys, vol. 24, no. 2, pp. 131-183,
1992.

29. V. Kruke, Reuse in Workflow Modelling, Diploma Thesis, Information System Group,
Department of Computer Systems, Norwegian University of Science and Technology,
1996.

30. C. Lakos, From Coloured Petri Nets to Object Petri Nets, 16th International Conference
on the Application and Theory of Petri nets, Torino, Italy, pp.278-297, 1995.

31. C. Lakos, The Consistent Use of Names and Polymorphism in the Definition of Object
Petri Nets, in Proceedings of the 17th International Conference on Application and Theory
of Petri Nets, Osaka, Japan, June 1996, J. Billington and W. Reisig, Eds., Lecture Notes in
Computer Science, vol. 1091, Springer-Verlag, pp. 380-399, 1996.

32. N-Y, Lee, C.R. Litecky, An empirical study of software reuse with special attention to
ada, IEEE Transactions on Software Engineering, vol. 23 no. 9, pp 537-549, September
1997.

33. J. Li, J.S.K. Ang, X. Tong and M. Tueni, AMS: A Declarative Formalism for Hierarchical
Representation of Procedural Knowledge, IEEE Transactions on Knowledge and Data
Engineering, vol. 6, no. 4, pp. 639-643, 1994.

34. M. McIlroy, Mass-Produced Software Components, 1968 NATO Conference on Software
Engineering, pp. 138-155, 1968.

35. M. Merz, D. Moldt, K. Müller and W. Lamersdorf, Workflow Modeling and Execution
with Coloured Petri Nets in COSM, In Proceedings of the Workshop on Applications of
Petri Nets to Protocols within the 16th International Conference on Application and
Theory of Petri Nets, pp. 1-12, 1995.

36. M. Merz, K. Müller-Jones and W. Lamersdorf, Petrinetz-basierte Modellierung und
Steuerung unternehmensübergreifender Geschäftsprozesse, in Proceedings of the GI/SI
Jahrestagung 1995, Tagungsband der GISI 95 Herausforderungen eines globalen
Informationsverbundes für die Informatik, F. Huber-Wäschle, H. Schauer and P.
Widmayer, Eds., Springer-Verlag, Zürich, pp. 1-8, 18-20 Sept. 1995.

37. H. Mili, F. Mili, and A. Mili, Reusing software: issues and research directions, IEEE
Transactions on Software Engineering, vol. 21 no. 6, pp. 528-561, 1995.

38. D. Moldt and R. Valk: Object Oriented Petri Nets in Business Process Modelling. Part II,
Chapter 9 in this volume.

39. D. Moldt and F. Wienberg, Multi-Agent-Systems based on Coloured Petri Nets, in
Proceedings of 18th International Conference, ICATPN'97; Toulouse, France; 23-27 Jun
1997, P. Azema and G. Balbo, Eds., Lecture notes in Computer Science, Application and
theory of Petri nets 1997, vol. 1248, Springer-Verlag, pp. 82-101, 1997.

40. G. J. Nutt, The Evolution towards Flexible Workflow Systems, Distributed Systems
Engineering, vol. 3-4, pp. 276-294, 1996.

41. A. Oberweis, R. Schätzle, W. Stucky, W. Weitz and G. Zimmermann, INCOME/WF- A
Petri-net Based Approach to Workflow Management, H. Krallmann, Ed.
Wirtschaftsinformatik '97, Springer-Verlag, pp. 557-580, 1997.

42. A. Oberweis, An Integrated Approach for the Specification of Processes and Related
Complex Structured Objects in Business Applications, Decision Support Systems, vol. 17,
pp. 31-53 ,1996.

43. R. Prieto-Diaz, Status Report: Software Reusability, IEEE Software, pp. 61-66, May 1993.
44. G. Rozenberg, P.S. Thiagarajan, Petri Nets: Basic Notions, Structure, Behaviour, in: J.W.

de Bakker, W.-P. de Roever, G. Rozenberg, Eds., Current Trends in Concurrency, Lecture
Notes in Computer Science, vol. 224, Springer-Verlag, pp. 585-668, 1986.

45. A.K. Schömig and H. Rau, A Petri Net Approach for the Performance Analysis of
Business Processes, University of Würzburg, Report n° 116 Seminar at IBFI, Schloss
Dagstuhl, May 22-26, 1995.

46. M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,
Addison-Wesley, 1996.

14 G.K. Janssens, J. Verelst, and B. Weyn

47. A. Snyder, Encapsulation and Inheritance in Object-Oriented Programming Languages,
in Proceedings of the International Conference on Object Oriented Programming,
Systems, Languages and Applications (OOPSLA), 1986.

48. C. Szyperski, Component software : beyond object-oriented programming, Addison-
Wesley, 1997.

49. R. Valk, Petri Nets as Token Objects – An introduction to Elementary Object Nets, in
Proceedings of 19th International Conference, ICATPN'98; Lisbon,Portugal; June 1998, J.
Desel and M. Silva, Eds., Lecture notes in Computer Science, Application and theory of
Petri nets 1998, vol. 1420, Springer-Verlag, pp. 1-25, 1998.

50. D. Wikarski, An Introduction to Modular Process Nets, International Computer Science
Institute (ICSI) Berkeley, Technical Report TR-96-019, CA, USA, 1996.

51. D. Wikarski, Y. Han and M. Löwe, Higher-Order Object Nets and Their Application to
Workflow modeling, Technische Universität Berlin, Forschungsberichte der FB Informatik
95-34, 1995.

52. M. Zand, M. Samadzadeh, Software reuse: current status and trends, Journal of Systems
and Software, vol. 30, pp. 167-170, 1995.

53. M. D. Zisman, Representation, Specification and Automation of Office Procedures,
University of Pennsylvania Wharton School of Business, PhD Thesis, 1977.

54. S. H. Zweben, and S. H. Edwards, The effects of layering and encapsulation on software
development cost and quality, IEEE Transactions on Software Engineering, vol. 21, no. 3,
pp. 200-208, 1995.

15Techniques for Modelling Workflows

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 16-29, 2000
 Springer-Verlag Berlin Heidelberg 2000

Modeling Processes and Workflows
by Business Rules

Gerhard Knolmayer1, Rainer Endl1,2, Marcel Pfahrer1,3

1 Institute of Information Systems, University of Bern,
Engehaldenstrasse 8, CH 3012 Bern, Switzerland

{knolmayer, endl, pfahrer}@ie.iwi.unibe.ch
2 igim ag, Felsenstrasse 88, CH 9001 St. Gallen, Switzerland

3 Urs Sauter + Marcel Pfahrer AG, Mettlenweg 7,
CH 2504 Biel, Switzerland

Abstract. This contribution describes a rule-based method for modeling
business processes and workflows. Business rules are defined as statements
about guidelines and restrictions with respect to states and processes in an orga-
nization. After introducing an extended Event-Condition-Action (ECA) nota-
tion, an approach for the refinement of business rules is developed in order to
achieve a consistent decomposition of the business processes. Thus, ECA rules
serve as an integration layer between different process modeling and
(workflow) specification languages. Finally, we propose an architecture of a
rule-oriented repository supporting the modeling and refinement process.

1 Introduction

Several methods and tools have been developed to describe business processes and
workflows. These methods and tools differ in their constructs, notation, ease of use,
and other aspects. Often different methods are employed at different stages of the de-
velopment process.

In this contribution we propose a rule-based methodology to provide a uniform
modeling approach at different abstraction levels. This approach suggests to transform
a rule-based description of a business process in one or several refinement steps into a
rule-based workflow specification. The (business) rules that underlie the business
process are first described in natural language. In subsequent steps these rules are
refined in a structured manner. This results in a set of structured rules representing the
business process at different abstraction levels. Comparisons and case studies
[KEPS97] show that this rule-based methodology has advantages compared to
established approaches like Petri-Nets [cf. Ober96] and Event-Driven Process Chains
[cf. Sche92]. Recently, business rules are often considered as a very important
component of modern information systems [cf., e.g., MWBG98; dPLL98]. Several
software and consulting companies focus their activities on business rules.

There are two kinds of relationships between business rules: First, there is a
relationship at the same abstraction level, establishing the control flow between the
components that are defined at this level. Second, we propose a hierarchical
relationship representing the derivation of business rules that are relevant at a lower

Modeling Processes and Workflows by Business Rules 17

abstraction level from higher-level rules. During the overall modeling process the
same basic constructs are used; these may be extended by additional constructs
according to the level of abstraction. The proposed approach should lead to a more
consistent modeling procedure than applying various methods at different abstraction
levels.

In a decentralized organization, a virtual enterprise, or in coordinating processes in
a supply chain often different methods and tools are employed for representing
processes and workflows. To support the development of coordinated process or
workflow models across enterprise boundaries or locations, a layer into which the
different (sub-)process models can be transformed and another layer from which the
specifications for different workflow tools may be derived, are highly desirable. We
suggest to use business rule layers for these descriptions (cf. Fig. 1) [cf. Knol98].

Stepw ise Refinem ent o f Business Rules

Universe of D iscourse

Process Modeling
Method 1

(e.g. ARIS)

Process Modeling
Method 3

(e.g. Petri Nets)

Process Modeling
Method n

(e.g. ECAA)

Business Transactions
in Application Code

W F Specification
for com mercial

available W FMS
(e.g. FlowMark)

Triggers and
Stored Procedures

of active DBMS

W F Specification
for Event Engine EvE � � �

Business Rule Oriented Process M odel

W F Specification for
Enterprise

Management System s
(e.g. SAP R/3)

Process Modeling
Method 2

(e.g. BONAPART)

Business Rule Oriented W orkflow M odel

� � �

Additional
Inform ation

Fig. 1. Business rules as integration layers.

The business rule approach can serve as an integration platform for different
process modeling techniques and different target systems that implement the
workflow or parts of them. For the representation of business rules we use the ECAA-
notation which is based on events, conditions, actions, and the selection construct; the
resulting constructs are enhanced with different constructs for representing static
components of business processes, i.e., organizational units, roles, actors, and entity-
relationship-models.

In order to maintain the dependencies between process and workflow models at
different modeling levels, it is helpful to store the business rules in a rule repository.

18 G. Knolmayer, R.Endl, and Marcel Pfahrer

This repository serves as the core of a development environment which may provide
the following functionality:

• Process modeling tool
• Import functions for different process modeling tools
• Refinement tool
• Data modeling tool
• Organization modeling tool
• Generators for different workflow management systems.

In this contribution we describe the constructs and fundamental concepts of a rule-
based methodology for modeling business processes and the specification of work-
flows. In section 2 we discuss the meaning, notation and origin of business rules and
their suitability for modeling business processes. The third section shows how
different types of control flows can be described by business rules. The fourth section
deals with some extensions to the business rule approach, particularly with constructs
for representing a data model and an organizational model. The refinement process is
described in section 5. The results are summarized in section 6.

2 Business Rules

2.1 Definition

A lot of knowledge and many rules exist in an organization to prescribe and/or restrict
the way in which the organizational goals are achieved. Some of these rules exist in a
formalized way, e.g., in an organizational handbook; others are not documented and
exist only informally. Some rules are so precisely defined that they can be automated,
others allow for discretion of a human actor.

Originally, business rules were defined in connection with integrity constraints,
resulting, e.g., from the cardinalities of entity-relationship models or more
sophisticated constraints that can be defined in NIAM [NiHa89]. However, business
rules do not only cover data integrity but usually also define or restrict organizational
behavior. We define business rules as „... statements about how the business is done,
i.e., about guidelines and restrictions with respect to states and processes in an
organization.“ [BBG+90].

2.2 The ECmAn Paradigm

In active database management systems, rules are often perceived to consist of the
three components event, condition, and actions and, thus, are called ECA rules
[Daya88]. These rule components can be defined as follows:

• The event component specifies when a rule has to be executed. It indicates the
transition from one process relevant status to another. Events are not time
consuming and do not include any activity to be performed by an actor.

Modeling Processes and Workflows by Business Rules 19

• The condition component indicates a condition to be checked before any action
is triggered. It is a special case of a time consuming action resulting in a boolean
value (true / false).

• The action component states what has to be done depending on the result of the
evaluation of the condition component. In analogy to the condition component,
the action is time consuming too, but its termination is characterized by raising
one or more process relevant events.

Business rules are regarded as the main result of the system analysis phase [KiRo94;
dPPL98]. ECA rules may not only be used to specify dynamic behavior in database
management systems, but also for formalizing business rules at the conceptual level.
The notation has been extended to ECAA rules that allow to specify an alternative
action to be executed when the evaluation of the condition component returns false
(Fig. 2) [HeKn96; Herb97].

With respect to decision tables and CASE-constructs of some programming
languages, rules could also be seen as allowing m branches, and, therefore, as ECmAn

constructs. Special appearances of this construct are ECAA-, ECA- and (condition-
less) EA-rules. Since actions may raise one or more subsequent events, ECmAn rules
are well suited for representing business
processes and workflows. In order to reduce
the complexity and readability of the models,
the proposed notation is restricted to EA,
ECA, and ECAA rules. It is obvious that
ECmAn-rules can be transformed into a
sequence of ECAA rules still providing the
possibility to specify binary XOR selections
within one rule. Furthermore, we do not sug-
gest to use the ECA notation because this
would lead to logically redundant and incom-
prehensible models.

3 Process and Workflow Modeling in the ECAA-Notation

3.1 Necessary Constructs

With respect to modeling the control flow, the following situations have to be covered
[Jabl95; EnMe99]:

• Sequence of actions,
• parallel actions,
• alternate actions, and
• iterations of actions.

All of these necessary constructs may be represented by EA rules or combinations of
EA and ECAA rules, as described in the subsequent sections.

O N

IF

Then DO

Else DO

E ven t

C o n d it ion

A c tio n

A l te rn a tive A c tio n

Fig. 2. ECAA-notation.

20 G. Knolmayer, R.Endl, and Marcel Pfahrer

3.2 Modeling Sequential Actions

To model a sequence of actions within a business process, we simply link the
associated business rules. This may be achieved by raising an event when the
preceding action terminates. An event can be raised either explicitly, e.g., with a
special modeling construct "RAISE EVENT", or implicitly, e.g., by an update
command in a database. The sequential link between the actions is based on the fact
that the event resulting from the previous action appears as triggering event in the
subsequent rule (cf. e2 and e3 in Fig. 3).

ON

DO

e1

a1 Ö

ON

DO a2 Ö

e2 ON

DO ...

e3

e2 e3

....

Fig. 3. Modeling a sequence of actions

3.3 Modeling Parallel Actions

Splitting the control flow into parallel paths (AND split) can be modeled in different
ways: One way is to raise by one action
several events that trigger the subsequent
actions in parallel (cf. e2a and e2b in Fig.
4). The other way is to reference the
same event in different EA rules (cf. e2 in
Fig. 5).

The synchronization of the two or
more parallel sub-processes may be done
by specifying a rule with a conjunction
event [cf. Gatz95; HeKn95] (cf. eia and eib

in Fig. 5).

ON

DO

e1

a1 Ö

ON

DO

e2

ON

DO a2 b Ö e3 b

e2

a2 a Ö e3 a a i-1 ,aÖ

ON

DO

ON

DO

ei-1 ,a

ON

DO

∧eia

ei-1 ,b

a i-1 ,bÖ

ai Ö ...

eib

eia

eib

....

....

e2

....

Fig. 5. Modeling parallel actions (AND split using one event).

ON

DO

e1

a1

ON

DO

e2 a

ON

DO a2 b Ö e3 b

a2 a Ö e3 a

....

....

e2 a

e2 b

e2 b
ÖÖ

Fig. 4. AND split using two events

Modeling Processes and Workflows by Business Rules 21

3.4 Modeling Alternate Actions

Alternate actions may be either exclusive (XOR-split) or non-exclusive (OR-split).
Exclusive alternatives can be modeled by different action parts of an ECAA rule that
raise different events (cf. e2a and e2b in Fig. 6). The resulting paths may be joined by a
rule in which event components are combined by a disjunction operator [cf. Gatz95,
HeKn95] (cf. eia and eib in Fig. 6).

a1 aÖ

ON

IF

Then DO

Else DO

e1

c1

ON

DO

e2 a

ON

DO a2 b Ö e3 b

e2 b

a2 a Ö e3 a ai-1 ,aÖ

ON

DO

ON

DO

ei-1 ,a

ON

DO

∨eia

ei-1 ,b

ai-1 ,bÖ

ai Ö ...

eib

eia

eib

....

....

e2 a

a1 bÖ e2 b

....

Fig. 6. Modeling exclusive alternate actions.

A way to specify non-exclusive alternate actions is using several ECA rules triggered
by the same event but formulating different conditions (cf. c2a and c2b in Fig. 7). Either
e3a, e3b, both events, or none of these events may occur. The ELSE-branches do not
trigger actions but simulate the occurrence of the final events eia and eib to ensure
joining the parallel branches and allow the execution of subsequent subprocesses.

a2 b Ö e3 b

ON

IF

Then DO

Else DO

c2 b

e2

Raise

a1 Ö

ON

DO

e1

ai-1 ,aÖ

ON

DO

ON

DO

ei-1 ,a

ON

DO

∧eia

ei-1 ,b

a i-1 ,bÖ

ai Ö ...

eib

eia

eib

....

....

a2 a Ö e3 a

ON

IF

Then DO

Else DO

c2 a

e2

Raise

e2

eia

eib

....

Fig. 7. Modeling non-exclusive actions.

3.5 Modeling Iterations of Actions

Modeling iterations may be done by repeatedly raising an identical event, either
implicitly or explicitly (e.g., event e2 in Fig. 8). Loop control has to be modeled by an
ECAA rule: If the condition component (ci) is evaluated as true, the action component
leads to an event outside the loop (ei+1); otherwise the action component raises the
event inside the loop (e2).

22 G. Knolmayer, R.Endl, and Marcel Pfahrer

O N

DO

e1

a1 Ö

O N

DO a2 Ö e3 a i Ö

O N

IF

Then DO

Else DO

ci

Raise

O N

DO ai+ 1 ...

ei+ 1

e2

....
ei+ 1

e2

e2

....
O N

DO a i-1Ö

ei-1

ei

ei

Fig. 8. Modeling iterations.

3.6 Additional Modeling Options

Additional modeling options are offered by appropriate complex event constructs
[HeKn95]:

• Event selection: m events out of {e1, e2, ..., en}, m < n,
• Event sequences: Events (e1, e2, ..., en) in a well-defined sequence,
• Periodical event: every n-th event e,
• Interval: e within an interval [e1, e2].

The use of these complex events allows to model additional control flow structures,
e.g., modeling a combination of parallel and alternative branches of a process [cf.
KEPS97].

Even more important for business process modeling is the specification of valid
times or derived valid times of events:

• Absolute time: t
• Relative time: ∆t after an event e
• Repeated time: every ∆t within an interval (tstart, tend).

These types of event expressions allow the modeling of time schedules, periodically
performed activities, or limitations on processing time, waiting time, transfer time,
and throughput time. Furthermore, temporal event expressions allow to react on "non-
events", defined in such a way that no "real" event happened during a certain time
interval.

4 Supplementing Actors and Data Models

4.1 Modeling of Actors

An important element of workflow models is the specification of persons and/or
application systems being responsible for checking the conditions and executing the
actions. Consequently, the ECAA-notation must be extended with constructs dealing
with these static components of a business process or workflow. Fig. 9 shows an
ECAA rule in which the condition and action blocks are extended with an actor

Modeling Processes and Workflows by Business Rules 23

component, modeling human and/or automated system components responsible for
the execution.

ON

IF

E ven t

C o n d ition

A c tion Actor

Actor H um an a nd /o r au tom a ted
system co m pon en ts

H um an a nd /o r au tom a ted
system co m pon en ts

Then DO

A l te rna tive
A c tion

Actor H um an a nd /o r au tom a ted
system co m pon en ts

Else DO

Fig. 9. Extension of the ECAA construct with actor components.

4.2 Data Modeling

Another static component are entity/relationship-types that are relevant for checking
conditions and executing actions. The condition and action blocks of an ECA rule are
extended with the appropriate components (Fig. 10).

ON

IF

E ven t

C o nd itio n Input E n tity /R e la tio nsh ip T ypes

Input E n tity /R e la tio nsh ip T ypes

Output E n tity /R e la tio nsh ip T ypes

A c tio nThen DO

A l tern a tive
A c tion

Else DO

Input E n tity /R e la tio nsh ip T ypes

Output E n tity /R e la tio nsh ip T ypes

Fig. 10. Extension of the ECA construct with data models.

5 Stepwise Refinement of Business Rules

Most methods for developing information systems employ stepwise refinement. The
basic ideas of this concept go back to [Wirt71]: “During the process of stepwise
refinement, a notation which is natural to the problem in hand should be used as long
as possible.” Some methods and tools have been proposed for a stepwise refinement
of program specifications to code using the refinement calculus [MoGR93]. The
refinement of Petri Nets is discussed in [Padb96]. In practical application develop-
ment, the refinement usually also provides additional, more detailed information
about the universe of discourse.

24 G. Knolmayer, R.Endl, and Marcel Pfahrer

5.1 The Refinement Process

Methods for workflow specification should provide similar functionality, leading
from a semi-formal description of a business process to a formal workflow specifi-
cation. The refinement process should be accomplished with identical modeling con-
cepts and structures.

At the beginning of the modeling process, the components of the rule may be
described informally (Fig. 11).
Each non-elementary rule has to be
refined separately, describing it by
a set of more precise rules. The
starting and terminating events of
the refined representation are often
identical to the events of the refi-
ned rule (cf. e2 and ei-1 in Fig. 12).
In other cases the refinement pro-
cess may also lead to a more preci-
se description of events.

a1 Ö e2

ON

DO

e1 ON

DO

ON

DO

ON

DO

e3

ON

DO a3 b Ö e4 b

a3 a Ö e4 a

.

.

e2

a2 Ö e3

e3

Fig. 12. Refinem

The refinement process may consi
ponents of the rules must be so elem
can be derived (Fig. 13).
ON

DO

O rd e r en try

re co rd th e o rd e r in th e o rd e r
p ro c ess in g sy stem

Fig. 11. EA rule with informally described
components.
ON

DO

ei

...a2 Ö

e2

ai-2 ,aÖei-1 ,a

ON

DO

ON

DO

ei-2 ,a

ON

DO

∧ei-1 ,a

ei-2 ,b

a i-1Ö

ei-1 ,b

...

...

ei

ai-2 ,bÖei-1 ,b

ei

ent of a business rule.

st of several steps. At the lowest level, the com-
entary and precise that a workflow specification

Modeling Processes and Workflows by Business Rules 25

O rd e r e n try

E x ists (S E L E C T C u sto m e r -N b F R O M C u sto m e r
 W H E R E C u s to m e r-N a m e = :N a m e)

Actor E ve n t en g in e

ON

IF

Then DO

R a ise E ve n t
(cu sto m e r d a ta fo u n d)

Actor S a les em p lo ye e ;
" S A P R /3 "
(T ra n sa c tio n = T A 4 7 1 1)

Else DO " re c o rd c u s to m e r d a ta "
R a ise s (c u s to m er d a ta
rec o rd ed)

Fig. 13. ECAA rule with elementary components.

5.2 The Refinement of a Business Rule

As stated above, a rule consists of event, condition and action components. However,
the activities for checking a condition can be interpreted as actions, resulting either in
a true or false status (cf. Fig. 13). This result can be regarded as an (internal) event.
Therefore, conditions and actions are called active parts of a rule. During the
refinement process, the modeler has to focus on these active parts because events are
implicitly modified when refining conditions and actions.

To illustrate the refinement of the active parts we consider the rule shown in Fig.
14 which represents the process of a special health insurance claim (SHIC) at the
context level.

ON

IF

Then DO

Else DO

cus tom er w an ts to e ffect a SH IC insu rance con tract

ex ist ing cus tom er

crea te custom ers insu rance con tract po r tfo lio
(insu rance p o rtfo lio crea ted)

upda te custom ers insu rance con tract po rtfo lio
(insu rance p o rtfo lio upda ted)

E 1

C 1

A 1

A 2

Fig. 14. Business rule at context level.

For illustration purposes we refine the starting event E1 into two exclusive events
E11 and E12, depending on the previous customer relationship. This results in a set of
four rules at the next abstraction level (cf. Fig. 15). After applying this set of rules,
either a true- or a false-event is raised, triggering the actions A1 or A2 defined in
Fig. 14.

26 G. Knolmayer, R.Endl, and Marcel Pfahrer

E11

A1

A2

ON

IF

Then DO

Else DO

custom er w an ts insu rance con trac t
w itho u t p rev ious o ffer

custom er m aste r da ta reco rded

Raise custom er m aste r da ta ex is t

E12

en ter cu stom er m aste r d a ta
(custo m er m aste r da ta ex is t)

ON

Then DO

custom er accep ts o ffer

conver t o ffer in to ap p lica tion
(ap p lica tion crea ted)

ON

Then DO

custom er m aste r da ta ex is t

en ter app lica tion d a ta
(ap p lica tion crea ted)

ON

IF

Then DO

Else DO

app lica tion crea ted

custom er ha s a lrea dy an insu ra nce con tract

Raise T R U E

Raise F A L SE

Fig. 15. Refinement of the condition part of the context rule.

The refinement of the action parts of a rule is performed analogously to the refine-
ment of the condition part.

5.3 Architecture of the Rule Repository

To assist the modeler in obtaining consist representations over all abstraction levels,
the modeling process should be supported by appropriate tools. A main concept for
developing and maintaining workflow specifications is the availability of a rule-
repository [HeMy97]; a rule-repository is a special case of a knowledge repository
[ZaAz97]. A prototype based on the commercially available repository-tool Rochade
is described in [Herb97]. A more extended architecture for process and workflow mo-
deling is suggested in [KEPS97] (Fig. 16). Process model repositories are also dis-
cussed in [GrSc98].

Modeling Processes and Workflows by Business Rules 27

Repository

Rule Re p ositor y

Process
M odeling

Data
M odeling

Organization
M odeling

Designer

Data
Model

Rep ositor y

Org anization
Model

Rep ositor y

Formalized
ECAA Rules

Rule based methods for
Information En g ineerin g

Sp ecification Generator

Abstract
ECAA Rules

W orkflow-Spec.
Generator

ADB-Spec.
Generator

...

Fig. 16. Architecture of a rule-oriented process and workflow modeling environment.

6 Conclusion and Outlook

The business rule approach seems to be suitable for modeling business processes and
workflows. This approach can serve as an integration platform for different process
modeling techniques resp. tools and different target systems that implement the work-
flow or parts of them [KEPS97]. To achieve this, the ECAA-notation is used, enhan-
ced with different constructs representing static components of business processes,
i.e., actors and entity/relationship types. There is a need for a methodology for stepwi-
se refinement which supports the transition from the semi-formal process model to a
formal workflow specification. This methodology has to state constraints to be ful-
filled by semantically correct process and workflow models. Related work has been
published in [BeRS95; AaHe97].

In order to allow the administration of the dependencies between process and
workflow models at different degrees of accuracy, the business rules have to be
represented in a rule repository. This repository is the core of a development en-
vironment providing appropriate tools for process, workflow, data, and organization
modeling, process refinement, as well as import and export capabilities to and from
different process modeling and workflow management systems.

28 G. Knolmayer, R.Endl, and Marcel Pfahrer

A rule repository system also provides the opportunity to implement capabilities
for analysis and simulation. The system may detect incomplete models (missing com-
ponents) and inconsistencies (dangling events, infinite loops, etc.), and it may be used
to improve processes and their implementation in WfMS. A repository facilitates also
the maintenance of changes in process models over their whole lifecycle. One ap-
proach, allowing the representation of rule evolutions based on a bi-temporally exten-
ded relational database, is proposed in [HoPf99].

References

[AaHe97] van der Aalst, W.; van Hee, K.M.: Workflow Management: Modellen, Methoden en
Systemen, Schoonhoven: Academic Service 1997.

[BBG+90] Bell, J.; Brooks, D.; Goldbloom, E.; Sarro, R.; Wood, J.: Re-Engineering Case
Study - Analysis of Business Rules and Recommendations for Treatment of Rules in a Rela-
tional Database Environment, Bellevue Golden: US West Information Technologies Group
1990.

[BeRS95] Becker, J.; Rosemann, M.; Schütte, R.: Grundsätze ordnungsmäßiger Modellierung,
in: Wirtschaftsinformatik 37 (1995) 5, pp. 435 - 445.

[Daya88] Dayal, U.: Active Database Management Systems, in: C. Beeri, J.W. Schmidt, U.
Dayal (Eds.), Proceedings of the 3rd International Conference on Data and Knowledge
Bases, San Matheo: Morgan Kaufmann 1988, pp. 150 - 169.

[dPLL98] do Prado Leite, J.C.S.; Leonardi, M.C.: Business rules as organizational policies, in:
Proceedings of the Ninth International Workshop on Software Specification and Design, Los
Alamitos: IEEE Comput. Soc. 1998, pp. 68 - 76.

[EnMe99] Endl, R.; Meyer, M.: Potential of Business Process Modeling with regard to
available Workflow Management Systems, in: B. Scholz-Reiter; H.-D. Stahlmann; A. Nethe
(Eds.): Process Modelling, Berlin: Springer 1999.

[Gatz95] Gatziu, S.: Events in an Active, Object-Oriented Database System, Hamburg: Dr.
Kovac 1995.

[GrSc98] Gruhn, V., Schneider, M.: Workflow Management based on Process Model Reposi-
tories, in: IEEE Computer Society (Ed.), 1998 International Conference on Software Engi-
neering, Los Alamitos 1998, pp. 379 - 388.

[Herb97] Herbst, H.: Business Rule-Oriented Conceptual Modeling, Heidelberg: Physica 1997.
[HeKn95] Herbst, H.; Knolmayer, G.: Ansätze zur Klassifikation von Geschäftsregeln, in:

Wirtschaftsinformatik 37 (1995) 2, pp. 149 - 159.
[HeKn96] Herbst, H.; Knolmayer, G.: Petri nets as derived process representations in the

BROCOM approach, in: Wirtschaftsinformatik 38 (1996) 4, pp. 391 - 398.
[HeMy97] Herbst, H.; Myrach, T.: A Repository System for Business Rules, in: R. Meersman,

L. Mark (Eds.), Database Application Semantics, London: Chapman & Hall 1997, pp. 119 -
138.

[HoPf99] Hoheisel, H.; Pfahrer, M.: Ein temporales Regel-Repository zur Unterstützung evolu-
tionärer Workflow-Modellierung, in: A.-W. Scheer; M. Nüttgens (Eds.): Electronic Business
Engineering, Heidelberg: Physica 1999, pp. 565 - 583.

[Jabl95] Jablonski, S.: Anforderungen an die Modellierung von Workflows, in: H. Österle; P.
Vogler (Eds.): Praxis des Workflow-Managements - Grundlagen, Vorgehen, Beispiele,
Wiesbaden: Vieweg 1995.

[KiRo94] Kilov, H.; Ross, J.: Information Modeling, An Object-Oriented Approach,
Englewood Cliffs: Prentice Hall 1994.

[KEPS97] Knolmayer, G.; Endl, R.; Pfahrer, M.; Schlesinger, M.: Geschäftsregeln als Instru-
ment zur Modellierung von Geschäftsprozessen und Workflows, SWORDIES Report 97-8,
Bern 1997.

Modeling Processes and Workflows by Business Rules 29

[Knol98] Knolmayer, G.F.: Business Rules Layers Between Process and Workflow Modeling:
An Object-Oriented Perspective, in: S. Demeyer; J. Bosch (Eds.), Object-Oriented
Technology, Berlin: Springer 1998, pp. 205 - 207.

[MoGR93] Morgan, C.C.; Gardiner, H.B.; Robinson, K.A.: On the Refinement Calculus,
Berlin: Springer 1993.

[MWBG98] Mens, K.; Wuyts, R.; Bontridder, D.; Grijseels, A.: Workshop Report - ECOOP'98
Workshop 7: Tools and Environments for Business Rules, in: S. Demeyer; J. Bosch (Eds.):
Object-Oriented Technology, Berlin: Springer 1998, pp. 189 - 196.

[NiHa89] Nijssen, G.M.; Halpin, T.A.: Conceptual Schema and Relational Database Design: A
fact oriented approach, New York et al.: Prentice Hall 1989.

[Ober96] Oberweis, A.: Modellierung und Ausführung von Workflows mit Petri-Netzen, Stutt-
gart, Leipzig: Teubner 1996.

[Padb96] Padberg, J.: Abstract Petri Nets: Uniform Approach and Rule-Based Refinement,
Ph.D. Thesis TU Berlin 1996,
http://www.cs.tu-berlin.de/~padberg/Publications/Year96/AbstrPetriNetze.ps.gz.

[Sche92] Scheer, A.-W.: Business Process Engineering - Reference Models for Industrial
Companies, 2nd Edition, Berlin et al.: Springer Verlag 1994.

[Wirt71] Wirth, N.: Program Development by Stepwise Refinement, in: Communications of the
ACM 14 (1971) 4, pp. 221 - 227.

[ZaAz97] Zarri, G.P.; Azzam, S.: Building up and making use of corporate knowledge reposi-
tories, in: E. Plaza, R. Benjamins (Eds.), Knowledge Acquisition, Modeling and Manage-
ment, 10th European Workshop, EKAW '97, Berlin: Springer 1997, pp. 301 - 316.

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 30-49, 2000
 Springer-Verlag Berlin Heidelberg 2000

Guidelines of Business Process Modeling

Jörg Becker1, Michael Rosemann2, Christoph von Uthmann1

1
Westfälische Wilhelms-Universität Münster

Department of Information Systems
Steinfurter Str. 109, 48149 Münster, Germany

Phone: +49 (0)251/83-38100, Fax: +49 (0)251/83-38109
{isjobe|ischut}@wi.uni-muenster.de

2
Queensland University of Technology

School of Information Systems
2 George Street, Brisbane QLD 4001, Australia

Phone: +61 (0)7 3864 1117, Fax: +61 (0)7 3864 1969
m.rosemann@qut.edu.au

Abstract. Process modeling becomes more and more an important task not
only for the purpose of software engineering, but also for many other purposes
besides the development of software. Therefore it is necessary to evaluate the
quality of process models from different viewpoints. This is even more
important as the increasing number of different end users, different purposes
and the availability of different modeling techniques and modeling tools leads
to a higher complexity of information models. In this paper the Guidelines of
Modeling (GoM)1, a framework to structure factors for the evaluation of
process models, is presented. Exemplary, Guidelines of Modeling for workflow
management and simulation are presented. Moreover, six general techniques
for adjusting models to the perspectives of different types of user and purposes
will be explained.

1 Complexity and Quality of Business Process Models

The popularity of different process management approaches like Lean Management
[58], Activity-based Costing [52], Total Quality Management [21, 35], Business
Process Reengineering [16, 17], Process Innovation [7, 8], Workflow Management
[14], and Supply Chain Management [39] has two main effects concerning the
requirements on process models. First, the number and variety of model designers
and users has spread enormously. Especially, representatives from various business
and technical departments, who are not necessarily modeling experts are increasingly
involved in the design of process models. As a consequence, the understandability of
process models is of growing importance. Secondly, the number and variety of

1 This paper presents results from the research project Guidelines of Modeling (GoM), which was funded

by the German Ministry of Education, Science, Research, and Technology, project no.: 01 IS 604 A.

Guidelines of Business Process Modeling 31

purposes process models are used for is growing. Besides the "traditional" use of
process models within software engineering these models are more and more used for
pure organizational purposes like process reorganization, certification, Activity-based
Costing or human resource planing (see as well [37]).

Process modeling is supposed to be an instrument for coping with the complexity
of process planning and control. Existing models show as well considerable
complexity themselves, though. Hence, the design of process models often turns out
to be very problematic. It has direct influence on the economic efficiency of the
underlying process-related project. In the first place the model design requires
personnel resources and (if necessary) the purchase of software tools. Moreover, the
risk exists that the process models, referring to their purpose, are not sufficient. For
example, semantic mistakes or the disregarding of relevant aspects can lead to
possibly expensive misjudgments. Consequently, the design of models always is an
economical risk and not only a modeling exercise.

Especially in enterprise-wide process management projects the design of
integrated process models can become a comprehensive challenge. The number of
process models can easily be higher 500 with five or more different levels. The
related risk will be increased if the model design is seen as a domain of "modeling
specialists" who are supposed to be the only ones who understand "their" models. In
contrast to this, a business process model should serve as a communication base for
all persons involved. Consequently, the quality of process models can beyond the
fulfillment of syntactic rules defined as its "fitness for use".

Within this context a framework called Guidelines of Modeling (GoM) has been
developed to assure the quality of information models beyond the accordance to
syntactic rules. The GoM-framework includes six guidelines, which aim to improve
the quality of information models (product quality) as well as the quality of
information modeling (process quality). The design of business process models is one
core field within the project.

This paper describes first the general intention and the framework of the
Guidelines of Modeling (section 2). Exemplary, Guidelines of Modeling for
workflow management and simulation, two main purposes of process modeling, are
discussed in the third section. Section 4 presents six different techniques for the
adaptation of models to perspectives of different users and purposes. The paper ends
with a brief conclusion.

2 The Guidelines of Modeling (GoM)

Various frameworks for quality assurance of information models were already
presented. Usually, they are either focussing only one kind of information models, in
particular data models (like the approaches from [1] or [31, 32]), they focus only
special requirements [2, 59], or they contain such high-level-statements, that it is
difficult to derive useful recommendations for modeling projects [24, 27].

The aim of the Guidelines of Modeling (GoM) is the development of specific
design recommendations in order to increase the quality of models beyond the

32 J. Becker, M. Rosemann, C. von Uthmann

fulfillment of syntactic rules [3, 41, 42]. The term GoM has been chosen as an
analogy to the Generally Accepted Accounting Principles (GAAP) [9, 29, 38]. On the
one hand, the GoM result from the selection of the relevant aspects for information
modeling from the GAAP.

On the other hand, the GoM adapt elements of the existing approaches for the
evaluation of information models. The Guidelines of Modeling, which are presented
here (see for an alternative suggestion [49]), contain six guidelines to ameliorate the
quality of information models. These are the principles of correctness, relevance,
economic efficiency, clarity, comparability, and systematic design (figure 1, see also
[31]). While the observance of the principles of correctness, relevance and economic
efficiency are a necessary precondition for the quality of models, the principles of
clarity, comparability and systematic design have a mere optional character.

The GoM-framework includes besides the six general guidelines (level 1) recom-
mendations for different views (level 2, e.g. process models) and for different
modeling techniques (level 3, e.g. Event-driven Process Chains (EPC) or Petri Nets).

Correctness Relevance Economic
Efficiency

Clarity Comparability Systematic
Design

Model Quality

syntactic rules
semantical
correctness
terminology
...

system,
process structures,
process instances
resources, media

procedure model
reference models
structural model components
...

topology (e.g. minimize
crossing lines)
visualizing semantics
naming/terminology
...

conventions for
modeling (e.g. activities
as places or transitions)
terminology
...

view-integration
level-integration
(e.g. ARIS)
...

Views

Modelling
Techniques

General

Perspectives
- Reorganization
- AB-Costing
- Automation/WFM
- IT-Inv.-Control,
.... etc.

Fig. 1. The Framework of the Guidelines of Modeling (GoM)

2.1 The Basic Guidelines

The basic guidelines consist of the guideline of correctness, the guideline of
relevance, and the guideline of economic efficiency.

The guideline of correctness has got two facets [1]: the syntactic and the semantic
correctness. A model is syntactic correct, if it is consistent and complete against the
meta model (see for definitions of meta model ([33], p. 38, [44], pp. 104-105) the
model is based on. For the evaluation of the syntactic correctness of a model it is
indispensable to have an explicit (documented) meta model. Semantic correctness
postulates that the structure and the behaviour of the model is consistent with the real
world. Finally, the consistence between different models is viewed as a part of the
correctness of the model [59].

Guidelines of Business Process Modeling 33

While many frameworks use completeness as a quality factor of information
models [1, 31], the GoM express this criteria in more relative terms.

The guideline of relevance postulates
• to select a relevant object system (universe of discourse),
• to take a relevant modeling technique or to configure an existing meta model

adequately, and
• to develop a relevant (minimal) model system.

A model includes elements without relevance, if they can be eliminated without
loss of meaning for the model user.

The guideline of economic efficiency is a constraint to all other guidelines. In the
GAAP-context it is called the cost/benefit constraint ([9], p. 51). It is comparable to
the criteria "feasibility" of LINDLAND ET AL . [27] and restricts e.g. the correctness or
the clarity of a model. Approaches to support the economic efficiency are reference
models, appropriate modeling tools or the re-use of models.

2.2 The Optional Guidelines

The pragmatic aspect of the semiotic theory [27] is integrated in the GoM by the
guideline of clarity. Without a readable, understandable, useful model all other efforts
become obsolete. This guideline is extremely subjective and postulates exactly, that
the model is understood by the model user. It is not sufficient, if a model designer
regard the model as understandable (see also understandability in the GAAP ([9],
p. 52). "Construct overload", the situation in the framework of WAND and WEBER in
which one object type of an information modeling technique map to at least two
ontological constructs is an example for missing clarity as additional knowledge
outside the modeling technique is required ([56], p. 211). Mainly layout conventions
put this guideline in concrete terms.

The guideline of comparability demands the consistent use of all guidelines within
a modeling project. It is one of the guidelines which corresponds directly with one
GAAP principle, the comparability principle ([19], pp. 551-552). Like the GAAP
which aims to increase the comparability between businesses and periods (e.g. avoid
different inventory methods like LIFO and FIFO), this guideline includes e. g. the
conform application of layout or naming conventions. Otherwise, two models would
follow certain, but different rules. The necessity to compare information models is
obvious if as-is-models and to-be-models or enterprise-specific and reference models
have to be compared.

The guideline of systematic design postulates well-defined relationships between
information models, which belongs to different views, e.g. the integration of process
models with data models. Every input and output data within a process model has to
be specified in a corresponding data model. Further interdependencies exist,
following for example the ARIS-approach [45, 46, 47], concerning the functions
(function view), the organizational units (organizational view), the results of a
process (output view) and the involved applications and databases (resource view).
One demand is to use a meta model which integrates all relevant views.

34 J. Becker, M. Rosemann, C. von Uthmann

2.3 The GoM Meta Model

Within the research project Guidelines of Modeling a meta model was designed in
order to structure and integrate the different project topics (figure 2, [42]). This model
shows that a perspective is defined as a person-purpose-model-relationship. The
purpose represents the intention of the modeling project. Besides the purposes the
perspective is determined by the involved persons. Here are two facets of relevance:
the existing methodological knowledge (expert, novice) which influences the
selection and configuration of the modeling technique, and the role (model designer
or user, active or reactive role), which influences the content of the model. Other,
more elaborated definitions of the terms perspective and also viewpoints can be found
in [6, 36].

Obviously, the guidelines vary in their perceived importance for different
perspectives. For example, information models used within the phase of requirements
engineering for the purpose of developing individual software and ideally
automatically processed by CASE-tools call for syntactical correct models (primacy
of the guideline of syntactical correctness in comparison with the guideline of
clarity). In contrast to this, process models which are used to explain the business to
end-users may include syntactical mistakes, if this supports compact and clear models
and if the economic efficiency and the clarity is more important. Consequently, it is
necessary to define also perspective-specific guidelines.

Purpose

PersonGuideline

Quality criteria

Method

Model systemView

Tool

is part of

is appropriate
to

knows

is a
perspective

intends

belongs to

includes

knows

perspective-
specific GoM

view-specific
GoM

1,1

0,n

0,n0,n

0,n
0,n

0,n

0,n

0,n

0,n

1,n

0,n

0,n

0,n

1,n

0,n

1,n

Domaindepicts

1,1

has knowledge
about

0,n

method-
specific

GoM

0,n

0,n

is designed
with

1,1

belongs to

0,n

0,n

D,T Notation

Procedure
model

D,T
Designer

User

Meta data
model

Meta
process
model

describes

describes

Objectiveintends

1,1

1,1

0,n

0,n

0,n

1,n

D,T
intern

extern

Class
is related

to

0,n

0,n 0,n

0,n

0,n

0,n
0,n

Fig. 2. The GoM meta model

Guidelines of Business Process Modeling 35

In the following workflow management and simulation will be taken as two
examples for popular modeling purposes. Various recommendations for these two
purposes will be presented.

3 Guidelines for Selected Purposes of Business Process Modeling

3.1 Workflow Management

The economic efficient development of workflow-based applications [26] does not
only require a well considered planning and implementation of systems, but demands
the efficient design of workflow models (see also [22]). Workflow models serve in all
stages of system planning and development as a communication platform for those
who work on the project. However, the recent discussion of workflow modeling is
often focussing on syntactic questions. It neglects criteria that go beyond the notation
rules and include the specific semantic context of the individual modeling process.

In order to establish standards for the design of information models it is
advantageous to have a modeling technique that can be regarded as a quasi-standard
(like the ER-approach [4] for data models). Currently, this is not the fact with
workflow models. Every workflow management system uses rather its proprietary
modeling technique. Therefore, after a workflow management system has been
chosen, a revised workflow modeling according to the system-specific modeling
technique is in the most cases indispensable.

Experience has shown that the general number of business process models to be
transformed into workflow models is rather small. It is not unusual that a company
has 100 or more business process models, but only two or three workflow models.
Furthermore, concerning breadth and length, only a part of a business process model
can usually be controlled workflow-based. Thus, the manual revision of workflow
models often is more economic efficient than the use of interfaces (see WfMC
interface no. 1). These interfaces might provide some syntactical translation but can
not bridge the semantic gap between business process models and workflow models.
In the following, specific recommendations for workflow modeling will be given,
which focus on comparing these models with business process models. Moreover, it
will be distinguished between a first workflow model that is used for selecting a
workflow management system or discussing workflow alternatives, and the final
executable workflow model.

Function View

Concerning the functions (or activities) within a workflow model, usually a n:m-
relationship between business process models and workflow models exist.

Compared to organizational process models, in workflow models manual functions
should be largely avoided, in particular if one follows after the other immediately. On
the other hand the amount of functions rises, if the application systems or

36 J. Becker, M. Rosemann, C. von Uthmann

organization units involved allow further splitting of a function. In general one can
state that the granularity of the functions in workflow models are determined by a
(possible) change of the organizational unit and/or the application system. Figure 3
shows how with every change of the involved organizational unit and/or the
application system a new function has to be introduced. One has to consider the fact
that most workflow management systems do not allow a reuse of functions. In this
case, a redundant function specification is necessary.

For every function the start and end conditions should be precisely determined. In
particular, it has to be indicated if the function shall be started manually or automated.
As an option, for every function a deadline can be declared. When this deadline is
exceeded, a higher authority can be informed, ideally the person in charge for the
process (the process owner). It should be taken into account that not all workflow
management systems support a hierarchical modeling.

Thus, business process models can be used as a starting point for the development
of workflow models. In order to derive the workflow model, functions have to be
deleted and new functions have to be modelled. For the design of an executable
model, also further attributes (start and end conditions) have to be specified.

OE1
AS
1

AS
2

AS
1

AS-
Changel

OU-
Change

OU-
Change

AS =
Application System
OU =
Organizational Unit

AS-
Changel

OE2
AS
1

OE3

OE2

xor

AS
2

AS
1

Fig. 3. Granularity of functions within workflow models

Data View

Unlike a business process model, a workflow model requires for every function the
description of the necessary input and output data. On the level of entity types,
attributes, etc. the workflow model has to depict these input and output information.
Due to the considerable modeling effort being necessary for the data view of a
workflow model, only data that is critical because of the underlying interfaces has to
be specified within the first workflow model. After a workflow management system
is selected and an executable workflow model is required, the data view has to be

Guidelines of Business Process Modeling 37

completed with information like the data type or the exact data location (database
server, table, etc.).

Besides the input and output data, the data flow is to be described. The data flow
determines the flow from the function that produces data to the function that
consumes data. The data flow is restricted by the control flow as the data flow can not
precede the control flow. Consequently, the control flow has to be completed before
the data flow can be specified. A workflow model should include the data flow as this
enables an analysis of further interfaces beyond the use of the control flow
information. However, existing workflow management systems often do not allow the
visualization of the data flow and show only the (local) input and output data.

Organizational View

Every function within a workflow model must include a link to an organizational
construct, if it is not completely automated and shall be executed autonomously.
Relevant organizational constructs in the context of workflow management are role
(in the sense of a qualification or a competence), organizational unit (permanent or
temporary like a project team), position, position type and person as a static
information. Figure 4 describes using an extended ER-approach the relationships
between these organizational constructs. Moreover, a workflow owner should be
specified for the entire workflow.

Role D,T

Qualification

Competence

Structure

(0,n) (0,m)

Person

is
substitute

for

(0,n) (0,m) is
member

of

(0,n)

(0,m)

(0,p)

owns(0,m)

Position

(0,n)

(1,1)Position
Type

(0,n) Structure

(0,n)

(0,m)

owns

(0,n)

(0,m)

Organizational
Unit

is part of

(0,n)

(1,m)

Structure

(0,n)

(0,m)

D,T

Temporary
Organizational

Unit

Permanent
Organizational

Unit

occupies

(0,n)

(0,m)

is member of

Fig. 4. A reference model for the organizational constructs within workflow models [44]

38 J. Becker, M. Rosemann, C. von Uthmann

The organizational constructs in workflow management systems differentiate to a
considerable extent. Concerning the assignment of organizational constructs to
workflow functions, always the minimum set of organizational constructs which is
required for the workflow execution has to be chosen. The organizational constructs,
which are used for workflow modeling should refer to the "usual" organizational
constructs of the enterprise specified in an organizational chart. If information about
the workflow runtime history is of importance, (i.e. function no. 6 should be executed
by the same employee who was responsible for function no. 3), a detailed note has to
be placed in the workflow model (e.g., "RTH" (Run Time History)).

It has to be taken into consideration that in a workflow model the link between a
function and an organizational construct means "executes". During the run-time the
workflow management system interprets this link and the identified organizational
population receives the corresponding work item. In contrast, in business process
models this link often means "is responsible for".

If several organizational constructs are connected with only one function, there is
always an XOR-relationship between them. This means that the number of at run-
time addressed members of the organization is extended (e.g. procurement
department, all members of a special project and Mr. Smith receive the work item). If
a certain rule exists, according to which the relevant organizational constructs can be
selected, but the function itself as well as the involved application systems and data
are identical, a workflow-split (control flow) has to be defined. If there shall be an
AND-relationship between the organizational constructs, it has to be explicitly
declared at the borderline between function and organizational construct ("AND").
This could for example mean that both, task executive and project executive, must
sign a document. Again, it should be stressed that these comprehensive modeling
conventions can only apply for the general workflow model. As soon as a special
workflow management system is selected, its constraints usually do not allow this
elaborated specification between the workflow functions and the involved
organizational constructs.

In addition to the organizational constructs, further involved resources have to be
depicted. Again, it should be differentiated between a general specification of
resources in a first workflow model, which serves as a basis for discussions and the
executable workflow model. Only the final workflow model has to include the
complete and exact specification of all involved resources. All referred IT-
applications have to include specifications of the server, program parameters, etc.

Control View

The control flow describes the logic relationships between the workflow functions.
Whereas a linear sequence does not require special considerations (but see the
requirement to specify the start and end conditions), split and join constructs are far
more demanding. This is an important difference to business process models, which
can easily include various splitting and joining connections without that the modeler
has to be concerned about the process execution.

Possible (inclusive or exclusive) OR -splits have to be specified exactly in order to
become executable by the workflow management engine. If it is not a simple

Guidelines of Business Process Modeling 39

transition condition (e.g., order value > 10.000 $), a reference has to be set that leads
to an explanatory document (i.e. rules of signatures, organizational handbook). It is
advantageous expressing the respective transition conditions by using dedicated
nodes in the models (e.g., predicates, places or arc-inscriptions in Petri Nets or events
in Event Driven Process Chains (EPC)).

As an optional construct, many workflow modeling tools allow an ELSE-exit
(also: default-connector). This connector is rated as "true", if the conditions of the
other corresponding connectors do not fit. This semantic relationship can be stressed
by explicit indication of the relevant connector with "ELSE".

OR-Joins require special consideration as many workflow management systems
execute them wrongly as an XOR-Join. While this is not critical within business
process models, inclusive OR-joins demand further information about the
connections, which are evaluated with true at run-time. One approach is the dead path
elimination [25]. In this case, the corresponding OR-split forwards an information to
the OR-join about all workflow paths, which will not be executed. With this input the
OR-join has all required information for the determination of the continuation of the
workflow.

Many workflow management systems demand one explicit start and final state
node respectively. This is usually not required in business process models. Therefore,
these nodes have to be added.

3.2 Simulation

Business Process Simulation (BPS) [12] has been mentioned, albeit only briefly, by
many researchers as a technique that could be helpful in the context of business
process change. HANSEN (1994) also advocates the appropriateness of simulation for
Business Process Reengineering, arguing that "an engineering approach to process
reengineering that incorporates modeling and simulation is necessary". Similarly,
KETTINGER ET AL. (1997) argue that there is a need for more user-friendly and
‘media-rich’ capture of business processes and simulation can accommodate these
requirements by providing easy visualization and allowing team participation in
process redesign. V. UTHMANN and BECKER [53, 54] discuss some detailed aspects of
the use of simulation within the business process management life-cycle (figure 5).

The design of simulation models, although it is a problematic task, is mostly
treated as a black box. There are only some unsatisfactory isolated hints like "use
refinements" or "formalize successively". For the reduction of complexity and the
efficient management of designing models three principles have been established in
systems engineering: the structuring of similar objectives in phases, the reuse of
solution components and the application of conventions to restrict the degree of
freedom. The central idea behind this is the identification of analogies in the problems
and the reuse of analogous solutions. The identification and utilization of such
analogies within the context of simulation models lead to phases, components and
conventions.

40 J. Becker, M. Rosemann, C. von Uthmann

construct
BP-Model

analyze
Structure

or

xor

analyze instances
Status

BP-Structure
Model

Struct.-Ana.
Results

xor xor xor

Manual Inst.
Co-ordination

Manual Inst.
Co-ordination

Autom. Inst.
Co-ordination

BP-Instance
Model

BP-Control
Model

analyze Instances
experimentally

Instance Ana.
Results

Status Ana.
Results

Simulation of BP-instances as a transfer medium
between BP-(Re)Engineering and BP-Control

Simulation of BP-
instances for
optimizing structures
of informational or/and
material processes
(BP-(Re)Engineering)

Simulation of
BP- Instances for
specification of
automatic
BP-Control
(WFM, PPC)

GoM for
BP-Structure

Models

GoM for
BP-Simulation

Models

GoM for
Transfer

GoM for
BP-Control

Models

GoM for
Transfer

Fig. 5. Simulation within the business process management life-cycle

Model design recommendations should be applicable to a variety of simulation
tools. While the phases are independent of tools the components and conventions
have to be put in concrete form in terms of certain simulation modeling techniques
using their specific construction elements and terminology. As a reference method
higher Petri Nets [40] were chosen. Besides some other good reasons the Petri Net
specific design recommendation can, thanks to their general process understanding,
be transformed to other process modeling techniques pretty easily [53, 55].

A phase model of seven phases has been developed (figure 6, a more detailed
description of the guidelines is given in [54]). The separated view of process object
flows is directed to the purposes of processes and simplifies the process identification.
This meets the BPR objective of analyzing processes without taking care about
departments (= resources). In view of the widely used structure- and function-
oriented process descriptions (see [18]) it can be assumed that such a view of
processes is intuitively easier to understand than simulation models, especially by
modeling novices, and therefore, better accepted. Processing from phase 1 to 2 leads
towards a systematic successive transition from static structure models to dynamic
models. A further advantage of a separated view of process object flows is that
corresponding process models can easier be hierarchically refined without the
assignment of resources over different levels. Traditionally, from a function view a
process is understood as a succession of object-using, modifying and/or deleting
functions (activities), and from data view as a succession of states corresponding to
the existence of process-related objects. This differentiation is reflected in the phase
model: First in phase 1 (process object flows) it is recommended to start with a

Guidelines of Business Process Modeling 41

function oriented process mapping (s. above). In phase 3 the object types are
specified within the static data view before the functions are procedurally (in contrast
to descriptively) described in phase 4. In the phases 1 to 4 there are considered
process structures, coordination mechanisms, operation and state times. Input,
disturbances/changes and initial states are designed in phase 5 to 7.

The phases offer a framework to decompose the design of process simulation
models in less complex subtasks. Within the phases certain objectives are to be
modeled applying to specific components and conventions.

The aim of using model components, which can be individually composed, is a
more efficient and correct model construction. There are reference simulation models
in the form of context-related model components [45]. Complementary to these ones
the guidelines comprise components, which are not related to concrete organizational
or engineering problems, but structure context independent analogies. These structure
components describe coordination mechanisms on different complexity levels where
components can consist of less complex components (down to the elements of the
meta model of the simulation language). Their higher abstraction level allows the use
of these components for a simplified individual construction of simulation models
from the scratch as it usually is necessary within process simulation. Moreover, the
structure components help model designers to be more sensitive towards possibly
relevant coordination mechanisms. The structure components are related to single
objectives, and therefore, are assigned to certain construction phases.

Object-based
Process Understanding

Object Types

Input/dist.+changes

Process Object Flows

PO RO

Procedural RulesResource Obj. Flows.

1

2

5/6

3 4

(Initial) States

Process Related Objects

7

Fig. 6. Phase model for simulation model design

Finally, some design conventions should be presented. Methods of process
modeling contain generally just a set of syntactic rules, which give model designers a
wide degree of freedom. Therefore, one objective can be depicted in (different)
models which are correct but do not have sufficient quality, e. g. they are misleading
or badly arranged. This has to be taken into account especially because of the (in
simulation models) usually high number and variety of involved model designers and
users of model. Conventions are supposed to restrict this freedom and lead to a higher
quality. One important intention of this is to ensure a uniform, clear (GoM-principle

42 J. Becker, M. Rosemann, C. von Uthmann

of clarity) and unequivocal understanding of models of all involved users. A further
important aspect of model conventions is the support of coping with the requirements
perspectives. Important conventions for simulation models refer especially to the use
of terminology, topology, start and end markings of processes, the visualization of
process and resource object types (including the media type) within their
organizational context, documentary aspects and the explication of different views
(e.g. data, function and organizational view). For the definition and consolidation of
terms the use of a business term model is proposed. Besides the discussed semantic
aspects the performance of simulation models has to be taken into account.

4 Techniques for Adjusting Models to Perspectives

Perspectives on process models can be distinguished by the involved persons and by
the modeling purpose. While a process model which specifies a workflow has to
depict among others the control flow, the data flow and program parameters (see
section 3.1), a model which is used within an organizational handbook or for certifi-
cation purposes includes mainly organizational facts (process owner, roles, etc.). A
rough impression of the great variety of perspectives on information models which
exists especially concerning process models can be found in figure 7.

cu s to m iz ing o f
sta n da rd so ftw are w orkf lo w

sp e cifica tio n

sim ula tio n

a n im a tio n

h um an re so u rce
p la n n ing

a ctiv ity-b a se d
co s tin gp ro je c t

m a n ag em en tkn o w le dge
m a n ag em en t

b en ch m a rking

ce rtifica tion

co n tin uo u s
p ro ce ss

m a n ag em en t

so ftw a re
se lec tio n

so ftw a re
d eve lop m e n t

B P R

Fig. 7. Potential perspectives on process models [42]

Within the research project Guidelines of Modeling we identify, characterize and
compare these perspectives using empirical studies. In the following, this paper is not
concentrating on these content-specific questions, but it will be discussed how
perspectives can methodically be distinguished. Six ways of customizing different
perspectives will be explained. They have an adjunctive relationship to each other,
which means that they can be used in combination. As an application of the guideline
of relevance they suppose to reduce the model complexity for every individual
perspective.

Guidelines of Business Process Modeling 43

4.1 Different Layout Conventions

Different layout conventions exist, if the models of two perspectives concerning the
number and the naming of the information objects are identical, but different in their
representation (aesthetics). This kind of model differentiation is more determined by
the way of using the model than by the model content. It can be realized with
"reasonable effort", if the placement is identical and only form, color, size, etc. of the
objects are different. The transformation of "typical" information models with cycles
and squares into more colorful, more or less self-explainable models is important to
gain the acceptance in the business departments. Figure 8 portrays, taking ARIS Easy
Design as an example [20], how a process model designed for end users from
business departments can look like (see also [30] for a similar approach).

Different layout conventions become much more difficult to handle, if also the
placement of the information objects can vary. One example in (large) data models is
that different entity types are of different importance for different users. As a
consequence, in every model different entity types should be right in the middle of
the model, the area of most attention. For that, sophisticated algorithms are necessary,
which optimize models concerning metrics like the minimal (average, maximum)
length of edges, the minimal number of crossings, or the minimal drawing area [2, 34,
51]. Potential constraints are that only two directions are allowed (vertical, hori-
zontal) or symmetries have to be stressed (e.g. sons in hierarchies).

Fig. 8. A process model in ARIS Easy Design [20]

44 J. Becker, M. Rosemann, C. von Uthmann

4.2 Different Naming Conventions

A different naming in models related to different perspectives is of high importance
in distributed, especially international modeling projects and requires the possibility
to administer synonyms for the relevant model constructs. It is recommended to use a
business term catalogue, which defines and relates the main terms within a company
([23], pp. 127-133). Furthermore, one cluster of the business term catalogue should as
a part of the meta model define the constructs, which are relevant for information
modeling (e.g. entity type, cardinality) [50]. Between the single business terms exist
typical semantic relationships like "is related to", "classifies", "is part of", "is a" or "is
synonym of". A business term catalogue should substitute existing (textual) glossaries
and be as far as possible completed before the process modeling activities start. The
attributes of the business terms contain links to the different purposes and
characterize a term e.g. as a software-specific term (e.g. "Company Code" within SAP
R/3) or to specific qualifications (e.g. the German term "Unternehmen" for model
users familiar with German). The user or the user group has corresponding attributes,
so that for every user (group) the adequate terms can be selected automatically.

4.3 Different Information Objects

In comparison with different layout or naming conventions the perspectives are much
more individual, when different information objects are relevant for them. For
example, a workflow developer would not be interested in a detailed description of
the manual functions within a process, while someone who is responsible for the
implementation of activity-based costing may be especially interested in these time-
consuming functions (see also [43] for a comparison of workflow management and
activity-based costing requirements). On the other hand, batch-tasks depicted in a
process model may be not important for someone who is writing an organizational
handbook, while they have a specific meaning for the person who is responsible for
the customization of ERP software. In a next step the importance of the attributes of
every object or the appropriate degree of specialization can be discussed for every
perspective. It is not only the purpose but also the role, which determines the relevant
objects. For example, a doctor has got another perspective on the same process than
the patient and the person who allows traveling expenses another one than the person
who applies for them (see for another example ([28], pp. 60-61)). Thus, different
perspectives can be characterized as different projections on one common model.
Though this is very expensive to realize as it requires a relationship from every object
to the relevant perspectives, it is one of the most important forms to characterize
individual perspectives.

Guidelines of Business Process Modeling 45

4.4 Different Information Object Types

In some cases the requirements of different perspectives can be generalized in a way,
that between the perspective and the information object types (e.g. entity type,
organizational unit type, etc.) of the common meta model a relevance relationship can
be identified. That means, different perspectives can be characterized as different
projections on a common meta model. For example, it is indispensable to depict the
object type role in a workflow model, while in ERP-specific reference models like the
ones from SAP [5] or BAAN [13] system organizational units (e. g. company code,
plant or sales organization in SAP R/3) are relevant.

This requirement is already realized in some modeling tools. For example, ARIS-
Toolset is offering method filters which reduce the meta model in a way that the user
is not confronted with the over-complexity resulting out of a non-appropriate
modeling technique [20].

4.5 Different Use of a Process Modeling Technique

The high number of different modeling techniques with a common root (e. g. Entity
Relationship model or Petri Nets) leads to the fact, that in many cases perspectives
can be distinguished because they are slightly different in their meta model. As an
explanation, the event-driven process chains (EPC) are taken as an example [45, 46].
EPC consist mainly of functions, events and control flow connectors. One notation
rule, which was stressed about the EPC, is that an OR-split never succeeds directly an
event. Nonetheless, in the most important book which is using the event-driven
process chains, "Business Process Engineering" [45] the included reference models
do not consider this rule (to get a higher clarity, because of shorter processes).

This kind of perspective differentiation requires individual rules to transform one
model into the other. It is one objective of the Guidelines of Modeling to identify for
widespread modeling techniques like the ERM or event-driven process chains typical
differences in using the meta model and as far as possible to prioritize one alternative
(see [41] for examples for the event-driven process chains).

4.6 Different Meta Models

As the first five approaches assume that one modeling technique serves for all the
different perspectives, the requirements for such a language are quite high [36].
Single perspectives have got the highest degree of individualization if they are
designed with different modeling techniques. Therefore, they already can be
distinguished by the underlying meta models. Such a differentiation may be
necessary, if a BPR-project requires easy to understand models designed for example
with event-driven process chains, while the introduction of workflow management
requires precise Petri Nets and the increase of the customer orientation of the
processes needs customer-supplier-protocols [48]. If this form of perspective

46 J. Becker, M. Rosemann, C. von Uthmann

differentiation is tolerated within a modeling project, it is recommended to design
relationship meta models: meta models which relate the elements and relationships of
the involved modeling techniques to each other [33]. They can be used for the
horizontal model transformation (within analysis) and for the vertical model transfor-
mation (from analysis to design).

5 Summary and Outlook

A continuously growing number of different purposes for process modeling, of
involved model designers and model users, and available comprehensive modeling
tools increases the complexity of process modeling. Thus, the management of the
quality of process models is becoming challenging.

This paper presented a framework called Guidelines of Modeling (GoM), which
structures different quality criteria and levels of abstraction in two dimensions. We
discussed the six guidelines of correctness, relevance, economic efficiency, clarity,
comparibility and systematic design (section 2). Workflow management and
simulation were taking as examples in order to put the modeling recommendations in
concrete terms for two selected purposes (section 3). More general, six different
techniques for the differentiation of process models for alternative purposes were
presented (section 4). The introduced concepts offer less experienced model designers
some hints for a systematic and adequate design of process models. The overall GoM
architecture and the detailed recommendations make more sensitive for critical
quality factors beyond the consistent use of a modeling technique.

The aim of the further work is the design of a "comprehensive" set of guidelines
for process models with Petri Nets as the uniform reference modeling technique
within the entire process life-cycle [10, 11]. Modeling Guidelines should force to
construct the common elements adequately for the core purposes of process
modeling, namely Business Process (Re)Engineering, workflow management and
simulation [53]. Furthermore, we are currently analyzing the potential for the
integration of an IS-related ontology into the GoM-framework. First results taking the
Bunge-Wand-Weber models [57] can be found in [17].

References

[1] Batini, C., Ceri, S., Navathe, S. B.: Conceptual Database Design. An Entity-Relationship -
Approach. Benjamin Cummings, Redwood City, California (1992)

[2] Batini, C., Furlani, L., Nardelli, E.: What is a good diagram? A pragmatic approach. In:
Chen, P. P.-S. (ed.): Proceedings of the 4th International Conference on the Entity-
Relationship Approach: The Use of ER Concept in Knowledge Representation. Elsevier,
North-Holland, 312-319

[3] Becker, J., Rosemann, M., Schütte, R.: Guidelines of Modelling (GoM). Wirtschafts-
informatik 37 (1995) 5, 435-445 (in German)

Guidelines of Business Process Modeling 47

[4] Chen, P. P.-S.: The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems 1 (1997) 1, 9-36

[5] Curran, Th., Keller G.: SAP R/3. Business Blueprint: Understanding the Business Process
Reference Model. Prentice Hall, Upper Saddle River (1998)

[6] Darke, P., Shanks, G.: Stakeholder Viewpoints in Requirements Definition: A Framework
for Understanding Viewpoint Development Approaches. Requirements Engineering 1
(1996), 85-105

[7] Davenport, T.H.: Process Innovation: Reengineering Work Through Information
Technology. Boston, Massachusetts (1992)

[8] Davenport, T.H., Short, J.E.: The New Industrial Engineering: Information Technology
and Business Process Redesing. Sloan Management Review 31 (1990) 4, 11-27

[9] Davis, M., Paterson, R., Wilson, A.: UK GAAP: Generally Accepted Accounting
Principles in the United Kingdom. 5th ed., Clays Ltd, Bungay, Suffolk (1997)

[10] Deiters, W.: Information Gathering and Process Modeling in a Petri Net Based Approach:
Part III, Chapter 1 of this volume

[11] Deiters, W.; Gruhn, V.: The Funsoft Net Approach to Software Process Management.
International Journal of Software Engineering and Knowledge Engineering 4 (1994) 2,
229-256

[12] Desel, J., Erwin, T.: Simulation of Business Processes: Part II, Chapter 2 in this volume
[13] van Es, R. M.; Post, H. A.: Dynamic Enterprise Modeling. A Paradigm Shift in Software

Implementation. Kluwer, Deventer (1996)
[14] Georgakopoulos, D.; Hornick, M., Sheth, A.: An Overview of Workflow Management:

From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases 3 (1995) 2, 119-153

[15] Green, P., Rosemann, M.: An Ontological Analysis of Integrated Process Modelling. In:
Jarke, M., Oberweis, A. (eds.): Advanced Information Systems Engineering. Proceedings
of the 11th International Conference - CAiSE '99. Lecture Notes in Computer Science,
Vol. 1626. Springer-Verlag, Berlin et al. (1999), 225-240

[16] Hammer, M.: Reengineering Work: Don‘t Automate, Obliterate. Harvard Business
Review 68 (1990) 4, 104-112

[17] Hammer, M., Champy, J.: Reengineering the Corporation: a Manifesto for Business
Revolution. London (1993)

[18] Hess, T., Brecht, L.: State of the Art des Business Process Redesign: Darstellung und
Vergleich bestehender Methoden. 2nd ed., Gabler-Verlag, Wiesbaden (1996) (in German)

[19] Horngren, Ch. T.; Harrison, W. T.: Accounting, 2nd ed. Prentice Hall, Englewood Cliffs,
New Jersey (1992)

[20] IDS Scheer AG: ARIS Methods. Version 4.1. Saarbrücken (1999)
[21] Ishikawa, K.: What is Total Quality Control? The Japanese Way, Prentice Hall, Engle-

wood Cliffs (1985)
[22] Jannsens, G. K., Verelst, J., Weyn, B.: Techniques for Modelling Workflows and their

Support of Reuse: Part I, Chapter 1 in this volume
[23] Kirchmer, M.: Business Process Oriented Implementation of Standard Software. Springer-

Verlag, Berlin et al. (1998)
[24] Krogstie, J., Lindland, O. I., Sindre, G.: Towards a Deeper Understanding of Quality in

Requirements Engineering. In: Iivari, J., Lyytinen, K., Rossi, M. (eds.): Proceedings of
the 7th International Conference on Advanced Information Systems Engineering –
CAiSE `95. Springer-Verlag, Berlin et al. (1995), 82-95

[25] Leymann, F., Altenhuber, W.: Managing business processes as information resources.
IBM Systems Journal 33 (1994) 2, 326-348

48 J. Becker, M. Rosemann, C. von Uthmann

[26] Leymann, F., Roller, D.: Workflow-based applications. IBM Systems Journal 36 (1997)
1, 102-123

[27] Lindland, O. I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modeling.
IEEE Software 11 (1994) 2, 42-49

[28] Macaulay, L. A.: Requirements Engineering, Springer-Verlag, Berlin, Heidelberg, New
York (1996)

[29] Miller, M. M.: Comprehensive GAAP Guide. Harcourt Brace Jovanovich, Publishers, San
Diego et al. (1988)

[30] Moody, D. L.: Graphical Entity Relationship Models: Towards a More User Under-
standable Representation of Data. In: Thalheim, B. (ed.): Proceedings of the 15th

International Conference on Conceptual Modeling: Conceptual Modeling – ER '96.
Springer-Verlag, Berlin et al. (1996), 227-244

[31] Moody, D. L.; Shanks, G. G.: What makes a Good Data Model? A Framework for
Evaluating and Improving the Quality of Entity Relationship Models. The Australian
Computer Journal, 30 (1998) 3, 97-110

[32] Moddy, D. L.: Shanks, G.: Improving the Quality of Entity Relationship Models: An
Action Research Programme. In: Edmundson, B., Wilson, D. (eds.): Proceedings of the
9th Australiasian Conference on Information Systems. Vol. II, Sydney (1998), 433-448

[33] Nissen, H. W., Jeusfeld, M. A., Jarke, M., Zemanek, G. V., Huber, H.: Managing Multiple
Requirements Perspectives with Metamodels. IEEE Software 13 (1996) 3, 37-48

[34] Nummenmaa, J.; Tuomi, J.: Constructing layouts for ER-diagrams from visibility-
representations. In: Kangassalo, H. (ed.): Proceedings of the 9th International Conference
on the Entity-Relationship Approach - ER `90: Entity-Relationship Approach. Elsevier,
North-Holland (1991), 303-317

[35] Oakland, J.S.: Total Quality Management: The Route to Improving Performance. 2nd ed.,
Nichols Publishing, New Jersey, NJ, (1993)

[36] Opdahl, A. L.: Towards a faceted modelling language. In: Galliers, R. et al.: Proceedings
of the 5th European Conference on Information Systems - ECIS ’97. Cork 1997, 353-366

[37] Pagnoni, A: Management-oriented Models of Business Processes: Part I, Chapter 7 in this
volume

[38] Pareira, V., Paterson, R., Wilson, A.: UK/US GAAP Comparison. 3rd ed., Briddles Ltd,
Guildford and King’s Lynn (1994)

[39] Poirier, C. A.: Advanced Supply Chain Management: How to Build a Sustained
Competition. Publishers’ Group West (1999)

[40] Reisig, W.: Petri Nets - An Introduction. Berlin (1985)
[41] Rosemann, M.: Complexity Management in Process Models. Gabler-Verlag, Wiesbaden

(1996) (in German)
[42] Rosemann, M.: Managing the Complexity of Multiperspective Information Models using

the Guidelines of Modeling. In: Fowler, D., Dawson, L. (eds.): Proceedings of the 3rd

Australian Conference on Requirements Engineering. Geelong (1998), 101-118
[43] Rosemann, M, Green, P.: Enhancing the Process of Ontological Analysis - The "Who

cares?" Dimension. In: Dampney, K. (ed.): Proceedings of the IS Foundations-Workshop.
Sydney, 29. September (1999)

[44] Rosemann, M., zur Mühlen, M.: Evaluation of Workflow Management Systems - a Meta
Model Approach. Australian Journal of Information Systems 6 (1998) 1, 103-116

[45] Scheer, A.-W.: Business Process Engineering. 3rd ed., Springer-Verlag, Berlin et al.
(1998)

[46] Scheer A.-W.: ARIS - Business Process Modeling. 2nd ed. Berlin et al. (1999)

Guidelines of Business Process Modeling 49

[47] Scheer, A.-W., Nüttgens, M: ARIS Architecture and Reference Models for Business
Process Management, Part III, Chapter 8 in this volume

[48] Scherr, A. L.: A new approach to business processes. IBM Systems Journal 32 (1993) 1,
80-98

[49] Schütte, R., Rotthowe, Th.: The Guidelines of Modelling as an approach to enhance the
quality of information models. In: Ling, T. W., Ram, S., Lee, M. L. (eds.): Conceptual
Modeling - ER '98. 17th International ER-Conference, Singapore, November 16-19, 1998.
Springer-Verlag, Berlin et al. (1998) 240-254

[50] Spencer, R., Teorey, T.; Hevia, E.: ER Standards Proposal. In: Kangassalo, H. (ed.):
Proceedings of the 9th International Conference on the Entity-Relationship Approach –
ER `90: Entity-Relationship Approach. Elsevier, North-Holland (1991), 425-432

[51] Tamassia, R., Di Battista, C., Batini, C.: Automatic graph drawing and readability of
diagrams. IEEE Transactions on Systems, Man, and Cybernetics 18 (1988) 1, 61-78

[52] Tunney, P.B., Reeve, J.M.: The Impact of Continuous Improvement on the Design of
Activity Based Cost Systems. Journal of Cost Management (1992) 43-50

[53] von Uthmann, C., Becker, J.: Petri Nets for Modeling Business Processes - Potentials,
Deficits and Recommendations. In: Proceedings of the Colloquium on Petri Net
Technologies for Modelling Communication Based Systems. Berlin 1999 (to appear)

[54] von Uthmann, C., Becker, J.: Guidelines of Modeling (GoM) for Business Process
Simulation. In: Scholz-Reiter, B., Stahlmann, H.-D., Nethe, A. (eds.): Process Modeling.
Berlin, Heidelberg (1999)

[55] van der Aalst, W.M.P., van Heh, K.M.: Business Process Redesign: A Petri-net-based
approach. Computers in Industry 29 (1996) 1-2, 15-26

[56] Wand, Y.; Weber, R.: On the deep structure of information systems. Information Systems
Journal 5 (1995) 3, 203-223

[57] Weber, R.: Ontological Foundations of Information Systems. Coopers & Lybrand
Accounting Research Methodology Monograph No. 4, Melbourne (1997)

[58] Womack, J. P., Jones, D. T., Roos, D.: The Machine That Changed the World: The Story
of Lean Production. Harpercollins (1991)

[59] Zamperoni, A., Löhr-Richter, P.: Enhancing the Quality of Conceptual Database Specifi-
cations through Validation. In: Elmasri, R. A., Kouramajian, V., Thalheim, B. (eds.):
Proceedings of the 12th International Conference on the Entity-Relationship Approach –
ER `93. Springer-Verlag, Berlin et al. (1993), 85-98

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 50-65, 2000
 Springer-Verlag Berlin Heidelberg 2000

A Knowledge-Based Approach for Designing Robust
Business Processes

Chrysanthos Dellarocas and Mark Klein

Center for Coordination Science
Sloan School of Management

Massachusetts Institute of Technology
Room E53-315, Cambridge, MA 02139, USA

{dell, m_klein}@mit.edu

Abstract. This chapter describes a novel knowledge-based methodology and
computer toolset for helping business process designers and participants better
manage exceptions (unexpected deviations from a normal sequence of events
caused by design errors, resource failures, requirement changes etc.) that can
occur during the enactment of a process. This approach is based on an on-line
repository exploiting a generic and reusable body of knowledge, which
describes what kinds of exceptions can occur in collaborative work processes,
how these exceptions can be detected, and how they can be resolved. This work
builds upon previous efforts from the MIT Process Handbook project and from
research on conflict management in collaborative design.

1 Introduction

Business process models typically describe the “normal” flow of events in an ideal
world. For example, the model of a product development process typically includes a
“design product” activity, followed by a “build product” activity, which, in turn, is
followed by a “deliver product” activity. Reality, however, tends to be more
complicated. During the enactment of a business process a lot of exceptions, that is,
deviations from the normal sequence of events, might occur. For example, product
design might prove to be inconsistent with the capabilities of the manufacturing plant.
Manufacturing stations might break down in the middle of jobs. Delivery trucks
might go on strike. To assure that a process is still able to fulfill its organizational
goals, process participants must be able to detect, diagnose and successfully resolve
such exceptional conditions as they occur.

Traditionally, managers have relied on their experience and understanding of a
process in order to handle deviations from the expected flow of events. However, the
increasing complexity of modern business processes and the accelerating pace with
which these processes change has made the reliance on individual managers’
experience and intuition an increasingly less satisfactory way to deal with exceptions.
There is an increasing need for systematic business process operational risk

A Knowledge-Based Approach for Designing Robust Business Processes 51

management methodologies. Such methodologies will assist business process
designers to anticipate potential exceptions and instrument their processes so that
exceptions can either be avoided or be detected in a timely way. Furthermore, when
exception manifestations occur during process enactment, these methodologies assist
in selecting the best way of resolving them.

Current process modeling methodologies and tools [6, 11, 12] do not make any
provision for describing exception handling procedures separately from “main-line”
processing. This approach, however, is problematic for a number of reasons. First, it
results in cluttered, overly complex, models, which hinder instead of enhancing
understanding and communication. Second, the anticipation of possible failure modes
once again relies on the experience and intuition of the model designers. Third, the
approach cannot help with exceptions that have not been explicitly hard-coded into
the model.

This chapter describes a knowledge-based approach for designing robust business
processes. Rather than requiring process designers to anticipate all possible
exceptions up front and incorporate them into their models, this approach is based on
a set of novel computerized process analysis tools, which assist designers in analyzing
“normal” process models, systematically anticipating possible exceptions and
suggesting ways in which the “normal” process can be instrumented in order to detect
or even to avoid them. When exception manifestations occur, these tools can help
diagnose their underlying causes, and suggest specific interventions for resolving
them. The approach is based on an extensible knowledge base of generic strategies for
avoiding, detecting, diagnosing and resolving exceptions.

The remainder of this chapter is structured as follows: Section 2 provides an
overview of the proposed approach. Section 3 describes how the approach has been
successfully applied to analyze operational risks of the Barings Bank trading
processes. Section 4 discusses related work. Finally, Section 5 presents some
directions for future work.

2 A Knowledge-Based Approach to Exception Handling

2.1 What is an Exception?

We define an exception as any deviation from a “normal” collaborative process that
uses the available resources to achieve the task requirements on an optimal way. An
exception can thus include errors in enacting a task or distributing results between
tasks, inadequate responses to changes in tasks or resources, missed opportunities and
so on. To make this more concrete, consider the possible exceptions for the generic
coordination process known as “subcontracting”. Subcontracting can be used
whenever one wants to share agents who do a service among requestors of that
service. The requestor for a service sends out a request for bids (RFB) asking for
agents to perform a given task. Interested subcontractors respond with bids. The
requestor awards the task to the subcontractor with the best bid (based for example on
anticipated cost, quality or timeliness), at which point the subcontractor performs the

52 C. Dellarocas and M. Klein

task and returns the results to the requestor. This mechanism makes many implicit
assumptions; violations of any one of them can lead to exceptions (Figure 1):

Contractor Role 6XEFRQWUDFWRU 5ROH

&UHDWH 5)%

�5HTXHVW)RU %LGV�

&UHDWH %LG

6HOHFW %LG

3HUIRUP :RUN

5HFHLYH 5HVXOWV

6HQG
5)%

6H
QG

%L
G

$ZDUG
&RQWUDFW

6H
QG

5H
VX
OWV

No lost/garbled/delayed
messages

Subcontractor remains capable/avai lable
Cost doesn't change
Bid is correct and timely

RFB is not cancelled or
changed
Contractor does not die

At least one acceptable bid
Picks a good bid fairly
No better options appear
Contract matches RFB
Contract is not cancelled or
changed

Correct and t imely results
Subcontractor does not die or cancel

Fig. 1. Implicit Assumptions for Subcontracting.

Plain text items on the left and right represent tasks done by the Contractor (on the
left) on the Subcontractor (on the right). Labeled arcs represent interactions between
the Contractor and Subcontractor. Items in italics represent implicit assumptions made
by this mechanism (for example that the task required by the Contractor does not
change after it has sent out the RFB, that the Subcontractor does not cancel the task it
was assigned, become incapable of doing it, make a mistake etc.). Any event that
results in the violation of any of these assumptions represents a possible exception for
the subcontracting process. In addition to that, some exceptions take the form of
dysfunctional systemic behavior that may result even when the mechanism is
followed perfectly. Deadlock (where several agents are each waiting for another one
to do something) and resource poaching (wherein high-priority tasks are unable to
access needed resources because these resources they have already been reserved by
lower priority tasks) are all examples of this.

We have developed, as a result of analyses like that shown above, a growing
taxonomy of exception types, a subset of which is show below (Figure 2):

A Knowledge-Based Approach for Designing Robust Business Processes 53

Fig. 2. A Subset of the Exception Type Taxonomy.

As we shall see, the essence of our work is developing a knowledge base that
captures such exceptions and relates them to (1) the processes that they can occur in,
and (2) the processes that can be used to manage (anticipate, detect, avoid and
resolve) them.

2.2 Preparing for Exceptions

The first step in our approach helps process designers to anticipate, for a given
“normal” process model, the ways that the process may fail and then instrument the
process so that these failures can be detected or avoided. The principal idea here is to
compare the process model against a taxonomy of elementary process elements
annotated with possible failure modes.

A process element taxonomy can be defined as a hierarchy of process element
templates, with very generic elements at the top and increasingly specialized elements
below. For example, Figure 3 depicts a small activity taxonomy. Each activity can
have attributes, e.g. that define the challenges for which it is well-suited. Note that
activity specialization is different from decomposition, which involves breaking an
activity down into subactivities. While a subactivity represents a part of a process; a
specialization represents a “subtype” or “way of” doing the process [20, 21].
Resource, goal and assumption taxonomies can be defined in a similar manner.

54 C. Dellarocas and M. Klein

O r d e r F u l fi l lm e n t
* o rde r/ invo ice m ism a tch

C o r e A c t ivi t ie s

M a n a g e F lo w
* m isrou ted
* de layed

M a n a g e P r e r e q u is ite
* B w ithou t A

 A w ithou t B

P u l l -B ase d
* resource poach ing

P u sh -B a se d
* m anager b ias

M a n a g e S h a r in g

C o o r d in a t io n M e c h a n ism s

R o o t
* perfo rm er unava ilab le

 pe rfo rm er e rro r

Fig. 3. An Example of a Generic Activity Taxonomy Annotated with Failure Modes.

Process element templates are annotated with the ways in which they can fail, i.e.
with their characteristic exception types. Failure modes for a given process template
can be uncovered using failure mode analysis [24]. Each process element in a
taxonomy inherits all characteristic failure modes of its parent (generalization) and
may contain additional failure modes which are specific to it.

distribute shared
design resources
(by request)

allocate design
tasks (manager)

consolidate
sub-designs

build
product

deliver
product

use product

perform design
(team 1)

perform design
(team 3)

perform design
(team 2)

Fig. 4. An Example "Normal" Process Model.

Given a “normal” process model, to identify failure modes we need only identify
the generic process element templates that match each component of the model. The
potentially applicable exception types will then consist of the union of all failure
modes inherited from the matching templates. We can see, for example, that the
“distribute shared design resources” activity in Figure 4 is a subtype of the generic
“pull-based sharing” process template in Figure 3, since the resources are “pulled” by
their consumers rather than “pushed” (i.e. allocated) by their producers. This template
includes among its characteristic failure modes the exception called “poaching”,
wherein resources go disproportionately to lower priority tasks because agents with
lower priority tasks happen to reserve them first. The “deliver product” activity is a

A Knowledge-Based Approach for Designing Robust Business Processes 55

specialization of the “manage flow” template, with characteristic exceptions such as
“item delayed”, “item misrouted” and so on. All activities also inherit the
characteristic failure modes from the generalizations of these matching templates,
such as “responsible agent is unavailable”, and so on.

The process designer can select, from this list of possible exception types, the ones
that seem most important in his/her particular context. He/she might know, for
example, that the “deliver product” process is already highly robust and that there is
no need to augment it with additional exception handling capabilities.

For each exception type of interest, the process designer can then decide how to
instrument the process in order to detect these exceptions. While processes can fail in
many different ways, such failures have a relatively limited number of different
manifestations, including missed deadlines, violations of artifact constraints,
exceeding resource limits, and so on. Every exception type includes pointers to
exception detection process templates in the process taxonomy that specify how to
detect the symptoms manifested by that exception type. These templates, once
interleaved into the “normal” process model by the workflow designer, play the role
of “sentinels” that check for signs of actual or impending failure. The template for
detecting the “resource poaching” exception, for example, operates by comparing the
average priority of tasks that quickly receive shared resources against the average
priority of all tasks. The “item delayed”, “agent unavailable”, and “item misrouted”
exceptions can all be detected using time-out mechanisms. Similar pointers exist to
exception avoidance processes, whose purpose is to try to prevent the exceptional
condition from occurring at all.

2.3 Diagnosing Exceptions

When exceptions actually occur during the enactment of a process, our tools can
assist process participants in figuring out how to react. Just as in medical domains,
selecting an appropriate intervention requires understanding the underlying cause of
the problem, i.e. its diagnosis. A key challenge here, however, is that the symptoms
revealed by the exception detection processes can suggest a wide variety of possible
underlying causes. Many different exceptions (e.g. “agent not available”, “item
misrouted” etc.) typically manifest themselves, for example, as missed deadlines.

Our approach for diagnosing exception causes is based on heuristic classification
[5]. It works by traversing a diagnosis taxonomy. Exception types can be arranged
into a taxonomy ranging from highly general failure modes at the top to more specific
ones at the bottom (Figure 2). Every exception type includes a set of defining
characteristics that need to be true in order to make that diagnosis potentially
applicable to the current situation

When an exception is detected, the responsible process participant traverses the
exception type taxonomy top-down like a decision tree, starting from the diagnoses
implied by the manifest symptoms and iteratively refining the specificity of the
diagnoses by eliminating exception types whose defining characteristics are not
satisfied. Distinguishing among candidate diagnoses will often require that the user

56 C. Dellarocas and M. Klein

get additional information about the current exception and its context, just as medical
diagnosis often involves performing additional tests.

Imagine, for example, that we have detected a time-out exception in the “deliver
product” step (see Figure 4). The diagnoses that can manifest this way include “agent
unavailable”, “item misrouted”, and “item delayed”. The defining characteristics of
these exceptions are:

• agent unavailable: agent responsible for task is unavailable (i.e. sick, on vacation,
retired, etc.)

• item misrouted: current location and/or destination of item not match original
target destination

• item delayed: item has correct target destination but is behind original schedule

The user then has a specific set of questions that he/she can ask in order to narrow
down the exception diagnosis. If the appropriate information is available on-line, then
answering such questions and thereby eliminating some diagnoses can potentially be
at least partially automated.

2.4 Resolving Exceptions

Once an exception has been detected and at least tentatively diagnosed, one is ready
to define a prescription that resolves the exception and returns the process to a viable
state. This can be achieved, in our approach, by selecting and instantiating one of the
generic exception resolution strategies that are associated with the hypothesized
diagnosis. These strategies are processes like any other, are captured in a portion of
the process taxonomy, and are annotated with attributes defining the preconditions
that must be satisfied for that strategy to be applicable. We have accumulated roughly
200 such strategies to date, including for example:
• IF a process fails, THEN try a different process for achieving the same goal
• IF a highly serial process is operating too slowly to meet an impending deadline,

THEN pipeline (i.e. release partial results to allow later tasks to start earlier) or
parallelize to increase concurrency

• IF an agent may be late in producing a time-critical output, THEN see whether the
consumer agent will accept a less accurate output in exchange for a quicker
response

• IF multiple agents are causing wasteful overhead by frequently trading the use of a
scarce shared resource, THEN change the resource sharing policy such that each
agent gets to use the resource for a longer time

• IF a new high-performance resource applicable to a time-critical task becomes
available, THEN reallocate the task from its current agent to the new agent

Since an exception can have several possible resolutions, each suitable for different
situations, we use a procedure identical to that used in diagnosis to find the right one.
Imagine, for example, that we want a resolution for the diagnosis “agent unavailable”.

A Knowledge-Based Approach for Designing Robust Business Processes 57

We start at the root of the process resolution taxonomy branch associated with that
diagnosis. Three specific strategies are available, with the following preconditions
and actions:
• wait till agent available: IF the original agent will be available in time to

complete the task on the current schedule THEN wait for original agent to start
task

• find new agent with same skills: IF another agent with the same skills is
available, THEN assign task to that agent

• change task to meet available skills: IF the task can be performed a different way
using agents we have currently available THEN modify and re-assign.

The system user can prune suggested strategies based on which preconditions are
satisfied, and enact or customize a strategy selected from the remainder. Note that the
substantial input may be needed from the user in some cases in order to refine a
generic strategy into specific actions.

2.5 Summary

Figure 5 summarizes the knowledge structure which serves as the basis of the
approach described in the previous sections. It consists of two cross-referenced
taxonomies: a specialization taxonomy of process templates and a taxonomy of
exception types.

During process design time, process models are compared against the process
taxonomy in order to identify possible failure modes. Once failure modes are
identified, the exception type taxonomy provides links to appropriate detection and
avoidance processes. During process enactment time, exception manifestations are
compared against the exception type taxonomy in order to identify possible
diagnoses. Once plausible diagnoses have been identified, the exception taxonomy
provides links to resolution processes.

Process Taxonomy Except ion Taxonomy

Except ion Type

Diagnost ic ru les

Links to detect ion
processes

Links to avoidance
processes

Links to resolut ion
processes

Act iv i ty Type

Decomposi t ion

Precondi t ions

Links to possible
except ion types

Postcondi t ions

Fig. 5. Overview of Exception Handling Knowledge Structures.

58 C. Dellarocas and M. Klein

3 Case Study: Barings Bank

The approach described in the previous section can be applied in order to help design
robust new processes. It can also be a helpful tool when testing the robustness of
existing business processes. This section illustrates how the method has been used in
order to systematically expose potential dangers (and suggest possible fixes) in a
well-known case of a failed business process.

In February 1995, 233-year old Barings Bank, one of the oldest and most respected
investment houses in the United Kingdom, went bankrupt. The entire bank collapsed
because of losses of $1.4 billion incurred in a matter of days by a single young trader,
Nicholas Leeson. Nicholas Leeson was a futures trader in the Singapore branch of the
bank. For a number of reasons, which are still not entirely clear, Leeson began to
engage in unauthorized futures trading in the Singapore exchange. Due to inadequate
internal controls and other process failures, Leeson was able to maintain his
unauthorized and highly risky activity undetected by the bank headquarters in London
until the very end.

The collapse of the Barings Bank is one of the most dramatic and talked about
recent disasters in financial markets. There exist several detailed accounts and
analyses of why and how it happened (for example, [10, 27]). From our perspective,
the Barings disaster is interesting because it was the result of a series of undetected
exceptions in one of the bank’s secondary business processes: the futures trading
process in Singapore.

In this section, we will demonstrate how the approach described in this paper can
be used to systematically point out the gaps in the Barings trading process controls, as
well as to suggest ways for closing those gaps.

Place
Request

Customer

Trader

Bank Treasury

Buy
Futures

Contract

Receive
Certificate

Send
Payment

Transfer
Funds Prerequisite

Flow

Fig. 6. The Barings Futures Trading Process

A Knowledge-Based Approach for Designing Robust Business Processes 59

As described in the previous section, the approach begins with a “normal” model
of the process. Figure 6 depicts a simplified but accurate model of the futures trading
process, based on the descriptions contained in [10] and [27]. The model consists of
boxes, which describe process activities, and lines, which describe various
dependency relationships, that is, constraints that must hold true in order for the
process to succeed. The following is a brief description of the process: When a
customer requests a futures trade, the trader asks the bank headquarters for advances
of funds in order to cover the customer’s margin account1. Once the funds have
arrived, the trader performs the trade, waits to receive the corresponding security
certificate and finally pays the exchange. In an “ideal” world, a trader only performs
trades when authorized to do so by customers, correct certificates are always received,
and payment for trades exactly match the funds forwarded to the trader by the bank
headquarters. These conditions are implied by the “prerequisite” and “flow”
relationships, which are part of the “normal” process model.

The first step in our exception handling methodology consists of identifying the
possible exceptions that are associated with each element of the “normal” process
model. For simplicity we will only consider here exceptions associated with
dependency relationships in the model.

According to the failure mode taxonomy shown in Figure 3, one possible
exception of any prerequisite relationship is a prerequisite violation (“B without A”),
that is, the possibility of activity B happening without a prior occurrence of activity
A. In the context of the Barings trade process such violations would translate into
unauthorized trading, unwanted security receipts and unnecessary payment (Figure 7).

Place
Request

Customer

Trader

Bank Treasury

Buy
Futures
Contract

Receive
Certificate

Send
Payment

Transfer
Funds Prerequisite

Flow
Funds

misused

Wrong
certificate

Unauthorized
trade

Fig. 7. The Barings Futures Trading Process with Associated Exceptions

1 To find out more about derivatives trading and the meaning of margin accounts, the

interested reader is referred to Zvi Bodie, Alex Kane, Alan J. Marcus, Investments (4th

Edition), Irwin, 1998 (Part IV).

60 C. Dellarocas and M. Klein

Likewise, one possible exception of a “flow” process is mismatch between the
amount produced and the amount consumed. In the context of the Barings process
this would translate into a misuse of headquarter funds.

After possible exceptions have been identified, the next step is to use the
information stored in the exception type taxonomy (Figure 2) in order to find ways
for avoiding or detecting the exceptions. It turns out that, because the trading process
at Barings involves several independent entities (customer, bank, exchange) and
requires some initiative from the part of the trader, there are no practical mechanisms
for avoiding the exceptions. There were, however, several mechanisms for detecting
them.

Prerequisite

Exclusive access

A B

8SGDWH

/RJ $

Periodic Consistency Check

8SGDWH

/RJ %

([FHSWLRQ

$YRLGDQFH

3URFHVV

0DLQ

3URFHVV

Fig. 8. Logging is a Generic Process for Detecting Prerequisite Violations

Place
Request

Customer

Trader

Bank Treasury

Buy
Futures
Contract

Receive
Certificate

Send
Margin
Payment

Transfer
Margin
Funds

8SGDWH
5HTV

8SGDWH
&RPPLWV

8SGDWH
)XQGV

Daily Consistency Check

8SGDWH
5HFY

8SGDWH
3DLG

Prerequisite
Exclusive access

Flow

Fig. 9. Barings Process Properly Instrumented with Logging Processes.

A Knowledge-Based Approach for Designing Robust Business Processes 61

For example, logging is one (out of several) generic mechanism for detecting
prerequisite relationship violations (Figure 8). Logging involves recording all
occurrences of activities A and B in some reliable storage medium and periodically
conducting checks for prerequisite violations. In order for logging to be successful it
is, in turn, required that (a) all occurrences of A and B are reliably logged and (b) the
log can only be modified by the processes that do the logging.

If we insert a logging process for all dependencies listed in Figure 8 we get a
model of a properly instrumented trading process (Figure 9).

At this point, we can compare the process derived using our approach with the
actual Barings described in [10, 27]. It can immediately be seen that, although
Barings did log some information about trades, it had two crucial gaps relative to the
properly instrumented process of Figure 9 (see Figure 10):

First, it failed to log and compare the amount of funds forwarded by headquarters
to the trader to the amounts actually paid by the trader for customer trades (in other
words, the log labeled “Funds” in Figures 9-10 was missing from the Barings
process). Second, Nick Leeson, in addition to being a trader, was also in charge of the
back room operations in the Singapore branch. This gave him the authorization to
modify the trades logs (and thus violated requirement (b) above of the logging
process).

Nick Leeson was able to use these two gaps to his advantage as follows: Whenever
he received a trade request from a customer, he requested an amount of funds far
greater than what was required for the customer trade. He then performed the
customer trade, as well as some additional unauthorized trades on his behalf. All of
these trades were automatically logged into logs “Commits”, “Received” and “Paid”
(see Figures 9-10). Leeson then erased the records of his unauthorized trades from
logs “Commits”, “Received” and “Paid”. Therefore, at the end of each day, the log of
“Requests” matched perfectly the other three logs. By not checking for discrepancies
between the funds forwarded to Leeson and the total funds recorded at the “Paid” log,
headquarters remained unaware of Leeson’s activities until it was too late.

Place
Request

Customer

Trader

Bank Treasury

Buy
Futures
Contract

Receive
Certificate

Send
Margin
Payment

Transfer
Margin
Funds

8SGDWH

5HTV

8SGDWH

&RPPLWV

8SGDWH

)XQGV

Daily Consistency Check

8SGDWH

5HFY

8SGDWH

3DLG

Barings failed to
compare funds

transferred against
funds used for

client transactions

Barings failed to safeguard
against exclusive access

violations because trader
was given log modification

privileges

Fig. 10. Comparison between Ideal and Actual Barings Process

62 C. Dellarocas and M. Klein

It is probably too simplistic to claim that the Barings disaster would have been
avoided if the management of Barings had at their disposal knowledge-based
exception handling methodologies, such as the ones described in this paper.
Nevertheless, this exercise demonstrates that these methodologies and tools can be
used in real-life cases to alert management of potential weaknesses and suggest ways
for making vital business processes more robust.

4 Related Work

The approach described here integrates and extends two long-standing lines of
research: one addressing coordination science principles about how to represent and
utilize process knowledge, another addressing how artificial intelligence techniques
can be applied to detecting and resolving conflicts in collaborative design settings:

One component is a body of work pursued over the past six years by the Process
Handbook project at the MIT Center for Coordination Science [8, 20, 21]. The goal of
this project is to produce a repository of process knowledge and associated tools that
help people to better redesign organizational processes, learn about organizations, and
automatically generate software. The Handbook database continues to grow and
currently includes over 4500 models covering a broad range of business processes. A
mature Windows-based tool for editing the Handbook database contents, as well as a
Web-based tool for read-only access have been developed. A key insight from this
work is that a repository of business process templates, structured as a specialization
taxonomy, can assist people to design innovative business processes more quickly by
allowing them to retrieve, contrast and customize interesting examples, make “distant
analogies”, and utilize “recombinant” (mix-and-match) design techniques.

The other key component of this work is nearly a decade of development and
evaluation of systems for handling multi-agent conflicts in collaborative design [15,
16] and collaborative requirements capture [17]. This work resulted in principles and
technology for automatically detecting, diagnosing and resolving design conflicts
between both human and computational agents, building upon a knowledge base of
roughly 300 conflict types and resolution strategies. This technology has been applied
successfully in several domains including architectural, local area network and fluid
sensor design. A key insight from this work is that design conflicts can be detected
and resolved using a knowledge base of generic and highly reusable conflict
management strategies, structured using diagnostic principles originally applied to
medical expert systems. Our experience to date suggests that this knowledge is
relatively easy to acquire and can be applied unchanged to multiple domains.

The work described in this paper integrates and extends these two lines of research
in an innovative and, we believe, powerful way. The central insights underlying this
integration are that (1) business process exceptions can be handled by generalizing the
diagnostic algorithms and knowledge base underlying design conflict and (2) the
exception handling knowledge base can be captured as a set of process templates that
can be retrieved, compared and customized using the principles embodied in the
Process Handbook.

A Knowledge-Based Approach for Designing Robust Business Processes 63

This work also constitutes, we believe, a substantive and novel contribution to
previous efforts on exception handling, which have been pursued in the context of
workflow [1, 9, 13, 18, 22, 25, 28-30] manufacturing control [14, 23, 26], model-
based fault diagnosis [3, 7, 19], planning [3, 4], and failure mode analysis research
[24]. Most workflow research has focused on languages for expressing correctness-
preserving transforms on workflow models, providing no guidance however
concerning which transforms to use for a given situation. There has been some
manufacturing and workflow research on providing guidance for how to handle
exceptions, but this has been applied to few domains (mainly software engineering
and flexible manufacturing cell control) and/or has addressed a small handful of
exception types. The planning work, by contrast, has developed a range of
computational models but they are only applicable if the planning technology was
used to develop the original work process. This is typically not the case for workflow
settings where processes are defined by people rather than planning tools. Model-
based fault diagnosis approaches use a single generic algorithm to uncover the causes
of faults in a system without the need for a knowledge base of failure modes and
resolution heuristics. This approach is predicated, however, on the availability of a
complete and correct model of the system’s behavior. This is possible for some
domains (e.g. the analysis of electrical circuits) but not for many others including, we
would argue, most collaborative work settings that include human beings and/or
complex computer systems as participants. Model-based fault diagnosis also typically
assumes that resolution, once a fault has been diagnosed, is trivial (e.g. just replace
the faulty component) and thus does not provide context-specific suggestions for how
to resolve the problem. Current work on failure mode analysis describes a systematic
process. However, the actual work must be done by people based on their experience
and intuitions. This is potentially quite expensive, to the extent that this analysis is
rarely done, and can miss important failure modes due to limitations in the experience
of the analyst [24].

5 Future Work

This chapter has emphasized the use of our exception handling knowledge base as a
decision support tool for humans. Our ongoing work is also focused on connecting
our technology with automated process enactment systems, such as workflow
controllers and software agent systems. It is widely recognized that state-of-the art
workflow technology provides only rudimentary support for exception handling [2,
9]. The result of our work will be a prototype implementation of a domain-
independent exception handling engine, which oversees the enactment of a workflow
script, monitors for exceptions and decides (automatically for the most part) how to
intervene in order to resolve them. Given a “normal” workflow script, the engine first
uses the exception handling knowledge base in order to anticipate potential
exceptions and augment the system with additional actions that play the role of
software sentinels. During enactment time, these sentinels automatically trigger the
diagnostic services of the engine when they detect symptoms of exceptional

64 C. Dellarocas and M. Klein

conditions. The diagnostic services traverse the taxonomy of exception types, select
(possibly with human assistance) a diagnosis and then select and instantiate a
resolution plan. The resolution plan is eventually translated into a set of workflow
modification operations (e.g. add tool, remove tool, modify connection, etc.), which
are dynamically applied to the executing workflow.

For further information about our work, please see the Adaptive Systems and
Evolutionary Software web site at http://ccs.mit.edu/ases/. For further information on
the Process Handbook, see http://ccs.mit.edu/

Acknowledgment

The authors gratefully acknowledge the support of the DARPA CoABS Program
(contract F30602-98-2-0099) while preparing this paper.

References

 1. E. Auramaki and M. Leppanen. Exceptions and office information systems. In B. Pernici
and A.A. Verrijn-Stuart, editors: Office Information Systems: The Design Process, pp.167-
182, North Holland Publishing Co., 1989.

2. P. Barthelmess and J. Wainer. Workflow Systems: a few Definitions and a few
Suggestions. Proceeding of the Conf. On Organizational Computing Systems (COOCS’95),
pp. 138-147, 1995.

3. L. Birnbaum, G. Collins, M. Freed and B. Krulwich. Model-Based Diagnosis of Planning
Failures. Proceedings of the 8th National Conf. on Artificial Intelligence (AAAI-90), pp.318-
23, 1990.

4. C.A. Broverman and W.B. Croft. Reasoning About Exceptions During Plan Execution
Monitoring. Proceedings of the 6th National Conf. on Artificial Intelligence (AAAI-87), pp.
190-195, 1987.

5. W. J. Clancey. Heuristic Classification. Artificial Intelligence 27(3), pp. 289-350, 1985.
6. T. Davenport. Process Innovation: Reengineering Work through Information Technology.

Harvard Business School Press, 1993.
7. J. deKleer and B. Williams. Reasoning About Multiple Faults. Proceedings of the 5th

National Conference on Artificial Intelligence (AAAI-86), pp. 132-9, 1986.
8. C. Dellarocas, J. Lee, T.W. Malone, K. Crowston and B. Pentland. Using a Process

Handbook to Design Organizational Processes. Proceedings of the AAAI 1994 Spring
Symposium on Computational Organization Design, pp. 50-56, 1994.

9. C.A. Ellis, K. Keddara and G. Rozenberg. Dynamic Change Within Workflow Systems.
Proceedings of the Conf. On Organizational Computing Systems, (COOCS’95), pp. 10-21,
1995.

10. S. Fay. The collapse of Barings. W.W. Norton, New York, 1997.
11. V. Grover and W. J. Kettinger, editors. Business Process Change: Concepts,

Methodologies and Technologies. Idea Group Publishing, 1995.
12. M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for Business

Revolution. Harper Business, 1994.

A Knowledge-Based Approach for Designing Robust Business Processes 65

13. B.H. Karbe and N. G. Ramsberger. Influence of Exception Handling on the Support of
Cooperative Office Work. In S. Gibbs and A. A. Verrijin-Stuart, editors: Multi-User
Interfaces and Applications, Elsevier Science Publishers, pp. 355-370, 1990.

14. D. Katz and S. Manivannan. Exception management on a shop floor using online
simulation. Proceedings of the 1993 Winter Simulation Conference, pp.888-96. 1993.

15. M. Klein. Conflict resolution in cooperative design. University of Illinois at Urbana-
Champaign Technical Report UIUCDCS-R-89-1557.

16. M. Klein. Supporting Conflict Resolution in Cooperative Design Systems. IEEE
Transactions on Systems, Man and Cybernetics, 21(6), pp. 1379-1390, 1991.

17. M. Klein. An Exception Handling Approach to Enhancing Consistency, Completeness and
Correctness in Collaborative Requirements Capture. Concurrent Engineering: Research
and Applications, 5 (1), pp. 37-46, 1997.

18. T. Kreifelts and G. Woetzel. Distribution and Error Handling in an Office Procedure
System. Proceedings of IFIP WF 8.4 Working Conference on Methods and Tools for Office
Systems, Pisa, Italy, 1987.

19. M. Krishnamurthi and D.T. Phillips. An expert system framework for machine fault
diagnosis. Computers & Industrial Engineering 22 (1), Jan. 1992, pp.67-84.

20. T.W. Malone, K. Crowston, J. Lee and B. Pentland, Tools for Inventing Organizations:
Toward a Handbook of Organizational Processes, Proceedings of 2nd IEEE Workshop on
Enabling Tech. Infrastructure for Collaborative Enterprises (1993) 72-82.

21. T.W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J. Quimby, C.
Osborne, and A. Bernstein. Tools for inventing organizations: Toward a handbook of
organizational processes. Management Science, in print.

22. P. Mi and W. Scacchi. Articulation: An Integrated Approach to the Diagnosis, Replanning
and Rescheduling of Software Process Failures. Proceedings of the Eighth Knowledge-
Based Software Engineering Conference, IEEE Comput. Soc. Press. 1993, pp.77-84.

23. S. Parthasarathy. Generalised process exceptions-a knowledge representation paradigm for
expert control. Proceedings of the Fourth International Conference on the Applications of
Artificial Intelligence in Engineering, 1989, pp.241-56.

24. D. Raheja. Software system failure mode and effects analysis (SSFMEA)-a tool for
reliability growth. Proceedings of the Int’l Symp. on Reliability and Maintainability
(ISRM’90), Tokyo, Japan, pp. 271-77, 1990.

25. D.M. Strong. Decision support for exception handling and quality control in office
operations. Decision Support Systems 8(3), June 1992, pp. 217-27.

26. A. Visser. An exception-handling framework. International Journal of Computer
Integrated Manufacturing 8(3), May-June 1995, pp.197-203.

27. G. Zhang. Barings bankruptcy and financial derivatives. World Scientific Publishing Co,
Singapore, 1995.

28. M. Klein, C. Dellarocas and A. Bernstein, editors. Special Issue on Adaptive Workflow
Systems, Computer-Supported Collaborative Work, January 2000.

29. S. Ellis and K. Keddara. A workflow change is a workflow. Part II, Chapter 6 in this
volume.

30. A. Agostini and G. de Michelis. Improving Flexibility of Workflow Management Systems.
Part II, Chapter 7 in this volume.

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 66-82, 2000
 Springer-Verlag Berlin Heidelberg 2000

The "Organized Activity" Foundation
for Business Processes and Their Management

Anatol W. Holt

Via Panzini 12
20145 Milano, Italy

anatolholt@iol.it

Abstract. This paper introduces a new notional and notational tool – "organized
activity" (OA) and its theory (TOA) – to the BP/BPM community. Most of this
"introduction" is accomplished via an example – the "Pulsar" – which is: (a) an
"organized activity" claimed to be useful to business, but also other activities; (b) new;
(c) easy to understand; (d) suitable to computer support; (e) richly illustrative of OA
ideas, in its "computerized" and non-computerized versions.

A significant terminal part of the paper is devoted to a comparison of OA/TOA to Petri
nets – for two reasons: (a) OA/TOA grew out of Petri nets; (b) many readers of this
paper are familiar with Petri nets, and rely on them professionally.

1 Introduction

In the last decade (or two) a new "theory" has been born: the "theory" of (human)
organized activity – TOA for short. In effect this was the birth of two new things:
• a new subject matter – OA for short;

• a new type of "theory". The subject matter is treated in a technical manner –
using the methods of the exact sciences; yet the approach differs from the rest of
science appreciably – not discussed extensively in this paper, though touched on
in Subsection 4.3.

OA/TOA is relevant to the present volume for an intellectual and a practical reason;
intellectual, because business processes – whatever else they are – are certainly an
example of human organized activity; practical, because many of the "problems" that
naturally arise in the area of business process support, are problems that naturally
arise for any organized activity – problems that can be analyzed and approached by
means of the new field.

Associated with TOA there has also developed a graphical planning language –
called DIPLAN. In previous work (and published results) DIPLAN has had two roles
to play: (a) as a means to illustrate, and make visible TOA; (b) as a means to specify

The "Organized Activity" Foundation for Business Processes and Their Management 67

and communicate plans. DIPLAN (and TOA) are both descendents of Petri nets and
related theory.

Briefly, let me explain the concept organized activity, and its relationship to
BP/BPM. "Organized activity" is a human-social universal; at least as much as
human language – for there are certainly organized activities which do not require
verbal communication, but verbal communication requires organized activity. OAs
have the following general characteristics:
• always linking many roles; sometimes linking many flesh-and-blood people -

there may be millions - or only one flesh-and-blood person involved;

• always associated with a guiding plan, but exceptional circumstances can always
arise requiring unplanned responses;

• always involving coordinated actions (all examples of coordinated action imply
organized activity);

• usually repeatable (all examples of repetition imply organized activity);

• always motivated – by business, religion, politics, fun, etc.;

• always involving material (bodies) and (human) effort (actions) – and therefore
"space" and "time" as ordinarily understood.

Likely Examples of OAs are games, political parties, BPs and bucketbrigades. TOA
provides analytic and communicative techniques that apply to OAs.

Are all human activities OAs? This could be discussed at length, but one thing is
certain: they should only be so regarded if the application of TOA "pays".
(Analogously: a physicist may look at a person's body and see physics; but if that
person has an ache, a doctor is better.)

And now BP/BPM. This is a domain that has established itself for pragmatic
reasons. Businesses frequently have "problems" that can be solved by means of new
information technological "systems", especially computer-based. What is more,
businesses are likely to pay for such solutions. Unlike OA, BP/BPM was not isolated
as an area for intellectual/philosophic/scientific reasons. Therefore it is entirely
possible that a significant part of the technological effort involved in helping a
business may also help a non-business (and/or vice versa – workflow only being one
of many examples). In other words: basing one's technical solutions on OA will, in
general, lead to better architectures than basing them on BP/BPM (for, whatever else
is true, the skeleton of a BP/BPM "problem" will normally be based on the fact that a
business process is an organized activity; furthermore: TOA may improve the
community's ability to define "business problems" that are capable of solution – using
technological "systems", or other means).

This paper exemplifies a computer-supportable OA which (a) differs from the
more common type of BP/BPM system; (b) can obviously be useful to BP/BPM but
also to non-business OAs; (c) is unlikely to have been defined without OA/TOA; (d)
suggests new software (and possibly hardware) architecture which might be useful to
BP. Moreover, it compares TOA/DIPLAN to Petri nets – introducing just barely
enough of TOA/DIPLAN to accomplish the comparisons.

As can be understood from the foregoing: the point of this paper is not an explicit
introduction to TOA/DIPLAN; rather, its point is to: (a) provide the reader with

68 A.W. Holt

practical benefits which seem to derive from thinking in terms of OAs; (b) implicitly
introduce OA/TOA; (c) build up the reader's motivation to study OA/TOA with the
help of available publications.

2 An Example: the "Pulsar"

The reader should be warned in advance: the example may seem over-abstract and
over-simple, yet: (a) in its "abstractness" lies its power; (b) it is more seemingly
simple than really simple; and finally (c) at most useful scales this pattern of
organized activity can only be realized with the help of a computer network, even
though it seems so primitive and easy to understand.

The reader should also be warned: the example does not address the typical
preoccupations of BP/BPM. In that fact too, lies its power. Obviously it is not
"workflow"; obviously it leaves out many issues that arise in every business; but they
are not issues that the example cannot accommodate! And: even though it does not
offer a service that has been conceived – by businesses and/or their advisers – it may
nevertheless be eminently useful to businesses.

And lastly, the reader should be warned: much of this paper is like the Pulsar –
seemingly more simple than really simple. To profit from its content, it is useful to
keep this point in mind.

2.1 Informal Description of the Pulsar

There are N+1 participants: 1 manager, m and N contributors, cj.
The plan of operation is cyclic – in principle unlimited, forwards or backwards.

We can name a cycle Z, arbitrarily by assigning it an integer i. Thus the cycle desig-
nation becomes Zi. Of course, in practice, there will always be a first cycle, and we
will find it convenient to call it Zo. The cyclic scheme is expressed in Figure 1.

Each Zi is grossly built as follows: (a) the manager m prepares and broadcasts a
stimulus Si to all contributors; (b) each of the contributors (cj) prepares a response Rij
to the stimulus and returns it to m. The manager m uses all of these responses as
background for the preparation of the next stimulus Si+1.

In more detail: each Zi consists of a "stimulus phase" SPi, and a "response phase"
RPi. In course of SPi m prepares and broadcasts Si; in course of RPi all contributors
cj prepare and return their responses Rij .

The "Organized Activity" Foundation for Business Processes and Their Management 69

manager

response

contributor
1 i ≤≤

Round

all N

n-1

i

N

stimulus
prepares

n
stimulus n

stimulus n

responsen

responsen

n

Step 1

Step 2

responsesof
round n

and broadcasts
waits and receives

waits and receives prepares and returns

Figure 1

The beginnings and endings of cycle phases are relative to clock and calendar:
the manager m determines the clock and calendar beginning and end of SPi and RPi.
He may do this once and for all, for every cycle of the Pulsar or cycle by cycle. For
example: for Z8 the manager may decide: SP8 is to begin at 0900 April 10, 1999 and
end at 1200 of the same day; RP8 is to begin at 1200 and end at 0900 April 11. On
the other hand, the manager could determine once and for all at the beginning that all
cycles are to be divided analogously during the 5 workdays of each week.

The details of a cycle Zi: by the time SPi begins, the manager m has a right to
expect that all responses from the previous cycle have reached him (including "null
responses"); thus, after its beginning, the manager can prepare the Si. He must
broadcast it enough before the end of SPi (and therefore the beginning of RPi) that,
after this point, each contributor cj can assume that Si is in his possession.

Thus, after the end of SPi (and the beginning of RPi) each cj can prepare Rij . He
must return it to the manager before the end of RPi (and therefore the beginning of
SPi+1).

70 A.W. Holt

Additional communication: any participant at any time can send a message M to
any other participant. Since all participants can be expected to have some idea of
"what time it is" in terms of cycles, and of communication speeds, these messages M
can be weakly synchronized with the cycles. M messages can be used by the manager
to manage the Pulsar on an ongoing basis.

Desirable physical organization: all participants in a Pulsar would do well to
keep all Pulsar-related files together – segregated from everything else. This includes
a record of S's, R's and M's.

Additional (optional) features:
• Common area, CA: the content is controlled by m, and it can be read by all c's.

All c's can assume that CA changes state at each end of SP (beginning of RP).
CA can be seen as a method for reducing the amount of information that must be
included in the stimuli.

• Null responses: it is desirable that the manager m be able to distinguish, on a
given cycle, between a contributor who for some reason was unable to respond,
and a contribute or who, though perfectly able, chose not to. This might be
handled by introducing an explicit "null response" which a contributor makes if
he has nothing to say, but is not prevented from responding.

• Categories of contributors: in the case of some Pulsar controlled processes it is
desirable to distinguish between several types of contributor – such as
"observers", "specialists", "editors", "correctors", etc. In producing his stimuli,
the manager may be given aid in specializing these to contributor category; in
any case, the manager should be able to specialize a stimulus to a particular
contributor.

2.2 Some Comments (on the Pulsar)

Pulsar use: the Pulsar is a simple device for accomplishing any joint project under a
central authority (the manager). However: this central authority may contribute
nothing but order (as in the case of a traffic policeman, or meeting chairman), or may
exercise arbitrary degrees of directive power over the project as a whole. Examples
(by type) of such "joint projects":
• operating a department under a manager (a "business process");

• processing an item under someone's direction (another "business process").

None of the next-following examples are usually treated as "business processes":

• a meeting under a chairman;

• producing a document (under someone's direction);

• trying something out (under someone's control and observation).

Rights and responsibilities: flesh-and-blood persons can decide – probably freely –
whether to participate in a Pulsar or not; but once having decided, they have Pulsar-

The "Organized Activity" Foundation for Business Processes and Their Management 71

related rights and responsibilities which the Pulsar imposes. For example: a
contributor has a "right" to gain access to the next stimulus and/or the Common Area
(if it exists); he has a "duty" to produce a response within the given time interval (for
no duty to do something can be meaningful without a time limit).

We said above "probably freely" because: in accepting a job, the flesh-and-blood
person may have pre-agreed to participate in Pulsars, or at the least, in joint efforts
that may be pursued by means of a Pulsar.

The inclusions of (some) exceptions in the plan: TOA is "true to life" in the
following respect: it asserts: organized activities always follow a plan, but are always
subject to exceptions.

It is often possible to "enlarge" a plan by taking some classes of exceptions into
systematic account. The Pulsar contains an example of this, in making provision for
M messages which are only weakly synchronized with the dominant Pulsar cycle.
(Aside from being useful to the control and management of a Pulsar-implemented
joint project) M messages make it possible to raise "afterthoughts", requests for
clarification, suggestions for the improvement of substance or procedure, etc.

There are 3 ways in which the inclusion of M messages in the Pulsar does more
than ordinary e-mail: (a) because the M messages are understood as belonging to the
Pulsar framework they can make use of Pulsar-relative identifiers without
explanation; (b) the M messages accumulate in the Pulsar area; (c) their processing is
governed by a priority which, in part, derives from the priority of the Pulsar-relative
project as a whole.

The Pulsar and networks of computers: we assert that networks of computers
become ever-more indispensable to Pulsar implementation as: (a) the participants are
dispersed over wider geographic regions; (b) the desirable cycle time shrinks. In
particular, a Pulsar with a cycle time of 20 minutes – possibly useful to the conduct of
a meeting – cannot be implemented by anything other than computer means, even if
the participants are all in the same building.

3 OA/TOA, the Pulsar, and Computer Support

It was claimed above in Section 1 that the Pulsar is an example of a "computer
supportable OA". Now that the Pulsar has been described, I want to: (a) justify this
statement; (b) expand on the idea OA above-and-beyond Section 1; (c) show that
practically useful suggestions follow from this.

The "practical suggestions" concern computer support for any-and-all OAs – not
just Pulsars. The link between TOA, the Pulsar example, and these suggestions, is the
following: the Pulsar provides concrete illustrations for features common to all OAs,
including more traditional BPs. Identification of these features suggests new-and-
better computer services; since the services in question pertain to all OAs, and since a

72 A.W. Holt

significant part of what computers do today is to support OAs, these suggestions
imply structural features of computer systems to render them better adapted to deliver
these services in a uniform manner.

3.1 Features of OAs illustrated by the Pulsar

The Participants: The participants in a Pulsar are identified by roles ("manager",
"contributor") and not by personal name. Of course not: the roles are Pulsar-
characteristic; the personal names are not. Yet, in every realization of the Pulsar
specific persons must play these various roles (possibly even more than one role per
person; and possibly also more than one person per role); however: the persons will
certainly change from Pulsar to Pulsar; they may even change while a particular copy
of the Pulsar is running.

These relationships between organizationally defined roles and flesh-and-blood
persons are characteristic of all OAs (including BPs; including workflow). Further-
more: (a) because performances of OAs can always involve deviations from the plan,
OAs must always be managed, and (b) managers of an OA must always be prepared
to change the assignment of persons to roles; therefore computer support for an OA
should always provide for these reassignment operations.

The Actions: Actions (performed by the participants) are characteristic of all OAs.
(as mentioned in Section 1). Assuming that the reasoning above is right, everything
that has to do with participant actions should also be part of the system architecture.
A participant's relationship to the actions he/she performs is an important part of
TOA, and a much more significant aspect of computer system architecture than you
might suspect.

Calendar and Clock: The relations of the actions of participants to the calendar and
clock are also not a Pulsar specialty, but rather part of every OA (not deducible from
Section 1).

Additional Communication: This too is a facility that is appropriate to all OAs. It is
a generally applicable way to "foresee" the "unforeseen" – a capability that can be
significantly based on (a modified version of) e-mail. More discussion of this follows
at the end of this subsection.

N-Person Applications: Who is "the user" of a Pulsar (and therefore of its computer
support)? Obviously a group of persons who – for one reason or another – want to
accomplish something together. In other words: the "user" is a group! The same is
true of most OAs.

Some years ago, I invented the distinction between a "solitary tool" and a
"contact tool"; a solitary tool is taken in hand by a single person to accomplish one of
his/her purposes; a "contact tool" is used by a group to ease (or even enable) their

The "Organized Activity" Foundation for Business Processes and Their Management 73

cooperation. The difference is profound; a contact tool certainly does not consist of N
solitary tools. Each of the latter is used at a single person's pleasure; the contact tool
is used by individuals when the pattern of cooperation that is supported decrees that it
is appropriate.

The Pulsar is obviously a contact tool. Since every participant is supposed to do
his part, the Pulsar as a piece of software should be distributed, with a different piece
on each participant's computer. When for some reason the list of participants changes
a piece of one person's computer memory must be moved to another site. Keep in
mind: this (and earlier) technical problems derive ultimately from TOA – even from
the little of TOA presented in Section 1.

Miscellaneous: Here I want to comment on a few other aspects of computer support
for OAs. To begin with there is the question of organizing one's files and directories
in a manner adapted to participating in OAs. This issue becomes particularly serious
if person A who participates may later on be replaced by person B; if B is to continue
where A leaves off, B must inherit the appropriate files and directories from A and
must appropriately integrate these in his own work environment.

It is easy to see that these considerations interact with e-mail used as above.
Clearly: if B is to replace A, B must also get copies of the relevant "additional
communications". It follows: in building support for OAs, e-mail is no less important
(structurally) than the file/directory system; indeed both of these need to be
considered together.

3.2 Computers and OA/TOA

Although OA/TOA was historically born to help understand the use of computers, it
still seems strange that a subject matter so "social-scientific" should have emerged;
the word "computer" does not suggest this; what is more, nothing social-scientific –
other than "Human Factors" – is today considered a necessary part of a young
computer scientist's training!

Although it no longer seems particularly outlandish to think that computers
extensively support organized activities, the computer pioneers (such as Babbage,
Turing, Eckert and Mauchly, von Neumann, Perlis, Zuse, and many others) would
have been surprised. The motivations which brought computers into existence really
didn't seem related to OAs; they were created as solitary tools for people with
computational problems. Even the fact that computational results were usually
wanted by some people to satisfy the needs of other people was too remote from
"computing" to influence computer design. This – I think – is a reason why hardware
and software to the present day is mostly designed for "the user", a real or imagined
person, and not for groups. Note that even in the design of "big" machines that serve
many individuals, the group is an afterthought. This is also key to why the advanced
computers of today, though so often used in support of OAs, are not architecturally
"friendly" to OAs, and in particular not "friendly" to the Pulsar (as we see from 3.1

74 A.W. Holt

above). Finally, this also explains why inventing OA/TOA was so late, so difficult,
and so little appreciated by the "computer community".

4 TOA/DIPLAN vs. Petri Nets in Some Detail

OA etc. owe their existence to Petri nets. This is particularly evident in DIPLAN – a
graphical planning language which yields bipartite graphs with a Petri-net-like inter-
pretation of little circles and little squares (two symbols that are used in both). But
there are also major differences: (a) DIPLAN is more complex (and therefore less
well adapted to the development of mathematics); (b) DIPLAN has no tokens (and
therefore no "firing rule"); (c) DIPLAN is more scrupulous (pedantic) in its
distinction between repetition (itself repeatable) and historical uniqueness; (d)
DIPLAN leans on TOA, which stands on its own feet; Petri nets do not lean on a
system theory which stands on its own feet.

In what follows, I will concentrate on a few outstanding DIPLAN/Petri-net
differences which seem particularly important to me – to wit:
• the interpretations of (little) square, circle, and their interconnection;

• the role of persons;

• the definition and role of "state";

• the treatment of "information" and decision (so critical to computing).

4.1 Square and Circle; Actions and Bodies; Space and Time

TOA asserts: OAs can be efficiently described in terms of human actions performed
on bodies; accordingly DIPLAN specifies a class of bipartite graphs; one vertex type,
represented by small square symbols, standing for actions; another vertex type,
represented by small circular symbols, standing for bodies; the bodies are said to be
"involved in" the actions – represented in a DIPLAN diagram by an undirected link,
verbally expressed as "an action involves a body" or equally "a body is involved in an
action". According to TOA/DIPLAN every example of an action is a "lump" of
human effort; every example of a body is a "lump" of material.

What is a lump of human effort? It isn't easy to say, considering that the effort
may be any combination of mental and physical. But three things are certain: all
efforts are performed by an effort maker; all efforts "take time"; all efforts involve
lumps of material – even if only the flesh-and-blood body of the effort maker.

With equal certainty we can say: all bodies (lumps of material) will "take space";
with less certainty we can assert: all bodies must be involved in actions (that is, in
lumps of human effort). We do in fact make this "less certain" assertion, at least for
OAs. (It follows that bodies stored for future but uncertain use must be subject to
ongoing human effort, namely maintenance effort!)

The DIPLAN model of an OA involves the following stronger assumptions: (a)
actions take time but not space; bodies take space but not time; (b) a body persists

The "Organized Activity" Foundation for Business Processes and Their Management 75

only because it is involved in actions; an action takes space only because it involves
bodies. Since every OA take both space and time, we have a particularly attractive
interpreted justification for the Petri net axiom that forbids "isolated elements".

The foregoing makes clear: TOA/DIPLAN is concerned with the space and time
of ordinary practice – and not with the space and time (or space/time) of modern
physics. Nevertheless TOA/DIPLAN shares with modern physics: the idea that space
and time are strictly interdependent; that neither of these can exist without
"substance" (actions and bodies in the case of TOA/DIPLAN).

Petri nets seem to adopt a neutral attitude towards time and space taking. But
these are matters of such overwhelming practical importance (even more than cost)
that neutrality simply doesn't work. Most practitioners have therefore taken their
time-spatial cue from the token game; the transitions (boxes) are assumed to be more-
or-less instantaneous; the places (circles) account for all space, duration, and
substance, of the "system". Not that other attitudes haven't prevailed – particularly in
the realm of "timed" Petri nets. But the fact alone that "timed Petri nets" are
thinkable, differentiates them from TOA/DIPLAN. Here, the categories of "time
taking", "space taking" (and cost) are as built in as in they are in the consciousness of
everyone concerned with practical arrangements.

4.2 Persons

Since Petri nets are about "systems" one cannot expect the formalism to take persons
into special account. Since TOA/DIPLAN deals with the actions of people within
OAs, they must take the action performers into special account. What does
TOA/DIPLAN posit about these performers?
• Persons (and only persons) perform actions and own bodies.

• OA actions will only be performed if suitably powered – the "power" coming
from the performers and taking the form of interest. Interests reside in bodies
(which makes body ownership important).

• The performer of an action is always a flesh-and-blood person performing some
OA-determined function that inheres in an organizational entity. No other
artifact – robot or computer, etc. – can perform actions; for action performance
always entails responsibility, and responsibility can never be carried by a non-
human artifact. (Thus, even computer actions, which take place at nano-second
speeds, are ultimately attributable to persons – a matter of no importance when
computers were exclusively solitary tools, but now of utmost importance, while
continuing to be technologically ignored.)

• DIPLAN contains graphic techniques for expressing these relationships. This
fact alone makes DIPLAN more complex than Petri nets.

76 A.W. Holt

4.3 State

Petri nets, in theory or in practice, do not contain a clear concept of state. Many Petri
net practitioners therefore equate a Petri net marking with a "system state" – an idea
implicit in the famous "reachability problem". This idea may be frowned upon, or
even objected to on reasonable grounds, but how can one frown or object in the
absence of a clear concept of state? Do Petri nets represent "systems"? If so, do
"systems" have "states"? I have had plenty of Petri net experience, but I cannot say
with certainty. Contrastively TOA/DIPLAN deals with such questions (and many
others that have to do with "state") in a way that leaves no room for mental clouds.
Briefly, the TOA idea is this:
• Bodies and only bodies B can have states S.
But also (according to TOA):
• A body-in-a-state (for example B-in-state-S) is also a body – (actually a case of

B).

TOA says: organized activity consists in (suitably interrelated) actions which involve
bodies. There are various effects which actions can have on the bodies they involve –
among others state change. So let us consider an action X which changes the state of
B from S to S':

• X involves B; X also involves B-in-state-S; and also B-in-state-S'; X must
consume B-in-S, and produce B-in-S'. Thus: a change of state requires an action
which involves (at least) three bodies and three different effects: (a change-of-
state, and a consequent consumption and production). Therefore from TOA's
point of view: if an OA called V were to have states, it would have to be
represented as a body subject to state change within some other OA called W.
There is no simpler sense in which V has states. (As far as I can see, this is a
reasonable conclusion.)

The concepts state and state change are not minor matters – in the description of OAs
or "systems". Among other things, they are critically involved in the treatment of
"information" and "decision" – obviously of great importance to computer support. It
is this matter to which we now turn our attention.

4.4 Decision, Conflict, and "Information"

In the world of Petri nets, two transitions (or events) are "in conflict" if (a) both are
enabled; (b) the taking place of either destroys the enabling of the other. This is
considered to be the basis for "decisions" – and of course for "information". Let us
illustrate by means of a "low-level" net.

The "Organized Activity" Foundation for Business Processes and Their Management 77

Y1 Y2

X2X1

X0

Y0

A B(b)

X2X1

X0

Y0

A B(a)

Figure 2

Assume an "initial marking" in Figure 2 (a) is a token on X0. In this marking
transitions A and B are in conflict; if A "fires", we produce X1 and Y0; if B "fires"
we produce X2 and Y0. Note that, in the "elementary net" the meanings conveyed by

the form of the place labels is not part of the net.
At any rate, it is (meta) clear that a "decision" between A and B must be made;

this decision could be represented explicitly by augmenting Figure 2 (a) to become
Figure 2 (b). Assume that the initial marking of (a) cited above is included in an
initial marking of (b), namely: X0 combined with Y1 or Y2, exclusively. Under this

circumstance we see that A and B are no longer in conflict. Thus we might say: Y –
in the form Y1or Y2 – carries "information" into the situation depicted, information

which "resolves the conflict" and (what comes to the same) allows the rendering of a
(binary) decision.

This is a version of "making a decision" rejected by TOA; it insists: "making a
decision" is an action – that is to say, a lump of effort – that must be expended by a
participant in an OA. Regardless of all other interpretive differences, Figure 2 (b)
makes the opposite seem true.

(This reminds me of a matter which I found puzzling as a young programmer.) In
the graphical form of a flowchart one could write:

x

x > 0

x ≤ 0

Figure 3

The diamond represented a decision with two outcomes: one outcome in case x is
greater than 0; another outcome in case x is less-than-or-equal-to 0. I wondered: is
this binary decision "work"? Is it in this respect like any other operation – addition
say? The apparent mystery deepened in thinking about the "x" which "flows" into the
decision; isn't this "x" already greater than, or less-than-or-equal-to, 0 before it
"arrives" at the decision point? Isn't this a confirmation of the fact that the decision
should require no work (and therefore take no time)? The Petri net solution comes

78 A.W. Holt

down on the "no work" side of the issue; the TOA solution on the other side. (This
conclusion is not entirely obvious, but it is worth thinking through.)

Let us consider the situation depicted in Figure 3 from the TOA point of view –
using DIPLAN.

Y

0 1

a

Y0

decide

if Y = 0 then X = 0
if Y = 1 then X = 1a

a
a
a

X0

X0 1a

A B

Figure 4

This is the first DIPLAN diagram which appears in this paper, and deserves some
discussion in the light of the previous section.

Grossform of Figure 4: there is one central action labeled "decide" which changes
the state of X and Y (as per 4.3). Figure 4 leaves several things out: (a) there is no
explicit representation of X and Y (only of X and Y in their respective pre- and post-
states.); (b) there is no explicit indication of who performs the deciding action – X or
Y, or perhaps a Z that has been left out altogether. Given the nature of decision, it is
simplest to assume that X decides, based on the input state of Y; after deciding, X
will perform action A or action B, depending.

The "change-of-state" effect: in DIPLAN the change-of-state effect is symbolized
by a diamond; thus we see that the "decide" action changes two states: that of X (on
the right) and that of Y.

Case of: the DIPLAN symbol signifying this relationship is , the element at
left end of this connector being the case of the element on the right. From a more
careful explanation of "state" it is clear that Xa and X0 are both cases of X – and the
same with Ya and Y0 with respect to Y. These examples of case of are understood
and therefore not signaled explicitly. On the other hand, both Xa and Ya have cases

in turn. (Thus we see that TOA/DIPLAN allows for a state of a state (or case of a
case) as is true-to-life.)

The evaluation function: Decisions and other informational operations require the
specification of an "evaluation"; in DIPLAN, this evaluation is specified under the

The "Organized Activity" Foundation for Business Processes and Their Management 79

bar which can divide an action symbol. In effect, this evaluation is the computational
burden imposed by the decision. Enough has been explained above to make the
symbolism used in specifying the evaluation in Figure 4 evident.

The greater complexity of Figure 4 when compared to Figure 3(b): No doubt
Figure 4 is more complex, and every increase in complexity should be justified. So:
in what way is Figure 4 superior? (a) in its verisimilitude; (b) in its explicit represent-
ation of the "work" of deciding; (c) in its applicability to every case of deciding, no
matter at what "level", no matter where the "information" comes from, etc.; (d) in the
scope it leaves for: representing things explicitly or implicitly; for coping with
"mistaken decisions"; for representing decisions whose outcomes wholly, partially, or
not-at-all, depend on input information; etc.

5 Review and Conclusion

The principal purpose of this paper has been to "advertise" the existence of a new
theoretical framework – focused on organized activity OA, and its theory TOA, plus
a related graphical method of representation (called DIPLAN) This framework is not
only claimed to be applicable to BP/BPM; it is even claimed to bring advantages that
a more specialized approach cannot match. This paper is an "advertisement plus",
since it is also means to impart some substance that may be useful to BP/BPM
experts.

Rather than attempting the impossible (namely, within the compass of a paper,
introducing the reader to OA/TOA/DIPLAN explicitly), this paper is based on an
illustrative example, the "Pulsar". The Pulsar constitutes an unusual form of
organization which (a) is particularly easy to understand, (b) is particularly useful
when implemented by means of a network of computers; (c) is obviously relevant to
business processes – but also relevant to other types of organized activity. Detailed
discussion of the Pulsar is used to "flesh out" OA/etc.

It is shown that the aspects of the Pulsar which fit in with the OA/etc point of
view apply to all OAs, and therefore have software (and possibly hardware)
architectural implications. Even workflow – a much more traditional approach than
the Pulsar – could be improved by taking these aspects into serious consideration.

A secondary theme animating this paper is a comparison of DIPLAN and Petri
nets – because (a) it is obvious that DIPLAN (though more complex) is a descendant
of Petri nets, (b) many readers of this paper have previous familiarity with Petri nets,
(c) it is a method for revealing more of the theory which underlies DIPLAN, and (d)
it is a way to reveal some "big issues" underlying the focus on organized activity as
opposed to systems – a focus that applies to Petri nets, but also to other methods.

As this paper asserts: DIPLAN has advantages and disadvantages when
compared to more traditional methods, including Petri nets; (a) the theory underlying
DIPLAN is (we think) better adapted to "business processes" (and more generally
organized activity) than previous ones – as the Pulsar helps to demonstrate; (b)
TOA/DIPLAN have the disadvantage of inherent complexity; it remains an open

80 A.W. Holt

question whether this complexity "pays its way", especially considering that
notational and conceptual complexity militate against useful, applied mathematics;
(c) even though TOA/DIPLAN have been long in the making, they remain immature
products; they are little known and little applied. (Even the Pulsar with its evident
utility has not yet been incorporated in commercial software.)

However, TOA/DIPLAN and its practical consequences in the development of
computer support have been described in a number of publications, including a book
[7] in print and much more briefly in this paper. Its future remains open.

6 A Guide to Related Efforts

The contents of this paper was developed in course of ca. 5 decades of work, not
much related to "the literature". (Indeed, the beginnings of this work predate "the
literature"!) Nevertheless, the existing literature is relevant. Here, we provide a brief
guide to related work with some bibliographic references where it seemed warranted
to me. In this way I hope to connect the above to the massive international effort that
has been mounted in related directions.

6.1 Organized Behavior and Planning Languages

The reader may be surprised at the title just above: the technical community that has
been concerned with planning languages (graphical or otherwise) has not been
concerned with theories of organized behavior (nor have those concerned with
organized behavior been especially interested in planning languages). However: as
the above makes clear, in the context of this paper, it is appropriate to consider them
together.

In spite of Section 4 above, it seems appropriate to begin with a brief discussion
of Petri nets and Petri net theory – even at the cost of some repetition.

Although Petri nets are in fact associated with "theory", no one would be inclined
to regard this a theory of "organized behavior"; indeed, most people have regarded
Petri nets as applicable to the description and analysis of systems (whether human-
organizational or not) – no doubt with the thought that the rules governing organized
human activity can also be treated as a system. Surely this thought was connected to
C. A. Petri's interest in "communication disciplines" [9],[10], an idea that (somewhat)
approaches "organized activity". (It is easy to suppose that all such activities require
"communication", but I have assumed instead: all communication (especially
symbolic) requires OA, but OA certainly does not require symbolic communication –
or perhaps communication at all, depending on definitions.)

At all events, Petri nets are (a) quite mature, and (b) are widely known in the
community which is likely to read this paper. On Petri nets there is a literature (books
and papers) too extensive to be included. I content myself by referring the reader to
Petri's own most recent published views [11]. Here are a few other immediately
relevant references: Skip Ellis's "Information control nets" [5] (also developed from

The "Organized Activity" Foundation for Business Processes and Their Management 81

Petri nets, [11]); Eric Yu's "goal oriented processing model framework" [13]. (At all
events: to the best of my knowledge, DIPLAN is the only example of a planning
language directly related to a theory of organized behavior such as TOA.)

As regards planning languages, the field broadens out enormously; there are
graphical planning languages that have been extensively used in Operations Research
(such as PERT, GERT, CPM, etc.), Workflow languages, and finally graphical
flowchart languages used to represent digital computer program – a step farther away
from human organized activity, but only a step (as further explained in [7]).

6.2 New Software-Architectural Proposals

In the course of the last 25 years there have been numerous proposals for a basic
change in software architecture, with diverse motivations, some of which are cousins
of the motivations that lie behind the proposals above.

First, there have come into being a whole series of new operating system
proposals, none of which (a) have caught on, and (b) are as radical in outlook as Igo
(the proposal in [6]). Second: other new proposals have been conceived as aids to the
construction of information systems – more specifically Simon Kaplan [1], and
Giorgio De Michelis [3].

6.3 Over-all

Several authors and researchers have recognized that there are over-all issues
involved in the use of computers. Among those personally known to me are C.A.
Petri, Terry Winograd, J. S. Brown, and G. De Michelis. All of them have expressed
their views in writing – note particularly: Cook and Brown [2], Winograd and Flores
[12], and De Michelis [4].

Particularly important to mention is the (relatively recent) output of Special
Interest Group 8.1 of IFIP in the form of a report "A Framework of Information
System Concepts" (FRISCO for short) [6]. This report was painstakingly built by 10
persons with Prof. Eckhard D. Falkenberg in the lead. (Details may be learned at
ifip@ifip.or.at).

FRISCO is, in some sense, competitive with OA/TOA: without doubt it is
philosophically/scientifically motivated; it has been produced in recognition of the
same generalized lack that has brought OA/TOA into existence; it thinks its topic is
"information systems" (rather than "organized activity"), but it places considerable
emphasis on the idea that "organizations" are the context in which information
systems (along with technological hardware/software systems) are found. Without a
doubt FRISCO regards BP/BPM a sub-department. To members of the BP/BPM
community I strongly recommend: (a) a thorough acquaintance with OA/OAT; (b) a
thorough acquaintance with FRISCO.

Finally, a fuller treatment of OA/TOA can be found in [7] and [8] (among
others).

82 A.W. Holt

References

[1] Bogia, D., W. Tolone, C. Bignoli and S. Kaplan: Issues in the design of Collaborative
systems: Lessons from Conversation Builder, in: Proc. Schaerding International
Workshop on Task Analysis, Schaerding, Austria, 1993.

[2] Cook S. D. N. and J.S. Brown: Bridging epistemologies: the generative dance between
organizational knowledge and organizational knowing. Organizational Science, (to
appear).

[3] De Michelis, G., E. Dubois, M. Jarke, F. Matthes, J. Mylopoulos, J. Schmidt, C. Woo and
E. Yu: A Three-Faceted View of Information Systems: The Challenge of Change,
Communications of the ACM, 41.12, 1998, pp.64-70.

[4] De Michelis, G.: Cooperation and Knowledge Creation, in: Knowledge Emergence:
Social, Technical and Evolutionary Dimensions of Knowledge Creation, I. Nonaka and
T. Nishiguchi (eds.), Oxford University Press, New York: (to appear).

[5] Ellis, C.: Information control nets: a mathematical model of office information, in Proc.
of the 1979 ACM Conf. on simulation, measurement and modeling of computer systems,
ACM Press, New York, 1979.

[6] Falkenberg, E. et al.: A Framework of Information System Concepts, IFIP
(ifip@ifip.or.at), 1998.

[7] Holt, A.W.: Organized Activity and its Support by Computer, Kluwer Academic
Publishers, Dordrecht, Holland, 1997.

[8] Holt, A.W.: ripensare il mondo - il computer e i vincoli sociali, Masson-Dunod
Zanichelli, Bologna, Italy, 1998.

[9] Petri, C.A.: Communication Disciplines, In: Computing System Design. Proc. of the
Joint IBM University of Newcastle upon Tyne Seminar, B. Shaw (Ed.), University of
Newcastle upon Tyne, September 1976, pp. 171-183.

[10] Petri, C.A.: Modelling as a Communication Discipline, in: Measuring, Modelling and
Evaluating Computer Systems, H. Beilner, E.Gelenbe (Eds.), North Holland, Amsterdam,
1977, pp. 435-449.

[11] Petri, C.A.: Nets, Time and Space, Theoretical Computer Science,153, 1996, pp. 3-41.
[12] Winograd, T, and F. Flores: Understanding Computers and Cognition, Ablex, Norwood,

N.J., 1986.
[13] Woo, C. and E.C. Yu: A Three-Faceted View of Information Systems: The Challenge of

Change, Communications of the ACM, 41.12, (1998) pp. 64-70.

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 83-98, 2000
 Springer-Verlag Berlin Heidelberg 2000

Evaluation of Generic Process Design Patterns:
An Experimental Study

Michael Zapf and Armin Heinzl

Department of Information Systems (BWL VII), University of Bayreuth
michael.zapf@uni-bayreuth.de, armin.heinzl@uni-bayreuth.de

Abstract. In this chapter we present a framework for evaluating generic process
design patterns. This framework is developed and tested for call center organi-
zations as one specific application domain at first but will be modified for other
domains in the future. As starting point we briefly examine available contribu-
tions from organizational theory and operations research which are applicable
for evaluating generic process design patterns. Based on this we will identify
the most relevant process patterns in our application domain and work out rele-
vant performance criteria. In the second part of the chapter the evaluation
framework will be tested within an experimental study. Thereby we compare
different process partitioning strategies as typical design patterns in call centers.
Our analysis will provide insight to the question under which circumstances a
specific design pattern is preferable towards another.

1 Introduction

During the last years extensive work has been done to establish new or adapt existing
techniques for business process management. For example have Petri-nets proven to
be a powerful and accurate instrument for modeling and analyzing business processes
[1]. But as organizational theory provides little rationale how to design processes
from a normative perspective, the application of any process management instrument
might be limited to descriptive purposes only.

In order to derive more general knowledge about how to design business processes
we develop a framework for evaluating generic process design patterns. This frame-
work is constructed for call center organizations as one specific application domain at
first but will be modified for other domains in the future. With the evaluation of proc-
ess patterns in specific domains we want to bridge the gap between general domain-
independent design suggestions and specific in-depth domain knowledge.

As starting point we briefly examine available contributions from organizational
theory and operations research which are applicable for evaluating generic process
design patterns. In Section 3 the field of call center management is introduced and the
specific characteristics of this domain are shown. After that we identify the most
relevant process patterns in call centers and work out relevant performance criteria
and suitable measures. The evaluation framework will be tested in Section 4 within an
experimental study. Thereby we compare different process partitioning strategies as
typical design patterns in call centers. Our analysis will provide insight to the question

84 M. Zapf and A. Heinzl

under which circumstances a specific design pattern is preferable towards another. In
the last section the chapter is summarized and future research directions are pointed
out.

2 Related Contributions

In this section we identify relevant contributions from the literature which focus on
recurring normative process design problems, especially on the evaluation of process
design patterns. Although this short review is not comprehensive, it provides an im-
pression of past and presents research in the intersection of business process man-
agement and operations research.

In the early nineties, Hammer and Champy published their “radical” view on (re-)
designing business processes [5]. From their perspective as consultants they derive
some general process patterns which are stated to be superior to other ones. They
suggest, for example, that companies should maintain process versions to manage
different business cases by multiple specialists instead of generalists. Unfortunately,
they neither provide any evidence for the superiority of the suggested design patterns
nor they do indicate under which conditions their guidelines hold true.

In 1996, Buzacott examined these guidelines with a series of queuing models [2].
He uses throughput time as a measure of process performance and demonstrates that
the reengineering principles from Hammer and Champy are not valid for all circum-
stances. Buzacott concludes that the guidelines are relevant when task times are sub-
ject to high variability which is typical for office and service processes. However, the
focus on throughput time as a performance measure is not pervasive and ignores other
important dimensions like efficiency or flexibility.

In 1997 and 1998, the research of Seidmann and Sundararajan goes beyond, ana-
lyzing single reengineering concepts like the consolidation of tasks more intensive
[11, 12]. They also use throughput time as a performance measure but unlike Buza-
cott, they do not isolate queuing effects. Instead, they examine the influence of tech-
nological and organizational factors on the superiority of certain design patterns while
still neglecting design objectives other than throughput time. Therefore, their recom-
mendations cannot entirely support normative design decisions for real business proc-
esses.

The introduced evaluation approaches have in common, that (a) throughput time is
used as only performance measure and (b) the patterns are build on a very high level
of abstraction which makes it difficult to use them for normative design purposes. In
our approach we try to overcome this drawbacks by using multiple performance crite-
ria for evaluation and building process patterns for one specific application domain
which allows a detailed analysis.

Evaluation of Generic Process Design Patterns: An Experimental Study 85

3 Call Center Management

3.1 Overview

Today’s organizations encounter an increasing demand for high-quality services.
Customers expect courteous and rapid deliveries of value-added services which may
be strategic differentiator in traditional markets. In order to fulfill these expectations,
many organizations deploy call centers for communicating directly to their client
base. Due to the fact that call centers represent another marketing, sales, and service
channel, they are mostly managed as an independent organizational entity. It’s objec-
tive is to establish efficient and satisfactory interactions with actual and potential
clients through the use of information and communication technology1.

Call centers follow both, qualitative and quantitative objectives. Whereas qualita-
tive goals like “customer orientation” or “customer satisfaction” indicate a more gen-
eral view, quantitative goals like “service cost reductions” or “market share increases”
may even more important to measure the outcome delivered by this type of organiza-
tion.

The direction of communication within call centers can be inbound or outbound.
Inbound-oriented call centers try to cope with a huge stream of incoming calls pref-
erably avoiding busy telephone lines and long waiting periods for the customer. They
are mainly used for providing product information, offering technical support serv-
ices, handling incoming orders, managing customer requests and complaints, or cap-
turing client data.

Outbound-oriented call centers focus on planned telephone campaigns and bundle
all outgoing calls initiated by the service organization. Their application domains are
address authentication, telephone sales, including cross-selling of products and serv-
ices, sales support, collection and encashment services, and market research. Out-
bound-oriented call centers contact (prospective) clients in a proactive way. In case of
short capacity, the client will not realize the bottleneck since he will be simply con-
tacted hours or days later.

In contrast, the direction of communication in an inbound center is reverse and
provides less degrees of freedom with regard to operations. Since customers are initi-
ating the communication process, they expect the services to be offered (and deliv-
ered) in a prompt and timely manner. Insufficient resources will inevitably lead to
longer waiting times as well as customer frustration resulting in more terminated
calls. For this reason, it is more challenging to focus on inbound call centers which
are also more common in the field.

3.2 Characteristics of Inbound Call Centers

According to Cleveland, the overall goal of call center management is to handle the
workload of incoming customer requests with the desired service level on a high-
quality standard [3]. It is clear, that sufficient qualified employees (agents) and a
suitable organizational structure are the prerequisites to reach this goal. But there is

1 This following section is based on the contribution of [9] on call center management.

86 M. Zapf and A. Heinzl

little general knowledge available how to design a “good” call center organization and
how to answer the main questions which raise in this context:

• What qualification level of agents is suitable to reach high-quality standard?
• Does the call center require specialists, generalists or a mixture of both?
• What kind of process structure enables the agents to handle the workload with the

service level desired by the clients?

For a homogeneous environment with deterministic parameters for workloads, call-
duration, etc., it will be likely to find appropriate answers to these questions. But
(un)fortunately real world is not as simplistic as described but rather extremely dy-
namic. Thus, we need to discuss some of the dynamic characteristics of inbound-
oriented call centers in order to be able to utilize planning procedures to this non-
trivial problem domain.

• Random distribution of incoming calls
Exogeneous factors that are unlikely to be influenced by the service organization,
determine the calling behavior of the clients, their mode of inquiry, the time
needed for finding appropriate answers, as well as the number or incoming calls.
Even if call distributions could be estimated from the past, it is almost impossible
to forecast all future call occurrences and call intensities exactly. This problem in-
creases if less data about the history of the calls is available.

• Random call-duration
Communication behavior and customer requirements are divergent to a large ex-
tent. Thus, the duration of each single call will vary significantly. Moreover, it is
difficult to estimate the length of a particular call in advance.

• Different types of customer requests
Customers have varying questions on divergent problems. But they expect that
their phone calls are handled without major delays by a competent and qualified
service representative.

• Different media of incoming requests
Nowadays, different media such as telephone, fax or e-mail may be used simulta-
neously for communication with the client basis. The processes within a call center
must have the ability to utilize as well as integrate any of these media in order to
meet customer needs. Coping with media diversity is in fact one of the greatest
challenges for inbound call centers.

3.3 Generic Process Design Patterns in Inbound Call Centers

In the following we focus on processes which are directly embedded in the call center
organization. Further processes which are initiated by this interaction and take part in
other organizational units will not be subject of our analysis. As starting point for
deriving generic process patterns we follow the guidelines of Hammer/Champy [5]. In
this context, especially the following two design patterns seem to be relevant in the
call center domain:

A. Combining sequential tasks into one task which is executed by one employee and
B. Providing multiple process versions for different jobs or customers.

Evaluation of Generic Process Design Patterns: An Experimental Study 87

Pattern A allows the organization in an easy way to present one contact person to the
customer. Misunderstandings, multiple data acquisition and hand-off delays can be
avoided, resulting in positive effects on customer satisfaction and service quality. As
a thumb rule, customers do not accept more than one or two forwarding actions dur-
ing one call without getting annoyed. So it is clear that as much combining of tasks as
possible should be done in the direct interaction with the customer.

Applying pattern B has the consequence to partition the overall call volume ac-
cording to certain criteria and provide separate process versions and resources for
each partition. There can be different reasons for partitioning:

• Market reasons
In order to provide customized services it can be necessary to partition the process
according to certain customer preferences. In this case different process versions
are offered to different customer types. In conjunction with a differentiated prices
policy this can be an adequate way of income generation.

• Specialization reasons
Sometimes partitioning can be necessary because of the service or product com-
plexity which is continuously increasing. As humans have a large but limited quali-
fication potential it is not possible for employees to offer a high-quality service for
a broad and complex product range. Even if the service complexity is not high, it
can be useful to partition the processes in order to realize specialization gains
which lead to faster and better handling of requests. But it should be noted that
overspecialization may have an negative impact on the employee resulting in strain
or absenteeism and should therefore be avoided.

• Managerial reasons
Partitioning can be applied in order to better cope with span of control issues. It is
easier to manage small agent groups than large groups.

• Technical reasons
Technical reasons like geographical or cultural circumstances can require parti-
tioning. For example it may be necessary for international call center to partition
according different languages or time zones.

In order to use partitioning pattern B successfully, some further aspects have to be
taken into consideration. First, the partitioning scope has to be defined. It can be on
the process, subprocess or activity level. It has also to be decided how many versions
should be offered and whether a homogenous or non-homogenous partitioning should
take place.

3.4 Performance Criteria for Inbound Call Centers

The planning of an inbound call center is a complex task that requires a careful per-
formance evaluation approach. A comparison of emergent design alternatives should
be based on the behavior and outcome on the performance evaluation models in-
volved. The alternative that complies best to pre-specified design objectives will be
likely to be the preferable process design. Thus, suitable design objectives have to be
formulated as well as operable measures in order to quantify their degree of fulfill-
ment.

88 M. Zapf and A. Heinzl

As stated earlier, a call center should meet the service requirements of it’s actual
and future client base in a qualitative and efficient manner. Accordingly, “service
quality” and “efficiency” are major design objectives which will be outlined and op-
erationalized in the next.

3.4.1 Design Objective “Quality”
The literature offers a variety of important qualitative measures for determining the
service quality of a call center. Often quoted examples are “conversation quality” or
“consultation quality” [6]. These measures can be assessed through customer inter-
views or coaching sessions undertaken by staff consultants. Gathering data about
qualitative measures is useful for monitoring and improving ongoing activities. Thus,
it requires a call center which has already started operations. Since no corresponding
data is available at the planning stage, qualitative measures cannot be applied directly
for process design purposes.

Quantitative measures seem to be more applicable for design problems as de-
scribed in this paper. They are mainly used for examining whether customers are able
to get in contact with call center employees within an acceptable period of time or
not. They do not measure whether customers get the expected quality of service, but
they ensure a basis on which the service can be provided in an effective manner. The
following measures are suitable for this purpose:

• Service level
The service level indicate the percentage of calls which can be accepted in a certain
period of time, e.g. 80/20 indicates that 80 percent of all calls can be answered
within 20 seconds.

• Speed of answer
The average speed of answer is the average time, one call can be accepted, e.g. 12
seconds indicates that one call can be accepted at an average time of 12 seconds.
This measure has to be used carefully, because it does not provide any information
about one specific call of a certain customer. So it is possible that the actual speed
of an answer is higher or lower than the average speed of an answer in numerous
cases.

• Lost calls
The number of lost calls summarizes all communication activity related to custom-
ers who hang up during a certain period of time.

• Throughput time
The average throughput time is the overall time a customer has to hold on for the
desired service. It is composed of the average duration of a call and the average
delay.

• Waiting time
The average waiting time benchmarks the average time a customer has to wait un-
der the present conditions. In this context the longest waiting time may be of spe-
cial interest, because it indicates the maximum delay a customer has to accept un-
der the current conditions.

3.4.2 Design Objective “Efficiency”
Before we are able to determine which process patterns are more efficient than others,
we will briefly discuss which different types of costs are relevant for call center man-

Evaluation of Generic Process Design Patterns: An Experimental Study 89

agement and how these costs may be allocated to specific process patterns. Starting
with the cost types, we consider the following types as relevant:

• Labor
Labor costs may account for up to 60 percent of a call center’s total operating costs
[4]. Since not all labor costs can be physically traced to the services created by a
call center representative in a “hands on” sense, a distinction between direct labor
costs and indirect labor costs is necessary. For example, the labor cost of a call
center agent who is providing technical support service for a specific product could
be attributed as direct labor costs. On the contrary, costs incurred by the supervi-
sion and administration of a call center cannot be allocated directly to specific pro-
cesses and will therefore be referred as indirect labor costs or overhead costs.

• Technology
The costs of information and communication technology are comprised by hard-
ware and software costs. Since establishing an inbound call center requires an es-
timated initial capital investment of $ 5.000 to $ 7.000 per workstation [4], the in-
curred costs will be mainly accounted as depreciation on equipment and mainte-
nance fees within the overhead costs figure.

• Communication
Communication costs include all fees imposed from telecom service providers for
the use of (toll-free) phone numbers, e.g. installment, basic fees, rates per minute,
etc. which will be caused by the service organization. Since the time-based rates
can be directly allocated to calling service representative, this largest portion of
communication costs may be handled as direct costs. Basic fees and installments
are often treated as overhead costs.

• Office facilities
Facilities costs make up another significant portion of a call center’s overhead
costs. Examples are rent and lease, depreciation on buildings and furniture, power,
building security as well as office supplies.

• Outsourcing
Outsourcing costs incur from subcontracting external service providers that offer
specific functions, like conducting campaigns or buffering peak loads. Moreover,
these costs may also include the costs of consulting and research.

• Training
Training costs include all costs for extending the knowledge of the workforce in a
call center. Whereas it is always considered critical, it is an often overlooked com-
ponent of the call center’s success.

The first three types of costs listed – labor, technology and communication – repre-
sent the largest portion of cost, which may represent up to 90% of the total costs [10].
Since their controllability depends mainly on the contractual arrangements surround-
ing the cost objects, not all costs can be treated as variable. Especially outsourcing,
lease, rent, or even some telecommunication contracts may involve pre-specified
payments over a certain periods of time which do not permit the cancellation of the
contractual relationship at any time. Thus, the incurred costs are mainly fixed from a
short term perspective.

For comparing the efficiency of design alternatives it is especially important to
take the differing costs per process pattern into account. As the examined process

90 M. Zapf and A. Heinzl

alternatives have similar overhead costs (e.g. technology costs, facilities costs) we
will concentrate on direct costs, especially the direct labor and telecommunication
costs.

Costs are one way to measure the efficiency of a process design. They point out,
how much you have to pay for the employed resources. But they don’t show whether
the resources are overloaded or whether they have much idle time. For measuring this
kind of efficiency we use the resource utilization, which gives the percentage of time
a resource is busy in respect to the total time of its availability.

4 Evaluation of Common Process Design Patterns in Inbound Call
Centers

In this section we present some typical process partitioning strategies in inbound call
centers. We do not refer to a specific process design in a real enterprise but deal with
generic process patterns which can be found in several application domain areas. As
the most challenging processes are those with an high share of conversation and con-
sultation we will focus in our analysis on the technical product support process. The
scenarios will be evaluated during a simulation study.

Call Center-
Szenario

Call Center-
Szenario

process partitioning
strategies

overall
performance

incoming
requests

employees

settings

call center

Fig. 1. Evaluation framework

4.1 Evaluation Framework

The examined process partitioning strategies constitute the core of our evaluation
framework (see Figure 1). These strategies use different mixing ratios of employees to
handle the incoming requests. As employees are the most important resources for a
call center, the configuration of employees is likely to have a major influence on the
overall performance. This performance is derived from multiple measures according
to the criteria derived in the previous section.

Evaluation of Generic Process Design Patterns: An Experimental Study 91

4.1.1 Incoming Requests
The incoming customer requests are divided into two main categories, standard and
special requests. Standard requests refer to simple or well-known problems an can be
handled with basic knowledge of the application domain and the help of a solution
database. Special requests refer to difficult or unknown problems and require in-depth
knowledge on the side of the agent.

We consider incoming requests entering the call center with a certain “arrival rate”.
80% of these calls are standard requests, 20% are special requests. The time period
one agent needs to handle a request will be called “processing time” and the maxi-
mum time one customer accepts to wait for a free agent will be called “wait time until
abandonment”. These parameters are not deterministic but under stochastic influence.
Table 1 shows the examined parameters, values and distributions.

Table 1. Parameters for incoming requests

parameter value(s)
arrival rate 1000-1400 calls per hour
percentage of special requests 20%
processing time

standard request triangular(4, 8, 12)
special request triangular(10, 16, 22)

wait time until abandonment triangular(0.5, 1, 1.5)

4.1.2 Employees
In order to handle the incoming requests on a high-quality standard, enough qualified
employees are needed. We include two qualification profiles in our analysis:

• Generalists with general knowledge are able to handle standard requests and
• Specialists with specific knowledge are able to handle special and standard re-

quests.

The call center consists of 210 agents with possibly different payroll costs. We as-
sume that generalists cost $12.50 per hour ($2,000 per month) and specialists $15.63
per hour ($2,500 per month).

4.1.3 Process Partitioning Strategies
The partitioning strategies can be first divided into one-level and two-level designs.

In a one-level design all agents can accept calls directly from the customer and are
organized in one common level. Whereas in a two-level design only a portion of the
agents on the first level receives calls directly from the customer. The other part of the
agents builds the second level, who receive calls by forwarding from their colleagues
of the first level.

92 M. Zapf and A. Heinzl

special ist

s tandard
request

level 1

special
request

general ist

general ist

s tandard
request

special ist

level 1 level 2

special
request

Fig. 2. Basic one-level and two-level designs

The basic one-level design without partitioning assumes that every agent can han-
dle every incoming request and no forwarding is necessary (see Figure 2). The basic
two-level design implies a partitioning between standard and special calls. Standard
calls can be completely handled on the first level whereas special calls have to be
forwarded to the second level.

special ist

s tandard
request

level 1

special
request

forward

1

2

3

general ist

general ist

s tandard
request

special ist

level 1 level 2

special
request

special ist

1

2

3

Fig. 3. One-level and two-level design with further process partitioning

These basic designs can be modified by further process partitioning for special re-
quests. This partitioning implies also a partitioning of the specialist group into differ-
ent teams. One team is responsible for the requests of one specialist field and is not
able to handle requests for other fields. Examples for the one-level and two-level

Evaluation of Generic Process Design Patterns: An Experimental Study 93

designs with partitioning into three specialist teams are shown in Figure 3. In our
experiments we will assume a homogenous partitioning, which means an equal distri-
bution of requests between the teams. Please note that in the one-level design, for-
warding calls between different teams becomes invevitable. We assume that for-
warding calls to the right agent takes two minutes per call, no matter whether the
forwarding is done from one level to another or inside one level.

4.1.4 Performance Measurement
The overall performance of the process designs is analyzed according to the criteria
and measures which have been discussed in detail in Section 3.4. The results are pre-
sented in two ways:

For a summary comparison of two or more design alternatives the performance
measures are displayed in a single polar diagram (see Figure 4). The values for every
measure are derived from the experiments with different workloads by calculating the
arithmetic mean. This representation gives a first impression of the main differences
between the analyzed designs. But it has to be treated very carefully because of the
high degree of consolidation of the data.

Detailed comparisons are made by analyzing the changes of single performance
measures with respect to different workloads.

4.1.5 Settings and Evaluation Technique
The evaluation of the overall performance of different process partitioning strategies
will be conducted through a stochastic discrete event simulation study. We will use
Call$im [13], a call center specific extension of the simulation tool ARENA [7],
which suppports model design in a comfortable way. Some of the performance meas-
ures required were directly adopted from Call$im, while others have been imple-
mented through individual routines..

The experiments have been undertaken in the form of multiple terminating simula-
tion runs in order to reflect the nature of a typical call center. We assumed that the
call center will be in service from 8 AM until 6 PM. In order to obtain expressive
results, we lounched 100 runs for every experiment, every run representing one day of
operation. The service is offered to the customer by toll-free phone numbers which
cost 0,15$ per minute.

4.2 Results and Discussion

4.2.1 One-level versus Two-Level Design
In our first experiment, we compare the basic one-level and two-level designs (see
Figure 2). As the one-level design includes solely specialists, which are able to handle
any request, no process partitioning takes place. The two-level design provides two
process versions for standard and special requests: Standard requests are handled on
the first level, special requests pass through both levels.

94 M. Zapf and A. Heinzl

service level

speed of answer

lost calls

throughput time

waiting time

telecommunication costs

labor costs

resource utilization

one-level two-level

Fig. 4. One-level versus two-level design

Figure 4 presents the main performance differences between both designs. The
quality measures service level, speed of answer, lost calls and waiting time show the
disadvantage of the two-level design. This can be explained by the fact that (a) addi-
tional time has to be spend for call forwarding and (b) stronger queuing effects arise
according to smaller agent groups. These effects are stronger for special requests than
for standard requests and increase with the workload which is exemplary shown in
Figure 5 for the waiting times. As we assume a limited “wait time until abandonment”
accepted by the customer, the waiting times are relatively small and have little influ-
ence on the overall throughput times.
According to the higher call duration, the two-level design raises higher telecommu-
nication costs. All advantages of the one-level design have to be paid with high labor
costs, which are 15% higher than in the two-level design. The resource utilization
does not differ significantly between the designs.

In summary it may be said, that the one-level design provides a higher quality level
than the two-level design but causes higher labor costs.

4.2.2 One-Level versus Two-Level Design with further Process Partitioning
The second row of experiments deals also with the comparison between one-level and
two-level designs but takes a partitioning of special requests into three specialist
fields into account (see Figure 3).

Figure 6 shows that the performance differences between both designs are not as
strong as in the case of no further partitioning. Since in the one-level design, two third
of all special requests have to be forwarded on average, this observation can be easily
explained. Please note, that the partitioning leads to stronger queuing effects which
increase the percentage of lost calls significantly (compare Figures 4 and 6).

Evaluation of Generic Process Design Patterns: An Experimental Study 95

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80

1000 1100 1200 1300 1400

arrival rate (calls per hour)

w
ai

tin
g

tim
e

(m
in

ut
es

)

1-level (standard & special req.)
2-level (standard req.)
2-level (special req.)

Fig. 5. Waiting time for one-level and two-level design

The cost comparison of both designs provides the same results as in the previous
experiment: The agent costs in the one-level design are higher than in the two-level
design. While comparing the resource utilization it should be noted that the one-level
design guarantees a regular load sharing between the agents, whereas in the two-level
design the high loads are not proportional shared between generalists and specialists.

service level

speed of answer

lost calls

throughput time

waiting time

telecommunication costs

labor costs

resource utilization

one-level two-level

Fig. 6. One-level versus two-level design with further partitioning

96 M. Zapf and A. Heinzl

With partitioning of special requests, the one-level design offers a higher quality-
level than the two-level design but the differences are not as strong as in the case of
no further partitioning. For this quality increase a higher price for employees has to be
paid.

70,00

80,00

90,00

100,00

1000 1100 1200 1300 1400

arrival rate (calls per hour)

re
so

ur
ce

 u
til

iz
at

io
n

%

1-level 2-level (generalist) 2-level (specialist)

Fig. 7. Resource utilization for one-level and two-level design with further partitioning

4.2.3 Two-Level Design with Different Partitioning Strategies
The last set of experiments was carried out in order to examine the effects of different
partitioning strategies in the two-level design. No partitioning was compared with
partitioning into three and five specialist fields.

Further partitioning has mainly effected the percentage of lost calls, the other meas-
ures did not fundamentally differ from each other (see Figure 8). Figure 9 shows that
the percentage of lost calls increases exponentially under high loads which complies
with well-known results form queueing theory [8]. From there it is also to expect that
the situation gets even worse for non-homogenous partitioning.

Thus, further partitioning leads to lower quality measures, which is especially rele-
vant in high load situations.

5 Summary and Future Research Directions

In this chapter a framework for evaluating generic process design patterns was pre-
sented and applied in the domain of inbound call centers. In the first part we gathered
special characteristics of inbound call centers, identified process patterns relevant for
this domain and derived suitable performance measures for evaluating purposes. In
the second part we evaluated multiple versions of one representative process pattern
within a simulation study.

Evaluation of Generic Process Design Patterns: An Experimental Study 97

service level

speed of answer

lost calls

throughput time

waiting time

telecommunication costs

labor costs

resource utilization

no partitioning three specialist teams five specialist teams

Fig. 8. Two-level design with different partitioning strategies

0,00

2,00

4,00

6,00

8,00

10,00

12,00

1000 1100 1200 1300 1400

arrival rate (calls per hour)

lo
st

 c
a

lls
 %

no partitioning three specialist teams five specialist teams

Fig. 9. Lost calls for different partitioning strategies

The results of the experiments showed that a one-level call center design reaches
better quality measures than a two-level design from a quantitative point of view. It
also leads to a more regular load sharing between the employees. But these advan-
tages induce higher labor costs. Besides the fact that increasing process partitioning
leads to worse quality measures, it should be only applied when other positive effects
can be expected or no other alternatives are possible.

98 M. Zapf and A. Heinzl

Our approach may be considered as a first step towards a comprehensive analysis
of process patterns. Much work remains to been done on this way: (a) The presented
patterns have to be analyzed for more parameter constellations to allow the extension
of our results, (b) the dimension of multiple communication media has to be included
into the design patterns to give more support for realistic design decisions, (c) the
evaluation framework has to be extended with the design objective flexibility and (d)
the evaluation framework should be applied for other application domains.

References

[1] van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. In: The
Journal of Circuits, Systems and Computers 8 (1998) 1, pp. 21-66.

[2] Buzacott, J.A.: Commonalities in Reengineered Business Processes: Models and Issues.
In: Management Science 42 (1996) 5, pp. 768-782.

[3] Cleveland, B.; Mayben, J.: Call Center Management On Fast Forward. Call Center Press,
Annapolis, Maryland 1997.

[4] Gilpatrick, K.: Costing out call centers. In: Credit Union Management, August 1998, pp.
19-22.

[5] Hammer, M.; Champy, J.: Reengineering the Corporation. New York 1993.
[6] Henn, H.; Seiwert, G.: Controlling im Call Center. In: Henn; Kruse; Strawe (eds.): Hand-

buch Call Center Management. Hannover 1998, pp. 251-268.
[7] Kelton, D.W.; Sadowski, R.P.; Sadowski, D.A.: Simulation with ARENA. McGraw-Hill,

Boston et al. 1998.
[8] Kleinrock, L.: Queueing Systems. Volume II: Computer Applications. New York et al.

1975.
[9] Kruse, J.P.: Die strategische Bedeutung der Innovation Call Center. In: Henn; Kruse;

Strawe (eds.): Handbuch Call Center Management. Hannover 1998, pp. 11-34.
[10] Mura, H.: Standortauswahl für deutschsprachige Call Center. In: Henn; Kruse; Strawe

(eds.): Handbuch Call Center Management. Hannover 1998, pp. 95-112.
[11] Seidmann, A.; Sundararajan, A.: The effects of task and information asymmetry on busi-

ness process redesign. In: International Journal Of Production Economics, 50 (1997) 2/3,
pp. 117-128.

[12] Sundararajan, A.: Modeling and Designing Business Processes. Dissertation, William E.
Simon Graduate School of Business Administration. Rochester, New York 1998.

[13] Systems Modeling Corp.: Call$im Template Users’s Guide. Sewickley 1996.

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 99-109, 2000
 Springer-Verlag Berlin Heidelberg 2000

Management-Oriented Models of Business Processes

Anastasia Pagnoni Holt

University of Milano, Department of Computer Science
Via Comelico, 39/41 - 20135 Milano, Italy

pagnoni@dsi.unimi.it

Abstract. This contribution addresses the relevance of Petri nets to the man-
agement of business processes in a general way. It is organized in three steps:
(a) sorting out business processes are suitable to being represented by means of
Petri nets; (b) setting up a comprehensive list of the typical questions a man-
agement-oriented model should help answer; (c) suggesting ways to answer
questions in (b) for business processes sorted out in (a) by means of Petri net-
based methods. In particular, we discuss how to obtain such answers by grafting
algorithms of applied mathematics onto Petri net models. As a demonstration, a
specific business problem—decision-making over alternative plan executions
characterized by fuzzy properties—is worked out.

1 Introduction

Business processes are of very different types, as different as planning, production,
marketing, bookkeeping, financial procedures, and negotiations of various kinds.
Every business involves a number of intertwined processes, all of them marked by the
involvement of interacting, interdependent actors, who may compete, cooperate, or
conflict, and whose actions are usually difficult to untangle.

Designing effective computer support systems for processes of this level of com-
plexity is a difficult task that requires an adequate formal model of reality. Setting up
such a model amounts to deciding what information will be taken into account and
what omitted, which questions will be answered and by which algorithms, and how
key issues—costs, times, uncertainty, failure—will be dealt with. Any representation
language that is going to be used will result in a further modeling constraint.

Researchers working in the areas of applied mathematics, economics, and com-
puter science have suggested a number of formal models of reality. Every such model
draws from a particular paradigm—that is, from a particular exemplary situation, and
some problems it poses. So we have the paradigm of the decision maker trying to pick
an action that minimizes his regret—or maximizes his utility;—the paradigm of the
player driven by his want to beat some opponent, and that of the project manager
seeking to complete his project within a certain time, or budget.

Petri nets are reality models of a different nature. They do not originate from the
mathematization of some paradigmatic problem, but aim at representing the causal
structure of discrete-event, concurrent systems of any kind, together with their opera-
tion. Petri nets do not come with a problem attached, but are meant to be a general
representation tool. As a matter of fact, Petri nets have been used successfully for en-
gineering quite different systems: production plants, computer networks, software
systems, etc., though the representation and analysis capabilities provided by Petri

100 A. Pagnoni Holt

nets—invariance analysis, liveness questions, etc.—have not yet been exploited by
business analysts. Decision theory, game theory, operation research, statistics, baye-
sian networks, and other branches of applied mathematics provide a variety of meth-
ods for dealing with specific business-related problems, but all of these methods are
based on some kind of oversimplification of reality. But for statistics, neither these
methods nor the computer support systems based on them, are actually used in day-to-
day business practice. Business people need their questions to be set, and answered, in
a context that is true to the actual state of things. We believe that Petri nets can supply
such a context in a number of cases.

In the next two sections we consider the specifics of Petri nets as a modeling tool,
focusing on the features that make a business process apt for Petri net representation
(Section 2), and delineating what decision problems can best be solved with the help
of such a net model (Section 3). This done, in Section 4, we show how to exploit the
flexibility of predicate-transition nets—a particular "brand" of Petri net—so as to ren-
der the algorithms of applied mathematics viable in the context of Petri net models.
Finally, Section 5 illustrates the discussion above by working out a small applica-
tion—the integration of priority orders characterized by imprecise attributes into the
daily production schedule of a steel-manufacturing factory, via Petri net based fuzzy
decision making.

In the sequel we shall assume that readers are already familiar with Petri nets, and
the basics of fuzzy set theory.

2 Petri Nets and Business Process Representation

Petri nets allow us to draw clean-cut plans of general systems characterized be a high
degree of concurrency. In a business framework, such plans will be global or partial
outlines of a specific way of carrying out some kind of complex, mostly distributed,
activity; they will be aimed at specifics, such as the scheduling of resources of various
kind, or the controlling of failures, costs, workloads. Since every business may be re-
garded as a system involving a number of complex, concurrent operations—produc-
tion, marketing, bookkeeping, financial procedures, negotiations, etc.—which, in their
turn, consist of other complex, concurrent activities, using Petri nets for planning or
analyzing business processes seems a rather natural idea.

However, every business also involves processes that are difficult, or even impos-
sible, to represent by means of Petri nets: processes based on the ongoing interaction
of actors who relate to each other in ways too difficult to untangle. Think, for in-
stance, of the activities that take place at an emergency room, or of processes whose
working depends on unpredictable factors, like consumer behavior or competitors'
moves.

 The building blocks of Petri nets are elementary state and transition components
interconnected by a causality relation. But, while we may assume that the causal
structure of any system of organized activities consists of interconnected state and
transition components, some systems can not be represented as Petri nets at meaning-
ful levels of detail. Complex activities with a very rich causal structure may be just
impossible to break down in a useful way. For instance, drawing a Petri net plan of a
soccer game—even if it were the occurrence graph of an already played match—is
impossible. To draw such an occurrence graph, we would have to record every rele-

Management-Oriented Models of Business Processes 101

vant event of that match: all actions that did and did not occur, together with the order
in which they actually happened—or, did not happen. Every single action—or non-
action—that actually influenced the outcome of the game would need to be modeled.
And, even if it were possible to set forth such an occurrence graph, how many pairs of
soccer pundits could then agree on it? On the other side, a meaningful a-priori Petri
net model of a specific soccer game—say the final match of the last World Cup—is
just unthinkable, because such is the combination of relevant actions.

For the same set of reasons, business processes involving several actors cooperat-
ing or competing in a relevant number of unpredictable ways are ill-suited for Petri
net representation.

Another problem is that, being primarily a graphical representation language, Petri
nets need to suite the capabilities of the human eye. The number of net elements—cir-
cles, squares, arcs—must be constrained accordingly. It is easy to see that few top-
down unfoldings of several net elements are enough to make us loose track of the
general picture. The same holds true for the "horizontal" aggregation of a substantial
number of different net modules. Nor would it be more practical to rely on the inci-
dence matrix of a "large" net. Only adjusting the granularity of our representation to
human capabilities will make Petri nets a handy tool.

There is one more question to consider. Ordinary Petri nets have some element of
indeterminacy about them, as enabled transitions are not bound to ever fire, and time
is not taken into account explicitly. Timed and stochastic Petri nets allow us to associ-
ate times and/or probabilities with either state or transition elements, and then calcu-
late asymptotic properties of net behavior: steady state features, home states, transient
states, etc. But in general, asymptotic properties are of little interest to business man-
agers.

So, what features make a business process suitable for representation and analysis
by means of ordinary Petri nets? We suggest the following to be basic requirements.

Elementary state components of the business process model must represent well-
defined pieces of reality. Resources must be easily identified, counted, or evaluated;
conditions must be readily verifiable. Potential customers, expected orders, etc., are
hard to count; employee motivation, or customer satisfaction are difficult to verify.

Complex activities must consist of a reasonable number of—alternative or concur-
rent—patterns of behavior. Such patterns must break-down to a few well-defined, re-
peatable actions. (This is the requirement which both the soccer game and the emer-
gency room example fail to satisfy.)

The number of relevant state and transition components has to be fairly small. As a
rule of thumb, we suggest that a net's incidence matrix never exceed 100 elements,
with more zero entries as its size grows. (Too many arcs turn any net into a dish of
spaghetti.) If high-level nets are used, the number of colors, the order of predicates,
etc., also needs to be kept manageable.

Top-down unfoldings of net elements—state and transition elements alike—should
not go too deep: after a number of top-down unfoldings, everyone looses track of the
overall picture of the net.

Though some priority issues and synchronization problems are well modeled by
means of Petri nets—like "if transition a fires first, then transition b will never be able
to fire", or "transition a has to fire three times before b can",—time questions should
not be the foremost concern of our planning effort. Petri nets are not recommended
for solving timing problems. Other graphical methods—PERT or GERT networks,

102 A. Pagnoni Holt

GANT diagrams, etc.—work better, and can be combined with a Petri net plan of the
project considered.

3 Management-Oriented Questions and Petri Net Plans

Decision theory provides us with a number of methods for choosing from among sev-
eral actions, all of which rely on some mathematical formulation of the decision
problem considered. However, such methods are not well-suited to answering ques-
tions about strategy—about choosing from among several possible courses of ac-
tion,—because their formalisms do not allow for a dynamic representation of reality.
This kind of question requires the formal representation of alternative sets of possibly
concurrent actions, and is quite naturally expressed in the framework of Petri nets,
because the notions of conflict and concurrency lie at the very heart of this formalism.

What is needed is a Petri net representation—a Petri net plan—of our decision
problem, developed so that different courses of action do not interact (by this, we
mean that the only places shared by alternative net executions are the sink and
source). With this proviso, alternative net executions can be easily input to decision
making techniques [1]. Of course, the decision-relevant attributes of the activities
considered will have to be defined formally in some way.

Here is a list of business-relevant questions suitable to Petri net-based decision
making.

• What action, or strategy, is best suited to achieve a given goal?

• How will prices, labor costs, market situation, a certain political issue, weather,
etc., affect the outcome of a certain choice?

• What will the payoff, or the utility, of a certain course of action be?

• How are we to distribute this resource best?

• How are we to deal with conflicting goals?

• How are we going to steer this project?

• Can we detect, and possibly correct, unwanted situations as they appear?

In the next section we will show how to answer questions of this kind by grafting al-
gorithms of applied mathematics onto Petri nets.

4 Tapping into Applied Mathematics

We found that the best way to apply algorithms of applied mathematics to Petri
nets is to exploit the flexibility of predicate-transition nets [2], [3]. In this kind of net,
the elementary state components are predicates of order n, that is, relations among n
entries, possibly of quite different type (numbers, labels, functions, etc.), as their vari-
ety mirrors the variety allowed for predicate arguments.

Management-Oriented Models of Business Processes 103

At any given state, a predicate is satisfied by a (possibly empty) multiset of con-
stant n-tuples. This multiset represents the predicate's extension, that is, the multiset
of tuples for which the predicate actually holds true. Extensions of predicates make up
net markings, and represent system states. As markings are changed by transition fir-
ings, in the lingo of Petri nets, we say that n-tuples "flow" through predicate-transition
nets.

Because of the freedom allowed, such n-tuples are an ideal tool for representing
objects together with their attributes, numeric or other. If the net is developed so that
alternative net executions do not interfere—so that the only places they have in com-
mon are the source and sink—many algorithms of applied mathematics can readily be
applied to alternative net executions via numeric entries in tuples.

In the next section, we will demonstrate this approach by showing how to apply
fuzzy decision making in the context of predicate-transition nets. The method—fully
described in [1],—also works with other algorithms.

5 Working Out a Small Example

The problem addressed is a typical decision making problem: the integration of
priority orders—like small orders of best customers, or urgent orders of regular cus-
tomers—into the production scheduling system of a factory making steel bars by or-
der. Notice that this decision is about how to manage a certain business process, and
not about the engineering of a production plant.

For the sake of simplicity, here we will present only a very small predicate-
transition net representing the whole plant operation—net N, represented in Fig.1.
Our approach requires predicate-transition nets with one source and one, or more,
sink. All predicates but the source must be empty at the initial marking, and alterna-
tive net executions must not interfere. (A net execution is a set of sequential or con-
current transition firings that brings all tuples from the source to the sink. Transitions
may either already be enabled at the initial marking, or become so as the net "pro-
ceeds".)

Transitions 1, 2, 3, and 4 of net N represent four draw machines. The markings of
A represents metal chunks waiting to be drawn; the marking of B, bars already drawn.
We assume that four kind of bars are produced by the factory: type-a, type-b, type-c,
and type-d bars.

As we thought of using fuzzy sets in order to formalize the imprecise notions of
best customers and urgent order, we had factory managers help us define the fuzzy
attribute "best customer" and "urgent order".

Orders were represented by 3-tuples the first entry being the bar type ordered; the
second and third entries being the membership degrees of the two fuzzy attributes
above. For example, 3-tuple <a, 0.9, 0.3> would represent an order of a production
unit of a-type bars, "urgent" with degree 0.3, and placed by a customer assessed to be
a "best customer" with degree 0.9.

104 A. Pagnoni Holt

Markings of pr

where:

(i) trip
pro

(ii) µc(k
µc(k
cus

(iii) µu(q
rep

(iv) mi r
sim

Let the initial m

M(A) = 20<

Multiset M(A
we have 240 o
gree 0.3 only),
not urgent at a

We call a ne
concurrent— t
terize net exec

e = [

> >
20<x, y, z
Fig. 1. Net N

edicate-transition net N are multiset

∑ µµ<i ucii)q(),k(,tm

let <ti, µc(k), µu(q)> represents order
duction unit of ti-type bars; ti ∈ {a, b,

) is the membership degree of cu
)} representing the fuzzy attribute
tomers;

) is the membership degree of ord
resenting the fuzzy attribute "urgent

epresents a number of triplets with
ilar production units ordered.

arking of N be:

a, 0.9, 0.5> + 600<b, 0.4, 0.9> + 40
M(B) = ∅ .

) represents a set of orders waitin
rders for c-type bars placed by m

 200 of which are rather urgent ("ur
ll ("urgent" with degree 0.1).
t execution any multiset of enabled

hat brings all triplets in A from A to
utions as vectors of non-negative in

n11, n12, … , n1s, n21, n22, … , n2s, ……..…

B

3

20<x, y, z>

10<x, y, z>

10<x, y, z>

10<x, y

10<x, y

1 2
40<x, y, z
A

s of triplets, which we denote as

>

 q placed by customer k, for one
 c, d };

stomer k in fuzzy set Ac = {K,
 "good customer"; K is the set of

er q in fuzzy set Au = {Q, µu(q)}
 order"; Q is the set of orders;

same entries, that is, the number of

<c, 0.3, 0.1> + 200<c, 0.3, 0.7>

g to be processed. Among others,
ediocre customers ("good" with de-
gent" with degree 0.7), while 40 are

 transition firings—sequential or
 B. It will prove useful to charac-
tegers

… , nr1, nr2, … , nrs,]

4

, z>

, z>

40<x, y, z>

Management-Oriented Models of Business Processes 105

where r is the number of net transitions, s is the number of bar types, and nmt the
number of times transition m fires for bar type t. In our example, r = s = 4.

Table 1 shows six executions of net N with initial marking M.

Table 1. Six executions of net N

machine: 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

bar type: a b c d a b c d a b c d a b c d

e1
1 0 0 0 0 60 0 0 0 0 20 0 0 0 1 0

e2
0 0 2 0 2 0 0 0 0 60 0 0 0 0 5 0

e3
0 0 10 0 0 0 4 0 2 0 0 0 0 15 0 0

e4
0 10 0 0 2 0 0 0 0 0 4 0 15 0 0 0

e5
0 10 0 0 0 0 60 0 2 0 0 0 0 0 1 0

e6
0 30 0 0 2 0 0 0 0 0 4 0 0 0 5 0

For markings representing practical situations, there are usually very many alternative
executions, which can be determined by computer. In this application, we had the ad-
ditional constraint that orders for the same type of bar should not be split between dif-
ferent machines because of the long setup time required to shift from one bar type to
another.

Let d(m) indicate the run time of machine m, with: d(1)=1, d(2)=d(3)=2, d(4)=3,
and let the run time for execution e = [n11, n12, … , nrs] be defined as

d(e) = ∑
t,m

mt)m(dn .

From these times, fuzzy attribute Ad—"short run time", defined over the set of exe-
cutions E—can be derived:

Ad = (e, µd(e)) where µd(e) =
)(dmin)(dmax

)(d)(dmax

ee

ee

ee

e
−

−

()(dmin)(dmax ee ee ≠ , because if all executions had the same duration, we

wouldn't even consider the attribute "duration".)
For the six executions of Table 1 we get:

µd(e1) = 0.08 , µd(e2) = 1.00 , µd(e3) = 0.63 ,

µd(e4) = 0.66 , µd(e5) = 0.00 , µd(e6) = 0.75 .

Attributes Ac and Au were defined over the set of customers and the set of orders,
respectively. Since executions are multisets of transition firings, each of them occur-
ring for a specific triplet, we can extend attributes Ac and Au to net executions by con-
sidering the membership values carried by the firing triplets in the following manner.

Fuzzy attributes A'c and A'u—again called "good customer" and "urgent order"—
over the set E of executions, will be defined as:

A'c = (e∈E, µ'c(e)) with µ'c(e) =∑ µ
j,i

cij)j(n ,

106 A. Pagnoni Holt

A'u = (e∈E, µ'u(e)) with µ'u(e) =∑ µ
j,i

uij)j(n .

For the six executions of Table 1, we get:

µ'c(e1) = 0.67 , µ'c(e2) = 0.75 , µ'c(e3) = 0.58 ,

µ'c(e4) = 0.61 , µ'c(e5) = 0.74 , µ'c(e6) = 0.70 ;

µ'u(e1) = 0.84 , µ'u(e2) = 0.85 , µ'u(e3) = 0.71 ,

µ'u(e4) = 0.71 , µ'u(e5) = 0.85 , µ'u(e6) = 0.78 .

Attributes A'c, A'u, and Ad are defined over E; all of them express desirable execu-
tion features. Saaty [4] suggested a method to assign a weight, between 0 and 1, to
each such attribute in a way that expresses their relative importance to a decision
maker. For this example, we will assume the weighting to be:

w1 = (A'c) = 0.55, w2 = w(A'u) = 0.27, w3 = w(Ad) = 0.18 .
Weighted membership functions are obtained by raising membership functions to

the relative weight. Here we get:

[µ'c(e1)]
0.55 = 0.81 , [µ'c(e2)]

0.55 = 0.86 , [µ'c(e3)]
0.55 = 0.74 ,

[µ'c(e4)]
0.55 = 0.77 , [µ'c(e5)]

0.55 = 0.85 , [µ'c(e6)]
0.55 = 0.82 ;

[µ'u(e1)]
0.27 = 0.95 , [µ'u(e2)]

0.27 = 0.96 , [µ'u(e3)]
0.27 = 0.91 ,

[µ'u(e4)]
0.27 = 0.91 , [µ'u(e5)]

0.27 = 0.96 , [µ'u(e6)]
0.27 = 0.93 ;

[µ'd(e1)]
0.18 = 0.63 , [µ'd(e2)]

0.18 = 1.00 , [µ'd(e3)]
0.18 = 0.92 ,

[µ'd(e4)]
0.18 = 0.93 , [µ'd(e5)]

0.18 = 0.00 , [µ'd(e6)]
0.18 = 0.95 .

The degree to which an execution e is characterized by a set of fuzzy attributes
{Ai}—all attributes being defined over the same support E—is expressed by their in-
tersection ∆ (recall that, by definition, ∆ is also a fuzzy set over support E):

∆ = ,
i

iA = (e, µ∆(e)) with µ∆(e) = mini µi(e) .

Fuzzy set ∆ can be interpreted as fuzzy attribute "desirable". We get

µ∆(e1) = 0.63 , µ∆ (e2) = 0.86 , µ∆(e3) = 0.74 ,

µ∆(e4) = 0.77 , µ∆(e5) = 0.00 , µ∆(e6) = 0.82 .

Fuzzy attribute ∆ can be used to chose a net execution. Of course, several execu-
tions may turn out to be optimal, though in our example only e2 is.

Whenever a decision maker needs preference categories other than strict preference
and indifference, we can resort to fuzzy outranking—a technique introduced by B.
Roy [5]. Here is how it works.

For each fuzzy attribute Ai = (e∈E, µi(e)) the decision maker has to provide three
threshold values

Ii, Pi, Vi ∈ (0, 1) with Ii < Pi < Vi .

Management-Oriented Models of Business Processes 107

These values are interpreted as indifference, preference, and veto threshold, re-
spectively, in the following way:

eh is as good as ek if µi(eh) ≥ µi(ek) + Ii ,

eh is preferred to ek if µi(eh) ≥ µi(ek) + Pi ,

eh is considerably better than ek if µi(eh) ≥ µi(ek) + Vi .

Using these threshold values we can define for each attribute Ai its concordance
matrix Ci = [ci

ih] and its discordance matrix Di = [di

ih] :

ci

hk =

+µ>µ

+µ≤µ<+µ
−

µ−µ+

+µ≤µ

ihiki

ihikiihi
ii

kihii

ihiki

P)()(if0

P)()(I)(if
IP

)()(P

I)()(if1

ee

eee
ee

ee

di

hk =

+µ>µ

+µ≤µ<+µ
−

−µ−µ

+µ≤µ

ihiki

ihikiihi
ii

ihiki

ihiki

V)()(if1

V)()(P)(if
PV

P)()(

P)()(if0

ee

eee
ee

ee

The total concordance matrix C is defined as the weighted sum of the concordance

matrices of all attributes: C = [chk] = ∑
i

i
iCw .

Concordance matrix C is aggregated with the matrices Di = [di

ih] to form the dis-

cordance matrix D = [dhk] with dhk = ∑α
i

ihkn

1
, where n is the number of fuzzy at-

tributes considered, and

αihk = 1 if di

hk ≤ chk , αihk =
hk

i
hk

c1

d1

−
−

 if di

hk > chk

(di

hk > chk implies 1-chk ≠ 0).

The outranking degree of execution eh over execution ek is finally defined as

rhk = chk dhk ,

and yields the fuzzy outranking relation over E:

R = { ((eh, ek), µR(eh, ek)) (eh, ek) ∈ E×E ∧ µR(eh, ek) = rhk }.

108 A. Pagnoni Holt

In our case, after some algebra, we get:

e1 e2 e3 e4 e5 e6

e 1.00 0.11 0.73 0.73 0.36 0.43

e2
1.00 1.00 1.00 1.00 1.00 1.00

C = e3
0.22 0.00 1.00 0.76 0.18 0.08

e4
0.40 0.00 1.00 1.00 0.18 0.19

e5
0.85 0.76 0.82 0.82 1.00 0.82

e6
0.84 0.31 1.00 1.00 0.55 1.00

e1 e2 e3 e4 e5 e6

e1
1.00 0.67 0.67 0.67 1.00 0.67

e2
1.00 1.00 1.00 1.00 1.00 1.00

 D = e3
0.97 0.28 1.00 1.00 0.72 0.91

e4
1.00 0.39 1.00 1.00 0.85 1.00

e5
1.00 0.67 0.67 0.67 1.00 0.67

e6
1.00 0.67 1.00 1.00 1.00 1.00

e1 e2 e3 e4 e5 e6

e1
1.00 0.08 0.48 0.48 0.36 0.28

e2
1.00 1.00 1.00 1.00 1.00 1.00

R = e3
0.22 0.00 1.00 0.76 0.13 0.07

e4
0.40 0.00 1.00 1.00 0.16 0.19

e5
0.85 0.51 0.55 0.55 1.00 0.55

e6
0.84 0.21 1.00 1.00 0.55 1.00

The entries of the i-th row of R represent the degree to which execution ei outranks
the other executions. The minimum value of the i-th row—let us denote it by zi—is
the outranking degree of execution ei, that is, the degree to which ei outranks all other
executions. Here we have:

z1 = 0.08 , z2 = 1 , z3 = 0 , z4 =0 , z5 = 0.51 , z6 = 0.21 .

These values can be used for clustering net executions into several prefer-
ence classes. To this end, the decision maker will have to (a) determine the number n
of preference classes he intends to consider, and (b) set n preference thresholds λj,
with

0 < λ1 < λ2 < … < λn < 1.

Best executions will be executions ei for which λn < zi ≤ 1, second best executions
will be executions ei for which λn-1 < zi ≤ λn, and so on.

Management-Oriented Models of Business Processes 109

In our example, by using two preference thresholds only, λ1 = 0.5 and λ2 = 0.7,
we get one best execution e2—already found before—and one second-best execution,
e5. Other threshold settings would make for empty preference classes.

That we only got one execution per desirability class is not surprising, given that
we considered only six net executions out of the twenty four enabled at the initial
marking of net N under the additional constraint that same-type orders should not be
split between machines.

Actual applications usually encompass a substantially larger number of enabled
executions, and preference classes with several members. Our algorithm may there-
fore take some computing time. If necessary, this can be shortened by reducing the
search space by means of some heuristics, and by storing classification results in a
data base for future reference.

6 Conclusions

We are convinced that a Petri net model of the causal structure of a business operation
can provide a firm logical foundation and a realistic context for the application of al-
gorithms of applied mathematics, decision theory, game theory, operation research,
statistics, etc.—to business management questions. However, there certainly are im-
portant types of business operations not suitable to Petri net representation; specific
requirements—discussed in Section 2—must be fulfilled. We argue that if they are,
the key to the successful grafting of those algorithms onto Petri nets is provided by
the modeling flexibility of predicate-transition nets. This will equip Petri net models
with a very efficient computational toolkit.

References

1. Pagnoni A.: Project Engineering: Computer-Oriented Planning and Operational Decision
Making, Springer-Verlag, Berlin Heidelberg New York (1992)

2. Genrich H.J.: Predicate/Transition Nets. In: Brauer, Reisig, and Rozenberg (eds.): Petri
Nets: Central Models and Their Properties, Part I. Springer-Verlag, Berlin Heidelberg
New York (1987) 207—247

3. Genrich H.J., Lautenbach K.: System Modelling with High-Level Petri Nets. Theoretical
Computer Science, 13 (1981) 98—111

4. Saaty T.L.: The Analytic Hierarchy process: Planning, Priority Setting, and Resource Al-
location. MacGraw Hill, New York (1980)

5. Roy B.: Partial Preference Analysis and Decision-Aid: Fuzzy Outranking Relation Con-
cept. SEMA, Paris (1976)

Validation of Process Models
by Construction of Process Nets?

J�org Desel

Lehrstuhl f�ur Angewandte Informatik
Katholische Universit�at Eichst�att, Germany

joerg.desel@ku-eichstaett.de

Abstract. The major aim of this chapter is to describe an approach to-
wards the development of techniques and tools to support the construc-
tion, validation and the veri�cation of Petri net models of information
systems and business processes. To this end, the behavior of the models
is de�ned by partially ordered causal runs, represented by process nets.
We discuss how these runs are constructed and visualized for validation
purposes, and how they are analyzed. Moreover, we demonstrate how dif-
ferent dynamic properties can be formulated and checked by searching
respective patterns in process nets.

1 Introduction

Petri nets are frequently used for modeling both information systems and busi-
ness processes. Whereas an information system model captures all its business
processes and their interplay, a business process model can be viewed as a part
of an information system model, leading from some input or trigger to some out-
put or termination. We will not distinguish models of information systems and
models of their business processes in the �rst sections of this chapter because
most introduced concepts apply to both. We rather use the term \system" for
information systems and for business processes.

Each system has a dynamic behavior, given by its set of runs. In a run,
actions of the system can occur. We will distinguish actions from action occur-

rences and call the latter events. In general, an action can occur more than once
in a single run. Therefore, several events of a run might refer to the same action.

There are basically two di�erent techniques to describe the behavior of a Petri
net model: A run of the model can either be represented by a sequence of action
names (a sequence of sets of action names, respectively) representing subsequent
events (sets of events, respectively) or by a causally ordered set of events. The
�rst technique is formally described by occurrence sequences (step sequences,
respectively). It constitutes the sequential semantics of a Petri net. The second
technique employs process nets representing causal runs. It constitutes the
causal semantics of a Petri net.

? work done within the project VIP, supported by the DFG (Deutsche Forschungs-
gemeinschaft)

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 110-128, 2000.
 Springer-Verlag Berlin Heidelberg 2000

The main advantage of sequential semantics is formal simplicity. Sequential
semantics generalizes well-known concepts of sequential systems: Every occur-
rence sequence can be viewed as a sequence of global system states and transfor-
mations leading from a state to a successor state. One of the main advantages of
causal semantics is its explicit representation of causal dependency, represented
by paths of directed arcs in process nets. Consequently, concurrent events are
events that are not connected by a path in a process net.

Causal semantics of Petri nets has been studied in Petri net theory since a
very long time, starting with the work of Carl Adam Petri in the 70ies (see [1])
for an overview). More recently, variants of causal semantics are used for e�cient
veri�cation algorithms [8]. Applications of Petri nets, however, mostly restrict
to sequential semantics, and so do most Petri net tools.

In the majority of applications, Petri nets are used for the speci�cation,
documentation and communication of planned or existing systems. They can be
executed, i.e., runs can be generated, and thus the behavior of the system can
be simulated and visualized. The aim of simulation is to validate the model with
respect to its behavioral properties. So, in contrast to veri�cation of correctness
with respect to a formal speci�cation, the user can check if the desired behavior is
reected in simulated runs of the model. The issue of our work is to employ causal
semantics also for simulation. We will show that, despite some formal overhead,
there are a number of important advantages of causal semantics compared to
sequential semantics in the application area of information systems and business
processes.

The remaining part of this chapter is organized as follows: In Section 2, we
discuss some principles of causal semantics and provide a Petri net model that
will serve as a running example in the subsequent sections. Section 3 gives some
formal de�nitions and properties of process nets. In Section 4, we show that
simulation with process nets increases expressiveness and e�ciency, compared
to sequential simulation. Section 5 is devoted to the construction of process
nets whereas Section 6 discusses the analysis of process nets. Finally, Section 7
generalizes the approach from place/transition nets to high-level Petri nets. The
chapter ends with conclusions and references.

2 Principles of Causal Semantics

In sequential semantics, a run is represented by a sequence of events such that
causal dependencies are respected: If an event causally depends on another event,
then these events will not appear in the converse order in a sequence. Each event
is represented by the name of the respective action. These sequences are called
occurrence sequences.

A causal run also consists of a set of events, representing action occurrences
of the system. An action can only occur in certain system states, i.e. its pre-
conditions have to be satis�ed. The occurrence of the action leads to a new
system state where some post-conditions of the action start to hold. An event
is therefore causally dependent on certain pre-conditions and might lead to new

111Validation of Process Models by Construccion of Process Nets

warm ready counter

cold accepted

inserted

brew dispense

insert

accept

reject

Fig. 1. A vending machine for beverages

conditions that are causal prerequisites for other events. The time and the du-
ration of an event has no immediate inuence on the system's behavior, as long
as such dependencies are not explicitly modeled as actions of clocks. Combining
events with their pre- and post-conditions yields the causal structure of a causal
run of a system.

We represent the causal structure of a causal run by a particular Petri net,
called process net. Pre- and post-conditions of events are explicitly modeled in
a process net. Therefore, the immediate causal dependency is represented by the
arcs of a process net. The transitive closure of this relation de�nes a partial order
that we will call causal order; two events are causally ordered if and only if they
are connected by a chain of directed arcs. Otherwise, they are not ordered but
occur concurrently.

A causal run of a system model is given by a process net which is annotated
by respective names of actions of the system. More formally, we de�ne mappings
from the net elements of the process net to the net elements of the net repre-
senting the system. Causal simulation of a system model means construction
of process nets, just like traditional simulation constructs sequences of events.

Figure 1 shows a place/transition Petri net modeling a vending machine for
beverages. We will use this example to demonstrate our approach. The left hand
part describes a physical facility for brewing and dispensing warm beverages.
At most three warm beverages can be prepared concurrently. After dispensing a
beverage, cold water is �lled in the respective unit, hence the place cold in the
post-set of the transition dispense. The right-hand part describes the control
of the machine and a counter for coins. Initially, the machine is ready for the
insertion of a coin. An inserted coin will be checked; counterfeit will be rejected.
When a coin is accepted, a beverage can be dispensed and the control part of
the machine returns to the state ready.

Process nets of this system model are shown in Figures 2, 3 and 4. The
relation between elements of these process nets and elements of the system net
is given by annotations of the elements of the process nets. For example, each
event annotated by insert represents one occurrence of the transition named
insert of the system net.

The process nets shown in Figure 2 and Figure 3 describe causal runs where

112 J. Desel

counter

brew cold

ready inserted ready inserted accepted

dispense insert accept insert

counter

accept

accepted

 dispense

ready

cold

warm

warm

cold

cold brew warm

counter

cold

ready inserted ready inserted accepted

dispense insert accept insert

counter

accept

accepted

 dispense

ready

cold

warm

cold

cold

brew warm brew warm

counter

brew cold

inserted acceptedready inserted ready

insert insert reject accept

counter

dispense

ready

warm

warm

cold

cold brew warm

inserted

insert

counter

Fig. 2. A process net of the vending machine of Figure 1

Fig. 3. A second process net of the vending machine of Figure 1

Fig. 4. A third process net of the vending machine of Figure 1

113Validation of Process Models by Construccion of Process Nets

two coins are inserted, both are accepted, and two beverages are dispensed. In
both runs, two beverages are brewed, and so both runs end with two tokens in
counter, state ready, and two cold and one warm beverage.

In Figure 2, the beverage that was warm initially is dispensed �rst. The
second dispensed beverage was brewed concurrently to all previous events. In
Figure 3 the capacity of the brewing facility is not exploited: The second dispense

event has to wait after the �rst dispense event at least the time necessary for
brewing a beverage. Moreover, the �rst dispense does not use an initially warm
beverage. So one could consider the run of Figure 2 more e�cient with respect
to response time. Moreover, the quality of a warm beverage might decrease after
a while (this holds at least for co�ee). Also according to this criterion, the run
of Figure 2 shows a \better" behavior than the one of Figure 3.

The process net shown in Figure 4 describes a causal run where the �rst
inserted coin is rejected. The second inserted coin is accepted and a beverage is
dispensed. This beverage is not the one that was warm initially. Concurrently,
a third beverage is brewed but not dispensed. This run ends with two tokens in
counter, state inserted, and two warm and one cold beverage.

3 Formal De�nitions

We follow the the standard de�nitions and notations of place/transition nets and
process nets [12,7]. However, in contrast to the usual notion, we equip process
nets with initial states, represented by markings of conditions.

A place/transition net N = (P; T; F;M0) is given by

{ a �nite set P of places (represented by circles),
{ a �nite set T of transitions satisfying P \ T = ; (represented by squares),
{ a relation F � (P [T)� (P [T) satisfying F \ (P � P) = F \ (T � T) = ;

(represented by arcs), called the ow relation of the net, and
{ an initial marking M0:P ! IN (represented by tokens in the places), where
IN is the set of nonnegative integers.

For a net element x in P [T , �x (pre-set of x) denotes the set of elements y
satisfying (y; x) 2 F and x� (post-set of x) denotes the set of elements y satisfying
(x; y) 2 F . In this chapter, we restrict our considerations to place/transition nets
without transitions t satisfying �t = ; or t� = ;.

We do not consider arc weights or capacity restrictions, as de�ned in [12,7].
Given an arbitrary marking M :P ! IN , a transition t is enabled if each

place p in �t satis�es M(p) � 1. The occurrence of t leads to a new marking M 0,
de�ned by

M 0(p) =

8<
:
M(p)� 1 if (p; t) 2 F and (t; p) =2 F;
M(p) + 1 if (p; t) =2 F and (t; p) 2 F;
M(p) otherwise.

We denote the occurrence of t at the marking M by M
t��!M 0.

114 J. Desel

The causal behavior of a system net (P; T; F;M0) is de�ned by its set of
process nets, representing causal runs. For the formal de�nition of a process
net, we employ again place/transition nets: Each process net of the system net
(P; T; F;M0) consists of a place/transition net (C;E;K; S0), together with map-
pings �:C ! P and �:E ! T , satisfying the conditions given below. The net
(C;E;K; S0) is called process net, its places are called conditions, its transi-
tions events and its markings states. To avoid confusion, the place/transition
net model (P; T; F;M0) of the system will be called system net.

{ Every condition c in C satis�es j�cj � 1 and jc�j � 1,
{ the transitive closure of K is irreexive, i.e., it is a partial order over C [E,
{ for each event e, � \ (�e� ��(e)) as well as � \ (e� � (�(e))�) are bijections

(these intersections restrict the domain of � to the pre-set (post-set) of e and
the co-domain of � to the pre-set (post-set, respectively) of the corresponding
transition �(e)),

{ S0(c) = 1 for each condition c in C satisfying �c = ; and S0(c) = 0 for any
other condition c in C,

{ �(S0) = M0, where � is generalized to states S by

�: (C ! IN)! (P ! IN) ; �(S)(p) =
X

�(c)=p

S(c):

A condition c in C represents the appearance of a token on the place �(c).
An event e in E represents the occurrence of the transition �(e). In a run, each
token is produced by at most one transition occurrence, and it is consumed by
at most one transition occurrence. Hence, conditions of process nets are not
branched. The transitive closure of K de�nes the causal relation on events
and conditions. Since no two elements can be mutually causally dependent, the
causal relation is a partial order. In other words, the process net has no cycles.
Since events represent transition occurrences, the pre- and post-sets of these
transitions are respected. The initial state of the process net is the characteristic
mapping of the set of conditions that are minimal with respect to the causal
order, i.e., these conditions carry one token each and all other conditions are
initially unmarked. Note that all minimal elements are conditions because, by
our general assumption, every event has at least one pre-condition. Finally, the
initial state of the process net corresponds to the initial marking of the system
net, i.e., each initial token of the system net is represented by a (marked) minimal
condition of the process net.

As mentioned before, a process net represents a single causal run of a system
net. We equip a process net with an initial state S0 so that the token game can
be played for process nets as well. As will be stated in the following lemma, the
sequences of event occurrences of a process net closely correspond to transition
sequences of the system net. It may be worth noticing that in a process net
every event can occur exactly once and that the order of these event occurrences
respects the causal order given by the causal relation. Every reachable state
is safe, i.e., no condition ever carries more than one token. Moreover, in every
reachable state, no two marked conditions are ordered by the causal relation.

115Validation of Process Models by Construccion of Process Nets

Lemma1. [1]
Let (P; T; F;M0) be a place/transition net. If (C;E;K; S0) together with map-
pings �:C ! P and �:E ! T is a process net and

S0
e1��! S1

e2��! � � � en��! Sn

is a sequence of event occurrences, then

M0

�(e1)��! �(S1)
�(e2)��! � � �

�(en)��! �(Sn)

is a sequence of transition occurrences of (P; T; F;M0).
Conversely, for each sequence

M0

t1��!M1

t2��! � � � tn��!Mn

of transition occurrences of (P; T; F;M0), there is a process net (C;E;K; S0)
with mappings �:C ! P and �:E ! T and a sequence of event occurrences

S0

e1��! S1

e2��! � � � en��! Sn

such that, for 1 � i � n, �(Si) = Mi and �(ei) = ti.

The �rst part of the lemma follows immediately from the de�nition of process
nets because transition vicinities are respected by the mappings � and �. For
proving the converse direction, we can successively construct a suitable process
net by adding events with pre- and post-conditions according to the occurring
transitions. However, in general this construction is not unique. For example,
the occurrence sequence of transitions

M0

insert

��! M1

accept

��! M2

brew

��!M3

dispense

��! M4

insert

��! M5

accept

��! M6

brew

��!M7

dispense

��! M8

has related occurrence sequences of events in both process nets shown in Figure 2
and in Figure 3.

Lemma 1 states that process nets respect the sequential behavior; no in-
formation about possible occurrence sequences is gained or lost when we con-
sider process nets. Moreover, it states that reachable markings of the system net
closely correspond to reachable states of its process nets. The following lemma
gives another characterization of reachable states of process nets.

Lemma2. [1]
Let (C;E;K; S0) be a process net of a place/transition net. A state S is reachable
from S0 (by a sequence of event occurrences) if and only if S is the characteristic
mapping of a maximal set of pairwise not ordered conditions.

Maximal sets of conditions that are mutually not ordered are often called
cuts. By Lemmas 1 and 2 a marking of a system net is reachable if and only if
there exists a process net with a cut that corresponds to this marking.

116 J. Desel

4 Simulation by Generation of Process Nets

The behavior of a system modeled by a Petri net is validated by simulation
of the net; every run of the net gives information on the possible behavior of
the system. In particular, if a run shows undesirable properties, then either the
system is not correct or it is not faithfully modeled by the net. Traditionally,
simulation of a net means construction of sequences of transition occurrences.
The designer can analyze these sequences to investigate the system's behavior.
In case of many or large simulation runs, these sequences will be constructed
automatically and stored in a data base. In case of small simulation runs, the
transition occurrences and the reached markings can be visualized by Petri net
tools such that the user has direct control over the simulation run.

In our approach, not sequences but process nets representing causal runs are
constructed. In this section, we argue that we gain two major advantages: ex-
pressiveness and e�ciency.

Expressiveness

Every sequence of events, i.e. transition occurrences, de�nes a total order on these
events. A transition can either occur after another transition because there is a
causal dependency between these occurrences or the order is just an arbitrarily
chosen order between concurrent transition occurrences. Hence, an occurrence
sequence gives little information on the causal structure of the system run.

Consider again the following occurrence sequence of the place/transition net
given in Figure 1:

M0

insert

��! M1

accept

��! M2

brew

��!M3

dispense

��! M4

insert

��! M5

accept

��! M6

brew

��!M7

dispense

��! M8

This sequence corresponds to both process nets given in Figure 2 and 3. It is
a sequential view of both causal runs because both process nets possess cor-
responding occurrence sequences. As argued before, the run of Figure 2 has
reasonable advantages compared to the run of Figure 3. The above sequence
does not distinguish between both runs. In particular, the sequence does not
express important behavioral properties that are distinguished by causal runs.

The occurrence sequence given above contains no information about the
causal ordering of the occurrences of the transitions brew and dispense: Either
the beverage brewed �rst is dispensed �rst or the beverage which was warm ini-
tially is dispensed �rst. Causal runs provide full information about these causal
dependencies. They clearly distinguish runs with di�erent causal dependencies
between events.

Interesting aspects of system behavior such as the ow of control, the ow
of goods, possible parallel behavior etc. are directly represented in process nets,
but they are hidden in sequences of events. The process net shown in Figure 2
shows very clearly the ow of control (ready, insert, inserted, accept, ...) and
the di�erent local states and events of the beverages (e.g., cold, brew, warm,
dispense, ...).

117Validation of Process Models by Construccion of Process Nets

E�ciency

Simulation of a system model means construction of a set of (di�erent) runs.
In general, each causal run corresponds to a nonempty set of occurrence se-
quences. This correspondence is formally established by Lemma 1: Taking the
sequence of labels of events in occurrence sequences of process nets yields all
occurrence sequences of the system net. However, since di�erent events of a pro-
cess net might have the same annotation, di�erent occurrence sequences of the
process net might relate to the same occurrence sequence of the system net.

In the example shown in Figure 2, the upper event brew can occur at any
position before the second dispense event. The lower brew event can occur at
an arbitrary position in the occurrence sequence. So the process net of Figure 2
possesses 48 maximal occurrence sequences. Some of these sequences are identical
with respect to event labels, but they still represent 27 di�erent occurrence
sequences of the system net. The process net of Figure 3 exhibits 9 occurrence
sequences which correspond to 9 di�erent occurrence sequences of the system
net. The process net of Figure 4 has 40 occurrence sequences, generating 25
di�erent occurrence sequences of the system net.

The number of occurrence sequences of a single process net grows dramati-
cally when a system exhibits more concurrency. The addition of a beverage unit
to the system, and a corresponding concurrent event brew to the process net
of Figure 2, multiplies the number of di�erent occurrence sequences of the pro-
cess net by increasing factors 9, 10, 11, . . . In general, the number of occurrence
sequences of a single process net grows exponentially with the number of con-
current transitions. Each of these occurrence sequences represents the very same
system run. Hence, the simulation of more than one of these sequences yields
no additional information on the behavior of the system. However, if a system
exhibits no concurrency at all, then nothing is gained by the construction of pro-
cess nets because in this case each process net has only one maximal occurrence
sequence.

On the other hand, as mentioned in the previous subsection, a single occur-
rence sequence might correspond to more than one process. For example, the
above occurrence sequence corresponds to four process nets. This only happens
in case of system nets that are not safe, i.e. have more than one token on a place
at a reachable marking. So the ratio between the number of process nets and the
number of occurrence sequences might be slightly reduced by this fact in case of
non-safe system nets.

These considerations should demonstrate that the construction of process
nets is considerably more e�cient than the construction of occurrence sequences.
This advantage is most evident when all runs of a system can be simulated, i.e.
when there is only a �nite number of �nite runs. In the more general case of
arbitrary large runs, a set of process nets allows to represent a larger signi�cant
part of the behavior than a comparable set of occurrence sequences.

118 J. Desel

5 Construction of Process Nets

This section is concerned with the question how process nets of a system net
are constructed. The core idea is to start with a set of marked conditions that
correspond to the initial marking and then subsequently add suitable events,
add arcs to their pre-conditions, add post-conditions, and add arcs from the new
event to the post-conditions. In other words, we consider an occurrence sequence
of the system net and construct a process net such that this occurrence sequence
is a sequence of labels of the occurrence sequence of the process net. The existence
of a suitable process net is guaranteed by Lemma 1. As an example, the process
net of Figure 2 could have been constructed by starting with the four marked
conditions and then adding eight events labeled by

insert; accept; brew; dispense; insert; accept; brew; dispense:

This procedure relates to the following occurrence sequence of the system:

M0

insert

��! M1

accept

��! M2

brew

��!M3

dispense

��! M4

insert

��! M5

accept

��! M6

brew

��!M7

dispense

��! M8:

As stated before, this process net possesses a corresponding occurrence sequence,
but it also represents several more di�erent occurrence sequences.

Problems during the construction of process nets are concerned with fairness,
alternatives and termination conditions.

Fairness

In general, a marking of a system net can enable more than one transition.
Accordingly, at any stage of the construction of a process, there might be sev-
eral ways to continue. Transition occurrences can either exclude each other {
because they use the same input token { or they can be concurrent. During the
construction of a process net, we have to distinguish these phenomena:

{ The addition of a new event can exclude another event. Then, adding one
or the other event leads to di�erent process nets.

{ In case of concurrent events, the events can be added in an arbitrary order,
yielding the same process net.

As an example, consider again the process net shown in Figure 2. The �rst
insert event (together with its post-conditions counter and inserted) can be
added at the beginning of the process. The two brew events occur concurrently.
These three events can be added in an arbitrary order. After addition of the
insert event, there is a choice to continue with accept (as in the process net of
Figure 2) or to continue with reject (as in the process net of Figure 4). These
events exclude each other.

Fairness issues concern both alternative and concurrent events. We only con-
sider fairness of concurrent events. Therefore, we have to ensure that an event
that can be added to a process net constructed so far will eventually be added,
provided no alternative event is added to the process net. In our example, this

119Validation of Process Models by Construccion of Process Nets

means that we do not construct arbitrary large process nets where one beverage
remains cold forever; otherwise the transition brew would be persistently enabled
and hence it will eventually occur and an according event will be added.

A fair construction ensures that every concurrent part of the system is re-
ected in the run. Fairness can be guaranteed by scheduling the process net
construction stochastically. Then, the probability of the occurrence of a persis-
tently enabled event increases with the size of the constructed process net.

The fairness problem is not speci�c for causal simulation. The same problem
appears when only sequences of events are constructed in sequential simulation.
However, for sequential runs, a clear distinction between concurrent events and
alternative events is impossible.

Alternatives

As mentioned above, transition occurrences can exclude each other. More pre-
cisely, at some reachable marking, the occurrence of a transition might disable
another transition and vice versa. During the construction of a process net, this
means that there is an alternative between two events that can be added to a
process net constructed so far, and both events have a common pre-condition.
Remember that in process nets we cannot add both events, because conditions
of process nets are not branched.

Consider again the example process net of Figure 2. After the addition of
insert, there is an alternative to continue with accept or with reject. These
choices lead to di�erent process nets. Another alternative appears after the ad-
dition of the events insert, accept and brew. In this situation, one enabled tran-
sition is dispense. We have the choice to dispense the beverage that was warm
initially or to dispense the freshly brewed beverage. These are di�erent events,
that both have the condition labeled accepted as a pre-condition. Their respec-
tive addition leads to di�erent process nets.

For the construction of di�erent process nets, alternatives in process nets
constructed so far have to be found. To this end, we identify reachable markings
of process nets with the following property:

{ The process net continues with some event e,
{ the process net could also continue with some event e0 6= e,
{ e and e0 share at least one input condition, and
{ no process net constructed so far coincides with the process net under consid-

eration up to this marking, and continues with e0 (more precisely, it continues
with some event mapped to the same transition and using the same input
conditions as e0).

We then continue with the event e0, i.e., we consider the process net up to the
marked places (with respect to the marking considered above) and add an event
e0, suitable arcs from marked input conditions, suitable output conditions as well
as arcs connecting e0 to these output conditions.

120 J. Desel

Termination conditions

A causal run does not necessarily terminate with a marking that enables no
transition. It is even often part of the system speci�cation that every reachable
marking enables some transition. For these systems, termination is an unde-
sirable behavior and terminating markings are considered errors or deadlocks.
Operating systems, elevators, plants etc. are examples for such systems. The
simulation of the behavior of a system modeled by a Petri net, however, neces-
sarily has to stop eventually. Here we discuss criteria for the termination of a
single causal run.

At this point, the di�erence between system models for information systems
and system models for process nets is important. Termination of an information
system is usually undesirable because it means that the information system has
reached a deadlock and no business process can continue or can be started again.
In contrast, termination of a business process is highly desired because each
business process should �nally lead to an end. In our example of Figure 1, the
information system model corresponds to the entire Petri net and an according
business process model corresponds to the entire Petri net except the transition
insert. Starting with the marking reached after the occurrence of insert, this
business process will either stop after rejection or after accepting and dispens-
ing a beverage. The process nets of Figure 2, 3, and 4 contain several insert
events and hence they represent the behavior of more than one business process.
Simulation of runs of single business processes is not so illustrative because the
interplay between both parts of the system is only interesting when more than
one business process has been started.

The simplest way to de�ne a termination criterion is to use a bound in terms
of the number of created elements or in terms of simulation time. In general
this method does not lead to \good" termination situations, as will be discussed
next. However, if no other criterion is applicable, simulation has to be stopped
by this method.

Sometimes, the earliest reachable state of a process net after an event e

corresponds to a marking of the system net that in turn corresponds to a state
reached in the same process net before. Then we have entered a cyclic behavior
and can stop after e without loosing any information about reachable markings.
More precisely, we do not add any further events causally after e. Formally, the
event e is a cut-o� event in the terminology of [8].

Another possibility is that the earliest reachable state of a process net after
an event e corresponds to a marking that also corresponds to a state of another
process net constructed before. Then, a possible continuation can be constructed
from this other process net, too. In this case, we stop the construction of the
current process net with all conditions that belong to the earliest reachable state
after e. It might even be necessary to delete elements that are causally after these
conditions.

Usually, a system model has interfaces to its environment. For example, in
our vending machine example, the transition insert cannot occur without a cor-

121Validation of Process Models by Construccion of Process Nets

responding action of the environment: Some user has to insert a coin. So we
can distinguish internal transitions of the Petri net model, that are forced to
occur when they are enabled and external transitions, that are allowed to occur
when they are enabled but might remain enabled forever without occurring. In
a causal run we expect that a system does not terminate as long as internal
transitions are enabled. If only external transitions are enabled, then the system
may terminate, and we might stop simulation. In our simulation approach, we
start with the occurrence of internal and external transitions. After a while, we
stop the occurrences of external transitions and continue with internal events
only. For systems that require repeated interaction with the environment, the
simulation run will eventually terminate. In our example, the vending machine
will eventually stop in the state ready with all beverages warm and some num-
ber of coins in counter, provided that the external transition insert is stopped
eventually.

6 Analysis of Process Nets

When large and/or many process nets are constructed, inspection by visualiza-
tion is no longer feasible. Instead, the model has to be validated by automatic
analysis of the process nets. The user has to identify certain desired or unde-
sirable properties every run has to satisfy, and a computer tool checks whether
these speci�cations hold for the generated process nets. In our approach, the
speci�cation of the properties can be done in the (graphical representation of
the) system model. We distinguish three classes of properties.

Facts

A fact is an invariant property that holds for all reachable markings of a sys-
tem model. We can check intended facts in simulation runs by analyzing all
reached states. This is simple for sequential simulation runs, because the mark-
ings reached during a run can explicitly be represented. We show how facts can
be checked more e�ciently using causal semantics.

Here, we only consider properties of markings requiring that not all places
of a given set of places are marked simultaneously. A typical example is mutual

exclusion of critical sections of parallel programs: Two places representing the
critical sections should never be marked together. In our example, the set fready;
acceptedg is a fact, because there is no reachable marking where these two places
are both marked. The set fready; counterg is not a fact because there is a reach-
able marking that marks ready as well as counter.

Simulation can help to identify violations of intended facts (facts cannot be
proved by simulation, as long as not all process nets of a system are constructed).
The process net of Figure 2 can be used to show that fready; counterg is not
a fact. For this purpose, it is not necessary to play the token game. It rather
su�ces to �nd conditions labeled by ready and counter, respectively, that are
not ordered, i.e., not connected by a directed path. In fact, the condition counter

122 J. Desel

a b

a b

in the post-set of the �rst insert event and the second condition ready are not
ordered. Every set of unordered conditions is a subset of a cut (i.e., a maxi-
mal set of unordered conditions). Every cut corresponds to a reachable state of
the process net by Lemma 2. Every state of the process net corresponds to a
reachable marking of the system net by Lemma 1. Hence, the two unordered
conditions prove that there is a reachable marking of the system net that marks
both places.

This example proved that causal simulation allows a very e�cient way to
identify violations of facts; we only have to investigate conditions that are ac-
cordingly labeled and mutually not causally dependent. Using sequential simula-
tion instead, a fact violation is only recognized if the order of concurrent events
in an occurrence sequence is chosen in such a way that a marking disproving the
fact is actually reached. This is a particular drawback when system components
are modeled at di�erent levels of abstraction. Consider e.g. two concurrent sys-
tem components, one modeled by two subsequent transitions and the other one
by, say, 100 subsequent transitions. Now consider the marking reached after the
occurrence of the �rst transition of the �rst component and after the �rst 50
transitions of the second component. Assume that this and only this marking
violates a given fact. This violation is easily recognized by construction of the
corresponding unique process net. Using sequential simulation, it is only recog-
nized if the second transition of the �rst component does not occur before the 50
transition occurrences of the second component. Using any stochastic strategy to
chose among concurrent transitions, recognition of the fact violation turns out to
be not very likely. Even using di�erent weights for the occurrence probability of
transitions does not help much because there is in general no a priori knowledge
on the granularity of di�erent components.

Facts can be speci�ed in the system by so-called fact-transitions. A fact
transition can be viewed as a special transition which does not belong to the
system and which should never become enabled. The following fact-transition
represents the fact that, at no reachable marking, both places a and b are marked.

As shown above, the analysis of process nets w.r.t. facts reduces to searching
a set of appropriately labeled mutually unordered conditions. This can be viewed
as a simple pattern in the process:

The pattern is interpreted as follows: there are two conditions in the process,
labeled by a and b respectively, such that there is no order between them. We

123Validation of Process Models by Construccion of Process Nets

cold

ready inserted

dispense insert accept

accepted

 dispense

brew warm

dispense dispense

d=4

will show next that other system properties can be reduced to a pattern search-
ing problem in a similar way.

Causal Chains

The next property under consideration is based on immediate causal depen-
dencies. For example, we might be interested in runs of our vending machine
where two subsequently dispensed beverages use the same brewing facility; then
the second user has to wait until the beverage is brewed while there might be
two available warm beverages that could be dispensed immediately. In such a
run, unnecessary delay occurs. Sequential simulation cannot identify such runs
because the beverages are not distinguished by occurrence sequences. In causal
semantics, a corresponding process net is shown in Figure 3. In general, we are
looking for process nets exhibiting the following pattern:

More abstractly, the user can specify that two dispense-events have a distance
of only four subsequent arcs, which means that some path with only for directed
arcs connecting the events exists.

Goals

The last property we like to discuss refers to the eventual occurrence of cer-
tain transitions. For example, one could require that after insertion of a coin
either the coin is rejected or a beverage is dispensed. More generally, given two
sets of transitions A and B, we require that every occurrence of an A-transition is
eventually followed by an occurrence of a B-transition. In terms of process nets,
this means that for every event labeled by an A-transition we �nd a causally
subsequent event that is labeled by a B-transition. Notice that this property
can only be checked when a simulation is not terminated arti�cially after some
A-transition. Usually, goals should be reached even if external transitions do not
occur. Hence, the termination criterion of the previous section using internal and
external transitions respects goals.

As the other properties, a goal can be checked by searching respective pat-
terns in process nets. In the above example, for every insert event we have to
�nd a directed path that either leads to a reject event or to a dispense event.

124 J. Desel

insert reject | dispense

 dispense

insert

reject

goal

Goals can be speci�ed at the system level by special goal-places:

Filter

Simulation combined with analysis of process nets can be used to �nd out if
the system model exhibits undesired behavior. Another application of the same
concept is to �lter process nets and then validate or analyze the remaining causal
runs. For example, one could be interested in those runs of the example system
net shown in Figure 1 not containing any reject event or in those runs not con-
taining a causal chain pattern as described in the previous section. Using this
approach, it is possible to visualize and validate only runs with certain behavior.
This can be useful if only a speci�c feature of a system has to be checked. It
is also possible to assume some properties which are not implemented in the
model yet. So one can begin with a rough model together with some behavioral
speci�cation, generate causal runs of the model, ignore those runs which do not
satisfy the speci�cation and continue validation and analysis with the remaining
runs. In this sense, the method supports an incremental system design, where
speci�cations are successively implemented in the system model.

7 High-Level Petri Nets

High-level Petri nets allow to use individual tokens instead of indistinguishable
tokens of place/transition nets. They allow a much more compact representa-
tion of systems. In industrial applications, high-level nets have great advantages
compared to place/transition nets because they combine the graphical repre-
sentation of Petri nets with the possibility to capture data. In this section, we
sketch how our approach works for high-level Petri nets. First, we need some
de�nitions.

Given a set A, a multiset over A is a mapping from A to IN . Multisets gener-
alize sets but a multiset can contain several identical copies of an element. As an
example, a marking of a place/transition net can be viewed as a multiset over its
set of places where the number of tokens on a place de�nes its multiplicity. We
call a multiset over A �nite if only �nitely many elements of A are not mapped
to 0. The set of multisets over A is denoted byM(A). The sum (and di�erence,
if applicable) of two multisets is de�ned element-wise for each element of A.

125Validation of Process Models by Construccion of Process Nets

warm ready counter

cold accepted inserted

brew dispense

insert

accept

reject

C

C
T

x x

xx

x
x

x+1

x+1

0

A high-level Petri net is given by

{ sets P , T and F , de�ned as in the de�nition of a place/transition net,
{ a set A of individual tokens and a domain Ap � A for each place p in P ,
{ an initial marking M0, where an arbitrary marking M :P !M(A) assigns

to each place p in P a �nite multiset M(p) in M(Ap),
{ a set of modes �t for each transition t in T ,
{ for each pair (p; t) in F \ (P � T), an input-mapping i(p;t):�t ! M(Ap)

specifying the tokens on the place p necessary for the occurrence of t in
mode m 2 �t,

{ for each pair (t; p) in F \ (T � P), an output-mapping o(t;p):�t !M(Ap).
{ When a transition t occurs in modem 2 �t at a markingM , then a successor

marking M 0 will be reached, de�ned by

M 0(p) =

8>><
>>:
M(p)� i(p;t)(m) if (p; t) 2 F and (t; p) =2 F
M(p) + o(t;p)(m) if (p; t) =2 F and (t; p) 2 F
M(p)� i(p;t)(m) + o(t;p)(m) if (p; t) 2 F and (t; p) 2 F
M(p) if (p; t) =2 F and (t; p) =2 F

The inscription of places by elements of their domains denotes the initial mark-
ing.

Fig. 5. A high-level Petri net model of the vending machine

For an example of a high-level Petri net, consider Figure 5. The set A of
individual tokens is fC; T; �g [IN . The domain of the places warm and cold
is fC; Tg (for co�ee and tea, respectively), the domain of counter is IN , and
the domain of each other place is f�g. Initially, all places are marked by sets, as
shown in the �gure. The transitions brew and dispense can occur in two di�erent
modes each, moving either a C- or a T -token. After the occurrence of brew in
mode C, the place warm carries two C-tokens, i.e. its marking is f(C; 2); (T; 0)g.
The transitions insert and reject can occur in each mode n 2 IN . The input-
and output-mappings are given by the annotations of the arcs. For example, the
mode C of dispense associates the value C to the arcs (warm; dispense) and
(dispense; cold) and the value � to (accepted; dispense) and (dispense; ready).
Any mode n 2 IN of insert associates n + 1 to (insert; counter) and n to
(counter; insert) and � to the other two adjacent arcs. Hence, the �rst occurrence

126 J. Desel

counter

brew cold

ready inserted ready inserted accepted

dispense
insert

accept
insert

counter

accept

accepted

 dispense

ready

cold

warm

warm

cold

cold brew warm

counter

C

T

C C C

T

C

0 1 2

Fig. 6. A process net of the vending machine of Figure 4

of insert can only happen for the mode 0. Then, the 0 is removed from counter

and replaced by 1.
A process net of this high-level net is shown in Figure 6. The inscription of

the nodes does not represent the initial marking anymore but rather speci�es for
each condition which kind of token it represents. Process nets of high-level nets
are de�ned very much like process nets of place/transition nets. Formally, these
process nets are place/transition nets where the initial state marks the minimal
conditions. All simulation concepts demonstrated in the previous sections can
be applied to high-level Petri nets and their process nets, too.

8 Conclusions

The approach described in this chapter is the main aim of a current project called
VIP (Veri�kation von Informationssystemen durch Auswertung halbgeordneter
Petrinetz-Abl�aufe), supported by the DFG (Deutsche Forschungsgemeinschaft).
In the VIP-project, we apply the simulation concept to high-level Petri net mod-
els of systems. For an implementation of the concepts suggested in this contri-
bution, see http://www.aifb.uni-karlsruhe.de/InfoSys/VIP/overview/vip.html.

We conclude this contribution by giving some references to related work, in
particular to work done within the VIP-project.

As mentioned in the introduction, causal semantics and process nets belong
to the standard concepts of Petri net theory. For process nets of condition/event
systems, the textbook [12] can be consulted. Roughly speaking, condition/event
systems are a subclass of place/transition nets. Process nets of place/transition
nets have been de�ned at di�erent places, [1] is a good reference. The way we
de�ne process nets as particular place/transition nets is unusual. However, it
allows to formulate the results given in Lemma 1 and Lemma 2 in a particularly
simple way. Similar results can be found in [1]. Our de�nition of high-level Petri

127Validation of Process Models by Construccion of Process Nets

nets is a simpli�ed version of the de�nition given in [11]. Process nets of high-
level Petri nets generalize process nets of place/transition nets in a canonical
way. The graphical representation of facts is taken from [10]. The concept of
internal and external transitions is adopted from [13].

The paper [4] concentrates on the principle goals of our project. In [2], it
is shown how all process nets of a system net can be constructed. In [5], the
user interface is emphasized. [3] deals with the algorithms for the analysis of
process nets. Visualization of process nets employs graph-drawing algorithms.
In [9] it is shown how process nets are visualized in the tool developed within
the VIP-project, using a modi�ed version of the so-called Sugiyama-Algorithm.

The VIP-approach can be easily extended to analysis of business processes
with respect to time and cost [6]. The evaluation of a system model is based
on the evaluation of its causal runs. The explicit representation of causality
and concurrency in causal runs allows to apply OR-methods for calculation of
optimal time and cost parameters.

References

1. E. Best and C. Fernandez C: Nonsequential Processes. Springer-Verlag (1988)
2. J. Desel, A. Oberweis and T. Zimmer: Simulation based analysis of distributed
information system behavior. 8th European Simulation Symposium ESS96, Genua,
pp. 319-323 (1996)

3. J. Desel, T. Freytag and A. Oberweis: Prozesse, Simulation und Eigenschaften netz-
modellierter Systeme. Entwurf komplexer Automatisierungssysteme, Braunschweig,
pp. 141-161 (1997)

4. J. Desel, T. Freytag and A. Oberweis: Causal semantic based simulation and vali-
dation of high-level Petri nets. 11th European Simulation Multiconference, Istanbul,
pp. 826-830 (1997)

5. J. Desel, T. Freytag, A. Oberweis and T. Zimmer: A partial-order based simulation
and validation approach for high-level Petri nets. 15th IMACS World Congress,
Berlin. Volume 4. Wissenschaft und Technik Verlag Berlin, pp. 351-366 (1997)

6. J. Desel and T. Erwin: Modeling, simulation and analysis of business processes. In
this volume.

7. J. Desel and W. Reisig: Place/transition Petri nets. Lectures on Petri Nets I: Basic
Models, Lecture Notes in Computer Science Vol. 1492, pp. 122-173, Springer-Verlag
(1999)

8. J. Esparza: Model checking using net unfoldings. Science of Computer Programming
23, pp. 151-195 (1994)

9. T. Freytag: Ablaufvisualisierung durch topologisch angeordnete Kausalnetze. 6.
Workshop Algorithmen und Werkzeuge f�ur Petrinetze, Oktober 1999, Institut f�ur
Wirtschaftsinformatik der Universit�at Frankfurt / Main, pp. 18-23 (1999)

10. H.J. Genrich and G. Thieler-Mevissen: The Calculus of Facts. Mathematical Foun-
dations of Computer Science, Springer-Verlag, pp. 588-595 (1976)

11. K. Jensen: Coloured Petri Nets, Vol.1: Basic Concepts. 2nd edition, Springer-
Verlag (1995)

12. W. Reisig: Petri Nets { An Introduction, Springer-Verlag (1985)
13. W. Reisig: Elements of Distributed Algorithms, Springer-Verlag (1998)

128 J. Desel

Modeling, Simulation and Analysis

of Business Processes

J�org Desel1, Thomas Erwin2

1 Lehrstuhl f�ur Angewandte Informatik
Katholische Universit�at Eichst�att, Germany

Joerg.Desel@ku-eichstaett.de
2 Institut f�ur Angewandte Informatik und

Formale Beschreibungsverfahren,
Universit�at Karlsruhe, Germany

Thomas.Erwin@aifb.uni-karlsruhe.de

Abstract. Building and analyzing models of business processes has
gained increased importance for any activity that requires a close exam-
ination of the business processes involved, e.g., Business Process Reengi-
neering e�orts. In this chapter we introduce a Petri net based approach
to support such activities. Business processes are modeled using standard
place/transition nets enhanced with some notions needed to integrate all
aspects of business processes that are relevant with respect to analysis
purposes, e.g., the notion of time and costs. The Petri net models of
business processes are simulated by generating partially ordered runs.
We will show how these runs can then be used for performance analysis
of important key indicators such as throughput time.
All introduced concepts are summarized in a 3-step approach that sup-
ports users to base their decision between possible alternatives for the
design of a business process on facts.

1 Introduction

Since the beginning of the 1990's business processes and their design have gained
increased importance for almost any business. The ability to streamline one's
business processes in a way as eÆcient and exible as possible has become one
of the most critical factors for the success of today's companies. The need to deal
with business processes has caused an increased need for suitable techniques and
tools for their identi�cation, analysis and simulation. The basis for all this are
models of business processes.

Business process models play an important role in all di�erent phases of business
process (re-)design regardless of the framework used. As a result these models are
used in phases of early designs of Business Process Reengineering (revolutionary
approach) as well as during the repetitive design circles of Continuous Process

Improvement (evolutionary approach)1.

1 see [2, 14] and Figure 1

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 129-141, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Pro-
duction

Analysis

Evolution

Revolution

Analysis

Design

Design

Implemen-
tation

Use of

Models
Business Process

Implemen-
tation

Fig. 1. Revolutionary and evolutionary phases of Business Process Reengineering [14]

Errors made in early design phases will spoil any (re-)design e�orts that might
follow. Hence the need for methods that support a profound evaluation of process
design quality in early design phases emerges as a must - otherwise choices
between alternative designs of a business process have to be based on opinions
or feelings. Although this appears to be common practice these days it is clearly
desirable to support these important decisions with some facts by building and
evaluating business process models instead.

However, in order to be able to conduct any evaluations, quite some require-
ments have to be met by the formalism used for building the models. Especially
results with respect to quantitative criteria such as throughput time or costs will
in most cases be based on simulations of the model. By asking the model to
support simulation one directly asks for formal syntax and semantics. Other-
wise the model would not be executable by a simulation engine. This is one of
the main reasons why Petri nets and related formalisms (such as event-driven
process chains (EPC) [16]) have become a popular choice for modeling business
processes. The suitability of Petri nets for the modeling of business processes
has been examined and discussed extensively (e.g., see [1, 6, 10, 13]). Because
they are directly executable, Petri net models can easily be used to examine
behavioral aspects of the modeled system during simulation.

In this chapter we present an approach for simulating business processes in order
to gain helpful information for design decisions, especially during the important
early (revolutionary) phases of (re-)design (see Figure 1). To this end we �rst

130 J. Desel and T. Erwin

briey introduce the way we build a model for a business process using Petri
nets. By adopting the simulation approach based on causal runs from [5] we get
a set of runs for our business process model that we can then use for a qualitative
and quantitative analysis of what we have modeled. Finally we integrate all the
introduced techniques into a 3-step approach that allows us to repeatedly exam-
ine (models of) business processes with respect to key performance indicators in
an interactive way (see Figure 2). Throughout the chapter we will use a small
example from the �eld of car manufacturing to illustrate our concepts.

Real World

Known or
Planned
Behavior

Simulated
Behavior

Properties
of Model

Build Model

Validate

Analysis

Interpretation
by Simulator

Desired
Properties

Model

Compare and

Evaluate

Fig. 2. A 3-step approach to support the design of business processes

2 Modeling

In this section we briey explain what kind of business processes we aim to model
within the scope of this chapter and which characteristics of these processes
we consider for analysis. We then introduce some basic concepts for building
business process models with Petri nets.

2.1 Business Processes

A business process can be described as a set of activities that are being executed
according to certain rules with respect to certain objectives. The execution of
a business process describes the execution of the corresponding activities such
that the rules are obeyed and the objectives are met. During execution of a

131Modeling, Simulation and Analysis of Business Processes

business process an activity can be executed multiple times, once or never. The
execution of a business process usually involves decisions on alternative routings,
i.e., choices between the execution of alternative activities have to be made.

During execution of business process, activities have to be coordinated.Resources
have to be provided where needed for the execution of activities. A business pro-

cess speci�cation describes which activities have to be executed in what order
(including concurrent execution) and what resources are needed for execution
of these activities. Such a speci�cation can contain di�erent aspects of business
processes. Depending on the modeling objectives, functional (concentrating only
on activities and their order) or organizational (including the organizational con-
text in which activities are to be carried out) aspects can be emphasized [16, 19].
In this chapter we focus on functional aspects. With respect to the type of busi-
ness processes we will limit ourselves in this chapter to production workow or
administrative workow [2], i.e., we only consider business processes which can
be executed according to a given process speci�cation.

There are many characteristics of business processes that are used for analysis
purposes [11, 17, 19]. In this chapter we will concentrate on performance analysis

of business processes with respect to key indicators from the areas time and
costs. With respect to time indicators we di�erentiate between activity time and
waiting time. Activity time is regarded as deterministic and non-variable, i.e., we
assume that we can describe the time needed for the execution of an activity by
using target values or estimates based on previous experiences [4]2. On the other
hand, waiting time can vary with the execution of alternative routings within
the business process speci�cation (we will see an example for this in Section 3).
Costs of an activity are regarded as a function of the activity. Similar to time
values we assume non-variable activity costs and variable waiting costs, each
being values directly dependent on the corresponding time values.

Performance analysis of business processes often involves determining average

throughput times or costs of executions of business processes as key indicators
for the quality of the process design [15]. A prerequisite for the calculation of
these and other indicators is the determination of all time and cost values for
single activities that result from the execution of the business process, i.e., from
executing activities or remaining in waiting states. In Section 3 we will see how
to calculate these values by simulating the business process models. But �rst we
will show how to build Petri net models of business processes.

2.2 Modeling Business Processes with Petri Nets

In this chapter we will use place/transition nets [7] as a Petri net class for mode-
ling business processes. Place/transition nets are the class of Petri nets best

2 Note that the approach is not limited to the use of �xed values but can easily be

adopted to stochastic values.

132 J. Desel and T. Erwin

known and most extensively examined. Since most of the relevant basic concepts
have already been introduced in [5] we will just point out some basic constructs
that are important with respect to alternative routings(see Section 2.1) during
execution of a business process. A forward branching place, i.e., a place that
has more than one transition in its post-set, models a choice or OR-branch if it
carries only one token. On the other hand, backward branching transitions, i.e.,
transitions that have more than one place in their pre-sets, model synchroniza-
tion or AND-joins if the pre-set places do not branch forward. A synchronizing
transition can only occur if there is at least one token in each of its pre-set places.
Therefore, the arrival of tokens in pre-set places at di�erent points of time causes
waiting time.

Example: Figure 3 shows a simpli�ed process from a car manufacturing plant
modeled as a place/transition net. Note that although this speci�c model does
not contain any cycles we do not exclude cyclic business processes.

Start

available Produce_chassis

Produce_body_type_B

Produce_body_type_A

Parts_body_
available

Parts_chassis_

Body_produced

Chassis_ready

Car_ready

Assemble

Ready_to_start

Fig. 3. A business process model for car manufacturing

The behavior of a Petri net can be described using sequential or causal seman-

tics. We will use causal semantics and causal nets for the representation of the
behavior of the modeled business processes. As introduced in [5] we will refer
to an execution of a business process speci�cation as a causal run. The �ring
of a transition, i.e., the execution of the activity modeled by the transition, is
displayed by an event. An event is a transition in the causal net representing
the corresponding run. Likewise, conditions, i.e., places in the causal net, model
the states that hold between the execution of activities. We will slightly modify
this interpretation of events and conditions (which is the one commonly used for

133Modeling, Simulation and Analysis of Business Processes

runs of classical place/transition nets) as we introduce the concept of activity
transitions in the remainder of this section.

Example (Continued): Figure 4 shows the two (maximal) runs of the business
process model from Figure 3. Note that the names from Figure 3 have been
abbreviated due to readability reasons.

Car_rA

C_r

B_p

P_cP_c_a

P_b_a

S

R_t_s

Car_rA

C_r

B_pP_b_t_A

P_cP_c_a

P_b_a

S

R_t_s

P_b_t_B

Fig. 4. Possible runs of the business process model from Figure 3

Details on the generation of runs and their analysis with respect to desired or
unwanted (qualitative) properties can be found in [5].

Although they are important for the actual execution of a business process,
technical (or organizational) details usually do not matter for the analysis of
the structure of a business process. In most cases, by modeling too many details
the expressiveness of the model with respect to the underlying structure of the
business process is spoiled. Therefore it is of great value for the modeler to have
a choice between several levels of abstraction. This enables him to emphasize
di�erent views of the model which might be on a more detailed or on a more
conceptual level. In our approach we introduce activity transitions for modeling
sequences of (part-)activities that have to be performed for the execution of an
activity as a whole.

Activity transitions allow for the representation of activities in both, a detailed
and an abstracting view. An example for the corresponding graphical representa-
tion is given in Figure 5, where the model from Figure 3 has been supplemented
by activity transitions (as well as by time and cost inscriptions to which we will
refer later). Places that are within the detailed view of an activity transition

134 J. Desel and T. Erwin

Cost values

Activity transitions

τ
k

Time values

Body_produced

available

available
Parts_body_

Ready_to_start

Start

τ=

τ= τ=

τ=100

k=60

k=5 k=5 k=60

x

Parts_chassis_

Preparation

x
k=10x

1
1

k=10x

k=50

τ=120

3

Produce_body_type_B

Produce_body_type_A

Produce_chassis4xτ=
k=10x4

k=10x
Assemble

k=30
τ=80

Car_ready

τ=x6
k=10x6

k=20x5
5xτ=

Chassis_ready

EndWait_ProdProduce

Begin_
Produce

Begin_
Wait_Prod

Begin_
Preparation

Begin_
Transport

Transport

τ=10 τ=10 τ=70 τ=10
k=10

32x
2

Fig. 5. Business process model including inscriptions for time and costs

are called internal places (e.g., place 'Produce' in Figure 5), all other places are
referred to as external (e.g., place 'Chassis ready' in Figure 5). Note that the
execution of the (part-)activities is modeled by internal places. A marked inter-
nal place pint can be interpreted as a (local) state where the system is in the
state of carrying out the (part-)activity that is modeled by pint. External places
model the states between the execution of activities, i.e., non-planned waiting
states. The concept of activity transitions can be easily mapped on the runs of a
business process model. Figure 6 shows a run of the enhanced business process
model from Figure 5.

A notion of time is a mandatory prerequisite for answering any questions re-
lated to the performance of real systems. The integration of time into Petri nets
has been discussed extensively [2, 3, 12, 18]. Time-related performance indicators
such as throughput time have become key indicators for the quality of business
process design. The basic idea of the time concept we introduce in this chapter
is to link time to the places of a place/transition net. Time is not consumed
by the �ring of transitions (as in most other approaches) but between �rings of
transitions. The �ring itself does not consume any time. This timing concept cor-
responds to the idea of modeling (part-)activities by internal places of activity
transitions. That way our approach is completely state-based [1], i.e., the state
of the modeled business processes can be completely determined by the marking
of places. This, for example, allows us to distinguish between the enabling and
the actual execution of (part-)activities which in return is a mandatory prereq-

135Modeling, Simulation and Analysis of Business Processes

P_c

k=5 k=60k=5

τ=0

P_b_tA

τ=120

P_b_a

τ=0

k=200 k=0

A

τ=80

Car_r

τ=0τ=0

B_p

R_t_s

S

B_Trans Trans B_Prep Prep B_Prod Prod B_W_Prod W_prod E

τ=10
k=10

τ=70τ=10τ=10

τ=20

k=0 k=60 k=0

τ=0 k=30 k=0k=0

C_rP_c_a

Fig. 6. An example for the cost optimal distribution of waiting time

uisite for the modeling of waiting time3. Time values can be �xed or variable.
For analysis purposes with respect to the dynamic behavior of the model they
can be transferred to runs and then be interpreted there.

Hence in our approach time is linked to the places of the business process model
with an explicit distinction between time values for internal and external places.
Internal places are inscribed with a �xed activity time value which corresponds
to the target value for the time needed to execute the (part-)activity that is
modeled by the place (e.g., the value '70' for place 'process' in Figure 5). Waiting
time is linked to external places. Waiting time results from the synchronization
of (sequences of) concurrent activities that di�er with respect to the time needed
for execution. If there are alternative activities with di�erent respective activity
times, the values for waiting time can be di�erent from run to run. Hence, when
building a model of a business process we use variables for waiting time (e.g.,
'x5' for place 'Chassis ready' in Figure 5). Waiting time can only be determined
for a single run.

The behavior of a modeled business process is described by a set of time-inscribed

runs. Each time-inscribed run is a run of the business process model where condi-
tions have a natural number as an inscription4. This number reects the life-span

3 More details on the advantages of state-based models can be found in [1, 2, 8]
4 Note, that for the generation of runs for a business process model any notion of time
is ignored (see Section 3).

136 J. Desel and T. Erwin

of a condition, i.e., the amount of time the condition holds (which corresponds
to the amount of time a token remains at the corresponding place). For internal
places this value corresponds to the time inscriptions (the activity time) of this
place. Conditions that have no successor and therefore \hold forever" have no
associated number as they represent �nal states of the business process execu-
tion. In addition to this we require that the sum of life-spans of conditions for
each pair of paths that lead to an event be equal. Furthermore the sum of life-
spans of conditions on maximal paths has to be equal as well. This sum is the
throughput time of the time-inscribed run.

For a single run there may exist several time-inscribed runs, for which only the
time inscriptions for conditions that correspond to external places may di�er.
This is due to the assumption that only waiting time is variable. However, ac-
cording to the above requirement, for all possible values of waiting time variables,
the sum of time values has to be equal for all paths that lead to a synchronizing
event. In most cases the sum of time values is �xed (by the path that is max-
imal with respect to this sum, at least if one wishes to determine the minimal
throughput time) but the time values for conditions that correspond to tokens
on external places can be varied in an arbitrary way. In other words, the total
amount of waiting time is known, but one can still decide where to wait (see the
example in Section 3).

The integration of costs into our models is accomplished using an approach
similar to the one used for time. As we assume costs to be a function of time we
use �xed values for activity costs and variable values for waiting costs, which are
assigned to internal and external places, respectively (for an example, see cost
value inscriptions for places in Figure 5).

3 Simulation and Analysis

Having built the Petri net model of the business process we can now simulate its
behavior. This is done by generating runs using simulation concepts developed
within the VIP project5. Since for real-life processes it is very expensive or even
impossible to simulate the complete behavior we do not attempt to generate
all runs. Instead, the generation of runs depicting the standard behavior of the
business process (including regular exceptions) is emphasized. Recall that time
and costs are ignored during simulation.

With runs generated it is possible to transfer the values for time and costs from
the process model to these runs. Conditions that are mapped on internal places
get the values of the activity time associated with these places. Conditions that
are mapped on external places �rst get the variable time value that corresponds

5 Veri�cation of information systems by evaluating partially-ordered Petri net runs,
see [9] for details on generation of runs.

137Modeling, Simulation and Analysis of Business Processes

to possible waiting time. Since during the generation of runs all decisions with
respect to choices between alternative (sequences of) activities have been made,
it is now possible to calculate (combinations of) waiting times for each run. In the
following we will only consider time assignments that are minimal with respect
to the total throughput time of the run. For these assignments the time values
for conditions corresponding to external places are equal to zero for at least one
(critical) path. On these places no waiting time can occur without prolonging
the total throughput time of the run (hence violating our claim for minimal
throughput time). A suitable algorithm that calculates the total throughput
time for a time-inscribed run can be found in [8].

In case waiting time causes costs (e.g., storage costs), it may be interesting to
distribute waiting time over conditions in a way that is optimal with respect
to these waiting costs. Often it is reasonable not to assign waiting time to a
condition in the immediate pre-set of a synchronizing event but to shift it to
some earlier occurring condition.

Example (Continued): Figure 6 shows a run of the business process model
from Figure 5, including the values for time and costs. If we consider the cost
functions for the conditions (represented by) xcond and ycond we realize that
total costs for the run are minimal if we wait with producing the chassis for 20
time units (which enables us to assemble chassis and body of a car directly).

In case the cost functions of conditions are linear with respect to time, the cost
optimal distribution of waiting time within a run can be expressed as a linear
optimization problem [8]. Having determined all variable values for time and
cost it is now possible to calculate other key performance indicators such as
throughput time or total costs.

4 An Interactive Analysis Approach

4.1 A 3-Step Approach

With all the concepts introduced in the previous sections we propose a 3-step
approach for the simulation and analysis of business process within reengineering
projects.

In a �rst step the business process is modeled as a Petri net. At this stage
values for time and costs are not considered. The modeling should concentrate on
building an appropriate logical structure, i.e., identifying necessary activities and
putting them in a meaningful order. That way discussions of detailed problems
like 'What should the execution of this activity cost?' can be avoided at this
(early) stage of the (re-)design process. No decisions have to be made with
respect to estimated or target values that are to be used for the model. Activity
transitions can either be speci�ed in detail or left as a top-level building block.

138 J. Desel and T. Erwin

Real World

Known or
Planned
Behavior

Set of
Runs

Performance
Analysis

Build Model

Validate

Analysis

Generation
of Runs

Desired
Properties

Compare and

Evaluate

Place/Transition
Net

Fig. 7. Using the concepts and techniques from the previous chapters for our 3-step
approach (see Figure 2)

In a second step a relevant set of runs of the business process model is generated
and stored for later analysis. This (in most cases) time-consuming procedure
can be performed independently from any values chosen for time and costs. The
generation of runs can be done automatically or interactively. The corresponding
simulation concept contains methods for the selection of runs that are to be gen-
erated as well as criteria for stopping the generation of a run (cut-o� criteria) [5].
The second step only has to be repeated if the structure of the business process
is changed. As long as this is not the case, all analysis steps can be performed
for the set of runs generated once.

Since runs can be graphically displayed using causal nets (see Section 2.2 and [5]),
they can be used for validating the behavior of a business process. A big ad-
vantage especially during discussions is the fact that the ows of documents,
information and products can be represented explicitly by paths in these causal
nets.

The third step of our approach starts with transferring time and cost values
from the business process model to the generated runs (see Section 2.2). Now
the generated runs can be used for performance analysis of the business process.
Since the analysis techniques use runs that have already been generated, the
time consumed by analysis is signi�cantly reduced. The e�ects of values chosen

139Modeling, Simulation and Analysis of Business Processes

for time and costs can be examined immediately. Since rather little time is
needed for repeating this step for all kinds of time and cost values (compared
to generating a new set of runs each time) this step can be easily be performed
numerous times in order to experiment with di�erent value estimates for time
and costs.

The three steps are performed iteratively until the model is valid and satis�es
desired properties.

4.2 So What?

Our analysis approach enables the user to interactively examine the business
process model and its behavior by using generated runs. What advantages does
this approach have?

Any 'eÆciency claims', e.g., statements such as 'This design will cause much
higher costs.' or 'This design will never work with our time constraints.' can
be checked immediately. Especially when discussing alternative process designs
it is of great importance that design decisions can be based on more objective
criteria.

The dependencies between the measured quality of the business process model
and estimated or target values used for time and costs can be examined. When
introducing time and cost values to the business process model, the values used
will either have to be based on assumptions or experiences from business prac-
tice. Since these values might signi�cantly di�er from values that occur once the
business process model is put to practice, it is certainly a good idea to examine
the relation between chosen values and analysis results. This is especially impor-
tant in case decisions between design alternatives have to be made. Depending
on the concrete scenario (and the willingness of decision makers to take risks)
either the alternative with the best average results for all tested time and cost
values or the alternative with the best value for one time and cost combination
can be chosen.

The risk of severe mistakes caused by faulty assumptions for time and cost values
is reduced. Being able to test all kinds of values for time and costs quite quickly,
one can avoid situations where decisions have to made based on few (possibly
faulty) values for time and costs.

In summary, the risk of wrong decisions with respect to the design of a busi-
ness process can be reduced signi�cantly. Since eÆciency claims and 'But what
if..'-scenarios can be checked immediately the discussion on alternative designs
can be based on facts rather than on opinions. By creating the opportunity to
interactively play with the process model the motivation and the level of active
participation on behalf of the persons involved will be increased.

140 J. Desel and T. Erwin

References

1. van der Aalst, W.M.P.: Three Good reasons for Using a Petri-net-based Workow
Management System. In: T. Wakayama et al. (eds.): Information and Process In-
tegration in Enterprises: Rethinking documents. The Kluwer International Series in
Engineering and Computer Science, pages 161{182. Kluwer Academic Publishers,
Norwell, 1998

2. van der Aalst, W.M.P.: The Application of Petri Nets to Workow Management.
The Journal of Circuits, Systems and Computers, 8(1):21{66 (1998)

3. Ajmone Marsan, M., Bobbio, A., Donatelli, S.: Petri Nets in Performance Analysis:
An Introduction. In: Reisig, W., Rozenberg, G.: Lectures on Petri Nets I: Basic
Models, pages 211-256. Lecture Notes in Computer Science, Vol. 1491. Springer-
Verlag, Berlin, Heidelberg, New York, Tokyo (1999)

4. Berkau, C., Hirschmann, P. (eds.): Kostenorientiertes Gesch�aftsprozessmanagement:
Methoden, Werkzeuge, Erfahrungen. Vahlen, M�unchen (1996)

5. Desel, J.: Validation of Process Models by Construction of Process Nets. In this
volume.

6. Desel, J., Oberweis, A.: Petri-Netze in der Angewandten Informatik - Einf�uhrung,
Grundlagen und Perspektiven. Wirtschaftsinformatik, 38:359{368, (July 1996)

7. Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Reisig, W., Rozenberg, G.:
Lectures on Petri Nets I: Basic Models, pages 122-173. Lecture Notes in Computer
Science, Vol. 1491. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1999)

8. Erwin, T.: Leistungsbewertung von Gesch�aftsprozessen durch Auswertung halbge-
ordneter Petrinetz-Abl�aufe. Diploma thesis, Karlsruhe (1998)

9. Freytag, T.: Simulation halbgeordneter Petrinetz-Abl�aufe. In: Desel, J., Oberweis,
A., Kindler, E. (eds.): 3. Workshop Algorithmen und Werkzeuge f�ur Petrinetze,
RR341, pages 14{20. Institut AIFB, Universit�at Karlsruhe (1996)

10. Gruhn, V., Kampmann, M.: Modellierung unternehmens�ubergreifender Gesch�afts-
prozesse mit FUNSOFT-Netzen. Wirtschaftsinformatik, 38:369{381 (1996)

11. Hammer, M., Champy, J.: Reengineering the corporation. Nicolas Brealey Pub-
lishing, London (1993)

12. Jensen, K.: Coloured Petri Nets, Volume 2: Analysis Methods. Monographs in
Theoretical Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo
(1995)

13. Oberweis, A.: Modellierung und Ausf�uhrung von Workows mit Petri-Netzen.
Teubner-Reihe Wirtschaftsinformatik. Teubner, Stuttgart, Leipzig (1996)

14. �Osterle, H.: Business in the Information Age - Heading for New Processes. Springer-
Verlag, Berlin, Heidelberg, New York, Tokyo (1995)

15. Scheer, A.-W.: Modellunterst�utzung f�ur das kostenorientierte Gesch�aftsprozess-
management. In: Berkau, C., Hirschmann, P. (eds.): Kostenorientiertes Gesch�afts-
prozessmanagement: Methoden, Werkzeuge, Erfahrungen. Vahlen, M�unchen (1996)

16. Scheer, A.-W.: Business Process Engineering - Reference Models for Industrial
Enterprises. 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1994)

17. Schmidt, G.: Prozessmanagement - Modelle und Methoden. Springer-Verlag,
Berlin, Heidelberg, New York, Tokyo (1995)

18. Starke, P.: Analyse von Petri-Netz-Modellen. Leitf�aden und Monographien der
Informatik. Teubner, Stuttgart, Leipzig (1990)

19. Vossen, G., Becker, J. (eds.): Gesch�aftsprozessmodellierung und Workow--
Management. International Thomson Publishing, Bonn, Albany (1996)

141Modeling, Simulation and Analysis of Business Processes

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 142-160, 2000
 Springer-Verlag Berlin Heidelberg 2000

Using Formal Analysis Techniques in Business Process
Redesign

Kees M. van Hee and Hajo A. Reijers

Faculty of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
{wsinhee, hreijers}@win.tue.nl

Abstract. Formal analysis techniques can deliver important support during
business process redesign efforts. This chapter points out the (potential)
contribution of these formal analysis techniques by giving an outline on the
subject first. Next, a specific, newly developed formal technique is discussed.

1 Formal Techniques in Business Process Redesign

A thorough analysis of several redesign alternatives can help to make the choice for
the most effective solution. Also, analyzing the design of a new business process may
point out whether once set redesign targets are still realistic. In this paragraph we will
give a short background on business process redesign, so that the role of analysis
techniques in general can be explained.

1.1 Business Process Redesign

'Panta rhei' is the famous adage of the ancient Greek philosopher Heraclitus:
everything is always changing. Business processes are prime examples of this
statement. Everywhere around the world, in almost every industry, processes are
being fine-tuned, downsized, re-engineered, value-added and re-aligned.

Drivers behind this phenomenon are manifold. In the first place, companies feel the
increasing pressure of a globalising market. Cost reduction has become prevalent to
survive. Secondly, the historically strong position of suppliers in many markets is
becoming less dominant compared to that of the customer. To keep customers coming
back, companies have to please them by shortening their production time or
increasing their product quality. The last major change driver is technology.
Technology offers a wide variety of new possibilities to manage business process
better. The widespread application of Enterprise Resource Planning Systems and
Workflow Management Systems in industry is a strong example on this note.

A business process re-engineering effort (to use one of the many possible labels)
may aim at stabilizing, reducing, or improving one or more, different and often
dependent entities (e.g. cost, production time, service quality, efficiency). Many
business processes changes are put in motion without an accurate picture of the

Using Formal Analysis Techniques in Business Process Redesign 143

expected earnings at forehand, but rather on a ‘gut feeling’. There may be a well-
understood positive or negative effect of the process change on entities such as the
throughput time or production cost, but a reliable quantitative estimate is often
lacking.

1.2 Phases in Redesign

The redesign of a business process is a complex activity. Specialists from different
disciplines are involved, new technology is introduced, staff is confronted with drastic
change, and money and time are in short supply. To handle this complexity, a
redesign effort is often carried out in the form of a project. This means, among other
things, that during the effort distinct phases are distinguished in which different
activities are planned. We will describe a generally applicable model to distinguish
such phases within a redesign project, based on the IPSO methodology as described in
[3]. The six phases are:

1. Create vision:
 A vision is created on the desired and necessary changes within an organization

to improve its performance. A proper recognition of the organization’s Critical
Success Factors (CSF’s) is required: which organizational issues determine
success or failure of the organization? For these (or some) CSF’s redesign targets
are set. Next, it has to be established which business processes contribute mostly
to the development of these CSF’s. This determines the scope of the redesign.
Lastly, the new organizational principles and technology have to be identified
that will be the backbone of the redesign. In essence, the result of phase 1 is a
conceptual design of the change.

2. Diagnosis:
A thorough analysis of the selected processes is carried out to obtain an
understanding of their current performance. This performance is usually
expressed in terms of rates on key performance indicators (KPI’s) such as the
throughput time, customer satisfaction, product quality, etc. Next, the causes of
low scores on KPI’s within the current processes are determined, if possible. This
knowledge can be applied in phase 3.

3. Process redesign:
For the selected scope of the redesign, targets of the most important KPI’s are set,
in line with the desired development of the CSF’s. Then, alternative process
redesigns are developed in the form of models. The alternative models are to be
analyzed and compared. Eventually, one of the models is selected as the definite
redesign, after which it is detailed. The definite redesign is to be analyzed to
ensure that set goals can be satisfied. From the detailed process design the
requirements follow on the necessary supporting technology and information
systems within the processes. At this point, there is a detailed design of the
change.

4. System design and construction:
On basis of the requirements of the definite process design, an outline of the
technology components must be made, as well as their interaction patterns. This
is the architecture of the new process. Furthermore, (information) systems and
applications have to be designed that enable the new process to function in

144 K.M. van Hee and H.A. Reijers

correspondence with its detailed design. Finally, both the technology architecture
and the applications have to be actually constructed and tested.

5. Transfer and implementation:
The newly designed process in combination with the supporting technology is
integrated and transferred to the organization. New procedures, system
functionality, communication structures, and responsibilities have to be
communicated and explained to the relevant parties (e.g. employees, manage-
ment, and customers). Feedback is generated to fine-tune the new process, after
which it can be taken into full operation.

6. Evaluation:
After implementation, a continuous phase of monitoring starts. The KPI’s that
have been determined in the diagnosis phase will be measured on regular inter-
vals. This will usually trigger gradual adjustment and improvements of the new
process(es). On basis of this information it can be determined whether the
redesign effort is a success.

1.3 Formal Analysis Techniques for Business Processes

In general, there are two different categories of formal analysis techniques that can be
used in the context of redesigning business process: qualitative and quantitative
techniques. Qualitative techniques focus on the question whether a process design
meets a specific property. Quantitative techniques are used to calculate or
approximate the size or level of a specific property. For example, whether a process
design meets the demand that a bank employee never can validate a cash transfer that
he has initiated himself is a qualitative question. To determine how long customers
have to wait before their telephone call is responded to by the call-center typically a
quantitative analysis is required.

Quantitative techniques can be categorized into simulation and analytical
techniques. If one compares these two types of techniques, it can be said that
simulation is an approximation technique, where analytical techniques deliver exact
numbers. During a simulation of a business process, at specified intervals cases (e.g.
new orders) are generated for the model in execution. In response, each of the
components within the model will behave in accordance with its specification. For
instance, on receipt of a new order the computer will simulate an employee inspecting
the order on completeness. The actions performed by the model in execution are
realistic, but are not necessarily exactly the same or take place at the same moment as
in a real-life situation. During execution, information is gathered on items that result
from the interaction of the modeled components. For example, the frequency of
message exchanges between two specific components is measured or the
accumulation of work in front of an overloaded resource.

An analytical technique, on the other hand, is based on an algorithm that yields an
exact result on basis of both the formal model and some well-understood relationships
between the specified components. For example, a business process can be modeled
as a network of nodes connected to each other by arcs, expressing precedence
relations. On basis of such a network model, the shortest path leading from a new
order to fulfillment can be calculated. Popular formalisms and mathematical theories
to model and analyze business processes in this analytical way are, for example,
Markov chains, queuing theory, CPM, PERT and GERT (e.g. [6], [7], and [9]).

Using Formal Analysis Techniques in Business Process Redesign 145

Often, an exact result is preferred over an approximated result. However, the
complexity of a specific business process model can be such that a quantitative,
simulation approach is the only feasible means of analysis. Given a specific process
model, there are several aspects that determine whether a qualitative or quantitatively
analytical approach is feasible at all and, if so, preferable over simulation. For
example, if both the synchronization structures within a process (e.g. parallelism) and
the behavior of resources is too complex, no known general analytical techniques are
available to determine the throughput patterns of work packages. Although simulation
is a very flexible technique suited to investigate almost any type of business process, a
common disadvantage is that, in non-trivial situations, numerous and lengthy
simulation runs have to be carried out to obtain reliable results.

For all types of analysis, qualitative or quantitative, holds that a formal model of
the business process underlies the analysis. Depending on the set of properties that is
taken into consideration in the redesign effort, elements of the real business process
are incorporated in the model. If, for example, the redesign effort is primarily
concerned with the optimization of the logistics of the process, elements typically
found in a process model are buffers, resources, routings of jobs, service times, and
order arrivals. If, for example, the accent is on cost reduction, elements such as labor
time, material costs, and depreciation factors will be part of the model.

1.4 Relevance of Formal Techniques

On basis of the phases within a process redesign project we have distinguished in
paragraph 1.2 and the outline of techniques in paragraph 1.3, we can now pinpoint the
places in the redesign process where analysis techniques can be useful. More in
specific, whether a qualitative or quantitative is useful. As it turns out, the diagnosis
and the redesign phases are best served by applying formal analysis techniques.

Diagnosis phase
As the first phase in a redesign project, the vision phase, is concerned creating
prescriptive targets and means, it is not very suitable to apply formal analysis
methods. During the subsequent, diagnosis phase it is paramount to come to a clear
conception of the current process operations in practice. It can be argued that this
could be established for a great deal on basis of observation and data gathering alone.
Nonetheless, there are at least two situations when applications of analysis techniques
are useful. In the first situation, it turns out to be difficult to understand the relations
between different entities within a process by observation alone. For example,
although historic information on resource availability and service quality at a specific
work center is known, it is unclear how these two are related. The use of, for instance,
a simulation model may indicate which of the alternative interaction patterns is most
suited to explain current operations. It is rather awkward to interfere in the day-to-day
operations to establish such a relation without a simulation.

The second situation occurs when one is interested in the future operations of a
process. Clearly, this cannot be established by observing current processes alone. A
future analysis can be performed by constructing a formal model of the current
business process, and experiment with changes in the context of the process by
inserting (partly) imaginary data, and analyze it accordingly. For example, a foreseen

146 K.M. van Hee and H.A. Reijers

rise in demand can be projected on the model of the current business process, while
keeping resources stationary. Simulation runs, then, may indicate where and in which
sequence overload of capacity will occur. Qualitative analysis may point out whether
dangerous or unwanted situations may occur.

Redesign phase
The subsequent phase, the redesign phase, is primarily a creative process aimed at
developing new designs. Once developed, the alternative models have to be compared
and the optimal solution is modeled in detail. There are three areas, normally dealt
with in consecutive order during this phase, in which formal techniques can be useful:
1. Design construction,
2. Performance analysis,
3. Verification of design.

Ad 1. The design of a new process is primarily a creative process, which is likely to
incorporate some level of human ingenuity for some time to come. Nonetheless,
formal analytical techniques can offer support during the creation of a new design. On
basis of desired properties of the process model on the one hand and characteristics of
the elementary design blocks on the other hand, a formal technique may suggest
(near) optimal design constructions or indicate the boundaries that the process design
should stay within. For example, suppose there is a number of machines, each with a
known capability. On basis of the characteristics of the desired end product, an
algorithm can be used to, first, determine the required machine capabilities and, next,
to indicate the alternative sets of machines that should be minimally available within
the process. The designer makes the ultimate decision about which machines are
chosen and at what locations within the process the machines are placed. In paragraph
2 we will describe in more detail an algorithm that can be used within this area.

Ad 2. Having created several designs, performance analyses are useful to compare
these designs on how well they perform in different fields. Simulation can be used in
much the same way such as described in the diagnosis phase. However, the creation
of detailed simulation models and the subsequent lengthy simulation runs themselves
may take too much time when roughly considering many alternatives redesigns.
Analytical approaches that aim at measuring specific aspects of the designs in
efficient ways are much more useful at this time. Depending on the performance
indicator that is of prime interest, specific algorithms are applied. An example of such
an algorithm, the computation of the throughput time, is treated in more detail in
paragraph 2. In the end, when the preferred process design is established it may
become much more interesting to develop a full simulation model to achieve an
accurate view of the expected outcomes of the redesign effort. This may lead to
tuning the goals to realistic levels.

Ad 3. Before the detailed process design is actually transferred to subsequent phases,
such as the system construction, it should be established that the design is correct.
This is very important considering the cost involved in developing a new process only
to change it directly when it has been established. Although simulations used to assess
the performance may have indicated no errors, this cannot be taken as that the process
incorporates no faults. After all, simulations cover only a finite number of situations.

Using Formal Analysis Techniques in Business Process Redesign 147

Analytic, qualitative techniques may be used to determine important properties of the
design, such as the absence of dead-locks or the eventual termination of the process
once work is taken on.

2. Throughput Analysis

In this paragraph, we will describe a recently developed formal technique that can be
used when redesigning business processes ([4]). It focuses on the computation of the
throughput time of a specific business process model. We start by introducing the
throughput concept. Next, we will describe the construction of business process
models within this approach and the algorithm to compute the throughput time of the
business process modeled in such a fashion.

2.1 Throughput Time

One of the most important performance indicators in industry is the throughput time.
Although authors from different disciplines use different terminology for this concept
such as passage, cycle and traversing time, we stick to our term for reasons of
popularity in the field of workflow management from which our approach originates.
The throughput time of a specific job is the total amount of time spent from the
moment that the handling of the job started until the moment it is completed. The
throughput time of a job is the sum of its service time and its waiting time. Waiting
time for a job is created when no task can be executed due to the unavailability of
resources. When there is at least one task processing a job, this counts as service time.

The wide-spread use of the throughput performance indicator can be explained
from the fact that it is concerned with the ‘flowing’ of work through the business
process, rather than with the exact manipulations that take place. Very often, a low or
stable throughput time is a desirable or even necessary characteristic of a business
process. Imagine, for instance, a government agency that handles tax forms and
decides whether they are valid. National regulations may be violated when the
processing of a job takes over one year.

The throughput time of a process can be expressed in several ways. This is caused
by the fact that jobs that undergo the same processing often do not share the same
throughput time. In other words, there is throughput variance. An ordinary cause for
this phenomenon is that resources do not deliver constant productivity. Another cause
may be fluctuations in market demand, possibly flooding the system, leading to
waiting time. A very common approach is to express the throughput time of a process
as the average throughput time of the jobs it handles. Although this may be fine as an
approximation, this average is not always a good reflector of the performance of the
process. For example, if minimum and maximum throughput times of jobs are far
apart, the average throughput time is hardly suitable to give customers guarantees
about delivery times. An alternative sometimes used, is to declare the throughput
time of a process by means of a fraction percentage and a cut-off value. For example,
90 % of the jobs going through a specific business process is finished within 6 weeks.
If the throughput of jobs varies, the most detailed expression of the throughput time is
as a histogram or a probability distribution of the job throughput times.

148 K.M. van Hee and H.A. Reijers

Regardless of the exact definition used, the computation of the throughput time for
a business process already in action is straightforward. Actual throughput figures on
job throughput times can be used to express the throughput time following either
definition. A problem arises, when the throughput time is to be determined of a newly
designed process. Depending on historic information only puts the designer in an
awkward position. He cannot design a process with desirable throughput
characteristics without putting the process to work first. Especially when design
alternatives are to be compared, such as required in the redesign phase sketched in
paragraph 1.2, this is not very practical.

A proper alternative, propagated in this chapter, is to apply formal quantitative
techniques on a model of the designed business process. One of the possible
approaches is to apply simulation. As argued before, simulation can be time
consuming. An analytical approach that is time-efficient and yet powerful to yield
reliable results (by being exact) would therefore be preferable in this situation. In the
next paragraph we will explain the basics of such an approach.

2.2 Elements of the Process Model

When choosing an analytical approach, it is important to incorporate those aspects
within the formal model that determine the throughput time of the process. Bringing
back in mind the distinction between service time and waiting time, the following
aspects are relevant:
1. the structure of the business processes: a business process is a set of tasks that

have to be completed in some kind of order (possibly differing for each new job);
the possible routes through the process, leading to the execution of individual
tasks, is essential for determining the throughput time,

2. the resource schedule: the way how resources are distributed over the different
tasks within the process; both the available type of resources and the number of
resources may determine the flow of jobs through specific points in the process,

3. the service characteristics of the resources active within the process: differences
in service productivity per resource influence throughput time,

4. the arrival rate of new jobs: the balance between new arrivals and available
resources determine whether waiting time arises.

When starting to model a business process, it is generally up to the modeler how
accurate each of these aspects is modeled. There are, however, practical limits to this
accuracy. Usually it is not feasible to model the characteristics of each individual job
or resource. Instead, classes of different jobs and resources are modeled. A certain
pattern of behavior, then, holds for each member of a class.

A second practical limitation is that the exact chain of cause and effect underlying
specific behavior is unknown or perhaps irrelevant. For example, the arrival of new
orders may depend on the price level of a competitive product. That price strategy
may be unknown.

Moreover, the exact cause for, for example, a resource to work slower at some
times is less relevant than accurately modeling the phenomenon itself. A stochastic
approach is then the answer. This means that, given a specific component of the
model, relevant patterns of behavior are distinguished. Each pattern is assigned a
probability weight, instead of modeling the specific cause. For example, fluctuations

Using Formal Analysis Techniques in Business Process Redesign 149

in the arrival of new orders are expressed by a probability distribution. A common
characteristic to model an arrival pattern of new cases is a standard Poisson
distribution.

Similarly, to model changes in the productivity of a resource, a distribution is used
that asserts probabilities to each possible service time that resource may deliver.
Realistic behavior is induced even more when stochastic processes are modeled to be
dependent on each other. Specific resource behavior may be dependent on the
resource behavior shown earlier. On the other hand, to simplify calculations, many
times standard stochastic distributions are used, or even deterministic behavior. More
realism can be achieved by using arbitrary or mixed distributions.

Even when (3) the service characteristics and (4) the arrival rate are modeled
stochastically, analytical analysis is not straightforward. Both (1) a complex process
structure or (2) a complex resource schedule may trouble the analysis. An example of
a difficult resource schedule is the use of so-called “butter flies”, resources that are
not assigned to a fixed task within the process, but wander around. Difficult process
structures are those in which other relations can be applied than mere sequential
orderings of tasks, for example by allowing the parallel execution of tasks.

General applicable analytical techniques to compute the performance of a business
process model with an arbitrary, independent stochastic arrival pattern, with arbitrary,
independent stochastic service characteristics, with a complex resource schedule, and
with a complex process structure are not available. Reduction of complexity of the
model is therefore required. Many existing performance analysis techniques
concentrate on omitting complex process structures from the model, such as the
choice, parallel, and cycle constructions. In addition, stochastic resource behavior or
stochastic arrival patterns are modeled using standard probabilistic distributions, such
as normal distributions or negative-exponential distributions.

In the approach presented in this paragraph, we will apply reductions in another
dimension, allowing for greater realism in two other dimensions. Our approach comes
down at assuming a liberal resource schedule. No matter the number or types of
resources required for the execution of a task, we will assume that sufficient resources
are always available when there is a job to process by that task. In other words, the
resource capacity is infinite; no waiting time can occur due to the lack of resources.
The throughput time of a job under these conditions is equal to the total service time
spent. In a real business process, of course, this situation will hardly ever occur. It
means that the process is either in expensive excess of capacity or in a terrible lack of
orders. On the other hand, this assumption allows for more accurate modeling in two
other dimensions, typically neglected in other approaches. In the first place, there is a
great set of possibilities to investigate the effect of complex process structures on the
throughput time. It is possible to apply choice, parallel, and cycle constructions.
Secondly, its is possible to achieve a much higher level of accuracy when modeling
the service characteristics by using arbitrary (yet independent) probability
distributions. Note that the exact arrival pattern has become irrelevant, because
handling of a specific job cannot influence the throughput of another job.

In the next paragraph we will start the formal description of the approach. The
basic framework of the model used are high-level stochastic Petri Nets.

150 K.M. van Hee and H.A. Reijers

2.3 Petri Nets

To create the structure of a business process, we will use classical Petri nets. For a
formal definition, the reader is referred to [2] or [5]. A Petri net is a triple (P, T, F)
that consists of two node types called places and transitions, and a flow relation
between them. We will use places to model milestones reached within a business
process and transitions as the individual tasks within the business process to execute.
Places are represented by circles; transitions are represented by rectangles. The
process constructions that can be applied in our approach to build a business process
are the so-called blocks. These are: sequence, choice, parallelism, and iteration. The
blocks that express these constructs are depicted as Petri nets in Figure 1.

1−αα

(i) (ii) (iii) (iv)

β

1−β

Fig. 1. Sequence (i), choice (ii), parallelism (iii), iteration (iv).

The first block, the sequence block, represents a process construction that puts two
tasks in sequential order. The first task has to be completed before the second can be
started. The second, choice block represents a construction in which exactly one of
two alternatives is carried out. The third block shows how two tasks can be modeled
such that they can be executed simultaneously. The last block, the iteration block,
represents the process construction in which the execution of a task can be repeated.

Arc labels occur in the choice (ii) and iteration (iv) blocks. They represent the
values of a Bernoulli-distributed random variable that is associated with these blocks.
An independent draw from such a random variable determines the route of the flow.
Each new application of such a block is accompanied by the introduction of a new,
independent random variable.

As the starting point of each Petri net model construction we will take a simple
start net. This net is depicted in Figure 2. We will refer to this specific Petri net as SN,
for start net.

Using Formal Analysis Techniques in Business Process Redesign 151

Fig. 2. The start net SN.

The next step is to extend the original net, by subsequently applying blocks on parts
of the model that are similar to the start net. We shall clarify this replacement rule
informally. In Figure 3 the creation of business process model is depicted as the result
of successive applications of blocks. The initial start net is extended by applying the
construction rule with the sequential block. Both within the upper and the lower half,
constructions similar to the start can be distinguished. The upper half of the resulting
net is transformed into a choice construction. On the lower half, the parallel
composition is applied. Finally, the right path of the parallel construction is modified
with the iteration block.

1−αα

1−αα

β

1−β

1−αα

Fig. 3. Building a business process model.

The next step in building the business process model is to assign the service
characteristics to the constructed model. In our approach, all service times for one
specific task - a timed transition - are independently sampled on basis of the same
probability distribution. We will call this distribution the service distribution. Its
matching probability density is the service density. The time which is taken by a
service of transition t is called the service time. The service time is a discrete random
variable t. Its matching probability density ft :N R→ is called the service density;

f k t kt () ()= =P , for k ∈ N.

Its matching probability distribution Ft :N R→ , is called the service distribution;

F k t kt () ()= ≤P , for k ∈ N.

152 K.M. van Hee and H.A. Reijers

The service time t is bounded: there is an upper bound ut ∈ N which is the smallest

value such that for all j ∈ N and j ≥ ut holds that f jt () = 0 .

Our assumption of the service time to be discrete is no real constraint: for practical
purposes it is always possible to find an appropriate representation. As we will see,
we do need the boundedness of the service time to perform some of the computations
to come.

2.4 Blocks

In this paragraph it will be shown how the throughput time can be computed of a
business process model that is constructed in the presented fashion. The throughput
time of a business process is defined as the time that elapses between the arrival of a
token at the source place and the corresponding arrival of a token in the sink place.
Similar to the service time notions, it is possible to distinguish the throughput
distribution and throughput density of a process. Assuming the service densities to be
known of each of the transitions within a block, we will show how the throughput
density of an entire block can be computed. Each of the blocks requires a specific
algorithmic approach.

Sequence block
Consider the sequence block B in Figure 4 with two transitions s and t. Transition t
can only be executed when s is completed.

s t

Fig. 4. Sequence block.

The throughput density fB , given fs and ft , can be computed as follows:

Let y ∈ N,
 f yB ()

= { all possible combinations over transitions s and t; y non-negative }

P
i

y

s i t y i
=
∑ = ∧ = −

0

()

= { s and t probabilistically independent }

P P
i

y

s i t y i
=
∑ = = −

0

() ()

= { definition convolution; represent fs and ft as vectors, service density in i is the ith

coefficient of the vector }
f f ys t⊗ ()

A straightforward computation of the convolution f fs t⊗ would require at least u us t

multiplications (product of the upper bounds), a quadratic number. To make the

Using Formal Analysis Techniques in Business Process Redesign 153

computation more efficient, the Fast Fourier Transform (FFT) is applied. The FFT is
an algorithm that computes the Discrete Fourier Transform (DFT) of a vector in
θ(n nlog) steps. Computing a convolution of two vectors, then, comes down at

multiplicating the Fourier Transforms of those vectors, after which this product has to
be transformed back in a normal vector representation. Using the Fast Fourier
transform, a vector representation of f fs t⊗ can be computed in θ(n log n) time, with

n the smallest power of two that is at least twice as large as the maximum of the upper
bounds of tasks s and t. For a thorough explanation of the Fourier Transform the
reader is referred to [1].

Parallel block
The block we will consider next is the parallel block. Consider the parallel block B in
Figure 5 with transitions k, l, m, and n.

k n

m

l

Fig. 5. Parallel block.

Due to the structure of B, transitions l and m can be executed in parallel. That is, there
is no precedence constraint between transitions l and m. When both transitions l and
m have ended, transition n can be executed. We want to compute throughput density
fB, given fk, fl, fm, and fn. Without loss of generality we assume that fk(0) = 1 and fn(0) =
1 (they are logical transitions).

Let y ∈ N,

 f yB ()

= { structure block; k and n instantaneous }
P(max)l m y=

= { definition max }
 P(() ())l y m y m y l y= ∧ ≤ ∨ = ∧ <

= { independent random variables }

 f y f i f y f jl m
i

y

m l
j

y

() () () ()
= =

−

∑ ∑+
0 0

1

= { definition service distribution; distinguish cases y = 0 and y > 0 }

f y F y f y F y y

f y f y y
l m m l

l m

() () () (),

() (),

+ − >
=

1 0

0

The computation of the distribution function Fm can be done in um steps, just as the
distribution function Fl can be computed in ul steps. Therefore, the total computation
of fB can be done in θ(t) time, with t equal to the maximum of upper bounds ul and um.

154 K.M. van Hee and H.A. Reijers

Choice block
The next block we will consider is the choice block. The choice block B is depicted in
Figure 6.

t

s

1- α

α

Fig. 6. Choice block.

The block B consists of two transitions s and t. Initiating block B results in either the
execution of transition s or transition t, with respective chances α and 1 - α. When
the selected transition is completed, the block itself is completed. We would like to
compute throughput density fB, given fs and ft.

Let y ∈ N,

 f yB ()

= { structure block; introduce random variable I which determines whether transition
s or transition t is executed }

 P(() ())I s s y I t t y= ∧ = ∨ = ∧ =

= { P(I = s) = α; P(I = t) = 1 - α; I, s, and t are independent }
 α αf y f ys t() () ()+ −1

From the last expression follows that we can compute fB in θ(n) time, with n equal to

the maximum of us and ut.

Iteration block
The final and most complex block is the iteration block, depicted in Figure 7. It
consists of transitions t and u. The choice for either transition u or termination after
completion of transition t is a matter of chance. After each firing of transition t
transition u will fire with probability α.

t

u
α

1−α

Fig. 7. Iteration block.

The throughput density fB , given ft and fu , can be computed as follows:

Using Formal Analysis Techniques in Business Process Redesign 155

Let y ∈ N,

f yB ()

= { t will always be executed one time more than u; define random variable n as the
number of times that transition u is executed }

 P
n

j
j

n

j
j

n

t u y n n
=

∞

=

+

=
∑ ∑ ∑+ = ∧ =

0 1

1

1

= { n has geometrical distribution with P(n = n) = (1 - α) αn; random variables
independent }

 ()1
0 1

1

1

− + =

=

∞

=

+

=
∑ ∑ ∑α α n

n
j

j

n

j
j

n

t u yP

= { definition of service density f; service times are based on same service density;

definition convolution; introduce notation ⊗
=

= ⊗ ⊗
j

n

j na a a a
1

1 2 ... }

 () ()1
0 1

1

1
− ⊗

=

∞

=

+

=
∑ ⊗ ⊗α α n

n j

n

t
j

n

uf f yP

At this point we realize that a more suitable computational approach is to derive the
Discrete Fourier Transform of the vector representation of fB from the transforms of
!
t and

!
u . Doing so, it is possible to use an inverse transformation to actually

compute
!
B - the vector representation of fB . Leaving undecided yet what is the

proper length of
!
B we denote the index of the DFT with l.

DFT Bl ()
!

= { recall derivation of f yB () ; use ⋅ for pointwise vector multiplication and + for

pointwise addition }

 DFT t ul
n

n j

n

j

n

()1
0 1

1

1
− ⊗

=

∞

=

+

=
∑ ⊗ ⊗α α

! !

= { DFT distributes over multiplication and addition }

 ()1
0 1

1

1
− ⊗

=

∞

=

+

=
∑ ⊗ ⊗α α n

l
n j

n

j

n

DFT t u
! !

= { convolution theorem; convolution is associative }

 () () ()1 1

0

− +

=

∞

∑ α α n
l
n

n
l
nDFT t DFT u

! !

= { calculus }

() ()

() ()

1

1

−
−

α
α

DFT t

DFT t DFT u
l

l l

!
! !

156 K.M. van Hee and H.A. Reijers

Obviously, we can not expect fB to have an upper bound. After all, t and u could be
executed infinitely often if α is non-zero. So by choosing n as proposed we may end
up with a vector representation of fB that is too short. That is, there may be interesting
values of fB that will not be represented. We will show how a relevant, estimated

length of
!
B can be determined before actually computing

!
B . We would be most

pleased to find a value v such that for some very small ε holds:

P()B v≥ ≤ ε (i)

We are looking for an estimation of v that takes the distribution of values within ft and
fu into account. For this purpose we will use Chebyshev‘s inequality, that we present
without proof (see [8]). This inequality is often used to find a rough upper bound in
mostly theoretical applications.

Theorem (Chebyshev’s inequality) For any random variable x for which Ex 2 exists:

P()
var

x Ex c
x

c
− ≥ ≤ 2

With this inequality in the one hand, and the mean and variance of the throughput
density fB in the other, it can be determined which probability part of the density falls
before or after a hypothetical border. As the service time for any transition t is
denoted by t we will denote its mean by Et and its variance by var t.

EB

= { structure block}
 Et Eu EB+ +α()

= { calculus }

Et Eu+

−
α
α1

The computation of the variance of the iteration block is as follows.

var B

= { structure block; definition variance }
 α α α αvar() () var ()(())t u B t E t u B Et+ + + − + − + + −1 1 2

= { calculus; previous result for EB }

var vart u Eu Et+

−
+

+
−

α
α

α
α1 1

2

With Chebyshev‘s inequality we can determine a relevant part of vector
!
B by

modifying our original requirement (i) with:

P()B v B v≥ ∨ ≤ − ≤ ε (ii)

Using Formal Analysis Techniques in Business Process Redesign 157

This is only apparently a stronger requirement than (i), as B can never be negative and
the sum of positive values of fB is 1. Immediate application of Chebyshev on equation
(ii) is possible and yields the following:

BEcv +≥

and

ε =
var B

c2 .

From these equalities we can derive that:

ε
+≥ BBEv var

.

Concluding, given ft and fu, we can compute a vector representation of fB for the
iteration block by using the DFT:

DFT B
DFT t

DFT t DFT uv
v

v v

()
() ()

() ()

!
!

! !=
−

−
1

1

α
α

with

v is the smallest power of two such that
ε

+≥ BBEv var
, and

var
var var

B
t u Eu Et

=
+
−

+
+
−

α
α

α
α1 1

2

.

With the FFT we can compute a vector representation of fB in (v log v) time, with v as
specified. To appreciate its efficiency we have to establish the computing time of
calculating fB in a straightforward manner. The complexity of this calculation depends
on the maximal number of successive times that transitions t and u can be executed.
We know that if both ft(0) and fu(0) are equal to zero, at most v executions of these
transitions are of interest. Any more executions of transitions u and t would result in
throughput times that we do not take into consideration. As a result, a straightforward
approach requires the convolution of v times the function ft and fu. This is an operation
requiring θ(nv) time, with n the maximum of upper bounds of transitions t and u. A
comparison with the θ(v log v) time required by our newly found computation method
illustrates the efficiency of the latter.

2.5 Overall Computation

Suppose we have constructed a business process model from the start model SN with
n subsequent applications of the construction rule. Then, for n > 1 we can distinguish
the intermediate models W1, W2,…, Wn-1. W1 is the result of the application of the
construction rule using one of the blocks on the start model S; Wn results from the nth

158 K.M. van Hee and H.A. Reijers

application of the construction rule on intermediate model Wn-1. For each of the other
intermediate models Wi holds that it is the result from the ith application of the

construction rule on intermediate model Wi-1. Note that we can represent all
intermediate process models hierarchically in a derivation tree. It is, in fact, this
derivation tree that we will step through during our computation.

To compute the total throughput time of the constructed process model W we
assume that the service density of each of its transitions is known. In addition, all
probability distributions that involve choices or iterations are known too. Now we
take the opposite direction of the construction route. Starting at the end, we consider
the last application of the construction rule that leads from Wn-1 to W. We know
which part of Wn-1 is replaced by which specific block. We call this part Sn-1 and the
block Bn-1. Recall that Sn-1 is isomorphic with the start model. Bn-1 is the part of which
we compute its throughput density tn-1. This is feasible, as we know all relevant
service densities in W.

The resulting throughput density tn-1 is a fair characterization of the time that it
takes Bn-1 to process a job. What is more, the block can be seen as a detailed
specification of the behavior of Sn-1 that it has replaced. Therefore, the resulting
throughput density is a fair characterization of the service time that it takes Sn-1 to
process a job as well. When the only transition in Sn-1 should have a service density
that is equal to tn-1, the total throughput time of Wn-1 would exactly be the same as that
of W. Sn-1 can be seen as a “black box” for the applied block. The effort of computing
the throughput time of W has now become the effort to compute the throughput time
of Wn-1.

We can repeat this approach for each of the n transformations. When we ensure
that we follow the construction route in opposite direction, we can be confident that
all relevant data is available to compute the throughput time of each start model that
has been replaced. Finally, we end up with the start block SN. This block will have
only one transition of which its service density characterization is exactly the
throughput characterization of the entire process model W. And this is exactly the
throughput density we were looking for.

2.6 Numerical Experience

To give an indication of the efficiency of the presented algorithm to analyze the
throughput time of a business process model in the above way, we have computed the
throughput density of the rightmost process model depicted in Figure 3. As tool for
these calculations we have used the mathematical software package Maple V® running
on a Pentium 100 MHz computer. Each of the seven transitions in the process model
has been modeled to behave in accordance with distinct service densities. These
service densities, together with the process model under consideration, are depicted in
Figure 8. The service densities in this example are bounded by 64 time units.

Using Formal Analysis Techniques in Business Process Redesign 159

β

1−β

1−αα

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0 10 20 30 40 50 60 70

0.0000
0.0050

0.0100
0.0150
0.0200
0.0250

0.0300
0.0350
0.0400
0.0450

0 10 20 30 40 50 60 70

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0 10 20 30 40 50 60 70

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0 10 20 30 40 50 60 70

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0 10 20 30 40 50 60 70

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0 10 20 30 40 50 60 70

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0 10 20 30 40 50 60 70

Fig. 8. Numerical example.

The probabilities α and β of the model have been set on 0.3 and 0.15 respectively. For
the computation of the throughput density of the iteration block an inaccuracy (ε) of 1
percent has been allowed. The resulting throughput density for the entire net is
depicted in Figure 9.

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0 100 200 300 400 500 600

Fig. 9. Outcome throughput time.

The computation of the throughput density of the example net has been performed for
several sizes of the throughput density domain. These results can be found in Table 1.

160 K.M. van Hee and H.A. Reijers

Table 1. Computation time for example

Bound (service time units) 64 128 256 512 1024 2048
Computation time (seconds) 13 28 64 152 377 990

As can be seen, the computation time increases somewhat faster than linearly in the
bound dimension. It can be easily verified that the same relation exists between the
number of transitions and the computation time.

3. Conclusion

In this chapter we have made a case for the application of formal analysis techniques
during the redesign of business processes. We have identified the phases in a redesign
project where formal techniques can be applied. On a more detailed level, we have
shown how an analytical technique can be used to establish the throughput time of a
business process model. This analysis technique is only one of the many possible
quantitative analytical techniques that can offer support in this field. A redesign tool
that incorporates these kinds of techniques, presenting relevant analytical
characteristics of a business process can be a valuable asset to designers. In this way,
redesign measures formerly only justified by “gut feeling” can be rationalised.
Considering the money, time and stakes involved with BPR we would embrace an
increased rationality of the redesign process that may be acquired with the use of a
redesign tool.

References

1. Cormen, T. H., Leiseron, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press,
Cambridge (1990).

2. Hee, van, K.M.: Information Systems Engineering: a Formal Approach. Cambridge
University Press (1994).

3. Hee, van, K.M., Aalst, van der, W.M.P.: Workflow Managament: Modellen, Methoden en
Systemen. Academic Service, Schoonhoven (1997) [In Dutch]

4. Hee, van, K.M., Reijers, H.A.: An Analytical Method for Computing Throughput Times in
Stochastic Workflow Nets. Proceedings of the 7th Analytical and Numerical Modelling
Techniques Conference (1999) [Forthcoming]

5. Jensen, K: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Vol.
1, Basic Concepts. Springer-Verlag, Berlin (1992).

6. Levin, R., Kirkpatrick, C.: Planning and control with PERT/CPM. McGraw-Hill, New
York (1966).

7. Neuman, K., Steinhardt, U.: GERT Networks, vol. 172 of Lecture Notes in Economic and
Mathematical Systems. Springer-Verlag, Berlin (1979).

8. Thomasian, A.J.: The structure of Probability Theory with Applications. McGraw-Hill
Book Company, New York (1969).

9. Tijms, H. C.: Stochastic Models: an Algorithmic Approach. John Wiley & Sons, New
York (1994).

Workflow Verification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques

W.M.P. van der Aalst

Eindhoven University of Technology, Faculty of Technology and Management, Department of
Information and Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl

Abstract. Workflow management systems facilitate the everyday operation of
business processes by taking care of the logistic control of work. In contrast to
traditional information systems, they attempt to support frequent changes of the
workflows at hand. Therefore, the need for analysis methods to verify the cor-
rectness of workflows is becoming more prominent. In this chapter we present
a method based on Petri nets. This analysis method exploits the structure of the
Petri net to find potential errors in the design of the workflow. Moreover, the
analysis method allows for the compositional verification of workflows.

1 Introduction

Workflow management systems (WFMS) are used for the modeling, analysis, enact-
ment, and coordination of structured business processes by groups of people. Business
processes supported by a WFMS arecase-driven, i.e., tasks are executed for specific
cases. Approving loans, processing insurance claims, billing, processing tax decla-
rations, handling traffic violations and mortgaging, are typical case-driven processes
which are often supported by a WFMS. These case-driven processes, also calledwork-
flows, are marked by three dimensions: (1) the control-flow dimension, (2) the resource
dimension, and (3) the case dimension (see Figure 1). The control-flow dimension is
concerned with the partial ordering of tasks, i.e., the workflowprocess. The tasks which
need to be executed are identified and the routing of cases along these tasks is de-
termined. Conditional, sequential, parallel and iterative routing are typical structures
specified in the control-flow dimension. Tasks are executed by resources. Resources are
human (e.g., employee) and/or non-human (e.g., device, software, hardware). In the re-
source dimension these resources are classified by identifying roles (resource classes
based on functional characteristics) and organizational units (groups, teams or depart-
ments). Both the control-flow dimension and the resource dimension are generic, i.e.,
they are not tailored towards a specific case. The third dimension of a workflow is con-
cerned with individual cases which are executed according to the process definition
(first dimension) by the proper resources (second dimension).

Managing workflows is not a new idea. Workflow control techniques have existed
for decades and many management concepts originating from production and logis-
tics are also applicable in a workflow context. However, just recently, commercially
available generic WFMS’s have become a reality. Although these systems have been

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 161-183, 2000.
 Springer-Verlag Berlin Heidelberg 2000

case dimension

control-flow dimension

resource dimension

task

case
work item

activity

resource

Fig. 1. The three dimensions of workflow.

applied successfully, contemporary WFMS’s have at least two important drawbacks.
First of all, today’s systems do not scale well, have limited fault tolerance and are in-
flexible. Secondly, a solid theoretical foundation is missing. Most of the more than 250
commercially available WFMS’s use a vendor-specific ad-hoc modeling technique to
design workflows. In spite of the efforts of the Workflow Management Coalition [25],
real standards are missing. The absence of formalized standards hinders the develop-
ment of tool-independent analysis techniques. As a result, contemporary WFMS’s do
not facilitate advanced analysis methods to determine the correctness of a workflow.

As many researchers have indicated [11, 18, 26], Petri nets constitute a good start-
ing point for a solid theoretical foundation of workflow management. In this chapter
we focus on the control-flow dimension. We use Petri nets to specify the partial order-
ing of tasks. Based on a Petri-net-based representation of the workflow, we tackle the
problem of verification. We will provide techniques to verify the so-calledsoundness
propertyintroduced in [2]. A workflow is sound if and only if, for any case, the process
terminates properly, i.e., termination is guaranteed, there are no dangling references,
and deadlock and livelock are absent.

This chapter extends the results presented in [2]. We will show that in most of the
situations encountered in practice, the soundness property can be checked in polyno-
mial time. Moreover, we identify suspicious constructs which may endanger the cor-
rectness of a workflow. We will also show that the approach presented in this chapter
allows for the compositional verification of workflows, i.e., the correctness of a process
can be decided by partitioning it into sound subprocesses. To support the application
of the results presented in this chapter, we have developed a Petri-net-based workflow
analyzer calledWoflan[4, 5, 23, 24]. Woflan is a workflow management system inde-
pendent analysis tool which interfaces with some of the leading products at the Dutch
workflow market.

2 Workflow Perspectives

This chapter uses the soundness property as the criterion for correctness. It is clear
that this property does not capture all possible errors because it primarily focuses on

162 W.M.P. van der Aalst

the control flow. Before we focus on techniques to verify soundness, we discuss the
usefulness of a control-flow-based criterion for correctness.

The primary task of a workflow management system is to enact case-driven business
processes by joining several perspectives. The following perspectives are relevant for
workflow modeling and workflow execution: (1)control flow(or process) perspective,
(2) resource(or organization) perspective, (3)data(or information) perspective, (4)task
(or function) perspective, (5)operation(or application) perspective. These perspectives
are similar to the perspectives given in [16] and the control flow and resource perspec-
tives correspond to the first two dimensions shown in Figure 1. The third dimension
reflects the fact that workflows are case-driven.

In the control-flow perspective,workflow process definitions(workflow schemas)
are defined to specify whichtasksneed to be executed and in what order (i.e., the rout-
ing or control flow). A task is an atomic piece of work. Workflow process definitions
are instantiated for specificcases(i.e., workflow instances). Since a case is an instantia-
tion of a process definition, it corresponds to the execution of concrete work according
to the specified routing. In theresourceperspective, the organizational structure and
the population are specified. The organizational structure describes relations between
roles (resource classes based on functional aspects) and groups (resource classes based
on organizational aspects). Thus clarifying organizational issues such as responsibil-
ity, availability, and authorization. Resources, ranging from humans to devices, form
the organizational population and are allocated to roles and groups. The data perspec-
tive deals withcontrol and production data. Control data are data introduced solely
for workflow management purposes, e.g., variables introduced for routing purposes.
Production data are information objects (e.g., documents, forms, and tables) whose ex-
istence does not depend on workflow management. The task perspective describes the
elementary operations performed by resources while executing a task for a specific case.
In the operational perspective the elementary actions are described. These actions are
often executed using applications ranging from a text editor to custom build applications
to perform complex calculations. Typically, these applications create, read, or modify
control and production data in the information perspective.

This chapter addresses the problem of workflow verification. Although each of the
perspectives is relevant, we focus on the control flow perspective. In fact, we focus on
the life cycle of one case in isolation. In the remainder of this section, we will motivate
why it is reasonable to abstract from the other perspectives when verifying a workflow.

We abstract from the resource perspective because, given today’s workflow technol-
ogy, at any time there is only one resource working on a task which is being executed
for a specific case. In today’s workflow management systems it is not possible to specify
that several resources are collaborating in executing a task. Note that even if multiple
persons are executing one task, e.g., writing a report, only one person is allocated to
that task from the perspective of the workflow management system: This is the person
that selected the work item from the in-basket (i.e., the electronic worktray). Since a
person is working on one task at a time and each task is eventually executed by one per-
son (although it may be allocated to a group a people), it is sufficient to check whether
all resources classes have at least one resource. In contrast to many other application
domains such a flexible manufacturing systems, anomalies such as a deadlock resulting

163Finding Control-Flow Errors Using Petri-Net-Based Techniques

from locking problems are not possible. Therefore, from the viewpoint of verification,
i.e., analyzing the logical correctness of a workflow, it is reasonable to abstract from
resources. However, if in the future collaborative features are explicitly supported by
the workflow management system (i.e., a tight integration of groupware and workflow
technology), then the resource perspective should be taken into account.

We partly abstract from the data perspective. The reason we abstract from produc-
tion data is that these are outside the scope of the workflow management system. These
data can be changed at any time without notifying the workflow management system.
In fact their existence does not even depend upon the workflow application and they
may be shared among different workflows, e.g., the bill-of-material in manufacturing
is shared by production, procurement, sales, and quality control processes. The control
data used by the workflow management system to route cases are managed by the work-
flow management system. However, some of these data are set or updated by humans
or applications. For example, a decision is made by a manager based on intuition or a
case is classified based on a complex calculation involving production data. Clearly, the
behavior of a human or a complex application cannot be modeled completely. There-
fore, some abstraction is needed to incorporate the data perspective when verifying a
given workflow. The abstraction used in this chapter is the following. Since control data
(i.e., workflow attributes such as the age of a customer, the department responsible, or
the registration date) are only used for the routing of a case, we incorporate the routing
decisions but not the actual data. For example, the decision to accept or to reject an in-
surance claim is taken into account, but not the actual data where this decision is based
on. Therefore, we consider each choice to be a non-deterministic one. There are other
reasons for abstracting from the workflow attributes. If we are able to prove soundness
(i.e., the correctness criterion used in this chapter) for the situation without workflow
attributes, it will also hold for the situation with workflow attributes (assuming certain
fairness properties). Last but not least, we abstract from triggers and workflow attributes
because it allows us to use ordinary Petri nets (i.e., P/T nets) rather than high-level Petri
nets. From an analysis point of view, this is preferable because of the availability of
efficient algorithms and powerful analysis tools.

For similar reasons we (partly) abstract from the task and operation perspectives. We
consider tasks to be atomic and abstract from the execution of operations inside tasks.
The workflow management system can only launch applications or trigger people and
monitor the results. It cannot control the actual execution of the task. Therefore, from
the viewpoint of verification, it is reasonable to focus on the control-flow perspective.
In fact, it suffices to consider the life cycle of one case in isolation. The only way cases
interact directly is the competition for resources and the sharing of production data.
(Note that control data are strictly separated.) Therefore, if we abstract from resources
and data, it suffices to consider one case in isolation. The competition between cases
for resources is only relevant for performance analysis.

164 W.M.P. van der Aalst

3 Petri Nets

This section introduces the basic Petri net terminology and notations. Readers familiar
with Petri nets can skip this section.1

The classical Petri net is a directed bipartite graph with two node types calledplaces
andtransitions. The nodes are connected via directedarcs. Connections between two
nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Definition 1 (Petri net). A Petri net is a triple(P; T; F):

- P is a finite set of places,
- T is a finite set of transitions (P \ T = ;),
- F � (P � T) [(T � P) is a set of arcs (flow relation)

A placep is called aninput placeof a transitiont iff there exists a directed arc from
p to t. Placep is called anoutput placeof transitiont iff there exists a directed arc
from t to p. We use�t to denote the set of input places for a transitiont. The notations
t�, �p andp� have similar meanings, e.g.,p� is the set of transitions sharingp as an
input place. Note that we do not consider multiple arcs from one node to another. In
the context of workflow procedures it makes no sense to have other weights, because
places correspond to conditions.

At any time a place contains zero or moretokens, drawn as black dots. Thestate,
often referred to as marking, is the distribution of tokens over places, i.e.,M 2 P ! IN.
We will represent a state as follows:1p1+2p2+1p3+0p4 is the state with one token in
placep1, two tokens inp2, one token inp3 and no tokens inp4. We can also represent
this state as follows:p1 +2p2+ p3. To compare states we define a partial ordering. For
any two statesM1 andM2, M1 �M2 iff for all p 2 P : M1(p) �M2(p)

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transitiont is said to beenablediff each input placep of t contains at least one
token.

(2) An enabled transition mayfire. If transitiont fires, thent consumesone token from
each input placep of t andproducesone token for each output placep of t.

Given a Petri net(P; T; F) and a stateM1, we have the following notations:

- M1

t
!M2: transitiont is enabled in stateM1 and firingt in M1 results in stateM2

- M1 !M2: there is a transitiont such thatM1

t
!M2

- M1

�
! Mn: the firing sequence� = t1t2t3 : : : tn�1 leads from stateM1 to state

Mn via a (possibly empty) set of intermediate statesM2; :::Mn�1, i.e., M1

t1!

M2

t2! :::
tn�1

! Mn

1 Note that states are represented by weighted sums and note the definition of (elementary)
(conflict-free) paths.

165Finding Control-Flow Errors Using Petri-Net-Based Techniques

A stateMn is calledreachablefrom M1 (notationM1

�
! Mn) iff there is a firing

sequence� such thatM1

�
! Mn. Note that the empty firing sequence is also allowed,

i.e.,M1

�
!M1.

We use(PN ;M) to denote a Petri netPN with an initial stateM . A stateM 0 is a
reachable stateof (PN ;M) iff M

�
!M 0.

Let us define some standard properties for Petri nets. First, we define properties
related to the dynamics of a Petri net, then we give some structural properties.

Definition 2 (Live). A Petri net(PN ;M) is live iff, for every reachable stateM 0 and
every transitiont there is a stateM 00 reachable fromM 0 which enablest.

A Petri net isstructurally liveif there exists an initial state such that the net is live.

Definition 3 (Bounded, safe).A Petri net(PN ;M) is bounded iff for each placep
there is a natural numbern such that for every reachable state the number of tokens in
p is less thann. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

A Petri net isstructurally boundedif the net is bounded for any initially state.

Definition 4 (Well-formed). A Petri netPN is well-formed iff there is a stateM such
that (PN ;M) is live and bounded.

Paths connect nodes by a sequence of arcs.

Definition 5 (Path, Elementary, Conflict-free).LetPN be a Petri net. A pathC from
a noden1 to a nodenk is a sequencehn1; n2; : : : ; nki such thathni; ni+1i 2 F for
1 � i � k � 1. C is elementary iff, for any two nodesni andnj on C, i 6= j)
ni 6= nj . C is conflict-free iff, for any placenj on C and any transitionni on C,
j 6= i� 1) nj 62 �ni.

For convenience, we introduce the alphabet operator� on paths. IfC = hn1; n2; : : : ; nki,
then�(C) = fn1; n2; : : : ; nkg.

Definition 6 (Strongly connected).A Petri net is strongly connected iff, for every pair
of nodes (i.e., places and transitions)x andy, there is a path leading fromx to y.

Definition 7 (Free-choice).A Petri net is a free-choice Petri net iff, for every two tran-
sitionst1 andt2, �t1 \ �t2 6= ; implies�t1 = �t2.

Definition 8 (State machine).A Petri net is state machine iff each transition has ex-
actly one input and one output place.

Definition 9 (S-component).A subnetPN s = (Ps; Ts; Fs) is called an S-component
of a Petri netPN = (P; T; F) if Ps � P , Ts � T ,Fs � F ,PN s is strongly connected,
PN s is a state machine, and for everyq 2 Ps andt 2 T : (q; t) 2 F) (q; t) 2 Fs and
(t; q) 2 F) (t; q) 2 Fs.

Definition 10 (S-coverable).A Petri net is S-coverable iff for any node there exist an
S-component which contains this node.

See [10, 20] for a more elaborate introduction to these standard notions.

166 W.M.P. van der Aalst

4 WF-Nets

In Figure 1 we indicated that a workflow has (at least) three dimensions. The control-
flow dimension is the most prominent one, because the core of any workflow system is
formed by the processes it supports. In the control-flow dimension building blocks such
as the AND-split, AND-join, OR-split, and OR-join are used to model sequential, con-
ditional, parallel and iterative routing (WFMC [25]). Clearly, a Petri net can be used to
specify the routing of cases.Tasksare modeled by transitions and causal dependencies
are modeled by places and arcs. In fact, a place corresponds to aconditionwhich can
be used as pre- and/or post-condition for tasks. An AND-split corresponds to a transi-
tion with two or more output places, and an AND-join corresponds to a transition with
two or more input places. OR-splits/OR-joins correspond to places with multiple out-
going/ingoing arcs. Moreover, in [1] it is shown that the Petri net approach also allows
for useful routing constructs absent in many WFMS’s.

A Petri net which models the control-flow dimension of a workflow, is called a
WorkFlow net(WF-net). It should be noted that a WF-net specifies the dynamic behav-
ior of a single case in isolation.

Definition 11 (WF-net). A Petri netPN = (P; T; F) is a WF-net (Workflow net) if
and only if:

(i) There is one source placei 2 P such that�i = ;.
(ii) There is one sink placeo 2 P such thato� = ;.
(iii) Every nodex 2 P [T is on a path fromi to o.

A WF-net has one input place (i) and one output place (o) because any case handled
by the procedure represented by the WF-net is created when it enters the WFMS and
is deleted once it is completely handled by the WFMS, i.e., the WF-net specifies the
life-cycle of a case. The third requirement in Definition 11 has been added to avoid
‘dangling tasks and/or conditions’, i.e., tasks and conditions which do not contribute to
the processing of cases.

Given the definition of a WF-net it is easy derive the following properties.

Proposition 1 (Properties of WF-nets).LetPN = (P; T; F) be Petri net.

– If PN is WF-net with source placei, then for any placep 2 P : �p 6= ; or p = i,
i.e., i is the only source place.

– If PN is WF-net with sink placeo, then for any placep 2 P : p� 6= ; or p = o, i.e.,
o is the only sink place.

– If PN is a WF-net and we add a transitiont� to PN which connects sink placeo
with source placei (i.e.,�t� = fog andt�� = fig), then the resulting Petri net is
strongly connected.

– If PN has a source placei and a sink placeo and adding a transitiont� which
connects sink placeo with source placei yields a strongly connected net, then
every nodex 2 P [T is on a path fromi to o in PN andPN is a WF-net.

Figure 2 shows a WF-net which models the processing of complaints. First the com-
plaint is registered (taskregister), then in parallel a questionnaire is sent to the com-
plainant (tasksendquestionnaire) and the complaint is evaluated (taskevaluate). If the

167Finding Control-Flow Errors Using Petri-Net-Based Techniques

i o

c1 c3

c4 c6

c7 c9

register

archive

evaluate no_processing

check_processing
processing_OK

processing_NOK

processing_required

c5

process_complaint

c2

c8

time_out

send_questionnaire process_questionnaire

Fig. 2. A WF-net for the processing of complaints.

complainant returns the questionnaire within two weeks, the taskprocessquestionnaire
is executed. If the questionnaire is not returned within two weeks, the result of the ques-
tionnaire is discarded (tasktime out). Based on the result of the evaluation, the com-
plaint is processed or not. The actual processing of the complaint (taskprocesscompl-
aint) is delayed until conditionc5 is satisfied, i.e., the questionnaire is processed or a
time-out has occurred. The processing of the complaint is checked via taskcheckpro-
cessing. Finally, taskarchiveis executed. Note that sequential, conditional, parallel and
iterative routing are present in this example.

The WF-net shown in Figure 2 clearly illustrates that we focus on the control-flow
dimension. We abstract from resources, applications, and technical platforms. More-
over, we also abstract fromcase variablesand triggers. Case variables are used to
resolve choices (OR-split), i.e., the choice betweenprocessingrequired and no pro-
cessingis (partially) based on case variables set during the execution of taskevaluate.
The choice betweenprocessingOK andprocessingNOK is resolved by testing case
variables set bycheckprocessing. In the WF-net we abstract from case variables by
introducing non-deterministic choices in the Petri-net. If we don’t abstract from this in-
formation, we would have to model the (unknown) behavior of the applications used in
each of the tasks and analysis would become intractable. In Figure 2 we have indicated
that time out andprocessquestionnairerequire triggers. The clock symbol denotes a
time trigger and the envelope symbol denotes an external trigger. Tasktime out requires
a time trigger (‘two weeks have passed’) andprocessquestionnairerequires a message
trigger (‘the questionnaire has been returned’). A trigger can be seen as an additional
condition which needs to be satisfied. In the remainder of this chapter we abstract from
these trigger conditions. We assume that the environment behaves fairly, i.e., the live-
ness of a transition is not hindered by the continuous absence of a specific trigger. As a
result, every trigger condition will be satisfied eventually.

168 W.M.P. van der Aalst

5 Soundness

In this section we summarize some of the basic results for WF-nets presented in [2].
The remainder of this chapter will build on these results.

The three requirements stated in Definition 11 can be verified statically, i.e., they
only relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedure terminates there is a token in place o and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net. These two additional
requirements correspond to the so-calledsoundness property.

Definition 12 (Sound).A procedure modeled by a WF-netPN = (P; T; F) is sound if
and only if:

(i) For every stateM reachable from statei, there exists a firing sequence leading
from stateM to stateo. Formally:2

8M (i
�
!M)) (M

�
! o)

(ii) Stateo is the only state reachable from statei with at least one token in placeo.
Formally:

8M (i
�
!M ^ M � o)) (M = o)

(iii) There are no dead transitions in(PN ; i). Formally:

8t2T 9M;M 0 i
�
!M

t
!M 0

Note that the soundness property relates to the dynamics of a WF-net. The first re-
quirement in Definition 12 states that starting from the initial state (statei), it is always
possible to reach the state with one token in placeo (stateo). If we assume a strong
notion of fairness, then the first requirement implies that eventually stateo is reached.
Strong fairness means in every infinite firing sequence, each transition fires infinitely
often. The fairness assumption is reasonable in the context of workflow management:
All choices are made (implicitly or explicitly) by applications, humans or external ac-
tors. Clearly, they should not introduce an infinite loop. Note that the traditional notions
of fairness (i.e., weaker forms of fairness with just local conditions, e.g., if a transition
is enabled infinitely often, it will fire eventually) are not sufficient. See [3, 17] for more
details. The second requirement states that the moment a token is put in placeo, all
the other places should be empty. Sometimes the termproper terminationis used to
describe the first two requirements [14]. The last requirement states that there are no
dead transitions (tasks) in the initial statei.

2 Note that there is an overloading of notation: the symboli is used to denote both theplace i
and thestatewith only one token in placei (see Section 3).

169Finding Control-Flow Errors Using Petri-Net-Based Techniques

i
register

c1

c2

time_out_1

time_out_2

processing_2

processing_1

processing_OK

processing_NOKc3

c4

c5

o

Fig. 3. Another WF-net for the processing of complaints.

Figure 3 shows a WF-net which is not sound. There are several deficiencies. If
time out 1 andprocessing2 fire or time out 2 andprocessing1 fire, the WF-net will
not terminate properly because a token gets stuck inc4orc5. If time out 1andtime out 2
fire, then the taskprocessingNOK will be executed twice and because of the presence
of two tokens ino the moment of termination is not clear.

Given a WF-netPN = (P; T; F), we want to decide whetherPN is sound. In
[2] we have shown that soundness corresponds to liveness and boundedness. To link
soundness to liveness and boundedness, we define an extended netPN = (P ; T ; F).
PN is the Petri net obtained by adding an extra transitiont� which connectso andi.
The extended Petri netPN = (P ; T ; F) is defined as follows:P = P , T = T [ft�g,
andF = F [fho; t�i; ht�; iig. In the remainder we will call such an extended net
theshort-circuitednet ofPN . The short-circuited net allows for the formulation of the
following theorem.

Theorem 1. A WF-netPN is sound if and only if(PN ; i) is live and bounded.

Proof. See [2]. ut

This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness.

6 Structural Characterization of Soundness

Theorem 1 gives a useful characterization of the quality of a workflow process defini-
tion. However, there are a number of problems:

– For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF-
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng,
Esparza and Palsberg [8].)

– Soundness is a minimal requirement. Readability and maintainability issues are not
addressed by Theorem 1.

– Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does
not identify constructs which invalidate the soundness property.

170 W.M.P. van der Aalst

These problems stem from the fact that the definition of soundness relates to the dy-
namics of a WF-net while the workflow designer is concerned with the static structure
of the WF-net. Therefore, it is interesting to investigate structural characterizations of
sound WF-nets. For this purpose we introduce three interesting subclasses of WF-nets:
free-choice WF-nets, well-structured WF-nets, and S-coverable WF-nets.

6.1 Free-Choice WF-Nets

Most of the WFMS’s available at the moment, abstract from states between tasks,
i.e., states are not represented explicitly. These WFMS’s use building blocks such as
the AND-split, AND-join, OR-split and OR-join to specify workflow procedures. The
AND-split and the AND-join are used for parallel routing. The OR-split and the OR-
join are used for conditional routing. Because these systems abstract from states, every
choice is madeinsidean OR-split building block. If we model an OR-split in terms of
a Petri net, the OR-split corresponds to a number of transitions sharing the same set of
input places. This means that for these WFMS’s, a workflow procedure corresponds to
a free-choice Petri net (cf. Definition 7).

It is easy to see that a process definition composed of AND-splits, AND-joins, OR-
splits and OR-joins is free-choice. If two transitionst1 and t2 share an input place
(�t1\�t2 6= ;), then they are part of an OR-split, i.e., a ‘free choice’ between a number
of alternatives. Therefore, the sets of input places oft1 andt2 should match (�t1 = �t2).
Figure 3 shows a free-choice WF-net. The WF-net shown in Figure 2 is not free-choice;
archiveandprocesscomplaintshare an input place but the two corresponding input sets
differ.

We have evaluated many WFMS’s and just one of these systems (COSA [21]) allows
for a construct which is comparable to a non-free choice WF-net. Therefore, it makes
sense to consider free-choice Petri nets in more detail. Clearly, parallelism, sequential
routing, conditional routing and iteration can be modeled without violating the free-
choice property. Another reason for restricting WF-nets to free-choice Petri nets is the
following. If we allow non-free-choice Petri nets, then the choice between conflicting
tasksmaybe influenced by the order in which the preceding tasks are executed. The
routing of a case should be independent of the order in which tasks are executed. A
situation where the free-choice property is violated is often a mixture of parallelism
and choice. Figure 4 shows such a situation. Firing transitiont1 introduces parallelism.
Although there is no real choice betweent2 and t5 (t5 is not enabled), the parallel
execution oft2 andt3 results in a situation wheret5 is not allowed to occur. However,
if the execution oft2 is delayed untilt3 has been executed, then there is a real choice
betweent2 andt5. In our opinion parallelism itself should be separated from the choice
between two or more alternatives. Therefore, we consider the non-free-choice construct
shown in Figure 4 to be improper. In literature, the termconfusionis often used to refer
to the situation shown in Figure 4.

Free-choice Petri nets have been studied extensively (cf. Best [7], Desel and Esparza
[10, 9, 12], Hack [15]) because they seem to be a good compromise between expressive
power and analyzability. It is a class of Petri nets for which strong theoretical results and
efficient analysis techniques exist. For example, the well-known Rank Theorem (Desel
and Esparza [10]) enables us to formulate the following corollary.

171Finding Control-Flow Errors Using Petri-Net-Based Techniques

t2

t3
i

t4

t5

t1

o

c1

c2

c3

c4

Fig. 4. A non-free-choice WF-net containing a mixture of parallelism and choice.

Corollary 1. The following problem can be solved in polynomial time.
Given a free-choice WF-net, to decide if it is sound.

Proof. LetPN be a free-choice WF-net. The short-circuited netPN is also free-choice.
Therefore, the problem of deciding whether(PN ; i) is live and bounded can be solved
in polynomial time (Rank Theorem [10]). By Theorem 1, this corresponds to soundness.

ut

Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide
soundness. Moreover, a sound free-choice WF-net is guaranteed to be safe (given an
initial state with just one token ini).

Lemma 1. A sound free-choice WF-net is safe.

Proof. Let PN be a sound free-choice WF-net.PN is the Petri netPN extended with
a transition connectingo andi. PN is free-choice and well-formed. Hence,PN is S-
coverable [10], i.e., each place is part of an embedded strongly connected state-machine
component. Since initially there is just one token(PN ; i) is safe and so is(PN ; i). ut

Safeness is a desirable property, because it makes no sense to have multiple tokens in a
place representing a condition. A condition is either true (1 token) or false (no tokens).

Although most WFMS’s only allow for free-choice workflows, free-choice WF-nets
are not a completely satisfactory structural characterization of ‘good’ workflows. On the
one hand, there are non-free-choice WF-nets which correspond to sensible workflows
(cf. Figure 2). On the other hand there are sound free-choice WF-nets which make no
sense. Nevertheless, the free-choice property is a desirable property. If a workflow can
be modeled as a free-choice WF-net, one should do so. A workflow specification based
on a free-choice WF-net can be enacted by most workflow systems. Moreover, a free-
choice WF-net allows for efficient analysis techniques and is easier to understand. Non-
free-choice constructs such as the construct shown in Figure 4 are a potential source of
anomalous behavior (e.g., deadlock) which is difficult to trace.

6.2 Well-Structured WF-Nets

Another approach to obtain a structural characterization of ‘good’ workflows, is to bal-
ance AND/OR-splits and AND/OR-joins. Clearly, two parallel flows initiated by an
AND-split, should not be joined by an OR-join. Two alternative flows created via an
OR-split, should not be synchronized by an AND-join. As shown in Figure 5, an AND-
split should be complemented by an AND-join and an OR-split should be comple-
mented by an OR-join.

172 W.M.P. van der Aalst

AND-split AND-join AND-split

AND-joinOR-split OR-join

OR-join

OR-split

Fig. 5. Good and bad constructions.

One of the deficiencies of the WF-net shown in Figure 3 is the fact that the AND-
split register is complemented by the OR-joinc3 or the OR-joino. To formalize the
concept illustrated in Figure 5 we give the following definition.

Definition 13 (Well-handled).A Petri netPN is well-handled iff, for any pair of nodes
x andy such that one of the nodes is a place and the other a transition and for any pair
of elementary pathsC1 andC2 leading fromx to y, �(C1)\�(C2) = fx; yg) C1 =
C2.

Note that the WF-net shown in Figure 3 is not well-handled. Well-handledness can be
decided in polynomial time by applying a modified version of the max-flow min-cut
technique described in [5]. A Petri net which is well-handled has a number of nice
properties, e.g., strong connectedness and well-formedness coincide.

Lemma 2. A strongly connected well-handled Petri net is well-formed.

Proof. Let PN be a strongly connected well-handled Petri net. Clearly, there are no
circuits that have PT-handles nor TP-handles [13]. Therefore, the net is structurally
bounded (See Theorem 3.1 in [13]) and structurally live (See Theorem 3.2 in [13]).
Hence,PN is well-formed. ut

Clearly, well-handledness is a desirable property for any WF-netPN . Moreover, we
also require the short-circuitedPN to be well-handled. We impose this additional re-
quirement for the following reason. Suppose we want to usePN as a part of a larger
WF-netPN 0. PN 0 is the original WF-net extended with an ‘undo-task’. See Figure 6.
Transitionundo corresponds to the undo-task, transitionst1 andt2 have been added to
makePN 0 a WF-net. It is undesirable that transitionundo violates the well-handledness
property of the original net. However,PN 0 is well-handled iffPN is well-handled.
Therefore, we requirePN to be well-handled. We use the termwell-structuredto refer
to WF-nets whose extension is well-handled.

Definition 14 (Well-structured). A WF-netPN is well-structured iffPN is well-han-
dled.

173Finding Control-Flow Errors Using Petri-Net-Based Techniques

i o

t2t1

undo

PN

PN’:

Fig. 6. The WF-netPN 0 is well-handled iffPN is well-handled.

Well-structured WF-nets have a number of desirable properties. Soundness can be ver-
ified in polynomial time and a sound well-structured WF-net is safe. To prove these
properties we use some of the results obtained forelementary extended non-self con-
trolling nets.

Definition 15 (Elementary extended non-self controlling).A Petri netPN is ele-
mentary extended non-self controlling (ENSC) iff, for every pair of transitionst1 andt2
such that�t1 \ �t2 6= ;, there does not exist an elementary pathC leading fromt1 to
t2 such that�t1 \ �(C) = ;.

Theorem 2. Let PN be a WF-net. IfPN is well-structured, thenPN is elementary
extended non-self controlling.

Proof. Assume thatPN is not elementary extended non-self controlling. This means
that there is a pair of transitionst1 andtk such that�t1 \ �tk 6= ; and there exist an
elementary pathC = ht1; p2; t2; : : : ; pk; tki leading fromt1 to tk and�t1 \ �(C) = ;.
Let p1 2 �t1 \ �tk. C1 = hp1; tki andC2 = hp1; t1; p2; t2; : : : ; pk; tki are paths
leading fromp1 to tk. (Note thatC2 is the concatenation ofhp1i andC.) Clearly,C1 is
elementary. We will also show thatC2 is elementary.C is elementary, andp1 62 �(C)
becausep1 2 �t1. Hence,C2 is also elementary. SinceC1 andC2 are both elementary
paths,C1 6= C2 and�(C1) \ �(C2) = fp1; tkg, we conclude thatPN is not well-
handled. ut

t3 t5t1

t2 t4

oi c2

c1

c3

c4

Fig. 7. A well-structured WF-net.

174 W.M.P. van der Aalst

Consider for example the WF-net shown in Figure 7. The WF-net is well-structured
and, therefore, also elementary extended non-self controlling. However, the net is not
free-choice. Nevertheless, it is possible to verify soundness for such a WF-net very
efficiently.

Corollary 2. The following problem can be solved in polynomial time.
Given a well-structured WF-net, to decide if it is sound.

Proof. Let PN be a well-structured WF-net. The short-circuited netPN is elemen-
tary extended non-self controlling (Theorem 2) and structurally bounded (see proof of
Lemma 2). For bounded elementary extended non-self controlling nets the problem of
deciding whether a given marking is live, can be solved in polynomial time (See [6]).
Therefore, the problem of deciding whether(PN ; i) is live and bounded can be solved
in polynomial time. By Theorem 1, this corresponds to soundness. ut

Lemma 3. A sound well-structured WF-net is safe.

Proof. Let PN be the netPN extended with a transition connectingo and i. PN is
extended non-self controlling.PN is covered by state-machines (S-components), see
Corollary 5.3 in [6]. Hence,PN is safe and so isPN (see proof of Lemma 1). ut

Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases
soundness can be verified very efficiently and soundness implies safeness. In spite of
these similarities, there are sound well-structured WF-nets which are not free-choice
(Figure 7) and there are sound free-choice WF-nets which are not well-structured.
In fact, it is possible to have a sound WF-net which is neither free-choice nor well-
structured (Figures 2 and 4).

6.3 S-Coverable WF-Nets

What about the sound WF-nets shown in Figure 2 and Figure 4? The WF-net shown
in Figure 4 can be transformed into a free-choice well-structured WF-net by separating
choice and parallelism. The WF-net shown in Figure 2 cannot be transformed into a
free-choice or well-structured WF-net without yielding a much more complex WF-net.
Placec5 acts as some kind of milestone which is tested by the taskprocesscomplaint.
Traditional workflow management systems which do not make the state of the case
explicit, are not able to handle the workflow specified by Figure 2. Only workflow
management systems such as COSA [21] have the capability to enact such a state-based
workflow. Nevertheless, it is interesting to consider generalizations of free-choice and
well-structured WF-nets:S-coverable WF-netscan be seen as such a generalization.

Definition 16 (S-coverable).A WF-netPN is S-coverable if the short-circuited net
PN is S-coverable.

The WF-nets shown in Figure 2 and Figure 4 are S-coverable. The WF-net shown in
Figure 3 is not S-coverable. The following two corollaries show that S-coverability is a
generalization of the free-choice property and well-structuredness.

175Finding Control-Flow Errors Using Petri-Net-Based Techniques

Corollary 3. A sound free-choice WF-net is S-coverable.

Proof. The short-circuited netPN is free-choice and well-formed. Hence,PN is S-
coverable (cf. [10]). ut

Corollary 4. A sound well-structured WF-net is S-coverable.

Proof. PN is extended non-self controlling (Theorem 2). Hence,PN is S-coverable
(cf. Corollary 5.3 in [6]). ut

All the sound WF-nets presented in this chapter are S-coverable. Every S-coverable
WF-net is safe. The only WF-net which is not sound, i.e., the WF-net shown in Figure 3,
is not S-coverable. These and other examples indicate that there is a high correlation
between S-coverability and soundness. It seems that S-coverability is one of the basic
requirements any workflow process definition should satisfy. From a formal point of
view, it is possible to construct WF-nets which are sound but not S-coverable. Typically,
these nets contain places which do not restrict the firing of a transition, but which are
not in any S-component. (See for example Figure 65 in [19].) From a practical point of
view, these WF-nets are to be avoided. WF-nets which are not S-coverable are difficult
to interpret because the structural and dynamical properties do not match. For example,
these nets can be live and bounded but not structurally bounded. There seems to be no
practical need for using constructs which violate the S-coverability property. Therefore,
we consider S-coverability to be a basic requirement any WF-net should satisfy.

Another way of looking at S-coverability is the following interpretation: S-com-
ponents corresponds todocument flows. To handle a workflow several pieces of infor-
mation are created, used, and updated. One can think of these pieces of information
as physical documents, i.e., at any point in time the document is in one place in the
WF-net. Naturally, the information in one document can be copied to another docu-
ment while executing a task (i.e., transition) processing both documents. Initially, all
documents are present but a document can be empty (i.e., corresponds to a blank piece
paper). It is easy to see that the flow of one such document corresponds a state machine
(assuming the existence of a transitiont�). These document flows synchronize via joint
tasks. Therefore, the composition of these flows yields an S-coverable WF-net. One can
think of the document flows as threads. Consider for example the short-circuited net of
the WF-net shown in Figure 2. This net can be composed out of the following two
threads: (1) a thread corresponding to the processing of the form (placesi, c1, c3, c5
ando) and (2) a thread corresponding to the actual processing of the complaint (places
i, c2, c4, c5, c6, c7, c8, andc9). Note that the tasksregisterandarchiveare used in both
threads.

Although a WF-net can, in principle, have exponentially many S-components, they
are quite easy to compute for workflows encountered in practice (see also the above
interpretation of S-component as document flows or threads). Note that S-coverability
only depends on the structure and the degree of connectedness is generally low (i.e.,
the incidence matrix of a WF-net typically has few non-zero entries [5]). Unfortunately,
in general, it is not possible to verify soundness of an S-coverable WF-net in polyno-
mial time. The problem of deciding soundness for an S-coverable WF-net is PSPACE-
complete. For most applications this is not a real problem. In most cases the number

176 W.M.P. van der Aalst

of tasks in one workflow process definition is less than 100 and the number of states
is less than 200,000. Tools using standard techniques such as the construction of the
coverability graph have no problems in coping with these workflow process definitions.

6.4 Summary

The three structural characterizations (free-choice, well-structured and S-coverable)
turn out to be very useful for the analysis of workflow process definitions. Based on
our experience, we have good reasons to believe that S-coverability is a desirable prop-
erty any workflow definition should satisfy. Constructs violating S-coverability can be
detected easily and tools can be build to help the designer to construct an S-coverable
WF-net. S-coverability is a generalization of well-structuredness and the free-choice
property (Corollary 3 and 4). Both well-structuredness and the free-choice property
also correspond to desirable properties of a workflow. A WF-net satisfying at least one
one of these two properties can be analyzed very efficiently. However, we have shown
that there are workflows that are not free-choice and not well-structured. Consider for
example Figure 2. The fact that taskprocesscomplainttests whether there is a token in
c5, prevents the WF-net from being free-choice or well-structured. Although this is a
very sensible workflow, most workflow management systems do not support such an ad-
vanced routing construct. Even if one is able to use state-based workflows (e.g., COSA)
allowing for constructs which violate well-structuredness and the free-choice property,
then the structural characterizations are still useful. If a WF-net is not free-choice or not
well-structured, one should locate the source which violates one of these properties and
check whether it is really necessary to use a non-free-choice or a non-well-structured
construct. If the non-free-choice or non-well-structured construct is really necessary,
then the correctness of the construct should be double-checked, because it is a potential
source of errors. This way the readability and maintainability of a workflow process
definition can be improved.

7 Composition of WF-Nets

The WF-nets in this chapter are very simple compared to the workflows encountered
in practise. For example, in the Dutch Customs Department there are workflows con-
sisting of more than 80 tasks with a very complex interaction structure (cf. [1]). For
the designer of such a workflow the complexity is overwhelming and communica-
tion with end-users using one huge diagram is difficult. In most cases hierarchical
(de)composition is used to tackle this problem. A complex workflow is decomposed into
subflows and each of the subflows is decomposed into smaller subflows until the desired
level of detail is reached. Many WFMS’s allow for such a hierarchical decomposition.
In addition, this mechanism can be utilized for the reuse of existing workflows. Consider
for example multiple workflows sharing a generic subflow. Some WFMS-vendors also
supply reference models which correspond to typical workflows in insurance, banking,
finance, marketing, purchase, procurement, logistics, and manufacturing.

Reference models, reuse and the structuring of complex workflows require a hierar-
chy concept. The most common hierarchy concept supported by many WFMS’s istask

177Finding Control-Flow Errors Using Petri-Net-Based Techniques

t+

i

o

i

o

i

o

PN1 PN2 PN3

Fig. 8. Task refinement: WF-netPN 3 is composed ofPN 1 andPN 2.

refinement, i.e., a task can be refined into a subflow. This concept is illustrated in Fig-
ure 8. The WF-netPN 1 contains a taskt+ which is refined by another WF-netPN 2,
i.e., t+ is no longer a task but a reference to a subflow. A WF-net which represents a
subflow should satisfy the same requirements as an ordinary WF-net (see Definition 11).
The semantics of the hierarchy concept are straightforward; simply replace the refined
transition by the corresponding subnet. Figure 8 shows that the refinement oft+ in PN 1

byPN 2 yields a WF-netPN 3.
The hierarchy concept can be exploited to establish the correctness of a workflow.

Given a complex hierarchical workflow model, it is possible to verify soundness by
analyzing each of the subflows separately. The following observation is important for
compositionality.

Lemma 4. LetPN = (P; T; F) be a sound WF-net. For anyt 2 T , (i) if t 2 i�, then
�t = fig, and (ii) if t 2 �o, thent� = fog.

Proof. We prove (i) by contradiction. Ift 2 i� and�t 6= fig, then there exists ap 2
(�t) n fig. Clearly,t is dead becausei andp cannot be marked at the same time. The
proof of (ii) is similar. ut

The following theorem shows that the soundness property defined in this chapter allows
for modular analysis.

Theorem 3 (Compositionality).LetPN 1 = (P1; T1; F1) andPN 2 = (P2; T2; F2) be
two WF-nets such thatT1\T2 = ;,P1\P2 = fi; og andt+ 2 T1.PN 3 = (P3; T3; F3)
is the WF-net obtained by replacing transitiont+ in PN 1 byPN 2, i.e.,P3 = P1 [P2,
T3 = (T1 n ft+g) [T2 and

F3 = f(x; y) 2 F1 j x 6= t+ ^ y 6= t+g [f(x; y) 2 F2 j fx; yg \ fi; og = ;g [

f(x; y) 2 P1 � T2 j (x; t
+) 2 F1 ^ (i; y) 2 F2g [

f(x; y) 2 T2 � P1 j (t
+; y) 2 F1 ^ (x; o) 2 F2g:

For PN 1, PN 2 andPN 3 the following statements hold:

178 W.M.P. van der Aalst

1. If PN 3 is free-choice, thenPN 1 andPN 2 are free-choice.
2. If PN 3 is well-structured, thenPN 1 andPN 2 are well-structured.
3. If (PN 1; i) is safe andPN 1 andPN 2 are sound, thenPN 3 is sound.
4. (PN 1; i) and(PN 2; i) are safe and sound iff(PN 3; i) is safe and sound.
5. PN 1 andPN 2 are free-choice and sound iffPN 3 is free-choice and sound.
6. If PN 3 is well-structured and sound, thenPN 1 andPN 2 are well-structured and

sound.
7. If �t+ and t+� are both singletons, thenPN 1 andPN 2 are well-structured and

sound iffPN 3 is well-structured and sound.

Proof.

1. The only transitions that may violate the free-choice property aret+ (in PN 1) and
ft 2 T2 j (i; t) 2 F2g (in PN 2). Transitiont+ has the same input set as any of the
transitionsft 2 T2 j (i; t) 2 F2g in PN 3 if we only consider the places inP3 \P1.
Hence,t+ does not violate the free-choice property inPN 1. All transitionst in
PN 2 such that(i; t) 2 F2 respect the free-choice property; the input places in
P3 n P2 are replaced byi.

2. PN 1 (PN 2) is well-handled because any elementary path inPN 1 (PN 2) corre-
sponds to a path inPN 3.

3. Let (PN 1; i) be safe and letPN 1 andPN 2 be sound. We need to prove that
(PN 3; i) is live and bounded. The subnet inPN 3 which corresponds tot+ be-
haves like a transition which may postpone the production of tokens fort+�. It is
essential that the input places oft+ in (PN 3; i) are safe. This way it is guaranteed
that the states of the subnet correspond to the states of(PN 2; i). Hence, the transi-
tions inT3\T2 are live (t+ is live) and the places inP3 nP1 are bounded. Since the
subnet behaves liket+, the transitions inT3 \ (T1 n ft+g) are live and the places
in P3 \ P1 are bounded. Hence,PN 3 is sound.

4. Let(PN 1; i) and(PN 2; i) be safe and sound. Clearly,PN 3 is sound (see proof of
3.). (PN 3; i) is also safe because every reachable state corresponds to a combina-
tion of a safe state of(PN 1; i) and a safe state of(PN 2; i).
Let (PN 3; i) be safe and sound. Consider the subnet inPN 3 which corresponds to
t+. X is the set of transitions inT3 \ T2 consuming from�t+ andY is the set of
transitions inT3 \ T2 producing tokens fort+�. If a transition inX fires, then it
should be possible to fire a transition inY because of the liveness of the original
net. If a transition inY fires, the subnet should become empty. If the subnet is not
empty after firing a transition inY , then there are two possibilities: (1) it is possible
to move the subnet to a state such that a transition inY can fire (without firing tran-
sitions inT3 \ T1) or (2) it is not possible to move to such a state. In the first case,
the placest+� in PN 3 are not safe. In the second case, a token is trapped in the
subnet or the subnet is not safe the moment a transition inX fires.(PN 2; i) corre-
sponds to the subnet bordered byX andY and is, as we have just shown, sound and
safe. It remains to prove that(PN 1; i) is safe and sound. Since the subnet which
corresponds tot+ behaves like a transition which may postpone the production of
tokens, we can replace the subnet byt+ without changing dynamic properties such
as safeness and soundness.

179Finding Control-Flow Errors Using Petri-Net-Based Techniques

c3

time_out

send_questionnaire process_questionnaire

c7 c9

check_processing

processing_NOK

process_complaint

c8
processing_OK

processing_required

i o

c1

register

archive

evaluate no_processing

c2

c5

c6c4

handle_questionnaire

processing

Fig. 9. A hierarchical WF-net for the processing of complaints.

5. LetPN 1 andPN 2 be free-choice and sound. Since(PN 1; i) is safe (see Lemma 1),
PN 3 is sound (see proof of 3.). It remains to prove thatPN 3 is free-choice. The
only transitions inPN 3 which may violate the free-choice property are the transi-
tions inT3 \ T2 consuming tokens from�t+. BecausePN 2 is sound, these transi-
tions need to have an input set identical to�t+ in PN 1 (cf. Lemma 4). SincePN 1

is free-choice,PN 3 is also free-choice.
Let PN 3 be free-choice and sound.PN 1 andPN 2 are also free-choice (see proof
of 1.). Since(PN 3; i) is safe (see Lemma 1),PN 1 andPN 2 are sound (see proof
of 4.).

6. LetPN 3 be well-structured and sound.PN 1 andPN 2 are also well-structured (see
proof of 2.). Since(PN 3; i) is safe (see Lemma 3),PN 1 andPN 2 are sound (see
proof of 4.).

7. It remains to prove that ifPN 1 andPN 2 are well-structured, thenPN 3 is also
well-structured. Suppose thatPN 3 is not well-structured. In this case, there is a
pair of nodesx andy such that one of the nodes is a place and the other a transition
and such that there are two disjoint elementary paths leading fromx to y in PN 3

(cf. Definitions 13 and 14). SincePN 1 is well-structured, at least one of these paths
runs via the refinement oft+. However, becauset+ has precisely one input and one
output place andPN 2 is also well-structured, this is not possible.

ut

180 W.M.P. van der Aalst

Theorem 3 is a generalization of Theorem 3 in [22]. It extends the concept of a block
with multiple entry and exit transitions and gives stronger results for specific subclasses.

Figure 9 shows a hierarchical WF-net. Both of the subflows (handlequestionnaire
andprocessing) and the main flow are safe and sound. Therefore, the overall workflow
represented by the hierarchical WF-net is also safe and sound. Moreover, the free-choice
property and well-structuredness are also preserved by the hierarchical composition.
Theorem 3 is of particular importance for the reuse of subflows. For the analysis of a
complex workflow, every safe and sound subflow can be considered to be a single task.
This allows for an efficient modular analysis of the soundness property. Moreover, the
statements embedded in Theorem 3 can help a workflow designer to construct correct
workflow process definitions.

8 Conclusion

In this chapter we have investigated a basic property that any workflow process defini-
tion should satisfy: the soundness property. For WF-nets, this property coincides with
liveness and boundedness. In our quest for a structural characterization of WF-nets
satisfying the soundness property, we have identified three important subclasses: free-
choice, well-structured, and S-coverable WF-nets. The identification of these subclasses
is useful for the detection of design errors.

If a workflow is specified by a hierarchical WF-net, then modular analysis of the
soundness property is often possible. A workflow composed of correct subflows can be
verified without incorporating the specification of each subflow.

The results presented in this chapter give workflow designers a handle to construct
correct workflows. Although it is possible to use standard Petri-net-based analysis tools,
we have developed a workflow analyzer which can be used by people not familiar with
Petri-net theory [4, 5, 23, 24]. This workflow analyzer interfaces with existing workflow
products such as Staffware, COSA, METEOR, and Protos.

Acknowledgements
The author would like to thank Marc Voorhoeve and Twan Basten for their valuable
suggestions and all the other people involved in the development of Woflan, in particular
Eric Verbeek and Dirk Hauschildt.

References

1. W.M.P. van der Aalst. Three Good Reasons for Using a Petri-net-based Workflow Man-
agement System. In S. Navathe and T. Wakayama, editors,Proceedings of the International
Working Conference on Information and Process Integration in Enterprises (IPIC’96), pages
179–201, Camebridge, Massachusetts, Nov 1996.

2. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Az´ema and G. Balbo, editors,
Application and Theory of Petri Nets 1997, volume 1248 ofLecture Notes in Computer
Science, pages 407–426. Springer-Verlag, Berlin, 1997.

3. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

181Finding Control-Flow Errors Using Petri-Net-Based Techniques

4. W.M.P. van der Aalst. Woflan: A Petri-net-based Workflow Analyzer.Systems Analysis -
Modelling - Simulation, 35(3):345–357, 1999.

5. W.M.P. van der Aalst, D. Hauschildt, and H.M.W. Verbeek. A Petri-net-based Tool to An-
alyze Workflows. In B. Farwer, D. Moldt, and M.O. Stehr, editors,Proceedings of Petri
Nets in System Engineering (PNSE’97), pages 78–90, Hamburg, Germany, September 1997.
University of Hamburg (FBI-HH-B-205/97).

6. K. Barkaoui, J.M. Couvreur, and C. Dutheillet. On liveness in Extended Non Self-
Controlling Nets. In G. De Michelis and M. Diaz, editors,Application and Theory of Petri
Nets 1995, volume 935 ofLecture Notes in Computer Science, pages 25–44. Springer-Verlag,
Berlin, 1995.

7. E. Best. Structure Theory of Petri Nets: the Free Choice Hiatus. In W. Brauer, W. Reisig,
and G. Rozenberg, editors,Advances in Petri Nets 1986 Part I: Petri Nets, central models
and their properties, volume 254 ofLecture Notes in Computer Science, pages 168–206.
Springer-Verlag, Berlin, 1987.

8. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. In R.K. Shyama-
sundar, editor,Foundations of software technology and theoretical computer science, volume
761 ofLecture Notes in Computer Science, pages 326–337. Springer-Verlag, Berlin, 1993.

9. J. Desel. A proof of the Rank theorem for extended free-choice nets. In K. Jensen, edi-
tor, Application and Theory of Petri Nets 1992, volume 616 ofLecture Notes in Computer
Science, pages 134–153. Springer-Verlag, Berlin, 1992.

10. J. Desel and J. Esparza.Free Choice Petri Nets, volume 40 ofCambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

11. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor,Application and Theory of Petri Nets 1993, volume 691 ofLecture Notes in
Computer Science, pages 1–16. Springer-Verlag, Berlin, 1993.

12. J. Esparza. Synthesis rules for Petri nets, and how they can lead to new results. In J.C.M.
Baeten and J.W. Klop, editors,Proceedings of CONCUR 1990, volume 458 ofLecture Notes
in Computer Science, pages 182–198. Springer-Verlag, Berlin, 1990.

13. J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In G. Rozenberg, editor,
Advances in Petri Nets 1990, volume 483 ofLecture Notes in Computer Science, pages 210–
242. Springer-Verlag, Berlin, 1990.

14. K. Gostellow, V. Cerf, G. Estrin, and S. Volansky. Proper Termination of Flow-of-control in
Programs Involving Concurrent Processes.ACM Sigplan, 7(11):15–27, 1972.

15. M.H.T. Hack. Analysis production schemata by Petri nets. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, Mass., 1972.

16. S. Jablonski and C. Bussler.Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

17. E. Kindler and W.M.P. van der Aalst. Liveness, Fairness, and Recurrence.Information
Processing Letters, 1999 (to appear).

18. G. De Michelis, C. Ellis, and G. Memmi, editors.Proceedings of the second Workshop on
Computer-Supported Cooperative Work, Petri nets and related formalisms, Zaragoza, Spain,
June 1994.

19. W. Reisig. Petri Nets: An Introduction, volume 4 ofEATCS Monographs in Theoretical
Computer Science. Springer-Verlag, Berlin, 1985.

20. W. Reisig and G. Rozenberg, editors.Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

21. Software-Ley.COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1998.
22. R. Valette. Analysis of Petri Nets by Stepwise Refinements.Journal of Computer and System

Sciences, 18:35–46, 1979.
23. E. Verbeek and W.M.P. van der Aalst. Woflan Home Page. http://www.win.tue.nl/ ˜woflan.

182 W.M.P. van der Aalst

24. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes us-
ing Woflan. Computing Science Report 99/02, Eindhoven University of Technology, Eind-
hoven, 1999.

25. WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011).
Technical report, Workflow Management Coalition, Brussels, 1996.

26. M. Wolf and U. Reimer, editors.Proceedings of the International Conference on Practical
Aspects of Knowledge Management (PAKM’96), Workshop on Adaptive Workflow, Basel,
Switzerland, Oct 1996.

183Finding Control-Flow Errors Using Petri-Net-Based Techniques

Compositional modeling and veri�cation of
workow processes

M. Voorhoeve

Eindhoven University of Technology,

POB 513, 5600MB Eindhoven

wsinmarc@win.tue.nl

Abstract. Workow processes are represented as Petri nets with spe-

cial entry and exit places and labeled transitions. The transition labels

represent actions. We give a semantics for such nets in terms of transition

systems. This allows us to describe and verify properties like termina-

tion: the guaranteed option to terminate successfully. We describe the

composition of complex WF nets from simpler ones by means of certain

operators. The simple operators preserve termination, giving correctness

by design. Only the advanced communication operators are potentially

dangerous. A strategy for veri�cation of other properties is described.

1 Introduction

Workow management is an important new development in the computerized
support of human work. As such, it is an emerging market with scores of com-
mercially available products, not to mention research prototypes at universities.
A workow management system (WFMS) focuses on cases owing through the
organization, while tasks are executed for them. We assume the reader to be
familiar with these notions (c.f. [11], [1]).

In this chapter we limit ourselves to the process of a single case. Such a process
has a large number of states and actions move the process from state to state.
For this aspect of workow, Petri net models are often used. Petri nets (c.f.
[7]) combine expressive power (to a degree) with a formal semantics that allows
analysis. Although it is focused towards actions, there is a clear notion of state,
which is essential as argued by [1].

A WF net is a Petri net describing the ow of a single case. A source place marks
its initial state and a sink place its terminal state. The transitions are labeled;
labels correspond to tasks.

In Figure 1, such a net is shown, modeling the process of travel arrangement. A
travel request initially enters the process and three parallel activities are started.
A budget check is performed and the hotel and travel requirements are studied.
If necessary, hotel and travel information is obtained. After obtaining enough
information and receiving a budget approval, travel and hotel accommodation

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 184-200, 2000.
 Springer-Verlag Berlin Heidelberg 2000

is booked, the travel documents and budget approval are assembled and sent to
the client.

get
budget

get

tacc hacc

approve

hinfo
get

tinfo

book

ass&send

enter

exit

entry

Fig. 1. A WF net: travel department

Models such as the one in Figure 1 can be built intuitively, as illustrated above.
However, in order to analyze and discuss these models, we need a formal notion
of workow processes and the way in which they are modeled by nets. Assume
that two di�erent WF nets have been presented based on an informal description
of one and the same process. One immediately asks whether these WF nets rep-
resent the same process, and, if not, in which respect they di�er. Such questions
need an answer; if not, one cannot be sure whether one's intentions are modeled
correctly.

Such a formal semantics of WF nets allows veri�cation. Every WF net should be
terminating, i.e. from every state that can be reached (by executing tasks) from
the initial state, it is possible to reach the terminal state. In [1] the soundness

property of WF nets is introduced; one of the propertiues that a sound WF net
should satisfy is that it is terminating. More speci�c properties can be formulated
and subjected to veri�cation; e.g. that before termination a certain task t should
be executed.

It is a good thing to be able to make models, more or less intuitively, and verifying
them afterwards. The veri�cation should point out which parts of the model
contain erroneous or dangerous constructions and hint at possible improvements.
The tool Woan (WOrkFLow ANalyzer, c.f. [8]) assesses the net's soundness and
even supports the modeler by indicating dangerous constructs.

It is even better to create models in an organized way, by combining prede�ned
building blocks in certain prescribed ways. Such models can be veri�ed compo-

185Compositional Modeling and Verification of Workflow Processes

sitionally, leading to correctness by construction. Often, intuitive and rigorous
modeling approaches are combined.

In the sections to come, we introduce transition systems as our basic process
model for workow systems. Then, we de�ne WF nets. We de�ne two ways,
called �ring rules that convert a WF net into a transition system. Next, we
introduce operators to compose WF nets, starting with some prede�ned building
blocks. Finally, we treat veri�cation and present some consequences of both our
semantics and the compositional approach.

The results presented in this chapter are far from conclusive. Our presentation
focuses on the ideas behind them, which we hope the reader will appreciate.

2 De�nitions

This section starts with introducing processes and the bisimilarity equivalence
relation. Then we de�ne the class of Petri nets we call WF nets. Finally, we treat
two �ring rules that generate a process from a net.

2.1 Processes

A process consists of states and events. There are two special states: the initial

and terminal state. To each state corresponds a set of events that can occur in
it. When an event has occurred in some state, another state is reached. The
reached state depends on both the old state and the event that has occurred.
No events can occur in the terminal state; other states in which no events can
occur are called deadlocks.

A process (or transition system) can be depicted as a directed graph with labeled
edges. The nodes are states and the edges connect the old state to the new one,
where the edge labels denote the events. Two special nodes indicate the initial
and terminal states. In Figure 2, such a process is shown. The thick incom-
ing/outgoing arrow indicates the initial/terminal state, the edges are indicated
by solid lines.

We say that a state s0 can be reached from another state s if there is a sequence
of events leading from s to s0. In the graph, this corresponds to a directed path
as indicated by the dashed line in Figure 2. In a process, we assume that all
states are reachable from the initial state, so the state � and edge g in the �gure
must be removed.

The internal states (neither initial nor terminal) can only be distinguished from
one another by the events that they allow and the states that are reached by
them. This means that we can divide the states into groups (e.g. by coloring
them) of indistinguishable (or bisimilar) states. This coloring algorithm starts
with three colors (initial, terminal and internal). If a pair of states having the
same color can be distinguished (i.e. one state has an a-labeled edge leading to
a d-colored state and the other not), one of the two receives a new color. This

186 M. Voorhoeve

s

a

b

d b

dc

c

c

b

a

e

g

f s’

σ

Fig. 2. The graph of a process

a

b

IV

8

63

221

0
d

d
c

b b

aa

III

7

65

221

0
d

d
c

b b

d

0

1

a a

b b

2

3

c d c

4

6

0

1

b

2

5

7

I II

a a

b b

Fig. 3. Process colorings

is repeated until all states have di�erent colors or states having the same color
cannot be distinguished.

In Figure 3, the coloring result is shown for four processes. Processes like II and
III , that can be colored with exactly the same set of colors are called equivalent
or bisimilar. Bisimilarity is an equivalence relation. 1 Processes that cannot be
colored the same, like I and IV can be distinguished by describing their states;
IV has a state in which event b followed by d is possible, but b followed by c is
impossible (the state with color 6), but I does not have such a state. Similarly,
II and III have a state (with color 5) that IV and I do not possess.

In some cases, we distinguish visible and invisible events and we want to call
processes equivalent if their visible behavior is the same. We represent invisible
events by unlabeled edges (often the label � is used instead). One cannot tell
the di�erence between a real a-labeled edge and a virtual one, i.e. a sequence of
zero or more unlabeled edges, an a-labeled one and then again unlabeled ones.
Neither can one tell the di�erence between a sequence of unlabeled edges and
no edge at all.

Our coloring algorithm then must be adapted: if an a-labeled edge leads from
one c-colored state to a d-colored state and no real or virtual a-labeled edge
exists from another c-colored state to a d-colored state, one of the c-colored
edges must be recolored. Processes that can be colored with the same colors

1 This de�nition of bisimilarity induces the same equivalence relation as in process
algebra literature (see e.g. [6]). The above presentation highlights its essence.

187Compositional Modeling and Verification of Workflow Processes

are called weakly bisimilar. The previous notion is called \strong" bisimilarity
in contrast. If all events are visible, the two notions coincide.

Given a process, one can formulate and verify properties it is supposed to have.
The logic HML (c.f. [5]) can be used to this end. Bisimilar processes are charac-
terized by the fact that any HML formula that holds for one process also holds
for the other and vice versa. If processes are not bisimilar, there is a HML for-
mula that holds for one process but not for the other. Compare the statement
we used to distinguish between I and IV in Figure 3.

We want all workow processes to be terminating. This means that every state
of the process (that is reachable from the initial state) can reach the terminal
state. A terminating process thus cannot reach a deadlock. Termination can be
formulated in HML, so if a process is terminating, all (weakly) bisimilar processes
are terminating too.

2.2 WF Nets

Simple workow processes can be modeled directly as transition systems. How-
ever, more advanced processes with a lot of parallelism do not allow such an
approach, due to an enormous number of states. Petri nets (c.f. [7]) allow a
more concise representation.

A net consists of nodes, connected by directed edges. Nodes are divided into
places, depicted as circles and transitions, depicted as squares. The transitions
are labeled; a transition label corresponds to a task in the workow system. Edges
connect places to transitions and vice versa. No edges are allowed between two
places or two transitions.

A WF net has an entry place without incoming edges and a exit place without
outgoing edges. Each node must lie on at least one directed path from the entry
place to the exit place. For technical reasons, we will allow several entry and exit
places. In this general case, we require that every node lies on a directed path
between some entry and exit place. An example WF net is depicted in Figure 1.

Given a transition t, the set of edges leading to t are called input arcs of t and
the places these arcs lead from are called input places of t. Similarly, the set of
edges leaving t are called output arcs of t and the places these arcs lead to are
called output places of t.

A Petri net is a natural and concise way of representing a process. The key idea
behind Petri nets is that tasks can occur whenever certain objects (materials,
resources or permissions) are present. When a task starts, these objects are
consumed. Upon termination, new objects are produced, that may allow new
tasks to start.

Each place of a net contains certain objects (called tokens). Transitions corre-
spond to certain tasks. The required objects for this tasks reside in its input
places, and the result objects in its output places. The execution of an task
corresponds to the �ring of a corresponding transition, consuming tokens for its
input places and producing tokens for its output places.

188 M. Voorhoeve

For the sake of simplicity, we assume that only one token per place is consumed
or produced when a transition �res. This assumption is not unreasonable for
modeling workow. Without it, the de�nition of a Petri net and the descrip-
tions below get slightly more complicated. However, this complication is only
technical.

2.3 Firing Rules

The conversion of a Petri net into a process is formalized by so-called �ring rules.
These �ring rules thus de�ne the behavior of a net. There do exist algorithms
that allow us to decide whether the process of a WF net is terminating, and,
if so, compute this process. However, a combinatorial explosion may occur that
makes this decision and computation infeasible. So the �ring rules given below
are not meant to be a guideline for computing a process but rather serve as
a means to derive properties (like termination) of a WF net's process without
having to compute it.

The simplest �ring rule is the interleaving rule. We assume a net N and derive
from it a process IN . A state s of IN corresponds to a marking of N , a function
that assigns to every place p of N a nonnegative integer s(p). The events of IN
correspond to the transition labels of N . We denote by it(p) the number of input
arcs (zero or one) leading from place p to transition t and by ot(p) the number
of output arcs leading from t to p. Given a transition t of N with label a and a
state s of IN , there is an edge with label a connecting s to a state s0 whenever
s(p) > it(p) and s0(p) = s(p)� it(p) + ot(p) for every place p.

The initial state of IN is the marking where the (each) entry place of N contains
one token and the other places none. Similarly, the terminal state of IN is the
marking where the (each) exit place of N contains one token and the other places
none.

a b c a b c

a b c

a b c

b

c

a c

a

Fig. 4. The interleaving process of a net

189Compositional Modeling and Verification of Workflow Processes

In Figure 4, the derivation of a process from a Petri net by the interleaving rule
is shown. The tokens are indicated by dots; counting the dots in each place yields
the state of the net.

The interleaving rule allows us to study most properties of a WF net. In some
cases, however, this rule is not completely adequate. Consider the nets in Figure 5
for instance. Each net is mapped to the same process by the interleaving rule,
but there is an intuitive di�erence between e.g. nets I and IV. In net I, tasks
b and c can be executed simultaneously (or concurrently) after a. In net IV, b
and c can both be executed after a, but if one is busy, the other must wait (this
behavior is called sequential). As a consequence, the ow modeled by net I is
more eÆcient and will show e.g. lower resource idle times than net IV.

A slightly more subtle di�erence exists between nets I and III. In net III it is
possible to start task b (the transition in the middle) such that task c must wait,
although this need not be the case due to the other b-labeled transition. This
phenomenon cannot happen in I. However, there is no clear di�erence between
nets I and II. If task b has terminated and c not yet started, a second possibility
for executing c becomes manifest in net II, but one cannot distinguish between
the c transitions �ring. 2

a

b c

d

a

b c

d

c

a

b c

d

b

I II III IV

a

b c

d

Fig. 5. Concurrent versus sequential behavior

A �ring rule that discriminates between concurrent and sequential behavior is
the ST �ring rule (c.f. [4] and [9]). Although the ST rule assumes that tasks are
not instantaneous, it is not based on an explicit notion of time, thus allowing to
derive properties of WF nets without having to provide e.g. information about
the duration of tasks. Most properties of the interleaving process of a net (like
termination) carry over to the its ST process.

We de�ne the ST process SN of a net N as follows. A state of SN consists of two
parts, a marking (as in IN) and a (possibly empty) list of \busy" transitions. The
order of the transitions in this list corresponds to the order in which they started.
For net I in Figure 5, SI contains two distinct states where both transitions are
busy: either transition could have started �rst.

2 A di�erence arises when examining the causal dependencies between tasks. It seems

that we can neglect causality when modeling and verifying workow processes.

190 M. Voorhoeve

The events of SN are the starting of a transition and the termination of a busy
transition. The labels of these events are a+ for starting an a-labeled transition
and a�n for termination of the n-th transition of the busy list, where a is its label.

The initial (terminal) state of SN is composed of the initial (terminal) marking
of IN and the empty busy list. A state s of SN with marking ms and busy
list bs is connected to state s0 with marking ms0 and busy list bs0 by an edge
with label a+ if and only if there exists a transition t with label a such that
ms0(p) = ms(p)� it(p) for every place p and bs0 is bs with t added to its tail. s
is connected to s0 by an edge with label a�n if and only if bs contains at its n-th
position a transition t with label a such that ms0(p) = ms(p) + ot(p) for every
place p.

In Figure 6, the derivation of a process from a Petri net by the ST �ring rule is
shown. Markings are shown by dots as in Figure 4 and the busy list is depicted
by adding numbers to busy transitions.

ca
b

c
b

a

ca
b

a
b

ca
b

ca
b

ca
b

c

ca
b

c-
1

a+

ca
b

c+

1
-a

c-
2

c-
1

a+

1
-a

a+

ca
b

c+

ca
b
Ib1

-

+b

c-
1

1
-a

I II

I

I I

III

I

+c

-a2

Fig. 6. The ST process of a net

We conclude this section by pointing out the correspondences between the two
processes of a net N . The states of IN correspond to the set E of states of SN
with an empty busy list and an a-labeled edge connects two states of IN if and
only if the corresponding states in SN are connected via a+ and then a�1 . From
each state of SN a state in E can be reached by terminating all busy transitions.
States in E can reach one another in SN if and only if the corresponding states
in IN can reach one another. Hence SN is terminating if and only if IN is
terminating.

191Compositional Modeling and Verification of Workflow Processes

We call two WF nets N;M I-equivalent if IN and IM are bisimilar processes and
ST-equivalent if SN and SM are bisimilar. It is easy to show that ST-equivalence
implies I-equivalence, but not vice versa.

We recommend the use of the ST �ring rule and ST-equivalence as equivalence
relation between WF nets. The above correspondence indicates that many prop-
erties of the ST process can be deduced from the interleaving process. Adopting
the ST approach does not rule out the use of interleaving-based analysis tools.

3 Construction and Veri�cation

Having de�ned the semantics of WF nets, we investigate the ways in which to
construct them. We advocate a compositional approach that allows for both
top-down and bottom-up modeling. We then turn to veri�cation, showing how
it can pro�t from the compositional approach. We conclude by presenting the
construction of our travel example.

3.1 Construction

It is perfectly possible to construct WF nets from intuition, guided by some ad-
hoc principles. In fact, the example in Figure 1 has been presented in this vein.
However, for large nets more rigor is needed in the net's construction process.
We propose here an approach based on building blocks that can be combined in
certain prescribed ways into larger nets. The building blocks are themselves WF
nets that are well understood and thoroughly veri�ed and validated.

It is of great importance for organizations to create and maintain a set of stan-
dard procedures to be aplied in speci�c situations. Such a \procedure base" is
one of the main assets of an organization. The process part of such procedures
can be modeled as WF nets and used as building blocks.

We will not further investigate the way to obtain an adequate set of building
blocks. Instead, we stress the ways in which WF nets can be combined, i.e.
the WF net operators. These operators have one or more nets as operands; the
application of an operator to its operand(s) gives a result net. This result then
can serve as operand to a new operator. In this way we can build expressions

that represent nets. This approach is inspired by PBC, the Petri Box Calculus
[3].

Most operators are based upon the notion of place fusion. Fusing a set A of
places to another set B of places means adding a new place for every pair (a; b)
of places from A�B, adding an edge to the place corresponding to (a; b) i� there
exists a similar edge to a or b and then removing the places in A and B and edges
from or to them. If A and B are singleton sets, this is equivalent to \gluing" the
places onto one another. If A or B is empty, it becomes removal of places and
edges. In other cases a kind of \weaving" occurs, as illustrated in Figure 7. In
the �gure, place identi�ers are added to illustrate the correspondence between
the original and the new places.

192 M. Voorhoeve

A

B

1 2 3

x y

x1 y1 x2 y2 x3 y3

Fig. 7. Place fusion

We will fuse entry and/or exit places and strive for singleton such places, so
fusion of singleton places will occur most often. The complicated weaving of the
�gure (where both sets have cardinality greater than one) is not likely to occur.

The operators we propose are sequencing, choice, iteration, free merge, syn-
chronous communication, asynchronous communication and re�nement. We de-
scribe the intended processes, followed by a net-based explanation. These net-
based de�nitions are similar to [4] and [10].

The sequencing and choice operators have two operands. Putting two processes
in sequence means that the �rst one is executed and upon termination of the
�rst the second one. A choice between two processes means that either process
can be executed; the �rst event determines which one. Graphically, sequencing
fuses the exit places of the �rst operand net to the entry places of the second.
Choice fuses the entry and exit places of its operands so that they only share
the initial and terminal marking.

Iteration has three operands. The �rst process is executed; upon termination
either the second one or third one can be executed. If the second one is chosen
and it terminates, the iterated process has the same state as when the �rst one
terminated, so the choice between the second and third recurs. If the third is
chosen and terminates, the iterated process terminates. Graphically, the exit
places of the �rst are fused with the entry and exit places of the second and the
entry places of the third, thus creating a loop.

The free merge operator has two operands. Both operand processes can execute
independently. Graphically, the two nets are juxtaposed. Since the result of the
free merge has more than one entry and exit place, the sequencing operator is

193Compositional Modeling and Verification of Workflow Processes

often used to add an initial task (the and-split of a case into two ot more parallel
streams) and a terminal one (the and-join).

In Figure 8, the above operators are given when applied to the simplest processes,
i.e. isolated tasks (a; b and c).

a+b ac*b

c

a.b a||b

x

e

ba

e

b

a
e

x

a b

x
x

a

b

e

Fig. 8. Workow net operators

Re�nement has one operand and a parameter function f that maps tasks onto
processes. In the operand, any transition denoting a task t in the domain of f is
replaced by the process f(t). Graphically, another place fusion occurs: the entry
places of f(t) are fused with the input places of t. Likewise, the output places of
the t are fused to the exit places of f(t). A special case is relabeling, where f(t)
is a single transition.

We can use re�nement to formally de�ne the result of the operators in Figure 8
when applied to arbitrary WF nets. For example, the choice A + B between
WF nets A and B is obtained by consecutively re�ning task a and b in the net
a+ b with A and B respectively. From this observation it is clear that the place
fusions from the descriptions above are related. In Figure 9, the net a(djje) � b

is shown that is obtained by re�ning c with djje in ab � c from Figure 8. This is
a case where weaving cannot be avoided.

entry exit

a a(d||e)*b

e

d

b

Fig. 9. Iterated merge

The above operators are the \neat" ones. They are however not suÆcient to
model all possible processes. Subprocesses that run more or less independently
in di�erent parts in an organization (initially modeled by means of the free
merge operator) may inuence one another at some points: tasks at one side
may need information or await decisions from the other side and vice versa.
For this phenomenon, \dirty" communication operators are needed. We de�ne
synchronous (two-way) and asynchronous (one-way) communication.

194 M. Voorhoeve

Tasks that communicate synchronously must be executed together. This simul-
taneous execution of these tasks can be seen as a single one. The synchronous
communication operator has one operand net and a parameter function f that
maps task sets onto tasks. The simultaneous execution of a set A of tasks in the
domain of f amounts to executing f(A).

Graphically, synchronous communication amounts to transition fusion and rela-
beling the transitions thus synchronized. Note that one and the same transition
might communicate with several other transitions. If this is the case, another
\weaving" (this time with transitions instead of places) will occur.

Asynchronous communication means that a task has to wait until another task
has occurred in another stream. There is one operand and a parameter set R that
consists of pairs of task sets. If a pair (A;B) is in R, then any task from B has to
wait until a task from A occurred. Graphically, this amounts to adding a place
for every pair (A;B) in R, that serves as an output place for the transition(s)
in A and as input place for the transition(s) in B.

b,e -> c b+c=u, e+c=v

σα

v

u

cc

x

d

x

b

e

a

e

a

d

e

d

x

e

b

e

a

Fig. 10. Communication operators

In Figure 10, the communication operators are illustrated. The process X =
a:(b:ejjc):d is shown in the middle. To its left is �R(X), where the task c must
wait for b or e. The set R = f(fbg; fcg)g is a singleton pair. To its right is
�f (X), where the task pairs b; c and e; c communicate synchronously and the
communication results are u and v respectively. So the domain of f is the set of
sets ffb; cg; fe; cgg, whereas f(fb; cg) = u and f(fe; cg) = v.

3.2 Properties of Operators

We like our operators to have the property that combining equivalent operand
nets leads to an equivalent result. This means that if nets N and N 0 are equiv-
alent then replacing N by N 0 in an expression leads to an equivalent result
net. Such a property allows us to prove that two nets are equivalent without
having to compute their processes. An operator is called an ST-congruence if
the above property holds for ST-equivalence and an I-congruence if it holds for

195Compositional Modeling and Verification of Workflow Processes

I-equivalence. Another desirable property is termination preservation, i.e. that
the result is terminating if and only if the operands are terminating.

The table in Figure 1 shows a list of properties of the operators. Figure 10
shows that the communication operators are not termination preserving. The
original process is clearly terminating, whereas the derived processes are not.
The right-hand process cannot reach the terminal state (a deadlock occurs),
whereas the left-hand process can produce a token in the exit place, but in
doing so an extra is token left behind, so it also cannot reach the terminal state.
It seems interesting to investigate conditions that are suÆcient or necessary for
termination preservation of the communication operators.

Table 1. Operator properties

operator I-congruence ST-congruence termination preserving

sequencing yes yes yes

choice yes yes yes

iteration yes yes yes

free merge yes yes yes

re�nement no yes yes

sync. comm. no yes no

async. comm. yes yes no

The fact that all operators but the synchronizations are termination (and even
soundness) preserving can be used when checking the termination of nets result-
ing from expressions. The re�nement operator is very important, as it allows a
hierarchical approach to net construction. The fact that the re�nement opera-
tor is an ST-congruence and not an I-congruence is one of the main reasons for
embracing the ST �ring rule.

The construction operators can be incorporated in an editor for workow pro-
cesses. This editor could contain a soundness checker that can be invoked for
suspect processes that result from the application of dirty operators.

3.3 Veri�cation and Reduction

The primary reason for modeling workow is the possibility to control and mon-
itor the work by means of a WFMS. These models will be tested (validated) to
create con�dence in them. The existence of a formal model also allows for veri-
�cation. As models become more complex, the need for veri�cation will grow.

There are various properties that need veri�cation. Soundness is a property that
all processes must have, but other, more speci�c properties come to mind, like
the need for approval of speci�c tasks, or protocol conformance. Veri�cation of
a large process may become computationally infeasible. The compositional con-
struction of processes allows for compositional veri�cation: de�ning properties
for the operand processes in a certain construct, verifying them and proving
that these properties and the given construction yield the desired property of
the complete process.

196 M. Voorhoeve

Another property that can be veri�ed is that a certain WF net represents the
same process as another given WF net, i.e. their processes are equivalent. As
indicated, the congruence properties of the operators allow this to be done com-
positionally, and even calculationally, using laws from process calculi (or alge-
bra's) like CCS [6] or ACP [2]. Here, we present the reduction of a WF net by
removing places and/or transitions.

Fig. 11. Redundant places

The simplest reduction is achieved by removing redundant places. A place p is
redundant i� every transition t with p as input place has other input places
and whenever these other places contain a token, then p contains a token too.
Figure 11 shows a few (grey) redundant places. The black net (with the grey
arcs and places removed) is the reduced net. The original and reduced nets are
ST-equivalent (and thus I-equivalent).

Another reduction consists of removing inert transitions. A transition is inert
i� it does not represent a real task (i.e. it is unlabeled) and its �ring does not
remove any options for continuation. This will be the case when the transition
does not share any of its its input places with another transition. Removing the
inert transition implies fusing its input and output places. Again, the nets are
equivalent, this time by weak bisimilarity.

An inert transition can also be added in order to simplify complicated place
weavings. In Figure 12, this unweaving by adding an inert transition is depicted.

edc

ba

edc

ba

Fig. 12. Adding and removing an inert transition

197Compositional Modeling and Verification of Workflow Processes

α
σ

e

x

admin

hotel

x

do_workenter a&s

enter

finish

a&s

refine

refine travel
refinerefine

hinfo

get
budget

get
tinfo

get

tacc hacc

hbooktbookapprove

get
budget

get
tinfo

get

tacc hacc

approve
book

hinfo

enter

e

e

a&s

: tbook+hbook=book

: approve->book

Fig. 13. Top-down net composition

198 M. Voorhoeve

3.4 Example Construction

As an example, we show the construction of our trip planning example, illus-
trated in Figure 13. By sequential composition of three actions, the �rst net
is arrived at. Now the middle action do work is re�ned into the parallel com-
position (merge) of administration, travel and hotel actions. These actions on
their turn are re�ned into nets involving sequencing and iteration. Asynchronous
communication causes the hotel and travel booking to wait for budget approval.
The hotel and travel booking is performed synchronously (as they inuence one
another). By removing a redundant place, we obtain the net in Figure 1.

4 Conclusions and Further Work

This chapter treats the semantics of processes in a workow context. We combine
theoretical notions from Petri nets and process algebra. We hope that we have
shown to the non-expert that it is worthwhile to investigate the meaning of the
diagrams that represent workow processes. Backed-up by these investigations,
we can construct, discuss, verify and simplify our process models.

It seems worthwhile to further investigate the ST �ring rule, since it can be used
to assess the net models in terms of eÆciency without the need to quantify task
durations. The rule also supports re�nement, which is important for structured
modeling.

Conditions that allow the \dirty" operators to become \cleaner" are an interest-
ing subject. Also, many WFMS systems allow the \rollback" of tasks that are
being executed. Incorporating this notion in the �ring rules will give yet another
process equivalence. The di�erence between such equivalence notions may be
marginal and of theoretical interest only, but it has to be investigated before one
can be really sure.

199Compositional Modeling and Verification of Workflow Processes

References

1. W.M.P. van der Aalst. Veri�cation of Workow Nets. In Application and The-

ory of Petri Nets 1997, 18th. International Conference, Proceedings, volume 1248
of Lecture Notes in Computer Science, Toulouse, France, 1997. Springer{Verlag,
Berlin, Germany.

2. J.C.M. Baeten and C. Verhoef. Concrete Process Algebra. In A. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 4, pages 149{268. Oxford University Press, Clarendon, UK, 1995.

3. E. Best, R. Devillers, and J. Hall. The Petri Box Calculus: a New Causal Algebra
with Multilabel Communication. In G. Rozenberg, editor, Advances in Petri Nets

1992, volume 609 of Lecture Notes in Computer Science, pages 21{69. Springer{
Verlag, Berlin, Germany, 1992.

4. R.J. van Glabbeek and U. Goltz. Equivalence Notions for Concurrent Systems
and Re�nement of Actions. In A. Kreczmar and G. Mirkowska, editors, Mathe-

matical Foundations of Computer Science 1989, 14th. International Symposium,

Proceedings, volume 379 of Lecture Notes in Computer Science, pages 237{248.
Springer{Verlag, Berlin, Germany, 1989.

5. M. Hennesy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency.
Journal of the ACM, 32(1):137{161, 1985.

6. R. Milner. Communication and Concurrency. Prentice{Hall, London, UK, 1989.
7. W. Reisig. Petri Nets. Springer{Verlag, Berlin, Germany, 1985.
8. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workow

Processes using Woan. Computing Science Reports 99/02, Eindhoven University
of Technology, 1999.

9. W. Vogler. Bisimulation and Action Re�nement. Theoretical Computer Science,
114(1):173{200, 1993.

10. M. Voorhoeve. State Event Net Equivalence. Computing Science Reports 98/02,
Eindhoven University of Technology, 1998.

11. WFMC. Workow Management Coalition Terminology and Glossary. Technical
Report WFMC-TC-1011, Workow Management Coalition, Brussels, 1996.

200 M. Voorhoeve

A Workow Change is a Workow

Clarence A. Ellis and Karim Keddara

Collaboration Technology Research Group

Department of Computer Science,

University of Colorado,

Boulder, CO 80309-0430, USA.

skip|karim@colorado.edu

Abstract. Organizations that are geared for success within today's busi-

ness environments must be capable of rapid and continuous change. This

business reality is boosting the popularity of various types of workow

systems. However, current workow systems are not yet capable of fac-

ing the ever-changing nature of their business environment. Part of the

answer to the challenge, in our view, lies in change understanding, com-

munication, implementation, and analysis. In this chapter, we present

an overview of our work on modeling dynamic change within work-

ow systems. This work was recently completed by the introduction of

ML-DEWS, a Modeling Language to support Dynamic Evolution within

Workow Systems. We �rmly believe the thesis put forth in this chap-

ter that a change is a process that can be modeled, enacted, analyzed,

simulated and monitored as any process.

1 Introduction

A 1998 issue of Information Systems News featured an article headlined \Or-
ganizations Which Cannot Dynamically Change Cannot Survive." This is now
a well-known theme in the business literature. The article notes that there are
many kinds of change (e.g. organizational, social, ...) and that change is of-
ten done in an ad hoc manner. Thus, the rami�cations of change, particularly
complex changes within large organizations, are frequently not well understood,
sometimes resulting in surprising negative side e�ects.

Organizations must frequently make changes such as consolidating systems
and procedures, improving business processes, complying with new regulations
and restructuring their work forces. To accommodate such changes, the speci�-
cation and execution modules of a worklow system must be tightly interwoven.
For example, it should be possible to edit the workow model of a procedure
and thereby dynamically and safely change how the steps of the procedure are
being executed.

In the context of this work, the emphasis is put on dynamic procedural
change, simply referred to herein as process change. Other types of change such as

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 201–217, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

202 C.A. Ellis and K. Keddara

change of organizational structures, change of social structures, albeit important,
are beyond the scope of this work. The term dynamic means that we are making
the change \on the y" in the midst of continuous execution of the changing
procedure. Dynamic procedural change is challenging, and sometimes produces
\dynamic bugs" which can be very obscure and elusive in large workows.

A process change has two facets; namely schema change and instance change.
A schema change occurs when a process de�nition is modi�ed. An instance
change occurs when a process execution changes. For example, an exception

represents a form of instance change; it occurs when a case deviates from its
speci�cation as the result of an enactment error (e.g. a constraints violation) or
an unexpected situation (e.g. a workers strike).

The underlying philosophy of our work on workow change is based on the
following key observations:

1. A process change is a process that can be modeled, enacted, analyzed, coor-
dinated and monitored as any other process.

2. Change speci�cation is a, albeit complex, process speci�cation which de-
scribes the steps of the change, the ow of data and control among these
steps, the participants involved in the change, and the change rules.

3. Schema changes, in general, yield to some form of instance changes.
4. Instance changes such as exceptions, frequently, may be assimilated to tem-

porary schema changes.

The Collaboration Technology Research Group (CTRG) at the University
of Colorado has been performing research in the groupware and workow areas
for the last eight years. Our prior work has considered issues of correctness and
consistency of process change [9, 10] in workow systems, and has been recently
complemented by the introduction ofML-DEWS [11], a modeling language for
the speci�cation of change.ML-DEWS facilitates the examination and change
of workow schemas. It represents a structure within which a modeler can ana-
lyze notions of temporal evolution, dynamic change, and exceptions.

The rest of this chapter is organized as follows: First, a short overview of
related work is given in the next section. Followed by a discussion on the various
change modalities. Then, we illustrate some of the features ofML-DEWS using
a simple example. The reader is referred to [11] for a detailed description of the
modeling language and more complex examples of change. We assume that the
reader has a basic understanding of the workow concepts and terminology.

2 Related Work

There has been a large volume of work addressing workow systems, but until
recently, very little work concerned with the rigorous speci�cation of dynamic
change within workows. There are many workow products currently on the
market, as well as research prototypes systems reported in the literature [15]. A

A Workflow Change Is a Workflow 203

lot of good work has been done in the areas of workow architectures, workow
models, and pragmatic workow studies [14].

The �rst work in the literature which carefully motivated and mathemati-
cally articulated the issues of dynamic workow change was a 1995 paper by
Ellis, Keddara and Rozenberg at the Organizational Computing Conference [9].
This paper began with justi�cation for the investigation of dynamic change via
examples of \dynamic bugs" which can yield surprising chaotic results if the
change is done without care and precision. It presented a Petri net abstraction
for modelling dynamic change. It showed that change to workow procedures
can be accomplished dynamically without shutting down the system, and with-
out aborting or restarting work in progress. The paper rigorously de�ned the
notion of dynamic change, and the notion of change correctness.

Recent follow-up has included work by van der Aalst [1, 2], by Agostini and
DeMichelis [4], and by Ellis, Keddara and Wainer [10]. Other highly related re-
cent work includes the work reported in [15], in [19], in [16], and in [7]. Some
workow prototype e�orts have recently emerged to deal with exibility in work-
ow systems including ADEPT [16] and Milano [4].

Ellis, Keddara, and Wainer improve on gradual case migration using ow
jumpers and hybrid ow nets. The authors also introduce timed ow nets as a
model for analysis of workow change which incorporates speci�cation of tem-
poral constraints. A similar approach to case migration has been independently
introduced by Agostini and DeMichelis in [4] based on linear jumps.

A formal foundation to support the dynamic structural change of workow
processes is presented by Reichert and Dadam in [16]. The workow model, re-
ferred to therein as ADEPT, supports a graph-based representation of workow
processes. Based on ADEPT, a set of modi�cation primitives which preserve a
restricted form of control ow consistency similar to the soundness property of
van der Aalst, and a newly introduced data ow consistency. The authors also
deal with another change modality; namely the change lifetime, and provide a
framework to support permanent and temporary change with the possibility of
undoing temporary changes only and change composition.

In [7], Casati et al. present systematic approach to management of dynamic
workow evolution and case migration. In particular, various policies to support
progressive case migration are discussed. For example, migration to �nal work-

ow is a policy which requires a case to be compliant with the new workow,
or to be brought to compliance (using rollback mechanism) before the case mi-
gration to the new workow proceeds. The authors discuss also a strategy for
managing case migration which uses case segmentation based on the selected
migration policy.

Most of current workow systems have some support for process versionning
whereby multiples versions of a process may be active at the same time. A few
workow products (e.g. Inconcert [13] and Ensemble [12]) provide a basic sup-
port for dynamic change on a single case basis: Each case keeps a private copy of

204 C.A. Ellis and K. Keddara

its de�nition that may be modi�ed independently. This approach is suitable to
deal with ponctual changes (e.g. workow exceptions), but fails to address the
issue of case migration from one process de�nition to another. A number of com-
mercial products incorporate support for exibility through ad-hoc workows.
For example, Inconcert supports ad hoc worows by using Process Design by
Discovery, a method which allows customers to deploy workow without a pre-
liminary design phase: The process is built by doing the tasks, may be changed
on the y by users, and saved as a template when completed.

As a �nal note concerning related work, we emphasize that dynamic process
change is an important issue within numerous other domains such as software
engineering [5, 8].

3 Modalities of Change

When one speci�es a change, there are many factors which must be taken into
account. Many of these factors can be considered as pre-conditions and post-
conditions for change to happen. These pre- and post-conditions may be ex-
pressed as functions of time, application data, organizational context, process
data, history, personnel data, state of the work-case, state of the total system,
resource availability, and other exogenous information.

The concept of \change speci�cation roll-out time" denotes the date and
time when the change begins. This time speci�cation acts as an anchor for other
times which can be speci�ed in absolute time, or in relative time. Relative is
always with respect to the change speci�cation roll-out time.

We next identify and explain several modalities of change that are impor-
tant elements in any change speci�cation. The lack of speci�cation of these
elements frequently leads to ambiguity - the manager distributes a statement of
change, and the employees misinterpret the statement, and the change is mis-
implemented.

3.1 Change Duration: Instantaneous vs Time Interval vs Inde�nite

One factor is the speci�cation of whether the change is to happen quickly (in-
stantaneously) or over a noticeably long (but �nite and well speci�ed) time
period or an unspeci�ed amount of time (\as long as it takes for the old stu� to
change"). Frequently change that is immediate and instantaneous is desired by
management, but sometimes an inde�nite time period for change is preferred.
An example of the latter (ongoing, inde�nite time) is a change by introducing a
new version of a software package. Some customers will immediately switch to
the new version, and others may switch at a later time. Frequently there is an
expressed commitment to maintain the old version for as long as customers are
using the old version. Thus, the amount of time for all customers to switch from
the old to the new version may be inde�nitely long.

A Workflow Change Is a Workflow 205

3.2 Change Lifetime: Permanent vs Temporary

Another factor is the amount of time that the change is in e�ect (with respect
to the change speci�cation roll-out time). If this time is speci�ed as forever,
then the lifetime is permanent. However, many changes are put in place for a
speci�c and �nite period of time. For example, a new set of procedures may be
in e�ect for the next two weeks while the head manager is away on vacation
only. Of course the nature of the temporary lifetime can be conditioned upon
many factors such as customer satisfaction or time of new employee hire.

We believe that the notion of exception handling can fruitfully be considered
as a special case of dynamic change whose lifetime is temporary, and whose �lters
may select one and only one work-case. Thus if it is decided that one particular
customer must skip the time consuming credit approval activity, then we make
a dynamic change to the procedure by omitting the credit approval step. This
change is not permanent, but temporary; and we specify a �lter which enables
the change to be applicable only to this one customer.

3.3 Change Medium: Manual vs Automatic vs Mixture

Most changes require di�erent data and/or routing to occur for some number
of customers (or work-cases). When the number of work-cases that must change
is small, it is frequently done by a human who uses a medium such as pen and
paper to make changes (and perhaps explanatory notes). On the other hand, if
there are thousands or millions of work-cases which are a�ected by the change,
then a computer program is typically written to allow the work-cases which �t
within the �lter to be automatically updated. There are other media which have
been used for change, and the media possibilities will continue to grow in the
future.

3.4 Change Time-frame: Past vs Present vs Future

In considering the work-cases to which a change is applicable, one typically re-
stricts consideration to work-cases which are currently in progress (where current
typically refers to the change speci�cation roll-out time). This is an aspect in
which ordinary English language speci�cations of change are sometimes unclear.
It must be remembered that there are situations in which one must speci�cally
exclude work-cases which have not yet begun, or speci�cally include work-cases
which have already terminated. Thus we �nd change noti�cations which are
retroactively applicable to old work-cases - e.g.: \this ruling applies to all jobs
completed in 1998 and after". This type of change may require that certain old
work-cases be updated.

3.5 Change Continuity: Preemptive vs Integrative

Every change requires some planning and some implementation work. Every
change thus embodies a migration strategy. In the case of exception handling,

206 C.A. Ellis and K. Keddara

the planning may necessarily be short in duration, and it may be highly in-
tertwined with implementation at workow enactment time. Nevertheless, we
always must decide the various modalities, including whether we will somehow
disrupt (or preempt) currently running work-cases, or whether we will somehow
allow the current work-cases to continue for some time in a smooth fashion.
Preemptive strategies include abort schemes, rollback schemes, restart schemes,
checkpoint schemes, and ush schemes. Non-preemptive strategies, which we de-
�ne as integrative strategies, include versioning, SCOC [9], and other gradual
work-case migration schemes. In general, the speci�c requirements and desires
and capabilities of an organization, and of a speci�c change dictate the choice
between preemptive versus integrative continuity.

3.6 Change Agents

This is a speci�cation of which participants play which organizational roles
within the change process. For example, it speci�es who has the right to specify,
enact, and authorize what types of changes. This is an important vehicle for
participatory change.

Every change requires someone to specify and do it. The change agents spec-
i�cation details which participants play which roles within the change process.
Note that activities may involve multiple roles and/or multiple agents. Besides
agents who perform the activities, there are customers of the activity, over-
seers, responsibles, clients, and other stakeholders. These should all be explicitly
declared. For example, manager may have privilege to see ALL data, and re-
sponsibility to be held accountable for its timeliness and accuracy, although he
does not actually do the detailed data processing work. Notions of change agent
are frequently implemented by an organizational model which speci�es which
people play which roles.

Especially within change processes, it is important to identify who will play
which roles, and who has which responsibilities. Questions which must be an-
swered within the change process speci�cation include the following. Who has
�nal authority to say that a change MUST be done? Once it is authorized, who
actually disseminates and implements the change? Who is the \blamee" that
takes responsibility for correct timely implementation (getting the praise for
success, and the blame for failure of the change)? Who are the actors who must
do their jobs di�erently after the change?

3.7 Change Rules

Every change comes to life to achieve a set of business goals. The change rules
guide a change process in its pursuit of meeting these goals. There are various
kinds of rules: Participatory rules de�ne the participation aspect of a change pro-
cess. Integrity rules de�ne the various constraints of a change including temporal

A Workflow Change Is a Workflow 207

constraints (e.g. scheduling), data integrity constraints, and ow constraints. Sit-
uated rules de�ne how to react in the face of exceptional situations such as con-
straint violation, or a system failure, or the occurrence of an external condition
such as delays in a software release.

Every change is also based on a set of assumptions and predictions that are
typically validated based on past behavior or forecasting analysis. However, a
business environment may be highly volatile and unpredictable. Thus, a change
design must clearly identify these assumptions, incorporate checkpoints to verify
their validity, and o�er course of actions in case of violations. We believe that
situated rules may be used to provide such support.

3.8 Change Migration

A procedure may have a large number of work-cases in progress at any given
time. When a change is speci�ed, it is also necessary to specify the subset of
the work-cases to which the change is applicable. Filtering refers to the ability
to specify this subset. For example, a change of top management approval may
be instituted for all work-cases involving more than 10,000 dollars. In general,
subset selection may be a complex function.

Migration refers to the ability to bring the �ltered-in cases into compliance

with the new procedure in accordance with the migration policies agreed upon

by the change designers. Frequently, these cases, by the end of migration, barely
resemble to the new procedure. Any aspect of a migrating case may change
because of the migration, including its state, data, ow, rules, and participants.

Frequently, the migration modalities (i.e which, what, how, when, who) are
complex enough that a migration process is warranted. In essence, the migration
process realizes case migration. Note that the migration process is di�erent from
the change process: Migration is one aspect of the change. Other aspects include
change analysis, change monitoring, change simulation, change coordination, etc.

Finally, a side note to conclude our discussion on change modalities. Some-
time, the change modalities are not known ahead of time or the actual change
circumstances make it impractical to spend the extra e�ort to plan for a change.
Ad hoc changes �t into the former description and exceptions �t into the latter
description. ML-DEWS provides support for incomplete change speci�cation.
This topic will be further developed later.

4 Change Speci�cation Using ML-DEWS

ML-DEWS is a special purpose meta-language geared toward the speci�cation
of workow changes. In order to specify a change, there must be an existing
speci�cation of the workow before the change. As mentioned in the introduc-
tion, a change is a process that is speci�ed and enacted as any other process in

208 C.A. Ellis and K. Keddara

a wokow system. This reexive view entails that ML-DEWS is also used for
process speci�cation.

ML-DEWS is a visual modeling language designed to specify, visualize, and
construct the artifacts of a process.ML-DEWS is an extension of the Uni�ed

Modeling Language (abbreviated to UML) [6]. ML-DEWS is simple, powerful
and extensible. The language is based on a small number of core concepts as pro-
posed by the Workow Management Coalition (WfMC) [18], that most workow
modelers in general, and object oriented modelers in particular, can easily apply.
All workow model elements such as processes, activities, rules, events and ow
are modeled as classes. Object oriented behavioral and structural modeling ar-
tifacts such as attributes, operations, association, and generalization are thusly
supported. In particular, we take the view that a process is an object whose
behavior is partly described by its control and data ow.

4.1 The Process Meta Model

A process class describes a process. It includes the process medium that indicates
if the process is manual or automated, the process category that indicates if the
process is structured or ad hoc, the process pre-conditions that de�ne when the
process may start, the process parameters that describe the process input/output
data, and the process signals that de�ne the process-speci�c events that may be
triggered within the process including its exceptions.

An activity class describes a step within a process. The activity category
indicates if the activity is a macro or an elemental activity. A macro activity
refers to another process that is executed when the activity starts. The priority
of the activity is used in conict resolution. The activity parameters de�ne the
input/output data.

The ML-DEWS event model is similar to the UML event model. Sev-
eral kinds of events are thusly supported: A time event indicates the passage
of time. It is speci�ed using the keyword After followed by a time expres-
sion; e.g. After(3 * Day), or After(startTime + 2 * Hour). A change event
represents a change in an object attribute value or the satisfaction of some
condition. It is speci�ed using the keyword When followed by some condition;
e.g. When(Clock = '11:59'), or When(state = Completed) (here, Clock is a
macro which is expanded to reect the current system time). A call event rep-
resents the invocation of an operation on a object. A signal event represents a
named object that is sent asynchronously by one object and then received by
other objects. For example, CaseCompleted is a prede�ned signal that is trig-
gered when a work-case is completed and TaskCompleted is a prede�ned signal
that is triggered when a task is completed. Both call and signal events are spec-
i�ed using the keyword On followed by the name of an operation or a signal; e.g.
On TaskCompleted or On setBalance. Optionally, a parameter binding may be
speci�ed; e.g. On evt:TaskCompleted.

A Workflow Change Is a Workflow 209

Events are mainly used in the speci�cation of guards (e.g. the pre- or post-
conditions of a process or an activity). A modeler may use active guards. An
active guard has an event-part and a condition-part. When an event as speci�ed
by the event part occurs, the condition part is evaluated. The condition part
is written using the Object Constraint Language (OCL), a standard language
used in UML modeling. For example, the expression: On evt:TaskCompleted

(evt.sender.isInstanceOf(Shipping) may be used to ag the completion of
a Shipping activity.

A rule class models a process rule. In particular, active rules may be de�ned
using a simple textual representation of the form:

[Rule Name Priority Guard Body]

the optional priority is used by the rule manager to determine the next rule to
be triggered. For example, the following process rule causes an exception to be
raised 3 days after the process has started:

[Rule Rule 72H
When (Clock = (startT ime+ 72 �Hour))
Exception :: instantiate(Constraint V iolation):throw()

]

A ow net class models the control and data ow of a process. Flow nets
are a class of high level Petri Nets with a single entry place, a single exit place,
and extra connectivity properties. Each transition in the ow net represents an
activity of the process that is executed whenever the transition �res. Tokens
owing through the ow net are either control or data tokens. Data tokens
carry the information exchanged between activities. Control tokens are used for
synchronization purposes; to indicate when an activity starts and completes.

Example 1. Consider the ow of the order processing procedure depicted in Fig-
ure 1. When a customer requests by mail, or in person, an electronic part, this
is the beginning of a work-case. An order form is �lled out by the clerical sta�
(OEntry activity). The order form is routed in parallel to the �nance department
for customer credit check (Credit activity), and to the inventory department
(Inventory activity). The �nance agent �les a customer credit report with the
collection agency, records its �ndings in the order form and sends the order form
to the sales department. The inventory agent checks the availability of the goods,
and records the availability status in the order form.
After evaluating the reports (Evaluation activity), the order may be either sent
to a manager for approval (Approval activity), or the order is rejected and a
rejection letter is sent to the customer (Rejection activity). Upon approval, the
order is sent to the billing department, and then to the shipping department.
The shipping department will actually cause the parts to be sent to the customer
(Shipping activity), the billing department will see that the customer is sent a
bill, and that it is paid (Billing activity). Finally, a log with a description of
the order processing is created by the system (Archiving activity).

210 C.A. Ellis and K. Keddara

OEntry

Credit

Inventory

Evaluation

Rejection

Archiving

BillingShippingApproval

Fig. 1. The old version of the procedure for order processing

4.2 The Process Change Meta Model

A process change means that a process de�nition, referred to as the old process,
is transformed into another process de�nition, referred to as the new process.
A process change, frequently, may require some cases to migrate to the new
process. Such cases are either enactments of the old process, and in a more
general setting, they may be cases which have migrated, or are in the midst of
migration, to the old process (change composition). In the context of change, an
old case is either an execution of, has migrated to, or is migrating to, the old
process.

A change process class describes a process change in a form which can be
understood and used by all parties involved in the change, to communicate,
and carry out their responsibilities. change process de�nition includes change
roll-out time to indicate when the change begins, and the change expiration time
that indicates when the change ends (inde�nite by default). Unless speci�ed oth-
erwise, all in-progress case migrations are allowed to proceed as planned after
the expiration time is reached, however, no new case migration is initiated af-
terwards. The change �lter speci�es the subset of old cases that are allowed to
migrate to the new process. The migration process (yet another process) encap-
sulates the migration modalities of the �ltered in old cases. For the purpose
of this work, we assume that each change process may be associated with one
migration process at the most.

The change �lter is an OCL expression that is used to specify the old cases
that are allowed to migrate to the new procedure. Filtering varies from one
change to another. For example, in some situations, it may be desirable to �lter-

in the old cases which are already completed (e.g. recalling defective parts). In
other situations, it may be necessary to �lter-out the old cases to which a previous
change has been applied (e.g. irreconcilable changes). Complex �ltering policies
may be de�ned based on the state, the data, the (execution and the change)
history and the participatory aspects of the old case.

Example 2. In the context of our running example, the manager decides to speed
up the order processing by introducing new billing and shipping systems. The

A Workflow Change Is a Workflow 211

shipping and the billing activities must be done in parallel. Also, all current
orders with a value of 1000 dollars and which have not been yet shipped must
switch to the new system.

The new version of the procedure is depicted in Figure 2. The change �lter
is expressed as follows:

(isOpen() and (balance >= 1000) and not(isCompleted(Shipping))

Inventory

Credit

Approval

Rejection

Shipping

Billing

Archiving

OEntry Evaluation

Fig. 2. The new version of the procedure for order processing

The migration process speci�es how the �ltered-in old cases migrate to the
new process. Each enactment of the migration process, also called a migration case,
refers to a single old case; this reference is noted oldCase. The migration policies,
as speci�ed in the migration process, may express the various properties that a
migration case ought to ful�ll in the course of its lifetime; including constraints.
Yet, in other situations, a migration policy may modify the rules of the old case;
e.g. scheduling or integrity constraints may need to be readjusted.

Example 3. In the context of our running example, the goal of the change is
to achieve a three-fold processing time improvement. Therefore, the temporal
constraint of the old case is adjusted as follows:

[Rule MigRule

On CaseStarted

f
oldCase:remove(Rule 72H);
oldCase:insert(Rule 24H);

g
]

212 C.A. Ellis and K. Keddara

[Rule Rule 24H
When (Clock = (startT ime+ 24 �Hour))
Exception :: instantiate(Constraint V iolation):throw()

]

The de�nition of the migration process may specify a migration ow. The
migration activities, reect the steps to be carried out during the migration;
these steps may be out-of-band, in the sense that they are part of neither the old
process nor the new process.

A migration activity may be a meta-activity that includes one or more ac-
tions, each action represents a non interruptible operation to be performed on
the old case. These operations may alter various aspects of an old case, includ-
ing its state, data, ow, rules, history, participants, rules and business goals. Of
particular interest are the ow operations which may change the marking of the
old case; e.g. a token may be moved from one place to another, a new token may
be injected into a place, or an existing token may be removed from a place. Flow
operations may also change the ow of the old case; e.g. a ow element (i.e. a
place, transition or a connector) or a region (i.e. a sub-net) may be added or
deleted.

Example 4. The migration process for our example of change is depicted in Fig-
ure 3. First, the migration case undergoes a registration phase for book-keeping
purposes (MigrationRegistry activity). Then, the old case is momentarily sus-
pended (SuspendOldCase activity). Next, a test is performed to check if the old
case is being shipped. If no, the ow of the old case is changed on the y by
the AutoEdit activity, and then resumed by the ResumeOldCase activity. If yes,
then billing is blocked within the old case by the BlockBillingOldCase activ-
ity, then the old case is resumed. Upon Completion of shipping within the old
case, and billing within the migration case, the old case skips billing and pro-
ceeds to archiving (SkipBillingOldCase activity). Finally, the migration case
is archived (MigrationArchiving activity).

The change process is also a process, and as such it has its own structure with
a change ow, change activities,change rules and change agents. The enactment
of a change process, also called a change case, may have at any time many
migration cases which are in progress. Every change requires some preliminary
preparation before deployment: A change noti�cation may be sent to all parties
concerned with the change (e.g. agents or customers), a Request For Comment
or Request For Proposal may be issued to get various inputs on change policies
and change implementation, or new systems and procedures must be put in
place to support the change. Every change also necessitates some post-change
planning: For temporary change, the modalities to revert back to the old process
must also be de�ned. Close monitoring is also an essential step, at least at early
stage of deployment, to ensure a smooth transition and readiness to react to any
unexpected situation.

Example 5. For our example of change, the change manager opts for a gradual
and smooth transition. The change steps are as follows: A change noti�cation is

A Workflow Change Is a Workflow 213

BlockBillingOldCase

AutoEditOldCase

MigrationArchiving

MigrationRegistry
(not(oldCase.isOpen(Shipping)))

(oldCase.isOpen(Shipping’))
Billing

Wait
 On evt:TaskCompleted
 (evt.sender.isInstanceOf(Shipping))

SkipBillingOldCase

SuspendOldCase

ResumeOldCase

ResumeOldCase

Fig. 3. The migration process

sent to all employees, the noti�cation reads as follows: \Notice to all employees -
E�ective at the beginning of the work day on November 1st, 1999: Our company
will do shipping and billing in parallel (concurrently). Also, a new computer
system has been installed. The new shipping and billing software will be up
and working soon. All employees of shipping and billing should try out the new
system on a few of your orders before October 15, 1999. The transition to the
new process should complete before the beginning of the Christmas shopping
period - 11/28/1999." On November 1st, the old process is deactivated and the
new process is activated, this also marks the beginning of the migration of \big-
dollar" orders.

The change roll-out time is assumed to be October 1st, 1999 (the date at which it
is speci�ed). The change expiration time is November 28, 1999. The change pro-
cess is depicted in Figure 4. The activity NotifyAllEmployees sends the noti�ca-
tion to all employees. The activity CheckFew checks if all employees have success-
fully tried the new system before October 15th. The activity ActivateNewProc

is used to activate the new process de�nition. The activity MigrateOldCases

sees that the old cases migrate in accordance with the change �lter and the
migration process described earlier.

4.3 The Prede�ned Change Schemes

ML-DEWS supports a variety of pre-de�ned change schemes; including the
Synthetic Cut Over Change (SCOC) scheme, the Abort scheme, the Defer scheme,
the Edit scheme, and the Ad-hoc scheme.

SCOC applies to changes in the ow of a process. It is based on the principle
of change locality: The set of changes that a ow net undergoes may be localized

214 C.A. Ellis and K. Keddara

CheckFew

NotifyAllEmployees

ChangeArchivingChangeRegistry

When (Clock = ’10/15/1999’ 12:00 a.m.’)

MigrateOldCases

When (Clock= ’11/1/1999 12:00 a.m’)

ActivateNewProc

Fig. 4. The change process

within a region of the ow net, referred to as the change old region. The change
is viewed as a net-replacement; the change old region is replaced with another
region, referred to as the change new region.

The speci�cation of SCOC consists of the selection of the change regions and
the de�nition of ow jumpers, a class of Petri Net transitions, that are used
to connect old region to the new region. The basic functions of the migration
process in the context of SCOC is to change the ow of the old case as follows:

{ sever the old region from the ow so that no new tokens are allowed in the
old region.

{ insert a copy of the new change region in place of the old change region.
{ maintain the old change region part of (but separate from) the ow of the

old case as long as it is active.
{ set up the speci�ed jumpers.

The idea here is that work evolving outside the change regions is not disrupted
by the change. Work inside of the old change region is allowed to proceed as if

the change did not take place yet, however, ow jumpers are used to gradually

migrate this work to the new change region. In addition to its role as a token
migrator, a ow jumpers may be used to support corrective migration whereby
a sub-process attached to the jumper is started when the jumper is initiated.

The selection of the change regions and the de�nition of the jumpers may be
done manually, or computed by the system based on a set of correctness criteria.
For example, Agostini and De Michelis propose an automated method based
on minimal critical speci�cation [4]. Whereas Voorhoeve and van der Aalst [17]
propose a set of rules based on Petri Nets branching semantics.

Example 6. Figure 5 depicts the selection of the change regions and the ow
jumpers for our running case.

A Workflow Change Is a Workflow 215

Shipping Billing

Shipping

Billing

jumpers

old region

new region

Fig. 5. The SCOC method

The Abort Scheme is a disruptive migration strategy in which the old case is

simply aborted. The tasks which have already been carried out may or may not

be undone. The old case may or may not be resubmitted for execution according

to the new process.

The Defer scheme allows an old case to proceed according to the old process,

and at completion a set of corrective steps may be executed to bring the old case

into compliance with the new process.

In many situations such as exceptions, the migration modalities of an old

case are not known ahead of time. The Edit Scheme may be used to allow a

modeler to de�ne the migration modalities using a case editor. The case editor

is invoked by the migration process on the old case.

The Ad-hoc scheme is introduced to support ad-hoc changes whose compo-

nents are not all fully speci�ed in advance. The idea here is to precisely complete

the change speci�cation at run time when the change process is enacted. For ex-

ample, a collaborative sub-process may be started by the change process. The

participants in the collaborative sub-process de�ne the missing change compo-

nents, and then the change process resumes its execution fully speci�ed. One

may also imagine a scenario in which the change design is an ongoing incre-

mental e�ort; the change design and enactment either alternate or are done in

parallel.

5 Conclusions

We have presented a modeling language for the speci�cation of dynamic pro-

cess change. A process change is viewed as a process that can be modeled and

enacted as a process. Various change modalities, change composition, ad hoc

216 C.A. Ellis and K. Keddara

change, participatory change and exception are conveniently handled within the
framework presented in this chapter.

ML-DEWS is an on-going research e�ort dedicated to bring practical solu-
tions to the problem of dynamic change within workow systems. Currently we
are investigating the issue of change enactment to support our reexive view.
In particular, gradual case migration is a challenging proposition, and requires
some innovative workow architectural design to deal with concurrency control,
scalability, coordination, replication, security, recovery and interoperability. Yet
another appropriate question is: How can we model workows that may be easily
and dynamically changed? The organizational and the social aspects of (change
in) workow systems are increasingly important. For example: How do workow
change and the social fabrics of an organization a�ect each other? is a crucial
question to address.

References

1. Aalst W.M.P. van der (1997): Veri�cation of Workow Nets.In P. Azema and G.
Balbo, editors, Application and Theory of Petri Nets 1997,volume 1248 of Lecture
Notes in Computer Science, pages 407-426. Springer-Verlag, Berlin, 1997.

2. Aalst W.M.P. van der (1999): Finding Errors in the Design of a Workow Process:
A Petri Net Approach. In this volume.

3. Aalst W.M.P. van der , Michelis G. De, Ellis C. A. (editors,1998): Proceedings
of WFM98: Workow Management: Net-Based Concepts, Models, Techniques and
Tools, PN98, Lisbon, Portugal.

4. Agostini A., Michelis G. De (1999): Improving Flexibility of Workow Systems. In
this volume.

5. Bandinelli S., Fuggetta A., Ghezzi. C. (1993): Software process model evolution in
the SPADE environment. IEEE Transactions on Software Engineering, December
1993.

6. Booch G., Rumbaugh J., Jacobson I. (1997): Uni�ed Modeling Language Semantics
and Notations Guide 1.0: San Jose, CA: Rational Software Corporation.

7. Casati F., Ceri S., Pernici B., Pozzi G.(1996): Workow Evolution. In Proceedings
of the 15th International Conference on Conceptual Modeling (OOER 96), Cottbus,
Germany.

8. Cugola G. (1998): Tolerating Deviations in Process Support Systems via Flexible
Enactment of Process Models. IEEE Transactions on Software Engineering, vol.
24, no 11, 1998.

9. Ellis C. A., Keddara K., Rozenberg G. (1995): Dynamic Change within Workow
Systems. In Proceedings of the Conference on Organizational Computing Systems,
ACM Press, New York (1995) 10-21.

10. Ellis C. A., Keddara K., Wainer J. (1998): Modeling Dynamic Change Using Timed
Hybrid Flow Nets. In [3].

11. Ellis C. A., Keddara K. (1999): ML-DEWS: A Modeling Language to Support
Dynamic Evolution within Workow Systems. To appear in the Journal of CSCW,
Special issue on Adaptive Workow.

12. FileNet. Ensemble User Guide. FileNet Corp., Costa Mesa, California, 1998.
13. InConcert. InConcert Process Designer Guide. InConcert, Inc., Cambridge, Mas-

sashusets, 1997.

A Workflow Change Is a Workflow 217

14. Jablonski S., Bussler C. (1996): Workow Management, Modeling Concepts, Archi-

tecture and Implementation. International Thomson Computer Press (publisher)
1996.

15. Klein, M., Dellarocas C., Bernstein A. (editors, 1998): Toward Adaptive Workow
Systems.Workshop at the ACM CSCW'98 Conference, Seattle, WA, August, 1998.

16. Reichert M., Dadam P. (1998): Supporting Dynamic Changes of Workows With-
out Loosing Control. Journal of Intelligent Information Systems, V.10, N.2, 1998.

17. Voorhoeve M., Aalst W.M.P. van der (1996): Conservative Adapation of Workow.
In [19]

18. WfMC (1996): Workow Management Coalition Terminology and Glossary. Tech-
nical Report, Workow Management Coalition, Brussels, 1996.

19. Wolf M., Reimer U. (editors.) (1996): Proceedings of the International Confer-
ence on Practical Aspects of Knowledge Management (PAKM'96), Workshop on
Adaptive Workow, Basel, Switzerland.

Improving Flexibility of Workow Management

Systems

Alessandra Agostini and Giorgio De Michelis

Cooperation Technologies Laboratory, DISCO, University of Milano \Bicocca",
Via Bicocca degli Arcimboldi, 8, 20126, Milano, Italy

agostini@cootech.disco.unimib.it; gdemich@disco.unimib.it

Abstract. In order to support both the redesign of a Business Process
and its continuous improvement, the technology supporting it must be
as exible as possible. Since workow management systems are the main
technology for supporting Business Processes, they and, in particular,
their modeling framework must satisfy a long list of apparently con-
icting requirements: the models must be both cognitive artifacts and
executable programs; they must be simple and yet able to support ex-
ceptions; they must support both static and dynamic changes. In this
chapter, after briey discussing the above requirements, we present the
formal aspects of the modeling framework of theMilano workow man-
agement system. Its exibility is based on a net-theoretical modeling
framework which lets simple process models deliver a large class of ser-
vices to its users.

1 Introduction

A turbulent market and social context as well as technological innovation force
any organization to change the rules de�ning and/or governing its Business Pro-
cesses (BPs) ever more frequently. These changes regard every dimension of a
BP:

{ its objectives and/or outcomes;
{ the activities performed within it;
{ the roles played by its actors and their professional skills;
{ its data ow and integration with the corporate information system;
{ its control ow;
{ the way exceptions are handled;
{ the technologies supporting it.

Designing a change generally impacts several of the above dimensions. More-
over, implementing a change is a complex process in itself requiring time and
resources. In fact, implementing a change in a BP is a learning process with-
in which its team continuously improves its performance, exploiting advantages
while overcoming both constraints and obstacles introduced by the change [10,
12, 31]. The intertwining between designed changes and continuous improve-
ments is bi-directional: on the one hand, as asserted above, designed changes

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 218-234, 2000.
 Springer-Verlag Berlin Heidelberg 2000

create new conditions for the learning process (the change has to be learned, i.e.
internalized [21] by the team); on the other hand, the improvements introduced
in a BP's performance by its team need sooner or later to be reected by the
rules de�ning and/or governing it (it has to be transformed into new rules, i.e.
externalized [21] by the team).

Therefore, while the design from scratch of a new BP is a rare and non
repeatable event in the life of an organization, changing existing BPs becomes
ever more frequent. Moreover, the rules de�ning a BP must be light and open
enough to leave room for the improvements its team can introduce through its
learning process.

If we restrict our attention to the main technology supporting Business Pro-
cesses, i.e. workow management systems [19, 26, 34], the above observations
translate into a quest for exibility. The lack of adequate exibility can be con-
sidered the main reason why for many years workow management systems have
been announced as the next best-selling computer application [19] but up to now
have not matched the success of other packages such as productivity tools, e-mail
systems, web-browsers and even groupware platforms [3].

Given that the main components of a workow management system architec-
ture are its modeling framework and run-time engine [37], exibility depends pri-
marily on the features characterizing the former. Flexibility means in fact many
interrelated things: easy design and change; easy enactment of changes in the
running workow instances; good support of exceptions handling; support of all
interested actors (process team, process owner, process managers/supervisors,
process designers). Therefore, a workow management system is exible if its
modeling framework o�ers a balanced combination of the following features:

{ its models are both maps|cognitive artifacts [22] helping users to situ-
ate themselves in the process instance they are executing|and scripts|
programs executable by the workow engine to automate the ow, control
and execution of routines allowing users to concentrate on sense-making
tasks [27];

{ it clearly separates data and control ow, the description of articulation and
production work as well [28];

{ it supports representing the process from the various viewpoints of the dif-
ferent actors participating to it;

{ it supports both static and dynamic changes, respectively verifying their con-
sistency and/or correctness and safely enacting them on the already ongoing
instances [18];

{ it supports exception handling, providing its users with the paths they must
use for recovering them [9].

The above list is quite demanding since it contains apparently conicting re-
quirements: multiple views need multiple representations, but the latter may
make the design of changes particularly heavy; exception handling mechanisms
may render the process model very complicated; and so forth.

Over the last years, in response to the quest for exibility, several proposals
have appeared. Let us review some of them. The list is not complete, in fact,

219Improving Flexibility of Workflow Management Systems

its aim is to highlight the approaches that from our viewpoint are most relevant
to the creation of exible workow management systems. The interested reader
can �nd an interesting and more comprehensive overview in [2].

A �rst group of proposals aims to support a exible execution of the work-
ow: its focus is on exception handling through local changes. Some of them
weakens, when it does not eliminate, the organizational control of workows [17,
32], allowing the initiator/performer of a workow to change it when she needs
it, while other aim to anticipate exceptions trying to structure and encapsulate
the run-time emergencies within `static'|i.e. de�nable at design time only|
mechanisms [11]. An interesting alternative solution is presented in [9]. In this
approach|exploiting the main object-oriented principles|\deviations, antici-
pated or unanticipated" (page 67, [9]) are handled in a structured and elegant
way.

A second group aims to support the design of adaptable workows|i.e. e-
volving workows granting the correctness of the static/dynamic changes of their
model. Many researchers|coming from various areas|are contributing with
various relevant proposals to face the complexity of the problems. Without com-
menting two promising related areas|machine learning and schema evolution in
database|let us recall two general solutions for the change of workow models
which are based on transformation rules granting the desired consistency rela-
tion between the two models [30, 33], even if they do not take into account the
dynamicity of changes. Focussing on the treatment of dynamic changes (that is,
the application of the change to the model during the execution of the model
itself), the proposal by [18], which has deeply inuenced our work, is the most
representative solution to the problem. In fact, both the consistency of the new
model is preserved and the changes are automatically enacted in the running
instances.

In conclusion, we think that the above recalled solutions to the exibility
problem, even if they contain original ideas, are still inadequate because each one
of them has some limits. In fact, either they are easy to manage by end users but
they do not grant the correctness of exception handling processes and/or static
and dynamic changes, or they o�er e�ective means to grant their correctness but
they are based on complex modeling formalisms (they have complicated graphs
and/or they are based on higher order theories). On the contrary, exibility
requires both easy management techniques and powerful correctness veri�cation
methods and therefore it needs to escape from the above polarization.

We argue in this chapter that, contrary to what appears as commonsense,
formal theory-based models can contribute to bridge the gap between easiness
and correctness if they are conceived from a di�erent perspective. Good alge-
bra, in fact, o�ers e�ective tools for creating a process modeling environment
exhibiting the following properties:

{ it allows us to simulate the process before its execution;
{ it allows formal veri�cation of some workow properties;
{ it supports an unambiguous graphical representation of the workow;

220 A. Agostini and G. De Michelis

{ it allows us to use a minimal input for redundant outputs, through the
algorithmic completion of the model;

{ it supports multiple views of the process, through synthesis algorithms and
model conversions;

{ it allows the automatic derivation of exceptional paths from the acyclic nor-
mal ow of the process, when needed;

{ it automatically enacts model changes on the running instances of a work-
ow, protecting them from undesired outcomes.

What is needed in order to get all these services from algebraic theory is to keep
workow models as simple as possible, i.e. to use a divide et impera approach to
the workow. This means treating the following in a distinct way: the execution
of the tasks embedded in the workow steps, the data ow, the control ow, the
latter being the only issue to be handled directly by the workow management
system.

In this chapter we present the prototype of the workow management sys-
tem we are developing within the Milano system|a groupware platform which
supports its users while concurrently performing various cooperative processes.
In particular, we discuss how the theory it embodies provides the above services
to its users. Throughout the chapter we illustrate our approach with a simple
example of order processing procedure [18].

2 The Workow Management System of Milano

In 1994 at the Cooperation Technology Laboratory the authors together with
Maria Antonietta Grasso and several students initiated development of the pro-
totype of a new CSCW system called Milano [4, 6, 15]. Milano is a CSCW
platform supporting its users while performing in cooperative processes [13, 14].
Milano is based on a situated language-action perspective [31, 35, 36] support-
ing the users so that they can keep on to the history they share with the actors
they are cooperating with. It o�ers them a set of strictly integrated tools designed
expressly for experiencing that history: in particular, a multimedia conversation
handler and a workowmanagement system. Without adding more details about
Milano's other components (for a fuller account the interested reader can refer
to [4, 6]), let us spend some more words on its workow management system and
in particular on its speci�cation module.

The Milano workow management system is a new generation workow
management system [3]: its aim is to support its users not only while performing
in accordance with the procedure described in its model, but also when needing
either to follow an exceptional path or to change the workow model. Within
Milano the workow model is therefore not only an executable code but also a
cognitive artifact. It is in fact an important part of the knowledge its di�erent
users (the initiator of a workow instance, the performer of an activity within
it, the supervisor of the process where it is enacted and, �nally, the designer of
the workow model) share while performing within a cooperative process.

221Improving Flexibility of Workflow Management Systems

Thus the model must support not only the execution of several workow
instances but also the enactment of any model change on all the ongoing in-
stances (dynamic changes). On the other hand, its cognitive nature requires
that a workow model supports all its users so that they can understand their
situation, make decisions, perform e�ectively. The workow model is not merely
a program to be executed and/or simulated by the execution module with a
graphical interface making it readable by its users. Rather, it is a formal model
whose properties allow the user to get di�erent representations of the workow,
to compute exceptional paths from the standard behavior, to verify if a change
in the model is correct with respect to a given criterion and to safely enact a
change on the ongoing instances.

Widely used in process modeling for over twenty years, Petri Nets o�er more-
over the kind of theoretical framework we are looking for [16]. Both High Level
and Basic (Elementary, 1-Safe, etc.) Petri Nets have been used to model work-
ows respectively focusing on their expressiveness and on their simplicity. As we
will better explain in the Conclusion, we think that simple models are preferable
because they induce a clear separation between the control and the data ow.
For this reason the speci�cation module of the Milano workow management
system is based on the theory of Elementary Net Systems (ENS) [25]. In fact
ENS has some nice mathematical properties that appear suitable for provid-
ing the above services. For instance, using ENS, we can compute and classify
forward- and backward-jumps linking their states; there is a synthesis algorithm
from Elementary Transition Systems (ETS) to ENS [20]; the morphisms in ENS
(ETS) preserve some important behavioral properties. Moreover, since Milano

is based on the idea that workows must be as simple as possible, its workow
models constitute a small subcategory of ENS: namely, Free-Choice Acyclic El-
ementary Net Systems, whose main properties are computable in polynomial
time, allowing an eÆcient realization of the speci�cation module.

3 Modeling Workows in Milano

Let us introduce in the following the main de�nitions and facts about model-
ing workows in Milano. We will illustrate them using an hypothetical order
procedure; for more complete and concrete examples of the use of our modeling
framework please refer to [6]. To avoid repetitions, for the main de�nitions on
Elementary Net Systems and Elementary Transition Systems we refer to [8, 20,
25]. As mentioned above, the speci�cation module o�ers two di�erent represen-
tations of a workow model: the �rst, called Workow Net Model, is based on
Elementary Net Systems; the second, called Workow Sequential Model, is based
on Elementary Transition Systems.

De�nition 1 (Workow Net Model). A Workow Net Model is a contact-
free Elementary Net System, � = (B;E; F; cin), such that the following hold:

a) � is structurally acyclic (there are no cycles in the graph);
b) � is extended Free-Choice (all conicts are free).

222 A. Agostini and G. De Michelis

The class of Workow Net Models is called WNM.

De�nition 2 (Workow Sequential Model). A Workow Sequential Model
is an Elementary Transition System A = (S;E; T; sin), such that the following
hold:

a) A is acyclic (there are no cycles in the graph);

b) A is well structured (all diamonds have no holes and the transitions with the
same name are parallel lines in a diamond).

The class of Workow Sequential Models is called WSM.

Figure 1 shows the Workow Net Model (on the left) and the Workow Sequen-
tial Model (right) of a hypothetical order procedure (for a real example please
refer to [6]). While the Workow Net Model (Fig. 1, left) is a local state repre-
sentation making explicit, for example, the independence between the actions of
Inventory Check and Compile Reference, the Workow Sequential Model (Fig.
1, right) is a global state representation where the path followed during the
execution of an instance is made immediately visible.

Order
Registration

Compile
References

Inventory
Check

Order
Evaluation

Evaluate
References

b1

b3

b2

b4

b6

b5

Processing
Rejection

Shipping

Billing

b7

b8

Archive

b9

b10

OR

CR

CR ER

ER

IC

IC

IC

OE

PR

S

B

A

Fig. 1. The Workow Net Model (left) and the Workow Sequential Model (right)
representing a hypothetical order procedure

223Improving Flexibility of Workflow Management Systems

It is well known that the sequential behavior of an ENS can be represented as
an ETS; and, conversely, given an ETS it is possible to synthesize an ENS whose
sequential behavior is equivalent to the source ETS [20]. It is easy to show that
the above relation between ENS and ETS restricts itself to a relation between
WNM and WSM.

The algorithm to build the ENS corresponding to ETS is based on the com-
putation of Regions (subsets of S uniformly traversed by action names). While
the algorithm presented in [20] generates a saturated ENS, having a place for
each region of the source ETS, Luca Bernardinello [8] introduced a synthesis
algorithm generating an ENS having a place for each Minimal Region of the
source ETS, that is not a minimal representation of an ENS having the behav-
ior described in the source ETS. The latter has some nice properties (e.g. it is
contact-free and state-machine decomposable) making it very readable and well
structured. We have therefore decided to normalize each WNM to its Minimal
Regional representation and to associate to each WSM its Minimal Regional
representation.

Proposition 1. The sequential behavior of a WNM can be represented as a
WSM; and conversely, given a WSM there is a WNM whose sequential behavior
is equivalent to it.

Proof (outline). The proof is based on the fact that the sequential behavior
of an acyclic extended free-choice Elementary Net System is acyclic and well
structured and, conversely, the (Minimal) Regions of an acyclic well structured
Elementary Transition System are such that the corresponding Elementary Net
System is both acyclic and extended free-choice.

The synthesis algorithm for ENS has been proved to be NP-complete [7],
making its use in real applications impossible. The strong constraints imposed
to WNM allow a rather eÆcient computation of Minimal Regions, so that it
is usable in the speci�cation module of the Milano Workow Management
System. Let us sketch the algorithm for the computation of the Minimal Regions
of a WNM. Let A = (S;E; T; sin) be a Workow Sequential Model. The following
algorithm computes the Minimal Regions of A.

begin

C := f(S � fsing; fsing)g;
R := ;;
while C 6= ; do

C := C � (S0; r) with S0 maximal;

Er := fej e exits rg;
E0

r
:= fej e 2 Er and 9s 2 S0; e exits sg;

if Er = ; then

R := R [frg;
else

if E0

r = ; then

R := R [frg;

224 A. Agostini and G. De Michelis

C := C [f(S00; r0)j 9e 2 Er; r0 = fsj e enters sg
and S00 = fsj s 2 S0 � r0

and s reachable from a state of r0gg;
else

C := C [f(S00; r0)j 9e 2 E0

r
; r0 = r [fsj e exits sg

and S00 = S0 � r0g;
fi

fi

od

end.

Figure 2 labels each state of the WSM in Fig. 1 (right) with the Minimal Regions
containing it. It is not diÆcult to see that the WNM in Fig. 1 (left) has a place
for each of its Regions (it is therefore the result of the synthesis algorithm applied
to the WSM in Fig. 2) and that the WSM in Fig. 1 is isomorphic to it.

{b1}

{b7}

{b9}

{b8}

{b10}

{b2, b3}

{b3, b4}{b2, b5}

{b3, b6}{b4, b5}

{b5, b6}

OR

CR

CR ER

ER

IC

IC

IC

OE

PR

S

B

A

Fig. 2.

Proposition 2. The algorithm given above is polynomial in the size of A (of its
set of states, S).

Proof (outline). The number of elements we can put in C lies between jSj and
2
p
jSj. Moreover, each step of the algorithm requires at most one observation of

each element of S. ut

225Improving Flexibility of Workflow Management Systems

The eÆciency of the algorithm shown before grants that the switch between
the two representations of a workow model (namely WNM and WSM) can
be computed whenever necessary, so that there are no constraints imposing a
particular representation on the user. The problems related to the graphical
visualization of the two representations (e.g. multi-dimensional diamonds will
appear as intricate and diÆcult to read graphs) are not considered in this context.

The reader may object that the constraints imposed on WNM (WSM) are
so strong that the actors are forced to follow very rigid prescriptions. This is not
true, since whenever they cannot act in accordance with the model the actors
can jump (either forward or backward) to another state from which execution
can progress again. The freedom in the choice of the states that may be reached
through jumps is not constrained by the model. But it can be constrained in
accordance with the rules of the organization where the workow is modeled.
The actors are supported in the choice of an authorized jump by the possibility
of computing and classifying composed paths in the graph.

Let us assume that the organization allows two di�erent classes of jumps:
strongly linear jumps (moving in the WNM only one token) not requiring any
type of authorization, and weakly linear jumps (canceling two or more tokens and
writing one token in the WNM) requiring authorization of the process initiator,
i.e. of the person responsible for the execution of the procedure.

Let an instance of the order procedure presented in Figures 1 and 2 be in
the state fb2; b5g. The available linear jumps from this state are represented in
Fig. 3 (dashed lines). The allowed strongly linear jumps can either move the
process back to the state fb2; b3g or move the process forward to the states
fb4; b5g or fb5; b6g. In practice, from the state fb2; b5g the backward strongly
linear jump allows the employees to re�ne or redo the check of the inventory. In
other words, when an employee needs additional information, which might have
been produced previously in the process, she can directly jump backward and
ask her colleague in charge for one of the previous activities. From the same state
fb2; b5g weakly linear jumps may either move the process back to the states fb1g
or move forward to all possible states between fb7g and fb10g. For instance, if
an experienced manager intends to reject an order of a particular client, all she
has to do is jump forward at the state fb7g and execute the Processing Rejection
activity.

Here is an additional simple example of the potentiality of these jumps: every
time a well-known client issues a new order, the sales manager would like to jump
to the Shipping activity as soon as possible and avoid the client evaluation phase;
therefore a weakly linear jump from state fb2; b5g to state fb7g will be used. Of
course, while strongly linear jumps can be applied directly by the employees,
weakly linear jumps (like the one described above) involve the approval of a
manager in charge, such as the sales manager.

The modeling framework constituted by the couple (WNM, WSM) therefore
o�ers various services to its various categories of users. Actors, initiators, admin-

226 A. Agostini and G. De Michelis

{b10}

{b1}

{b7}

{b9}

{b8}

{b2, b3}

{b3, b4}{b2, b5}

{b3, b6}{b4, b5}

{b5, b6}

OR

CR

CR ER

ER

IC

IC

IC

OE

PR

S

B

A

Fig. 3. The available linear jumps (dashed lines) from the state fb2; b5g

istrators and designers can choose between WNM and WSM to have the most
e�ective visualization of the workow model with respect to their current inter-
est; actors and initiators can analyze the context in which a breakdown occurs
and choose how to solve it.

From the above modeling framework administrators and/or designers also
receive some services that are relevant with respect to their responsibility in
regard to the model and its changes. We can assume that they are free to de-
sign the most eÆcient and/or e�ective workow to execute a routine|provided
that they satisfy those constraints characterizing what, anyhow, the procedure
must do. However, they must be able to check any change with respect to those
constraints.

Our modeling framework provides them with some services supporting both
design change and its veri�cation with respect to the constraints imposed on
the procedure. They can in fact de�ne a Minimal Critical Speci�cation (see
De�nition 3, below) that must be satis�ed by the adopted workowmodel and all
its changes, using it as a reference to guide changes. The theory embedded in the
framework (i.e. the properties of the morphisms between WNMs and/or WSMs)
allows it to support them with the automatic veri�cation of the correctness
of changes. Moreover, they can enact the change on all the already ongoing
instances of the workow, moving to the new model all the instances that are in
a safe state while postponing the enactment of the change in those instances that

227Improving Flexibility of Workflow Management Systems

are in an unsafe state until they reach a safe one (for the de�nition of safe and
unsafe states see De�nition 4, below). These services are based on the following:

{ the class constituted by a minimal critical speci�cation together with all the
workows that are correct with respect to it is closed under the morphisms
induced by the action-labels;

{ the composition of morphisms and inverse morphisms (morphisms always
admit inverse, since they are injective and total) allows us to distinguish
between safe and unsafe states with respect to a given change.

Let us explain the above claim with some simple examples, assuming that any
workow model must have the same set of action labels as its Minimal Critical
Speci�cation and that only changes not modifying the set of action labels are
allowed.

De�nition 3 (Minimal Critical Speci�cation). A WSM, A = (S;E; T; sin),
is correct with respect to a minimal critical speci�cation MCS = (S0; E; T 0; s0

in
)

if and only if the morphism induced by E, g : S ! S0, is injective and total.

As its name suggests and its de�nition grants, a minimal critical speci�cation is
less constraining than any workowmodel correct with respect to it, i.e. it admits
a larger class of behaviors. Whenever no minimal critical speci�cation is given,
it can be assumed that the n-dimensional diamond representing the sequential
behaviors of the workow where all the n actions labels are concurrent is the
implicit minimal critical speci�cation to be taken into account.

De�nition 4 (Unsafe states with respect to a change). Let A = (S;E; T;
sin) be a WSM and A0 = (S0; E; T 0; s0

in
) be a WSM being the e�ect of a change

on it. Let both, A and A0, be correct with respect to the minimal critical speci�-
cation, MCS = (S00; E; T 00; s00

in
). Let, �nally, g : S ! S00 and g0 : S0 ! S00 be,

respectively, their morphisms on MCS induced by E; then S� g�1(g0(S0)) is the
set of unsafe states of A with respect to the given change. If a state is not unsafe
with respect to a change, then it is safe with respect to it.

S � g�1(g0(S0)) contains all the states of A not having an image in S0 (the new
changed model); therefore it is impossible to move an instance being in one of
them to the changed model since we cannot �nd univocally the state in which
it will be after the change. Moreover, any choice we do for it does not allow a
correct completion of the process.

Let the WSM in Fig. 4 be the e�ect of a change to the WSM in Fig. 2.
This change makes the procedure more eÆcient, allowing us to perform the
activities Shipping and Billing concurrently. All states of the original procedure
are safe states with respect to this change; that is, all running instances can be
safely moved in the new model. Let the WSM in Fig. 5, right, be the e�ect of
a change of the WSM in Fig. 5, left. In this case the organization decided that
the Billing of an order should be done before Shipping the goods to the client.
Then the shaded state of the original WSM (Fig. 5, left) is its only unsafe state
with respect to this change. Figure 6 summarizes the three patterns of change

228 A. Agostini and G. De Michelis

OR

CR

CR ER

ER
IC

IC

IC

OE

PR

Shipping

Billing

A

Billing

Shipping

Fig. 4. A new version of the order procedure allowing a concurrent execution of the
Shipping and Billing activities

OR

CR

CR ER

ER
IC

IC

IC

OE

PR

Shipping

Billing

A

OR

CR

CR ER

ER
IC

IC

IC

OE

PR

Shipping

Billing

A

Fig. 5. A further version of the order procedure (right) with the swap between the
Shipping and Billing activities

229Improving Flexibility of Workflow Management Systems

allowed by our theoretical framework: parallelization, making two sequential
action labels concurrent (Fig. 6, left); sequentialization, creating a sequence with
two concurrent action labels (Fig. 6, center); swapping, inverting the order of
two sequential action labels (Fig. 6, right). The shaded states represent the
unsafe states. The class of changes introduced above is quite small. In fact,

e1

e2

e1

e2 e1

e2

Parallelization

e1

e2

e1

e2 e1

e2

Sequentialization

e1

e2

e2

e1

Swapping

Fig. 6. The three possible category of changes allowed by the Milano theoretical
framework

originally, the minimal critical speci�cation must contain all the action labels
of any workow model correct with respect to it. We can relax this constraint
and only impose that the action labels of the minimal critical speci�cation are
contained in the set of action labels of any workowmodel correct with respect to
it. This would enlarge the class of allowed changes. Finally, a precise de�nition
of action-label re�nement within the above theoretical framework will further
extend the class of changes supported by the speci�cation module of theMilano

workow management system.

4 Conclusion

It may appear paradoxical that we propose a stronger use of formal process
models to increase the exibility of workow management systems, but we hope
to have shown that what characterizes our proposal is mainly a di�erent way of
conceiving formal models of processes. While formal theories have been applied
up to now mainly to get a non ambiguous semantics of the model and to attain
an executable model, we apply net-theoretical concepts to obtain di�erent (and
partial, if necessary) representations of the model without requesting extra work
by the model designer. If in the traditional approach formal theories could be
used to claim for the objectivity of a model, for its truth, we apply net-theoretical
concepts to grant mutual consistency of the di�erent views of a model and to
provide users with a fragment of a process model that can be extended as needed
without losing any necessary information. Even the automatic veri�cation of
properties changes its meaning in our approach since it wants to prove not the
objective correctness of the model but the correctness of a change with respect
to a given minimal critical speci�cation.

It is not by chance, therefore, that we apply net-theoretical concepts which
have not been taken into consideration in process modeling up to now: Synthesis

230 A. Agostini and G. De Michelis

of Elementary Net Systems by means of Regions, Net Morphisms and Process
Extensions of Net Systems.

One common criticism of our approach is that the models we can create are
too simple to characterize real complex Business Processes. We respond to this
recalling three important points.

{ First, we separate the model of the control ow from both the data ow and
the characterization of the activities constituting the nodes of the model.
Therefore we do not need to use High Level Nets for modelling the work-
ow, because we model its control ow per se. That way users can deal with
the articulation work separating it from the production work in accordance
with the suggestions of various scholars who have studied coordination prob-
lems, e.g. [28]. We are convinced that even an object oriented approach to
concurrency cannot be usable if it does not allow us to use this simple divide
et impera rule.

{ Second, our models are acyclic but our modeling framework allows us to
add any backward (and forward) jump to them. From this point of view
we can generate a very complex model, taking into account any exception
handling path, from a very simple model without any loss of generality and
making model changes very simple, since designers are not forced to re-trace
backward jumps. Jumps are computed by the modeling framework, when
necessary.

{ Third, our models are free-choice, because we think that well-designed busi-
ness processes are so in order to have a clear responsibility distribution and
well-identi�ed decision makers. If a business process cannot be modeled as a
free-choice net system, then more than a more powerful modeling framework
it needs redesigning.

If we shift our attention from business processes to other types of processes
like production processes and/or system protocols, then it may be necessary
to handle more complex processes. But still our approach can be applied since
it has already been shown that other larger classes of net systems exist whose
synthesis algorithms are polynomial time computable.

5 Acknowledgments

The authors presented the main ideas of the process modeling framework of the
Milano workow management system at the Workshop on \Workow Manage-
ment: Net-based Concepts, Models, Techniques, and Tools" at the International
Conference on Applications and Theory of Petri Nets in Lisbon, June 1998 and
at the workshop on \Petri Nets and Business Process Management" in Dagstuhl
July 1998 [5]. The authors thank the participants in both the above events for
their various comments and suggestions, which helped us while writing this chap-
ter. Special thanks are also due to our students, Roberto Tisi, Paolo Bertona,
Pietro Nardella and Mario Manzoli, who contributed greatly to the development
of the Milano workow management system.

231Improving Flexibility of Workflow Management Systems

References

1. van der Aalst, W.M.P.: Finding Errors in the Design of a Workow Process. A
Petri-net-based Approach. In: Workow Management: Net-based Concepts, Mod-
els, Techniques and Tools, Computing Science Report 98/07, Eindhoven, The
Netherlands: Eindhoven University of Technology (1998) 60-81

2. van der Aalst, W.M.P., Basten, T., Verbeek, H.M.W., Verkoulen, P.A.C., Voorho-
eve, M.: Adaptive Workow. On the interplay between exibility and support. In:
Proceedings of the 1st International Conference on Enterprise Information System-
s, Setubal, Portugal (1999)

3. Abbott, K.R., Sarin, S.K.: Experiences with Workow Management: Issues for
The Next Generation. In: Proceedings of the Conference on Computer Supported
Cooperative Work, ACM, New York (1994) 113-120

4. Agostini, A., De Michelis, G., Grasso, M.A.: Rethinking CSCW systems: the archi-
tecture of Milano. In: Proceedings of the Fifth European Conference on Computer
Supported Cooperative Work, Kluwer Academic Publisher, Dordrecht (1997) 33-48

5. Agostini, A., De Michelis, G.: Simple Workow Models. In: Workow Management:
Net-based Concepts, Models, Techniques and Tools, Computing Science Report
98/07, Eindhoven, The Netherlands: Eindhoven University of Technology (1998)
146-164

6. Agostini, A., De Michelis, G.: A light workow management system using simple
process models. Computer Supported Cooperative Work. The Journal of Collabo-
rative Computing, (1999) (to appear)

7. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theoretical Computer Science, 186, 8 (1997)
107-134

8. Bernardinello, L.: Synthesis of Net Systems. In Application and Theory of Petri
Nets, Lecture Notes in Computer Science, Vol. 691. Springer-Verlag, Berlin (1993)
89-105

9. Borgida, A., Murata, T.: Tolerating Exceptions in Workows: a Uni�ed Framework
for Data and Processes. In: Georgakopoulos, D., Prinz, W., Wolf, A.L. (eds.):
WACC'99. Proceedings of the International Joint Conference on Work Activities
Coordination and Collaboration, San Francisco, CA, February 22-25, 1999. New
York, NY: ACM Press (1999) 59-68

10. Bowers, J., Button, G., Sharrock, W.: Workow from Within and Without: Tech-
nology and Cooperative Work on the Print Industry Shopoor. In: Marmolin, H.
Sundblad, Y., Schmidt, K. (eds.): ECSCW'95. Proceedings of the Fourth Euro-
pean Conference on Computer Supported Cooperative Work, Stockholm, Sweden,
September 10-14, 1995. Kluwer Academic Publisher, Dordrecht (1995) 51-66

11. Casati, F., Ceri, S., Paraboschi, S. Pozzi, G.: Speci�cation and Implementation
of Exceptions in Workow Management System, TR 98.81, Dipt. di Elettronica e
Informazione, Politecnico di Milano (1998)

12. Ciborra C.: Groupware and Teamwork : Invisible Aid or Technical Hindrance?.
John Wiley, New York, (1997)

13. De Michelis, G.: Computer Support for Cooperative Work: Computers between
Users and Social Complexity. In C. Zucchermaglio, S. Bagnara and S. Stucky (eds.)
Organizational Learning and Technological Change (eds.), Springer-Verlag, Berlin,
(1995) 307-330

14. De Michelis, G.: Cooperation and Knowledge Creation. In: I. Nonaka, I.,
Nishiguchi, T. (eds.): Knowledge Emergence: Social, Technical and Evolutionary

232 A. Agostini and G. De Michelis

Dimensions of Knowledge Creation. Oxford University Press, New York, 1998 (to
appear)

15. De Michelis, G., Grasso, M.A.: Situating conversations within the language/action
perspective: the Milan conversation Model. In: Furuta, R., Neuwirth, C. (eds.):
Proceedings of the Conference on Computer Supported Cooperative Work, ACM,
New York (1994) 89-100

16. De Michelis, G., Ellis, A.C.: Computer Supported Cooperative Work and Petri
Nets. InW. Reisig and G. Rozenberg (eds.): Lectures on Petri Nets II: Applications,
Lectures Notes in Computer Science, Vol. 1492. Springer-Verlag, Berlin, Germany
(1998) 125-153

17. Dourish, P., Holmes, J., Mac Lean, A., Marqvardsen, P., Zbyslaw, A.: Freeow: Me-
diating Between Representation and Action in Workow Systems. In: Ackerman,
M.S. (ed.): CSCW'96. Proceedings of the Conference on Computer Supported Co-
operative Work, Cambridge, MA, November 16-20, 1996. ACM Press, New York
(1996) 190-198

18. Ellis, C, Keddara, K., Rozenberg, G.: Dynamic Change within Workow Systems.
In: Proceedings of the Conference on Organizational Computing Systems. ACM
Press, New York (1995) 10-21

19. Koulopoulos, T. M.: The Workow Imperative. Van Nostrand Reinhold, New York
(1995)

20. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary Transition Systems.
Theoretical Computer Science, Vol. 96, no. 1 (1992) 3-33

21. Nonaka, I., Takeuchi, H.: The Knowledge Creating Company. Oxford University
Press, New York (1995)

22. Norman, D. A.: Cognitive Artifacts. In: Carroll J. M. (ed.) Designing Interaction.
Psychology at the Himan computer Interface. Cambridge University Press, Cam-
bridge, (1993) 17-38

23. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. Lectures
Notes in Computer Science, Vol. 1491. Springer-Verlag, Berlin, Germany (1998)

24. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets II: Applications. Lectures
Notes in Computer Science, Vol. 1492. Springer-Verlag, Berlin, Germany (1998b)

25. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In Reisig, W., Rozenberg,
G. (eds.): Lectures on Petri Nets I: Basic Models. Lectures Notes in Computer
Science, Vol. 1491. Springer-Verlag, Berlin, Germany (1998) 12-121

26. Schael, T.: Workow Management Systems for Process Organizations. 2nd Edition.
Lectures Notes in Computer Science, Vol. 1096. Springer-Verlag, Berlin, Germany
(1998)

27. Schmidt, K.: Of maps and scripts: the status of formal constructs in cooperative
work. In S. C. Hayne and W. Prinz (eds.): GROUP'97. Proceedings of the Inter-
national ACM SIGGROUP Conference on Supporting Group Work, Phoenix, AR,
November 16-19, 1997. New York, NY: ACM Press, (1997) 138-147

28. Schmidt, K., Bannon, L.: Taking CSCW Seriously: Supporting Articulation Work.
Computer Supported Cooperative Work (CSCW). An International Journal, Vol.
1, nos. 1-2, (1992) 7-40

29. Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foun-
dation of CSCW systems design. Computer Supported Cooperative Work. The
Journal of Collaborative Computing, Vol. 5, nos. 2-3, (1996) 155-200

30. Simone, C., Divitini, M., Schmidt, K.: A notation for malleable and interoperable
coordination mechanisms for CSCW systems. In: Proceedings of the Conference
on Organizational Computing Systems. ACM Press, New York (1995) 44-54

233Improving Flexibility of Workflow Management Systems

31. Suchman, L.A.: Plans and Situated Actions. The Problem of Human-Machine
Communication. Cambridge University Press, Cambridge (1987)

32. Swenson, K.D., Maxwell, R.J., Matsumoto, T., Saghari, B., Irwin, K.: A Business
Process Environment Supporting Collaborative Planning. Collaborative Comput-
ing, Vol. 1, no. 1 (1994) 15-34

33. Voorhoeve, M., van der Aalst, W.M.P.: Ad-hoc Workow: Problems and Solutions.
In Proceedings of the 8th International Workshop on Database and Expert Systems
Applications. IEEE Computer Society, California (1997) 36-41

34. White, T.E., Fischer, L. (Eds.): The Workow Paradigm, Future Strategies, Alame-
da, (1994)

35. Winograd, T., Flores, F.: Understanding Computers and Cognition. : A New Foun-
dation for Design. Ablex Publishing Corp., Norwood (1986)

36. Winograd, T.: A Language/Action Perspective on the Design of Cooperative Work.
Human Computer Interaction, Vol. 3, no. 1 (1988) 3-30

37. Workow Management Coalition: Coalition Overview. TR-WMC, Brussels (1994)

234 A. Agostini and G. De Michelis

Inter-operability of Workow Applications:

Local Criteria for Global Soundness

Ekkart Kindler, Axel Martens, and Wolfgang Reisig

Humboldt-Universit�at zu Berlin, Institut f�ur Informatik, D-10099 Berlin, Germany?

Abstract. Automatic analysis techniques for business processes are cru-
cial for today's workow applications. Since business processes are rapidly
changing, only fully automatic techniques can detect processes which
might cause deadlocks or congestion.

Analyzing a complete workow application, however, is much too com-
plex to be performed fully automatically. Therefore, techniques for ana-
lyzing single processes in isolation and corresponding soundness criteria
have been proposed. Though these techniques may detect errors such
as deadlocks or congestion, problems arising from an incorrect inter-
operation with other processes are completely ignored. The situation be-
comes even worse for cross-organizational workow applications, where
some processes are not even available for analysis due to con�dentiality
reasons.

We propose a technique which allows to detect but a few errors of work-
ow applications which arise from incorrect inter-operation of workows.
To this end, the dynamics of the inter-operation of di�erent workows
must be speci�ed by the help of sequence diagrams. Then, each single
workow can be checked for local soundness with respect to this speci-
�cation. If each single workow is locally sound, a composition theorem
guarantees global soundness of the complete workow application. This
way, each organization can check its own workows without knowing the
workows of other organizations|still global soundness is guaranteed.

Introduction

Automatic analysis techniques for business processes are crucial for today's work-
ow applications. Since business processes are rapidly changing (sometimes even
at runtime), only automatic techniques can detect processes which might cause
deadlocks or congestion.

Van der Aalst [8, 9] has proposed simple but powerful soundness criteria for
a single workow. These criteria can be checked fully automatically. In [10],
these criteria have been extended to global soundness of a system of loosely
coupled workows. To check global soundness, one needs a model of the com-
plete workow application. This model, however, is often not available for cross-
organizational workow applications because organizations are not willing to

? Email: kindler|martens|reisig@informatik.hu-berlin.de

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 235-253, 2000.
 Springer-Verlag Berlin Heidelberg 2000

disclose their workows. Therefore we need a technique which allows to argue
locally on global soundness.

This paper is a �rst step towards such a technique. We present a local crite-
rion for single workows which can be checked without knowing the other work-
ows. Of course, we need some information on the interaction with the other
workows, which will be captured by scenarios. The local criterion consists of
two parts: Local correctness guarantees that the interactions of the workow
under consideration is allowed by a scenario; local soundness guarantees proper
termination of the workow. According to our main theorem a workow appli-
cation is globally sound if each involved workow is locally sound and locally
correct.

As mentioned above, we use scenarios for specifying the interaction between
di�erent workows. A single scenario shows one possible interaction between the
workows by sending and receiving messages; a scenario abstracts from inter-
nal behavior of each workow. A set of scenarios speci�es all legal interactions.
Syntactically, a possibly in�nite set of scenarios can be represented by high-level
Message Sequence Charts [3] or Sequence Diagrams in UML [7]. In this paper
we concentrate on the semantical foundations and, therefore, we do not �x a
particular representation of scenarios.

The paper is structured as follows: In Sect.1 we present the basic concepts and
the basic idea by the help of an example. In Sect. 2 we give formal de�nitions. In
Sect. 3 we present the local conditions for global soundness. At last, we indicate
how the techniques presented in this paper can be mechanized|which is subject
to further research.

1 Example

In this section, we introduce the basic concepts by the help of an example.

1.1 Scenarios

We choose a simple workow application as an example. The workow applica-
tion consists of three workows concerning three di�erent parties (resp. organi-
zations): A Customer, a Support department, and a Production department. The
Customer may ask the Support department a question (e.g. about a particular
product). Then, the Support department either answers the question directly and
terminates, or the Support department requests some more detailed information
from the Production department. In order to make matters more interesting,
we allow the Support department may request more details several times. The
Support department eventually acknowledges the receipt of all details to the
Production department and compiles an answer which is sent to the Customer.

The interaction de�ned above is formally represented by the scenarios shown
in Fig. 1. Figure 1(a) shows the scenario where the Production department is
not involved at all; Fig. 1(b) represents all other scenarios. In fact, Fig. 1(b)

236 E. Kindler, A. Martens, and W. Reisig

question

Customer Support Production

answer

(a) Scenario: Simple question

Customer Support

question

Production

request

details

request

details

thanks

...

answer

(b) Scenarios: Complex questions

Fig. 1. A set of scenarios: A speci�cation

represents in�nitely many scenarios|one for each number of requests. A set of
scenarios is called a speci�cation.

Note that we explicitly represent termination of a workow by a cross at the
bottom of the corresponding workow. In the scenario of Fig. 1(a), workow
Production is never initiated and, therefore, never (explicitly) terminated.

1.2 Workow application

Figure 2 shows an operational model of a workow application which satis�es
the speci�cation of Fig. 1. The application consists of three workow modules
Customer, Support, and Production. Each workow module is modeled by a Petri
net with distinguished input and output places which correspond to the message
channels of the scenarios. Moreover, each workow has a distinguished start place
(indicated by a token) and an end place (indicated by a cross).

In order to reason about the behavior of a workow application, we can
transform it to a conventional system net by identifying input and output places
which carry the same name. A run of a workow application basically is a non-
sequential process of this system net. Figure 3 shows the one and only run of
the workow application of Fig. 2. Figure 4 shows a representation of the run
of Fig. 3 where all internal details are omitted and only the interaction between
the di�erent workow modules is represented. We call this abstract version of a
run an abstract run of the workow application. This abstract run immediately
corresponds to the scenario of Fig. 1(b) (with exactly one request to Production).
Since all abstract runs of the workow application correspond to a scenario of

237Inter-operability of Workflow Applications

answer

question

Customer Support

question

answer

request

details

thanks

Production

details

request

thanks

Fig. 2. A workow application

request

details

thanks

question

answer

Support

Support

Support

Support

Support

Production

Production

ProductionCustomer

Customer

Fig. 3. A run of the workow application

238 E. Kindler, A. Martens, and W. Reisig

answer

thanks

Customer Support

question

Production

request

details

Fig. 4. The corresponding abstract run

the speci�cation, we say that the workow application satis�es the speci�cation.
In general, we say that a workow application is globally correct with respect
to a speci�cation if each abstract run of the workow application corresponds
to a scenario of the speci�cation. We do not require that each scenario of the
speci�cation has a corresponding abstract run in the workow application. Our
example from Fig. 2 has only one abstract run though we have in�nitely many
scenarios. In particular, there is no abstract run of the workow application
corresponding to the scenario from Fig. 1(a).

One might expect that even a pre�x of the run shown in Fig. 4 represents
an abstract runs of the workow application too (i. e. Support department stops
before sending an answer). This, however, is not true since we assume progress
of all1 transitions: An abstract run must not stop when further transitions are
activated.

1.3 Global and local soundness

Van der Aalst [8, 9] proposes a simple soundness criterion for a single workow
which is modeled by a Petri net. Basically, this criterion requires that each
workow terminates and that, upon termination, the workow net carries one
token only, located at the end place. This criterion can be easily formalized
and veri�ed by the help of typical Petri net properties such as liveness and
boundedness.

In [10], this idea is carried over to complete workow applications and is
called global soundness. This de�nition, however, has a subtle problem: It re-
quires that each workow module terminates with a token on its end place. Our
example shows that there are reasonable scenarios, where one workow module
(Production in our example) is never started. In that case, it cannot and should

1 Indeed, we only require progress for distinguished progress transitions. In our exam-
ple, all transitions are progress transitions.

239Inter-operability of Workflow Applications

not terminate with a token on its end place. Therefore, we introduce a slightly
modi�ed de�nition of global soundness. Technically, it is di�erent from the de-
�nition in [10]|but, it is still in its spirit. Our de�nition of global soundness
basically says that each workow module which was invoked (i.e. the token has
been removed from the start place) will eventually terminate with a token on the
end place. Upon termination, all other places including communication channels
are unmarked. In combination, we call this condition proper termination of the
workow application. Workow modules which never have been invoked, how-
ever, need not terminate. The workow application in Fig. 2 is globally sound
because the above conditions are met by its only run shown in Fig. 3. In this
particular case, all workow modules do terminate and no place except for the
end places remains marked.

When checking global soundness, we are faced with the following problems:

1. Global soundness can only be checked if there is a model of the complete
workow application. In the context of cross-organizational workow ap-
plications, however, di�erent organizations might be involved which do not
want to disclose their workow modules to the other organizations. There-
fore, a complete model of a workow application is not achievable.

2. Even if we can obtain a complete model of the workow application, this
model will be too large for formal analysis.

In order to deal with these problems, we de�ne a criterion for each workowmod-
ule separately, which is called a local criterion. This way, a cross-organizational
workow can be checked by each organization separately without disclosing its
workow modules.

However, we cannot expect to �nd a suÆciently powerful local criterion for
a workow module without knowing anything about its interaction with other
workow modules of the workow application. This was the reason for introduc-
ing scenarios. By the help of scenarios, we are able to de�ne the local criterion.
On the one hand we require each workow module to behave according to the
scenarios as long as the other workow modules do. We call this requirement
local correctness. On theother hand we require the workow module to termi-
nate properly in a correct environment. We call this requirement local soundness.
Both requirements are nessesary to guarantee global soundness. But they do ever
more. We will see that local correctness implies global correctness. So, we pay
more to prove global soundness, but global correctness comes for free.

1.4 Fairness

The de�nition of global soundness requires that each run of a workow applica-
tion terminates. In order to guarantee proper termination, we sometimes need a
fairness assumption in the operational model of a workowmodule. For example,
consider the workow module Support shown in Fig. 5.

240 E. Kindler, A. Martens, and W. Reisig

Support

exit

question

answer

request

details

thanks

loop

Fig. 5. A workow which needs fairness

If this workow module is replaced for the workow module Support in the
workow application from Fig. 2, the following in�nite behavior is possible: After
a question, the module Support in�nitely often sends a request to the module
Production and receives details|it never sends a thanks to the module Production
and never terminates. This behavior is outlined by the abstract run shown in
Fig. 6.

Customer Support

question

Production

request

details

request

details

...

Fig. 6. An in�nite abstract run

241Inter-operability of Workflow Applications

Clearly, this behavior is not desirable and is not allowed by the speci�cation
of Fig. 1. In practice, this in�nite behavior will not occur because the number of
check-backs with the production is limited by some business rule. In our model,
we abstract from a concrete business rule by introducing a fairness assumption in
the model of the workow module. The recurrent conict between the transition
sending requests and transition exit should eventually be resolved in favor of
transition exit. We denote this assumption by a distinguished arc with a white
arrowhead from place loop to transition exit in the workow module (cf. Fig. 5):
a so-called fair arc [5].

1.5 Summary of concepts

Workflow
module

Specification

Workflow
application

Communicat.
structure

Scenario

RunRun

Abstract
Run

Abstract
Run

base for

has hasconsist of

locally
correct w.r.t.

globally
correct w.r.t.

part of isomorphic

abstracted

base for

base for

correct w.r.t.

abstracted

11

11

11

11

1111

11

11

NN

KK

NNNN LLKK

MM

11

11

11

11

11

1111

11

11

11

11

locally
sound w.r.t.

NN

11

globally
sound

Def. 9

Def. 10

Def. 15

Def. 7

Def. 8

Def. 6

Def. 8

Def. 2Def. 2

Def. 5Def. 4

Def. 1
Def. 14

Fig. 7. E-R-Diagram for the main concepts

Figure 7 shows an Entity-Relationship-Diagram of the notions de�ned above.
It illustrates the relations among the concepts which were used for the formal-
ization of a local criterion for global soundness. On the one hand there is the
workow application which consists of several workow modules; on the other
hand there is the speci�cation of the interaction between the workowmodules|
represented by a set of scenarios. Both sides use the same naming conventions
which are �xed in the communication structure. According to our main theorem,
a workow application is globally sound and globally correct if each involved
workow module is locally sound and locally correct. Global correctness means
that each run|represented in its abstract form|is isomorphic to a scenario
of the speci�cation (the rightmost path in Fig. 7). This property can locally be
checked by local correctness with respect to the speci�cation which is de�ned for
each abstract run (the leftmost path in Fig. 7). Local soundness in combination
with local correctness of each workow module guarantees global soundness.

242 E. Kindler, A. Martens, and W. Reisig

2 Formal model

In this section, we formalize scenarios, workow modules, workow applications,
as well as global soundness and global correctness.

2.1 Basic de�nitions

We start with a brief summary of concepts and notations from Petri net theory
and concurrency theory (cf. [1]).

The basic concept of this paper are partial orders. For some set Q, a binary
relation < on Q is a partial order if < is irreexive and transitive. Throughout
this paper, we only consider partial orders (Q;<) such that, for each q 2 Q,
the set of the predecessors of q is �nite. For q 2 Q, the set �q represents the
immediate predecessors and the set q� represents the immediate successors of q
with respect to <. For a partial order (Q;<), we denote the set of minimal ele-
ments (elements without predecessors) by ÆQ and we denotes the set of maximal
elements (elements without successors) by QÆ .

A Petri net N = (P; T; F) consists of a set of places P , a set of transitions
T , and a set of arcs F � (P �T)[(T �P). The sets P and T must be disjoint.
Since the transitive closure of F can be considered as a partial order relation
(the ow relation), we also use the notation �x and x� for elements x 2 P [T .
Then, �x is called preset and x� is called postset of x. Throughout this paper,
we only consider Petri nets with �t 6= ; and t� 6= ; for each transition t 2 T .

An occurrence net K = (B;E;<�) is a special Petri net such that the transitive
closure of <� (denoted by <) is a partial order and for each place b 2 B we have
j�bj � 1 and jb�j � 1. The set of minimal elements of this order is denoted by
ÆK and the set of maximal elements of this order is denoted by KÆ|by slight
abuse of the above notation.

Moreover, for a mapping f : A ! B and some set X � A, we denote the
restriction of f to X by f jX .

2.2 Scenarios

Basically, a scenario is a partial order of events which send and receive messages
via distinguished channels. Each event is executed by some agent. Before de�ning
scenarios, we �x the underlying communication structure. The communication
structure represents the set of the involved agents I as well as the connection
of the agents along communication channels C. Each communication channel
ch 2 C has a �xed sender agent s(ch) and a �xed receiver agent r(ch). In order
to describe explicit termination, we introduce one termination channel for each
agent. The set of termination channels is denoted byX . We assume that an agent
sends a message on its termination channel upon termination. This message is
not received by any agent.

De�nition 1 (Communication structure). A communication structure C =
(I; C;X; s; r) consists of a �nite set of agents I, a �nite set of channels C and

243Inter-operability of Workflow Applications

termination channels X � C, and two mappings s : C ! I and r : C nX ! I

such that sjX is bijective and s(ch) 6= r(ch) for each ch 2 C nX.

A scenario for some communication structure C is a partial order � of events
E and messages M . Each event e 2 E is associated with an agent l(e) and
each message m 2 M is associated with a channel c(m). These associations
must respect the communication structure. Moreover, events of di�erent agents
must not be immediate successors because events of di�erent agents may only
synchronize by sending and receiving messages.

In the context of workow applications, we additionally assume that each
scenario is �nite.

De�nition 2 (Scenario). Let C = (I; C;X; s; r) be a communication structure.
A scenario S = (E;M;�; l; c) consists of two �nite and disjoint sets E and M ,
a partial order � on E [M and two mappings l : E ! I and c : M ! C such
that:

1. For each event e 2 E, we have j(�e [e�) \M j = 1 and for each event
e0 2 �e\E we have l(e) = l(e0) (i.e. each event sends or receives exactly one
message and immediate predecessor events belong to the same agent).

2. For each message m 2 M , we have �m = feg for some e 2 E with l(e) =
s(c(m)) and for each m 2M with c(m) 2 C nX we have m� = feg for some
e 2 E with l(e) = r(c(m)) (i.e. the sending event belongs to the sending
agent and the receiving agent belongs to the receiving agent of the channel).

3. For each event e 2 E, we have a termination message m 2M with c(m) 2 X

and s(c(m)) = l(e) (i.e. each agent which ever executes an event terminates
explicitly).

4. For each message m 2M with c(m) 2 X, we have:

(a) m� = ; (i.e. a termination message is not received by any agent).
(b) For each event e 2 E with l(e) = s(c(m)), we have e � m (i.e. each

event of an agent happens before its termination).

A set of scenarios S for a given communication structure C is called a speci�-
cation for C.

In Sect. 3.3, we will impose a further restriction on speci�cations.

2.3 Workow modules and applications

In this section, we de�ne workow modules and workow applications and their
(non-sequential) runs. A workow module for some agent of a communication
structure C is modeled by a Petri net with a distinguished start place and a
distinguished end place as proposed in [9]. We use a slightly re�ned version of
Place/Transition-Systems which are equipped with external transitions and fair
arcs. We call this version system net. For technical reasons, we �x a set P of
possible places for all workow modules.

244 E. Kindler, A. Martens, and W. Reisig

De�nition 3 (System net). A system net � = (P; T; F; T e; F f ; �) consists of
a set of places P � P, a set of transitions T disjoint from P, and a set of arcs
F � (P � T) [(T � P). Moreover, T e � T is a distinguished set of external
transitions, F f � F \ (P � T) is a set of distinguished fair arcs, and � : P ! N

is the initial marking.

A transition t 2 T nT e is called progress transition. In a workow module for
some agent i 2 I of some communication structure, we additionally distinguish
one start and one end place, and input and output places which correspond to
the channels of agent i in the communication structure.

De�nition 4 (Workow module). Let C = (I; C;X; s; r) be a communication
structure and let i 2 I be an agent. A workow module L = (�;�; !; P I ; PO)
for agent i consists of

1. � = (P; T; F; T e; F f ; �), a system net
2. � 2 P , a distinguished start place, such that �� = ; and �(�) = 1 and

�(p) = 0 for all p 2 P with p 6= �,
3. ! 2 P \X, a distinguished end place, such that !� = ; and s(!) = i,
4. P I = fp 2 P \ C j r(p) = ig, a distinguished set of input places, such that

�p = ; for each p 2 P I , and
5. PO = fp 2 P \C j s(p) = ig, a distinguished set of output places, such that

p� = ; for each p 2 PO.

A workow application for some communication structure C consists of one
workow module for each agent of the communication structure.

De�nition 5 (Workow application). Let C = (I; C;X; s; r) be a communi-
cation structure. A family A = (Li)i2I of workow modules Li for each agent
i 2 I is a workow application if, for each two agents j 6= k of C, we have
Tj \ Tk = ; and Pj \Pk � C, where Ti and Pi denote the transitions and places
of workow module Li.

The corresponding system net �A is de�ned as the union of all system nets:

�A = (
[

i2I

Pi;
[

i2I

Ti;
[

i2I

Fi;
[

i2I

T ei ;
[

i2I

F
f
i ; �)

where �(p) = �i(p) for each agent i 2 I and each place p 2 Pi.

Basically, a run of a workow application A is a non-sequential process [1]
of the system net �A with some additional requirements concerning progress
transitions and fair arcs. A non-sequential process is a labeled occurrence net
K. A labeling � of places of the occurrence net establishes the correspondence
to the places of the system net. A labeling � of the transitions of the occurrence
net establishes the correspondence to the agents of the workow application.
Figure 3 shows an example of a run of the workow application of Fig. 2.

We additionally require a run not to terminate with an enabled progress
transition t 2 T n T e, conicts are to be resolved in a fair way with respect to
fair arcs (see [5] for details).

245Inter-operability of Workflow Applications

De�nition 6 (Run of a workow application).
Let A = (Li)i2I be a workow application for some communication structure C
and let �A = (P; T; F; T e; F f ; �) be the corresponding system net. An occurrence
net K = (B;E;<�) along with two mappings � : B ! P and � : E ! I is a run
of A, if the following conditions are satis�ed:

1. �j�e and �je� are injective for each e 2 E.
2. For each e 2 E, there exists a transition t 2 T�(e) of the workow module

for agent �(e) such that �(�e) = �t and �(e�) = t� (i.e. each event has a
corresponding transition in the corresponding workow module).

3. For each p 2 P , we have �(p) = jfb 2 ÆK j �(b) = pgj (i.e. the initial mark-
ing of the system net corresponds to the initial state of the labeled occurrence
net).

4. For each t 2 T n T e, we have �t 6� �(KÆ) (Progress).
5. For each fair arc (p; t) 2 F f , we have: If �(KÆ) � �t n fpg and fb 2

B j �(b) = pg is in�nite, then fe 2 E j �(�e) = �t ^ �(e�) = t�g is also
in�nite (Fairness).

A run of a workow module for some agent i 2 I can be de�ned analogously
to a run of a workow application. Since we do not know the behavior of the
other workow modules of the application, we allow unrestricted behavior for all
agents j 6= i. We only require that the other agents respect the direction of the
communication channels of the underlying communication structure. Since we
do not even know the places of the other workow modules, the labeling is now
into our �xed domain P of places. Altogether, the runs of a workow module
represent the behavior of a workow module in an arbitrary environment.

De�nition 7 (Run of a workow module).
Let L = (�;�; !; P I ; PO) be a workow module for some agent i 2 I of some
communication structure C = (I; C;X; s; r) as de�ned in Def. 4.

An occurrence net K = (B;E;<�) along with two labelings � : B ! P and
� : E ! I is called a run of L for module i if the following conditions are
satis�ed:

1. �j�e and �je� are injective for each e 2 E.
2. For each e 2 E with �(e) = i, there exists a transition t 2 T of the workow

module L such that �(�e) = �t and �(e�) = t� (i.e. each event corresponding
to agent i has a corresponding transition in the workow module).
For each event e 2 E with �(e) 6= i, we have �(�e) \ P � PO and �(e�) \
P � P I (i.e. events corresponding to other workow modules respect the
communication structure).

3. For each p 2 P , we have �(p) = jfb 2 ÆK j �(b) = pgj
4. For each t 2 T n T e, we have �t 6� �(KÆ).
5. For each fair arc (p; t) 2 F f we have: If �(KÆ) � �tnfpg and fb 2 B j �(b) =

pg is in�nite, then fe 2 E j �(�e) = �t ^ �(e�) = t�g is also in�nite.

There is a simple relation between the runs of a workow application and
the runs of its workow modules: The set of runs of a workow application is
the intersection of sets of runs of all its workow modules.

246 E. Kindler, A. Martens, and W. Reisig

Theorem 1 (Compositionality). Let A = (Li)i2I be a workow application
and let �A = (P; T; F; T e; F f ; �) be the corresponding system net. Let K =
(B;E;<�) be an occurrence net, and let � : B ! P and � : E ! I be labelings.
Then, (K; �; �) is a run of the workow application A if and only if (K; �; �) is
a run of each workow module Li for agent i 2 I and �(B) � P .

This result guarantees that the set of runs of a workow application can be
deduced from the set of runs of its workow modules|this is one of the key
arguments in the forthcoming Theorem 2. The proof of Theorem 1 is similar to
the proof given in [6].

In order to relate runs of a workow application or a workow module to
a speci�cation, we de�ne the abstract version of a run|abstract run for short.
In an abstract run, we omit all internal details and only keep the events which
send or receive messages, the messages themselves, and the partial order on
the elements. Thus, an abstract run lives in the same mathematical domain as
scenarios: It only represents the interaction between workow modules and no
internal behavior.

De�nition 8 (Abstract run). Let (K; �; �) be a run with occurrence net K =
(B;E;<�). The corresponding abstract run � = (E0;M;�; l; c) consists of M =
fb 2 B j �(b) 2 Cg, E0 = fe 2 E j (�e [e�) \M 6= ;g, l = �jE0 , c = �jM , and
�=<jE0[M .

From a mathematical point of view, abstract runs and scenarios are the
same. This allows to relate the behavior of a workow application (a set of
abstract runs) to the speci�cation (a set of scenarios). For a clear separation of
the speci�ed behavior from the system's behavior, we use di�erent names for
scenarios and abstract runs.

2.4 Global soundness

Based on the runs of a workow application, we de�ne global soundness of a
workow application.

De�nition 9 (Global soundness). Let A be a workow application for some
communication structure, and let �i and !i be the start place resp. end place of
the workow module for each agent i 2 I. The workow application A is globally
sound if for each run (K; �; �) of A the following conditions hold:

1. K is �nite.
2. For each i 2 I, we have jfb 2 KÆ j �(b) = �i _ �(b) = !igj = 1.
3. �(KÆ) �

S
i2If�i; !ig.

Soundness states that each started workowmodule properly terminates with
all its places unmarked|including its message channels. Therefore, soundness of
a workow application does not involve a particular speci�cation. It is a minimal
requirement which should hold true for each workow application. In contrast,
correctness requires a speci�cation.

247Inter-operability of Workflow Applications

De�nition 10 (Global correctness). Let C be a communication structure,
let S be a speci�cation for C, and let A be a workow application for C. The
application A is globally correct with respect to speci�cation S if each abstract
run of A is isomorphic2 to a scenario of S.

Note again that global correctness does not require that there is an abstract
run of the workow application for each scenario of the speci�cation. The spec-
i�cation may have more runs. The requirement that something must happen
in a workow application is expressed by the fact that the speci�cation is not
pre�x-closed. Therefore, the workow application must continue a run until it
reaches a scenario of the speci�cation. This is the usual way to specify liveness
in linear-time semantics.

3 Local criteria

Up to now, we have a soundness and a correctness condition for a complete
workow application. Since these conditions can only be applied if all workow
modules of the workow application are known, we call these conditions global.

In this section, we present local criteria for soundness and correctness. These
criteria can be applied to a single workow module without knowing the other
workow modules of the application. Moreover, if all workow modules satisfy
the local criteria, the complete workow application satis�es the global criteria.

3.1 Informal presentation

Before formalizing the local criteria in Sect. 3.2 and Sect. 3.3, we informally
introduce the employed concepts.

As mentioned before, we cannot expect to have a local criterion for sound-
ness without any information on the interaction with other workow modules.
This information is captured in the speci�cation. Basically, a workow module is
locally sound with respect to a speci�cation if, in each run of the workow mod-
ule which corresponds to a scenario of the speci�cation, the workow module
properly terminates (if started at all).

Unfortunately, local soundness for each workow module does not guarantee
global soundness. The reason is that local soundness guarantees proper termi-
nation only if the complete workow application behaves according to the spec-
i�cation (i.e. if it is globally correct). Fortunately, we can give a local criterion
for correctness, too.

The basic idea of local correctness for a workow module is the following:
First, each workow module behaves according to the speci�cation as long as its
environment does. Second, the workow module does not inde�nitely ignore a
message in its mailbox (i.e. in its input places) and does not inde�nitely defer a
message which could be sent according to the speci�cation over and over again.

2 Isomorphisms between runs and scenarios will be formally de�ned in Def. 11.

248 E. Kindler, A. Martens, and W. Reisig

The �rst condition can be formalized by the help of pre�xes of an abstract
run. We say a pre�x of an abstract run satis�es a speci�cation if there exists
a scenario of the speci�cation with the same pre�x. Otherwise we say that the
pre�x violates the speci�cation. Now, the �rst condition can be expressed in
the following way: Let � be an abstract run of the workow module and let Q
be some pre�x of � which satis�es the speci�cation. Then, each pre�x Q0 of �
which only adds events of the workow module under consideration to the pre�x
Q must also satisfy the speci�cation.

The second condition can be formalized by a fairness requirement: If we can
�nd in�nitely many pre�xes of an abstract run at which some message could
be sent or received by the workow module, then this message must be sent or
received eventually.

With these de�nitions, we basically get the following results:

1. If each workow module of a workow application is locally correct, the
workow application is globally correct.

2. If each workowmodule of a workow application is locally sound and locally
correct, then the workow application is globally sound (and correct).

3.2 Prerequisites

In this section, we de�ne the prerequisites for the de�nition of local soundness
and local correctness. First, we de�ne the pre�x of an abstract run and we
de�ne when a pre�x satis�es a speci�cation. This is formalized by the help of
pre�x homomorphisms from abstract runs to scenarios.

De�nition 11 (Pre�x). Let C be a communication structure, and let � =
(E;M;�; l; c) be an abstract run.

1. A set Q � E [M is a pre�x of � if, for each q 2 Q, we have �q � Q and,
for each e 2 Q \E, we have e� \M � Q.

2. Let S = (E0;M 0;�0; l0; c0) be a scenario for C, and let Q � E [M and
h : Q! E0 [M 0 be an injective mapping such that the following conditions
are satis�ed:
(a) Q and h(Q) are pre�xes of � and S, respectively.
(b) For each m 2 Q \M , it holds h(m) 2M 0 and c(m) = c0(h(m)).
(c) For each e 2 Q \ E, it holds h(e) 2 E0, l(e) = l0(h(e)), h(�e) = �h(e),

and h(e� \M) = h(e)� \M 0.
Then, Q is also called a pre�x of S, and h is called a pre�x homomorphism
from Q to S. If Q = E [M and h is bijective, we call � and S isomorphic.

3. Let S be a speci�cation for C. A pre�x Q of � satis�es S if it is a pre�x of
some scenario S 2 S. Otherwise, we say that Q violates S.

Next we de�ne fairness of a run with respect to some speci�cation. We dis-
tinguish two cases: fairness with respect to sending messages and fairness with
respect to receiving messages. For simplicity we rather de�ne unfairness. Basi-
cally, an abstract run is not send fair with respect to some channel if a message

249Inter-operability of Workflow Applications

on this channel could be sent with respect to the speci�cation at in�nitely many
positions of the run, but is not. Similarly, a run is not receive fair if a message on
a channel could be received at in�nitely many positions but it is never received.

De�nition 12 (Fairness with respect to a speci�cation). Let S be a speci-
�cation for some communication structure C = (I; C;X; s; r), let ch 2 C be some
channel, and let � = (E;M;�; l; c) be an abstract run.

1. � is not send fair with respect to channel ch and speci�cation S if � is not
isomorphic to a scenario of S and the following two condition are satis�ed:

(a) For each �nite pre�x Q of �, there exists a �nite pre�x Q0 � Q of �
which is a also a pre�x of some scenario S = (E0;M 0;�0; l0; c0) 2 S with
a pre�x homomorphism h : Q0 ! E0 [M 0, and there exists an event
e 2 E0 n h(Q0), and a message m 2 e� \M 0 such that �e � h(Q0) and
c0(m) = ch.

(b) The set of messages fm 2M j c(m) = chg is �nite.

2. � is not receive fair with respect to channel ch and speci�cation S if � is not
isomorphic to a scenario of S and the following two condition are satis�ed:

(a) For each �nite pre�x Q of �, there exists a �nite pre�x Q0 � Q of � which
is also a pre�x of some scenario S = (E0;M 0;�0; l0; c0) 2 S with pre�x
homomorphism h : Q0 ! E0[M 0, and there exists an event e 2 E0nh(Q0)
and a message m 2 �e \M 0 such that �e � h(Q0) and c0(m) = ch.

(b) There exists a message m 2M with c(m) = ch and m� = ;

3. Let i 2 I be some agent. The abstract run � is i-fair (fair for agent i) with
respect to S if � is send fair for each channel ch 2 C with s(ch) = i and �

is receive fair for each channel ch 2 C with r(ch) = i.
4. � is fair with respect to S if � is i-fair with respect to S for each agent i 2 I.

In this paper, we restrict ourselves to fairness-closed speci�cations. This re-
striction allows us to give simple local arguments for global liveness properties|
in particular for termination. Without this restriction, a sophisticated mech-
anism for specifying liveness properties in a rely/guarantee-style [4] would be
necessary.

De�nition 13 (Fairness-closed speci�cation). A speci�cation S is called
fairness-closed if for each abstract run � one of the following conditions is sat-
is�ed:

1. � has a �nite pre�x which violates S.
2. � is not fair with respect to S.
3. � is isomorphic to some scenario S 2 S.

3.3 Local correctness and soundness

Basically, an abstract run is locally correct for some agent i 2 I with respect to
some speci�cation if each event of agent i corresponds to some scenario as long
as the events of the environment do. Moreover, the run must be i-fair.

250 E. Kindler, A. Martens, and W. Reisig

De�nition 14 (Local correctness). An abstract run � = (E;M;�; l; c) of a
workow module for agent i 2 I is correct with respect to some speci�cation S
if the following two conditions are satis�ed:

1. For each pre�x Q of � which satis�es S, each pre�x Q0 � Q of � with
l(Q0 nQ) = fig also satis�es S.

2. � is i-fair with respect to S.

A workow module L for some agent i 2 I is correct with respect to a speci�ca-
tion S if each abstract run of L is correct for i with respect to S.

In contrast to global soundness, local soundness must be de�ned with respect
to some speci�cation. Local soundness requires proper termination for all correct
runs.

De�nition 15 (Local soundness). A workow module L = (�;�; !; P I ; PO)
for some agent i 2 I and with places P is locally sound with respect to some spec-
i�cation S if, for each run (K; �; �) with an abstract run isomorphic to some sce-
nario in S, it holds: �(KÆ)\P � f�; !g and jfb 2 KÆ j �(b) = � _ �(b) = !gj =
1.

Now, we can formalize the relation between local and global correctness and
local and global soundness.

Theorem 2. Let S be a fairness-closed speci�cation for some communication
structure C, and let A = (Li)i2I be a workow application for C.

1. A is globally correct if each workow module Li is locally correct for agent
i 2 I and speci�cation S.

2. A is globally sound if each workow module Li is locally sound and locally
correct for agent i 2 I and speci�cation S.

In a nutshell, this theorem guarantees that a cross-organizational workow
application is sound and correct if each organization checks soundness and cor-
rectness locally. It is not necessary to know the workow modules of the other
organizations|it is only necessary to agree on the speci�cation of their interac-
tion.

4 Outlook

In the previous sections, we de�ned global soundness and global correctness for
a (cross-organizational) workow application. Then, we have shown that global
soundness and global correctness can be checked by a local condition for each
workow separately.

Up to now, the local soundness and the local correctness conditions are de-
�ned purely semantically. An automatic checker for these conditions is subject
to future research. Here, we can only present a �rst idea. First of all, an auto-
matic checker requires a syntactical representation of speci�cations, e.g. in terms
of high-level Message Sequence Charts [3]. Given a speci�cation, a checker can
proceed in two steps for checking the local conditions for an agent i:

251Inter-operability of Workflow Applications

1. Reducing the set of scenarios to the ones which are relevant for agent i. For
example, for checking soundness of agent Customer for the speci�cation of
Fig. 1, it is suÆcient to consider scenario 1(a); from the Customer's point of
view all other scenarios reduce to this scenario.

2. Constructing a workow module which exhibits all the behavior of the en-
vironment which is allowed by the remaining scenarios. We call this net the
environment net for agent i. The composition of the workow module and
this environment net can be checked for local correctness and soundness by
automatic techniques: either model checking or standard techniques from
Petri net theory as used in [8, 9]. The construction of the environment net is
similar to the construction of [2]|but only those parts which belong to the
environment are constructed.

Conclusion

This paper is a �rst step towards an automatic technique for checking soundness
of a workow application locally. Even when the steps discussed in Sect. 4 are
taken, the techniques presented in this paper need further re�nement, subject
to further research.

1. Up to now, the communication structure is static. We do not yet know how
to deal with dynamically changing communication structures and dynamic
creation and deletion of workows.

2. Up to now, workow modules only communicate asynchronously by send-
ing and receiving messages. Synchronous communication (as well as other
constructs from Message Sequence Charts) can be incorporated into the
formalism|but the formal de�nitions will become more involved.

3. Moreover, some constructs of Message Sequence Charts such as lost and
found messages, FIFO-channels, gates, and timers are still missing in sce-
narios.

References

1. Eike Best and C�esar Fern�andez. Nonsequential Processes, EATCS Monographs on

Theoretical Computer Science 13. Springer-Verlag, 1988.

2. Peter Graubmann, Ekkart Rudolph, and Jens Grabowski. Towards a Petri net
based semantics de�nition for message sequence charts. In O. F�rgemand and
A Sarma, editors, SDL '93 Using Objects, proceedings of the Sixth SDL Forum,
pages 415{418. North-Holland, October 1993.

3. ITU-T Recommendation Z.120. Message sequence charts (MSC). ITU, 1996.

4. Cli�. B Jones. Speci�cation and design of (parallel) programs. In R.E.A Mason,
editor, Information Processing, pages 321{332. IFIP, Elsevier Science Publishers
B.V. (North Holland), 1983.

5. Ekkart Kindler and Wolfgang Reisig. Algebraic system nets for modelling distrib-
uted algorithms. Petri Net Newsletter, 51:16{31, December 1996.

252 E. Kindler, A. Martens, and W. Reisig

6. Ekkart Kindler. A compositional partial order semantics for Petri net components.
In Pierre Az�ema and Gianfranco Balbo, editors, Application and Theory of Petri

Nets, 18th International Conference, LNCS 1248, pages 235{252. Springer-Verlag,
June 1997.

7. James Rumbaugh, Ivar Jacobsen, and Grady Booch. The Uni�ed Modeling Lan-

guage Reference Manual. Object Technology Series. Addison Wesley, 1999.
8. W.M.P. van der Aalst. Exploring the process dimension of workow management.

Computing Science Reports 97/13, Eindhoven University of Technology, September
1997.

9. W.M.P. van der Aalst. Veri�cation of workow nets. In P. Az�ema and G. Balbo, ed-
itors, Application and Theory of Petri Nets, LNCS 1248, pages 407{426. Springer-
Verlag, June 1997.

10. W.M.P van der Aalst. Interorganizational workows: An approach based on Mes-
sage Sequence Charts and Petri nets. Systems { Analysis { Modelling { Simulation,
34 (3):335{367, 1999.

253Inter-operability of Workflow Applications

Object Oriented Petri Nets in

Business Process Modeling

Daniel Moldt and R�udiger Valk

Universit�at Hamburg, Fachbereich Informatik, Vogt-K�olln-Stra�e 30, D-22527
Hamburg, fmoldt, valkg@informatik.uni-hamburg.de

Abstract. Business systems have to adapt to changing requirements
coming from their environment. The rate is continuously increasing and
leads to massive use of computer based systems. To specify the systems
in a way that allows for adaptability and exibility adequate techniques
are necessary.
The disadvantages using traditional modeling techniques are partially
overcome by Business Process Petri nets (BPP-nets) which are infor-
mally introduced in this contribution. The key concepts are an object
oriented structure of the net models, allowing to partition the model
according to an application and also to follow a process centered ap-
proach. Workows within the system can be modeled in separate objects
and thus allow the dynamic adaptation of the system if the environment
requires a behavioral change.

1 Introduction

The modeling of business systems becomes increasingly diÆcult, due to the grow-
ing demands on the exibility of the implemented business processes and also
due to the wide use of the Internet and intranets. Especially the problem of
distributed and concurrent execution is of interest when modeling the business
processes.

From the numerous concepts and tools used for business process engineering,
object oriented modeling and Petri nets are of particular importance. Compar-
ing statements concerning the goals and advantages of both techniques, similar
and occasionally identical assertions are found: software development by abstrac-
tion of objects, building a language independent design, better understanding
of requirements, clearer design and better maintainable systems. Furthermore,
there are also complementary bene�ts: while research in object oriented model-
ing has concentrated more on structuring objects and their relations, little has
been done with respect to process description and dynamic behavior, which is
the traditional domain of Petri nets. In this contribution we will focus our work
on combining the �elds in order to pro�t from both.

We will describe an object oriented static structure with a process oriented
behavior which is again encapsulated within objects. This allows to introduce
physical and logical functional units which may be nested and which execute
objects, agents or workows in a exible way.

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 254-273, 2000.
 Springer-Verlag Berlin Heidelberg 2000

The following sections introduce the Object Oriented Coloured Petri Net
formalism, the Object Petri Net formalism, the informal integration of them, a
small case study to illustrate the modeling approach, and the conclusions.

2 Object Oriented Coloured Petri Nets

The approach to Object Oriented Coloured Petri Nets (OOCP-nets) (see [BM93],
[Mol96] and [MW97]) has introduced objects, classes and methods known from
object oriented programming to Coloured Petri nets. Structural building blocks
in this methodology are class nets that communicate with the environment by a
speci�c interface and contain methods to perform di�erent actions. The formal-
ism has been used to translate object oriented notions into the �eld of Petri nets.
Though in [MW97] an extension to multi-agent systems was proposed, contrary
to the object systems from [Val98] no mobility was included.

The general structure of an Object Oriented Coloured Petri net of [Mol96]
can be seen in Figure 1. The �gure shows the central aspects of the structure of a

outputinput

[(#rec in_msg)=id]

out_pool

msg
in_pool
msg

rec_msg

msg
send_msg

msg

method 2

method 1

inst_var
any_type

OBJECT_X

own_id

obj_id

method n

in_msg
out_msg

out_msgin_msg

id

in_msg
out_msg

Fig. 1. The object oriented net structure from [Mol96]

net which represents an object. It has a place for incoming messages (eventually
shared with other objects). The input transition �lters all messages according to
the object identi�er id. Internally the methods again pick up the right message
according to their names. No complex action is shown in the example. A re�ne-
ment for more complex actions is possible e.g. by the re�nement of the method
transitions. Internal states are represented by the place inst var. The transition
output then puts the outgoing messages into the place out pool which can be
the pool for incoming messages of other objects.

255Object Oriented Petri Nets in Business Process Modeling

In general objects can be folded to classes by keeping the structure and
adding relevant functionality for classes. The methods, attributes (inst var),
and the identi�ers (own id) are easily introduced by the net inscriptions. The
main idea is to fold similar structures of nets, what actually is one of the central
ideas of coloured Petri nets. The given net in Figure 1 can be seen as a folding
to coloured places with respect to the traditional Place/Transition-nets (see
e.g. [Rei92]). Classes again can be seen as foldings of objects, however, keeping
the net structure by introducing tuples to allow the selection of single objects
within the class net.

In the following all systems, functional units, business processes, workows,
and agents are considered to be special objects each represented by an OOCP-net
with speci�c properties.

An extension of the usual Coloured Petri nets has been developed by [CH92].
For the adoption of the original de�nitions to object oriented nets see [MM99],
[Ren] [Kum98] or [Kum99]. Synchronous channels can be seen as a shorthand no-
tation of a protocol which is based on message passing. However, some semantics
allow a more powerful abstraction that can not be reached with message pass-
ing, due to the synchronization aspect. For more details see e.g. [Kum99]. The
net structure of an OOCP-net changes when using only synchronous channels
(see Figure 2). Incoming and outgoing places for messages are no more neces-

<method 2>

<method 1>

inst_var
any_type

OBJECT_X

<method n>

Fig. 2. The object oriented net structure with synchronous channels

sary. The notation for the naming of the synchronous channels used here are
brackets around a string, e.g. <method 1>. In Figure 2 only the pure version of
called methods via synchronous channels is shown. This means that even the
object identi�er is not needed here and the net gets a very simple structure. The
calling object must know the object and then calls one of the methods via the
synchronous channels. In this contribution we use the traditional message pass-
ing of OOCP-nets in addition with synchronous channels as it seems appropriate
to support a direct modeling of synchronous and asynchronous communication
between objects. This implies that the net structure from Figure 1 and Figure 2

256 D. Moldt and R. Valk

are merged. Some of the transitions are not connected to other nets via the
places but by synchronous channels.

3 Object Petri Nets

In the approach to Object Systems (see [JV87], [Val91] and [Val98]) structure has
been added to tokens of Petri nets in order to consider them as dynamic objects.
Being subject to migration and interaction in a surrounding system called system
net, they are modeled as Petri nets themselves. To better distinguish both types
of nets, the former are usually called object nets. In this contribution we are using
the notion of token nets to emphasize the character of the net being a token in
the context of a system net. The original motivation was to model workow in a
system of functional units, thus adding resources to traditional workow models.
Token nets can be seen as speci�cations of workow processes that are executed
in a system of human beings, machines, software systems, or organizational units.
In Figure 3 an Elementary Object Net [Val98] is given, containing the system

Fig. 3. Object System from [Val98]

net on the right hand side and the token net (object net) on the left. The token
net can be thought of to lie in place p1 of the system net and is moved like a
standard token. When being displaced, however, it can reach di�erent internal
states by changing its marking. Such internal changes are synchronized with
transitions of the system net by common labels (e.g. i1 in Figure 3). For more
details see [Val98], where also a more realistic example from workowmodeling is
contained. The resulting formal model is used for investigating basic properties,
the design of graphical representations (e.g. graphic tools) or for analysis in
general (e.g. performance analysis for a given workload). Various case studies

257Object Oriented Petri Nets in Business Process Modeling

have shown that object systems are capable of integrating two di�erent sights
on business process models, i.e. the more static sight of system structure with
the more dynamic sight of processes in such a system.

4 Business Process Petri Nets

The Petri nets introduced in the following will provide modelers with the means
to structure a business system speci�cation in a modular way. A set of well
adjusted Petri net classes is presented and called Business Process Petri nets

(BPP-nets). Each of them has speci�c features which allow to cover a certain kind
of information, relevant for a speci�c view on a whole system. The integration
of all views results in the overall system speci�cation.

4.1 Some basic notions and assumptions

The goal for us is to provide a set of adequate techniques to allow an intuitive
way of modeling of business applications. There are some basic assumptions for
the following techniques:

{ The notion of system here is that a system is something which is mainly
determined by its kind of input and output and the kind of function it
performs on the input. It has an internal state and a set of operations it can
perform on the input. The system can either be �xed in its static structure
or can be exible. For the following we assume a static structure. However,
as will be discussed in the Section 5, there is a very natural way to extend
the given set of techniques to allow a exible structure.

{ A system consists of a set of functional units (see Section 4.3). These are the
execution engines.

{ By the functional units objects can be executed. These objects can be func-
tional units, again.

{ A trigger is a kind of external event that reaches the system border and con-
tains the request to ful�ll a certain system function, meaning i.e. a business
process.

{ Business processes describe the control and object ow for a set of objects
to handle one single speci�c trigger.

{ Objects can be seen as concrete parts, that can be represented separately
using their own identity. This is very useful for business processes, since it
allows to use the metaphor of splitting objects into object (parts) and gluing
object parts together to objects.

{ System speci�cations should be executable. Petri nets with an appropriate
semantics are therefore a good candidate for the modeling technique.

{ There is some kind of communication or transportation mechanism that
connects the functional units. In terms of Object Oriented Coloured Petri
nets one can think of fusion places for the input and output places. Each
two fusion places can be seen as two graphical representations of the same
place. There can be di�erent sets of fusion places with di�erent scopes.

258 D. Moldt and R. Valk

{ The idea of our Petri net models is that objects ow through our system
model. Each object itself can be a system again, therefore it can be active
while moving inside a system. Therefore, we do not restrict the level of
nesting systems.

The set of net classes allows to structure a system in a modular way, one
could also say in components (see [Szy98]). The system modeler can build the
models in an object oriented style using a technique for which the models can
be executed: Petri nets. At the same time the concepts of mobility and process
orientation are integrated. Each mobile part of a system can be modeled as a
separate net model. This allows to encapsulate the local information. In order to
make the nets readable the nets should be structured in an uniform way. Each
net model represents one object and can have the net structure as shown in
Figure 1, described in Section 2.

4.2 Objects

In the context of programming languages, e.g. Smalltalk, there is the view \Ev-
erything is an object". This allows to have an uniform view on a system. The
same is applied here, therefore we say \Everything is an object oriented Petri
net". The main question is how to map application objects to object oriented
Petri nets. To keep it simple: each application object is modeled as an object in
OOCP-nets. In Section 2 the net structure has been shown.

Not only functional units can be seen as objects, but also the resources and
services or workows within a system. Processes are special objects, hence they
can be assigned all characteristics of an object: identi�cation, behavior, and
attributes.

Each specialized object ful�lls its determined purposes. Therefore, they have
to be described separately in di�erent classes. In the context of Business Process
Management especially business processes (see Subsection 4.4) are of interest.
One main diÆculty can be seen in the integration of all models or views (see
Subsection 4.5).

This very speci�c view leads to a distinction into passive and active objects.
The active objects are nets which represent nets as tokens and show dynamic
behavior, while passive objects do not have a dynamic behavior on their own, like
simple data structures including black tokens. Objects (and classes) represent
the basic structure in our approach.

4.3 Systems and functional units

Systems, as seen in this contribution, consist of a certain number of physical
functional units (FUs). These FUs build the basic set of processors for the sys-
tem. Each FU may be connected somehow to the other FUs. Here it can be
assumed that there is a global transportation system for \things" owing in the
system. Things that can ow are materials or data. On a more abstract level
one could say objects or information. FUs can again be seen as systems, the

259Object Oriented Petri Nets in Business Process Modeling

notion is more or less a matter of abstraction and of the context. This allows a
homogeneous description of both.

It is important to notice that the notion of functional units can also be used
for logical functional units. This allows to look at basic software programs of
a system e.g. operating systems as functional units. Therefore, in the following
we consider also logical FUs, which is mainly a matter of perspective and level
of abstraction, hence operating systems are often counted to the environment
of a program even if they consist of software. Virtual machines running on this
operating system again can be seen as the environment for programs running
on these virtual machines. Therefore, we model those objects as FUs which are
some kind of execution engine for other objects.1

In Figure 4 the FUs of a system are represented by transitions. This kind of

InCh1

InCh2

OutCh1

OutCh2

Ch3

Ch1 Ch2

FU1 FU3

FU2

System

Fig. 4. The system seen as a channel/agency-net.

nets from the Figure 4 is called channel/agency nets in [Rei92]. The communica-
tion media are represented as channels. The communication is asynchronous.
Synchronous communication would require a transition fusion as de�ned in
[CH92]. This implies that only within the FUs activities take place. Whereas
re�nements of transitions are considered, places are not re�ned here. The chan-
nel/agency nets are extended in two ways. First we extend them to Coloured
Petri nets (see [Jen92]) and more precisely to OOCP-nets with synchronous chan-
nels. Second we introduce dynamic behavior by adding tokens and furthermore
we use also active tokens, which are again (Coloured) Petri nets (see Figure 3 in

1 When two objects synchronize, this does not mean that one has to be the execution
engine for the other. However, even when they are logically on the same level they
need at least one FU and a communication channel to be executed.

260 D. Moldt and R. Valk

Section 3). If tokens are nets they can be active (occur) if there is no restriction
to synchronize the activity to a functional unit on this level of abstraction.2

By FUs some functions or tasks are performed. More abstract: methods are
executed. The executed objects must conform to the interface of the FUs, other-
wise objects can not be executed correctly. In terms of nets this means that the
synchronous channels or the transitions of the token net must be matched with
the necessary resources from the FU net. In terms of objects the methods that
can be accessed from the outside can be seen as the interface. For asynchronous
communication the messages that match a method inside of a net and for syn-
chronous communication the synchronous channels of the nets can be considered
to be the interface of the net (or object or FU).

To make the description and the understanding more easy, each FU can be
seen as an object. A FU can have methods, attributes, and identi�ers. Resources
are modeled as attributes of FUs. These attributes can be any kind of object,
passive and active ones. This allows to represent physical or logical discrete
resources as well as references to resources and to encapsulate the behavior of
the resources.

When modeling a FU, a single Object Oriented Coloured Petri Net model
(see Section 2) is used for the speci�cation. Of course, complex object models
can be re�ned or split into several models. Transition re�nement is an adequate
means for this.

Objects have, according to [EMNW00], an interface. The behavior of a FU
can be characterized by its interface(s). When implemented as active tokens the
interfaces of a FU (or any other object) can again be active. This means that
the interface does not only represent the static interface (list of methods and
parameters), but also some kind of behavior. Explicitly applied in the OOCP-
net models it is used to allow for polymorphism and code reuse (reuse of model
components).

From the explanations above some properties of a system or a functional unit
in combination with Petri nets can be derived:

{ The active parts are methods. The parameters of the methods are control
values, data values and active / passive objects or references to them.

{ There is an object pool which contains objects or references to objects. These
objects can again be seen as data or as control algorithms. The data pool
contains local values or resources. The control algorithm pool contains those
descriptions which are used to control the actual behavior of the system or
functional unit.

{ There is a communication interface which represents the externally visible
behavior. The static interface can be seen as a list of the methods which
can be called from the environment. An interface for the dynamic behav-
ior also represents when a method can be called. Communication can be
synchronous by synchronous channels or asynchronous by message passing

2 Otherwise we need to re�ne also the channels and map them to some FUs or the
tokens are physical FUs themselves. This is not considered here for the sake of
simplicity.

261Object Oriented Petri Nets in Business Process Modeling

(with or without waiting at the caller side). The interface instance(s) can be
seen as the sensors to the environment.

{ A part of the system or functional unit can be active without external re-
sources from the environment under the assumption that there is some kind
of physical or logical processor inside the system of functional unit. This is
only possible for active tokens (active objects).

4.4 Business Processes

A business process (BP) is a holistic view on that set of activities that is nec-
essary and suÆcient to ful�ll one speci�c request concerning the system under
observation. Activities are methods of objects. A business process starts as soon
as a physical FU connected to the environment receives an input (trigger). Trig-
gers can be any kind of objects, depending on the kind of system and FU. The
trigger is directly forwarded to an object running on that FU. The object then
classi�es the input and one of the methods of the object related to that event is
called.

Concerning the control structure a business process can be seen as a partially
ordered set of activities, represented by an occurrence net. The causal order of
the activities is represented by an object that just covers the control (structure)
of this BP. Di�erent kinds of such partial ordered sets for similar cases can be
folded to coloured occurrence nets. In [Mol96] also re�nement and (�nite) loops
are added as a shorthand for a �nite set of di�erent occurrence nets. This family
of nets is called Scenario nets. These nets are very similar to the Workow
nets by van der Aalst (see [Aal97]). However, the Scenario nets are specially
designed to support the incremental building of whole system models and are
not restricted to workows.

To view business processes (BPs) just as partially ordered sets is too simple.
Additional dependencies between the di�erent activities not directly related to
the causal order come from resource sharing. This can even be true within one
BP, when there are two or more branches competing for the same resource.
Therefore, means to model these dependencies are necessary and if possible
means to investigate the properties of the system. In this chapter we concentrate
on the modeling and the informal inscription of the technique itself.

4.5 Method and Integration

The basis for our approach is that all application objects are mapped to objects of
an OOCP-net. Objects can be either systems, functional units, business proces-
ses, or any kind of application object which can be identi�ed in the application.
Each object is represented by an object of an OOCP-net with synchronous chan-
nels, while they are based on the Coloured Petri net de�nition of Kurt Jensen
(see [Jen92]). The uniform background allows to use an uniform communication
architecture and mechanism. By this, di�erent parts of a system can be inte-
grated in a reasonable manner. All objects must be assigned to FUs. Finally all
FUs must be mapped onto physical FUs. Activities are mapped to methods of

262 D. Moldt and R. Valk

objects. Business processes represent the abstract behavior of abstract objects.
Each single BP can be represented as a single object (class). This is the kind of
protocol that is used in the example (see especially Figure 13 in scenario 3). A
protocol can be included by another object to represent the behavior of this other
object3. The use of active tokens, like protocols, is one of the special aspects of
our approach.

The way to proceed when building the models is quite complex. Roughly
speaking, without implying any strict order on the di�erent tasks, the method
is as follows:

{ The boundary between system and environment is determined.

{ The main FUs and objects are characterized.

{ The containment relationship between systems, FUs, workows, and objects
is modeled.

{ Each object (system, FU, etc.) is modeled with an OOCP-net with syn-
chronous channels with the speci�c restrictions for BPP-nets. The commu-
nication is modeled by message passing or with synchronous channels.

{ The activities within an object are checked. Either they can be static, which
means that they can not be changed at the execution phase of the system.
Or otherwise, the dynamic parts of the control of the object are distilled and
modeled in a separate object, called protocol. Between the object and its
protocol exists a special aggregation relationship. This allows to restrict the
speci�c elements that are needed to draw the models, and hence makes the
models easier to read.

{ Each model can be tested separately by direct execution. The integration
happens according to the application speci�c scenarios. A problem, not cov-
ered here, is to avoid further possible behaviors which are not speci�ed. This
requires to check the models formally, hence this can not be ensured by tests.
A business process is the integrating object for a related set of activities.

{ New objects can be introduced as appropriate at each level of abstraction.

The strict separation into separated systems allows to use an object oriented
structure for the model but also allows to follow a process centered approach.
Further business processes can easily be added. If they require new FUs, these
have to be added. Otherwise they are assigned to already existing ones. If nec-
essary, new object instances can be introduced with respect to resource restric-
tions. If an object needs additional new behavior or attributes (incl. resources),
then these can be added. The nets allow an executable speci�cation model and
provide therefore the necessary means for software engineers.

3 This is some kind of aggregation. There is a local instance of such a protocol which
is strictly bound to the object using the protocol. If protocol instances are shared
then it is an object of itself and represents a shared resource between the using
objects. Formally, there is no restriction of the usage, however, a good application
architecture makes this sharing of resources explicit by providing a speci�c object
for each resource.

263Object Oriented Petri Nets in Business Process Modeling

4.6 Example

The example chosen here is used to demonstrate the essential new features of our
formalism. General ideas for object oriented modeling are assumed to be present
to the readers. UML (Uni�ed Modeling Language) as the standardized version
of the Object Management Group (OMG) (see [UML]) is a good background for
this (see [BRJ99], [JRB99], and [RJB99] which are the three standard books for
UML).

The system for which we demonstrate our approach is a shop which sells
technical goods. There are people to handle customer requests and people to
test and con�gure a technical system. The goods can be passive like cable or
can be active like a walkman4. The system resources are money, cables, and
walkman. Paper e.g. for receipts, tools to con�gure the goods, rooms, tables,
electricity etc. are explicitly not modeled.

Now we describe some scenarios and how to model the system. These scenar-
ios represent some speci�c processes that can happen in a system. All scenarios
here should be seen in isolation, since it is not intended that they should be
integrated. Furthermore, they can be seen as isolated possibilities which show
the di�erent kinds of processes and the proposed solutions.

request cable

receive cable

give money

Inpool Outpool

Money

Goods

ControlFlow

[1] [2]

[5]

[6]

Fig. 5. Customer purchases a cable (asynchronous version). The numbers [1] to [6]

show the message ow (see also Figure 6).

Scenario 1: A Customer buys a cable

In this scenario the simplest case is shown. It is used to demonstrate the con-
cepts of asynchronous and of synchronous communication via messages and syn-
4 Active means that some internal behavior of the walkman does not depend on the
environment. It can be \active" while it is passed from a shopman to a customer. In
terms of nets this means, that the Petri net of the walkman contains a Petri net as
a token which is not always blocked from the environment.

264 D. Moldt and R. Valk

chronous channels respectively. In the following we use an approach which uses
both kinds of communication. A customer arrives and requests a cable. The
shopman picks up a cable from the store and delivers the cable. The customer
pays and leaves with the cable.

This �rst scenario illustrates the here proposed use of object oriented con-
cepts in combination with Petri nets. The two main objects are modeled, cus-
tomer and shopman. The focus is put on the control ow within the objects.
Figure 5 and Figure 6 show the general structure of the nets. Several inscrip-

receive request
for cable

deliver cable

receive money

Inpool Outpool

Money

Goods

ControlFlow

[3]

[4]

[7]

Fig. 6. Shopman sells a cable (asynchronous version).

tions have been dropped for better readability. The nets presented here can be
seen as a shorthand notation for our formalism. An exact syntax has not been
developed completely. However, with reference nets we have the basic formalism
which has a precise semantics and an available tool. Reference nets need to be
speci�ed in more details, since they have to be executed. To introduce our main
ideas we use the shorthand notation. In Figure 9 we show how a synchronous
channel has to be formally speci�ed. Figure 5 and Figure 6 contain some num-
bers (see e.g. [1]). The numbers in these square brackets represent the control
ow and therefore the sequence of messages from [1] to [7] between the cus-
tomer and the shopman. The main methods of the customer and the shopman
relevant for this scenario are shown. Something or somebody tells the customer
to request a cable (see ow [1]). If the customer is an autonomous object (or
agent), it would be a local decision to perform a request. Here it is modeled by a
message, without showing from where this message is coming. Similar assump-
tions will be made for the other following models. [2] shows the request going to
the shopman. In Figure 6 [3] shows the incoming message. Internal control ow
is not numbered, resulting in [4] as the outgoing message. It should be men-
tioned that now the \message" contains the cable, meaning that the message
can be quite complex. [5] and [6] show the control ow for the customer and
[7] indicates that the shopman �nally receives his money. Due to the underly-

265Object Oriented Petri Nets in Business Process Modeling

ing asynchronous communication the messages from [1] to [7] can be followed
easily.

There are several possibilities to realize the communication. In [MW97] a
message identi�er is used within the messages themselves to handle the proper
assignment of messages to objects. Other possibilities are to use method invo-
cation instances (see e.g. [EMNW00]) where an instance of a method waits for
a reply. The structure of the messages is more complex than a single color. It
is a tuple which describes the sender, receiver, the method called, the calling
method, parameters, and some content for the proper assignment of message
and the sequencing of messages. The original de�nitions are extended here to al-
low the modeling of the transfer of goods, money etc. to be covered by messages.
However, these are details which are not discussed here.

The nets for the cable (goods) and for the money are not shown. In this
example it is suÆcient to consider them as passive objects. On the abstrac-
tion level used here the objects could also be ordinary tokens of Coloured Petri
nets. Between the receive cable and give money in Figure 5 obviously the
information about the amount has to be transferred as well as a reference to
the receiver. Again this is suppressed to concentrate on the central issues. In
Figure 9 all details are given for the synchronous case as described below.

The synchronization is done as shown for the synchronized action in Figure 7
and Figure 8 where an example for a fully synchronized action between the cus-

request cable

Inpool Outpool

Money Goods
receive cable

and
give money <rec-give>

Fig. 7. Customer purchases a cable { the cable and the money are synchronously
exchanged.

tomer and the shopman is shown, while the �rst interactions are asynchronous.
The synchronous channel <rec-give> is only represented by a transition inscrip-
tion according to the approach in [Val98] (see Section 3). The other inscriptions
to assure the right synchronization of the right objects, like messages and their
parameters, are not shown here, but in Figure 9. In Figure 9 two nets can be
seen: the customer (a) and the shopman (b). The customer knows the shopman.
Additionally the synchronous channels, the references, and the arc inscriptions
are inserted. The reference of the shopman to the pricetable might be deduced
from other parts of the speci�cation. Here it allows to �x the price for the cable.

266 D. Moldt and R. Valk

receive request
for cable

Inpool Outpool

MoneyGoods

ControlFlow

deliver cable
and

receive money <rec-give>

Fig. 8. Shopman sells a cable { the cable and the money are synchronously exchanged.

An implementation of the concept of synchronous channels is used in the
tool Renew [Ren]. This tool has been developed in our group and implements
the main characteristics of the nets used here.

Money Goods

Shopman

shopman:sell(cable,price)

Goods Money

Pricetable

:sell(cable,price)

a) Customer b) Shopman

price cable

shopman

cable price

[cable,price]

Fig. 9. Reference net for Figure 7 and Figure 8 showing the synchronous cable and
money exchange.

Scenario 2: A Customer buys a walkman

A customer arrives and requests a walkman. The shopman picks up a walkman
from the store and starts playing the walkman. The customer tests the walkman
by listening to the music and pays for the walkman.

This scenario shows the use of a �xed workow for a functional unit. Fur-
thermore the transfer of an active token to another functional unit is presented.

The diagrams in Figure 10, 11 and 12 show the (simpli�ed) model for the
purchase of a walkman. The central point here is to show that a walkman is
a separate object and communicates with the shopman and the customer. The
communication is presented in the traditional Petri net way. The token is with-
drawn from the place and moves together with the control token (which is no
more explicitly modeled). The action of starting the walkman to play is done
via a synchronous channel. An alternative communication has been discussed in

267Object Oriented Petri Nets in Business Process Modeling

request walkman

receive walkman

give money

Inpool Outpool

Money

Goods

ControlFlow

listen to music

<listen>

walkman

Fig. 10. Customer purchases a walkman.

receive request
for walkman

pickup walkman

receive money

Inpool Outpool

Money

Goods ControlFlow

deliver walkman

start walkman

<start>

Goods

Goods

walkman

Fig. 11. Shopman sells a walkman.

268 D. Moldt and R. Valk

stop playing

Inpool Outpool

not playing

playing

start playing

<start>

send out music

<listen>

Fig. 12. Walkman which is sold.

the cable example. The listening of the customer is modeled via a synchronous
channel. Further actions are hidden in the method listening. If a customer really
has the intention to listen to the music, is not shown here. The arc without
an arc head represents a test arc. As long as there is a token on the related
place the connected transition is activated, assuming that no other place is re-
stricting the transition. In general test arcs allow the concurrent access to the
same token, here the access to the walkman is modeled as a concurrent access,
even if the speci�c example does not require this. Inside the walkman diagram
one can see that there is no message going out to the Outpool. However, the
synchronous channel allows a continuos access to the music, while the music is
made available via a method with a synchronous channel. The handling of the
walkman by the shopman is modeled explicitly, with the workow being �xed.
In the next scenario a protocol is introduced for the separation of the shopman
and his behavior.

Scenario 3: A Customer buys a walkman and the shopman follows a

protocol

From an application point of view the same requirements are given as in sce-
nario 2. However, scenario 2 is now extended by the introduction of a protocol
for the behavior of the shopman.

The diagram in Figure 13 shows how the workow which has to be per-
formed by the shopman is represented by a separate object in another net (see
Figure 14). The connections between the two nets are shown by the place Be-

havior. All actions of the shopman have to be synchronized with a protocol that
is assigned to each of his transitions via a test arc to the Behavior place where
the protocols are put. Synchronization is again realized by synchronous channels
<P1> to <P5>. The proper use of the assignment of the channels is not shown
by the arc and channel inscriptions. The protocol restricts the shopman in his
possible actions stronger than the net structure in Figure 11. This can easily

269Object Oriented Petri Nets in Business Process Modeling

receive request
for walkman

<P1>

pickup walkman

<P2>

ControlFlow

deliver walkman

<P4>

start walkman

<start>
<P3>

ControlFlow

ControlFlow

receive money

<P5>

ControlFlow

ControlFlow

Fig. 13. Protocol for the shopman in Figure 14 to trigger his behavior.

receive request
for walkman

<P1>

pickup walkman

<P2>

receive
money

<P5>

Inpool Outpool

Money

Goods

deliver walkman

<P4>

start walkman

<P3>
Goods

Behavior

walkman

Fig. 14. Shopman sells a walkman according to the protocol in Figure 13.

270 D. Moldt and R. Valk

be overcome by a more sophisticated protocol. Even if the structure of the two
nets are very similar, it should be clear that both net structures can be modi�ed
independently to add some more actions or to modify the structure in a way to
coordinate each net with other nets.

Scenario 4: Customer brings back a walkman for repair

A customer arrives with a defective walkman. He delivers it to the shopman.
The shopman gives it to the repairman. The repairman repairs the walkman.
The repairman gives the walkman to the shopman. The customer receives the
walkman, starts it, pays, and leaves.

Scenarios 2 or 3 are extended by a further person that is involved. This
person can modify an object, of course according to its repair interface which
is not discussed here. This requires that the nets provide the means for this.
Modifying passive tokens is the traditional way. However, here active tokens
can be modi�ed. Using reference nets it is possible to do this without further
operators, as long as the kind of modi�cations are somehow prede�ned. If the
kind of operations are not determined before the system is executed, special
operators within the nets are necessary and type checking becomes more diÆcult.

Scenario 5: The protocol of the shopman is exchanged

This scenario extends the scenario 3 and allows to replace the protocol of the
shopman. From the application point of view di�erent behaviors are necessary
due to di�erent business requirements. For this scenario again the nets are omit-
ted. We give a short discussion only.

From an application point of view the exchange of a protocol means that the
shopman can adapt to a new behavior. The change of the protocol can either be
done according to the kind of customer, requiring that the shopman can apply
di�erent kinds of protocols, or the exchange is done by a chief of the shopman
who gives di�erent orders from time to time.

This action again has to be modeled at the appropriate level. It is obvious that
the exchange of a protocol is an explicit action. Modeling this is only necessary, if
it is a relevant issue of the system speci�cation. In traditional business processes
many aspects were �xed. Nowadays, more exible structures become necessary.
This can be reected in the speci�cations by the BPP-nets. In general new and
powerful modeling techniques are necessary. The dynamic aspects require more
net components in terms of modeling with Petri nets. One goal of our work
is to �nd appropriate abbreviations with a precise semantics still modeling the
essential parts without loss of correctness.

5 Conclusions

After a short introduction into object oriented coloured Petri nets and object
nets a new formalism for the modeling of business processes is presented. The
main characteristics of this formalism are that

271Object Oriented Petri Nets in Business Process Modeling

{ it is based on Coloured Petri nets (see [Jen92]);
{ it uses a speci�c net structure from [Mol96] to allow the use of object oriented
features;

{ it extends the objects nets (see [Val98]) to high-level Petri nets;
{ it supports a process oriented view on a system speci�cation which is built
on objects, modeled in OCPN-nets;

{ it allows to model the dynamic adaptation to changing workows by adding,
exchanging, and deleting token nets within a certain system net level;

{ mobility can be modeled intuitively;
{ it allows a natural way of abstraction for the speci�cation of internet appli-
cation and a kind.

The presented formalism of Business Process Petri nets (BPP-nets) is pow-
erful and allows to capture especially the problems occurring in business system
speci�cation when modeling dynamic changes to those parts which are normally
modeled by complex structured tokens within a Petri net. Traditional modeling
techniques like UML do not cover the dynamic interface and the aspect of mobil-
ity in this direct way. By using also Petri nets for the complex tokens the formal
methods available for usual Petri nets become applicable, not considering the
state explosion problem which may cause some practical problems. Due to the
new kind of hierarchy within the net models additional formal methods have to
be developed. This will be done in the near future in the area of workow mo-
deling and computer integrated manufacturing with respect to the use of Inter-
and intranet facilities.

References

[Aal97] Wil van der Aalst. Veri�cation of workow nets. In Az�ema and Balbo
[AB97], pages 407{426.

[AB97] Pierre Az�ema and Gianfranco Balbo, editors. Application and Theory

of Petri Nets 1997, number 1248 in Lecture Notes in Computer Science,
Berlin, Heidelberg, New York, 1997. Springer-Verlag.

[BM93] Ulrich Becker and Daniel Moldt. Objektorientierte Konzepte f�ur gef�arbte
Petrinetze. In Scheschonk and Reisig [SR93], pages 140{151.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The uni�ed modeling language

user guide: The ultimate tutorial to the UML from the original designers.
Addison-Wesley object technology series. Addison-Wesley, Reading, Mass.,
1999.

[CH92] S�ren Christensen and Niels Damgaard Hansen. Coloured Petri Nets Ex-
tended with Channels for Synchronous communication. Technical Report
DAIMI PB{390, Computer Science Department, Aarhus University, DK-
8000 Aarhus C, Denmark, April 1992.

[EMNW00] Adriana Engelhardt, Daniel Moldt, Marc Netzebandt, and Frank Wien-
berg. Erweiterung objektorientierter gef�arbter Petrinetze um Typisierung
und Schnittstellen. Fachbereichsmitteilung, University of Hamburg, De-
partment of Computer Science, Vogt-K�olln Str. 30, 22527 Hamburg, Ger-
many, 2000. in print.

272 D. Moldt and R. Valk

[Jen92] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and

Practical Use; Vol. 1. EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

[JRB99] I. Jacobson, J. Rumbaugh, and G. Booch. The uni�ed software development

process: UML; The complete guide to the Uni�ed Process from the origi-

nal designers. Addison-Wesley object technology series. Addison-Wesley,
Reading, Mass., 1999.

[JV87] Eike Jessen and R�udiger Valk. Rechensysteme; Grundlagen der Modellbil-

dung. Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[Kum98] Olaf Kummer. Simulating synchronous channels and net instances. In

J. Desel, P. Kemper, E. Kindler, and A. Oberweis, editors, 5. Workshop Al-

gorithmen und Werkzeuge f�ur Petrinetze, Forschungsbericht Nr. 694, pages
73{78. Fachbereich Informatik, Universit�at Dortmund, October 1998.

[Kum99] Olaf Kummer. A Petri net view on synchronous channels. Petri Net

Newsletter, (56):7{11, 1999.
[MM99] Christoph Maier and Daniel Moldt. Object Coloured Petri Nets { a Formal

Technique for Object Oriented Modelling. In G. Agha, F. De Cindio, and
G. Rozenberg, editors, Concurrent Object-Oriented Programming and Petri

Nets, Lecture Notes in Computer Science, Berlin, Heidelberg, New York,
1999. Springer-Verlag. in print.

[Mol96] Daniel Moldt. H�ohere Petrinetze als Grundlage f�ur Systemspezi�kationen.
Dissertation, University of Hamburg, Department of Computer Science,
August 1996.

[MW97] Daniel Moldt and Frank Wienberg. Multi-Agent-Systems based on
Coloured Petri Nets. In Az�ema and Balbo [AB97], pages 82{101.

[Rei92] Wolfgang Reisig. A Primer in Petri Net Design. Springer Compass Inter-
national. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

[Ren] The Renew Home Page. WWW page at http://www.renew.de. Represents
the Renew homepage.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The uni�ed modeling language

reference manual: The de�nitive reference to the UML from the original de-

signers. Addison-Wesley object technology series. Addison-Wesley, Read-
ing, Mass., 1999.

[SR93] Gert Scheschonk and Wolfgang Reisig, editors. Petri-Netze im Einsatz f�ur

Entwurf und Entwicklung von Informationssystemen, Informatik Aktuell,
Berlin, Heidelberg, New York, 1993. Gesellschaft f�ur Informatik, Springer-
Verlag.

[Szy98] Clemens Szyperski. Component software: Beyond object-oriented program-

ming. ACM Press books. Addison-Wesley, Reading, Mass., reprint edition,
1998.

[UML] The UML Home Page. WWW page at http://www.rational.com/uml/.
Represents the UML homepage hold by the originators of UML.

[Val91] R�udiger Valk. Modelling Concurrency by Task/Flow EN Systems. In
Proceedings 3rd Workshop on Concurrency and Compositionality, number
191 in GMD-Studien, St. Augustin, Bonn, Germany, 1991. Gesellschaft
f�ur Mathematik und Datenverarbeitung.

[Val98] R�udiger Valk. Petri Nets as Token Objects: An Introduction to Elemen-
tary Object Nets. In J�org Desel and Manuel Silva, editors, 19th Interna-

tional Conference on Application and Theory of Petri nets, number 1420 in
Lecture Notes in Computer Science, Berlin, Heidelberg, New York, 1998.
Springer-Verlag.

273Object Oriented Petri Nets in Business Process Modeling

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 274-288, 2000
 Springer-Verlag Berlin Heidelberg 2000

Information Gathering and Process Modeling
in a Petri Net Based Approach

Wolfgang Deiters

Fraunhofer Institute for Software- and Systems Engineering
P.O. Box 520 130, FRG- 44207 Dortmund

deiters@do.isst.fhg.de

Abstract. Petri nets are seen as a suitable process modeling language since they
lead to graphical process descriptions that can be understood by different
people, since formal process analysis can be performed, and enaction of
processes can be done on the basis of a process model described by Petri nets.
We have developed a Petri net based process modeling language and applied it
to various practical projects. From the experiences we have derived new
concepts and techniques in order to enhance our approach. In this paper we
mainly discuss two aspects (1) modeling semi-structured process parts and (2)
gathering the relevant information to be put into process models.

1 Introduction

Within the last years workflow management has become a technology that is being
more and more used in order to support business processes. Based on an enactable
description the processes are being supported by workflow systems that usually
interpret the processes, assign to the various people involved in the process the tasks
they have to perform, and, provide the tools and objects that are needed to perform the
tasks. Thus, workflow systems drive and monitor the business processes.

For modeling the processes Petri nets have been widely used. Petri nets are seen
capable because of its following features:

− graphical description yielding in a workflow representation that can be understood
by various groups of people

− formal basis - workflow models based on Petri nets can be formally analysed in
order to achieve improvements of the modelled processes

− enactable models - Petri net based workflow models can be enacted

Within the last years we have intensively used a Petri net based workflow language
called FUNSOFT nets [DG98]. The language has been applied in various projects
w.r.t. the goals indicated above (workflow modeling, analysis as well as enaction). On
the one hand side within the projects the possibility to use Petri nets has been shown.
However, on the other side some points of weakness have also been shown. These
experiences (as well as the improvements in order to deal with the weak points) will
be discussed in the paper.

Information Gathering and Process Modeling in a Petri Net Based Approach 275

Among the experiences are issues that lead to questions like (1) how to model
workflows where different organisations are involved in (i.e. how to model the co-
ordination process of the partners while at the same time the individual partners want
to behave autonomously within their workflows), (2) how to deal with process parts
that have to be performed completely or not at all (i.e. the issue of workflow
transactions), and (3) how to deal with exceptional cases in workflows, and, generally
process parts that cannot be completely defined in advance.

Furthermore experiences have been made considering the development of workflow
models based on Petri nets. Since Petri nets support a broad range of goals (modeling
analysis, and enaction) its usage has a great benefit for a workflow management.
However, not all people (especially non-technical people on the end-user level)
"think" in terms of Petri nets. However, these people are involved in the processes,
i.e. are the people that have the process knowledge to be modelled in the workflows.
In order to "integrate" these people into the information gathering and workflow
model development process we describe our approach for capturing workflow related
information, storing and structuring it in an organisational memory information
system which will be used for deriving a Petri net based workflow representation.

For the scope of this paper we want to concentrate ourselves on the questions about
the definition of workflows that consist of information that is only partially available
at process model build time in conjunction with the question about how to collect and
structure information about processes at all. Therefore, the structure of the paper is as
follows: In section 2 some basic aspects of our approach are discussed. Following that
the issue of semi-structured business processes (i.e. processes that cannot be
completely defined at model build time) is tackled. In section 4 we discuss how to
collect and structure information that is relevant to be defined in process models and
how to make this information consistent. Section 5, finally, summarises and addresses
some future work to be done.

2 Some Basic Aspects of Our Process Management Approach

For developing process based IT application based on the workflow management
technology different activities have to be performed. The sequence of these activity is
also called process model lifecycle (c.f. Figure 1).

information
acquisition

process
modelling

model
analysis

process model
enaction

evaluation

Fig. 1. A process management lifecycle

276 W. Deiters

Continuous engineering of systems usually takes place in running organisations.
Thus, in a first activity the information about the processes has to be gathered. Within
an information acquisition the information about the „as is processes“ is collected.
This can take place by different means: document analysis (e.g. using a ISO9000
documentation if it exists in the organisation), structured interviews, workshops, etc..
This information that has been collected is fixed in the process model in an activity
that is called process modeling, then. This process model serves as a basis for
discussion about the processes. Furthermore, in a process model analysis activity the
model can be evaluated in order to detect deficiencies of the process. A typical ana-
lysis technique is the one of simulating the process. Results of the analysis usually are
suggestions for improvement that result in changes of the process model. Iterating the
modeling and analysis activities usually leads to „should be process models“ which
are an improvement of the „as is models“. Once a „should be model“ has been
decided upon a process model enaction can take place. This takes place on the basis
of a workflow application where the process is driven by the workflow engine, and
different services are called supporting the different process activities. According to
the process state the different persons involved in the process get informed about the
activities they have to perform, and they are provided with the necessary process
objects and services to work upon the objects according to the activity definitions.
One further important activity is the process evaluation in order to detect further
possible process improvements during the process or a posteriori, i.e. after the process
has been terminated.

Various process modeling approaches each of which focussing on a certain goal have
been developed in the last years (e.g. FlowMark [IBM95], Action Workflow
[MWFF92], Promet [Oest95],). A couple of the process modeling languages base on
the Petri net language paradigm ([AME98, Ober96]), others exist that use
programming language like notations (e.g. MOBILE [JB96]) and/or object oriented
languages (e.g. SOM [FS95]).

One approach that has been developed for managing business processes in the scope
that is given by the lifecycle of Figure 1 is called FUNSOFT nets [DG94], an
approach basing on Petri nets. Due to the limited space of this paper we do not give a
separate introduction of FUNSOFT here. For an understanding of this paper we
assume that the reader is familiar with Petri nets. Further details of the FUNSOFT net
approach can be found in ([DG94, DGW95]). The FUNSOFT net approach has been
applied in several projects within the last years [DG98]. When applying that approach
it has been shown that the main goals (1) understandability of processes by using a
graphical notation, (2) analysis of process models, and (3) support for process model
enaction can be achieved.

However when performing our projects we also have been faced with a couple of
problems that partially occur in general when trying to manage business processes but
partially also came with the application of the concrete approach we have taken.
These problems can be structured into three different classes:
• Missing process modeling constructs
• Missing process structure
• Missing concepts for bringing user information into process models

Information Gathering and Process Modeling in a Petri Net Based Approach 277

Considering the problem of missing modeling constructs we have modelled processes
where the user could tell us, for example, the activity schedule to be performed in the
process but, furthermore, told us that certain exceptional or error situations could
occur that make it necessary to undo part of the process. With the Petri net language
concepts we have had so far, this “undo” of process parts was cumbersome to
describe. From that experience we developed the concept of process transactions
[SDL96] and extended our language by that concept. The problem denoted above by
missing process structure describes the fact that processes quite often cannot be
completely defined at process model build time. There are either a large variety of
alternative solution paths for certain partial processes, sometimes one could indicate
the different activities to be performed but could not determine the order in which
these activities are to be performed. In other situations the information how to
perform the process even became only be available while the process was running. In
order to manage these kinds of processes, that we have started to term semi-structured
processes, we have worked on different concepts for extending the process modeling
language as well as for integrating different types of IT-systems (e.g. workflow,
groupware, and document management systems). Concerning the last point we quite
often were faced with the problem that the information we had to put into process
models had been spread over various people, documents, etc. and was available at
very different levels of abstraction. We therefore felt the necessity to develop
conceptual means for collecting, structuring, and homogenising information to be put
together into a process model. In the reminder of this paper we want to focus on the
latter two problems the support for semi-structured business processes as well as the
problem of gathering information to be put into process models.

3 Modeling Semi-Structured Process Parts in a Petri Net Based
Approach

When modeling processes we quite often have been faced with the problem to model
exceptional and error cases. We therefore introduced the concept of process
transactions [SDL96] into the Petri net language we use. However, there are also
cases where it is not possible to completely define processes by means of process
models in advance or even not at all. In those cases we have to deal with the problem
of evolution of processes that are incompletely specified.

Incomplete specification raises the question concerning the available information at
model build time. In general, incomplete means, that information about some of the
metamodel entities is not available when defining the model. This - what is quite
often the case - can be that the activities but not the order of activities is known, it can
be that the persons responsible for performing the activities are not known or the
assignment of persons to activities is not known or changes quite frequently.

There are a couple of approaches classifying business processes. In the following we
build up a classification scheme for business processes that spans up three dimensions
distinguishing process model entities information objects, co-operating persons and
solution paths (see also [LSD98], [DLS99]). One major characteristic for all these

278 W. Deiters

entities is whether they can be planned, i.e. whether they are known at process model
build time and, thus, can be fixed in a process model or not. Using the three entities
and the characteristic of plannability we can build up a scheme spanning eight
different classes of business processes.

Fig. 2. A classification scheme for semi-structured process models

Within class 0 we find those business processes that are plannable with respect to all
three entities information objects, co-operating persons, and solution path. We call
this class of business processes structured business processes in the following. Class
7 encompasses those processes that are unplannable with respect to all three entities.
We call these processes unstructured processes. Those processes that belong to one
of the classes 1 to 6 are called semi-structured processes in the following.

Processes belonging to class 0 are the typical application domain for workflow
management applications. Here all information regarding the activities and their
execution order, the persons participating in the activities, and the documents needed
for performing activities or produced by the activities are known in advance and, thus,
can be fixed in the process model. All semi-structured process classes have in
common that at least one information entity that spans up a dimension of the
classification scheme is unknown at process model build time. For these kind of
processes workflow management systems usually give inappropriate support. One
idea, therefore is to integrate workflow management systems with other systems
supporting co-ordination, co-operation, and communication in order to support semi-
structured processes. This means, for example, to support different parts of business
processes using different kinds of systems (e.g. workflow management, groupware,
document management, videoconferencing, joint editing) each of which supporting
the corresponding process part best. Discussions on the different classes as well as on
the different type of IT-support can be found in [DLS99].
In the following we concentrate on mechanisms how to deal with unplannable aspects
(of classes 1 – 6) in Petri net based process modeling approaches. One major problem
that yields in semi-structured business processes at process model build time results

Information Gathering and Process Modeling in a Petri Net Based Approach 279

from the point of time when certain information becomes available (i.e. when
plannability is given). Quite often process models must stay incomplete because some
information is not available when modeling the process (i.e. at model build time) but
rather becomes available only during the process (i.e. at process model run time).
That means the fixed separation of building a model of the process first and, then,
running the process according to the defined model afterwards quite often does not
hold in practice. Process modeling and process enaction rather have to be
interweaved. It must be possible to add process information to the process model that
is being enacted.

Different approaches have been developed in order to enable a certain intermixing of
model definition and model enaction while using a Petri net process modeling
language:

For FUNSOFT nets the concept of late modeling has been developed. Late modeling
can be applied when parts of the process are known at build time but others have to be
added during run time of the process. Upon occurrence of certain events during a
process the models that have been partially fixed so far become completed. An
example for this is given in Figure 3. There a cut out of a process model is sketched
for checking the capacity of certain parts that are needed in an assembly activity. At
first a capacity_check1 is performed in order to determine whether enough parts for
assembling are available. If this activity ends up positive the assembly takes place
otherwise new parts have to be get. However, at process model build time it is still
unclear how to get new parts (e.g. whether they should be bought or fabricated).
Therefore, the activity get_new_parts has been modelled as a black box. A
modification triggering event exists (in the example the channel amount_not_ok
associated with a flag) triggering the modeling of the black box. In case a token is put
into that channel the black box get_new_parts becomes subject of change (i.e. can be
replaced by a net) while the remaining net remains under enaction. This mechanism
holds whenever the amount_not_ok channel is filled, i.e. different events can result in
different specifications of get_new_parts. Different models can be implemented
defining who is allowed to change the model [Herr95].

Fig. 3. The concept of late modeling

In the HOON approach [CHW97, HHSW96] the Petri net paradigm has been
extended in order to arrange Petri nets, e.g. FUNSOFT nets, and their surrounding

1 In that example the FUNSOFT net agency capacity_check has a so called DET-OUT firing

behavior (indicated by the small switch symbol) saying that one of the two channels in its
postset is filled with a token upon firing the agency. For further details on firing behaviors of
agencies in FUNSOFT see [DG94, DGS95].

capacity_check assemble_parts

get_new_parts

amount_ok

amount_not_ok

280 W. Deiters

environment and to model the interfaces towards the environment explicitly in pro-
cess models. For modeling the interfaces between process models and the
environment external to the model special places so called interface places have been
introduced. Through these interface places information can be dynamically exchanged
between the process models and the external environment. By that resources are
directly encapsulated as distributed objects or correspond to devices of distributed
objects. As a result the management of process resources is excluded from the
process model and is realised by the workflow environment which runs in the
background. This workflow environment can bring information into the process
model even during run time of the process, thus, it becomes possible to interweave
modeling and enaction of process models.

In Figure 4 an example demonstrating the effect of resource tokens is given. In that
example a business process activity edit_report is modelled by a Petri net agency. It
operates on an input called abstract specifying what the report should be about. The
result of the activity, of course, is the report that has to be edited. Beside the activity
its input and its output an interface place called editor_licences is introduced. This
interface place models that for performing the edit operation an editor is needed for
which tool licences are needed. A licence for the editor is associated with a token that
is put into the interface place. The activity can only be started when at least one
licence is put into the corresponding channel. Upon firing of the agency edit_report,
i.e. upon performing the edit the licence token is read from the interface channel, it is
put back again when having finished the edit.

edit_report

report

abstract

editor_licences

process model

external
environment

Fig. 4. The concept of resource tokens [CHW97]

Now, let us assume that the company has, say, three licences for the editor.
Furthermore let us assume that in the model (resp. in different process models) more
than three activities are defined the performance of which needs an editor. Each of the
four editing activities, of course, is connected to an interface place associated with
editor licence tokens. In this case three edit activities can start, the fourth one would
be prohibited from starting since its resource place would own no licence token for an
editor. Its execution would be delayed until the termination of one of the other three
editing activities. However, the amount of resources (in this example the editor
licences) is managed outside the process model. If the company would decide, for
example, to buy 5 more licences the external environment would create the resp.
number of token and would induce them into the resource place. By that resource
places act as interface between external environment and process model.

Information Gathering and Process Modeling in a Petri Net Based Approach 281

The concept can be exploited further on for a dynamic process model modification at
run time of the business process. If we consider the notion of resources that is
associated with the resource places in a broad sense regarding process models as one
kind of resource it becomes possible to identify complete process models by resource
tokens. Now, if we associate refined agencies with resource places the token in the
resource place identifies the subnet to be executed when performing the refined
agency. By that it becomes possible to model different nets at process model build
time each of which is a candidate refinement for the refined agency (of course, the
nets have to be semantically correct refinements. For further details see [CHW97]).
This is graphically depicted in Figure 5. In that figure we have modelled a refined
agency a1 and three possible refinements ref1 to ref3. Which of the possible
refinements is to be executed when starting a1 is addressed by the token in the
resource place for a1. The content of this token has not to be defined at build time but
is put into the resource place at run time by the workflow environment prior to the
execution of a1. Even the set of refinement candidates has not necessarily to be
specified during model build time. New nets being potential refinement candidates
can be added up to that point in time when the binding of refined agency and refining
subnet is made by the resource token. By that it becomes possible to change and
extend a process model even during run time of the process that has been instantiated
from the model.

a1

output_from_a1input_for_a1

resource_place_for_a1

. . .refinement ref1
refinement ref2 refinement ref3

potential binding of refined agency and refinement ref_i by ressource token

Fig. 5. Dynamically binding process model parts using the concept of resource tokens

4 Information Gathering for Building Process Model

In section 2 we have addressed major problems we were faced with when applying a
Petri net language in practical industrial projects. In the last section we have
addressed the issue of modeling semi-structured business process parts. In this
section the second problem namely the one of gathering the information to be put into
process models should be addressed. We were faced with the problem when sing our
Petri net approach. However, the problem also occurs when other modeling
approaches are applied.

282 W. Deiters

Usually it is the goal of a process management project to improve and to support
processes that are already being carried out in practice. However, only in rare cases
processes are completely to be defined from anew. In most cases these processes have
been carried out implicitly so far, i.e. the persons involved in the process knew their
job (that means, they had in mind what to do) but no (complete) explicit description
of the processes existed so far. Thus, for building process models all relevant
information concerning the processes has to be acquired first. Based on this
information a first model describing the “as-is” situation is build that is subject for
analysis, improvement and enaction, then.

This acquisition of information is done in the information gathering phase indicated in
the lifecycle that has been introduced in section 2 (cp. Figure 1). However in projects
that we have carried out collecting information concerning the processes showed to be
a complicated process itself due to the following issues:

• Process information is distributed among different information resources

When collecting information about the processes to model it shows that usually the
information about the processes is not concentrated in one information source but
rather is distributed among different information sources of different type. Among
information sources are written materials e.g. handbooks of tools that are being
used in the process so far, partial process descriptions that have been made so far
(e.g. rule sets for handling certain activities, mission statements for certain
processes, quality management documentation (e.g. ISO 9000), etc.). However
most information about the processes is available in the minds of the persons
performing the processes that are to be supported.

In order to capture this information different gathering techniques have to be
adopted. Among these techniques are document analysis, observation and inquiry.
Document analysis means collecting and studying the written material available
about the processes and to mark the information relevant for building a process
model. Observation means that the process modeller joins the process noting what
people do in the process and how they do their job. The results are specified in
observation protocols, then. Inquiry means asking people about the information
they have about the process. This can take place by interviews (face to face or
using telephone), workshops, questionnaires etc. As a result of applying these
information gathering techniques different documents (questionnaires, protocols,
interview traces) exist the content of which has to be structured and put together to
yield a process model.

• Process information has to be collected, structured and consolidated

Industrial processes are quite often very complex, consisting of hundreds of
activities, documents, persons involved, and tools that are used by the persons. For
those processes the relevant information cannot be collected in one step. For
complex processes it becomes necessary to start with an abstract process
description identifying the processes’ scope and to refine the abstract description in
a next step. One reason for doing so is that different persons usually have different

Information Gathering and Process Modeling in a Petri Net Based Approach 283

type of information. Quite often managers know the processes on an abstract level,
and, know the interrelation of process parts while the persons that work in the
processes know the process details (e.g. how to perform activities, know why
activities are performed in a certain sequence and so on).

Since, additionally, organisations that are involved in the processes are quite often
dispersed over different geographical locations it becomes impossible to bring all
relevant persons together at one point in time for information gathering since (1)
the relevant persons work at different places, and (2) bringing all persons together
would result in workshops the size of which would lead to unproductive work and
the resulting information would be too complex and unstructured to be useful.
Thus, information gathering has to be performed in several steps, for example,
starting with an initial workshop where the managers are interviewed about the
process scope and the abstract process steps, followed by detailed interviews
among the process experts, a review workshop after a first information integration,
followed by a interviews for refining and completing the information set, etc. For
this it becomes necessary to collect information, integrate different information
sources, to mark information as being relevant or irrelevant and consistent or
inconsistent, to delete unnecessary information, etc.

Doing so the organisational knowledge (i.e. the information of all persons of an
organisation) about the processes is captured. Since for real-life processes this
information can become very large an organisational memory information system is
needed for managing this information. In this context we understand an organisational
memory information system (OMIS) as “an enterprise-internal application
independent information and assistant system. It stores large amounts of data,
information and knowledge from different sources of an enterprise. These are
represented in various forms, such as databases, documents and formal knowledge-
bases. The OMIS will be permanently extended to keep it up-to-date and can be
accessed enterprise-wide through an appropriate network infrastructure” [KA98]

For the scope of achieving the goals of information gathering sketched above an
OMIS has to fulfil the following requirements:

1. storage of information objects of different type such as text, audio, video graphics

The different information gathering techniques addressed above result in different
information objects such as, for example, hand-written protocols, audio tape traces
of interviews, videos from process observations. These information objects have to
be stored in the OMIS, it has to be possible to structure this information, to indicate
relevant information areas in the objects, and to associate the information with
appropriate meta information (e.g. date of gathering, author).

2. associations between different information objects

It must be possible to associate information objects with each other for relating
information objects that give information about the same process entities (e.g. a

284 W. Deiters

workshop protocol where a process activity is noted with an interview giving
details about that activity). These associations have to be attributed in order to give
certain semantics to the associations between the information objects that are
linked to each others via this associations. By that it can, for example, be expressed
that an object is needed for an activity (if an association is made between an
information describing an activity and another one describing a document), that an
activity is predecessor of another one (two information objects each one describing
an activity), consistency or inconsistency of information can be denoted (two
information objects describing the same entity), etc.

3. retrieval of information

Having stored the information objects the OMIS needs to support different kinds
of information inquiry. We distinguish between passive and active information
supply, depending on whether the user selects the information (passive supply
means the OMIS is passive) or whether the OMIS selects information and
provides it to the user (active supply).
In case of a passive information supply a query interface as well as a navigation
interface for information retrieval is needed. With the query interface the user can
retrieve information by issuing queries like “give me all information about all
process activities in a certain process step”. The navigation interface allows to
browse through the OMIS visiting information objects along the associations
between the objects.
In case of an active information provision the user gets information upon the
occurrence of certain events he can specify. For example, if he specifies that he
wants to be informed if new (or inconsistent) information concerning a certain
process entity is put into the OMIS the system monitors this event and notifies
the user upon its occurrence.

4. access rights for the OMIS

In order to achieve an acceptance of the OMIS among the participants of the
organisation a dedicated access right system is needed. For example, in some cases
process participants will not give all detail information how they behave in the
process depending on the fact whether their superior or certain colleges get this
information either. Thus, for each information object it must be possible to specify
which person is allowed to view or to change the information.

Based on this requirements an OMIS called PRINCE (PRocess INformation CEnter,
[Kuhl99]) has been designed and implemented. This systems allows to store different
kinds of multimedia objects. Since the information objects usually give information
about different process entities (consider e.g. a workshop protocol where all activities
of a certain process step are listed) it is possible to structure the information objects in
different information areas. The definition of information areas depends on the type
of multimedia object (e.g. areas on a photo or a hand-written note, time slots in an
audio or video document). Within one information area only information about one
process entity is given (see below).

Information Gathering and Process Modeling in a Petri Net Based Approach 285

The information about the different process entities is structured according to the
different entity types (e.g. activities, documents, roles, tools) of the process
management approach. An illustration of this is given in Figure 6. In this Figure an
information document giving a hand written workshop protocol is shown (part A of
the screendump). Two information areas one for a process document “Rollkarte”
another one for a process activity “Termingut_Bearbeitung” are defined. For these
process entities instances are created (see for example the highlighted entry in part B
of the screendump which gives an structured overview about all process entity
instances for which information is available). Part C of the screendump shows some
metainformation about the information object.

Fig. 6. Bringing information into the organizational memory Prince

PRINCE allows to retrieve information according to the requirements given above.
The user can issue queries for obtaining certain information (e.g. all information that
is inconsistent) or he can navigate through the graph of linked information objects
given by the associations between information objects. In Figure 7 a screendump
showing how to browse through the information graph is illustrated. In that figure an
object called interview_protocol is selected. Association to five other objects exist.
The user now either can open the document or he can select one of the associated
ones. In this case this object becomes the selected one (i.e. moves to be the centred

Part A

Part C

Part B

286 W. Deiters

one) and all associations to this information object are shown. Furthermore, the user
obtains information by defining so called knowledge abonements specifying upon
which events he wants to become informed actively by the OMIS.

Fig. 7. Browsing through information objects in PRINCE

PRINCE has been implemented in JAVA as a Web-based application. One reason for
doing so was the goal to achieve a portable system that can be used at different user
places during the information gathering phase.

5 Summary

Within this paper we have discussed experiences that we have gained when managing
business processes in practice based on a Petri net language paradigm. In general Petri
nets have been shown a useful approach leading to graphical process descriptions that
can be understood by end users from various application domains including users
without a deep technical background. Furthermore Petri nets are a means for a process
analysis aiming at problem detection and process improvement, and, they can be used
for process enaction.

Information Gathering and Process Modeling in a Petri Net Based Approach 287

Problems we have been faced with consider the handling of exceptional process cases
(for which we have introduced the concept of process transactions), the management
of semi-structured processes and the gathering of information to be put into the
process models. For handling semi-structured processes one approach is to define new
language constructs (like it has been done, for example, in the HOON approach),
another one is to integrate different types of systems (like workflow, groupware,
document management). In order to manage the amount of information to be
described in a process model organizational memory information systems can be
used. In this paper we have described a system called PRINCE that allows to collect,
structure and consolidate information objects that have been obtained applying
different techniques (document analysis observation, investigation) during the process
analysis phase. One next step of our work will be to generate process skeletons (i.e.
Petri net skeletons) from the structured collection of information objects in PRINCE
and to build up a bidirectional link between information objects in PRINCE with the
corresponding process model objects (agencies and channels of Petri nets).

References

[AME98] v.d.Aalst W., Michelis G., Ellis C.: Workflow-Management: Net based concepts,
models, techniques and tools (WFM98), UNINOVA, Lisboa, June 1998

[CHW97] Claßen I., Han Y., Weber H.: Towards Evolutionary and Adaptive Workflow
Systems - Infrastructure Support Based on Higher Order Object Nets, in: Proc. Of the First
Int. Enterprise Distributed Object Computing Workshop, EDOC 97, Gold Coast,
Queensland, Australia, October 1997

[DG94] Deiters W., Gruhn V.: The FUNSOFT Net Approach to Software Process
Management, Int. Journal on Software Engineering and Knowledge Engineering, Vol. 4,
No. 2, June 1994

[DG98] Deiters W., Gruhn V.: Process management in practice - applying the FUNSOFT net
approach to large scale processes, Automated Software Engineering, Vol. 5, Kluwer
Academic Publishers, Dordrecht, NL, 1998

[DGW95] Deiters W., Gruhn V., Weber H.: Software Process Evolution in MELMAC, in: The
Impact of CASE on the Software Development Life Cycle, World Scientific Publishing,
Singapore, 1995

[DHLS96] Deiters W., Herrmann T., Löffeler T., Striemer R.: Identification, classification and
support of semi-structured processes in process based telecooperation systems (in German),
in: H. Krcmar, H. Lewe (eds.) Proc. DCSCW: Herausforderung Telekooperation, Springer,
Berlin, 1996

[DLS99] Deiters W., Löffeler T., Striemer R.: Applying Workflow Management Technology
To-Semi Structured Business Processes, in: C.M. Khoongh (ed.) Reengineering in Action -
The Quest for World Class Excellence, World Scientific Publishing, Singapore, Spring 1999

[FS95] Ferstl O., Sinz E.J.: Der Ansatz des semantischen Objektmodells zur Modellierung von
Geschäftsprozesses, Wirtschaftsinformatik, Nr. 3, 1995

288 W. Deiters

[HHSW96] Han Y, Himmighöfer J., Schaaf T., Wikarski D.: Management of Workflow
Ressources to Support Adaptability and System Evolution, in: Wolf M., Reimers U.:
Workshop on Adaptive Workflows, Proc. of the 1st. Int. Conf. on Practicals Aspects of
Knowledge Management, Vol. 1, 1996

 [Herr95] Herrmann T.: Workflow Management Systems: Ensuring Organisational Flexibility
by Possibilities of Adaptation and Negotiation, Conf. on Organisational Computing Systems
(COOCS), ACM Press, New York, 1995

[IBM94] IBM: IBM FlowMark Programming Guide, Version 2.1, International Business
Machines Corporation, 1995

[JB96] Jablonski S., Bussler C.: Workflow Management. Modeling Concepts, Architecture and
Implementation, International Thomson, London, 1996

[KA98] Kühn O., Abecker A.: Corporate Memories for Knowledge Management in Industrial
Practice: Prospects and Challenges, in: Borghoff U., Pareshi R. (eds.): Information
Technology for Knowledge Management, Springer, Berlin, New York, Heidelberg, 1998

[Kuhl99] Kuhlmann A.: Entwurf und Einsatz eines Organisational Memories im Rahmen des
Geschäftsprozeßmanagements (in German), Diploma Thesis, University of Dortmund,
Dortmund, March 1999

[LSD98] Löffeler T., Striemer R., Deiters W.: A Framework for Identification, Classification
and IT Support for Semi-Structured Business Processes, World Multiconference on
Systemantics, Cybernetics and Informatics (SCI97), Caracas, Venezuela, July 1997, also:
Knowledge and Process Management, Vol. 5, Issue 1, Wiley and Sons, London, April 1998

[MMFF92] Medina-Mora R., Winograd T., Flores R.: The action workflow approach to
workflow management technology, Proc. of the 1992 Conf. on Computer Supported
Cooperative Work, Toronto, ACM Press, 1992

[Ober96] Oberweis A.: Modellierung und Ausführung von Workflows mit Petri-Netzen (in
German), Teubner, Stuttgart, 1996

[Oest95] Österle H.: Business Engineering - Prozeß und Systementwicklung (in German),
Berlin, Springer 1995

[SDL96] Schiprowski R., Deiters W., Lindert F.: A transaction concept for FUNSOFT nets ,
in: Jablonski S., Groiss H., Kaschek R., Liebhart W. (eds.): Geschäftsprozeßmodellierung
und Workflow-Systeme, Proc Informatik 96, Vol. 2, Klagenfurt 1996

[WfMC95] The Workflow Management Coalition, Workgroup 1a: The Workflow Reference
Model, WFMC WG01-1000, February 1995

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 289-300, 2000
 Springer-Verlag Berlin Heidelberg 2000

Why Modellers Wreck Workflow Innovations

Stef M.M. Joosten

Open University Netherlands
Dept. of Computer Science

P.O. Box 2960
6401 DL Heerlen
stef.joosten@ou.nl

also:
Anaxagoras Process Architects

Hengelosestraat 511
7521 AG Enschede

joosten@anaxagoras.com

Abstract. Why did ten modelers spend over a year mapping and charting
business processes, and why did the workflow project still fail? Questions like
this form the mortar that builds the nightmares of business managers into a
brick wall that blocks successful innovations. In this chapter we discuss an
approach that has demonstrated to innovate processes successfully by avoiding
known pitfalls and risks. We focus on the practical questions, such as:
• how can you tell in advance whether a model will help?
• in which situations do users benefit from your models, and what can you

do about it?
• when is it useful to use your workflow model for documentation purposes?
• spend plenty of time to find out how to achieve your innovation goals with

the help of business process models, but don't spend a long time choosing
your modelling technique.

Available evidence suggests that not the modeling techniques as such are to
blame, but the way of working that modelers employ in practice. On the
experience gathered in workflow projects, carried out in the financial and
government sectors, we have built a framework for business process
innovations that puts modeling in perspective and has shown to achieve results
for the business.

1 Introduction

If a process innovation changes the way people work (i.e. the business process), then
many workflow projects of the past cannot be characterized as a process innovation.
A recent survey by Anaxagoras1 among business managers showed that more than
half of all workflow projects fail to contribute to business process innovation.. 84% of
successful workflow projects in practice result in an information system that
integrates a number of different application components, without affecting the
structure of the work processed on the shop floor. Of 14 workflow projects that
existed two years ago, 9 were never heard of anymore. So why is it that workflow
projects fail? And how does process modeling prevent failure? In an attempt to
answer these questions, we have identified risk factors that threaten the success of a

1 Anaxagoras Process Architects is a Dutch consulting firm, led by the author, that specializes

in process innovations for banks and insurance companies.

290 S.M.M. Joosten

business process innovation2. After a validation, these risk factors were used to design
a project approach, based on the assumption that the safest route to success avoids all
known pitfalls.

A business process innovation differs from an information system innovation. If an
organization changes the way of doing business, i.e. changes its own way of working,
we call it a business process innovation. An information system innovation introduces
new technology, limiting the changes to the introduction of new. A business process
innovation is meant to innovate value chains in which an organization participates.
Only if an organization is prepared to change its ways of doing business, we have a
business process innovation. An insurance company entering in electronic commerce
on the Web, coming from a sales organization based on intermediaries, is clearly
innovating its business processes. But if the changes in the way of working are limited
to absorb the effects of implementing new information systems, we call it an
information system innovation. Process innovations do not typically question an
organization's strategy, but use strategy as a given starting point.
Early expectations that workflow management was sufficient to bring the business
and technology together have not materialized. The naive view that process architects
build process models have pushed the topic into the technology side of the innovation.
Analysis of the problems shows that ignorance in user communities, showing up in
the form of paradigm misconceptions and unsubstantiated prejudices, is a major
cause. This is both good news and bad news. The good news is that ignorance will
resolve as time proceeds. The bad news is that it has limited the impact of workflow
management mainly to information and communication technology.

The same analysis has led to the identification of risk factors involved in business
process innovations. This has produced a practical instrument to assess innovation
projects, which managers in large financial businesses have used during the initial
decision taking process.
Indeed, in some project plans process architects are scheduled to do nothing but the
modeling of business processes, as though window dressing is needed to make an
information system innovation look like a process innovation. Apparently, process
modeling is seen as the core skill of process innovation.

There are many reasons that explain the slow rate of adoption of workflow
technology. These reasons vary in nature: there are technological issues,
methodological issues, commercial issues, lack of knowledge in user communities,
and innovation issues. In order to achieve operational results in a given situation, a
project manager can influence only some of those issues. There is little a practitioner
can do about technological, methodological, and commercial issues. The issues that
can be influenced from within a project form the basis on which Anaxagoras has
developed the rainbow approach. It is developed for rapid, robust and reliable
business process innovations. It allows us to focus on the things we can influence, for
a large part involving innovation issues and educating user communities. Built to
avoid known risks, the method has been and is still being used successfully in
practical business process innovations.

2 An excerpt of our risk analysis can be found on www.anaxagoras.com, which is meant to

give practitioners a superficial scan of their projects for free, without spending more than 30
minutes of their time.

Why Modellers Wreck Workflow Innovations 291

Definitions

Throughout this paper we use the terms business process, value chain, procedure,
workflow, task, activity, innovation project in specific meanings, as defined in this
section. The definitions are designed to match the most common use of terms, as
identified both in practice and in the literature. The terms can therefore be used in the
normal stream of a conversation, without thinking about the definitions all the time.

In a business process we distinguish five different levels of abstraction: the value
chain, the procedures, the tasks, the services and the data. In the architectural
thinking, a ICT architecture typically covers the latter three levels whereas a process
architecture typically covers the former three levels. Overlap exists on the task level.

D atab ase m o de l
T ransactio n m od els

cu sto m er f ilesda ta

serv ices

ac tiv i-
ties

p ro cedu res
W ork flo w
M anagem en t
E R P

F orm s m an ag em en t
C ase m an ag em en t
U ser in te rface m od el

C o m pon en t m od el
serv ice o r a rch itec tu re

ap p ly fo r
m ortgage ,
ap p ro va l

m ak e d ra ft
co n trac t

ve rify
cred itw o rth in essIC T

A rch

P roc
A rch

va lu e
ch ain

B a lanced S co re C ard
M u lt ichann eling

m ortgages

leve l ty pe o f
m od el

ex am p le

Fig. 1. ICT architecture vs. process architecture with related models

A value chain is a collection of activities that contribute directly to an operational
goal of a business. This corresponds to the notion of supply chain, which is the
integration of business processes from end-user through original suppliers that
provides products, services, and information that add value to a customer” (see for

292 S.M.M. Joosten

example Mintzberg 83, Hammer 93). For instance, the activity of registering a new
mortgage contract contributes directly to the goal of selling an X amount of new
mortgages in the current year, so for that reason it belongs to the mortgage
sales&handling process. On the level of value chain, models such as business score
card are relevant in discussions among the people who are responsible for the running
the business as a whole (typically the upper management).

At the procedure level, we use procedural models to identify for example how work is
routed in a business process. A procedure is a collection of activities, rules that
govern the order of events in those activities, and rules that identify the
responsibilities of people involved, all of which belong together for the sake of
realizing a specific commitment among the stakeholders in the context of a business
process. For example, the procedure for approving a mortgage loan involves an
account manager who is responsible for identifying the loan, the creditworthiness of
the debtor, the securities involved and the risks. It may also involve the advice of a
loan assessor and a decision made in a loan approval committee. The entire procedure
fulfills a commitment of the bank and the prospect to identify all relevant information
and take every necessary action to make a timely decision. Wherever we use the term
workflow management, we mean to identify the support of procedures in a business
process by means of computer systems that coordinate the work of people with
respect to temporal order on the basis of a procedural model. For example, systems
based on Staffware, MQ-workflow, COSA, and Action-Workflow are workflow

Table 1. Example of workflow tools

 tool company

workflow management system:

Staffware Staffware

MQSeries Workflow IBM

COSA Cosa Solutions BV

Action-Workflow Action Technologies, Inc.

workflow management without
process model:
Lotus-Notes Lotus

LinkWorks Digital

case management :

FlowER Pallas Athena BV

Vectus Hatton Blue

Activity Manager

systems according to this definition. Systems such as Lotus-Notes and LinkWorks are
not covered in this definition, because the process logic is not brought together into
one coherent model, but it is distributed over various pieces of application code.
On the activity level, a model defines for example that drafting a mortgage contract
involves a text template, a standard assessment of the customer coming from a credit
approval application, a check by the assessor of the execution value of the mortgage

Why Modellers Wreck Workflow Innovations 293

object, etc. Technically, an activity is an amount of work that can be performed in an
uninterrupted span of time under responsibility of a single actor. Drafting a contract
for a newly sold mortgage is an example of an activity, to be performed for instance
by a mortgage clerk. Activity models are used to generate user interfaces that suit the
needs of a specific user who has a specific role in the procedure. Such technology is
known as "case management tools", such as FlowER, Vectus, and Activity Manager.

On the service level, software components are available that offer services. Nowadays
we draw up a model for the service architecture. In a corporate infrastructure, a set of
services is made available through the network. Functions such as "print", "run a
commercial analysis on this client", "send a confirmation" are examples that are
typically implemented as services available to many users. These services are
implemented on a layer in which all corporate data persists, usually implemented by
means of database systems.

On lower levels we rely on conventional models, such as data modelling and dataflow
modelling. CASE tool are developed to a stage in which large parts of the
implementations are generated from these models, which avoids mistakes and
accellerates the development process.

2 Ignorance, Modeling and Perceived Complexity

If workflow management technology promises to make business processes more
flexible, more profitable, and of better quality, how come there are so few
organizations able to use this technology successfully? In this section we explore
some of the reasons that workflow management has not yet delivered on its promises.
The idea of translating these reasons to project risks, has led us to develop the
“rainbow approach” for conducting projects that innovate business processes. This
model was developed within Anaxagoras Process Architects, a Netherlands based
research company which employs scientific methods to make new technology deliver
on business goals.

A careful analysis of workflow projects and business process innovations shows
ignorance as the main cause of failure. Technological problems alone rarely cause a
project-abortion. If a workflow project is staffed by experienced, knowledgable
personnel and competent project management, the project stands a fair chance of
achieving its technological goals. Most problems occur when the technology is
implemented in the organization, because at that moment the organization has to
implement their newly designed ways of working. If the organization appears to be
unwilling to change its ways, the business process innovation degenerates to an
information system innovation.

Ignorance induces complexity. If an organization is unsure about the approach, a
typical solution is to assemble a task force to sort it out. If that task force produces
reports at a generic level of abstraction, everyone in the organization realizes that
something more must be done. An organization that is aware of its lack of knowledge
can prevent such scenarios by hiring the appropriate knowledge. An experienced

294 S.M.M. Joosten

facilitator points out the simplicity of a process, motivates people to do the right thing
and prevents endless discussions that do not contribute to results. Provided with the
right skills and appropriate experience, an organization needs a year or less to
implement an entirely new strategy in an existing situation.

Models do not help to resolve ignorance, but the activity modeling does. For every
model we make, irrespective of the type of model (see Figure 1) we try to involve the
right people in drawing these models. In a situation where an organization has models
readily available, we involve people by scrutinizing the available models. Available
models cannot always be understood by the people who will assume responsibility for
the effects of those models. If they are to understand the consequences of these
models, there is no alternative than to go through a modeling activity with them. In
fact, drafting a suitable model appears to be a very effective way to learn about the
aspects represented in the model. If "learning by modeling" is facilitated by an
experienced consultant, it can also be done in a matter of days (sometimes hours)
rather than months.

Practice still suffers from ignorance, though. Last year, october 1998, an insurance
company sent us the report of a business analysis, asking whether we could make a
concrete proposal to implement the advice given in the report. The report, in which
the word workflow occurred 137 times, was being used as a call to tender. Upon
closer inspection the insurance company wanted to implement a call center. A
workflow engine was projected to control the user interface. All of the functionality,
such as registering a damage claim, had to be taken from existing systems, linked to
the workflow layer through user dialogue emulation. In terms of Figure 1, the
proposal covered the bottom three layers. To use events that occur in the call center
for triggering activities elsewhere, which is the basic idea of workflow technology,
was notably absent in the report. After reading the report, we concluded that this was
a call-center information system rather than a workflow application. The explicit
statement that the organization was not willing to reflect on (and change) its way of
working, meant that this was not a business process innovation, but a technological
innovation.

Tool vendors provide tools and system integrators build the applications, but in the
practice of process innovations users are very much on their own to achieve their
business goals. An executive at an investment bank felt cheated, even though he got
everything that was sold to him: “They promised we could acquire new business with
their tools, they implemented the software and left us behind telling us that we can
now acquire the new business”. Recent research, jointly conducted by the Department
of Finance and Anaxagoras Process Architects, confirms that vendors of process tools
provide little support in the innovation process, whereas users also expect assistance
in working more effectively with those tools ([2]).

3 Innovation Risks

Of all workflow projects conducted in the Netherlands, we estimate that 80% is not a
business process innovation, because the related changes in the ways of working are

Why Modellers Wreck Workflow Innovations 295

limited to absorbing the effects of using different technology. Projects that are labeled
process innovation are mostly front-office renovations or implementations of an
electronic archive. In cases where workflow systems are implemented and exposed to
daily use, many tools show an immature nature. In one case, bank employees would
interpret the status “ready” as a sign not to touch that activity. After all, the computer
says it’s ready! The intended meaning, however, is that the computer is ready and it is
the user’s turn to act. A tool that contains several of such issues irritates end users to a
point where it wrecks an otherwise sound process innovation, because end users need
to do banking rather than wrestle with the idiosyncrasies of tools. Yet, the technology
is not the worst risk factor in workflow projects. Some failures can be predicted on
the basis of the innovation plan, and are therefore avoidable. Plans have to be
carefully crafted to the situation, for the very reason that an organization is prepared
to change its working procedures as well as adopt new technology. An approach that
works for mortgage sales and handling processes in a cooperative bank may fail
radically in a centrally governed bank, even if the mortgage processes of both banks
are similar.

By content analysis of twenty different workflow projects, we have developed a set of
questions that identify project risks. This set is intended for use during the
development of an innovation project plan. The approach has been designed from
known and documented failure factors for workflow management innovations.

Our questionnaire is designed by identifying various risk categories, and formulating
a few questions that characterize the risk of that category. Thus, we get a fairly
complete coverage with approximately 50 questions. Every risk category bears a
message for one of the seven infrastructures (Table 2). Notice that the matrix
identifies few risks in the technical and information infrastructures. This corresponds
to the experience of many workflow experts that the success of workflow projects
usually depends on the way in which the business adopts the innovation.

The questionnaire starts with some questions about the Organization. In some types
of organization (e.g. government) business process innovations are more difficult to
bring to a successful end than in others (e.g. insurances). The category Environment
observes the strategy of an organization and how process innovation fits into that
strategy. Commitment is important, because a process innovation typically takes more
time and effort than an information system innovation. Especially the commitment at
higher management levels needs to be given in terms of action (e.g. allocation of
budgets) and not just words. The category Awareness questions how familiar an
organization is with process thinking. If "process speak" is all over the place, but
people seem to be occupied mostly with ways to get their own work off their own
desks, the awareness is questionable. The Preliminary investigation is a risk factor if
it does not identify clear business goals (rather than technical goals), if it does not
demarcate the scope of the innovations and of the processes to be innovated clearly.

296 S.M.M. Joosten

Table 2.

Similarly the Project definition can be a risk, which covers the standard set of risks
that are valid in all projects. Then we ask questions about how the Project
management is arranged. As long as there are projects that suffer from flawed project
management, this risk factor remains important. The Complexity of the innovation is
estimated according to the size of the organization, the scope of the innovation and
the ambitions to be achieved. Questions about allocation of people and funding are
asked in the category Means. Similarly, the skills of the Project team is one risk that
requires questions. The flexibility to absorb changes is assessed in the Adaptivity of
an organization, which depends mostly on people's attitudes. Neglecting to use
available Standards, if applicable, is seen as a risk too. Information on the
involvement of users in defining the User interface appears to deliver valuable
information on possible project risks. The level of automation and the familiarity of
people with the use of information technology comes in the category Automation. The
issues Hardware and Software are treated similarly. In order to assess whether the
organization can guarantee the continuity of the innovation, questions are included
about System management.

Why Modellers Wreck Workflow Innovations 297

Fig. 2. Seven infrastructures in the rainbow

Social infrastructure

Quality infrastructure

Support infrastructure

Business infrastructure

Information infrastructure

Technical infrastructure

Innovation infrastructure

4 The Rainbow Approach

At Anaxagoras, we have developed and successfully applied an approach to
implement business process innovations. Project experience shows that this approach
eliminates a number of significant risks, accellerating the speed of innovation and
enhancing the results of workflow projects in the business.

A plethora of relevant aspects in business process innovations require a systematic
approach of the innovation project. In practice, one is organizing the conversion of
scores of dossiers using cheap labor to scan documents, one is reporting to his
management and helping it to decide about starting and stopping subprojects, one is
busy motivating automation personnel to visit the shop floor, to link workflow
systems with existing system, one has to negotiate with vendors, provide instruction
and education, coach and monitor software construction, etcetera. This work is what
we call process architecture. If an organization wants to adopt different working
practices, the innovation gets too complex to do without a systematic approach. In
order to maintain an overview over such innovations, we distinguish seven areas of
interest, or infrastructures if you will.

The premises of this approach are:
1. robust innovation by adopting a risk oriented approach
2. fast innovation by smart distribution of project activities over the organization
3. management in control by plotting a decision trajectory in advance
4. user commitment by careful use of involvement techniques
5. design for continuity in the business rather than design for roll-out
6. integral approach with lightweight activities.

298 S.M.M. Joosten

The rainbow houses every project activity in one of the infrastructures, and each
infrastructure is populated differently. The innovation infrastructure is the domain of
decision makers, project management, and others who bear responsibility for the
innovation. It contains project activities such as the making of the project plan and the
continuous monitoring of progress. The technical infrastructure contains project
activitiess related to the basic machinery such as hardware, network and operating
systems. The selection of appropriate scanners, network performance prediction, and
supplying laptops to account managers who need to work "on the road" are examples
of project activities in the technical infrastructure. The information infrastructure is
designed by ICT specialists, who define the information technology necessary for a
successful innovation. Development of software components, linking a workflow
engine to the credit management database, installing a case management tool, and
configuring the activity structure and process structure for automated support
exemplify the information infrastructure. The business infrastructure contains the
process innovations of primary processes. Redesigning the work structure in the sales
department of business credits is typically performed in this infrastructure, staffed
mainly by people from that department and facilitated by process architects if the
required knowledge is lacking. Project activities in the business infrastructure are
always run by people from the core business, because they will have to take mental
ownership of the results of the innovation. The support infrastructure contains project
activities meant to maintain the results of the innovation. Support and maintenance
staff will run these activities, focusing on the continuity of the innovation's benefits.
They define procedures for introducing and changing automated procedures, erect a
competence center, and generally do anything to ensure a permanent effect. The
quality infrastructure is needed to guarantee the required standards and to minimize
business risks. For example, they must sign off on any automated procedure before it
becomes fully operational. Controllers, auditors, and quality staff are most likely to
populate this infrastructure. The social infrastructure contains all project activities
that relate to human aspects, such as communication and education. Some of the
largest project risks originate from this domain, such as effective communication
about the innovation sufficiently early and with the right people in the organization.

5 Results

The rainbow approach has been used in several projects in several different ways.
One of them was a smaller bank with approximately 200 staff and $1bn total balance.
We were invited in December 1997. The bank had decided to increase customer
orientation and reduce cost simultaneously, by doing business in a process oriented
way. The rainbow approach was attractive because it minimizes the risk of
innovation. After all, banks are primarily interested in providing a reliable financial
service to customers on the basis of trust. Innovation may jeopardize the trust
relationship with customers. In this situation, the rainbow approach has shown to limit
the risks of the innovation.

When we drew the innovation plan as a whole the ambition was to cover all activities
of the bank, but in a step-by-step fashion. Together with the bank, we defined results
that had to be implemented in the short term: introduction of an electronic archive for

Why Modellers Wreck Workflow Innovations 299

all customer related documents (600000) and implementation of business processes in
the mortgages segment and industrial finance segment. These steps were small
enough for reliable estimation of cost and benefit, but large enough to return on their
separate investments. If the total impact cannot be predicted at the start, the stepwise
approach provides the required assurance in an organization not sufficiently familiar
with business processes, workflow management, and document management. The
rainbow approach requires that each project activity is budgeted and accounted for
separately, enabling the steering committee to make separate decisions on each of the
partial projects. By the end of the summer in 1998, the electronic archive was
operational and most of the customer files were available electronically. By that time,
the workflow engine was running the industrial finance processes. At the same time, it
became clear that the higher management of the bank would change. The new
management adopted a strategy of internally reorganizing rather than increasing the
commercial power. The rainbow approach allowed the bank to wrap up the ongoing
project activities and reap their benefits, since they were designed to return on their
own investments. The approach helps to limit loss of investments due to changes in
policy.

Momentarily, the rainbow approach is being used in different banks and insurance
companies as a means to make process innovations more controllable and to minimize
the risks involved in innovations.

6 Conclusion

We have found that the act of modeling is more important than the resulting models.
This can explain for example why discussions over the choice of an appropriate
modeling technique have in the past not always contributed to the progress of a
project. Our findings suggest that the way of working of modelers influences the
success of a project much more than the choice of a modeling technique.

The rainbow approach has shown to avoid many of the known pitfalls in business
process innovations. Consequently, we are using and refining the method further.

A model can represent the shared understanding by a group of people. Especially if
those people have collectively contributed to the model, scrutinized it or used it as
part of familiarizing themselves with current procedures, the model "does its job".

The choice of a modeling technique should depend only on which aspects are relevant
for achieving the project goals. For example, a discussion around administrative
procedures should not be conducted on the basis of a data model or a dataflow model.
because these techniques show aspects that are irrelevant in that context. A business
procedure model that lets people discuss their work will have more success in this
situation. Irrelevant models may even obscure discussions and generate a sense of
difficulty in the discussion that is harmful to the attitudes of participants.

Models help to achieve success in a business process innovation if the model
represents only relevant aspects that are necessary to know and if the activity of

300 S.M.M. Joosten

modeling has brought about the appropriate learning process with the right persons.
Shared understanding is the key to successful modeling. Having a model by itself
does not bring about this shared understanding, as any employee who flips through
the "corporate handbook of administrative procedures" will quickly realize. If the
process of modeling is essential in creating shared understanding, the modeling
technique is meant to keep discussions on the right track and avoid irrelevant
sidetracks in the process.

A workflow model represents the procedural aspect of a business process. It has
documenting value for auditors in the business, especially in financial organizations
where administrative procedures are subject to strict rules. If a workflow engine
controls an administrative procedure, adhesion to the procedure in day-to-day
operations is guaranteed because the workflow engine has no other option than to
follow the procedure as described in the workflow model. This facilitates the work of
an auditor, who will pay attention to the process model and the event logs of the
workflow engine.

References

1. Dommelen, W.D. van, Joosten, S.M.M., Mol, M.C.J. de, Zwart, H. de: Vergelijkend
onderzoek hulpmiddelen beheersing bedrijfsprocessen, EAP, Apeldoorn (1999)

2. Hammer, M., Champy, J.: Reengineering the corporation. Nicolas Brealey Publishing,
London (1993)

3. Hee, K. van, Aalst, W. van der: Workflow Management. Modellen, methoden en
systemen. Academic Service, Schoonhoven (1997)

4. Joosten, S.: De hype voorbij? Informatie, Vol. 40, December (1998) pp. 8-17
5. Joosten, S.M.M., Schipper, M.: Improving your business: Think processes. Anaxagoras,

(1997)
6. Joosten, S., Aussems, G., Duitshof, M., Huffmeijer, R., Mulder, E.: WA-1 an Empirical

Study about the Practice of Workflow Management. University of Twente, Enschede
(1994)

7. Mintzberg, H.: Structure in fives: designing effective organizations, Prentice Hall,
Englewood Cliffs (1983)

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 301-316, 2000
 Springer-Verlag Berlin Heidelberg 2000

The Effects of Workflow Systems on Organizations:
A Qualitative Study1

Peter Kueng

University of Fribourg, Institute of Informatics, 1700 Fribourg, Switzerland.
Email: peter.kueng@unifr.ch

Abstract. The introduction of new information systems has many
organizational, economic, and social effects. It is generally accepted that the
implementation of workflow systems (WFSs) cannot be seen just as a
technological activity. However, although WFSs has been an important
technology for almost a decade, there is still a lack of empirical data regarding
its effects. Therefore, the field is open to speculation. For example: while one
community believes that WFSs will disburden office workers from simple
routine tasks, another community argues that WFSs would lead to monotonous
‘chain production’. What are the main findings of the qualitative study?
Through the use of WFSs the quality of output of business processes increased:
documents became more uniform since processes were under closer control.
The implementation of WFS led to modifications in the processes; however,
business process reengineering was not carried out in any of the cases analyzed.
Additionally the study revealed that overall job satisfaction was influenced
positively. Interestingly, for the lower management WFSs led to a dis-
empowerment. From an economic point of view it may be interesting that the
use of WFSs led to a significant reduction in cycle time and an increase in
productivity. Overall it can be said that the positive effects of WFSs
outbalanced the negative effects.

1 Introduction

Today it is generally accepted that business processes are the basic unit of any
organization. Hence, managers are confronted with the question: how should the
business processes be designed and supported through information technology (IT) so
that they are most effective? In the last few years, many researchers and IT suppliers
have emphasized that workflow systems (WFS) should play an important role in the
context of business process reengineering (BPR) and business process management.
The benefits mentioned on the vendor side were mainly the following: (a) shorter
cycle time – primarily achieved through a reduction of queuing time and through
electronic communication; (b) faster and more accurate feedback regarding the state

1 A previous version of this paper was presented on the 5th European Conference on the

Evaluation of Information Technology; cf. Kueng (1998).

302 P. Kueng

of business cases; (c) better responsiveness to customers. On the other hand, more
skeptical arguments were raised by employees (the potential users of the workflow
systems) and work psychologists. They fear that workflow systems might lead to a
mechanical approach to office work where man is seen as an exchangeable resource
(like a machine) and not as a human being. Thus, jobs would become highly
specialized, fragmented and not very meaningful to the employee. A second issue has
been monitoring and violation of privacy. Since workflow systems offer capabilities
for collecting masses of information about handling of documents and electronic
transactions (e.g. who made what when, how much, in what quality) such anxiety is
understandable. Unfortunately there is very little published information regarding the
impact of workflow systems on organizational and human aspects.

In short, a ‘workflow system’ is an IT system that supports office workers with the
execution, co-ordination, and control of workflow instances. According to the
Workflow Management Coalition, a workflow system can be described as “a system
that defines, creates and manages the execution of workflows through the use of
software, running on one or more workflow engines, which is able to interpret the
process definition, interact with workflow participants and, where required, invoke
the use of IT tools and applications.” (WfMC, 1999). Therefore, a workflow system
comprises a workflow engine (sometimes referred to as workflow management
system) plus one or several applications based on the workflow engine.

Workflow systems are able to support business processes if they meet one or
several of the following criteria: the business process is clearly structured and
defined, the process is executed repeatedly or even frequently, the process involves
several organizational roles, the process requires checking and control mechanisms
that are time-consuming if done manually, input and output of the business can be
stored electronically (cf. Baresi et al. 99, p. 23).

In the beginning of the 90s, workflow systems represented – for many people – the
new approach to making white-collar work more efficient. “Computer industry
analysts tout workflow as the «technology of the 1990s» and predict that workflow
will become part of all office applications in the next decade” (Abott & Sarin, 1994,
p. 113). An analysis of the current level of deployment of workflow systems suggests
that the above statement was overly optimistic. Nevertheless, many companies are
considering support of their full or semi-structured business processes by a workflow
system. In order to decide whether the implementation of such a system would be
fruitful, empirically based results are useful. As long as it is not known how behavior
and working practices of organizations are affected through the use of workflow
systems, the field is open to speculation and it will be hard to discuss the matter
objectively. The aim of this empirical study is to provide IT managers with
information to assess the appropriateness of a workflow system in their company and
to take corrective action in order to reduce potential negative effects.

The purpose of this article is to provide an empirically based examination of the
manifold effects of workflow systems. In section 2, an overview regarding state-of-
the-art on ex-post evaluations is given. Section 3 describes the research design. In
section 4, the main findings are presented in the form of eight hypotheses. Finally, the

The Effects of Workflow Systems on Organizations: A Qualitative Study 303

chosen approach is critically reviewed in section 5 and conclusions are outlined in
section 6.

2 Ex-post Evaluations: An Overview

According to Smithson & Hirschheim (1998, p. 161), evaluations can be performed at
five different levels: (1) macro level, e.g. general impact of IT on productivity; (2)
sector level, e.g. impact of factory automation on manufacturing industry; (3) firm
level, e.g. impact of a firm’s IS on performance; (4) application level, e.g. impact of a
particular application; (5) stakeholder level, e.g. impact of IT on a certain group of
users.

From a conceptual point of view it is important to distinguish between pre-
investment and post-investment evaluation, cf. Figure 1. In the first mode, evaluation
is carried out prior to an investment (ex-ante). In the second mode, the evaluation is
performed after the investment has taken place (ex-post).

Evaluation of a
single IT system

• cross-sectional approach
• retrospective approach
• project-based approach

Evaluation of
IT systems

Pre-investment
evaluation

Post-investment
evaluation

Evaluation of a certain
type of IT system:

Figure 1. Types of IT evaluations

Pre-investment evaluations are usually executed on a project basis. In that case, prior
to an investment, the IT manager wants to identify financial benefits and business
opportunities as well as costs and potential risks of a new, particular IT system
(Willcocks & Lester, 1994). To perform pre-investment evaluations various tools
exists. Traditional, financially-based tools are for example: Return on investment
(ROI), internal rate of return (IRR), net present value (NPV). To assess non-financial

304 P. Kueng

aspects, the number of instruments is not overwhelming. One of the most popular is
the ‘value and risk analysis’, a part of the Information Economics approach proposed
by Parker & Benson (1988, pp. 177). Another useful approach – encompassing the
three dimensions project, system, and environment – has been presented by Boloix &
Robillard (1995).

Post-investment evaluations (sometimes referred to as post-implementation
reviews, PIRs) aim to examine the results achieved. The first option of a post-
investment evaluation refers to a single, particular IT system put in place by an
enterprise. The question to be answered is the following: “How effective towards goal
fulfillment was the implementation of an IT system (say Miracle V) in the company
xyz?” The second option seeks to assess a certain category of IT systems that are
being used by various enterprises. The objects of such an ex-post evaluation are all
types of computer-based information systems such as: Accounting information
systems, executive information systems, decision support systems, enterprise resource
planning systems, computer-aided software engineering tools, workflow systems, etc.
The aim of this second ex-post evaluation approach is to find ‘generally valid’ results
usable by a broader audience.

As indicated in the title of this article, the evaluation is applied to workflow
systems – a certain category of IT systems. In that context, two questions are of
primary interest: (1) “Was it beneficial to invest in workflow technology?” (2) “What
were the main effects of workflow systems encountered in enterprises already using
this technology?” In this paper, the second question is addressed.

In order to assess the effects of workflow systems ex-post, three approaches exist.
The cross-sectional approach, the retrospective approach, and the project-based
approach.
1 The cross-sectional approach involves the comparison of two groups of

enterprises, those using workflow systems and those not using workflow systems.
Therefore, two sets of enterprises are asked to rate performance regarding financial
and non-financial criteria. Higher performance ratings from WFS-applying
enterprises would stand for a positive impact of workflow systems (cf. Coupe &
Onodu, 1997, p. 16). A central element of this approach is that the performance-
relevant criteria are given in detail and cannot be determined by the interviewees.

2 The retrospective approach utilizes just a single set of enterprises, namely those
using workflow systems. In this method each questioned person compares the
organizational performance and behavior before and after the implementation of
the workflow system (cf. Coupe & Onodu, 1997, p. 16). Based on a subjective
before/after comparison, he or she should be able to identify significant effects
caused by the workflow system. In contrast to the cross-sectional method, there are
no detailed criteria given upon the before/after comparison.

3 The project-based approach is based on the assumption that the effects produced
by a workflow system are predominantly determined by the goals a company
wants to achieve. Applying this approach could mean that a set of enterprise-
specific PIRs were collected and analyzed.

The Effects of Workflow Systems on Organizations: A Qualitative Study 305

What are the main strengths and drawbacks of each approach? The cross-sectional
method employs uniform criteria for all participating enterprises. This is both an
advantage and a disadvantage. On the one hand, we get some kind of guarantee that
we are not, metaphorically speaking, comparing apples with oranges. On the other
hand, there is a genuine risk that the findings will be influenced by the interviewer
since the criteria upon which the comparison is made are given in detail. In other
words, the spectrum of potential effects is narrowed externally. Since little
information is available regarding the effects of workflow systems, the cross-sectional
approach is rather inappropriate. Is the retrospective method more suitable? A major
strength of this approach is that the ‘performance metrics’ are not pre-defined by the
investigators. It gives the informants the freedom to state aspects (‘performance
metrics’) that they regard as important. The main drawback of the retrospective
method is that it relies on the informants’ memory. Additionally, the problem of labor
turnover complicates the application. Despite these limitations, the retrospective
method was favored in our study. The project-based approach was not taken into
account since it would have been difficult to find companies that carried out
comprehensive (i.e. considering both financial and non-financial aspects) post-
implementation reviews on workflow projects. On the one hand, organizations
already using workflow systems are still not very numerous (Kueng, 1997), on the
other hand there is evidence that organizations “… continue to place low emphasis on
post-implementation audits” (Miller, 1997, p. 53).

3 Research Design

Today, organizations are seen as complex systems encompassing technical and non-
technical components. A classical and very useful view has been proposed by Leavitt
(1965). In his perspective four interacting variables come into play: task (the
production of goods and services), actors, structure (systems of communication,
authority, workflow), and – finally – technology; cf. Figure 2.

Structure

Technology

People (Actors)

Task

Figure 2. The four interacting variables in an organization (taken from Leavitt, 1965)

306 P. Kueng

As these four components are highly interactive, the introduction of new technology
"may cause changes in structure (e.g. in the communication system or decision map
of the organization), changes in actors (their numbers, skills, attitudes, and activities),
and changes in performance or even definition of tasks since some tasks may now
become feasible of accomplishment for the first time, and others may become
unnecessary."(Leavitt, 1965, p. 1145).
Essentially, this statement formed the basis of the empirical study reported here. The
research design was determined by the simple purpose of finding out what kind of
impact the use of a workflow system induces. The trilogy ‘task’, ‘structure’, and
‘people’ seemed appropriate – as it is broad and encompasses the key elements – in
order to elicit the main effects of workflow systems.

Since there are few, if any, reports that analyze the impact of workflow systems in
its broad sense, a two-phased approach was adopted. Phase 1: Based on a review of
literature, a preliminary study was carried out. The questions in mind when contacting
the informants were very broad, such as: “Did you get positive feedback from the
workflow end-user?” This initial phase helped to broaden the spectrum of effects of
workflow systems. Phase 2: Based on the findings of the preliminary study, a more
focused principal study was designed.

In the preliminary study, data was gathered through interviews and recorded by
hand-written notices. Eight people (mainly departmental managers and project
leaders) working in eight different enterprises were interviewed face-to-face or by
telephone. Each interview lasted between 30 minutes and 1 hour. The interviews were
conducted in February 1997. The interview manual was little focused and contained
questions about positive and negative experiences and effects of the workflow system
regarding organizational structures and employees’ activities and motivation. The
findings were elicited through a qualitative content analysis.

The purpose of the principal study was to gain a deeper understanding of the
changes caused by workflow systems as well as more reliable findings, i.e. better
funded hypotheses. As in the preliminary study, only enterprises applying workflow
systems in the operational state were included. Companies using workflow systems in
a pre-operational or pilot phase were not considered in the study. Thus, all enterprises
surveyed used workflow systems for more than one year. Overall, eight people
working in five different companies were interviewed. One of the five companies was
the same as in the preliminary study; the person interviewed was, however, not the
same. The face-to-face interviews were conducted from November 1997 to January
1998. It should be noted in passing that the interviewer of the preliminary study was
the author of this paper whereas the interviewer of the principal study was a student
doing his diploma work and supervised by the author. As in the preliminary study, the
interviewees were department managers and former workflow project leaders. Each
interview lasted approximately two hours and was recorded on audiotape to be
subsequently transcribed. Data analysis was done by qualitative content analysis
wherein the interviewer and the interpreter were not identical. The five enterprises
examined in the main study belong to the following industries: financial service,
energy engineering, insurance (life), insurance (life and non-life), and pension fund.

The Effects of Workflow Systems on Organizations: A Qualitative Study 307

The workflow systems utilized by the five companies were the following products:
Workflow (by CSE), Lotus Notes (by Notes), and VisualWorkFlow (by FileNet).

4 The Main Findings

The findings of the preliminary and principal studies comprise many different facets.
Selected aspects of the preliminary study were presented in Kueng (1997). This paper
presents the main findings of the overall study in the form of eight hypotheses.

Hypothesis 1: Workflow systems increase the quality of the output produced

All interviewees agreed that the overall quality of the output of the business process
increased through the support of a workflow system. As the approach of the empirical
study was mainly qualitative, it is not possible to report the quality improvement in
quantitative terms. However, there is evidence for hypothesis 1. The interviewees
reported that information processing and the documents produced both became more
uniform (at a higher level), and the potential for non-conformances declined. Using
the words of the SPC community (Juran & Gryna, 1993, p. 380), business processes
became more stable, and process variation declined. This, in turn, led to better
prediction of process behavior. Business processes supported by workflow systems
were under control (in comparison to the pre-workflow phase).

Why has the quality of the output increased? The informants mentioned three
aspects. First, the implementation of a workflow system required a clear
documentation of the processes; it would not have been possible otherwise to create
the workflow model executed by the workflow system. Therefore, the process-related
know-how (i.e. procedures and activities) was no longer the property of just a few
collaborators; it had become common property shared by many. Secondly, the main
rules regarding the execution of business processes were put into software; this led to
the effect that ‘identical’ workflow instances are treated ‘identically’. In other words,
the degree of individual interpretation declined. Thirdly, through the use of workflow
systems the flow of work has become more transparent. Each office worker (actor) is
aware of the source of the documents received and the sink (consumer) into which the
results are fed. Thus, employees are more aware of the responsibility upon them, and
they give – consciously or not – more attention to quality aspects of their work.

To exemplify the first hypothesis, four statements, collected during the interviews, are
given:
1 “The system forces people to work in a manner which has been previously defined.

The system does not permit any other manipulations.”
2 “The workflow system ensures that every working step (from A to Z) of a business

case takes place.”
3 “Without this system, I can bring four (identical) dossiers to four offices and I get

four different results.”

308 P. Kueng

4 “The processing of a certain workflow instance no longer depends on one single
person who might eventually put the needed documents in a drawer where they are
not accessible by others.”

Hypothesis 2: Workflow systems lead to modified processes

Within the business process reengineering (BPR) community there is a broad
consensus that business processes must be reengineered prior to the implementation
of IT systems, otherwise the full potential of automation cannot be realized (Hammer
& Champy, 1993). There is also an accord that workflow systems are mainly useful
for structured procedural processes. This raises the question of whether the companies
have redesigned the dedicated processes in order to gain a stronger, unambiguous
structure and a better overall performance.

The investigation showed that none of the participating enterprises extensively
reengineered their processes prior to its workflow-based ‘automation’. Their
approach was to apply workflow systems to those processes that were already well
structured. The alternative, and equally reasonable, approach of structuring a
previously unstructured process in order to support it by a workflow system was not
applied in the cases we analyzed. However, even though no BPR took place in
advance, the implementation of workflow systems led to some differences of the
processes as they were before and after. The reasons were threefold. First, the
application of workflow technology required new, additional activities (e.g. scanning)
whilst others became useless. Hence, a process modification was necessary. Second,
the workflow system did not offer the necessary functionality to transform the
business process model into a workflow model. Third, to achieve the project goals
(e.g. a reduction of cycle time), a process redesign on a rather low level was required.
From this it follows that process reorganization on one hand and implementation of
workflow systems on the other were done concurrently.

To illustrate the extent, to which processes were modified, three statements are listed:
1 “The manual activities regarding information collection and distribution have been

taken over the workflow system.”
2 “Now, office workers mostly sit in front of a screen. ‘Paper handling’ is done

electronically.”
3 “The workflow has been implemented according to the process definitions created

by the ISO 9000 project.”

Hypothesis 3: Workflow systems increase overall job satisfaction

As mentioned in the introduction, there is a lot of speculation about the effects of
workflow systems on employee job satisfaction. The first question is what is job
satisfaction? According to Spector, job satisfaction is "how people feel about their
jobs and different aspects of their jobs. It is the extent to which people like
(satisfaction) or dislike (dissatisfaction) their jobs" (1997, p. 2). In order to assess job

The Effects of Workflow Systems on Organizations: A Qualitative Study 309

satisfaction, various facets should be measured, e.g.: communication, co-workers, job
conditions, nature of the work, operating procedures, pay, personal growth,
supervision, recognition, etc. (Spector, 1997).

It is obvious from this list that the use of a workflow system can affect job
satisfaction only partially. The purpose of our study was not to assess job satisfaction
holistically in all its details, but to focus on those facets that might be influenced by
the application of a new IT system. It was a pragmatic attempt to gather experiences
on the practical effects of workflow systems on the quality of employees’ jobs.

According to the informants, the satisfaction and motivation of employees using a
workflow system has increased. In general, feedback and comments from the
employees was positive. If it was negative (which was rather rare) they complained
about technical matters like response time or inappropriate layouts. In particular, the
workflow users appreciated the user-friendly interfaces (in comparison to the
previous mainframe-based applications), the fact that they no longer needed to
manually transfer data from one system to another, and the faster service they could
offer internal and external customers. They also emphasized that business process-
internal and cross-process communication has improved in its speed and clarity. Of
the negative effects, the issue that was mentioned most often was physical strain
caused by more intensive screen gazing. Overall, however, employees are more
satisfied since workflow systems have been adopted.

A few statements illustrate how workflow systems are perceived regarding job
satisfaction:
1 “Today, nobody would do his job without the workflow system.”
2 “Previously we had to enter the same data into four or five different systems – this

has gone.”
3 “In the past, the most difficult business cases had to be processed by the very best

employees; using a workflow system, these business cases can now be processed
by mediocre employees.”

Hypothesis 4: Workflow systems do not lead to greater responsibility for the
employees

In hypothesis 2 it was mentioned that the implementation of workflow systems led to
modified processes. From this perspective the question is whether the processes were
modified in such a manner that employees had to or could take on more responsibility
and competencies (in the sense of authorization). The analysis of the interviews
indicates that the degree of responsibility and competencies remained mainly
unaltered. In several instances, the use of a workflow system led to job enlargement;
i.e. the employees acquired new skills and took on additional tasks. However, the
impact of workflow systems and process modification respectively was not so deep
that it affected the level of responsibility of people doing the operational work in a
significant way.

310 P. Kueng

It was noticeable that often the respondents expressed themselves rather vaguely,
and they usually hesitated to confirm or reject non-ambiguous statements. One put it
in the following way: “The competencies remained the same. We are still
hierarchically organized.”

Hypothesis 5: On one hand workflow systems make interesting jobs even more
interesting, on the other they make uninteresting jobs monotonous

The question of whether employees’ jobs became more interesting (demanding,
challenging) after a workflow system was implemented was answered very
differently and inconsistently. Several interviewees emphasized that the workflow
system disburdens the actors of non-intellectual working steps. They also mentioned
that the proportion of non-value-adding activities (e.g. control activities) has declined.
In contrast, others mentioned that the jobs became more monotonous. Two statements
may illustrate these inconsistent views:
1 “The uninteresting routine work has gone. In general, work became more

challenging.”
2 “Jobs became more monotonous. The system forces the employees to work strictly

according to the process definition. Through the use of the workflow system, we
now have some kind of ‘chain production’ in the office.”

How can these different perceptions be explained? What are the causes of the
different viewpoints? Workflow systems are good at routine work such as collecting
data from different sources, checking consistency of a well structured document,
distribution of reports to a pool of people, routing of certain information to the right
person, etc. For employees executing intellectual and demanding tasks, routine work
is regarded as something dispensable, which can be automated. This is different to
those office workers who are doing less demanding and sometimes monotonous tasks.
They may regard the execution of tasks like ‘data collection’ and ‘data distribution’
as a pleasant and enjoyable change.

Hypothesis 6: Workflow systems lead to a dis-empowerment for the lower
management

What are the tasks of lower managers? It is obvious that they cannot be identified
precisely. However, even a short inspection shows that lower managers are partially
engaged in tasks such as monitoring work in progress or assigning work (business
cases) to office workers and teams. Potential questions a manager wants to answer
include the following: What is the current status of a certain order or customer
request? Which office worker should proceed business case xyz? What is the actual
backlog and workload? It is apparent from this that some managerial tasks can be
formalized and incorporated into an executable model and then performed by a
workflow system.

The Effects of Workflow Systems on Organizations: A Qualitative Study 311

In our empirical study we found that the lower management of the IT departments
were more involved in the workflow projects than the lower managers of the
operational business units where the workflow systems were being applied.
Additionally, we found that the tasks of the lower management were only marginally
embedded into the automated workflow. Thus it is not surprising that the
implementation of a workflow system leads to the effect that the job of lower
managers is regarded as less important (in comparison to the pre-workflow era) and
sometimes even dispensable.

The following statements show how two informants put it:
1 “A shift in power towards the IS department takes place.”
2 “Managers use primarily the archiving functionality, and they are not fully

integrated in the operational workflow.”

It is yet not clear what role lower management should play in an organization where
processes are being substantially supported through workflow systems. While one
group argues that the activities of lower managers should be taken into consideration
as much as possible (i.e. embedded into the ‘automated process’), an alternative view
argues that workflow systems make lower managers dispensable since their original
work is, too a large extent, programmable.

Hypothesis 7: Workflow systems facilitate the modification of processes

Business processes are embedded into an environment where changes and unforeseen
events occur: The services desired by the customers alter, new regulations may be
imposed, new tools become available, new competitors appear, etc. These few
examples show that business processes and the underlying workflow models have to
be modified and improved continuously. This raises the question whether workflow
systems act as a facilitator or, on the contrary, as an inhibitor regarding ease of
process modification.

In the enterprises considered, workflow systems had a positive impact on the ease
of modification of processes. First, through the use of workflow systems,
modifications in process definitions could be carried out more quickly. This is due to
the fact that a considerable part of the processes was defined using a computer-based
information system. Thus process definition was no longer carried out on several
sheet of papers or worse in the heads of a few collaborators! Secondly, it was
emphasized that modifications were put into practice (i.e. the employees act upon the
new process definition) more rapidly. This was partly because the process was
automated (i.e. the application becomes compulsory), and partly because the process
of informing employees was much faster than before.

In enterprises where workflow systems were deployed, process models and
documentation have become more influential. In these firms it is generally accepted,
that the operational processes – even if they are not fully described by a workflow
system – have to be in line with the process model. This shift in thinking helps to
modify processes in a co-ordinated manner, and in turn leads to a faster process

312 P. Kueng

conversion, implementation, and institutionalization. One interviewee described the
effect of workflow systems regarding the modification of processes as follows: “In
the past, if an employee didn’t like a new instruction, he worked according to the old
one. Using the workflow system this is no longer possible.”

Hypothesis 8: Workflow systems increase productivity by 50 percent

The use of workflow systems has led to a significant reduction in cycle time. This
was achieved through task automation, a decrease in the manual exchange of
information between human actors, a reduction in the proportion of rework (cf.
hypothesis 1), and clarification of the processes which led to a better informed staff.
Interestingly the benefits of speedier workflows were rarely attributed to the
possibility, offered by many workflow systems, of executing activities concurrently.

All informants emphasized that business cases could be carried out faster since
they are supported by a workflow system. Some statements illustrate the effects
encountered by enterprises:
1 “Cycle time has been reduced by 40 percent.”
2 “The customer gets his confirmation or whatever he needs within a shorter period

than previously.”
3 “Productivity (number of workflow instances carried out by an employee) has

doubled.”
4 “The volume of work has quadrupled while the number of employees has

remained the same.”
5 “Productivity has increased whereas the costs remained unaltered.”

The statements regarding the rise in productivity attained through workflow systems
are impressive. However, a closer inspection showed that the performance measures
were not always taken with the necessary accuracy. For example it turned out that the
processes were defined quite narrowly. In one instance, this led to the effect that the
activity of ‘scanning incoming mails’ was not considered part of the business process.
Another shortcoming was that the length of time during which performance measures
were taken was short. Nevertheless, it can be concluded that workflow systems lead
to a significant gain in productivity. As it was not the intention of this study to
explore financial effects in detail, it is not clear whether the overall financial effect
was positive. However, there is some evidence that the total cost of process execution
declined.

5 Critique of the Chosen Approach

The section above gives the impression that the various effects (cf. hypothesis 1 to 8)
stem solely from the use of workflow systems. Taking a positivist’s world view (cf.
Taylor & Bogdan, 1998), one assumes so-called ‘cause/effect relationships’ where a

The Effects of Workflow Systems on Organizations: A Qualitative Study 313

distinction between independent and dependent variables is made.2 Applied in our
domain of interest, the independent variable (i.e. the thing doing the influencing) is
‘the use of a workflow system (boolean)’; dependent variables (i.e. the things being
influenced) are ‘the speed of execution of modifications on business processes’, ‘the
degree of job satisfaction’, etc.

However, the four variables (IT system, people, task, and structure) are highly
interdependent – as stressed by Leavitt (1965) – and the effects of a new IT system
are therefore the result of an interplay between many technical and non-technical,
static and dynamic factors. Hence, the implementation of a workflow system may be
regarded as one possible cause that led to a given effect. Other causes – that might
lead to the same effect – may include actions on the process level (e.g. a new process
manager), or actions on the enterprise level such as the introduction of a company-
wide TQM programme; cf. left hand side of Figure 3. Additionally there may exist
causes (influences) that are beyond the control of the enterprise, such as an increasing
competition among customers and suppliers. In other words, there are many IT-
related and non IT-related factors that can lead to a certain effect. It is obvious that
the first-order cause cannot always be identified clearly. The findings are based on the
assumption that the informants were able to distinguish between effects caused by the
implementation of a workflow system and those induced by other factors.

implementation of a WFS

actions on process level

actions on enterprise level

enterprise-external
influences

perceived changes

non-perceived changes

?

‘Cause’ Effects

Figure 3. The (non)existence of a cause/effect relationship

2 “… independent variables may be either exogenous or endogenous. If they influence some

thing and do not receive any influence, they are exogenous. If they both give and receive
influence, they are endogenous. Dependent variables can only be endogenous.” (Britt, 1997,
p. 58).

314 P. Kueng

There is a further aspect to keep in mind while assessing the hypotheses above. As
shown in Figure 3, effects caused by the implementation of a workflow system
belong to two classes: (1) perceived changes, and (2) non-perceived changes. The
qualitative study reported here is based on the retrospective approach wherein the
informants compared the situation before and after the implementation of the
workflow system. It is obvious that interviewee sensitivity varies, i.e. while a certain
change or effect (e.g. less face-to-face communication caused through the
implementation of a workflow system) is perceived by one person, it may not be
perceived by another. The right hand side of Figure 3 illustrates that only perceived
changes (effects) were taken into consideration. The application of another evaluation
approach (e.g. observational studies) could offer more insights regarding non-
perceived changes.

6 Conclusions

A workflow system can be seen as a component of an information system which is
embedded in a particular technical and social environment. Since the entire system
evolves over time, and since the technical and non-technical components interact, it is
difficult to isolate the factors that produce a certain effect. Despite these limitations,
some conclusions can be drawn.

From a business perspective there is evidence that the implementation and use of a
workflow system increases the competitiveness of the supported business process. In
fact, major parameters such as throughput, cycle time, speed of communication,
process variation and productivity improved. Due to the fact that workflow systems
are not always used in crucial, core business processes, these improvements do not
necessarily lead to a significant increase in the overall organizational performance.

Through the use of workflow systems, jobs become more structured and more
routine. Additionally, individuals are forced to stay within given limits. Since a larger
proportion of work is programmed, it becomes harder to exercise and integrate
creativity and ingenuity. Using the vocabulary of Leavitt and Whisler (1958, p. 44)
workflow systems lead – to a certain extent – to a depersonalization of relationships.
To counterbalance such effects, organizational measures can be taken (e.g. job
rotation, a redefinition of actors’ roles).

Workflow systems have been criticized in the literature because of their
inflexibility, i.e. their tendency to prescribe tasks and task sequencing quite rigidly
(cf. Ellis & Wainer, 1994, p. 73). That aspect was not seen as a serious problem by
the interviewees. This ‘contradiction’ (cf. hypothesis 7) may be explained by the fact
that in this study the business processes supported by a workflow system did not
belong to a category of office processes that are modified very frequently. However,
better support of ad-hoc changes and exception handling would enlarge the potential
of workflow applications considerably.

Overall, the findings of the empirical study show clearly that the introduction of a
workflow system should be driven by a business and organizational perspective. This
means, for example, that a purely activity-based modeling approach is not suitable.

The Effects of Workflow Systems on Organizations: A Qualitative Study 315

Workflow design should be extended towards job design or even organizational
design. This implies that people outside of the IT department have to play an active
role from the very beginning of a workflow project. They can bring in an actor-
centered perspective (clerical or managerial level) and supply the process goals
sought by the company. Using the terminology of Leavitt (1965), by the act of
implementing a workflow system, enterprises should re-balance the diamond
“technology – task – people – structure”.

Acknowledgement

I would like to thank the enterprises which participated in the empirical study. Special
thanks are extended to Andy Meier who collected empirical data needed for the
principal study.

7 References

Abott, Kenneth; Sarin, Sunil: Experiences with Workflow Management – Issues for the Next
Generation. In: Proceedings of the Conference on Computer Supported Cooperative Work,
22-26 October 1994, Chapel Hill, USA, ACM press, pp. 113-120.

Baresi, Luciano et al.: WIDE Workflow Development Methodology. In: Proceedings of the
International Joint Conference on Work Activities Coordination and Collaboration; edited
by D. Georgakopoulos et al., San Francisco, 22-25 February 1999, pp. 19-28.

Bolloix, Germinal; Robillard, Pierre: A Software System Evaluation Framework. IEEE
Computer, Vol. 28, No. 12 (December 1995), pp. 17-26.

Britt, David: A Conceptual Introduction to Modelling – Qualitative and Quantitative
Perspectives. Lawrence Erlbaum Associates, Mahwah NJ, USA, 1997.

Coupe, Tim; Onodu, Nnadi: Evaluating the impact of CASE – an empirical comparison of
retrospective and cross-sectional survey approaches. European Journal of Information
Systems, Vol. 6, No. 1 (March 1997), pp. 15-24.

Ellis, Clarence; Wainer, Jacques: Goal-based models of collaboration. Collaborative
Computing, Vol. 1, No. 1 (March 1994), pp. 61-86.

Hammer, Michael; Champy, James: Reengineering the Corporation – A Manifesto for Business
Revolution. Nicholas Brealey Publishing, London, 1993.

Juran, Joseph; Gryna, Frank: Quality Planning and Analysis – From Product Development
through Use, McGraw-Hill, New York, 1993.

Kueng, Peter: Workflow Management Systems – still few operational systems. ACM
SIGGROUP Bulletin, Vol. 18, No. 3 (December 1997), pp. 32-34.

Kueng, Peter: Impact of Workflow Systems on People, Task, and Structure: a post-
implementation evaluation. In: Proceedings of the 5th European Conference on the
Evaluation of Information Technology; edited by A. Brown and D. Remenyi, Reading, UK,
27 November 1998, pp. 67-75.

Leavitt, Harold: Applied Organizational Change in Industry – Structural, Technological and
Humanistic Approaches. In: J. March (Ed.): Handbook of Organizations. Rand McNally,
Chicago, 1965, pp. 1144-1170.

316 P. Kueng

Leavitt, Harold; Whisler, Thomas: Management in the 1980’s. Harvard Business Review, Vol.
36, No. 1 (Nov/Dec 1958), pp. 41-48.

Miller, Keith; Dunn, Dennis: Post-implementation of information systems/technology – a
survey of UK practice. Proceedings of the 4th European Conference on the Evaluation of
Information Technology, edited by E. Berghout and D. Remenyi, Delft, 30-31 October
1997, pp. 47-55.

Parker, Marilyn; Benson, Robert: Information Economics – Linking Business Performance to
Information Technology. Prentice-Hall, Englewood Cliffs NJ, 1998.

Smithson, Steve; Hirschheim, Rudy: Analysing information systems evaluation – another look
at an old problem. European Journal of Information Systems. Vol. 7, No. 3 (September
1998), pp. 158-174.

Spector, Paul: Job satisfaction – Application, assessment, causes, and consequences. Sage
Publications, Thousand Oaks, CA, USA, 1997.

Taylor, Steven; Bogdan, Robert: Introduction to Qualitative Research Methods. John Wiley &
Sons, New York, 1998.

Willcocks, Leslie; Lester, Stephanie: Evaluating the feasibility of information systems
investments – recent UK evidence and new approaches. In: L. Willcocks (Ed.): Information
Management – The evaluation of information management systems. Chapman & Hall,
London, 1994, pp. 49-80.

WfMC: The Workflow Management Coalition Specification: Terminology & Glossary.
Document Number WFMC-TC-1011, Document Status: Issue 3.0, February 1999;
available: http://www.aiim.org/wfmc/standards/docs.htm, accessed 15 September 1999.

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 317-327, 2000
 Springer-Verlag Berlin Heidelberg 2000

On the Practical Relevance of an Integrated Workflow
Management System - Results of an Empirical Study

Martin Meyer

Institute of Information Systems, Information Engineering Research Group, University of
Bern, Engehaldenstrasse 8, CH-3012 Bern, Switzerland

meyer@ie.iwi.unibe.ch

Abstract. The implementation of the integrated standard software SAP R/3 has
been fully or partially completed in many Swiss companies. Many of these
companies are now initiating follow-up projects with the aim of expanding their
use of SAP R/3. One possible area that is frequently mentioned in this context
is the use of workflow management systems (WfMS). The Information
Engineering Research Group of the Institute of Information Systems, University
of Bern, therefore conducted an empirical study among Swiss R/3 users at the
end of 1997, with the aim of obtaining a better assessment of the importance
and current status of workflow management, particularly on the basis of SAP
R/3. This survey endeavors to summarize the findings obtained with SAP
Business Workflow (SAP BWF) to date, in order to provide some ideas for
application scenarios and information about potential advantages and
disadvantages.

1 Introduction

More and more companies are attempting to improve their competitive prospects by
designing their organizational structure along flexible and process-oriented lines.
Whereas traditional organizational theory concentrated mainly on structural
organization, today there is a visible trend toward process organization.1 The focus is
therefore on a company's process orientation. Following on from the statement
attributed to Chandler, that "structure follows strategy", the idea that "process follows
strategy" is also being discussed.2 Current management concepts, such as Business
Process Reengineering (BPR), Total Quality Management (TQM) or Lean
Management, have been used in recent years as catalysts for the changeover to a
process organization.
This paradigm shift in organizational structure is also leading to fundamentally
changed requirements for the conversion of operational processes in a company's
information systems.3 The issue of how individual business processes can be
adequately supported by information technology is raised. The use of workflow
management systems presents itself as the solution for this problem. This type of

1 Cf. Nippa/Picot (1995), p. 14 ff.
2 Cf. Osterloh/Frost (1996), p. 7.
3 Cf. Österle (1996).

318 M. Meyer

system presents a technology for converting operational processes in the information
systems of a company.4 WfMS are regarded as tools for the efficient execution of
business processes, which also allow the continuous evolution of processes.5

In this context, this paper attempts to expand on existing market studies6,
investigations7 and progress reports8, and to throw light upon the importance of
workflow management in Swiss companies and the potential concealed behind the
workflow concept. It also establishes how the frequently argued advantages and
disadvantages of WfMS by (potential) users are assessed.
First, the design of the empirical study conducted at the Institute of Information
Systems is presented in Section 2. A brief description of SAP Business Workflow
(SAP BWF) is given in Section 3. Selected results from the study are then described
in Section 4.

2 Design of the Empirical Study

The study presented in this paper is mainly descriptive in character. The workflow
components of the R/3 system were deliberately chosen as the object of investigation.
The reasons are: Firstly, this tool is supplied with the basic system as a standard
component, and is therefore automatically available with every R/3 installation.
Secondly, the investigations and studies into various aspects of the R/3 system
conducted by the Institute of Information Systems of the University of Bern9 are
continued and expanded.
To date (end 1997), over 600 R/3 installations have been implemented in Switzerland.
204 companies were selected for this survey, and they were sent a four-page
questionnaire at the end of 1997. Of the 204 questionnaires sent, 90 were returned. 76
of these could be evaluated. The response rate actually achieved was therefore more
than 37%. The following subject areas were covered by the survey:
• Corporate profile: industry sector, number of employees in the company,

number of employees in the R/3 environment.
• Workflow management: evaluation of workflow management, necessity of

workflow management, importance of WfMS, knowledge of workflow
management in companies.

• SAP BWF: existing use, planned projects, types of workflow applications,
collaboration with consulting companies, knowledge in companies, importance of
SAP BWF, potential areas of application, potential advantages and
disadvantages.

4 Cf. Becker/Vogler (1997), p. 2.
5 Cf. Georgakopoulos/Hornick/Sheth (1995); Vogler/Jablonski (1998), p. 2.
6 Cf. Erdl/Schönecker (1993); Derungs/Vogler/Österle (1995); Weiss/Krcmar (1996); Endl et

al. (1997); Petrovic/Altenhofen (1998).
7 Cf. Chroust/Bergsmann (1995).
8 Cf. Galler/Scheer/Peter (1995); Meyer/Pfahrer (1997).
9 Cf. e.g. Gerber/Knolmayer (1996); Strebi (1996); Knolmayer/von Arb/Zimmerli (1997);

Meyer (1997); Meyer/Pfahrer (1997); von Arb (1997).

On the Practical Relevance of an Integrated Workflow Management System 319

3 SAP Business Workflow (Brief Description)

With the workflow component available for the first time in Release 3.0 of the R/3
system, SAP AG provides a tool which enables operational procedures to be
electronically processed in a standardized way.10 The customized operation of business
processes can thus be coordinated across all applications and workstations.
Workflow Management Systems may be classified as usage-oriented, technically-
oriented or origin-oriented. For this purpose SAP BWF may be classified with regard
to its origin: the original source of this workflow component is the R/3 system. SAP
BWF thus belongs to the "derivative"11 workflow management system category. This
category of systems is characterized by heavily standardized cycles which contain
constant tasks and which are highly repetitive.12

Workflow Definition
(Workflow editor)

 Implementation of
 workflows

 Task definition

Object type definition

 Role definition

Flexible
event generation

Workflow Manager
 Workflow control and
Workflow coordination

Work Item Manager
Processing the execution

 of individual tasks
(work items)

 Allocation to operators
Schedule monitoring

 Logging

Event Manager

 Universal
 Inbox
 User interface

 Administration of a user's
 work list and mail

documents

Retrieval

Analysis

Statistics

Development System Runtime System Administration and
Control System

&RPSRQHQWV

Fig. 1. Components of SAP BWF13

SAP BWF consists of three components: Development System, Runtime System and
Administration and Control System (c.f. Fig. 1). The Development environment
contains constructs for implementing a workflow definition (objects, tasks, roles, etc.)
The Runtime System comprises the components Workflow Manager, which is
necessary for controlling a workflow process, the Work Item Manager, which
executes the individual tasks, and the Event Manager, which is responsible for event-
controlled operation in SAP BWF. Numerous test tools that enable processes to be

10 C.f. SAP (1996); SAP (1998).
11 Weiss/Krcmar (1996), p. 507 ff.
12 C.f. Erdl/Schönecker (1993), p. 18; Weiss/Krcmar (1996), p. 508.
13 C.f. e.g. SAP (1996); SAP (1998); Berthold/Mende/Schuster (1999).

320 M. Meyer

efficiently monitored and controlled are included in the Administration and Control
System, which is also called the Information System by SAP. The Universal Inbox
(=work list of a user) is also part of the Administration and Control System, though
this is unusual since it ought rather to be interpreted as part of the Runtime System.
Selected results, focussing primarily on the application of SAP BWF, are now
presented in the following section.

4 Presentation of Selected Results of the Study

4.1 Evaluation of Workflow Management

The concept of workflow management is not only the object of scientific debate, but
is also increasingly being discussed for practical purposes. 58% of the companies
surveyed consider that the time is just right for a discussion about workflow
management and the related technologies. 5% however believe that it is already too
late for a detailed discussion, and only around a third of those surveyed (30%)
consider the time for discussion as being too soon (cf. Fig. 2).

Time for discussion (n=76)

Too soon
30%

Just right
58%

Too late
5%

Do not know
7%

Fig. 2. Time for discussion about workflow management

The companies are clearly convinced of the great importance of using a WfMS: 60%
of those surveyed considered the application of a WfMS to be important or very
important. A minority (11%) considered that workflow products were of minor or no
great importance. Similar results were produced in the appraisal of the potential

On the Practical Relevance of an Integrated Workflow Management System 321

benefits of a WfMS. Only 10% of those surveyed believe that WfMS are of minor
potential benefit. The remaining companies are convinced of the positive effects of
this technology (cf. Fig. 3).

Potential benefits of WfMS
(n=70)

Irrelevant
0%

Quite
important

20%

Important
56%

Very
important

14%

Of minor
importance

10%

Importance of WfMS application
(n=72)

Irrelevant
3%

Quite
important

29%

Important
47%

Very
important

13%

Of minor
importance

8%

Fig. 3. Importance and potential benefits of workflow management systems

4.2 Use of SAP Business Workflow

If the level of distribution of SAP BWF is considered, it will be noticed that only 7%
of those surveyed are productively using SAP BWF, 3% are conducting a pilot
project, and 20% are planning an application. 70% of the respondents do not plan to
use SAP BWF (cf. Fig. 4).
An analysis of the reasons for not using SAP BWF reveals the main arguments as
being lack of knowledge of the technology (25%), and time constraints (31%) (cf. Fig.
5). It can be seen that other projects receive greater priority within the SAP
environment (e.g. release upgrades or migration projects). Lack of (product)
information (8%) or no requirement (9%) are also stated as arguments against using
SAP BWF. Insufficient technical development of product (3%) is rarely given as a
reason. This result is interesting because, in a survey carried out by the publication
Computer Zeitung in 1997, 57% of those surveyed argued against the use of a
commercial workflow tool for reasons of insufficient technical development.14

Other reasons stated for not using SAP BWF are summarized under the heading
Other (24%). They include the following interesting arguments: SAP BWF not
available because of obsolete release status, greater priority given to current
implementation projects, greater priority given to the optimization and consolidation
of the modules implemented, lack of financial resources for the implementation of a
workflow project, necessity of cross-system tools, lack of willingness in the
organization, and lack of implementation concepts.

14 Cf. Heinrich (1997), p. 17.

322 M. Meyer

Application of SAP BWF (n=75)

Application (productive)
7%

Application (planned)
20%

Pilot project
3%

No application
70%

Fig. 4. Application of SAP Business Workflow

Why has SAP BWF not yet been implemented in your company?
(n=110, incl. multiple answers)

No requirement
9%

Lack of time
31%

Insufficient technical
development of product

3%

Lack of knowledge
25%

Lack of information
8%

Other
24%

Fig. 5. Reasons against using SAP Business Workflow

On the Practical Relevance of an Integrated Workflow Management System 323

An analysis of the potential areas of application shows that control of the operational
flow of information is at the forefront (cf. Fig. 6). Thus, over 70% of the respondents
use SAP BWF for the active support of information flow (automatic distribution of
information) or for document management or archiving. It becomes clear that
document handling is one of the possible sources for workflow management. This
helps to explain why workflow management is also currently being equated with
document management.15 Of secondary importance is automation of individual system
activities or control of several interrelated transactions (e.g. time scheduling or
authorization procedures). Over 60% of the respondents use SAP BWF for these
complex processes.
Over 60% said they would use SAP BWF for the interconnection and control of
distributed applications (e.g. linking of several R/3 systems using Application Link
Enabling) and for the integration and control of desktop applications. This percentage
is still relatively high, yet the result is surprising in view of the fact that the
integration of different applications along a business process represents a principle
task for the application of WfMS. This task ought to have attracted a far higher rate of
agreement accordingly. Of lesser importance are automatic error handling16 and
automatic help, which are to be controlled by SAP BWF.

Possible areas of application of SAP BWF

0 10 20 30 40 50 60 70 80 90 100

Automatic he lp (n=61)

Control and integration of
desktop applications (n=63)

Linking of distributed
applications (n=61)

Exception/error handling
(n=65)

Author ization procedures (n=69)

Time scheduling (n=67)

Automated system activities
(n=70)

Document management,
archiving (n=68)

Active support of
information flow (n=71)

Percentage in agreement

Fig. 6: Potential areas of use for SAP Business Workflow

Potential advantages as seen by the companies surveyed are shown in Fig. 7. Of these,
the most popular were operational time improvement (e.g. reducing throughput times)
and quality improvements in both workflow and in individual processing operations,
accounting for 80% of respondents. Other studies have noted similar results.17

15 Cf. Wenzel (1997), p. 33.
16 Cf. e.g. Strong/Miller (1995), p. 218 ff; Kamath/Ramamritham (1998).
17 Cf. Chroust/Bergsmann (1995), p. 137; Heinrich (1997), p. 17.

324 M. Meyer

Other important advantages are improvement in flow control, which leads to greater
process reliability, and increased transparency, which greatly improves availability of
information. The majority of arguments drew a positive reply from over 60% of the
respondents. It can be seen that cost savings, by comparison with the other criteria,
did not stand out as being important. This confirms that the qualitative arguments in
the workflow management area outweigh statements of quantity, and demonstrates
the difficulty of arguing on the basis of a cost/benefit analysis.
The importance attached to improvement of resource management likewise appears to
be relatively small. This result is interesting, since WfMS fulfil coordination functions
(e.g. tasks for monitoring, time and capacity scheduling, or feedback processing) and
thus perform the typical functions for control centers.18

Potential advantages of using SAP BWF

0 10 20 30 40 50 60 70 80 90 100

Improved
resource management (n=66)

Improved

user support (n=72)

Cost savings (n=70)

Increased transparency (n=71)

Availability of information
(n=71)

Improved process control

(n=71)

Quality improvements (n=73)

Reduct ion in throughput times (n=73)

Percentage in agreement

Fig. 7: Potential advantages of using SAP Business Workflow

The evaluation of potential problem areas indicates that technical drawbacks (higher
implementation costs and lack of experience in the technology) are regarded by the
respondents as being the most important, with over 70% in agreement (cf. Fig. 8).
These are followed by disadvantages that arise in relation to the organization, e.g.
lack of organizational redesign, no clear implementation strategy, lack of user
concept or minimal consultant expertise with regard to the use of workflow
management.
It will be noticed that all criteria relating to the employee area appear as a whole at the
end of the list. This is surprising because employee-specific criteria (e.g. acceptance)
are regarded as significant success factors in the implementation of a workflow
project.19 The first factor in the socio-cultural area is called the "big brother effect",
which is repeatedly mentioned in connection with the implementation of WfMS and
must be regarded as a consequence of increased transparency. This series of potential
disadvantages of using SAP BWF is put into perspective by the fact that all arguments
received a relatively high score of over 55%.

18 Cf. Scheer et al. (1994), p. 291.
19 Cf. e.g. Vogler (1996), p. 357; Maurer (1996), p. 23; Altenhofen (1997), p. 24 ff.

On the Practical Relevance of an Integrated Workflow Management System 325

Potential disadvantages of using SAP BWF

0 10 20 30 40 50 60 70 80

Loss of social interaction (n=72)

Acceptance problems among employees (n=70)

Political resistance (n=71)

Inadequate employee training
(n=71)

Reduced operational flexibility
(n=71)

Employee fears ("big brother" effect)
(n=70)

Low consultant exper tise (n=63)

Concept insufficient and failing to meet the
needs of the user (n=57)

No clear implementation strategy (n=68)

Lack of organizational redesign (n=70)

Lack of experience in SAP
workflow technology (n=69)

Higher implementation costs (n=69)

Percentage in agreement

Fig. 8: Potential disadvantages of using SAP Business Workflow

5 Prospects

This paper shows that workflow management is not only a subject for scientific
debate, but is also increasingly becoming a topic of discussion for practical purposes.
It is possible to show that workflow management, particularly in the R/3 environment,
is not merely a "nice to have" feature but a matter that is taken seriously. Initial
findings indicate that this workflow concept has the potential to support business
processes in the R/3 system. Nevertheless, these initial positive findings must not hide
the fact that the cost of implementing SAP BWF has so far been too high for the
typical user, and that other projects receive greater priority. However, the use of SAP
BWF is expected to increase in the near future.
The findings presented here are selected results of an empirical study: "The
importance and application of SAP Business Workflow in Switzerland". The detailed
analyses were published in a report which appeared in April 1998. This is available
from the Institute of Information Systems, University of Bern. SAP BWF was chosen
because it is considered as the most important integrated WfMS.20 It is a fact that the
findings of this empirical study are in some way SAP specific. Nevertheless, as other
publications21 show, some results like the potential advantages and disadvantages of
WfMS or the trend to integrate workflow components into existing software are
transferable to other products.

20 Cf. e.g. Casonato (1996a); Casonato (1996b).
21 Cf. e.g. Becker/Vogler (1997); Mohan (1998).

326 M. Meyer

References

1. Altenhofen, C.: Workflowmanagement aus Sicht der Arbeitswissenschaft. In: Becker, J.,
Rosemann, M. (eds.): Organisatorische und technische Aspekte beim Einsatz von
Workflowmanagementsystemen. Proceedings zum Workshop vom 10. April 1997,
Arbeitsbericht Nr. 54, Münster (1997) 24-33

2. Becker, M., Vogler, P.: Workflow-Management in betriebswirtschaftlicher
Standardsoftware - Konzepte, Architekturen, Lösungen. Arbeitsbericht IM HSG/CC
PSI/9, Version 1.0, Institut für Wirtschaftsinformatik, Universität St. Gallen (1997)

3. Berthold, A., Mende, U., Schuster, H.: SAP Business Workflow: Konzept, Anwendung,
Entwicklung. Addison Wesley Longman, München et. al. (1999)

4. Casonato, R.: SAP Business Workflow: Do You Need It?. In: Gartner Group (ed.):
Research Note, Products P-SAP-261, o. O. (1996)

5. Casonato, R.: Workflow Vendors in Europe: Survey Results. In: Gartner Group (ed.):
Research Note, Markets M-WKS-1589, o. O. (1996)

6. Chroust, G., Bergsmann J.: Umfrage: Workflow, Eine Momentaufnahme über
Verbreitung, Einsatz und Meinungen über Workflow in den deutschsprachigen Ländern,
Umfragezeitraum: 2. Halbjahr 1994. Oldenbourg, Wien München (1995)

7. Derungs, M., Vogler, P., Österle, H.: Kriterienkatalog Workflow-Systeme. Arbeitsbericht
IM HSG/CC PSI/1, Version 1.0, Institut für Wirtschaftsinformatik, Universität St. Gallen
(1995)

8. Endl, R., Duedal, L., Fritz, B., Joos, B.: Anforderungen an Workflowmanagementsysteme
aus anwendungsorientierter Sicht. Arbeitsbericht Nr. 92, Institut für Wirtschafts-
informatik, Universität Bern (1997)

9. Erdl, G., Schönecker, H. G.: Vorgangssteuerungssysteme im Überblick - Herkunft,
Voraussetzungen, Einsatzschwerpunkte, Ausblick. In: Office Management 41/3 (1993)
13-21

10. Galler, J., Scheer, A.-W., Peter, S.: Workflow-Projekte: Erfahrungen aus Fallstudien und
Vorgehensmodell. In: Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft
117, Universität Saarbrücken (1995)

11. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow-Management:
From Process Modeling to Workflow Automation Infrastructure. In: Distributed and
Parallel Databases 3/2 (1995) 119-153

12. Gerber, J.-P., Knolmayer, G.: Informationsbeschaffung zu Softwareprodukten aus
Newsgruppen und Mailing-Listen am Beispiel von SAP R/3. In: Wirtschaftsinformatik
38/6 (1996) 633-638

13. Heinrich, W.: Trendanalyse, Integrierte Standardsoftware steigert Prozeßdenken in
Unternehmen, Im Workflow-Warenkorb liegen auch faule Eier. In: Computer Zeitung
28/31 (1997) 17

14. Kamath, M., Ramamritham K.: Bridging the gap between Transaction Management and
Workflow Management.
http://www-ccs.cs.umass.edu/db/publications/nsf-wf.html [as of: 1998-12-20]

15. Knolmayer, G., von Arb, R., Zimmerli, C.: Erfahrungen mit der Einführung von SAP R/3
in Schweizer Unternehmungen. Studie der Abteilung Information Engineering des
Instituts für Wirtschaftsinformatik der Universität Bern, 3rd edn. Bern (1997)

16. Maurer, G.: Von der Prozeßorientierung zum Workflow-Management, Teil 2:
Prozeßmanagement, Workflow Management, Workflow-Management-Systeme.
Arbeitspapiere WI, Nr. 10, Universität Mainz (1996)

17. Meyer, M.: Prozessmonitoring in SAP Business Workflow. Arbeitsbericht Nr. 101, Institut
für Wirtschaftsinformatik, Universität Bern (1997)

18. Meyer, M., Pfahrer, M.: Erfahrungen beim Einsatz von SAP Business Workflow und IBM
Flowmark. Arbeitsbericht Nr. 93, Institut für Wirtschaftsinformatik, Universität Bern
(1997)

On the Practical Relevance of an Integrated Workflow Management System 327

19. Mohan, C.: Recent Trends in Workflow Management Products, Standards and Research.
In: Dogaç, A., Kalinichenko, L., Özsu, M. T., Sheth, A. (eds.): Workflow Management
Systems and Interoperability. Proceedings of the NATO Advanced Study Institute on
Workflow Management Systems (WFMS), Istanbul 1997. Springer, Berlin et al. (1998)
396-409

20. Nippa, M., Picot, A. (eds.): Prozeßmanagement und Reengineering: Die Praxis im
deutschsprachigen Raum. Campus, Frankfurt a. M. New York (1995)

21. Osterloh, M., Frost, J.: Prozessmanagement als Kernkompetenz, Wie Sie Business
Reengineering strategisch nutzen können. Gabler, Wiesbaden (1996)

22. Österle, H.: Business Engineering, Prozess- und Systementwicklung. 2nd edn. Springer,
Heidelberg (1996)

23. Petrovic, M., Altenhofen, C.: IBM, Microsoft und SAP werde am häufigsten unterstützt,
Fraunhofer untersucht den Markt für Workflow und Dokumentenmanagement. In:
Computerwoche Focus, Markt - Technik - Anwendungen, Blickpunkt: Workflow o.J./1
(1998) 8-10

24. SAP AG (ed.): System R/3, SAP Business Workflow, Funktionen im Detail. Walldorf
(1996)

25. SAP AG (ed.): Business Process Technology. Compact Disk, Walldorf (1998)
26. Scheer, A.-W., et al.: Modellbasiertes Geschäftsprozeßmanagement. In: Management &

Computer 2/4 (1994) 287-292
27. Strebi, S.: Kritische Erfolgsfaktoren bei der Einführung von SAP R/3. Arbeitsbericht Nr.

91, Institut für Wirtschaftsinformatik, Universität Bern (1996)
28. Strong, D. M., Miller, S. M.: Exceptions and Exception Handling in Computerized

Information Processes. In: ACM Transactions on Information Systems 13/2 (1995) 206-
233

29. Vogler, P.: Chancen und Risiken von Workflow-Management. In: Österle, H., Vogler, P.
(eds.): Praxis des Workflow-Managements, Grundlagen, Vorgehen, Beispiele. Vieweg,
Braunschweig Wiesbaden (1996) 343-362

30. Vogler, P., Jablonski, S.: Editorial, Workflow-Management. In: Informatik 5/2 (1998) 2
31. von Arb, R.: Vorgehensweisen und Erfahrungen bei der Einführung von Enterprise-

Management-Systemen dargestellt am Beispiel von SAP R/3, Dissertation, Universität
Bern (1997)

32. Weiss, D., Krcmar, H.: Workflow-Management: Herkunft und Klassifikation. In:
Wirtschaftsinformatik 38/5 (1996) 503-513

33. Wenzel, I.: Mit Dokumenten fängt alles an. In: Computerwoche 24/31 (1997) 33-34

Con�gurable Business Objects for Building

Evolving Enterprise Models and Applications

Mike P. Papazoglou and Willem-Jan van den Heuvel

Tilburg University, INFOLAB
PO Box 90153, NL-5000 LE Tilburg

The Netherlands
mikep@kub.nl, wjheuvel@kub.nl

Abstract. To remain competitive organizations must be able to move
fast and adapt quickly to change. To achieve this they are required to
recon�gure their key business processes as changing market conditions
dictate.
This chapter discusses a methodology to link enterprise models to
wrapped legacy system modules or o�-the-shelf (ERP) components.
Moreover, it reveals how such mappings can be retro�tted to address
business change requirements.

1 Introduction

Today's increasingly competitive, expanding global marketplace requires that
companies cope more e�ectively with rapidly changing market conditions than
ever before. Emerging technologies, such as business objects and components,
are generally being perceived as core technologies to successfully deal with these
challenges. However, there are a number of important issues which must be
addressed before business object technology becomes a reality. These include:

Business-Object Oriented Enterprise Models: Modern organizations
seek to streamline their processes and improve customer service through
greater connectivity between both business processes and key operational
systems. Enterprises can only become a full player in the global market place
by re-conceptualizing the company as a collection of business operations
and processes, by reshaping corporate structures around modern business
processes and by making their internal processes align with and support
the (integrated) value-chain. This requires that new business models are
created on the basis of (common) business objects which provide a powerful
mechanism for realizing and implementing business models.

Adaptable Business Processes: In addition to improved business modeling
it is important to make sure that critical applications can deal with busi-

ness change. Modern value-chain supporting business applications require
that system incompatibilities be overcome and that business processes and
information systems not only harmonize but also jointly support the ability
to react quickly to new opportunities.

W. van der Aalst et al.(Eds.): Business Process Management, LNCS 1806, pp. 328-344, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Leveraging Legacy Assets: Both of the above items focus attention not only
on the need to gracefully accommodate process changes but also on how to
synthesize a business process out of fragments, some of which may leverage
legacy assets. Legacy systems that often represent millions-of-dollar of busi-
ness value, and, as a result, may not be ignored when moving to new exible
business architectures.

This chapter addresses these three issues in the following way. Firstly, we will
introduce business-object oriented enterprise modeling (section 2) and discuss
the essential features of the BALES (binding Business-Applications to LEgacy
Systems) methodology (section 3) that focuses on parameterizing business ob-
jects with legacy data and functionality. Thereafter, we will explain how this
methodology can be successfully employed to cope with changed business re-
quirements by retro�tting business object parameters. This chapter concludes
with a discussion and a summary.

2 Architecture-centric Business-Object Oriented

Enterprise Modeling

Enterprise models reect the activities, structure, processes, information, actors,
processes, goals an constraints of a business. Business objects do not only pro-
vide a natural way to model the enterprise, but also at same time guarantee a
close link to the business (legacy) applications. Moreover, business object tech-
nology provides semantic as well as network interoperability, two key enablers
for the virtual enterprise. In this section, we will describe the main ingredients of
business-object oriented enterprise modeling based upon an integrated enterprise
architecture.

2.1 The Integrated Enterprise Framework

Complex enterprise models need to be founded on an enterprise framework to
provide a solid structure that simpli�es its interpretation and facilitates future
reuse as well as modi�cation.

Figure-1 illustrates an integrated value chain enterprise framework for mod-
eling business applications and for developing and delivering enterprise solutions.
This enterprise framework consists of business objects, processes, and workows
de�ned within, or across, a speci�c `vertical' industry. The integrated enterprise
framework in Figure-1 provides a base for the e�ective encapsulation of business
practices, policies, and tactics in modular high-level components. Moreover, it fa-
cilitates value chain integration, by which multiple organizations (see enterprise
A and B in the �gure) can collaboratively plan, implement and manage the
ow of goods, services and information, and thereby increase their competitive
position in the global market.

329Configurable Business Objects

Business Object Layer

Business Process Layer

Workflow Layer

B
u
s
in
e
s
s
 P
o
li
c
ie
s

Business Value Chain

Business Goals Business Goals

Company ACompany A Company BCompany B

Enterprise

IS

Enterprise

IS

Business Object Layer

Business Process Layer

Workflow Layer

B
u
s
in
e
s
s
 P
o
li
c
ie
s

Business Value Chain

INTEGRATIONINTEGRATION

Fig. 1. The Integrated Enterprise Framework.

2.2 Business Objects

Business objects provide a natural way for describing application-independent
concepts such as product, order, �scal calendar, customer, payment and the like.
They play a central role in capturing the semantics of actual business entities
and processes, in a way that is understandable by the business [1], [11].

Business (entity) objects that reside in this layer essentially contain business
data which can only be manipulated by business methods (services). Complex
business object variants can be implemented by attaching business policies to
them (see below).

Business objects can be divided in various categories. Common Business
Objects (CBOs) are business objects that can be shared across multiple do-
mains, e.g., a currency business object. Obviously, they need to be speciliazed to
deal with domain-dependent semantics. The second category comprises domain
frameworks: specialized business objects which deal with common semantics
within a vertical domain. The OMG is currently putting much standardization
e�orts in both categories of objects (see: http:nnwww.omg.orgn). ERP pack-
age like IBM's SanFrancisco [4] and SAP (Industry Solutions) [18] are currently
investing in the development of industry speci�c as well as common business
objects and domain frameworks.

2.3 Business Processes

A business process is the de�nition of a set of interrelated activities that col-
lectively accomplish a speci�c business objective, possibly, according to a a set

330 M.P. Papazoglou and W.-J. van den Heuvel

of pre-speci�ed policies. The purpose of this layer is to provide generic busi-

ness processes. These provide a set of basic building blocks for an application in
a speci�c business domain, e.g., procurement management, general ledger, etc.
These building blocks can be specialized and extended to capture domain or
application speci�c processes which are realized at the workow layer.

The business processes are initiated by internal or external events (e.g., a
customer request), and result in outgoing events (e.g., the noti�cation that a
product is ordered) [2]. Business processes rely on a set of business objects to
perform the requested operations.

2.4 Workows

The workow layer assigns business processes to actors, and, moves the process
forward from one role (that performs an activity) to the next. The workow
layer can be supported by workow applications.

Workow objects rely on an extensive foundation of reusable components, viz.
the core business processes, that form the basis for building new applications.
Workow-enabled business processes can track transactions across, department,
company and enterprise boundaries. This type of distributed workow layer pro-
vides the sequence of business activities, arrangement for the delivery of work to
the appropriate inter-organizational resources, tracking of the status of business
activities, coordination of the ow of information of (inter and intra-) organiza-
tional activities and the possibility to decide among alternative execution paths
[5].

Workow activities may invoke components from existing applications, for
instance legacy objects, and combine them with newly developed applications.
Several of the workow activities have a transactional nature which requires long
running interactions. The requirements of transactional workows have been
described in [12].

Business processes that need to operate across or between organizations { in
order to implement value chains that can be used to deliver cross-enterprise E-
commerce applications { may be implemented using a set of workow de�nitions
that have been created to support segments of the overall process. This approach
addresses the problem of how to avoid creating islands of automation in the
operation of an end to end business process.

For example, an order activity in a production planning workow may start
an appropriate order entry process at a closely aligned parts supplier. This type
of cooperation can only be achieved if the workow systems of the cooperating
companies are loosely coupled. This results in the elimination of supply chain
discontinuities that produce delays and waste. Distributed workows are nor-
mally built on a distributed object network infrastructure [3]. This enables a
business to change its organizational structure and processes independently of
another.

331Configurable Business Objects

2.5 Business Goals and Policies

It is important that business objects and business processes in the enterprise
framework are oriented towards the ful�llment of the business goals. The busi-
ness mission describes the core competence of an organization, for example, the
product-market combination in which the business will be active, the market
share the organization tries to gain, and so on and so forth. The business mis-
sion is translated in strategic plans and is operationalized in terms of quanti�able
Critical Success Factors (CSFs) which determine those facets in which the or-
ganization must excel over its competitors [21]. Within the context of BALES,
the enterprise implements it's goals at all levels of the enterprise architecture by
attaching business policies to the objects.

Business policies de�ne various implementations of the same business (pro-
cess) object, e.g., various di�erent policies for credit or order management. These
policy objects can be easily adapted to anticipate on changes in the organiza-
tion's strategy and related CSFs.

In line with the SanFrancisco approach, BALES policy objects are based
on various object-oriented patterns. The structure of policy objects is based on
the strategy pattern [19]. The strategy pattern describes an encapsulated, in-
terchangeable family of algorithms. These algorithms can be changed without
a�ecting the composition, as the volatile logic is encapsulated in the strategy ob-
ject. Policy objects adopt this pattern, providing an alternative to subclassing,
and are particularly useful when there exist many variants of a business rule,
e.g., the DetPlanning policy object in �gure 2 that contains a plan-driven busi-
ness procedure to determine material requirements of a maintenance unit based
on the Bill-of-Material (see the next section for an elaborated description). In
case of multiple alternative business policies, the selection logic is isolated in
a separate selection class that determines which business policy object to use
in a particular context, e.g., the determinePlanning business policy selection
object that encapsulates logic to trigger a deterministic planning policy object
(DetPlanning) or a consumer based planning policy (ConsBasedPlanning) in
�gure 2. This solution is based on the `chain-of-responsibility' pattern [19].

The main advantage of business policy objects is that the volatile business
logic is stored in an isolated place, and can be easily changed, while minimizing
the impact on other parts of the business application. A potential drawback of
this patterns is that the clients of the business policy objects must be aware that
there exist multiple variants [19].

3 Business Applications

When developing applications based on business objects and processes it is im-
portant to address two interrelated factors: (a) the linking of business objects
with legacy information systems, and (b) the requirements for change so that
business information systems can evolve over time. Thus we view change man-
agement dealing with these two essential and interrelated aspects. Any new

332 M.P. Papazoglou and W.-J. van den Heuvel

environment must leverage investments in legacy systems, it must also allow
its business processes to adapt to changes enforced by new corporate goals or
policies.

3.1 Leveraging Legacy Assets

In an enterprise framework there is a pressing demand to integrate `new gen-
eration' business processes with legacy perspectives, processes and applications.
Legacy systems are systems that are critical for the day-to-day functioning of
an organization, they normally comprise monolithic applications that consist
of millions of lines of code in older programming languages (e.g., COBOL), are
technically obsolete with a poor performance and hard to adapt and maintain [6].
However, they are valuable assets of an organization that can be leveraged and
integrated into next generation business systems. The break-up of monolithic
business units and processes from a business perspective requires a restructur-
ing of the applications that support them and, at a minimum, �nding a way to
integrate them. Additionally, the nature of many of these new processes means
that they must be integrated at the transaction level, not just via replication
and batch transfers of data. There are various strategies to deal with legacy
systems [6], like discarding, replacement of the legacy system, enhancement of
the existing system and selective integration. This last technique makes it easier
to integrate parts of a legacy system into new systems.

Object wrappers are a successful technology to support integration of busi-
ness objects with legacy systems. It allows mixing legacy systems with newly
developed applications by providing access to the legacy systems. The wrapper
speci�es services that can be invoked on legacy systems by completely hiding
implementation details. The advantage of this approach is that it promotes con-
ceptual simplicity and language transparency. A detailed study of how legacy
relational databases can be transformed to semantically equivalent representa-
tions accessible via object-oriented interfaces can be found in [7].

3.2 Adaptability of Business Processes

To remain competitive organizations must be able to move fast and adapt quickly
to change. Moreover, they must be able to recon�gure their key business pro-
cesses as changing market conditions dictate. Enterprises must respond to new
requirements quickly without interrupting the course of business. Such changes
must be mapped to the business object level and related to already existing
enterprise models. New business requirements might require new processes and
workows to be implemented, but the existing business rules and data in legacy
systems may only be partially reusable. Using a purely bottom-up approach is
not desirable, although many commercial systems support it, as the danger is
that we simply perpetuate legacy ways of working.

In the enterprise framework described in Figure-1 we take the classical orga-
nizational view that business changes are initiated by changes to business goals.
This is in accordance with approaches towards linking the organizational goals

333Configurable Business Objects

to business activities that have been identi�ed in the research literature [8]. It
is only natural to expect that these changes would become `visible' at the work-
ow level. However, it is virtually impossible for workows to predict in advance
all potential exceptions and paths through a business process. Most workow
products require all exceptions to be predicted and built into the process de�ni-
tion. Rather than insisting that all exceptions are predicted in advance, workow
systems must allow users to change the underlying process model dynamically
to support a particular case of work. To achieve this degree of business process
adaptability, each case of work must be related to a distinct and corresponding
process fragment. A critical challenge to building robust business applications
is to be able to identify the reusable and modi�able portions (functionality and
data) of an existing business process or object and combine these with `newer
generation' business processes/objects in a piecemeal and consistent manner.
These ideas point towards a methodology that facilitates pro-active change man-

agement of business objects that can easily be retro�tted to accommodate selec-
tive functionality from legacy information systems. We refer to objects exhibiting
such characteristics as adaptable business objects.

4 Linking Enterprise Models to Business Applications

The BALES methodology, that is under development, has as its main objective
to parameterize business objects with legacy objects. Legacy objects serve as
conceptual repositories of extracted (wrapped) legacy data and functionality.
These objects are, just like business objects, described by means of their inter-
faces (services) rather then their implementation. A newer generation business
object interface can be constructed by selecting a chunk of an existing legacy ob-
ject interface. This partition comprises a set of appropriate attribute and method
signatures. All remaining interface declarations are masked o� from the business
object interface speci�cation. This means that business object interfaces are pa-
rameterizable to allow these objects to evolve by accommodating upgrades or
adjustments in their structure and behavior.

The core of the BALES-methodology comprises three phases (see Figure-
2): enterprise modeling (or forward engineering), reverse engineering and meta-

model linking.

4.1 Case Study: Maintenance and Overhaul of Aircrafts

To illustrate the BALES mapping methodology a simpli�ed example is drawn
from the domain of maintenance and overhaul of aircrafts (see Figure-2). The
upper part of this �gure illustrates the results of the enterprise modeling phase
of the business domain in terms of workows, business processes and business
objects. The enterprise model is represented in an extended version of UML,
called BALES UML, that o�ers basic constructs such as business-objects, and
business policies, as UML does not provide the object-oriented reections of
these prototypical business concepts.

334 M.P. Papazoglou and W.-J. van den Heuvel

The BALES UML dialect has been specially designed to enable the gen-
eration of BALES Component De�nition Language (CDL) compliant busi-
ness object interface descriptions. BALES UML extends and re�nes extends
the semantics of UML by adding stereo-types such as <<BusinessWorkflow>>,
<<BusinessPolicy>> to respectively denote business workows and business
policies.

As can be seen from Figure 2 the enterprise model is enacted by a
Request Part workow which comprises three business processes: Request,
Prognosis and Issue. The Request Part workow is initiated by a mainte-
nance engineer who requests parts (for maintaining aircrafts) from a warehouse.
The Request process registers the maintenance engineer's request in an order
list. This list can be used to check availability and plan dispatch of a speci�c
aircraft part from the warehouse. The Request process uses the business (entity)
objects Part and Warehouse for this purpose. Subsequently, the workow initi-
ates an Issue process (see Figure-2). The Issue process registers administrative
results regarding the dispatching of requested part and updates the part inven-
tory record by means of the Part Stock business object. The Prognosis process
uses information from the Part and Warehouse business objects to run a prog-
nosis on the basis of the availability and consumption history of the requested
part.

The lower part of the picture Figure-2, represents the result of the reverse en-
gineering activity in the form of two processes (wrapped applications and related
databases) Material Requirements Planning and Purchase Requisition.
These processes make use of �ve legacy objects to perform their operations.
Figure-2 also indicates that the enterprise workow draws not only on `modern'
business objects and processes, but it also leans on already existing (legacy) data
and functionality to accomplish its objectives. For example, business processes
such as Request and Issue, on the enterprise model level, are linked to the legacy
processes Material Requirements Planning and Purchase Requisition by
means of solid dashed lines. This signi�es the fact that the processes on the
business level reuse the functionality of the processes at the legacy model level.
In this simpli�ed example we assume that problems such as conicting naming
conventions and semantic mismatches between the enterprise and legacy models
have been resolved. A possible solution to this problem can be found in [13].

To formally describe the interfaces of business and legacy objects we use a
variant of the Component De�nition Language (CDL) that has been developed
by the OMG [14].

4.2 BALES Component De�nition Language (CDL)

CDL is a declarative language to specify the services of collections of business
objects, their relations, dynamics, business constraints and attributes. Business
objects are not written in CDL, but in programming models for which lan-
guage mappings are available, e.g., Enterprise Java Beans. CDL is a superset
of the Interface De�nition Language (IDL), the ODMG Object De�nition Lan-
guage (ODL) and the ODMG Object Query Language (OQL). This speci�ca-

335Configurable Business Objects

Enterprise
Workflow

Business
Process

Business
Object

Legacy
Process

Legacy
Entity

Material_Requi rement s_Planning

<<Bales-LegacyProcess>>

Purchase_Requis ition

<<Bales-Legacy

Warehouse

<<Bales-LegacyEntity>>

0..*0..* 0..*

0..*

0..*

Stock

<<Bales-LegacyEntity>>

0..*0..*
0..*

0. .*

Part

<<B ales-LegacyEntity>>

0..*

0..*

0..*

0..*

0..*

Material_Master_Planning

<<B ales-LegacyEntity>>

0. .*

0..*

Plant

<<Bales-LegacyEntity>>

0..*

0. .*

0 ..*

0..*

0..*0..*

0..*

has

relatesto

involves

0..*

0..*

0..*

0. .*

0. .*

0..*

0..*

concerns

uses

uses

0..*

0..*

0..*

0..*

0..*

0. .*

has s tores

DetPlanning

plan()

<<BusinessPolicy>>

ConsBasedPlanning

plan()

<<Bus inessPolicy>>

Maintenance_Engineer

(f ro m Busin essObj ects)

<<BusinessObject>>

Warehouse

warehouseID : Integer

(f rom Busin essObj ects)

<<BusinessObject>>

Request

(from BusinessProcesses)

<<BusinessProcess>>

Issue

quantityRequest : Integer

<<Signal>> issue()

(from BusinessProcesses)

<<BusinessProcess>>

Part

(from BusinessObjects)

<<BusinessObject>>

Stock_Location

stockID : Integer

(from BusinessObjects)

<<BusinessObject>>

Part_Stock

(from BusinessObjects)

<<Bus inessObject>>

0..*

0..*

+boS
0..*

+boW0..* has
located

+boSL

+boPS

stores

Request_Part

workID : Integer

stateDescription : S tr ing

activeProc ess : Object

(from BusinessObjects)

<<BusinessWorkflow>>

0.. *

0..*

+bp 0.. *

+wfl 0..*

involved

0..*

0..*

+bp 0..*

+wfl
0..*

involved

Request_Part_Control

workflowID : Integer

activeProcess : Object

checState()

(from BusinessObjects)

<<BusinessObject>>

0..*

0..* +boRPC

0..*

+boME0..*
has

+boRPC

+boW

controls

0..*

+boR

+bp
0..*

0..*

+boRPC

+bpI
0..*

0..*

0..*

+boRPC
0..*

+boP
0..*

controls
+boSL

+boRPC
involves

+boPS

+boRPC

administers

0..*

+BP

+WFL

0..*

Prognosis

consumptionHistory : String

consumptionPeriod : Date

expectedSpecialSale : Integer

totalExpectedConsQualityinPeriod : Integer

plan()

<<Signal>> register_expected()

<<Signal>> register_expected_stock()

manualReoderPointPlanning()

(from BusinessProcesses)

<<BusinessProcess>>

0.. *

0..*

+bpP

0.. *

+wflR

0..*

involved

0..*

+boRPC

+bpP 0..*

determinePlanning

<<BusinessPolicySelector>>

Fig. 2. Developing an enterprise model by means of reusing legacy processes and ob-
jects.

336 M.P. Papazoglou and W.-J. van den Heuvel

tion language extends IDL by adding several `high-level' constructs to capture
more business semantics. IDL indeed merely de�nes object methods to implement
language-independent distributed objects, which can be plugged in to a broker
(ORB) that provides additional services such as security, concurrency and trans-
action services. The goal of CDL transcends this rather low-level, inter-object
communication purpose of IDL, and is oriented towards delivering distributed
(business) objects based on the Business Object Facility (BOF), specifying Com-
mon Business Objects and delivering marketable business objects by software
vendors. The BOF is a run-time software infrastructure to support business
object components, o�ering services such as transaction management, and mes-
saging.

Obviously, components are the central notion in CDL. According [14], CDL
components de�ne collections of business objects, dependents, applicances and
subsystems. As explained before, business objects are a special category of
objects with clear business semantics, such as customer, bill, and request-for-
quotation. Dependents are volatile objects, without identity, that can only per-
sist within the context of a business object, and are commonly used to de�ne at-
tribute types. This category of objects typically does not have a speci�c business
meaning, but adds business semantics by de�ning the type of business object at-
tributes and parameters. There are �ve types of dependents: primitives (CORBA
data types, such as integer and string), elementary objects (frozen data type ob-
jects, such as currency (pounds) and weight (kg)), composite objects, immutable
objects (data types that can not be changed) and, lastly, collections (e.g., arrays
and bags). Appliances can be attached, or applied, to container objects (e.g., a
business object). Individual appliances only have some meaning when applied
to a container type, e.g., the policy object `discount-policy' (the appliance) has
only meaning if applied to the business object `Customer' (the container). All
these components can be organized into a coherent collection with a uniform
interface, called a subsystem.

BALES CDL adds the following constructs to the core CDL: legacy objects
and processes, and, business goal, policy and workow objects. We have already
dealt with business goals, policies and workows in section 2.5.

A legacy (entity) object consists of wrapped legacy data and functional-
ity (transactions). In case of a relational data model, the legacy objects gen-
erally consist of wrapped relations and transactions to update/insert or delete
rows of that relation, e.g., a relation `Employee' in a relational model, can be
wrapped an accessed by means of set- and get-methods that surround this ta-
ble. In [7], we discuss a methodology that articulates an approach to transform
legacy relational databases to semantically equivalent representations accessi-
ble via object-oriented interfaces and data languages. Legacy processes are ob-
jecti�ed programs, subroutines or even procedures depending on their level of
granularity, which represent the `legacy' way of working. Legacy process objects
are implemented as control objects that organize legacy object transactions into
logical units of work. The state of a legacy process is stored in the legacy (entity)
objects.

337Configurable Business Objects

Finally, BALES CDL supports SAP Business Application Programming In-
terfaces (BAPIs), which can be used to describe SAP Business Object services.

4.3 A CDL Excerpt

In the following we give a CDL-code excerpt to illustrate how the opera-
tion plan of the business process object Prognosis is implemented by a se-
mantically equivalent operation materialized by the legacy business process
Material Requirements Planning, see Figure-2. We �rst give a CDL de�ni-
tion of the legacy business process, see Figure-3.

// Definition of the legacy business process Material Requirements Planning

LegacyProcess Material_Requirements_Planning {

// the relations of the process object, with other components

relationship has References Part;

relationship for References Plant;

relationship concerns References Warehouse;

// the dynamic behavior

signal register_expected;

signal start_long_term_planning;

signal start_stat_analysis;

// Methods to implement Material Requirements Planning

// forecast stock on basis of deterministic planning

void forecastDetModel(in Integer partID, in Integer stockID,

in Integer warehouseID, in Date consumptionPeriod,

in Integer consumptionHistory);

// forecast stock on basis of consumption based planning

void planProduct (in Integer artID, in Integer stockID,

in Integer warehouseID);

// state transition rule of Material Requirements Planning

apply StateTransitionRule ProgProcessing {

trigger = {register_exp_stock};

source = processing;

target = handled;

}; # end str

}; // end process Material_Requirements_Planning

Fig. 3. CDL de�nition of the MRP legacy process object.

The CDL excerpt in Figure-3 de�nes the legacy process
Material Requirements Planning which is associated with the legacy
objects Warehouse, part and plant see Figure-2. This legacy process can be
used to forecast all the part requirements in the warehouse. For this purpose it
uses the legacy operation forecastDetModel.

The CDL speci�cation in Figure-4 de�nes the business object operation
forecast in terms of the legacy operation Material Requirements Planning,
given in the previous. The legacy operation is embedded in the business process
object as a parameter of the forecast operation.

4.4 Meta-Model Linking

The enterprise modeling phase de�nes a conceptual enterprise model into CDL
and links this CDL de�nition to the prede�ned Meta-CDL Enterprise Model.

338 M.P. Papazoglou and W.-J. van den Heuvel

BusinessProcess Prognosis {

[PRIVATE] attribute Bag consumptionHistory;

[PRIVATE] attribute Date consumptionPeriod;

[PRIVATE] attribute Integer expectedSpecialSale;

[PRIVATE] attribute Integer totalExpectedConsQuantityinPeriod;

signal register_expected ();

signal register_exptected_stock ();

relationship boRPC IsPartOf BusinessObjects::Request_Part_Control inverse bpP;

// abstract method implemented by policies

void plan ();

void manualReorderPointPlanning (in Integer artID, in Integer stockID, in Integer warehouseID);

}; # end process Prognosis

BusinessPolicySelector determinePlanning {

relationship BPProg IsOwnedBy BusinessProcesses::Prognosis inverse BEdetPl ;

}; // End: determinePlanning

BusinessPolicy DetPlanning : determinePlanning {

// Plan driven planning policy

// Mapping of forecasting method to legacy process component MRP

void plan (Warehouse.Material_Requirements_Planning.forecastDetModel(in Integer partID, in Integer stockID,

in Integer warehouseID, in Date consumptionPeriod, in Integer consumptionHistory));

}; // End: DetPlanning

BusinessPolicy ConsBasedPlanning : determinePlanning {

// Stochastic planning policy

// Manual reorder point procedure

void plan (in Integer artID, in Integer stockID, in Integer warehouseID);

}; // End: ConsBasedPlanning

Fig. 4. CDL de�nition of a business object.

The Meta-CDL Enterprise Model de�nes and relates all enterprise modeling
CDL concepts. During the reverse-engineering phase, that is conceptually equal
to the forward engineering phase, legacy object and process interfaces are again
represented in terms of CDL and are used to instantiate the Meta-CDL Legacy

Model. The Meta-CDL Legacy Model is integrated with the Meta-CDL Enter-
prise Model into a single canonical model and relates all reverse engineering
concepts. The CDL descriptions of both the enterprise and reverse-engineered
models are then compared to each other in order to ascertain which parts of the
legacy object interfaces can be re-used within new applications. To achieve this,
we represent and store both business and legacy (Meta-)CDL speci�cations in
a repository system. For this purpose we utilize the ConceptBase system [15]
because it has an advanced query language for abstract models (like the CDL
meta model) and it uniformly represents objects at any abstraction level (data
objects, model components, modeling notations, etc.). The representation lan-
guage that underlies ConceptBase is based on the logical formalism Telos [16],
that has a frame syntax to represent classes and objects. During the meta-model
linking phase, queries are used to infer potential legacy components that may
be linked to business components. For instance, we can identify business object
attributes and/or operations that can be constructed out of legacy object at-
tributes and/or operations. Telos queries are used to retrieve exact or partial
matches of signatures of requested components that are stored in a repository.
To ensure type safety on method arguments and method results we require the
use of argument contravariance (expansion) and result covariance (restriction).

In the same way as described in the above, the BALES methodology can
deliver parameterized business objects in terms of ERP component interfaces,
e.g., expressed in SAP BAPIs, as long as they can be mapped to the BALES

339Configurable Business Objects

metamodel. A detailed description of the BALES methodology can be found in
[9].

5 Proactive Business Change Management

Business object technology o�ers interface evolution as a resilient solution to
business change, as business object interfaces can be changed without a�ecting
the underlying implementation. This enables minimal coupling between business
components: an essential condition for serious reuse. The business components
are not explicitly bound to each other, rather messages are trapped at run-time
by a semantic data object that enforces the binding at the level of parameter
passing semantics [10].

5.1 Mapping Business Changes to the Business Object Level

As we have indicated in section 3.2, business changes need to be mapped down
to the business object level. In fact, the BALES methodology assumes that
business change is goal driven. This intentionality of the organization is implicitly
implemented by linking business policies to the business processes, and their
constituents.

According to Acko� [20], there are various ways to (re)act to change. The
�rst category of business change constitutes reactive change, and refers to an
unplanned response to a changed `reality'. On the other side of the specter we
discern planned, or active change management. Active change management as-
sumes that organizational changes can be designed by the management, and
implemented by the business. It only seems logical that this category of busi-
ness change does not challenge business application development as much as
unanticipated business changes.

BALES advocates a exible information system architecture to quickly antic-
ipate on reactive change. This strategy is called pro-active change management.
Therefore, BALES de�nes adaptive, parameterizable business objects that are
easy recon�gurable to meet changed market conditions, and can easily be re-
parameterized to reallocate the business object to legacy system mapping.

Thus, BALES prescribes the following two-step approach to incorporate busi-
ness change:
1. Adapt existing enterprise model to reect the new business reality.

Based on their impact and the ability to deal with change within the context
of existing organizational procedures, BALES considers various mechanisms
to pro-actively anticipate on business change:

{ Changes to enterprise goals and value chain.
In case of strategic business change, the business rede�nes its value chain,
in terms of business goals, policies, products and services. This category
entails the most drastic change, and typically leads to changes at all levels
of the enterprise architecture, from the business workows which de�ne

340 M.P. Papazoglou and W.-J. van den Heuvel

how services are implemented for a (internal or external) customer, to
the business objects, on which the business processes ow. Moreover,
business goals typically need to be rede�ned and re-mapped to business
processes.

{ Changes to enterprise Planning and Control (P&C).
The Planning and Control processes in an organization allocate recourses
to operational business processes by a sophisticated material and capac-
ity requirement planning process. Recourse processes support the pri-
mary, operational business activities, and improve their e�ectivity and ef-
�ciency, e.g., planning, quality control and human recourse management.
Operational business processes constitute the primary value adding busi-
ness activities, such as inbound logistics, assembly, packaging and sales.
Changes in the P&C cycle typically result in changed workow object
de�nitions. The planning and control workows are typically organized
to implement one of the six reference, co-ordindation mechanisms of
Mintzberg [17].

{ Changes to Business Processes.
Businesses are required to continuously re-engineer their (key) business
processes to adequately respond to a changed environments. A more
radical approach is to totally rethink and re-engineer the business as
from scratch to considerable improve the business's e�ectiveness and
e�ciency. Both types of business process changes obviously result in a
rede�ned business process and object layer in the enterprise architecture.

{ Changes to Business Policies.
The changes, we have discussed up till now, can not be handled by ex-
isting organizational routines. The organization's structure needs to be
transformed to deal with them. In some cases however, a realignment of
strategy rather than transformational change is su�cient. BALES pro-
vides business policies to deal with incremental change by �netuning the
legacy way of working (pro-active change) or slightly adapting (reactive
change) the current business rules. In 2.5, we have discussed the policy
mechanisms to cope with both types of incremental change.

2. Determine new mapping between enterprise model and legacy systems.
After the business model has changed, the business object implementator
needs to determine a new mapping between the business objects from the
enterprise model and the legacy system(s).
During this step, the implementator needs to determine the renewed map-
ping between the enterprise model and the reverse engineered legacy system
model, without any side e�ects to the non-changed objects.

5.2 An Example of Process Changes

Due to a changed political climate the budgets of the Dutch defense organization
have been tightened considerably over the past years. Therefore, defense opera-
tions need to be implemented more e�ciently. These developments substantially

341Configurable Business Objects

inuenced the way of working with the warehouse operations which we described
in section 4.1.

The enterprise model of the maintenance and overhaul organization (see
Figure-2), was based on the legacy business routines, reverse engineered on the
basis of employee's requirements and procedure handbooks, and represents the
way of working of several years back. Due to pressure of the DoD to minimize
costs, the accounting department adviced the defense sta�, amongst other things,
to modernize the forecasting method and utilize a more cost-aware planning and
control cycle for the (required) stocks in the warehouse.

The redesigned planning process does not incorporate a simple extrapolation
of past inventory levels and demand but rather employs a sophisticated algorithm
that optimizes the required inventory stock not only on the basis of required parts
but also the inventory costs.

Figure 5 illustrates how we can replace part of an existing business process
de�nition with newer business functionality using CDL speci�cations. As can
be seen in this �gure, the proposed incremental business changes imply a re-
parameterization of the DetPlanning policy object that encapsulates the volatile
planning business procedure.

BusinessPolicy DetPlanning : determinePlanning {

// Mapping of forecasting method to legacy process component MRP

plan (in LegacyProcess Warehouse.Material_Requirements_Planning.

forecastDetModel(in Integer partID, in Integer stockID, in

Integer warehouseID, in String consumptionHistory), in Currency partCost);

}; // End: DetPlanning

Fig. 5. CDL de�nition of the changed business policy DetPlanning.

The new plan method reuses the legacy deterministic material requirements
planning algorithm forecastDetModel, that employs a gross requirements plan-

ning, and adds a partCost parameter in order to determine inventory costs. By
doing this, the optimal inventory level of parts is not only calculated on the ba-
sis of part quantities (gross requirements) but also on available storage location,
plant and order stocks (the so called net requirements, which are computed on
the basis of the bill-of-material (BOM)).

Though this example is rather simplistic, it indicates how BALES can proac-
tively deal with business change by simply re-parameterizing the business (pol-
icy) object detPlanning which is encapsulated in Prognosis, without introduc-
ing any side e�ects to existing objects.

6 Summary

Enterprises need exible, modular business processes that can easily be con�g-
ured to meet the demands of business and technology changes. In this chapter
we argued that the combination of new business models with controlled change

342 M.P. Papazoglou and W.-J. van den Heuvel

management are the driving forces that will eventually transform relatively in-
dependent organizations into cooperating enterprises.

We have described the BALES (binding Business Applications to LEgacy
Systems) methodology that we are currently developing. The methodology's
main objective is to inter-link parameterizable business objects to legacy ob-
jects and implement pro-active change management. Business objects are con-
�gured so that part of their implementation is supplied by legacy objects or by
evolvable business objects. This means that the interfaces of `modern' business
objects are parameterizable (or self-describing) to allow these objects to evolve
by accommodating upgrades or adjustments in their structure and behavior.

References

1. F. Manola et al. \Supporting Cooperation in Enterprise Scale Distributed Object
Systems", in M.P. Papazoglou and G. Schlageter, editors, Cooperative Information
Systems: Trends and Directions. Academic Press, London, 1998.

2. T. Curran, G. Keller, and A. Ladd. SAP R/3 Business Blueprint: Understanding
the Business Process Reference Model. Prentice-Hall, New-Jersey, 1998.

3. S. Paul et. al. \Essential Requirements for a Workow Standard", OOPSLA'98
Business Object Workshop III, http://www.je�sutherland.org/oopsla97/, Atlanta,
October 1997.

4. S. Abinavam et al. San Francisco Concepts & Facilities. International Technical
Support Organization, IBM, February 1998. SG24-2157-00.

5. M.P. Papazoglou, A. Delis, A. Bouguettaya, and M. Haghjoo. \Class Library
Support for Workow Environments and Applications", IEEE Transactions on
Computer Systems, 46(6), June 1997.

6. M. L. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways, Interfaces
and the Incremental Approach. Morgan Kaufman Publishing Company, 1995.

7. M.P. Papazoglou and W.J. van den Heuvel. \Leveraging Legacy Assets", to appear
in M. Papazoglou, S. Spaccapietra, Z. Tari, editors, Advances in Object-Oriented
Modeling, MIT-Press, 1999.

8. P. Loucopoulos et. al. Using the EKD-Approach - The Modelling Component.
Techn. report, WP/T2.1/UMIST/1, UMIST, April 1997.

9. W.J. van den Heuvel, M.P. Papazoglou, and M.A. Jeusfeld. \Con�guring Business
Objects from Legacy Systems", Procs. CAISE'99 Conf., Heidelberg, Germany,
Springer-Verlag, June 1999.

10. P. Eeles and O. Sims. Building Business Objects. John Wiley & Sons, New York,
1998.

11. M.L. Brodie. \The Emperor's Clothes are Object-Oriented and Distributed" in
M.P. Papazoglou and G. Schlageter, editors, Cooperative Information Systems:
Trends and Directions, Academic Press, 1998.

12. M.T. Schmidt. \Building Workow Business Objects, Object-Oriented Program-
ming Systems Languages Applications", Proceedings of the OOPSLA'98 Business
Object Workshop, Springer, 1998.

13. M.P. Papazoglou and S. Milliner. Content-based Organization of the Information
Space in Multi-database Networks", in B. Pernici and C. Thanos, editors, Procs.
CAISE'98 Conf., Pisa, Italy, Springer-Verlag, 1998.

14. Data Access Technologies. \Business Object Architecture (BOA) Proposal",
BOM/97-11-09, OMG Business Object Domain Task Force, 1997.

343Configurable Business Objects

15. M.A. Jeusfeld, M. Jarke, H.W. Nissen, and M. Staudt. \ConceptBase: Managing
Conceptual Models about Information Systems", in P. Bermus, K. Mertins, and
G. Schmidt, editors, Handbook on Architectures of Information Systems. Springer-
Verlag, 1998.

16. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. \Telos: Representing
Knowledge about Information Systems", ACM Transactions on Information Sys-
tems, 8(4), 1990.

17. Henry Mintzberg. \The Structuring of Organisations", Prentice-Hall, Englewood-
Cli�s, 1979.

18. SAP. http://www.sap.com/products/industry/,
19. E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Publishing Company, 1999
20. R.L. Acko�. `Management misinformation systems', Management Science,

14(4):147-156.
21. G. Johnson and K. Scholes. Exploring Corporate Strategy, Prentice Hall, 1999

344 M.P. Papazoglou and W.-J. van den Heuvel

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 345-358, 2000
 Springer-Verlag Berlin Heidelberg 2000

Workflow Management between
 Formal Theory and Pragmatic Approaches

Stefan Jablonski

Friedrich-Alexander-Universitaet Erlangen-Nuernberg
Computer Science Department VI (Database Systems)

Martensstrasse 3, 91058 Erlangen, Germany
Stefan.Jablonski@informatik.uni-erlangen.de

Abstract. A general and globally accepted formal theory for workflow man-
agement is still not in sight. Since workflow management is said to be very ap-
plication-driven, the question arises, whether a formal theory is necessary and
possible at all. This article identifies the major domains of workflow manage-
ment and discusses the necessity of formal theory and pragmatic approaches,
respectively.

1 Current Situation

Since the advent of workflow management technology at the beginning of the nineties
a lot of contributions to this area were made. Although this looks promising the over-
all goal to develop a generally applicable theory and a conceptual basis for workflow
management still has not been met. Very many contributions narrow down to a very
particular issue of workflow management; they find a tricky and often very valuable
solution for a niche problem. Nevertheless, a step forward towards a generally appli-
cable, conceptual model for workflow management is still not made. Three peculiari-
ties characterize contributions in the workflow management area:
• Contributions are pragmatic.

Many researchers state that workflow management is a discipline that is totally
driven by the application. Since in many applications, theory is not directly appli-
cable, they conclude that a formal theory for workflow management is also not
relevant. This results in “how-I-did-it” approaches and solutions which contribute
nothing but the single solutions to specific problems with only minor general
value.

• Contributions claim to be general but are not.
There is another group of researchers that are convinced that a formal theory is
necessary for workflow management. Thus, many contributions present approaches
towards this goal. Among other things, they introduce meta-models that ought to
define a global concept for workflow management. Nevertheless, most of these ap-
proaches cannot hold what they promise. For instance, [4] investigates some of
these approaches and undoubtedly proofs that they fail with respect to general ap-
plicability. Also the investigation in [4] is dated back to 1996, the situation has not

346 S. Jablonski

changed significantly. The results of this research are still applicable and valid. The
investigations reported in [5] support this observation.

• Contributions are too much influenced by adjacent research areas.
Workflow management is a discipline on its own. However, many researchers stem
from other, mostly adjacent research areas. Database management, in particular
transaction management, and Petri Nets are two very dominant examples. Thus,
often theories developed within one of these adjacent research areas are transferred
into workflow management without critical assessment and necessary adjustment.
The question whether these borrowed theories are applicable at all in the context of
workflow management is asked too rarely.

In order not to be misunderstood. All three types of contributions are valuable. Al-
though, they do not define by themselves a generally applicable theory for workflow
management. They merely contribute valuable, but also limited experiences, methods
and concepts with respect to this goal. Nevertheless, without taking into considera-
tions the results of all these approaches a theory for workflow management cannot be
formulated.

The need for a theory must be recognized and is not debatable. The more interest-
ing and challenging question asks for the kind(s) of theory that is (are) needed and for
the places within workflow management where this theory (theories) is (are) applied.
We believe that workflow management can best be characterized by three key do-
mains:
• The development of workflow management applications, i.e. the development of

workflows. The emphasis is on the organization of the development process.
• The specification of workflow management applications, i.e. the specification of

workflows. The formal model to describe workflows is under consideration.
• The execution of workflow management applications, i.e. the execution of

workflows. The system infrastructure required to enact applications is investigated.
Hereby, a workflow management application comprises a set of workflows which
altogether implement a specific application system.

The contribution of this article is to investigate the three key domains of workflow
management with respect to the question whether either formal theory and/or prag-
matics is necessary in order to support the corresponding task adequately. In this
paper, pragmatics is interpreted as the application of common knowledge and specifi-
cally of experiences gathered in the domain. Therefore, the three key domains of
workflow management are investigated in Section 2. This discussion identifies the
main features of workflow management. Section 3 then explores the three key do-
mains and finds out where formal theory and where pragmatics can best be applied.
Along this line, recommendations for more pragmatic approaches and solutions will
be given. Formal theories are named and if available introduced briefly.

Although revealing essential issues of workflow management this chapter does not
claim to give definitive answers to the right balance between formal theory and prag-
matic approaches nor does it provide a complete theory for workflow management.

Workflow Management between Formal Theory and Pragmatic Approaches 347

2 Workflow Management Systems and Applications

In the former section the three key domains of workflow management are identified.
We will see that the discussion of the development process of workflow management
applications boils down to the discussion of the relationship between application
processes and workflow (Section 2.1). The specification of workflows needs a
workflow language. Section 2.2. introduces a general and abstract workflow lan-
guage. The execution of workflow management applications demands a so-called
workflow engine, i.e. an execution infrastructure for workflows. This infrastructure
can best be investigated by analyzing its architecture.

The presentations of the three key domains reveals either the major issues of each
key domain and identifies the major challenges of a key domain. The discussion in
Section 3 then refers to these issues and challenges and discusses the preference of
either a formal theory or a pragmatic approach.

2.1 Lifecycle of a Workflow Management Application

Big software systems cannot conceivably be specified by one person. Besides, the
development of big software systems will progress steadily into more detail such that
a so-called development lifecycle derives. Fig. 1 shows a typical development lifecy-
cle for workflow management applications [11].

Fig. 1. A development lifecycle for workflow management applications.

In the phase enterprise planning an overview model of an enterprise is built. It is
refined in the phase business area analysis. In application systems that are suitable for
the deployment of workflow management technology the result of the phase business
area analysis will always be a set of application processes, often called business proc-
esses [16]. The application processes are transformed into workflow schemes in the

Enterprise
planning

Business Area
Analysis

System
Design

Construction

Overview
Model of En-

terprise Application
(Business)
Processes

Workflow
Schemes

Workflow
Instances

348 S. Jablonski

subsequent phase system design. Finally, in the construction phase workflow in-
stances are derived from workflow schemes and are executed.

As it is examined in [2] extensively, workflows are derived from application proc-
esses. This is very valuable since much information that is relevant for a workflow
model (workflow scheme) can be deducted from a corresponding application process
directly [7]. Nevertheless, application processes are the result of the analyses of an
business area. Their purpose is to describe the main features of an business area in an
illustrative way. Therefore, an application process bears the main structure and
meaning of the business area. However, since application processes are more de-
scriptive they are not executable normally [2]. In order to execute them they have to
be transformed into an executable form. A workflows is one possible form; and it is
executable on a workflow management system. Thus, application processes can be
regarded as drafts for the design of workflow schemes.

Although it is an important observation and is mostly true, the main difference
between an application process and a workflow is not that the former one is illustra-
tive and the latter one can be executed. The main distinction stems from the different
purposes they are serving. Application processes are created during business area
analysis; they have to describe the contents of an application area. Workflows are
created during system design; they are an implementation vehicle - mostly tailored to
the enactment of application processes.

We regard the relationship between application processes and workflows as one of
the most interesting features within the development lifecycle of workflow manage-
ment applications. Two key issues have to be mentioned.
• Derive design information for a workflow from the corresponding application

processes as much as possible. Often application processes already bear contents
and structure that can be borrowed by the workflow designer. Although, it is well
proven that this does not always imply a direct mapping from an application proc-
ess to a workflow [2], the information compiled into an application process is an
asset with the specification of workflows. And it has to be stated again, workflows
and application processes are not identical. Very often they even show a totally dif-
ferent structure.

• Maintain the relationship between application processes and workflows. To pre-
serve this relationship especially pays off when changes are encountered. For in-
stance, when an application process must be changed, the workflows that also have
to be adjusted can be found effectively and efficiently if the relationship between
application processes and workflows is kept.

Another issue along the development of workflow management application is the
aspect of reusability. When big application systems comprising hundreds of
workflows have to be developed, it is very advantageous to leverage on the results of
other application system development processes. This means that workflows that
already have been developed (in other projects) should be reused. To organize the
reuse of whole or parts of workflows (e.g. an organizational policy, a large data
structure, a program wrapper) is another challenge.

Workflow Management between Formal Theory and Pragmatic Approaches 349

2.2 An Abstract Workflow Language

The goal of this section is to introduce a general and rather abstract language for the
definition of workflows. The major features of such a language should be identified in
a general way. Therefore, not a concrete language will be introduced but instead a
number of concepts which characterize this language. The concepts then should be
applicable to many workflow languages. A brief mapping to a real workflow language
will demonstrate the applicability of the concepts developed.

The purpose of a workflow language is to describe workflows. Workflows are
derivations of application processes as we have learned in Section 2.1; they can be
executed by a workflow management system. In order to find out what language con-
structs are needed to build a basis for the description of workflows, we want to look
into real life and want to see how application processes are enacted there. Hereby, we
iterate a few times and refine the concepts identified step by step.

The two main concepts of a workflow language can nicely be derived from the
term "workflow": "work" and "flow". Work has to be performed, besides, there is
some flow (of work). At first, a place where work is performed must be identified. It
is called work unit. Thus, work flows between work units, i.e. work is exchanged
between work units. Examples of work units in real life are offices, where office work
is performed, or shop floors, where manufacturing work is performed. When more the
processing task within a work unit is of interest, a work unit is also called work step.

W
p
a
e
It
th
in

FKDQQHO

F�
Fig. 2. The two basic concepts of a workflow language: work units and channels

ork units are independent from each other, i.e. each work unit can be set up inde-
endent from other work units. However, since work is flowing between them there
re connectors between them, called channels. We will see later that there are differ-
nt types of channels. Fig. 1 shows the two major concepts work units and channels.
 becomes obvious that channels can connect multiple work units not just two. Fur-
ermore, channels can sometimes bear a direction. This issue will be discussed later
 this sub-section.

ZRUN XQLW

ZX�

ZRUN XQLW

ZX�

ZRUN XQLW

ZX�

FKDQQHO

F�

FKDQQHO

F�

FKDQQHO

F�

FKDQQHO

F�

350 S. Jablonski

A next iteration of discussion will refine work units and channels. Refining a work
unit reveals the question about its components. Looking at the real world examples
from above again, three pieces come into the mind: people who perform work at a
work unit, tools that are needed to carry out work and operations that are executed at
a work unit. Hereby, operations form logical units of execution; tools are deployed
within operations in order to provide the required functionality.

When refining the definition of channels, the concept of work has to be analyzed
first. Again, we want to learn from the real world examples. In an office environment,
an incoming document folder indicates work for the office clerk. In an manufacturing
environment, delivered pieces that have to be assembled also indicate work. In an
abstract view, documents and pieces are nothing but data and material. Thus, data and
material flow along channels, i.e. data channels and material channels are introduced.
Things that arrive at a work unit are work indicators. Combined with the people who
have to carry out work, the tools they will use and operations that must be performed,
these work indicators become work.

But there are even more types of channels which will be motivated by the follow-
ing example. An assembly part is delivered which was painted in the work step be-
fore. To become dry, this part must lie for at least two days untouched. Thus, further
information must flow along the channels to indicate this temporal restriction. Just the
part would indicate that something has to be done with it - without being able to
specify this necessary delay. We interpret the situation as if a control token is flowing
between the work units, i.e. a control channel is defined, c.f. [5]. Control tokens bear
temporal and causal information. Together with other items that flow along other
channels it forms work for the receiving work unit.

The well-known concept of events also "flows" along the control channel since
events are nothing but control tokens that indicate - mostly - that some piece of work
can be worked upon.

Specifically in the context of events, the possible sources and sinks of channels
have to be discussed. In Fig. 2, sources of channels can be work steps (e.g. work unit
wu1 is source for channel c2) or channels does not have sources at all (e.g. channel
c1). In the latter case, it is assumed that there is an input to the channel from outside.
An equivalent observation applies to sinks. Channels can end in work units (e.g.
channel c3 ends in work unit wu3) or can end without any successor (channel c4).
The latter case means that the event is sent to some receiver outside the workflow
management system. The same applies to all other flow types identified so far. Data
and material can come from some place outside the workflow into the sphere of the
workflows. The other way round, data and material might be sent to a place outside
the workflow. Fig. 3 summarizes the concepts work unit and channels.

The introduction of concepts happens on an abstract level. Nevertheless, it is easy
to transform the developed concepts into the workflow management area. The
workflow languages of many workflow management systems can be classified ac-
cording to the components identified in Fig. 2 and Fig. 3. As an example, the
workflow language of the 0RELOH workflow management system [8] is studied. This
language is selected since the author is very familiar with it and since it nicely dem-
onstrates how the above concepts can be transformed into the area of workflow man-
agement.

In 0RELOH the language components are called perspectives. Intra work unit per-
spectives can be distinguished from inter work unit perspectives. The latter relate to

Workflow Management between Formal Theory and Pragmatic Approaches 351

channels and control dependencies between work units; the former organize work at a
work unit.

th
e
v
g
d
ti
o

tw
is
p
u
in
c
ti
(

s
o
to
s
m
p
n

a
s
s
a
to
w
b

SHRSOH GDWD

ZRUN XQLW FKDQQHO
Fig. 3. The components of work units and channels

The group of intra work unit perspectives mainly comprises the organizational and
e operational perspective. The organizational perspective defines the people who are

ligible and obliged to perform work at a work unit. The operational perspective pro-
ides tools and furthermore operations that can be performed at a work unit. The
roup of inter work unit perspectives is formed by the behavioral perspective that
efines control flow dependencies between work units and the informational perspec-
ve that defines data flow dependencies between work units. Due to the extensibility
f the 0RELOH workflow language the material and event channel would be added as

o further inter work unit perspectives with corresponding names. In 0RELOH there
 another perspective, namely the functional perspective which is fundamental. This
erspectives corresponds to work units, in 0RELOH called workflows. These work
nits (workflows) define the skeleton of all workflows. All other perspectives are
tegrated into this skeleton. Besides, the functional perspective allows to hierarchi-

ally structure a complex workflow definition by supporting functional decomposi-
on. Thus, sub-workflows can be defined which can be regarded as a refinement of a
super-)workflow.

So far, the main components of a workflow language are introduced together with
ome kind of abstract syntax, Now, we are going to discuss the execution semantics
f the workflow language. In principle, the following rule holds: a work unit can start
 perform if all incoming channels are set (if there is a flow on a channel at all which

ometimes might be optional). This means for instance, that data has arrived, that
aterial is provided and that control flow (e.g. in form of an incoming control event)
ermits the work unit to start. For the purpose of this article further details are not
ecessary. Refer to [8] for more information about execution semantics.

In the following, non-functional requirements of a workflow management system
re compiled. The first one is extensibility. Workflow management aims at the broad
upport of application areas. Thus, it is quite usual that new application-specific con-
tructs must be added to the workflow language in order to adequately model the
pplication scenario. For instance, when an organizational assignment needs to refer
 temporary project assignments and this kind of assignment is so far not part of the
orkflow language, then an corresponding organizational assignment statement has to
e included. Thus, extensibility must be a key feature of a workflow language.

WRROV

RSHUDWLRQV

PDWHULDO

FRQWURO

��� ���

352 S. Jablonski

Another requirement towards a workflow language can be derived from the close-
ness of workflow management to applications. Since the current situation in the mar-
ket dictates the vendors to serve each customer individually, a huge number of alter-
native application processes for one specific task might evolve quickly. The workflow
language must provide means to cope with this issue. Inheritance is one suitable solu-
tion [3], however, it is still not experienced whether this means is applicable in huge
applications. In general, the management of this high number of alternatives requires
expressiveness of the workflow management language.

Fig. 4. Reachability of work steps

One of the major challenges in the context of a workflow language is the correct-
ness of workflow specification. Hereby, the syntactical correctness of a workflow
specification is not that issue, it is easy to check. A good language compiler will be
able to do this. The more challenging features are reachability and executability of
workflow steps. The former means that one workflow step can be executed at all, i.e.
that the execution path can reach this workflow step eventually. An example sheds
some light into this definition. In Fig. 4 two examples of simple workflows are given.
Only one type of channel is shown, namely the control channel (arrows). The expres-
sions adjacent to the arrows indicate conditions that have to be fulfilled if the corre-
sponding control path should be followed. The dotted arcs (with attachments "XOR"
or "AND") denote an exclusive fork condition and a conjunctive join condition. It
becomes obvious that the definition of the workflow in Fig. 4a is incorrect. The fourth
work step could never be executed since the AND condition in front of this work step
will never be fulfilled. This incorrectness can already be detected when the workflow

work step 1 work step 2

work step 3

work step 4

work step 5

var1 > 100 var2 > 200

var2 ≤ 200var1 ≤ 100

work step 1

work step 2

work step 3

work step 4XOR AND

a)

b)

Workflow Management between Formal Theory and Pragmatic Approaches 353

scheme is analyzed. Whether work step 4 in Fig. 4b can be reached is not decidable.
This depends of the relationship between the value ranges of variables var1 and var2
and their interrelation. For instance, if var2 is greater the two times var1 then work
step 5 will never be reached.

It is sufficient to have mentioned the non-functional requirements extensibility, ex-
pressiveness, and correctness. They cover the main issues and will be analyzed with
respect to the applicability of formal methods in Section 3.

2.3 Architecture of a Workflow Management System

While the former section deals with workflow modeling, this section deals with
workflow execution. In the context of workflow execution a workflow management
system must be investigated. Especially, its architecture must be analyzed in order to
find out whether the execution of workflows is adequate with respect to functional
and non-functional requirements [15]. To identify these requirements is the issue of
this section.

I
i
t
w
A
a

Workflow Tools

Workflow Management System
Fig. 5. The architecture of a workflow management system

n Fig. 5 a principle architecture of a workflow management system is shown. The
nterface of a workflow management system to users is built by a suite of workflow
ools; a few are presented in the picture. The modeler of workflows is supported by a
orkflow editor, end users which execute workflows are supported by worklist tools.
dministrators use the administration tool to install and configure a workflow man-
gement system. The heart of a workflow management system is constituted by the

Workflow
Management

Server

Metaphase

Word

Workflow
Editor

Workflow Server

Workflow A pplication

Project Management Tool

Organization Database

Support Systems

Worklist Adminis-
tration

Workflow Data
Repository

354 S. Jablonski

workflow management server and the workflow data repository [13]. The former
bears the logic of workflow modeling and execution; the latter bears all type and
instance data relevant for workflow modeling and execution. Workflow applications
are business applications that are called in workflows in order to support the execu-
tion of a particular workflow step. Support systems are another group of software
systems that back the work of the workflow management server.

The functional requirements towards the architecture of a workflow management
system are easy to formulate. The perspectives identified in Section 2.2 must be en-
acted. This specifically implies the implementation of the workflow execution se-
mantics which is also discussed in Section 2.2.

The non-functional requirements can good be motivated by Meyer's criteria and
principles of good software design [12]. He states that modularity is one of the key
design methods for software systems. Also for workflow management systems such a
design method has to be applied to achieve a modular structure of the system. The
following criteria help evaluate designs with respect to modularity: decomposability,
composability, understandability, continuity, and protection. Furthermore, Meyer
identifies the principles linguistic modular units, few interfaces of modules, small
interface which provide weak coupling of modules, explicit interfaces, and informa-
tion hiding which must be observed to ensure proper modularity.

Modularity is the key feature of a workflow management system. Further features
which are elaborated now can be enacted best, if the modularity of the workflow
management system can be taken as granted. To shorten the discussion of further non-
functional requirements we concentrate on two issues: effectiveness and efficiency.
• Effectiveness means to have available functions that solve the application problems

adequately. Since applications often change or grow, this involves to adjust or to
add new functions from time to time. The feature extensibility is derived from this
issue.

• Efficiency means to be able to execute workflows accurately and in time even in
the presence of high system load. The feature scalability is derived from this issue.

Section 3 will investigate what formal methods can be used in order to design a
workflow management system in such a way that the identified functional and non-
functional requirements can be met.

3 Formal Theory and/or Applied Methods

This section is to investigate the identified key domains of workflow management
with respect to the applicability of either formal theory or pragmatic approaches. In
Section 3.1 a general assessment of this issue is given. Section 3.2 then analyses how
the key domains can be supported

3.1 General Assessment

Section 2 shows that the three key domains of workflow management are not inde-
pendent from each other. The development of workflow management applications
directly points to a workflow language in order to model workflows. These workflows
then have to be executed. This leads to the conclusion that whatever formal theory

Workflow Management between Formal Theory and Pragmatic Approaches 355

and pragmatics will be found, it must be comprehensive and must span all three do-
mains.

Another observation supports the assessment that besides a reasonable amount of
formal theory there is a huge area where pragmatic methods are required. One good
example to illustrate this issue is the quality of a workflow. There are definitely some
standards that are based on formal theory and assess objectively whether a workflow
is specified well. For example, if all work steps identified in an application process
are somehow mapped to a workflow is an indication for a good transformation. How-
ever, it is not clear whether this mapping is good or bad. This is a matter of pragmatic
assessment and is not decidable with formal theory. This observation boils down to
the fact that workflow specification often has to deal with non-computational issues
than with issues that are decidable from a formal logic point of view.

Another issue must be mentioned: optimization. In quite a few publications optimi-
zation is named as a key issue for workflow management. In principle, we subscribe
to this attitude. Nevertheless, we are convinced that most of the optimization strate-
gies are not generally applicable since most of them are merely driven by quantitative
considerations (like time and cost) what is just one possible aspect of good workflow
design. One example is to take the number of work steps as criterion to assess a
workflow specification. To end up in workflows with few steps is regarded as well
designed. However, it might be interesting to have work steps of finer granularity in
order to gain modularity. Workflow execution costs might then be slightly higher due
to enhanced interpretation costs, though modular extension, adjustment or replace-
ment of work steps is much easier to achieve.

3.2 Discussion of Specific Issues

According to the identification of three key domains of workflow management in
Section 1 the following discussion is divided into three part. The discussion starts
with the analysis of the development process for workflow management applications.
Two issues were identified as most relevant:
1. Workflows should be derived from application processes.
2. The logical relation between application processes and workflows must be main-

tained.
There are some approaches that formalize the derivation of workflows from applica-
tion processes by defining a mapping function between these two process formats [9,
10]. This mapping has to be assessed with respect to several criteria. There is a prin-
ciple difference between application processes and workflows. Both are based on
different sets of language constructs. The former more needs descriptive terminology
while the latter requires well defined system-oriented vocabulary. Thus, the two lan-
guages can be mapped only partially. Even if there is agreement on some language
constructs it is not clear whether their interpretation within the two different contexts
is concurrent. For example, the specification of sequential processing of steps in an
application process can be interpreted either as end-begin synchronization of the two
corresponding work steps of a workflow, as begin-begin synchronization or as end-
end synchronization.

We think that a formal transformation between application processes and
workflows is not adequate since this task is heavily driven by pragmatic assessments
and interpretation. However, to maintain the logical connect between application

356 S. Jablonski

processes and derived workflows is of major interest especially with respect to (soft-
ware) maintenance. Here, sophisticated concepts are necessary which besides other
things are able to record decisions, personal assessments, considerations, etc. that lead
to the design of workflows.

The next key domain of workflow management is workflow modeling with the
workflow language as major component. The correctness of a workflow specification,
its extensibility and expressiveness are identified as major issues (cf. Section 2.2).
There is a number of contributions that argue about the correctness of workflow
specifications [1]. The criteria reachability and executability are investigated. How-
ever, these investigations are always confined to the control flow aspect of a
workflow. Other dependencies (channels, cf. Section 2.2) between workflows like
data and material flow are not taken into account at all. We think that without the
extension of these investigations to all dependencies between work steps these contri-
bution are only of partial value. For instance, what is the benefit to know that a step is
reachable with respect to control flow, however, the same step will never be executed
since it is not reachable with respect to data flow?

We also see that the extension to arbitrary dependencies is hard to achieve and it is
almost impossible to declare a formal theory for this issue since too many non-
decidable issues would have to be considered. For instance, the example of Fig. 4b
nicely demonstrates that due to the reference of values of variables it cannot be de-
cided whether all work steps of this workflow will ever be executed. Nevertheless,
there is a lot of research going on currently that investigates this issue. In contrast to
these approaches, we suggest pragmatic methods to check the correctness of
workflow specifications. Tool support is appreciated hereby. For example, a tool
checks the channels between work units and checks whether there are cycles. Since
most cycles cannot automatically be tested whether they loop indefinitely the tool
should merely detect them and ask the modeller to check the end condition of the
loops. Then, a good and mostly appropriate analyses of the workflow can be guaran-
teed.

Last but not least the third key domain of workflow management, the architecture
of a workflow management system must be investigated with respect to the need of
formal theory or pragmatic methods. Whether the functional requirements towards a
workflow management system are fulfilled cannot be decided. This would mean to
check whether the workflow language is implemented correctly. Modularity as one of
the major features of the architecture of a workflow management system also cannot
be checked formally. Whether this feature is considered appropriately must be as-
sessed informally, i.e. more pragmatic criteria assess the appropriateness of the de-
sign.

Scalability is an issue where formal methods could be applied. There is work done
that examines the distribution of workflow execution in order to find an execution
strategy that guarantees efficiency. In [14] it is investigated how workflow schema
and instance data must be allocated in a distributed system environment to achieve
performing workflow execution.

Workflow Management between Formal Theory and Pragmatic Approaches 357

4 Conclusion

This paper identifies the key domains of workflow management, the development life
cycle of workflow management applications, the workflow language and the archi-
tecture of workflow management systems. These key domains are then investigated
with respect to the question whether formal theory or pragmatic approaches are better
suited to meet their specific requirements. The overall conclusion is that both formal
theory and pragmatic approaches will be required in the realm of workflow manage-
ment. There are some features of workflow management that can be described by
formalisms; other features are more of a pragmatic type such that formalisms are not
applicable.

It is not a goal of this paper to aim at completeness. We rather reveal some impor-
tant issues that have to be considered when the impacts of theory and pragmatics are
discussed. Neither do we claim to provide solutions; we rather want to indicate spe-
cific solution approaches and more want to trigger and inspire future discussions.
These are absolutely necessary since the critical investigation of foundations for
workflow management is still not done.

Acknowledgement
Many thanks to my colleague Michael Schlundt whose critical and productive com-
ments clarified the issues discussed in this paper decisively.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, Vol. 8 (1998), No. 1, 21 - 66

2. Boehm, M.: Systematic Construction of Workflow Types for Workflow Management
Applications. PhD Thesis, Technical University of Dresden, 1999 (in German)

3. Bussler, C.: Towards Workflow Type Inheritance. Proc. First International Workshop on
Object Oriented Workflow Management Systems, OOPSLA, 1998

4. Bussler, C.: Analysis of the Organizational Modeling Capability of Workflow Manage-
ment Systems. Workshop of the GI Working Group "Workflow Managment", Linz, 1996

5. Hahn, C.; Neeb, J.: Experiences in Selecting a Workflow Management System for the Car
Industry. Technical Report, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Chair
for Database Systems, 1999

6. Jablonski, S.: MOBILE: A Modular Workflow Model and Architecture. Proc. 4th Interna-
tional Working Conference on Dynamic Modelling and Information Systems, Nordwi-
jkerhout, NL, 1994

7. Jablonski, S.: On the Complementary of Workflow Management and Business Process
Modeling. SIGOIS Bulletin, Vol. 16 (1995), No. 1

8. Jablonski, S.; Bussler, C.: Workflow Management - Modeling, Concepts, Architecture and
Implementation, International Thomson Computer Press, 1996.

9. Karagiannis, D.; Junginger, S.; Strobl, R.: Introduction to Business Process Management
Systems Concepts. In: Scholz-Reiter, B.; Stickel, E. (eds.): Business Process Modeling,
Springer-Verlag, 1996

10. Krallmann, H.; Derszteler, G.: Workflow Management Cycle - An Integrated Approach to
the Modelling, Execution, and Monitoring of Workflow-Based Processes. In: Scholz-
Reiter, B.; Stickel, E. (eds.): Business Process Modeling, Springer-Verlag, 1996

11. Martin, J.: Information Engineering. Englewood Cliffs, NJ, Prentice-Hall 1990

358 S. Jablonski

12. Meyer, B.: Object-oriented Software Construction. Prentice-Hall International, Englewood
Cliffs, NJ, 1988

13. Neeb, J.: Schlundt, M.; Wedekind, H.: Repositories for Workflow Management Systems
in a Middleware Environment. Proceedings 33. Hawaii International Conference on Sy-
stem Science (HICCS'00), Maui, Hawaii, 2000

14. Schuster, H.; Heinl, P.: A Workflow Data Distribution Strategy for Scalable Workflow
Management Systems. In: Proc. ACM Symposium on Applied Computing (SAC'97), San
Jose, 1997

15. Schuster, H.; Jablonski, S.; Heinl, P.; Bußler, C.: A General Framework for the Execution
of Heterogeneous Programs in Workflow Management Systems. In: Proc. of the First IFCS
Conf. on Cooperative Information Systems, Brussels, June 1996, pp. 104-113

16. Stein, K.: Integration of Application Process Modeling and Workflow Management. PhD
Thesis, University of Erlangen-Nuernberg, 1999

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 359-375, 2000
 Springer-Verlag Berlin Heidelberg 2000

Documentary Petri Nets:
A Modeling Representation for Electronic Trade

Procedures

Ronald M. Lee

Erasmus University Research Institute for Decision and Information Systems (EURIDIS)
Erasmus University Rotterdam

PO 1738
3000 DR Rotterdam, the Netherlands

tel. 31-10-4082601
rlee@fac.fbk.eur.nl

Abstract. This paper introduces the concept of an electronic trade scenario
(executable transaction model) as a potential solution to "open" electronic
commerce - trade among parties that have no prior trading relationship. The
basic idea is that these trade scenarios would be stored in a "global repository",
and downloaded by trading parties as needed for a particular trade. A
representation, called Documentary Petri Nets (DPN) is used to represent such
trade scenarios. The InterProcs system is described as a prototyping
environment to support the design and execution of such trading systems using
this representation. Given that the parties are often trading at "arm's length", a
key focus is the development of trustworthy trade scenarios that have sufficient
controls and evidentiary documentation.

1 Introduction

Business-to-business electronic commerce has so far been realized mainly through the
use of Electronic Document Interchange (EDI) implemented in closed, mainly bi-
lateral linkages that are relationship specific. As the demand for electronic trading
relationships among businesses becomes greater, there is a need to make these
electronic linkages more generic and re-usable. Furthermore, the scope of the
modeling needs to encompass not only simple two-party links, but the entire trade or
supply chain transaction model, which may include as many as a dozen different
parties.

 The most complex challenges are in the area of international trade. This is also
the area where incredible economic benefits might be found. Aconservative estimate
of potential savings in transaction costs in the area of international trade is around half
a trillion US dollars per year. This does not include the potential entry of many new
small to medium-sized businesses into international trading.

 Current developments in wide area networking (e.g. Extranets) and related
component technologies make the notion of global repositories for generic, re-usable
transaction models increasingly more feasible. Needed, however, is effective design
representations and methodologies for representing complex trade and supply chain

360 R.M. Lee

transaction. We thus examine the requirements for such representations. We then
present our own solution to this challenge: Documentary Petri Nets (DPN's), which
satisfies these representation requirements in a way that supports both bottom-up and
top-down design approaches, and also the procedural separation of the business roles.
Implementation characteristics of the DPN representation are also examined.

 A modeling and prototyping environment, called InterProcs, is presented that
includes a graphical design interface based on Documentary Petri Nets, which
automatically generates functioning prototype transaction models that operate locally
or in distributed fashion over the Internet. A simplified documentary credit procedure
provides an example of such a Documentary Petri Net model.

 But this is only the beginning of the potential we foresee. Once a formal
representation for trade procedures is adopted, new functionalities may be developed
based on that representation. Following are three directions in our continuing
research:
• automated auditing of trade procedures ("auditdaemons"), which use pattern-

matching techniques to identify fraud, collusion, and other control weaknesses in
the trade procedure [2, 3, 4,11].

• scenario grammars (aka procedure constraint grammars), which allow the sharing
and re-usability of chunks of procedural knowledge at arbitrary levels of
abstraction. For instance, a car loan, a mortgage, and a documentary credit
procedure are all special cases of a more generic secured loan. The use of
scenario grammars allows computer aided generation of customized procedures
by parties with little or no expertise [12, 14, 15].

• navigation of distributed requirements and constraints - especially for
international trade, bureaucratic constraints on the trade procedure may be
imposed by governmental agencies (e.g.customs) of the countries included in the
trade. Further, these requirements may change without notice. The solution we
propose, called the messenger model, allows automatic navigation of these
distributed agencies to collect these constraints and to incorporate them into the
trade procedure at the time the contract is made [13].

2 Open Electronic Commerce

The focus of this project is on open electronic commerce: doing business among
parties having no prior trading relationship. What we hope to achieve is computerized
support for commerce that is trustworthy in the sense that trading partners who do
not know each other, and may even come from different countries and cultures, may
conduct business with the assurance that their interests will be protected in the event
that "things go wrong", whether by accident, negligence, or intentional fraud.

 In order to conduct electronic commerce, parties have to know about each others'
"way of doing business" before they can start exchanging data electronically. Extra
knowledge about the preferred way of doing business of one trading partner has to be
conveyed to the other; in other words, the parties have to agree upon the trade
scenario they are going to follow [7,8, 21]. A trade scenario is the mutually agreed
uponset of procedures, documents and rules that govern the activities of all parties

Documentary Petri Nets 361

involved in a set of related business transactions. Thus, a trade scenario controls all
interactions between the roles involved. A trade scenario stipulates which actions
should be undertaken by which parties, the order in which these actions should be
performed as well as the deadlines and other timing constraints on the performance of
these actions. Actions of parties include the sending and/or receiving of goods,
documents or funds.

 The need and usefulness of trade scenarios is easy to demonstrate. Consider only
a simple post-payment contract for goods. The buyer assumes that an invoice will be
sent after delivery to trigger the payment obligation. The seller, on the other hand,
abides by the practice that payment becomes due from the time of delivery, and does
not send an invoice. Thus, the goods arrive, and the buyer does not pay, waiting for an
invoice. Meanwhile the seller becomes irked, and initiates collection proceedings.
This is an example of the so-called "battle of the forms". Each party utilizes
standardized documents such as a purchase order, delivery agreement, etc. which
contain (typically on the backside, in small print) the terms and conditions that are
their style of doing business. Unfortunately, the small print is often ignored by the
receiving party.

 For trade in a well-established industry area, standardized practice becomes
generally accepted, and there usually is not a problem. In some cases, guidelines by
international bodies such as the International Chamber of Commerce or the UNCID
have been established (for instance the Uniform Customs and Practices for
Documentary Credits, issued by the ICC, [6]). However, in more open trading
situations, that cross national, cultural or sectorial boundaries, such conflicts are much
more likely to arise. Many existing EDI applications of course embed the types of
document exchange sequencing of a trade scenario. However, these sequences are
normally "hard coded" into the application programs, as specified in the terms of the
trading partner agreement, a legal, textual document. A key aspect of the architecture
presented here is that trade scenarios are "soft coded", in a declarative, rule-based
form. This has the virtue that they may be down-loaded from e.g. a central library to
meet the needs of a particular contractual situation.

3 Documentary Petri Nets

In Figure 1, the contracting process is divided into three main phases: shopping,
negotiation and performance. (While we recognize that this over-simplifies
somewhat, it is sufficient for present purposes.) Interpreting this in an electronic
commerce context, the shopping phase involves navigating among the product
offerings of various vendors (e.g. electronic advertisements on the Web). As a result
of this phase, the customer identifies a prospective vendor and specifies the product
characteristics to be purchased. During the next phase, negotiation, the parties will
arbitrate two things:

a. doing tasks - such as payment terms,delivery terms
b. control tasks - including documentary requirements.
 The output of this negotiation will be the specific trade scenario that the parties

will follow for the execution of the contract. The negotiation process itself also
follows a scenario. For many types of trading, this negotiation scenario remains more
or less the same.The documentary controls for such anegotiation scenario will be such

362 R.M. Lee

standardized (EDI) documents such as purchase order, PO acknowledgement, etc.
However, in certain contract domains, additional controls are required. One example
is secured loans, such as home mortgages or documentary credits. In these cases,
substantial additional control documentation is needed such as credit worthiness of
borrower, inspection of the asset, market value of the asset, and so on.

Shopping
Phase

Negotiation
Phase

Performance
Phase

Product/Service Offering
(as structured parameters)

Trade Scenarios
(scenario templates)

Specific Trade Scenario
(DPN)

Negotiation Scenario
(DPN)

Figure 1. Contracting Phases

 In this section we describe the representation called Documentary Petri Nets
(DPN's), used to specify the procedural aspects of a trade scenario. A basic issue for
this project is how these trade procedures should be represented (a.) from the
modeler's perspective, and (b.) from a computation (inferential) perspective. In the
course of our prior research, we have examined a wide number of such
representations, including state-transition diagrams, marked graphs, event nets, event
grammars, the event calculus, process algebras, temporal and dynamic logics.
Eventually, we found Petri nets ([1, 18, 19] to be the most appropriate representation
for capturing the temporal/dynamic aspects of electronic trade procedures, offering
both a graphical representation (for modelers) and a formal basis for the verification
of various properties (computational). In addition, Petri nets have become popular in a
wide variety of problem domains, including numerous workflow systems, where
sequence, contingency and concurrency of activities need to be modeled. This wide
acceptance facilitates the training and understandability for electronic trade scenarios.
However, Petri nets by themselves offer only a temporal framework for the
procedural representation. For that reason, we have found it necessary to add various
extensions to the Petri net representation, making it more appropriate for the
modeling of trade procedures. We call this extended representation Documentary
Petri Nets (DPN's).

 Basic Petri nets focus on the representation of discrete dynamic systems,
including aspects of concurrency and choice. A Petri net is a bi-partite, directed graph

Documentary Petri Nets 363

with two types of nodes: places (represented as circles) and transitions (typically
represented as bars or boxes). Arcs connect places with transitions or vice versa (it is
not allowed to connect two places or two transitions). The dynamic behavior of the
modeled system is represented by tokens flowing through the net (represented as
blackening of a place). A transition is enabled if all its input places (i.e., arcs exist
from those places to the transition) are marked. If this is the case, the transition
removes the token from each input place and instantaneously produces one in each
output place (i.e., an arc exists from the transition to the place). This is called the
firing of a transition.

<action>

<date/time term>
>>

<date/time term>

Figure 2a. Figure 2b.
DPN Transition (Action) Syntax DPNTimer Event Syntax

@current_date >>
@delivery_deadline

carrier:
deliver_goods

= ok= breach

Figure 2c. Example DPN for Deadline

<action>

from <sending_role>:
[<document list>]

to <receiving_role>:
[<document list>]

Figure 2d. DPN Document Place Syntax

364 R.M. Lee

<action>

from <sending_role>:
[< type of goods >]

to <receiving_role>:
[<type of goods>]

Figure 2e. DPN Physical Goods Syntax

@current_date >> Date X:A

= ok= violation

= obligation(X:A, Date)

Figure 2f. DPN Example Deontic Status Labelson Control Places

With Documentary Petri Nets, an important extension to basic Petri nets we make
is the interpretation of transitions as the actions of contracting parties, which are
indicated by an associated label of the form1 shown in Figure 2a. Also, whereas basic
Petri nets represent relative time (as a partial ordering of events), we needed to add
certain absolute time notations for deadlines, etc. In DPN's, these are included as a
special kind of transition, called a timer event, having an associated label of the form
(">>" is time ordering), as shown in Figure 2b. Most commonly, these involve a
comparison of the built-in parameter, @current_date, with a another date such as a
delivery deadline. For example, see Figure 2c. In this case, the token will be taken by
the first transition to occur. Thus, if the event that the current date exceeds the
delivery date occurs before the delivery of the goods, the token will more to the state
of breach.

1 Here we are presenting the notation for role DPN's, where all the actions in the procedure

refer to the same agent. Another form of DPN is possible, called a joint DPN, that models
the coordinated actions of some or all of the parties together in a single graph. In that case,
the form of the action labels for transition nodes becomes:
<role(s)> : <action>
and the form of the labels for documents places (incoming or outgoing) becomes:

<sender role> to <receiver role> :[<document list>]
and similarly for physical goods:

<sender role> to <receiver role> : [<kind of good>]

Documentary Petri Nets 365

 Another important extension to basic Petri nets that we have added in DPNs, is a
representation of documents2. Syntactically, these are another kind of place node,
called a document place, drawn as a rectangle. In the role procedures, each document
place has an associated label of the form as shown in Figure 2d. Normally, the
document list will be only a single document (type), but this allows also for the
sending of bundles of documents as a single documentary communication3. A
frequent type of documentary exchange relates to the transfer of funds. Often, this is a
document sent to a bank, such as a payment instruction. In business-to-business
transactions, the exchange of actual cash is fairly rare. However, to model such cash
payments we also use the same notation of a document place. (Thus, we would
consider paper currency as a special kind of performative document.) A variation of
document places that is occasionally used is a goods place, indicating the exchange of
physical goods. The notation for this is a cube, and it has a similar labeling as for
document places4, as shown in Figure 2e.

 In addition to the above described labels, any of the control places, document
places or goods places may have an additional kind of label, known as a state
predicate. These use the same predicate notation as in Prolog, and are used to indicate
additional properties and relations that become true when the place is marked. These
are commonly used to indicate changes in deontic status, for instance,
obligation(X:A,Date) which means that party X has an obligation to perform action
A before the deadline, Date5. This is illustrated in Figure 2f.

 One important aspect of modeling trade scenarios is the ability to model the
procedures of each role as a separate Documentary Petri Net. This modeling style
results in a clear, visual separation of the various the roles, that also enables their
geographical separation. Indeed, it is this characteristic of the DPN modeling
technique that allows the automated trade scenarios to be executed in a distributed
fashion, by legally autonomous parties. The only coordination between the various
role scenarios is by means of the (electronic) documents they exchange. This directly
parallels the way paper-based trade procedures operate today.

2 Typically, these documents will be in a structured format such as UN/EDIFACT or

XML/EDI [12]. However, they could equally well bein a logic-based format such as
Kimbrough's FLBC [9]. The only requirementis that selected data needed by the procedure
be retrievable from the document.

3 Computationally, the data in these documents is persistent; that is, once a document has been
received by a role, it is recorded in the role's local database, and remains there even though
the document place may cease to be marked. Functionally, this is similar to the way
electronic documents are handled in actual practice. An alternative approach would be to
use colored Petri nets [1], where data would be carried through the Petri net by means of
structured tokens. We found this latter approach to be unnecessarily complicated for our
modeling needs.

4 Automated trade scenarios, operating over digital networks, obviously do not handle or
transport physical goods directly. The use of this notation is usually to describe the larger
system, where physical as well as electronic actions are modeled.

5 This example also illustrates the use of logical variables (as in Prolog) within a DPN. The
scope of these variables is the DPN procedure where it appears. By contrast, parameters,
which begin with "@" (e.g.@delivery_deadline) may be global in the entire model, or refer
to data elements in documents within the role.

366 R.M. Lee

4 Modeling Example

As an example problem domain we will analyze the formation and execution of an
international contract for the sale of commercial goods [5]. Commonly, international
sales contracts are executed by a documentary credits procedure, subject to the rules
set forth in the Uniform Customs and Practice for Documentary Credits [6].

 Documentary credit procedures were introduced by the banking community in
order to solve a common problem in business: the lack of trust among trading
partners. When partners do not know whether they can trust each other, the risk for
both buyer and seller is very high. For example, the buyer might pay for the goods
without being sure of receiving them or the seller may ship the goods without being
sure of getting paid. These problems arise particularly when the trade is international,
as a common legal and banking system exists when trade is conducted within the
same country. The solution that the banks offer to international business is that they
take over the risk for the buyer and seller. The buyer and seller may rely on a trusted
relationship between their banks.

 Documents play an important role in these transactions in that payment for the
goods is made not on the delivery of the goods themselves but on the presentation of
stipulated documents. Stipulated documents may include a commercial invoice, an
insurance certificate, a certificate of origin, and a transport document (e.g., a bill of
lading or an airway bill), among others. The seller receives payment by presenting
the stipulated documents to a bank (the advising bank) that the buyer has instructed to
make payment.

 Two attributes make documentary credit procedures a challenging domain for
automated trade scenarios. First, these procedures involve numerous agents who
often must interact in different native languages. The agents in an international sale
using documentary credits may include two or three banks, a forwarder/broker, a
liner-agent, a land transport carrier, a customs official, an insurance agent, a stevedore
(to load the goods on the ship), a ship's captain, and several others in addition to the
buyer and seller. Also, the goods may have to cross several borders in their transit
from seller to buyer; thus, multiple versions of documents in various languages may
be required. (The multi-lingual interface and text generation capabilities of
InterProcs are thus useful here as well.)

 Second, these procedures are mired in bureaucratic complexity and are subject to
a host of confusing rules depending on the countries of the exporting/importing
parties. At one time as many as 100 forms (i.e., performative communications) were
required to ship goods from one country to another and to arrange payment [7]. The
task of processing these myriad forms was so cumbersome that the goods commonly
travelled faster than the forms, arriving before the documents did [10]. When the
goods being shipped were perishable food stuff, the buyer was placed in the untenable
position of watching his goods spoil as he waited for the documents allowing him to
claim the shipment. Using information technology to generate, process (i.e., reason
about) and transmit these documents can avoid these problems.

 In the following example, we present a (somewhat simplified) trade scenario for
a documentary credit procedure. The principal roles are:

Consignee: the recipient of the goods (normally the buyer).
Shipper: the party dispatching the goods(normally the seller).
Issuing Bank: the bank issuing the credit (normally in the buyer's country).

Documentary Petri Nets 367

Corresponding Bank: a partner bank, which handles paper work at the other side
(normally in the seller's country).

Carrier: the transporter of the goods.

Almost all documentary credit procedures conform to the guidelines issued by the
International Chamber of Commerce (ICC) Uniform Customs and Practices for
Documentary Credits [6]. By including a sentence such as "this letter of credit has
been issued under the rules of ICC/ UCP 500" these guidelines become legally
enforceable, independent of differences in national legislation of the involved parties'
countries. The diagram shown in Figure 3 gives an overview of the document flows
among these roles. Following that, Figures 4a-e show snapshots taken from
InterProcs of the role procedures developed for this trade scenario6.

Figure 3. Overview Diagram forDocumentary Credit Procedure

6 This model may also be executed from the Website: http://www.euridis.fbk.eur.nl/Euridis/

368 R.M. Lee

Figure 4a. Snapshot of DPN forConsignee

Figure 4b. Snapshot of DPN for Shipper

Documentary Petri Nets 369

Figure 4c. Snapshot of DPN for Issuing Bank

Figure 4d. Snapshot of DPN for Corresponding Bank

370 R.M. Lee

Figure 4e. Snapshot of DPN for Carrier

5 InterProcs

In this section we provide an overview of the InterProcs system, which implements
the modeling representations we have developed for automated trade scenarios. The
motivation behind the development of InterProcs is to validate our concepts and
representations for electronic trade scenarios, demonstrating their feasibility though
realistic prototype transaction models with actual EDI documents. The system divides
into two separate systems: InterProcs Executor, which executes existing transaction
models; and InterProcs Designer, a tool for the design and knowledge base
development of trade scenarios.

5.1 InterProcs Executor

In this section, we explain the operation of the InterProcs Executor. With it, one can
view and execute existing trade scenario models in three modes:

Viewer Mode: This mode provides a simulation of the total scenario on a single
machine. The trade scenario is accessed as an applet from a Web site.
Documents are transmitted among the roles internally within the executing
Java program. This mode is useful for design and demonstration purposes. It
also provides a convenient means for distant development of models: new
versions of a scenario can be put up on a Web site and viewed by clients at
remote locations.

Documentary Petri Nets 371

Gaming Mode: As the name suggests, the purpose of this mode is for interactive
gaming, normally as a single location using a local network, with multiple
machines and multiple players. The roles of the trade scenario are downloaded
from a Web site, and executed using InterProcs Executor as an applet.

Network Mode: The purpose of this mode is for prototype testing of the trade scenario
in geographically separate locations. As in the gaming mode, the roles of the
trade scenario from a Web site, but here they are executed using InterProcs
Executor as a stand-alone application (which allows access to local files and
databases). Documents are transmitted among the roles via normal Internet
email.

5.2 InterProcs Designer

In this section, we explain the operation of the InterProcsDesigner. With it, one can
design new automated trade scenarios utilizing:

• graphical drafting using Documentary Petri Nets, by role
• re-usable template sub-procedures
• design of electronic documents
• design of detail computations on documents

A principal feature of InterProcs is its graphical user interface for designing trade
procedures. Furthermore, since the system embeds a Prolog engine, auxiliary rule-
bases can be added to a trade scenario model, allowing further automated
'intelligence' such as heuristic navigation of regulatory constraints. InterProcs can
not only be used to draw trade procedures, it also offers the possibility to simulate
them, including graphical animation of the transaction flow. When designing trade
scenarios, the scenario actions of each role are represented as a separate Documentary
Petri Net, shown in a separate window on the screen. The communication between the
roles is exclusively through exchanges of (electronic) documents. (This is a practical
as well as legal requirement of trade scenarios.)

 Trade scenarios may be constructed either top-down or bottom-up. Using a top-
down approach, an integrated version of the overall trade scenario is developed,
which is then (automatically) divided into separate sub-scenarios for each of the roles.
Using a bottom-up approach, distinct scenarios (procedures) are developed from the
perspective of each separate role. By simulating these together as acomplete scenario,
one is able to identify and diagnose any incompatibilities among the roles. The result,
whether designed top-down or bottom-up, is an automated trade scenario that
executes in a distributed fashion, with autonomous parties (at different geographical
locations, with different machines) for each role. The characteristic that the resulting
automated trade scenarios are distributed in this way is legally essential: since most of
the documents handled by a trade procedure have a legal significance, it is vital that
each organization have completely independent control of the documents they send
out, since they will be legally responsible for theconsequences.

 Using the various operating modes of the InterProcsExecutor, this distributed
execution of the trade scenario may be analyzed and evaluated. In the viewer mode,
the distributed execution is simulated on a single machine. Using the gaming mode,

372 R.M. Lee

for instance in a group collaboration setting, managers can play the different roles,
and become evaluate the scenario from the different role perspectives. In the network
mode, different organizations may participate in the testing of the scenario from their
local sites.

 The system at present operates as a design and prototyping tool for trade
scenarios. However, it has been developed in such a way (in Java) so as to be able to
save the resulting trade scenarios as object-oriented components. These components
may be combined with other business system components (e.g. for database access,
security, application interfaces) to provide a production-level implementation. With
this vision, trade scenarios may be stored in a publicly accessible, global repository,
available via the Internet. Thus, the promise is for plug-and-play installation of
complex trade transaction models, enabling small as well as larger companies easier
entry into new (also international) markets.

6 Automated Generation of Trade Scenarios

A limitation of the manual design approach presented thus far (and as well, a
limitation of other open EDI approaches) is that the scenarios produced are fixed; that
is, they cannot be adapted or adjusted to meet additional needs of a given situation. In
this part of the project, we address this problem with an expert system approach, by
which scenario components are broken down into reusable component parts, which
can be flexibly reassembled to meet the needs of a wide variety of situations. The
computational formalism we introduce is called a procedure constraint grammar
(PCG). As its name suggests, an objective of the PCG representation is to describe
procedures by their temporal ordering constraints, rather than the absolute sequence
of steps. This allows for more flexible re-combination of procedural components
(doing and control tasks).

 Using a procedure constraint grammar, the user interacts with the system,
specifying constraints and objectives of the contracting situation. Based on these
specifications, the system composes a trade procedure, which is presented in
graphical form, and which can then be compiled and simulated. Here, the term
'grammar' is used in the linguistic sense of generative grammars, i.e. a set of rules for
generating syntactically correct or well-formed sentences in a language. The objective
of PCG rules is to generate procedures that are not only well-formed syntactically, but
also from a control standpoint. In this aspect, a procedure constraint grammar
operates like an expert system shell that may be used to develop knowledge bases
about contracting and associated legal and documentary requirements. Unlike
language grammars, however, which are typically represented as an integrated
hierarchy of rules, PCG's are organized as constraints on a target procedure. It is the
job of the PCGconstraint solver to identify a (minimal) solution procedure (according
to some preference ordering of the user - e.g. minimal duration vs minimal risk).

 Key features of procedure constraint grammars are therefore their flexibility to
model situation-specific variations of generic trade procedures, and the re-usability of
procedural knowledge previously developed by domain experts. Our objective is in a
sense to obtain the best of both worlds, to allow contracting parties to specify unique
requirements of their contract situation, while yet maintaining a legal integrity and
controls in the trade procedure. The resulting electronic trade procedure should be

Documentary Petri Nets 373

trustworthy in that each of the parties is assured that preventative or detective
controls are in place in case of the other party's non-performance, or other accidental
events occur. Other approaches to this objective have been considered, but proved not
to be sufficient. These include a sub-procedure approach, where actions of the trade
procedure can refer to other substitutable procedures. This proved too inflexible in
that the situational variations often need to include a combination from different
sources of procedural knowledge: those related to the task; those relating to controls;
and those relating to the specific communications media employed. We also
considered an object-oriented approach, but found it to have similar difficulties.
Object oriented methods handle procedural knowledge mainly by overriding routines
in the parent procedure. For our purposes, this is much like the sub-procedure
approach. Additionally, the requirement of multiple knowledge sources leads to
multiple inheritance, with the associated difficulties of contention.

 In our current approach, knowledge specified as independent 'constraints', which
can be at arbitrary levels of abstraction. Where different levels of abstraction need to
be combined, this is handled by the constraint solver by expanding them to a common
lowest level of detail. Where contentions occur, these are dealt with by preference
orderings, which are specified in the knowledge base. Further discussion of procedure
constraint grammars is found in [12, 14, 15]. The notation used in these papers is a
linear one, similar to that used in many AI planning systems. Currently under
development is a graphical variant of the current DPN graph notation, that we call
scenario templates. Using these scenario templates are designed graphically in much
the same way as the current DPN's are. Scenario templates can invoke other scenario
templates as sub-procedures (with parameters and logical variables as arguments). We
allow multiple variations of a scenario template definition, with different selection
conditions. (This is like the multiple rules in a grammar). Together, these scenario
templates comprise a scenario grammar of equivalent functionality to the PCG's
described above.

7 Summary, Conclusions

The concept of an electronic trade scenario was introduced as a potential solution to
"open" electronic commerce - trade among parties that have no prior trading
relationship. The vision is that these trade scenarios would be stored in a publicly
accessible electronic library (perhaps a "global repository" maintained by an
independent international organization), and downloaded by trading parties as needed
for a particular trade. The Documentary Petri Nets (DPN) representation was
presented as a candidate representation for such trade scenarios. The InterProcs
system was presented as a prototyping environment to support the design and
execution of such trading systems using this DPN representation. Features included a
graphical design interface for trade scenarios, Internet-based scenario execution, audit
daemons for detecting control weakness, as well as scenario grammars and supply
chain designer for the automated generation of trade scenarios. Future directions
include the output of trade scenarios as object-oriented components for assimilation
within emerging business component architectures, to support plug-and-play
installation of trade scenarios into production transaction systems.

374 R.M. Lee

References

[1] Aalst, W.M.P. van der, "Timed Coloured Petri Nets and their Application to
Logistics", PhD thesis Eindhoven University of Technology, 1992

[2] Bons, R. Designing Trustworthy Trade Procedures for Open Electronic
Commerce, PhD Dissertation, Euridis and Faculty of Business, Erasmus
University, 1997

[3] Bons, R.W.H., Lee, R.M., and Wagenaar, R.W. "Computer-Aided Auditing
of Inter-organizational Trade Procedures", Intelligent Systems in Accounting,
Finance and Management, Special Issue on Electronic Commerce, ed. Jae
Kyu Lee, 1998.

[4] Chen, Kuo Tay. Schematic Evaluation of Accounting Control Systems, PhD
Dissertation, University of Texas atAustin, 1992.

[5] Dewitz, Sandra. Contracting on a Performative Network: Using Information
Technology as a Legal Intermediary, PhD Dissertation, University of Texas
at Austin, 1992.

[6] ICC, The Uniform Customs and Practices for Documentary Credit
Procedures, International Chamber of Commerce publication number 500,
Paris, France, January, 1994.

[7] ISO, The Open-edi Conceptual Model, ISO/IEC JTC1/SWG-EDI, Document
N222, 1991.

[8] ISO, The Open-edi Reference Model, IS14662, ISO/IEC JTC1/SC30, 1996.
[9] Kimbrough, S. "Sketch of a Basic Theory for a Formal Language for

Business Communication", International Journal of ElectronicCommerce,
Vol 3, No 1, 1999.

[10] Kindred, H.M. "Modern Methods of Processing Overseas Trade."Journal of
World Trade, December 1988, pp.5-17.

[11] Lee, R.M., "Auditing as Pattern Recognition", Working Paper, Department
of Management Sciences and Information Systems, University of Texas at
Austin, August 1991.

[12] Lee, R.M.: "Dynamic Modeling of Documentary Procedures: A CASE for
EDI", Proceedings of Third International Working Conferenceon Dynamic
Modeling of Information Systems, Noordwijkerhout, NL, June 1992.

[13] Lee, R.M. "A Messenger Model for Navigating Among Bureaucratic
Requirements", Proceedings of the Hawaii International Conference on
System Sciences, January, 1997, Vol IV, pp.468-477.

[14] Lee, R.M. "Automatic Generation of Electronic Procedures: Procedure
Constraint Grammars" Proceedings of the Eleventh International Electronic
Commerce Conference, Bled, Slovenia, 8-10 June, 1998, pp. II:49-85.

[15] Lee, R.M. "Candid - A Formal Language for Electronic Contracting",
Euridis Research Monograph (RM 1998.08.02), August,1998.

[16] Lee, R.M., Bons, R.W.H., Soft-Coded Trade Procedures for Open-EDI,
International Journal of Electronic Commerce, pp.27-50, Volume 1,
Number 1, 1996.

[17] Lee, R.M. "Distributed Electronic Trade Scenarios: Representation, Design,
Prototyping" International Journal on ElectronicCommerce, Vol 3, No 1,
1999.

Documentary Petri Nets 375

[18] Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-Hall,
1981.

[19] Petri, C.A., Kommunikation mit Automaten, PhD thesis, University of Bonn,
Germany, 1962.

[20] UN/IPTWG. United Nations / International Trade Procedures Working
Group (see www.unece.org/trafix/)

[21] Wrigley, C.D., "EDI Transaction Protocols in International Trade",
Proceedings Conference on Interorganizational Systems in the Global
Environment, Bled, Slovenia, September, 1992.

W. van der Aalst et al. (Eds.): Business Process Management, LNCS 1806, pp 376-389, 2000
 Springer-Verlag Berlin Heidelberg 2000

ARIS Architecture and Reference Models for Business
Process Management

August-Wilhelm Scheer, Markus Nüttgens

Institut für Wirtschaftsinformatik, Universität des Saarlandes,
Im Stadtwald Geb. 14.1, D-66123 Saarbrücken

{scheer, nuettgens}@iwi.uni-sb.de

Abstract. In this article a general business process architecture is presented,
which is based on the Architecture of Integrated Information Systems (ARIS)
and which is composed of the four levels of process engineering, process plan-
ning and control, workflow control and application systems. The ARIS-House
of Business Engineering encompasses the whole life-cycle range: from business
process design to information technology deployment, leading to a completely
new process-oriented software concept. At the same time, the architecture
bridges the gap between business process modeling and workflow-driven ap-
plications, from Business Process Reengineering to Continuous Process Im-
provement.

1. New Approaches of Developing Information Systems

There are two fundamental ways of (re-)engineering information systems. The “for-
mal driven” approach is based on the goal of developing and implementing a techni-
cal correct running system. The “content driven” approach is based on the goal of
developing and implementing an organizational correct running system. By using
reference models, content and technology can be combined in a new way.

The content driven approach starts with the design of the strategic business op-
portunities and the organizational requirements. The resulting models are the basis for
an iterative business improvement and technological implementation. The content
driven approach can be structured as a layer model and described in an architectural
framework for business process management. Reference models as “blue prints” for
business engineering can be used to model and optimize business processes.

The term "business process" is defined universally. A business process is described
as a procedure relevant for adding value to an organization. It is viewed in its entirety,
from beginning to end. Figure 1 illustrates the business process of order entry proc-
essing. The initial requirements of the customer lead to order acceptance by the
manufacturer’s Sales department. Sales then relays information to Purchasing, in
order for them to supply bought-in parts. Finally, Production plans and executes the
work-order.

ARIS Architecture and Reference Models for Business Process Management 377

Figure1 illustrates this procedure by a series of events triggering functions. The
initial event of the process is the customer requirement. The final event is the com-
pletion of the product in Manufacturing. Events not only trigger functions, they are
themselves the results of functions. Processes can be split into sub-processes. Con-
versely, sub-processes can be joined together. By introducing logical operators, the
control structure with its event-driven process chain (EPC) can be expanded to ac-
commodate variously complex procedures [1], [2], [3].

CompanyCompany SupplierSupplier

data function organization material IT resources, or machine resources

Legend

demand
occured

material product

machine

product
finished

laundry

production

Order Processing

material
data

Purchasing

order
acceptance

sales
office

Production

release

shipment

IT system

provide
shipment

order
processing

drawings

CustomerCustomer
order

placing

procure-
ment

create
PO

vendor
data purchase

order

purchasing

product
data

customer
data

purchase
order

Fig. 1. Modeling of a business process, using event-driven process chains (EPC) [4]

Besides describing the procedural structure of events and functions, there must
also be a focus on describing the organizational units assigned to the functions. Many
reengineering projects are actually directed at re-allocating functions to organiza-
tional units.

Aligning the enterprise along its processes offers the possibility to hit several busi-
ness targets. But a process-oriented business management not only requires a concept
for the systematic design and organization of the business processes themselves (by
means of so-called Information System Architectures).

Process-oriented business management also calls for tools and concepts to design
the information systems supporting these processes. The aim is to design and control
the organizational structures in a very flexible way so they can rapidly adapt to
changing conditions (of the market, competitors etc.) [5].

378 A.-W. Scheer and M. Nüttgens

2. ARIS-House of Business Engineering Architecture

Despite an abundance of various reengineering concepts in recent years, business
processes have emerged as the focal point of business reengineering [6], [7], [8], [9],
[10], [11].

The Architecture of Information Systems (ARIS) can be used as a keystone for
Business Process Reengineering and Business Process Management [1], [4], [12].
ARIS-House of business engineering (HOBE) enhances the ARIS process architec-
ture by addressing comprehensive business process management, not only from an
organizational, but also from an IT perspective (see Figure 2) [12], [13].

bu
ild

 -
tim

e
 -

 c
on

fig
u

ra
tio

n

IV. Application
 System

III. Workflow
 Control

I. Process
 Engineering

Reference
Models,

Knowledge
Management

II. Process Planning
 and Control

Database

Simulation Quality
Control

Evaluation,
Benchmarking

 Components,
 Business Objects,

 Object Libraries

Standard
Software
Modules

B
ui

ld
tim

e
 -

 c
on

fig
ur

a
tio

n

Scheduling and
Capacity Control

Executive
Information System

Continuous
Process

Improvement

Folder

Open Function Open Document Open Data

Monitoring

Java
Applets

V
. F

R
A

M
E

W
O

R
K

Process and
Product
Models

Process
Ware-
house

Fig. 2. The ‘ARIS-House of Business Engineering’ Architecture of Business Processes [4]

Because business process owners need to focus on the „one shot“ engineering and
description aspects of their business processes, ARIS HOBE provides a framework
for managing business processes -- from organizational engineering to real-world IT
implementation, including continuous adaptive improvement. HOBE also lets busi-
ness process owners continuously plan and control current business procedures and
devote their attention to continuous process improvement (CPI) [14], [15].

At level 1 (process engineering), business processes are modeled in accordance
with a manufacturing work schedule. The ARIS concept provides a framework which
covers every business process aspect. Various methods for optimizing, evaluating and
ensuring the quality of the processes are also available.

Level II (process planning and control) is where business process owners’ cur-
rent business processes are planned and controlled, with methods for scheduling and

ARIS Architecture and Reference Models for Business Process Management 379

capacity, and (activity based) cost analysis also available. Process monitoring lets
process managers keep an eye on the states of the various processes.

At level IV (workflow control), objects to be processed, such as customer orders
with appropriate documents or insurance claims, are delivered from one workplace to
the next. Electronically stored documents are delivered by workflow systems.

At level IV (application system), documents delivered to the workplaces are spe-
cifically processed, i.e., functions of the business process are executed using com-
puter-aided application systems -- ranging from simple word processing systems to
complex standard software solution modules--, business objects and java applets.

The four Levels are interdependently connected. Information at Level II regarding
the profitability of current processes, is the point of departure for continuous adjust-
ment and improvement of the business processes at Level I. Workflow Control is
linked to Level I, because Workflow Control at Level III requires the description of
business processes. At the same time, Workflow Control reports actual data regarding
the processes to be executed (amounts, times, organizational allocation) back to Level
II. Applications at Level IV are executed from the workflow system at Level III and
configured according to the business process models at Level I.

2.1 Engineering Business Processes

Business process engineering aims to achieve the greatest efficiency possible in terms
of business-organizational solutions. Organizational departments, reengineering proj-
ect teams or even business process owners can be responsible for process engineer-
ing. While work schedule development for manufacturing processes might be institu-
tionally allocated to a certain department for years as job preparation, other kinds of
business processes are not quite as regimented. We would recommend having the
same entities responsible for engineering as are responsible for the business processes
themselves.

Generally, enterprise business processes, such as a typical purchasing process, are
engineered at the type level. Subtypes for certain subforms (orders for spare parts,
normal parts or just-in-time parts, for example) can also be created. However, order-
ing processes are usually not modeled just because specific parts need to be ordered.

On the other hand, work schedules for specific parts in manufacturing processes
are indeed documented. This is due to the fact that process descriptions are not only
used to support fundamental organizational rules, but also for direct process execu-
tion. The more process documentation is utilized for executing business processes,
such as for workflow control, the more descriptions for process instances become
necessary.

When engineering optimal business processes, reference models can be included,
along with available knowledge on best practices. It is also possible to compare al-
ternative procedures (benchmarking) or carry out simulation studies or quality
evaluations.

380 A.-W. Scheer and M. Nüttgens

Reference models, which can be developed in real-world situations (best practices)
or theoretically, document process know-how that can be utilized for modeling. We
can distinguish between procedural models or the implementation of standard soft-
ware, and business models such as for order processing or product introductions.
Models can be specialized for vertical markets (resulting in vertical market reference
models). ARIS concept reference models, developed by consultancies with expertise
gained in customer projects, are available for practically every vertical market. Thus,
documented process expertise results in the development of commercial products.

Reference models can be quite comprehensive, consisting of hundreds or thou-
sands of model objects. This is why various levels of aggregation are used. Reference
models provide enterprises with an initial process engineering solution, letting them
determine the degree of detail of the model and the business content. Adapted to
company-specific requirements, reference models evolve into company-specific
models. Actual case studies have shown that the use of reference models in organiza-
tional projects can reduce time factors and costs by more than 30%.

Reference models provided by software vendors as software documentation (the
most comprehensive model being SAP’s R/3 reference model) benefit the customer
by utilizing business process know-how, providing the opportunity to compare busi-
ness software solutions or pinpointing positive or negative implementation issues.
Process know-how is increasingly being regarded as an important component of over-
riding corporate knowledge management. Corporate knowledge includes know-how
regarding the products, technologies, organizational procedures and rules as well as
the individual know-how of each individual employee. Documenting, storing, utiliz-
ing and enhancing this basic know-how is a key task of knowledge management [16].

While it is essential to evaluate activity based costing and benchmarking results for
a single business process, multiple alternatives are generated, studied and analyzed in
simulation studies in order to engineer the best possible business process. No me-
thodical enhancements of the business process model are necessary for defining and
analyzing the various engineering alternatives in what-if-situations. After analysis, the
existing process model serves as the foundation for the simulation. In dynamic simu-
lations, on the other hand, the dynamic behavior of process alternatives is studied.
Individual processes are generated in accordance with the process model, their proc-
essing is tracked. Thus, processes are defined at the instance level and their interrela-
tionships are analyzed. This pinpoints any potential delays before any processing
begins. As far as the process alternatives to be analyzed are concerned, it is possible
to define various process structures, processes with different function times and oper-
ating behavior, respectively, of the respective organizational units. Alternatives are
generated individually, in accordance with empirical studies, or randomly and auto-
matically.

The structure of a simulation model can be derived directly from the general
structure process (see Figure 3).

ISO 9000 definitions include criteria for defining the quality of business processes.
Companies can have their adherence to these standards certified. The main idea of
these certifications is that the quality of the processes is an indication of the quality of
the processes themselves.

ARIS Architecture and Reference Models for Business Process Management 381

All around the world, standards such as ISO 9000 and 9xxx, as well as the more
rigid QS-9000 in the automotive industry, are now well established. In addition to
certifying adherence to basic standards like ISO 9001, they stress management as-
pects and pave the way for total quality management (TQM). Efforts towards en-
hancing quality do not grind to a halt, however, once adherence to ISO 9000 stan-
dards has been certified. In order to optimize enterprise processes in accordance with
certain goals, TQM requires people to think and act in a process oriented manner and
to constantly review and improve existing procedures.

The result of systematically capturing, storing and maintaining business process
know-how in a repository is called a process warehouse. Process warehouses are fed
from a wide range of project sources in which business processes are analyzed. These
projects can include reengineering tasks, ISO 9000 certification, implementation of
standard software, activity based costing, etc. When various methods and tools are
used in these projects, the content of the models in the process warehouse needs to be
consolidated and then merged with other models. In consistent and transparent or-
ganizational guides, this process know-how can then be made available to additional
projects. Finally, Internet and intranet technology enables distribution in global enter-
prises.

Business
 Data Is
 Entered

Complaint
Is

Plausible

XOR

Get Back to
Customer

Data
Is

Corrected

0.99

0.01

XOR

Check
 Plausibility

Cost Overview

0,00

5.000,00

10.000,00

15.000,00

20.000,00

25.000,00

Function
1

Function
2

Function
3

Function
4

Total Costs
[DM]
Material Costs
[DM]
Personnel Costs
[DM]
Auxiliary & Operating Costs
[DM]
Energy Costs
[DM]
Various Overhead Costs
[DM]
Write-off Rates
[DM]
Imputed Interest
[DM]
Other Costs
[DM]

Event-driven Process
Chain (EPC)
Complaints Processing

Simulation

Results of the Simulation:

Capacity Overview

0%

10%

20%

30%

40%

50%

60%

70%

Function
1

Function
2

Function
3

Function
4

Employee
Capacity

IT Resources
Capacity

Capacity of other
Resources

Customer
Service
Specialist

Complaint
Is Not

Plausible

Customer
Service
Specialist

Fig. 3. Example of a simulation with EPCs [4]

2.2 Planning and Controlling Business Processes

Engineering a business process concludes in a kind of template for individual busi-
ness processes (process instances). In order to be able to plan and control current

382 A.-W. Scheer and M. Nüttgens

business processes, the appropriate information must be made available to the persons
responsible for the process.

Process monitoring provides the employees involved in and responsible for the
business processes with up-to-date status information regarding the current busi-
ness processes. In addition to the processing status, current process times and proc-
ess costs can be shown ad hoc. This provides the persons responsible for the busi-
ness process with transparent information for answering customers’ questions and
manipulating the remainder of the process if necessary.

Project and production scheduling systems also provide information on "to-be" and
"as-is" deviations from the schedule and costs of the business processes that are to be
executed. This, as well as other information, is utilized to continuously improve busi-
ness processes.

Every method used in describing Level I, such as process analysis, model compari-
son, ISO 9000 certification or simulation, can be employed for CPI. BPR and CPI
should be regarded in the same vein. When a certain situation arises, causing a com-
pany to reflect on its structures, this in turn can lead to a BPR project. However, even
after resolving the problem, processes still change. New organizational concepts can
arise. New Best Practice cases become available as reference models. New technolo-
gies are invented. New knowledge is obtained from processes, which have just been
implemented, leading to an adjustment of the process. Hence, Process Design is a
continuous process. Frequently, conflicts of interest lead to apparent disparities be-
tween BPR and CPI: applications vendors are sometimes blamed for the lengthy pro-
cedure occasionally necessary to implement their software. They are concerned that
their product could be held responsible for any additional delay if they are connected
with a BPR project. Therefore, they oppose BPR strategies and recommend rapid
installation of their software and subsequent CPI. Due to their interest in selling con-
sulting services, consulting companies, on the other hand, recommend the opposite
approach: first, develop a new engineering (organizational) concept and then support
it with the new software. This prevents unnecessary and awkward procedures from
being carried over into the new software concept. The contradictions of these two
approaches are resolved in the ‘ARIS-House of Business Engineering’ because BPR
and CPI are so closely intertwined.

The integration of a process costing component within ARIS is important for im-
plementing a permanent Improvement Process (see Figure 4).

ARIS Architecture and Reference Models for Business Process Management 383

p=0,4 p=0,6

function
process
performance

process
quantity cost driver

process cost

process cost
rate (PAI) process cost

rate (total)

Fig. 4. Supporting process costing with EPCs [13]

The intense debates in business administration circles in recent years regarding
process costing generally dissipate if one adheres to this basic view of business proc-
esses [17], [18]. Process costing has always been around, however, only in areas in
which process descriptions are available, such as in calculating manufacturing proc-
esses. That is why we use terms like concurrent calculation, where as-is costs of a
manufacturing order, and thus of a manufacturing process, are determined in parallel
with an ongoing process.

Process data can also be summarized in an executive information system (EIS) or
data warehouse, supporting process management.

2.3 Workflow Control

Business process engineering and business process planning levels, respectively, are
geared to business oriented managers. Workflow control converts business processes
into IT tools.

Generally, it is not possible to administer an entire business process with one ap-
plication software system. Very often, a variety of systems for sales, purchasing,
manufacturing or accounting is necessary. Even integrated standard application pack-
ages have gaps which have to be filled by custom systems or standard applications
from other vendors. None of these systems is individually capable of determining the
status of the entire process (for example, every processing state of a particular order).
It therefore makes sense to allocate the responsibility for comprehensive process
control to an explicit system level rather than distributing it across several systems.
This level is called „workflow“.

384 A.-W. Scheer and M. Nüttgens

Workflow systems pass the objects (documents) to be processed from one work
place to the next. Ideally, they do this electronically, from the computer system of one
workplace to the next operation step’s system. This requires a detailed description of
the procedure, customized for the individual process type, and of the respective em-
ployee [19].

Figure 5 illustrates how a specific process in the execution level is derived from
the procedure defined in Level I. Instead of the general attributes of the organiza-
tional unit, we now find actual business users. Instead of the general term, we find an
order that is linked to an actual customer.

After the conclusion of a workstep, the workflow system retrieves the document
from the electronic out-bin of the business user and transports it into the electronic in-
bin of the next business user. If several business users are involved in processing, the
procedure can be placed in several in-bins. As soon as a business user has begun with
the process, the procedure is deleted in the other in-bins. The workflow system is
informed of the process status, execution time and the appropriate business user of
every business process. Thus, the workflow procedure is also the foundation for Pro-
cess Management in Level II. It reports the data for cost and scheduling evaluations
and provides process information for process monitoring. An agreement by the
Workflow Management Coalition, a group of Workflow vendors, has standardized
interfaces. Now, various workflow systems can be linked with one another [20].

The process representation of workflow systems can also be used to guide business
users. This increases their knowledge of the interrelationship of organizational busi-
ness processes.

The specific procedure in Figure 5 (right box) follows from the general business
process procedure. You create a specific procedure by giving information on particu-
lar business users and by selecting a certain path outlined in the general business
process description. Thus, business users can always see how their activity is embed-
ded in the process, who will precede and who will succeed them within the process.
For example, they can also see that only the left branch of a business process is rele-
vant for them; the control flow of the right branch might be deleted. Since a particular
process has not been created for the business user of the succeeding activity, only the
department name, "Warehouse", is listed. Depending on the capacity situation at that
time, the business user of the next workstep is not determined until the conclusion of
the task. During Process Workflow, processes with precisely defined procedural
structures can be differentiated from processes with only roughly defined procedural
steps.

In many operational or repetitive procedures (such as order or loan processing),
functions, their procedural branches and organizational units are determined from the
start. Thus, the process is well-structured and can be described with the EPC method.
On the other hand, other processes can only be described partially since functions
become apparent during the process. This is also the case when the sequence of the
process steps is determined ad hoc or the organizational units to be processed become
apparent on an ad hoc basis. In these cases, we define the process as being poorly
structured. It can only be modeled in an imperfect way. For example, functions can
only be presented in a "TO DO" list; the sequence will be determined by the project

ARIS Architecture and Reference Models for Business Process Management 385

team during the process. It is at this time that the person to whom the task has been
assigned, is also determined.

Fig. 5. The workflow component guides users according to processes [13]

Workflow systems seem to be more suitable for controlling well-structured proc-
esses. Likewise, less structured processes are supported by groupware systems, which
only offer tools such as electronic mail, video conferencing, shared conferencing etc.,
but which do not require logical knowledge of the processes. In real-life situations,
we will always find a mix of these two structure forms. Thus, workflow systems are
capable of "exception handling", that is, procedure control can be changed ad hoc
during processing. This functionality can be linked with groupware tools, comple-
menting workflow and groupware. In the future, these two systems will even grow
together.

2.4 Application Systems

Current vendors of integrated software systems are splitting their systems into smaller
modules. Many of them are now just loosely coupled. This makes it possible to re-
lease upgrades for each individual module and not across-the-board for the entire
system. On the whole, there is a strong tendency today towards splitting application
software into individual components (componentware). These modules are re-
assembled into complete solutions according to process models. The operational data
in these applications are managed by database systems.

In the object-oriented approach, data and functions are encapsulated and commu-
nicate via a messaging system, which performs material handling for the workflow

File Edit Object View Window ?

Storage

Database Model Edit Options Redraw Window HelpMonitoring

386 A.-W. Scheer and M. Nüttgens

system. The objects correspond to the "folder" and provide references to data and
functions. It is important to note that Level III is responsible for the entire process of
the operation. It calls up objects to be processed, such as electronic forms for filing
insurance claims, loan application forms for loan processing operations or customer
orders for customer order processing. It then passes them on to the appropriate proc-
essing station and calls up the program modules.

This separation of the control flow of programs and function execution is bringing
about tremendous changes in the software market. Vendors of conventional applica-
tion software will have to decide whether they want to be brokers’ at Level IV and
just provide "componentware" with some editing functionality - or if they want to
move up to the rapidly growing workflow systems market. Conversely, software
manufacturers without much experience in applications are reaching a new point of
departure, now that workflow systems are being developed. Particularly in service
applications, the processing rules in Level IV can be so simple that they only involve
data entry or document editing. Many functions could therefore be executed at this
level, such as calling up a spreadsheet or a word processing program. This makes
workflow systems that control the coherence of a procedure all the more important.

What this means for users is that a new architecture for application software is on
its way. Service providers, such as banks and insurance companies, do not have a
large selection of standard applications at their disposal to support their operational
procedures. Now they can document (model) their business procedures in Level I and
can control their procedures by implementing a workflow system in Level III. In
Level IV, they can still use their existing software to support the processing rules.
Nevertheless, today it is necessary to split software in Level IV and make it accessible
to workflow control. By separating procedure control from function execution state-
ments, information systems are split into data management, procedure control and
function execution.

Figure 6 shows a prototype of such an integrated process-oriented information
system. The left window represents the user interface of the modeling tool and the
features that can be used to design and analyze information models on Level I and II.
The models stored in the repository can be used to configure and activate workflow
processes. The window in the middle shows an activated workflow process on Level
III. The application software on Level IV is pushed by the workflow management
system and represented in the right window.

3. Customizing and Configuration with Reference Models

When supporting business processes in their entirety, it is not sufficient to simply
split the whole process into the four parts intellectually or as a physical system, as
described above. We must also separate their links with one another. We have already
noted that the individual business events in the Process Workflow Level are generated
by copying the business process design in Level I. The generating of this business
design is thus a link between the business process modeling tool and the workflow
system. In the Workflow Management Coalition, experts are working on creating

ARIS Architecture and Reference Models for Business Process Management 387

accepted standards for this link [20]. The same goes for delivering workflow results
to Level II, for example, by delivering details regarding as-is schedules or as-is
amounts to Level II for evaluation purposes.

Fig. 6. Process-oriented, workflow-supporting application software [13]

These two links make it possible to immediately update a business process proce-
dure, even in execution and evaluation levels. This occurs without having to manipu-
late any computer programs. Thus, organizational Design Level I plays a tremendous
role within the whole architecture.

From an organizational point of view, the link between Level I and Level IV is
equally important. Thus, the modeling level not only generates procedure control, but
also processing rules and data transformation. After starting with a group of process-
ing rules that are only very roughly defined, for example, it is possible to filter and
adapt only those that are really important for the business procedures.

Application Systems of the future have to be consistent in carrying through this
concept of model-driven customizing:

Changing the attributes of the data model in Level I alters the data tables in Level
IV (see Figure 7). Modifying process models, in turn, varies the sequence of function
procedures. Changing function models either switches off or activates functions.
Finally, employing the organizational model allocates functions to certain organiza-
tional units and determines the screen sequence. Application Systems are derived
directly from industry-specific market reference models described according to the
ARIS Method. Using the Modeling tools, they can then be developed into company-
specific "to-be" models.

Database Model Edit Options Redraw Window Help

Database Model Edit Options Redraw Window Monitoring Help

F ile Edit Object View W indow ?

388 A.-W. Scheer and M. Nüttgens

 ARIS Model:
 attribute allocation diagram:

master data ITEM
screen:

master data ITEM

Fig. 7. Model-based customizing with ARIS-House of Business Engineering [13]

In order to transfer the model into application software, a build-time-system, class
library and configuration model is relevant. The build-time-system converts the com-
pany-specific ARIS model, based on object-oriented programming, into an opera-
tional application system (run-time system). The build-time system utilizes a class
library consisting of predefined business administration and data processing classes.
The processing rules for this conversion are comprised in the configuration model.
Here is an example: Processing rules guarantee the DP-conversion of the ARIS mod-
els into database objects. They further govern the description of database objects and
links between external and internal identifiers (e.g. for tables and columns). Besides
modifying procedure rules, model-based customizing enables the adjustment or ex-
pansion of data models, dialogue masks and process organization. Thus, the applica-
tion is derived directly from the process model of the enterprise and then configured
from business-objects.

References

1. Scheer, A.-W: Architecture of Integrated Information Systems: Principles of Enterprise-
Modeling. Berlin et al.. (1992)

2. Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung auf der Grund-
lage "Ereignisgesteuerter Prozeßketten (EPK)". In: Veröffentlichungen des Instituts für
Wirtschaftsinformatik (ed. Scheer, A.-W.), Nr. 89, Saarbrücken (1992)
(http://www.iwi.uni-sb.de/iwi-hefte/heft089.zip)

3. Scheer, A.-W.: Business Process Engineering - Reference Models for Industrial Enter-
prises, 2nd ed., Berlin et al. (1994)

4. Scheer, A.-W.: ARIS – Business Process Frameworks, 2nd ed.. Berlin et al. (1998)

ARIS Architecture and Reference Models for Business Process Management 389

5. Scheer, A.-W.; Nüttgens, M.; Zimmermann, V.: Rahmenkonzept für ein integriertes
Geschäftsprozeßmanagement, in: Wirtschaftsinformatik, 37/1995/5. (1995) 426-434.

6. Davenport, T. H.: Process Innovation - Reengineering Work through Information Technol-
ogy. Boston. (1993)

7. Gaitanides, M.: Prozeßorganisation: Entwicklung, Ansätze und Programme prozeßorien-
tierter Organisationsgestaltung. München (1983)

8. Harrington, H. J.: Business process improvement: the breakthrough strategy for total qual-
ity, productivity and competitiveness. New York et. al. (1991)

9. Donovan, J.J.: Business Re-engineering with Information Technology. Englewood Cliffs
(1994)

10. Hammer, M., Champy, J.: Business Reengineering: Die Radikalkur für das Unternehmen.
5. ed., Frankfurt/Main-New York (1995)

11. Harrington, H. J.: Business Process Improvement. New York et al. (1991)
12. Scheer, A.-W.: ARIS – Business Process Modeling, 2nd ed. Berlin et al. (1998)
13. Scheer, A.-W. Industrialisierung der Dienstleistung. In: Veröffentlichungen des Instituts

für Wirtschaftsinformatik (ed. Scheer, A.-W.), Nr. 122, Saarbrücken (1996)
14. Scheer, A.-W.: Workflow-Systeme: Jetzt auch im Büro. In: Harvard Business Manager

19(1997)1, pp. 115-122.
15. Thome, R., Hufgard, A.: Continuous System Engineering, Entdeckung der Standardsoft-

ware als Organisator. Würzburg (1996)
16. Rolles, R. Schmidt, Y.; Scheer, A.-W.: Workflow im Umfeld von Schulung und Ideenman-

agement. In: Scheer, A.-W.; Nüttgens, M. (ed.): Electronic Business Engineering, Physica
Verlag, Heidelberg (1999), pp. 725 – 743

17. Cooper, R. and Kaplan, R. F.: Measure costs right: Make the right decisions. In Harvard
Business Review. 66/1988/5, (1988)p. 96-103.

18. Johnson, H. P. and Kaplan, R. F.: Relevance lost: The rise and fall of management ac-
counting. Boston (1987)

19. Galler, J. and Scheer, A.-W.: Workflow-Projekte: Vom Geschäftsprozeßmodell zur un-
ternehmensspezifischen Workflow-Anwendung. Information Management 1/95, (1995) pp.
20-27

20. Hollingsworth, D.: The Workflow Reference Model. In: Document TC00-1003, Draft 1.1
(ed. Workflow Management Coalition) (1995)

Author Index

W. M. P. v. d. Aalst, 161
A. Agostini, 218

J. Becker, 30

G. De Michelis, 218
W. Deiters, 274
C. Dellarocas, 50
J. Desel, 109, 129

C. A. Ellis, 201
R. Endl, 16
T. Erwin, 129

K. M. v. Hee, 142
A. Heinzl, 83
W.-J. v. d. Heuvel, 328
A.W. Holt, 66

S. Jablonski, 345
G. K. Janssens, 1
S. M. M. Joosten, 289

K. Keddara, 201
E. Kindler, 235
M. Klein, 50
G. Knolmayer, 16
P. Kueng, 301

R. M. Lee,359

A. Martens, 235
M. Meyer, 317
D. Moldt, 254

M. Nüttgens, 376

A. Pagnoni Holt, 99
M. P. Papazoglou, 328
M. Pfahrer, 16

H. A. Reijers, 142
W. Reisig, 235
M. Rosemann, 30

A.-W. Scheer, 376

C. v. Uthmann, 30

R. Valk,254
J. Verelst, 1
M. Voorhoeve, 184

B. Weyn, 1

M. Zapf, 83

	Front matter
	Lecture Notes in Computer Science
	Business ProcessManagement
	Preface
	Table of Contents

	Chapter 1
	1 Introduction
	2 Definition of Basic Workflow Concepts
	3 Workflow Concepts Translated into Petri Nets
	3.1 Why Petri Nets to Model Workflow?
	3.2 High Level Versus Low Level Petri Nets
	3.3 High Level Petri Nets
	3.4 Stochastic Petri Nets
	3.5 Low Level Petri Nets
	3.6 Petri Nets Extended with Object-Oriented Concepts

	4 The Reuse Concept for Workflow Modelling
	4.1 Real World Workflow Modelling
	4.2 Approaches to Reuse of Petri Nets for Workflow Modelling
	Patterns
	Software Architectures
	Application Generators and Very High-Level Languages
	Evaluation
	A Critical Remark Concerning Reuse in the IS-Literature
	Hidden Assumptions
	Final Remarks

	5 Conclusion
	6 References

	Chapter 2
	1	Introduction
	2	Business Rules
	Definition
	The ECmAn Paradigm

	3	Process and Workflow Modeling in the ECAA-Notation
	Necessary Constructs
	Modeling Sequential Actions
	Modeling Parallel Actions
	Modeling Alternate Actions
	Modeling Iterations of Actions
	Additional Modeling Options

	4	Supplementing Actors and Data Models
	Modeling of Actors
	Data Modeling

	5	Stepwise Refinement of Business Rules
	The Refinement Process
	The Refinement of a Business Rule
	Architecture of the Rule Repository

	6	Conclusion and Outlook
	References

	Chapter 3
	1 Complexity and Quality of Business Process Models
	2 The Guidelines of Modeling (GoM)
	2.1 The Basic Guidelines
	2.2 The Optional Guidelines
	2.3 The GoM Meta Model

	3 Guidelines for Selected Purposes of Business Process Modeling
	3.1 Workflow Management
	3.2 Simulation

	4 Techniques for Adjusting Models to Perspectives
	4.1 Different Layout Conventions
	4.2 Different Naming Conventions
	4.3 Different Information Objects
	4.4 Different Information Object Types
	4.5 Different Use of a Process Modeling Technique
	4.6 Different Meta Models

	5 Summary and Outlook
	References

	Chapter 4
	1 Introduction
	2 A Knowledge-Based Approach to Exception Handling
	What is an Exception?
	Preparing for Exceptions
	Diagnosing Exceptions
	Resolving Exceptions
	Summary

	3 Case Study: Barings Bank
	4 Related Work
	5 Future Work
	Acknowledgment
	References

	Chapter 5
	1 Introduction
	2 An Example: the "Pulsar"
	Informal Description of the Pulsar
	Some Comments (on the Pulsar)

	3 OA/TOA, the Pulsar, and Computer Support
	Features of OAs illustrated by the Pulsar
	Computers and OA/TOA

	4 TOA/DIPLAN vs. Petri Nets in Some Detail
	Square and Circle; Actions and Bodies; Space and Time
	Persons
	State
	Decision, Conflict, and "Information"

	5 Review and Conclusion
	6 A Guide to Related Efforts
	Organized Behavior and Planning Languages
	New Software-Architectural Proposals
	Over-all

	References

	Chapter 6
	1 Introduction
	2 Related Contributions
	3 Call Center Management
	Overview
	Characteristics of Inbound Call Centers
	Generic Process Design Patterns in Inbound Call Centers
	Performance Criteria for Inbound Call Centers
	Design Objective “Quality”
	Design Objective “Efficiency”

	4 Evaluation of Common Process Design Patterns in Inbound Call
	Evaluation Framework
	Incoming Requests
	Employees
	Process Partitioning Strategies
	Performance Measurement
	Settings and Evaluation Technique

	Results and Discussion
	One-level versus Two-Level Design
	One-Level versus Two-Level Design with further Process Partitioning
	Two-Level Design with Different Partitioning Strategies

	5 Summary and Future Research Directions
	References

	Chapter 7
	Introduction
	Petri Nets and Business Process Representation
	Management-Oriented Questions and Petri Net Plans
	Tapping into Applied Mathematics
	Working Out a Small Example
	Conclusions
	References

	Chapter 8
	1 Introduction
	2 Principles of Causal Semantics
	3 Formal De nitions
	4 Simulation by Generation of Process Nets
	5 Construction of Process Nets
	6 Analysis of Process Nets
	7 High-Level Petri Nets
	8 Conclusions
	References

	Chapter 9
	1 Introduction
	2 Modeling
	Business Processes
	Modeling Business Processes with Petri Nets

	3 Simulation and Analysis
	4 An Interactive Analysis Approach
	A 3-Step Approach
	So What?

	References

	Chapter 10
	Formal Techniques in Business Process Redesign
	1.1	Business Process Redesign
	1.2	Phases in Redesign
	1.3	Formal Analysis Techniques for Business Processes
	1.4	Relevance of Formal Techniques

	2.	Throughput Analysis
	2.1	Throughput Time
	2.2	Elements of the Process Model
	2.3	Petri Nets
	2.4	Blocks
	2.5	Overall Computation
	2.6	Numerical Experience

	3.	Conclusion
	References

	Chapter 11
	Introduction
	Workflow Perspectives
	Petri Nets
	WF-Nets
	Soundness
	Structural Characterization of Soundness
	Free-Choice WF-Nets
	Well-Structured WF-Nets
	S-CoverableWF-Nets
	Summary

	Composition of WF-Nets
	Conclusion
	References

	Chapter 12
	Introduction
	Definitions
	Processes
	WF Nets
	Firing Rules

	Construction and Veri cation
	Construction
	Properties of Operators
	Veri�cation and Reduction
	Example Construction

	Conclusions and Further Work
	References

	Chapter 13
	1 Introduction
	2 Related Work
	3 Modalities of Change
	3.1 Change Duration: Instantaneous vs Time Interval vs Indefinite
	3.2 Change Lifetime: Permanent vs Temporary
	3.3 Change Medium: Manual vs Automatic vs Mixture
	3.4 Change Time-frame: Past vs Present vs Future
	3.5 Change Continuity: Preemptive vs Integrative
	3.6 Change Agents
	3.7 Change Rules
	3.8 Change Migration

	4 Change Specification Using ML-DEWS
	4.1 The Process Meta Model
	4.2 The Process Change Meta Model
	4.3 The Predefined Change Schemes

	5 Conclusions
	References

	Chapter 14
	1 Introduction
	2 The Work ow Management System of Milano
	3 Modeling Work ows in Milano
	4 Conclusion
	5 Acknowledgments
	References

	Chapter 15
	Introduction
	1 Example
	Scenarios
	Workow application
	Global and local soundness
	Fairness
	Summary of concepts

	2 Formal model
	Basic de�nitions
	Scenarios
	Workow modules and applications
	Global soundness

	3 Local criteria
	Informal presentation
	Prerequisites
	Local correctness and soundness

	4 Outlook
	Conclusion
	References

	Chapter 16
	1 Introduction
	2 Object Oriented Coloured Petri Nets
	3 Object Petri Nets
	4 Business Process Petri Nets
	Some basic notions and assumptions
	Objects
	Systems and functional units
	Business Processes
	Method and Integration
	Example

	5 Conclusions
	References

	Chapter 17
	1 Introduction
	2 Some Basic Aspects of Our Process Management Approach
	3 Modeling Semi-Structured Process Parts in a Petri Net Based
	4 Information Gathering for Building Process Model
	5 Summary
	References

	Chapter 18
	1 Introduction
	2 Ignorance, Modeling and Perceived Complexity
	3 Innovation Risks
	4 The Rainbow Approach
	5 Results
	6 Conclusion
	References

	Chapter 19
	1 Introduction
	2 Ex-post Evaluations: An Overview
	3 Research Design
	4 The Main Findings
	5 Critique of the Chosen Approach
	6 Conclusions
	7 References

	Chapter 20
	1 Introduction
	2 Design of the Empirical Study
	3 SAP Business Workflow (Brief Description)
	4 Presentation of Selected Results of the Study
	Evaluation of Workflow Management
	Use of SAP Business Workflow

	5 Prospects
	References

	Chapter 21
	1 Introduction
	2 Architecture-centric Business-Object Oriented
	The Integrated Enterprise Framework
	Business Objects
	Business Processes
	Workows
	Business Goals and Policies

	3 Business Applications
	Leveraging Legacy Assets
	Adaptability of Business Processes

	4 Linking Enterprise Models to Business Applications
	Case Study: Maintenance and Overhaul of Aircrafts
	BALES Component De�nition Language (CDL
	A CDL Excerpt
	Meta-Model Linking

	5 Proactive Business Change Management
	Mapping Business Changes to the Business Object Level
	An Example of Process Changes

	6 Summary
	References

	Chapter 22
	1 Current Situation
	2 Workflow Management Systems and Applications
	Lifecycle of a Workflow Management Application
	An Abstract Workflow Language

	3 Formal Theory and/or Applied Methods
	General Assessment
	Discussion of Specific Issues

	4 Conclusion
	Acknowledgement
	References

	Chapter 23
	1 Introduction
	2 Open Electronic Commerce
	3 Documentary Petri Nets
	4 Modeling Example
	5 InterProcs
	InterProcs Executor
	InterProcs Designer

	6 Automated Generation of Trade Scenarios
	7 Summary, Conclusions
	References

	Chapter 24
	1. New Approaches of Developing Information Systems
	2. ARIS-House of Business Engineering Architecture
	2.1 Engineering Business Processes
	2.2 Planning and Controlling Business Processes
	2.3 Workflow Control
	2.4 Application Systems

	3. Customizing and Configuration with Reference Models
	References

	Back matter
	Author Index

