Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

1621

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Dieter Fensel Rudi Studer (Eds.)

Knowledge Acquisition,
Modeling
and Management

11th European Workshop, EKAW’99
Dagstuhl Castle, Germany, May 26-29, 1999
Proceedings

) Springer

Series Editors
Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Dieter Fensel

Rudi Studer

University of Karlsruhe, AIFB

Institute for Applied Computer Science and Formal Description Methods
D-76128 Karlsruhe, Germany

E-mail: {dieter.fensel, studer} @aifb.uni-karlsruhe.de

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Knowledge acquisition, modeling and management : 11th
European workshop ; proceedings / EKAW’99, Dagstuhl Castle,
Germany, May 26 - 29, 1999. Dieter Fensel ; Rudi Studer (ed.). -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 1999

(Lecture notes in computer science ; Vol. 1621 : Lecture notes in

artificial intelligence)

ISBN 3-540-66044-5

CR Subject Classification (1998): 1.2

ISBN 3-540-66044-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10705262 06/3142-543210 Printed on acid-free paper

Preface

Past, Present, and Future of Knowledge Acquisition

This book contains the proceedings of the 11th European Workshop on Knowl-
edge Acquisition, Modeling, and Management (EKAW ’99), held at Dagstuhl
Castle (Germany) in May of 1999. This continuity and the high number of sub-
missions reflect the mature status of the knowledge acquisition community.

Knowledge Acquisition started as an attempt to solve the main bottleneck
in developing expert systems (now called knowledge-based systems): Acquiring
knowledge from a human expert. Various methods and tools have been developed
to improve this process. These approaches significantly reduced the cost of de-
veloping knowledge-based systems. However, these systems often only partially
fulfilled the task they were developed for and maintenance remained an unsolved
problem. This required a paradigm shift that views the development process
of knowledge-based systems as a modeling activity. Instead of simply transfer-
ring human knowledge into machine-readable code, building a knowledge-based
system is now viewed as a modeling activity. A so-called knowledge model is
constructed in interaction with users and experts. This model need not neces-
sarily reflect the already available human expertise. Instead it should provide a
knowledge level characterization of the knowledge that is required by the system
to solve the application task. Economy and quality in system development and
maintainability are achieved by reusable problem-solving methods and ontolo-
gies. The former describe the reasoning process of the knowledge-based system
(i.e., the algorithms it uses) and the latter describe the knowledge structures
it uses (i.e., the data structures). Both abstract from specific application and
domain specific circumstances to enable knowledge reuse. Various methods and
tools have been developed in the meantime that support this (knowledge-level)
modeling process. A rather new insight (and here we are in the third phase of the
development process of the knowledge acquisition area) is that these methods
have a much broader application area than the original purpose they were de-
signed for. They cannot only be used to model knowledge-based systems in the
sense of implemented computer programs. Individuals, organizations, and com-
binations of human and artificial agents are knowledgable systems that solve cer-
tain tasks by using their knowledge. Knowledge Management is concerned with
acquiring, organizing, representing, and distributing the knowledge of such enti-
ties. It is not very surprising that methods and techniques developed for modeling
knowledge-based systems can be applied to support such activities. Currently, it
looks likely that this application scenario will become even more important for
knowledge acquisition methods than their original application area.

The contributions to the workshop reflect the three purposes of research on
knowledge acquisition issues. Some of them aim at further improving knowledge
elicitation (i.e., support the process of extracting and creating knowledge), some
of them deal with knowledge-level modeling of knowledge-based systems, and
some of them discuss possible ways to apply and redefine this work in a knowl-
edge management context.

VI Preface

Acknowledgments

The editors wish to thank the members of the program committee and addi-
tional reviewers who freely gave their time and dedicated attention to the review

process.

Program Committee
Stuart AITKEN

Hans AKKERMANS
Nathalie AUSSENAC-GILLES
Richard BENJAMINS
Guy BOY

Joost BREUKER

B. CHANDRASEKARAN
Rose DIENG

Brian GAINES
Jean-Gabriel GANASCIA
Yolanda GIL

Asuncion GOMEZ-PEREZ
Nicola GUARINO

Udo HAHN

Knut HINKELMANN
Philippe LAUBLET
Martin MOLINA

Enrico MOTTA

Mark MUSEN

Additional Reviewers
Klaus-Dieter ALTHOFF
Franz BAADER

Pascal BEYS

Brigitte BIEBOW
Andreas BIRK

Tri M. CAO

Paul COMPTON
Olivier CORBY

Marco COSTA

Stefan DECKER

Jorg DESEL

John DOMINGUE
Robert ENGELS
Michael ERDMANN

Kieron O’HARA

Enric PLAZA

Frank PUPPE

Ulrich REIMER

Francois ROUSSELOT
Marie-Christine ROUSSET
Franz SCHMALHOFER
Guus SCHREIBER

Nigel SHADBOLT

Derek SLEEMAN
Annette TEN TEIJE

Jan TREUR

Andre VALENTE
Walther VAN DE VELDE
Frank VAN HARMELEN
Gertjan VAN HEILJST
Thomas WETTER

Bob WIELINGA
Takahira YAMAGUCHI

David FAURE

Francois GOASDOUE
Rix GROENBOOM
Bjorn HOFLING

Achim HOFFMANN
Machiel JANSEN

Diego JAVIER

Nicholas KUSHMERICK
Michel LIQUIERE
Rodrigo MARTINEZ-BEJAR
Claire NEDELLEC
Thibault PARMENTIER
Paivikki PARPOLA

José PATON

Preface VII

Rainer PERKUHN Dagmar SURMANN
Thomas PFISTERER Sylvie SZULMAN

Alun PREECE Le-Gia THONG
Christoph RANZE Maarten VAN SOMEREN
Chantal REYNAUD Svatek VOJTECH
Orlando SOUSA Holger WACHE

Steffen STAAB Simon WHITE

Heiner STUCKENSCHMIDT Niek WIJINGAARDS
Gerd STUMME Randy P. WOLF

We would also like to thank Eddie Moénch, Yvonne Maierhofer and Gisela
Schillinger for their excellent organizational support. We gratefully acknowledge
the support for EKAW ’99 by the European Network of Excellence in Machine
Learning (MLnet-IT).

March 1999

Dieter Fensel
Rudi Studer

Table of Contents

Invited Papers

Reengineering and Knowledge Management 1
Daniel E. O’Leary
Knowledge Navigation in Networked Digital Libraries 13

Mike P. Papazoglou, Jeroen Hoppenbrouwers

Long Papers

Towards Brokering Problem-Solving Knowledge on the Internet 33
V. Richard Benjamins, Bob Wielinga, Jan Wielemaker, and Dieter Fensel

TERMINAE: A Linguistics-Based Tool for the Building of a Domain
Ont0lOgY ot 49
Brigitte Biébow, Sylvie Szulman

Applications of Knowledge Acquisition in Experimental

Software Engineeringo.ooiiiiiii i 67
Andreas Birk, Dagmar Surmann, and Klaus-Dieter Althoff
Acquiring and Structuring Web Content with Knowledge Level Models 85

Louise Crow, Nigel Shadbolt

A Knowledge-Based News Server Supporting Ontology-Driven Story
Enrichment and Knowledge Retrieval oo .. 103
John Domingue, Enrico Motta

Modeling Information Sources for Information Integration 121
Frangois Goasdoué, Chantal Reynaud

Ontological Reengineering for Reuset 139
Asuncion Gomez-Pérez, Dolores Rojas-Amaya

Formally Verifying Dynamic Properties of Knowledge Based Systems 157
Perry Groot, Annette ten Teije, and Frank van Harmelen

Integration of Behavioural Requirements Specification within

Knowledge Engineeringoouiiiiiiiiiii i 173
Daniela E. Herlea, Catholijn M. Jonker, Jan Treur,

and Niek J.E. Wijngaards

Towards an Ontology for Substances and Related Actions 191
Bjorn Hofling, Thorsten Liebig, Dietmar Rosner, and Lars Webel

Use of Formal Ontologies to Support Error Checking in Specifications 207
Yannis Kalfoglou, David Robertson

The Ontologies of Semantic and Transfer Links 225
Mourad Oussalah, Karima Messaadia

X Table of Contents

Distributed Problem Solving Environment Dedicated to DNA Sequence
ANNOLAtION ...t e
Thibault Parmentier, Daniéle Ziébelin

Knowledge Acquisition from Multiple Experts Based on
Semantics of Conceptsttt
Seppo Puuronen, Vagan Terziyan

Acquiring Expert Knowledge for the Design of Conceptual Information
SYSEEIIIS ..ottt
Gerd Stumme

A Constraint-Based Approach to the Description of Competence
Simon White, Derek Sleeman

Short Papers

Holism and Incremental Knowledge Acquisition
Ghassan Beydoun, Achim Hoffmann

Indexing Problem Solving Methods for Reuse
Joost Breuker

Software Methodologies at Risk o i i
Osvaldo Caird, Julio Barreiro, and Francisco Solsona

Knowledge Acquisition of Predicate Argument Structures from Technical
Texts Using Machine Learning: The System ASIUM
David Faure, Claire Nédellec

An Interoperative Environment for Developing Expert Systems
Noriaki Tzumi, Akira Maruyama, Atsuyuki Suzuki,
and Takahira Yamaguchi

On the Use of Meaningful Names in Knowledge-Based Systems
Machiel G. Jansen, Pascal Beys

FMR: An Incremental Knowledge Acquisition System for Fuzzy Domains
Rodrigo Martinez-Béjar, Francisca Ibanez-Cruz, Le-Gia Thong,
Tri M. Cao, and Paul Compton

Applying SeSKA to Sisyphus IIT ... o i
Paivikki Parpola

Describing Similar Control Flows for Families of Problem-Solving
Methods ... e
Rainer Perkuhn

Meta Knowledge for Extending Diagnostic Consultation to Critiquing
SYSEEIIIS ettt
Frank Puppe

Exploitation of XML for Corporate Knowledge Management
Auguste Rabarijoana, Rose Dieng, Olivier Corby

Table of Contents

An Oligo-Agents System with Shared Responsibilities for Knowledge
Managementoouiii i
Franz Schmalhofer, Ludger van FElst

Veri-KoMoD: Verification of Knowledge Models in the Mechanical
Design Field
Florence Sellini, Pierre-Alain Yvars

A Flexible Framework for Uncertain Expertise
Heiner Stuckenschmidt, K. Christoph Ranze

Elicitation of Operational Track Grids
Randy P. Wolf

Author Index e

XI

Reengineering and Knowledge Management

Daniel E. O’Leary
University of Southern California, 3660 Trousdale Parkway,
Los Angeles, CA 90089-1421
oleary @rcf.usc.edu

Abstract. This paper investigates some of the relationships between
reengineering and knowledge management, with particular emphasis on
sequencing relationships between reengineering and knowledge management.
This is done using four basic approaches. First the paper explores how some
knowledge management computing artifacts can be reengineered. Second, the
paper traces the interaction between reengineering and knowledge
management in typical organizational projects, illustrating the importance of
sequence, and extending the results with a real world example. Third, the
impact of reengineering on ontologies and knowledge bases is briefly
reviewed. Fourth, issues that differentiate reengineering knowledge
management systems and typical transaction processing flows are analyzed.
Finally, simultaneous reengineering and knowledge management are
investigated.

1 Introduction

The purpose of this paper is to investigate some of the issues in the relationship
between reengineering and knowledge management. Both reengineering and
knowledge management are seen as basic processes being used to manage a
particular environment in order to improve processes and create value from the
processes. Much of the focus of knowledge management has been to develop
knowledge management artifacts and processes around an existing set of processes,
in order to support further value creation from those processes. However,
reengineering is concerned with changing processes to exploit the available
technology. As a result, there are inevitable interactions between reengineering and
knowledge management.

Unfortunately, knowledge management and reengineering are not often used in the
same settings, either simultaneously or sequentially. This paper argues that greater
improvement and value creation could occur if original artifacts and processes were
reengineered and then knowledge management artifacts and processes were
developed, or if both were done simultaneously.

2 Reengineering

Reengineering has been defined (Hammer 1990, p. 104) as using “...the power of
modern information technology to radically redesign our business processes in order
to achieve dramatic improvements in their performance.” There are two basic
approaches to reengineering, the obliteration approach and the best practices

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 1-12, 1999.
© Springer-Verlag Berlin Heidelberg 1999

2 D.E. O’Leary

approach. Consistent with Hammer, the obliteration approach seeks to start from
ground zero and build the right processes. The best practices approach has taken the
view that a library of best practices be developed and maintained. Then firms would
choose a portfolio of best practices as a way of building the reengineered
organization.

Hammer elicited seven basic principles of reengineering that are useful in analyzing
how reengineered systems differ from their predecessors:

e Organize around outcomes, not tasks

e Have those who use the output perform the process

Subsume information processing work into the real work that produces the
information

Capture information once and at the source

Put the decision point where the work is performed

Treat geographically dispersed resources as though they were centralized

Link parallel activities instead of integrating their results

Other authors (e.g., Davenport 1993 and Hammer and Champy 1993) have
developed alternative and additional principles. However, in each case these
principles suggest that reengineered systems are fundamentally different than the
previous system.

Ultimately, as firms do reengineering, organizations, processes and people change.
Rather than being task oriented, jobs become outcome oriented. Tasks are shifted to
different persons to accommodate reengineering. Portfolios of tasks performed by
particular individuals change. Reengineering leads to changes in who performs a
given process with those using the output performing the process. In reengineered
processes, there are fewer accountants talking to accountants. Instead, information
activities are gathered while the work is being done. For example, loading dock
personnel can wand bar coded goods to gather input for a centralized database. As a
result, of that shift, information is gathered a single time and decisions in
reengineered systems can be made where the work is performed. The dock worker
gets information as to whether or not the goods were ordered, and decides how to
proceed based on that information. Reengineered systems are likely to treat
geographically dispersed resources as centralized, in order to generate economies of
scale. Finally, rather than producing components in parallel and then assembling,
the processes are linked. Too often in non-reengineered systems, parallel results did
not assemble effectively. Throughout, processes are changed to exploit new
technologies.

3 Reengineer Knowledge Management Computing Artifacts [1]

Recently, Brown (1999) made the case for “calm computing.” One of the primary
tenets of that speech was that current systems lead to information “underload” since
they limit context and periphery. Brown asked the listener to imagine trying the

Reengineering and Knowledge Management 3

“toilet tube” phenomena: put on the equivalent of toilet tube glasses and see your
periphery disappear. Brown noted that experience was similar to what a computer
user would experience in today’s systems. After noting the problem of information
underload, Brown addressed the issue of how computing could be changed to
accommodate broadening across three dimensions to generate context: center Vvs.
periphery focus; explicit vs. the implicit; and attending vs. attuning.

Part of that intriguing speech was concerned with generating “Knowledge
Management Computing Artifacts,” (KMCA) designed to mitigate the underload
problem. KMCA would include the many efforts to develop maps of knowledge,
such as Inxight, developments in personal digital assistants (PDA’s) and other
computing artifacts. In particular, Brown (1999) discussed a number of KMCA,
including audio icons and some “squeezy interfaces.” Since the choice of the nature
of these icons and interfaces is based in process and designed using technology, they
are a potential subject for reengineering.

Audio icons that make noise when objects are trashed are one such artifact. As
noted by Brown, one way in which audio icons can be used is to have the noise,
made based on the size of the file that is being trashed. This is analogous to other
phenomena, for example, when a rock falls and hits the ground the bigger the rock,
the bigger the sound. As a result, the audio icon captures some of the context in a
manner that is consistent with broad reaching human experience. A big noise when
the expectation is for a small noise (or conversely) creates an awareness of a
potential problem.

With squeezy interfaces computing artifacts are established so that when a user
interacts with an artifact the right thing happens. For example, a tilt-sensitive
personal digital assistant (PDA) was developed that mimicked the movement of a
Rolodex set of cards.

A physical Rolodex includes a card for each relevant person or organization. As a
result, a Rolodex captures information about names, addresses, phone numbers and
email addresses. A tour of organizations will find that many secretaries and some
managers have rolodexes on their desks. Rolodexes can take many different forms,
as can be seen in an office supply order book, each with their own look and feel.

Overtime, Rolodex’s percentage of the address listing business has decreased and
will continue to decrease. Increasingly, physical rolodexes are being replaced with
computer-based rolodexes. Further, with the increasing use of “hoteling” in some
organizations, physical rolodexes are disappearing as manager’s desks disappear.

As a result, the Rolodex probably is not based in as broad reaching human
experience as say the noise of a file being trashed. Many have probably never used a
Rolodex. (The author has no intuition for a Rolodex.) Accordingly, a PDA that
duplicates such a dated technology may be directing KMCA efforts in the wrong
direction. Instead as with reengineering, squeezy interfaces for KMCA should focus

4 D.E. O’Leary

on experiences with broader-based human experience, or resident in more
contemporary technology.

Another dated technology proposed for knowledge management is the “smart paper
staple.” The notion of a smart staple derives from a staple placed in a cow's ear to
keep track of information about the cow. Smart paper staples have an http address
stored in them so that addition or confirmatory information can be stored in an
alternative form. However, the basic notion is that a paper copy is the primary
version. An old technology is driving the KMCA.

In both the case of the Rolodex PDA and the smart paper staple, knowledge
management was applied to an existing process without reengineering and the result
is KMCA that is based in limited experience and/or old technology.

4 Stages of Interaction Between Reengineering and Knowledge
Management

Reengineering and knowledge management inevitably interact with each other. In
addition, typically they are sequentially used to make processes more valuable and
efficient. Some of the relationships are summarized in figure 1.

Stages of Interaction Between
Reengineering and Knowledge Management

Example:\KM

Support of ERP
& Yes | —
5
g Classic Reengineering would
B0 Reenginpdring requite change of
§ the KM process
“ No —

Classic| KM
No Yes

Knowledge Management
Fig. 1. The interaction of reengineering and knowledge management and their sequencing.
4.1 Classic Reengineering
In a classic reengineering process there is little attention given to knowledge
management per se. The primarily concern is making sure that the processes are

changed to exploit technology. As part of this change, systems are likely to be
changed based on the seven principles of reengineering, discussed above.

Reengineering and Knowledge Management 5

Developing systems based on those principles gets different portfolio’s of tasks to
different people than in the original system. In addition, those principles often
reduce the number of employees. All of these changes resulting in substantially
different systems.

4.2 Classic Knowledge Management

Classic knowledge management starts with an existing process and then builds a
knowledge management system to support the process. In order to assure that
knowledge is gathered, updated, distributed and used, knowledge management
“bakes” it into the process, i.e., the knowledge management is embedded in the
process. Perhaps the clearest example of baking knowledge management into a
process is in the case of a help desk. At the help desk, representatives serve
customers. Each transaction between representative and customer is captured
building up a history of relationships and knowledge about the customer and the
representative, in addition to the product. That knowledge base can be used to
provide knowledge about customer service.

4.3 Knowledge Management Support of a Reengineered Process

Increasingly, knowledge management systems and artifacts are being set up to
support reengineered processes. For example, substantial reengineering is going into
the development and implementation of enterprise resource planning (ERP) systems,
such as SAP. Increasingly, knowledge management systems are being developed to
support use and development of those ERP systems. For example, reports from ERP
databases are being developed and put on Intranets as a means of distributing
information. In addition, firms are building FAQ's to help users answer questions
that they may have about how to use the system and other issues.

4.4 Reengineering and Knowledge Management: Which one first?

If a knowledge management system is developed for a process it will be designed to
provide information to the existing process. If the system is reengineered then, as
noted above, that can change who does what tasks and needs what information. If
the knowledge management system is baked into the process then if the process
changes so must the knowledge management system. Accordingly, reengineering
will change the requirements of the knowledge management system, requiring
redesign. As a result, generally, reengineering is first, followed by knowledge
management.

S Case Study: Texas Instruments’ Capital Budgeting Process

This section provides a case study of Texas Instruments’ knowledge management
efforts in the area of capital budgeting. In this case study, a department in Texas
Instruments built a knowledge management system without reengineering the
underlying process. Ultimately, this bottom-up approach, without reengineering

6 D.E. O’Leary

cements the existing capital budgeting process. Unfortunately, there are some
limitations in the existing process that are also further exasperated by this further
cementing of the process.

5.1 Knowledge Management Effort [7]

In the form of an integrated expert system and database, the Microwave
Manufacturing Department built a knowledge management system. At the time of
the case study, Texas Instruments was organized into 8 major groups, including
Defense Systems & Electronics Group (DSEG). Each group consisted of entities.
For example, DSEG had six entities, including the Business Development Entity.
Each entity had about four divisions, e.g., the Business Development Entity included
the Microwave Technology Products Division. Within divisions there were multiple
departments, e.g., the Microwave Manufacturing Department. This basic
organization structure is illustrated in figure 2.

Texas Instruments Organization Structure

Group
Business
Entity Development
L Microwave
Division Technology
Products
Department Microwave Manufacturing

Fig. 2. Texas Instruments has an extensive organization structure. The system developer, the
Microwave Manufacturing Department, is at the bottom of the hierarchy.

Unfortunately, the capital budgeting process had a number of limitations at the time.
Capital expenditures required substantial documentation and committee review for
any expenditure of $1,000 or more. Larger expenditures could require up to four
levels of management committees. DSEG prepared over 1,500 requests in a typical
year, each of which could require substantial review time.

The knowledge management system, was built to facilitate the construction of
proposals to be submitted for funding, as part of the capital budgeting process. The
system was based on knowledge gathered at the Microwave Manufacturing

Reengineering and Knowledge Management 7

department level and was designed to meet the needs of a rapidly growing
department, with large capital requirements. Because the department had experience
at generating (successful) capital packages, they had accumulated substantial
expertise in knowing what the committees wanted to see in a capital proposal.

The system had knowledge about depreciation, income taxes, and division
production plans. A system user provided information about a particular capital
proposal and then determined what would need to be done to make the proposal
acceptable to the committee(s) responsible for evaluating capital proposals. For
example, if the proposal included a request for a new welder, then the system would
ask the user questions about when the welder would be needed and how many welds
would be required. Based on past experience the system would determine if the
welder would be approved based on the parameters gathered.

Whereas, the rest of the company averaged an 80% success rate on their capital
proposals, the Microwave Manufacturing Department was able to generate a higher
acceptance rate. For one set of 50 proposals, the system indicated that three
proposals would not be acceptable by the capital proposals group, whereas the other
forty-seven would be acceptable. The system was right on all fifty. The system
apparently was so successful at generating budget proposals, that other groups,
entities, divisions and departments became interested in acquiring the system for
their own use.

5.2 Some Limitations in the Knowledge Management Effort

Although the system has been hailed as a success story for expert systems, there is
another perspective. The Texas Instrument knowledge management effort was
limited in a number of ways. First, the group that built the system was not in a
position to make any changes in the existing capital budgeting process. The
development group was a “process taker.” For example, even though the $1,000
requirement was very low, there was no change in the process. Second, the group
took the existing processes and developed a system that would help them best
function within the context of the existing processes. The department needed capital,
and the system could be used to help them develop proposals that met the
requirements of the review committees. The department saw the existing processes
as those that needed knowledge management support. They optimized the
knowledge management system, subject to the existing processes, that the
department saw as constraints. Third, the development of the knowledge
management system ultimately further embraced the existing set of processes. As
the system was given to other divisions, units, etc. the existing policies would be
further cemented in the organization. As a result, there was no re-thinking of
budgeting policy and knowledge. The organization as a whole ultimately was driven
to using a system that contained the policies and other knowledge of the
organization, from the viewpoint a lower level department.

8 D.E. O’Leary

6 Reengineering and Ontologies

Reengineering and ontology development also must be sequenced. Currently, much
of the reengineering uses ERP systems to facilitate and enable reengineering of
transaction processing systems. Implementation of those systems typically requires
that an organization change its organizational design and flows of information and
knowledge from a functional approach to process-oriented approach in order to
accommodate the ERP software.

Process oriented ontologies are likely to be substantially different than functionally
oriented ontologies. Some differences in information flows are summarized in figure
3, which illustrates the basic differences in functional and process flows in SAP’s
R/3 ERP system.

Order Management Process

2]
2]
s Proposal Commit- Conﬁgur— Credit Delivery » Billing qulec—
e ment ation / Check tion
[a W)
o Sales & Sales &
N Sales & Distribution Distributjon Distributjon
E
§ Production Materials
N Planning Managemegnt
%
Financials Financials

Fig. 3. Sample Mapping of a Reengineered System to a Process, based on SAP’s R/3
enterprise resource planning system.

Process-based technologies are not just used in transaction-based systems. Process-
based ontologies are also used in knowledge management systems. For example, a
number of consulting firms have developed process-oriented ontologies that they use
internally to organize best practice databases. A sample model of such an ontology
is included as figure 4. A functional based ontology would be substantially different,
focusing on stove-piped functional needs rather than cross functional value creation.

Reengineering and Knowledge Management

Perform Define Produce Manage Perform
Marketing and Products and Products and Logistics and Customer
Sales Services Services Distributio Service

Perform Business Improvement

Manage Environmental Concerns

Manage External Relationships

Manage Corporate Services and Facilities

‘ Manage Financials

‘ Manage Human Resources

‘ Provide Legal Services

‘ Perform Planning and Management

‘ Perform Procurement

‘ Develop & Maintain System andﬂW

KnowledgeView Multi-Industry Process Technology (Price Waterhouse)

Fig. 4. One firm’s model of their ontology for their best practices knowledge base.

7 Reengineering and Knowledge Bases

Reengineering also influences the type and content of knowledge bases developed or
required for knowledge management.

7.1 Knowledge Base Types

The types of knowledge bases will differ between reengineered process organizations
and functional organizations. For example as seen in figure 3, a process oriented
organization’s “Order Management Process” requires tight “linkages” between Sales
& Distribution, Production Planning, Materials Management and Financials.
However, in a classic functional organization, there are only limited linkages
between the functional areas.

7.2 Knowledge Base Content Differences

A “lessons learned” knowledge base could have substantially different content in a
reengineered process oriented organization, as opposed to a functionally oriented
organization. In the process organization, linkages with other functions could force
development of different lessons learned.

The same lesson ultimately could appear in either knowledge base, but different
people could be interested in it. For example, as seen in figure 3, all of those
interested in the efficiency of the Order Management process, would be concerned
with the financial aspect of collection. However, in a functionally oriented
organization, only the financial department would be interested.

10 D.E. O’Leary

8 Reengineering Knowledge Management Systems vs.
Reengineering Transaction- Based Systems

This section provides a brief discussion of how reengineering a knowledge
management system is different than reengineering a transaction processing system.
Al-based systems built to reengineer transaction processing systems (either explicitly
or implicitly) have concentrated on quantitative metrics that relate to measuring
flows of information. Generally, those metrics are related to the principles of
reengineering. For example, such systems might measure the

e number of hand-offs of a particular document (task vs. outcome orientation),

e extent to which output is used by those generating the information (have those
who use the output perform the process),

e extent to which information capture is embedded in work (subsume information
processing into the real work),

e information capture efficiency (capture information once and at the source),

e the amount of parallelism in a network flow representation of a process (link
parallel activities rather than integrating their results),

e extent to which a process is manual or automated,

e extent to which flows are reviewed (e.g., internal audit function of checking
documents).

Heuristics easily can be developed to take an existing graph representation of
information flow and reengineer it to optimize across these metrics. In some cases
authors have used these same metrics to begin to try to reengineer knowledge
management systems.

Unfortunately, such a reengineering of knowledge management systems would likely
be the wrong path to pursue. Knowledge management is not generally concerned
with transaction information flows. Instead, reengineering of a knowledge
management system needs to consider the principles on which a knowledge
management system is based. One such approach to capture some of the principles
of knowledge management was initiated in O'Leary (1998) (others have also pursued
these principles). O'Leary (1998) argued that the principle functions of a knowledge
management system are to facilitate (the five C's)

conversion of data and text into knowledge,

conversion of individual and group's knowledge into accessible knowledge,
connection of people and knowledge to other people and other knowledge,
communication of information between users,

collaboration between different groups, and

creation new knowledge that would be useful to the organization.

Some quantitative measures that relate to these functions include

Reengineering and Knowledge Management 11

percentage of data analyzed using knowledge discovery approaches,
percentage of text analyzed using knowledge discovery approaches,
number of links connecting knowledge

nature of network connecting knowledge (e.g., single level tree)
percentage of groups or individuals actually collaborating,
percentage of time spent collaborating

Unfortunately, these measures don't really capture how useful the system was or the
quality of the interactions. Although reengineering of transaction-based systems can
pursue quantitative measures, reengineering of knowledge management systems also
seems to required more qualitative data, as captured in the following (and other)
questions.

e Does the knowledge management system accomplish these functions?

e To what extent does the system make converted or created information
available?

e Do all who need the system have access to the system?

e How can the system be modified to accomplish these functions?

9 Simultaneous Reengineering and Knowledge Management

Generally, this paper has portrayed a sequence of reengineering and then knowledge
management of a process. However, from an alternative point of view, knowledge
management is a technology that needs to be exploited as part of the reengineering
process, suggesting simultaneity between reengineering and knowledge
management.

To-date there has been limited research and real world implementation designed to
address simultaneous development of a reengineered system and its supporting
knowledge management system. Much of the technology designed to enable either
reengineering or knowledge management is not designed to facilitate generation of
the other.

10 Summary

This paper has argued that knowledge management and reengineering are tightly
bound together, and generally, reengineering should proceed prior to knowledge
management, or simultaneously.

When considered in the context of reengineering, some knowledge management
computing artifacts that have been proposed and developed put the knowledge
management first. Although some KMCA are based in broad human experience,
others replicate out-dated environments that could be reengineered.

12 D.E. O’Leary

In order to provide high quality processes, generally reengineering is pursued prior
to knowledge management. If not, there can be a number of problems.

e Knowledge management further cements existing processes. As a result, if
processes are not efficient or need to be improved, those inefficiencies will be
further entrenched. Accordingly, it is critical to reengineer before the
knowledge management systems are built.

e Knowledge management needs to be pursued carefully. Without reengineering,
knowledge built into systems may come from the perspective of knowledge and
policy takers. The system may be built to “optimize” across the department’s
view, rather than the overall organization. Ultimately, this can lead to a very
different system than that developed with the overall organization in mind.

e Ontologies developed for functional organizations are not generally applicable to
process-based organizations. As a result, if firms are planning to move toward a
more process-based approach, then it can be important to reengineer and then
develop the ontology.

e The knowledge bases that come from first reengineering and then developing a

knowledge management system would differ substantially from those that would
result without first reengineering.

References

1. Brown, John Seely, “Calm Computing,” 32nd Annual Hawaii International
Conference on System Sciences, Thursday, January 7, 1999.

2. Davenport, T., Process Innovation: Reengineering Work through Information
Technology, Harvard Business School Press, Boston, 1993.

3. Hammer, M., “Reengineering Work,” Harvard Business Review, July/August
1990, pp. 104-112

4. Hammer, M. and Champy, Reengineering the Corporation: A Manifesto for
Business Revolution, Harper Business Press, New York, NY, 1993.

5. McAfee, A. and Upton, D., “Vandelay Industries,” Harvard Business School,
1996.

6. O'Leary, D., Knowledge Management Systems: Converting and Connecting,
IEEE Intelligent Systems, May/June 1998, pp. 30-33.

7. Sviokla, John, “Texas Instruments: Using Technology to Streamline the
Budgeting Process,” Harvard Business School, 1988.

Knowledge Navigation
in Networked Digital Libraries*

Mike P. Papazoglou and Jeroen Hoppenbrouwers

Tilburg University/Infolab
PO Box 90153, NL-5000 LE Tilburg
The Netherlands
{mikep,hoppie}@kub.nl

Abstract. Formulating precise and effective queries in document re-
trieval systems requires the users to predict which terms appear in doc-
uments relevant to their information needs. It is important that users
do not retrieve a plethora of irrelevant documents due to underspeci-
fied queries or queries containing ambiguous search terms. Due to these
reasons, networked digital libraries with rapid growth in their volume
of documents, document diversity, and terminological variations are be-
coming increasingly difficult to manage.

In this paper we consider the concept of knowledge navigation for fed-
erated digital libraries and explain how it can provide the kind of inter-
mediary expert prompting required to enable purposeful searching and
effective discovery of documents.

Keywords: digital library, meta-data, ontology, clustering, browsing,
navigation, semantic indexing, concept searching.

1 Introduction

Digital libraries bring large volumes of information to the user, whether re-
searcher, analyst, student or casual browser. The classical approach by Infor-
mation Retrieval (IR) is to define scalable techniques such as the vector-space
model for matching queries against many thousands of documents efficiently [21].
This technique attempts to maximize the relevance of a document to a query. Al
approaches have also been similarly intensioned although focusing on applying
domain knowledge and analogical reasoning rather than numeric matching tech-
niques. For example, an analogical reasoning system can be used to construct
the possible interpretations of query terms corresponding to alternative paths in
the inference network and to negotiate them with the user. In this way the user
is able to select his/her intended interpretation of an unstructured query.

The relevance of query terms to documents is only one part of a complex
problem. Currently, there is a massive investment world-wide in making digital
document repositories accessible over networks. The result of this is that users

* This research has been partially funded by the European Union under the Telematics
project Decomate LIB-5672/B.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 13-32, 1999.
© Springer-Verlag Berlin Heidelberg 1999

14 M.P. Papazoglou and J. Hoppenbrouwers

of Digital Libraries (DLs) are overwhelmed by the amount of documents that
are required to assimilate but also of the constant influx of new information. At
the same time there is also a major investment in providing indexing, catego-
rization, and other forms of meta-data for DL documents and a large number of
IR techniques have been developed for automatic categorization of repositories
for which human indexing is unavailable. These activities result in quite diverse
meta-data vocabularies, e.g., index and thesaurus terms, that characterize docu-
ments. Therefore, the number of meta-data vocabularies that are accessible but
unfamiliar for any individual searcher is increasing steeply.

1.1 Limitations of Index Terms

Despite user knowledge that several terms within a particular domain may have
the same meaning, known IR technology can only match terms provided by the
searcher to terms literally occurring in documents or indexing records in the col-
lection. Unfortunately, keyword expansion techniques have shown no significant
improvements over other standard IR techniques as it is usually very difficult
to choose which keywords to expand [5]. This implies that there are too many
potentially matching documents which may not be retrieved due to the variation
of the index terms used, and the fluidity of concepts and vocabularies in different
domains.

The situation described above is particularly acute in digital libraries with
spatial distribution which aim to make widely distributed collections of hetero-
geneous documents appear to be a single (virtually) integrated collection. Such
federated digital libraries (FDLS) typically specialize in a fairly narrow and spe-
cific domain area, e.g., Biomedicine, Computer Science, or Economics. Although
the amount of searching in FDLs is expected to rise, diminishing search effective-
ness and less reliable answers is the predictable result as a consequence of the
explosive increase in meta-data heterogeneity due to terminology fluctuations.
The challenge is to provide automatically the kind of expert assistance that
a human search intermediary, familiar with the source being searched, would
provide. In [3] has been argued that the most effective solution to improving
effectiveness in the search of digital repositories would be technology to assist
the information searcher in coping with unfamiliar meta-data vocabularies.

1.2 From Terms to Knowledge

A particularly promising methodology for addressing these objectives is knowl-
edge navigation. This methodology relies on the use of computer assisted support
for acquiring and relating digital information originating from diverse heteroge-
neous document repositories. Knowledge navigation combines techniques from
knowledge representation and natural language processing with classical tech-
niques for indexing words and phrases in text to enable a retrieval system to
make connections between the terminology of a user request and related termi-
nology in the information provided in an FDL.

Knowledge Navigation in Networked Digital Libraries 15

At this juncture it is useful to discriminate between terms and concepts.
Terms may appear in documents or meta-data descriptions and may originate
from a controlled vocabulary of terms such as a thesaurus and have a predom-
inantly structural flavor. Concepts, on the other hand, are used to organize
index terms into distinct, higher-level, conceptual categories that have a distinct
meaning.

The purpose of knowledge navigation is to help users negotiate a pathway
through an overwhelming universe of information in order to improve their un-
derstanding. This requires locating, identifying, culling, and synthesizing infor-
mation into knowledge. Knowledge navigation does this by analyzing the con-
ceptual structure of terms extracted from document indices and using semantic
relationships between terms and concepts to establish connections between the
terminology used in a user’s request and other related terminology that may
provide the information required.

We consider the development of a methodical, scalable search process critical
to the successful delivery of information from networked digital library systems.
Hence, in order to provide users with tools for knowledge navigation, a four step
process may be introduced: (i) Determining the information needs of users by
means of different term suggestions; (ii) Locating candidate documents that may
address these needs; (iii) Analyzing the structure, terminology and patterns of
use of terms and concepts available within these information sources; and finally,
(iv) Retrieving the desired documents. The very nature of this process suggests
that we should provide facilities to landscape the information available in FDLs
and allow the users to deal with a controlled amount of material at a time, while
providing more detail as the user looks more closely.

To support the process of knowledge navigation while overcoming the com-
plexity of wide-area information delivery and management, we cannot rely on
a collection of meta-data index terms which simply contain terms reflecting the
content of documents in an FDL. A more structured and pro-active approach to
searching is required. In such situations, concept browsing can be particularly
beneficial [10, 18]. The precursor of such an advanced browsing approach assumes
that we are in a position to impose some logical organization of the distributed
information space in such a way that potential semantic relationships between
related documents in the network can be explored. Accordingly, the objective
of knowledge navigation systems is to be able to handle a spontaneous descrip-
tion of the information required while minimizing the need for an information
seeker to engage in repeated query reformulation in order to discover the exact
terminology that will retrieve the information required.

In this paper we discuss how the use of knowledge knowledge navigation tech-
niques can be used to transform an FDL from a passive warehouse of navigatable
information to an environment that supports pro-active distributed document
searching and retrieval. The paper is organized as follows. First we introduce
the precursors of knowledge navigation such as a common ontology and rich
meta-data sets. Following this, we discuss the benefits of knowledge navigation
for FDLs and introduce a conceptual FDL architecture. Subsequently, we discuss

16 M.P. Papazoglou and J. Hoppenbrouwers

different dimensions of browsing and querying and report on related research.
Finally, we summarize the main points of this paper.

2 Conceptual Network Creation and Maintenance

For knowledge navigation to be effective it should provide an efficient network
of pathways that can allow a person to navigate through conceptual space in a
DL and can also reveal relationships between concepts. It should support human
browsing and navigation in “conceptual space” by providing a structured map
of the concepts used in the indexed material and allowing a user to move con-
veniently back and forth between concepts in a classification scheme and thus
locate the text material where these concepts occur. It should also be able to
use paths in the conceptual index to find relationships between terms in a re-
quest and related terms that may occur in relevant material. In the following
we present some relevant terminology and explain why the use of ontologies and
conceptual networks can be beneficial to knowledge navigation.

2.1 From Indexing Terms to Conceptual Networks

Indexing terms are used when adding a document to a (digital) library for ef-
ficient retrieval of the document. Surrogates of the documents in a digital li-
brary, commonly known as meta-data, are created by professional catalogers
and indexers. The concept of meta-data is examined further in section 3.

Vocabulary in information retrieval usually refers to the stylized adaptation of
natural language to form indexing terms. In such situations we tend to define
a vocabulary purely in terms of word structures that can be manipulated,
but the meanings of the words are constructed subjectively and situationally
and the use of the vocabulary is predominantly social [3].

A thesaurus in the field of information and library science is defined as “a
compilation of words and phrases showing synonyms, hierarchical and other
relationships and dependencies, the function of which is to provide a stan-
dardized vocabulary for information storage and retrieval systems” [20]. Such
a list of thesaurus terms, also called an authority list, is useful in showing
terms, which may be used in indexing, and which should be not.
Conventional thesauri often represent a general subject area, so that they
usually need significant enhancement to be tailored to a specific domain. This
has triggered Al research to attempt to represent knowledge of a domain in a
declarative formalism, with the goal of permitting knowledge to be expressed
with such detail that it can be manipulated automatically.

An ontology may be generally defined as a representation of a conceptualiza-
tion of some domain of knowledge [8]. It is a formal and declarative rep-
resentation which includes the vocabulary (or names) for referring to the
terms in that subject area and the logical statements that describe what the
terms are, how they are related to each other, and how they can or cannot
be related to each other. Ontologies therefore provide a formal vocabulary

Knowledge Navigation in Networked Digital Libraries 17

for representing and communicating knowledge about some topic and a set
of relationships that hold among the terms in that vocabulary. This consen-
sus knowledge about a specific and narrow domain is meant to be relatively
stable over time, and reusable to solve multiple problems.

Formal ontologies define vocabulary with logic. The exact syntax and se-
mantics depends on the representation language, e.g., description logics [27].
Formal ontology concept definitions are usually constructed as frames with
definitions including a name, a set of relations to other concepts, and a nat-
ural language description that serves strictly as documentation [27].
Informal ontologies, such as WordNet [13], use a dictionary style natural lan-
guage description, and this description provides the authoritative meaning
of the term. Informal ontologies use richer kinds of relationships than sub-
sumption and are directed graphs rather than trees as in the case of formal
ontologies.

Compared to description systems in DLs, ontologies are more expressive,
precise and powerful. They are powerful because their precision supports
reasoning. Ontologies can be used to define sets of of descriptive meta-data,
e.g., the Dublin Core elements, see section 3, as well as systems for classifying
knowledge [27].

A conceptual network is a collection of semantic nodes with links between
them, in such a way that many relationships are captured. Detailed coverage
of a domain is an elaborate process involving rich semantic relationships, e.g.,
semantic roles and part-of relationships [13], usually more than those that
a typical thesaurus can sustain. However, newer generation thesauri and
ontologies contain richer information that can be used as basis to construct
conceptual networks [14].

As the vocabulary of each living language grows continuously, especially in
the technical-scientific domains, it will be very hard to claim that any thesaurus
is ever complete. Regular updates must be applied to every thesaurus to keep it
abreast of terminology evolution and changes [1].

2.2 Managing Network Growth

The dynamic nature of thesauri and conceptual networks means that most static,
hierarchically organized classifications such as the UDC tree! or the classification
of the Journal of Economic Literature (JEL)? are not adequate to serve as a
complete conceptual network. More specifically, classification tools do not aim
at covering the complete terminology of a domain, instead they aim to identify
specific subfields (subjects) within broader fields. Of course their subject head-
ings can be used as a starting point for thesaurus construction, and they can be
included as generic ‘see also’ (related term) pointers in a conceptual network.
Conceptual networks such as WordNet [13] contain enough terminology and
relationship information to be usable. However, these are usually too static and

! http://main.bib.uia.ac.be/MAN/UDC/udce.html
2 http://www.econlit.org/elclasbk.htm

18 M.P. Papazoglou and J. Hoppenbrouwers

cover a broad range of common fields while being sparse on specialized domains
— which are far better suited to assist users in knowledge navigation [2,11].
It is especially important to have the conceptual network organized in terms
of concepts instead of plain index terms. WordNet uses the synset primitive
to group highly synonymous terms together while the EuroWordNet project
extends the synonymy relation to include multiple languages [24, 25]. Other work
on Lexicons, aimed specifically at conceptual modeling [9], also suggests ways of
organizing terminology to properly present a conceptual space to users.

Acquiring a suitable conceptual network therefore is not just a matter of
copying existing thesauri or term lists. Considerable effort should be put into
the creation and maintenance of a conceptual network for knowledge navigation
purposes. Any semantic network which models a piece of reality needs regular
updating in order to stay synchronized with the world it represents. It is unrea-
sonable to expect that a network can be constructed once and remain stable for
an extended period of time. According to [16]: “The danger is that if the the-
saurus is permitted to become monolithic and resistant to change, it can actually
hinder both indexing and retrieval.”

In the case of a virtual library system — which exhibits spatial distribution
and which specializes in one particular scientific field, such as economics, astron-
omy or chemistry — the network should be maintained by experienced librarians
and catalogers. These people can quickly recognize the particular places in the
conceptual network where potential new concepts should be placed, and can up-
date and verify the network as part of their regular work. In this way they help
develop a ‘conceptual map’ of their domain, which can be very useful for other
purposes besides knowledge navigation support.

3 Meta-data: the Foundations of Document Description
and Discovery

Surrogates of the documents in a digital library — called document index records
(DIRs), or meta-data — are usually created by professional catalogers and index-
ers. The concept of meta-data (index records) when applied in the context of
digital libraries typically refers to information that provides a brief characteri-
zation of the individual information objects in a DL and is used principally in
aiding searchers to access documents or materials of interest [22]. The purpose of
meta-data is to describe a certain the type of a resource and provide the means
of identifying topics related to the search terms.

In recent years there has been a focus on meta-data in relation to describing
and accessing information resources through digital libraries, or the World Wide
Web in general.® In contrast to traditional descriptive cataloging, which relies
on very complex rules requiring extensively trained catalogers for successful ap-
plication, simpler descriptive rules are employed which are sufficiently simple
to be understood and used by the wide range of authors and publishers who

3 http://ifla.inist.fr/II/metadata.htm

Knowledge Navigation in Networked Digital Libraries 19

contribute information to the Web. Many librarians and organizations create
handicraft collections of records (portals) that are more informative than an
index entry but is less complete than a formal cataloging record to character-
ize document resources. Some of these collections of “third-party” meta-data
records classify the document resources using organizational methods such as
the Library of Congress classifications, UDC codes, or home grown schemes. The
collections also include subject or keyword information, as well as title and au-
thority information.

The term meta-data in the context of DLs has been used in conjunction with
the “Dublin Core” [26] which is being developed as a generic meta-data standard
for use by libraries, archives, government and other publishers of online informa-
tion. The Dublin Core was intended to be limited to describing “document like
objects” such as HTML pages, PDF files and graphic images. It was intended to be
descriptive, rather than evaluative. The Dublin Core standard was deliberately
limited to a small set of elements which would have applicability over a wide
range of types of information resources. However, the descriptive rules suggested
by the Core do not offer the retrieval precision, classification and organization
that characterizes library cataloging.

To support pro-active searching FDLs need to rely on higher-level (and more
structured) meta-data than that of descriptive cataloging to support dealing
with the problems of large-scale searches and cross disciplinary semantic drifts.
The meta-data schema* should capture in its fields the contents and topics of
documents based on elements of the Dublin Core, e.g., title, creator, subject and
textual summaries (description), and also provide fields that allow to associate
search terms and concepts to related sets of terms and topics in other documents.
It is particularly useful to be able to combine meta-data descriptions with on-
tologies. If an ontology underlies meta-data descriptions, then it can represent
the meta-data terms associated with documents in a precise and explicit manner.
It can help alleviate term mismatch problems by grounding meta-data supplied
terms to commonly used and understood terms. It can also ontologically define
implicit (narrower, broader, part of) relationships between meta-data supplied
terms, thus, making them amenable to computational reasoning.

4 Requirements for Effective Knowledge Navigation

It is evident that facilitating access to a large number of distributed document
repositories and libraries involves a range of requirements that cut across both
user and system needs.

Topic classification schemes In order to be able to search large information
spaces an important requirement is to partition them into distinct subject
(topic) categories meaningful to users. This makes searches more directed
and efficient. It also facilitates the distribution and balancing of resources
via appropriate allocation to the various partitions.

4 http://www.imsproject.org/md_overview.html

20 M.P. Papazoglou and J. Hoppenbrouwers

Abstracting meta-information Support for meta-information concentrates
not on the descriptions (meta-data) of network-accessible information items
but rather on high-level information whose purpose is to cross-correlate,
collate, and summarize the meta-data descriptions themselves. This type
of summarization or synoptic topic knowledge is called meta-information.
Thesaurus-assisted explanations created for each such subject-based abstrac-
tion (and its contents) can serve as a means of disambiguating term meanings
and addressing terminology and semantic problems.

Incremental discovery of information As users are confronted with a large,
flat, disorganized information space it is only natural to support them in
negotiating this space. Accordingly a knowledge navigation system should
provide facilities to landscape the information available and allow the users
to deal with a controlled amount of material at a time, while providing more
detail as the user looks more closely.

Domain specific query formulation assistance An important service is
user assistance with the formulation of information retrieval queries. For
example, users may not know or understand the idiosyncratic vocabular-
ies used by information sources to describe their information artifacts and
may not know how to relate their functional objectives to these descriptions.
Any system that provides global information access must help the user for-
mulate meaningful queries that will return more useful results and avoid
inundating them with unwanted material. This can be achieved by allow-
ing a query-based form of progressive discovery in which the user finds out
about subject-areas of interest rather than specific information items, viz.
index terms.

Relevance feedback and results explanation The need to provide infor-
mation users with explanations regarding the rationale for the relevance
of information presented in response to queries and of the meanings of the
terms occurring in the presented information is apparent.

Scalability support Scalability is an important issue for any large distributed
system as it deals with the management of distributed resources, repositories,
and document collections. A scalable system is one that can grow piecemeal
without hindering functionality or performance if the current system config-
uration expands beyond the resources available.

5 Federating Digital Libraries

The issues presented in the previous sections illustrate the wide range of problems
to be considered when designing and implementing an ¥DL. This section presents
a conceptual architecture for an FDL and illustrates how issues identified in the
previous can have implications in several areas of this architecture.

In the following we will describe two different approaches to the problem
of federating digital libraries. The first approach is based on the premise that
the interconnected DLs agree on using a single standard ontology (or thesaurus)
for cooperation. The second approach is based on the premise that although

Knowledge Navigation in Networked Digital Libraries 21

individual DLs agree on cooperating they wish to retain complete control and
autonomy of their local thesauri — which can also continue to evolve with the
passage of time. This second configuration is typical of cases where there is an
element of multi-linguality involved.

In both cases our approach to knowledge navigation in FDLs is based on
linguistic techniques and ontology-based categorization. Large-scale searching is
guided by a combination of lexical, structural and semantic aspects of document,
index records in order to reveal more meaning both about the contents of a
requested information item and about its placement within a given document
context. Prior to describing the two different configurations to federating DLs we
will describe a conceptual architecture for FDLs which will be used as a reference
to explicate their differences.

5.1 Conceptual Architecture for Federated Digital Libraries

To exemplify the FDL environment we use a comprehensive example from a fed-
erated library in Economics embracing various institutional libraries scattered
over the European continent. Each library maintains its own collection of docu-
ments, using both full text and controlled vocabulary indexing. Users of the FDL
in Economics should be able to search and access documents no matter where
they originate from and irrespectively of the terms used to index the documents
in the individual libraries.

Figure 1 shows a conceptual view of this FDL. The architecture is in a position
to provide a conceptually holistic view and cross-correlate information from the
multiple libraries (repositories). The in the FDL meta-data schemas contain meta-
data terms in addition to other descriptive information such as geographical
location of documents, access authorization and usage roles, charge costs, and
so on. An aggregation of meta-schema terms for semantically related documents
will result in forming a subtopic. For example, meta-data schemas individual
libraries may abstract documents about market structure and pricing and may
contain such index terms as monopoly, oligopoly, auction, rationing, licensing, etc.
The aggregation of these terms generates a more generic subtopic (concept)
called Market Models, step 2 in Figure 1. Although this concept is semantically
clear to many users, it is highly unlikely that the term ‘market models’ appears as
such in the documents. Finally, semantically related concepts such as Industrial
Economics, Household Economics, Consumer Economics and Market Models are
aggregated in their turn into the higher-level concept Micro-Economics, see step 3
in Figure 1. We refer to this type of construct as Topic or Generic Concept [19].
In this example, we assume for reasons of simplicity that terms are connected to
topics via a single level of concepts. However, in a reality terms may be connected
to topics via an elaborate hierarchy of concepts.

Topics thus represent semantically related DIR clusters (via their respective
meta-data schemas) and form topically-coherent groups that unfold descriptive
textual summaries and an extended vocabulary of terms for their underlying
documents. A topic is thus a form of a logical object (a kind of a contextualized

22 M.P. Papazoglou and J. Hoppenbrouwers

TOPIC
CLUSTER#B

®

A cluster of related subtopics

is anchored to a common structured vocabulary
of topical terms & semantic term interelationships.
This forms a Topic or Generic Concept space.

IGCs & their underlying documents

ISemantic links between other related ‘

®

subtopfic#2

Document Meta-Data

Original Index Schema d. Tcs»::i:i
Document-Base ~Record NN context]
@ subtopi¢#3
N

Meta-Data Schemas
of semanticaly related documents
are aggregated & installed in a

meta—data repository of subtopics

TOPIC
CLUSTER#A

TOPIC
CLUSTER#N

Fig. 1. Connecting meta-data schemas and forming the Topic space.

abstract view over the content of large semantically related document collec-
tions) whose purpose is to cross-correlate, collate, and summarize the meta-data
descriptions of semantically related network-accessible data.

Overall a networked digital library system (representing a narrow domain,
e.g., economics, astronomy or engineering) may be viewed in terms of four logical
layers, as depicted in Figures 1 and 2, where

1. the top most layer corresponds to the topic or generic concept layer;

2. the second layer from the top represents the subtopic or concept layer asso-
ciated with the meta-data schemas;

3. the third layer represents the indezx terms associated with the documents;

4. the bottom layer corresponds to the document collection layer (document
base in Figure 1).

This four-tier architecture is the key ingredient to knowledge navigation in
federated DLs. It generates a semantic hierarchy for document terms in layers

Knowledge Navigation in Networked Digital Libraries 23

of increasing semantic detail (i.e., from the name of a term contained in a doc-
ument index, to its structural description in the subtopic layer, and finally to
the generic concept space layer where the entire semantic context — as well as
patterns of usage — of a term can be found). Searches always target the richest
semantic level, viz. the topic layer, and percolate to the schema layer in order to
provide access to the contents of a document cluster. This methodology results
in a simplification of the way that information pertaining to a large number
of interrelated collections of documents can be viewed and more importantly it
achieves a form of global visibility.

This type of topic-based clustering of the searchable information space pro-
vides convenient abstraction demarcators for both the users and the system to
make their searches more targeted, scalable and effective. This type of subject
partitioning creates smaller semantically related collections of documents that
are more efficient for browsing and searching. Concept searching can be utilized
as opposed to keyword searching which is the traditional method employed by
most contemporary search engines.

5.2 Tight Coupling: a Common Ontology-based Approach

The tightly coupled architecture describe in this section is based on earlier re-
search activities on the TOPICA federated digital library system [19]. The archi-
tecture has as its main objective to impose a logical order to an otherwise flat in-
formation space by categorizing the content of document meta-data schemas and
clustering them into topically-coherent, disjoint groups which are anchored on
standard ontologies. Classical document clustering techniques from IR are used
for this purpose [15]. The information space in FDLs is logically partitioned into
meaningful subject areas. This results in clusters of documents formed around
specific topic categories where different kinds of term suggestions — automat-
ically generated by a thesaurus (ontology) — can be used to enhance retrieval
effectiveness. We refer to this setup as the topic space for each group of seman-
tically related documents, see Figure 2. After individual contextual spaces of
documents are formed, subject-specific browsing or searching can be performed
by a variety of tools that concentrate on concept (as opposed to term) browsing.
Only in this way we can allow tools and searchers to selectively access individ-
ual document aggregations while ignoring others. The inclusion of a complete
vocabulary and semantic information in the topic space provides the opportu-
nity for “intelligent” navigation support and retrieval, with the system taking a
more active role in the navigation process rather than relying purely on manual
browsing.

To resolve terminology mismatches and semantic drifts between disparate
index terms, topical synoptic knowledge and a standard vocabulary for term
suggestions is supported by each topic. A common ontology is used to disam-
biguate topic-related terms and concepts and terms originating from different
meta-data sets in the networked DLs. The common (canonical) ontology, e.g., an
appropriate extension of the in-house Attent thesaurus, is used to represent con-
cepts, terms and their relationships in a conceptual graph structure, akin to an

24 M.P. Papazoglou and J. Hoppenbrouwers

TOPICS MICRO MACRO BUSINESS DEVELOPMENT
ECONOMICS ECONOMICS ECONOMICS ECONOMICS

a
2/10
710 510
Ad

[Market Industrial Consumer Household }
Models Economic: E i E i C@)

Document

CONCEPTS

TERMS cluster for Development
............................ A4 A4 .
1 Monopoly, oligopoly, H E
! auction, rationing, licensing__! éi?g Eg %!
Document Document
cluster for cluster for
4 Macro-Economics Business-Economics

&35

Document
cluster for
Micro-Economics

Fig. 2. Forming a conceptual network by linking documents to concepts and topics.

associative thesaurus. Term disambiguation for the diverse meta-data terms and
their surrounding concepts is achieved with reference to this conceptual network
to make connections between requested items and indexed terms of information.

A topic is materialized by a class hierarchy depicting all concepts and terms
sampled by the topic, e.g., Micro-Economics. Each topic is characterized by its
name and the context of its concepts and terms. A topic’s concept space con-
sists of abstract descriptions of terms in the domain, ontological relationships
between these terms, composition of terms, terminology descriptions, hypernym,
hyponym, antonyms-of, part-of, member-of (and the inverses), pertains-to rela-
tions, selected term usage and definitions (narrative descriptions), domains of
applicability, list of keywords, and other domain specific information that apply
to the entire collection of members of a topic. For example, if the user chooses to
explore the topic Micro-Economics (s)he will view the terms shown by the concept
browser on Figure 3. Once the concept Household Economics has been selected
then a term bucket containing all possible terms under this topic is revealed.
Subsequently, the user is free to choose terms that reflect her/his own prefer-
ences to form queries against the entire FDL. Terms in documents are matched
to those appearing in the term bucket by word analysis techniques [15]. Hence,
the user is pointed to the relevant documents where in the first instance (s)he
can see (and possibly query) the document meta-data schema. The topic-areas,
described by the topic descriptor classes, are interconnected by weighted links
to make the searches more directed, see Figure 2. When dealing with a specific

Knowledge Navigation in Networked Digital Libraries 25

concept such as Market Models we are not only able to source appropriate in-
formation from remote document-based on the same topic but also to provide
information about semantically related topics, e.g., Business Economics in the
case of the Micro-Economics topic. The stronger the weight the closer the relat-
edness between two topics. Documents within a topic are all connected to this
topic by a weight 10/10. Currently, the weights to topics are manually assigned
by catalogers. This can be replaced in the future by text analysis techniques and
IR ranking algorithms to determine the relatedness of topics.

In summary, the topic structure is akin to an associative ontology (thesaurus)
and on-line lexicon (created automatically for each topic category). Ontology-
assisted explanations created for each topic-based information space serve as a
means of disambiguating term meanings, and addressing terminology and se-
mantic problems. Therefore, the topic structure assists the user to find where a
specific term that the user has requested lies in its conceptual space and allows
users to pick other term descriptions semantically related to the requested term.

5.3 Loose Coupling: Inter-linking Independent Thesauri

One problem with the approach outlined above is that an agreed upon conceptual
network needs to be maintained on the basis of a common ontology (thesaurus).
In many cases, the individual libraries contributing to the virtual library will de-
mand complete freedom in maintaining their own, specialized, localized system,
including the index vocabulary (thesaurus). However, these libraries would not
object against re-using their thesauri, and would favor mutual linking of concepts
between thesauri. In such cases we need to provide software solutions that permit
users to pose queries using terms from a thesaurus (source thesaurus) that was
not used to index the documents being searched. A cross-thesaurus gateway will
then translate the query into terms from the remote thesaurus (target thesaurus)
that was used to index the documents. We will explain this approach based on
our experience with working on the European virtual library for Economics.

The Decomate Project® is an example of a truly federated, virtual library for
Economics. The contributor libraries are geographically distributed over Europe
and each partner maintains several databases, indexed using different thesauri,
e.g., EconLit/JEL, 1BSS, Attent, in different languages (English, Spanish, and
Ttalian).

In Decomate, a Multi-Protocol Server is capable of simultaneously querying
all relevant thesauri: a ‘horizontal’ multi-query can be issued that retrieves all
matching terms out of all thesauri. Decomate does not directly support inte-
gration of the federated thesauri. However, it provides a cross-thesaurus linkage
(bridging) facility which allows generating a virtual concept network involving
terms from any two interacting thesauri based on semantic closeness, see Fig-
ure 4. A connection can still be made if we follow neighboring, viz. semantically
related, concepts in the conceptual network which may lead to matching concepts
in the thesauri. When concepts are semantically matched, the terms contributed

5 http://www.bib.uab.es/decomate?

26 M.P. Papazoglou and J. Hoppenbrouwers

by all thesauri can be collected in a virtual term bucket, originating from the
meta-data underlying the matched documents, in order to facilitate the accessing
of documents whose terms are missed by the indexers (Figure 4).

Some thesauri (such as JEL) include unique codes for concepts. For example,
Household Behavior: General has the JEL code D10, irrespective of the actual term
or language used for its description. Related JEL codes are D11 Consumer Eco-
nomics: Theory, D12 Consumer Economics: Empirical Analysis, and D13 Household
Production. Linking up such instances of the JEL thesaurus in different languages
is therefore an easy task.

r‘ﬂ Concept Explorer o
[Add Concept Query
Print
INFeAB et
economics shoioe
theaty . Quit
piiblic economics
*household economics’ (1564) ohpioe theory
lifetime eamings sodial consumer of
nonmarket work. choice BGONCMIGE firm
nonpriced lahour misroecononmios
housgehold income
health insurance industrial
household savings consimar Baheviour £CONOMICS
household wealth choice faity
female labor force participation
N axpenditure
household commodity demand
household preferences families
household financial decisions
household behavior HOUSEHOLD
household savings heusehold ECONOMICS
intra-household allocation production
households” portfolio choices
household consumption
household demography &cOnomics
| household modeliing of
production scale W Balance
1 Sound

Fig. 3. Browsing the Attent Thesaurus

The virtual conceptual network is, just like a view in the database parlance,
created dynamically, and in bottom up fashion, every time a user fires a query
containing a term that matches a local thesaurus. This is contrast to the ap-
proach taken in section 5.2 where a a fixed ontology is used as a basis for match-
ing concepts from different DLs in a top down fashion. The virtual conceptual
network is not only used for concept matching but also for user browsing pur-
poses.

6 Information Discovery Strategies

An interesting dichotomy in the space of document retrieval strategies is the
distinction between searching and browsing.

Knowledge Navigation in Networked Digital Libraries 27

Virtual Conceptual
Network Layer

] Topics

Independent

Thesauri and Thesaurus Concepts

Indexed Document

Repositories Index Records Terms
(meta-data)

BE|E
EDENRE

Fig. 4. Using a bridging layer to create a virtual conceptual network of concepts and
related terms

Il

Documents

Il
0

Searching implies that the searcher knows exactly what s/he is looking for. If
the collection to be searched is small compared to the precision of the query, the
resulting number of ‘hits’ will be sufficiently small to allow further processing.
Searching falls short, however, when the user is required to know (or remember)
the valid keywords, how these keywords correlate with concepts that s/he wishes
to find, and how the keywords may be combined to formulate queries.

Traditional IR queries are considered as an analytical strategy, requiring plan-
ning, cognitive overhead, goal-driven and batch-oriented techniques. However,
when faced with ill-defined problems requiring information access, users often
wish to explore the resources available to them before exploiting them. This ex-
ploration may be partly aimed at refining their understanding of the potential
information space or content that is available to, and partly aimed at formulating
a concrete course of action for retrieving specific documents. Tools that support
the browsing of document meta-data collections, as opposed to searching, are
aimed at satisfying this need to learn more about documents in a collection
before taking any action.

The purpose of browsing is to provide an open, exploratory information space
to the user. Browsing can be accomplished by providing links between terms that
can be explored at will as the focus of exploration changes. In many cases as
new information is obtained in the process of browsing the goal may change.
Strategies can be selected in response to these conditions to pick up new chunks
of information. We can view browsing as a semi-structured, heuristic, interac-

28 M.P. Papazoglou and J. Hoppenbrouwers

tive and data-driven activity of exploratory nature quite distinct from keyword
(boolean) searching. Navigation can be seen as a special form of browsing char-
acterized by high interactivity in a structured environment with the destination
seldom predetermined. Navigation balances user and system responsibility with
the user making choices from directions provided by the system. Navigation
provides “pathways to discovery instead of answers to queries” [6]. Therefore,
navigation is an ideal guide for serendipity of information, where users browse
at random seeking information that is unknown, often not knowing what their
target is unless it is seen.

Knowledge navigation is an advanced form of navigation where the system
plays a more pro-active role by locating, identifying, culling, and synthesizing in-
formation into knowledge that it uses to assist the information seeker to discover
the exact terminology that will retrieve the information required. It is not sur-
prising that knowledge navigation concentrates on browsing prior to embarking
on searching (querying) activities. In this way searches become more directed
and effective as unwanted material is discarded during the process of navigation.

In section 5.2 we explained how navigation can be used to guide the user
to discover the exact terminology required to retrieve documents dealing with
specific issues under the broader topic of Micro-Economics, see also Figures 2 and
3. This is one form of navigation that can be provided with the FDL configurations
described in section 5. We refer to this mode of navigation as index-induced
navigation.

Another form of navigation that can be used with systems that provide
weighted relationships among topics, see Figure 2, is that of topic-driven naviga-
tion which is when the user embarks on explorative searches and is most likely
interested to find data closely related to a local document by following topic link-
weights. We will use the topic connections shown in Figure 2 to illustrate this
form of navigation. The concept-driven search is based on the weights with which
a specific document base, e.g., Market Models — which is the subject of interest of
some users — is linked to the various other topics in the system. This document
base’s weight to the Micro-Economics (its own topic) is 10/10, whereas its links
to the topics Macro-Economics, Business Economics, and Development Economics
are weighted with 2/10, 7/10 and 5/10, respectively. The Micro-Economics topic
is in closer proximity to the Market Models document-base, followed by the Busi-
ness Economics, Development Economics, and Macro-Economics topics. The user
may then choose to explore concepts and meta-data information contained in the
Micro-Economics topic first. Subsequently, s/he may choose to explore the Busi-
ness Economics topic, followed by the Development Economics, and so on. The
two modes of navigation can be mixed: when exploring these topics the user may
embark on index-driven navigation to gain more insight into the concept found.

When the user needs to further explore the search target, intensional, or
schema queries [17] — which explore meta—data terms — can be posed to fur-
ther restrict the information space and clarify the meaning of the information
items under exploration. Sample intensional queries related to the topics in the
previous sections may include the following;:

Knowledge Navigation in Networked Digital Libraries 29

query-1: Give me all terms similar to “value theory” under JEL AND Attent.
query-2: Give me all terms more specific than “value theory” and all their parts
under JEL.

The previous two queries return definitions and connections between concepts
and terms under different thesauri.

Finally, when the users are sufficiently familiar with the terminology and
understand the uses of the terms employed in an FDL they can issue exten-
sional queries which retrieve documents or document meta-data (in case of non-
electronic documents). Some representative extensional queries may be:

query-3: Give me all documents dealing with “Household Behavior: General”
under JEL AND “Family Ezpenditure” under Attent.

query-4: Give me all documents similar to author = “S. Hochguertel” AND
“A. van Soest” AND title = “The relation between financial and housing
wealth of Dutch households”.

Query-3 returns documents which belong to the intersection of two concepts
in two different thesauri, wile query-4 tries to match a certain book pattern
(through its associated meta-data) to that of other documents.

7 Related Work

Related work can be broken into two broad categories. First, work that spans
different IR techniques such as query modifications and query refinement and
clustering techniques. Second, activities in the area of digital libraries that con-
cern themselves with subject-based information gateways.

7.1 Query Modification and Refinement

Related work on query modification has focused on automatic query expansion
[7,4] by means of addition of terms to a query to enhance recall. Query expansion
has been done using thesauri or based on relevance feedback. Automatic query
expansion techniques rely mainly on fully automatic expansion of terms to the
query according to a thesaurus with no user intervention. The thesaurus itself
can be either manually or automatically generated. With relevance feedback
[4] query terms are selected or weighted based on a retrieved result set where
terms are added to the query based on evidence of usefulness. Interactive query
expansion can be used on basis of relevance feedback, nearest neighbors and
terms variant of the original query terms that are suggested to the user.

Query refinement tries to improve precision (and not recall) by perusing the
documents and selecting terms for query expansion which are then suggested to
the user [23]. Automatically generated thesauri are used for suggesting broader
and narrower search terms to the user.

Our approach differs from these activities as we place emphasis on charac-
terizing document sets, logically partitioning them into distinct sets and then

30 M.P. Papazoglou and J. Hoppenbrouwers

interactively querying these sets based on concept rather than term retrieval. As
basis of comparison we use a standard ontology. In this way users are assisted to
formulate meaningful queries that return a large number of desirable documents.

7.2 Clustering Techniques

In most clustering IR techniques the strategy is to build a static clustering of
the entire collection of documents and then match the query to the cluster
centroids [28]. Often a hierarchical clustering is used and an incoming query
is compared against each cluster in either a top-down or a bottom-up manner.
Some variations of this scheme were also suggested in which a document that
had a high similarity score with respect to the query would first be retrieved and
then would be used for comparison to the cluster centroids. However, if a query
does not match any of the pre-defined categories then it would fail to match
any of the existing clusters strongly. As a remedy to this problem previously
encountered queries are grouped according to similarity and if a new incoming
query is not similar to any of the cluster centroids it might be instead similar to
one of the query groups, which in turn might be similar to a cluster centroid.

Our clustering techniques, although employing many of the traditional 1R
clustering algorithms, follow a different approach. First documents are sorted and
tied to their high-level centroids (called generic concepts in this paper) and then
interactive tools are provided for the user to expand or narrow her/his context
and disambiguated her/his terms (via navigation through a lexical network).
Once the centroid that contain these terms is determined then queries can be
issued against its underlying document sources.

7.3 Subject-based Information Gateways

Of particular interest to our work are subject gateways. These are facilities that
allow easier access to network-based information resources in a defined subject
area [12]. Subject gateways offer a system consisting of a database and various
indexes that can be searched through a Web-based interface. Each entry in the
database contains information about a network-based resource, such as a Web
page, Web site or document. Entries are usually created by a cataloger manually
by identifying a resource, describing the resource in appropriate template which
is submitted to the database for indexing.

Typical examples of subject gateways are: the Social Science Information
Gateway (SOSIG),% which incorporates a complete thesaurus containing social
science terminology, and the Organization of Medical Networked Information
(OMNI)” which allows users to access medical and health-related information.
The key difference between subject gateways and the popular Web search en-
gines, e.g., Alta Vista, lies in the way that these perform indexing. Alta Vista

5 http://wuw.sosig.ac.uk/
" http://omni.ac.uk/

Knowledge Navigation in Networked Digital Libraries 31

indexes individual pages and not resources. For example, a large document con-
sisting of many Web pages hyper-linked together via a table of contents would
be indexed in a random fashion. In contrast to this, subject gateways such as
OMNT index at the resource level, thus, describing a resource composed of many
Web pages in a much more coherent fashion. In this way the resource containing
numerous pages can be returned as an individual hit even by a search engine
that indexes each Web page as a distinct entity.

8 Summary

In this paper we presented the concept of knowledge navigation for federated
digital libraries and explained how it can provide the kind of intermediary expert
prompting required to enable purposeful searching and effective discovery of
documents.

We have argued that knowledge navigation in federated digital libraries
should be guided by a combination of lexical, structural and semantic aspects of
document index records in order to reveal more meaning both about the contents
of a requested information item and about its placement within a given docu-
ment context. To surmount semantic-drifts and the terminology problem and
enhance document retrieval, alternative search concepts and terms and terms
senses are suggested to users. Finally, we have briefly outlined two FDL architec-
tures, that are currently under development, which enable users to gather and
rearrange information from multiple digital libraries in an intuitive manner.

References

1. J. Aitchison and A. Gilchrist. Thesaurus Construction. Aslib, London, 1987. 2nd
edition.

2. R. Bodner and F. Song. Knowledge-based approaches to query expansion in in-
formation retrieval. In Lecture Notes in Computer Science, volume 1081, pages
146-158. 1996.

3. M. Buckland et al. Mapping entry vocabulary to unfamiliar meta-data vocabular-
ies. Digital Libraries Magazine, Jan. 1999.

4. C. Buckley et al. Automatic query expansion using SMART. In 3rd Text Retrieval
Conference: TREC-3, Gaithersburg, MD, Nov. 1994.

5. J. W. Cooper and R. J. Byrd. Lexical Navigation: Visually Prompted Query
Expansion and Refinement. In R. B. Allen and E. Rasmussen, editors, Proceedings
of the 2nd ACM International Conference on Digital Libraries, 1997.

6. D. Cunliffe, C. Taylor, and D. Tudhope. Query-based Navigation in Semantically
Indexed Hypermedia. In ACM Hypertext Conference, Southhampton, June 1997.

7. E. Efthimiadis. A user-centered evaluation of ranking algorithms for interactive
query expansion. In 16th Annual Int’l ACM SIGIR Conference on Research and
Development in Information Retrieval, Pittsburgh, PA, June 1993.

8. T. Gruber. Toward principles for the design of ontologies used for knowledge
sharing. Technical Report KSL-93-04, Knowledge Language Laboaratory, Stanford
Univ., 1993.

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M.P. Papazoglou and J. Hoppenbrouwers

J. Hoppenbrouwers. Conceptual Modeling and the Lexicon. PhD thesis, Tilburg
University, 1997. http://infolab.kub.nl/people/hoppie.

J. Hoppenbrouwers. Browsing Information Spaces. In J. Prinsen, editor, Inter-
national Summer School on the Digital Library 1998, Tilburg, The Netherlands,
1998. Ticer B.V. http://infolab.kub.nl/people/hoppie.

H. Howard. Measures that discriminate among online searchers with different
training and experience. Online Review, 6:315-327, 1992.

J. Kirriemuir, D. Brickley, S. Welsh, J. Knight, and M. Hamilton. Cross-Searching
Subject Gateways—the Query Routing and Forward Knowledge Approach. D-Lib
Magazine, Jan. 1998.

G. Miller. Wordnet: A lexical database for english. Communications of the ACM,
38(11), 1995.

U. Miller. Thesaurus Construction: Problems and their Roots. Information Pro-
cessing and Management, 33(4):481-493, 1997.

S. Milliner, M. Papazoglou, and H. Weigand. Linguistic tool based information
elicitation in large heterogeneous database networks. In R. van de Riet, J. Burg,
and A. van der Vos, editors, Applications of Natural Language to Information
Systems, pages 237-246. I0S Press/Omsha, 1996.

J. Milstead. Methodologies for subject analysis in bibliographic databases. Infor-
mation Processing and Management, 28:407-431, 1992.

M. Papazoglou. Unraveling the Semantics of Conceptual Schemas. Communica-
tions of the ACM, 38(9), Sept. 1995.

M. Papazoglou. Knowledge Navigation and Information Agents: Problems and
Issues. 1997.

M. Papazoglou, H. Weigand, and S. Milliner. TopiCA: A Semantic Framework
for Landscaping the Information Space in Federated Digital Libraries. In DS-
7: Tth Int’l Conf. on Data Semantics, pages 301-328. Chapman & Hall, Leysin,
Switzerland, Oct. 1997.

J. Rowley. A comparison between free language and controlled language language
indexing and searching. Information Services and Use, 10:147-155, 1990.

G. Salton. Automatic Text Processing. Addison-Wesley, Reading Mass., 1989.

T. Smith. The Meta-Data Information Environment of Digital Libraries. Digital
Libraries Magazine, July/August 1996.

B. Velez et al. Fast and effective query refinement. In 20th 16th Annual Int’l
ACM SIGIR Conference on Research and Development in Information Retrieval,
Philadelphia, July 1997.

P. Vossen. EuroWordNet: a multilingual database for information retrieval. In Pro-
ceedings of the DELOS workshop on Cross-language Information Retrieval, March
5-7, 1997, Ziirich, 1997.

P. Vossen, P. Diez-Orzas, and W. Peters. The Multilingual Design of the Eu-
roWordNet Database. In Proceedings of the IJCAI-97 workshop Multilingual On-
tologies for NLP Applications, August 23, 1997, Nagoya, 1997.

S. Weibel, J. Goldby, and E. Miller. OCLC/NCSA Meta-Data Workshop Report.
http://www.oclc.org:5046/oclc/research/conferences/metadata/
dublin_core_report.html, 1996.

P. Weinstein. Ontology-based meta-data. In 21th Annual Int’l ACM SIGIR Con-
ference on Research and Development in Information Retrieval, Pittsburgh, PA,
1988.

P. Willett. Recent trends in hierarchical document clustering: A critical review.
Information Processing and Management, 24(5), 1988.

Towards Brokering Problem-Solving Knowledge
on the Internet

V. Richard Benjamins', Bob Wielinga!, Jan Wielemaker! and Dieter Fensel?

! Dept. of Social Science Informatics (SWI), University of Amsterdam, Roetersstraat
15, 1018 WB Amsterdam, The Netherlands, richard@swi.psy.uva.nl,
http://www.swi.psy.uva.nl/

2 University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany,
dfe@aifb.uni-karlsruhe.de, http://www.aifb.uni-karlsruhe.de/WBS/dfe/

Abstract. We describe the ingredients of an intelligent agent (a bro-
ker) for configuration and execution of knowledge systems for customer
requests. The knowledge systems are configured from reusable problem-
solving methods that reside in digital libraries on the Internet. The ap-
proach followed amounts to solving two subproblems: (i) the configura-
tion problem which implies that we have to reason about problem-solving
components, and (77) execution of heterogeneous components. We use
CORBA as the communication infrastructure.

1 Introduction and motivation

We think that software reuse will play a more and more important role in the
next century, both general software components, as well as so-called knowledge
components. Knowledge components are object of study in the knowledge en-
gineering community and include problem-solving methods and ontologies. In
this paper, we are concerned with problem-solving methods (PSMs). Nowadays,
many PSM repositories exist at different locations [4, 24, 7, 29, 2, 31, 8, 20],
which opens, in principle, the way to large-scale reuse. There are, however, at
least two problems that hamper widespread reuse of these problem-solving com-
ponents: they are neither accessible nor interoperable. In this paper, we present
an approach aimed at remedying these two problems. We will present a software
agent —a broker— that is able to configure PSMs into an executable reasoner.
The work presented here forms part of an ESPRIT project whose aim is to
make knowledge-system technology more widely available at lower costs.

Our approach is based on the integration of different technologies: knowl-
edge modeling, interoperability standards and ontologies. PSMs are made ac-
cessible by describing them in the product description language UPML (Unified
Problem-solving Method description Language) whose development is based on
a unification of current knowledge-modeling approaches [25, 9, 28, 1, 23, 27]. For
letting heterogeneous PSMs work together, we use CORBA [22, 15]. Ontologies
are used to describe the different worlds of the agents involved, which have to
be mapped onto each other.

In a nutshell, the two tasks we aim to solve, are the following (illustrated in
Figure 1). A broker program configures individual PSMs —that reside in different

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 33-48, 1999.
© Springer-Verlag Berlin Heidelberg 1999

34 V.R.Benjamins et al.

System 1 PSM
library2

PSM
library1

Configuration process of broker |

The product is a running KBS
System 2 @
Customer’s

- (e

Fig. 1. Distinction between two systems: (1) the broker configures a problem solver by
reasoning with UPML, and (2) the output of the broker is a knowledge system, which
consists of executable code fragments corresponding to the selected PSMs, along with
“glue” for their integration to make them interoperate. The arrows in system1 denote
UPML expressions, whereas the arrows in system2 stand for CORBA structures.

libraries on the Internet— into a coherent problem solver. The task is carried out
at the UPML-level and involves: interaction with a customer to establish the
customer requirements, matching the requirements with PSMs, checking the
applicability of the identified PSMs (see also Figure 3), deriving components for
glueing the PSMs to the customer’s knowledge base, and imposing a control
regime on the selected components (Systeml in Figure 1). The other task we
have to deal with is to actually ezecute the configured problem solver for the
customer’s problem (using its KB). It does not really matter whether the PSMs
are retrieved from the libraries and migrated to the broker or the customer’s site,
or whether they remain in the respective libraries and are executed distributively.
CORBA makes these options transparent. The only requirement is that the site
where a PSM is executed should support the language in which the PSM is
implemented (System2 in Figure 1).

In Section 2, we briefly review the ingredients needed to explain our approach.
Section 3 describes the configuration task of the broker. In Section 4, we outline
how the configured problem solver is executed and in Section 5 we sketch the
CORBA architecture to implement our approach. Finally, Section 6 concludes
the paper.

2 Ingredients

Before we explain our approach in detail, we first briefly explain its ingredients:
PSMs, ontologies, UPML and CORBA.

Towards Brokering Problem-Solving Knowledge on the Internet 35

2.1 Problem-solving methods

The components we broker are problem-solving methods, which are domain-
independent descriptions of reasoning procedures. PSMs are usually described
as having an input/output description, a competence description (what they can
deliver), assumptions on domain knowledge (what they require before they can
deliver their competence). We distinguish between two kinds of PSMs; primitive
and composite ones. Composite PSMs comprise several subtasks that together
achieve the competence, along with an operational description specifying the
control over the subtasks. Primitive PSMs are directly associated with executable
code.

2.2 Ontologies

An ontology is a shared and common understanding of some domain that can
be communicated across people and computers [17, 32, 17, 30]. Most existing
ontologies are domain ontologies, reflecting the fact that they capture (domain)
knowledge about the world independently of its use [18]. However, one can also
view the world from a “reasoning” (i.e. use) perspective [19, 14, 10]. For instance,
if we are concerned with diagnosis, we will talk about “hypotheses”, “symptoms”
and “observations”. We say that those terms belong to the task ontology of
diagnosis. Similarly, we can view the world from a problem-solving point of
view. For example, Propose & Revise sees the world in terms of “states”, “state
transitions”, “preferences” and “fixes” [14, 20]. These terms are part of the
method or PSM ontology [16] of Propose & Revise.

Ontologies can be used to model the worlds of the different agents involved in
our scenario (illustrated in Figure 3). So we have task ontologies, PSM ontologies
and domain ontologies to characterize respectively the type of task the customer
wants to solve, the PSM, and the application domain for which a customer wants
a KBS to be built. These different ontologies are related to each other through
what we call bridges.

2.3 A product description language

In order to reason about the different components involved, we need a
component-description language. The idea is that providers of PSMs (library
builders) characterize their products (i.e. PSMs) using a standard language.
Note that providers are free to use any particular implementation language. The
broker understands this product language and reasons with it. The language we
developed is the Unified Problem-solving Method description language (UPML)
and integrates notions from various existing knowledge modeling approaches
[12]. UPML allows to describe in an integrated way task ontologies, task spec-
ifications, domain ontologies, PSM ontologies, and bridges between these com-
ponents. The syntax of the language is specified in the ProtegeWin® tool [21]

3 http://smi-web.stanford.edu/projects/prot-nt/

36 V.R. Benjamins et al.

By

@ Foot

E@ Competence

L.87% Competence-Task
..... £ Cost-expression

----- @ Farmula

----- 3 MCL-Program

otege fWin OntologyEditor - [upml.1.pont]
EEFEEEE

O Competence-Complex-PSk
O Competence-Primitive-F5h

@complex—%hﬂ
@cpsm—refiner
@domain—model
@ontology
@ppsm—refiner
@primitive—%m
@psm—domain...
@psm—task—bri...

Complex-FSM
CPaM-Refiner
Domain-mMaodel
Cntology
PPSM-Eefiner
Primitive-F5hd
PaM-Dormain-Bridge
Pab-Task-Bridge

----- @ Operational-Description

..... £ Pragmatics

----- D Renarming

521 Rale

----- % Input-Output-Role

----- % Interrnediate-Raole

..... O Knowledge-role

----- 3 signature

-5 Specification

5-$8 Bridge

Y £33 PaM-Domain-Bridge

£33 PaM-Task-Bridge

------ £33 Task-Dornain-Bridge

----- Domain-Maodel

..... % antology

E1-5R8 Psht

L £33 Complex-Fsht

S) Primitive-PSM

2§58 PaM-Refiner
L3 crah-Refiner
& PPEM-Refiner

..... % Task

..... LY LIPS pecification

@ specification...

task Task
[

@task—domain... Task-Domain-Bridge

Fig. 2. The class hierarchy of the UPML language (left), and the attributes of a UPML
specification (left).

which is a tool that allows one to write down a meta-description of a language.
Figure 2 gives the class hierarchy of UPML (left part of figure). A UPML spec-
ification consists of, among others, tasks, PSMs, domain models, ontologies and
bridges (see right part of Figure 2). Bridges have to fill the gap between different
ontologies by renaming and mapping.

Having specified the structure and syntax of UPML, ProtegeWin automati-
cally can generate a knowledge acquisition tool for it, that can be used to write
instances in UPML (i.e. actual model components). For describing the compe-
tence of PSMs, FOL formulas can be used. Typically, library providers use a
subset (the part related to PSM) of UPML to characterize their PSMs, using
the generated KA tool.

Towards Brokering Problem-Solving Knowledge on the Internet 37

2.4 Interoperability standard

CORBA stands for the Common Object Request Broker Architecture [22] and
allows for network transparent communication and component definition. It en-
ables distributive execution of heterogeneous programs. Each of the participating
programs needs to be provided with a so-called IDL description (Interface Defi-
nition Language), which defines a set of common data structures. Programs then
can exchange data that comply with the IDL definition.

In our approach, we use CORBA both for exchanging data during execution
of the problem solver, as well as for exchanging UPML specifications between
the broker, the libraries and the customer, during the configuration task (note
that for clarity reasons, in Figure 6, the use of CORBA is only depicted for the
execution part, and not for configuration part).

Task ontology

Configure
goal

Goal PSM libraries
on the Internet

PSM Checl.< PSM PSI\{I-task
assumptions bridge
PSM-domain KB
bridge customer

Fig. 3. The steps the broker needs to make for selecting a PSM.

3 Configuration task of the broker

In order to configure a problem solver, the broker reasons with characterizations
of components (instances) written in UPML. In Section 5, we will explain how
the broker gets access to UPML descriptions of PSMs. Figure 3 illustrates the
different steps the broker takes. The current version of the broker is implemented
in Prolog*. Therefore, we have built a parser that generates Prolog from UPML
specifications written with the KA-tool generated by ProtegeWin.

Broker-customer interaction The first task to be carried out is to get the cus-
tomer’s requirement, that is, what kind of task does s/he wants to be solved.
We use the notion of task ontology for this. A task ontology describes the terms
and relations that always occur in that task, described by a signature. When a

* SWI-Prolog [33].

38 V.R. Benjamins et al.

task is applied to a specific domain, it imports the corresponding domain ontol-
ogy. A task ontology additionally describes axioms that define the terms of the
signature.

With a particular task ontology, a whole variety of specific instances of the
tasks can be defined. In other words, a customer can construct a specific goal s/he
wants to have achieved by combining terms of the task ontology. For example,
in a classification task, the task ontology would define that solution classes®
need to satisfy several properties. Additional requirements on the goal are also
possible like complete classification and single-solution classification. A specific
goal would consist of some combination of a subset of these axioms, along with
the input and output specification (i.e. observations and classes, respectively).
Goals can be specified in FOL (which the customer does not need to be aware
of) such as: V x:class in(x,output-set) = in(x, input-set) A test(x,
properties), which says that the output class is a valid solution if it was in
the original input and if it its properties pass some test (namely, that they are
observed).

Broker-library interaction and broker-customer’s KB interaction Given the goal
of the customer, it is the broker’s task to locate relevant and applicable PSMs.
Two problems need to be solved here:

— Matching the goal with PSM competences and finding a suitable renaming
of terms (the ontology of the task and the ontology of the PSMs may have
different signatures).

— Checking the assumptions of the PSM in the customer’s knowledge base,
and generating the needed PSM-domain bridge (for mapping different sig-
natures).

These tasks are closely related to matching software components in Software
Engineering [34, 26], where theorem proving techniques have shown to be inter-
esting candidates. For the current version of our broker, we use the lean TP [3]
theorem prover, which is an iterative deepening theorem prover for Prolog that
uses tableau-based deduction.

For matching the customer’s goal with the competence of a PSM, we try to
prove the task goal given the PSM competence. More precisely, we want to know
whether the goal logically follows from the conjunction of the assumptions of the
task, the postcondition of the PSM and the assumptions of the PSM. Figure 4
illustrates the result of a successful proof for a classification task (set-pruning)
and one specific PSM (prune). In Figure 4, Formula (1) represents the task goal
to be proven (explained in the paragraph on “broker-customer interaction”),
Formula (2) denotes the assumption of the task, Formula (3) the postcondition of
the PSM and Formula (4) represents the assumption of the PSM. The generated
substitution represents the PSM-task bridge needed to map the output roles of

5 Note that “class” is used in the context of classification, and not in the sense of the
0OO-paradigm.

Towards Brokering Problem-Solving Knowledge on the Internet 39

9 ?- match_psm(’set-pruning,prune,Substitution,10).
The goal to be proven is :
formula(forall([var(x, class)]), (1)
implies(in(x, ’output-set’),
and(in(x, ’input-set’), test(x, properties)))).
The theory is:
and (formula(forall([var(x, class)]), (2)
equivalent (test (x, properties),
formula(forall([var(p, property)l),
implies(in(p, properties),
implies(true(x), true(p)))))),
and (formula(forall([var(x, class)]), (3)
implies(in(x, output),
and (in(x, input),
formula(forall([var(p, property)l),
and(in(p, properties),
has_property(x, p)))))),
formula(forall([var(x, element), var(p, property)l), (4)
implies (has_property(x, p), implies(true(x), true(p)))))).

Substitution = [’input-set’/input, properties/properties,
’output-set’/output]

Fig. 4. Matching the task goal of the “set-pruning task” with the competence descrip-
tion of the “prune” PSM using a theorem prover. The task provides the goal to be
proven (1). The theory from which to prove the goal is constituted by the assumptions
of the task (2), the postcondition of the PSM (3) and the assumptions of the PSM (4).
The “10” in the call of the match denotes that we allow the theorem prover to search
10 levels deep. The resulting substitution constitutes the PSM-task bridge.

the task and PSM onto each other. The output of the whole matching process,
if successful, is a set of PSMs whose competences match the goal, along with
a renaming of the input and output terms involved. If more than one match is
found, the best® needs to be selected. If no match is found, then a relaxation of
the goal might be considered or additional assumptions could be made [5].
Once a PSM has been selected, its assumptions need to be checked in the
customer’s knowledge base. Because the signatures of the KB ontology and PSM

6 In the current version, we match only on competence (thus on functionality). How-
ever, UPML has a slot for capturing non-functional, pragmatic factors, such as how
often has the component be retrieved, was that successful or not, for what applica-
tion, etc. Such non-functional aspects play an important role in practical component
selection.

40 V.R. Benjamins et al.

10 ?- bridge_pd(prune, apple-classification, B).

The goal to be proven is :

formula(forall([var(x, element), var(p, property)l), (1
implies (has_property(x, p), implies(true(x), true(p)))).

The theory is:

and (formula(forall([var(c, class), var(f, feature)]), (2)
implies(has_feature(c, f), implies(true(c), true(f)))),
forall([var(x, class), var(y, feature)], (3)

equivalent (has_feature(x, y), has_property(x, y)))).

Limit

Limit
Limit =

|
S w N e

Limit

B = [forall([var(x, class), var(y, feature)],
equivalent (has_feature(x, y), has_property(x, y)))]

Fig.5. Deriving the PSM-domain bridge: V x:class, y:feature (hasfeature(x,y) <
has_property(x,y)) at the fourth level.

ontology are usually different, we may need to find a bridge for making the
required proof possible. Figure 5 illustrates the result of a successful proof for
deriving a PSM-domain bridge. In the figure, we ask to derive a PSM-domain
bridge to link together the prune PSM and a KB for apple classification. Formula
(1) represents the PSM assumptions (same as Formula (4) in Figure 4). We
want to prove Formula (1) from the assumption of the KB (Formula (2)) and
some PSM-domain bridge (if needed). In our prototype, a PSM-domain bridge
is automatically constructed, based on an analysis of the respective signatures.
This involves pairwise comparison of the predicates used by the PSM and the KB
that have the same arity. A match is found if the respective predicate domains
can be mapped onto each other. The constructed bridge is added to the theory
(Formula (3)) and then the theorem prover tries to prove the PSM assumption
from this theory (i.e., from the conjunction of Formula (2) and (3)), which is
successful at the fourth level of iteration (Figure 5). Note that, in general, it is
not possible to check every assumption automatically in the KB; some of them
just have to be believed true [6].

Figure 3 shows the case for primitive PSMs. In case of composite PSMs the
following happens. When a composite PSM has been found to match the task
goal, its comprising subtasks are considered as new goals for which PSMs need
to be found. Thus, the broker consults again the libraries for finding PSMs. This

Towards Brokering Problem-Solving Knowledge on the Internet 41

continues recursively until only primitive PSMs are found.

Task
ontologies
Configuration library

Configuration Task structures

requests
(I)Bustomer qu task library
rowser assumptions Broker
broker
, -— PSM3 do-task(In, Out):-
custzrger N P solve(PSM2(In, O)),
PSM2 PSM4 solve(PSM4(O, Out)).
[o] o] o |
Execution|

CORBABUS - TCP/IP

Fig. 6. The whole picture.

Integration of selected PSMs The result of the process described above is a set
of PSMs to be used for solving the customer’s problem. In order to turn these
into a coherent reasoner, they need to be put together. In the current version,
we simply chain PSMs based on common inputs and outputs, taking into ac-
count the types of the initial data and the final solution. This means that we
only deal with sequential control and not with iteration and branching. We plan
to extend this by considering the control knowledge specified in the operational
descriptions of composite PSMs (controlling the execution of their subtasks).
This knowledge needs to be kept track of during PSM selection, and can then
be used to glue the primitive PSMs together. The same type of control knowl-
edge can be found explicitly in existing task structures for modeling particular
task-specific reasoning strategies [9, 2, 11]. Task structures include task/sub-task
relations along with control knowledge, and represent knowledge-level descrip-
tions of domain-independent problem solvers. If the collection of PSMs selected
by the broker matches an existing task structure (this can be a more or less strict

42 V.R. Benjamins et al.

match), then we can retrieve the corresponding control structure and apply it.

Output of the configuration task of the broker The output of the broker is thus
a program in which each statement corresponds to a PSM (with the addition of
the derived PSM-domain bridge to relate the PSM predicates to the needed KB
predicates), as illustrated —in an oversimplified way— in Figure 6. The next step
is to execute this program, which may consist of heterogeneous parts.

module ibrow

{
typedef string atom;

enum simple_value_type

{ int_type,
float_type,
atom_type

s

union simple_value
switch (simple_value_type)
{ case int_type:
long int_value;
case float_type:
float float_value;
case atom_type:
atom atom_value;

};

interface psm

{ value solve(in value arg);

};
};

enum value_type

{ simple_type,
compound_type,
list_type

s

union value
switch (value_type)
{ case simple_type:
simple_value simple_value_value;
case compound_type:
sequence<value> name_and_arguments;
case list_type:
sequence<value> list_value;

};

Fig. 7. The IDL description for list-like data structures. For space reasons we printed
it in two columns, but it should be in one column.

4 Execution of the problem solver

Once we have selected the PSMs, checked their assumptions and integrated them
into a specification of a problem solver, the next step is to execute the problem

Towards Brokering Problem-Solving Knowledge on the Internet 43

solver applied to the customer’s knowledge base. Figure 6 situates the execution
process in the context of the overall process.

Since we use CORBA, we need to write an IDL in which we specify the data
structures through which the PSMs, the KB and the broker communicate [15].
Figure 7 shows the IDL. In principle, this IDL can then be used to make inter-
operable PSMs written in any language (as long as a mapping can be made from
the language’s internal data structures to the IDL-defined data structures). In
our current prototype, we experiment with Prolog and Lisp, and our IDL pro-
vides definitions for list-like data structures with simple and compound terms.
This IDL is good for languages based on lists, but might not be the best choice
for including object-oriented languages such as Java. An IDL based on attribute-
value pairs might be an alternative. Figure 8 illustrates the role of IDL in the
context of heterogeneous programs and CORBA. Given the IDL, compilers gen-
erate language specific wrappers that translate statements that comply with
the IDL into structures that go into the CORBA bus. The availability of such
compilers” depends on the particular CORBA version/implementation used (we
used ILU and Orbix).

Generated
Prolog
wrapper

wrap-

Prolog > per

CORBA
bus

Generated
Lisp] Wr:’:' Lisp
P wrapper

Fig. 8. The role of IDL.

The last conversion to connect a particular language to the CORBA bus
is performed by a wrapper (see left wrappers in Figure 8) constructed by a
participating partner (e.g. a library provider of Prolog PSMs). This wrapper
translates the internal data structures used by the programmer of the PSM or
KB (e.g. pure Prolog) into statements accepted by the automatically generated
wrapper (e.g. “IDL-ed” Prolog). Figure 9 shows an example of a simple PSM
written in Prolog and wrapped to IDL. Wrapping is done by the module convert,
which is imported into the PSM and activated by the predicates in_value and
out_value).

" The compiler for Prolog has been developed inhouse.

44 V.R. Benjamins et al.

:-module (prune, [
psm_solve/3
D.
:— use_module(server(client)).
:— use_module(convert).

psm_solve(_Self, Arg, Return) :-
in_value(Arg, prune(Classes,Features)),!,
prune(Classes,Features,Out),
out_value(Out, Return).

prune([1, _, [1):-!.
prune (Classes, Features, Candidates) :-
setof (Class,
(member(Class, Classes)
s forall (member (Feature,Features),
has_property(Class, Feature))),
Candidates) .

Fig. 9. A simple “prune” PSM implemented in Prolog.

5 Architecture

In the context of CORBA, our PSMs are servers and the statements in the
problem solver (the program configured by the broker, see Figure 6) are the
clients. This means that each PSM is a separate server, the advantage being
modularity. If we add a new PSM to the library, and assuming that the PSMs
run distributively at the library’s site, then we can easily add new PSMs, without
side effects. The customer’s KB is also a server which the broker and the PSMs
can send requests to.

During the execution of the problem solver, the broker remains in charge of
the overall control. Execution means that when a statement in the problem solver
program is called (a client is activated), a request is sent out to the CORBA
bus and picked up by the appropriate PSM —a server (through a unique naming
service). Execution of the PSM may mean that the PSM itself becomes a client,
which sends requests to the customer’s knowledge base (a server). Once the PSM
finished running and has generated an output, this is sent back to the broker
program, which then continues with the next statement.

Another issue is that typically a library offers several PSMs. Our approach
is that each library needs a meta-server that knows which PSMs are available
and that starts up their corresponding servers when needed. The same meta-
server is also used for making UPML descriptions available to the broker. In our
architecture, PSMs are considered objects with two properties: (i) its UPML

Towards Brokering Problem-Solving Knowledge on the Internet 45

description and (i) its executable code. The meta-servers of the various libraries
thus have a dual function: (%) provide UPML descriptions of its containing PSMs,
and (i) provide a handle to the appropriate PSM implementation.

Interaction with the broker takes place through a Web browser. We use a
common gateway interface to Prolog (called PLCGI®) to connect the broker with
the Web.

6 Conclusions

We presented the ingredients of an approach for brokering problem-solving
knowledge on the Internet. We argued that this implied solving two problems: (7)
configuration of a problem-solver from individual problem-solving methods, and
(i4) execution of the configured, possibly heterogeneous, problem solver. For the
configuration problem, we developed a language to characterize problem-solving
methods (UPML), which can be considered as a proposal for a standard product-
description language for problem-solving components in the context of electronic
commerce. We assume that library providers of PSMs characterize their prod-
ucts in UPML. Moreover, we also assume that the customer’s knowledge base
is either characterized in UPML, or that a knowledgeable person is capable of
answering all questions the broker might ask concerning the fulfillment of PSM
assumptions. For matching customers’ goal with competences of PSMs, we used
a theorem prover, which worked out satisfactory for the experiments we did.

With respect to the execution problem, we use CORBA to make interoper-
ability of distributed programs network-transparent. The use of CORBA for our
purpose has turned to be relatively straightforward. Our current IDL describes a
list-like data structure, making interoperability between for example Prolog and
Lisp easy. For including object-oriented languages such as Java, we may have to
adapt the current IDL. We assume that the PSMs and the customer’s knowledge
base come with wrappers for converting their language-specific data structures
into those defined in the IDL.

In this paper, we presented our approach by demonstrating the core concepts
for a simple case, but additional work is needed to see whether and how the ap-
proach scales up. For example, the leanT4P theorem prover was convenient for
our small example, but might not scale up to more complex proofs. Open issues
include (7) to make the matching of the customer’s goal with the competence
of the PSMs less strict (partial match), (i) to include other aspects than func-
tionality in this matching process (non-functional requirements), (i) to include
other control regimes than sequencing (branching, iteration), (iv) to deal with
sets of assumptions (possibly interacting), (v) to take more complicated tasks
than classification.

The interface through which customers interact with the broker, is an impor-
tant issue. Currently, the broker takes the initiative in a guided dialogue, asking
the customer for information when needed. Our plan is to extend this to include

8 pLcal is only for internal use.

46

V.R. Benjamins et al.

more flexibility in the sense that the customer can browse through the libraries
(using Ontobroker’s hyperbolic views [13]), select PSMs, check for consistency
of her/his selection, and ask for suggestions which PSMs to add to the current
selection.

Acknowledgment

This work is carried out in the context of the IBROW project’ with support
from the European Union under contract number EP: 27169.

References

1.

10.

J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer. Model-based and in-
cremental knowledge engineering: the MIKE approach. In J. Cuena, editor, Knowl-
edge Oriented Software Design, IFIP Transactions A-27, Amsterdam, 1993. Else-
vier.

Barros, L. Nunes de, J. Hendler, and V. R. Benjamins. Par-KAP: a knowledge
acquisition tool for building practical planning systems. In M. E. Pollack, editor,
Proc. of the 15th IJCAI pages 1246-1251, Japan, 1997. International Joint Confer-
ence on Artificial Intelligence, Morgan Kaufmann Publishers, Inc. Also published
in Proceedings of the Ninth Dutch Conference on Artificial Intelligence, NAIC’97,
K. van Marcke, W. Daelemans (eds), University of Antwerp, Belgium, pages 137—
148.

B. Beckert and J. Posegga. lean*P: Lean tableau-based deduction. Journal of
Automated Reasoning, 15(3):339-358, 1995.

V. R. Benjamins. Problem-solving methods for diagnosis and their role in knowl-
edge acquisition. International Journal of Ezpert Systems: Research and Applica-
tions, 8(2):93-120, 1995.

V. R. Benjamins, D. Fensel, and R. Straatman. Assumptions of problem-solving
methods and their role in knowledge engineering. In W. Wahlster, editor, Proc.
ECAI-96, pages 408-412. J. Wiley & Sons, Ltd., 1996.

V. R. Benjamins and C. Pierret-Golbreich. Assumptions of problem-solving meth-
ods. In N. Shadbolt, K. O’Hara, and G. Schreiber, editors, Lecture Notes in Artifi-
cial Intelligence, 1076, 9th European Knowledge Acquisition Workshop, EKAW-96,
pages 1-16, Berlin, 1996. Springer-Verlag.

J. Breuker and W. van de Velde, editors. CommonKADS Library for Ezxpertise
Modeling. I0S Press, Amsterdam, The Netherlands, 1994.

B. Chandrasekaran. Design problem solving: A task analysis. AI Magazine, 11:59—
71, 1990.

B. Chandrasekaran, T. R. Johnson, and J. W. Smith. Task-structure analysis for
knowledge modeling. Communications of the ACM, 35(9):124-137, 1992.

B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins. Ontology of tasks
and methods. In B. R. Gaines and M. A. Musen, editors, Proceedings of the 11th
Banff Workshop on Knowledge Acquisition, Modeling and Management (KAW’98),
pages Share—6-1-Share—6-21, Alberta, Canada, 1998. SRDG Publications, Uni-
versity of Calgary. http://ksi.cpsc.ucalgary.ca/KAW /KAW98/KAW98Proc.html,

® http://www.swi.psy.uva.nl/projects/IBROW3/home.html

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Towards Brokering Problem-Solving Knowledge on the Internet 47

also in proceedings of the Workshop on Applications of Ontologies and Problem-
Solving Methods, held inconjunction with ECAT’98, Brighton, UK, pp 31-43.

D. Fensel and V. R. Benjamins. Key issues for automated problem-solving meth-
ods reuse. In H. Prade, editor, Proc. of the 13th European Conference on Artificial
Intelligence (ECAI-98), pages 63—67. J. Wiley & Sons, Ltd., 1998.

D. Fensel, V. R. Benjamins, S. Decker, M. Gaspari, R. Groenboom, W. Grosso,
M. Musen, E. Motta, E. Plaza, A. Th. Schreiber, R. Studer, and B. J. Wielinga.
The component model of UPML in a nutshell. In Proceedings of the First Working
IFIP Conference on Software Architecture (WICSA1), San Antonio, Texas, 1999.
D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker: The very high
idea. In Proceedings of the 11th International Flairs Conference (FLAIRS-98),
Sanibal Island, Florida, 1998.

D. Fensel, E. Motta, S. Decker, and Z. Zdrahal. Using ontologies for defining
tasks, problem-solving methods and their mappings. In E. Plaza and V. R. Ben-
jamins, editors, Knowledge Acquisition, Modeling and Management, pages 113—128.
Springer-Verlag, 1997.

J. H. Gennari, H. Cheng, R. Altman, and M. A. Musen. Reuse, corba, and
knowledge-based systems. International Journal of Human-Computer Studies,
49(4):523-546, 1998. Special issue on Problem-Solving Methods.

J. H. Gennari, S. W. Tu, T. E. Rotenfluh, and M. A. Musen. Mapping domains to
methods in support of reuse. International Journal of Human-Computer Studies,
41:399-424, 1994.

T. R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5:199-220, 1993.

N. Guarino. Formal ontology, conceptual analysis and knowledge representation.
International Journal of Human-Computer Studies, 43(5/6):625-640, 1995. Special
issue on The Role of Formal Ontology in the Information Technology.

M. Ikeda, K. Seta, and R. Mizoguchi. Task ontology makes it easier to use author-
ing tools. In Proc. of the 15th IJCAI, pages 342347, Japan, 1997. International
Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers, Inc.

E. Motta and Z. Zdrahal. A library of problem-solving components based on the
integration of the search paradigm with task and method ontologies. Interna-
tional Journal of Human-Computer Studies, 49(4):437-470, 1998. Special issue on
Problem-Solving Methods.

M. A. Musen, J. H. Gennari, H. Eriksson, S. W. Tu, and A. R. Puerta. PROTEGE
II: Computer support for development of intelligent systems from libraries of com-
ponents. In Proceedings of the Eighth World Congress on Medical Informatics
(MEDINFO-95), pages 766-770, Vancouver, B. C., 1995.

R. Orfali, D. Harkey, and J. Edwards, editors. The Essential Distributed Objects
Survival Guide. John Wiley & Sons, New York, 1996.

A. Puerta, S. W. Tu, and M. A. Musen. Modeling tasks with mechanisms. In
Workshop on Problem-Solving Methods, Stanford, July 1992. GMD, Germany.

F. Puppe. Knowledge reuse among diagnostic problem-solving methods in the
shell-kit D3. International Journal of Human-Computer Studies, 49(4):627-649,
1998. Special issue on Problem-Solving Methods.

A. Th. Schreiber, B. J. Wielinga, and J. A. Breuker, editors. KADS: A Princi-
pled Approach to Knowledge-Based System Development, volume 11 of Knowledge-
Based Systems Book Series. Academic Press, London, 1993.

J. Schumann and B. Fischer. NORA/HAMMR making deduction-based software

48

27.

28.
29.

30.

31.

32.

33.

34.

V.R. Benjamins et al.

component retrieval practical. In 12th IEEE International Conference on Auto-
mated Software Engineering, pages 246—254. IEEE Computer Society, 1997.

N. Shadbolt, E. Motta, and A. Rouge. Constructing knowledge-based systems.
IEEE Software, 10(6):34-39, November 1993.

L. Steels. Components of expertise. AI Magazine, 11(2):28-49, Summer 1990.

A. ten Teije, F. van Harmelen, A. Th. Schreiber, and B. Wielinga. Construction of
problem-solving methods as parametric design. International Journal of Human-
Computer Studies, 49(4):363-389, 1998. Special issue on Problem-Solving Meth-
ods.

M. Uschold and M. Gruninger. Ontologies: principles, methods, and applications.
Knowledge Engineering Review, 11(2):93-155, 1996.

A. Valente and C. Lickenhoff. Organization as guidance: A library of assessment
models. In Proceedings of the Seventh European Knowledge Acquisition Workshop
(EKAW?’93), Lecture Notes in Artificial Intelligence, LNCS 723, pages 243-262,
1993.

G. van Heijst, A. T. Schreiber, and B.J. Wielinga. Using explicit ontolo-
gies in KBS development. International Journal of Human-Computer Studies,
46(2/3):183-292, 1997.

J. Wielemaker. SWI-Prolog 2.9: Reference Manual. SWI, University of Amster-
dam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands, 1997. E-mail:
jan@swi.psy.uva.nl.

A. M. Zaremski and J. M. Wing. Specification matching of software components.
ACM Transactions on Software Engineering and Methodology, 6(4):333-369, 1997.

TERMINAE: A Linguistics-Based Tool for the
Building of a Domain Ontology

Brigitte Biébow and Sylvie Szulman

Université de Paris-Nord,
Laboratoire d’Informatique de Paris-Nord(LIPN)
Av. J.B. Clément
93430 VILLETANEUSE (France)
Brigitte.Biebow@lipn.univ-paris13.fr
Sylvie.Szulman@lipn.univ-paris13.fr

Abstract. The purpose of TERMINAE is to help building an ontol-
ogy, both from scratch and from texts, without control by any task. Re-
quirements have been defined for a methodology on the basis of real ex-
periments. TERMINAE fulfills these requirements, involving theoretical
bases from linguistics and knowledge representation. Its strong points are
integration of a terminological approach and an ontology management,
precise definition of concept types reflecting modeling choices, and trace-
ability facilities. This paper presents briefly the experiments leading to
the requirements, and focuses on the tool and its underlying methodol-

ogy.

1 Practical and theoretical basis of TERMINAE

In what follows, we use the term ”domain ontology”, with the meaning of ”on-
tology” in [33]:

” An ontology is a hierarchically structured set of terms for describing a domain
that can be used as a skeletal foundation for a knowledge base ”. This definition
seems to be totally compatible with that of [16]:

” An ontology is a logical theory accounted for the intended meaning of a formal
vocabulary, i.e. its ontological commitment to a particular conceptualization of
the world ”.

We use also the same distinction between top-level ontology, domain ontology,
task ontology and application ontology as in [16]. We agree too with Guarino’s
definition of a knowledge base as being obtained by specialization of an ontology
to a particular state of the world.

In TERMINAE, the computer-aided tool presented in this paper, we often
use the term "knowledge base” for ”ontology of a generic knowledge base” be-
cause what we speak about is always state-independent, and the term ”ontology
management” is not yet widely used. TERMINAE is used as an ”ontology man-
agement” tool, even if its representation language allows the description of facts
by individual concepts.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 49-66, 1999.
© Springer-Verlag Berlin Heidelberg 1999

50 B. Biébow and S. Szulman

1.1 Some practical considerations

TERMINAE is a tool based on a methodology elaborated from practical experi-
ments of ontology building in the domain of telecommunications. The aim of one
of these projects was to help the supervision of a telecommunications network
[6]. The supervision operators receive alarms from supervised equipment as the
result of different kinds of incidents, some of which are minor, others really seri-
ous. The operator must rapidly choose the right action, even if the exact cause is
not known. The work consisted in building a knowledge base of incidents to help
the supervision; the task was well defined, not exactly diagnostic but a cluster-
ing of alarms under incident headings in order to classify the incident from the
alarm and to know what action to perform.

The difficulty in this modeling was to clarify the domain and to extract rel-
evant information from a large amount of documents, but the choices of the
entities to be defined for the application have been considerably facilitated by
the final task. The domain modeling led to identify some concepts of the un-
derlying domain which did not correspond to terms in the expert language, but
which were immediately recognized as being relevant for structuring the domain.
For instance, a concept WorkProblem (PbTravaux in French) was defined during
the modeling to cluster all the causes of incidents due to maintenance on the
network. But the domain ontology was just a taxonomy of concepts, without
formal definition, the concept names being self-explanatory. The formal appli-
cation ontology was designed for the task and made operational in the BACK
description logic [24].

Another project was the building of a knowledge base on software engineer-
ing requirements in the domain of telecommunications [5]. These requirements
describe ISDN (Integrated Services Digital Network) supplementary services,
which means new specific functionalities; the language used is very specialized,
specific to the domain of telecommunications and more particularly to the do-
main of ISDN supplementary services.

Requirements are prescriptive rather than descriptive, with a lot of modal
expressions such as ” it shall be... 7, ” ...may.. 7, ” ...has to... 7 and there are
few precise definitions. For instance, ” the SUB (subaddressing) supplementary
service allows the called user to expand his addressing capacity beyond that
given by the ISDN number ”. The objects of the new domain are being defined
using objects that are already known. For instance, ISDN exists with its basic

services, its calls involve called and calling users, etc.

These new supplementary services define a new domain, with new objects
and new terms, for which no terminology, or ontology, exists yet. Building the
knowledge base was intended to give a better view of the result of the spec-
ification process, and since it was not built for a final application, there was
no application bias. The ontology reflects the specification and ISDN domains,
neither of which are made up of concrete objects.

TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology 51

1.2 Conclusion about the experiments

The lesson we learnt through our modeling experiments reinforces the literature
on ontology: when modeling is controlled by the final task and when the domain
is well established or concrete, modeling is easier than without any application
bias or when the domain is new, informal, and hardly investigated.

When there is no task to drive the domain building, the modeling looks
like the work of a linguist, lexicologist or terminologist. The major difference
is that the final modeling has to be used not only for human understanding or
translation, but also for automatic inferences, which need more formal model-
ing. Researchers from computational lexical semantics ([25],[19]) have begun to
investigate the close relations between these two approaches, domain ontology
modeling and computational lexical semantics. The description of all the possible
semantic uses of a word may be possible if it is restricted to a specialized domain
relatively to a corpus, while it seems an inaccessible goal in general language.
What is needed in both domains is understanding, i.e making ” reasonable ”
inferences. Linguistic methods to define lexical items or terms (lexical items in
a specialized domain) are usually introspection (traditional in classical lexicog-
raphy) and, more recently, corpus analysis (traditional in classical terminology).
Even if they are not formal, linguistic methods are rigorous, and there are now
usable linguistic tools to help the work.

We think, as others ([30], [2], [22]), that domain modeling would benefit
from a close interaction between linguistic methods or tools and computer-aided
knowledge engineering methods or tools. Ontology, terminology, and lexical se-
mantics aim to describe the world through the words of the language, in all
language’s generality for lexical semantics, restricted to a technical domain for
terminology and for ontology as we have defined it. Our idea is to push the
integration of these disciplines as far as possible into a tool, TERMINAE.

1.3 Some requirements for methods and tools to build a domain
ontology

Since the beginning of the 90’s, a lot of principles have been elicited for the design
of ontologies; the best known may be those of [14], [15]. A lot of ontologies have
been designed in big or small projects (see [13] for a review of worldwide known
projects and the general literature from the recent conferences or workshops on
ontologies or modeling [36], [37] ,[38] ,[39]. But researchers are still asking for
guidelines and methodologies, and building usable or reusable ontologies faces
the same difficulties.

To these existing principles, we propose to add some requirements that fit the
need we met during our work on modeling. All the experiments faced the problem
of building an ontology of a domain from texts and we needed a tool to help us.
Some exist, but none fitting our needs. We wanted to have a linguistic approach,
to take advantage of the method and techniques existing in the terminology
domain. We wanted a CAKE tool to help the human task as much as possible.
We wanted a formal ontology to help validate the ontology, while avoiding most

52 B. Biébow and S. Szulman

of the common mistakes such as redundancy and inconsistency, and we also
wanted to be able to query the ontology and make inferences. This led to the
following requirements for building a domain ontology from scratch and from
texts without being task-driven.

* Linguistic-based methods:
Linguistic methods such as the study of terminology are required. Terminol-
ogy is studied from domain texts, that is to say a description of a term is
elaborated from its occurrences in the texts.

* A typology of concepts to highlight the modeling choices:
When modeling an ontology, different types of concepts are elaborated. Some
come from the text, others from the type of text, from the domain, from
meta-knowledge, from common-sense knowledge. Some are introduced to
structure the ontology bottom-up or top-down. It is important to be able to
distinguish the modeling choices in order to understand and maintain the
ontology.

* Formality to avoid as far as possible incoherence and inconsistencies:
The support of an ontology has to be formal to avoid incoherence and to
allow further inferences. The drawback of this option is a loss of meaningful
substance but this is the price of correctness and automation.

* Traceability, maintainability, back linking to texts:
A condition of usability is the ability to understand the ontology, i.e. to be
able to decide if the underlying conceptualization fits the addressed problem
or domain or not. This implies a documented ontology, with links to its
sources and comments on the modeling process.

TERMINAE has been built to meet these requirements.

2 TERMINAE

2.1 Overview of the tool

TERMINAE is a computer-aided knowledge engineering tool written in Java. Its
originality is to integrate linguistic and knowledge engineering tools. The linguis-
tic engineering part allows the definition of terminological forms from the study
of term occurrences in a corpus. A terminological form defines each meaning of
a term, called a notion, using some linguistic relations between notions, such
as synonymy. The knowledge engineering part involves knowledge-base manage-
ment with an editor and browser for the ontology. The tool helps to represent a
notion as a concept, which is called a terminological concept.

2.2 Knowledge engineering part

Knowledge-base formalism Knowledge representation formalisms, like con-
ceptual graphs or description logics, describe an epistemological level, in the
sense of [10]. They provide logical primitives, the meaning of which is domain-
independent, and syntactic rules to build language formulae. They also provide

TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology 53

rules for semantic composition, which allows the sense of a formula to be com-
puted from the sense of the primitives which compose it. But the definition of
the non-logical primitives of the domain, the interpretation of which is given by
the domain, is left to the knowledge engineer. So the task of building a formal
ontology of a domain comes down to defining the non-logical primitives of the
formalism[4].

The formalism used in TERMINAE belongs to the family of description
logics. These formalisms are now well known [34]. They describe concepts by their
necessary and sufficient conditions, in order to organize concepts into a taxonomy
of subsumption along which the properties are inherited, and to classify concepts
in this hierarchy according to their properties. TERMINAE formalism is only
a terminological language, close to the T-box language of Back [18], with the
following syntax:

Table 1. Syntax of TERMINAE terminological language

Concept Terms Role Terms
[concept]::[concept-name] [role]::[role-name]
| anything | [role] and [role]
| nothing | domain([concept])
| [concept] and [concept] | range ([concept])
| all ([role],[concept]) | [role]comp [role]
| atleast([INTEGER],[role]) | trans([role])
| atmost([INTEGER],[role]) | inv([role])

This language has been chosen to facilitate the design, although the classification
becomes NP-complex . The operators involved are not used sufficiently often to
lead to an unacceptable lack of efficiency in the terminological part.

Typology of concepts for the modeling Moreover, to help the understand-
ing and maintenance of the modeling, concepts have specific labels to express
their structuring-type and their linguistic-type. This typology does affect neither
the classification nor another inferential process, and the labels are transparent
for the formal semantic interpretation. These labels are used as comments by
the knowledge engineer when building or maintaining the base, and they re-
flect everyday experience in knowledge engineering. They emphasize a modeling
point of view on the concept, following two methodological dimensions: the usual
structuring dimension, and the linguistic one that we have introduced.

Structuring dimension The structuring-type of concept is either top-down or
bottom-up, and it expresses the way the concept has been introduced into the
ontology.

Top-down structuring (TDS) type concepts partition off the domain early on into
large subdomains which are easier to manage. This allows the knowledge engineer
to structure his/her conceptualization process. Often the domain differentiates
between fundamental objects such as physical object or abstract object in the

54 B. Biébow and S. Szulman

domain of telecommunications, and data and function in the domain of software
specifications.

Bottom-up structuring (BUS) type concepts come from a deeper study of the
specialized domain. For instance, in telecommunications, BUS concepts may be
exchange, call, or subscriber. Sometimes the limit is not so clear, and a concept
may remain unlabeled. A BUS concept may be designed as regrouping BUS
concept (RBUS), which means that it has been created to put together a family
of concepts with some common properties. These properties may be formally
defined at the level of the RBUS concept and then restricted, or just given as
a comment on the RBUS concept. This is the case in the telecommunications
network supervision application for the concept ”work problem”, under which all
the concepts ”incident cause bound to maintenance work” have been clustered.
Experts have spontaneously agreed with this conceptualization, which allows
them to better structure the huge number of causes they have to keep in mind.

Linguistic dimension The other dimension of a concept is its linguistic accu-
racy, with respect to the corpus. Terminological (T) concepts are built from the
study of the corpus, and they correspond to one or more terms of the specialized
domain. One term (the ”vedette”) is chosen as a name for the concepts. For in-
stance, ”ISDN number” is a terminological concept, as is ”to-allocate” (affecter
in French) that will be modeled further. Pre-terminological (PT) concepts cor-
respond to several expressions, sometimes real sentences (such as ”this type of
problem occurs when work is programmed on the network, the supervision center
has been notified, but all the consequences have not been indicated”, or ”inci-
dent cause bound to maintenance work”), none of them being more used than
the others. Ultimately, a specific term will be adopted, but it is not the case
for the moment. One expression is chosen as the name for the concept (in the
example above, WorkProblem).

The name of a concept may not correspond to a term in the domain studied,
for instance the top-level concepts are usually not terminological. It may appear
that a not-terminological (NT) concept has the same name as a terminologi-
cal one, i.e. they are homonyms in the ontology. For instance ”domain” may
be terminological in a telecommunications text, meaning the set of equipment
supervised by a specific exchange (the supervision domain of the exchange); it
may also exist to design parts of the general ontology, for instance supervision
domain, exploitation domain, taxation domain. In such a case, as in case of pol-
ysemic terms, the concepts are distinguished by suffixing their name, domain-1
and domain-2.

It also happens that a concept is needed to structure the ontology and that a
known term corresponds to the concept, but this term is not attested in the
corpus. For instance, the term ”telecommunication” does not occur in the ISDN
corpus, it belongs to a domain including that of ISDN, but the concept is needed
to structure the ontology. The concept will be defined with the terminological
not attested (TNA) type.

Table 2 recapitulates the different types of concept. The two dimensions are

TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology 55

Table 2. Concept types

Dimension Type of concept

structuring top-down (TDS)

bottom-up (BUS)

regrouping bottom-up (RBUS)
linguistic terminological (T)
pre-terminological (PT)
terminological not attested (TNA)
not terminological (NT)

independent. A priori, most of the primitive concepts are TDS and NT/TNA,
most of the defined concepts are BUS/RBUS and T/PT, but no exact corre-
spondence is possible. For instance, WorkProblem (PbTravaux in French) is a
RBUS concept which has been defined to regroup all the causes of incidents due
to work programmed on the network. Although this concept is neither linguis-
tically attested in the corpus nor by the expert, the expert is so much in favor
of the definition of this new concept that it will certainly become a PT concept
very soon. For the moment, it is an NT concept, i.e. not terminological.

The bootstrap top-level ontology TERMINAE has been designed to build
an ontology from scratch and the engineers must face the bootstrap problem,
that is to say:

* How to describe concepts without first having defined the roles?
* How to describe roles without first having defined the concepts?

In practice, concepts and roles are described at the same time and the structuring
process is questioned at each step. But where do we start? TERMINAE proposes
around thirty concepts established from the state of the art and a kernel of
relations close to linguistic cases, that may be modified depending on the needs
[17],[20],[32],[28]. Figure 6 will show some of them in the next section.

2.3 Linguistic engineering part

Theoretical terminological approach The proposed approach follows recent
work in terminology [31]. The original postulate of terminology stipulated that
scientific knowledge is based on logical reasoning and gave the term as the mini-
mal unit of this knowledge [35]. The term had to be pure, without any emotional
or non-cognitive connotation, with a single meaning, precise, mono-referential,
which means that to a term corresponds one and only one concept and vice
versa. This idea of a purely logical scientific language no longer corresponds to
recent knowledge, which considers language and even texts as the basis of scien-
tific work. Moreover, even in restricted domains, term univocity is not respected,
and a term may correspond to several notions because of the existence of linguis-
tic phenomena such as metonymy or polysemy. For example, in the domain of

56 B. Biébow and S. Szulman

the specification of ISDN supplementary services, which is a very restricted do-
main in telecommunications, the term call forwarding (renvoi d’appel in French)
may designate three different notions: a supplementary service, or the action
performed when this service is invoked, or the result of this action when the
service is invoked.

Practical terminological approach TERMINAE supports a methodology to
build terminological concepts from the study of the corresponding term in a cor-
pus. The first step is to establish the list of terms. This requires the constitution
of a relevant corpus of texts on the domain. Then LEXTER [8], a term extrac-
tor, proposes to the knowledge engineer a set of candidate terms from which the
effective terms have to be selected with the help of an expert. The next step is to
conceptualize each term. The knowledge engineer analyzes the uses of the term
in the corpus to define all the notions (meanings) of the term. He/she gives a
definition in natural language for each notion and then translates the definition
into a formalism. The new terminological concept finally may or may not be
inserted into the ontology, depending on the validity of the insertion. Figure 1
shows the path from text to terminological concepts.

Text Terminnological Modeling form Enowledge Base
ferm form corwepfual Terminclogical
OCCLE FEMTES nofions primifives sef coyeepnt
termitinlogical niotm alizati on formalization
bl " N T 110
dudy — [. [1 l

Fig. 1. From text to Knowledge base

Terminological study TERMINAE integrates the results of LEXTER, a tool
which extracts candidate terms by means of local syntactic parsing techniques
based on surface patterns. Figure 2 presents the graphical user interface to study
the occurrences of a term candidate. The right part of the window shows the
occurrences of the term selected in the left part. The term ”affecter” and its 19
occurrences are extracted from the corpus on the ISDN supplementary services
specification. For each occurrence, the user may display its context (the whole
paragraph or only the preceding or following sentences).

A terminological form is created from the study of the term. Figure 3 presents
the terminological form of the verb ”affecter”, which is polysemic. Occurrences
1, 2, 3, ... lead to the notion "to allocate”. The others lead to the notion "to
modify”, with the result that the knowledge engineer fills out two modeling
forms. The knowledge engineer binds a distinct notion to each meaning which is
defined by a set of occurrences and a text. For instance the notion ”affecter-1" is
defined by the given occurrences and the text ”an exchange allocates something
to something”.

TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology 57

& 5]

Term
"adresse incomplet' & |[1. Ce complément de service est affecté au raccordement de labonné. ~
' Sffectation de un catégorie Spé] 2. Une discrimination (marque) est alors affectée parle commutateur au racco
2. LecanalB d atfectd i la ication.
4. Le renvoi d'appel inconditionnel n'affecte pas |a possibilité de lusager dess
"appatrition de un condition ETILI 5. Le service de cet usagern'en est pas affecté en départ. -
3) N S| 17

Fig. 2. Terminological study interface

cTerminulugical Form : !Elm

File Term Motion Modeling

Term Motion

"affecter
Motion2

Jccurrence List

Ce complément de service est affecté au raccordement de 'abonn &
Une diserimination (marque) est alars affectée par le commutateur ——
Le canal B d affecté i la ication.

Une diserimination particuliére (type) est affectée au raccordement

Le service de cet uzager n'en est pas affectd en départ.

Cette spécialization du raccordement n'est pas affectée 3 un canal __|
Une diserimination spécifique (type) est affectée i chaque accés d

. Ces abonnés sont identifiés par ' tation d'une catégorie spécifi ™
4 | »

L Definition

an exchange allocal thing to thinal =

A »

SYNONYMs: Antonyms:

RN TR

Fig. 3. A terminological form

Normalization and formalization The methodology followed leads us from
the study of the text to modeling forms for one term. Each notion underlying
a term is described by its uses with the other notions in the corpus. We call
this process term normalization, in line with [26]. This means that the choice of
corpus is fundamental for the building of the ontology, because the normalization
is relative to the corpus. From the analysis of these uses of the term, the engineer
fills out a modeling form for each notion, which includes the following fields (see
figures! 4 and 5):

* anormalized definition of the notion, which is the list of its linguistic relations
with other lexical items

* a more formal definition, where each relation is translated into a primitive
relation chosen from a list of predefined relations

* a formal definition, where each relation corresponds to a role in the ontology
and where the related lexical items are bound to a concept in the ontology

! Text and term are French. We have tried to translate some elements for a better
understanding, that explains the French/English mix presented in some windows.

58 B. Biébow and S. Szulman

Each modeling form is bound to the terminological form. This form represents
the choice of modeling of the knowledge engineer. It will be saved for the trace-
ability of the modeling. The engineer defines the list of linguistic relations of
the notion from the terminological definition and the analysis of the list of oc-
currences. This is entirely manual and is dependent on the competence of the
knowledge engineer.

Then, the linguistic relations are translated into primitive relations with the aid
of a list of predefined relations given with their definition and some examples.
Most of these relations are defined as roles of the ontology.

Then under the control of the engineer, TERMINAE translates each primitive
relation into a role. If the matching is not successful, the engineer has the pos-
sibility to add a new role to the initial ontology, and a corresponding relation
to the list of predefined relations. An unsuccessful matching means either that
the name of the relation is unknown as a role or that the role cannot link the
concepts together.

Indeed, a value concept must be defined for each role of the notion which is
being defined. The value concept of the role R is the least common subsumer
of the concepts bound to the terms which have an R relation with the notion.
The classifier of TERMINAE helps to find this least common subsumer, through
the analysis and conceptualization of the list of occurrences of the notion. This
implies that the notions in relation with the notion which is being defined must
themselves be defined, as the modeling process is iterative. Other choices may
be to give up a particular notion related to the one being defined or to consider a
more generic one. The form keeps trace of the modeling process for traceability
and further modeling. The result is a concept with a name and a list of relations
with other concepts, and this concept may be inserted into the formal ontology.
Let us examine the formalization of the notion ”affecter-1” (to allocate). The
normalization phase gives the description :

"affecter-1” is an action which has three linguistic relations ”agent”, ”object”,
”second object”. The translation of these relations into primitive ones gives :
7affecter-17 isKindOf action with relations ”AGNT”, ”OBJ”, "RCPT”.

Each property has to be translated into a role of the knowledge base. These
properties will be described by the roles AGNT, OBJ and RCPT which are
defined on the concept ”action”. To define the value concept for each role, the
knowledge base is searched for a concept which subsumes the value concepts
corresponding to the value terms. So the concepts (subscriber’s line, channel,
access) are subsumed by the concept ”equipment”; the concepts ”communica-
tion” and ”equipment” are subsumed by the concept ”entity”. Thus the notion
studied is formalized into the terminological concept ”affecter-1” (to allocate):

to-allocate::= action and (all AGNT exchange) and (all OBJ equipment)
and (all RCPT entity)

Insertion into the ontology The last step is the insertion of the concept
into the knowledge base. The knowledge-base system may give information to
the knowledge-base designer. Let us suppose that the knowledge base already

TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology 59

@Mudeling Form: affecter {notion1) !EIB
Filz Property Knowledge Base

Mormalization

to allocate-1 iz an action -
with an agentwhich may be an exchange
with an object which may be
; ‘e

(B channel, diseri ation, specialization of a sub
specific category, supplementary service)

with a second object which may be
{communication, subscribers line, particular channel, acce ™
4 4

Definition with primitive relations

to-allocate-1 isKindOf: action :I
AGHNT: exchange
0BJ: B channel, diserimination, sp lization of a subscriber
specific category, supplementary service
RCPT: communication, subseribers line, paricular channel, a

>
< | B

Farmalization
Praperty Yalue Term Value concept
AGMNT communication entity
0Bl subscriber's line
RCPT particular channel

Fig. 4. Modeling form of ”affecter-1” (to allocate)

includes some concepts as shown in the figure 6. It informs that the concept ”to-
allocate” has the same roles as the concept "to-assign”. The concept ”to-assign”
is described by:

to-assign::= descriptive-action and (all AGNT exchange)

and (all OBJ equipment) and (all RCPT spatial-entity)

The knowledge base designer takes either one of the four following decisions:

1.

that ”to-allocate” is a specialization of ”to-assign”. The designer defines the
concept "to-allocate ” as isKindOf the concept ”to-assign”.

that ”to-assign” is a specialization of ”to-allocate”. The designer defines the
concept "to-assign” as isKindOf of the concept ”to-allocate”.

that the two concepts are brothers, with the same father ” descriptive-action”.
The designer defines the concept ”to-allocate” as isKindOf the concept
”descriptive- action”.

that the underlying notions are synonymous. The designer specifies that
the concept "to-assign” also represents a notion of the term ”to allocate”;
TERMINAE adds a comment to the concept ”to-assign”, a link between
the concept and the modeling form of ”to-allocate”, and returns to the two
terminological forms to specify that "to allocate” and ”to assign” terms are
synonymous.

In each case, the knowledge-base system will check the validity of the insertion.
For example, in case (1), the knowledge-base system will inform the designer
that it has detected incoherence on the value role RCPT. Indeed, the ”entity”
concept is not subsumed by the ”spatial-entity” concept. The designer choice

60 B. Biébow and S. Szulman

] - -

Eﬂ Modeling Form: affecter (notion2) !ﬂn
File Property Knowledge Base

MNormalization

to allocate-2 is an action :I

with an agentwhich may be
It itional call ing, call ing on no respons
with an objectwhich may be
[possibility, user, call state)

-
4 | »

Definition with primitive relations

to-allocate-2 iskindOf action FY
GNT: () ditional call ding, call ding on no resp
0OBJ: (pozsibility, user, call state)

s
| | B

Formalization

Froperty Walue Term Walue concept
AGNT unconditional call 1. | [supplementary senvice
[o]=N] call forwarding on >

4| 3 4| [

Fig. 5. Modeling form of ”affecter-2” (to modify)

has to be changed, or the concept description has to be modified. The designer
must explain the choice in a comment linked to the concept. These comments
are necessary to understand the modeling and to modify it, they facilitate main-
tenance and readability. The knowledge-base system allows ontology description
and avoids incoherence. The classifier helps to search for similarity and to group
concepts together, while the comments facilitate maintenance and readability.
The traceability requirement is achieved through the links between the text,
the different forms and the terminological concepts in the ontology. The result-
ing ontology is strongly linked with terminology, and so benefits from the solid
experience in semantic modeling of the specialized domain. It is relatively in-
dependant from any application, which means that it is necessary to make a
new model that is well adapted to the application in question. In particular,
the relations may need to be extended by other relations that are closer to the
inferences of the application, but its linguistic base makes it directly usable for
applications on text retrieval, corporate memory, texts-on-line filtering, etc.

3 State of art

3.1 The terminological knowledge bases

Interactions between knowledge engineering and terminology are studied since
1990, that gave birth to the notion of terminological knowledge base ([30],[2]).
In France, the TTA (]9]) group works since 1993 on this theme. A terminological
knowledge base (called TKB in what follows) is a terminology, more specifically
a term bank, which is electronically accessible. The main difference is that a

TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology 61

[C_,Jﬁlaphical window of the ontology
Graph management Concepts Roles

topConcept

abstract-entity ertity

spatial-entity
concrete-ohject

telecommunication-ohject

Fig. 6. The part of the ontology involved in an insertion, before the insertion

TKB includes conceptual knowledge ”a large and highly structured amount of
conceptual information for each term” [21], and its admitted objective is to be
used as the knowledge base of some system. The study of the terms in the texts
of a domain (any text, interview reports, technical reports, teaching manuals)
allows the definition of the domain objects by giving a definition of the terms
verified by an expert. A TKB includes the terms of one or more specialized
domains, lexical information on these terms, and indications about their use
(domain, sub-domain, kind of specific document, kind of specific speaker) and
relations with concepts. Several concepts may correspond to one term. A TKB is
independent of any application; it is built from texts describing a domain, which
may involve several applications. It defines the terms depending on their context,
i.e. their uses in texts, linking a concept with the corresponding term occurrences.
It may be created by terminologists and used by knowledge engineers as the
starting point for building a domain ontology. TERMINAE proposes knowledge
engineer to start with a terminological study for defining the concepts of the
ontology which corresponds to a term. Its aim is not terminology building but
ontology building, the resulting terminology being a side-effect.

CODE, a TKB management tool. The best known TKB management tool
is CODE, Conceptually Oriented Design/Description Environment, developed
by D. Skuce and his group at Ottawa from 1990 to 1995 ([30], [21], [29]. This
tool is a general-purpose knowledge management system. It assists in the various
operations necessary to create a knowledge base: inputting, structuring, debug-
ging, retrieving, explaining. CODE uses a frame representation language, allow-
ing consistency-checking based on inheritance mechanism. It provides a highly
developed graphic user interface and aims at the production of documents into
a pseudo natural language, for linguistic exploitation. The main difference with

62 B. Biébow and S. Szulman

TERMINAE, apart from its being wide-spread, is that it was rather designed for
a terminologists workstation than as a formal ontology building tool. Technically,
the term extraction is very different, and methodologically it does not distinguish
between concepts coming from a terminological study and from modeling needs.

A TKB model. [3] proposed a model of TKB in which textual occurrences
of terms, terms and concepts are linked together as in usual TKB, but where
term-concept links are labeled by the context of use, following [11]. This label
structures the TKB into several points of view, which reflect a distinction be-
tween specialized domains, such as meteorology and telecommunication. This
allows the univocity of the labeled term-concept link to be kept, akin to classical
terminology. The concepts are structured into a hierarchical network, where they
are defined in a semi-formal way, normalized but still informal. This informality
allows the TKB to be adapted to a specific application and its required formal-
ization.

TERMINAE allows for non-univocity of the term-concept link, and focuses on
knowledge engineering part and formalization, rather than on manageability of
a terminology with multiple views.

3.2 A computational linguistics based knowledge engineering tool

KAWB (Knowledge Acquisition WorkBench)[22] is an example of advanced in-
tegration of linguistic tools. It is a semi-implemented tool to acquire semantic
features of a domain from large text corpora. It uses methods from computational
linguistics, information retrieval and knowledge engineering. A data extraction
module includes first a word class identification based on linguistic annotation of
texts, statistical word clustering, with access to external linguistic and semantic
sources; then a pattern finder collects collocations for words, searches for regu-
larities and proposes lexico-semantic patterns for a conceptual characterization
to the knowledge engineer. An analysis and refinement module helps the engi-
neer to test patterns which represent his/her hypotheses, groups together the
cases found by the search and generalizes them to ask the engineer for a final
decision.

This tool is applied in Medicine,where extensive work has been done, and where
a thesaurus exists (UMLS, Unified Medical Language System); it is real NLP
technology application independent, even if it requires knowledge engineer in-
tervention, as all knowledge engineering tools. This is a perfect example of how
NLP may help acquisition of domain knowledge from texts. Today, TERMI-
NAE tries to use simple NLP tools. For instance, LEXTER uses local syntactic
parsing techniques based on surface patterns to extract candidate terms from a
tagged text, where KAWB uses a word tagger, a specialized partial robust parser
and a case attachment module which requires more lexical information from a
knowledge base and external lexical data bases.

TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology 63

3.3 A formal ontology building tool

ONTOSAURUS [33] is an example of browser and editor of ontology based on
a formal representation language. It is a user-friendly and Web-based tool for
browsing and editing ontologies or knowledge bases, with the Loom knowledge
representation formalism. Each concept is described on one HTML page, with all
the relevant information; this page contains two types of information, informal
or formal. The informal part includes image and textual documentation with
reference links to other source documents and references used in formalizing the
concept; the formal part includes the concept definition, the related concepts
of the hierarchy (super, sub and sibling concepts), its roles, its instances in
the knowledge base. Asserted and inferred informations are distinguished, that
is useful with description logics tools because the classifier makes sometimes
some obscure inferences [24]. Hyper-links abilities facilitate the browsing. The
LOOM integration provides ontology maintenance services such as the automatic
detection of incoherence, inconsistency and missing definitions.

This tool fulfills our requirements on traceability and formality; but it lacks of
methodology guidelines and, as often in knowledge engineering tools, there is no
distinction between term and concept. The linguistics used for identifying the
concepts to put into the ontology is not made explicit.

3.4 An example of strong principle based methodology

METHOTONLOGY [12] is a very interesting work on the ontology development
process. A list of activities to be done is elicited, from planification of task and
resources needed to build an ontology to its maintenance. Reuse is strongly
recommended, and the conceptualization, formalization, implementation steps
are distinguished, even if formalization and implementation come to the same
when the formal language is implemented as description logics usually are. It
highlights the similarity between ontology and classical software life cycles, such
as the needs of an ontology requirements specification. TERMINAE takes place
from conceptualization step, and its proposed top-level ontology from state-of-
the-art ontologies meets the METHOTONLOGY integration purpose. But in
the domains we study, it would have been very difficult to follow more than
the first step of conceptualization part, to define data dictionary and concepts
classification trees. Indeed, there is no constant, no formula, no constraint, no
axiom in the studied domains, which are hardly formalizable. The other steps of
conceptualization are not applicable.

4 Conclusion

This paper presents a linguistics-based methodology and tool to help knowledge
engineering. We think that domain ontology modeling would benefit from a closer
interaction between linguistic methods or tools and computer-aided knowledge
engineering methods or tools. Our aim is to push the integration of these disci-
plines as far as possible into a tool, TERMINAE. The tool, like the methodology

64 B. Biébow and S. Szulman

it supports, has been developed from the requirements of real applications, to
facilitate ontology building from texts.
The requirements were as follows:

* To use the methods and tools from terminology in linguistics to find and
define concepts. At present, a term extractor, LEXTER, provides term can-
didates that may then be modeled through the normalization process.

* To provide traceability for maintenance and back linking from the ontology
to texts. This is achieved through the links between the text, the different
forms and the terminological concepts in the ontology.

* To highlight the modeling choices. A modeling typology of concepts leads
the designer through the ontology.

* To avoid as far as possible incoherences and inconsistencies. A terminological
formalism provides a classification mechanism to help the designer to detect
redundancies and incompatible definitions.

Today, TERMINAE has been developed in Java. There is still a lot of work to
be done to integrate the state-of-the-art in lexical semantics and computational
linguistics. Some tools could easily be inserted, such as morphological match-
ers to align term occurrences one under the other and to facilitate the manual
comparison of the uses. As far as we know, very few proposals have been made
to help in the elaboration of semantic classes (Zellig [7]), but less sophisticated
tools may help, such as LEXICLASS ([1]) that eases to cluster terms according
to their ”terminological context” given by LEXTER. TERMINAE has been de-
signed through real applications, but it has not yet been extensively used and
the methodology needs to be developed further. So far, TERMINAE has been
designed as a knowledge engineering tool with an ontology modeling objective,
but it could also be used as a terminological knowledge base, since it handles the
definition of terminological forms, the links to the text, and the links between
notions.

acknowledgement We warmly thank Daniel Kayser for his fruitful remarks.

References

1. ASSADI H.: Construction of a regional ontology from text and its use within a
documentary system. In Proc. of the 1st International Conference, FOIS’98, Trento,
Italy, (1998)

2. AUSSENAC-GILLES N., BOURIGAULT D., CONDAMINES A.; GROS C.: How
can knowledge acquisition benefit from terminology ? In Proc. of the 9th Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, (1995)

3. AUSSENAC-GILLES N., SEGUELA P.: Un modele de base de connaissances ter-
minologiques. In Proc. of the 2nd Conference Terminology and Artificial Intelli-
gence (TIA’97), Toulouse, France,(1997)

4. BACHIMONT B.: Herméneutique matérielle et Artéfacture: des machines qui
pensent aux machines qui donnent & penser. These, Ecole Polytechnique, Paris,
(1996)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology 65

BIEBOW, B., CHARNOIS, T., SZULMAN, S.: ISDN supplementary services: from
informality to knowledge representation. In Annals of Telecommunications, 51, n9-
10,(1996)440-451

BIEBOW B., NOBECOURT J., SZULMAN S.: Elaboration d’une méthodologie
pour la création d’un noyau de base de connaissances sur la supervision. Final
report, CNRS-Cognisciences-CNET Contract, étude numéro 4, Assistance a la
construction et a la réutilisation de connaissances dans le cadre des activités de
supervision (1996)

BOUAUD J., HABERT B., NAZARENKO A., ZWEIGENBAUM P.: Regroupe-
ments issus de dépendances syntaxiques en corpus : catégorisation et confrontation
a deux modélisations conceptuelles. In Proc. of the Conference ” Journées Ingénierie
des Connaissances et Apprentissage Automatique”, Roscoff, France,(1997) 207-223
BOURIGAULT D.: LEXTER, un Logiciel d’EXtraction de TERminologie. Appli-
cation a 'acquisition des connaissances a partir de textes. These, EHESS Paris,
(1994)

BOURIGAULT D., CONDAMINES A.: Réflexions sur le concept de base de con-
naissances terminologiques. In Proc. of Journées du PRC-GDR-IA, Nancy, France,
Teknea ed., (1995)

BRACHMAN R. J.: On the epistemological status of semantic networks. In N.
V. Findler (ed.), Associative Networks: Representation and Use of Knowledge by
Computers, Academic Press,(1979) 3-50

CONDAMINES A., AMSILI P.: Terminologie entre langage et connaissances: un
exemple de base de connaissances terminologiques. In Proc. of the conference Ter-
minology and Knowledge Engineering, Frankfurt, (1993)

FERNANDEZ M., GOMEZ-PEREZ A, JURISTO N.: METHOTONLOGY : from
ontological art towards ontological engineering. In Proc. of the 1997 AAAI Spring
Symposium on Ontological Engineering, (1997) 33-40

FRIDMAN NOY N., HAFNER C. D.: The state of the art in ontology design: a
comparative review. In Proc. of the 1997 AAAI Spring Symposium on Ontological
Engineering, (1997)

GRUBER T. R.: Toward principles for the design of ontologies used for knowledge
sharing. In International Journal of Human-Computer Studies,43, (1995) 907-928
GUARINO N.: Concepts, Attributes, and Arbitrary Relations: Some Linguistic
and Ontology Criteria for Structuring Knowledge Bases. In Data and Knowledge
Engineering, (1992)

GUARINO N.: Formal ontology and information systems. In Proc. of the 1st in-
ternational conference on Formal Ontologies in Information Systems (FOIS’98),
Trento, Italy,(1998)

GUARINO N.: Some organizing principles for a unified top-level ontology. In Proc.
of the 1997 AAAI Spring Symposium on Ontological Engineering, (1997) 57-63
HOPPE T., KINDERMANN C., QUANTZ J., SCHMIEDEL A., FISCHER M.:
BACK V5 Tutorial and Manual. KIT-report 100, Technische Universitat Berlin,
Projekt KIT-BACK, March (1993)

KAYSER D.: Ontologically, yours. In Proc. of the 6th International Conference on
Conceptual structures, ICCS’98, Montpellier, France,(1998)

MARTIN P.: Exploitation de graphes conceptuels et de documents structurés et hy-
pertextes pour l'acquisition de connaissances et la recherche d’informations. Thése,
Université de Nice Sophia-Antipolis, (1996)

MEYER I., SKUCE D., BOWKER L., ECK K.: Towards a new generation of
terminological resources: an experiment in building a terminological knowledge
base. In Proc. of the international conference COLING-92, Nantes, (1992) 956-960

66

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.
39.

B. Biébow and S. Szulman

MIKHEEV A., FINCH S.: A workbench for acquisition of ontological knowl-
edge from natural language. In Proc. of the 9th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, (1995)

NOBECOURT J. Représenter la notion de propriété dans les graphes conceptuels
et les logiques de description. In Proc. of the conference Ingénierie des connais-
sances (IC’98), Nancy, (1998)

NOBECOURT J.: Une Expérience de Création d’une Base de Connaissances en
Logique de Description. In Proc. of the 6th Journées d’Acquisition des Connais-
sances (JAC’95), Grenoble,(1995)

PUSTEJOVSKY J.: Lexical semantics and formal ontologies. In Proc. of the 1st
International Conference on Formal Ontologies in Information Systems (FOIS’98),
Trento, Italy,(1998)

RASTIER F.: Le terme: entre ontologie et linguistique. In La banque des mots,
Paris, CLIF, n spécial 7/95, (1995)35-65

SCHREIBER A. T., WIELINGA B. J., BREUKER J.A.. KADS: a Principled
Approach to Knowledge Engineering. In Knowledge-Based Systems Book Series,
Academic Press, London, (1993)

SKUCE D.: How we might reach agreement on shared ontologies: a fundamental
approach. In Proc. of the 1997 AAAI Spring Symposium on Ontological Engineer-
ing, (1997)

SKUCE D., LETHBRIDGE T.: CODE4: a unified system for managing conceptual
knowledge. International Journal of Human-Computer Studies 42, (1995) 413-451
SKUCE D., MEYER I.: Terminology and knowledge acquisition: exploring a sym-
biotic relation ship. In Proc. of the 6th Banff on Knowledge Acquisition for
Knowledge-Based Systems Workshop, (1991)

SLODZIAN M.: Comment revisiter la doctrine terminologique aujourd’hui? In La
banque des mots, Paris, CLIF, n spécial 7/95, (1995) 11-18

SOWA J.: Processes and participants. In Proc. of the 4th International Conference
on Conceptual structures, ICCS’96, Sydney, Australia, (1996)

SWARTOUT B., PATIL R., KNIGHT K., RUSS T.: Towards distributed use of
large-scale ontologies. In Proc. of the 10th Banff on Knowledge Acquisition for
Knowledge-Based Systems Workshop, (1996)

WOODS W. A., SCHMOLZE, J. G.: The KL-ONE family. Computers Mathemat-
ical Applications, 23, (1992) 133-177

WUSTER E.: L'étude scientifique de la terminologie, zone frontaliere entre la lin-
guistique, la logique, I’ontologie, et les sciences des choses. In Rondeau, G. et Felber,
H., (1981) 56-114

Proc. of the 1997 AAAI Spring Symposium on Ontological Engineering, (1997)
Proc. of ECAI Workshop on Applications of ontologies and problem-solving meth-
ods, 13th Biennal European Conference on Artificial Intelligence, Brighton, UK,
(1998)

Information modelling and knowledge bases IX, I0S Press, (1998)

Proc. of the 1st international conference on Formal Ontologies in Information Sys-
tems (FOIS’98), Trento, Italy, (1998)

Applications of Knowledge Acquisition in
Experimental Software Engineering

Andreas Birk, Dagmar Surmann, and Klaus-Dieter Althoff

Fraunhofer Institute for Experimental Software Engineering (Fraunhofer IESE),
Sauerwiesen 6, D-67661 Kaiserslautern, Germany
{birk,surmann,althoff}@iese.fhg.de

Abstract. Many tasks in experimental software engineering (ESE) in-
volve the acquisition of knowledge. Only for very few of them systematic
knowledge acquisition (KA) practices have been established. It is ex-
pected that these ESE tasks can be accomplished more effectively if the
application of appropriate systematic KA methods is fostered.

Most reports on KA applications in software engineering address only
some selected aspects. A broader ESE perspective with its additional
facets (e.g., quality and knowledge management issues) has not yet been
presented so far.

This paper surveys applications of knowledge acquisition in experimen-
tal software engineering, introduces a repository of knowledge elicitation
(KEL) techniques, and suggests a methodology for the development of
customised KA methods in experimental software engineering. Reposi-
tory and methodology aim at fostering the dissemination of systematic
KA practices in ESE. They are applied at Fraunhofer IESE to develop
methods for the acquisition of experiential software engineering knowl-
edge.

Keywords: knowledge acquisition, knowledge management, experimen-
tal software engineering

1 Introduction

Software engineering (SE) involves a multitude of knowledge-intensive tasks:
Elicitation of user requirements for new software systems, identification of best
software development practice, experience collection about project planning and
risk management, and many others.

In addition, the discipline of experimental software engineering (ESE)! places
particular emphasis on knowledge management and knowledge-based support. It
builds on the assumption that continuous learning and systematic reuse of learnt

! Experimental Software Engineering [1] covers all traditional fields of Software En-
gineering. It places particular focus on the empirical investigation of Software En-
gineering concepts such as techniques, methods, or tools. Approaches for managing
the gained empirical knowledge play an important role in ESE.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 67-84, 1999.
© Springer-Verlag Berlin Heidelberg 1999

68 A. Birk, D. Surmann, and K.-D. Althoff

knowledge and experience are crucial for the further development of today’s
software development and management practices.

Despite the importance of knowledge management in ESE, organised and mature
approaches to knowledge acquisition (KA) are rare. Compared to other areas of
engineering, SE is still quite young. Technological developments are progress-
ing fast. For these reasons, the often needed KA and knowledge management
components of methods and techniques have not yet been developed very far.
However, for the same reasons, effective knowledge acquisition and knowledge
management (KM) become more and more important for sustained business
success.

The objective of our work is to foster the further dissemination and use of ad-
vanced KA methods in ESE. This paper presents the approach through which
we want to achieve this objective. The approach consists of three elements:

— Survey and characterisation of KA applications in ESE

— A repository of reusable knowledge elicitation (KEL) techniques and expe-
rience

— A methodology for developing customised KA methods for specific ESE tasks

The survey of KA applications provides an overview of the various tasks in ex-
perimental software engineering that can benefit from advanced and systematic
knowledge acquisition practices. The characterisation of these applications illus-
trates the need for customised KA methods. It also is the first step to identify
requirements for the development of such customised methods.

A repository of knowledge elicitation techniques is important for disseminating
good KA practice throughout experimental software engineering. Many KEL
techniques that could be beneficial to ESE are just not known to software engi-
neers. Operational definitions of these techniques need to be collected and made
accessible to software engineers. They must be supplied with experience about
when and how to use which technique. This information facilitates the selection
of KEL techniques for a specific knowledge acquisition task and supports the
application of the KEL techniques.

Such a repository does not only support knowledge acquisition and knowledge
management in ESE. It also is a knowledge management application itself, be-
cause the repository needs to be kept alive. It must be extended continuously,
and experience from the application of KEL techniques should be fed back into
it.

A methodology is needed to guide software engineers in the development of
customised KA methods. Such a methodology starts with the characterisation
of a knowledge acquisition task and selects appropriate KEL techniques from
the repository. The KEL techniques must then be integrated with each other
and supported by appropriate tools. The result is an operational, customised
KA method for the specific application task.

This paper is structured according to the three elements of our approach: Sec-
tion 2 surveys applications of knowledge acquisition in experimental software
engineering, Section 3 presents the repository of KEL techniques, and Section 4

Applications of Knowledge Acquisition in Experimental Software Engineering 69

describes the knowledge acquisition methodology. A discussion and an outlook
on future work are addressed in Section 5. The remainder of this first section
briefly introduces the fields of experimental software engineering and knowledge
acquisition. It also lists requirements on KA applications in ESE, which were
used to guide the development of the approach presented.

1.1 Experimental Software Engineering

Software engineering aims at providing technologies that can be used for devel-
oping software and for managing software development. This involves the defini-
tion, selection, tailoring, and integration of principles, methods, techniques, and
tools in order to achieve a software product that meets the desired quality, time,
and cost requirements. For managing these requirements and for demonstrating
that they actually have been achieved, analytical and empirical measures must
be applied [2] [1].

Experimental software engineering is a branch of software engineering that ad-
dresses problems and research questions of software development and improve-
ment through an experimental approach. It utilises systematically designed ex-
periments and other kinds of empirical studies in order to enhance available
knowledge about the software domain. ESE is built on the principle of con-
tinuous learning and reuse of experience, which is defined through the Quality
Improvement Paradigm / Experience Factory (QIP/EF).

6. PACKAGE 1. CHARACTERIZE

5. ANALYZE 2. SET GOALS

4. PERFORM 3. CHOOSE MODELS

Fig. 1. The Quality Improvement Paradigm

The QIP is a six-step proceeding for structuring software development and im-
provement activities (see Figure 1). It involves three overall phases: planning,
execution, and evaluation of the task. The planning phase is based on the ex-
plicit characterisation (QIP1) of the initial situation, the identification of the
goals to be achieved (QIP2), and the actual development of the plan (QIP3).
The plan then guides the systematic execution of the task (QIP4). The subse-
quent evaluation phase involves the analysis of the performed actions (QIP5) and
the packaging of the lessons learnt into reusable artifacts (QIP6). The evaluation
allows to learn for similar tasks in the future.

70 A. Birk, D. Surmann, and K.-D. Althoff

1 project organisation
. project organisation 1
project team activities:
1. characterise environment
2. set goals
3. choose models
\ 4 perform Droiect
software knowledge
: : knowledge feedback,
? derived from past projects acquisitic%n ¢ lessons learnt.
deliverables

experience

engineer

(or knowledge experience base
engineer) (or knowledge base)

experience factory

Fig. 2. The Experience Factory

The experience factory is a logical and/or physical organisation that supports
project developments by analysing and synthesising all kinds of experience, act-
ing as a repository for such experience, and supplying that experience to various
projects on demand. The experience factory complements the project organisa-
tion [2]. The experience factory is mainly responsible for conducting steps 5 and
6 of the QIP while steps 1 to 4 mainly concern the project organisation (see
Figure 2).

ESE has many relations to knowledge engineering and knowledge management.
KA from experienced software professionals is an important means for gaining
the knowledge and insight to answer ESE questions.

1.2 Knowledge Acquisition

Knowledge acquisition (KA) is the transfer and transformation of expertise from
some knowledge source to some explicit knowledge representation-usually de-
noted as knowledge base-that enables the effective use of the knowledge. This
definition is based on the one by Hayes-Roth et al. from 1983 [3]. It has been gen-
eralised slightly to meet the application of knowledge acquisition in experimental
software engineering as addressed in the remainder of this paper.

A KA method is an organised approach to knowledge acquisition. It involves a
defined process and guidelines for process execution. A knowledge acquisition
methodology defines and guides the design of KA methods for particular appli-
cation purposes. Section 4 suggests a KA methodology for experimental software
engineering. Knowledge elicitation (KEL) denotes the initial steps of knowledge
acquisition that identify or isolate and record the relevant expertise using one
or multiple KEL techniques. A KA method can involve a combination of KEL
techniques which is then called KEL strategy. These terms are used differently

Applications of Knowledge Acquisition in Experimental Software Engineering 71

by different authors. We have chosen our definitions to meet the specific termi-
nology needs of this paper.

Musen [4] lists several characteristics of knowledge acquisition that need to be
considered when applying KA methods:

— Knowledge acquisition is a process of joint model building. A model of ex-
pertise is built in co-operation between a domain expert (i.e., the knowledge
source) and a knowledge engineer.

— Much knowledge is tacit (i.e., it is not directly accessible). Appropriate KEL
techniques are needed to make it explicit.

— The results of knowledge acquisition depend on the degree to which the
knowledge engineer is familiar with (a) the domain of the knowledge to be
acquired, and (b) its later application.

— The results of knowledge acquisition depend on the formalism that is used
to represent the knowledge. Knowledge acquisition is most effective if knowl-
edge representation is epistemologically adequate (i.e., all relevant aspects
of expertise can be expressed) and usable (i.e., suits all later usage needs).

These characteristics of knowledge acquisition provide guidance for the design of
KA methods. For example, they imply that KA methods must assure that the
knowledge engineer becomes familiar with the application domain. In Section 4
a knowledge acquisition method is presented that reflects these characteristics.

1.3 Requirements on KA in ESE

Experimental software engineering puts specific requirements on knowledge ac-
quisition that are quite different from KA applications in other engineering sci-
ences or from the development of knowledge-based systems (KBS):

— For most KA applications in ESE, the required knowledge exists only im-
plicitly, codified, and informally. Hence, it can be quite difficult to access
the knowledge. This imposes high requirements on the validity of the KEL
techniques and strategies used.

— The results of KA in ESE are often the basis for further technical or man-
agerial activities. These activities depend very much on the reliability of KA
results. For this reason, the validity of KA methods and their results is an
important concern in ESE.

— ESE involves a wide variety of target knowledge representation formats for
KA, which can be highly specific to ESE. Many of these knowledge rep-
resentation (KR) formats are different from the traditional rule-, frame-,
or case-based formalisms involved in KBS. For this reason, the target KR
format becomes an important criterion to assess the appropriateness of a
candidate KEL technique.

— In addition, an ESE artefact (e.g., a design document) often involves multiple
different knowledge types (e.g., facts as well as rules and policies). Hence,
an appropriate KA method might require a combination of multiple KEL
techniques.

72 A. Birk, D. Surmann, and K.-D. Althoff

— In ESE, KA is not only useful for providing problem-solving support in
the form of knowledge-based systems. It can also provide the knowledge to
effectively perform technical and managerial tasks, and it can provide input
to corporate knowledge management systems and improvement programmes.

— Knowledge-based systems have not yet found their way to wide-spread use
in the software industry (cf. [5] [6]). To foster their further dissemination, a
gradual transition from current ESE practices via knowledge management
implementation to KBS is recommended. This is an additional challenge for
KA in ESE, asking for KA methods that adapt to specific needs of KM
applications.

— Systematic knowledge acquisition should be integrated into many ESE tasks.
As a consequence, KA methods should be applied also by non-knowledge en-
gineers. This requires a strong need for operational definitions of KA methods
and guidance for their application.

A KA methodology for ESE must take these requirements into consideration
and provide a well-organised approach to the selection of appropriate KEL tech-
niques. The KA methodology suggested in Section 4 reflects these requirements.

2 A Survey of KA Applications in ESE

Experimental software engineering involves a multitude of knowledge acquisition
tasks. They can differ in quite a variety of aspects such as involved knowledge
types, knowledge sources, knowledge users, modes of knowledge use, and target
knowledge representation. A good starting point to provide tailored and effective
methodological support to these knowledge acquisition tasks in ESE is to survey
these tasks systematically, and to characterise them appropriately.

This section presents such a survey and characterisation of KA applications in
experimental software engineering. It thus demonstrates the wide variety of KA-
related tasks, which has often not been recognised sufficiently by ESE. For the
field of knowledge acquisition, the survey provides a map of possible applications
for established KA approaches. The survey is not meant to be comprehensive
and complete. It was our intention to build on previous work in SE and to
complement it with a specific ESE perspective.

2.1 Literature Review

Applications of knowledge acquisition in software engineering have been described-
among others-by [6] [7] [8] [9]- A particular tradition in systematic KA can be
found in the field of requirements engineering (RE) (cf. [10] [11] [12] [13]).
Eriksson [7] lists three major application areas of knowledge acquisition in soft-
ware engineering: Initial feasibility studies, requirements specification, and the
identification of solution approaches for design and implementation problems.
He summarises that KA is a broad activity which may be useful at many stages
in the software development process. Some KA methods were already used in SE,
albeit often in a less explicit and systematic manner than in KBS development.

Applications of Knowledge Acquisition in Experimental Software Engineering 73

Grogono [6] addresses the mutual interrelations between expert systems and
software engineering. Thus, indirectly, he also covers the need for knowledge
acquisition in SE. The expert systems that he lists require the following kinds
of knowledge: Requirements specifications, expertise on design structures (i.e.,
products or artifacts), expertise on the design and implementation processes
(mainly in the form of rules or heuristics), as well as software process models
(i.e., procedure-like representations).

Briand et al. [8] describe a method for estimating software development effort.
It is a hybrid approach that combines acquisition of experiential knowledge with
empirical data from past projects. The acquired causal models allow for effort
predictions that are based on significantly less empirical data than would be
needed otherwise. Wilson and Hall [9] use construct elicitation to investigate the
perceptions of software quality that they found in a number of IT organisations.
The various analogies between knowledge engineering and requirements engi-
neering are surveyed and investigated by Angele and Studer [10] and by Shaw
and Gaines [11]. A recent publication by Weidenhaupt et al. [12] surveys and
investigates the application of various scenario techniques for the acquisition of
system requirements. Maiden and Ncube [13] describe an approach to the acqui-
sition of requirements for the selection of commercial off-the-shelf software that
involves multiple semi-structured interview techniques.

2.2 Survey Results

Most reports on KA applications related to software engineering either address
only some particular aspects (e.g., requirements elicitation or cost estimation)
or focus on software development tasks only. A broader ESE perspective with its
additional facets (e.g., quality, improvement, and knowledge management issues)
has not yet been presented so far. To gain such a broader perspective on KA
applications in experimental software engineering as a basis for our further work,
we have investigated multiple literature sources and interviewed SE experts.
The results are shown in Table 1. The table demonstrates the wide area of
applications of KA in ESE. Each application is characterised briefly.

Starting point of our investigation was a taxonomy of ESE tasks. It is listed
in the leftmost column of Table 1. The tasks are grouped into three categories:
Product engineering (i.e., the typical software development tasks), management
(e.g., project or quality management), and support (i.e., all activities that are
not directly related to the product development but that ease, facilitate, and
improve it). For each task, a set of knowledge items (i.e., artefacts or concepts)
was identified, which are usually gained within the related task by some kind
of knowledge acquisition activity. Each knowledge item is characterised using
its subject topic and the typical kinds of knowledge encoding (i.e., whether it
is contained in documents, available in the minds of humans, or present in the
form of processes and procedures).

Each set of knowledge items is supplied with information about the typical
knowledge sources (e.g., a SE role or a document), its knowledge users, and
the target knowledge representations in which it is documented and used once

74 A. Birk, D. Surmann, and K.-D. Althoff
Knowledge Items Knowledge |Knowledge K Target
nowledge
ESE Task Subject Topics Encoding Sources Users Represen-
tations
Product Engineering
Requirements Requirements, H,P,D U, C, M, SE S,G, U, F
Analysis Business Processes, SE, PD, S
Use Cases
Architecture Design [Reusable Artefacts, D, H PD, L, SE G,S,F,U
Detailed Design Templates, SE, S G,S,F,U
Implementation Patterns! F, G
Integration and Test Plans, D, H, P U, C, SE, SE F, G, U, S
Testing Test Cases QM, SP
Maintenance Programme D, H, P SE, S, PD SE F, G
Understanding
Software Acquisition [Requirements, D, PD, L, SE SE S, U, G
Third-Party Products
Management
Project Management [Time and Effort H, P, D PM, PD, L, |PM F,S, G
Estimates, SP
Schedules,
Staffing Plans
Quality Management |Quality Plans D, H, PD, PM, QM S, G
QM, SP, L
Risk Management Risk Mitigation Plans [H, P, D PM, PD, PM S
SP, L
Support
Configuration Configuration D, H, P PD, SE, SE, QM, F, G, S
Management Management Plans QM, SP PM
Documentation User Documentation D, H, P PD, SE, TW S, G
U, S
Process Modelling Process Models H, D, P SE, PM, QM, |SE, QM, F,G,S, U
PD, SP PM
Process Enactment |Processes, H, P, D SE, PM, QM, |SE, QM, S, G
Guidelines SP, PD PM
Process Automation?|Process Models, D, P, H PD, SP, SE, QM F, G, S
Configuration SE, PM,
Management Plans, QM
System Architecture,
Code?
Process Assessment |Various aspects of P, D, H SP, PD, PM, QM S, G, U
the software SE, PM,
engineering practices QM
Measurement Quality Goals, D, P, H PD, SP, PM, QM, F, G, S
Understanding and SE, PM, SE
Definition of Qualities, QM
Products, and Processes,
Expected Phenomena,
Measurement Plans,
Interpretations of
Observed Phenomena
Improvement Improvement Plans D, H, P PD, SE, PM, |QM, PM S, G
QM, SP

concepts relevant for setting-up process automation.

T Typical subjects of these knowledge types are architectures, data models, algorithms, and code.

Legend: These lists are sorted by relevance. Most relevant items appear first.
Knowledge Types (Encoding): D=Documents, H=Humans, P=Processes.
Knowledge Sources and Knowledge Users: U=User, C=Customer, M=Marketing, PM=Project
Management, QM=Quality Management, SE=Software Engineer, TW=Technical Writer,
S=Existing System, PD=Existing Project Documentation, L=Literature, SP=Software Process.
Target Knowledge Representation: G=Graphics, U=Unstructured and S=Structured or
Semi-Formal Natural Language, F=Formal Language.

2 Note: This involves process automation using CASE tools, and process support using SE environments.

These items are structure- and process-related knowledge about different software engineering artefacts or

Table 1. Overview of KA applications in ESE

Applications of Knowledge Acquisition in Experimental Software Engineering 75

it has been acquired. For each set of characteristics, the order in which they are
listed indicates an order of relevance.

2.3 Observations from the Survey

The survey and the characterisation of knowledge acquisition applications in
experimental software engineering provide an interesting perspective on the de-
tailed, specific KA requirements of ESE. Observations can be made that are
useful for selecting KEL techniques and for developing KA methods for appli-
cation in experimental software engineering. In the following, the most relevant
observations are summarised.

Product Knowledge vs. Process Knowledge. Two kinds of knowledge are
most important for the gross number of ESE tasks: Product knowledge and
process knowledge. Product knowledge addresses structure and other character-
istics of artefacts (e.g., system architecture or functionality). Process knowledge
deals with how ESE tasks should be performed (e.g., the development process,
policies, and guidelines), and how the tasks interact.

Dependency Chains between ESE Tasks. For product engineering and sup-
port tasks, especially, it is typical that there are chains of dependent tasks: Design
tasks depend on requirements analysis, and implementation depends on design.
Likewise, process assessment and measurement depend on process modelling,
and improvement depends on process assessment and measurement.

These dependency chains have implications on knowledge encoding: Knowledge
that is needed to accomplish the tasks in the chain can mainly be acquired from
human experts, especially the first tasks. During KA such knowledge is repre-
sented explicitly, so that the subsequent tasks can widely rely on documented
knowledge.

High Variety of Knowledge Sources. The lists of knowledge sources for the
different ESE tasks can be quite long. The knowledge sources of a certain task can
be quite different. This implies that the KEL techniques used to gain the required
knowledge must also be quite different, because different groups of persons (e.g.,
software engineers vs. customers) can show very different communication styles
and terminologies.

Support Tasks Have Many Different Knowledge Users. By definition
of the taxonomy that is used to structure the ESE tasks, the knowledge users
of product engineering tasks are software engineers, and those of management
tasks are project or quality managers. In contrast, each support task can have
multiple knowledge users, and the sets of users for two support tasks can be
different.

The survey of KA applications in experimental software engineering and their
characterisations provide a starting point for the development of customised
KA methods that can be used to accomplish these tasks. The two following
sections suggest an approach by which the development of such methods can be
supported.

76 A. Birk, D. Surmann, and K.-D. Althoff

3 An Experience Base of Knowledge Elicitation
Techniques

Software engineering can benefit from the adoption of advanced KA practices.
Therefore, a body of knowledge about KA needs to be collected, made accessible,
and disseminated to software engineering professionals. Experience about KEL
techniques is of particular interest to experimental software engineering, because
these are the basic elements needed to develop customised KA methods for the
various ESE tasks.

This section presents the repository (or experience base) of KEL techniques
that has been built at Fraunhofer IESE. We describe the structure of the chosen
knowledge representation and outline how the knowledge was collected and how
it is used.

To support systematic KEL practices in ESE, the following information needs
to be provided to software engineering personnel:

— Concise and operational definitions of the KEL techniques.

— Information about the application context of the KEL techniques (i.e., in
which situations it can be applied, and in which situations it is inappropri-
ate).

— Traceability information and literature references that allow to access further
information about the KEL techniques.

The representation structure we have chosen to describe experiences about KEL
techniques (in the following denoted as experience packages) meets these require-
ments. Table 2 shows an example experience package. It has the form of a table
with pre-defined information blocks. The upper part of the table contains the
definition and classification of the technique as well as references and traceabil-
ity information (i.e., its name, and slots for sources, classification, relationships,
description, and characteristics). The lower part contains information relevant
to selecting and using the technique (i.e., its application context). Its slots are:
Prerequisites, advantages, disadvantages, risks, and notes.

Each entry that has been acquired from some literature source is supplied with a
reference to this source. Information about application context is classified using
keywords at the beginning of the statement. The classes indicate aspects of
knowledge elicitation to which the statements refer. For instance, KTYP stands
for knowledge types and marks statements like ”Is appropriate for eliciting facts,
conceptual structure, causal knowledge, and justification” in the advantages slot
of Table 2. ELIC and EXPT mark statements that refer to the roles of elicitor
and expert, respectively.

The experience base currently contains about 30 experience packages. Focus
is put on KEL techniques for elicitation from individual human experts in
interview-like sessions. Examples are semi-structured interview, retrospective
case description, list-related tasks, teachback, construct elicitation using reper-
tory grids, and laddering.

The information contained in the experience packages has been gained from
multiple literature sources that survey KEL techniques or report on experiences

Applications of Knowledge Acquisition in Experimental Software Engineering 77

from using some of them (cf. [14] [15] [16] [17]). The raw information that has
been found in these texts has been categorised and structured gradually to gain
the experience packages. However, once the experience package structure had
been established, it was quite straight-forward to add new KEL techniques or to
extend the information about already catalogued ones.

Semi-Structured Interview

Sources Cordingly [14], Cooke [15], Welbank [16]

Classification |Interview/Semi-structured Interviews [14]
Interviews/Structured Interviews [15]

Relationships |Kind of Interview

Description The interviewer has a list of prepared questions. But the order in
which they are covered and the words used to express them may
vary from interview to interview.
Many of the questions are open questions.
[14], [15]

Characteristics|e Puts more demands on the interviewer than do fully structured
and pre-determined interviews. [14]

Prerequisites |e Preparation of generic questions and coarse outline of interview
structure.
e Some basic familiarity of the elicitor with the domain and the
tasks for which knowledge needs to be acquired.

Advantages CNTS Structure provides more systematic and complete coverage
of the domain than unstructured interviews. [15]
STYL EXPT ELIC Structure tends to be more comfortable for
both expert and elicitor. [15]
PERF STYL The interview can flow smoothly. [14]
CNTS The interviewee’s associations between topics can be iden-
tified, because he/she has the freedom to follow spontaneous as-
sociations during the interview. [14]
KTYP Is appropriate for eliciting facts, conceptual structure,
causal knowledge, and justification. [16]

Disadvantages |PROC ELIC Requires more preparation time and domain knowl-
edge than unstructured interview. [15]
KTYP Is inappropriate for eliciting expert’s strategy. [16]

Risks KTYP Can be inappropriate when used to elicit rules, weight of
evidence, and context of rules. [16]

Notes e Answers to one question may arise as part of answers in another
question. [14]
e The wording of questions can be adopted to the vocabulary of
the interviewee. [14]

Table 2. Example experience package for a KEL technique.

The experience packages can be used by software engineering professionals in
multiple ways to gain an overview over KEL techniques, and to select some that
meet the requirements of the tasks they have to accomplish. The structure of

78 A. Birk, D. Surmann, and K.-D. Althoff

the experience packages and the keywords that classify each statement allow
to search or browse the information for various aspects or subject topics. A
KA method that illustrates very well how individual KEL techniques can be
integrated in a systematic manner has been presented by Briand et al. [8].

The experience base is extended and updated gradually. Currently, it is provided
as versioned electronic documents with some basic hypertext functionality to ac-
cess structure elements or indexed parts of experience packages. Our future plans
are to transfer them into HTML format and offer them as an on-line experience
base through the intranet. In addition, we are about to implement the experience
base in a prototype knowledge management system that is specialised toward
decision support for the selection of SE technologies during project planning.
This knowledge management system called KONTEXT ? [18] [19] supports the
entire life-cycle of Technology Ezperience Packages (TEPs), involving (1) knowl-
edge acquisition and modelling of TEPs, (2) decision support for the selection
of software engineering technologies, and (3) empirical evaluation of technology
application and update of TEPs. KONTEXT is a research prototype that is
being applied for internal uses at Fraunhofer IESE.

Currently, works are under way to build two variants of KONTEXT: One is for
offering Technology Ezperience Bases and the TEPs they contain over the in-
ternet. The other implements the core functions and data model of KONTEXT
into Fraunhofer IESE’s corporate information network infrastructure. As soon
as these works will be completed, the experience base on KEL techniques can be
offered as part of a comprehensive knowledge management system that—among
other features— allows for knowledge annotation and continuous knowledge evo-
lution of KEL experience.

The knowledge representation of KONTEXT in the Fraunhofer IESE corporate
information network deploys an object-oriented formalism and associated case-
based knowledge representation. Based on a collaboration with a commercial
case-based reasoning (CBR) tool provider, a CBR tool has been developed for
supporting the retrieval of experience packages [20] [21] [22]. For a public case
base a first implementation of the CBR tool has already been validated empir-
ically [23]°. Further experimental validation of KONTEXT is currently being
prepared.

4 A KA methodology for ESE

The further dissemination and implementation of systematic knowledge acqui-
sition practices in experimental software engineering requires an appropriate
methodological framework. This section suggests a methodology for guiding the
development and application of customised KA methods in ESE. The method-
ology starts with a characterisation of KA tasks (cf. Table 1) as starting point
and selects appropriate KEL techniques from the experience base (cf. Section

2 KnOuwledge maNagement base on the application conTEXt of software engineering
Technologies.
3 http://demolab.iese.fhg.de:8080/

Applications of Knowledge Acquisition in Experimental Software Engineering 79

3). It thus integrates the two other elements of our approach that have been
introduced in the previous sections.

Table 3 depicts the structure of the methodology. It involves four phases and
twelve steps. The initial phase is a pre-study for gaining background information
and requirements on design and application of the KA method. The second
phase, KEL strategy development, is the core part of the methodology. It defines
the KEL strategy. The two subsequent phases are knowledge elicitation and
modelling. Hence they address the application of the KA method.

The KA methodology is described in detail in [24]. The following sub-sections
outline its overall structure.

Phase Step / Sub-Step

Pre-Study Conduct pre-study on subject topic
Conduct pre-study on usage processes
Identify knowledge representation

KEL Strategy Identify requirements and candidate KEL techniques
Development e Characterise application situation

e Identify applicable KEL technique

e Identify further pre-study needs

Define KEL strategy

e Select KEL techniques

o Integrate KEL techniques

e Document KEL strategy

Develop support tools and validate KEL strategy
o Identify requirements on KEL execution
e Develop support tools

e Validate KEL strategy and support tools
Knowledge-Elicitation |Plan knowledge elicitation

Prepare knowledge elicitation

Conduct knowledge elicitation
Knowledge-Modelling |Construct knowledge model

Validate knowledge model

Release knowledge model

Table 3. Overview of the KA methodology.

4.1 Pre-Study

The first phase of the methodology aim at making the knowledge engineer famil-
iar with the subject topic and the usage processes of the knowledge models to be
acquired. Pre-study of the subject topic involves an investigation of relevant and
available knowledge sources. Based on this information, a suitable knowledge
representation formalism is determined or designed from scratch.

80 A. Birk, D. Surmann, and K.-D. Althoff

4.2 KEL Strategy Development

The core phase of the methodology is the actual design of the KEL strategy.
It starts with identification of requirements and candidate KEL techniques. If
further pre-study is needed, exploratory knowledge elicitation activities should
be planned explicitly. The identification of appropriate techniques can be sup-
ported by an experience base of KEL techniques (cf. Section 3). The individual
techniques identified must then be integrated, and the method must be defined.
Finally, support tools for knowledge elicitation must be provided, and the KEL
strategy and its support tools must be validated.

Explicit and operational definition of KA methods is recommended, because it
eases the dissemination and re-use of the methods. It also facilitates the plan-
ning of KA activities in the context of software projects, which have often tight
schedules. Furthermore, in experimental software engineering the KA methods
might be applied by persons with little experience in knowledge acquisition. So
operational methods can provide beneficial guidance and support.

4.3 Knowledge Elicitation

The actual execution of a customised KA method starts with knowledge elici-
tation. Knowledge elicitation activities must be planned in accordance with the
schedule of the software projects in which the experts are working, and by which
the knowledge will be used later. Preparation activities involve customisation of
questionnaires and providing the technical infrastructure for knowledge elicita-
tion. During knowledge elicitation sessions, notes or records need to be taken.
Possibly some intermediate or mediating knowledge model is being developed.

4.4 Knowledge Modelling

The knowledge modelling phase translates the KEL results into an appropriate
knowledge model. The model needs to be validated thoroughly, because many
ESE tasks may build on it. Finally, the validated knowledge model is released
and disseminated. In some cases release and dissemination of KA results can
become a major task. For instance, the dissemination of acquired good design
practices may require an entire training programme.

4.5 Example KA Method

The methodology can be illustrated by a method for software development effort
estimation called COBRA (COst estimation, Benchmarking, and Risk Assess-
ment) [8]. COBRA applies several KEL techniques in an integrated and very
systematic way. It has an operational definition and is based on explicit ratio-
nales. COBRA has been applied successfully in industrial environments. Thus it
supports the appropriateness and validity of the KA methodology. Details about
COBRA and its relation to the presented KA methodology are addressed in [24].

Applications of Knowledge Acquisition in Experimental Software Engineering 81

4.6 Validation of the KA Methodology

The KA methodology for ESE needs to be validated further by developing cus-
tomised KA methods for various ESE applications. Besides COBRA (see above)
Fraunhofer TESE has multiple projects ongoing in which KA methods for spe-
cialised ESE tasks are being developed. One is the elicitation of descriptive soft-
ware process models [25]. Others are the acquisition of application prerequisites
for SE technologies [26] [18] and the validation of software process improvement
methodologies [27] [28]. Past experience supports the appropriateness of the
methodology. A detailed validation study is currently ongoing (cf. [27]). Future
validation results will be reported in the web [29].

4.7 Tool Support for KA in ESE

The application of a KA methodology for ESE raises the question for possible
tool support. In general, whether appropriate tooling is readily available depends
very much on the specific kind of KA task to be supported (cf. Table 1). For
some tasks SE-specific tools are available (e.g., for requirements engineering
and process assessment). For other tasks tools from knowledge engineering can
be adapted to ESE (cf. [30]). However, for the majority of KA applications
in ESE, effective tool support is still rare. This is probably due to the widely
lacking formalisation of knowledge management and problem solving processes
in ESE. We expect that the KA methodology for ESE presented above will allow
for further formalisation and tool support of knowledge acquisition in ESE (cf.
KONTEXT [18]).

5 Conclusions and Future Work

Many ESE tasks involve some kind of KA activity. These activities can be ex-
pected to become more effective, if advanced KA methods will be used in a
systematic manner. Therefore KA methods need to be developed that are cus-
tomised to the specific requirements of the respective ESE tasks. In general, the
dissemination of KA methods in ESE should be fostered.

We have provided a survey of KA applications in ESE. It shows that these
applications can have very different characteristics and that they impose quite
different requirements on the KA method to be used. For this reason, a method-
ology has been presented for the development of customised KA methods. The
design of such methods is facilitated by an experience base of KEL techniques.
The experience base represents an ESE-specific knowledge management appli-
cation. It is accessible for consultants and researchers within Fraunhofer IESE.
It supports the dissemination of KEL techniques in experimental software engi-
neering and the accumulation of experiences about their use.

The approach presented in this paper has been and is being applied at Fraun-
hofer IESE. Main focus of our work is the acquisition of experiential knowledge
in experimental software engineering. Example applications are the acquisition

82 A. Birk, D. Surmann, and K.-D. Althoff

of product/process dependency models [28], lessons learnt about software en-
gineering processes [31], and application prerequisites for SE technologies [26].
Related work addresses the elicitation of software process models [25] as well as
cost estimation, benchmarking, and risk assessment of software projects [8].
Future work will address the extension of the experience base of KEL techniques.
Additional KEL technologies and experience statements will be added. We have
also started to implement the experience base using a knowledge management
tool infrastructure. This will allow for case-based knowledge retrieval and inter-
active decision support for selecting KEL techniques. We are also continuing to
develop further our suit of customised KA methods (cf. [24]). Additional infor-
mation about these activities is provided in [29].

Acknowledgements

We would like to thank Ulrike Becker-Kornstaedt, Frank Bomarius, Lionel Briand,
Khaled El Emam, Wolfgang Miiller, and Barbara Paech for their valuable feed-
back on earlier versions of this paper. Sonnhild Namingha has helped us very
much to improve our use of the English language.

References

1. H. Dieter Rombach, Victor R. Basili, and Richard W. Selby, editors. Ezperimental
Software Engineering Issues: A critical assessment and future directions. Lecture
Notes in Computer Science Nr. 706, Springer—Verlag, 1992.

2. Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experience Factory.
In John J. Marciniak, editor, Encyclopedia of Software Engineering, volume 1,
pages 469-476. John Wiley & Sons, 1994.

3. Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat, editors. Build-
ing Ezpert Systems. Addison-Wesley, 1983.

4. Mark A. Musen. An overview of knowledge acquisition. In David et al. [32], pages
405-427.

5. Robert L. Glass. Expert systems: Failure or success? Journal of Systems and
Software, 43(1):1-2, October 1998.

6. Peter Grogono. Software engineering for expert systems. In Jay Liebowitz, editor,
The Handbook of Applied Ezpert Systems, pages 25—-1-25-15. CRC Press, 1998.

7. Henrik Eriksson. A survey of knowledge acquisition techniques and tools and their
relationship to software engineering. Journal of Systems and Software, (19):97-107,
1992.

8. Lionel C. Briand, Khaled El Emam, and Frank Bomarius. COBRA: A hybrid
method for software cost estimation, benchmarking, and risk assessment. In Pro-
ceedings of the Twentieth International Conference on Software Engineering, pages
390-399, Kyoto, Japan, April 1998. IEEE Computer Society Press.

9. David N. Wilson and Tracy Hall. Perceptions of software quality: A pilot study.
Software Quality Journal, 7(1):67-75, 1998.

10. J. Angele and R. Studer. Requirements specification and model-based knowledge-
engineering. Softwaretechnik-Trends: Mitteilungen der GI-Fachgruppen ‘Software-
Engineering’ und ‘Requirements-Engineering’, 15(3):4-16, October 1995.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Applications of Knowledge Acquisition in Experimental Software Engineering 83

Midred L. G. Shaw and Brian R. Gaines. Requirements acquisition. IEEE Software
Engineering Journal, pages 149-165, May 1996.

Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, and Peter Haumer. Scenarios in
system development: Current practice. IEEE Software, March/April 1998.

Neil A. Maiden and Cornelius Ncube. Acquiring COTS Software Selection Re-
quirements. IEEE Software, 15(2):46-56, March 1998.

Elizabeth S. Cordingly. Knowledge elicitation techniques for knowledge-based sys-
tems. In Dan Diaper, editor, Knowledge Elicitation: Principles, Techniques and
Applications, chapter 3, pages 89-176. Ellis Horwood, 1989.

Nancy J. Cooke. Varieties of knowledge elicitation techniques. International Jour-
nal of Human-Computer Studies, 41(6):801-849, 1994.

M. Welbank. Knowledge acquisition: a survey and british telecom experience. In
T. Addis, J. Boose, and B. Gaines, editors, Proceedings of the First European Work-
shop on Knowledge Acquisition for Knowledge Based Systems. Reading University,
1987.

R.R. Hoffman, N.R. Shadbolt, M.A. Burton, and G. Klein. Eliciting knowledge
from experts: A methodological analysis. Organizational Behaviour and Human
Decision Processes, 62(2):129-158, 1995.

Andreas Birk and Felix Kroschel. A knowledge management lifecycle for experi-
ence packages on software engineering technologies. Technical Report IESE-Report
No. 007.99/E, Fraunhofer Institute for Experimental Software Engineering, Kaiser-
slautern, Germany, 1999.

Felix Kroschel. A system for knowledge management of best software engineering
practice. Master’s thesis, University of Kaiserslautern, Kaiserslautern, Germany,
November 1998.

Klaus-Dieter Althoff, Frank Bomarius, and Carsten Tautz. Using case-based rea-
soning technology to build learning organizations. In Proceedings of the the Work-
shop on Organizational Memories at the European Conference on Artificial Intel-
ligence ’98, Brighton, England, August 1998.

Klaus-Dieter Althoff, Andreas Birk, Christiane Gresse von Wangenheim, and
Carsten Tautz. Case-based reasoning for experimental software engineering. In
Mario Lenz, Brigitte Bartsch-Sporl, Hans-Dieter Burkhard, and Stefan Wess, edi-
tors, Case-Based Reasoning Technology - From Foundations to Applications, num-
ber 1400, chapter 9, pages 235-254. Springer-Verlag, Berlin, Germany, 1998.
Christiane Gresse von Wangenheim, Alexandre Moraes Ramos, Klaus-Dieter Al-
thoff, Ricardo M. Barcia, Rosina Weber, and Alejandro Martins. Case-based rea-
soning approach to reuse of experiential knowledge in software measurement pro-
grams. In Lothar Gierl, editor, Proceedings of the Sizth German Workshop on
Case-Based Reasoning, Berlin, Germany, 1998.

Markus Nick and Carsten Tautz. Practical evaluation of an organizational mem-
ory using the goal-question-metric technique. In Proceedings of the Workshop
on Knowledge Management, Organizational Memory and Knowledge Reuse during
Exzpert Systems ’99 (XPS-99), Wiirzburg, Germany, March 1999.

Andreas Birk. A knowledge acquisition methodology for use in experimental soft-
ware engineering. Technical Report IESE-Report No. 062.98/E, Fraunhofer Insti-
tute for Experimental Software Engineering, Kaiserslautern (Germany), 1998.
Ulrike Becker, Dirk Hamann, and Martin Verlage. Descriptive Modeling of Software
Processes. In Proceedings of the Third Conference on Software Process Improve-
ment (SPI ’97), Bargelona, Spain, December 1997.

84

26.

27.

28.

29.

30.

31.

32.

A. Birk, D. Surmann, and K.-D. Althoff

Andreas Birk. Modelling the application domains of software engineering tech-
nologies. In Proceedings of the Twelfth IEEE International Automated Software
Engineering Conference. IEEE Computer Society Press, 1997.

Andreas Birk, Janne Jarvinen, and Rini van Solingen. A validation approach
for product-focused process improvement. Technical Report IESE-Report No.
005.99/E, Fraunhofer Institute for Experimental Software Engineering, Kaiser-
slautern, Germany, 1999.

PROFES. ESPRIT project 23239 (Product-FOcused improvement of Embedded
Software processes). http://www.ele.vtt.fi/profes/.

AXIS. Acquisition of Experiential Knowledge in Software Engineering.
http://www.iese.thg.de/axis.html.

Barbara Dellen, Frank Maurer, Jiirgen Miinch, and Martin Verlage. Enriching
software process support by knowledge-based techniques. International Journal of
Software Engineering & Knowledge Engineering, 7(2):185-215, 1997.

Andreas Birk and Carsten Tautz. Knowledge management of software engineering
lessons learned. In Proceedings of the Tenth Conference on Software Engineering
and Knowledge Engineering, San Francisco Bay, CA, USA, June 1998. Knowledge
Systems Institute, Skokie, Illinois, USA.

Jean-Marc David, Jean-Paul Krivine, and Reid Simmons, editors. Second Gener-
ation Ezpert Systems. Springer, 1993.

Acquiring and Structuring Web Content with
Knowledge Level Models

Louise Crow & Nigel Shadbolt

Artificial Intelligence Group,
Department of Psychology,
University of Nottingham,

University Park, Nottingham

NG7 2RD
U.K.
+44 (0) 115 9515280
{Irc, nrs} @psychology.nottingham.ac.uk

Abstract. Increasingly diverse and useful information repositories are being
made available over the World Wide Web (WWW). However, information
retrieved from the Web is often of limited use for problem solving because it
lacks task-relevance, structure and context. This research draws on software
agency as a medium through which model-driven knowledge engineering
techniques can be applied to the WWW. The IMPS (Internet-based Multi-
agent Problem Solving) architecture described here involves software agents
that can conduct structured on-line knowledge acquisition using distributed
knowledge sources. Agent-generated domain ontologies are used to guide a
flexible system of autonomous agents arranged in a server architecture.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 85-102, 1999.
© Springer-Verlag Berlin Heidelberg 1999

86 L. Crow and N. Shadbolt

1 Introduction

Much useful information is available over global electronic networks, particularly
the World Wide Web (Web). The Web could be a valuable resource for knowledge
engineers, supplying knowledge covering many subject areas. However, there is
often simply foo much information available to each Web user. The lower bound of
the size of the “indexable Web” was estimated at 320 million pages in December
1997 [1]. This may be a serious underestimate as (among other things) it excludes
dynamic on-the-fly information serving over the Web. This exclusion is significant
because increasingly, the Web is being used as a gateway for dynamic information
transfer rather than simple delivery of static HTML pages.

There are other factors to be considered when using information from the Web.
The use of multiple formats and the distributed nature of the Web makes the
integration of this information a non-trivial task. Firstly each piece of information
must be retrieved from its location using network protocols, and re-represented in a
common format. Secondly, the pieces of information must be integrated with respect
to their meaning. This poses problems as information from different sources may
have been created from different, possibly contradictory, perspectives on the subject
concerned.

Knowledge can be thought of as information applied to a problem in order to
reach a goal. The Web holds information on a vast number of domains. However, it
does not present convenient packages of knowledge indexed by the kind of problems
they could be applied to. Within each domain represented on the Web, information
is available which could be used for solving many possible problems.

This paper presents the IMPS (Internet-based Multi-agent Problem Solving)
architecture. IMPS is an agent-based architecture driven by knowledge level models.
It is designed to facilitate the retrieval and restructuring of information from the
Web. Our purpose is to use the resulting knowledge as problem solving knowledge
suitable for use in an knowledge based system. IMPS uses an approach which
extracts and transforms information based on two criteria. The approach considers
firstly the domain (e.g. geology, respiratory medicine, electronic engineering), and
secondly the kind of task in which the information is to be used (e.g. classification,
diagnosis, scheduling). In effect, this approach describes on-line knowledge
acquisition using knowledge level models.

The structure of the rest of this paper will be as follows: We will describe how
knowledge level models such as problem solving methods and ontologies may be
useful in extracting information from the Web. Next we will present IMPS as an
architecture and a prototype. We will discuss the scalability of the architecture and
evaluation of the prototype. We will end with some conclusions.

Acquiring and Structuring Web Content with Knowledge Level Models 87

2 Knowledge Level Models

Different kinds of knowledge model generally represent a particular perspective on
the knowledge level. Van de Velde [2] points out that in practical terms, knowledge
can be divided into relatively stable structures.

“A KL-model is a structure that is imposed on knowledge when it is being
put to use in a class of problem situations.”

The common feature of this class of problem situations may be that they are all in
the same domain. In this case, the model imposed may be described as a domain
model. This model would describe features of the domain and could be useful in
various tasks within the domain.

Alternatively, the common feature of the class of problem situations might be that
they share a common task structure, although they appear in different domains. In
this case, the knowledge level model is a task model. There may be more than one
way to solve problems which share a task model. For instance, there are many
problem solving methods for carrying out classification tasks.

A full knowledge level model for a task would bring together the task model,
domain model and problem solving method into a coherent model which is
sufficient to solve the task. If this is the case, one may ask “Why use the separate
models in the first place?”. One of the reasons that these different knowledge
models are used is to guide knowledge acquisition. If a new domain is being
tackled, a task model may impose a structure on knowledge that can guide
acquisition, even though a full domain model has not yet been formed.

Another reason for using the separate models is the potential for knowledge
reuse. Full knowledge level models will rarely be reused as it is unlikely that
knowledge engineers will encounter exactly the same problem again. However,
domain models, task models and problem solving methods all have the potential to
be reused in problems which are similar in domain (in the case of domain models),
or task (in the case of task models and problem solving methods).

2.1 Problem Solving Methods

Reusable problem-solving methods (PSMs) focus on the idea that certain kinds of
common task can be tackled by using the same problem-solving behaviour (e.g.
generate and test a set of hypotheses), regardless of the domain in which they
appear. An abstract model of this behaviour is a problem solving method. This
method relates the task and domain models together so that goals can be
accomplished.

The separation of a problem solving method from domain knowledge is a feature
of various well known knowledge acquisition methodologies [3] [4] [5] [6]. What
these approaches have in common is the use of a finite library of domain
independent problem solving methods, which may need some tuning to suit the
domain of application.

Some methods, such as ‘generate and test’ or ‘heuristic search’ are so weak in
their assumptions of domain knowledge that they can be applied to a wide range of

88 L. Crow and N. Shadbolt

tasks with little fine-tuning. However, these weak methods tend not to be very
efficient. Stronger, more efficient methods have more requirements in terms of the
type and structure of domain knowledge and are therefore less widely applicable [7].
Figure 1 shows a typical domain knowledge schema for classification.

class of object
type 1
has attribute
2+ 1+
object attribute

value: UNIVERSAL

class | g requires

class

constraint

Fig. 1. Typical domain-knowledge schema for classification
tasks [8]

Additionally, problem solving methods are usually specified not as a homogenous
whole, but as a series of components or inference steps. Each of these components
describes a relatively independent step taken in the problem solving method. Each
oval in Figure 2 represents an inference step taken in the pruning classification
method. There is often some flexibility regarding the order these steps are taken in.

Methods with larger grainsize — fewer and larger components — are less reusable
and require more tuning for new uses. Therefore the approach is moving towards a
smaller grainsize, with finer-grained problem-solving strategies which can be
configured together to form a knowledge based system [9] [10].

attribute
(+ 1\
generate obtain
(. J
@ feature
truth
value

Fig. 2. Inference structure for the pruning classification
method [8]

Acquiring and Structuring Web Content with Knowledge Level Models 89

2.2 Ontologies

As we have discussed, it is the conjunction of the domain and task models with
the problem solving method that allows a knowledge based system to achieve goals.
The idea of a library of domain independent problem solving components, such as
task models and problem solving methods implies the availability of domain models
to instantiate these components and turn them into knowledge based systems.

Domain models can also be known as domain ontologies. It has been argued [11]
that explicit ontologies can be used to underpin the knowledge engineering process.
However, the concept ‘domain ontology’ is used ambiguously in the knowledge
engineering community [12]. It can mean:

“...the particular subject matter of interest in some context...The nature and
scope of a domain are determined by what is of interest and the context. The
context includes the purpose for delimiting a subject area.”

An alternative perspective (also taken from [12]) sees the ontology covering

“the particular subject matter of interest in some context considered
separately from the problems or tasks that may arise relevant to the subject.”

According to the first definition, an ontology can be task dependent — so a
domain ontology might only contain concepts and relationships relevant to the
particular problem solving method it was used with. An example of this might be an
ontology of rocks to be used in a simple classification task. This could contain the
mineral properties of different types of rock necessary for identifying them, but
would not necessarily contain information about the causal processes that
contributed to rock formation. These causal concepts would be relevant to a
different problem solving method in which some causal model of process was used.

The second conceptualization proposes that a domain ontology should be
constructed with no reference to the kind of tasks that the knowledge engineer
would be hoping to tackle with it. This kind of domain ontology in the field of
geology would contain all the information available about rocks. It has been
suggested that a library of such task-independent domain ontologies would
complement the existing libraries of task models and problem solving methods.

We have discussed how problem solving methods can make assumptions about
the nature and structure of the domain knowledge which can be used with them.
Therefore, if a domain ontology is not oriented towards the specific task to be
carried out in the domain, there may have to be extensive modification of the
information in the domain ontology, or ‘mapping’, to allow it (and subsequent
knowledge acquisition based on the ontology) to be fitted into the constraints of the
problem solving model.

2.3 Mapping
Significant obstacles would need to be overcome in the creation of a comprehensive

library [11] of domain ontologies. In order to provide usable ontologies for a
significant range of domain areas, the library itself would have to be huge. In order

90 L. Crow and N. Shadbolt

to make a system useful in areas not covered by the library, some method for
supplying ontologies to 'cover the gaps' would be required.

Nevertheless, knowledge based system metatools have appeared [13] [14] which
store reusable components in libraries and configure them according to the
requirements of each application. The advantages of an explicit mapping step
between knowledge level models are expressed in terms of reuse [15]. The idea is
that in order to allow reuse of methods and knowledge bases, knowledge engineers
must isolate, as much as possible, method knowledge from domain knowledge.
When an application is being constructed, the methods and domains must be
connected by defining declarative mapping relations between them. Ideally, the end
result is a high payoff in terms of saved effort.

However, the instantiation of mapping methods is part of the overhead cost for
reuse. This cost must include all the work needed to find, understand, and adapt pre-
existing knowledge for reuse. Therefore, unless the mapping relations defined are
simple these overheads could outweigh the benefits completely.

One problem we have already mentioned for knowledge reuse with this method is
that representational choices in encoding domain knowledge depend on the
particular problem solving method being used. So the mapping step could involve
re-representing a domain ontology entirely. This would involve a significant effort.

Uschold et. al [16] point out that there are still few examples of existing ontology
reuse in the literature. From their own experiences of reusing an ontology in the
engineering domain, they found translation from one representation to another a
significant problem, stating that fully automatic translators are “unlikely to be
forthcoming in the foreseeable future”. Although they were ultimately successful
and cautiously optimistic about reuse of ontologies, it must be recognised that they
started with a high quality ontology. We are still far from the situation where such
high quality ontologies describe a significant proportion of human knowledge.

There are other problems with the reuse of existing ontologies. Unlike PSMs and
task models, domain ontologies are not abstract. Usually they represent the ‘state of
the art’ in some specialist branch of human expertise. Although obsolescence is
more of a problem with instantiated knowledge bases, domain conceptualisations
also change as disciplines advance, and ontologies will need updating. Stable
ontologies do occur in some fields through standardisation efforts and/or years of
conceptual development (e.g. the Periodic Table in the physical sciences). It may be
the case that such an ontology is sufficient for new applications. Alternatively, the
problems being tackled may require some modifications or additions to existing
representations. The specialist nature of the domain ontologies used in knowledge-
based systems makes it less likely that an existing ontology will capture all the
knowledge needed for a new application.

These problems may indicate that an alternative to the idea of ontology libraries
might be appropriate. We argue that mapping will always be a significant hidden
cost in ontology reuse and is very far from being automated. Our hypothesis is that
more effective use and reuse will be obtained from a system that constructs
ontologies at runtime from some set of source material, fitting the ontologies to the
requirements of the problem solving method being used. Such an approach is more
adequate in dealing with a changing information environment, and reflects a move
towards “living ontologies” [17] whose development is integrated with that of the
system they are to be used in. A system which can integrate and use knowledge

Acquiring and Structuring Web Content with Knowledge Level Models 91

from different sources to construct a domain-specific, task-specific ontology could
be used both to create new ontologies for domains, and also to update existing
ontologies, or adapt ontologies created for different tasks.

Although high quality specialist ontologies may not be available, the availability
of high level ontologies on the Internet is increasing. The idea of generating domain
ontologies automatically from high-level ontologies was explored in the SENSUS
project [18]. This involved the use of a broad coverage general ontology to develop
a specialized, domain specific ontology semi-automatically. Systems such as the
Generalized Upper Model [19], the ‘upper CYC® ontology’ [20], Ontolingua [21]
and WordNet [22] are knowledge structures which provide a framework which
could organize all of the concepts we use to describe the world, aiming to cover
every possible subject area with at least a low level of detail. These ontologies may
be used to as a ‘bootstrapping’ method to bridge the gap between “common sense”
knowledge and domain specific knowledge which can be obtained from specialist
sources by providing a general high-level structure in which to situate domain
specific knowledge. Existing high-quality high-level ontologies within a domain
could also play this role.

The general ontology we use is the WordNet semantically organized lexical
database [23] which contains approx. 57,000 noun word forms organized into
around 48,800 word meanings (synsets). Several studies have used WordNet in the
role of domain independent ontology. Burg and van de Riet [24] regard WordNet as
a rich source of conceptual models.

“We see the lexicon as the central repository of all terminology and related
linguistic elements that we need to describe communication in and about the
world we live in. As such, it is much more than a list of terms. The lexicon
contains the concepts that make up our communications, and it defines the
relationships between these concepts.”

Additionally, a domain specific ontology of 5200 terms has been constructed and
linked to WordNet [25]. The resulting composite ontology was used to generate
semantic lexical representations of domain specific and domain independent
concepts [26]. These representations were used in a concept-based full text retrieval
system. O'Sullivan, McElligott and Sutcliffe [25] also report a psychometric study in
which the results produced by this method on a lexicon of computer terms were
comparable with judgements regarding the same terms which were made by people.

3 The IMPS Architecture

Having outlined the theoretical roots of the IMPS architecture in the knowledge
engineering field, this section will describe the architecture in specific terms. We
will trace the ideas introduced earlier to their software implementations. IMPS is
made up of agent programs. A popular Internet agent architecture is one in which
the agent’s behaviour is informed by some kind of user model (e.g. [27]).

In IMPS, the model used to guide information retrieval is a task model rather than
a user model. The profile maintained describes the requirements of a particular task
type (selected by the user) in terms of domain information. Thus an agent primed

92 L. Crow and N. Shadbolt

with a model of classification will be highly ‘interested’ in information about object
classes and properties. For a fuller discussion of the use of agency in IMPS, see [28].
While the IMPS agents are independent, they cooperate at a high level to extract
information from Internet sources. They reformulate this information so that it can
be used in the kind of problem solving that is typically seen in knowledge based
systems. To do this, the agents act together in a server architecture. The architecture
will be described in two sections, the first detailing the internal structure and
function common to all the IMPS agents and the second relating the agents together
as a multi-agent system.

3.1 The Agent Level Architecture

Although each agent specializes in performing a certain task and may therefore have
abilities that the other agents lack, all the agents are based on the same fundamental
structure. This allows them to communicate with other IMPS agents via messages,
retrieve information from the Web and manipulate it internally. For a more
complete discussion of the IMPS agent-level architecture, see [28].

The basic structure on which all the IMPS agents are based is supplied by the
Java Agent Template (JAT) 0.3 [29]. The template provides Java classes to support
a multi-agent architecture composed of agents with individual knowledge bases. In
IMPS, the JAT is supplemented with Jess. Jess is a version of the popular expert
system shell CLIPS, rewritten entirely in Java [30]. It provides the agents with
internal representation and inference mechanisms. In effect, the addition of Jess
means that whilst the agents share a common architecture, each agent reasons and
acts like a small knowledge-based system following its own set of rules. Jess can be
used to manipulate external Java objects in a rule-based manner. This means the
agent’s low level behaviours can be directly controlled by the inference engine.

IMPS uses the Knowledge Query and Manipulation Language (KQML) for inter-
agent communication, as specified and supported by the JAT. KQML has been
proposed as a standard communication language for distributed applications in
which agents communicate via "performatives"[31]. KQML is indifferent to the
format of the information itself, so expressions can contain sub-expressions in other
languages. In IMPS, KIF statements are embedded in KQML. Each IMPS agent has
a KIF (Knowledge Interchange Format)[32] parser which allows it to read KIF text
messages. KIF is maintained as a possible means of more sophisticated knowledge
representation and sharing with other systems.

3.2 The Multi-Agent Architecture

As a model-driven architecture, IMPS aims to take the task-oriented nature of agent
software much further. It uses PSM-oriented knowledge acquisition to create an
explicit domain ontology for a task. The PSM used provides templates that describe
the kind of knowledge required, the types of role that this knowledge might play and
the inferences in which this knowledge might figure. The ontology provides a
conceptual framework for the organization of knowledge. As it becomes instantiated
with further structured acquisition, it produces a domain knowledge base which

Acquiring and Structuring Web Content with Knowledge Level Models 93

could in turn underpin agent-based problem solving guided by the same PSM
structure.

Computer Knowledge
KExA OCA
User Domain of N
Knowledge Domain

database

L7

Fig. 3. The IMPS server agents

In order to apply these knowledge level models, IMPS uses a server architecture
(see Figure 3), in which two specialist server agents, the Knowledge Extraction
Agent (KExA) and the Ontology Construction Agent (OCA) provide knowledge to
Inference Agents (IAs) on demand. IAs represent KADS primitive inference types
[8] embodied in agent shells to produce agents that specialize in performing a
particular kind of inference (see Figure 2). For a classification task, agents might
specialize in generation of classes, specification of attributes, or matching features.
The knowledge based system arises from the dynamic configuration of problem
solving agents reasoning over the external domain knowledge representation as
served to them by the OCA. The discussion of the prototype will focus on the server
agents (see Section 4).

When IMPS is used on the Internet, the PSM drives agent knowledge acquisition
over highly implicit, heterogeneous and distributed knowledge sources. Therefore,
standardization must occur at some point to allow the system to use uniform
modular components. This happens in the knowledge library where the knowledge
extraction modules and PSM modules are stored. These modules can be viewed as
mediators as described by [33] in the database community.

The knowledge library component of IMPS is as essential to its operation as the
agent component. The extraction classes used to obtain particular kinds of
knowledge from knowledge sources are all based around a common Java interface,
with standard inputs and outputs. The actual mechanisms by which the class extracts
information from a source and parses it into a form comprehensible to Jess are
completely hidden from the agent loading the class. New classes can be added to the
library as appropriate, in a 'plug-and-play' manner, without any change to the rest of
the architecture. This is also true of the PSM components, which are based around a
(different) common interface. Within the library, the knowledge sources are indexed
by type - e.g. database, plain text file, etc., so new instances of a particular type of
source just need to be identified as such to be used by the system.

Knowledge sources available to the IMPS architecture do not have to be static. In
recognition of a global network in which an increasing amount of the information
available is dynamically created, the classes can be written in such a way that they
allow agents to interact with programs available over the network, such as search
engines.

94 L. Crow and N. Shadbolt

4 The Prototype

Currently, the prototype IMPS system (P-IMPS) focuses on the ontology
construction stages of IMPS, rather than the later problem solving phase. It
constructs a domain ontology from online sources using two agents. The sources are
accessed dynamically at runtime through the Internet, using HTTP. The agents can
be accessed at http://www.psychology.nottingham.ac.uk/staff/lrc/agent.html. In the
immediate future, we plan to extend the system beyond ontology construction. We
intend to add the Inference Agents which will use the ontologically organized
knowledge to make problem solving inferences. At the moment, the system has two

PSMs — pruning classification and diagnosis, and two agents, which are:

e The Knowledge Extraction Agent (KExA), acting as an Agent Name Server
(ANS) and the interface through which the user interacts with IMPS during
initialization.

e The Ontology Construction Agent (OCA), which is able to use modules from the
knowledge library to extract information from networked knowledge sources (in
this example, WordNet, the online thesaurus/lexical database and a plain text
domain database in the field of geology — the IGBA dataset).

Suppose a user is interested in performing a task in a domain but has little or no

information to work with. Using a simple knowledge acquisition interface (Figure

4), the user provides the KExA with domain keywords, and chooses a PSM from a

list.

The KExA selects and loads from the knowledge library a Java code module
giving details of the PSM to be used. Then the user suggests knowledge sources.
The KExA passes on the information it has gathered to the OCA and extracts classes
for handling the knowledge sources (whatever format they are in) from the
knowledge library Currently the prototype has classes for handling WordNet

N
HAction Message Resource Domain Tems GTM Knowledge Sources Rule Base Help

System Messages

[Jess> TRUE [Fact-0> [initial-fact |

[Jessy <Fact-0> lFact-1> [has_gtm PruningClassifier KExd)

Jess> TRUE [<Fact-2> [knowledge_sources PruningClassifier "IwordMet_
[Jess> TRUE lFact-3> [zupporting_knawledge PruningClassifier "[class_c
[Jess» TRUE l<Fact-4> [input_roles PruningClassifier "[object_type]"]
Jess> TRUE [<Fact-5> [is_a object_type rack)

[Jess> TRUE lFact-6> [is_a seed_term rock)

[Jess» Please supply a GTh
LIE

[Jess> Have created a GTM class
Please supply some domain terms

| I
FIRED: [defrule ask-for-domain-terms Enter Knowledge Source |
[has_gtm Pgtm KE=A |
[input_roles ?gtm Yroles] Bl |
=
[zall P*agent” enterD omainT emms Trales |
[printout t "Please supply some domain terms'' crlf | IWU'dNeLUHL LI
1
IPrimaly./‘Genelal_Sﬂume ;l

Location

Ihllp.f.fwww notredame. ac.jp/cgirbindwn

Messages received: 2
Messages sent: o
Outgaing buffer: o
|ncoming buffer: o

Fig.4.TheKE xAuser nterface

Acquiring and Structuring Web Content with Knowledge Level Models 95

HTML documents and plaintext database files. A module for handling XML is
under construction.

Control rules organize the behaviour of the OCA into consecutive phases. The
first phase is initialization — the OCA gets information from the PSM module about
what kind of relationships between concepts and entities the PSM requires.

Next, the agent uses the general knowledge sources to get information on the
domain keyword(s) given by the user — this involves matching between the kinds of
information required by the PSM and the information available about the
keyword(s) from the source. The latter is obtained through the knowledge source
interface class which has a method for scanning the knowledge source and
producing a list of the kinds of information that are likely to be available from it.
This interface is implemented by all the knowledge extraction classes (in different
ways). At this point, an interaction with the user occurs in which the OCA offers
definitions of the keyword which have been extracted from the general source to the
user for them to pick the one which most closely matches the concept they had in

wildeat
— HAS PROPERTY : resemhbling the domestic cat and living in the wild
HAS PROPERTY : any small or mediurm-sized

Iyng catamount

HAS PROPERTY : resembling the damestic cat and living in the wild
1 HAS PROPERTY: any small of mediurm-sized

HAS PROPERTY : with usually tufted ears valued far their fur

HAS PROPERTY : shorttailed

caracal,desert_lyny Lyre_caracal

HAS PROPERTY : resembling the domestic cat and living in the wild
HAS PROPERTY : any stall or mediurn-sized

HAS PROPERTY : with usually tufted ears valued for their fur

HAS PROPERTY : short-tailed

HAS PROPERTY : of deserts of northern Aftica and southern Asia

spotted_tyne Lyni_pardina

HAS PROPERTY : resembling the domestic cat and living in the wild
HAS PROPERTY : any small or medium-sized

HAS PROPERTY : with usually tufted ears valued for their fur

HAS PROPERTY : short-tailed

HAS PROPERTY : of southerm Europe

Concepts amitted here

common_lnx Lyny_knx

HAS PROPERTY : resemhbling the domestic cat and living in the wild
HAS PROPERTY : any small or medium-sized

HAS PROPERTY : with usually tufied ears valued for their fur

HAE PROPERTY : shorttailed

HAS PROPERTY : of northemn Eurasia

manul Pallas_s_catFelis_manul

HAS PROPERTY : resemhling the domestic catand living in the wild
—— HAS PROPERTY : any small or mediurm-sized

HAS PROPERTY : ofthe mountains of Siberia Tibet and Mongalia
HAZ PROPERTY : small

targay,margay_at,Felis_wiedi

HAS PROPERTY : resembling the domestic cat and living in the wild
—— HAS PROPERTY : any small or mediurm-sized

HAS PROPERTY . found from Texas to Brazil

HAS PROPERTY : small spotied

Fig. 5. Fragment of an ontology of
cats developed for a classification PSM

96 L. Crow and N.

mind. A structured node in ontology representation is made for the concept
represented by the keyword, containing all the information that has been found for it
— synonyms, definitions etc. New nodes are also added for entities which are linked
ways that are ‘interesting’ to the PSM. If the task structure is
significant parts of the ontology will be hierarchical, and
significant relations will be 'is-a' (to elicit object classes) and 'has-a' (to elicit

to the seed term in
classification, the

Shadbolt

attributes which will distinguish between the classes).

voleanic_rock

HAS_PART : sodalite
HAS PROPERTY : solidified near or on the surface ofthe Earth
HAS PROPERTY : extrusive

wolcanic_glass

HAS_PART : sodalite
— HAS PROPERTY solidified near or on the surface of the Earth
HAS PROPERTY : extrusive

HAS PROPERTY : a kind of natural glass produced when molten lava coals very rapidly

Concepts omitted here

4060, welded tur

HAS_PART : sodalite
HAS PROPERTY solidified near or on the surface of the Earth
HAS PROPERTY : exdrusive

4070,woodenite

HAS_PART : sodalite
HAS PROPERTY solidified near or on the surface of the Earth
HAS PROPERTY : extrusive

4080,wyomingite

HAS_PART : sodalite
HAS PROPERTY solidified near or on the surface of the Earth
HAS PROPERTY : exfrusive

diarite

HAS_PART : sodalite
HAS PROPERTY : granular crystalling intrusive

bathalith,batholite,pluton, plutonic_rock

HAS_PART : sodalite
HAS PROPERTY : believed to have solidified deep within the earth
HAS PROPERTY : large mass of intrusive

Next the agent uses the generalized source to develop a simple ontology around
the keyword concept. Each of the ‘leaf’ nodes that have been added is focused on in
turn, and the generalized knowledge source is queried for new concepts related to
that are significant to the PSM. When each node has been added
to the external ontology representation, the OCA removes information relating to

these nodes in ways

granite

HAS_PART : silicon 8iatomic_nurmber_14

HAS_PART : sodalite

[— HAS PROPERTY : helieved to have solidified deep within the earth
HAS PROPERTY : large mase of intrusive

HAS PROPERTY : having visibly crystalline texture

HAS PROPERTY : plutonic

30,absarokite

HAS_PART : sodalite
HAS PROPERTY : helieved to have solidified deep within the earth
HAS PROPERTY : large mase of intrusive

Fig. 6. Fragment of an ontology of igneous rocks
developed for a classificatory PSM

Acquiring and Structuring Web Content with Knowledge Level Models 97

the nodes that have been created from its working memory, keeping the agent itself
‘light’ and fast. The objects and relations extracted from the lexical database are
presented back to the user graphically (Figure 5). This 'first pass' creates a skeletal
ontology for the domain. The “HAS_PROPERTY” attributes of the nodes in Figure
5 have been generated by using very simple parsing on the textual definitions of
concepts returned by WordNet.

Finally the agent uses the secondary specialised source to supplement this
ontology with information obtained from data representations which contain explicit
or implicit ontological statements. To the agent, this phase is similar to the last one,
but the sources used here are more specialised to the domain and are providing more
detailed information. The information also needs to be integrated seamlessly into the
existing ontology representation. The agent makes simple string-based matches
between entities found in the new source and those already represented and confirms
these with the user. These matches are used as points of reference in integrating new
entities into the representation. Different heuristic methods are used for extraction.
For example, the extraction module used with databases identifies ‘unique’ columns
in the database in which each row has a different value, and ‘classifications’, in
which each value may appear more than once. It is inferred that the unique values
may be hyponyms (sub-classes) of the classifications. They are then added to the
ontology using the matches between existing ontology entities and concepts found in
the database to position them correctly. This process creates an enriched ontology
both in terms of size and correct domain representation. In the domain of geology,
using only this simple heuristic rule, around 200 new entities were added to an
ontology of igneous rocks at this stage. The categorical concepts ‘volcanic’ and
‘plutonic’ were matched with existing concepts in the ontology and the new subclass
entities were added in hyponymical relationships to the concepts (Figure 6). The
concepts marked with numbers have been added from the second source.

| heart_murmur cardiac_murmurmurmur ‘
| CAUSED BY': abromal heart function ‘

palpitation

hearthurn, pyrosis
] CAUSED BY': other disorder

CAUSED BY : acidic backflaw from the stomach iritating the esophagus symptomatic of an ulcer

tinnitus
] CAUSED BY: Menigre s disease
CAUSED BY': an ear infection

stridar
—— CAUSED BY': larynx
CAUSED BY': obstruction of the aches

| steatonhea |

| CAUSED BY': disorders of fat metabolism and malabsorption syndrome |

| eosinophilia |

| CAUSED BY : allergic states increased eosinophils in the blaod |

| areflexia ‘
| CAUSED BY': possible nerve damage ‘

Fig. 7. Fragment of an ontology of medical symptoms created for a
diagnosis PSM

98 L. Crow and N. Shadbolt

It should be noted that there is a wide variety of PSMs in standard libraries. If a
different PSM is used, the concepts and relationships featured in the ontology are
qualitatively different. For example, if the prototype is initialized with a diagnosis
PSM and a domain term from the field of medicine, the kind of initial ontology
produced is structurally very different, as the focus is on causal relationships (see
Figure 7). Again, the causal attributes are extracted by simple textual parsing.

5 Scalability

The success of the prototype begs the question “Could such a system be driven by a
larger range of PSMs over more diverse knowledge sources and produce useful
results?”. The prototype can extract much more information for pruning
classification than for diagnosis. This is because the general source we are using is
basically classificatory in structure — less transformation needs to be performed in
order to get the correct domain knowledge schema for classification.

If the bias towards representing classificatory information is widespread, this
could be a serious problem for the scalability of the architecture. However, there are
several factors to consider. Firstly, our exploitation of WordNet is not exhaustive at
this time. IMPS uses only the noun portion of the database — WordNet also contains
some 19,500 adjectives [34], and 21,000 verbs [35]. It also has some unused
semantic structure based in causality — “cause” has the status of a semantic relation
in WordNet linking verb pairs such as ‘teach’ and ‘learn’. In addition, P-IMPS uses
the source in a very straightforward way by ‘mining’ only the domain concepts
provided by the user. A more sophisticated approach can be envisioned in which
more information about the nature of the PSM is stored in IMPS so that a more
complex query is made to the general source. The selection of a prediction PSM for
tides would instigate a search around the term. It would also start a search around
the abstract concepts ‘time’ and ‘event’, which are implicit in the task. This kind of
approach would require another step of semantic integration of the two concept
clusters and might be more compatible with a different higher level ontology.

In general terms, we believe that higher level ontologies have much to offer
knowledge structuring at the border between ‘common sense’ and specialist
knowledge with relation to a complete range of PSMs. The existence of a relatively
stable set of problem solving inferences [8] which include but are not limited to
classificatory inferences indicates that human problem solving knowledge has a
wider scope. Attempts to use high level ontologies for automated problem solving
may prompt more explicit representation of the relationships that support this
broader range of inferencing. Concepts like causality are central to our
understanding of the world but seem to be under-represented in these general
knowledge structures.

The second dimension of scalability is the use of other information sources. Like
Ontobroker [36], the IMPS approach views the Web as a very large knowledge base,
and attempts to increase the inferential capability that can be applied to it. However,
whilst recognising that there are only two main types of standardisation for
knowledge representation in the Web — HTML and natural language, we believe that
the semi-structured sources that exist within these representations can be exploited

Acquiring and Structuring Web Content with Knowledge Level Models 99

with PSM driven extraction. Our approach does not rely on ontological annotation
by information providers, but exploits the implicit ontologies contained in the
structure of sources. The semi-automatic generation of wrappers for semi-structured
Web sources is becoming a trivial task [37].

Although not reliant on content tagging, the open ended nature of the architecture
anticipates the evolution of one or more meta-content languages on the Web (the
frontrunner for this role at the moment seems to be extensible Markup Language
(XML)). The widespread use of content-based tagging on the Web would increase
the power of IMPS considerably by making the semantic structure of information
presented on the Web more explicit. This could in turn increase the set of PSMs that
are viable.

6 Evaluation

It is difficult to thoroughly evaluate a system such as the IMPS prototype, which
draws on several areas of research and integrates various technological components.
However, some aspects of the system can be earmarked as suitable for formal
evaluation. The ontologies created by IMPS are the most obvious example.

We plan to perform some empirical evaluations on the ontologies produced by
the prototype to test several hypotheses. These include the proposition that IMPS
produces initial domain ontologies for tasks that are comparable in quality to those
produced by hand, within the representation system used. We would also like to find
out whether IMPS produces initial domain ontologies for tasks using PSM oriented
domain schema that are adequate for a problem solving task. Additionally we would
like to know whether these PSM-oriented ontologies are superior in terms of that
task to those produced by IMPS using another PSM domain schema or those
produced without using a PSM domain schema.

At the moment, the proposed general experimental design is one in which the
IMPS ontologies will be compared to handcrafted ontologies created by subjects
who are experienced both in knowledge engineering (i.e. in the process of eliciting
and representing knowledge) and in using the Web. These subjects will not,
however, be expert in the domains in which they will be constructing ontologies.

The IMPS and handcrafted ontologies will be presented to domain experts who
will evaluate them. This evaluation will be conducted on the basis of qualitative
measures of ontology ‘goodness’ as used in Tennison’s [38] evaluation of a
collaborative ontology construction tool. The criteria used in that evaluation were
precision, breadth, consistency, completeness, readability and utility.

The reasoning behind the choice of subjects in these proposed experiments is that
these subjects are the kinds of people who might be expected to use a system such as
the IMPS prototype to assist them. Therefore if it can show significant
improvements over what the subjects can do by hand, this will be an indication that
it could be an asset in the knowledge acquisition process.

Some aspects of the system are not yet mature enough for formal evaluation. This
is the case with the Inference Agents that embody inference steps from PSMs and
act over the domain ontologies. Long term evaluation aims would be to assess
whether the complete IMPS architecture could perform PSM construction and

100 L. Crow and N. Shadbolt

opportunistic collaboration, together with ontology construction and knowledge, to
create an on-line expert system on-the-fly.

7 Conclusions

In this paper, we have described a model-driven approach to the problem of getting
useful knowledge from distributed and implicit information sources. In [28] we
describe the position of IMPS with respect to other related work. The IMPS
architecture features clean syntactic integration of information presented originally
in different formats, and rule-based semantic information integration. It does this
through the use of standardised modular components to filter information while
maintaining a lightweight agent architecture. The modular design means that IMPS
is open to the use of new technologies and standards.

IMPS applies knowledge level models to Web information sources through a
server architecture. In this way, it accomplishes preliminary ontology construction,
KA and problem solving. We believe that the partitioning of semi-structured Web
information according to the domain schema of problem solving methods can be
exploited in order to drive Web-based KA and will be rich in potential reuse.

Acknowledgements

Louise Crow is supported by a University of Nottingham Research Scholarship.

References

1. Lawrence, S., and Giles, C. L. 1998. Searching the World Wide Web. Science 280: 98-
100.

2. Van de Velde, W. 1993. Issues in Knowledge Level Modelling. In David, J. M., and
Krivine, J. P, and Simmons, R. eds. Second Generation Expert Systems. Berlin.:
Springer Verlag.

3. Weilinga, B.; Van de Velde, W.; Schreiber, G.; and Akkermans, H. 1991. Towards a
unification of knowledge modelling approaches, Technical Report KADS-
1I/T1.1/UvA/004/2.0, Dept. of Social Science Informatics, University of Amsterdam.

4. Klinker, G.; Bhola, C.; Dallemagne, G.; Marques, D.; and McDermott, J. 1991. Usable
and reusable programming constructs. Knowledge Acquisition 3 (2):117-136.

5. Steels, L. 1990. Components of Expertise. Al Magazine 11 (2):29-49.

6. Chandrasekaran, B. 1986. Generic tasks in knowledge-based reasoning: High-level
building blocks for expert system design. I[EEE Expert 1 (3):23-30.

7. Bylander, T., and Chandrasekaran, B. 1988. Generic tasks in knowledge-based
reasoning: the right level of abstraction for knowledge acquisition. In Gaines, B and
Boose, J. eds. Knowledge Acquisition for Knowledge-based Systems 1:65-77. London:
Academic Press.

8. Schreiber, A Th.; Akkermans, J. M.; Anjewierden A. A.; de Hoog H., Shadbolt, N. R.;
Van de Velde, W.; and Weilinga, B. J. 1998. Engineering and Managing Knowledge.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Gruber, T. R. 1993. A Translation Approach to Portable Ontology Specifications.

22.

23.

24.

25.

26.

Acquiring and Structuring Web Content with Knowledge Level Models 101

The CommonKADS Methodology [version 1.0]. Amsterdam, The Netherlands.:
Department of Social Science Informatics, University of Amsterdam.

Puerta, A. R.; Eriksson, H.; Egar, J. W.; and Musen, M. A. 1992. Generation of
Knowledge-Acquisition Tools from Reusable Domain Ontologies, Technical Report
KSL 92-81 Knowledge Systems Laboratory, Stanford University.

Gil, Y., and Melz, E. 1996. Explicit representations of problem-solving strategies to
support knowledge acquisition. Proceedings of the Thirteenth National Conference on
Artificial Intelligence, 469-476. Menlo Park, CA.: AAAI Press/MIT Press.

van Heijst, G.; Schreiber, A. Th.; and Wielinga, B. J. 1997. Using Explicit Ontologies
for KBS Development. International Journal of Human-Computer Studies/Knowledge
Acquisition, 2(3):183-292.

Uschold, M. 1998. Knowledge Level Modelling: Concepts and terminology. The
Knowledge Engineering Review 13 (1):5-30.

Walther, E.; Eriksson, H.; and Musen, M. 1992. Plug-and-Play: Construction of task-
specific expert-system shells using sharable context ontologies. Technical Report KSI-
92-40, Knowledge Systems Laboratory, Stanford University.

Studer, R.; Eriksson, H.; Gennari, J.; Tu, S.; Fensel, D.; and Musen, M. 1996.
Ontologies and the Configuration of Problem-solving Methods. In Proceedings of the
Tenth Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. Banff,
Canada.: SRDG Publications.

Gennari, J., Tu, S., Rothenfluh, T.; and Musen, M. 1994. Mapping domains to methods
in support of reuse. In Proceedings of the Eighth Knowledge Acquisition for
Knowledge-Based Systems Workshop. Banff, Canada.: SRDG Publications.

Uschold, M., Clark, P., Healy, M.Williamson, K.; and Woods, S. 1998. An Experiment
in Ontology Reuse. In Proceedings of the Eleventh Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop. Banff, Canada.: SRDG Publications.

Tennison, J., and Shadbolt, N. R. 1998. APECKS: A Tool to Support Living Ontologies.
In Proceedings of the Eleventh Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop. Banff, Canada.: SRDG Publications.

Swartout, B.; Patil, R.; Knight, K.; and Russ, T. 1996. Toward Distributed Use of
Large-Scale Ontologies. In Proceedings of the Tenth Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop. Banff, Canada.: SRDG Publications.

Bateman, J.; Magnini, B.; and Fabris, G. 1995. The generalized upper model knowledge
base: Organization and use. In Mars, N. ed., Towards very large knowledge bases:
knowledge building and knowledge sharing 60-72. Amsterdam.:10S Press.

Cycorp, Inc. 1997. The Cycorp homepage. WWW: http://www.cyc.com

Knowledge Acquisition 5(2): 199-220.

Miller, G. 1990. WordNet: An on-line lexical database. International Journal of
Lexicography 3 (4): 235-302.

Beckwith, R., and Miller, G. A. 1990. Implementing a lexical network. International
Journal of Lexicography 3 (4): 302 - 312.

Burg, J. F. M., and van de Riet. R. P. 1995. The impact of linguistics on conceptual
models: consistency and understandability. In: Bouzeghoub, M. and E. Métais, eds.,
Proceedings of the 1st International Workshop on Applications of Natural Language to
Databases. Versailles.

O'Sullivan, D., McElligott, A.; and Sutcliffe, R. F. E. 1995. Augmenting the Princeton
WordNet with a Domain Specific Ontology. In Proceedings of the IICAI'9S Workshop
on Basic Ontological Issues in Knowledge Sharing. Montreal, Canada.

Sutcliffe, R. F. E., O'Sullivan, D.; and McElligott, A. 1995. The Creation of a Semantic
Lexicon by Traversal of a Machine Tractable Concept Taxonomy. Journal of
Quantitative Linguistics 2(1): 33-42.

102 L. Crow and N. Shadbolt

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Lieberman, H. 1995. Letizia: An Agent that Assists Web Browsing. In Working Notes
of AAAI-95 Fall Symposium Series on Al Applications in Knowledge Navigation and
Retrieval 97-102. Cambridge, MA.: The AAAI Press.

Crow, L. R., and Shadbolt, N. R. 1998. Internet Agents for Knowledge Engineering. In
Proceedings of the Eleventh Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop. Banff, Canada.: SRDG Publications.

Frost, H. R. 1996. Documentation for the Java(tm) Agent Template, Version 0.3. Center
for Design Research, Stanford University. WWW:
http://cdr.stanford.edu/ABE/documentation/index.html

Friedman-Hill, E. J. 1998. Jess, The Java Expert System Shell, Technical Report,
SAND98-8206 (revised), Sandia National Laboratories, Livermore. WWW:
http://herzberg.ca.sandia.gov/jess

Finin, T.; Labrou, Y.; and Mayfield, J. 1997. KQML as an agent communication
language. In Bradshaw J. M. ed. Software Agents. Cambridge, MA.: AAAI/MIT Press.
Genesereth, M. R., and Fikes, R. E. 1992. Knowledge Interchange Format Version 3.0
Reference Manual, Technical Report, Logic-92-1, Computer Science Department,
Stanford University.

Wiederhold, G.1992. Mediators in the Architecture of Future Information Systems.
Computer 25(3):38 - 49.

Fellbaum, C., Gross, D.; and Miller, K. 1993. Adjectives in WordNet. Unpublished
report.

Fellbaum, C. 1990. English verbs as a semantic net. International Journal of
Lexicography 3 (4):278 - 301.

Fensel, D., Decker, S., Erdmann, M.; and Studer, R. 1998. Ontobroker: Or How to
Enable Intelligent Access to the WWW. In Proceedings of the Eleventh Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop. Banff, Canada.:
SRDG Publications.

Ashish, N., and Knoblock, C. 1997. Semi-automatic Wrapper Generation for Internet
Information Sources. In Proceedings of the Second IFCIS Conference on Cooperative
Information Systems. Charleston: South Carolina.

Tennison, J. 1998. Collaborative Knowledge Environments on the Internet. Forthcoming
Ph.D. Thesis, Dept of Psychology, University of Nottingham.

A Knowledge-Based News Server Supporting
Ontology-Driven Story Enrichment
and Knowledge Retrieval

John Domingue and Enrico Motta

Knowledge Media Institute
The Open University
Walton Hall,
Milton Keynes, UK

{j.b.domingue, e.motta} @open.ac.uk
http://kmi.open.ac.uk/people/{ domingue,motta}

Abstract. We consider a knowledge management scenario in which members
of an academic community collaboratively construct and share a common
archive of news items. Given this scenario, a number of knowledge
management challenges arise: how to organize a speedy, low overhead
publication process which can nevertheless yield high quality results; how to
provide semantic search and knowledge retrieval facilities in an effective and
sustainable way; how best to provide individualized presentations and news
alerts. To address these questions we have drawn on a number of
technologies, including knowledge modelling, autonomous agents, software
visualization, knowledge acquisition and distributed computing. In the paper
we describe the resulting Planet-Onto architecture, which provides an
integrated set of tools to support news publishing, ontology-driven document

formalization, story identification and personalized news feeds and alerts.

1 Introduction

Loosely speaking, knowledge management is about facilitating the generation, sharing
and use of knowledge. Thus, any activity or tool which fosters communication and
sharing in a community can be seen in principle as an exercise in knowledge
management — for instance, bandwidth improvements to an Intranet. Having said so,
when discussing knowledge management it is useful to try and refine the all-
encompassing span of this research area, by circumscribing the range of issues and
technologies under examination. In the context of this paper, rephrasing and refining
the definition given by O’Leary [29], we say that we are interested in the computer-

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 103-120, 1999.
© Springer-Verlag Berlin Heidelberg 1999

104 J. Domingue and E. Motta

mediated management of explicitly represented knowledge. That is, we focus on
issues of organisation, formalisation and distribution of knowledge stored in a
network of computers. It is important to emphasise that we do not impose any
constraint on the form of the representation — e.g. whether the knowledge in question
is represented as text, in a conventional database, or in some knowledge
representation formalism.

In particular, in this paper we consider a scenario in which members of an
academic community collaboratively construct and share a common archive of news
items. Given this context, our main research goal is to develop a suitable
computational infrastructure, which can effectively support the publishing process, as
well as facilitating access to the archive of news items.

To characterise the activities implied by our scenario we can use the framework
proposed by O’Leary [29], which proposes an elegant typology of knowledge
management activities as specialised connecting and converting processes.
Specifically, using O’Leary’s terminology, our goal is to provide solutions for the
following classes of knowledge management processes:

e Converting individual to group knowledge. In our context this means the provision
of tools for supporting ‘journalists’ submitting stories to a news archive.

e Converting text to knowledge. That is, formalising the knowledge expressed by the
news item and integrating it into a knowledge base associated with the archive.

e Connecting people to knowledge. That is, providing integrated visualisation,
search and query answering facilities, to allow users of the archive to quickly home
in on information at different levels of granularity, from (sub-)collections of stories
to specific data (whether they are explicitly included in a document or implied by
the collection of documents).

e Connecting knowledge to people. That is, pro-actively contacting journalists and
readers. The former should be contacted to solicit stories useful to plug ‘holes’ in
the archive; the latter should be contacted when items of interest are published.

Actually, while O’Leary’s framework provides a useful typology for characterising
knowledge management activities, we ought to point out that his use of the term
“converting” is not necessarily the correct way to talk about knowledge
transformation activities in our (and maybe any other) scenario. The problem is that
the term “converting” has a translation-centred connotation, which is misleading. In
particular, in our scenario the formalisation process is driven by an ontology [18],
which defines the concepts needed to describe events related to academic life, e.g.
projects, products, seminars, publications, etc. This means that the parts of a news
story not relevant to the ontology are ignored, much as in template-driven information
extraction approaches [9] [33]. That is, not all knowledge expressed in textual form
in a news item is expected to be formalised. On the other hand, because i) the
formalisation is ontology-driven and ii) instantiating an ontology might require the
specification of knowledge not given in the story, the knowledge base associated with
the news archive would normally contain knowledge that is not present in the archive.
In sum, the knowledge base associated with the news archive provides neither a
subset nor a superset of the knowledge expressed in the stories. This is of course not
very surprising. We know that any translation or encoding process has more to do
with reconstructing meaning than with replacing representations. This is true not only

A Knowledge-Based News Server 105

for translations between different natural languages, but also for translations from text
to code [6] and from code to code [8]. Hence, the metaphor of converting is not the
right one when talking about formalising knowledge in a document, both for
fundamental reasons and, in our case, because of the different roles played by the
news stories and the associated representations. For these reasons we prefer to use the
metaphor of enriching a representation [40].

The paper is organised as follows. In the next section we provide an overview of
the overall architecture, which is called Planet-Onto. In section 3 we describe the
Planet news server [11]. In section 4 we describe the ontology which we use to drive
the representational enrichment of news items. In section 5 we illustrate the
ontology-driven formalisation process. In section 6 we discuss the aspects related to
“connecting people to knowledge” and “connecting knowledge to people”.
Specifically, we illustrate i) the interface which allows users to access the archive and
the associated knowledge base and ii) the push technology [32], which alerts
journalists to gaps in the archive and readers to new, relevant stories. Finally, in
sections 7 and 8 we discuss related work in knowledge management and ontological
engineering, we assess the current state of the architecture and we outline outstanding
research issues.

2 The Architecture of Planet-Onto

The overall scenario introduced in the previous section is graphically shown in figure
1, which summarises both the architecture of Planet-Onto and the associated process
model. The architecture of Planet-Onto extends that of the original Planet news
server [11]. In the ‘basic’ scenario supported by the Planet news server a ‘journalist’,
who is normally a KMI member, writes a story about some KMI-related event and
emails it to the Planet server. The Planet agent formats the story and adds it to the
news archive. Periodically an agent informs the Planet readership about new stories
that have been added to the archive. Readers can browse the archive and access
stories through a standard web browser, such as Netscape Navigator or Microsoft
Explorer

This basic publish/find out/read scenario supported by KMI Planet has now been
augmented in Planet-Onto, as we have developed i) tools which allow the
specification and association of knowledge structures to stories, ii) an end user
interface, Lois, which integrates web browsing with search and knowledge retrieval,
and iii) specialised agents which, alert journalists to gaps in the archive and readers to
relevant new stories.

Specifically, as shown in figure 1, Planet Onto supports seven main activities with
respect to three types of users. These are:

c Journalists. Those who send stories to KMI Planet.

106 J. Domingue and E. Motta

&5

fr o

A

| Planet Onto Server

L LispWeb Server

Fig. 1. The Architecture of Planet Onto

\ Knowledge Editors. Those who are responsible for maintaining the Planet
Ontology and the Planet knowledge base. In some cases they may annotate the stories
in place of journalists.

Readers. Those who read the Planet stories.
The seven main activities supported by Planet-Onto are:

1. Story submission. A journalist submits a story to KMI Planet by plain email. The
story is formatted and stored within KMI Planet’s story database.

A Knowledge-Based News Server 107

2. Story reading. A Planet reader browses through the latest stories using a standard
browser.

3. Story annotation. Either the journalist submitting the story or one of the Planet
knowledge editors uses Knote to perform ontology-driven association of
knowledge structures to a story.

4. Provision of customised alerts. An intelligent agent, NewsBoy, which is able to
build user profiles from patterns of access to Planet-Onto, uses these profiles to
alert readers about relevant new stories.

5. Ontology editing. The Planet-Onto architecture also includes sophisticated support
for knowledge modelling to be used by skilled knowledge editors. In particular,
the Web-Onto tool [10] provides web-based visualisation, browsing and editing
support for developing and maintaining knowledge models specified in OCML
[27]. The latter is an operational knowledge modelling language, which supports
the specification and instantiation of ontologies and the specification and execution
of reusable problem solving methods [1].

6. Story soliciting. An intelligent agent, NewsHound, periodically gathers data about
‘popular’ news items and uses these data to solicit potentially popular stories from
the appropriate journalists. This is accomplished by identifying ‘gaps’ in the
knowledge base, e.g. projects about which there is no information, which can be
filled by potentially interesting stories.

7. Story retrieval and query answering. An end-user interface, Lois, integrates
traditional web browsing and search with knowledge-based query retrieval, to
support integrated access to the archive of Planet stories and to the associated
knowledge base.

All the tools included in the Planet-Onto architecture are web-based and can be
accessed through ordinary web browsers. As a result, both the development and use
of the archive and associated knowledge base are carried out in a distributed fashion,
by a community of users playing specialised roles. The underlying technology is
provided by an HTTP server written in Common Lisp, LispWeb [34].

In the rest of the paper we will discuss the Planet-Onto architecture and process
model in detail, focusing in particular on the ‘external’ knowledge management
activities and tools rather than on the ‘internal’ knowledge modelling support and
web-based infrastructure.

3 KMI Planet: A Newsroom Agent on the Web

KMI Planet was designed to support the creation of high quality web based
newsletters whilst minimising the load for journalists submitting stories. Our
approach to attaining this objective was to develop a news server which accepts
stories submitted in the lowest common-denominator medium - an email message -
yet is able to create a high quality web page. Thus, the system minimises overheads
for journalists and editors by making their contributions entirely lightweight: the web
based news server takes on most of the work.

In our model a journalist sends an email message to the KMI Planet story account.
The subject line of the message becomes the headline of the story, the body of the

108 J. Domingue and E. Motta

message becomes the text of the story. If an image has been attached to the message,
it is added into the story in an appropriate place. If no image has been attached, then
Planet searches its database of images for a suitable one — e.g. a photo of the
journalist in question, the logo of the project described in the story, a screen snapshot
of a relevant system, etc.

0= Netscape:huliSory=——————HIH

Best Paper Award for KMi Student

- WCCl,,

Dbs Pomiyme T 73 By 2508

Trevwor Colling, a final vear PhD student in K.IMi, has won the 'Best Stodent Paper Award' at this vear's IEEE Woild
Congress On Computatonal Intelligence held in Anchorage, Alaska (May 4-9, 1998). This congress is made up of three
conferences on: Evolutdonary Computation, Mewrsl Hetwrorks and Fuzzy Swstems. Toevor won his award for his paper
entifled 'Understanding Evolotionary Compating: A hands on approsch', wwhich describes how his novel softwrsaoe
vizvalizations sid in the developiment and vse of evolutionary programs.

Evolutionary computing is the stody of robust search algorithms based on the guiding evolutionary principal of 'survival of
the fittest'. Developers and researchers in this field often expedence difficulties in applving their algorithms 10 new problems
and find it hard 0 wnderstand the sesch paths their programs take. Trevor's PhD attempts 10 alleviate these problems by
providing & stooctored framewnork for visvslizing the execution of esolutionary algorithns and programs.

Relevant siteatlinks:

o Trevor Colling' home page
w IEEE Would Congress On Computational Tntellizence

EMi Planet

Fira] (=2]~

Fig. 2. A story presented in KMI Planet

In figure 2 we see a single story web page rendered from an email message. The
message header is shown at the top and the attached image follows beneath. Next to
the image are the name of the journalist who sent the message (linked to his home
page) and the date of the submission. The message body is below the image, with web
links appropriately anchored to their destinations. Although the journalist is
responsible for sending in a good story, the rest of the process is handled by the
software.

This low-overhead approach to news publishing has proven very successful. Our
archive is growing steadily and now contains 73 stories, submitted by 13 journalists.
We now have 480 registered readers — i.e. not just readers who have accessed the
Planet server but users who subscribe to the Planet alert services. Moreover, the
Planet technology has attracted interest from other organisations, both within and
outside the Open University. However, it is apparent that, as the Planet archive and
readership grow, more sophisticated mechanisms supporting semantic searches and
individualised presentations and alerts are needed. In the rest of this paper we will
discuss the tools that we are developing to fulfil these needs.

A Knowledge-Based News Server 109
4 An Ontology for Characterizing Academia-Related Events

An ontology provides a partial specification of a shared conceptualisation, to be used
for formulating knowledge-level theories about a domain [18] [20] [27]. Our domain
comprises the range of events associated with a university department, the persons
who take part in these events and the entities required to characterise these events and
these persons in the context of academic life.

Several approaches to ontology development have been proposed in the literature,
which introduce distinctions along different dimensions. For instance van der Vet and
Mars [42] propose a bottom-up approach to concept identification, which contrasts
with the top-down approach normally used by researchers and practitioners — e.g., see
[39]. Uschold and Gruninger [41] argue that a middle-out approach is most effective,
in which the basic concepts in a domain are identified first (e.g., dog), and later
generalised (mammal) and/or specialised (cocker spaniel)'. Another distinction is
whether an ontology is developed in a task-oriented [27] or a task-independent style
[5] [15]. However, hardly any approach affords detailed, prescriptive guidelines. A
notable exception is provided by Uschold and Gruninger [41], who propose a
purpose-driven skeletal lifecycle for developing ontologies.

In developing the Planet ontology we have followed a task-independent, purpose-
driven approach. In particular, the main role of the Planet ontology is to drive the
annotation of news items relating events in KMI. Thus, we have taken the concept of
news item as our starting point. The essence of a news item is that of relating one or
more events.

4.1 Modelling Events

The notion of event is central to problem solving and several ontological
characterisations are available in the literature — e.g., see [25] [37]. Thus, rather than
trying to reinvent a pretty complex wheel we looked at existing definitions with the
aim of reusing them. In particular, the public version of the CYC upper level
ontology [25], which is called HPKB upper level?, is now available on the Stanford
ontology server [13]. Thus, we decided it would be a useful exercise to try and reuse
this one. Unfortunately this turned out to be a problem. The definition of class event
in the UPKB upper level ontology contains 94 slots. Obviously this definition has
been designed with the aim to maximise reusability, by trying to account for all
features which can possibly be associated with an event. On the contrary, given the
purpose of our ontology (to allow story annotation by users who are not necessarily
knowledge engineers), we are mainly interested in usability: that is, our ontology
ought to minimise the knowledge engineering overhead associated with story
annotation. Otherwise, this task would have to be carried out by specialist knowledge

Incidentally, this claim is consistent with much psychological literature, which shows that
human subjects are much better are recalling information about basic categories, than they
are at recalling information about superordinates or subordinates — see e.g., [35].

HPKB stands for “High Performance Knowledge Bases” and is the name of an ongoing
research project in the United States [23].

110 J. Domingue and E. Motta

editors, resulting in an unsustainable approach. In practice, imposing a low overhead
on the annotation process means adhering to two modelling guidelines:

e Minimal ontological commitments. The definition of class event in the HPKB
upper layer provides an extreme case of a coverage-centred approach to reuse.
That is, the definition aims to cover all potential attributes which can be relevant to
a generic instance of the class. However, typically only few slots will actually be
relevant for any specific instance of the class. An alternative approach consists of
minimising ontological commitments [19]. That is, to try and provide only the
minimal set of attributes needed to define the class. This approach has the
advantage that, when populating the ontology, users don’t have to face lots of
irrelevant attributes.

e User-centred definitions. This guideline requires that the terminology used by the
ontology needs to be easy to understand for a user who is not necessarily a
knowledge engineer. There are two aspects here: heavily technical modelling
concepts — e.g. sophisticated modelling solutions for representing time — ought to
be avoided. Moreover, the terminology should be as context-specific as possible.
For instance, while we can talk about “agents performing events” when describing
events in general, we should use the class-specific terminology “awarding body
assigns awards”, when talking about an award-giving type of event. This latter
guideline implies that the underlying modelling language should support slot
renaming along isa hierarchies — i.e. inherited slots should get subclass-specific
names. The importance of domain-specific, user-oriented terminology has been
recognised in knowledge acquisition for a long time [28] and arguably it provides
an important difference between the criteria associated with modelling for
knowledge acquisition and those associated with modelling for system
development.

For these reasons we decided we could not just ‘cut & paste’ the definition in
HPKB, but we needed to build our definitions by means of a more use-oriented
approach — i.e. starting with minimalist concepts and then enriching them when
defining specialised subclasses. The definition of class event used in our ontology is
shown below.

The definition shown in the box defines the essential aspects of an event. For the
sake of compatibility the terminology reflects the one used in the HPKB ontology.
However, as already pointed out, this generically reusable terminology scores lowly
on usability and therefore different refinements of this class provide specialised
terminology. For example class award-to-kmi-member renames slot main-agent to
awarding-body and slot object-acted-upon to awarded-prize.

In total, KMI-Planet-Ontology comprises 452 definitions, based around 6
epistemological building blocks: story, event, person, organisation, project and
technology. We shall describe how the ontology has been deployed within Planet-
Onto in the following sections.

A Knowledge-Based News Server 111

(def-class event (temporal-thing)
((main-agent

:min-cardinality 1

:documentation

"The agents causing the event to happen.

At least one main agent is assumed but
there can be others")

(other-agents-involved

:documentation

"Other agents involved in the event")

(instrument-used :documentation
"The instrument used by the main
agent to carry out the action")

(Object-Acted-On

:documentation "The things which are affected by
the event. e.g. in 'john broke the
stone with a hammer', the stone is
the object acted on")

(recipient-agents

:documentation

"The agents which are affected by the event")

(location-at-start

:type location

:documentation "The location at which an event
takes place - or starts in the case
of events which change the position
of something)")))

5 Ontology-Driven Story Annotation Using Knote

Our goal is to enable as wide an audience as possible to annotate stories. Encoding
representations of even a moderately growing repository such as KMI Planet can only
succeed if the process is ‘farmed out’ as much as possible. We thus envisage that
users of Knote will not form a homogeneous group, but will range from regular Planet
journalists to experienced ontology engineers. Knote was therefore designed to be
‘low entry’, so that users would not necessarily require a background in knowledge
modelling. At the same time Knote should allow experienced ontology engineers the
freedom to create arbitrarily complex OCML expressions.

As we discussed in the previous section, the Planet ontology is based around the
epistemological tenet that a KMI Planet story describes a number of KMI related
events. Story annotation is therefore the description of one or more events occurring
within the story to be described. The four main steps in annotating a story are:

1. Choosing a story to annotate,
2. Selecting a particular event in the story to describe,

112 J. Domingue and E. Motta

3. Classifying the event in terms of the hierarchy of event types provided by the KMI-
Planet-Ontology.

4. Filling in an automatically created instance definition form to characterise the new
instance of class event.

I Instance of award—to— kmifulsE k=1

Name: best—paper—award—to—kmi—s- Kmi—diracter

: g kmi—lecturer
Click on a slot name to see examples of its use

o ‘-. : kmi—manager
recipient-agents | inil kmi-membe

| —— kmi-member
has_awarding-hods | ni awarding=body . kmi-mm-designer

prize EwcciEIE—hest—paper—certificat kmi—non—academic—member

kmi—phd—student

location-at-start | anchorage | location |

' ' '3

Fig. 3. A partially filled in form for an instance of class award-to-kmi-member

Name: hest—paper—award—to—kmi-student—event None

Click on a slot name to see examples of its use Mews Instance

.................... masterton

recipient-agents écolliné kmi—phd—student | callins lg
| collins

Fig. 4. The appearance of figure 3 as the journalist fills in the value of the recipient-agents slot
with the instance collins

We shall describe how Knote supports the annotation process through a small
scenario. A Planet journalist decides to annotate the ‘Best Paper Award for KMI
Student’ story shown in figure 2. The journalist elects to describe the main event in
the story, that is Trevor Collins receiving a best paper award from IEEE. After a little
consideration the journalist classifies the event in question as an instance of class
award-to-kmi-member and hits the “Describe Event” button. An event instance
definition form, partly shown in figures 3 and 4, is created which the journalist begins
to fill in. We will illustrate the annotation support provided by Knote by showing how
the tool helps the user fill in the slot recipient-agents.

The journalist can see from figure 3 that the value for the recipient-agents slot must
be of type kmi-member. She decides to see which more specific types are currently
available by clicking on the kmi-member menu. After choosing class kmi-phd-
student, the journalist checks whether there are any instances of kmi-phd-student
currently defined. She does this by clicking on the rightmost menu of the recipient-
agents row — see figure 4. She chooses collins from the menu and the text “collins” is
inserted into the recipient-agents value window. Alternatively, the journalist could
have chosen to create a new instance of class kmi-phd-student, by clicking on the

A Knowledge-Based News Server 113

menu item "New Instance". In this case a new instance form would be created and the
name of the new instance inserted as the value of slot recipient-agents.

The instance forms described here are modelled on the Dynamic Forms of
Girgensohn et al. [17] and provide a subset of the functionalities found in the
Dynamic Forms system. The key difference between dynamic forms and instance
forms in Knote, however, is that forms in Knote are generated directly from the
ontology and not from a user description. The forms in Knote are similar to the forms
found in the Mecano environment [31].

6 Connecting People to Knowledge

6.1 Lois: A Flexible Form-Based Interface for Knowledge Retrieval

As the number of stories in KMI Planet grows, it becomes harder for users to find
relevant stories quickly. In addition, browsing and reading stories is but one way to
find information about events in KMI. Readers may wish to know about specific
technologies, specific projects or specific members of staff. For instance, after
reading the story about the award to Trevor Collins, a reader might want to find out
who else in KMI works on software visualisation, what papers have recently been
produced, what projects tackle software visualisation issues, etc. An important
feature of the Planet-Onto architecture is the integration of traditional web browsing,
including lexical search, with deductive knowledge retrieval. In particular, various
levels of knowledge retrieval support are provided. Experienced ontology engineers
can directly access the Planet knowledge base and pose arbitrary queries expressed in
OCML, using the Web-Onto tool [10]. However, our assumption is that most readers
either are not experienced knowledge engineers, or, even if they are, might not want
to interact with Planet-Onto at the OCML level.

To support semantic access to Planet by ‘ordinary’ readers we have developed a
form-based interface, called Lois. The aim of this interface is to allow users to
express a wide range of queries, ideally any query that can be expressed directly in
OCML, while at the same time shielding them from formalism-related aspects.

The solution we have taken is to use the basic epistemological building blocks
(people, organisations, stories, events, projects and technologies) of the Planet
knowledge base to organise a form-based query interface. The rationale for this
approach is that, almost without exception, any useful query to Planet-Onto must
include one or more subclasses or instances of these six building blocks. For
instance, figure 5 shows a query which asks for KMI researchers involved in software
visualisation. This query was constructed by selecting the class kmi-member
(pressing the button “Member of KMi”), specialising it to kmi-researcher (using the
“Index Aspect” and “Aspect Type” windows), selecting the relation develops-
technology and then circumscribing the range of this relation to kmi-software-
visualisation-technology. To ensure that ‘naive’ users can indeed construct queries out
of these six building blocks, when designing the ontology we have ensured that all the
‘obvious’ binary relations between these six classes are explicitly included in the
ontology (as opposed to be derivable through chains of inferences). Because stories

114 J. Domingue and E. Motta

are only interesting with respect to the associated events, they are not linked to the
other main classes (and correspondingly no button is provided for the story class).
Hence, only 24 relations had to be specified.

Index Name Index Aspect Aspect Type Instances

Story Event 00 | reves— i ey |

addresses-theme kmi- bavesian-software-
thas—author hayesian-network-disec | | oo s e
made—hy kmi-ga-technology ins-ga-visualization

1-technology

KMi Project

technology- builds-on kmi-ga-software - visua
boto. wab-sito i sofuvare.- visualiza

has-features kmi-modelling- languag
kmi-modelling- technol

Member of KMi ‘
‘ ol timedia- kmi- techn

Organisation weh-hased- kmi-techna
kmi-internet-technolog

More about kmi-tachnolo

kmi- memberl type kmi-researcher develops—technology |

kmi-technology3 type kmi-software- visnalization- technology no relation =

Add Row | Delete Row |

Send Query w

I J.Java Applet Wincow

Fig. 5. Finding a KMI researcher who works on software visualisation

6.2 Story Chasing with NewsHound

An important goal in the design of KMI Planet was that the system should try and
emulate a news room team. One of the tasks that a news editor carries out is to
identify potentially popular stories and assign them to one of the journalists in the
staff. In order to emulate this behaviour we are developing an intelligent agent,
NewsHound, whose job is to identify potentially popular stories and to assign them to
the appropriate journalists. These requests for new stories are carried out simply by
sending the relevant journalist an email.

In order to identify potentially interesting stories, NewsHound uses two main types
of data: statistics on access to individual stories in KMI Planet and records of the
queries posed through Lois. Each story within Planet keeps a record of its own
popularity by counting the number of times the full text is requested from the KMI
Planet server. Once NewsHound identifies a story as ‘popular’, then it tries to
identify related stories which have the potential to be popular. To perform this task
NewsHound analyses the knowledge base trying to find items of interest that have not
yet been covered by Planet stories. Typically, these would be projects and
technologies which i) are known to NewsHound, ii) are ‘related’ to ‘popular’ projects

A Knowledge-Based News Server 115

and technologies, but iii) have not yet been covered by a story. The term ‘related’ is
the key here. NewsHound uses various heuristics to define ‘relatedness’: for instance
direct subclasses of the same class are considered related; technologies are related if
they build on the same underlying technology; projects are related if they tackle the
same areas. These heuristics are of course completely ‘soft’ and modular and
therefore any new one can be added without affecting the existing ones. However, in
our view the most interesting feature of NewsHound has not so much to do with the
specific adopted heuristics but rather with the unique scenario in which it examines a
knowledge base for gaps. Typically, completeness in a knowledge base is defined
with respect to logical or task-related properties [22]. In our scenario incompleteness
is defined in pragmatics terms: publications need popular stories.

6.3 Providing Personalised Alerts with NewsBoy

Lois is designed (among other things) to help users to track down Planet stories with
very specific characteristics. However, a significant number of users prefer to work
with push technology, that is they prefer to be automatically notified about potentially
interesting stories, rather than having to query Lois about them. We therefore
designed an agent, NewsBoy, to provide a mode of use that was complementary to the
one supported by Lois. NewsBoy enables users to create a personalised front-page to
which interesting stories are pushed.

When a new story is annotated using Knote, NewsBoy matches the story
knowledge base against the specified interests of registered readers. Readers whose
interests match that of the newly annotated story are notified that a new story has been
added to their personal Planet page. For example, if a reader has specified that they
would like to read stories about visitors to KMI, she would receive an email stating
that her personal Planet page has been updated to look like figure 6.

The primary interface to NewsBoy is via a settings page where registered users
can:

1. Set their name and password.
2. Set the criteria for a notification to be sent.
3. Declare what sort of stories their interests cover.

Passwords enable groups of users to create a secure communal newsletter where
confidential information can be communicated. Readers can elect to be sent an
automatic notification by NewsBoy every time a relevant story is found, or to be sent
an update every week or month. Moreover, readers can either explicitly declare the
types of stories which interest them or allow NewsBoy to infer them. One of the
prime goals when designing Planet-Onto was to make the system as easy to use as
possible. For this reason we decided to reuse the Lois interface as far as possible,
rather than creating a whole new interface for readers to communicate their interests
to NewsBoy.

To make an explicit declaration a reader simply specifies a number of queries
using the Lois interface. The reader is then informed when a new story matches at
least one of the logged queries. Alternatively, a reader can state that she would like
NewsBoy 1) to log all the queries she makes using Lois and ii) to create a user profile

116 J. Domingue and E. Motta

from the log. The resulting user profile is simply the logical disjunction of the queries
contained within the log.

It is interesting to compare NewsBoy to other approaches which attempt to infer
user profiles from analysing patterns of access to documents — see e.g., [26] [24].
These approaches try to induce user interests using empirical methods. Our approach
is semantic-centred: the user herself specifies the range of documents of potential
interest through unambiguous declarative specifications.

Netscape: The KMi Planet - A News Server =—-—— D1 H :

Millennium Commissioner
visits KMi

v Sbarne The O35 Sip 29980

Lord Dadkeith, a Millennimmn Cormnissioner, visited KM on the 3
Beptember together with Rob Luke, Manager of the Millenndnm Awards
Bcheme, 10 discuss a proposal for an Open Wndversity and Living Archive
Millenninm Avwards Scheme.

- The aim of the proposal is 1o encovrage and enable parents of

schoolchildren 1o gain new skills in the vse of computer and informaton. ..

Microsoft 2 day uisit Lifalong Leaming_Mni ster DfEE Millannium Projacts
Simon Brotinn b S Wisits Cpen University Team Wizt Khi
Ty, & Jhen J998 e [Triomting e [Triomting

TSl £33 Sy J9908°
Tdembers of Microzoft's group Macromadia'a Sus Thaxton
developing learning techmologies Om Wednesday Gth Mayr Kim wizits KA

for distance edurstion visited the Howells MF [Farlismentary Under £ Mrfeatine
O on 9th and 10th June. Hosted Seeretary of State for Lifelong ; . .
by Disma Lanrillard [FWC Learning at the Department of Wisitors witnass Yolcanic
Techuology], Fim... Eduation snd Employment) Edinburgh

wisited the Open Undwersity.... Ldedr Takeatine

Tika |E?|///;’

Fig. 6. A personalised Planet Web page showing stories concerning visits to KMI

7 RelatedWork

The work described in this paper is related to research in a number of areas, including
information retrieval [38] and extraction [33] [9], knowledge management [29],
ontological engineering [18], agent technology [7] knowledge engineering [14] and
model-based knowledge acquisition [22] [36] [12]. Because we have already
compared individual tools in Planet-Onto to related technology and (more
importantly) because this paper should not exceed the 18 page limit, we will confine
ourselves to discuss related approaches to ontology-driven knowledge management.
The SHOE project [21] has proposed an extension to HTML to allow the
specification of ontological information in web pages. The project team has also
developed an editor to support the page annotation process. This work is mainly at

A Knowledge-Based News Server 117

the infrastructure level. That is, they suggest a mechanism to allow the representation
of information and provide tools to edit and retrieve it. In Planet-Onto we take a
holistic approach to the publish-annotate-retrieve process and we look at the wider
issues concerning usability and sustainability. Thus, we are not just concerned with
providing a mechanism for associating knowledge structures to text but we wish to
develop a comprehensive architecture addressing all the relevant issues, from the
‘right’ approach to ontology development to the required visualisation and interface
tools needed to facilitate the publish-annotate-access process. Having said so, the
technical solutions provided by SHOE could be easily integrated within the Planet-
Onto framework. For instance OCML structures could be represented in terms of the
relevant SHOE tags.

The (KA)2 initiative also shares a number of commonalities with our work. As in
the case of Planet-Onto the aim of (KA)2 is to allow a community to build a
knowledge base collectively, by populating a shared ontology. In the case of (KA)2
the knowledge base is meant to document the activities of the knowledge acquisition
community. Similarly to the approach used in SHOE the knowledge base is
constructed by annotating web pages with special tags, which can be read by a
specialised search engine cum interpreter, Ontobroker [16]. In this paper we have
emphasised that the feasibility of the idea of a collective construction of a knowledge
base crucially depends on the availability of i) a carefully defined ontology; ii) an
underlying modelling language providing user-oriented facilities, such as context-
dependent renaming; iii) a user-friendly annotation environment; and iv) the right
motivational stimuli for the participants. In their paper on the (KA)2 initiative, [2],
the authors mainly focus on the latter issue. However it seems to us that a careful
analysis of all the issues associated with collaborative ontology development and
instantiation is required, in order to manage the risks associated with such enterprises.
In particular we believe that a careful design of the underlying ontology is particularly
important. For this reason, in contrast with the case of (KA)2, the design of the
ontology is centralised in our approach. Members of the community are not expected
to develop ontologies, only to populate existing ones.

Related work in knowledge management here in KMI has (naturally) many points
of contact with Planet-Onto. The work in the Enrich project [40] aims to support
organisational learning through the enrichment of web-based documents. This
enrichment is carried out both through ontologies, as in our scenario, and through
hypertext-based argumentation [4]. Although the Enrich scenario is very different
from the one addressed by Planet-Onto, the underlying assumptions are the same for
both projects: ontology-driven enrichment of documents play an important role in
knowledge management. However, effective support for knowledge management
requires a holistic approach, which carefully analyses both technological and
organisational issues and emphasises the usability of the deployed technology and the
sustainability of the overall process model.

Buckingham-Shum and Sumner [3] have produced an ontology to support the
tracking of research within the Journal of Interactive Media in Education
(http://www-jime.open.ac.uk/). Their emphasis is to support the development of
shared viewpoints in a community and the discovery of relationships between
documents. As for Planet-Onto populating the ontology is a collaborative process. In
contrast with Planet-Onto only an informal ontology is provided.

118 J. Domingue and E. Motta
8 Conclusions

The Planet-Onto architecture provides an example of an ontology-centred approach to
knowledge management. With the exception of NewsBoy and NewsHound, which
are still at a preliminary implementation stage, all components of the architecture are
now in place and are undergoing preliminary user testing. Once this preliminary
evaluation and testing phase has been completed, Planet-Onto will become fully
operational. We also plan to apply the Planet-Onto technology to support semantic
access to medical guidelines. This work will be done in the context of the PatMan
project [30].

Obviously, several research issues are still open. In particular, the main obstacle to
this kind of enterprises is provided by the collaborative construction of the knowledge
base. While usability has been our main criterion when designing the ontology and
the knowledge annotation tool, we realise that this approach is only sustainable in
restricted scenarios, where users are reasonably motivated and skilled and the
annotation process relatively lightweight. Thus, the major challenge for this and other
similar enterprises remains to develop tools that take the burden of ontology
annotation off the writers of the documents to be annotated. Investigating the
feasibility of such tools will be one of our main research goals for the near future.

Acknowledgements

Many thanks to Simon Buckingham-Shum and Paul Mulholland for the insightful
discussions on topics related to Planet-Onto and especially to Simon for the important
feedback on the usability of Planet-Onto.

References

1. Benjamins, V. R. and Fensel, D.: Special Issue on Problem Solving Methods. International
Journal of Human-Computer Studies, 49(4), (1998) 305-650

2. Benjamins, R., Fensel, D. and Gomez Perez, A.: Knowledge Management through
Ontologies. In U. Reimer (editor), Proceedings of the Second International Conference on
Practical Aspects of Knowledge Management. Basel, Switzerland (1998)

3. Buckingham-Shum, S. and Sumner, T.: Publishing, Interpreting and Negotiating Scholarly
Hypertexts: Evolution of an Approach and Toolkit. Technical Report KMI-TR-57,
Knowledge Media Institute, The Open University, Milton Keynes, UK (1997. Available
from http://kmi.open.ac.uk/kmi-abstracts/kmi-tr-57-abstract.html.

4. Buckingham-Shum, S. and Sumner, T.: New Scenarios in Scholarly Publishing and
Debate. In M. Eisenstadt, and T. Vincent, (editors) The Knowledge Web: Learning and
Collaborating on the Net, Kogan Press, (1998) 135-152

5. Beys, P., Benjamins, R., and Van Heijst, G.: Remedying the Reusability-Usability Trade-
off for Problem-Solving Methods. In B. R. Gaines and M. Musen (editors), Proceedings
of the 10th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW96), Banff, Canada, (1996)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A Knowledge-Based News Server 119

Bowker, G. C.: Lest We Remember: Organizational Forgetting and the Production of
Knowledge. Accounting, Mangement and Information Technologies, 7(3) (1997) 113-
118. Available from http://www.lis.uiuc.edu/~bowker/forget.html

Bradshaw, J.: An Introduction to Software Agents. In J. Bradshaw (editor), Software
Agents. AAAI Press/MIT Press, Menlo Park, California (1996)

Clark, P., Healy, M., Uschold, M., Williamson, K. and Woods, S.: An Experiment in
Ontology Reuse. In B. Gaines and M. Musen (editors), Proceedings of the 11th
Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada (1998)
Craven, M., Di Pasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K. and
Slattery, S.: Learning to Extract Symbolic Knowledge from the World Wide Web.
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98) (1998)
Domingue, J.: Tadzebao and WebOnto: Discussing, Browsing, and Editing Ontologies on
the Web. In B. Gaines and M. Musen (editors), Proceedings of the 11th Knowledge
Acquisition for Knowledge-Based Systems Workshop, April 18th-23th, Banff, Canada
(1998).

Available from http://kmi.open.ac.uk/people/domingue/banff98-paper/domingue.html
Domingue, J. and Scott, P.: KMI Planet: Putting the Knowledge Back into Media. In M.
Eisenstadt, and T. Vincent, (editors), The Knowledge Web: Learning and Collaborating on
the Net, Kogan Press, (1998) 173-184

Eriksson, H., Puerta, A. R. and Musen, M. A.: Generation of Knowledge Acquisition
Tools from Domain Ontologies. In B. Gaines and M. Musen (editors), Proceedings of the
8th Knowledge Acquisition for Knowledge-Based Systems Workshop (1994)

Farquhar, A., Fikes, R. and Rice, J.: The Ontolingua Server: A Tool for Collaborative
Ontology Construction. In B. Gaines and M. Musen (editors), Proceedings of the 10th
Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. Banff, Alberta,
Canada (1996)

Feigenbaum, E. A.: The Art of Artificial Intelligence: Themes and Case Studies of
Knowledge Engineering. Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, Cambridge, MA (1977)

Fensel, D., Motta, E., Decker, S. and Zdrahal, Z.: The Use of Ontologies for Specifying
Tasks and Problem Solving Methods: A Case Study. In R. Benjamins and E. Plaza
(editors), Knowledge Acquisition, Modeling, and Management. Proceedings of the 10th
European Workshop, EKAW ‘97. Lecture Notes in Artificial Intelligence 1319, Springer-
Verlag (1997)

Fensel, D., Decker, S., Erdmann, M. and Studer, R.: Ontobroker: The very high idea.
Proceedings of the 11th Annual Florida Artificial Intelligence Research Symposium
(FLAIRS-98) (1998)

Girgenshohn, A., Zimmermann, B., Lee, A., Burns, B. and Atwood, M. E.: Dynamic
Forms: An Enhanced Interaction Abstraction Based on Forms. Proceedings of Interact 95
(1995) 362-367

Gruber, T. R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2) (1993)

Gruber, T. R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human-Computer Studies 43(5/6) (1995) 907-928
Guarino, N. and Giaretta, P.: Ontologies and Knowledge Bases: Towards a Terminological
Clarification. In N. Mars (editor), Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing. 10S Press, Amsterdam (1995) 25-32

Heflin, J., Hendler, J. and Luke, S.: Reading Between the Lines: Using SHOE to Discover
Implicit Knowledge from the Web. AAAI-98 Workshop on Al and Information
Integration (1998). Available from http://www.cs.umd.edu/projects/plus/SHOE/shoe-
aaai98.ps

120

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

J. Domingue and E. Motta

van Heijst, G.: The Role of Ontologies in Knowledge Engineering. PhD thesis,
University of Amsterdam (1995)

HPKB: High Performance Knowledge Bases. Darpa Project. Project Description (1997).
Available from http:// www.teknowledge.com:80/HPKB/

Krulwich, B. and Burkey, C.: The InfoFinder Agent: Learning User Interests through
Heuristic Phrase Extraction. IEEE Expert Intelligent Systems and their Applications, 12(5)
(1997) 22-27

Lenat, D.B. and Guha, R.V.: Building Large Knowledge-Based Systems: Representation
and Inference in the Cyc Project. Addison-Wesley, Reading, MA (1990)

Lieberman, H.: Letizia: An Agent That Assists Web Browsing. International Joint
Conference on Atrtificial Intelligence, IJCAI ‘95 Montreal (1995)

Motta E.: Reusable Components for Knowledge Models. PhD Thesis. Knowledge Media
Institute. The Open University. UK (1997). Available from
http://kmi.open.ac.uk/~enrico/thesis/thesis.html

Musen, M. A.: Automated Generation of Model-Based Knowledge Acquisition Tools.
Research Notes in Artificial Intelligence, Pitman, London (1989)

O’Leary, D. E.: Knowledge Management Systems: Converting and Connecting. IEEE
Intelligent Systems, 13(3) (1998) 30-33

Patman: Patient Management Workflow Systems. Telematics Applications Project HC
4017 (1998). Available from http://aim.unipv.it/projects/patman/

Puerta, A. R., Eriksson, H., Gennari, J. H. and. Musen, M. A.: Beyond Data Models for
Automated User Interface Generation. Proceedings of the HCI'94, People and Computers,
The University of Glasgow, Knowledge Systems Laboratory (1994)

PointCast: http://www.pointcast.com/ (1998)

Riloff, E.: An Empirical Study of Automated Dictionary Construction for Information
Extraction in Three Domains. Al Journal 85 (1996)

Riva, A. and Ramoni, M.: LispWeb: a Specialized HTTP Server for Distributed Al
Applications, Computer Networks and ISDN Systems 28(7-11) (1996) 953-961. Available
from http://kmi.open.ac.uk/~marco/papers/www96/www96.html

Rosch, E.: Principles of Categorisation. In E. Rosch and B. B. Lloyd (editors), Cognition
and categorisation. Lawrence Erlbaum Associates, Hillsdale, NJ (1978)

Runkel, J. T., Birmingham, W. B. and Balkany, A.: Separation of Knowledge: a Key to
Reusability. Proceedings of the 8th Banff Knowledge Acquisition Workshop. Banff,
Canada (1994)

Schank, R. C.: Conceptual Dependency: A theory of natural language understanding.
Cognitive Psychology, 3 (1972) 552-631

Schatz, B. R.: Information Retrieval in Digital Libraries: Bringing Search to the Net.
Science 275 (1997) 327-334

Sowa J. F.: Top-Level Ontological Categories. International Journal on Human-Computer
Studies 43(5/6) (1995) 669-685

Sumner, T., Domingue, J., Zdrahal, Z., Hatala, M., Millican, A., Murray, J., Hinkelmann,
K., Bernardi, A., Weiss, S. and Traphoner, R.: Enriching Representations of Work to
Support Organisational Learning. In Proceedings of the Interdisciplinary Workshop on
Building, Maintaining, and Using Organizational Memories (OM-98). 13th European
Conference on Atrtificial Intelligence (ECAI-98), 23-28 August, Brighton, UK (1998)
Uschold, M. and Gruninger, M.: Ontologies: Principles, Methods and Applications.
Knowledge Engineering Review 11(2) (1996) 93-136

van der Vet, P. E. and Mars, N. J. I.: Bottom-up Construction of Ontologies. IEEE
Transactions on Knowledge and Data Engineering 10(4) (1998) 513-526

Modeling Information Sources for Information
Integration

Francois Goasdoué, Chantal Reynaud

LRI — Univ. De Paris-Sud — Bat. 490 — 91 405 Orsay cedex — France
{goasdoue, cr} @lri.fr
Tel: 33 (0)1 69 15 66 45 — 33 (0)1 69 15 58 46
Fax: 33 (0)1 69 15 65 86

Abstract. A critical problem in building an information mediator is to design
knowledge bases describing the contents of information sources. Concepts
which capture abstractions in information sources and which are usable to
describe their content must be identified. This paper addresses this knowledge
acquisition problem in the context of the PICSEL! project, when information
sources are relational databases. The main contributions are (1) semi automated
techniques for identifying relevant concepts from a database’s conceptual
schema, and (2) a set of tools for assisting database administrators in mapping
these interesting concepts on to the domain model of the PICSEL mediator.

Key words. information sources modeling, identification of concepts, entity-
relationship model, description logics, knowledge abstraction, support to
knowledge representation.

1 Introduction

Our research works are developed in the context of the PICSEL project [14]. The
aim is to build information servers over existing information sources that are
distributed and possibly heterogeneous. The approach which has been chosen in
PICSEL is to define an information server as a knowledge-based mediator between
users and several information sources relative to a same application domain.

The idea in the knowledge-based mediator approach is to manage multiple
heterogeneous information sources thanks to knowledge bases describing their
contents in a logical formalism and using the same vocabulary. This provides shared
access to multiple data and preserves the autonomy of each information source. The
mediator plays the role of an interface between the user and the sources giving the
illusion of querying a centralized and homogeneous system. The aim of this paper is

1 Granted by CNET (Centre National d’Etudes des Télécommunications) under contract
number 97 1B 378.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 121-138, 1999.
© Springer-Verlag Berlin Heidelberg 1999

122 F. Goasdoué and C. Reynaud

to present an approach and automated tools for designing the knowledge bases (KB)
describing the contents of information sources in PICSEL knowledge-based
mediators.

Designing such KB confronts us with a knowledge acquisition (KA) problem. We
have to look for concepts which capture abstractions in information sources, usable to
describe their content. In the paper, we address this KA problem when information
sources are relational databases (DB). Our approach is based on Entity Relationship
(ER) models used to model the schema of database applications. ER models are
interesting because they are abstract representations of data. Yet, they are flat models
with all concepts at the same level. Moreover, ER models are built according to
modeling rules and don’t necessarily represent concepts relevant for users of
databases. We need abstraction mechanisms to make sets of objects really perceptible
and relevant to users emerge. In our approach, we propose semi automated techniques
to identify the main relevant concepts, called semantic concepts, in ER models. These
techniques are based on the mechanism of aggregation to create higher level concepts
from primitive ones.

Once the concepts to be described in the knowledge base of the mediator are
identified, the problem is then to write their description. Statements in the PICSEL
mediator knowledge bases are all represented in CARIN [12], a logical language
combining description logics and Datalog rules. Moreover, the descriptions of the
content of all databases must be represented using terms in the domain model of the
mediator. So, we must obtain descriptions of the contents of a database, represented in
CARIN and using terms in the domain model, from descriptions represented with the
ER modeling language and using terms particular to a database. The problem is
therefore to obtain a mapping between semantically equivalent concepts represented
with different terms and different formalisms. To solve it we exploit capabilities of
database administrators (DBA). DBAs know the contents of the databases they
manage and the meaning of their conceptual schema. Each DBA will have to design
the knowledge base referring to its own database. The identification of semantic
concepts allows to organize the description of a whole conceptual schema which may
be enormous. We guide then the DBA in the description of each semantic concept i.e.
we have implemented automated tools to help (1) to understand the domain model,
(2) to write CARIN sentences, (3) to characterize concepts represented in a database
in comparison with those represented in the domain model and using terms in the
domain model. Our approach and techniques have been used on a real database
provided by the Web travel agent Degriftour?.

The paper is organized as follows. In a first part, we present an architectural
overview of the PICSEL mediator showing its main knowledge components. In a
second part, we present the notion of semantic concept. Section 3 deals with their
identification in an ER model and section 4 describes semi automated techniques to
help DBA to describe semantic concepts in CARIN.

2 see http://www.degriftour.fr

Modeling Information Sources for Information Integration 123

2 Architectural Overview

2.1 General Presentation

In PICSEL, a mediator has been designed according to a knowledge-based
approach. It has two main parts: a generic query engine and KB specific to
information servers. KBs contain both the model of the application domain of a server
and abstract descriptions of the contents of the information sources accessible from
this server. Given an information server, there are one KB to model the domain and
one KB per information source to describe its contents as shown on figure 1. The
domain model contains all the basic vocabulary used to ask queries. The query engine
takes in charge the access to the sources in order to obtain the answers to user queries.
Given a global query Q, it computes a set of local query plans which provide the set
of all possible answers to Q that can be obtained by querying the different local
databases. Abstract descriptions of the contents of the information sources help to
localize relevant sources. They are represented in the same logical formalism as the
user queries and as the sentences in the domain model. The connection making
possible the correspondence between the actual database and their views in the
mediator is established by interface modules called wrappers. We give a description
of the main knowledge components in a PICSEL mediator in figure 1.

2.2 The Main Knowledge Components in a PICSEL Mediator

2.2.1 The Domain Model

The domain model contains all the vocabulary of an application domain used to
ask queries. All the categories of objects that may be considered by users of the
information server have to be represented. The domain model can be seen as a
categorization of domain objects from a user-oriented point of view. It is expressed as
a set of concepts, their definitions and their inter-relationships. So, the domain model
is very similar to a domain ontology [8].

The domain model is represented in CARIN [12], a logical language combining
description logics?® and Datalog rules. Its semantics ensures that its exploitation at the
symbol level by the engine conforms to its meaning at the knowledge level.

A domain model is built as follows. First, a basic vocabulary in terms of base
predicates is acquired. New domain relations, significant for the application domain,
can then be defined over the base relations using CARIN, either by rules or by
concept expressions. Basic and complex relations make up a taxonomic hierarchy that
can be automatically constructed.

3 The DL language that we consider in the PICSEL project is referred to as core-CLASSIC. It
contains the operators C (inclusion) and := (definition), and the constructors I (conjunction),
V (concept restriction), (= n R), (£ n R) (number restrictions) and = (negation on basic
concepts only).

124 F. Goasdoué and C. Reynaud

KB,: abstract
description of
source 1

Wrapper
N° 1

Model of
the
application

KB;: abstract
description of
source i

Wrapper
N°i

KB,,: abstract

description of
source m

Wrapper
N°m

Source
N° 1
Actual data

Source
Nei
Actual data

Source
N°m
Actual data

Fig. 1. The knowledge base part of the PICSEL mediator in an information server dedicated to
the application domain D

For example, the hierarchy represented in figure 2 is computed from the following
expressions:

Travel < (= 1 DepartureDate?) I17(= 1 ArrivalDate),

Stay := Travel 7(= 1 AssBuilding),

Journey := Travel 77 (= 1 DeparturePlace) 7 (= 1 ArrivalPlace) 17 (= 1
MeansTransport),

Flight := Journey 7(VMeansTransport.Plane),

TourismFlight := Flight /7 (YMeansTransport.(=SupersonicPlane)),

VIPFlight := Flight 77 (VMeansTransport.(—TourismPlane)) 17 (= 1
AssociatedMeal).

These sentences define the concepts Journey, Stay, Flight, TourismFlight and
VIPFlight from the primitive concept Travel (base predicate, unary relation) and from
the primitive roles (binary relations) DeparturePlace, ArrivalPlace, MeansTransport.
The concept Travel is at least characterized by a single departure date and a single
arrival date. The concept Journey is defined as a set of travels that have exactly one
departure place, one arrival place and one means of transport. The concept Stay is

4To simplify, we use the syntax ‘(=n R)’ for ‘(=nR) r71(<nR)’.

Modeling Information Sources for Information Integration 125

defined as a set of travels that have exactly one associated building. The concept
Flight is defined as a set of journeys which means of transport are necessarily planes.
The concept TourismFlight is defined as a set of flights which means of transport are
not supersonic planes whereas the concept VIPFlight is a set of flights which means
of transport are not tourism planes and which have at least one associated meal.

__—W Travel €—__

Journey Stay
Flight
v ¢
TourismFlight VIPFlight

Fig. 2. A taxonomic hierarchy

Our work doesn’t focus on the domain model design. We consider it already built.

2.2.2 Abstract Descriptions of the Contents of a Source

The abstract descriptions of a source consists of a set of source relations vy, Vg»,
..., Vg, for which it is specified: (1) a one-to-one mapping with domain relations, (2) a
set of constraints that are used to characterize the instances of the domain relations
that can be found in a source S. For example, for a given source S, the descriptions
may say that we can find instances of Flight and the constraints may indicate that the
flight’s departure places that we can find in S are all located in Europe, but not in
Germany.

More precisely, each abstract description of a relational database S is a knowledge
base that contains two sets of assertions: I and Cs.

Is represents mappings with domain relations by logical implications. For example,
vg1(xX) = Flight(X), vgy(X,y) = DeparturePlace(X,y) are two elements of Ig if the
source S contains instances of flights with their departure places, Flight and
DeparturePlace being two relations in the domain model.

C; indicates the constraints that are known to hold on the database relations. They are
represented with core-CLASSIC inclusions or incompatibility rules. For example, let
us consider that all flights in S have their departure places located in Europe, but not
in Germany. This is stated by Flight ;, s < (VDeparturePlace , s.(Europe 7 not
Germany)), and according to the vg; in Ig, the corresponding constraint that appears in
Cs is vg; < (Wso.(Europe 17 not Germany)). That constraint can also be described
thanks to (1) the inclusion statement: vg; € (Vvg,.Europe) and (2) the incompatibility
rule: vg(X) A Vgr(X,y) A Germany(y) = L.

126 F. Goasdoué and C. Reynaud

2.3 The Information Sources (Relational Databases) Accessible from an
Information Server

In this paper, we focus on information sources which are relational DB. Relational
DB developments are usually decomposed in several steps. One main step is the
construction of a conceptual model. The aim is to facilitate the communication
between designers and end users by providing them with a conceptual representation
of an application that does not include many of the details of how the data is
physically stored. One of the most popular and prominent conceptual model is the
Entity Relationship (ER) model introduced by Chen [6]. Instances useful in an
application are grouped into classes or concepts called entities and ER models
represent entities rather than actual instances.

The approach that we propose to model the content of databases relies on the
analysis of ER models. It does not exploit the data of the database at all. Given a
query, the aim is to identify relevant information sources which may give an answer.
It is not to identify the sources which, at the moment, given their data, are able to give
an answer to the query. Yet, an ER model doesn’t provide a conceptualization
adequate to the description of the contents of a database in PICSEL mediator. ER
models are quite flat. All concepts are represented at the same level. Moreover the
construction of an ER model is guided by modelisation rules and the concepts that are
represented are not necessarily relevant for a user of the database application. We
need abstraction mechanisms to make concepts really perceptible and relevant to
users emerge. (cf. section 4)

The basic primitives of an ER model are: entities, relationships, attributes.

Relationships represent links between instances of differents entities and use a name
to describe these links in a literal form. Attributes describe characteristics of instances
of an entity or characteristics of related instances.
Cardinalities constraints (Card(E;,R),Card(E,,R)) on the participating entities (E;, E;)
in a relationship R are given. A cardinality constraint describes a restriction on the
minimum and maximum number of instances from an entity that may be associated
with any one instance from the other entity.

We use these cardinality constraints to define if a relationship can be considered as
a link between two entities, the first one beeing viewed as a characterization of the
second one. Such links are called characterization links. We give the definition of this
notion and of the different kinds of characterization links below. They are
summarized in Table 1.

Card(E,R) Card(E,,R) Strength of the characterization link
(1,1) (1,1) Pairable
(1,n) (1,1) Strong
0,.) (1,1) Weak
other other None

Table 1. Characterization of a relationship R according to the cardinalities constraints
between R and the entities E; and E,

Modeling Information Sources for Information Integration 127

A relationship between two entities can be seen as a characterization link iff one of
its cardinality constraints is equal to (1,1). This link is said pairable, strong or weak
according to the cardinalities constraints of the other entity (cf. Table 1).

The characterization link between E; and E, is said pairable iff each instance from E;
is associated with one and only one instance from E,, and conversely. So, E; strictly
characterizes E, and conversely.

It is said strong (resp. weak) iff each instance from E, is associated with at least one
(resp. zero) instance from E,, and E, strictly characterizes E;. Here, the strength of the
link indicates that E; is necessarily (resp. not necessarily) in relation with E,.

3 The Notion of Semantic Concepts

In order to model relevant concepts, we defined the notion of semantic concept.
This notion has been adapted from the natural object model used in the Dialog
module of the CASE TRAMIS [4]. One of the aim of this model is to aggregate
entities and relationships of an ER model to allow objects really perceptible to the
users to emerge.

A semantic concept (SC) can be seen as a grouping of entities and relationships.
Such a grouping brings to the fore one particular entity, called the root entity of the
SC, while the other ones only characterize it.

For example, in the ER model in figure 3, only two objects are perceptible to users:
Region (including data on their departments® and data on the towns of these
departments) and Place of interest (including guided tours). That means that, in the
context of the database, regions are not meaningful for a user without information on
their departments and on their towns. A department is not perceptible to users apart
from regions. Any department always belongs to only one region (the pair of
cardinalities of (department, belongs-1) is (1,1)). Data on a department can then be
seen as a characterization of the region to which it belongs. Furthermore, in the
database (always according to the ER model below), some towns are not close to any
place of interest and conversely, some places of interest are not close to any town.
That means that the concept of town and place of interest are not dependent of each
other.

To define a SC, the ER model is seen as a connected graph, where entities are
vertices and relationships (characterization links) are edges or directed edges. An
edge is directed only if it is a strong or weak characterization link. In this article, we
only focus on strong characterization links.

Definition of a Semantic Concept: Given a connected subgraph G of an ER model, G
is a Semantic Concept iff the graph S obtained further to two operations applied on G
(a grouping operation and an elimination operation, defined below) is a skeleton.

> In France, Regions are divided in geographical areas called Departments.

128 F. Goasdoué and C. Reynaud

Definition of a semantic concept’s Skeleton: Given a semantic concept G, it has only
one skeleton S which satisfies:

- Sis a connected directed graph.

- S has a single source vertex V) that is the root entity of the G.

- All the vertices of S are reachable from V, by following directed edges
(characterization links). Reachable vertices are entities that
characterize the root entity of G (Vy).

- Any entity of G appears in one of the skeleton’s vertices. This implies
that all entities of G are either the root entity, either characterizations of
the root entity in S.

Main entity of the semantic concept REGION
(root entity)

Semantic ¢
concept —> REGION [PLACE of INTEREST]
4 F g
Relation- — Region ™ %
ship 1P Cbelongs-1 belongs-3
(1,D) (LD
Place of
Enity ~{-{ Deparument | M Aineren
(1,n) @ (0O,n))
belongs-2 suggests
(O,n) (1.1)
Guided tour
N J\)

v

Main entity of the semantic concept
Place of Interest

Fig. 3. An ER Model split into two semantic concepts

The grouping operation: It consists in grouping in a vertex all entities that are
indissociable i.e. vertices linked by edges that are pairable characterization links.

The elimination operation: It consists in eliminating all edges that aren’t
characterization links.

These operations applied on a graph G ensure the resulting graph S represents
groupings of indissociable entities and the characterization links that exist between
those groupings. An example of these operations is given in figure 4.

Modeling Information Sources for Information Integration 129

Non
O directed
edge and
not a
charac-
terisation
link)
Directed

Step 1 | }% O edge and

L. . strong
Step 2 ¥ Elimination charac-
terization
link)

Grouping

—

Non
O directed
edge and
pairable
charac-
terisation
link)

. Semantic
Semantic concept’s
concept G skeleton S

Fig. 4. The construction process of the skeleton of the SC “A/E”

In [7], we have shown that any ER model can always be split into a partition of
semantic concepts (proposition 1). This first proposition led us to find an automated
method to construct semantic concepts of an ER model. The method that we propose
is based on the notion of skeleton. In section 4, we explain how the notion of skeleton
is used and we detail the construction process.

4 Identifying Semantic Concepts

To split an ER model into SCs, we use a method based on the research of SCs’
skeletons. We have shown in [7] that, given a SC’ skeleton, we can find the
corresponding SC on the ER model (proposition 2). Furthermore, an ER model may
be enormous and complex. For example, we worked on a database containing 43
tables. In such cases, it might be hard to find relevant groupings of entities and
relationships directly on the ER model. It might also be difficult to work directly on
the graph representing the whole model. On the opposite, skeletons are simpler graphs
than those representing an ER model or even than SCs thanks to the grouping and
elimination operations.

So, to identify SCs of an ER model represented by a graph G, we have three stages.
In a first preliminary step, we build the skeleton Sg of G. Second, we split Sg into
different skeletons in an incremental way. Finally, according to proposition 2, we
build the SCs corresponding to each different skeleton of Sg. The first two steps are
described in the next sections.

130 F. Goasdoué and C. Reynaud

In our approach, we are always interested in discovering the biggest semantic
concepts. We would like to describe an ER model by means of a minimum number of
concepts.

4.1 The Preliminary Step: Building the Skeleton of a Graph Representing a
Whole ER Model

The aim of this step is to compute the ER model skeleton. To do this, both operations
previously introduced (grouping and elimination) are performed on the whole ER
model. By analysing the ER model skeleton, we determine which vertices will be
sources of skeletons (cf. figure 6). We have shown in [7] that given an ER model
skeleton’s vertex, it can belong to one and only one biggest skeleton (proposition 3).
We showed also that, given an ER model skeleton, we can decide for each of its
vertices if it will be or not a source of a biggest skeleton (proposition 4).

For illustration, figure 6 represents a skeleton corresponding to the ER model in
figure 5.

Fig. 5. An ER model represented as a graph

4.2 The Identification of Skeletons of Semantic Concepts

Our aim is to automate as much as possible this identification process. Yet, an ER
model may often be split into different ways. The administrator of the database
(DBA) corresponding to an ER model is the only person who can decide on the best
partition. So, we propose to build at the beginning a first one in a fully-automated
way. This first partition only proposes groupings which are sure in respect to our
construction rules and thus, which don’t need the intervention of the DBA. Then, it is
shown to the DBA who can decide on further groupings.

Modeling Information Sources for Information Integration 131

L (l,n)(l,l) M (1,1)(1,11) N
s

Fig. 6. The ER skeleton corresponding to the graph in figure 5 (black vertices are sources of
biggest skeletons)

The identification of the most relevant concepts of a database is obviously a
process which can’t be performed without the contribution of a human being, the
DBA. The approach that we propose is interesting because it clearly separates the
process in two parts, one which can totally be automated and another more little one
which needs the DBA to make choices.

To build a partition of SCs in a deterministic way, we showed that, given an ER
model skeleton, there is only one partition of it into biggest skeletons (proposition 5).
So, we developed algorithms to split an ER model skeleton into the partition of its
biggest skeletons. The process which is performed is incremental. (Small) skeletons
are built and afterwards one can decide to merge several of them.

A variant of the depth-first search algorithm is performed to build the first
partition. It allows all vertices that are reachable from a source vertex and that are not
sources of biggest skeletons to be grouped. A source vertex and the vertices reachable
from it compose a skeleton (cf. figure 7).

Then a merging process is performed. We illustrate it on the example below. The
final partition which is obtained from figure 7 is represented on figure 8.
- Let S5 and Sg be the two skeletons which source vertex is respectively A and E. We
can notice that (1) E characterizes D (because of the strong characterization link
“de”), (2) E characterizes F (because of the strong characterization link “fe”), (3) D
and F are both characterizations of A (because of the strong characterization links
“ad” and “af”). So, E and its characterizations are also characterizations of A. Since
we want to build the biggest skeletons, we merge Sa and Sg.
- Let Sa, Sp, Sg and Sy be the skeletons which source vertex is respectively A, E, G
and H. We can notice that (1) B, G and H characterize themselves, (2) G is a

132 F. Goasdoué and C. Reynaud

characterization of F, (3) F is a characterization of A. So, we can deduce that B, G and
H characterize A. Since we want to build the biggest skeletons, we merge Sa, Sp, Sg

and Sy.

(1,1) (1,n)

1,1) (1,n) ¥(1,1)

(1,n)A—(1,n) (1,1) (1,n)
F
Fr

oo}
oo}

(1,n) (1,1)

€ -1

(l,n)m

E(l,n)@(l,l)m(l,l)

(1,1)

1)

(1
(o) 4F

(1,1) (1,n)

Fig. 7. A first partition of SCs obtained in an automated way (black vertices are sources of
skeletons)

(1,1)

E(l,n) (1,1)M(1,1)®(1,n)m
°F

\ 4

los]

(1,n)

(o) y¥

Fig. 8. The final partition of SCs obtained in an automated way (black vertices are sources of
skeletons)

Modeling Information Sources for Information Integration 133

At the end of the identification step, we have a partition of an ER model into SCs
(cf. figure 9 for example). Each one represents a semantic concept which significant
entity is the root entity of the SC and which the other entities are only viewed as
characterizations of the significant entity. This way, the technique described above
leads to extract central concepts of a database, each concept being defined by the
contents of a SC. Because these concepts are central, we assume that they are
meaningful and relevant for users of a database. We have experimented the technique
successfully on the conceptual schema of the database provided by Degriftour.

Fig. 9. A SCs partition of the ER model of figure 5 (black vertices are roots of produced SCs)

S Describing Semantic Concepts in CARIN

Once the SCs are identified, they must be described in the terms of the domain
model. To help the DBA to produce this description, we have developped three tools:
a semantic concepts explorer, a domain model explorer and a CARIN sentences
composer. All of them are automated supports in the description of a whole relational
DB. The idea behind the approach is that the space of choices of concepts to describe
can, to some extend, be controlled by the introduction of the notion of semantic
concepts. That way, a DBA will have to describe its DB only part by part, each part
corresponding to a SC, an abstraction representation of semantically related and
indissociable data. We assume in this mapping process that the domain model in the
PICSEL mediator is exhaustive. Given this assumption, except if SCs are out of the
domain of the information server, all correspondences should be achieved.

134 F. Goasdoué and C. Reynaud
5.1 The Semantic Concepts Explorer

This tool allows the administrator of a given database to browse the previously
identified semantic concepts of his ER model. It is a way to recall to him the
significant notions to describe.

5.2 The Domain Model Explorer

This tool displays all the hierarchies that can be computed from concept inclusions
and concept declaration statements in the domain model (cf. the hierarchy presented
in 2.2.1).

For each node of a hierarchy that is a base concept, a description in natural
language is available. Moreover, for each node, we can retrieve all the roles that have
the node type as type of one of their arguments. So, the DBA can browse the different
hierarchies to learn the vocabulary defined by the domain model, or find the concept
that represents the best a notion he wants to put in the knowledge base.

We can also list all the roles of the terminology, with, for each of them, their
meaning in natural language. Moreover, if information is also available from domain
model, we can display for each role the type of concepts that it links. For example, we
can deduce that the role DepartureDate needs a concept of type Date as its second
argument from the following expression: DepartureDate(X,Y) A =Date(Y) = L.

5.3 A CARIN Sentences Composer

When a DBA decides to describe a significant notion encountered in a semantic
concept of his ER model (thanks to the semantic concepts explorer), he can choose
the concept of a hierarchy that represents the best that notion (thanks to the domain
model explorer). The result of such an action is to produce automatically a new source
relation declaration: vi(x) = Cj(x), where C; is the concept that has just been selected
in the domain model. The purpose of our tool is to help the DBA to characterize that
source relation.

First, we try to characterize v; using roles Ry (1<« that are associated with objects
of C;. For example, the roles DepartureDate, ArrivalDate, DeparturePlace,
ArrivalPlace and MeansTransport can be used to characterize the concept Flight,
according to the piece of domain model presented in 2.2.1.

Possible characterizations of v; are expressed thanks to source relation inclusions like:

vicC, r1C, ... 11C,, where each C; (1<) 1s of the form (<num Ry), (2 num Ry) or
(VR Cucceprea)- On the one hand, for a C; jqem) like (<num Ry) or (2 num R;), there is
no particular problem. The DBA has only to select a role Ry ;<< and to give the
cardinality num. On the other hand, a C; (1q<m) Of the form (VR). Cueceprea) implies that
the concept Cpecepreq 18 compatible with R,. To be sure that Cpeeepreq is compatible with
a R, selected by the DBA, let’s consider the following process:

Modeling Information Sources for Information Integration 135

Case 1: if Cycceprea 18 @ concept name CN, it must appear in the domain model
and CN must have the same type as the one of R’ second argument.
To do this, our tool uses the domain model explorer, pointing at the
node of the hierarchy in which CN appears. Then, the DBA has to
choose CN or one of its specializations for Cpecepreq-

Case 2: if Cycceprea 18 a concept like (<num R;) or (2 num R;), R, must have as
first argument’s type, the same type as the R;’ second argument. To
do this, our tool retrieves from the domain model all the roles R,
which satisfy this property. Then, the DBA will have to choose one
of them (R)), and to give the cardinality n.

Case 3: if Cyeceprea 15 @ concept like (VR Cyeceprea’), the choice of R; is done as
Ry’s choice is. The concept Cccepres must be of the same type as the
type of R;” second argument. Thus, C,cceprear 18 chosen like Cieceprea
was (i.e. case 1,2,3 or 4).

Case 4: if Cycceprea 15 @ concept like C; and C, and ... and C,, each of the C,...C, is
defined like Cyccepreq is (i-€. case 1,2,3 or 4).

This way, if we want to express that we have a source relation v; over flights which
arrival places are located in Europe and which type is Tourism, we can generate the
following expressions, according to the piece of domain model presented in 2.2.1.:

vi(x) = Flight(x), Vi c (VArrivalPlace.Europe®) 7
(VMeansTransport. TourismFlight).

Second, we try to characterize v; using roles Ry (1<c<n) that are known not to
associate objects of C; but objects of classes subsumed by C;. These roles are those of
the domain model that are different of the R, above, but that accept the same concept
type as the one of C; as first argument.

Again, possible characterizations of v; are expressed thanks to source relation

inclusions like: v; € C, /7 C, 77... I7C,,, where each C, 1q<m) 1S a (Snum Ry), (=num
Ry) or (VRy.Cyeeeprea).- The same process of characterization as the one described
above is used.

For example, if we want to express that we have the source relation v; over flights that
propose to have diner on board, we can generate the following expression, according
to the piece of domain model presented in 2.2.1.: v; € (= [AssociatedMeal) 7
(VAssociatedMeal.Diner’).

6 Related Work and Conclusion

Our aim was to obtain descriptions using terms in the domain model from
representations using terms particular to a database schema. The fundamental problem

6 Here, we consider that the concept Europe appears in the domain model.
7 Here, we consider that the concept Diner appears in the domain model.

136 F. Goasdoué and C. Reynaud

which arises is semantic heterogeneity — the fact that the same concepts are
represented differently in a database schema and in the domain model.

Some issues raised by semantic heterogeneity have been studied in the database
community. When two or more databases need to work together, in many cases the
same data is replicated. Different database schemas and different conceptualizations
are typically used to represent the replicated data.

So, in the database schema integration field which aim is to construct a global, unified
schema from existing or proposed databases, the semantic heterogeneity problems to
be dealt with are structural and naming conflicts [1]. Structural conflicts arise as a
result of a different choice of modeling constructs or integrity constraints. Naming
conflicts arise because people from different application areas refer to the same data
using their own terminology and names. Thus, to make schemas compatible, one must
replace terms by other ones, the new terms belonging to the same level of discourse.
In both cases, conflict discovery and restructuring are generally aided by a strong
interaction between the different DB designers. Techniques to solve the semantic
heterogeneity problem are used prior to the integration step. It is very often a manual
process, except for some kinds of structural conflicts. In any cases, the preintegration
step is considered the responsability of the DB designers. Furthermore, in much
works, mappings between database schemata are assumed to be provided. A solution
to the semantic heterogeneity problem would be to enhance the semantic description
of each schema. For that, Bonjour in [2] proposes to introduce concept bases on top of
a set of schemes to integrate. These bases could help to compare concepts represented
in different systems.

More recently, other database works have focused on importing and integrating
selected portions of DB schemata as in federated [16] or knowledge-based mediator
or data warehouses architectures [18]. A lot of problems of semantic heterogeneity
which arise are the same nature as in data integration field. But they have been
addressed a little. Nevertheless, in the knowledge-based mediator approaches
([111,[5]), we notice two trends. Mediator approaches have in common the use of
knowledge bases which describe both the domain model and the contents of
information sources. So, they don’t need correspondences directly between the
information sources but, instead, they need correspondences between the domain
model and the descriptions of the contents of each information source. A way to make
such correspondences easier is to capture the intended meaning of DB schemata using
ontologies [8]. It relies on manipulation techniques coming from the fields of artificial
intelligence. In Observer [13] for example, the objects in the sources are represented
as intensional descriptions by pre-existing ontologies. The query engine rewrites user
queries by using interontology relationships to obtain semantics-preserving
translations across the ontologies. The approach is interesting but new problems arise
: how to build the ontologies ? how to acquire the terminological relationships
represented between terms across the ontologies ? An other approach is to use the
same vocabulary to describe both the domain model and the contents of the different
sources. The problem of different vocabularies disappears but we must be able (1) to
describe each source with the vocabulary of the domain model, and (2) to link the
descriptions of the contents of a DB to the DB itself. Our paper is relative to the first
point of this second approach, when information sources are described by views.

Modeling Information Sources for Information Integration 137

Another related work is on the extraction of data from web sources. The focus is on
building wrappers for semi structured sources. The systems use either a template-
based specification of a source, as in [9], or machine-learning techniques to learn the
structure of a source (cf. ARIADNE project [10]). Yet, these systems don’t focus on
mapping sources into a description using a “global” vocabulary.

On another hand, our problem is relative to knowledge engineering. We want to
build a knowledge-based mediator. Thus, we need techniques to construct all the
knowledge bases useful to the mediator. Current knowledge engineering works
describe the structure of a knowledge-based system (KBS) through highly structured
models [15]. The domain models which describe the specific knowledge of a domain
are one of the components of such models. Recently, in the knowledge engineering
community, research works have been conducted to characterize domain knowledge
and to help building domain models by means of ontologies [8]. An ontology is based
on the definition of a structured and formalized set of concepts. A great part of it
comes from text analysis. So, one trend is to benefit from both knowledge engineering
and linguistics approaches. Researchers have studied mutual contributions and this
led them to elaborate the concept of Terminological Knowledge Base (TKB), first
defined by Ingrid Meyer [17]. In France, the works of the TIA research group is
centered on this notion too [3]. A TKB is an intermediate model which helps toward
the construction of a formal ontology ; it contains conceptual data, represented in a
network of domain concepts, but also linguistic data on the terms used to name the
concepts. A TKB can enhance communication and be a great help to choose the
names of concepts. Such research works address the problem of the identification of
concepts. We deal with the same problem but we have to identify concepts from
database schemata, not from text analysis. So, the techniques that we propose are
specific ones, based on the notion of semantic concepts.

In conclusion, this paper deals with identifying and modeling relevant concepts.
First, we have presented a way to identify them. Our aim was to automate this process
as much as possible although it can’t be entirely performed without the contribution
of DB designers. We have identified two different parts in the process performed
sequentially: one which can be totally automated and another one performed in
cooperation with the DB designer. Second, we have presented techniques usable by
DB designers to be guided in the description of relevant concepts in CARIN and
using terms in the domain model. Most of the techniques described in the paper have
been implemented in Java.

Acknowledgements

The authors thank Marie-Christine Rousset and anonymous reviewers for helpful
comments on an earlier version of this paper.

138

F. Goasdoué and C. Reynaud

References

10

11

12

13

14

15

16

17

18

Batini, C., Lenzerini M., Navathe S.B.: A Comparative Analysis of Methodologies
for Database Schema Integration”. ACM Computing Surveys, Vol. 18. (1986) 323-
364

Bonjour M., Falquet G.: Concept Bases: A Support to Information Systems
Integration, CAISE 94 (1994).

Bourigault D., Condamines A.: Réflexions autour du concept de base de
connaissances terminologiques. Dans les actes des journées nationales du PRC-IA,
Nancy (1995)

Bres P.-A.: L’apport de D’approche objet dans la conception de systemes
d’information. AGL’93, Pact-Group (1993).

Chaurathe S., Garcia-Molina H., Hammer J. and al.: The TSIMMIS Project :
Integration of Heterogeneous Information Sources. Proceedings of the 100™
Anniversary meeting. Tokyo, Japan. Information Processing Society of Japan (1994)
7-19

Chen P.S.: The Entity-Relationship Model. ACM Transactions on Database Systems
1(1976) 166-192

Goasdoué F.: Assistance a la conception de bases de connaissances dédiées au
médiateur PICSEL. Mémoire de D.E.A. d’informatique, Université Paris 11 (1998)
Gruber T.R.: A translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5 (1993) 199-220

Hammer J., Garcia-Molina H., Nestorov S. and al.: Template-based wrappers in the
TSIMMIS System. In Proceedings of ACM SIGMOD 97 (1997)

Knoblock A., Minton S., Ambite J.L. and al.: Modeling Web Sources for Information
Integration. AAAT’97 (1997)

Levy A., Rajaraman A., Ordille J.: Querying heterogeneous information sources
using source descriptions. VLDB’96 (1996)

Levy A., Rousset M.-C.: Combining Horn Rules and Description Logics in CARIN.
Artificial Intelligence Journal, Vol. 14 (1998)

Mena E., Kashyap V., Seth A., Illaramendi A.: OBSERVER: An approach for
Interoperation Accross Pre-existing Ontologies. Proceedings of the first IFCIS
International Conference on Cooperative Information Systems (CoopIS’96) (1996)
Rousset M.-C., Lattes V.. The use of CARIN language and algorithms for
information Integration: the PICSEL project. Intelligent Information Integration
Workshop associated with ECAI’98 Conference, Brighton (1998)

Schreiber A.T., Wielinga B.J., De Hoog R., Akkermans J.M., Van de Velde W.:
CommonKads: a comprehensive methodology for KBS development. IEEE Expert
9(6). (1994) 28-37

Sheth A. P., Larson A.: Federated Database Systems for managing Distributed,
Heterogeneous and Autonomous Databases. ACM Computing Surveys, Vol. 22 n°3.
(1990) 183-236

Skuce D., Meyer I.: Terminology and Knowledge Acquisition: Exploring a Symbiotic
Relationship. In Proc. 6" Knowledge Acquisition for Knowledge-based System
Workshop, Banff. (1991) 29/1-29/21

Widom J.: Research Problems in Data Warehousing. Proceedings of Fourth
International Conference on Information and Knowledge Management (CIKM’95),
Baltimore, Maryland, (1995) 25-30

Ontological Reengineering for Reuse
Asuncion Gomez-Pérez, M* Dolores Rojas-Amaya
Facultad de Informatica
Universidad Politécnica de Madrid
Campus de Montegancedo s/n
Boadilla del Monte, 28660. Madrid. Spain.

Tel: (34-1) 336-74-39, Fax: (34-1) 336-74-12
Email: {asun, mrojas} @delicias.dia.fi.upm.es

Abstract

This paper presents the concept of Ontological Reengineering as the process of retrieving
and transforming a conceptual model of an existing and implemented ontology into a new,
more correct and more complete conceptual model which is reimplemented. Three activities
have been identified in this process: reverse engineering, restructuring and forward
engineering. The aim of Reverse Engineering is to output a possible conceptual model on the
basis of the code in which the ontology is implemented. The goal of Restructuring is to
reorganize this initial conceptual model into a new conceptual model, which is built bearing
in mind the use of the restructured ontology by the ontology/application that reuses it. Finally,
the objective of Forward Engineering is output a new implementation of the ontology. The
paper also discusses how the ontological reengineering process has been applied to the
Standard-Units ontology [18], which is included in a Chemical-Elements [12]
ontology. These two ontologies will be included in a Monatomic-Ions and
Environmental-Pollutants ontologies.

1 Introduction

The concept of reengineering is commonly used in Software Engineering and
started to move into the field of Knowledge Engineering a few years ago. When we
try to define the term reengineering, other very closely related concepts emerge, such
as reverse engineering, restructuring and forward engineering. The term reverse
engineering is used to denote the process of analyzing a system to identify its
components and relations and/or represent a system in another manner [5].
Therefore, the reverse engineering process could be defined as the analysis of a
system/program in an attempt to create a representation of the program at a higher
level of abstraction than source code. This is what Pressman refers to as design
retrieval [20]. There are several definitions of the term restructuring [6, 8, 21]. The
most representative definition was made by Chikofsky who defined restructuring as
system transformation to pass from one representation to another at the same level of
abstraction, conserving functionality and semantics [8]. He also defines the concept
of forward engineering as the traditional process leading from a high level of
abstraction, which is independent of implementation design, towards the physical
implementation of a system [8]. Accordingly, the term reengineering refers to the
process in which design information about the existing software is retrieved and this
information is then used to alter or reconstruct the existing system in an attempt to
improve overall quality [20]. The software outputted by reengineering mostly
reimplements the function of the existing system; however, at the same time, the
developer adds new functions and/or improves overall performance.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 139-156, 1999.
© Springer-Verlag Berlin Heidelberg 1999

140 A. Gémez-Pérez and D. Rojas-Amaya

There are no papers on reengineering related to the field of ontological
engineering, although the paper by Barley et al. [3], who show how knowledge on
stillended panel layout implemented in ICAD code has been manually analyzed and
transformed into production rules, which have been formalized in KIF [13] and
SLANG [19], could be construed as a kind of reengineering. So, this paper presents
how we have done ontological reengineering of the Standard-Units [18]
ontology, which is included in a Chemicals-Elements [12] ontology. Both
ontologies are reused by a Environmental-Pollutants ontology. This paper is
organized as follows: Section 2 presents the need for environmental ontologies and
section 3 the scope of the problem; sections 4 and 5 describe the ontological
reengineering method applied to the Standard-Units ontology, and, finally,
section 6 reviews the Chemical-Elements ontology.

2 Need for environmental ontologies

Specialists from different fields, such as biologists, geologists, computer
scientists, chemists, lawyers, etc., are involved in the environmental sciences. Each
expert uses his own vocabulary, there being no common terminology or standard to
ensure that each term is used accurately. There are numerous reasons for building
ontologies in the environmental field: (1) The existence of synonyms (for example,
the terms “contamination” and “pollution” are used as synonyms in reference to air
pollution, as are “bleaching” and “leaching” in the case of soil treatment and
problems); (2) One term can be used in different sciences, where it may have a
similar but not an identical meaning (for example, in the geological domain, the
word “contamination” refers to the process in which the chemical composition of the
magma changes due to the assimilation of rocks and, in the microbiological domain,
it is defined as the biological process of bacterial alteration); and (3) there are terms
that are closely related within the same science that present slight differences of
meaning, (for example, within the biological sciences, “contamination” is the term
used in microbiology and “pollution” is the term used in ecology).

There are a lot of possibilities for building environment-related ontologies, but
we are going to center on environmental pollutants ontologies. An ontology of this
type has to study the methods of detecting the different pollutants components of
various media: water, air, soil, etc., and the maximum permitted concentrations of
these components, taking into account all the legislation in effect (European Union
regulations, Spanish, German, US legislation, etc.). Moreover, the elements that are
part of compounds are ionic. lons are, therefore, the entities to be considered when
performing environmental-pollutants-related studies, as they are possible indicators
of pollution, deterioration, etc. Previous knowledge about elements in their pure state
and their properties, as well as the units of measure of some properties, are required
to represent knowledge about ionic concentration. The Environmental-
Pollutants ontology seeks to produce a unified, complete and consistent
terminology that can be used consistently, precisely, unambiguously and concisely in
environmental applications that employ the maximum permitted concentration of
ions to detect alterations in such media.

Ontological Reengineering for Reuse 141
3 Problem scope

Before developing the ontologies on monatomic-ions and environmental-
pollutants, we looked for other ontologies that had already been developed to check
whether any of the knowledge they contain could be reused. We looked for
ontologies related to periodic system elements and containing Systéme International
(SI) units of measure. Accordingly, we searched the ontologies in the Ontology
Server' [9] and the Cyc® ontology server. Useful ontologies, like Standard-
Units®, which defines a series of base units of measure, and Chemical-Elements,
which defines the chemical elements of the periodic system, were found at the
Ontology Server. Definitions of some units of measure and chemical entities (atom,
ion, molecule and radical) were found at the Cyc server. As the ontology describing
the units of measure at the Ontology Server includes a natural language definition,
physical dimension and factors of conversion to other units of the same dimension
for each unit and Cyc’s ontologies only include a natural language definition, we
decided to use the Ontology Server ontology as it was more complete. Moreover, as
Chemical-Elements was developed by our work group, we opted to take the
Ontology Server ontologies as a starting point, using the Cyc ontologies as a
reference point. Then, we evaluated (verify® and validate’) the Chemical-
Elements and Standard-Units ontologies to assure that they were correct and
complete and thus guarantee that these ontologies provided a solid basis on which
new ontologies could be developed incrementally. These ontologies were analyzed
bearing in mind its future use of this ontology by the Monatomic-Ions ontology.
The initial analysis of Chemical-Elements revealed that: (1) it addresses the
elements in their pure state, (2) it needs to be updated with new knowledge that
addresses elements from the environmental viewpoint, and (3) it includes attributes
(i.e., atomic-weight) that have associated SI units of measure.

In pursuit of the above-mentioned objectives, we are going to develop a new
ontology on Monatomic-Ions which will be later included in an ontology on
Environmental-Pollutants.

The starting point of the new ontology will be the monatomic ion, both anionic
and cationic, addressed from the viewpoint of inorganic chemistry and, also,
analyzed with a view to standardization in the soil and waterfields within the
physical environment and in terms of human health. On the other hand, as the
ontology under development covers such an extensive field, the development of an
ontology of polyatomic ions has been postponed. Figure 1 shows how all these

http://www-ksl.stanford.edu:5915 and its european mirror site at http://www-ksl-svc-
lia.dia.upm.es:5915.

2 http://www.cyc.com.

® The Standard-Units used to develop this work was available at the Ontology Server in December

1997.

* Verification concerns with analyzing the completeness, consistency, conciseness, expandability,
and robustness of the definitions and axioms that are explicitly stated in the ontology, and the
inferences that can be drawn from those axioms [16].

3 Validation refers to whether the meaning of the ontology definitions really represent the real world
for which the ontology was created [16].

142 A. Gémez-Pérez and D. Rojas-Amaya

ontologies will be integrated in a hierarchical and distributed architecture. The
ontologies at the top of this hierarchy should be interpreted as including the lower-
level ontologies. Note that this hierarchical architecture facilitates ontology design,
maintenance and understanding by the future user. The description of the
Monatomic-Ions and Environmental-Pollutants ontologies are out of the
scope of this paper.

Environmental-Pollutants
Monatomic-Ions Poliatomic-Ions

Chemical-Elements

*

Standard-Units

Standard—Dixm;

Physical-Quantities

KIF-Numbgrs Frame-Ontology
Figure 1. Relationship between the ontologies involved.

4 Ontological reengineering: method

The method for reviewing the Standard-Units ontology at the knowledge
level is presented in Figure 2 and adapts Chikofsky’s software reengineering schema
[8] to the ontology domain. In this paper, we define ontological reengineering as
"the process of retrieving and transforming a conceptual model of an existing and
implemented ontology into a new, more correct and complete conceptual model,
which is reimplemented”. The ontological reengineering process should be carried
out bearing in mind the use of the existing ontology by the system
(ontology/software) that reuses it. Therefore, several ontological reengineering
processes could be performed on the same ontology. If this were the case,
configuration management would be required to keep a record of ontology evolution,
as would strict change control.

Conceptual Model | }i Conceptual Model'
Restructuring
Reverse Forward
Engineering Engineering
Implemented Ontology Implemented Ontology'

Figure 2. Ontological reengineering process.

Three activities were identified in the ontological reengineering process: reverse
engineering, restructuring and forward engineering. Figure 3 pictures an
organizational chart showing the activities performed during the reengineering
process and the documents generated in each step.

Ontological Reengineering for Reuse 143

Preliminary

'_’" REVERSE
ENGINEERING

Andlysis
Document.

o omme o]

Step 2:
Are
hierarchies
correct?

RESTRUCTURING

Step 3: Step4:
Not e down Areclass, instance,
hierarchy function, axiom YES »
errors finitions correct ?,
Siep 6: Synthesis
Build anew bl
Conceptud)
Model
Stons: oo
Note down b
definitions r
errors i e
b
§ | 7
A | stz
| VS ST - A Rei
. ontology *
\Y

. s
S

Seedee= FORWARD
ENGINEERING

Implementation s TOP

Configuration
Management
Document.

of the ontology.

Figure 3. Ontological Reengineering activities.

144 A. Gémez-Pérez and D. Rojas-Amaya

Reverse Engineering: Its objetive is to output a possible conceptual model on the
basis of the code in which the ontology is implemented. For the purpose of building
a conceptual model, the set of intermediate representations proposed by the
methodology named METHONTOLOGY [11, 12, 15] are used.

Step 1. Draw the hierarchies and taxonomic relations between concepts and
instances, “ad hoc” relations between concepts, instances and between concepts and
instances of the same or another hierarchy. Identify the functions and axioms of the
ontology. Generate a document reflecting the preliminary conceptual model
outputted by this step.

Restructuring: Its objective is to correct and reorganize the knowledge contained in
an initial conceptual model, and detect missing knowledge. This restructuring is
guided by the ontology that is to reuse the knowledge, which means that there is no
way of assuring that the restructured ontology will be a hundred per cent valid for
ontologies that reuse the restructured knowledge. We distinguish two phases:
analysis and synthesis. The analysis phase goal (steps 2 to 5 of figure 3) is to
evaluate the ontology technically [14], that is, to check that the hierarchy of the
ontology and its classes, instances, relations and functions are complete (contain all
the definitions required for the domain of chemical substances), consistent (there are
no contradictions in the ontology and with respect to the knowledge sources used),
concise (there are no explicit and implicit redundancies) and syntactically correct.
The synthesis phase (step 6 of figure 3) seeks to correct the ontology after the
analysis phase and document any changes made.

Step 2: Check the correctness and completeness of each hierarchy [14]. Analyze: a)
whether the taxonomic relations between concepts are correct; b) whether the
concepts present in the original hierarchy should be further specified or generalized;
c) that all the concepts/instances required appear in the original hierarchy; d) if
necessary, add/delete from the original ontology any concept/instance.

Step 3: Note down the errors. This will allow change control to be performed as part
of configuration management process.

Step 4: Having checked that the hierarchies are correct, analyze the correctness and
completeness of the definitions of classes, instances, properties, relations, functions
and axioms. The ontologist will analyze the initial conceptual model attached to the
code in which the ontology is implemented. Specialized material for this purpose
(such as books, dictionaries, handbooks, etc.) will be required, as will the help of an
expert in the domain defined in the ontology.

Step 5: Note down the errors detected in step 4 in order to perform change control as
part of configuration management process.

Step 6: Having reviewed and corrected an original conceptual model, design a new
conceptual model including all the above-mentioned changes, building the correct
and complet hierarchies and outputting the correct and complete definitions for their
later implementation. The ontologist will draw up a synthesis document specifying
the actions carried out and the design criteria governing restructuring.

Ontological Reengineering for Reuse 145

A series of documents will be generated, which can be divided into three groups:
(1) analysis document, including a list of anomalies (problems, errors, omissions,
ambiguities, etc.) encountered and detected in steps 2 and 4; (2) configuration
management document, which includes reports related to the changes made in steps
3 and 5 on the basis of the set of errors identified in the analysis document. This
document includes: description, need and effects of the change, possible alternatives,
justification of the selected alternative, date of the change, etc.; and (3) synthesis
documents, including the actions taken and criteria observed in step 6.

Forward Engineering: The objective of this step is to output a new implementation
of the ontology on the basis of the new conceptual model.

Step 7: Reimplement the ontology on the basis of the new conceptual model,
including all the recorded changes. This will output a document containing the code
of the new ontology implementation.

The proposed work method is a sound initial approach to carrying out the above-
mentioned process, although it could be improved in later studies using more
complex ontologies. In order to increase the reusability of the ontology to be
reengineered, guidelines and criteria to achieve a higher degree of reusability are
needed in the restructuring process. Other open issue regards the relationship
between the ontology that is being reengineered and top-level ontologies, if any.

5 A case study: Reengineering Standard-Units

5.1 The need of reviewing Standard Units

The Standard-Units ontology defines a series of SI units of measurement and
other commonly used units that do not belong to the SI units. It includes the
Standard-Dimensions ontology, which defines a series of physical dimensions
(i.e., mass, time, length, temperature and electrical current) for different quantities. It
also includes other dimensions, derived from the above five, including pressure,
volume, etc. Depending on the system of units used, the physical quantities defined
at the Standard-Dimensions ontology can be expressed in different units using
the vocabulary of the Standard-Units ontology; for example, length can be
expressed in meters, miles, inches, etc. Both the Standard-Units and the
Standard-Dimensions ontologies include Physical-Quantities (see
Figure 1), which defines the basic vocabulary for describing physical quantities in a
general form, making explicit the relationship between quantities of various orders,
units of measure and physical dimensions. A quantity is a hypothetically measurable
amount of something. For example, the term meter, defined in the Standard-Units
ontology, is an instance of the class Unit-Of-Measure defined in the Physical-
Quantities ontology.

We came to revise the Standard-Units ontology because it was included in
Chemical-Elements. We needed to check that the units of measurement of certain
attributes in Chemical-Elements befitted the knowledge and usual practice of
experts. One example of the type of check that the experts carried out was that an
attribute (Semidisintegration-Period) of a concept (Elements) was filled in with a

146 A. Gémez-Pérez and D. Rojas-Amaya

particular value type which was associated with a unit of measurement (Year). After
the experts had drawn up the inspection document setting out the properties to be
checked, each query was transformed into the vocabulary of the ontology. For
example, check that the Semidisintegration-Period of the concept Elements of the
ontology Chemical-Elements is filled in with a value type Time-Quantity and its
unit of measurement is Year. This is illustrated in Figure 4.

Standard-Dimensions

Chemicals-Elements

Value Type . .
Time Quantity

Time Dimension >

Semidisintegration Period

Dimension

Standard-Units

Figure 4. Relation between the Standard-Units and Standard-Dimensions ontologies.

When reviewing all the units of measure present in Chemical-Elements, we
checked that they all appeared in Standard-Units. Any that were missing were
added. Basically, there were two manners of reviewing the Standard-Units ontology:
(1) Review the Ontolingua code of the ontology at the symbolic level, which means
that the ontology has to be analyzed using Ontology Server facilities. This option
was rejected as domain experts do not understand formal ontologies codified in
ontology languages [1]. So, they could neither validate nor formalize knowledge
without an ontologist’s help; and (2) Review the ontology at the knowledge level
using the work method described in section 4. This is the approach taken in this
paper. The following describes how the work method was applied to the
Standard-Units ontology.

5.2 Reverse engineering

The Standard-Units ontology was analyzed on the basis of its Ontolingua
implementation. Figure 5 shows a preliminary conceptual model that possibly
originated such implementation. It is important to note that this ontology contains
neither relations, functions nor axioms. The hierarchy illustrates that there are two
classes: Unit-Of-Measure and System-of-Units, both defined in the Physical-
Quantities ontology. In this manner, a series of units of measure which are
instances of the class Unit-Of-Measure are defined in Standard-Units, as well as
a class, Si-Unit, which groups all the SI units. Additionally, Si-Unit is defined as an
instance of the class System-of-Units, as there could be other systems grouping
another series of units, which are also, instances of units of Unit-Of-Measure.

In the Standard-Units ontology, all the units have a property that indicates the
dimension of the aforesaid unit. These dimensions are defined in the Standard-
Dimensions ontology, which has two hierarchies. The hierarchy representing the

Ontological Reengineering for Reuse 147

definition of dimensions is shown in figure 6. In this ontology, there is a class, called
Physical-Dimension, which is also defined in the Physical-Quantities
ontology, of which all the dimensions defined are instances.

-Ampere
-
- — Amu
[1 - — Angstrom
. .~
| Unitor- €_ Coulomb
© Measure i ~ Unstance-of
| : ~o Degree-Celsius

~

S e
Subclass-of “Electronvolt

_—Ampere
_—" Candela
System-of- | 44— Si-Uni Degree-Kelvin

i Identity-Unit

Units ~ P

\\ N ogram
eter

N

N Mole

Physical-Quantities ~ -
Second-Of-Time

Standard-Units

Figure 5. Preliminary hierarchy of the Standard-Units ontology.

i Amount-Of-Substance-Dimension
Instance—gf/ - Density-Dimension
P Length-Dimension
................ -~ - e
r Physical-Dimension Mass-Dimension
T T T DA S~ Resistivity-Dimension
Physical-Quantities ~—_
Instanc e—\of\ ~— Specific-Heat-Dimension
= Voltage-Dimension

Standard-Dimensions

Figure 6. One of the hierarchies of the Standard-Dimensions ontology.
5.3 Restructure to create a new conceptual model

Here we summarize some design criteria and a set of principles that have proved
useful in the development of ontologies. Gruber [17] identified five design criteria:
Clarity and Objectivity, which means that the ontology should provide the meaning
of defined terms by providing objective definitions and also natural language
documentation; Completeness, which means that a definition expressed by a
necessary and sufficient condition is preferred over a partial definition (defined only
by a necessary or sufficient condition); Coherence, to permit inferences that are
consistent with the definitions; Maximize monotonic extendibility, which means that
new general or specialized terms should be included in the ontology in a such way as
does not require the revision of existing definitions; and Minimal ontological

148 A. Gémez-Pérez and D. Rojas-Amaya

commitments®, which means making as few claims as possible about the world being
modeled, giving the parties committed to the ontology freedom to specialize and
instantiate the ontology as required. When building taxonomies, the Ontological
Distinction Principle [7] proposes that classes in an ontology should be disjoint. The
criterion used to isolate the core of properties considered to be invariant for an
instance of a class is called the Identity Criterion.

This section presents the process used to restructure Standard-Units ontology.
This ontology was restructured bearing in mind its future use by the Chemical-
Elements, Monatomic-Ions and Environmental-Pollutants ontologies. It
also provides a set of guidelines, which can be used, for building ontologies.

5.3.1 Analysis

Taking into account figures 5 and 6, and the Standard-Units and Standard-
Dimensions Ontolingua code, the most prominent problems and faults found are:

1. There is no taxonomic organization identifying the general concepts that divide
into other more specific concepts all the way down to instances. By contrast,
there is a single class to which all the instances are subordinated. This is not
really correct. First, the instances cannot be classified by similar characteristics.
Second, part of the inference power allowing some concepts to inherit properties
from more general concepts in a properly diversified hierarchy is lost. It would
be more beneficial to build branched taxonomies using an identity criterion to
take advantage of the above-mentioned benefits.

2. Definitions that should be made in the same manner, as they refer to similar
concepts, are made differently in the implemented Ontolingua code. For
example, the SI base unit of measure called Ampere was defined as follows:

(Define-Frame Ampere
: Own-Slots
((Documentation “Si electrical current unit.”)
(Instance-Of Unit-Of-Measure)
(Quantity.Dimension Electrical-Current-Dimension))
: Axioms
((= (Quantity.Dimension Ampere) Electrical-Current-Dimension)))

However, the following instance definition was used to define Meter, which is
another SI base unit:

(Define-Instance Meter (Unit-Of-Measure)
“SI length unit. No conversion is given because this is a standard.”
: Axiom-Def
(And (= (Quantity.Dimension Meter) Length-Dimension)
(Si-Unit Meter)))

6 “Ontological commitments are an agreement to use the shared vocabulary in a coherent and
consistent manner. They guarantee consistency, but not completeness of an ontology” [18].

Ontological Reengineering for Reuse 149

It would be advantageous to use the same pattern to make sibling definitions,
thus improving ontology understanding and making it easier to include new
definitions. This would improve the clarity of the ontology and its monotonic
extendibility.

The choice of names for the different instances does not comply with a fixed
standard. For example, the different multiples and divisors of Ampere are called:
Milli-Amp, Nano-Ampere and Pico-Ampere. To ease ontology understanding
and improve its clarity, the same naming conventions should be used to name
related terms. Therefore, the above-mentioned names should be standardized
and denoted as follows: Milli-Ampere, Nano-Ampere and Pico-Ampere.

The multiples of the base units do not appear to have been chosen
systematically. For instance, Kilo-ohm and Milli-meter are omitted.
Incompleteness is a fundamental problem in ontologies [14]. In fact, we cannot
prove either the completeness of an ontology or the completeness of its
definitions (an omission can always be found), but we can prove both the
incompleteness of a definition or the incompleteness of an ontology, if at least
one definition is missing with respect to the established framework of reference.
When restructuring the Standard-Units ontology, our framework was the set
of units of interest for the Chemical-Elements, Monatomic-Ions and
Environmental-Pollutants ontologies. As Kilo-ohm and Milli-meter will
not be used in these ontologies, we can say that the Standard-Units ontology
is complete in this framework of reference.

The ontology includes factors of conversion between different units of the same
dimension. However, this conversion is not always made from one particular
unit to the unit that is considered as the base unit in the SI. For example, taking
the base unit of time Second, each definition of its multiples (minutes, hours,
etc.) and its submultiples (millisecond, microsecond, etc.) should contain the
appropriate factor of conversion to seconds. However, definitions appear in the
Standard-Units ontology with factors of conversion as follows:

(Define-Frame Day

: Own-Slots

((Documentation “one day, i.e. 24 hours™)
(Instance-Of Unit-Of-Measure)
(Quantity.Dimension Time-Dimension))

: Axioms

((= Day (* 24 Hours)) (= Year (* 365 Day))))

In this definition, the factors of conversion of the unit Day are established in
relation to non-base units (hours and years), but not to the base unit (seconds).
The following factor of conversion should be added to the formal definition:

((= Day (* 86400 Second-Of-Time)))
The conversion should always be made to the base unit to improve the clarity

of the ontology. Other commonly used factors of conversion between units can
also be added, but the conversion to the base unit should never be missing.

150 A. Gémez-Pérez and D. Rojas-Amaya

6.

Some definitions have quite a poor informal language description, which
provides the user with no information. This is the case of the natural language
definition of Meter, which states: “SI length unit. No conversion is given
because this is a standard.” An extreme example is Kilometer, for which no
informal definition is given at all. A natural language definition should be
included whenever possible to give a better understanding of the more formal
definition made later. In the example, “ A Meter is 1650763.73 wave lengths in
vacuo of the unperturbed transition 2p;, - 5ds in 8Ky

The vocabulary of the Standard-Dimensions ontology has not been used in a
standardized manner either. Thus, for example, the dimension Megapascal is
defined as a Pressure-Dimension:

(Quantity.Dimension Megapascal Pressure-Dimension)

whereas the dimension Pascal is said to be:

(= (Quantity.Dimension Pascal)
(* Force-Dimension (Expt Length-Dimension -2)))

As the Pressure-Dimension definition exists in the Standard-Dimensions
ontology, which is used by Standard-Units, it would be more rational and clearer
to define all the units of pressure using this dimension, instead of using its
equivalent in units of length and force. Therefore, the dimension Pascal should be
defined as follows:

(Quantity.Dimension Pascal Pressure-Dimension)

In the Standard-Units ontology, the number Pi () is defined as an instance
of the real numbers because a factor of conversion between angles and radians
appears in the definition of Angular-Degree.

(Define-Instance Angular-Degree (Unit-Of-Measure)

“Angular measurement unit.”

:= (* Radian (/ The-Number-Pi 180))

:Axiom-Def (= (Quantity.Dimension Angular-Degree) Identity-Dimension7))

As this is an ontology of units of measure, definitions that have nothing to do
with the above units must not be included. This problem could be solved in two
ways: one possible solution would be to delete the definition of the number © in
the factor of conversion and enter the real number 3.1415926535897936.
However, a better and modular solution is to include the real number T in the
KIF-Numbers ontology, which could be included in the Standard-Units
ontology and thus this definition could be used.

When an ontology is restructured, a series of criteria must be established

beforehand to assess why the new ontology outputted is of higher quality than its
predecessor. The following criteria were established when Standard-Units was

7 Identity-Dimension is the identity element for * operator on physical-dimensions. This means that

the product of identity-dimension and any other dimension is the other dimension.

Ontological Reengineering for Reuse 151

restructured: (1) establish the framework of reference against which to prove the
completeness of the ontology; (2) model the knowledge of the domain using the
ontological distinction principle; (3) build taxonomies that allow property
inheritance to be applied; (4) define terms uniformly, using the same patterns to
define similar terms, which improves the clarity of the ontology, its understanding by
future users and its monotonic extendibility; (5) the documentation accompanying
each definition must be clear, useful and give a better understanding of the formal
definition of the term; and (6) increase the information contained in the original
ontology. If the original ontology was found not to contain enough domain
knowledge, new classes, instances, relations, functions and axioms should be added
to the new implementation.

5.3.2 Synthesis

As mentioned above, the Standard-Units ontology was analyzed because it is
used in Chemical-Elements, which is used in the Monatomic-Ions, which is
included in the Environmental-Pollutants ontology. After analyzing the
Standard-Units Ontolingua code and obtaining a possible underlying conceptual
model of the ontology and after considering the problems explained above, we
modified the conceptual model of the Standard-Units ontology as follows:

Standardize naming conventions. We gave standard names to the new classes and
instances. The names of the classes in the Standard-Units ontology were chosen
taking into account the type of units represented and the names of the dimensions
found in the Standard-Dimensions ontology.

Specialization of concepts. The goal was to identify general concepts that are
specialized into more specific and disjoint concepts down to domain instances. The
identity criterion used for specialization was to group units according to the base
unit. Therefore, we can say that the restructured ontology complies with the
Ontological Distinction Principle. For example, all the units for measuring length are
grouped within the same class. The name of this class is Length-Unit, and its
instances are: Meter (SI base unit), Angstrom, Centimeter, Foot, Inch, Kilometer and
Mile. In this case, the new conceptual model includes one class for each type of SI
base. We have created 19 new classes, and all these classes are disjoint. We also
have maximized the monotonic extendibility of the Standard-Units ontology
because the inclusion of classes and instances does not require the revision of
existing definitions.

Branched taxonomies. Whenever possible, the hierarchy must be sufficiently
branched by similar characteristics to increase the power provided by inheritance
mechanisms between classes and instances. Figure 7 illustrates the new hierarchy,
which should be interpreted as: all the concepts of the first branch are subclasses of
the Unit-Of-Measure class, and the terms represented in boxes are instances of the
concept to which they are linked by an arrow.

152 A. Gémez-Pérez and D. Rojas-Amaya

Unit-Of-Measure

System-Of-Units

A
Electrical-Current-Unit . . :
A Mass-Unit Pressure-Unit !
l A A Si-Unit
: ! ! A
Ampere L L |
Milli-Ampere Amu Pascal :
Nano-Ampere Gram Mega-Pascal I\ée}:ter
. Kilogram 1logram
Pico-Ampere Pound-Mass Second-Of-Time
Slug Ampere
Degree-Kelvin
Mole
Subclass-of Candela
4 Identity-Unit

- Instance-of
Figure 7. Taxonomy for the Modified Conceptual Model.

Inclusion of new properties and changes to existing properties. In this ontology,
the property Abbreviation was added to each unit defined for the purpose of
extending the use of this international standard for this attribute, ruling out
widespread, though not absolutely correct, uses. In this manner, all the people who
use this ontology will be accustomed to using the same standard abbreviation.

Minimize the semantic distance between sibling concepts [2]. Similar concepts are
usually grouped and represented as subclasses of one class and should be defined
using the same set of primitives, whereas concepts which are less similar are
presented further apart in the hierarchy. All the terms in the restructured ontology
have been defined using the same pattern in order to give a clearer understanding of
the ontology. In this case, the factors of conversion have been expressed from any
unit to its SI base unit. For any units that are not part of the SI base, the unit most
commonly used by the international scientific community was chosen as the base
unit used for the purpose of conversion. It is important to note that all the factors of
conversion between units of the same type could be included, if considered useful, as
this would not increase ontology complexity.

5.3.3 Configuration management: Standard-Units

In Software Engineering, configuration management has three objectives [20]:
(1) establish and maintain the integrity of the products generated during a software
development project and throughout the entire product life cycle; (2) evaluate and
control the changes made to products, that is, control the evolution of the software
system; and (3) ease the understanding of product evolution. Therefore,
configuration management applied to the ontological engineering field can be
considered as meansof assuring thqualityof thentologies anlcan,therefore,be
included to supplement validation and verification activities [15].

Ontological Reengineering for Reuse 153

For the purpose of assuring information about the evolution of the Standard-
Units ontology, a rigorous change control has been performed throughout the
restructuring phase. The goal is to have all the changes documented, detailing the
changes made, their causes and effects. It is important to perform proficient change
control of both definitions and taxonomies. In this manner, any ontologist who needs
to use part of or the entire ontology can easily understand its evolution. Even if an
ontology has not been fully developed, provided it is well documented, it could be
finished off by another developer using the existing documentation. The
configuration management documents can rule out incorrect decision making, if they
state the courses of action to be taken at any time, and justify the choice of one rather
than another. Change control also helps end users to determine which version of the
ontology they require for their system or for the new ontology they are to develop.

Change control starts with a petition for change, followed by the classification
and registration, approval or initial rejection and evaluation of the change petition,
submission of the change report to the Change Control Committee, performance of
the change and certification that the change was made correctly. It ends when the
result is reported to the person who proposed the change. Figure 8 presents an
example of a control report for a change made to the Standard-Units ontology.

Description of the Change: Modify the hierarchy of the Standard-Units ontology shown in figure
2, as it does not include intermediate classes that represent each type of SI base unit. In this model, all
the instances of the ontology depend on one class.

Need for Change: It is not technically correct to have a class from which all the instances of the
ontology hang. This structure prevents concepts being classed by similar characteristics, and some of
the inference power allowing concepts to inherit properties from other more general concepts in a
properly diversified hierarchy is lost.

Effects of the Change: The hierarchy has been satisfactorily branched, as shown in figure 7. In this
case, one class has been created for each type of SI base unit. This change affects all the instances of the
ontology, as the Unit-Of-Measure class has to be replaced in the formal definition of the instances by
the new class representing the SI base unit to which they belong.

Alternatives: None.

Date of change: 27/03/98.

Change made: Changes are shown in figure 7.

Figure 8. Change control report.
5.4 Forward engineering: implementation of the new ontology

The new conceptual model of the Standard-Units ontology was
reimplemented in Ontolingua using the Ontology Server editor. The new ontology
has also been evaluated. In fact, (1) The ontology is syntactically correct, as it
successfully passes the Ontology Server Analyze tests; (2) the ontology is complete
for its use in Chemical-Elements, Monatomic-Ions and Environmental-
Pollutants ontologies. The experts checked that it is possible to specify the units
of measure of the properties identified in these ontologies. They also verified with
ontologists that the checks identified in the inspection document have been made; (3)
the ontology is internally consistent and the knowledge formalized has been checked
against the above-mentioned sources of knowledge; and (4) the ontology is concise,
as there is no redundant knowledge.

154 A. Gémez-Pérez and D. Rojas-Amaya
6 Review of Chemical-Elements

The need to use the Chemical-Elements ontology in the Monatomic-Ions
and Environmental-Pollutants ontologies led us to review this ontology, as we
had done for Standard-Units. The result of the review process showed that the
different versions of the ontology needed to be merged to output a new unified and
corrected ontology which could be extended before being included in the
Monatomic-Ions ontology. The Chemical-Elements review process was
divided into three clearly separate types of activities: technical evaluation, merging
and configuration management.

Technical evaluation. The knowledge present in the conceptual model of the
ontology was technically evaluated [14] (verified and validated) with chemical and
environmental experts for the purpose of ascertaining whether the knowledge
represented was correct and complete and detecting any missing knowledge. As with
Standard-Units, we decided to review the conceptual model of the Chemical-
Elements ontology at the knowledge level using a series of intermediate
representations proposed by METHONTOLOGY. For this purpose, the conceptual
model of the ontology was given to the chemical and environmental experts, along
with an explanation of the meaning of the intermediate representations. The experts
and ontologists verified and validated the model in 6 hours and reached the
following conclusions: (1) add properties that are useful from the viewpoint of both
the chemical element in its pure state and the environment; (2) retain any properties
that, although they are not useful for the monatomic ions ontology, can be used to
represent elements in their pure state; (3) adapt the names chosen; (4) check the
values of the class and instance attributes for correctness using the sources of
information recommended by the chemical and the environmental experts; and (5)
validate (experts) that the definitions represented formally correspond with the
knowledge that they were supposed to represent contained in books, handbooks, etc.

Merging. Development of the Chemical-Elements ontology commenced in June
1995, and a first stable version was produced in December 1996 [10]. Since then,
different versions of this ontology have been created and used: (1) to extend the
intermediate representations used at the conceptualization phase of
METHONTOLOGY:; (2) to test the usefulness and validity of the new intermediate
representations proposed; (3) by the Ontogeneration system [1], which allows
Spanish users to consult and access the knowledge contained in the Chemical-
Elements ontology in their own language. A unified conceptual model was built
merging all the releases of this ontology, and includes all the improvements.

Configuration Management was carried out according to the guidelines described
in section 5.3.3 to make this new version of Chemical-Elements easier to
understand for wusers. As a result, a Chemical-Elements configuration
management document was outputted that includes a series of change control reports
related to the terms modified in this ontology.

Ontological Reengineering for Reuse 155
Conclusions

Although the concept of reengineering is well established in Software
Engineering, the field of reengineering is totally new in the Ontological Engineering
field. Therefore, the main contributions of this paper are to start up research into a
process that allows any ontology to be reengineered, and configuration management
and change control to be carried out on the ontology as a result of this reengineering
activity. The main contributions can be summarized as a preliminary method was
proposed for Ontological Reengineering, which includes three activities: Reverse
Engineering, Restructuring and Forward Engineering. The reverse engineering
activity produces a preliminary conceptual model of the ontology from its code. The
restructuring activities involve: (1) performing a technical evaluation of the initial
conceptual model with the expert; (2) reorganizing and extending the initial
conceptual model to output a new conceptual model according to a series of criteria
(standardize naming conventions, specialize concepts, branch taxonomies, minimize
the semantic distance between sibling concepts, etc.) established beforehand. The
restructuring process is carried out bearing in mind the use of the restructured
ontology by the ontology/application that reuses it; (3) keep records of the changes
performed; and (4) build a new, more correct conceptual model, accepted by the
experts. The forward engineering activity produces a document containing the
implementation of the new conceptual model, including the suggested changes. The
reegineering process includes the evaluation of both the original and the resulting
ontology, and performing configuration management to keep records of ontology
evolution, the changes made, their causes and effects.

Future work will include primarily: (1) addressing in more depth the theoretical
foundations of ontology reengineering, (2) extending the work method proposed
after reengineering more complex ontologies that include relations, functions and
axioms, apart from taxonomies of concepts and instances, and (3) developing
flexible tools to automate the reengineering process.

Acknowledgements

We would like to express our thanks to the following persons: Almudena Galan
and Rosario Garcia, for their knowledge of chemistry and the environment; Mariano
Fernandez, for providing Chemicals and all the documentation required to
understand its construction and evolution; Sofia Pinto, for her help in Chemical-
Elements configuration management; and Juan Manuel Garcia-Pinar and Mariano
Fernindez again, for converting the Chemicals ontologies from the earlier ODE
tool format to the current version. We also thank the anonymous reviewers for their
comments.

REFERENCES:

[11 Aguado, G.; Bafién, A.; Bateman, J.; Bernardos, S.; Ferndndez, M.; Gémez-Pérez, A.;
Nieto, E.; Olalla, A.; Plaza, R.; Sanchez, A. “ONTOGENERATION: Reusing domain
and linguistic ontologies for Spanish text generation.” Workshop on Applications of
Ontologies and Problem Solving Methods. ECAI-98. Brighton (UK). 1998. The 13™
European Conference on Artificial Intelligence.

156

[2]

(3]

[4]

[5]

[6]

(7]

(8]
9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]
[20]

[21]

A. Gémez-Pérez and D. Rojas-Amaya

Arpirez, J.; Gémez-Pérez. A.; Lozano, A.; Pinto, H.S. '(ONTO)*Agent: An Ontology-
Based WWW broker to select ontologies.”" ECAI-98. Brighton (UK). 1998. Workshop
on Applications of Ontologies and Problem Solving Methods. The 13™ European
Conference on Artificial Intelligence.

Barley, M.; Clark, P.; Williamson, K.; Woods, S. “The neutral Representation
Project.” Boing Research and Technology. Ontological Engineering. AAAI-97
Spring Symposium Series. March 97. Stanford University. California. 1997.
Blazquez, M.; Fernindez, M.; Garcia-Pinar, J.M.; Gémez-Pérez, A. “Building
Ontologies at the Knowledge Level using the Ontology Design Environment.”
KAW98. Banff, Canada. 1998.

Blum, B. “Software Engineering. A holistic view.” Oxford University Press. 1992.
Bohm, C.; Jacopini, G. “Flow diagrams, Turing machinesd, and languages with only
two formation rules.” Communications of the ACM, May 1996. PP:366-371.

Borgo, S.; Guarino,N.; Masolo, C. “Stratified Ontologies: The case of physical
objects”. Workshop on Ontological Engineering. ECAI96. Budapest. PP: 5-15
Chikofsky, E.J.; Cross II, JH. “Reverse Engineering and design recovery: A
taxonomy.” Software Magazine. January 1990. PP:13-17.

Farquhar, A.; Fikes, R.; Pratt, W.; Rice, J. “A collaborative ontology construction for
information integration.” Technical Report KSL-95-63. Knowledge Systems
Laboratory. Stanford University. 1995.

Ferndndez, M. “CHEMICALS: Ontologia de elementos quimicos.” Proyecto Fin de
Carrera. Facultad de Informética de Madrid. UPM. December 1996.

Fernandez, M.; Gomez-Pérez, A.; Juristo, N. “METHONTOLOGY: From Ontological
Art Towards Ontological Engineering”. Ontological Engineering. AAAI-97. Spring
Symposium Series. Stanford 1997. PP:33-40.

Fernandez, M.; Gémez-Pérez, A.; Pazos, A.; Pazos, J. "Building a Chemical Ontology
using METHONTOLOGY and the Ontology Design Environment.” 1IEEE Intelligent
Systems. Special Issue on Uses of Ontologies. January/February 1999.

Genesereth, M.R.; Fikes, R. “Knowledge Interchange Format. Version 3.0 Reference
Manual” Tech Report Logic-92-1. Computer Science, Stanford University (CA)1992.
Gomez-Pérez, A. “A framework to verify knowledge sharing technology”. Expert
Systems with Application. Vol.11, N.4. 1996 . PP:519-529).

Goémez-Pérez, A. “Knowledge Sharing and Reuse”. The Handbook of Applied Expert
Systems. Edited by Liebowitz. CRC. 1998.

Go6mez-Pérez, A.; Juristo, N.; Pazos, J. “Evaluation and Assessment of the Knowledge
Sharing Technology.” Towards Very Large Knowledge Bases. N.J.I. Mars, Ed. I0S
Press, 1995.

Gruber, T. “Towards Principles for the Design of Ontologies”. Ksl-93-04.
Knowledge Systems Laboratory. Stanford University. 1993.

Gruber, T.;Olsen, G. “An ontology for Engineering Mathematics”. Fourth
International Conference on Principles of Knowledge Representation and
Reasoning. Doyle, Torasso y Sandewall (eds.) Morgan Kaufmann. 1994.

Julling, R.; Srinivas, Y.V.; Blaine, L.; Gilham, L.M.; McDonald, J.; Waldinger, R.
“Specware language manual.” Tech Report, Kestrel Institute. 1995.

Pressman, R.S. “Ingenieria del Software. Un enfoque prdctico.” Mac-Graw Hill.
1993.

Yourdon, E. “RE-3. Re-engineering, restructuring and reverse engineering.”
American Programmer Magazine, Vol.2, N°4, April 1989. PP:3-10.

Formally Verifying Dynamic Properties
of Knowledge Based Systems

Perry Groot, Annette ten Teije*, and Frank van Harmelen

Dept. of Computer Science and Mathematics
Vrije Universiteit Amsterdam
{perry, annette, frankh}ecs.vu.nl

Abstract. In this paper we study dynamic properties of knowledge-based sys-
tems. We argue the importance of such dynamic properties for the construction
and analysis of knowledge-based systems. We present a case-study of a simple
classification method for which we formulate and verify two dynamic properties
which are concerned with the anytime behaviour and the computation trace of the
classification method. We show how Dynamic Logic can be used to formally ex-
press these dynamic properties. We have used the K1V interactive theorem prover
to obtain machine-assisted proofs for all the properties and theorems in this paper.

1 Introduction

1.1 Motivation

A characteristic property of Knowledge Based Systems (KBSs) is that they deal with
intractable computational tasks: diagnosis, design, and classification are all tasks for
which even the simple varieties are intractable. As a result, simple uninformed search
procedures cannot be used to construct realistic knowledge-based systems for complex
tasks.

A traditional approach in Knowledge Engineering is to equip a KBS with strong
control-knowledge that is used to guide the computation [1, 4, 12]. Such control knowl-
edge consists of knowledge on the sequence of reasoning steps during problem solving,
and is an essential part of expertise. Examples of such control knowledge are the or-
der in which observations must be obtained during diagnostic reasoning, or the order
in which components must be configured during design reasoning. Many Knowledge
Engineering methodologies provide some form of expressing the control knowledge in
a KBS [28, 20, 3,27].

A more recent, and less explored approach to dealing with the intractability of KBSs
is the development of anytime algorithms [19]. An anytime algorithm gradually ap-
proaches the perfect solution. As runtime increases, the quality of the solution increases.
The algorithm can be interrupted at any moment, for instance when no more computa-
tion time is available, at which point the currently available solution is returned. Such
methods have been employed in planning [6] and diagnosis [22] among others.

* Supported by the Netherlands Computer Science Research Foundation with financial support
from the Netherlands Organisation for Scientific Research (NWO), project: 612-32-006

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 157-171, 1999.
© Springer-Verlag Berlin Heidelberg 1999

158 P. Groot, A. ten Teije, and F. van Harmelen

Both of these approaches to dealing with the intractability of KBSs (adding control
knowledge and developing anytime algorithms) are concerned with “how” solutions
are computed, and not (or: not only) with “what” counts as a solution. This distinc-
tion between “what” and “how” corresponds to the distinction between functional and
dynamic properties of a system. Purely functional properties are concerned with the re-
lation between inputs and outputs of the system. Dynamic properties on the other hand
are concerned with the computation process itself, and not only with the final output of
this process.

The typical example of a functional property is the I/O-relation of a system. Exam-
ples of dynamic properties are the number of required computation steps, the sequence
in which these computation steps are taken, etc.

In this view, dynamic properties are a refinement of functional properties: two im-
plementations of the same functional I/O-relation can have very different dynamic prop-
erties. On the other hand any two systems for which all the dynamic properties coincide
necessarily have the same functional I/O-relation.

In this paper we will investigate how to formally express and verify dynamic prop-
erties of KBSs.

1.2 Approach

As stated above, we are aiming at studying the dynamic properties of KBSs: formally
stating such properties, and proving whether or not such properties hold for a given KBS.
In Software Engineering, many formal frameworks have been developed for a formal
analysis of dynamic properties. See [24] and references included therein for a number
of these approaches.

Within Knowledge Engineering formal analysis of properties has been mostly lim-
ited to functional properties ([10, 11,26,23], with DESIRE [5, 15] as an exception).
Such functional analysis can be fruitfully formalised and carried out in Dynamic Logic
[14,17], as illustrated in [25,7,9].

The approach we will take in this paper is to use the same logic that has been used
for analysis of functional properties (Dynamic Logic), but now for the analysis of dy-
namic properties. This is in contrast with work in [5, 15], where a formalism is used
which is specifically designed to deal with dynamic properties. The use of Dynamic
Logic has as immediate advantage that we can exploit the support offered for this for-
malism by interactive theorem provers like the KIV system [18], which has been used
with some success before for the formal analysis of functional properties of KBSs [10,
11].

The use of Dynamic Logic for the analysis of dynamic properties is not unprob-
lematic. In Dynamic Logic it is not possible to directly say something about an internal
state of a program. In Dynamic Logic a program is seen as a pair of states: (start, end).
Thus programs with the same (start,end) state are equivalent, irrespective of the behav-
ior that gets them from the start state to the end state. By using constructs like {a) ¢ we
can only conclude ¢ after termination of program a.

We can solve this problem in the following way: given a program «, we construct a
new program ¢’ which has additional parameters. These parameters are used to encode
some of the behaviour of the original program « in the I/O-relation of the program ¢/

Formally Verifying Dynamic Properties of Knowledge Based Systems 159

For example, we might encode the sequence of internal states of the program « in an
additional output argument to «’. This additional output argument then constitutes a
trace of the program « and can be used to formulate dynamic properties of « in terms
of the output from «'. In effect, we are encoding some of the dynamic properties of a
as functional properties of the modified program . This will then allow us to express
and prove dynamic properties within the limitations of Dynamic Logic.

1.3 Structure and Contributions of This Paper

In this paper, we will take the approach outlined above and apply it to two simple case-
studies. In Sect. 2 we describe a simple task-definition and problem solving method for
classification. In Sect. 3 we present an anytime adaptation of this PSM. We formally
express and prove a number of dynamic properties of this PSM, such as its behaviour
when run-time increases, and its eventual convergence to the non-anytime PSM. In Sect.
4 we encode part of the computation trace of the classification PSM in an additional
output argument, and use this to prove some properties about the control knowledge
that was exploited in the PSM. In the final section, we discuss the pro’s and con’s of the
approach taken in this paper and how well these two case-studies generalise to other
dynamic properties.
This paper makes the following contributions:

Analysing dynamic properties Whereas existing literature on KBSs typically deals
with functional properties, we study a number of simple dynamic properties, in
particular the anytime nature of our classification algorithm and the computation
trace of this algorithm.

Using Dynamic Logic We show how such dynamic properties can be formally ex-
pressed in a logical formalism, namely First Order Dynamic Logic.

Machine-assisted proofs We have formally verified these properties in machine as-
sisted proofs using the KIV interactive verifier.

Generalisation We suggest how our analysis of the specific dynamic properties (any-
time behaviour and computation trace) for a simple classification algorithm can be
stated in the general case.

2 A Simple Problem Solving Method

For our case study we use a very simple PSM, namely linear filtering. It iterates over a
set of candidates to produce a set of solutions which all satisfiy a given filter criterion.
This filter criterion is applied to individual candidates ¢;, and will be written correct(c;).
The task-definition of the PSM is then:

¢i € output(cs) > ¢; € cs A correct(c;), (1)
or equivalently: output(cs) = {c;|c; € ¢s A correct(c;)}.

This is a very generic task-definition, which comprises any task for which the output
criteria can be stated in terms of individual candidates. Simple forms of classification,

160 P. Groot, A. ten Teije, and F. van Harmelen

diagnosis and configuration can all be phrased in this format, using an appropriate def-
inition for correct(c;) .
The procedural definition of our linear-filtering PSM is as follows:

filter# (cs; var output)
begin
if cs = 0 then output := (else
var candidate = select(cs) in
if correct (candidate) then
begin
filter#(cs \ candidate;output) ;
output := insert (candidate, output)
end
else
filter#(cs \ candidate;output)
end

Fig. 1. psM for classification by linear filtering

First, we check if no candidate classes are left. If so, we return the empty set, if not,
we select an arbitrary candidate. If the candidate is correct it is inserted in the output set
that is computed recursively. The only requirement we need to impose on the selection
step is that it does indeed select one of the available classes:

cs # 0 — select(cs) € cs (2)

The linear filtering method that we use is quite naive. It only works for small
candidate-sets, but it is adequate to demonstrate the ideas in this paper.

In terms of the specification framework of [8], formula (1) is the goal-definition. In
our simple example, this goal-definition coincides exactly with the competence descrip-
tion of the PSM from Fig. 1. We therefore do not give a separate competence description
for the above PSM. Below, we will use filter(cs) when we mean the competence of the
filter# program.2

Use of KIv: The K1V interactive verifier for dynamic logic [18] was used to automat-
ically generate the proof obligations that are required to show the termination of the
PSM from Fig. 1 and its correctness with respect to its competence description (which
is equal to the predicate output from formula (1)). Both proof obligations were proven
in the KIV system. The termination proof consisted of 16 proof steps of which 8 were
automatic, the correctness proof required 67 proof steps, of which 38 were automatic.

! Tasks which concern some relation between candidates, such as some minimality or maximal-
ity criterion, cannot be stated in this form, for example optimisation problems, or computing
minimal diagnoses.

% Symbols ending in # are used to denote operational descriptions. The same symbol without
the trailing # denotes the corresponding competence description.

Formally Verifying Dynamic Properties of Knowledge Based Systems 161

3 Anytime Problem Solvers: PSMs with Bounded Run-Time

In this paper we are studying the dynamic properties of KBSs. In this section we will
study an anytime PSM, since for such a PSM the analysis of its dynamic properties are
of central importance. Remember that an anytime algorithm gradually approaches the
perfect solution, and can be interrupted at any moment when no more computation time
is available, at which point the currently available solution is returned.

We will be interested in dynamic properties of this PSM, such as its behaviour when
run-time increases, and the gradual convergence of the anytime behaviour to the optimal
solution.

3.1 Operationalisation of an Anytime PSM

Our original program filter# returned the subset of all correct elements (solution
classes) of a given input set (candidate classes) and was sound and complete w.r.t. its
competence description. But this is only true under the assumption that it can have all
the time it needs to compute its output. With this in mind we can adjust our program to
another program, which we will call filter-bounded, which gets an integer as additional
parameter. This integer will be a bound on the number of steps the program can do and
can be interpreted as a bound on the program run-time.

This additional parameter n makes this PSM into an anytime algorithm: the method
returns a sensible approximation of the final answer, even when allowed only a limited
amount of run-time (i.e. when the time-bound is smaller than the number of classes that
must be considered). The program terminates when n reaches zero and n decreases by
one in every recursive call, and is shown in the figure below. We have indicated the
differences with the original code of the £i1ter# program. These differences are only:
an additional parameter n, which is decreased in every recursive call, plus an additional
test on n = 0 to prematurely end the recursion.

filter-bounded# (cs, ; var output)
begin
if cs =0 then output := 0 else
var candidate = select(cs) in
if correct (candidate) then

begin
filter-bounded# (cs \ candidate, ;output) ;
output := insert (candidate, output)

end

else

filter-bounded# (cs \ candidate, |n-1| ;output)

end

Fig. 2. Anytime version of the linear filtering PSM

162 P. Groot, A. ten Teije, and F. van Harmelen

3.2 Competence Description of an Anytime PSM

We will now give a declarative description of the competence of the anytime PSM de-
scribed above. In this competence-description, we will make use of the competence-
description for the non-anytime version given above in formula (1).

filter-bounded(cs,0) = 0 (3)
filter-bounded(cs,n) C filter-bounded(cs,n + 1) 4)
|filter-bounded(cs,n + 1)|| = ||filter-bounded(cs,n)|| V (%)
|filter-bounded(cs,n + 1)|| = ||filter-bounded(cs,n)|| + 1,

|es|| < n — filter-bounded(cs,n) = filter(cs) (6)

Axiom (3) states that filter-bounded returns the empty set when it gets no computation
time. Axiom (4) states that the output set of filter-bounded can only increase mono-
tonically with increasing run-time. Axiom (5) states that the number of output classes
(indicated by the function || - ||) increases by at most one element if we allow one more
computation step. Finally, axiom (6) states that if the number of allowed computation
steps is at least as large as the number of candidate classes, then filter-bounded is iden-
tical to filter.

Observe that all axioms are necessary to characterize the £ilter-bounded# pro-
gram. Omitting an axiom would allow unwanted behavior. Two simple counterexamples
are given as follows:

filter-bounded# (cs, n; var output)
begin

filter# (cs;output)
end

filter-bounded# (cs, n; var output)
begin

output := 0
end

Neither of these programs have anytime behaviour. The left program (which simply
calls the non-anytime version of the program) satisfies the axioms (4), (5) and (6) and
the right program (which always returns the empty set) satisfies the axioms (3), (4) and
(5), but both violate the remaining axiom. Similar counterexamples can be found for
the other cases.

Use of K1V: The termination of filter-bounded# and its correctness with respect
to axioms (3)—(6) were all proven in K1V with the following statistics: termination was
proven in 16 steps, of which 8 were automatic; axiom (3) only took 3 steps, axioms
(4)—(6) took around 80 steps each, with an automation degree of around 30%>.

3 Because KIV is a semi-automatic tool, these and subsequent degrees of automation are to some
extend dependent on the skill of the user. More sophisticated KIV users assure us that for the
rather simple proofs performed for this paper, the degree of automation could have been much
higher.

Formally Verifying Dynamic Properties of Knowledge Based Systems 163

3.3 Anytime Properties

The PSM specified above does indeed have a number of properties which are to be
expected of a reasonable anytime algorithm. We have stated and proven a number of
such properties in K1V, and we will discuss these properties below.

First of all, notice that axiom (6) above can be interpreted as the adapter [8] that
is required to bridge the gap between the goal description from formula (1) and the
competence of the anytime algorithm. Since filter(cs) = output(cs), axiom (6) states
that filter-bounded does indeed achieve the classification task under the assumption of
sufficient run-time (namely n at least as large as the number of classes that must be
checked).

Two other properties are

||filter-bounded(cs,n)|| < n.

This states that the number of elements in the output set is bounded by the number of
computation steps, and

n < ||filter(cs)|| — filter-bounded(cs,n) C filter(cs).

This states that given insufficient time, the anytime algorithm always computes only a
strict subset of the classical algorithm.

Use of K1V: Both properties were proven in KIV with the following statistics: the first
property was proven in 14 steps, of which 8 were automatic; the second property was
proven in 45 steps, of which 28 were automatic.

Properties such as these guarantee that the PSM does indeed behave in a desirable
anytime fashion, gradually approaching the ideal competence when run-time increases.
The above results show that it is possible to use Dynamic Logic to both specify and
implement such anytime behaviour, and to prove the required properties within this
logic.

Notice that all of these properties are formulated in terms of the declarative com-
petence of the anytime PSM (the function filter-bounded, specified in axioms (3)—(6)).
Since we have proven the correctness of the operationalisation £ilter-bounded# with
respect to this competence, all of these properties are also guaranteed for the operational
behaviour.

3.4 General Approach to Specifying Anytime PSMs

In this subsection we will suggest a more general characterization of programs with a
bound on their computation time. If we look at the 4 axioms from the filter-bounded
specification we can find the following underlying general conditions:

axiom (3): start condition,
axiom (4): growth direction,
axiom (5): growth rate,
axiom (6): end condition.

164 P. Groot, A. ten Teije, and F. van Harmelen

The first condition describes the start of the program. For the filter-bounded#
program this was just one axiom which stated that the program returned the empty
set when given no computation time. Other versions of this axiom are also possible.
As an example, consider a classification algorithm that works by gradually eliminating
incorrect classes from the list of candidates (instead of gradually adding candidates, as
our current algorithm does). Such an alternative algorithm would return the entire set
of candidates when given no computation time, instead of the empty set as our current
algorithm does.

The conditions on growth direction and growth rate state what happens when the
program is allowed one additional computation step. Again, other algorithms might
satisfy different variations of these conditions, for example a candidate elimination al-
gorithm would have a decreasing output with increasing computation time.

Finally, the fourth condition states that, given sufficient computation time, the pro-
gram will compute exactly the desired output.

Further case-studies are required to determine if this general pattern is indeed ap-
plicable to the specification of more (and perhaps all) anytime PSMs.

4 Writing History

The first case study was concerned with a particular class of algorithms with interesting
dynamic behaviour (namely anytime algorithms). Our second case study is concerned
with the control knowledge of KBSs. As argued in the introduction of this paper, control
knowledge is a type of knowledge that is characteristic for a KBS.

In this section we adapt the original program filter# from Fig. 1, such that we
encode the sequence of some executed steps explicitly in a trace of the algorithm. This
trace is an output parameter of the slightly adapted program filter-trace#. We show
how we can use such a trace for proving properties of a program. As simple example
of a dynamic property of £ilter# we use the order in which the candidate classes are
selected by the PSM.

As already announced in our motivation in Sect. 1, these properties are functional
properties of the adapted program, but dynamic properties of the original program.

4.1 Operationalisation of a PSM Extended with a Trace

Again, we start from the original program £ilter# (Fig. 1). The slightly adapted ver-
sion of £ilter# is our new program filter-trace# in Fig. 3. This program has an
additional output parameter, namely a list of classes. This list reflects the order in which
the classes are tested by the PSM. If a class ¢; is selected before a class ca, then this is
encoded in the order of the elements in the list. The only differences with respect to the
original £ilter# program are the extra parameter called trace and a statement that
adds the selected class to the trace.

Previously, the only requirement on the class-selection step (select) was that it
did indeed select one of the available classes (axiom (2)). In order to incorporate some
meaningful control knowledge in the algorithm (about which we want to prove proper-
ties by exploiting the encoded trace), we place an additional requirement on the select

Formally Verifying Dynamic Properties of Knowledge Based Systems 165

filter-trace# (cs; var , output)
begin
if cs = 0 then
begin output := 0; end
else
var candidate = select(cs) in
begin
if correct (candidate) then
begin
filter-trace# (cs \ candidate; , output) ;
output := insert-class(candidate, output)
end
else
begin
filter-trace# (cs \ candidate; , output) ;
end
trace := candidate :: trace|
end
end

Fig. 3. Version of the linear filtering PSM which computes a trace

function, namely that the classes of the input are selected using a heuristic function
which selects the class with the highest heuristic value.

(¢ € ¢s) = measure(c) < measure(select(cs)).

The adapted £ilter-trace# program has two output parameters: trace and output.
However, in a specification a function can only return one output. This technical obsta-
cle can be avoided by introducing two auxiliary programs: one program for returning
the trace parameter, and one for returning the output parameter. The trivial imple-
mentation of these auxiliary programs is as follows:

filter-trace-1#(cs; var output)
begin
var trace = nil in
filter-trace# (cs;trace, output)
end

filter-trace-2#(cs; var trace)
begin

var output = 0 in

filter-trace# (cs;trace, output)
end

166 P. Groot, A. ten Teije, and F. van Harmelen

4.2 Competence of PSM Extended with a Trace

The program filter-trace# performs the same task as the original £ilter# pro-
gram, in the sense that the same solutions will be computed (the output parameter).
Furthermore the modified program produces some extra control knowledge information
in the trace parameter.

As result, the competence specification of £ilter-trace# contains the axioms of
the specification of the £ilter# program plus some additional axioms to specify the
trace parameter*:

filter-trace-1(cs) = filter(cs) @)
in-list(c, filter-trace-2(cs)) +» ¢ € cs (8)
Silter-trace-2(cs) = ¢y ::cl A in-list(ca, cl) — measure(ca) < measure(cy), (9)
filter-trace-2(cs) = ¢y ::cl — filter-trace-2(cs \ ¢1) = dl. (10)

Axioms (7) specifies that the original output will not be affected by the introduction
of the trace. Axiom (8) states that the trace consists only of classes that were given in
the input. Axioms (9) and (10) specify that the elements in the trace are ordered: if a
class ¢; precedes class ¢g in the trace, then we must have that the heuristic value of ¢;
is greater than or equal to that of cs.

Use of XIV: Again, the termination and correctness of the filter-trace# program
has been proven with respect to this competence:

— termination in 20 steps of which 12 automatic;
— axiom (7) in 75 steps (42 automatic);

— axiom (8) in 99 steps (58 automatic);

— axiom (9) in 37 steps (21 automatic);

— axiom (10) in 30 steps (21 automatic).

These figures confirm the above mentioned statistic of £30% proof-automation by KIV.
Notice that the trace axioms (9)—(10) were not hard to verify, because they reflect
the recursive nature of the program, and lend themselves to rather easy proofs by in-
duction. However, finding these axioms was quite difficult. We considered a number
of alternative formulations of these axioms. Although these alternative formulations
were all logically equivalent, they did not reflect as nicely the recursive nature of the
filter-trace# program, and were therefore much harder to prove.

We consider this to be a general trade-off. On the one hand we would like compe-
tence formulations to be as independent as possible of the implementation (leading us
in the direction of natural specifications which are hard to prove). On the other hand,
the competence formulations which are easy to prove are often very unnatural, exactly
because they reflect too much of the implementation. In our experience, the competence
formulations which are both natural and still easy to prove are often hard to find.

Two points remain to be noticed concerning the above competence specification of
filter-trace: first, the dynamic behaviour of the original £ilter# program has indeed

* The notation x :: y denotes the list with head z and tail 3.

Formally Verifying Dynamic Properties of Knowledge Based Systems 167

been specified as a functional property of the £ilter-trace# program. Secondly, the
specification filter-trace “inherits” the entire original specification of filter by virtue of
axiom (7). This ensures that when modifying filter to filter-trace in order to capture the
dynamic behaviour, we have not interfered with the solution set of the original program.

4.3 General Approach to Specify Properties of Control Knowledge

From the case-study of the previous paragraphs we can again distill a general pattern for
dealing with dynamic properties concerning control knowledge. Given a competence
specification and an operationalisation of a PSM, the steps involved in formulating and
proving such dynamic properties are as follows:

1. Choose the ““trace semantics”: First of all, we must of course decide which aspects

of the control knowledge must be captured. In our example this concerned the use
of the heuristic function in determining the sequence of candidate classes. Another
possibility in the above would have been to restrict the trace to only the sequence
of solution classes (instead of the sequence of all considered candidate classes).
Alternatively, we could have chosen a more refined trace, for instance modelling
for every failed candidate class the observations that caused it to be excluded from
the final solution. In general, the “grain size” of the trace is one of the important
choices that must be made.
A second choice concerns the ordering of the trace. In our example we have chosen
to model the sequence of the intermediate states. An alternative choice would have
been to abstract from the sequence of the intermediate states, treating all histories
that go through the same set of states as equivalent. This latter option would have
prevented us from stating (let alone proving) the required property expressed in
axiom (9)-(10). This illustrates that in general, these choices are determined by the
dynamic properties that one would like to prove.

2. Introduce additional output parameter(s) for the trace: The semantic choice
made in the previous point must be encoded syntactically by modifying the original
program. This amounts to adding code to the original algorithm plus additional
output parameters to return the results of this extra code. In our example, the boxed
line in Fig. 3 reflects the decision to model only the class-selection step. The choice
of modelling the history-sequence is reflected by the use of a list for the trace
parameter (instead of a set).

3. Introduce auxiliary programs for additional output parameters: As explained
above, auxiliary programs are needed to side-step the technical limitations that
specifications are expressed in functional terms, and therefore allow only one out-
put parameter (in our example the programs filter-trace-1# and -2#).

4. Introduce conservation axioms: New axioms are required to enforce that the orig-
inal output will not be affected by the additional code (axiom (7) above).

5. Introduce behaviour axioms: As a final step, add axioms that represent the dy-
namic properties of the original program. In our example these were axioms (8)—
(10): the original £ilter# program considers the candidate classes in decreasing
order of their heuristic value. This property is expressed as a functional property of
the modified program filter-trace#.

168 P. Groot, A. ten Teije, and F. van Harmelen

5 Discussion, Summary and Conclusion

5.1 Discussion of Our Approach

Encoding dynamic properties as functional properties. The limitation of Dynamic
Logic that any two programs with the same input and output states are equivalent forced
us to encode dynamic properties of one program as functional properties of a modified
program.

Our experiences with this encoding “trick” in Dynamic Logic have been surpris-
ingly positive. The original structure of the program could easily be preserved while
making the required modifications: the differences between the modified code in Figs.
2 and 3 and the original code in Fig. 1 are very small. This preservation of the original
program structure was essential because it enabled us to reuse proofs of the original
program to obtain proofs for the adjusted programs. Using the proof-reuse facilities of
KIV, many of the termination and correctness proofs could be obtained rather easily.

Automatic PSM transformations. In fact, the differences in program code are so small
that one could easily imagine an automatic transformation from the original program
(Fig. 1) to the adjusted anytime and tracing programs (Figs. 2 and 3). Furthermore,
it should be not too difficult to prove some meta-theorems that such transformations
are correctness preserving®, thereby obviating the proof obligations for the modified
programs.

Using Dynamic Logic. Instead of Dynamic Logic, we could have chosen to use an
alternative logic in which we could have directly expressed the dynamic properties in
which we are interested. In particular, languages such as TR [2] and TROLL [16], and
languages with a temporal semantics like DESIRE [27] and METATEM [13] have a trace-
semantics, in which program-equivalence is determined not just by pairs of input-output
states, but by the entire behavioural trace of the program. We see an important trade-off
here. On the one hand such trace -logics would seem to require no additional encoding
dynamic information. However, this is only the case if the trace-semantics provided by
the logic is exactly what is needed to express the specific properties of interest. On the
other hand, logics such as Dynamic Logic require additional encoding effort, but at the
same time this allows us to determine exactly which dynamic information is required.
Thus, the trade-off is between ease of use and flexibility.

Non-terminating programs. A potentially serious critique is that we can only deal with
terminating programs, since non-terminating programs do not give rise to an output
state. Important examples of such non-terminating programs are agent-systems, and
KBS applications such as monitoring. A possible way around this problem resembles
our approach to anytime algorithms. Instead of dealing with a non-terminating program
o, we would prove properties about a modified program «'(n) that terminates after n
steps. If we can then prove that this property holds for arbitrary values of n, we can
think of o as running for an arbitrarily long time. In effect, we have replaced the notion
of infinite run-time with that of arbitrarily long run-time.

> Such theorems are indeed meta-theorems: they cannot be expressed in Dynamic Logic itself
because they require quantification over programs.

Formally Verifying Dynamic Properties of Knowledge Based Systems 169

Toy nature of our PSMs. Our examples are unrealistically small, and cannot be used
in realistic applications. For example, in multi-class classification (where an answers
contains n classes, instead of just one), the number of answer-candidates growths ex-
ponentially with n. In such a case, our linear filtering PSM would not be very attractive.
Nevertheless, we believe that the same results as presented in this paper can be obtained
for more realistic PSM’s. We are currently working on obtaining anytime-results for a
collection of more realistic methods taken from a standard KBS textbook [21]

5.2 Evaluation of K1V

Our case-study was not meant as a serious evaluation study of K1v. Nevertheless, our
experiences with KIV have been quite positive, for the following reasons. Firstly, KIV
allows the hierarchical decomposition of the software system (both specifications and
implementations). This achieves the usual advantages of modularity. Furthermore, K1V
allows us to prove properties of higher level functions and programs (such filter#)
without having to provide implementations of lower level programs, such as insert
which is used by £ilter#. Instead, only a specification of these lower-level functions
is required, abstracting from their implementation details.

Secondly, KIV performs correctness management, keeping track of which proofs
are dependent on which others (the so-called lemma-graph). KIV also keeps track of
which proof obligations have already been fulfilled or not, taking these dependencies
into account. Furthermore, it calculates which proofs must be redone when parts of
specifications and implementations are changed.

Thirdly, K1V is very user-friendly and easy to learn (certainly in comparison with
other interactive theorem provers). Important features are its graphical user-interface
(e.g. proofs displayed as trees, which can be used for proof-navigation, proof-replay
and re-use, proof-cut-and-paste), its use of natural mathematical notation in both editing
and displaying formulae, and the production of pretty-printed specifications, programs
and proofs.

5.3 Summary and Conclusions

In this paper we have shown how despite its limitations, Dynamic Logic can be fruitfully
used to express and prove dynamic properties of problem solving methods. This could
be done by encoding dynamic properties of these methods as functional properties of
slightly modified methods. These modifications were small and systematic, so that the
additional encoding effort remained small.

We have illustrated our approach in two case studies. In the first we proved any-
time behaviour of a simple linear filtering method, and in the second we analysed its
behaviour during computation when a heuristic candidate-selection function was em-
ployed.

All the proof obligations for these methods (termination, correctness, dynamic be-
haviour) have been fulfilled via machine assisted proofs using the KIV interactive veri-
fier for Dynamic Logic.

170 P. Groot, A. ten Teije, and F. van Harmelen

ap

Finally, for both case studies we have suggested a general approach that could be
plied to other problem solving methods in order to obtain the same results for those

methods.

References

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

. J. S. Aikins. Representation of control knowledge in expert systems. In Proceedings of
AAATI’80, pages 121-123, 1980.

A.J. Bonner and M. Kifer. Transaction logic programming. In Proceedings of the Tenth
Internat. Conf. on Logic Programming (IPLP’93), pages 257-279, 1993. MIT Press.

B. Chandrasekaran. Generic tasks in knowledge based reasoning: High level building blocks
for expert system design. IEEE Expert, 1(3):23-30, 1986.

W. Clancey. The advantages of abstract control knowledge in expert system design. In
Proceedings of AAAI’83, pages 74-78, 1983. 1983.

. F. Cornelissen, C. Jonker, and J. Treur. Compositional verification of knowledge-based sys-
tems: a case study for diagnostic reasoning. In E. Plaza and R. Benjamins, editors, Pro-
ceedings of EKAW’97, number 1319 in Lecture Notes in Artificial Intelligence, pages 6580,
1997. Springer-Verlag.

T. Dean and M. Boddy. An analysis of time-dependent planning problems. In Proceedings
ofAAAI’SS, pages 49-54, 1988.

D. Fensel. The Knowledge-Based Acquisition and Representation Language KARL. Kluwer
Academic Pubblisher, 1995.

D. Fensel and R. Groenboom. A software architecture for knowledge-based systems. The
Knowledge Engineering Review , 1999. To appear.

D. Fensel, R. Groenboom, and G. R. Renardel de Lavalette. Modal change logic (MCL):
Specifying the reasoning of knowledge-based systems. Data and Knowledge Engineering,
26(3):243-269, 1998.

D. Fensel and A. Schonegge. Using KIV to specify and verify architectures of knowledge-
based systems. In Proceedings of the 12th IEEE International Conference on Automated
Software Engineering (ASEC’97), 1997.

D. Fensel and A. Schonegge. Inverse verification of problem-solving methods. International
Journal of Human-Computer Studies, 49:4, 1998.

D. Fensel and R. Straatman. The essense of problem-solving methods: Making assumptions
for gaining efficiency. International Journal of Human-Computer Studies, 48(2):181-215,
1998.

M. Fisher and M. Wooldridge. On the formal specification and verification of multi-agent
systems. [International Journal of Cooperative Information Systems, 6(1):37-65, January
1997. World Scientific Publishers.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosoph-
ical Logic, Vol. I, pages 497-604. Reidel, Dordrecht, The Netherlands, 1984.

C. Jonker, J. Treur, and W. de Vries. Compositional verification of agents in dynamic envi-
ronments: a case study. In Proceedings of European V&V Workshop at KR’98, june 1998.
R. Jungclaus, G. Saake, Th. Hartmann, and C. Sernades. TROLL- a language for object-
oriented specification of information systems. ACM Transactions on Information Systems,
14(2):175-211, April 1996.

V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In IEEE Symposium on Foun-
dations of Computer Science, pages 109-121, October 1976.

W. Reif. The KIV-approach to Software Verification. In M. Broy and S. Jdhnichen, editors,
KORSO: Methods, Languages, and Tools for the Construction of Correct Software. Springer
LNCS 1009, 1995.

19.
20.
21.
22.
23.

24.

25.

26.

27.

28.

Formally Verifying Dynamic Properties of Knowledge Based Systems 171

S. J. Russell and S. Zilberstein. Composing real-time systems. In Proceedings of IJCAI’91,
pages 212-217, 1991.

L. Steels. Components of expertise. Al Magazine, Summer 1990.

M. Stefik. Introduction to Knowledge-Based Systems. Morgan Kaufmann, 1995.

A. ten Teije and F. van Harmelen. Exploiting domain knowledge for approximate diagnosis.
In Proceedings of IJCAI’97, pages 454-459, 1997.

J. Treur and Th. Wetter, editors. Formal Specification of Complex Reasoning Systems, Work-
shop Series. Ellis Horwood, 1993.

P. van Eck, J. Engelfriet, D. Fensel, F. van Harmelen, Y. Venema, and M. Willems. Speci-
fication of dynamics for knowledge-based systems. In B. Freitag, H. Decker, M. Kifer, and
A. Voronkov, editors, Transactions and Change in Logic Databases, volume 1472 of Lecture
Notes in Computer Science, pages 37-68. Springer Verlag, 1998.

F. van Harmelen and J. R. Balder. (ML)?: a formal language for KADS models of expertise.
Knowledge Acquisition, 4(1), 1992.

F. van Harmelen and A. ten Teije. Characterising approximate problem-solving by partial
pre- and postconditions. In Proceedings of ECAI’98, pages 78-82, 1998.

I. A. van Langevelde, A. W. Philipsen, and J. Treur. Formal specification of compositional
architectures. In B. Neumann, editor, Proceedings ECAI’92, pages 272-276, 1992.

B. J. Wielinga, A. Th. Schreiber, and J. A. Breuker. KADS: A modelling approach to knowl-
edge engineering. Knowledge Acquisition, 4(1):5-53, 1992.

Integration of Behavioural Requirements
Specification within Knowledge Engineering

Daniela E. Herlea!, Catholijn M. Jonker?,
Jan Treur’, Niek J.E. Wijngaards'?

! University of Calgary, Software Engineering Research Network
2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
Email: {danah, niek} @cpsc.ucalgary.ca

% Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands
Email: {jonker, treur, niek} @cs.vu.nl
URL: http://www.cs.vu.nl/{~jonker,~treur,~niek }

Abstract. It is shown how specification of behavioural requirements from
informal to formal can be integrated within knowledge engineering. The
integration of requirements specification has addressed, in particular: the
integration of requirements acquisition and specification with ontology
acquisition and specification, the relations between requirements
specifications and specifications of task models and problem solving
methods, and the relation of requirements specification to verification.

1 Introduction

Requirements Engineering (RE) addresses the development and validation of methods
for eliciting, representing, analysing, and confirming system requirements and with
methods for transforming requirements into more formal specifications for design and
implementation. Requirements Engineering is one of the early but important phases
in the software development life cycle and numerous studies have revealed the
misidentification of requirements as one of the most significant sources of customer
dissatisfaction with delivered systems [10], [22], [28]. However, it is a difficult
process, as it involves the elicitation, analysis and documentation of knowledge from
multiple stakeholders of the system. There is an increased need to involve the users at
this stage of the development life-cycle [8], 29]. It is recognised that the users are the
experts in their work and a thorough understanding of the requirements is achieved
only by promoting effective communication with them during the requirements
engineering process [3]. It is also argued that an effective requirements definition
requires involvement and mutual control of the process by all players, and that a good
partnership between users and designers enables a high quality of the system being
developed [19].

Requirements express intended properties of the system, and scenarios specify use-
cases of the intended system (i.e., examples of intended user interaction traces),
usually employed to clarify requirements. The process of requirements engineering

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 173-190, 1999.
© Springer-Verlag Berlin Heidelberg 1999

174 D.E. Herlea et al.

within software development is an iterative process, in which a sharp borderline
between defining requirements and constructing the system design is not always easy
to draw. When an effective stakeholder-developer communication link is in place, on
the basis of a (partially) constructed design description of the system, additional
information may be elicited from the stakeholders (i.e., domain experts, users, system
customers, managers), and more detailed requirements and scenarios can be developed
which refer to this design description. Requirements can be expressed in various
degrees of formality, ranging from unstructured informal representations (usually
during initial requirements acquisition) to more structured semi-formal representations
and formal representations.

The interleaving of the process of requirements engineering and the process of
design is emphasised in current research in the area of Al & Design (e.g., [16], [17]),
in which it is put forward that realistic design processes include both the manipulation
of requirement specifications and the manipulation of design object specifications,
resulting in a detailed description of a design object and a good understanding of the
requirements. This perspective on design, applied in particular to the design of
knowledge-intensive software, is employed throughout the paper. This is in contrast
with the tradition in software engineering to separate the activity of manipulating
software requirements from the ‘design of software’, the actual construction of the
system design [4], [20], [25], [26].

Principled model-based methodologies for knowledge engineering, such as DESIRE
(cf. [6], [7]), CommonKADS (cf. [27]) or MIKE (cf. [1]), the emphasis is on
specification of the (conceptual) model of the system being developed and not on
specification of required behaviour properties of a system to be developed. A
transparent distinction between specification of the structure of a system (or task or
problem solving method) and its (behavioural) properties is not made. For example, in
the Al and Design community a specification of the structure of a design object is
often distinguished from a specification of function or behaviour; e.g., [16], [17]. In
recent research in knowledge engineering, identification and formalisation of properties
of knowledge-intensive systems is addressed, usually in the context of verification or
competence assessment [2], [9], [14], [15]. Such properties can be used as a basis for
requirement specifications. In this paper it is shown how specification of behavioural
requirements from informal to formal can be integrated within knowledge engineering.

From the basic ingredients in knowledge engineering methodologies the following
are especially relevant to the integration of requirements specification: knowledge level
approaches to problem solving methods (e.g., [14]), ontologies (e.g., [23]) and
verification (e.g., [9]). It has to be defined how requirements specification relates to
these basic ingredients. Therefore, integration of requirements specification within a
principled knowledge engineering methodology has to address, in particular:

e integration of requirements acquisition and specification with ontology

acquisition and specification

e relations between requirements specifications and specifications of task models

with tasks at different levels of (process) abstraction, or problem solving
methods

e relation of requirements specification to verification

Integration of Behavioural Requirements Specification 175

These aspects are addressed in this paper. The different forms of representation of
requirements and scenarios are presented in Section 2, for reasons of presentation
illustrated by a simple example. In Section 3 refinement of requirements related to
different proces abstraction levels (e.g., as in task or task/method hierarchies) is
addressed. Section 4 briefly summarizes the relations between requirements and
scenarios. Section 5 concludes the paper with a discussion.

2 Representation of Requirements and Scenarios

In the approach presented in this paper, the processes of requirements engineering and
system development are integrated by a careful specification of the co-operation
between the two. The manipulation process of a set of requirements and scenarios, and
the manipulation process of a design object description (i.e., a description of the
system) are intertwined in the following way: first the set of requirements and
scenarios is made as precise as possible. This requires multiple interaction with and
among the stakeholders. Based on that set a possible (partial) description is made of
the system. The description of the system is used not only to validate the
understanding of the current set of requirements and scenarios, but also to elicit
additional information from the stakeholders. This leads to more requirements and
scenarios and to more detailed requirements and scenarios. The process continues,
alternating between manipulating a set of requirements and scenarios, and
manipulating a description of a system. Adequate representations of requirements and
scenarios are required for each part of the overall process, and, therefore, the relations
between the different representation forms of the same requirement or scenario need to
be carefully documented.

One of the underlying assumptions on the approach presented in this paper is that
a compositional design method will lead to designs that are transparent, maintainable,
and can be (partially) reused within other designs. The construction of a compositional
design description of the system that properly respects the requirements and scenarios
entails making choices between possible solutions and possible system
configurations. Such choices can be made during the manipulation of the set of
requirements and scenarios, but also during the manipulation of the design object
description. Each choice corresponds to an abstraction level. For each component of
the system design further requirements and scenarios are necessary to ensure that the
combined system satisfies the overall system requirements and scenarios. The different
abstraction levels in requirements are reflected as levels of process abstraction in the
design description during the manipulation of the compositional design description.

Different representations of requirements and scenarios are discussed in Sections
2.1 to 2.3. The use of process abstraction levels is explained further in Section 3. An
overview of the relations between representations of requirements and scenarios, and
different levels of process abstraction is presented in Section 4.

In Requirements Engineering the role of scenarios, in addition to requirements, has
gained more importance, both in academia and industry practice [13], [30]. Scenarios
or use cases are examples of interaction sessions between the users and the system
[24], [30]; they are often used during the requirement engineering, being regarded as

176 D.E. Herlea et al.

effective ways of communicating with the stakeholders (i.e., domain experts, users,
system customers, managers, and developers). The initial scenarios can serve to verify
(i.e., check the validity in a formal manner) the requirements specification and (later)
the system prototypes. Evaluating the prototypes helps detecting misunderstandings
between the domain experts and system designers if, for example, the system designers
made the wrong abstractions based on the initial scenarios. In our approach
requirements and scenarios both are explicitly represented, and play a role of equal
importance. Having them both in a requirements engineering process, provides the
possibility of mutual comparison: the requirements can be verified against the
scenarios, and the scenarios can be verified against the requirements. By this mutual
verification process, ambiguities and inconsistencies within and between the existing
requirements or scenarios may be identified, but also the lack of requirements or
scenarios: scenarios may be identified for which no requirements were formulated yet,
and requirements may be identified for which no scenarios were formulated yet.

To enable effective ways of communicating with the stakeholders, requirements
and scenarios are to be represented in a well-structured and easy to understand manner
and precise and detailed enough to support the development process of the system.
Unfortunately, no standard language exists for the representation of requirements and
scenarios. Formats of varying degrees of formality are used in different approaches
[25]. Informally represented requirements and scenarios are often best understood by
the stakeholders (although also approaches exist using formal representations of
requirements in early stages as well [11]). Therefore, continual participation of
stakeholders in the process is possible. A drawback is that the informal descriptions
are less appropriate when they are used as input to actually construct a system design.
On the other hand, an advantage of using formal descriptions is that they can be
manipulated automatically in a mathematical way, for example in the context of
verification and the detection of inconsistencies. Furthermore, the process of
formalising the representations contributes to disambiguation of requirements and
scenarios (in contact with stakeholders). At the same time however, a formal
representation is less appropriate as a communication means with the stakeholders.
Therefore, in our approach in the overall development process, different representations
and relations between them are used: informal or structured semi-formal
representations (obtained during the process of formalisation) in contact with
stakeholders and designers of the system, and related formal representations to be used
by the designers during the construction of the design.

Independent of the measure of formality, each requirement and each scenario can be
represented in a number of different ways, and/or using different representation
languages. Examples are given below. When manipulating requirements and scenarios,
different activities can be distinguished (see Fig. 1):

e requirements and scenarios are elicited from stakeholders, checked for ambiguities
and inconsistencies, reformulated in a more precise or more structured form, and
represented in different forms (informal, semi-formal, and formal) to suit different
purposes (communication with stakeholders, verification of a design description)

e they are refined across process abstraction levels (which is addressed in Section 3).

Integration of Behavioural Requirements Specification 177

7 N)
(formal formal
(requirements scenarios
degree of semi-formal) semi-formal \
formalisation . N
requirements scenarios
A R
informal informal
requirements - scenarios
relations between

requirements and scenarios

Fig. 1. Representations from informal to formal

2.1 Informal representations

Different informal representations can be used to express the same requirement or
scenario. Representations can be made, for example, in a graphical representation
language, or a natural language, or in combinations of these languages. Scenarios, for
instance, can be represented using a format that supports branching points in the
process, or in a language that only takes linear structures into account. A simple
example of a requirement R1 on a system to control a chemical process is the
following:

Requirement RI
For situations that the temperature and pressure are high the system
shall give a red alert and turn the heater off.

A requirement is a general statement about the (required) behaviour of the system to be
designed. This statement is required to hold for every instance of behaviour of the
system. In contrast to this, a scenario is a description of a behaviour instance (e.g., to
be read as an instance of a system trace the system has to show, given the user
behaviour in the scenario). An example of an informal representation of a scenario is:

Scenario S1
The temperature and pressure are high.
A red alert is generated and the heater is turned off.

Note that this scenario describes one of the behaviour instances for which requirement
R1 holds.
2.2 Structured semi-formal representations

Both requirements and scenarios can be reformulated to more structured and precise
forms.

178 D.E. Herlea et al.

Requirements. To check requirements for ambiguities and inconsistencies, an
analysis that seeks to identify the parts of a given requirement formulation that refer to
the input and output of the system is useful. Such an analysis often provokes a
reformulation of the requirement into a more structured form, in which the input and
output references are made explicitly visible in the structure of the formulation.
Moreover during such an analysis process the concepts that relate to input can be
identified and distinguished from the concepts that relate to the output of the system.
Possibly the requirement splits in a natural manner into two or more simpler
requirements. This often leads to a number of new (representations of) requirements
and/or scenarios. For example, the following requirement may be found as a result of
such an analysis:

Requirement R1.1:

at any point in time

if the system received input that the temperature is high and the pressure is
high

then the system shall generate as output a red alert and an indication that the
situation is explosive, and after the user gives an input that it has to be
resolved, the system gives output that the heater is turned off

A reformulation can lead to structured requirements in a semi-formal form that provide
more detail, for example R1 can be reformulated to R1.1, but also to two parts:

Requirement Rla.l:

at any point in time

if the system received input that the temperature is high and the pressure is
high

then the system shall generate as output a red alert and an indication that the
situation is explosive

Requirement R1b.1:

at any point in time

if the system provided as output an indication that the situation is explosive
and after this the user gave an input that it has to be resolved,

then the system shall generate output that the heater is turned off

Requirement R1a.1 can also be represented graphically, for example, by (here each of
the pairs of arrows means that both arrows of the pair occur at the same time):

Situation is explosive,

Integration of Behavioural Requirements Specification 179

As a specific case, also requirements referring only to input or only to output can be
encountered. For requirements formulated in such a structured manner the following
classification can be made:
e requirements on input only, independent of output (input requirements),
e requirements on output only, independent of input (output requirements), and
e requirements relating output to input
The latter type of requirements can be categorised as:
e output is dependent on input (input-output-dependency): function or
behaviour requirement,
e input is dependent on output (output-input-dependency): environmental
requirement or assumption
When stating properties of the environment (which includes users) of the system
(output-input-dependency), the term ‘requirement’ is avoided and the term ‘assumption’
is used: the environment is not within the scope of the software development; it
cannot be ‘tuned’ to exhibit particular properties. As such, only assumptions can be
made on its behaviour and properties. The term ‘requirements’ is used for those parts
of the system that are within the scope of designable parts of the system.

In addition, requirements can be categorised according to the kind of properties they
refer to: static requirements, or requirements. For nontrivial dynamic requirements a
temporal structure has to be reflected in the representation. This entails that terms
such as ‘at any point in time’, ‘at an earlier point in time’, ‘after’, ‘before’, ‘since’,
‘until’, ‘next’ are used to clarify the temporal relationships between different fragments
in the requirement.

The input and output terms used in the structured reformulations form the basis of
an ontology of input and output concepts. Construction of this ontology takes place
during the reformulation of requirements: acquisition of a (domain or task or method)
ontology is integrated within requirements engineering (requirements engineering
contributes at least to part of the ontology acquisition). For the requirements
engineering process it is very useful to construct an ontology of input and output
concepts. For example, in R1b.1 the concepts indicated below in bold can be acquired.

Requirement R1b.1:

at any point in time

if the system provided as output an indication that the situation is
explosive,

and after this the user gave an input that it has to be resolved,

then the system shall generate output that the heater is turned off

This ontology later facilitates the formalisation of requirements and scenarios, as the
input and output concepts are already defined.
In summary, to obtain a structured semi-formal representation of a requirement, the
following is to be performed:
e explicitly distinguish input and output concepts in the requirement
formulation
e define (domain and task/method) ontologies for input and output information

180 D.E. Herlea et al.

e classify the requirement according to the categories above

e make the femporal structure of the statement explicit using words like, ‘at
any point in time’, ‘at an earlier point in time’, ‘after’, ‘before’, ‘since’,
‘until’, ‘next’.

Scenarios. For scenarios, a structured semi-formal representation is obtained by
performing the following:

e explicitly distinguish input and output concepts in the scenario description

e define (domain) ontologies for the input and output information

e represent the temporal structure described implicitly in the sequence of events.

The scenario S1 shown earlier is reformulated into a structured semi-formal
representation S1.1:

Scenario S1.1

- input: temperature is high, pressure is high
- output: red alert, situation is explosive

- input: to be resolved

- output: heater is turned off

Notice that from this scenario, which covers both requirements given above, it is not
clear whether or not always an input fo be resolved leads to the heater being turned off,
independent of what preceded this input, or whether this should only happen when the
history actually was as described in the first two lines of the scenario. If the second
part of the scenario is meant to be history independent, this second part is better
specified as a separate scenario. However, we assume that in this example at least the
previous output of the system situation is explosive on which the user reacts is a
condition for the second part of the scenario (as also expressed in the requirements
above). These considerations lead to the splitting of scenario S1.1 into the following
two (temporally) independent scenarios Sla.l and S1b.1:

Scenario Sla.l
- input: temperature is high, pressure is high

- output: red alert, situation is explosive

Scenario S1b.1

- output: situation is explosive
- input: to be resolved
- output: heater is turned off

2.3 Formal representations

A formalisation of a scenario can be made by using formal ontologies for the input
and output, and by formalising the sequence of events as a temporal trace. Thus a
formal temporal model is obtained, for example as defined in [7] and [9]. To obtain
formal representations of requirements, the input and output ontologies have to be

Integration of Behavioural Requirements Specification 181

chosen as formal ontologies. In the example this can be done, for example by
formalising a conceptual relation of the form A is B, with as meaning that the object
A has property B, in a predicate form: B(A); for example ‘the situation is explosive’ is
formalised by explosive(situation), where situation is an object and explosive a predicate.
This format can be used within an appropriate subset or extension of predicate logic.
For example, requirement Rla.l can also be represented formally in combined
symbolic and graphical form by the following:

temperature(high

pressure(high] explosive(situation’

In addition, the temporal structure, if present in a semi-formal representation, has to
be expressed in a formal manner. Using the formal ontologies, and a formalisation of
the temporal structure, a mathematical language is obtained to formulate formal
requirement representations. The semantics are based on compositional information
states which evolve over time. An information state M of a component D is an
assignment of truth values {true, false, unknown} to the set of ground atoms that play a
role within D. The compositional structure of D is reflected in the structure of the
information state. The set of all possible information states of D is denoted by I1S(D). A
trace OM_of a component D 1is a sequence of information states (M QN in IS(D).

Given a trace M of component D, the information state of the input interface of
component C at time point t of the component D is denoted by statep(OM , t, input(C)),
where C is either D or a sub-component of D. Analogously, statep(OM , t, output(C)),

denotes the information state of the output interface of component C at time point t of
the component D. These formalised information states can be related to statements via
the formally defined satisfaction relation . Behavioural properties can be formulated
in a formal manner, using quantfiers over time and the usual logical connectives such
as not, &, []. An alternative formal representation of temporal properties (using
modal and temporal operators) within Temporal Multi-Epistemic Logic can be found
in [12]. For example, requirement R1b.1 can be represented formally by:

Requirement R1b.2:

Ek)v(,t [stateg(M, t, input(S)) = to_be resolved &
Lh <t stateg(ON, t, output(S)) = explosive(situation) 0
P>t stateg(ON, 1, output(S)) = tum_off(heater) |

In this formalisation of R1b.1 the word “after” is represented by indicating that the
time point t at which to_be_resolved appeared on the input is greater than some time
point t' at which the system reported that the situation is explosive on its output.

Scenario S1.1 can be represented formally by the temporal model that is defined as
follows:

182 D.E. Herlea et al.

Scenario S1.2:

stateg(OM, 1, input(S)) E high(temperature)
stateg(OM, 1, input(S)) E high(pressure)
stateg(OM, 2, output(S)) E explosive(situation)
stateg(OM, 2, output(S)) E red_alert
stateg(IM, 3, input(S)) E to_be_resolved
stateg(OM_, 4, output(S)) E turn_off(heater)

To summarise, formalisation of a requirement or scenario on the basis of a structured
semi-formal representation is achieved by:

e choosing formal ontologies for the input and output information

e formalisation of the temporal structure
This results in a temporal formula F for a requirement and in a temporal model M for
a scenario.

Checking a temporal formula, which formally represents a requirement, against a
temporal model, formally representing a scenario, means that formal verification of
requirements against scenarios can be done by model checking. A formal
representation M of a scenario S and a formal representation F of a requirement are
compatible if the temporal formula is true in the model. For example, the temporal
formula R1b.2 is indeed true for the model S1.2: the explosive situation occurred at
time point 2 in the scenario, at time point 3 (which is later than 2) the system
received input to_be_resolved, and at time point 4 (again later than 3), the system has as
output turn_off(heater).

However, requirement R1b.2 would also be true in the following two scenarios.
Scenario S2 is an example of a situation in which the system turns off the heater
when this is not appropriate, scenario S3 is an example of a situation in which the
system waits too long before it turns off the heater (which might lead to an
explosion).

Scenario S2

The temperature and the pressure are high

The system generates a red alert and turns off the heater,
The temperature and the pressure are medium

The temperature is low and the pressure is medium

The system turns off the heater

Scenario S3

The temperature and the pressure are high

The system generates a red alert and turns off the heater,
The system increases the heater

The system increases the heater

An explosion occurs

The system turns off the heater

Integration of Behavioural Requirements Specification 183
Furthermore, the requirement would also be true in a scenario in which the system

waited with turning off the heater, maybe even first increasing the heat for some time.
This last scenario is formalised as scenario S3.1:

Scenario S3.1:

stateg(IM, 1, input(S)) high(temperature)
stateg(M, 1, input(S)) high(pressure)
stateg(OM, 2, output(S)) explosive(situation)
stateg(OM, 2, output(S)) red_alert

stateg(IM, 3, input(S)) to_be_resolved

stateg(OM, 4, output(S)) increase(heater)
stateg(OM, 5, output(S)) increase(heater)
stateg(IM, 6, input(S)) occurred(explosion)

TTTTTTTTTT

stateg(OM, 7, output(S)) turn_off(heater)

In other words, requirement R1b.2 leaves too many possibilities for the system’s
behaviour, and, being a formalisation of R1b.1, so do the requirements that form the
reason for formulating RI1b.1, ie., Rla.l, and R1.1. During the requirement
engineering process this has to be resolved in contact with the stakeholders. In this
case, the semi-formal R1.1 and R1a.1, and the formal R1a.2 have to be reformulated:
after a discussion with the stakeholders, R1.1 is reformulated into:

Requirement R1.2:

at any point in time

if the system received input that the temperature is high and the pressure is
high

then at the next point in time the system shall generate as output a red alert
and an indication that the situation is explosive, and at the next point in time
after the user gives an input that it has to be resolved, the system gives
output that the heater is turned off

Requirement R1b.1 is reformulated into:

Requirement R1b.3:
at any point in time
if the system provided as output
an indication that the situation is explosive,
and at the next time point after the user gave an input
that the situation has to be resolved,
then the system shall generate output
that the heater is turned off

Based on these reformulations (that also affect the ontologies), the requirement
engineers choose a different representation of R1b.2:

184 D.E. Herlea et al.

Requirement R1b.3:

D@(,t [stateg(OM, t, input(S)) E to_be_resolved(situation) &
stateg(OM,, prev(t), output(S)) E explosive(situation) H
stateg(OM,, succ(t), output(S)) E turn_off(heater) |

Requirement R1b.3 is true in scenario S1.2 (let prev be the function: n -> n-1 and
succ: n -> n+1), but not in the sketched unwanted scenarios like S3.1.

3 Requirements Refinement and Process Abstraction Levels

The requirements engineering process considers the system as a whole, in interaction
with its stakeholders. However, during a design process, often a form of structuring of
the system is used: sub-processes are distinguished, for example in relation to
development or selection of a task or task/method hierarchy. For the processes at the
next lower process abstraction level, also requirements can be expressed. Thus a
distinction is made between stakeholder requirements and stakeholder scenarios (for the
top level of the system, elicited from stakeholders, such as users, customers) and
designer requirements and designer scenarios (for the lower process abstraction levels,
constructed by requirement engineers and designers). Designer requirements and
scenarios are dependent on a description of the system. Requirements on properties of
a sub-component of a system reside at a next lower level of process abstraction than
the level of requirements on properties of the system itself; often sets of requirements
at a lower level are chosen in such a way that they realise a next higher level
requirement. This defines a process abstraction level refinement relation between
requirements. These process abstraction refinement relationships can also be used to
validate requirements: e.g., if the refinements of a requirement to the next lower
process abstraction level all hold for a given system description, then the refined
requirement can be proven to hold for that system description. Similarly, scenarios can
be refined to lower process abstraction levels by adding the interactions between the
sub-processes. At each level of abstraction, requirements and scenarios employ the
terminology defined in the ontology for that level. In the example used above, for the
structured semi-formal requirements two processes can be distinguished:

interpret process info
input information of type: temperature is high, pressure is high
output information of type: situation is explosive

generate actions
input information of type: situation is explosive
output information of type: red alert, heater is turned off

At the next lower abstraction level of these two processes the following requirements
can be formulated, as a refinement of the requirements given earlier:

Integration of Behavioural Requirements Specification 185

S N
requirements scenarios

process process
refinement refinement
relations relations

process
abstraction
level 0

process
abstraction
level n

O\ N
refined refined
requirements scenarios

Fig. 2. Process abstraction level refinements

relations between
requirements and scenarios

interpret process info

Requirement Rlint.1:

at any point in time

if the component received input that the temperature is high and the pressure
is high

then the component shall generate as output an indication that the situation
is explosive

generate actions

Requirement Rlacta.l:

at any point in time

if the component received input that the situation is explosive ,
then the component shall generate as output a red alert

Requirement Rlactb.1:

at any point in time

if the component received input that the situation is explosive,

and after this it received an input that it has to be resolved,

then the component shall generate output that the heater is turned off

Furthermore, scenarios Sla.1 and S1b.1 given earlier can be refined to

Scenario Slinta.l

- system input: temperature is high, pressure is high
- interpret process info input: temperature is high,
pressure is high
- interpret process info output: situation is explosive
- generate actions input: situation is explosive
- generate actions output: red alert

- system output: situation is explosive, red alert

186 D.E. Herlea et al.

Scenario Slintb.1
- system output: situation is explosive
- system input: to be resolved
- generate actions input: to be resolved
- generate actions output: heater is turned off
- system output: heater is turned off

4 Traceability Relations for Requirements and Scenarios

As requirements and scenarios form the basis for communication among stakeholders
(including the system developers), it is important to maintain a document in which
the requirements and scenarios are organised and structured in a comprehensive way.
This document is also important for maintenance of the system once it has been taken
into operation. Due to the increase in system complexity nowadays, more complex
requirements and scenarios result in documents that are more and more difficult to
manage. The different activities in requirements engineering lead to an often large
number of inter-related representations of requirements and scenarios.

N

formal formal
requirements scenarios

semi-formal semi-formal
requirements scenarios
[

informal
requirements

process
refinement
relations

process . 3
abstraction infol rmal
cenarios

level 1

refined formal
requirements

refined formal
scenarios

refined semi-formal
requirements scenarios

refined informal refined informal
requirements scenarios

Fig. 3. Traceability relations

refined semi-formal

process
abstraction
level n

relations between
requirements and scenarios

The explicit representation of these traceability relations is useful in keeping track
of the connections; traceability relationships can be made explicit:

e among requirements at the same process abstraction level (Fig. 1),
e between requirements at different process abstraction levels (Fig. 2),

Integration of Behavioural Requirements Specification 187

e among scenarios at the same process abstraction level (Fig. 1),
between scenarios at different process abstraction levels (Fig. 2),
between requirements and scenarios at the same process abstraction level (Figs 1, 2
and 3)
e among requirements at the same level of formality (Fig. 3)
e between requirements and scenarios at the same level of formality (Fig. 3).
These relationships are often adequately specified using hyperlinks. This offers
traceability; i.e., relating relevant requirements and scenarios as well as the possibility
to ‘jump’ to definitions of relevant requirements and scenarios. Thus requirements and
scenarios resulting from an extensive case-study have been placed in a hyperlinked
structure [18]; see Fig. 3, which combines Figures 1 and 2.

5 Discussion

Requirements describe the required properties of a system (this includes the functions
of the system, structure of the system, static properties, and dynamic properties). In
applications to agent-based systems, the dynamics or behaviour of the system plays an
important role in description of the successful operation of the system. Requirements
specification has both to be informal or semi-formal (to be able to discuss them with
stakeholders) and formal (to disambiguate and analyse them and establish whether or
not a constructed model for a system satisfies them). Typical software requirements
engineering practices are geared toward the development of a formal requirements
specification.

The process of making requirements more precise is supported by using both semi-
formal and formal representations for requirements. Part of this process is to relate
concepts used in requirements to input and output of the system. Since requirement
specifications need system-related concepts, it has been shown how the acquisition and
specification of requirements goes hand in hand with the acquisition and specification
of ontologies.

The formalisation of behaviour requirements has to address the semantics of the
evolution of the system (input and output) states over time. In this paper the
semantics of properties of compositional systems is based on the temporal semantics
approach, which can be found in the development of a compositional verification
method for knowledge-intensive systems; for diagnostic process models see [9]; for co-
operative information gathering agents, see [21]; for negotiating agents, see [5]. By
adopting the semantical approach underlying the compositional verification method, a
direct integration of requirements engineering with the specification of properties of
problem solving methods and their verification could easily be established.

For some example systems requirements and scenarios have been elicited, analysed,
manipulated, and formalised. The lessons learned from these case studies are:

e The process of achieving an understanding of a requirement involves a large
number of different formulations and representations, gradually evolving from
informal to semi-formal and formal.

e Scenarios and their formalisation are, compared to requirements, of equal
importance.

188

D.E. Herlea et al.

Categorisation of requirements on input, output and function or behaviour
requirements, and distinguishing these from assumptions on the environment
clarifies the overall picture.

Keeping track on the various relations between different representations of
requirements, between requirements and scenarios, and many others, is
supported by hyperlink specifications within a requirements document.

In current and future research, further integration of requirements engineering in the
compositional development method for multi-agent systems, DESIRE and, in
particular, in its software environment is addressed.

References

10.

11.

12.

Angele, J., Fensel, D., Landes, D., and Studer, R., Developing Knowledge-based
Systems with MIKE. Journal of Automated Software Engineering, 1998

Benjamins, R., Fensel, D., Straatman, R. (1996). Assumptions of problem-solving
methods and their role in knowledge engineering. In: W. Wabhlster (Ed.), Proceedings
of thel2th European Conference on Al, ECAI'96, John Wiley and Sons, pp. 408-412.

Beyer, H.R. and Holtzblatt, K. (1995). Apprenticing with the customer,
Communications of the ACM, vol. 38(5), pp. 45-52.

Booch, G. (1991). Object oriented design with applications. Benjamins Cummins
Publishing Company, Redwood City.

Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O.,
Polak, B., and Treur, J. (1998). Compositional Design and Verification of a Multi-
Agent System for One-to-Many Negotiation. In: Proceedings of the Third
International Conference on Multi-Agent Systems, ICMAS'9S8. IEEE Computer
Society Press, pp. 49-56.

Brazier, FM.T., Jonker, C.M., and Treur, J. (1998). Principles of Compositional
Multi-agent System Development. In: J. Cuena (ed.), Proceedings of the 15th IFIP
World Computer Congress, WCC'98, Conference on Information Technology and
Knowledge Systems, IT&KNOWS'98, pp. 347-360.

Brazier, FM.T., Treur, J., Wijngaards, N.J.E. and Willems, M. (1999). Temporal
Semantics of Compositional Task Models and Problem Solving Methods. Data and
Knowledge Engineering, vol. 29(1), 1999, pp. 17-42.

Clavadetscher, C. (1998). User involvement: key to success, [EEE Software,
Requirements Engineering issue, March/April, pp. 30-33.

Cornelissen, F., Jonker, C.M., and Treur, J. (1997). Compositional verification of
knowledge-based systems: a case study in diagnostic reasoning. In: E. Plaza, R.
Benjamins (eds.), Knowledge Acquisition, Modelling and Management, Proceedings
of the 10th European Knowledge Acquisition Workshop, EKAW'97, Lecture Notes in
Al, vol. 1319, Springer Verlag, Berlin, pp. 65-80.

Davis, A. M. (1993). Software requirements: Objects, Functions, and States, Prentice
Hall, New Jersey.

Dubois, E., Yu, E., Petit, M. (1998). From Early to Late Formal Requirements. In:
Proc. IWSSD’98. IEEE Computer Society Press.

Engelfriet, J., Jonker, C.M. and Treur, J., Compositional Verification of Multi-Agent
Systems in Temporal Multi-Epistemic Logic. In: J.P. Mueller, M.P. Singh, A.S. Rao

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

Integration of Behavioural Requirements Specification 189

(eds.), Pre-proc. of the Fifth International Workshop on Agent Theories,
Architectures and Languages, ATAL'98, 1998, pp. 91-106. To appear in: J.P. Mueller,
M.P. Singh, A.S. Rao (eds.), Intelligent Agents V. Lecture Notes in Al, Springer
Verlag, 1999

Erdmann, M. and Studer, R. (1998). Use-Cases and Scenarios for Developing
Knowledge-based Systems. In: J. Cuena (ed.), Proceedings of the 15th IFIP World
Computer Congress, WCC'98, Conference on Information Technology and
Knowledge Systems, IT& KNOWS'98, pp. 259-272.

Fensel, D. (1995). Assumptions and limitations of a problem solving method: a case
study. In: B.R. Gaines, M.A. Musen (Eds.), Proceedings of the 9th Banff Knowledge
Acquisition for Knowledge-based Systems Workshop, KAW'95, Calgary: SRDG
Publications, Department of Computer Science, University of Calgary.

Fensel, D., Benjamins, R. (1996) Assumptions in model-based diagnosis. In: B.R.
Gaines, M.A. Musen (Eds.), Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-based Systems workshop, KAW'96, Calgary: SRDG Publications,
Department of Computer Science, University of Calgary, pp. 5/1-5/18.

Gero, J.S., and Sudweeks, F., eds. (1996) Artificial Intelligence in Design 96, Kluwer
Academic Publishers, Dordrecht.

Gero, J.S., and Sudweeks, F., eds. (1998) Artificial Intelligence in Design 98, Kluwer
Academic Publishers, Dordrecht.

Herlea, D., Jonker, C.M., Treur, J. and Wijngaards, N.J.E. (1998). A Case Study in
Requirements Engineering. Report, Vrije Universiteit Amsterdam, Department of
Artificial Intelligence. URL: http://www.cs.vu.nl/~treur/pareqdoc.html

Holzblatt, K. and Beyer, K.R. (1995). Requirements gathering: the human factor,
Communications of the ACM, vol. 38(5), pp. 31.

Jackson, M.A. (1975). Principles of Program Design, Academic Press.

Jonker, C.M. and Treur, J. (1998). Compositional Verification of Multi-Agent
Systems: a Formal Analysis of Pro-activeness and Reactiveness. In: W.P. de Roever,
H. Langmaack, A. Pnueli (eds.), Proceedings of the International Workshop on
Compositionality, COMPOS'97. Lecture Notes in Computer Science, vol. 1536,
Springer Verlag, 1998, pp. 350-380

Kontonya, G., and Sommerville, I. (1998). Requirements Engineering: Processes and
Techniques. John Wiley and Sons, New York.

Musen, M. (1998). Ontology Oriented Design and Programming: a New Kind of OO.
In: J. Cuena (ed.), Proceedings of the 15th IFIP World Computer Congress, WCC'98,
Conference on Information Technology and Knowledge Systems, IT& KNOWS'98, pp.
17-20.

Potts, C., Takahashi, K. and Anton, A. (1994). Inquiry based requirements analysis,
IEEFE Software, 11(2), March.

Pressman, R.S. (1997). Software Engineering: A practitioner’s approach. Fourth
Edition, McGraw-Hill Series in Computer Science, McGraw-Hill Companies Inc., New
York.

Sage, A.P., and Palmer, J.D. (1990). Software Systems Engineering. John Wiley and
Sons, New York.

Schreiber, A.Th., Wielinga, B.J., Akkermans, J.M., Velde, W. van de, and Hoog, R.
de (1994). CommonKADS: A comprehensive methodology for KBS development. In:
1EEE Expert, 9(6).

190 D.E. Herlea et al.

28.

29.
30.

Sommerville, 1., and Sawyer P. (1997). Requirements Engineering: a good practice
guide. John Wiley & Sons, Chicester, England.

The Standish Group, (1995) The High Cost of Chaos: http://www.standishgroup.com
Weidenhaupt, K., Pohl, M., Jarke, M. and Haumer, P. (1998). Scenarios in system
development: current practice, IEEE Software, pp. 34-45, March/April.

Towards an Ontology for Substances and Related
Actions

Bjorn Hofling!, Thorsten Liebig?, Dietmar Rosner!, and Lars Webel!

! Otto-von-Guericke-Universitit Magdeburg,
Institut fiir Wissens— und Sprachverarbeitung,
P.O.Box 41 20, D-39016 Magdeburg, Germany,

(hoefling,roesner,webel)@iws.cs.uni-magdeburg.de
2 Abteilung Kiinstliche Intelligenz, Fakultit fiir Informatik,
Universitdt Ulm, D-89069 Ulm, Germany
liebig@ki.informatik.uni-ulm.de *

Abstract. Modelling substances in knowledge representation has to be
different from the treatment of discrete objects. For example liquids need
a different approach to individuation. We propose an ontology which rep-
resents physical states and other properties of substances in a uniform
way. Based on this we describe how to model a hierarchy of actions that
can deal with such substances. For these actions a general distinction
is made with respect to the type of properties the actions are changing.
Further we describe an implementation in description logic allowing espe-
cially the definition of actions by specialization of more abstract actions
and the inheritance of pre- and postconditions.

1 Introduction

When knowledge in a technical application area is made explicit, i.e. represented
formally in a computer readable way, substances often play an important role,
e.g. to have a detailed model of the material a technical part is made of, or
the substances which are necessary for its use. It would be helpful to have this
knowledge available in a sharable and reusable way suitable for different pur-
poses. One way to do this is by specifying an ontology for this domain. Such an
explicit specification of a conceptualization ([Gru95]) helps to clarify the mean-
ing of relevant entities in the domain and therefore allows a shared understanding
between different applications.

We are modelling knowledge about products, e.g. for the automatic gen-
eration of multilingual technical documentation from a language independent
representation of the relevant domain knowledge. For some technical devices
the relevant domain knowledge may be completely represented through a model
comprising the resp. object, their parts and actions for manipulating those parts
(e.g. checking, replacing). In this case modelling discrete objects is sufficient.

* Part of this author’s contribution was funded by a PhD scholarschip of the program
“Graduiertenférderung des Landes Sachsen-Anhalt”.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 191-206, 1999.
© Springer-Verlag Berlin Heidelberg 1999

192 B. Hofling et al.

But in many realistic applications we have to adequately model substances that
are part of a product and play a functional role there (e.g. engine oil, coolant,
...). In addition related maintenance actions operating with these substances
need to be modeled (e.g. checking an appropriate substance level, adding some
fluid, replacing a fluid, ...).

A traditional way of representing substances is as properties of concrete ob-
jects. For well delimited objects made of solid material this might be a sufficient
approach. But it will run into problems when trying to take into account the
physical state of liquids. For this state one has to decide which amount of a
substance may be called an instance or object, because every part of a liquid
also fulfills the necessary and sufficient conditions for being an object. This in-
dividuation problem has to be handled in a uniform way in order to be able to
represent all kinds of substances independent of their physical state or other
properties in a single ontology.

As objects and their substances may change some of their properties over
time, like e.g. the physical state as a consequence of a rising or lowering of
temperature, it becomes also necessary to decide upon the behaviour of the
individuated substances. Some of the questions that arise include: What happens
to two substances when they are mixed together? What happens when a liquid is
distributed over several containers? These questions belong to a general category
of the modelling of actions which are related to substances.

We should clarify the role of our application in the design decisions which
have been made in the ontology: Our goal, the automatic generation of multilin-
gual technical documentation, requires a language independent representation of
the domain knowledge (due to multilinguality) and reusability via specialization
of general concepts (in order to be able to adapt the generated documents to
different kinds of users, levels of detail or discourse situations). In addition the
qualitative simulation of the represented actions is a requirement, as it allows
the testing of feasibility and completeness of sequences of actions and can even
lead to the automatic generation of warning instructions when possible danger-
ous events are detected. Nevertheless we believe that our approach is a general
one which can be reused in cases where the modelling of non-discrete objects
and related actions is necessary.

The paper is structured as follows: Section 2 analyses in more detail the do-
main of substances and related actions. Originating from this analysis a toplevel
ontology for substances is presented in section 3 which has been implemented
in description logic. Next, a taxonomy for actions related to this ontology is
introduced in section 4. The consequences which follow for the implementation
of action hierarchies in description logics are the topic of section 5. The paper
concludes with remarks on related work, a summary and outlook.

Towards an Ontology for Substances and Related Actions 193
2 Domain analysis

A substance can be defined as a physical material from which something is made
or which has a discrete existence. To illustrate major problems in the modelling
of substances we give a simple example: A cup of water, standing in front of
someone. What are the substances which are of importance in this situation and
how should the be represented? The object referred to by the first noun ’cup’ is
made of a certain material (e.g. china), which could for example be represented
as a property of the instance ’cup’. The second noun ’'water’ directly describes
some amount of a substance. Is this to be modelled as an instance as well?

In linguistics a disctinction is made between count expressions, which refer
to a discrete, well-delineated group of entities and mass expressions, which refer
to something without making it explicit how its referent is to be individuated or
divided into objects [PS89]. Mass and count expressions are in most cases nouns,
but some authors classify also other expressions (like verbs) as count or mass
expressions. Even if in natural language the type of referent of mass expressions
can be left unspecified, for explicit representations in ontologies or knowledge
bases one has to solve this individuation problem. For the cup we can say there
is a cup-object, but can we say that there is a water-object (i.e. the amount
of water in the cup)? Such a water-object is a fundamentally different kind of
object because any part of it is also a water-object, which is not the case for the
cup.

To create an ontology and to be able to distinguish between individuals
and their categories we have to examine properties of substances. The question
arises whether a property belongs to the material or the object made of the
material. The following definitions manifest this distinction ([RN95]): Intrinsic
properties belong to the very substance of the object rather than to the object as
a whole (examples: density, boiling point, composition of its chemical elements).
Extrinsic properties are specific for an indivualised object (examples: volume,
weight, shape). Intrinsic properties remain the same for every part of an object
because it is made of the same material. On the other hand extrinsic properties
are not retained under subdivision.

In the following we will discuss only those properties of substances which we
consider important enough to be represented at a very high level in a substance
ontology, which help to solve the individuation problem and which are essen-
tial for categorizing operations on substances. One important distinction is pure
vs. mized substances. For pure substances general properties like composition
of its chemical elements, melting point and boiling point are important. Mixed
substances should be represented as a list of the included pure substances. Un-
fortunately many properties of mixed substances cannot be deduced from the
properties of its (pure) components. Since the components may also be in dif-
ferent physical states (example: sparkling water as a mixture of a liquid and
a gaseous substance) it can even be difficult to specify the physical state of a
mixed substance.

Nevertheless the physical state is a very important distinctive attribute, be-
cause in physics most other properties of substances are related to whether they

194 B. Hofling et al.

are in a solid, liquid or gaseous state. In which physical state an object of a spe-
cific substance manifests itself depends on its temperature and on its pressure
which we neglect here for the sake of simplicity. A general difference between
most solid substances on the one hand and liquid and gaseous substances on
the other hand is that the latter are not bound to a certain shape and may
require a container to avoid dispersion. For all three physical states there are
other possible distinctions or types of appearance [Web98]:

solid: depending on cohesive and adhesive forces
— powderous substances (like flour); no identifiable shape, so mass or vol-
ume or an embracing container have to be specified
— granular substances (like sugar); either like powderous substances, or by
external influence or forces pressed into a shape (lump sugar)
— substances with tight connection (like iron); shape plays an important
role, can only be changed by external forces
— malleable substances (like plasticine); hold together but their shape can
be easily modified
liquid: [Hay85] distinguishes 15 possible states of liquid substances categorized
along the following dimensions: (lazy still, lazy moving, energetic moving);
(bulk, divided);(on surface, in space, unsupported)
gaseous: Like liquid substances they do not have a predefined shape and require
a container to be kept together. To specify a certain amount of a gas one has
to mention pressure and temperature (or to use normalized values for both)
in addition to volume.

These top-level distinctions are sufficient to solve the individuation problem
for substances in a general way and to be able to model related actions. In this
context an action can be defined as the discrete change of one or more properties
of an object or a substance. In this paper we will not describe continous processes
for substances (like flowing of water), instead we restrict ourselves to discrete
states of substances and to actions where the state changes can be modelled
in a discrete way. As with substances we will not be able to make a complete
classification of actions but will analyse some major categories.

We distinguish between the following categories of actions based on the type
of properties of substances that they are changing:

Substance-preserving actions: Only extrinsic properties of the objects are
changed. The intrinsic properties of the related substances are preserved.

Substance-changing actions: Intrinsic (i.e. substance-specific) properties are
changed, which means that the participating substances before and after
the execution of the action differ (examples: mixing of different substances,
chemical reaction between substances).

Instance-preserving actions: In these actions the participating instances re-
main the same before and after the execution of the action (examples: move-
ment of an object, or pouring of a liquid into another container).

Instance-changing actions: They modify essential properties of an object
and also result in the destruction or creation of instances (examples: division
or putting together quantities of substances).

Towards an Ontology for Substances and Related Actions 195

The last distinction between instance-changing and instance-preserving ac-
tions is also motivated by a distinction of the extrinsic properties changed. Those
extrinsic properties which are essential for an object (i.e. when they are changed,
the instance will not remain the same; we will call them existential properties)
must be distinguished from those which have no fundamental influence on the
existence of an instance (we will call them non-existential properties). It ist de-
pendent on the context whether a substance property is existential or not. In
solid or liquid substances changing the property 'volume’ is normally an instance-
changing action because some part of it has been separated from the original
object. As gases can be easily compressed changing the volume can also be an
instance-preserving action for gaseous substances. In the former case the volume
would be an existential in the latter case a non-existential property.

3 An ontology for substances

In this section we will propose a toplevel ontology for substances. Before de-
scribing our major distinctions and the reasons for these decisions we should
clarify the requirements which lead to our ontology. They can be summarized as
follows:

— Discrete objects and those for which an individualization is not obvious
should be handled in a uniform way.

— For discrete objects the traditional way of instantiation and reference to a
substance must be supported in order to be able to reuse existing represen-
tations.

— The ontology should be usable in dynamic contexts (i.e. the change of substance-
related properties during actions).

The first requirement needs additional explanation. Intuitively people often
treat all kinds of substances the same way. Therefore a separation of discrete
objects and other kinds of substances seems artificial. Especially when not only
static aspects but also dynamic changes are relevant. Why should an ice cube
only begin to exist in the moment when the water freezes? Although the physical
state has changed the individuated substance remains the same. In addition the
modelling of e.g. a liquid only as a property of its container together with the
degree of filledness (similar to other properties of the container) would complicate
the treatment of transfering this liquid to another container or its identification
in relation to a substitute (e.g. the oil in a motor before and after a change).

An ontology may be defined in an abstract way without using a concrete
knowledge representation mechanism. However, since we want to be able to
make actions related to substances executable we need an implementation basis.
For this reason we chose POWERLOOM, which is a very expressive description
logic system. POWERLOOM accepts expressions using the full predicate calculus,
extended with sets, cardinality, equality, and predicate variables [Mac94].

196 B. Hofling et al.

In the traditional approach to abstraction and inheritance there is the basic
distinction between instances, i.e. the individual objects (e.g. my car — identified
by its type and license number — or my dog, identified by its owner and name),
and concepts, i.e. the collection or class of all objects sharing certain properties
(e.g. the concept CAR as the class of all cars or the class DOG). Individual
objects or instances are elements of their concepts (seen as sets); specialisation
is a subset relation between classes.

For a uniform treatment of both discrete objects and substances we first
have to work out a generalized concept of what may constitute an ‘instance’ and
how it relates to the resp. concept (the individuation problem). A solution can
be summarized as follows: The concept of a substance e.g. the concept ‘water’
is the abstraction comprising all occurrences of this substance in the universe
which share their intrinsic properties. Substances are instantiated by specifying
their extrinsic properties like a definite amount of the substance or by relating
it to some container that contains the substance and thus implicitly restricts its
amount.

This approach to the individuation of substances is in accordance with the
linguistic treatment of the phenomena, especially the use of definite referring
expressions:

— In a recipe you may e.g. first introduce the amount of ingrediences needed
(e.g. 250 cl of milk, 25 gramm of butter, ...) and later use definite noun
phrases to refer to these substances as if they were instances (e.g. Melt the
butter ...Pour the milk ...).

— As soon as a container is introduced into a discourse, an amount of substance
contained in it behaves as an instance (e.g. Warm up the engine ! CAUTION:
The oil gets hot!)

We will call the most general substance concept which specifies only intrinsic
properties stuff and the most general concept specifying only extrinsic prop-
erties thing. A category with both intrinsic and extrinsic properties has to be
defined using (sub)concepts from both. The advantages of this factorisation of
our ontology are:

— It is possible to augment already existing discrete objects with information
about their substance by referring to the stuff hierarchy only.

— If one is interested only in intrinsic properties of a substance, for example to
decide which material is particularly well suited for a certain function of an
object, this can be described without using the thing-part of the ontology.

— A combination (through inheritance) of both hierarchies allows the uniform
modelling of individuals for all kinds of substances.

Towards an Ontology for Substances and Related Actions 197

T

(liquid-substance)

gaseous-substance)

mixed-substance

“ (solution) (emulsion))

solid-substance

i

Fig. 1. stuff hierarchy

The stuff hierarchy! (cf. Figure 1) distinguishes at the toplevel between the
following subconcepts: Pure and mixed substances are important for being able
to model actions where more than one substance participate and because of the
mentioned problem of not being able to make general inferences from properties
of the components. For mixed substances only two examples are given, emulsion
and solution. The distinction between three physical states is made because
typical intrinsic properties often depend on their physical state (e.g. colour,
conductivity, chemical reactivity, etc.). The divisions in the abstract ontology
have been useful in modelling examples from specific technical domains [Web97].

container-required
gaseous-object

solid-object

liquid-object shapeless

powderous granular-
shapeless

malleable

well-defined-
shape

Fig. 2. thing hierarchy

Within the thing hierarchy (cf. Figure 2) a distinction is made between ob-
jects that require a container and those which do not. The former are specified by
their mass or volume and can inherit properties like shape from their container.
The temperature of an object (cf. Figure 3) is modelled as an extrinsic property

! We use the following notational conventions: Normal arrows describe a class/subclass
relation (in the sense of subset of the instances). Arrows connected by an arc describe
a disjunctive partition. For the concept mixed-substance we only mention two sub-
concepts as examples, the dashed arrows indicate that there exist other subconcepts
which are not shown.

198 B. Hofling et al.

(it is only relevant for concrete instances) and as the physical state depends on
this fact (in relation to the intrinsic properties melting point and boiling point)
the latter may also be seen as an extrinsic property. Therefore we decided to
model the physical state in the thing hierarchy, too but as a direct consequence
of the extrinsic property temperature. Solid objects that do not require a con-
tainer can be subdivided into shapeless and shaped which are generalizations of
the four categories powderous, granular, malleable and well defined shape (cf.
section 2). We do not consider shapeless objects as being inevitably container de-
pendent, because we should also be able to model a pile of sand without needing
a container. A container is an example of an object with well defined shape.

Figure 3 shows the definition of some of the upper concepts of the stuff and
thing hierarchy (figure 1 and 2 resp.) in POWERLOOM. The syntax of POWER-
LooM is a variant of KIF3.0 [GF92]. 7self is the default variable used to refer
to the concept itself.

(defclass stuff ()
:slots ((melting-point :type Integer)
(boiling-point :type Integer)
(ingredients :type (set of chemical-substance))))

(defclass pure-substance (stuff)
:<=> (= (cardinality (ingredients ?self)) 1))

(defclass mixed-substance (stuff)
:<=> (> (cardinality (ingredients ?self)) 1))

(defclass thing ()
:slots ((made-of :type stuff)
(temperature :type Integer)))

(defclass solid-object (thing)
:<=> (> (melting-point (made-of ?self)) (temperature ?self)))

(defclass gaseous-object (container-required)
:<=> (< (boiling-point (made-of ?self)) (temperature ?self)))

(defclass liquid-object (substance-thing)

:<=> (and (> (boiling-point (made-of 7self)) (temperature ?self))
(< (melting-point (made-of ?self)) (temperature 7self))))

Fig. 3. Excerpts from the thing and stuff ontology in POWERLOOM.

Towards an Ontology for Substances and Related Actions 199
4 Towards a taxonomy for substance-related actions

Based on the ontology for substances and its factorisation into the stuff and
thing hierarchy we can now describe how actions related to substances can be
modelled. The main distinction for actions (cf. section 2) is between substance-
preserving actions (where intrinsic properties remain the same and extrinsic may
change) and substance-changing actions (where intrinsic properties can change).
Concerning the extrinsic properties a change of existential properties leads to
instance-changing actions and if only non-existential properties are changed to
instance-preserving actions.

Figure 4 shows the general taxonomy for substance related actions and an
example for each type of action. There may exist several intermediate action
categories between the top-level action categories and the examples (indicated
by pointed arrows).

(substance-action)

<

(substance-preservin@ (substance;-changingD

(instance-preserving) Gnstance-changing}

transfer division mixing

Fig. 4. taxonomy for substance related actions

In addition to this top-level taxonomy for actions we want to illustrate how
actions on substances can be represented by giving a more specific example. It
describes the different kinds of transfer of liquids from one container into another
(cf. figure 5). How this can be implemented in PowerLoom is described in the
following section.

The resp. concepts in the hierarchy for transfer actions are the following:

transfer: represents the transportation of a substance from one container into
another. The second container may be filled partially with the same type
of substance before the action has been carried out. This is a substance-
preserving action (the same holds for all other subtypes) because only ex-
trinsic properties like the referred container and potentially the volume are
changed but the substances remain the same.

complete-transfer: specializes transfer in the aspect that the whole quantity
of the first container is transferred to the second.

200 B. Hofling et al.

transfer

(complete-transfer) partial-transfer

\
complete-fill <complete-fi|l-up > C partial-fill > partial-fill-up

Fig. 5. taxonomy for transfer actions

complete-fill: has the additional constraint that the second container must
be empty before the transfer. Since only non-existential properties of the
substance (container) are changed, this is an instance-preserving action.

complete-fill-up: requires that the second container is filled by an amount
of the same type of substance. Therefore it is an instance-changing action,
because the substances in both containers are merged to one new substance
in the second container.

partial-transfer: In contrast to complete-transfer it transfers only part of the
substance from the first container. An existential extrinsic property (amount
or volume) is changed and we have an instance-changing action (which is
inherited by the actions partial-fill and partial-fill-up).

partial-fill: requires that the second container is empty before the transfer. The
old substance is divided into two parts, one in the first and one in the second
container.

partial-fill-up: requires that the second container must contain an amount of
the same substance.

To illustrate the structure and the naming conventions of this taxonomy:
The distinctive property for the first level is whether the first container is empty
after the action has been carried out (named complete-...) or not (named
partial-...). The distinction at the second level depends on the filledness of the
second container before the action. If it has been empty it is named ...-fill,
in the other case ...-fill-up. More complex actions like the distribution a
substance into several empty new containers can be composed starting from
these actions.

5 Action hierarchies in description logics

There are many different approaches for representing actions in object cen-
tered systems. For example, there are hierarchically organized action descrip-
tions in systems for natural language processing (e.g. PENMAN Upper Model
[BKMW90]). These descriptions classify actions by focusing mainly on the verb
as the relevant object for classification. Action descriptions of this kind are well

Towards an Ontology for Substances and Related Actions 201

suited for natural language processing, but not sufficient for simulated execu-
tion. Other action descriptions in AT are related to the field of planning or plan
recognition (e. g. RAT [HKNP92], T-REX [WL92]) and follow the STRIPS [FNT71]
approach. There, actions are interpreted as operators, mapping one world de-
scription into another. As a result of their operational description, actions can be
executed for planning or simulation purposes. But there is no satisfying approach
for defining actions by specializing more abstract actions.

In order to support the qualitative simulation of actions and to fulfill the
requirements of object—centered languages, which are reusability, extensibility
and understandability [Mey88], we propose an action representation which

is declarative and ezxecutable (operational),

— allows action definitions by specialization,

supports the inheritance of pre- and postconditions and
results in a hierarchical organization of action descriptions.

Such an action representation allows the underlying inference mechanism to
reason about actions in multiple dimensions. Performable actions, for example,
are those which have a precondition which is true with respect to the current
state of the world. Or one could ask for all those actions which fulfill a particular
goal. All those answers are implicitly encoded in the action hierarchy and can
be inferred by the classifier without much additional effort.

Consider the following fraction of a simplified action hierarchy as shown
graphically in figure 5. Let us assume that all transfer actions change the loca-
tion attribute of their action object?, referenced here by the function has-action-
object. The action complete-transfer inherits all properties (slots, pre- and
postcondition, etc.) of transfer. The most relevant difference between these
actions is, that the latter is defined to perform a complete transfer of the action
object while specializing the former one. complete-fill is again more specific
because this action assumes that the target container is empty.

Our work showed that one should be able to express conditions about at-
tributes which are not known explicitly at time of description. This is useful
in order to express abstract knowledge (consider an action change for exam-
ple), shared by many different actions, but reified by different attributes (e.g.
transfer, change-temperature). At the hierarchical level of change we have
to abstract from the attribute we want to change because this could be either
has-location, has-temperature or others. Nevertheless we want to specify pre-
and postconditions for this abstract action. However, this requires second order
features because we need to work with referenced relations, which are predicates
in fact.® Second order features are not present in ordinary description logic sys-

2 An action object, i.e. the object whose property is changed by an action, should not
be confused with an instance of the category ’action’.
3 What we actually need is unqualified existential quantification on predicates.

202 B. Hofling et al.

tems. In POWERLOOM (as well as in KIF [GF92]) this can be done via the holds
predicate?. The abstract action change could then look as in figure 6.°

(defaction change (action)

:slots ((affected-attribute :type RELATION)
(has-new-value :type UNKNOWN)
(has-old-value :type UNKNOWN))

:precondition (holds (affected-attribute ?self)

(has-action-object ?self)
(has-old-value 7self))
:postcondition (holds (affected-attribute ?self)
(has-action-object ?self)
(has-new-value 7self)))

Fig. 6. Definition of change

The action transfer could then be defined as a specialization of change
inheriting all slots, pre- and postconditions of change. According to the action
hierarchy of figure 5 we define complete-fill (which is itself an indirect de-
scendant of transfer) in figure 7.

(defaction transfer (change)
:constraints (= (affected-attribute 7self) has-location))

(defaction complete-fill (complete-transfer)
:slots ((has-new-value :type container)
(has-old-value :type container))
:precondition (and (empty (has-new-value 7self))
(>= (capacity (has-new-value 7self))
(amount (has-action-object ?self))))
:postcondition (empty (has-old-value 7self))

Fig. 7. Definition of transfer and complete-fill

Due to the inheritance of the action parameter, pre— and postcondition and
concretion of the affected attribute in transfer, the action complete-fill has
actually the internal definition, given in figure 8 for the sake of completeness.

4 The semantics of holds is defined in KIF and POWERLOOM in the following way: If
7 denotes a relation, then the sentence (holds 7 7 ... 71) is true if and only if
the list of objects denoted by 71,...,7 is a member of that relation.

% For sake of simplicity we omit all potential actions which may exist in the hierarchy
between action and change.

Towards an Ontology for Substances and Related Actions 203

(defaction complete-fill (complete-transfer)
:slots ((has-action-object :type (and stuff thing))
(has-new-value :type container)
(has-old-value :type container))
:precondition (and (empty (has-new-value 7self))
(has-location (has-action-object 7self)
(has-old-value 7self))
(>= (capacity (has-new-value 7self))
(amount (has-action-object ?self))))
:postcondition (and (empty (has-old-value 7self))
(has-location (has-action-object 7self)
(has-new-value ?self))))

Fig. 8. Actual definition of complete-fill

Intuitively, the semantics of actions in general, and pre- and postconditions
in particular, are straightforward with respect to PowerLoom semantics. Pre-
and postconditions are semantically different from ordinary slots or relations for
at least two reasons. First, there is an inherent relationship between them in
the sense of a temporal ordering. Second, they characterize the action concept
by expressing conditions about an instance (the action object) different from
the action concept itself. Consequently the relationship between two actions
has more dimensions than the relation between ordinary concepts. As a result,
there are different subsumption relations between actions conceivable [LRn97].
The keywords :precondition and :postcondition were introduced in order to
express these differences syntactically.

6 Related work

With respect to the analysis of substances, the distinction between count and
mass expressions has for a long time been a subject in linguistic and philosophical
literature (for an overview cf. [PS89]). The ontological distinction between thing
and stuff motivated by intrinsic and extrinsic properties is adopted by many
authors, for instance in the AT textbook of [RN95]. There exist many approaches
for modelling special kinds of substances for domains which are motivated by
the role substances play in certain application areas (e.g. the Plinius ontology
for ceramic materials [vdVSM94]).

Concerning the modelling of actions, a system for the representation of ac-
tions and plans in a description logic (RAT — representation of actions using
terminological logics, [HKNP92]) was developed in the WIP project [WABT92].
Pre- and postconditions of atomic actions are described by using a subset of the
underlying description logic. They define conjunctions of feature restrictions,
agreements, and disagreements. However, RAT does not support the specializa-
tion of actions, as it is not possible to define similar actions as special cases of a
general action. In contrast to the RAT sytem, actions in CLASP [DL91] as well

204 B. Hofling et al.

as in T-REX [WL92] are primitive non-decomposable units. Yet, their language
for composing plans is much richer. Another approach using Allen’s temporal
constraints is proposed in [AF97]. Action specialization is not possible in any of
these systems.

The modelling of actions related to substances has been investigated by
[Ter95] in the broader context of ontologies concerning processes or causes and
effects. Especially the production or consumption of stuff has been treated but
without considering the individuation problem for all physical states. Patrick
Hayes was the first to define a detailed ontology for liquids [Hay85]. He solved
the individuation problem for liquids by referring to a container and discussed
actions by defining functions for modelling change and movements. He did, how-
ever, only consider what we call substance-preserving actions. [Dal92] analyses
actions related to substances in the context of recipes. He argues that any mass
object can be converted into a countable object by packaging operations. Further
he proposes a representation for actions which admit decomposition and plan-
ning. [NH98] have created an ontology for the domain of experimental molecular
biology where both substances and processes play a major role. In this domain,
it is necessary to track substances through a series of experimental processes
including transformations, which are modelled with the help of object histories.

None of the proposals just mentioned is able to define actions as a specializa-
tion of abstract actions. For the individuation of substances we have shown that
all kinds of substances (especially in different physical states) can be treated
uniformly in an ontology by a factorisation into an ’intrinsic’ part (the stuff hi-
erarchy) and an ’extrinsic’ part (the thing hierarchy). One might not need this
general approach for specific application domains but ignoring it could make
extensions to include other kinds of substances very difficult.

7 Summary and outlook

In this paper we have described a proposal for the individuation of substances
and for the modelling of actions in dynamic contexts. Due to technical reasons
(the implementation status of PowerLoom is still very unstable and incomplete)
up to now we have not been able to fully implement our ideas in a more or less
complete ontology especially with respect to actions. Nevertheless we consider
our approach an important step towards an ontology for substances and related
actions.

Aspects similar to the individuation problem for substances can be found in
other domains. The action of assembling a (technical) object from its parts will
result in the creation of a corresponding instance. On the other hand, disassem-
bling an object — e.g. for recycling — has the effect that the lifecycle of the object
ends and the instance of the composite object ceases to exist.

There are some subtle issues related to the questions of what constitutes
the identity of an instance and when the identity of an instance should change.
Some even lead to paradoxa. For example we probably do not want to give up
the identity of a non-trivial object (e.g. a car) when we replace a minor part

Towards an Ontology for Substances and Related Actions 205

of it (e.g. a spark-plug). But what about the case — already discussed by Greek
philosophers — where we would step by step replace all parts that make up a
compound object?

A related question with respect to instances of a substance: Assume that
a fluid in a container continuously looses small amounts of substance. Will we
create a new instance when we refill the more or less insignificant amount lost?
Is there a difference to doing a significant fill-up (e.g. when more than half of
the required amount has to be refilled)?

As often in issues of modelling there is no single and simple answer to these
questions. The adequacy of the chosen granularity of a model has to be judged
from the perspective of the application and the inferences needed. For the more
abstract levels of an ontology this gives support for a ‘strategy of least commit-
ment’, i.e. only those decisions should already be fixed on the ontological level
that will not vary between different applications.

References

[AF97] Alessandro Artale and Enrico Franconi. A temporal description logic for
reasoning about action and plans. In Journal of Artificial Intelligence
Research, 1997.

[BKMW90] J. Bateman, R. Kasper, J. Moore, and R. Whitney. A general organization
of knowledge for natural language processing: the penman upper model.
Technical report, USC/ISI, 1990.

[Dal92] Robert Dale. Generating Referring Expressions, Constructing Descrip-
tions in a Domain of Objects and Processes. MIT Press Cambridge, Mas-
sachusetts, 1992.

[DL91] Premkumar T. Devanbu and Diane J. Litman. Plan-based terminological
reasoning. In J. F. Doyle, R. Files, and Erik Sandewall, editors, Principles
of Knowledge Representation and Reasoning, Proceedings of the Second
International Conference (KR ’91), pages 128 — 138, Cambridge, MA, April
1991. Morgan Kaufmann Publishers, Inc., San Francisco, CA.

[FNT71] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Inteligence,
2(3-4):189 — 208, 1971.

[GF92] Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange For-
mat, V. 3.0, Reference Manual. Stanford University, June 1992.

[Gru95] Thomas R. Gruber. Towards principles for the design of ontologies used
for knowledge sharing. International Journal of Human Computer Studies,
43:907 — 928, 5/6 1995. Also available as Technical Report KSL 93-04,
Knowledge Systems Laboratory, Stanford University.

[Hay85] Patrick J. Hayes. Formal theories of the commensense world, chapter Naive
physics I: Ontology for Liquids, pages 71-107. Ablex Publishing Corpora-
tion, 1985.

[HKNP92] J. Heinsohn, D. Kudenko, B. Nebel, and H. Profitlich. RAT: represen-
tation of actions using terminological logics. Technical report, DFKI,
Saarbriicken, 1992.

206 B. Hofling et al.

[LRn97]

[Mac94]

[Mey88]

[NHOS]

[PS89]

[RNO5]

[Ter95]

[vdVSM94]

[WAB*92]

[Web97]

[Web9s]

[WL92]

Thorsten Liebig and Dietmar Rosner. Action hierarchies for the auto-
matic generation of multilingual technical documents. In Rémi Zajac, edi-
tor, IJCAI-97 Workshop Ontologies and Multilingual NLP, Nagoya, Japan,
August 1997. International Joint Conference on Artificial Intelligence.
Robert M. MacGregor. A description classifier for the predicate calculus. In
Proceedings of the Twelfth National Conference on Artificial Intelligence,
pages 213 — 230, 1994.

Bertrand Meyer. Object—oriented Software Construction. Prentice Hall,
New York, 1988.

Natalya Fridman Noy and Carole D. Hafner. Representing Scientific ex-
periments: Implications for Ontology Design and Knowledge Sharing. In
15th National Conference on Artificial Intelligence (AAAI98), Madison
Wisconsin, July 1998. AAAT Press.

Francis Jeffry Pelletier and Lenhart K. Schubert. Handbook of philosoph-
ical logic, chapter Mass Expressions, pages 327-407. D. Reidel Publishing
Company, 1989.

Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach, pages 241 — 243. Prentice Hall, 1995.

Paolo Terenziani. Towards a causal ontology coping with the temporal
constraints between causes and effects. International Journal for Human-
Computer Studies, 43(5/6):847-863, 1995.

Paul E. van der Vet, Piet-Hein Speel, and Nicolaas J. I. Mars. The plinius
ontology of ceramic materials. Workshop Notes ECAI’9) in Amsterdam,
Workshop Comparison of Implemented Ontologies, pages 187 — 205, 1994.
W. Wahlster, E. André, S. Bandyopadhyay, W. Graf, and T. Rist. WIP:
The Coordinated Generation of Multimodal Presentations from a Common
Representation. In A. Ortony, J. Slack, and O. Stock, editors, Communi-
cation from an Artificial Intelligence Perspective: Theoretical and Applied
Issues, pages 121 — 144. Springer-Verlag, New York, Berlin, Heidelberg,
1992.

Lars Webel. Modellierung eines Teilgebiets der Domé&ne Werkstoffe fiir
technische Produkte und Implementation in LOOM. Technical report,
Otto-von-Guericke Universitat Magdeburg, Institut fiir Informations- und
Kommunikationssysteme, 1997.

L. Webel. Untersuchungen zur Modellierung von Substanzen. Diplomar-
beit, Otto-von-Guericke Universitdat Magdeburg, 1998.

R. Weida and D. Litman. Terminological reasoning with constraint net-
works and an application to plan recognition. In Nebel, Swartout, and
Rich, editors, Proceedings of Principles of Knowledge Representation and
Reasoning (KR’92), 1992.

Use of Formal Ontologies to Support Error
Checking in Specifications

Yannis Kalfoglou and David Robertson

School of Artificial Intelligence,
Institute for Representation and Reasoning,
Division of Informatics, University of Edinburgh,
80, South Bridge, Edinburgh EH1 1HN,
Scotland
{yannisk,dr}@dai.ed.ac.uk

Abstract. This paper explores the possibility of using formal ontologies
to support detection of conceptual errors in specifications. We define a
conceptual error as a misunderstanding of the application domain know-
ledge which results in undesirable behaviour of the software system. We
explain how to use formal ontologies, and in particular ontological con-
straints, to tackle this problem. We present a flexible architecture based
on meta interpretation in logic programming in which the specification
is viewed as a multilayer design. We illustrate the significance of this
approach for the software and ontology engineering community via an
example case in the domain of ecological modelling.

1 Introduction

1.1 Specifications

The use of blueprints for guiding the development process of projects is common
in many disciplines. In particular, in the field of software development, these
blueprints are precise and independent descriptions of the desired program be-
haviour. They are crucial for the success of projects since they guide the way in
which programmers will construct the desirable software. This has lead to the
adoption of formal descriptions expressed in logic as a medium of blueprint, the
purpose of which is to [9] “define all required characteristics of the software to
be implemented, and thus form the starting point of any software development
process”. However, the precise role of formality in software development is a
matter of debate([4]).

Formal methods support tests for some forms of completeness and consistency
and there exist methods for methodological refinement of some types of formal
specification into executable form, via appropriate interpreters. This provides
an additional advantage, an executable specification represents not only a con-
ceptual but also a behavioural model of the software system to be implemented
[10], allowing early validation. Moreover, execution of the specification supple-
ments inspection and reasoning as a means of validation. This might increase
the correctness and the reliability of the software, and reduce development costs
and time.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 207-224, 1999.
© Springer-Verlag Berlin Heidelberg 1999

208 Y. Kalfoglou and D. Robertson

1.2 Conceptual errors

When describing a chosen domain we can make mistakes related to the mathem-
atical language underpinning the formal model, like writing a non-terminating
recursion using a logic programming language, or we can make mistakes in de-
scribing the domain, like defining an ecological model in which animals photo-
synthesise. The latter type of mistake is difficult to detect because it requires
subjective knowledge about correct forms of domain description to be applied
to the model description. We call this sort of mistake a conceptual error.

It is difficult, even with executable formal languages, to make models error
free. In fact, it is easy(maybe easier) to make errors in this phase with pernicious
side-effects for the remainder of the life cycle. This is because they may not be
detected by those who use the formal model in subsequent design and may affect
the functionality of entire systems by being propagated to subsequent design
phases. The earlier the errors are detected the less serious are their consequences.

1.3 Our solution

Ontologies, which forge agreements on the use of terminology for particular
domains are, potentially, a way of reducing this problem. Ontological engineers
are beginning to supply information which helps in detecting conceptual errors.
This information accompanies the formal ontology to which the specification
should conform to and is often expressed in the form of axioms whose role is
to restrict all possible interpretations of the ontology’s constructs. In this paper
we present a mechanism that makes the most of this information to allow us
perform checks for conceptual errors in specifications.

1.4 Organisation of this paper

This paper is organised as follows: section 2 describes the field of formal on-
tologies with respect to ontological constraints, the core of our mechanism. In
section 3 we present our detection mechanism and on section 4 we illustrate an
example of its use. We elaborate further on a different use of the mechanism on
section 5 where we conclude our work.

2 Formal ontologies

Ontologies have become popular in the recent years in the field of artificial
intelligence. There exist different types of ontologies and numerous ways of con-
structing them ([8],[27]). The interpretation of the term varies across different
communities and [15],[14] elaborates on terminological clarifications. The engin-
eering community, and particular the KBS community has adopt a definition
proposed by [11] and further elaborated by [27] and [24]. The type of ontologies
in which we are interested in are the formal ontologies. A formal ontology is a
language with a precisely defined syntax and semantics(which may be determ-
ined via model theory, proof theory or in terms of another formal ontology).

Use of Formal Ontologies to Support Error Checking in Specifications 209

The inferences permitted in the language are constrained by one or more sets of
proof rules accompanied by appropriate proof strategies. The forms of descrip-
tion allowed by those using the ontology are required to be consistent with a set
of axioms limiting its use, which we call ‘ontological constraints’. The aim of the
ontology is to provide a language which allows a stipulated group of people to
share information reliably in a chosen area of work.

A variety of ontologies have been reported in the literature with emphasis to
their intended use in the area of knowledge sharing and reuse. There exist tools
for browsing and editing ontologies(e.g.Ontolingua) as well as guidelines and
methodologies to be followed on constructing them([27],[6],[2]). Although there
have been efforts in applying ontologies(e.g.[5],[28],[21],[26],[16],[1]) as pointed
out in [25] there is a dearth of well-developed applications based on formal onto-
logies. This contradiction is visible in the field of AT where the few applications
that are discussed are intended applications which are yet to be built, or small
research prototypes. According to [25] the reason for this is the lack of a rich rep-
resentation of meanings which is contrary to the traditionally formal knowledge
representation adopted by the AI ontology community.

Ontologies provide a set of characteristics that can be used in various ways.
Apart from their intended purpose of knowledge sharing and reuse, we advocate
that ontologies can be used in software design and in particular to support veri-
fication and formal evaluation of the early phases of it. This approach, although
in its infancy, has already been explored in research experiments ([26]). Other
researchers have used similar techniques([20]) and pointed out the benefits of
using an ontology as a starting point in the design of a software product([19]).

By using ontologies as a starting point of software development we hope to
gain a higher level of assurance that the specification is well defined and evaluated
with respect to the real world it represents. This assumes that the syntax and
semantics of an ontology can be checked and verified(arguably) against axioms.
Note that, should one choose to follow this path it is not necessary strictly to
use only the ontology’s constructs in the specification. In fact, it is normally
impractical to construct an executable specification by using only the ontology’s
constructs. Other constructs should be included as well, which do not directly
benefit from the presence of ontological constraints but will be checked for errors
using normal debugging techniques.

2.1 Ontological constraints

These are usually have the form of ontological axioms. We describe in textual
form an axiom of a formal ontology, the PIF ontology ! as presented in [21]:

“The participates-in relation only holds between objects, activities, and
timepoints, respectively”
This axiom can be formalised in first order theory as follows:

! more on PIF can be found on [17]

210 Y. Kalfoglou and D. Robertson
participates_in(X, A, T) < object(X) A activity(A) A point(T).

The purpose of having formally defined this axiom is to allow reason about the
various definitions of participates-in relation. So, whenever someone using the
PIF ontology describes the relation in a way which does not conform to its
axiomatised definition, this will reveal a potential discrepancy. For example, the
following erroneous definition:

participates_in(O1,02,T) < object(O1) A object(O2) A point(T).

is difficult to detect since it conforms to the ontology’s syntax but reflects a
misunderstanding of ontology’s semantics 2.

The ontological axioms can be enhanced by adding more axioms or by in-
troducing domain specific error conditions *. An error condition, which could
be domain specific and added later on by the ‘error checker’ or software tester
of the specification, is an erroneous condition which exhibits some undesired
behaviour of the specification. Once this condition is satisfied during the error
checking phase it will demonstrate an error occurrence in the specification. The
erroneous definition of participates-in relation given above is an example of error
condition. This technique will make the error checking domain specific and result
in a customisation of the error detection process.

We call this sort of axiomatisation along with the domain specific error con-
ditions, ontological constraints. Our approach explores a different angle in the
use of ontological constraints. Moreover, it has been written that ontological con-
straints apart from the practical benefit of formal evaluation they provide([13]),
they also verify that the ontology is consistent with respect to its conceptual
coverage. This may facilitate mapping of ontologies that exhibit the same con-
ceptual coverage of the real world([12],[3]), though conflicts may arise due to
lack of correspondence on their top level division ([8]).

3 Error detection mechanism

Our mechanism, which is based on meta-interpretation, uses the products of on-
tological engineering such as ontological constraints to detect conceptual errors in
specifications that are based on ontologies. The internals of the meta-interpreter
will be described in detail at section 3.1. In this section we will focus on the gen-
eral architecture we are adopting and the invention of a multilayered approach
for error checking in specifications. The diagrammatic version of the mechanism
is illustrated on Figure 1.

Specification construction starts by adopting the syntax and semantics of the
ontology. We use Horn clause logic as a specification construction formalism 4,

2 although this example is a typing error, not all ontological errors are simply defined
in terms of types

3 [26] elaborates on the need of additional axioms tailored to domain specific applica-
tions

4 refer to [10] for the value of using declarative specifications

Use of Formal Ontologies to Support Error Checking in Specifications 211

__ . Editor

'
'

. Error conditions
*.., (Ontological Constraints) L

v

Error checking mechanism J

P -
~. 2l ‘/_A
T =1 . A 7

/\ Errors reported /\

TN N e~ pee 2
N .
N L

Fig. 1. Multi-layer architecture

with the normal Prolog execution model. To this we apply our checking mech-
anism and thus prevent the occurrence and propagation to subsequent phases of
software development of harmful conceptual errors.

Few conventional ontological constraints are defined in this form so a trans-
formation of them to the appropriate format is required. Although, the trans-
formation could be done manually, we used an editor to facilitate the task of
writing the constraints in the format manipulated by the meta-interpreter.

Additional domain specific error conditions can be defined to facilitate cus-
tomised error checking. Assuming that an exhaustive check is required, then the
ontological axioms will be the focal point of the mechanism. Whenever a state-
ment in our specification will not satisfy the ontological axioms an error will be
reported. Our mechanism can utilise both approaches to error detection, ontolo-
gical axioms and error conditions, simultaneously and thus raise our confidence
that the specification which will pass the test will be error-free.

3.1 Meta-interpreters

A meta interpreter is an interpreter for a language written in the language it-
self [23]. Tt gives access to the computation process of the language and en-
ables the building of an integrated programming environment. In the domain
of Prolog programming, a meta interpreter is program written in Prolog which
interprets Prolog programs. This makes it possible to represent in Prolog the
search strategy used by Prolog interpreter and to adopt that strategy in various
ways, which are often different from the standard interpreter. Among the best

212 Y. Kalfoglou and D. Robertson

known and widely used meta interpreters is the ‘vanilla’ model. It models the
computation model of logic programs as goal reduction. Actually, the vanilla
model reflects Prolog’s choices of implementing the abstract computation model
of logic programming. The model is given below:

solve(true).
solve(A, B) < solve(A) A solve(B).
solve(A) < clause(A, B) A solve(B).

This meta-interpreter program has the following declarative meaning: The
first clause states that, by convention, the atom true is always satisfiable. The
second clause states that a conjunction of literals A and B is true if A is true and
B is true. The third clause states that A is true if there exists a clause A + B
in the interpreted program such that B is true.

3.2 Error checking meta interpreter

Our aim in using the meta-interpreter technique is not only to purely rep-
licate the computational model of Prolog. We are interested in utilising the
products of ontological engineering - ontological constraints - to augment the
meta-interpreter. This, in turn, will enable us to perform specific tests on se-
lected goals of the specification with regard to the ontological constraints. The
basis of the meta-interpreter is the standard vanilla model. In doing this we
can explore the whole search space for a proof in the specification exactly in
the normal way. So, the specification is actually executed in the normal way and
checking for conceptual errors is performed on goals which have succeeded in the
proofs. Thus, the maximum possible information is supplied for testing making
sure that we wont loose crucial information on intermediate results.

The error checking is recursive, so the proof that an error exists may itself
generate errors. Those are checked against the ontological constraints exhaust-
ively. We cumulate all the errors that are detected on given goals for testing as
well as on their subgoals. We also cumulate information regarding the execution
path that has been followed by the inference mechanism in proving a goal, the
type of ontological constraint that has not been satisfied - axiom or error con-
dition - and the layer that the error has occur. This notion will be explored in
detail on section 5.1, we ignored for the time being since it does not affect the
understanding of the algorithm.

We draw the attention of the reader to the specific format we are using for
expressing specification statements as well as axioms and error templates. We
use the standard logic notation A < B, to denote that A is satisfiable if there
exists a literal B which is satisfiable as follows:
specification(Index,(A < B))
where Index stands for the index of specification layer that the clause A <+ B
belongs to. In cases where we have ground terms (clauses without subgoals) we
use, by convention, the A < true notation. As far as concern the axioms and/or
error conditions the format is:

Use of Formal Ontologies to Support Error Checking in Specifications 213

Constraint Type(Index, Aziom, Condition)
where ConstraintType stands for either ontological axiom or error condition and
denote the property that should hold, Index has the same meaning as before, and
Condition is a condition(s) that has to be satisfiable in order for the ontological
axiom to be satisfiable. The same format applies for error condition with the
only difference being that the condition(s) must not be satisfiable.

The error checking meta-interpreter is given in Prolog notation at appendix
A. We illustrate below in a pseudo-language the algorithm we apply:

for the given goal, G, for testing
while its layer, L, is not the last one
1. prove G by applying the ‘vanilla’ model exhaustively
and check for conceptual error occurrences on goal G
with respect to ontological constraints of layer L+1
2. prove subgoal, Gn, if any, of G, by applying
the same strategy
exit while loop and cumulate information regarding execution
path, conceptual errors found as well as the goal that are
contained along with the ontological constraints that has not
been satisfied

4 Error detection demonstration

In this section we will present, briefly, the practical use of our mechanism in
an example case: an error detection in the ecological modelling domain. We use
the following pattern in describing the case: an introductory part stating the
problem description and relative domain knowledge opens the description which
is followed by the specification of the problem. The ontological constraints are
described in the sequel. This will help the reader to follow the test query and
the conceptual errors detected based on the ontological constraints given, which
close the case description.

4.1 Ecological model error checking

We have chosen ecology domain because in ecological modelling, being concerned
with complex biological systems, it is difficult to decide how to represent the
observed systems in a simplified form as simulation models. Furthermore, they
are fraught with uncertainty and are prone to errors, especially conceptual errors.
We demonstrate how our mechanism can alleviate this situation.

We have used a simple ecological model described in detail on [22]. The
representation of this model in Prolog is given in the appendix B. We describe
here the model in textual form: The model uses a “State Transition” approach
to represent the passage of time during simulation. Suppose that we have 3
different animals(call them a,b and ¢) and that a prey on b;b prey on ¢; and ¢
will prey on a. The area on which these animals live is represented by a grid

214 Y. Kalfoglou and D. Robertson

with 3 squares along each side(thus 9 grid square grids in all). Animals move
by shifting from the square in which they are currently situated to adjoining
square. Each animal moves in the direction of potential prey(e.g. they actively
hunt rather than browsing at random) but will not visit a square which it has
occupied previously. If an animal is ever in the same square as its prey, the prey
is eaten and thus removed from the simulation.

The specifier chooses to represent the states as follows: the initial state is
named s0. New states of the system will be obtained whenever some aspect of
the system changes so we require some way of linking the changes imposed on
the system to the events which impose those changes. This could be achieved by
the use of a nested term of the form:
do(Action,State)
where Action is a term representing some action which has been performed.
State is either the initial state sO or another term of the form:
do(PreviousAction,PreviousState)

The only action which it is necessary to represent in this model is the movement
of an animal from one grid square to another. The specifier represents this action
using the term move(A,G1,G2) where A is the name of some animal; G1 is the
location of the grid square at which the animal was located in the previous state
and G2 is its new location. Figure 2 illustrates a diagrammatic version of a move
of animal a from square (1,1) which triggers a move of animal b to square (3,2).

3 c 3 cl| s c

2 b 2 b 2 b

i|a 1 a 1 a
12 3 12 3 12 3

Fig. 2. State transition model - sequence of moves

Specification Although the model can generate any valid state of the system
based on the constraints stipulated in the previous section for brevity and clar-
ity we will focus on a fragment of the model that represents the treatment of
locations for each animal in the system. However, before describing this chunk
of code we will see how system generates the valid states: °:

1 specification(0, (possible state(State) <
possible_state(s0,State))).

2 specification(0, (possible state(State,State) ¢+ true)).

3 specification(0, (possible state(State,FinalState) +

4 possible action(do(A,State)) A

5 possible_state(do(A,State) ,FinalState))).

5 the whole model is included at appendix B

Use of Formal Ontologies to Support Error Checking in Specifications 215

For convenience of reading we have numbered the lines in correspondence
with the code of appendix B. The declarative meaning of this top level goal of
the specification is as follows: State must be a valid state of the system and this
is defined by stating that possible_state(s0,State) must be true. This has
effect of producing a valid State, starting with sO as in initial state(line 1). This
is true if FinalState is a valid state of the system which can be reached from
State. In the simplest case, this is true if FinalState=State(line 2). Otherwise,
it will be true if there is a possible action, A, which can be applied to State and
the new state described by do(A,State) leads to FinalState.

In order to reason about the validity of various states of the system the
specifier introduces a predicate, holds (C,S), where condition C holds in state S.
Three conditions are modelled: the location of an animal; whether it has been
eaten; and which squares it has visited. For the purpose of demonstrating the
error detection, we list here chunks of the specification that include potential
error occurrences in describing the condition of animal location:

11 specification(0, (holds(location(a,(1,1)),s0) < true)).

12 specification(0, (holds(location(b, (2,2)),s0) < true)).

13 specification(0, (holds(location(c, (3,3)),s0) < true)).

14 specification(0, (holds(location(A,G),State) « — State=s0 A
15 animal(A) A

17 last_location(A,State,G))).

At lines 11-13, the specifier defines the locations of the animals in the initial
state, sO. In lines 14-17 defines the location of any animal in states other than s0.
In such states an animal has a location determined by its most recent position in
the sequence of actions. However, as we will see below there is a serious omission
in this representation which will lead to undesirable behaviour of the model. This
is detectable with the use of domain knowledge as expressed by the ontology.

Ontological constraints Although the specification is constructed based on
the ontology’s syntax and semantics, it should conform to various domain-specific
constraints on the use of the ontology. For example, in order for an animal to
exist at a particular location on the system it should not have been eaten in the
meantime. Thus, a predator and a prey cannot be at the same square at the
same state. We represent this constraint as follows:

60 axiom(1,holds(location(A,G),S),
61 (predator(A,B),
62 — holds(location(B,G),S))).

Lines 60-62 represent the ontology’s axiom. As we will see the specifier will
have to redefine the holds/2 clause with respect to animals location in order to
conform to the ontological axiom given above.

216 Y. Kalfoglou and D. Robertson

Test query Assume a specification which has no errors, we can use the model
by asking: ‘Is there a state of the system in which animal, a, gets eaten?’ giving
the Prolog goal:

| ?7- onto_solve((possible state(S),holds(eaten(a),S)),[]1).

The Prolog interpreter would then use the definitions of model structure ©
to solve this goal, instantiating S to a sequence of potential moves. The result is
given below diagrammatically in figure 3 and in Prolog form:

S = do(move(c,(2,3),(2,2)),do(move(c, (3,3),(2,3)),
do(move(a, (2,1),(2,2)) ,do(move(a, (1,1),(2,1)),s0))))

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Fig. 3. Sequence of moves

As we can see, animal a has moved from its initial position (1,1) to (2,2)
through square (2,1). Animal ¢, which preys on a, has moved from its initial
position (3,3) to (2,2) and this satisfied the condition of holds(eaten(a),S).
Note that animal b has removed from the simulation since its predator, animal
a occupies the same square in the grid, that is (2,2).

However, assume the specification of our case(lines 14-17), on backtracking
an erroneous answer will be returned to the same query. The Prolog answer is
given followed by an illustration in Figure 4:

S = do(move(a,(3,2),(3,3)),do(move(b, (3,2),(3,3)),
do (move(a, (2,2),(3,2)),do(move(b, (2,2),(3,2)),
do(move(a,(2,1),(2,2)),do(move(a, (1,1),(2,1)),s0))))))

1 ’ b
!l |b 2 b [3y 2 ab| 2 a 2 a

Fig. 4. Erroneous sequence of moves

6 refer to appendix B for the representation of the model in Prolog

Use of Formal Ontologies to Support Error Checking in Specifications 217

It is obvious that there is a problem with this answer. We observe a contra-
diction with the problem constraints: animal b continues to exist and actively
moves although its predator, animal a, has visited its location to the grid, that is
(2,2). This discrepancy is detected from the ontological axiom given above and
explained in the next section.

Errors detected The error is detectable by the ontological axiom of lines 60-62.
We illustrate the result diagrammatically in the form of a proof tree as shown
in figure 5.

possible_state(S) and hold(eaten(a),S)
S=do(move(c,(2,3),(2,2),State))
S=do (move (a, (3,2), (3,3),State))

possible_action(do(move(c,(2,3),State)) olds(eaten(a),State’

I (predator (b, a h

[holds (location(a, (3,2),State

olds(location(c,(2,3),State

[holds (location (b, (3,3), State)

olds(location(a,(2,2),State

E [holds (location(a, (2,2),State>

E [holds (location (b, (2,2), State) ------ olds(location(a,(2,1),State

\ [holds (location(a, (2,1),State) \
\ /D\ N \ olds(location(a,(1,1),[]) > e
\ —~
\ [holds(location(a, (1,1),01)) ... Ve
N /
~ - = — — /

— ~ —~ ~ - ~

Fig. 5. Proof trees

The right part of the tree is the correct one while the left one is the ontolo-
gically erroneous path that has been followed. State variable S is instantiated to
two values: the correct one is in plain font while the erroneous is in italics. In the
right tree we have place in ellipses the goals that has been satisfied conjunctive
arcs connecting them. The erroneous tree which is surrounded by a dashed line
shows the correspondent satisfied goals within rectangle boxes. The rectangle

218 Y. Kalfoglou and D. Robertson

box with a dashed line border represents the goal that does not conform to the
axiom. This is reported by the mechanism as follows:

| 7-onto_solve((possible state(S) ,holds(eaten(a),S)),[]) ,report_errors.
axiom_violated(1,holds(location(a, (2,2)),do(move(a, (2,1),(2,2)),
do(move(a,(1,1),(2,1)),s0))),
(predator(a,X),
— holds(location(X,(2,2)),
do(move(a,(2,1),(2,2)) ,do(move(a, (1,1),(2,1)),s0)))))

we are using the reporting goal, report_errors/5(appendix A) to provide in-
formation concerning the axiom violated as well as the execution path that has
been followed but we don’t present it here for brevity.

In terms of meta-interpreter the discrepancy found, because the
= holds(location(B,G),S) clause was not satisfiable by the interpreter. As we
pointed out earlier(3.1) axioms that are not satisfiable by the interpreter denote
an error occurrence.

If we check the axiom that has not been satisfied we see that animal b con-
tinues to exists even after animal a visited its location. This is because animal
b failed to satisfy the condition of line 62, in which ‘an animal cannot hold the
same position as its predator at the same state’. But what triggered this error?

If we examine carefully the specification of location condition we will discover
an important omission: In order for an animal to keep a particular position on
the grid at a particular State it should not get eaten by its predator at the same
State. This could added to the specification by the statement:
—holds(eaten(A), State)

This statement, which is added to the specification manually by the specifier as a
subgoal of holds(location(A,G),State) resolves the discrepancy. Our system,
currently, does not support correction of conceptual errors.

5 Discussion

5.1 Checking the ontological constraints

How we can be sure that the ontological constraints are correct? Whether they
are provided by ontological engineers in the form of ontological axioms or are
domain specific error conditions they may be erroneously defined. This could
lead to an erroneous error diagnosis with pernicious side effects. However, our
proofs that error exist are done using the same mechanism as for specifications,
making it possible to define constraints on error ontologies.

The advantage of this approach is that we can use the some core mechanism,
the meta interpreter program, to check many specifications and their ontological
constraints simultaneously. A key decision we made here is to use the same
kind of augmentations to our meta interpreter model so that it can be used in
many layers without the need of amendments. A diagrammatic version of the
mechanism is given on Figure 6.

Use of Formal Ontologies to Support Error Checking in Specifications 219
Level N+1

......

Unique error
checking
mechanism

specification Sl A4 E

Syntax and Semantics

Lo J K4
) B ARREIUPIIL -
P N ALy A
specification A A
5 ;
A

Errors reported \

'\.‘»v."\j\./'

Fig. 6. Multi-layer architecture

This multi layered architecture is used as follows: assume that at the lower
layer a specifier constructs the specification which we hope conforms to the syn-
tax and semantics of the chosen ontology. The specification should also conform
to the ontological constraints provided by the ontology - which can be checked
with our mechanism as shown in the examples on a previous section(4). This
will guarantee that the specification is correct with respect to the parts of it that
conform to the ontological constraints.

However, if ontological constraint has been erroneously defined we can check
this for error with our flexible mechanism. Ontological constraints are checked
for errors against another set of constraints which can be viewed as meta-level
constraints. They are part of the ontology and their use is to verify the cor-
rectness of the constraints. The result of this check will be the detection of an
error, if any, in the ontological constraints. Ultimately, this layer checking can

be extended to an arbitrary number of layers upwards, until no more layers can
be defined.

220 Y. Kalfoglou and D. Robertson

The advantage is that we can capture a wide variety of errors occurring at
different layers of the specification. It is possible to view the axioms introduced
at each layer of error checking as an ontology and to check these for each query
of the program by using the same mechanism.

Another use of this multi-layer architecture is in the area of ontology con-
struction. Tt is often stated ([2]) that ontology construction can be viewed as a
software design process. Moreover, the lack of rigorous evaluation methods dur-
ing their construction will make prospective users reluctant to adopt an ontology.
Assuming a middle-out or a bottom-up way of construction 7 this mechanism
can be applied in order to detect discrepancies at various layers of the ontology
or phases of its construction.

5.2 Conclusions

Our work contributes to existing work in error checking in specifications. The
occurrence of conceptual errors which plague the specifications is of a great
concern for the software engineering community and various attempts to tackle
the problem have been made([20],[18],[7]). However, we are aware of no system
that deploys ontological axioms to check for conceptual errors. In doing this we
connect domain knowledge with the specification to facilitate error check for
conceptual errors whereas other traditional techniques(e.g. debugging, program
tracers) fail to reveal those errors. Our mechanism is flexible and can be used as
a supplement to normal checking procedure without affecting the test strategy
used.

Our work also contributes to ongoing work in the area of applications of
ontologies. It proposes a different use of ontologies which diverge from the tra-
ditional ones(reuse, knowledge sharing). This use is(arguably) easier to apply
since it relies on selective usage of ontological constraints tailored to domain spe-
cific problem descriptions. Furthermore, the multilayered approach we present is
flexible to assist ontological engineers perform specific tests during the various
phases of ontology construction with respect to domain knowledge.

Acknowledgements

The research described in this paper is supported by a European Union Marie
Curie Fellowship(programme: Training and Mobility of Researchers) for the first
author and a EPSRC IT Advanced Fellowship for the second author.

References

1. R. Benjamins and D. Fensel. The Ontological Engineering Initiative-KA2. In
N. Guarino, editor, Proceedings of the 1st International Conference on Formal
Ontologies in Information Systems, FOIS’98, Trento, Italy, pages 287-301. IOS
Press, June 1998.

7 see [8] and [27] for a discussion on various ways of ontology construction

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Use of Formal Ontologies to Support Error Checking in Specifications 221

M. Blazquez, M. Fernadez, J.M. Garcia-Pinar, and A. Gomez-Perez. Building
Ontologies at the Knowledge Level using the Ontology Design Environment. In
Proceedings of the 11th Knowledge Acquisition Workshop, KAW98, Banff, Canada,
April 1998.

P. Borst, H. Akkermans, and J. Top. Engineering Ontologies. In Proceedings of
the 10th Knowledge Acquisition for Knowledge Based Systems Workshop,Banff,
Canada, 1996.

G. Cleland and D. MacKenzie. Inhibiting Factors, Market Structure and the Indus-
trial Uptake of Formal Methods. In Proceedings of Workshop on Industrial-Strength
Formal Specification Techniques, pages 47-61, Orlando(Florida) USA, April 1995.
Boca Raton, Florida, USA.

Enterprise Integration Laboratory, University of Toronto, Canada. TOVE Project.
available from http://www.ie.utoronto.ca/EIL/tove/ontoTOC.html, July 1995.
M. Fernandez, A. Gomez-Perez, and N. Juristo. METHONTOLOGY: From On-
tological Arts Towards Ontological Engineering. In Proceedings of the AAAI-97
Spring Symposium Series on Ontological Engineering, Stanford, USA, pages 3340,
March 1997.

A. Finkelstein. Reviewing and Correcting Specifications. Instructional Science,
21:183-198, 1992.

N. Fridman Noy and C.D. Hafner. The State of the Art in Ontology Design: A
Survey and Comparative Review. AI Magazine, pages 53—74, 1997.

N. Fuchs. Specifications are (preferably) executable. Software Engineering Journal,
pages 323-334, September 1992.

N. Fuchs and D. Robertson. Declarative Specifications. The Knowledge Engineer-
ing Review, 11(4):317-331, 1996.

T.R. Gruber. A Translation Approach to Portable Ontologies. Knowledge Acquis-
ition, 5(2):199-220, 1993.

M. Gruninger. Designing and Evaluating Generic Ontologies. In Proceedings of
the 12th European Conference of Artificial Intelligence, August 1996.

M. Gruninger and M.S. Fox. Methodology for the Design and Evaluation of On-
tologies. In Proceedings of Workshop on Basic Ontological Issues in Knowledge
Sharing, Montreal, Quebec,Canada, August 1995.

N. Guarino. Formal Ontology and Information Systems. In N. Guarino, editor,
Proceedings of the 1st International Conference on Formal Ontologies in Informa-
tion Systems, FOIS’98, Trento, Italy, pages 3-15. IOS Press, June 1998.

N. Guarino and P. Giaretta. Ontologies and Knowledge Bases: Towards a Ter-
minological Clarification. Towards Very Large Knowledge Bases, 1995. I0S Press,
Amsterdam.

Z. Jin, D. Bell, F.G. Wilkie, and D. Leahy. Automatically Acquiring Requirements
of Business Information Systems by Reusing Business Ontology. In Gomez-Perez,A.
and Benjamins,R., editor, Proceedings of Workshop on Applications of Ontologies
and Problem Solving Methods, ECAI’98, Brighton, England, August 1998.

J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G Yost, and other members
of the PIF working group. The PIF Process Interchange Format and framework.
Knowledge Engineering Review, 13(1):91-120, February 1998.

Luqi and D. Cooke. How to combine nonmonotonic logic and rapid prototyping
to help maintain software. International Journal of Software Engineering and
Knowledge Engineering, 5(1):89-118, 1995.

W. Mark. Ontologies as Representation and Re-Representation of Agreement.
In Proceedings of the 5th International Conference on Principles of Knowledge

22

20.

21.

22.

23.

24.

25.

26.

27.

2 Y. Kalfoglou and D. Robertson

Representation and Reasoning, KR’96, Massachusetts, USA, 1996. Position paper

presented on the panel: Ontologies: What are they and where’s the research.

W. Mark, S. Tyler, J. McGuire, and J. Schossberg. Commitment-Based Software

Development. IEEE Transactions on Software Engineering, 18(10):870-884, Octo-

ber 1992.

S. Polyak, J. Lee, M. Gruninger, and C. Menzel. Applying the Process Interchange

Format(PIF) to a Supply Chain Process Interoperability Scenario. In A. Gomez-

Perez and R. Benjamins, editors, Proceedings of Workshop on Applications of On-

tologies and Problem Solving Methods, ECAI’98, Brighton, England, August 1998.

D. Robertson, A. Bundy, R. Muetzefeldt, M. Haggith, and M. Uschold. ECO-

LOGIC Logic-Based Approaches to Ecological Modelling. MIT Press, 1991. ISBN:

0-262-18143-6.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 4th edition, 1994. ISBN:

0-262-69163-9.

M. Uschold. Knowledge level modelling: concepts and terminology. The Knowledge

Engineering Review, 13(1):5-29, February 1998.

M. Uschold. Where are the Killer Apps? In Gomez-Perez,A. and Benjamins,R.,

editor, Proceedings of Workshop on Applications of Ontologies and Problem Solving

Methods, ECAI’98, Brighton, England, August 1998.

M. Uschold, P. Clark, M. Healy, K. Williamson, and S. Woods. An Experiment

in Ontology Reuse. In Proceedings of the 11th Knowledge Acquisition Workshop,

KAWYS8, Banff, Canada, April 1998.

M. Uschold and M. Gruninger. Ontologies: principles, methods and applications.

The Knowledge Engineering Review, 11(2):93-136, November 1996.

. M. Uschold, M. King, S. Moralee, and Y. Zorgios. The enterprise ontology. Know-
ledge Engineering Review, 13(1), February 1998. Also available as ATAI-TR-195
from ATAI, University of Edinburgh.

A Error checking meta interpreter

O 00 N O WN =

=
= O

e e e
W 00 N O O WN

onto_solve(Goal,Path):- solve(Goal,Path,0Q).
solve((A,B) ,Path,Level):- solve(A,Path,Level),
solve(B,Path,Level).
solve((A;B),Path,Level):- solve(A,Path,Level) ;
solve (B,Path,Level).
solve(\+ X,Path,Level):- \+ solve(X,Path,Level).
solve(X,Path,Level) :- \+ logical_expression(X),
predicate_property (X, (meta_predicate _Z)),
solve metapred(X,Call,Path,Level),!,
Call.
solve_metapred(findall(X,Z,L),
findall(X,solve(Z,Path,Level),L),Path,Level).
solve_metapred(setof (X,Z,L),
setof (X,solve(Z,Path,Level),L) ,Path,Level).
solve(X,_,.) :- \+ logical_expression(X),
predicate_property (X, built_in),
X.
solve(X,Path,Level) :-
\+ (logical_expression(X); predicate_property(X,built_in)),

Use of Formal Ontologies to Support Error Checking in Specifications 223

20 specification(L, (X :- Body)),

21 L =< Level,

22 solve(Body, [X|Body] ,Level),

23 NextLevel is Level + 1,

24 detect_errors(X,Path,NextLevel).

25 detect_errors(X,Path,Level):- error(Level,X,Condition),

26 solve(Condition,Path,Level),

27 record_error(Level,X,Condition,Path,error),

28 fail.

29 detect_errors(X,Path,Level):- axiom(Level,X,Condition),

30 \+ solve(Condition,Path,Level),

31 record_error (Level,X,Condition,Path,axiom),

32 fail.

33 detect_errors(_,_,.).

34 record_error(Level,X,Condition,Path,Type):-

35 \+ found_ontological_error (Level,X,Condition,Path,Type),
36 assert (found_ontological_error(Level,X,Condition,Path,Type)).
37 report_errors:- show_errors,

38 clear_errors.

39 show_errors:- found_ontological_error(L,X,C,P,T),

40 ((T=error,

41 write(error_condition_satisfied(L,X,C)),nl,

42 write(’path: ’),write(P),nl);

43 (T=axiom,

44 write(axiom_violated(L,X,C)),nl,

45 write(’path: ’),write(P),nl)),

46 fail.

47 show_errors.

48 clear_errors :- retractall(found_ontological_error(_,_,_,_,.)).

49 logical_expression((_,.)).
50 logical_expression((_;.)).
51 logical_expression(\+ _).

B State Transition model

1 specification(0, (possible_state(State) :-possible_state(s0,State))).
2 specification(0, (possible_state(State,State):—true)).

3 specification(0, (possible_state(State,FinalState):-

4 possible_action(do(A,State)),

5 possible_state(do(A,State) ,FinalState))).

6 specification(0, (possible_action(do(move(A,G1,G3),State)):-
7 predator(A,B),

8 holds(location(A,G1),State),

9 holds(location(B,G2),State),

10 move_in_direction(A,G1,G2,State,G3))).

11 specification(0, (holds(location(a,(1,1)),s0):~true)).

12 specification(0, (holds(location(b,(2,2)),s0):~true)).

13 specification(0, (holds(location(c, (3,3)),s0):-true)).

14 specification(0, (holds(location(4,G),State):~ \+ State=s0,

224 Y. Kalfoglou and D. Robertson

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

animal(A),

\+ holds(eaten(A),State),

last_location(A,State,G))).
specification(0, (holds(eaten(A),do(move(A,_,G),State)):-

predator (P,A),

holds(location(P,G),State))).
specification(0, (holds(eaten(A) ,do(move(P,_,G),State)):-

predator (P,A),

holds(location(A,G),State))).
specification(0, (holds(visited(A,G),s0):-holds(location(A,G),s0))).
specification(0, (holds(visited(A,G) ,do(move(A,_,G),.)):-true)).
specification(0, (holds(Condition,do(move(_,_,_) ,State)):-

\+ Condition=location(_,.),

holds(Condition,State))).
specification(0, (move_in_direction(4, (X1,Y1),(X2,Y2),State, (X3,Y3)):-

(X1<X2,X3 is X1+1,Y3=Y1;

X1>X2,X3 is X1-1,Y3=Y1;

Y1<Y2,Y3 is Y1+1,X3=X1;

Y1>Y2,Y3 is Y1-1,X3=X1),

\+ holds(visited (A, (X3,Y3)),State))).
specification(0, (last_location(A,do(move(A,_,G),_),G) :—true)).
specification(0, (last_location(A,do(move(Al,_,) ,State),G):—

\+ A=A1,

last_location(A,State,G))).
specification(0, (last_location(A,s0,G):-

holds(location(A,G),s0))).
specification(0, (animal(a) : -true)).
specification(0, (animal(b) :-true)).
specification(0, (animal(c) :-true)).
specification(0, (predator(a,b) :-true)).
specification(0, (predator(b,c) :-true)).
specification(0, (predator(c,a) :-true)).
specification(0, (adjoining_square ((X1,Y1),(X2,Y2)):-

max_x_square (MaxX) ,

max_y_square (MaxY) ,

min_x_square (MinX),

min_y_square (MinY) ,

(X2 is X1+1,X2=<MaxX,¥2=Y1;

X2 is X1-1,X2>=MinX,Y2=Y1;

X2=X1,Y2 is Y1+1,Y2=<MaxV;

X2=X1,Y2 is Y1-1,Y2>=MinY))).
specification(0, (max_x_square(3) :-true)).
specification(0, (max_y_square(3) :-true)).
specification(0, (min_x_square(1) :-true)).
specification(0, (min_y_square(1) :-true)).
axiom(1,holds(location(A,G),S),

(predator(4,B),

\+ holds(location(B,G),S))).

The Ontologies of Semantic and Transfer Links

Mourad OUSSALAH Karima MESSAADIA

LGI2P/EMA-EERIE
Parc scientifique Georges Besse - 30000 Nimes, France
Email : oussalah@eerie.fr, messaadi @eerie.fr.

Abstract. Constructing Knowledge Base Systems using pre-existing generic
components rather than from scratch is a promising way of minimising devel-
opment time and facilitating evolution and maintenance. The concepts com-
monly used in describing KBS are tasks, PSMs (problem solving methods) and
domain knowledge. Developers have to select them from a library, then adapt
and link them so that they fit their specific needs. In order to help developers to
quickly understand, find, and configure the components' best suited to their ap-
plications, we need to specify languages for describing the tasks, PSMs and do-
mains? plus the different interactions between them. In this paper, we describe a
methodology for structuring a library which has different components and rela-
tionships defined through levels of description: meta- ontology, ontology library
and application. We propose the use of semantic and transfer links - often ap-
plied in databases systems and object modelling - to specify the relationships
between tasks, PSMs and domain knowledge and to use ontologies to describe
these concepts, improving thus their reusability and shareability.

1. INTRODUCTION

Constructing an application using a library of reusable components is a promising
way to minimise development time and facilitate evolution and maintenance. In order
to help developers to quickly understand, find, and configure the components best
suited to their applications, component-oriented approaches need to specify first lan-
guages for describing components, second reuse methodologies standardising the
construction of reusable components and their structuring and indexing in libraries.
Existing knowledge engineering (K.E) approaches often use task, PSM and domain
knowledge concepts to describe a knowledge base system (KBS) at a knowledge level
(as opposed to implementation or symbol level [15]). This separation between the task
to achieve, the reasoning used to achieve it and the knowledge specific to the domain
allows viewing the construction of an application as an adaptation and a connection of
these three components.

I we use components referring to the concepts task, PSM, domain, and links and for their
specialisation
2 We use the term domain referring to the domain knowledge statement.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 225-242, 1999.
© Springer-Verlag Berlin Heidelberg 1999

226 M. Oussalah and K. Messaadia

Different libraries, generally PSM ones, have been described in the literature,
among them: Generic Task and Task Structure[S], CommonKADS library [3], the
diagnosis library of Benjamins [1]. PSMs in these libraries are often described using
either task-specific terms like the CommonKADS library or the Benjamins diagnosis
library, or domain-specific terms like the Generic Task library. Task specific and
domain-specific PSMs are less reusable than generic ones. This is known as the us-
ability/reusability trade-off [10]. Other studies focus on ontology portability in order to
construct libraries of reusable PSMs, tasks and domains [6][2][13]. An ontology is an
explicit, partial account of a conceptualisation [7]. It provides a vocabulary of terms
and relations initially used to formally describe generic models of domains so that
they can be reused to describe different specific domains sharing the same structure.
As we can reuse tasks and PSMs, the notion of task ontology and PSM ontology has
appeared in recent works [2][6] referring to independent descriptions of them. Com-
parative studies can be found in [13] and [23].

We think that a library should possess different sorts of components defined at dif-
ferent levels of description, like modelling-, generic- or application specific- compo-
nents, so that users can use/reuse a component at the appropriate level of specialisa-
tion. We have described in [14] the structure of a KBS model incorporating the three
main concepts - task, PSM, and domain knowledge. In addition, we introduce the
inter-concept link and the intra-concept link in order to clarify the different interac-
tions between tasks, PSMs and domain knowledge. These links are represented using
object modelling concepts: semantic [11] and transfer [17] links commonly applied in
data base systems and object modelling like OMT or UML.

In this paper, we will first see a KBS described incrementally — at the knowledge
level - through different levels of abstraction: meta- ontology, ontology library and
application levels. Second we will see that the implementation (symbol) level we use
is an object one where the meta- ontology level is implemented as meta- classes while
the ontology library level and application level are implemented as classes. Then we
will concentrate on the library ontologies of semantic and transfer links. Finally, we
will introduce a way of reusing a component identifying: first the different library
users; second, the different steps needed to construct reusable components; finally a
way of constructing an application which (re)uses components from the library.

2. KNOWLEDGE ABSTRACT LEVELS

We can use different abstract levels to describe a KBS at the knowledge level [8]
[9]. For our case we have identified three levels of abstraction (fig. 1): meta- ontology,
ontology library and application.

1. The meta- ontology level describes the basic concepts needed to describe a KBS.
Thus, at this level, we identify generic types of concept: task, PSM, domain knowl-
edge plus inter- concept link and intra- concept link (fig.2.C).

2. The ontology library level enables the description of different sorts of ontology -
task, PSM, domain and links. It can be decomposed into different layers according
to their degree of specialisation.

The Ontologies of Semantic and Transfer Links 227

3. The application level is concerned with describing applications. An application is
constructed using task-, PSM- and domain-ontologies specialised, if needed, using
intra-concept links, and linked using inter-concept links (fig. 12). We will see these
levels in more detail in the next sections.

Meta- Ontology Level

Is described by

Ontology Library
Level

Uses
Application Level ;

Fig. 1. Abstract levels

A\R§

3. THE META- ONTOLOGY LEVEL

The meta- ontology level permits a precise description of the main components
needed to model a KBS for purposes of sharing and reuse. This meta- ontology level
corresponds to the representation level in [24].

(A AN\ D> >
TASK) ——p (PSM e £
) DOMAIN
inter-concept link DOMAIN \Dj <>Semantic link
intra-concept link \J [>- Transfer link

Fig. 2.a The concepts of the Y- model Fig.2.b The modelling components

The three concepts used in constructing a KBS - task, PSM and domain - give this
model a characteristic Y-shape. In order to clarify the different kinds of relationship
between these three concepts, we use two sorts of link - inter-concept and intra-
concept. An inter-concept link describes relationships between concepts of different
sorts: task/PSM, PSM/domain or task/domain. An intra-concept link describes the
ones between two concepts of the same sort: task/task, PSM/PSM or domain/domain.
These links are bi-directional but, for simplification, we use undirected links, consid-
ering for example task/PSM and PSM/task links as being the same (fig. 2.a). An inter-
concept link is used to link two different concepts and can transfer information be-
tween them; examples are mapping or transferring information between tasks and
PSMs. We describe this link using semantic and transfer links. Intra-concept links are
described the way inter-concept ones are, using semantic and transfer links, but the
concepts they link are of similar sort (fig 2.b).

228 M. Oussalah and K. Messaadia

Ymodel concept Meta-level ontology

Task PSM Domain

inter-concept intra-concept
link link

semantic lini ansfer link

Fig.2.c The modelling components at the meta- ontology level

3.1TASK META- ONTOLOGY LEVEL

A task at the meta-ontology level is specified by its name, which is a unique term
designating it, its input/output, the goal it is to reach and the semantic and transfer
links attached to it.

name <task-name>
goal <task-goal>
input <input-concepts>
output <output-concepts >
semantic <semantic-names >
transfer <transfer-names>

The attributes are in italics while their value types are enclosed in angle brackets
“<” “>”. We do this for simplicity but we can also describe them using formal lan-
guages like ontolingua, loom, etc.

3.2PSM META- ONTOLOGY LEVEL

A PSM meta-ontology level is specified by its name, its input/output, its compe-
tence to achieve tasks, and the semantic and transfer links attached to it.

name <PSM-name>
input <input-concepts>
output <output-concepts >
competence <assumptions>
semantic <semantic-names>
transfer <transfer-names >

3.3DOMAIN META- ONTOLOGY LEVEL

The domain meta- ontology level can be specified by the concepts of domain, the
relations between these concepts and their characteristics allowing a leveraged do-
main description, plus the different links attached to it. The reader can refer to the
work done in [24] for a categorisation of domain ontology levels.

The Ontologies of Semantic and Transfer Links 229

name <domain-name>

Domain_Concepts <domain-concepts>
Domain_Relations <domain_concept X domain_concept>
Characteristics

semantic <semantic-names>

transfer <transfer-names >

3.4SEMANTIC LINK META- ONTOLOGY LEVEL

The definition of a semantic link: A semantic link as it is defined in object mod-
elling describes a relation between two or more concepts. Its semantics can express an
association (logical, physical, etc.), a composition, a specialisation, etc. It has its own
semantics and behaviour - allowing the concepts it relates together to communicate
and collaborate [11]. It is often used in data modelling (data base systems, or CAD)
so that semantic information is not distributed among related concepts but defined in
an entity of its own, thus enabling modularity and reusability. In our model, we use
binary semantic links (fig.3) because studies in object modelling demonstrate that it’s
easier to manipulate them, and tuple relations can be represented as a number of bi-
nary relations.

Optimization Simulated
Task Realised by annealing

PSM

Fig. 3. . Example of a semantic relation

In our model, we describe a semantic link using the attributes:

1. from and to links defining the source and destination concepts.

2. roles determining the roles the source and the destination play in the link. These
roles can help to identify the semantic link best suited to a specific case.

3. semantic attributes describing the semantic properties of the links. These proper-
ties allow improving their representation while simplifying their handling [11].
These properties are:

O Exclusivity/ sharing: Exclusivity expresses the limitation that a concept refer-
enced by an exclusive semantic link of any one family cannot be referenced by
further semantic links of the same family. Links of other, different, families
however are permitted - examples of families being composition and association.
If, for instance, a component is referenced by an exclusive composition link, it
cannot be referenced by another composition (part of) link but it can be refer-
enced by say an association link. The sharing property specifies the converse.

O Dependence/ independence : Dependence specifies that a destination component
is dependent for its existence on its source component. If a source component of
a semantic link is destroyed, that implies the destruction of the destination com-
ponent referenced by the same link. Independence is the opposite of dependence.

230 M. Oussalah and K. Messaadia

O Predominance / non-predominance : The semantics of predominance and non-
predominance is symmetric to dependence and independence. Predominance
specifies the case where the source concept is dependent on the destination one.
Non-predominance is the converse.

O Cardinality/ Inverse cardinality: Cardinality is defined as an interval [card min,
card max] where card min (card max) expresses the minimal (maximal) number
of target concepts that can be associated with a source concept. Inverse cardi-
nality is defined the same but for a target concept.

4. Transfer link : defines the transfer link associated with the semantic link.

name : <semantic-link-name>
from : <from-concepts>

to: < to-concepts>

Roles: <from-role; to-role>
Transfer < associated transfer name>
Semantics attributes

3.STRANSFER LINK META-ONTOLOGY

Definition of a transfer link : A transfer link [17] expresses the transferability of
information between concepts. It may in addition have transfer functions for trans-
forming the information it transports between source and target concepts. A transfer
link (fig. 4)may be associated with a semantic link.

Translator definition: A transfer is composed of a set of translators describing in-

formation propagation between related concepts. Each translator defines informa-

tion propagation between the attributes of linked concepts and specifies the transfer
function used to translate the information being sent.

Optimization Il> Simulated annealing
Task ontology mapping PSM ontology

Fig. 4. Transfer link example

Name : <transfer-name>

Semantics : <associated semantic link name>
source : <source-concepts>

destination : <destination-concepts>
translator : <translator-names>

Name <translator-name>
Input < source -attributes >
output < destination-attributes >
Transfer-functions

Reusing transfer links for different semantic links: A question that springs to
mind is: why separate transfer link from semantic link?. The answer is that it enhances

The Ontologies of Semantic and Transfer Links 231

reusability as the same transfer link can serve two different semantic links. An exam-
ple we give for this is the derivation link used for evolution management in object
design. This link permits linking versions of a class (component) to the initial one. A
version can be derived by deletion of, addition to, or modification of an existing com-
ponent. Many methodologies have confused derivation link with inheritance (since
inheritance permits addition and modification). Some alter the inheritance link so that
it fits derivation, using inheritance with exceptions or adding constraints. We can
reuse the transfer applied for inheritance, adapt it so that it can support information-
deletion and reuse it for this link.

4. ONTOLOGY LIBRARY

At this level, we can describe a number of different sorts of ontology, among them:
task, PSM, domain, semantic link and transfer link (fig. 5).

Semantic link Transfer link
ontologies ontologies

Task ontologies PSM ontologies Domain ontologies

Domain

Semantic link Transfer link

D

S-linkl, ... ;
/ T-linkl,...

S-link 1.1,...) I'd
T-linkl1.1,...

Fig. 5. The different ontologies of the library

4.1TASK, PSM, AND DOMAIN KNOWLEDGE ONTOLOGIES

Tasks, PSMs and domains can be seen at this level as an extended Y-shape with
several branches - as in fig. 6. Task branches describe types of task such as: diagnosis,
configuration, and conception. PSM branches describe PSM types such as: classifi-
cation, abduction, qualitative simulation; domain branches describe domains like:
networks, medicine, cardiology. Task T, for instance is specialised into T’ as design
and parametric design; D, is specialised into D’, such as : networks and telecommuni-
cation networks ; and PSM, is specialised into PSM’, as : union of n sets and union of
two sets. Examples of such ontologies can be found in [18]. Following the example in
fig. 9, we have the example of an optimisation task.

232 M. Oussalah and K. Messaadia

Optimisation_Task ontology

name optimisation

goal find the best realisable solution among a set of possible ones
input the cost function ; set of constraints; set of realisable solutions
output the best solution

realised-by optimisation-realisation link
association optimisation-association link
transfer optimisation-transfer link
strategy optimisation-strategy

Domains

Fig. 6. Library : the extent Y model

4.2Semantic Link Ontology

The semantic link definition we gave at the meta-ontology level section corre-
sponds to the studies in object modelling [11] but what about the other disciplines?.
Semantic relations (or links) have been studied by a number of different disciplines -
among them linguistics, logic, psychology, information systems, and artificial intelli-
gence (Winston et al. 88, Herrmann & Chaffin 87, Iris et al. 88, Woods 91, Dahlberg
94, Priss 96). The reader can find a comparison of these studies in [20]. For ontology
design, reader can refer to [16] for a comparison of some ontologies and their different
use of relations. For our case, we have focused our work on two large, well-known
categories, often used in object modelling, and used in the Y-model. These two cate-
gories are inclusion - where inheritance and composition (part of) are frequent - and
association.

Semantic_link

Inclusion Assocjation

Inheritan&D4/A%¥A Spatial
(Class erivation patia emporal o mposition Connexion patia Temporal
inclusion) (Structural/

functional)

Strategy
Structural Functional Physical Use Control
Realised by Uses .
Sequential ~ Parallel Loop

Fig. 7. Some semantic links (relations)

The Ontologies of Semantic and Transfer Links 233

In fig.7 we have listed our hierarchy of semantic links, based on the different linguistic
studies we have mentioned [21] [26]. For reasons of space, we haven’t listed all the
hierarchy classes.

Inclusion
The inclusion link specifies that a concept includes other concepts. This inclusion is
then refined as structural, functional, spatial, temporal and class inclusion.

name : <Inclusion-name>
sort of: <semantic relation>
from <from-concept>

to: <to-concept>

Roles: < sub set, set>
Transfer <transfer- inclusion>

Inheritance (Class inclusion)

This link defines the inheritance link. Its main characteristic is similarity, permit-
ting differentiation from other sorts of inclusion link (we refer to the work done on
similarity of inheritance links in [21]). The source concept should then be similar to
the destination concept.

name : <sort-of>

sort of’ <inclusion>

from : <from_concept>

to: <to_concept>

Roles: <subtype , super-type >
Transfer <transfer sort-of>

Composition (structural and functional inclusion)

The composition link connects a source concept called composite to another con-
cept called component. This link is known as “part of” in ontology design. Readers
can refer to [16] for a comparison of the use of the part of link in ontology design.

name : <Composed of-name>
sort of’ <inclusion>

from : <from_concept>

to : <to_concept>

Roles: < composite, component >
Transfer <transfer composition>

Derivation

Often confused with inheritance, this link states that a destination concept is de-
rived from a source concept. It is often used for evolution management in object de-
sign.

234 M. Oussalah and K. Messaadia

name : <sort-of>

sort of’ <derivation>

from : <from_concept>

to: <to_concept>

Roles: <versioned, version >

Transfer <transfer version>
Association

The association link relates two concepts. It contrasts with inclusion which consists
of constructing a concept from other concepts. The association can be structural, func-
tional, spatial, or temporal.

name <association-name>
Sort of <semantic link>

Sfrom <from-concept>

to <to-concept>

Roles < from-role; to-role >
Transfer <transfer- association>

Functional Connection
This link defines a functional connection where the linked concepts are associated

together to realise a specific function. The realised-by link used in the Y-model is a
sort of functional connection.

name : <realised by-name>

sort of’ <functional-connection>

from : <from-concept>

to : <to-concept>

Roles : < problem type; resolution method>
Transfer <transfer-functional>

Control link

This link is used in the Y-model for specifying the order of the components invoca-
tion. It is a sort of temporal connection

Name < control-name>

sort of <temporal association >
from <from-concept>

to <to-concept>

Roles <scheduler; schedules>
Transfer <transfer name>

4.3Transfer links Ontology

Transfer link defines a transfer of information between the concepts it relates. We
have defined a hierarchy of some of the common transfer links we can use in our
model (fig.8). An example of mapping transfer might be renaming - where the source-
attribute is renamed to the destination-attribute name.

The Ontologies of Semantic and Transfer Links =~ 235

Name <translator-rename-name>

Sort of <translator>

input <attribute-source>

output <attribute-destination>

transfer function <rename(attribute-
source, attribute- destination)>

Transfer link Is composed Of translator

arithmefic ~ logic’ mapping User...

Add, div, Mult,....

Fig. 8. Different sort of transfer links

4.4 SEMANTIC AND TRANSFER LINKS ONTOLOGIES OF THE Y-MODEL

Now that we have defined a generic ontology of semantic links, we will see in this

section the ones we use in the Y model.
Inter concept- semantic and transfer links: the various sorts of inter-concept se-
mantic links used in the Y-model are:

PSM/domain link: The association of a PSM with a domain describes the knowl-
edge that the former requires from the latter. In order to consider a PSM as a
black box, its knowledge requirements are specified using assumptions. We use
association link to represent it. Data transfers between tasks and PSMs, as well as
their inter-ontology mapping [22], are defined using mapping transfer links.
Task/domain link: This link describes the association of a task with a domain in
terms of knowledge requirements. We use an association link as defined below to
specify it. The transfer can be defined using mapping transfer links.
Task/PSM link : A task can be realised-by (achieved) either one or several PSMs
and each PSM can decompose a task into sub-tasks. These in their turn, are real-
ised-by sub-PSMs, until reaching terminal and non-decomposable PSMs. We de-
fine two new semantic links expressing the task/PSM relations. We refer to them
as: realised-by and composed-of (fig. 9). The associated transfer link allows for,
amongst other things, inter-ontology mapping.
O The Realised-by link: It allows relating a task to the different PSMs helping to
achieve it.
O The Composed-of link: It expresses the decomposition of the PSM into differ-
ent sub-tasks.

236 M. Oussalah and K. Messaadia

User inter-concept link: In the generic semantic link hierarchy defined in fig. 7, the
user can define their own inter-concept semantic link.

Optimization

Simulated Annealing

initial
configuration

] [movement] [wSl]
-
D Task m make_mo J [calculate the make_ch
vement cost oice

—p Composed of link

Realised by link

Fig. 9. The decomposition/realisation graph

The figure above gives the Task/PSM decomposition of a specific and real case. It
concerns the optimisation of concentrator locations in an access network. The concen-
trator location problem aims to find the number of concentrators, their locations, and
the connection of terminals to concentrators. We can use a simulated annealing algo-
rithm (PSM) to find the optimal configuration. As this PSM is often used for many
other problems, we need to describe a generic simulated annealing and optimisation
task using terms such as realisable solution, optimal solution - rather than concentra-
tors, terminals; etc (see the example of optimisation task ontology in section 4.1).
Then transfer links can be used for terminology mapping.

§ Realised by link

Composed of
link

D Transfer link

@ Linked concept

DOMAINS O unlinked Concept

Fig. 10. The different types of inter-concept links : The extended Y model

In fig. 10, the full circle represents a chosen task T, which is realised-by PSM, and
PSM, following a specific control in the domain D’,. In this extended Y model, we can
take various entry points: for a given task T,, we can find : the PSMs which can carry
it out - through the task/PSM realised-by link; the domains where it can be applied -
through the task/domain association link (fulfilling its knowledge requirements). We
can also take a given PSM such as PSM,, and find its sub-tasks through the composed-
of link and the domains to which it applies (in this example, T,, T, and D’,). We can

The Ontologies of Semantic and Transfer Links 237

also take a domain as an entry point (D’,) and find the tasks and PSMs where it can be

used (in this example T,, PSM, and PSM,).

Intra-concept semantic links : we have identified the various sorts of intra-concept

semantic links (fig. 11) used in the Y-model as:

e Specialisation link: it is used to specialise a task, a PSM, a domain or a link.

e Instantiation link : it is used to instantiate a concept. The concept can be a task,
PSM, or domain, or a link.

e (Control link: it specifies the order of invocation of tasks or PSMs, or the union of
two domains.

e Strategy link: this specifies the strategic knowledge used when there is a choice to
be made among PSMs, tasks, or domains.

e User intra-concept link: as for inter-concept links, the user can extend the links
we have identified by defining his/her own intra-concept link.

Intra-concept transfer links : Transfer links allow the propagation of information

between related concepts: task/task and PSM/PSM used in the decomposi-

tion/realisation graph (fig. 9); and domain/domain for a mapping between domains

sharing common structures such as electrical and telecommunication networks.

----»Specialisation
— Control

m Strategy
w Association

DOMAINS

Fig. 11. Intra-task, intra-PSM and intra-domain links

S. THE APPLICATION LEVEL

Our library is composed of: task, PSM, domain, semantic link and transfer link on-
tologies. Applications are collections of related task, PSM, domain knowledge com-
ponents using inter-concept — like the realised-by - and intra-concept links - like the
specialisation link. The related components making up applications are like ‘Lego’
bricks. Such a structure allows swapping one component with another without gener-
ating a knock-on series of changes in the overall application. This is in contrast to the
more common glue architectures, where components are glued together into more
rigid applications in which small changes can have numerous and large repercussions.
In the figure below, we can see an example of an application for planning an access
network domain. We take a telecommunication domain ontology from the library. We
assume that this component has been already created. We specialise this component -

238 M. Oussalah and K. Messaadia

using the specialisation intra-concept link - into an access network domain. We see
that linking the optimisation task with the simulated annealing PSM is done using the
realised by semantic inter-concept link and the mapping transfer inter-concept link.
Transfer link

Semantic link

Domain

Task ontologies PSM ontologies

Transfer link

Domain L
Semantic link

x

..|[PSM1 PSM 2,..
¢ S-linkl, ...
Planification Simulated Telecom /
network realised by, ...

annealing,

Application level
Simulated Annealing PSM

\%

realised by

specialifed as
optimisation task

associated with

Planing task specalised as

mapping

Fig. 12. Library and application ontologies

6. IMPLEMENTATION LEVEL

The different hierarchies of the Y-model are represented as objects using meta-
class and class hierarchies (Fig. 13). The construction of the instantiation graph per-

mits to create classes and instances.
Meta class level

Y Model Class
mm&r link

Inheritance K ! class level
Specialisation < Telecom p <
P Op&im’sation Simulated Network Cc’nposed of. M’pping,
task _Anneal_ d B Transfer X
PSM omain Library
classes

Simulated_An /

Optimisati
P lglia ton Is realised by
- D ’ neal._ PSM Application
classes

mapping

Telecom access
Network

Is associated
with

Fig. 13. Implementation level

The Ontologies of Semantic and Transfer Links 239

The meta- ontology level is represented at the meta-class level: Task, PSM, do-
main, semantic links and transfer link meta-ontologies are represented as meta-
classes.

The ontology library level is defined by instantiating the meta-classes listed above
- for representing the different sorts of task, PSM, domain, semantic link and
transfer link ontologies as classes. The inheritance graph enables us to maintain
the levels of abstraction of the different sorts of semantic and transfer link and the
specialisation degree (generic or more specific) of task, PSM and domain ontolo-
gies.

The application level is also at the class level where an application uses the dif-
ferent classes of the library.

7. HOW TO REUSE A COMPONENT?

Before talking about ways of reusing components, we have to know something

about the different sorts of users of the Y-model. In order to construct and manage the
Y-model library, we distinguish four different ones, each having a specific function in
the overall development:

1.

2.

The infrastructure builder (I.B) has to define the modelling components used to
build the infrastructure. In the Y-model, the I.B will define the meta-classes.

The application builder (A.B) is the domain expert and will instantiate the meta-
classes for describing his/her specific components. The A.B is concerned by the
library ontologies level.

The Reuse Engineer (R.E) or library manager will construct and manage the li-
brary. This is composed of generic parts: generic meta-class components defined
by the infrastructure builder and reusable components and reusable applications
defined by the application builder (see fig 14). Before accepting a component or
application into the library, the R.E has to verify if:

e the components are well documented and well tested;

e the standards are respected,;

e the components are well used in the applications;

e we are not developing already existing components and applications.

The End User (E.U) instantiates specific applications in order to solve real prob-
lems (feeding in the initial values of the problem).

N\

1,2,3 foreuse
45,6 byreuse EU

Fig. 14. Reuse methodology

240 M. Oussalah and K. Messaadia

In fig 14, we can see an example of the different interactions between the 4 Y-
model users. The reuse methodology is divided into two stages. The first one, called
for-reuse, concerns the construction of the components; the second, called by-reuse,
concerns the construction of the application by reuse and the adaptation of these
ready-made components.

1 : the application builder (A.B) identifies the components s/he needs and asks the
reuse engineer.

2 : the reuse engineer (R.E) asks the infrastructure builder (I.B) to represent the
needed components.

3 : the infrastructure builder gives the components to the R.E who will organise
them.

4 : the R.E will find and select the needed components and gives them to the appli-
cation builder.

5 : the application builder has to adapt and integrate them.

6 : finally, the End User will instantiate and use the applications.

The Reuse Engineer plays the pivotal role between the different users. By-reuse and
for-reuse stages can be seen as two process reuse engineering stages.

Identify Represent & Find & Adapt Integrate
organize select
A »
L3 Ll
For- reuse engineering By- reuse engineering

Fig 15 Reuse process

A REUSE SCENARIO

Lot of works has been done concerning PSM, task and domain reuse. For our sce-

nario, we will take a transfer link as an example for the reuse-process (Fig 15):

1. The for-reuse stage concerns the library components construction. At this stage, if
an inheritance semantic link component is needed, the infrastructure builder will
use the transfer and translator meta classes to represent it. This link has to be or-
ganised later in the structured library.

2. By-reuse stage concerns the next step where we have existing reusable components.
If the application builder needs a transfer link for an evolution semantic (see sec-
tion 3.5) s/he will ask for it from the library. Getting the inheritance transfer com-
ponent from the library, s/he will adapt it for his evolution link (adding the ability
for information deletion). The reuse engineer can take this new evolution transfer
link and make the necessary testing and verifications listed above. Then, s/he can
integrate it to the library for future (re)use.

The Ontologies of Semantic and Transfer Links 241
8. CONCLUSION

We have described in this article a library which can model any task-oriented

knowledge base whilst offering the re-use of tasks, PSMs, domains, and their different
links. This library is structured in a multi-hierarchical model allowing the integration
of reusable components described at different levels of specification. Our work ap-
proaches that in [6] in its reuse of tasks, PSMs and domains by means of ontologies to
describe them and adapters to refine and glue the components. The semantic and trans-
fer links can represent the different sort of adapters.
Concerning the task/PSM decomposition, and the use of ontology, our work has some
similarities with protégéll [12]. It differs from it in its use of an explicit control, rather
than, as in protégéll, a hard-wired one and the use of semantic and transfers links. The
main contribution of our work is the explicit description it offers of the different con-
cept interactions (relationships) by means of two concepts, intra- and inter-concept
links defined through different levels of description; secondarily, the use of object
modelling concepts for representing them. The semantic link ontology can be used in
the KA-2 project to represent the different relations. Our purpose was to give a simple
description of the modelling components and not a completely formal language. This
will be our next concern. The meta-model we have used can be reflective. Our future
work will concentrate on defining such a reflection and formalising concepts and
links. This work is under development for an application concerning the re-use of
tasks and PSMs in the telecommunications domain.

Bibliography

[1] Benjamins, R. Problem Solving Methods for diagnosis. PhD Thesis, Department of social
Science Informatics, University of Amsterdam, The Netherlands, 1993.

[2] Benjamins, R., Plaza, E., Motta, E., Fensel, D., Studer, R., Wielinga, B.J, Shreiber, G.
Zdarahal, Z., -IBROV3-An intelligent Brokering Service for Knowledge —Component Re-
use on the WorldWideWeb. In Proceedings of KAW’98, Banff, Canada.

[3] Breuker J. A. & Van de Velde, W. CommonKADS library for expertise modelling. IOS
Press, Amsterdam, The Nederlands (1994).

[4] Chandrasekaran B., Josephson J. R. & Benjamins, V.R., The Ontology of Tasks and
Methods. In Proceedings of KAW’98. Banff, Canada, 1998.

[5] Chandrasekaran B. & Al. Task-Streture Anal ysis for Knowledge Modelling, Communi-
cation of the ACM, 35(9) :124137, 1992.

[6] Fensel D. The tower of adapters method for developing and reusing problem solving
methods. In Plaza 1 Benjamins, V. R. Edts, Knowledge Acquisition, Modelling and Man-
agement, pp 97—112. SpringlerVerlag 1997.

[7] Gruber, T.R. A Translation Approach to Portable Ontology Specifications, Knowledge
Acquisition, 5: 199-220, 1993.

[8] Guarino, N. The ontological level, In R. Casati, B. Smith and G. White (eds.), Philosophy
and the Cognitive Sciences, Vienna, 1994.

[9] Guarino, N., Understanding, Building, And Using Ontologies A Commentary to "Using
Explicit Ontologies in KBS Development", by van Heijst, Schreiber, and Wielinga. Inter-
national Journal of Human and Computer Studies vol. 46 n.2/3, pp. 293-310, 1997.

242 M. Oussalah and K. Messaadia

[10] Klinker, G. & Al, Usable and Reusable Programming Constructs, Knowledge Acquisi-
tion, 3:117-136, 1991.

[11] Magnan, M. Oussalah, C. Multiple Inheritance Systems with Exeptions. In Artificial In-
telligence Review, Volume 6, Kluwer Acad. Pub. Pp 31-44, 1995.

[12] Molina, M. Shahar Y., Cuena, J.& Musen, M. A Structure of problem-Solving Methods
for Real-time Decision Support : Modelling Approaches Using PROTEGE-II and KSM.
proceedings of (KAW’96), Banff Alberta, Canada, November 9-14, 1996.

[13] Motta, E. Trends in knowledge modelling: Report on 7th KEML Workshop. The
Knowledge Engineering Review, Volume 12/Number 2/June 1997.

[14] Messaadia, K.& Oussalah, M. Using Semantic links for reuse in KBS; In Proc. of Data-
base and Expert Systems Applications, DEXA'98, Vienna, Austria, 1998.

[15] Newel, A., The knowledge level, artificial Intelligence 18, 1982, 87-127.

[16] Noy, N.F., Hafner, C.D. The State of the Art in Ontology Design, Al Magazine, Volume
18(3): Fall 1997, 53-74

[17] Oussalah & al, A framework for modelling the structure and behaviour of a system in-
cluding multi level simulation, IASTED INT. Symp. On Applied Simulation an Modelling,
ASM, Grindelwald, Switzerland, February 1988.

[18] Oussalah, C.& K. Messaadia; An architecture for solving complex tasks, in Proc. of
Nimes'98, Complex Systems, Nimes, France 1998

[19] Pierret-Golbreich,C. TASK MODEL: A Framework for the Design of Models of Exper-
tise. and Their Operationalisation. KAW’96. Banff, Alberta, Canada 1994.

[20] Priss, U. Relational Concept Analysis: Semantic Structures in Dictionaries and Lexical
Databases. Dissertation, TH-Darmstadt, october 96.

[21] Storey V.C. Understanding Semantic Links, VLDB Journal 2, 455-488, 1993.

[22] Studer, R. Eriksson, H. Gennari,J.H., Tu,S.W., Fensel, D. & Musen, M. Ontologies and
the Configuration of Problem-Solving Methods, proceedings of (KAW’96), 9-14, 1996.

[23] Uschold, M. & Tate, A. Putting ontologies to use .The Knowledge Engineering Review,
Volume 13/ Number 1/ March 1998.

[24] Van Heijst, G. Shreiber, A. Th. & Wielinga, B.J. Using explicit ontologies in KBS de-
velopment, International Journal of Human-Computer Studies, 46(2/3):128-292, 1997.

[25] Wielinga, B. Schreiber.A. & Breuker, J. KADS: A Modelling Approach to Knowledge
Engineering. Knowledge Acquisition. 4, 5-53. 1992.

[26] Winston, M.E, Chaffin, R. Herrmann, D.J. A Taxonomy of Part — Whole Relations,
Cognitive Science 11, 417-444, (1987).

Distributed Problem Solving Environment Dedicated to
DNA Sequence Annotation

Thibault Parmentier', Danigle Ziébelin'

' Projet Sherpa, INRIA Rhéne-Alpes, 655 Avenue de 1'Europe, F-38330 MONTBONNOT -
FRANCE.
{Thibault.Parmentier, Daniele.Ziebelin} @inrialpes.fr
http://www.inrialpes.fr/sherpa/

Abstract. Genomic sequence analysis is a task using techniques coming from
different fields in order to extract biologically relevant objects (genes,
regulatory signals...) from rough DNA sequences. Analysis methods, coming
from domains like statistics, sequence alignment or pattern matching, have been
developed and regrouped into program libraries. These libraries aim at helping
biologists to manipulate data. However their use revealed itself being too
difficult as it requires the user to have background knowledge to be handled
efficiently. In order to tackle this problem, the ImaGene system has been
proposed. ImaGene is a system built upon a generic task model allowing to
model methods of DNA sequence analysis and to execute them thanks to shell
scripts, binaries and specific libraries already developed. This system makes it
possible to manipulate these methods and present a synthesis of the obtained
results in a cartographic interface allowing the biologist to evaluate the
biological pertinence of the results and to annotate DNA sequences. In order to
profit from analysis methods and specialized libraries and to simplify their
accesses, we have provided ImaGene with the possibility of using distributed
methods and binaries. The solution chosen consists in transferring task code
from server sites to client sites; but, unlike the solution adopted in Java, the data
is computed at the server site if necessary. This distribution of the system has
highlighted some problems like managing different versions of methods and
dealing with tasks that have been recently decomposed into new sub-tasks.

1 Introduction

The use of specialized libraries of programs is not always easy: to choose, connect
and carry out the suitable modules during the resolution of a problem often requires,
the user to have an excellent control of the field concerned and a good knowledge of
the organization of the libraries. This is for example true in domains like automobile
or plane design, in which competences from several disciplines are requested. It is
also true in genomic sequence analysis where computer science techniques used to
manipulate genomic sequences meet techniques from statistics and pattern matching
used to locate and extract biologically relevant objects. These techniques and methods
are regrouped in software libraries or binaries. Though biologists are able to set

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 243-258, 1999.
© Springer-Verlag Berlin Heidelberg 1999

244 T. Parmentier and D. Ziébelin

parameters of the distinct methods selected from the libraries, they need more
competences to select the right modules of a library or to link them up.
In order to help users with these difficulties, Problem Solving Environments (PSEs)
have been developed which offer automatic supervision of software libraries and
binaries. To do that, the PSEs are based on solving strategies (methodological
knowledge) easily comprehensible by users. The PSEs use this methodological
knowledge to identify, specialize and execute the modules best adapted to the current
problem. Users can control the solution process by means of graphical interfaces
allowing them to visualize all stages of the execution of a strategy and the results.

The objective of designing a PSE is to provide an integrated environment and to

supervise programs [18] coming from different specialized domains. A PSE proposes

a model of each domain through knowledge bases representing [19]:

e on the one hand, domain entities (cf. Fig. 1) which we will call them domain
knowledge. They represent the concepts being handled (variable, domain of
definition, scatter plot, grid,...),

e on the other hand, problem solving strategies modeling different ways to solve
problems (cf. Fig. 1). This methodological knowledge expressed thanks to
strategies allows an evaluation of the problem to be solved. They lead to the
selection, the sequence and the execution of the modules or programs of a library
in the most relevant way [19][22][14].

Domain
- knowledge base

Input T l Output

- Methodological

knowledge base
l Encapsulation
7 7

7 o 9 7 I

Software
libraries

7

Fig. 1. The PSE is built around two kinds of knowledge which are used to pilot, in a suitable
way, software libraries: the methodological knowledge contains problem solving strategy, and
the domain knowledge base contains the input needed by the tasks and the output produced
during the resolution processes (programs are encapsulated and controlled by the PSE thanks to
the methodological knowledge).

Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation 245

The Sherpa project at INRIA Rhone-Alpes developed in collaboration with the
company Ilog a generic PSE PowerTasks [17] whose knowledge base is built on an
objects model. Domain knowledge is represented by means of classes and instances,
methodological knowledge is described using particular classes and instances: tasks
[4][5]. A task allows a compact and structured representation of a problem and
knowledge necessary to its resolution with regard to the description of its data and
results, as well as a strategy for solving the problem (cf. section 2).

PowerTasks was used for the task of genome annotation, within a framework
involving several biology laboratories. This work was financed by a French organism,
the G.R.E.G. ("Groupement de Recherche et d'Etudes sur les Génomes"). The system
obtained, ImaGene, allows the analysis and the annotation of complete bacterial
genoms [15][16]. It gives a biologist the possibility of exploiting and carrying out in a
transparent way methods for DNA sequence analysis obtained from several libraries
offering complementary methods. These methods seek and identify, on a DNA
sequence, biological objects of interest, such as genes, signals of regulation... To this
end, ImaGene uses three distinct windows allowing to manage the biological objects,
the solution strategies and the solution processes (for the first two ones) and to
visualize the DNA map including the biological objects resulting from the different
solution processes (in the last window).

The installation and use of a PSE provides a satisfactory response to the problem of
managing programs libraries. Nevertheless, some difficulties remain, like for example
the installation and the updates of libraries. The code of these libraries used to be not
portable, and difficult to install (split into several parts, calls to other tool libraries,
incompatibilities of compilers versions...) and often involves the purchase of
hardware or specialized software (required computing power, uses of specific
databases). To illustrate this last difficulty, we briefly present the case of two
strategies included in ImaGene, which, in its current version, encapsulates twelve
libraries, eight of which require specialized resources.

Before explaining the way this strategy works, the biological background of DNA
sequence analysis needs to be briefly reviewed/explained. A DNA sequence is a
sequence built from four letters A, T, C, G which represent a nucleotide acid or
nucleotide. A group of three nucleotides can be translated into an amino acid thanks
to a translation table. In the case of bacteria, a DNA sequence is about 10° nucleotides
long. But the major part of the process of nucleotides is never translated into amino
acid: they do not code for proteins. The DNA sequence annotation consists in finding
the coding sequences. There are different ways of selecting the interesting part of a
DNA sequence.

One of these consists in comparing sequences coming from similar organisms starting
from the position of the relevant biological objects on an analyzed sequence of a
similar organism. This method is contained in a library that uses a database with
sequences of several partially or completely analyzed organisms. During the
installation of this library, it is necessary to have a copy of the complete database
which must be upgraded regularly (every week). Another solution is to access the
initial database remotely.

Another method is based on statistical search. The corresponding library uses the
frequency of appearance of nucleotides in genes or other relevant biological objects.
The installation of this method is thus linked to the installation, at the same time, of

246 T. Parmentier and D. Ziébelin

statistical programs and to the data relating to partially or completely analyzed
organisms, and finally to the procedures of error tolerance in sequence analysis. The
installation of the three parts of this library, and the updating of one of them
independently from the others two, is not go without difficulties, in particular for non-
specialists in computer science.

In order to remove these difficulties of installation and maintenance [13], we propose
an extension of the PSE PowerTasks towards a distributed problem solving
environment (DPSE). Thanks to this distributed version of PowerTasks, the sites
using this DPSE, on the one hand, become customers of competences of others sites
and, on the other hand, carry out the modules and library programs. In this way, each
site is server of its own competencies, ensures the maintenance of the modules and
libraries which are under its control, gives total or partial access to them, and allows
other sites to use its specialized software and hardware with its own licenses of use.
The distribution of domain and methodological knowledge bases across several sites
presents many advantages and provides a solution to the problems mentioned in the
preceding paragraph. In section 3, we will present the architectural choices of the
DPSE PowerTasks, and particularly the technological alternatives that have guided us
in this realization (cf. sections 3.1 and 3.2). The development of such a distributed
architecture required an extension of the tasks model (cf. section 2), in the sense that
new attributes were introduced and various communication protocols added (cf.
section 4). Lastly, we present a way to adapt solution strategies allowing themselves
to use tasks developed later in the distributed environment (cf. section 5).

2 Expressing Methodological Knowledge

In order to allow a representation of knowledge with a high level of abstraction [4], to
give an easy access to this knowledge and to facilitate its maintenance, we chose to
represent knowledge by means of object-oriented models. This choice makes it
possible to describe domain knowledge and methodological knowledge in a similar
way.
The knowledge representation within the PowerTasks environment is realized out
using two different types of entities:
o the domain description is expressed in terms of classes and instances; (cf. Fig. 2)
e the solution strategies are built over programs libraries using tasks in order to allow
a suitable use of those.
As defined in section 1, a task associates the description of a problem and its solving
strategy. This strategy is represented, in our task model, by means of two graphs
representing the specialization or decomposition of a task into more elementary
subtasks. At the lower level, the description of an elementary problem is reduced to a
task and its solving strategy to a call for the execution of a library program. The PSE
methodological knowledge base thus consists in tasks hierarchies. They are
constructed in declarative way using a graphic editor, with a explicit links of
specialization and decomposition between tasks and sub-tasks.

Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation 247

<pge-hio- object>

-<pge-bio—protein> =

<pge-bio-mobile=
<pge-bio-nucleic- cormposires < <pge-bio- regulonz-

-<pge-bis- ranseription-unit>

<pgo-bio-]
<pge-bio- object> -<pge-bin-nucleic- sigasl> < <pge-bia-]

-<pge-bio-nucleic>

<pge-bio
<pgc-hio-genex <pge-bio- rucleic- siraple>
- al — m o+ <Pge-bis-gene—ms
name |<pgcfblofgene> < N P . !,1]
7

slots —_— =
___slots__|[compose Instance of <list-slot= |
components /
- name | |<pyr-seg-bio-composition: role.seq-obje |~

1 1 initiunctia ||#<<funclmn>llst c:#pefBBaabe #p00117B;
superclasse. | | <pgc-hio-nucleic-simple= e II
position IIS

{ ! reader II#<raader—generlc—funclmn for slot <pgr-
subclasses | | <pgc-hio-gene-mas
writer | |#=writer- generic-function for slot <pgr-si

<pye-bio-gene- protein=
writefeatu. | | s(<class-1ypa-faatures checker-functi

! i read-featur | | @#s(<indirect-physical-read-feature=])
slot-method Il
o allocation Ilinstance |
| =] 1 identity-fu I |#<<funminn> eq c#pefBa00d0 #p001163: |
dynamicfﬂa.l |t

A 1= fnctian & snAnRnEAAn]

=1]

|

i |

Fig. 2. In ImaGene, the domain knowledge base contains biological objects described by means
of a hierarchy of classes. The editor at the left allows the user to visualize the class "gene" and
the editor at the right-hand side allows the user to visualize the attribute "sequence"
representing the DNA sequence associated with this gene. For a given instance of a gene, the
values of the attributes are specified. In particular, the sequence is explicitly described by
means of an alphabet of 4 symbols (A, T, G, C).

We can distinguish two categories of tasks: complex tasks which break up into sub-
tasks and elementary tasks which refer to a program of library. Complex tasks allow
users to approach problems via their strategies, i.e. specialization, sequence or
iteration of sub-tasks (cf. Fig. 3). On the opposite, elementary tasks play the role of
"black box". Their role is limited to encapsulating a library program and providing
access to its functionality. An elementary task thus contains the most powerful up-to-
date version of the encapsulated program.

248 T. Parmentier and D. Ziébelin

[.
Task Domain
Inputs knowledge
/T‘ask

Outputs

Methodological
knowledge base

Software

Librar
_—— =
) = T O o
T = @@@@@ @@‘ =

g O

Fig. 3. Detailed description of links between the three main components of PowerTasks
(methodological knowledge, domain knowledge and programs). For example, during a
resolution based on the task T1, the T1 solution process uses inputs provided by the domain
knowledge base. T1 can be specialized into two sub-tasks. If one of these subtasks T2 is
selected, inputs necessary to the execution of T2 are transmitted to T2 via T1; T2 breaks up into
two other tasks: an elementary task T4, which encapsulates a program and a complex task T3
which can be further specialized.

il
spoc-find - starts < 0 —— hpat-multi-scan
hampat - find - dna-pattern II<
1 —— hpat-multi-scan
dlog-pat
spoc-find- stops < 0 —— hpat-nmulti-scan
hampat -find - dna-pattern II<
1 —— hpat-multi-scan
dlog-select
¥ ~ dlng-pat
1 spoc-cis - strate; spoc—find-rhs
IsP n & spoc-rhs-stgy spoc-rhs - stgy-pattern
hampat -find - dna 7]
K [I

Fig. 4. In this graphic editor, we visualize the result of the execution of the "spoc-cds-stategy"”
which is a strategy included in ImaGene. "spoc-cds-stategy" allows the user to identify
interesting patterns on genome sequences starting from patterns supplied by users. The task
"spoc-cds-stategy" is broken up into three tasks "spoc-find-starts, spoc-find-stop, spoc-find-
rbs", and these sub-tasks are decomposed into loops on lists ("List"), sequences or
specialization ("C").

The internal task representation (cf. Fig. 5) is a class made up of two sets of attributes
which describe:

Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation 249

— the problem by means of the data manipulated and the expected results. Each data
element or result corresponds to an attribute, whose type can be simple (real,
integer, chain...) or refer to a class of the knowledge base;

— the solution strategy by means of sub-tasks (cf. Fig. 4). A task is associated with a
decomposition and/or specialization. Decomposition uses a list of sub-tasks and
operators (sequence, choice, iteration) which will be interpreted during the solution
process. Specialization consists in specifying inputs and the task application
conditions in order to particularize the solving strategy according to these
conditions.

(defctlgoal spoc-rbs-stgy (<ctl-tasks>)
context: ((lst-adr-seq set-of: <address>)
(sym-mode type: <symbols>
domain: (’pattern ’‘consensus)))
goal-state: ((cons-parm type: <lists)
(1st-rbs set-of: <list>)))

Fig. 5. Code of the task spoc-cds-stgy (from ImaGene). The attribute "context" contains task
inputs, "goal state" outputs. This task will solve thanks to a specialization, it is thus defined as a
goal (defctlgoal).

During the problem resolution process, PowerTasks inferences engine chooses the
solving strategy best adapted to the context. In order to achieve this, task execution is
carried out two phases:

— the specialization phase uses a mechanism which classifies a task according to its
data and to its conditions describing the context. This classification makes it
possible to select the sub-task that suits best to the characteristics of the current
problem;

— the decomposition phase uses choice, sequence or iteration operators. This makes it
possible to decompose a task into simpler sub-tasks.

The alternation of these two phases (specialization and decomposition) results in an

opportunistic resolution approach since the sequence of tasks is chosen only during

execution [14] according to problem characteristics. For each resolution, the system

selects the most suitable strategy. (cf. Fig. 6)

The task model of PowerTasks has the advantage of allowing a declarative expression

of the problem solving strategies [10]. This characteristic differentiates it from the

approaches adopted in the knowledge acquisition domain [5] [8], and is closely
related to the way tasks are used in program supervision [7] [9] [23] [16]. This
knowledge representation by means of objects and tasks is based upon several tasks
models and PSEs [3] [19] [24] developed within the Sherpa project in the last five
years. It gave rise to a number of collaborations for programs supervision in several
domains like data analysis [2], signal processing and genomic sequences analysis
[15].

250 T. Parmentier and D. Ziébelin

(O specialisation task @ Elementary task 1= Inputs

E ESEQUE“CE ghemmm —»0 Outputs

Fig. 6. problem solving strategy built above a specialization. The inference engine will start by
specializing the problem according to its characteristics. Then, it will alternate between
specialization and decomposition phases until it reaches the appropriates elementary tasks
which are executed...

3 Distributed Environment

The PSE make it possible to use specialized libraries in an optimal way. The system
allows the user to develop various strategies based on several distinct domains,
creating in this way a list of problem solving strategies. For ImaGene, the application
of PowerTask to the problem of DNA sequence annotation, a lot of strategies have
been developed and integrated into the environment. However, their maintenance
remains a problem because each strategy can be modified to take into account new
discoveries like of course annotation of new genes, i.e. update of databases; but also
some modifications more important. On the other hand, the installation of libraries
themselves is a demanding problem, both in time and competence. These libraries
require in addition resources which are not always available, like special compilers or
expensive hardware configurations. In addition, the sites which use PowerTasks
create methodological knowledge bases and therefore develop a private competence
which could be put at the disposal of the community. We have thus extended the
environment so as to allow a distributed use of methodological knowledge bases and
specialized libraries. This choice enables one to reduce the costs of installation and
maintenance of libraries to a minimum: only one server site is responsible for each
strategy. We thus provide access to these libraries for sites having insufficient
hardware or software configurations and propose using distant knowledge bases to
client sites.

Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation 251

The options chosen for the distribution of PowerTask can be separated into two
points: on the one hand the network configuration and on the other hand the code
mobility. These choices were made to solve the different problems expressed above.

3.1 Network Configuration

In biology like in several other experimental domains, research is carried out in
different laboratories: each one working on a specific part of a global problem and
proposing solutions based on its own speciality. Thus the network configuration most
adapted to this collaborative way of working is made up of several server sites
providing their own competencies. Each site maintains the libraries which are local
for him, and the strategies of resolution which it created. The DPSE allows the code
of each module to remain in its original environment with specialized
software/hardware and required databases or knowledge bases. This configuration
avoids rewriting some code, having to upgrade every strategy or library coming from
a distinct domain, and problems of software/hardware compatibility. This choice of
distributed architecture thus authorizes the coexistence of different hardware and
software configurations.

PowerTasks

User Interface Inferences Engine

Client Module

,l w
7 Network
,// \\A
Network Server Module
7
/
/, @
Local bases ’/'
=y
/d o o
Directory a N
Site A @@
» Task 1 o
» Task 2
» Task 3 = 5
Site B o
» Task 1
=]
» Task 5 =l
Site C oo
» Task 4

Fig. 7. Communications between elements of the DPSE. Network communications are
indicated by arrows in dotted line. PowerTasks is localized at each user site. There is a server
module at each site containing public tasks. This server also provide access to programs
encapsulated in elementary public tasks.

Further, it allows the availability of all solution strategies whatever their localizations.
Each server site thus contributes, according to its competence field, to design a single
methodological knowledge base, multi localized. To do that, it develops single or
multi-localized strategies and allows other sites to access these strategies while

252 T. Parmentier and D. Ziébelin

making them public. Just as the WWW makes it possible to see a multitude of distant
documents like a single hyper-document, the goal here is to see a multitude of
strategies developed and maintained at various sites as constituting a single
methodological base.

Accessing distant methodological knowledge bases is allowed by server modules. At
the opposite, using local methodological knowledge bases remains directly controlled
by PowerTasks (cf. Fig. 7).

3.2 Code Mobility

Few years ago, Java proposed a new approach towards compilation and distributed
architectures. The code is semi-compiled into byte code and this byte code is then
executed on each hardware configuration thanks to the Java Virtual Machine. Our
vision of the distribution of PowerTasks has been nearly the same: the methodological
knowledge, i.e. the tasks, are similar to the byte code in that they are valid in each
architecture (comprising PowerTasks). Tasks can be easily transferred through
networks from server sites to client sites and then be used to solve problems. The
main difference comes from the execution of library modules used to solve
elementary tasks: they are executed at the server site. Thus the solution with respect to
code mobility adopted in PowerTasks is mixed.

Using distant software library code can be done in three different ways:

e the code is untransportable due to hardware or software incompatibility of
environments. This case is the most frequent because a lot of libraries for scientific
programming are in Fortran or C. Then executions are launched at the server site
and results transferred to client sites as in the case of RPC (Remote Procedure
Call);

e the code can migrate through the network and be used on a distant machine
(mobile). In this case, the client can transfer the selected code and then execute it
locally. This solution allows a significant number of simultaneous accesses,
without slowing down servers responses. It is the case of a language like Java;

e the code is available for several hardware configuration. In this case, server sites
contain different versions of the same modules depending on the hardware
configuration; mobility policy consists in transferring to client sites a version
adequate to its configuration. Executions are then, also, local. These possibilities
are offered, for example, by ActiveX or llog products.

In terms of the above classification, code mobility in the DPSE PowerTasks depends

on its nature (task/program/data):

e tasks code is mobile: tasks language is interpreted. On the other hand, an
interpreter module is included in PowerTasks allowing each client site to
understand and use distant tasks;

e on the other hand, software library modules used to solve elementary tasks are
generally executed at their server site;

e data used or produced by external programs or library modules are moved from
client to server before execution and from server to client after execution. Each site
keeps its own data it uses to work on, i.e. DNA sequences in the biological
application.

Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation 253

Tasks transfer makes it possible to solve problems locally thanks to classification
and/or decomposition and thus allows one to preserve user interactions present in the
single-site model. Users can thus intervene interactively during a resolution. This
approach gives the impression to users that all problem solving resources (i.e.,
methodological knowledge, binaries, databases,...) are available on their own
computers, but binaries, databases and specific resources are only virtual since they
remain on their original site.

All these choices affect the task model and imply some modifications, in order to:
define accessible competencies localization,

allow interaction between distributed tasks,

give access to all the tasks in an identical way, independently of their localization,
propose new techniques to deal with strategy actualization,

check coherence between both domain and methodological knowledge bases.
These various points involve a modification of the task model (cf. section 4), the
definition of mechanisms concerning task use and modification, the creation of new
entities facilitating the adaptability of strategies (cf. section 4.1).

4 Distributed Tasks Model

The tasks model described in section 2, supports well the distribution (cf. Fig. 8). The
distribution has only a minor effect on the whole system, since the tasks are
transferred. Once the answers are returned, resolution proceeds locally until calls to
binaries or modules. Nevertheless, the evolution towards a distributed tasks language
led us, on the one hand, to add a status attribute in order to characterize distant
authorization access, and, on the other hand, to propose protocols to manage tasks
versions.

4.1 Tasks Status and Availability

To be accessed and used from a distant site, a task must be declared as being public.
This publication generates a submission process to a directory which centralizes each
available task (i.e. public). Another alternative to this publication exists. It consists in
providing the client only the task functionality without visualization of the strategy,
this kind of tasks is declared as blind. This status is used in two distinct cases: to
protect the methodological knowledge because it contains secret into, or to hide this
knowledge because it is too complex and without any interest for the client (e.g. a low
level of tasks decomposition due to the software library configuration). In ImaGene,
some annotation methods come from private laboratories which just give permission
to execute them without explaining their working, e.g. the use of the method based on
nucleotide appearance frequency is restricted to execution.

254 T. Parmentier and D. Ziébelin

Server site of the task T1

Fig. 8. Example of strategy localization. Strategy T1 is based upon strategies of site A, B and
C. For example, during a resolution, task T1 specializes in T2, next in T3; T3 specialization is
done towards a task of the site C (T5). This task T5 breaks up into three sub-tasks whose first
(T6) specializes in T10, an elementary task (in gray) which is located at the first site.

Any site can publish a task to make it available to others. Doing this, it becomes
server of the task with respect to the others sites, the strategy and the different
resources used to solve this task (databases, binaries and calculation time). A site
publishing or proposing public tasks remains client for distant tasks already used.
Each site is thus potentially client and server. A site can even be server of a strategy
whose elementary tasks are distant, it is then only server of tasks hierarchies. On the
opposite, it is possible that the methodological base of a site is empty if the users just
use public and blind tasks. The consequences of this status is that methodological
knowledge bases of other sites are not seen in full, but only through their public tasks,
sub-tasks of public tasks and blind tasks.

4.2 Publication Protocol

To publish a task, a site must send to a directory (i) the name of the task, (ii) its
signature (description of the inputs and outputs), (iii) its functional description and
(iv) a number of version (identification of the last update). This publication is
validated by the directory which checks that there is no name conflict. Setting a public
status to a task leads to setting this status to all its sub-tasks except if they are already
in a blind status. On the opposite, setting a blind status does not modify the status of
the subtasks.

4.3 Modification Protocol

Modifications on public/blind tasks are possible. They can be more or less complex
depending on their type (cf. Fig. 9). These modifications may concern the signature

Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation 255

(input/output description), the solution strategy or the encapsulated module used to
solve the elementary task.

E. S E S
E- S—
E: -S>
=
E S
=
°

Fig. 9. Different kinds of modification: signature, strategy and programs.

Each of these modifications is briefly described in the paragraphs below.

The task whose signature is changed must take another name. Indeed, there cannot
be two different tasks having the same name and distinct signatures at the same
site. This constraint is justified by the fact that the change of signature of a task,
after its publication, would involve inconsistencies in the strategies using this task,
making them thus unusable. Each server site publishing a task must ensure its
persistence.

The modification of a strategy which does not affect the signature of a public/blind
task is considered as a change of version of this task. The strategies based on this
task can use the old version or the new one. Forward planning, the old version will
be replaced by the new one. But, making the change immediate would perturb
users. Indeed, solving strategies of tasks act upon the way users apprehend the
domain in question and an automatic change would disturb them even if the
functionality of the new strategy is similar to the previous one.

On the opposite, the modification of an elementary task solution resources is
automatic. Indeed, the update of the binary/module encapsulated in an elementary
task is totally transparent for users. The only difference is that the version number
in the directory is incremented in order to be able to inform users of possible
causes of an problem, if one occurs.

4.4 Use Protocol

Client sites can consult the directory and use any of the described tasks. Public task
use is similar to local task use: once the strategy has been transferred, the resolutions
based on it are local, the only difference being that elementary tasks are solved at the
server site (cf. Fig. 10). Blind task use is slightly different since they are not
decomposed during the resolution. Thus, users can not make any difference between

256 T. Parmentier and D. Ziébelin

blind tasks and elementary tasks. But inside the system, exactly the same process of
classification/decomposition phases is carried out.

Directory

Client

{

. request for retrieving descriptions of tasks. D

. request reply: sending of task descriptions.

. request for retrieving task code from server.

. request reply: transfer of the strategy code.

. after elementary tasks selection, request for
program execution and transfer of its inputs. Server

6. request reply: transfer of the outputs

obtained.

DB W=

Fig. 10. Description of the communications during a resolution employing a distant task.

5 Perspectives: Adaptability of Solving Strategies

The new opportunities offered by the distribution of PowerTasks have highlighted an
important problem: task solution strategy are fixed. There is no dynamic process to
include new available tasks. This problem can be illustrated by means of a simple
example in DNA sequence annotation. Suppose that a laboratory has a task consisting
in launching several annotation methods one after another in order to compare results
and find sequencing errors. Later on, a laboratory proposes a very interesting method
through a public task. The first laboratory is not informed that a new method is
available and it keeps using its old task. This is due to the fact that all the tasks
available to solve a problem are explicitly declared as sub-tasks of the task containing
the problem. To solve this problem, we propose to generate a request able to find in
the directory the tasks that could solve the current task [21] [1]. This request would be
based on the task functionality and its data signature. In order to include this request,
the inference engine of PowerTasks will be modified: the request will be executed
before specialization in order to find new possibilities to solve a task. The tasks
obtained will be proposed to the user and eventually included in the task solving
strategy.

Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation 257
6 Conclusion

PowerTasks is a generic problem solving system designed around an object model

developed by Ilog software company and a task model resulting from our preceding

experiments. It makes available through a single user interface:

— the description of tasks in a suitable language allowing the expression of a problem
solving strategy,

— to control the execution of tasks, to control and set parameters to programs
encapsulated in elementary tasks,

— to start the execution of these programs,

— to describe problems and to visualize resolution results,

— to intervene directly during the solving process by changing a value, adding a
parameter or choosing a solving strategy.

The PSEs developed on top of PowerTasks include all these functionalities in a

homogeneous environment. This one thus allows users a simple use of software

libraries and an access to methodological knowledge without requiring them to be an

expert in the different techniques used.

The PSEs permit experts to work on their specific domain while using knowledge

developed by others. In addition, PowerTasks authorizes the use of distant problem

solving strategies or programs. This contribution facilitates the diffusion of

competences. Thus users of various domains can work in partnership through

networks. This possibility represents a major asset in the resolution of problems, since

it enables each task to be based on the last strategy developed by experts of the

concerned domain and each elementary task to encapsulate the most recent and high-

performing program. The strategies are written in a mobile code and are interpreted

locally; this allows users to preserve the same interactions with the system as in a not

distributed environment.

As the distributed model makes it possible to have several strategies solving the same

problem, we are introducing rationality criteria into the choice of the tasks. These

choices will not only be based on the input characteristics, but also on the

geographical localization of the task, its execution time [11], and the quality of the

solutions provided. Moreover, the possibility of launching parts of the resolution on a

distant site allows one to launch them in parallel [6] [12]. Distributed problem solving

environments thus generate new opportunities which are still to be investigated.

References

1. Bisson, G., Botraud, J-C.: A proposal to improve information retrieval on WEB sites,
http://nangaparba.inrialpes.fr/, 1998.

2. Chevenet F., Jean-Marie, F., Willamowski, J.: SLOT: a cooperative problem-solving
environment in explanatory data analysis. Proceedings 49th session of the International
Statistical Institute, pp. 255-256, Firenza (IT), September 1993.

3. Chaillot M.: Une architecture de contrdle réactif pour la résolution coopérative de
problemes, PH.D Thesis, INPG, Grenoble (Fr), 1993.

4. Chandrasekaran B.: Generic tasks in knowledge based reasoning high level building blocks
for expert system design, IEEE Expert, 1986.

258 T. Parmentier and D. Ziébelin

5. Chandrasakaran, B., Johnson, T.R., Smith, J.W.: Task-structure analysis for knowledge
modelling, Communication of the ACM, 35(9), pp. 124-137, 1992.

6. Charpillet F., Boyer, A.: Progress : un modele d'agent pour la conception de systeémes multi-
agents temps réel, Journées Francophones IA distribuée et Systémes Multi-agents, 1997.

7. Clément V.: Raisonnements cognitifs appliqués au pilotage d'algorithmes de traitement
d'images, PH.D Thesis, Université de Nice Sophia-Antipolis, Nice (Fr), 1990.

8. Delouis L.: LISA, un langage réflexif pour la modélisation du contrdle dans les systemes a
bases de connaissances. Application a la planification de réseaux électriques, PH.D Thesis,
Université de Paris Sud centre d'Orsay, Paris (Fr), 1993.

9. Demazeau Y., Ferber, J.: Actes de la lere Journée Nationale sur les Systemes Multi-Agents,
ed. PRC-GDR IA MARCIA CRIN, France, LIFIA Publication, Grenoble, France, December
1992.

10.Erickson et al: Task modeling with reusable problem solving method, Al 2(79), p. 293-326,
1995.

11.Fink E., Statistical Selection Among Problem-Solving Methods, Research Report CMU-CS-
97-101, 1997

12.Fujita S., V.R. Lesser, Centralized Task Distribution in the Presence of Uncertainly and
Time Deadlines, Proceeding of ICAMS, Japan, 1996.

13.Gallopoulos E. et al.: Future Research Directions In Problem Solving Environments For
computational Science, CSRD Report, N°1259, 1992.

14.KbuP'95, First international workshop on Knowledge-Based systems for the (re) Use of
Program Libraries, INRIA, Sofia Antipolis, France, 1995.

15.Médigue, C., Vermat, T., Bisson, G., Viari, A., Danchin, A.: Cooperative computer system
for genome sequence analysis, Proceedings of 3rd ISMB, Cambridge, United Kingdom,
pp249-258, 1995.

16.Moszer 1., Kunst, F., Dachin, A.: The European Bacillus subtilis genome sequencing project
: current status and accessibility of the data from a new World Wide Web site, Microbiology
142, p. 261-268, 1996.

17.Rechenmann F.: Knowledge bases and computational molecular biology, In Nicolaas Mars
(ed.), Towards very large knowledge bases (proceedings 2nd international conference on
building and sharing very large-scale knowledge bases (KBKS), Enschede (NL), IOS press,
Amsterdam, Pays Bas, pp. 7-12, 1995

18.Rice J. R., R. F. Boisvert, From Scientific Software Libraries to Problem-Solving
Environnements ", IEEE Computational Science & Engineering, pp. 44-53, 1996.

19.Rousseau B., Vers un environnement de résolution de problemes en biométrie, PH.D Thesis,
Université C. Bernard, Lyon, France, 1988.

20.Schreider, A.Th., Wielinga, B.J., de Hoog, R., Akkermans, J. M., Van de Velde, W.:
CommonKADS: A Comprehensive Methodology for Knowledge Based Systems
Development, IEEE Expert, 9(6), pp. 28-37, 1994.

21.Thonnat, M., Clément, V., Van den Elst, J.: Supervision of perception tasks for autonomous
systems: the OCAPI approach. J. of Information Science and Technology, Vol. 3(2), pp.
140-162, 1994.

22.Thonnat, M., Moisan, S.: Knowledge-based systems for program supervision, KbuP'95, First
international workshop on Knowledge-Based systems for the (re) Use of Program Libraries,
Sofia Antipolis, France, 1995.

23.Van Den Elst, J., Modélisation de connaissances pour le pilotage de programmes de
traitement d'images, Ph.D. Thesis, Université de Nice Sophia Antipolis, Nice, France, 1996.

24 Willamowski J.: Modélisation de taches pour la résolution de problémes en coopération
systeme-utilisateur, Ph.D. Thesis, Université Joseph Fourier, Grenoble, France, 1994.

Knowledge Acquisition from Multiple Experts
Based on Semantics of Concepts

Seppo Puuronen!, Vagan Terziyan?

! University of Jyviskyld, P.O.Box 35, FIN-40351 Jyviskyli, Finland
sepi@jytko.jyu.fi
2 Kharkov State Technical University of Radioelectronics, 14 Lenin Avenue,
310166 Kharkov, Ukraine
vagan@kture.cit-ua.net

Abstract. This paper presents one approach to acquire knowledge from multi-
ple experts. The experts are grouped into a multilevel hierarchical structure, ac-
cording to the type of knowledge acquired. The first level consists of experts
who have knowledge about the basic objects and their relationships. The sec-
ond level of experts includes those who have knowledge about the relationships
of the experts at the first level and each higher level accordingly. We show how
to derive the most supported opinion among the experts at each level. This is
used to order the experts into categories of their competence defined as the
support they get from their colleagues.

1 Introduction

When an expert system is being built, knowledge is usually acquired from multiple
knowledge sources. This knowledge usually includes inconsistencies, incompleteness,
and incorrectness. These difficulties are often solved either by selecting some part of
knowledge as the only one to be saved or by adding up some extra knowledge into
the knowledge base.

Distributed Al can be exploited in knowledge acquisition to modell cooperation
and conflicts of experts, the knowledge acquisition process, and especially coopera-
tion during knowledge acquisition from a group of experts. Knowledge acquisition
from several experts is an extremely difficult task. Turban and Tan [24] review the
difficulties as well as the benefits involved. Research has been carried on about
knowledge acquisition from multiple experts [9] as constructive modelling and elici-
tation [14], models of cognitive agents [10] for guiding knowledge acquisition [7],
management and comparison of multiple viewpoints [20, 3], detection and solving of
conflicts among several expertise models [16], comparison of knowledge graphs [6],
generation of consensual rules among experts [18], architecture of a cognitive agent
[7], extension of CommonKADS [25, 5] for multi-expertise [8] and for multi-agent
systems [3], and cooperative knowledge evolution [22]. The type of cooperation
depends on the organization of the agents where horizontal and vertical organization
structures can be distinguished. In a non hierarchical society, cooperation is based on

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 259-273, 1999.
© Springer-Verlag Berlin Heidelberg 1999

260 S.Puuronen and V. Terziyan

sharing of tasks and results, while in a hierarchical society, commands, bids, and
competition is relied on [19].

Gappa and Puppe [11] discuss an application of the construction of knowledge-
based systems. The task description was prepared and the knowledge sources were
made available via the World Wide Web. The common knowledge material consisted
of the transcripts of various reports and interviews of domain experts, partly formal-
ised relational knowledge, pictures of the domain objects, and a database containing
descriptions of the domain objects’ samples. The essential knowledge engineering
problem how to deal with conflicting knowledge from the experts was discussed. The
authors tried to resolve the differences based on the consistency and frequency of the
different expert opinions to result one authoritative knowledge base. Another ap-
proach would be to build a special knowledge base for each expert and then to inte-
grate the solutions they produce for example by a majority vote or by a weighted
majority vote.

The area of eliciting expertise from one or more experts in order to construct a sin-
gle knowledge base is still under great research interest. Taylor et al [23] argue that
the overlapping knowledge obtained from multiple knowledge sources cannot be
described in a context or even process independent way. They claim that even when
there have been inference engines that were subsequently applied to related domains,
the sets of rules have been different generally. According to Mak et al [15] the other
researchers have found that if more than one expert are available, then one must ei-
ther select the opinion of the best expert or pool the experts’ judgements. It is as-
sumed that when experts’ judgements are pooled, collectively they offer sufficient
cues leading to the building of a comprehensive theory. Medsker et al [17] distinguish
three practical strategies for knowledge acquisition: 1) use only the opinion of one
expert, 2) collect the opinions of several experts, but use only one at a time, and 3)
integrate the opinions of several experts. It was assumed that the acquired knowledge
has more validity if it is obtained as a consensus of several experts. Mak et al [15]
discuss about five knowledge classification techniques and make experimental
evaluation of them. The elicited knowledge was aggregated using classical statistical
methods, the ID3 pattern classification method, the k-NN technique, and neural net-
works. They found that the neural net method outperformed the other methods in
robustness and predictive accuracy.

Arens et al [1] have described an approach which exploits the semantic model of a
problem domain to integrate the information from various knowledge sources. In the
SIMS project they have created a complete semantic model for data retrieval and
integration from multiple dispersed knowledge sources. Roos [21] has described a
logic for reasoning with inconsistent knowledge coming from different and not fully
reliable knowledge sources. Inconsistency may be resolved by considering the reli-
ability of the knowledge sources used. Since the relative probability is conditional on
inconsistencies, information from one reliable source cannot be overruled by infor-
mation from many unreliable knowledge sources. Goto et al [12] discuss the three
level structure of information distribution. Their levels are brains, gatekeepers, and
end users. A brain has expertise in a specific area and a gatekeeper has geeneral in-
formation but not special expertise of any area. Each brain recognizes the other brains

Knowledge Acquisition from Multiple Experts Based on Semantics of Concepts 261

and they create the structure of knowledge by interacting with each other. The neces-
sity to several brains appears only if the area of knowledge is too wide to be covered
by a single brain. The gatekeepers may be interpreted as an intelligent interface be-
tween the brains and the end users. A gatekeeper knows to which brain or group of
brains to address user’s question and so he has in multi brain human society a key
role.

Current books in formal semantics widely use approaches based on fundamental
conceptual research in philosophy and cognitive psychology. For example Larsen and
Segal [13] study a particular human cognitive competence governing the meanings of
words and phrases. The authors argue that speakers have unconscious knowledge of
the semantic rules of their language. The knowledge of meanings is both in the se-
mantics of domain attributes, i.e. properties and relations, and in learning technology
how to derive the semantics of inconsistent and incomplete meanings. A knowledge
base is built upon the definition of a structured set of concepts, derived, for a large
part, by the knowledge engineer from text analyses of the transcriptions of discus-
sions with an expert or written documents. The focus of knowledge acquisition is the
conceptual organisation of knowledge areas from the study of terms representing
concepts in texts as it was mentioned in a methodological issue of Aussenac [2].

One goal of our research is to develop formalisms for representation and reasoning
with knowledge obtained from several knowledge sources. In this paper we present
one formalism that is based on a matrix representation of semantic networks. The
knowledge structure has several levels and the upper levels include knowledge about
the relationships of the experts and the domain objects, too.

We use our formalism to handle three types of problems:

1) How to derive the most supported knowledge about the basic domain objects
and their relations among the experts? This gives a user a possibility to use
“consensus” knowledge during reasoning process.

2) How to order the experts according to their supported competence concerning
each domain relation and each domain object? This order helps a user to select the
most “competent” expert of each domain relation and object. We name this as deriv-
ing the horizontal order of the experts according to their competences.

3) How to use the opinions of the experts about the relations between the experts
and the domain objects and between each other to group the experts into different
levels? This helps a user both to evaluate the subjectivity of each expert and to select
an expert whose knowledge he wants to be used during the reasoning process. We
name this as deriving the multilevel vertical structure of the experts.

The rest of the paper is organised as follows. Section 2 introduces the basic con-
cepts with an example that is used across the whole paper. Section 3 presents how to
derive the most supported knowledge about the objects and their relations from the
opinions of the experts. In Section 4 we introduce our method to derive the horizontal
order of the experts according to their supported competence concerning each piece
of knowledge. In section 5 we present the derivation of the vertical structure of the
experts. Section 6 concludes with a few future research topics.

262 S.Puuronen and V. Terziyan
2 Basic concepts

In this chapter, we introduce the basic concepts and the notation used thorought the
paper. We introduce also the example used across the whole paper.

In this paper we interpret knowledge to be composed of information about the ob-
jects, and their properties and relations which we present as a set of semantic predi-
cates.

Each object has an unique identifier (for an object we use the notation A with an
index) and zero, one, or more properties.

A Relation has four attributes: the two objects between which the relation holds,
the name of the relation (we use the notation L with an index), and a source from
which the information about this relation was acquired (we use notation Ex with an
index). The name of the relation indicates the semantic contents of the relation. For
example, the fact “Mary told that Bill contacted his friend Tom by phone”, is pre-
sented using the two objects <Bill> and <Tom> , the two relations defined by the
concepts <to be friend> and <to contact by phone>, and the source <Mary>.

A property describes an object separately from the other objects. It may be inter-
preted as a special relation where the two objects between which the relation holds
are the same object. A concept in such relation is the name of property. For example,
the fact: “Bill is forty years old black man”, is described using one object <Bill> with
three properties: <to be male>, <to be black>, <to be 40 years old>.

We will index objects using s, ¢t = 1,...,n (n objects), concepts - using i, j = 1,...,r (r
concepts), and sources using k, [= 1,...,m (m sources) with notation of sources.

Semantic predicate describes a piece of knowledge (relation or property) by ex-
pression: P(Ag,L;, A;,Ex;) =true, if there is knowledge, acquired from the
knowledge source Ex,, that a relation with concept L, holds between objects A and
A, and P(A;,L;,A;,Ex;) = false, if there is knowledge acquired from source
Ex, that a relation with concept L, does not hold between objects A_and A,

For example knowledge about the statement: “Pete says that Bill hates poor
Mary” can be formally represented as follows: Ex, : <Pete> is the source of knowl-
edge; A, : <Bill> and A,: <Mary> are the objects; L,: <to hate>, L,: <to be poor> are
the concepts; P(A;,L;, Ay, Ex))—< Bill hates Mary> is the relation;
P(A,,L,, A, ,Ex))-< Mary is poor> is the property.

We present the semantics of certain concept L, acquired from the knowledge

source Ex, as a matrix (Ll-k) (n is number of objects), where:

nxn

1, if P(A;,L;, A, Exy) = true;
(LF)g s =4=1, if P(Ay, L, Ay Exp)= false;
0, otherwise.
Let us consider, as an example, some of the characters and their relationships in

the film “Santa-Barbara”. The characters and concepts to be considered are presented
in Figure 1.

Knowledge Acquisition from Multiple Experts Based on Semantics of Concepts

Objects and their ids.

Concepts and their ids.

<Mejson> - A,

<to respect> - L,

<Iden>- A,

<to help>- L,

<Julia> - A,

<to love> - L,

<Victoria> - A,

<to envy>-L,

Fig. 1. Objects and concepts in “Santa-Barbara” example

263

Let us suppose that three spectators express their opinions about relationships in
this domain in the following way:
Spectator 1: “Mejson loves, respects and envies Victoria. Iden respects, helps and
envies Mejson. Iden envies Victoria. Julia loves Mejson, and she helps Victoria and
Iden. Victoria loves and envies Mejson and she respects Julia.”
Spectator 2: “Mejson envies Iden, he respects Iden and Victoria and loves Julia.
Iden helps Mejson and Julia and envies Victoria. Julia helps Iden. Victoria loves

Mejson, respects Julia, and envies Iden.”

Spectator 3: “Mejson loves Julia. Iden respects Mejson and Victoria and she helps
Julia. Julia helps Iden, and she helps, loves and envies Victoria. Victoria respects
Mejson and Iden and envies Iden.”

The knowledge expressed by the semantic networks in Figure 2 a-c.

o EXPEI?T]
MEJSON L2 IDEN
A-| LA A2
Ly
Lo
LalL
34 L4L1L3 Ly

VICTORIA
Aq

Lo —
JULIA
L] A3

c) EXPERT 3

MEJSON
A
L3

Ly

Ly

Ly

Lo

by EXPERT 2
1
Ly
MEJSON
A Lo
Ly
L3 L Ly
Lg
VICTORIA Ly
Aq
IDEN
A2
1 L2

L3

VICTORIA
Aq

Lg

JULIA
A3

IDEN
A2

Lo L2

JULIA

Fig. 2. Opinions of experts in the example presented by semantic networks

264 S.Puuronen and V. Terziyan
3 Deriving the most supported knowledge

In many cases as, in previous example, each expert interprets domain area by his own
way. Without any co-ordination between experts, it is difficult to acquire useful in-
formation from their opinions. It is usual that information about one domain attribute
is more in the area of expertise of one expert and another attribute is more in the ex-
pertise area of another expert. If one does not have such additional knowledge about
expertise, then he has to select opinion of some of the experts. Another way is to use
those pieces of knowledge that receive most support among all the experts.

In this chapter, we present the way to derive the most supported knowledge and
then we show how to discover knowledge sources that have given the pieces of
knowledge included to the most supported knowledge.

In our example the semantics L’f - Lﬁ of concepts L, - L, according to the knowl-

edge sources k = 1,2,3 is presented in Figure 3.

L' LA A A AL |A[A|A[A L |A A |A|A
Alojojol1fla |o|l1|lo]1]lA |O]O]O]|O
Al1]ojoloflAa |o]loflojo]llAa |[1]O0]O0]1
A lojlojoloflAa |o]lolojo]lAa |O]O]O]|O
Alojo|tr|offla |olof1]jo]lA |[1]1]O0]O
L, [A A A AL A A A AL, |A|A|A|A
A lojlo]Jolofla |o]lolojo]lA |[O]O]O]|O
Alt1t]jojlofloflAa |t]of1]o]lAa |O]O]|T1][oO
Alojt]ol1fla |ol1|lojo]llAa |O]1]O]1
A lojojolofla |o]lolojo]lAa |O]O]O]|O
L', [A A A AL A A A AL, |A |A|A|A
Alojojo|l1fla |o]lofl1]o]lA |[O]O]|]T1]O
AlojojoloflAa |o]loflojo]lAa |O]O]O]|O
A l1]o]olofla |oloflojo]llAa |O]O]|]O]|1
A l1]jojofoffla |t1t]olojo]lAa |O]O]O]|oO
L', [A A A AL A A A AL |A A |A|A,
AlojojJol1flAa |O|l1]O]oO A lo]jo]o]|oO
Al1t]ojlo|l1|lAa |o]ofo]1 A lojo]o]|oO
AlojojoloflAa |Oo]lOofO]oO A lojo]o |1
A, l1]o]oloffla |o|l1]O0]oO A, lo]1]o]oO

Fig. 3. Semantics of concepts in the example

Knowledge Acquisition from Multiple Experts Based on Semantics of Concepts 265

Deriving the most supported semantics of concepts. We build a matrix (CL) by a
following way:

' .
(CL)x = 2L, x 2 (L))
.t Jizk
The formula gives to each element of the CL matrix an integer value that summa-
rises the support that knowledge source gets

among the experts using the concept to de-

scribe the relation. When the formula is applied CL Ex, Ex, Ex,
to the example, we obtain the matrix in Figure L, 3 2 1

4. It shows that expert 1 gets most support L 4 4 4

among experts to the use of concept “to re- L2 1) 1

spect”. It also shows that experts get equal 3

support using the concept “to help”. L, 1 2 1

Fig. 4. Support to use concepts

The most supported knowledge about concepts is derived by selecting only knowl-
edge of most supported knowledge sources. We will use the concept competent and it
is presented by matrix (L,"*"),,:

(Ll.m‘ml’)s’[= sign(Z(Li)f,t)
k
Vk(CL), I’I’I?X(CL)I',I

When the formula is applied to the example, we obtain the matrixes of Figure 5.

L™ | A | A | A | A L™ | A | A | A | A
Al ofo]ol1 Al olo]ol] o
Al 1 To]olo Al 1t o] 1] o
A, lo ool o Al o1 ol 1
A, lolo]1]o A, L oJof]ol o

L™ A A LA A [L™] A [A] A | A
A ool 1]o A lol1]lo]o
Al ofJol o] o Al ofo] o]
A, ool oo A, ool o] o
A, 1ol o] o A, o1l o] o

Fig. 5. The most supported opinion about each concept in the example

266 S.Puuronen and V. Terziyan

These matrixes of Figure 5 together present the most supported knowledge about
concepts that describe domain relations. The semantic network presentation of it is in
Figure 6.

Common opinion

MEJSON
A

VICTORIA L4 JULIA
Ay

Fig. 6. The semantic network presentation of the most supported knowledge

4 Deriving horizontal order of experts

In this chapter we present how to order the experts according to their competence
concerning each relation and object. This ordering is based on the most supported
knowledge among the experts about concepts used to describe of domain relations.
The amount of competence of an expert is measured by the support he receives to his
opinions among experts. This is surely no absolute evaluation of competence and the
result depends on the group of experts selected. In deriving expert’s competence we
firsts derive a numerical value for expert’s competence concerning each possible
relation and then use these values to order the experts according to their competence.
After that, we order the experts according to their competence about objects using
their competence about relations connected to each object.

The numerical value for expert’s competence concerning each possible relation is

derived as (CR),,y,x ,, array using the formula:

-
(CR)g 1k = (L™), wheres, t=1,.,n k=1, .., m.

1,
(L%)y =(L™SP),

Experts are grouped into categories of competence, relation by relation, according
to the corresponding values of the CR-array. This can be described by the algorithm
A:

Knowledge Acquisition from Multiple Experts Based on Semantics of Concepts 267

Step 1: For each pair of objects A and A, (s, t = 1,...n) do step 2.

Step 2: Group the experts Ex,, (k = 1,...,m) into categories CEx_,, (1 = 1,..., n) so that
the experts who have the same highest value of CR ,, (k = 1,...,m) belong to
the first category CEx, ,, the experts who have the same second highest value
of CR,,, (k =1,...,m) belong to the second category CEX_,, and so on until all

experts have assigned into some category.
Step 3: Return the grouping of experts into categories as the result of this algorithm.

In our example above we receive CR-array presented in Figure 7.

Ex, Ex, Ex,
CR |A |A A | A | A |A A A | A | A | A | A
A |0]0]|O0 1 0 1|1 1 0 0 1 0
A | 2]101|0 1 1 0] 1 1 1 0 1 0
A, 10| 1|0 1 0 11070 0 1 0 1
A, |1]0|1 0 1 1| 1]0 0 1 0 0

Fig. 7. CR-array for the example

The categories, obtained with algorithm A, are shown in Figure 8.

First category Second category Third category
CEX Al A2 A3 A4 Al AZ A3 A4 Al A2 A3 A4
Ex,
A B | Bx, [B | BN g | BN g |Ex |00 @ @
’ Ex, | Ex, Ex, ;
Ex,
Ex,
A | Bx B [Ex | 0| 2 o | e o jp 9 o
EX3 2 3 3
Ex, | Ex, | Ex,
A | Ex, | Ex, | Ex, | Ex, | @ |¥ ¥ Ex, | Q| @ Ex,
Ex, | Ex, | Ex,
Ex,
A | BN BB g e | Ex, |Ex | @ o0 @ 2] @
Ex, | Ex, | Ex, Ex ’
3

Fig. 8. The experts categories in the example

We group experts into categories according to their competence about objects us-
ing their categories according to their competence about relations connected to each
object. For each object and expert, we calculate the sum of the numbers of categories,

268 S.Puuronen and V. Terziyan

they are included to, concerning the connected relations. The more competent experts
have smaller sum. This can be described by the algorithm B:

Step 1: For each object A, (s, = 1,...n) do step 2.
Step 2: For each expert Ex,, (k= 1,...,m) do step 3.

Step 3: Calculate sum of the numbers 1 of the categories CEx_,, (t = 1,...,n) where the
expert Ex, belongs to and add up into the sum the numbers 1 of the categories
CEx,, (t = 1,...,n) where the expert Ex, belongs to.

Step 4: Group the experts Ex,, (k = 1,...,m) into categories COEx_, (I = 1,..., n) so that
the experts who have the same smallest value of sum calculated in the step 3
belong to the first category COEXx_, the experts, who have the same second
smallest value of the sum, belong to the second category COEX_,, and so on
until all experts have assigned into some category.

5,17

Step 5: Return the grouping of experts into categories as the result of this algorithm.

In the example above, we receive sum values and categories, that are presented in
Figure 9.

Sum | Ex, | Ex, | Ex, COEx First cate- Second Third
gory category category
A 101912 A, Ex, Ex, Ex,
A 9 12 A, Ex, EX, EX,
A, 11 10 | 10 A, Ex,, Ex, Ex, %)
A, 9 9 12 A, Ex, Ex, Ex, %)

Fig. 9. Sum values and expert categories concerning objects of the example

Results of knowledge attributes’ distribution among experts accordingly to their
competence are presented as a graph in Figure 10.

Graph of eExperr competence
X2

MEJSON IDEN
A Exq Ay

Ex o

EX]
Ex 1| Exo

4

Fig. 10. Graph of horizontal competence of experts in the example

Knowledge Acquisition from Multiple Experts Based on Semantics of Concepts 269
S Multilevel vertical structure of experts

In this chapter we describe how to derive vertical hierarchy of experts. In our ap-
proach we suppose that experts give statements about the other experts (and even
themselves) using the same relations as the basic level. We use the content of these
statements to locate experts (and their statements) in different levels. The experts who
give statements are both the experts who have given basic level knowledge of the
domain area and experts who give only statements about the relations of the other
experts. Figure 11 presents an example of cross-expertise professor-student. Student
has his own opinion (a) about his own level of learning some course of lectures given
by professor. Professor contacting with student forms his opinion (b) about student’s
level. Student has an opinion (c) about quality of lectures. Professor gives his own
appreciation (d) of himself as lecturer. It seems reasonable to take into consideration
all (a-d) opinions to derive resulting opinion concerning student. Experts in such
situation represent multilevel structure of expertise. It is possible that some of the
experts are present at the different levels in the same structure. We can be at one level
of competence when we are evaluating a student and we are certainly at another level

when we discussing the policy of a president.
(professor]

c
b d

—

student

student professor professor student

student

Fig. 11. Vertical hierarchy of competence

We introduce a new relation Exp that can exist between any two experts and it has
the meaning that the first expert in the relation has expressed a statement about the
second expert’s relation with domain objects or himself. When the notion of object is
allowed to represent also an expert then this can be described by formula:

Vi3 i,t(P(Ex;, L;, A, Ex;y) P(A,, L, Ex;, Ex)
VvP(Ex;, L;, Ex;, Ex;)3 P(Ex,, Exp, Ex;, Ex;).

We construct a multilevel structure of experts in the following way. The zero level

0
of the structure, marked D', includes only basic domain objects and their relations.
The first level of the structure includes Exp-relations that are. statements of experts
about the other experts and/or their relations at the zero level D . The next level of the
structure includes Exp-relations that are statements about experts that gave statement
at the previous level and so on. There is a need to prevent infinite formation of levels

270 S.Puuronen and V. Terziyan
in the case when statements form a circular structure. The formation of the upper
levels of the structure can be described by:
Va(,k « 3Y B, A/((4, DK') P(A,, Exp,A,#)E (A, D7) and
Va(@ 3 B A(EYy DAT) P(A, Exp ABA)S <pHOAp q 2)
AConnect(A;, ¢ 1,A,p)» €A, D7),

where Connect is a predicate that defines connection between the objects of different
levels of the structure through circular chain of Exp-relations as:

VN AL D) q(¢ ¥ O2) (A DY) Ad]’Adz""’Adp_Sl(((Ad,
eD"'\ (Ag D'A’) .. (4,

P42

/\(P(A,,Exp,Adl,AlA P(Ad],Exp,Adz,A@l)

ADY %) €(Ay , n D*)

---/\P(Ad,,_Lr, ,Exp, A, AdH 1))3> Connect(A;, p, A, q).
To continue our previous example we assume that the three experts have expressed
their statements about competence of each other in the following way:
P(Ex|, L, Ex;, Ex;)A P(Ex|, L,, Ex,, Ex;) P(EXx|, Ly, Ex,, Exy)
AP(Ex,, L, Ex|, Ex;) P(Ex,,L;, Ex,, Exy) P(Exs, Ls, Ex;, Ex,)
AP(Ex3, Ly, Ex3, Exo,ph P(Ex(, L, Ex|, Exy) P(Ex|, Ly, Ex3, Bx3)
AP(Ex;, L, Ex|, Exyh P(Exs, L, Ex3, Exy) P(Exs, Ly, Exz, Ex;) 1.
Using definition of Exp-relation it is possible to write:
P(Ex,, Exp, Ex|, Ex;) A P(Ex,, Exp, Ex,, Ex;) P(Ex,, Exp, Ex3, Ex»)
AP(Ex;, Exp, Exz, Ex;h P(Exs, Exp, Ex|, Exz) 1.

These relations form the graph of cross-expertise in the way that is shown in Fig-
ure 12. Arrows mean Exp - relations.

Ex
1 Ex 3

Fig. 12. Graph of cross-expertise

Using the above description, it is possible to unfold this graph into the multilevel
vertical structure of experts presented in Figure 13.

Knowledge Acquisition from Multiple Experts Based on Semantics of Concepts 271

Level 4

Level 3

Level 2

\2\/\

Sk I~ N
\ ~ o
< \/ ~ W Level 0
Fig. 13. Multilevel vertical structure of experts in the example

The method of deriving horizontal order of experts can be used to derive the most
supported knowledge at each level. In the example the levels 1, 2 and 3 are as in Fig-
ure 14.

First level of the domain Second level of the domain Third domain level

Fig. 14. Horisontal ordering for domain levels 1, 2, and 3 in the example

6 Conclusion

In this paper, we have presented a matrix-based way to process knowledge acquired
from multiple knowledge sources. The basic representation of knowledge behind is
semantic network presentation with objects and their relations. Concepts are used to
define semantics of relationship and they are interpreted in a very broad way. Con-
cept includes the name of relation, all necessary attributes of the relation and certain
values of the attributes. We discussed about three problems.

First, how to derive the most supported (common) knowledge from knowledge
sources. Knowledge obtained from different sources can include different and even

272 S.Puuronen and V. Terziyan

conflicting pieces of knowledge. We introduced a method of calculating the amount
of support to relations between any two pairs of objects and its use to select the most
supported relations. It is necessary to note that most supported knowledge is not al-
ways the best one and sometimes cannot be used as correct knowledge. We accept
most supported knowledge in applications which use democratic voting-based princi-
ple of acquiring knowledge from multiple experts.

Second, we discussed the problem of ordering the experts into categories of com-
petence. We introduced a method which uses amount of support to locate each expert
into one competence category with respect to each possible relation and object.

Third, we discussed the problem of deriving vertical structure in the case when
there exist statements given by experts concerning also experts’ relations with domain
objects and each other. We show how experts can be grouped into a multiple structure
and can be classified into competence categories at each level.

There are some restrictions in the methods used to describe experts’ opinions. In
this paper, we have not discussed the problem of semantics from the individual inter-
pretation point of view. Further research is also needed to generalize the results to the
cases where ignorance is allowed to have different levels, and support is allowed to
be partly (for example from very weak to very weighty).

Acknowledgments. This work has been partly supported by the grant from the
Academy of Finland.

References

1. Arens, Y., Chee, C., Hsu, C., Knoblock, C.: Retrieving and Integrating Data from Multiple
Information Sources. International Journal of Intelligent and Cooperative Information Sys-
tems, Vol. 2, No. 2 (1993) 127-158.

2. Aussenac-Gilles, N., Bourigault, D., Condamines, A., Gros, C.: How Can Knowledge Ac-
quisition Benefit from Terminology? In: A. Nuopponen (ed.), Terminology Forum, Library:
Terminology Science and Work, Available in WWW: http://www.irit.fr/ACTIVITES/
EQ_SMI/ PUBLI/banft95.html.

3. Cointe, C.: Guide to Manage Conflicts in Concurrent Engineering: A Multi-Agent Archi-
tecture. In: K.Reger (ed.), Building Tomorrow's Virtual Enterprise: Proceedings of the 4th
European Conference on Concurrent Engineering - CEE'97, SCS, Germany (1997).

4. Cointe, C., Matta, N., Ribiere, M.: Design Propositions Evaluation: Using Viewpoint to
manage conflicts in CREOPS2. In: S. Ganesan, B. Prasad (eds.), Advanced in Concurrent
Engineering, Proceedings of ISPE 4th International Conference on Concurrent Engineering
Research and Applications (CE'97), Rochester, Michigan, USA (1997) 336-343.

5. Corby, O., Dieng, R.: Cokace: a Centaur-Based Environment for CommonKADS Concep-
tual Modelling Language. In: W. Wahlster (ed.), Proceedings of the 12th European Confer-
ence on Al - ECAI'96, Budapest, Hungary (1996) 418-422.

6. Dieng, R.: Comparison of Conceptual Graphs for Modelling Knowledge of Multiple Ex-
perts. ISMIS (1996) 78-87.

7. Dieng, R., Corby, O., Labidi, S.: Agent-Based Knowledge Acquisition. In: L. Steels, G.
Schreiber, W. de Velde (eds.), A Future for Knowledge Acquisition: Proceedings of the 8th
European Knowledge Acquisition Workshop - EKAW'94, Hoegaarden, Belgium (1994) 63-
82.

Knowledge Acquisition from Multiple Experts Based on Semantics of Concepts 273

8. Dieng, R., Hug, S.: Comparison of "Personal Ontologies" Represented through Conceptual
Graphs. In: H. Prade (ed.), Proceedings of the 13th European Conference on Artificial In-
telligence - ECAI'98, Brighton, UK (1998) 341-345.

9. Dieng, R.: Knowledge Acquisition for Explainable, Multi-expert, Design Systems. Avail-
able in WWW: http://www.inria.fr/acacia/present-Acacia.html.

10.Franklin, S.: Autonomous Agents as Embodied Al. Cybernetics and Systems, Vol. 28, No.
6 (1997) 499-520.

11.Gappa, U., Puppe, F.: A Study in Knowledge Acquisition - Experiences from the Sisyphus
IIT Experiment for Rock Classification, to appear in Proceedings of KAW-98: 12th Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop (1998), Available in
WWW: http://ki-server.informatik.uni-
wuerzburg.de/forschung/publikationen/lehrstuhl/Sisy-111-98/sisy-1I11-98.html

12.Goto, S., Nojima, H.: Equilibrium Analysis of the Distribution of Information in Human
Society. Artificial Intelligence, Vol. 75, No. 1 (1995) 115-130.

13.Larson, R., Segal, G.: Knowledge of Meaning. An Introduction to Semantic Theory. A
Bradford Book (1995).

14.Leroux, B., Laublet P.: An approach to knowledge acquisition combining alternate steps of
constructive modelling and elicitation. In: P. Brezillon et V. Stefanuk (Eds), East-West Arti-
ficial Intelligence Conference, Moscow (1993) 138-143.

15.Mak, B., Bui, T., Blanning, R.: Aggregating and Updating Experts’ Knowledge: An Ex-
perimental Evaluation of Five Classification Techniques. Expert Systems with Applications,
Vol. 10, No. 2 (1996) 233-241.

16.Matta, N., Cointe, C.: Concurrent Engineering and Conflicts Management Guides. In: A.
Riitahuhta (ed.), World Class Design by World Class Methods, Proceedings of the 11th Int.
Conference on Engineering Design (ICED97), Tampere, Finland (1997) 761-766.

17.Medsker, L., Tan, M., Turban, E.: Knowledge Acquisition from Multiple Experts: Problems
and Issues. Expert Systems with Applications, Vol. 9, No. 1 (1995) 35-40.

18.A Protocol for Building Consensual and Consistent Repositories: INRIA research report
RR-3260, available in WWW: http://www.inria.fr/RRRT/RR-3260.html.

19.Readings in Distributed Aurtificial Intelligence, A. H. Bond and L. Gasser (eds.), Morgan
Kaumann, 1988.

20.Ribiere, M., Dieng, R.: Introduction of Viewpoints in Conceptual Graph Formalism. In: D.
Lukose, H. Delugach, M. Keeler, L. Searle, J. Sowa (eds.), Conceptual Structures: Fulfilling
Peirce's Dream, Fifth International Conference on Conceptual Structures (ICCS'97), LNAI,
1257 (1997) 168-182.

21.Roos, N.: A Logic for Reasoning with Inconsistent Knowledge. Artificial Intelligence, Vol.
57, No. 1 (1992) 69-103.

22.Schmalhofer, F., Tschaitschian, B.: Cooperative Knowledge Evolution for Complex Do-
mains. In: Tecuci, G. and Kodratoff, Y., (eds.), Machine Learning and Knowledge Acquisi-
tion: Integrated Approaches. London: Academic Press (1995) 145-166.

23.Taylor, W., Weimann, D., Martin, P.: Knowledge Acquisition and Synthesis in a Multiple
Source Multiple Domain Process Context. Expert Systems with Applications, Vol. 8, No. 2
(1995) 295-302.

24.Turban, E., Tan, M.: International Journal of Applied Expert Systems. Vol. 1, No. 2 (1993)
101-119.

25.Wielinga, B., Van de Velde, W., Schreiber, A., Akkermans, J.: Towards a Unification of
Knowledge Modelling Approaches. In: J. David, J. Krivine, and R. Simmons (eds.), Second
Generation Expert Systems,. Springer-Verlag, Berlin Heidelberg, Germany (1993) 299-335.

Acquiring Expert Knowledge for the
Design of Conceptual Information Systems

Gerd Stumme

Technische Universitat Darmstadt, Fachbereich Mathematik
Schlofigartenstr. 7, D-64289 Darmstadt, stumme@mathematik.tu-darmstadt.de

Abstract. Conceptual Information Systems unfold the conceptual struc-
ture of data stored in relational databases. In the design phase of the
system, conceptual hierarchies have to be created which describe differ-
ent aspects of the data. In this paper, we describe two principal ways
of designing such conceptual hierarchies, data driven design and theory
driven design, and discuss advantages and drawbacks. The central part of
the paper shows how Attribute Exploration, a knowledge acquisition tool
developed by B. Ganter can be applied for narrowing the gap between
both approaches.

1 Introduction

Conceptual Information Systems ([20], [21]) unfold the conceptual structure of
data stored in relational databases. A Conceptual Information System consists
of the relational database together with conceptual hierarchies. These hierar-
chies, called conceptual scales, are used to support navigation through the data.
Conceptual Information Systems are based on the mathematical theory Formal
Concept Analysis ([10]). The management system TOSCANA visualizes arbi-
trary combinations of conceptual scales and allows on-line interaction with the
database to analyze and explore data conceptually. TOSCANA has been devel-
oped at the Technische Universitdt Darmstadt and is, for four years now, also
marketed by NAVvICON GESELLSCHAFT FUR BEGRIFFLICHE WISSENSVERAR-
BEITUNG MBH. There are more than 30 Conceptual Information Systems imple-
mented up to now, including an information system about laws and regulations
in civil engineering ([7]), a library retrieval system ([14]) and an information sys-
tem about flight movements ([12]). The use of Conceptual Information Systems
gave rise to new theoretical questions which now dominate the research in For-
mal Concept Analysis. The demand of integrating knowledge acquisition tools
in the design process of Conceptual Information Systems appeared for instance
during the development of a Conceptual Information System about IT security.

For most applications, the Conceptual Information System is designed in a
discursive process involving a domain expert and a knowledge engineer. Beside
the database design, the conceptual scales have to be generated. Both steps re-
quire knowledge about the domain and about the structure of conceptual scales.
In order to obtain interesting and non-trivial insights from the data, it is crucial
that the domain expert is intensively involved in the design process. On the other

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 275-290, 1999.
© Springer-Verlag Berlin Heidelberg 1999

276 G. Stumme

hand, it has been observed that the time a domain expert is expected to spend
for the design is one of the most critical factors for the decision of a company
whether to implement a Conceptual Information System. Hence, one important
requirement is to make the knowledge acquisition from the domain expert more
efficient.

In order to keep the scales in a suitable size, they are, in some applications,
designed to fit the actual data, and are not conform to all possible updates of
the underlying database. These scales are derived semi-automatically from the
actual data, thus their design needs less expertise — and time — from the domain
expert. If an update violating the structure of the scale happens, then the user
is warned, and he has to redraw the scale. If there are only small changes, the
re-drawing can be done automatically, but due to the lack of acceptable drawing
algorithms for lattices, large changes cannot be recovered automatically, and
have to be effectuated by the knowledge engineer. If the latter is not part of the
company in which the system is implemented, then these eventualities should be
covered in advance. Hence, a second requirement is the stability of the conceptual
scales against all possible updates of the underlying database. This requirement
will be obsolete when acceptable drawing algorithms for lattices are developed,
but this evolution is not in sight in the next future.

In this paper, we describe two principal ways of designing conceptual scales,
data driven design and theory driven design, and discuss advantages and draw-
backs with respect to the two requirements. The central part of the paper
shows how Attribute Exploration, a knowledge acquisition algorithm developed
by B. Ganter, can be applied in order to narrow the gap between both ap-
proaches. Attribute Exploration determines implications (functional dependen-
cies) between attributes in an interactive session. Its typical application is in
Mathematics, where mathematical theorems or counter-examples, resp., are asked
from the mathematician in a systematic way in order to obtain a complete theory
about specific mathematical structures.

In the next section, we describe the basics of Conceptual Information Systems
and illustrate them by means of examples. Section 3 discusses the two principal
ways of preparing a Conceptual Information System: theory driven design and
data driven design. The design of the underlying database scheme is not topic of
this paper. In Section 4, we describe the algorithm of Attribute Exploration and
show by means of an example how it can be applied to the design of Conceptual
Scales.

2 Conceptual Information Systems

Conceptual Information Systems provide a multi-dimensional conceptually struc-
tured view on data stored in relational databases. Conceptual Information Sys-
tems are similar to On-Line Analytical Processing (OLAP) tools, but focus on
qualitative (i.e. non-numerical) data. The analog to OLAP dimensions are hier-
archies of concepts. They are based on Formal Concept Analysis ([23], [10]), a
mathematical theory modeling the concept of ‘concept’ as discussed in Philoso-

Acquiring Expert Knowledge for the Design of Conceptual Information Systems 277

phy since the logic of Port Royal ([3]) and described in the German Industrial
Standards DIN 2330 and DIN 2331. There, a concept is understood as a unit
of thought consisting of two parts: its extension and its intension ([22]). The
extension consists of all objects belonging to the concept, and the intension of
all attributes common to all the objects. In OLAP terminology, intensions of
concepts correspond to coordinates addressing a cell, and extensions to entries
of cells of a data cube. Formal concepts as defined below act as knots tying
together the extensional and the intensional aspect of the data.

Each conceptual scale is generated from a formal contert, a binary relation
which allocates subsets of the attribute domains of the database to attributes
which are meaningful to the analyst. The derived conceptual hierarchy can be an
arbitrary lattice. It is displayed by a Hasse diagram which provides a universal
and intuitively readable visualization of the data. By combining Hasse diagrams
and zooming into them, operations similar to slicing, pivoting, drill-down and
drill-up are supported ([17]). In the next section, we provide the mathematical
background. Readers not familiar to mathematical notation may directly skip to
the example.

2.1 The Mathematical Background: Formal Concept Analysis

Definition. A (formal) context is a triple K := (G, M, I) where G and M are
sets and [is a relation between G and M. The elements of G and M are called
objects and attributes, respectively, and (g, m) € I is read “the object g has the
attribute m”.

For A C G, we define A’ :={m € M |Vg € A: (g,m) € [}. For B C M, we
define dually B' := {g € G | Vm € B: (g,m) € I}. Now a (formal) concept is a
pair (A, B) such that A C G, B C M and A = B, B’ = A. (This is equivalent
to A and B being maximal with A x B C I.) The set A is called the extent and
the set B the intent of the concept.

Each formal context gives rise to a conceptual hierarchy, called concept lattice
of K and denoted by B(K). The hierarchical subconcept—superconcept-relation
of concepts is formalized by

(A,B)< (C,D):+= ACC (< BD2D).

Theorem 1 (cf. [10]). The set of all concepts of the context K together with
this order relation is a complete lattice. I e., for each set (Ay,By), t € T, of
concepts, a least common superconcept and a greatest common subconcept exist.
They are computed as follows:

VA, B)=((JA4). By . N\A,B)=([)4.(B)"

teT teT teT teT teT teT

The first equation describes the aggregation along the subconcept-superconcept-
hierarchy: The extent of the least common superconcept is the closure by’ of
the set union J,c, A;. Because of the symmetry of the definition, attributes

278 G. Stumme

HEENEEEEES
w| 0| w|w| 0w | w
ON|O|OA|WIN|—
X Personalausfall
X]|Unzureichende Kenntnis iiber Regelungen
X X||Vertraulichkeits-/Integritatsverlust von Daten durch Fehlverhalten der IT-Benutzer
XX XX PXIX|[Fahrlassige Zerstérung von Gerét oder Daten
X X X |X][Nichtbeachtung von IT-SicherheitsmaBnahmen
XX X||Fehlerhafte Nutzung des IT-Systems
XXX X X Manipulation/Zerstérung von IT-Geréten oder Zubehér
XXX X X| |[Manipulation von Daten oder Software
X X]|Social Engineering
M 3.1: Geregelte Einarbeitung/Einwei- M 3.5: Schulung zu IT-SicherheitsmaB-
sung neuer Mitarbeiter nahmen
M 3.2: Verpflichtung der Mitarbeiter auf M 3.6: Geregelte Verfahrensweise beim
Einhaltung einschlagiger Gesetze, Ausscheiden von Mitarbeitern
Vorschriften und Regelungen M 3.7: Anlaufstelle bei personlichen
M 3.3: Vertretungsregelungen Problemen
M 3.4: Schulung vor Programmnutzung M 3.8: Vermeidung von Storungen des

Betriebsklimas

Fig. 1. Formal context about perils and counter-measures concerning IT security in
Human Resources

can be aggregated in an analogous way by descending the hierarchy (cf. second
equation). Again, the appropriate aggregation is not set union, but its closure
by ”. This allows the investigation of implications (functional dependencies)
between the attributes:

Definition. For two sets X,Y C M of attributes, the implication X — 'Y holds
in a formal context, if each object having all attributes in X also has all attributes
inY (i.e, X' CY’, or equivalently Y C X").

These implications play an important role in data analysis, and are also crucial
for knowledge acquisition by Attribute Exploration (cf. Sect. 4). !

Example: The following example is taken from an information system about IT
security ([16]). In the ‘IT-Grundschutzhandbuch’ of the Bundesamt fiir Sicher-
heit in der Informationstechnik ([4]), perils to certain objects, such as e.g. infra
structure, telecommunication, human resources, are listed, and counter-measures
are discussed. The presented information system is for demonstration purpose
only, but a similar, more praxis oriented system with a higher level of detail is
offered by NAVICON. The design of conceptual scales for the latter gave rise to
this paper.

1 A remark for readers who are familiar with association rules ([1]): Implications are
association rules with minsupp=0 and minconf=1. In the framework of this paper,
other association rules than implications are of no importance, because the concep-

Acquiring Expert Knowledge for the Design of Conceptual Information Systems 279

‘ Nichtbeachtung von IT-SicherheitsmaBnahmen ‘

‘Fahrléssige Zerstérung von Gerat oder Daten‘

‘ManipulatiorVZerstérung von IT-Geréten oder Zubehér‘

‘Fehlerhaﬁe Nutzung des IT-Systems‘

Manipulation an Daten oder Sof‘tware‘

‘Vertraulichkeits-/lntegritétsverlust von M36

‘Daten durch Fehlverhalten der Benutzer

M3.8
Social Engineering

‘Unzureichende Kenntnis Giber Regelungen

M3.2
Personalausfall M34
M3.7

M3.3 M3.1 M3.5

Fig. 2. Hasse diagram of the formal context in Fig. 1

The table for human resources from [4] is given in Fig. 1. It can be under-
stood as a formal context, where the perils ‘Personalausfall’ (Staff drop out),
..., ‘Social Engineering’ are the attributes, and the counter-measures M 3.1,
..., M 3.8 are the objects. The relation assigns to each peril possible counter-
measures. The context has 13 formal concepts. For instance, there is one concept
having M 3.2, M 3.5, M 3.7, and M 3.8 in its extent, and ‘Fahrléssige Zerstorung
von Gerdt oder Daten’ (negligent destruction of machines or data), ‘Manipu-
lation/Zerstorung von IT-Geréten oder Zubehor’ (manipulation of IT tools or
accessories), and ‘Manipulation an Daten oder Software’ (manipulation on data
or software) in its intent.

The concept lattice of that formal context is shown in Fig 2. Each circle
stands for a formal concept, and the subconcept-superconcept hierarchy can be
read by following ascending paths of straight line segments. The intent [extent)
of each concept is given by all labels reachable from that context by ascending
[descending] paths of straight line segments. For instance, the concept mentioned
above is the one labeled by M 3.8.

In such a diagram, we can read the implications between the attributes.
For determining the conclusion of an implication, one determines the greatest
common subconcept of the premise (the concept where “the attributes of the
premise first meet” by descending the diagram), and collects all attributes listed
above. I.e., the implication X — Y holds if and only if \/,,. x({m}’, {m}") <
({n},{n}") for all n € Y. The concept ({m}’,{m}") is the concept which is
labeled by the attribute m. For instance, we have that each counter-measure
against both ‘Fehlerhafte Nutzung des IT-Systems’ (misuse of the IT system)

tual scales to be created shall cover all possible combinations, not only the frequent
ones.

280 G. Stumme

Bauteil | Bauteileart | Nennweite | DichtWerkst | Wanddicke
Rohr DIN 2448- 13 CrMo 4 4 -355,6x8,0 Rohr 350 8
Rohr DIN 2448- 13 CrMo 4 4 -355,6x8,8 Rohr 350 8,8
Rohr DIN 2448- 13 CrMo 4 4 -355,6x11,0 Rohr 350 1
Rohr DIN 2448- 13 CrMo 4 4 -406,4x8,8 Rohr 400 8,8
Rohr DIN 2448- 13 CrMo 4 4 -406,4x11,0 Rohr 400 11
Rohr DIN 2448- 13 CrMo 4 4 -406,4x14,2 Rohr 400 14,2
Flansch C 15x21,3 DIN 2631 - St 37-2 VorschweiBflansch 15 Weichgumm 2
Flansch C 20x26,9 DIN 2631 - St 37-2 VorschweiBflansch 20 Weichgumm 2,3
Flansch C 25x33,7 DIN 2631 - St 37-2 VorschweiBflansch 25 Weichgumm 2,6
Flansch C 32x42,4 DIN 2631 - St 37-2 VorschweiBflansch 32 Weichgumm 2,6

Fig. 3. Part of a many-valued context

and ‘Manipulation an Daten oder Software’ (the only counter-measure against
both perils simultaneously is M 3.5) is also a counter-measure against the perils
‘Manipulation/Zerstorung von IT-Gerédten oder Zubehor’, ‘Nichtbeachtung von
IT-Sicherheitsmafinahmen’ (ignoring of IT security measures), and ‘Fahrlissige
Zerstorung von Gerédt oder Daten’.

2.2 The conceptual data model of Conceptual Information Systems:
Many-valued contexts and conceptual scales

Often attributes are not one-valued as in the previous example, but allow a
range of values. This is modeled by a many-valued context. In order to obtain a
concept lattice, a many-valued context is ‘translated’ into a one-valued context
by conceptual scales. (Remark that ‘conceptual’ is used in two different meanings
in the heading!)

Definition2. A many-valued context is a tuple (G, M, (Wy)mem, I) where G
and M are sets of objects and attributes, resp., W, is a set of values for each
m € M,and I C GxJ,,cp ({m}xW,,) such that (g, m,w:) € I and (g, m,wz) €
I imply w1 = wa. A conceptual scale for an attribute m € M is a context
Sm = (Gm, My, Iy,) with W,,, C G,,. The context (G, M,,, J) with gJn : <
FweW,,: (g, m,w)el A (w,n)€l,, is called the realized scale for the attribute
m e M.

Example: Figure 3 shows a part of a many-valued context about pipes. The
total context consists of 240 pipes, 2428 curved pipes, 560 T-parts, 348 flanges,
and 385 restricted fittings, and of 54 attributes. The objects are listed in the
column ‘Bauteil’ (Part). In Fig. 4, the realized scale for the attribute ‘Bauteileart’
(Part type) is given. Since there are almost 4000 objects, the diagram does not
display their names, but contingents only.

Conceptual Information Systems consist of a many-valued context together
with a collection of conceptual scales. The many-valued context is implemented

Acquiring Expert Knowledge for the Design of Conceptual Information Systems 281

Rohrbogen
L~

NG10
L~

L/
[DIN:2605-2 | [T-Stiicke)/ [DIN:2631
[DIN:2605-1 | [Rohre | DIN:2641 [DIN:2632 | [DIN:2633] \ [DIN:2635| |DIN:2637 |
i

\ /

Fig. 4. Realized scale ‘Part type’

as a relational database. The collection of the scales is called conceptual scheme
([20], [15]). It is written in the description language CONSCRIPT ([19]). Beside
the contexts of the conceptual scales, the conceptual scheme also contains the
layout of their line diagrams. The layout has to be provided in advance, since,
in general, well readable line diagrams cannot be generated fully automatically.

For Conceptual Information Systems, the management system TOSCANA
([13], [21]) has been developed. Based on the paradigm of conceptual landscapes
of knowledge ([24]), TOSCANA supports the navigation through the data by
using the conceptual scales like maps designed for different purposes and in
different granularities. We illustrate the navigation procedure by the pipeline
system.

Example: The context in Fig. 3 and the conceptual scale in Fig. 4 are part of a
Conceptual Information System on pipelines ([18]). It shall support the engineer
by choosing suitable parts for a projected pipeline system. Let us assume that he
needs a pipe which has an inner diameter of about 100 mm and a wall thickness
of about 4 mm. Starting with the scale ‘Part type’ in Fig. 4, he finds the concept
labeled with the attribute ‘Rohre’ (Pipes), and sees that he can choose among
240 different pipes. By zooming into that context with the scale ‘Inner diameter’,
see Fig. 5), he can see the distribution of the 240 pipes according to their inner
diameter. Each concept stands for an interval. Since the engineer is interested in
pipes with about 100 mm inner diameter, he chooses the 8th concept from the
right at the bottom level, which stands for the interval 90-110 mm. By taking a

282 G. Stumme

%
(W =

s
o
33
e’
688880
SN ssstsss Y
sl W o)
sttt sy
56t sssst s
5ttt sstsest sy
o W s
=5 568888808088 ¢0%0 0"
1888880080088 000 W
vV 8% Y

SLEQRY2 e

Fig. 5. Realized scale ‘Inner diameter’ after zooming into the concept labeled by
‘Rohre’ in Figure 4

concept which is higher in the hierarchy, he could have continued with an interval
of larger width. By zooming into the chosen concept with the next conceptual
scale (e. g.‘Wall thickness’), the engineer can drill-down further until he obtains
a small number of parts which are suitable for the projected pipeline system.
By clicking on the numbers, he can obtain the names of the parts, and can then
drill-down to the original data given in the database or to additional information
such as DIN standards.

3 Preparation of Conceptual Information Systems

The preparation of a conceptual information system consists basically of two
steps. First, the underlying many-valued context has to be designed and imple-
mented as a database system. Second, the conceptual scales have to be created.
Both are non-trivial tasks which require expertise in the domain of interest as
well as in the knowledge representation techniques of formal concept analysis.
Hence conceptual information systems are usually designed in a discursive pro-
cess involving both domain experts and knowledge engineers ([2]). This process
is described in detail in [7] for a system about laws and regulations in civil
engineering.

Acquiring Expert Knowledge for the Design of Conceptual Information Systems 283

In this paper, we focus on the second step of the preparation. We assume that
the many-valued context is already given. The task is then to design adequate
conceptual scales. We discuss the two basic ways.

3.1 Theory Driven Design

The first step in designing scales driven by theory is to choose attributes mean-
ingful to the user. They need not to be the domain values of the database, but
are usually on a more general level. For instance, the user is often not interested
in exact numerical values but only in certain ranges: In a medical application,
the physician is not interested in the exact pH level of the blood, but only if the
pH level is pathological or even dangerous.

The second step is to assign the domain values to the attributes. Here, the
knowledge engineer has to bring in his expertise about conceptual hierarchies,
since domain experts always tend to scale nominally. In the medical example, for
instance, a longer discussion revealed that a dangerous pH level is also under-
stood as pathological, hence a bi-ordinal scale (with a third attribute ‘pH level
normal’) was chosen.

Figures 4 and 5 show two theory driven scales. While the scale in Fig. 4
is specially designed for the application, the inter-ordinal scale in Fig. 5 is a
standard scale that is used in many applications. Typically, database attributes
of type string need an individual design, while numerical types as integer or
real allow the use of standard scales. There is a broad variety of standard scales
that can be used, e.g., nominal scales, ordinal scales, and inter-ordinal scales.
In the latter case, only the number of intervals to be considered and the interval
boundaries have to be fixed. It is planned to release the knowledge engineer from
implementing such standard scales by implementing parametrized scales which
adopt themselves to the actual range of the values. Naturally this approach fails
for free-text entries such as those in ‘Bauteileart’ in Fig. 3. Here the conceptual
structure in the data has to be determined in a discursive process.

3.2 Data Driven Design

While theory driven design is typically (but not exclusively) applied to many-
valued attributes, data driven design is only possible for the data type boolean.
In that case, the attributes of the database are usually also the attributes of the
conceptual scale. While there is normally one conceptual scale for each many-
valued attribute, some one-valued (i. e., Boolean) attributes are grouped together
in order to form one conceptual scale. The task for knowledge engineer and
domain expert is to find a suitable grouping of the attributes. Groups should
not be too large since the size of the scale may be exponential to the number
of attributes; neither too small in order not to hide dependencies between the
attributes. Typically there are between five and ten attributes. But before all,
it is important that attributes addressing similar topics are grouped together.
Therefore it is possible that attributes appear in more than one scale.

284 G. Stumme

4.3.1 Buroraum 4.3.3 Datentragerarchiv
4.2 Verkabelung
4.3.2 Serverraum
!
4.1 Gebaude i

4.3.4 Infrastrukturraum

7

[5.2 Manipulation an Daten oder Software |

G4.1 Ausfall der Stromversorgung
G4.2 Ausfall interner Versorgungsnetze

Fig. 6. Realized scale ‘Rooms’ for the I'T Security System

Having obtained a suitable grouping, a conceptual scale has to be designed
for for each of the sets of attributes. In a first approach, one could assume that
there are no valid implications between the attributes. This leads to a scale that
is conform to all possible updates of the database. However, this scale will be too
large for more than five attributes, since for n attributes the number of concepts
of such a Boolean scale scale is 2". Therefore, data driven design takes into
account all implications which hold for the actual entries in the database. It is
supported by DOKUANA, a tool developed by NAVICON. An example for a data
driven scale is the scale ‘Rooms’ of the IT security system (Fig. 6). It shows the
distribution of perils according to locations. Instead of 26 = 64 possible concepts
it only consists of 14 concepts.

When knowledge engineer and domain expert agreed on a data driven design
process, then the design can be performed by the former without any support
by the latter, once the grouping of the attributes is decided. Hence data driven
design is efficient for the client in the way that he does not have to invest
much time of the domain expert. This is an important argument in marketing
Conceptual Information Systems.

Acquiring Expert Knowledge for the Design of Conceptual Information Systems 285

The big disadvantage of this approach however is that scales need not be
consistent with updates of the database. New entries can contradict to the func-
tional dependencies used for the design of the conceptual scales. If there are not
too many new concepts (up to ten at the moment), and if the structure of the
new scale does not differ too much from the original scale, then the diagram
can be re-drawn automatically. However, if the change is more complex, then
the layout has to be done manually, which usually requires the expertise of the
knowledge engineer. Hence, an important research task is the development of
fully automatic lay-out algorithms for lattices. Unfortunately, satisfying answers
are not in sight in the next future.

For applications provided to a remote client or for time critical applications
it is therefore important to prepare the scales such that future updates of the
database are covered. Hence all possible combinations of attributes have to be
determined before handing over the information system. In the next section we
discuss how this task can be performed in a systematic way by involving the
domain expert as less as possible.

4 Extending Scales by Attribute Exploration

The data driven design of a conceptual scale provides us with all combinations of
attributes which occur as concept intents for the actual data. Then the question
arises which combinations may occur additionally. As we pointed out in the last
section, the powerset of the attribute set would cover all eventualities, but is in
general too large for practical applications. Hence we have to find a subset of the
powerset, which contains all possible combinations, by systematically inquiring
the domain expert.

The solution to that problem is Attribute Exploration ([8], [10]), an inter-
active knowledge acquisition algorithm developed by B. Ganter. The algorithm
is implemented in the program Conlmp ([5]) of P. Burmeister. It benefits from
the fact that the requested set of intents must be closed under set intersec-
tion (cf. to first equation in Theorem 1). The knowledge is acquired from the
domain expert in a dialogue in which he has to answer questions of the form
“Does each possible object in the database having attributes zj, ...x, nec-
essarily have the attributes w4, ...y, as well? (I.e., “Does the implication
{z1,...,zn} = {y1,. .., Ym} hold?”) Either the expert confirms the implication,
or he has to provide a counter-example.

Details about Attribute Exploration can be found in [8] and [10]. Here, we
only give a short summary: The algorithm uses the fact that, for a given formal
context, the implications P — P”, where P is a pseudo-intent (see below), are
sufficient (and even minimal) for describing the structure of the concept lattice.
This set of implications is called the Duquenne-Guigues-basis ([6], [11]).

The algorithm asks the implications in such a sequence that pseudo-intents
determined once remain pseudo-intents even after adding the counter-examples
to the context:

286 G. Stumme

Definition. A set P C M of attributes is called a pseudo-intent, if P # P’ and
if for each pseudo-intent @ C P the inclusion @ C P holds.

For a set X C M and a set £ of implications, we define £*(X) as the closure
of X under repeated applicationof X — XU J{B|A—-Be L, AC X, A#X}.

For sake of simplicity, we assume now that M = {1,2,...,n}. Fori € M, we
define X <; Y :e= i€ Y\ Xand XN{l,...,i—1} =Y N{1,....i—1}
Furthermore we define a lectic order on the subsets of M by X <Y : <= i €
{1,...,71}:X <; Y.

Algorithm: Let (G, M,I) be the formal context determined by data driven
design. The set M contains the attributes that are used as labels in the diagram.
The set G contains strings which are used as where-parts of SQL-statements
which TOSCANA generate in order to query the database.

1. The first intent or pseudo-intent is the empty set.

2. For a given intent or pseudo-intent X one obtains the next intent or pseudo-
intent in the lectic order by letting ¢ := n, and decreasing ¢ until X <
X* = L((XnA{L,2,...,s—1} U{i}) holds. X* is then the next intent or
pseudo-intent in the lectic order.

3. IF X* = M then Stop.

4. If X* is an intent, then let X := X* and go to 2).

5. If X* is a pseudo-intent, then ask the user “Does the implication X* — X*"
hold?” If the answer is “Yes”, then add the implication to L. Let X := X*
and go to 2). If the answer is “No”, then the user has to provide a counter-
example. Add the counter-example to G and go to 4).

The dialogue is optimal in the sense that the number of confirmed implications
is minimal. The complexity of the algorithm is, for each concept, cubic in the
number of attributes and objects. As the number of the concepts can grow
exponentially in the number of attributes, the overall complexity of the algorithm
is exponential. However, as the number of attributes for one scale is usually
between five and ten, and the attributes are normally not totally independent,
the number of questions is tolerable in all practical applications.

Attribute Exploration can handle the answer “I don’t know”, but for design-
ing a conceptual scale, finally each of the implications has to be either confirmed
or rejected. As “I don’t know” indicates that there may be objects that violate
the implication, only the interpretation of these answers as “no” assures that
the scale will be consistent for all possible updates of the database.

Example: The ‘IT-Grundschutzhandbuch’ provides for each object the relation-
ship between its related perils and counter-measures. The relationship between
objects and perils is not given explicitly in the handbook. Since the data tables
are designed locally — for each single object — only, there may be groups of
objects sharing the same perils which are not identified in the book. Figure 6
provides us with the scale considering only the actual entries in the handbook.

Acquiring Expert Knowledge for the Design of Conceptual Information Systems 287

4.3.2 Serverraum 4.3.4 Infrastrukturraum
4.1 Gebéaude

4.2 Verkabelung

4.3.1 Blroraum

Fig. 7. The scale ‘Rooms’ extended by Attribute Exploration

For determining all possible combinations of objects, we applied Attribute Ex-
ploration to that scale. The exploration dialogue consisted of twelve questions,
starting with:

“Is each possible peril for ‘Gebdude’ (building) and ‘Archiv’ (archive) neces-
sarily a peril for ‘Serverraum’ (server room) and ‘Infrastrukturraum’ (infras-
tructure room)?” — “Yes” — “Is each possible peril for ‘Infrastrukturraum’
necessarily a peril for ‘Serverraum?” — “Yes” — “Is each possible peril for
‘Infrastrukturraum’ necessarily a peril for ‘Serverraum?” — “Yes” — “Is each
possible peril for ‘Serverraum’ and ‘Archiv’ necessarily a peril for ‘Infrastruk-
turraum?” — “No.” ...

For the last question, one can e. g. provide the attribute ‘Datentrégervernichtung’
(destruction of storage media) as counter-example. In this example, nine of the
twelve implications were accepted, and three denied. The resulting scale is shown
in Figure 7. It consists of 18 concepts, while the ‘worst case’, the Boolean scale,
has 2 = 64 concepts and is too large for a useful visualization. The black
circles indicate how the data driven scale is embedded in the scale determined
by Attribute Exploration. This example also shows that the diagram has to be
re-layouted for remaining readable.

288 G. Stumme

5 Outlook

We have shown how the gap between data driven and theory driven design
can be bridged (or at least narrowed) by applying Attribute Exploration. This
knowledge acquisition process serves three purposes. Firstly, it makes knowledge
acquisition from the domain expert more efficient, since it starts with the ac-
tual data (instead from the scratch) and solves the remaining questions in a
systematic and somehow minimal way. Secondly, it allows to prepare the scales
so that all eventual updates of the database are covered a priori. Hence the sys-
tem can be run without support of the knowledge engineer. Thirdly, the process
provides to the domain expert a better understanding of the data by making his
knowledge explicit.

A restraint for the approach is however that a certain knowledge about the
dependencies between the attributes must be present. Although the answers
during the dialogue do not have to be infallible (since TOSCANA provides a
warning if an accepted implication is violated), they must however be confident
to a certain degree. For instance, the Library Retrieval System at the ‘Zentrum
fiir interdisziplinare Technikforschung’ at the Technische Universitdt Darmstadt
([14]) is also based on a data driven design. In that application, books and jour-
nals are objects, and catchwords are attributes. The conceptual scales produced
by data driven design are almost all near to Boolean scales, i.e., almost all com-
binations of catchwords are possible. In this application, the experts were not
able to answer the questions with a certain confidence, since for each remain-
ing combination of catchwords one could imagine a book having exactly those
catchwords. Such applications would profit enormously from automatic layout
algorithms for lattices.

An automatic layout algorithm would also provide the possibility to choose
on-line Boolean attributes (e.g., catchwords) of the database and to let the
resulting conceptual scale be drawn on the fly. The development of layout algo-
rithms is one of the most urgent research tasks for advancing the commercial
application of conceptual knowledge processing.

Attribute Exploration determines the structure of the conceptual scale only;
but it does not indicate which concepts may be labeled by objects. Each concept
which potentially is labeled gives rise to a SQL-query. Hence it may be of interest
for time-critical applications to minimize the number of these concepts. For
determining them, a variation of Attribute Exploration called Clause Exploration
([9]) can be applied. As this knowledge acquisition procedure generates more
questions than Attribute Exploration, it has to be examined for each application
if the extra work during the design phase is really necessary.

References

1. R. Agrawal, T. Imielinski, A. Swami: Mining association rules between sets of items
in large databases. Proc. ACM SIGMOD, 1993

2. U. Andelfinger: Diskursive Anforderungsanalyse: ein Beitrag zum Reduktionsprob-
lem bei Systementwicklungen in der Informatik. Peter Lang, Frankfurt 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Acquiring Expert Knowledge for the Design of Conceptual Information Systems 289

. A. Arnauld, P. Nicole: La logique ou 'art de penser — contenant, outre les regles
communes, plusieurs observations nouvelles, propres & former le jugement. 3 édit.
reveilie & augm. P., Ch. Saveux, 1668

. Bundesamt fiir Sicherheit in der Informationstechnik: IT-Grundschutzhandbuch
1996. Mafinahmenempfehlungen fiir den mittleren Schutzbedarf. Bundesanzeiger,
Koéln 1996

. P. Burmeister: Conlmp — Programm zur formalen Begriffsanalyse einwertiger Kon-
texte. TH Darmstadt 1987 (latest version 1995)

. V. Duquenne:Contextual implications between attributes and some properties of
finite lattices. In: B. Ganter, R. Wille, K. E. Wolff (eds.): Beitrdge zur Begriffs-
analyse. B. 1.-Wissenschaftsverlag, Mannheim 1987, 213-239

. D. Eschenfelder, W. Kollewe, M. Skorsky, R. Wille: Ein Erkundungssystem zum
Baurecht: Methoden der Entwicklung eines TOSCANA-Systems. In: G. Stumme,
R. Wille (eds.): Begriffliche Wissensverarbeitung: Methoden und Anwendungen.
Springer, Heidelberg 1998 (to appear)

. B. Ganter: Algorithmen zur Begriffsanalyse. In: B. Ganter, R. Wille, K. E. Wolff

(eds.): Beitrage zur Begriffsanalyse. B. 1.-Wissenschaftsverlag, Mannheim, Wien,

Zirich 1987. 241-254

B. Ganter, R. KrauBle: Pseudo models and propositional Horn inference. (in prepa-

ration)

B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations. Sprin-

ger, Heidelberg 1999 (Translation of: Formale Begriffsanalyse: Mathematische

Grundlagen. Springer, Heidelberg 1996)

J.-L. Guigues, V. Duquenne: Familles minimales d’implications informatives re-

sultant d’un tableau de données binaires. Math. Sci. Humaines 95, 1986, 5-18

U. Kaufmann: Begriffliche Analyse von Daten tiber Flugereignisse — Implemen-

tierung eines Erkundungs- und Analysesystems mit TOSCANA. Diplomarbeit, TU

Darmstadt, 1996

W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA — ein Werkzeug zur

begrifflichen Analyse und Erkundung von Daten. In: R. Wille, M. Zickwolff

(eds.): Begriffliche Wissensverarbeitung — Grundfragen und Aufgaben. B.1.—

Wissenschaftsverlag, Mannheim 1994

T. Rock, R. Wille: Ein TOSCANA-System zur Literatursuche. In: G. Stumme

and R. Wille (eds.): Begriffliche Wissensverarbeitung: Methoden und Anwendun-

gen. Springer, Berlin-Heidelberg (to appear)

P. Scheich, M. Skorsky, F. Vogt, C. Wachter, R. Wille: Conceptual data systems.

In: O. Opitz, B. Lausen, R. Klar (eds.): Information and classification. Springer,

Heidelberg 1993, 72-84

H. Soll: Begriffliche Analyse triadischer Daten: Das IT-Grundschutzhandbuch des

Bundesamtes fiir Sicherheit in der Informationstechnik. Diplomarbeit, TU Darm-

stadt 1998

G. Stumme: On-Line Analytical Processing with Conceptual Information Systems.

Proc. 5th Intl. Conf. on Foundations of Data Organization, 12.—13. November 1998,

117-126 (to be published by Kluwer)

N. Vogel: Fin Begriffliches Erkundungssystem fiir Rohrleitungen. Diplomarbeit,

TH Darmstadt 1995

F. Vogt: Datenstrukturen und Algorithmen zur Formalen Begriffsanalyse: Eine

C++-Klassenbibliothek. Springer, Heidelberg 1996

F. Vogt, C. Wachter, R. Wille: Data analysis based on a conceptual file. In: H.-

H. Bock, P. Thm (eds.): Classification, data analysis, and knowledge organization.
Springer, Heidelberg 1991, 131-140

290 G. Stumme

21. F. Vogt, R. Wille: TOSCANA — A graphical tool for analyzing and exploring data.
In: R. Tamassia, I. G. Tollis (eds.): Graph Drawing ’94, Lecture Notes in Computer
Sciences 894, Springer, Heidelberg 1995, 226-233

22. H. Wagner: Begriff. In: H. M. Baumgartner, C. Wild (eds.): Handbuch philosophi-
scher Grundbegriffe. Kosel Verlag, Miinchen 1973, 191-209

23. R. Wille: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht—Boston 1982, 445-470

24. R. Wille: Conceptual landscapes of knowledge: A pragmatic paradigm of knowledge
processing. In: Proceedings of the international conference on knowledge retrieval,
use, and storage for efficiency, Vancouver, Kanada, 11.-13.8.1997, 2-13

A Constraint-Based Approach to the Description of
Competence

S. White and D. Sleeman

Department of Computing Science,
King’s College, University of Aberdeen,
Aberdeen, AB24 3UE
Scotland, UK.

Tel.: +44 (0)1224 272296; Fax.: +44 (0)1224 273422
Email: <swhite, dsleeman>@csd.abdn.ac.uk

Abstract. A competency description of a software component seeks to describe
what the artefact can and cannot do. We focus on a particular kind of compe-
tence, called fitness-for-purpose, which specifies whether running a software
component with a supplied set of inputs can satisfy a given goal. In particular,
we wish to assess whether a chosen problem solver, together with one or more
knowledge bases, can satisfy a given (problem solving) goal. In general, this is
an intractable problem. We have therefore introduced an effective, practical,
approximation to fitness-for-purpose based on the plausibility of the goal. We
believe that constraint (logic) programming provides a natural approach to the
implementation of such approximations. We took the Common LISP constraints
library SCREAMER and extended its symbolic capabilities to suit our purposes.
Additionally, we formulated an example of fitness-for-purpose modelling using
this enhanced library.

1 Introduction

A competency description of a software component seeks to describe what the artefact
can do, and what it cannot do. In addition, it may choose to describe the methods that
are applied by the software artefact to achieve its results, although our work focuses on
the questions of what rather than how.

Competency descriptions can enable human- or machine agents to assess the suitabil-
ity of application of the described component for some particular task. This assessment
of suitability, which we also refer to as fitness-for-purpose analysis, is becoming
increasingly important for two main reasons. Firstly, as the range and sophistication of
software increases, it becomes difficult for a human user to make an informed choice
of the best software solution for any particular task. The same point applies equally to
domain independent reasoning components, such as the problem solving methods
(PSMs). We believe that novice users, in particular, could benefit greatly from advice
generated as a result of a fitness-for-purpose analysis. Secondly, we observe a demand
for software brokers, which, given some software requirements, return either the soft-

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 291-308, 1999.
© Springer-Verlag Berlin Heidelberg 1999

292 S. White and D. Sleeman

ware itself, or a pointer. In the knowledge acquisition community, the IBROW3 project
[3] intends to build such a broker for the distribution of problem solving components.

In this paper, we present a general approach to fitness-for-purpose analysis which was
developed to assist in the generation of advice for novice users of knowledge acquisi-
tion tools (KA tools) and problem-solvers in the MUSKRAT system [10], [24], [27].
MUSKRAT is a MUlItiStrategy Knowledge Refinement and Acquisition Toolbox which
makes it easier for novice users to apply and combine the incorporated software tools
to solve some specific task. When generating advice on the application of a chosen
problem-solver, MUSKRAT should be able to differentiate between the following three
cases for the knowledge bases available to the problem-solver.

Case 1: The problem-solver can be applied with the knowledge bases already availa-
ble, i.e., no acquisition or modification of knowledge is necessary.

Case 2: The problem-solver needs knowledge base(s), not currently available; there-
fore these knowledge base(s) must be first acquired.

Case 3: The problem-solver needs knowledge base(s), not currently available, but the
requirements can be met by modifying existing knowledge base(s).

The phrase ‘fitness-for-purpose’ and the computational approximation to it, as
described in this paper, arose out of the need for a test for case 1. We expect subse-
quent research to investigate issues relating to cases 2 and 3.

Issues related to the description of competence are also being investigated by others in
the field, notably Benjamins ef al. in the context of the IBROW3 project [3], [4], Fensel
et al., as part of an ongoing investigation into the role of assumptions [6], [7], and
Wielinga et al., as a methodological approach to the operationalisation of knowledge-
level specifications [30]. We consider Fensel’s approach to be the nearest to our work,
because it investigates the context dependency of an existing problem solver/PSM
through the discovery of assumptions. We are also investigating the context depend-
ency of problem solvers, but through the question of task suitability with the available
knowledge. Thus, whilst Fensel investigates a problem solving method in isolation of
its inputs in order to derive suitability conditions, we take a problem solver together
with its inputs and fest their combined suitability for solving a specific task. Both lines
of inquiry are intractable, and therefore demand some compromise(s) in any imple-
mentation. Fensel’s compromise concerns the level of automation of his proof mecha-
nism, which is an interactive verifier, rather than a fully automated proof mechanism.
Since we would like to generate advice at run-time for the potential user of a problem
solver, we compromise instead with the deductive power of our proof mechanism. We
believe, however, that what our constraint satisfaction mechanism may lack in expres-
sive power, it gains in its abilities to combine the results of multiple problem solvers
(through propagation mechanisms), and run as a batch process. Figure 1 compares
Fensel et al.’s process of assumption hunting with our approach to matching a problem
solver to a toolkit user’s goal.

A Constraint-Based Approach to the Description of Competence 293

PSM PSM

Formalise Abstract
Goal Goal KBs

v l A 4
Prove Competence (Dis)Prove Goal
(using Karlsruhe Interactive Verifier) (using Constraint Satisfaction)

! '

Properties Properties
(Assumptions) (Compatibility of Goal/PSM/KBs)
® (i)

Figure 1. Comparison of the Fensel approach (i), and our approach (ii), to the discovery of
problem solving properties

In the following section, we define more exactly what we mean by fitness-for-purpose,
and explain the computational difficulties which arise in its analysis. In section 3, we
describe how we approach these difficulties by considering an approximation of fit-
ness-for-purpose, rather than the acrual fitness-for-purpose. In section 4, we explain
how we are implementing these ideas using constraint logic programming in Common
LISP. Finally, in section 5 we summarise the ideas, relate them to other work in the
field, and indicate some possible directions for future work.

2 Fitness-for-Purpose

In the previous section, we defined a competency description of a software component
as a description of what the artefact can do, and what it cannot do. Since a fitness-for-
purpose analysis considers the suitability of some component for a particular task
instance, it concerns not only the ‘absolute’ competence of that component for contrib-
uting to the solution, but also any other inputs which the component, or the task, might
have. So, for example, a kettle undoubtedly has a competence for boiling water, but it
is nevertheless not fit for the purpose of making a cup of tea unless water, tea and
(optionally) milk and sugar are also available. Fitness-for-purpose therefore represents
a specific interpretation of ‘competence’, because it expresses the contribution to the
solution of the problem instance with regard to the current state of the containing sys-
tem. In the tea-making example, the ‘current state’ concerned the availability of ingre-
dients in the kitchen; in the context of knowledge acquisition and problem solving, the
current state refers to the availability and nature of the system’s knowledge.

294 S. White and D. Sleeman

When the advisory subsystem of MUSKRAT addresses the problem of fitness-for-pur-
pose, it is in effect posing the question “Is it possible to solve the given task instance
with the available problem-solver] , knowledge bases, and KA tools?”. Clearly, this is a
very difficult question to answer without actually running the problem-solver, regard-
less of whether the answer is generated by a human or a machine. Indeed, the theory of
computation has shown that it not possible, in general, to determine whether a program
(in this case, a problem-solver) terminates. This is the Halting Problem [25]. Therefore
the only way to affirm the suitability of a problem-solver for solving a particular task is
to run it and test the outcome against the goal. For the purposes of generating advice in
a multistrategy toolbox, however, we cannot afford this luxury, particularly since run-
ning the problem-solver could itself be computationally intensive. We prefer instead to
pose the weaker question “Is it plausible that the given task instance could be solved
with the available problem-solver, knowledge bases, and KA tools?”. We believe that it
is possible to demonstrate computationally that some configurations of a task, prob-
lem-solver, existing knowledge bases and KA tools cannot, even in principle, generate
an acceptable solution to the task. Such situations form a set of recognisably implausi-
ble configurations with respect to the problem at hand. Furthermore, the computational
cost associated with recognising this implausibility is, in many cases, far less than that
associated with running the problem-solver.

For example, consider a question from simple arithmetic: is it true that 22 X 31 + 11 x
17 + 13 x 19 = 1097 ? Rather than evaluate the left hand side of the equation straight
away, let us first inspect the problem to see if it is reasonable. We know that when an
even number is multiplied by an odd number, the result is always even; and that an odd
number multiplied by an odd number is always odd. Therefore the left hand side of the
equation could be rewritten as <even> + <odd> + <odd>. Likewise, an even number
added to an odd number is always odd, and the sum of two odd numbers is always
even. Then evaluating left to right, we have <odd> + <odd>, which is <even>. Since
1097 is not even, it cannot be the result of the evaluation. We have thus answered the
question without having to do the ‘hard’ work of evaluating the actual value of the left
hand side.

As another example, consider the truth of the statement ‘If Pigs can fly, then I'm the
Queen of Sheba’, which we write as P = Q. Given our background knowledge that the
premise P is false, we can use the truth table for logical implication2 to derive that the
whole statement is true, since any implication with a false premise is true. Notice that
we derived our result without having to know the truth of the consequent Q. In a simi-
lar way, it is possible to investigate the outputs of programs (in particular, problem

1. For simplicity, we currently assume the application of a single, chosen problem-solver.

2. P|Q|P=Q

T
-
==

A Constraint-Based Approach to the Description of Competence 295

solvers) without needing complete information about their inputs. This issue becomes
important if running a problem solver has a high cost associated with it, such as the
time it takes to perform an intensive search’. In such cases, a preliminary investigation
of the plausibility of the task at hand could save much time if the intended problem
solver configuration can be shown to be unsuitable for the task. We consider such an
investigation to be a kind of ‘plausibility test” which should be carried out before run-
ning the actual problem solver. The idea was suggested as part of a general problem
solving framework by Polya [19]. In his book ‘How to Solve It’, he proposed some
general heuristics for tackling problems of a mathematical nature, including an initial
inspection of the problem to understand the condition that must be satisfied by its solu-
tion. For example, is the condition sufficient to determine the problem’s “unknown”?
And is there redundancy or contradiction in the condition? Polya summarised by ask-
ing the following:

‘Is our problem “reasonable”? This question is useful at an early stage of our
work if we can answer it easily. If the answer is difficult to obtain, the trouble
we have in obtaining it may outweigh the gain in interest.” (Polya, 1957).4

It is interesting to note that the arithmetic example given above first abstracts the prob-
lem instance to a different ‘space’ (i.e., from real numbers to that of odd and even
numbers), to which a simpler algebra can be applied. We note that much of the prob-
lem instance detail has been ignored to keep the plausibility test simple. On the other
hand, enough detail has been retained for the test to reflect the current problem
instance and for it to be useful. In this sense, the plausibility test has approximated the
task. In the next section, we define a more precise notion of plausibility approximation,
and explain how it can be applied to problem-solvers.

3 The Plausibility Approximation to Fitness-for-Purpose

We classify proposed solutions to a problem as either plausible values, candidate val-
ues, or actual values. Informally, a plausible value is any solution which cannot be
ruled out by applying such reasoning as that in the arithmetic or logical examples
above. A candidate value can be a solution to the problem in some cases. An actual
value is the solution in a given case. It is worth noting that all candidate solutions are
also plausible, and any actual solution is always a candidate solution (see Figure 2).

3. Many Al programs perform searches of problem spaces which grow exponentially with the
size of the problem.

4. One way to determine whether the plausibility test is useful is to compare the computational
complexities of the problem solver and the plausibility test. If the order of complexity of the
plausibility test is lower than that of the problem solver, we might assume it is reasonable to
apply the plausibility test first. Unfortunately, this model takes no account of the utility of the
information gained from the plausibility test.

296 S. White and D. Sleeman

FLITS S L7
An Actual /;,;,///////////;4,/
Solution | /77 Y, Set of
i/) Plausible
7 % Solutions
/, X ///,
42 I/ S
g ; y gy
)
Universal L/, Set of
Set Candidate
Solutions

Figure 2. Venn Diagram showing the relationships between plausible, candidate, and actual
solutions

As an example of this classification, consider the formula for the area of a circle, .
Suppose that we know r, the radius, to be larger than 1, but no greater than 10, i.e.,
re[l, 10] and 7% €[1, 100]. Now we should like to define ranges of plausibility and
candidacy for the value of the circle’s area. The range of candidate values is [, 1007],
but since 7 is rather a difficult number to deal with, the calculation of plausibility
might approximate it to 3 for estimating the lower bound of the range, and 3.5 for esti-
mating the upper bound of the range. The lower bound of the range is therefore
lower_bound(r*) x 3 = 3; and the upper bound is upper_bound(r*) x 3.5 = 350. This
gives the range of plausibility as [3, 350]. Note that we were careful to underestimate
the lower bound of the plausibility range, and overestimate the upper bound, so that the
range of candidate values lies completely within the range of plausible values (c.f. the
theory of errors used in the empirical sciences). When evaluating the expression, an
actual value might be 78.54.

The set of plausible solutions is an approximation to the set of candidate solutions, but
we define it such that the set of candidate solutions is always contained within the set
of plausible solutions. This guarantees that an implausible solution is not a candidate
solution, so we can approximate the test for candidacy with a test for plausibility. Note
that a plausible solution may not necessarily be a candidate — plausible, but non-candi-
date, solutions are the ‘small fish’ that slip through the net! Note also that for any gain
in computational effort, testing an element for membership of the set of plausible solu-
tions must be in some sense less expensive than testing it for membership of the set of
candidate solutions.

We are applying these ideas to problem solving scenarios in which a number of knowl-
edge bases (KB, KB, ..., KB,) are assigned input roles (R, R,, ..., R,)) to a problem-

A Constraint-Based Approach to the Description of Competence 297

solver, and a desired goal G is stated. We call this a problem-solver configuration (left
hand side of Figure 3). Note that at this stage we have made no assumptions about the
representation of the knowledge; when we say ‘knowledge base’ we do not imply a set
of rules. Neither do we make any assumptions about the specificity of the knowledge
bases with respect to the given problem instance. (That is, a knowledge base might
remain constant over all problem instances, it might change occasionally, or it might
change with every instance.) In essence, any input to the problem-solver has been
labelled as a knowledge base. We use the knowledge obtained from these inputs and a
plausibility ‘description’ of the behaviour of the problem-solver to generate an output
space of plausible values. Note that under this scheme, a problem-solver ‘description’
is itself a program which implicitly describes another program by generating its plausi-
ble output. The description therefore represents a kind of model of the problem solving
task; it is a metaproblem-solver (right hand side of Figure 3). The aim of the model is
to determine whether the goal G is consistent with the plausible space generated by the
metaproblem-solver, because if G is not consistent with this space, then it will also not
be satisfied by the output of the problem-solver itself. In such cases, we need not run
the problem-solver to test its outcome.

But how can this functionality be implemented? In a naive generate-and-test approach,
we might answer the plausibility question by testing every point in the plausibility
space against the goal G. Unfortunately, this is both computationally inefficient [13],
and enables only the modelling of spaces of finite size. For a more flexible and
computationally more efficient version, we prefer a constraint-based approach5 . The
idea is that a plausibility space is expressed as a set of constrained entities. This set
could be of infinite, or indefinite, size, such as the set of even counting numbers, or the
set of all persons whose surname begins with “W’. To test the plausibility of a given
goal, its features are applied as further constraints to the plausibility space generated
by a metaproblem-solver. If the resulting space is empty, then the goal was not
plausible; if the resulting space is non-empty (or cannot easily be demonstrated to be
empty), then the goal remains plausible. Furthermore, unlike the meta-level reasoning
required for the halting problem, the question of plausibility, if defined appropriately,
can be guaranteed to terminate within a finite number of program steps, because the
meta-level need only be an approximation to the problem solving level®.

5. Consider the whimsical analogy of a man wishing to buy a pair of shoes: he does not walk
into a bookshop, pick up every book, and inspect it for its shoe-like qualities (the generate-
and-test approach). Instead, he recognises from the outset that bookshops sell books (i.e. the
plausibility space is a set of books), and that this is not consistent with his goal of buying
shoes.

6. Consider the case of the halting problem, in which we should like to determine whether a
program runs forever or halts. At the meta-level, we may choose to run the program for some
given length of time to see what happens. If the program halts within the allotted time, then
we know that it halts. Otherwise it remains plausible that it runs forever.

298 S. White and D. Sleeman

Problem-solver Metaproblem-solver

Problem-solver

Meta
Problem-solver

Plausibility .

: ith?'.
consistent with? _ Space P .

satisfies?

O Knowledge Base (KB) OR—> KB used as input in Role R
I:I Program Component |:’—> Program produces output

[777~ Space of Plausible Rel

R Knowledge Relationship between KBs

Figure 3. Problem-solver and Metaproblem-solver Configurations

Note that the plausibility refers to the combination of knowledge bases, their problem-
solving roles and the specific goal. In principle, a reassignment of knowledge bases to
different problem-solving roles could transform an implausible configuration into one
which is plausible. To avoid such anomalies, we also assign preconditions to each
problem solving role, and check that these are fulfilled by a knowledge base before
conducting a plausibility test.

More general scenarios are also possible, since plausibility spaces can also be used as
inputs to further metaproblem-solvers. Such an input space could describe the plausi-
ble output of another problem-solver, or even a knowledge acquisition tool. By cascad-
ing descriptions in this way, plausibility spaces are combined. When plausibility
spaces are used as inputs to metaproblem-solvers, the plausible output space produced
is necessarily more general than when specific knowledge bases are used as inputs.

A Constraint-Based Approach to the Description of Competence 299

Nevertheless, the output space may still contain enough knowledge to answer some
interesting questions.

4 Implementation Approach

We mentioned earlier that we prefer a constraint-based approach to answering the
question “Is the goal G contained in the plausibility space P ?”. In fact, it is crucial to
the implementation that constraints derived from the goal can be used to reduce the
size of the plausibility space without enumerating it. This technique makes the plausi-
bility test less expensive than running the problem-solver because the whole search
space does not have to be explored to determine whether a goal is implausible. It also
leads one naturally to consider an implementation using constraint (logic) program-
ming. Indeed, we can rephrase the plausibility question in the terminology of con-
straint programming: “Is the goal G consistent with the domain of the constraint
variable P ?7”. Since the tools we wished to model and the rest of the MUSKRAT frame-
work were already implemented in Common LISP, we sought to implement the plausi-
bility approximation to fitness-for-purpose using SCREAMER, a constraint logic
programming library for Common LISP [22], [23].

4.1 A Brief Introduction to SCREAMER and SCREAMER+

SCREAMER introduced two paradigms into Common LISP: firstly, it introduced a non-
determinism similar to the backtracking capabilities of PROLOG. Secondly, and more
importantly for our purposes, it used these backtracking capabilities as the foundation
for a declarative constraints package. The SCREAMER constraints package provides
LISP functions which enable a programmer to create constraint variables, (often
referred to simply as variables), assert constraints on those variables, and search for
assignments of values to variables according to the asserted constraints.

Although SCREAMER forms a very good basis for solving numeric constraint prob-
lems in Common LISP, we found it less good for tackling problems based on con-
straints of a more symbolic nature. We therefore extended the SCREAMER library in
three major directions: firstly, to improve the expressiveness of the library with respect
to constraints on lists; secondly, to introduce higher order® constraint functions such as
constraint-oriented versions of the LISP functions every, some, and mapcar; and
thirdly, to enable constraints to be imposed on CLOS’ objects and their slots. We
called the extended library SCREAMER+. A detailed discussion of SCREAMER+ is

7. Version 3.20; available at the time of writing from http://www.cis.upenn.edu/
~screamer-tools/home.html

8. A ‘higher order function’ is a function which accepts another function as an argument.

9. CLOS is the Common LISP Object System, a specification of functions to enable object-ori-
ented programming in LISP which was adopted by the ANSI committee X3J13 in 1988 as
part of the Common LISP standard.

300 S. White and D. Sleeman

outside the scope of this paper; the interested reader is referred to our recent technical
report [28]. In the next section, we provide an example of the usage of the
SCREAMERH+ library to model the fitness-for-purpose of two problem-solvers applied
to the domain of meal preparation.

4.2 A Problem Solving Scenario

Dish
Ontology

Available
Resources

Dish

Component
Preferences

Instances

Dish

Set of X
Recipes

Constraints

Designer

satisfies? " Required

Dish

Figure 4. Problem Solving in the Domain of Meal Preparation

Suppose we are applying a problem-solver which constructs solutions consistent with
some given domain and temporal constraints (a design task)'?. We have chosen to
apply the problem-solver to the domain of meal preparation because the domain is rich
and challenging, but also easily understood. Furthermore, the problem-solving task is
analogous to flexible design and manufacturing, also called just-in-time manufactur-
ing. In the domain of meal preparation, the designer is used to compose (or ‘con-
struct’) a dish which is consistent with culinary, temporal, and resource constraints,
also taking a set of dish preferences into consideration (see Figure 4).

Now suppose that we would like to use plausibility modelling on this problem-solver
by constructing its corresponding metaproblem-solver. A meta-designer is easy to con-
struct if we neglect the constraints, dish preferences, and the available resources. The
meta-designer produces a space of plausible dishes, together with their plausible prep-
aration times. These times are represented as upper and lower bounds on the prepara-
tion of whole dishes, and are derived from knowledge of the preparation times of dish

10.The task is also soluble by two separate problem solvers: the domain constraints are solved
by the first, and the temporal constraints satisfied by the second [29]. A detailed discussion of
the cascading of problem solvers is outside the scope of this paper.

A Constraint-Based Approach to the Description of Competence 301

Component Dish Dish
Instances Ontology Recipes

Meta-
Designer

o

Required consistent with? Plausibie o ‘
Dish *._Dish Space

Figure 5. Plausibility Reasoning in the Domain of Meal Preparation

components. The upper bound of the dish preparation time is set as the sum of the
durations of the composite tasks; the lower bound is the duration of the lengthiest task.
Constraints from the goal can then be applied to the space of plausible scheduled
dishes to see if inconsistencies can be detected (see Figure 5). Note that although we
advocate the use of the constraint satisfaction paradigm for the implementation of the
meta-level, this choice is independent of the implementation method used by the prob-
lem solver itself. The independence arises because the meta-layer treats the problem
solver as a black box, describing only its input/output relationship and not how it
works internally.

4.3 An Implementation of Plausibility

We have implemented a prototype of plausibility reasoning by using the knowledge
provided in Table 1: a list of dish components, together with their component type, a
measure of their dietary value, their cost and preparation time. In addition, the designer
must be told what it should construct from this knowledge. This information is pro-
vided by a dish ontology which states that a dish consists of a main component,
together with a carbohydrate component and two other vegetables. Likewise, the cost
of a dish is defined to be the sum of the costs of its component parts, and the number of
diet points associated with a dish is the sum of the diet points of its components. The
meta-designer generates upper and lower bounds for the preparation time of a dish, as
described in the previous section.

The SCREAMER+ implementation makes use of the CLOS facilities offered by defin-
ing the space of plausible dishes as a single object in which each slot (such as the main
component of the dish, the preparation time, dietary points value, and cost) is con-
strained to be plausible. In practice, this means that constraints are expressed across

302 S. White and D. Sleeman

Ingredient Diet Cost Preparation
Name Ingredient Type points? (€] Time (mins)
Lamb Chop Main (meat) 7 4 20
Gammon Steak Main (meat) 10 4 15
Fillet of Plaice Main (fish) 8 4 15
Sausages Main (meat) 8 2 10
Chicken Kiev Main (meat) 8 3 30
Quorn Taco Main (vegetarian) 6 3 10
Jacket Potato Carbohydrate 5 1 60
French Fries Carbohydrate 6 1 15
Rice Carbohydrate 6 1 15
Pasta Carbohydrate 2 1 10
Runner Beans Vegetable 1 1 10
Carrots Vegetable 1 1 15
Cauliflower Vegetable 1 1 10
Peas Vegetable 2 1 3
Sweetcorn Vegetable 2 1 5

a. Points schemes like these are commonly used by slimmers as a simplification
of calorific value. When using such schemes, slimmers allow themselves to
consume no more than, say, 40 points worth of food in a single day (the actual
limit usually depends on the slimmer’s sex, height, and weight).

Table 1. Meal Preparation Knowledge Used in Plausibility Space Generation

the slots within a single object. If the domain of one of the slot’s constraint variables
changes, then this causes propagation to the other related slots.

For example, let us inspect some plausible dish preparation times and costs:

;i Create an instance of the object

;77 An after method asserts the appropriate constraints across
;;; the object’s slots at object creation time.

USER: (setq my-dish (make-instance 'plausible-dish))
#<PLAUSIBLE-DISH @ #x99c86a>

;:; Retrieve the value of the duration slot
USER: (slot-value my-dish 'duration)
[774 integer 10:120]

A Constraint-Based Approach to the Description of Competence 303

;7 Retrieve the value of the cost slot
USER: (slot-value my-dish 'cost)
[769 integer 5:7 enumerated-domain: (5 6 7)]

This tells us that a plausible dish takes between ten minutes and two hours to prepare,
and costs £5, £6, or £7. Now let us restrict our search to a fish dish, and again inspect
the plausible values:

USER: (assert! (typepv (slot-valuev my-dish 'main) 'fish))
NIL

USER: (slot-value my-dish 'duration)
[774 integer 15:105]

USER: (slot-value my-dish 'cost)
7

The plausible range size for the preparation time of the dish has decreased, and the cost
of the dish has become bound without having to make any choices of vegetables. If the
goal were to have such a fish dish ready in less than quarter of an hour, it would fail
without having to know the details of the dish preferences or kitchen resources used by
the actual problem-solver, and without needing to run the problem-solver:

USER: (assert! (<v (slot-valuev my-dish 'duration) 15))

Error: Attempt to throw to the non-existent tag FAIL
[condition type: CONTROL-ERROR]

[1] USER:

In a similar way, if we define a quick dish to be one that takes less than half an hour to
prepare, and a ‘healthy’ dish to be one that has a dietary points count of 16 or less, then
it is easy to discover that there is no such thing as a quick dish that includes a jacket
potato, or a ‘healthy’ dish that includes gammon and french fries!

S Summary and Discussion

In this paper, we defined the fitness-for-purpose of a problem solving configuration
which consists of a problem-solver, knowledge bases, and a goal. We argued that fit-
ness-for-purpose is a particular kind of competence, and that the plausibility of a con-
figuration is a tractable approximation to fitness-for-purpose. We noted that any test for
the plausibility of a configuration should be in some sense ‘easier’ than running a
problem-solver. Constraint logic programming offers a promising approach to the
implementation of plausibility tests because it enables a knowledge engineer to write a
declarative metaproblem-solver, which makes statements about the relationship
between the inputs and outputs of the actual problem-solver. When this knowledge is
coupled with the knowledge of some goal which the user is trying to achieve, it
reduces the space of plausible results in a way that can lead to early failures. A failure
denotes the implausibility of the task. In addition, we believe that metaproblem-solvers
can deal with plausibility spaces as inputs, propagating this knowledge to a plausible

304 S. White and D. Sleeman

output space. This ability would allow us to reason about the plausibility of a goal
which is to be solved using a combination of problem-solvers.

Finally, we discuss the contributions which MUSKRAT is making. These include the
following:

1. A notation for representing the competencies of methods and the content of
knowledge sources.

2. The further development of the technology of constraint satisfaction
through our extension to the SCREAMER package.

3. Formulation of the idea of ‘economical’ problem solving and the investiga-
tion of its relationship to the description of problem solving methods.

4. The provision of a framework which unifies problem solving, knowledge
acquisition and knowledge transformation/refinement.

5. The development of a method to determine whether it is plausible/likely that
knowledge bases can be reused by a particular problem solver.

Our notation for representing the competencies of problem solvers, and the technology
we have chosen for proving their properties differs considerably from the related
works of Wielinga et al. [30], Fensel et al. [6], [7], and Pierret-Golbreich [18]. The dif-
ferences have evolved because we have been working towards a different, but associ-
ated, objective. Unlike the methodology of Wielinga et al., for example, we assume
our problem solvers exist and seek to describe them as they are, rather than attempting
to construct them as we would like them to be. Furthermore, since we are building an
advisory system for novice users of problem solvers, we have strong requirements for
operational descriptions, and a fully automatic proof technique. Pierret-Golbreich
argues that formal methods should be used to describe problem-solving methods and
that this offers a means to decide on a component’s reusability. Since such methods are
not operational, however, this approach cannot be applied to our problem. Fensel &
Schonegge have operationalised their proof technique, but its powerful proof mecha-
nisms are necessarily interactive [6], and not suitable to be driven by novices. Our
notation, on the other hand, is declarative, operational, and sufficiently expressive to
enable the automatic derivation of interesting properties of a problem solver and the
knowledge it employs.

Our extension to the SCREAMER package, driven by our requirement for a declarative
and operational description of problem solvers and knowledge sources, has reached a
level of expressiveness that contributes to the field of constraint technology.
SCREAMER+ can be used to provide elegant solutions to many of the non-trivial prob-
lems cited as soluble by commercially available systems such as CHIP [21] and
ECLIPSE [26]. The LISP-based nature of SCREAMER+, however, has also helped it to
gain advantages over its PROLOG-based counterparts, such as the ability to assert con-

A Constraint-Based Approach to the Description of Competence 305

straints on expressions which take functions as arguments. This is important in the cur-
rent context when one considers that a function might be the realisation of a PSM.

Our ideas of economical problem solving have been motivated by the requirement to
generate advice on the suitability of problem solvers ‘on the fly’ at run-time. Concep-
tually, some of the techniques applied can be seen variously as applications of abstrac-
tion [9], or special cases of generalisation transformations within the plausibility
framework of Collins and Michalski [5], [17]. In contrast to these approaches, which
classify their methods according to the morphology of their mappings, we are investi-
gating the knowledge-level dependencies of each technique in terms of domain, task,
and method.

The fourth contribution of MUSKRAT is to create a unified framework for problem
solving, directed knowledge acquisition, and knowledge transformation. This aim is
shared by the generalised directive models (GDM) work of O’Hara, Shadbolt and van
Heijst [14], but there are significant differences as their work takes place in the context
of analysing source materials and attempting to co-evolve domain ontologies as well as
the appropriate model for the task; in some cases a KA task is activated. In the case of
MUSKRAT, the task to be solved and the problem solver to be used have already been
identified. MUSKRAT seeks to discover whether an existing knowledge base can be
used without change with the identified problem solver, whether it can be transformed
before use, or whether it is necessary to acquire a completely new knowledge base
using a KA tool. Other work which has sought to provide a common framework for
problem solving and KA includes MOBAL [15], VITAL [16], and NOOS [1], [2].

Our contribution to the topic of knowledge base reuse is most closely related to
Puppe’s work [20] and the Protégé project [8]. Puppe has realised, as do O’Hara et al.
[14] that as experts learn more about the domain, their perspectives on the task may
change, and hence it is highly desirable that acquired knowledge can be used with a
different algorithm from the one for which it was initially acquired. Puppe confines his
attention to classification tasks, and notes that there are a number of different classifi-
cation algorithms which process the same information in different ways. He discusses
a number of algorithms including CATEGORICAL (which produces decision trees/
tables), heuristic classifiers (which use heuristic rules) and case-base reasoners.
Puppe’s important insight was to reimplement several classifiers so that they have
common data files which can be readily reused. In MUSKRAT, however, we have set up
a more general framework in which a knowledge base initially used with a PSM for a
classification task might be reused with a different PSM for synthesis or planning.

Protégé’s long term goal is to build a tool-set and methodology for the construction of
domain-specific KA tools and knowledge-based systems from reusable components.
The project plans to develop a variety of methods and knowledge bases, all packaged
as CORBA (Common Object Request Broker Architecture) components. Knowledge
bases are made available on a server which uses the OKBC (Open Knowledge Base
Connectivity) protocol, enabling developers to query the frame-based knowledge with
functions such as get-class-all-subs to retrieve classes, get-frame-slots to

306 S. White and D. Sleeman

retrieve slots, and get -class-all-instances to retrieve the instances of a class. A
single method, propose-and-revise, is available within the framework to date, but there
are several knowledge bases which have been used for the VT (elevator-configuration)
task, U-Haul (truck selection), as well as the Ribosome and tRNA configuration tasks.
In order for a particular method to reuse knowledge from a particular knowledge base
a mediator must be manually encoded for each method/KB pair. However, Gennari et
al. [8] argue that given the similarities in the representations of the knowledge bases,
there will be many commonalities between the various mediators needed. This already
reduces the workload required to produce the mediators, and the Stanford group envis-
ages partially automating mediator production in the future. MUSKRAT’s third case
(see section 1) corresponds to the situation for which Protégé currently creates media-
tors. Whilst Protégé assumes that a mediator is necessary, MUSKRAT has evolved a
test to determine whether an available knowledge base might be directly reusable for
the given task. If this is the case, no mediation or adaptation is required.

Complementary to the competence description of problem-solvers, we believe that the
plausibility approach can also be used to describe the competence of knowledge acqui-
sition tools. We have already made some progress on the plausible outputs of a reper-
tory grid tool, and also believe that we can similarly describe plausible decision trees
[29]. Using these techniques, we believe it will be possible to show that a given knowl-
edge acquisition tool cannot produce a required knowledge base. If this research direc-
tion is successful, knowledge acquisition will become more efficient because questions
could still be answered about the plausibility of the task at hand without carrying out
the details of the knowledge acquisition task.

Acknowledgements

This work is financially supported by an EPSRC studentship. The MUSKRAT frame-
work was initially conceptualised by Nicolas Graner; further inspiration came from the
Machine Learning Toolbox Project (ESPRIT project 2154). We are very grateful to the
anonymous referees who helped to improve this paper by providing useful comments
on an earlier draft.

References

1. Arcos, J. L., Plaza, E., (1994), “Integration of Learning into a Knowledge Model-
ling Framework”, in Proceedings of the Eighth European Knowledge Acquisition
Workshop (EKAW °94), LNCS, Springer Verlag.

2. Arcos,J. L., Plaza, E., (1997), “Noos: An Integrated Framework for Problem Solv-
ing and Learning”, Research Report 97-02, Institut d'Investigacié en Intelligencia
Artificial (ITIA), Barcelona, Spain.

3. Benjamins, V. R., Plaza, E., Motta, E., Fensel, D., Studer, R., Wielinga, B., Sch-
reiber, G., Zdrahal, Z., Decker, S., (1998), “IBROW3 — An Intelligent Brokering
Service for Knowledge Component Reuse on the World-Wide Web”, in proceed-

A Constraint-Based Approach to the Description of Competence 307

ings of the Eleventh Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop (KAWOS), Banff, Alberta, Canada.

4. Benjamins, V. R., Wielinga, B., Wielemaker, J., Fensel, D., (1999), “Brokering
Problem Solving Knowledge on the Internet”, in the proceedings of the Eleventh
European Workshop on Knowledge Acquisition, Modeling, and Management
(EKAW “99), LNCS, Springer Verlag.

5. Collins, A., Michalski, R. S., (1989), “The Logic of Plausible Reasoning: A Core
Theory”, Cognitive Science, Vol. 13, pp. 1-49.

6. Fensel, D., Schonegge, A., (1997), “Using KIV to Specify and Verify Architectures
of Knowledge-Based Systems”, in Proceedings of the Twelfth International Con-
ference on Automated Software Engineering (ASEC-97), Incline Village, Nevada.

7. Fensel, D., Schonegge, A., (1998), “Inverse Verification of Problem Solving Meth-
ods”, International Journal of Human-Computer Studies, Vol. 49, No. 4, pp. 339-
361.

8. Gennari, J. H., Cheng, H., Altman, R. B., Musen, M. A., (1998), “Reuse, CORBA,
and Knowledge-based Systems”, International Journal of Human-Computer Stud-
ies, Vol. 49, No. 4, pp. 523-546.

9. Giunchiglia, F., Walsh, T., (1992), “A Theory of Abstraction”, Artificial Intelli-
gence, Vol. 56, No. 2-3, pp. 323-390.

10. Graner, N., Sleeman, D., (1993), “MUSKRAT: A Multistrategy Knowledge Refine-
ment and Acquisition Toolbox”, in proceedings of the Second International Work-
shop on Multistrategy Learning, R. S. Michalski and G. Tecuci (Eds.), pp. 107-119.

11. Imielinski, T., (1987), “Domain Abstraction and Limited Reasoning”, in Proceed-
ings of the Tenth International Joint Conference on Artificial Intelligence, pp. 997-
1003.

12. Johnson, J., (1997), “Mathematics, Representation, and Problem Solving”, Mathe-
matics Today (Bulletin of the Institute of Mathematics and its Applications), Vol.
33, No. 3., pp. 78-80.

13. O’Hara, K., Shadbolt, N., (1996), “The Thin End of the Wedge: Efficiency and the
Generalised Directive Model Methodology”, in Shadbolt, N., O’Hara, K., Sch-
reiber, G., (Eds), Advances in Knowledge Acquisition, proceedings of the 9th Euro-
pean Knowledge Acquisition Workshop (EKAW 96), Nottingham, UK, pp. 33-47.

14. O’Hara, K., Shadbolt, N., van Heijst, (1998), “Generalised Directive Models: Inte-
grating Model Development and Knowledge Acquisition”, International Journal of
Human-Computer Studies, Vol. 49, No. 4, pp. 497-522.

15. Morik, K., Wrobel, S., Kietz J-U., Emde, W., (1993), “Knowledge Acquisition and
Machine Learning: Theory, Methods and Applications”, Academic Press, London.

16. Motta, E., O’Hara, K., Shadbolt, N., (1996), “Solving VT in VITAL: A Study in
Model Construction and Knowledge Reuse”, International Journal of Human-
Computer Studies, Vol. 44, No. 3, pp. 333-371.

17. Oroumchian, F., (1995), “Theory of Plausible Reasoning”, in Information Retrieval
by Plausible Inferences: An Application of the Theory of Plausible Reasoning of
Collins and Michalski, PhD Thesis, School of Computer and Information Science,
Syracuse University, New York.

308 S. White and D. Sleeman

18. Pierret-Golbreich, C., (1998), “Supporting Organization and Use of Problem-solv-
ing Methods Libraries by a Formal Approach”, International Journal of Human-
Computer Studies, Vol. 49, No. 4, pp. 471-495.

19. Polya, G., (1957), “How To Solve It: A New Aspect of Mathematical Method”,
Doubleday Anchor Books, New York.

20. Puppe, F., (1998), “Knowledge Reuse among Diagnostic Problem-Solving Meth-
ods in the Shell-Kit D3”, International Journal of Human-Computer Studies, Aca-
demic Press, Vol. 49, No. 4, pp. 627-649.

21. Simonis, H., (1995), “The CHIP System and Its Applications”, in Montanari, U.,
Rossi, F., (Eds.), Principles and Practice of Constraint Programming, proceedings
of the First International Conference on the Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science Series, Springer Verlag, pp.
643-646.

22.J. M. Siskind, D. A. McAllester, (1993), “SCREAMER: A Portable Efficient Imple-
mentation of Nondeterministic Common LISP”, Technical Report IRCS-93-03,
University of Pennsylvania Institute for Research in Cognitive Science.

23.J. M. Siskind, D. A. McAllester, (1993), “Nondeterministic LISP as a Substrate for
Constraint Logic Programming”, in proceedings of AAAI-93.

24. Sleeman, D., White, S., (1997), “A Toolbox for Goal-driven Knowledge Acquisi-
tion”, in proceedings of the Nineteenth Annual Conference of the Cognitive Sci-
ence Society, (COGSCI '97), Stanford, CA.

25.Turing, A. M., (1937), “On Computable Numbers, with an Application to the
Entscheidungsproblem”, in Proceedings of the London Mathematical Society, Vol.
42(ii), pp. 230-265; correction Vol. 43, pp. 544-546.

26. Wallace M. G., Novello, S. and Schimpf, J., (1997) “ECLIPSE : A Platform for
Constraint Logic Programming”, ICL Systems Journal, Vol 12, Issue 1, May 1997.

27. White, S., Sleeman, D., (1998), “Providing Advice on the Acquisition and Reuse of
Knowledge Bases in Problem Solving”, in proceedings of the Eleventh Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop (KAWOS),
Banff, Alberta, Canada.

28. White, S., Sleeman, D., (1998), “Constraint Handling in Common LISP”, Technical
Report AUCS/TR9805, Department of Computing Science, University of Aber-
deen, Scotland, UK.

29. White, S., (forthcoming), “Enhancing Knowledge Acquisition with Constraint
Technology”, PhD Thesis, Department of Computing Science, University of Aber-
deen, Scotland, UK.

30. Wielinga, B. J., Akkermans, J. M., Schreiber A. Th., (1998), “A Competence The-
ory Approach to Problem Solving Method Construction”, International Journal of
Human-Computer Studies, Vol. 49, No. 4.

Holism and Incremental Knowledge Acquisition

Ghassan Beydoun and Achim Hoffmann

School of Computer Sciences and Engineering
University of New South Wales
Sydney, NSW 2052, Australia
Email: {ghassan, achim} @cse.unsw.edu.au

Abstract. Human experts tend to introduce intermediate terms in giving their
explanations. The expert’s explanation of such terms is operational for the con-
text that triggered the explanation, however term definitions remain often in-
complete. Further, the expert’s (re) use of these terms is hierarchical (similar to
natural language). In this paper, we argue that a hierarchical incremental knowl-
edge acquisition process that captures the expert terms and operationalises these
terms while incompletely defined makes the KA task more effective. Towards
this we present our knowledge representation formalism Nested Ripple Down
Rules (NRDR) that is a substantial extension to the Ripple Down Rule (RDR)
KA framework. It allows simultaneous incremental modelling and knowledge
acquisition. In this paper we analyse the conditions under which RDR converges
towards the target knowledge base (KB). We will also show that the extra
maintenance cost of an NRDR KB is minimal, and that the maintenance of
NRDR requires similar effort to maintaining RDR for most of the KB develop-
ment cycle.

1 Introduction

In everyday use of language people use very complex processes. When a simple sen-
tence: “No smoking on planes” is understood by a person, s/he has to know what
smoking means, what planes are, and that a person must be flying on the plane for the
sentence to cause him/her to alter his behaviour (which of course implies that s/he
must know what flying is).

To explain that sentence to an extraterrestrial being of comparable intelligence, a
human will have to introduce new terms. For example in explaining what a plane is he
may proceed: a plane is a vehicle used to transport people via air. Then s/he will have
to define what s/he means by “vehicle”, “transport”, “air”.. As s/he explains these
terms s/he will have to consider the context of each term s/he chooses to use. For ex-
ample, the alien may have previously heard the sentence “he has certain air around
him” and wonders if this is the same “air” where plane travels. In both sentences the
meaning of “air” is a function of the sentence, its structure and the epistemological
links between all the constituent terms. In linguistic this is known as semantic holism
which is supported by many contemporary philosophers like Quine [5] and Putnam

[4].

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 309-314, 1999.
© Springer-Verlag Berlin Heidelberg 1999

310 G. Beydoun and A. Hoffmann

Even in restricted domains, human expertise is believed to be holistic in nature.
This causes experts to struggle to express themselves as they explain (justify) their
expertise. This holism of expertise makes domain conceptualisation difficult. To ease
this difficulty experts use intermediate abstractions that they (re) use in further expla-
nations. For example in chess, experts introduce notions like “centre development” to
justify some of their opening moves. When asked to explain such intermediate con-
cepts, experts may oversee the definition of the concept in some contexts. They fail to
provide a complete explanation that always covers their use, rather they provide an
operational solution sufficient for the purpose of explaining the context on hand. Ex-
pert articulation of intermediate concepts may depend on his articulation of other
concepts, which may not yet be made explicit or completely defined. Hence the in-
completeness of these intermediate concepts is likely (if not often unavoidable).

Adapting the incremental knowledge acquisition process to match the expert’s natu-
ral tendencies in giving his explanations will enable the expert to build an operational
knowledge base more effectively. Towards this we present our knowledge representa-
tion formalism Nested Ripple Down Rules (NRDR), which allows the expert to give
his explanations using his own terms. These terms are operational while still incom-
plete. To ease the maintenance of these terms, we use a Ripple Down Rule (RDR) tree
for every term.

Any given concept in an NRDR knowledge base may depend on a number of other
concepts. A change of one concept should ensure that the remaining concepts remain
consistent with respect to this change. To maintain consistency of the knowledge base
access to all past seen cases is required.

2 Presenting Nested RDR

An RDR tree is a collection of simple rules organised in a tree structure [2]. Every
rule can have two branches to two other rules: A false and a true branch. Examples are
shown in figure 2, where every block represents a simple RDR. When a rule fires a
true branch is taken, otherwise a false branch is taken. If a 'true-branch' leads to a
terminal node ¢ and the condition of ¢ is not fulfilled the conclusion of the rule in the
parent node of ¢ is taken, hence the inference is handled implicitly within the structure
of the knowledge. If a 'false-branch' leads to a terminal node 7 and the condition of ¢ is
not fulfilled the KB is said to fail and requires modification. An important strength of
RDRs is that they can be easily modified in order to become consistent with a new
case without becoming inconsistent with previously classified cases .

Using NRDR [1], the expert can introduce his/her vocabulary, s’/he has more free-
dom to express him/herself naturally than using normal RDRs. S/He uses RDR struc-
ture for allowing him/her to define a conceptual hierarchy during the KA process.
Every concept is defined as a simple RDR tree. Conclusions of rules within a concept
definition have a boolean value indicating whether the concept is satisfied by a case or
not. Defined concepts can in turn be used as higher order attributes by the experts to
define other concepts. The elementary level is the level of domain primitives. In the
next section, we introduce technical issues in having holistic features in KA.

Holism and Incremental Knowledge Acquisition 311

i
Rule B1.1

it e it f /

Rule C1.2
42—t

a1 = &

Rule ALl Rule A2.1 Rule B2.1
Plp2->+A2 p1,p3-> +B2

42, B2 > +Al

Fig2.1: An example of nested rules. An update in cocept A2 can cause changes in the

meaning of rules in the KB.

3 Supporting KA of Holistic Expertise with NRDR

An NRDR KB requires modification if a false-branch’ leads to a terminal node ¢ and
the condition of # is not fulfilled and the expert disagrees with the default conclusion
returned by the knowledge base. The hierarchical structure of NRDR causes problems
for keeping the entire KB consistent when a single concept definition needs to be
altered (see figure 2.1). This is expected as after a concept definition is modified other
concept definitions may be affected.

Given a case x that requires the KB to be modified, the modification can occur in
a number of places. For example (figure 2.1) say case x satisfies conditions A/ and B1
in rule CI.1 but the expert thinks that case x is not C1/, then the KB needs to be modi-
fied to reflect this. A rule can be added as an exception for the RDR tree describing
C1, or alternatively, Al can be changed by updating its definition, or A2 in rule Al.]
can be changed; and so forth. A more serious maintenance issue is dealing with incon-
sistencies! due to localised updates in the KB. For instance, if the expert updates A/
by updating A2 in rule Al.1, he may inadvertently change rule C/.2 that contains A2.
Hence, the feature of local impact of refinement no longer holds. Dealing with incon-
sistencies requires access to all past seen cases correctly classified by the KB. In sim-
ple RDRs, a corner stone case is associated with every rule. In NRDR, every rule has
a set of corner stone cases. This set contains all the cases that a rule classified cor-
rectly under the verification of an expert. These verified classifications must al-
ways hold. Cases may travel between sets because of the interactions within an NRDR
KB. During check for inconsistencies, some of those sets of cases are classified again.
Now, we give an example of a small KA session that produces inconsistencies. The
KA task is to build a knowledge base to choose male models for an army scene in a
Hollywood movie. The expert is an eccentric film producer who enjoys using expert
systems in his work (see table 2.1). The KB starts with the default rule “If True then

1 Given a case c classified by the KB, if this classification is inconsistent with respect to a correct past
classification, then c is called an inconsistency.

312 G. Beydoun and A. Hoffmann

Accept”. After meeting the first case, the expert enters the rule “If Too_heavy then Reject”,
and explains the term ““too_Heavy” with the rule “If weight > 80 then too_Heavy”. The

If True then 1f Too_heavy if Too_heavy if weight > 80 if body_fat < 7%

Accept then Reject and Too_lean then Too_heavy then Too_lean

Accept
Accepr.! Accepr? —_— Too_ecrvy.d Too_tecn. 1

if Too_lean 5 halgh.l =18
then Reject and weight < 80

then Too_lean

s Too_jem.2

"Too_heavy" "Too_lean"

"Accept” concept RDR concept RDR concept RDR

Fig2.3: Addition of “If body fat > 9 % then Too heavy” to account for case 5 causes case 4 to become an inconsistency.

expert also rejects case 2 as he finds the candidate too skinny. He enters a new rule to
the highest level concept “Accepr”, the rule entered is “If Too_lean then Reject’, it gets
attached to the false link of rule Accept.2. He explains the new concept “Too_lean” : “If
body fat < 7% then Too_lean”. The expert accepts the third candidate although he’s
“Too_heavy” and “Too_lean”, so he enters the exception rule “If Too_heavy and Too_lean then
Accept”, this rule is attached to the true link of rule Accept.2. See figure 2.3. Case 4 is
rejected on the basis of rule Accept.3, the concept “Too_lean” is updated to cover this
case, the expert enters a new rule “If height > 1.8 and weight < 80 then Too_lean”. Finally,
case 5 is rejected by the expert on the basis of rule Accept.2, he updates the concept
“Too_heavy” to cover this case. He enters “If body fat > 9% then Too_heavy”. This final rule
also covers case 4. This makes it accepted by the KB (on the basis of rule Accept.4),
note this case was rejected earlier by the expert, hence it becomes an inconsistency.
To overcome this, the expert can rethink his change to concept “Too_heavy”, or he may
enter a new exception to rule Accept.4. In the next section, we will show that the in-
consistencies problem has a small impact on the KB development cost.

Case Weight Height Body Age Expert comment Deci-
number (Kg) (m) Fat % (year) sion

1 90 1.75 40 % 21 Too Heavy Reject
2 60 1.9 3% 26 Too Lean Reject
3 81 1.7 6 % 27 Too Heavy and too Lean | Accept
4 79 1.81 9.5 % 39 Too Lean Reject
5 80 1.6 9.8 % 25 Too Heavy Reject

Table2.1: The cases presented to the expert.

4 Theoretical Framework of RDR Structures

In this section we analyse the conditions under which a case becomes inconsistent. We
then analyse the relation between the convergence of NRDR KBs and frequency of
inconsistencies. The following definitions follow [6]:

Definition 1: The scope of a rule r, scope(r) is the set of objects that the rule fires for
and no exception or preceding rule fired for.

Holism and Incremental Knowledge Acquisition 313

Definition 2: The domain of a rule r, dom(r) is the set of objects that reach that rule
and for which the condition of r is satisfied.

Definition 3: The context of a rule r, context(r) is the set of objects that reach that rule
when being classified. In RDR, the context and domain of rules does not change dur-
ing maintenance and extension of the KB. This is the reason behind RDRs’ease of
maintenance. We extend the above set of definitions by the following notion:
Definition 4: The predictivity measure p of a rule r is the ratio of objects in its do-
main that are correctly classified, i.e. pred (v) = | scope (r)| [/ |dom (r) .
Observation 1: Given a rule r, in a concept definition C,, and r, uses a concept defi-
nition X that is modified by the addition of a rule r,. A case becomes an inconsistency
as a result of this update only if it falls simultaneously in the scope of the new rule r,
and the context of r,.

Clearly, not all objects in this intersection will become inconsistencies. Some cases
may migrate to new rules where they are correctly classified, and furthermore not all
cases within the intersection will migrate.

Observation 2: In an RDR tree for binary classification, rules within an exception
level n have the same conclusion. Furthermore, these conclusions alternate within the
exception hierarchy. This observation immediately follows:

Observation 3: Given a rule r, in a concept definition C, , and depth(r,) = n and r,
uses a concept definition X that gets modified by the addition of a rule r, :A case ¢
becomes an inconsistency as a result of this update only if it falls simultaneously in the
domain of the new rule r, and the context of r,, and c travels to a scope of a rule at
depth n+ 2d + 1 within C, where d >0. This leads to the following theorem:

Theorem 1: The probability of a travelling case ¢ becoming an inconsistency as a

result of an update is < ¥2 as long the predictivity p is larger than 4/9 .
Proof: By observation 1, the total probability P, that a travelling case does not become an inconsistency:

B=pH1-p)’+(1-p)*+....
Similarly, the total probability P, that a travelling case becomes an inconsistency:
P,=(1-p)+1-p) +d-p)...

Every corresponding term in P, is larger than every corresponding term in P, except for the first term
where the result of the comparison depends on the value of p. That is: p > I- p iff p> %> . However, in-
cluding the second term in the comparison will give us 0.44 instead of V2, i.e :

p+(1-p)° > (Ip)+(I-p)° if p>044
and hence, p+(1-p)° > (I-p)+ (1-p)° ifp>4/9
and finally, because P, + P, =1 and P,> P, iff p > 4/9 Theorem I follows. QED##

Theorem 1 tells us that even when a case travels then most likely it will not become
an inconsistency. So using observation 1 and theorem 1, given a rule 7, in a concept
definition C,, and r, that uses a concept definition X that is modified by the addition of
a rule r,, the probability of an arbitrary case becoming inconsistent as a result of this
update: %2 P (x € dom(r,)) P (x € context(r,))

Assuming uniform distribution, completion of rules on the first false link increases
accuracy by p, completion of exception level n rules increases this accuracy by p". The
addition of a rule at a level n-1 is 1/(1-p) more likely than the addition of a rule at
level n because the former has //(1-p) times larger domain. So an RDR tree develop-
ment occurs in a breadth first manner where false branches develop faster than true
branches. Hence, plotting accuracy of the KB versus its size yields the graph in figure

314 G. Beydoun and A. Hoffmann

3.3. In [3], this was empirically observed. As the RDR tree becomes more accurate,
the number of cases required to cause an addition of a rule increases, hence changing
the horizontal axis to number of cases instead of number of rules would yield an expo-
nential function with a sharper rise and flatter top. Also, as the KB develops the do-
main size of newly added rules shrinks exponentially. So noting the above probability,
we also expect the inconsistencies to decrease exponentially as shown in figure 3.3.

Fig 3.3. Inconsistencies frequency versus KB
correctness: As the KB gets larger, the incre-
mental accuracy of the rules decreases. As the
KB size increases the domain of the rules
shrinks rapidly, taking down the probability of
past cases becoming inconsistent close to 0.
Hence, most of the inconsistencies occur in the
early stages of developing an RDR concept.

Probability of
Inconsistencies

KB size (#rules)

5 Conclusion and Future Work

In this paper we have argued that KA can benefit from incorporating holistic features
onto the knowledge base. Towards this, we presented our knowledge representation
formalism, NRDRs, which is a substantial extension to RDRs. NRDR have a hierar-
chical structure that is a natural representation of the way humans give their explana-
tions. It allows the expert to view the KB as a holistic model of his knowledge. Con-
cepts are allowed to interact, but to ease the maintenance, additions are localised
within a concept. We have shown that these interactions add very little burden on the
expert.

References

1. Beydoun, G. and Hoffmann, A. Acquisition of Search Knowledge. in the 10th Euro-
pean Knowledge Acquisition Workshop. 1997.

2. Compton, P., Edwards, G., Kang, B., Lazarus, L., Malor, R., Menzies, T., Preston,
P., Srinivasan, A., and Sammut, C. Ripple Down Rules: Possibilities and Limitations.
in 6th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. 1991.
Canada.

3. Compton, P., Edwards, G., Kang, B., Lazarus, L., Malor, R., Preston, P., and Srini-
vasan, A., Ripple down rules: Turning knowledge acquisition into knowledge mainte-
nance. Artificial Intelligence in Medicine, 1992. 4: p. 463--475.

4. Putnam, H., Representation and Reality. 1988, London: MIT press.

5. Quine, W., Two Dogmas of Empiricism. Philosophical Review, 1951(1).

6. Scheffer, T. Algebraic foundations and improved methods of induction or ripple-
down rules. in 2nd Pacific Rim Knowledge Acquisition Workshop. 1996.

Indexing Problem Solving Methods for Reuse

Joost Breuker

University of Amsterdam
breuker@swi.psy.uva.nl

Abstract. This paper is primarily meant as a position paper. After more than ten
years of research on the nature of tasks, problem solving methods (PSMs) and
ontologies, it appears to me that indexing PSMs by their function (task, goal,
problem type) is not a good idea. The alternative — indexing by preconditions
of their reuse — does not capture “what a PSM is about”. A third approach is
sketched in which not PSMs, but their major components — solution generators
and solution testers — are indexed by (the explanation of) their operations.

1 Libraries of PSM and their indexing

There is a large consensus and experience that the two major components of a knowl-
edge system — its domain knowledge and its task structure (reasoning) — can be ab-
stracted into ontologies, respectively problem solving methods (PSM) to enable reuse.
However, as the number of potentially reusable ontologies or PSMs grows, and are col-
lected in libraries, such as the Ontolingua server [FFR97], or the CommonKADSlibrary
of PSM [BdV94], the problem of how these reusable components should be indexed
becomes very serious. [VHSWO97] and [VB96] have proposed to use “core” ontologies
of fields of practice — e.g. medicine, law, electrical engineering — for covering and in-
dexing large domain ontologies. These indexes are functional, abstract categories that
represent “what a field or domain is about” are not only useful to obtain access to more
domain specific terms, but also allow the indexing of (re)sources of knowledge in such
a way as to enable management of knowledge. This may not come as a surprise, as ab-
stract terminology, i.e. knowledge itself, has evolved just for this role. For instance the
term ‘disease’ collects processes and organisms that interfere with normal biological
processes. Human memory is highly organized and indexed by abstractions.

Problem solving methods (PSMs) do not belong to objects of knowledge with a long
cultural history in mankind, and this may explain why the indexing of PSMs appears
to be more complicated than our understanding and articulation of diseases. ' Before
discussing the indexing problem of PSMs, I should point out that more is involved than
simply effective retrieval cues for a large collection of PSMs. Epistemologically ade-
quate and ontologically valid indexing reflects an understanding of the key issues in
a domain. The pivotal role of categories like ‘disease’ in medicine or ‘norm’ in law
is evident. Moreover, these categories are related in such a way that they explain how
a domain works. In medicine, an identification of a (kind of) disease is required to

! Disease is a far more complex and context dependent concept than problem solving method.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 315-322, 1999.
© Springer-Verlag Berlin Heidelberg 1999

316 J. Breuker

enable therapy selection; in law the observation or violation of a norm should be estab-
lished before legal consequences are applied, and in engineering functional and struc-
tural models are the required input for mathematical modelling [BA97]. It is suggested
that describing a core ontology for a domain or field of practice in terms of functional
categories should be related by dependencies, rather than being molded into the default
type hierarchies (taxonomies) [VB96,VBB99].

For PSMs it appeared that the most natural way to describe their roles is by reference
to notions about the kinds of tasks or problems they should solve. Typologies of tasks
were already proposed before the notion of PSM was explicit in knowledge acquisition
[HRWLS&3], and they still are the predominant way to index PSMs in libraries for their
reuse (for an overview see [VBV9S, 410-412]). I will call this indexing-by-function,
where typical terms are used like diagnosis, design, planning etc. If domain knowledge
can be indexed by functional categories, it even looks more appropriate to view PSMs
in these terms, as PSMs themselves can be viewed as functional (de)compositions. Usu-
ally, a secondary way of indexing is provided by the preconditions for (re)use of PSMs.
Preconditions consist of requirements on domain knowledge (method ontology) and the
task environment. The latter includes the task or goal itself (so we may see function as a
major precondition for re-use), but here it is about the data and specific requirements for
solutions (e.g. optimality, validity). As many of these preconditions may be implicit, the
term assumptions is often used and covers a large part of these requirements [BFS96].

In this paper I will argue that these solutions are inadequate, and that a third type
of solution which focuses on how PSMs operate may be more promising. It explains
(makes understandable) how a PSM works, not by introducing operational terms, but by
categorizing the components of PSMs into two major functions — generating solutions
and testing solutions — in terms of inference operations and test methodology.

1.1 Functional indexing

That the use of task- or problem typologies for indexing PSM may not be such a good
idea is a conclusion that was only recently suggested to me after more than a decade in
coming to grips with the nature of this type of index itself. I will review in a nutshell the
problems with these typologies. Although, builders of libraries for PSMs are careful not
to propose a (new) typology, the belief that such a typology is needed is still unshaken
(see e.g. articles in [BFE98]). Initially, the problems where related to terminological
and ontological issues [Bre94a]. However, there is also a problem in the mapping of
PSMs to these kinds of terms.

Ontology of tasks and problems The initial assumption in constructing an ontology
for function terms in problem solving is that they concern terms like diagnosis, design,
planning etc. These are the ‘natural’ terms used, and, the fact that one finds in Al fields
of research completely (and almost exclusively) dedicated to these terms. Despite this
apparent terminological consensus, the following problems have emerged (see [Bre94a]
for more arguments.)

Typology of what? Diagnosis can be classified as a goal, a task, a problem, a solution,
etc. In the context of problem solving methods it seems appropriate to see these

Indexing Problem Solving Methods for Reuse 317

terms as ‘problem-types’, as a task consists of a problem and a method to solve
it 2(see also [Cla85]).

Ambiguity of terms Terms that are used have not unequivocal definitions or exten-
sions. The definitions may have a large impact on the selection or construction of
efficient PSM, e.g. [dKMR92], but one may object that this is not because of the
notion of e.g. diagnosis itself, but because of specific preconditions on the solu-
tion (e.g. multiple vs single fault assumptions). However, the terms may refer to
completely different kinds of problems. For instance, diagnosis is used for tracing
causes of problems, but these causes may be faulty components (to explain mal-
functioning), classes of abnormal states (to identify an explanation for an abnormal
state), or histories of events (accident reconstruction). Each of these kinds of causes
constitutes completely different kinds of problems: in this sense, medical diagno-
sis is an assessment problem, and accident reconstruction is largely a (backward
chaining) planning problem. 3

Not a taxonomy Typologies of something should contain preferably mutually exclu-
sive types and and these types should cover the full scope of this something. There-
fore, problem typologies have invariably been presented as taxonomies (see [Bre94b]
for ten of such taxonomies.). They start with the distinction between synthetic and
analytic problems. The next ply contains the familiar terms like diagnosis, planning
etc., but may also have more idiosyncratic ones, like assessment, interpretation, de-
bugging, or even terms which are hard to see as problem type (e.g. instruction).
Whether they make up a complete set of mutually exclusive terms is hard to assess
as there are no really hard, formal definitions (see above). However, the trouble
with a taxonomic view becomes apparent at the next ply of such a taxonomy. At
this layer, the terms used are always the same terms as in the previous layer, but
modified with an adjective. This adjective either refers to some precondition or to
a...PSM. Parametric design is a design problem in which the problem has been
reduced to a set of given constraints that have to be resolved on the basis of the data
from the case [MZ98] *. Worse, however, are the adjectives that refer to (families
of) PSMs rather than to problem types, such as abductive diagnosis, systematic di-
agnosis, skeletal planning, refinement design etc. If the terms of the index and the
terms for what they index overlap, this layer does not add any information in the
refinement of searching for an adequate PSM. In fact, it hides what should have
been explicit in the secondary criteria for selecting a PSM — the preconditions —
and not as a choice of a PSM itself. How does one know that the diagnostic kinds
of problem at hand require an abductive method?

As a remedy for all these problems I have proposed a typology consisting of a chain
(“suite”) that better reflects the a functional view on problem types than a taxonomy,
by constructing a chain of dependencies between the types. Problem types are explicit

2 We say that problems are solved; tasks are executed.

? I reserved the term diagnosis for trouble-shooting, as this is the core kind of problem addressed
in the (model-based) diagnosis community in AL

* In fact, here one would prefer the earlier term, configuration, which is not a design problem
but a problem type of its own (assignment in the typology presented here.)

318 J. Breuker

}—={ prediction | |

| monitoring | diagnosis |

Fig. 1. A suite of dependent problem types and views

functions, i.e. terms with input and output arguments. The name of the function indi-
cates the output argument; the output of a planning function is a plan; of a diagnosis
function it is a diagnosis. A problem is defined by a discrepancy between an actual,
input state and an intended, output state. The suite in Figure 1 makes also explicit what
the required input is of a problem-type function. Diagnosis requires as an input state
that some discrepancy between predicted (expected) and observed behaviour is iden-
tified: an error. This kind of discrepancy is the result of a monitoring which takes as
its input a predicted state and compares it with an actual state. In its turn, prediction
requires a behavioural model (plan; design) with assigned parameter values, etc. In this
way, the suite indicates which kinds of already solved problems, either as instances or
as generic knowledge is required to identify a certain problem type by regressing over
this suite. For instance, diagnosis problems can only occur if all dependent problems
have been solved, i.e. only for an actually working and known system. This suite is not
fixed for a particular grain-size level, because these functions do not have a body; the
body would consist of PSMs (which turn the problem type into a task). Therefore, these
dependencies between also occur within PSMs. For instance, the test parts of PSMs can
be all represented by the following chains of dependencies:

asstgnment — assessment

assignment — prediction — monitoring

Does it help? This suite may be an improvement as an indexing tool over the loosely
constructed taxonomies, but the question is still whether it works better. The answer is:
not much, and the reason is that PSMs vary largely in specificity. The scope of reuse may
range from almost the full set of problem types to a very specific version of a problem
type. [MZ98] make the distinction between task dependent and task independent PSMs.
The latter are PSMs that are good for almost anything: they have a large scope of reuse,
but their use is rather limited, which coincides largely with what is conceived as “weak
methods”. Examples of these good-for-all methods are heuristic classification and cover
and differentiate. Consistency based diagnosis is a good example of the other extreme,

Indexing Problem Solving Methods for Reuse 319

and it is debatable whether it completely solves the diagnosis problem as it returns only
a faulty component, but not what the fault exactly is. There is no reason to belief that this
is a real dichotomy. PSMs may differ in strength and scope (“use and reuse”), and they
may even be scaled up or down in strength, trading off in scope [FS98,tTvHSW96].
Therefore, problem-types are not the kind of unit to indicate the scope of a PSM, in
particular because this scope can even be manipulated.

1.2 Features, requirements, preconditions, assumptions and other creatures

If the use of assumptions has such an impact on the effectiveness of a PSM we may use
these as a primary index, or, rather to make no longer a distinction between a primary
indexing by function and a secondary by requirements. Fensel & Straatman [FS98] see
the role of assumptions to increase the efficiency of PSM. In general, assumptions are
not validated by the problem solver itself (“reasoning service”), but are the consequence
of insights and experiences in the domain. Some of these may have become part of
the domain knowledge (e.g. compiled out heuristics; taxonomies of solutions); others
may constrain the solutions (e.g. multiple faults are so rare that we can work with a
single fault assumption.). Indeed, assumptions make up a far richer indexing model,
but, as the title of this subsection already indicates there is even far less consensus and
insight of what these things are than for problem types. Moreover, the terms interact
heavily. Multiple faults are typical for faults: they are not multiple solutions. Benjamins
et al have presented some classification of assumptions that are inherent to PSMs for
diagnosis, but the classification is rather flat and does not allow for easy refinement
[BFS96].

2 Components of PSMs in context

The alternative to a functional view is an operational one. In CommonKADSboth per-
spectives were used to describe PSM by inference structures. The problem types are
functions that match PSM functions and the PSMs themselves bottom out in canonical
inferences. These inferences are defined as operations on domain ontology representa-
tion categories, i.e. a kind of KL-ONE ontology. There is no reason that an operational
view could not be applied to the higher levels as well. Beys et al. have proposed to use
“task neutral” terms in describing PSM in an operational way [BBvH96]. They show
that the scope of reuse may be extended in this way. By giving other names to roles in
PSMs one does not change its effectivity, but the names are terms that have other onto-
logical commitments. For instance, a causal network becomes an instance of a directed
graph, so that also non-causal networks can fit the method ontology of a PSM. This
result shows at least that the PSM (cover & differentiate, C&D) has a larger scope than
originally foreseen; not necessarily that the PSM itself has changed. However, this kind
of operational specification easily slips into a symbol level account of a knowledge level
structure: knowledge structures become data structures. In this way, ontological distinc-
tions may evaporate. This is possible because C&D does not have a real interpretation
of causality. In fact, any chain of implications can be handled by C&D. If one codes a
causal network by its inverse — is-the-result-of — a medical KBS may ask for diseases to

320 J. Breuker

find a common symptom. Viewing PSMs as algorithms applied to data structures may
indeed work as an eye-opener to show that (knowledge level) prejudices about (weak)
PSMs (see also [MZ98]). Even if a functional perspective is more natural for PSMs,
there is certainly an advantage in indexing PSMs in what they are, rather than what they
deliver, because this will better reflect similarities and distinctions between PSMs.

2.1 Contexts of discovery and of justification

An operational description of an artifact, like a PSM, invariably has to take into account
how its components behave. However, these components are themselves the result of
a functional decomposition. Therefore, it is unavoidable to take their architecture as
a starting point. In (strong) PSMs two major components can be distinguished: those
which generate solutions, and those which test these solutions. > One way to argue
for this distinction is that it maps onto the explanation, respectively justification side
of solutions to problems (see [Bre94a] for more arguments). The requirements to find
solutions are completely different from those that are aimed at justifying them: in epis-
temology of science, the context of discovery and the context of justification are worlds
apart.

Generating solutions There are two major ways by which solutions can be gener-
ated ([Cla85,dV88]): (1) by selecting from a prespecified set, i.e. by classification, or
(2) by assembling them from available elements, i.e. by construction. This distinction
suggests a direct mapping to the analytic vs synthetic problem types. However, many
synthetic problems are solved by classification PSMs. For instance, the ‘propose’ sub-
task in propose & revise selects conclusions. Most synthetic problems are solved by
some combination, as e.g. in skeletal planning or in refining solutions, where more
specific components are added (assembly), and/or specific values are selected. Despite
this combined category, the indexing by method that solutions are generated appears to
provide a more clearcut indexing of PSMs by an operational perspective than by the
functional perspective (see also [BFS96])).

Testing solutions A primary indexing of the testing parts of a PSM can be found in
the nature of the arguments for supporting or rejecting a solution. Three major ways of
generating argument can be distinguished:

— By verification: here it is the internal consistency of a solution that is at stake, e.g.
via formal proof procedures.

— By validation: i.e. the testing whether the solution covers empirical data which are
not explicitly included in the proposed or hypothesized solution. Two subtypes can
be distinguished: (1) by satisfying external requirements (assessment) and (2) by
prediction of observable behaviour. The latter, of course, refers to methodologies
for empirical research: a world by itself.

3 In (very) weak methods these two components may be intertwined: e.g. theorem proving, sim-
ple classification. It is somewhat paradoxal that the typical weak method ‘generate & test’ is
the cleanest example of the distinction. Generate & test is rather a paradigm that covers almost
all PSMs I know of.

Indexing Problem Solving Methods for Reuse 321

— By debate i.e. by “dialogical” investigation of assumptions underlying solutions
and tests.

These methods include one another successively. For debate, a KBS needs to know
about the assumptions, underlying principles and some meaning of the concepts it uses.
Although these competences are very expensive to terms of man and machine effort, in
some fields (e.g. law) such a capability appears to be unavoidable for practical applica-
tion.

2.2 Concluding

As efficiency is the key to problem solving [FS98], this distinction shows easily were
efficiency can be gained. In many respects, testing by validation is certainly the most
expensive part. It may involve complex planning of manipulations and observations (cf
model based diagnosis). Data may be lacking, may be unreliable, etc. Therefore, much
can be gained by assuming defaults, reliability of data, generality of concepts, etc. and
relaxing requirements on justification. However, the costs can also be drastically cut if
the solution generator focuses fast on a correct solution space. Here efficiency can be
gained not so much by assumptions and heuristics but in particular by control regimes
that exploit feed back from the testing components (refinement cycles) (see [MZ98] for
a good example). In summary, I argue that (1) however natural, problem types are not
a good primary index for PSMs, that (2) assumptions are too diversified to take such a
role (now) and that they only tell part of the efficiency story, that (3) that PSMs should
be indexed by the way their major components — generating and testing solutions —
operate.

References

[BA97] P. Borst and H. Akkermans. Engineering ontologies. International Journal of
Human-Computer Studies, 46:365 — 408, 1997.

[BBVH96] P. Beys, R. Benjamins, and G. van Heijst. Remedying the reusability-usability
trade-off for problem solving methods. In B.R. Gaines and M. Mussen, editors,
Proceedings of the KAW-96, Banft, Ca, 1996.

[BdV94] Joost Breuker and Walter Van de Velde, editors. The CommonKADS Library for
Expertise Modeling. 10S-Press, Amsterdam, 1994.

[BFE9S] R. Benjamins and D. Fensel-(Eds.). Special issue on Problem Solving Methods.
International Journal of Human-Computer Studies, 49:305-649, 1998.

[BFS96] V.R. Benjamins, D. Fensel, and R. Straatman. Assumptions of problem solving
methods and their role in knowledge engineering. In W. Wahlster, editor, Poceed-
ings ECAI-96, pages 408—412, 1996.

[Bre94a] J. Breuker. Components of problem solving. In L. Steels, G. Schreiber, and W. Van
de Velde, editors, A Future for Knowledge Acquisition: proceedings of the EKAW-
94, European Knowledge Acquisition Workshop, pages 118 — 136, Berlin, 1994.
Springer Verlag.

[Bre94b] Joost Breuker. A suite of problem types. In Joost Breuker and Walter Van de Velde,
editors, The CommonKADS Library for Expertise Modeling. 10S-Press, Amster-
dam, 1994.

322 J. Breuker

[Cla85]

[dKMR92]

[dV88]

[FFR97]

[FS98]

[HRWLS3]

[MZ98]

W.J. Clancey. Heuristic classification. Artificial Intelligence, 27:289-350, 1985.

J. de Kleer, A.M. Mackworth, and R. Reiter. Characterizing diagnoses and systems.
Artificial Intelligence, 56(2-3):197 — 222, 1992.

Walter Van de Velde. Inference structure as a basis for problem solving. In Y. Ko-
dratoff, editor, Proceedings of the 8th European Conference on Al, pages 202 —207,
London, 1988. Pitman.

A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server: a tool for collaborative
ontology construction. International Journal of Human-Computer Studies, 46:707—
728, 1997.

D. Fensel and R. Straatman. The essence of problem solving methods: making
assumptions to gain efficiency. International Journal of Human Computer Studies,
48:181-216, 1998.

F. Hayes-Roth, D.A. Waterman, and D.B. Lenat. Building Expert Systems. Addison-
Wesley, New York, 1983.

E. Motta and Z. Zdrahal. A library of problem solving components based on the
integration of the search paradigm with task and method ontologies. International
Journal of Human Computer Studies, 49:417-436, 1998. special issue on problem
solving methods.

[tTVHSWO96] A. ten Teije, F. van Harmelen, A. Th. Schreiber, and B. J. Wielinga. Construction of

[VB96]

[VBB99]

[VBV9S]

[VHSWOI7]

problem-solving methods as parametric design. In B. R. Gaines and M. A. Musen,
editors, Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, Alberta, Canada, November 9-14, volume 1, pages 12.1-12.21.
SRDG Publications, University of Calgary, 1996.

A. Valente and J. Breuker. Towards principled core ontologies. In Pro-
ceedings of the Knowledge Acquisition Workshop-96, 1996. available also at
ftp://ksi.cpsc.ucalgary.ca/KAW/KAW96/73valente.ps.Z.

A. Valente, J. Breuker, and B. Brouwer. Legal modelling and automated reasoning
with ON-LINE. International Journal of Human Computer Studies, 50, 1999. to
appear in special issue on legal KBS.

A. Valente, J. Breuker, and W. Van de Velde. The CommonKADS Library in per-
spective. International Journal of Human Computer Studies, 49:391-416, 1998.
special issue on problem solving methods.

G. van Heijst, A.Th. Schreiber, and B.J. Wielinga. Using explicit ontologies in kbs
development. International Journal of Human-Computer Studies, 46:183 — 291,
1997.

Software Methodologies at Risk!

Osvaldo Cairé!, Julio Barreiro?, and Francisco Solsona?

! Department of Computer Science
Instituto Tecnolégico Auténomo de México (ITAM)
Rio Hondo 1, 01000 México D.F.
cairo@lamport.rhon.itam.mx,
WWW home page: http://cannes.divcom.itam.mx/0Osvaldo
% Universidad Nacional Auténoma de México (UNAM), 04510 México, D.F.

{barreiro,solsona}@mealy.fciencias.unam.mx

Abstract. We agree that even though technologies have been perfected
during the last years and therefore performance of KBS has been im-
proved, the crucial problem and bottleneck for the development of KBS
remains the same: knowledge acquisition (KA), Why? In every project,
experienced developers have in mind somehow a way to deal with knowl-
edge and what steps they can follow. However, inexperienced developers
want to know how to undertake the project. They need a number of good
guidelines, preferably those that have proven to work well in practice.
We will show it is extremely important to follow a software or knowledge
engineering methodology. Nonetheless, at recent specialized conferences
and workshops the following questions arise: Do we really need a method-
ology? Do you really believe methodologies work? We will try to offer
some ideas, through the KAMET methodology, to clarify these points.

1 Introduction

We know thousands of Knowledge-Based Systems (KBS) have been applied
worldwide in different knowledge domains. We agree that even though technolo-
gies have been perfected during last years and therefore performance of KBS
has been improved, the crucial problem and bottleneck for the development of
KBS remains the same: knowledge acquisition (KA). It is a fact. Even though
last years have seen a rapid growth in capabilities in building KBS, knowledge
acquisition remains the same. KA still constitutes the main factor that hamper a
well controlled KBS life cycle. However, some considerations have changed since
then.

First, problems in eliciting knowledge do not constitute the true bottleneck,
since we do not know how to represent the implicit, detailed knowledge of a
Human Expert (HE) [4]. The process whereby humans represent knowledge is not
very clear yet [9]. Second, the knowledge elicited from multiple knowledge sources
is in general extensive, inaccurate, incomplete, qualitative, and unordered, hence

T This project has been partially funded by CONACYT as project number D.A.J-
J002-222-98-16-11-98 (REDII).

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 323-328, 1999.
© Springer-Verlag Berlin Heidelberg 1999

324 O. Caird6, J. Barreiro, and F. Solsona

major problems of interpretation may arise [4]. Third, the transfer of knowledge
directly from different knowledge sources to artificial machines is less organized,
reliable, comprehensible, and effective than when it is represented in intermediate
models. The knowledge is too rich to be transferred automatically from different
knowledge sources to artificial machines. Therefore the main problem appears
to be due to a lack of methods and tools for knowledge modeling [7].

1.1 Needing Methodologies

In every project, experienced developers have in mind somehow a way to deal
with knowledge and what steps they can follow. However, inexperienced devel-
opers want to know how to undertake the project. They need a number of good
guidelines, preferably those that have proven to work well in practice. However,
at recent specialized conferences and workshops the following questions arise:
Do we really need a methodology? Do you really believe methodologies work?
We will try to offer some ideas to clarify these points.

Some professionals and graduate students appear to be confused regarding
the necessity of using a methodology or not. Some interesting results surely
confuse them. To do programs is fun for many people, someone can enjoy making
things of her own design, even faster and cheaper than a large team, without
following a methodology. As Boehm [3] says:

Do not, worry about that specification paperwork. We’d better hurry up
and start coding, because we are going to have a whole lot of debugging
to do.

Should we replace large professional teams by hackers? The answer is that
we must always remember and look at what is being produced. We should take
into account how much risk we are willing to take, and be aware that a failure
in our decision can lead to utter chaos. Brooks [5] established the classification
shown in table 1.

A programming system product can be achieved only through a methodology,
is developed by a professional teamwork, and costs in most cases nine times more
than a simple program. Risks are highly reduced, therefore, in the rest of the

Table 1. From a Program until a Programming System Product.

Program Developed by hackers.
Programming Product|Developed by a professional teamwork, using a
methodology.

Programming System [Collection of interacting programs, so that the
assemble constitutes an entire facility for large
tasks.

Programming System|It is a Programming System, and the intended
Product product of most system programming efforts.

Software Methodologies at Risk 325

paper we will assume it is extremely important to follow a software or knowledge
engineering methodology when developing a project.

2 Getting Deeper: More on Methodologies

You must invest time in selecting an appropriate methodology for the project,
it is up to you how much risk you want to take. Un-commitment in taking
these decisions might linger the project. On the other hand, by mastering the
methodology, if it fails, you have the opportunity to adapt it. Always keep in
mind the risk principle [8]:

If you do not actively attack the risks, they will actively attack you.

2.1 What Does Risk Mean?

A typical dictionary defines risk as the possibility of loss or injury. It implies
that risk has two main components: the probability of some event occurring
and the negative consequence if it occurs. Thus, to analyze risk we should be
able to estimate these two factors. Boehm [1] translated this definition into the
fundamental concept of risk management: the risk exposure, sometimes called
risk impact.

RE = P(UO) x L(UO) (1)

Where RE means risk exposure, P(UQ) expresses the probability of an un-
satisfactory outcome, and L(UQ) means the loss to the parties affected if the
outcome is unsatisfactory.

Usually the perception of rigk is higher for those items over which one have
little or no control. However, the importance of the risk factors might be consid-
ered as some combination of risk frequency (that is, how likely it is that the risk
will occur) and risk impact (such as, how serious a threat the risk represents if
it does occur). In considering risks you must also consider their perceived level
of control. This represents the degree to which the project manager perceived
that their actions could prevent the risk from occurring.

Most of the probable risks or threats to projects can be reduced or avoided
using an appropriate methodology. It can also be complemented with approxima-
tive methods, which can provide enough information to support risk management
decisions.

2.2 Project Management Risks

Risk-reduction is a fundamental part of project management in software and
knowledge engineering. Software risk management is important because it helps
people to avoid disasters, rework, and overkill, it also stimulates win-win situa-
tions on software projects [1].

326 O. Cairé, J. Barreiro, and F. Solsona

We should be aware that by avoiding or reducing the most significant risks,
managers make more informed decisions, we obtain better outcomes, and hence
the project will have a higher probability of success.

Boehm [2] suggests to use a software risk management plan, which consists
of five steps:

— Identify the project’s top risk items.

— Present a plan for resolving each risk item.

— Update list of top risk items, plan, and results monthly.
Highlight risk-item status in monthly project reviews.
Initiate appropriate corrective actions.

Successful management of a project leads to control. Control leads to qual-
ity. Quality leads to satisfied customers. And we know customers are the final
arbiters of a product or service.

3 The KAMET Methodology

KBS today are still almost an art. The skillful integration of software technology,
economic and human relations in the specific context of a knowledge engineering
project is generally a difficult task. A KBS is a people-intensive effort that spans
in most cases for a long period of time.

KA is a fundamental part of any KBS and it is considered to be a mod-
eling activity, in which knowledge is defined as a cognitive process for which
the problem to be solved becomes an artifact. As we mentioned above, KA still
constitutes the main factor that hamper a well controlled KBS life cycle (see
Section 1).

In this context the KAMET methodology was developed [6, 7]. It is a mod-
eling methodology, designed to manage KA from multiple knowledge sources
(KS). The method provides a strong mechanism to achieve KA in an incremen-
tal fashion, and in a cooperative environment. KAMET also integrates a variety
of eliciting techniques in a coherent knowledge engineering framework.

Knowledge engineering projects need to simultaneously satisfy a variety of
actors: human experts, fund sponsors, users, active knowledge sources, knowledge
engineers, etc. We want to make winners of each of the parties involved in the
knowledge engineering project.

3.1 Life-Cycle Model and Knowledge Integration

KAMET was inspired mainly in Boehm’s spiral model [2]. It consists of four
stages cyclically structured. We define models and refine them in the following
stages. By the end of each stage, we have a set of models that represent the
knowledge elicited from the different knowledge sources involved in the process.
KAMET provides a cooperative framework that helps actors to gain deeper
understanding of the models, and to mature the ideas behind them.

Software Methodologies at Risk 327

The project is strategically planned during the first stage. The project man-
ager leads the team towards the construction of the initial model, in the second.
A model must be built for every common working area or knowledge sub-domain,
and the initial model is made of one or more of this models. This stage com-
prise the largest number of risks, which mainly arise because interviews involve
knowledge introspection and verbal expression, resulting in a difficult task for
experts. The knowledge elicitation may become monotonous and ineffective. The
aforementioned problems lead to consider a certain degree of inaccuracy in the
formulation of the initial model.

During the third stage of the methodology —development of the feedback
model-, based on knowledge and experience, the initial model is analyzed and
refined towards the creation of the feedback model. In the first round, with
the aid of the DELPHI technique, the experts give their opinions, express their
ideas, and solve problems about the initial models, writing mainly anonymous
answers to questionnaires prepared by the knowledge engineers. KAMET does
not enforce the use of any particular techniques, nonetheless for the second
round, we have found useful in practice Larson’s format to evaluate alternative
solutions in search of the most effective and closest one to the ideal. Maier’s
technique is also adequate to evaluate two or more opposing ideas. This technique
is very detailed and allows polarization to be diminished.

Through all the stages in the KAMET methodology, revision points are set
which allow us to audit the project’s current status. We must rely on metric’s
models developed before KA methodologies became widely-used, though. The
idea behind the revision points is that all what can be measured can be improved,
these also provides a strong indication that a stage is over.

3.2 Further Research

The KAMET methodology is going through a lot of changes lately. To keep
the pace with today KBS, we have started modeling the stages of KAMET as
building blocks, represented using the Unified Modeling Language (UML). This
helps us measure the whole process, and provide us with useful indicators of
software product quality: correctness, maintainability, and integrity.

We also encourage the use of a formal specification language during the first
stage of KAMET. Because it should be noted that using a formally defined
language (vocabulary, syntax and semantics) with mathematical basis, will help
ensure that the software will execute within the system specification without
resulting in unacceptable risk. In KAMET we use formal methods as a way to
assured the program will satisfy its formal specifications, we measure the process,
not the product, and this is why KAMET is also process oriented.

As yet, considerable work remains in adapting KAMET to new, ever-more
complex environments. Clearly, more studies on metrics are called for, specially
for KA methodologies.

328 O. Cairé, J. Barreiro, and F. Solsona

4 General Conclusions

We have tried to show how important software methodologies are. Using a
methodology is not an insurance of success, but a sign of competence and pro-
vides the means to reduce risks. Do we really need software methodologies? It is
our experience developing the KAMET methodology, what leads us to strongly
believe we certainly need them.

We also need and require urgently reaching an agreement concerning what
should be measure and how should be measure. Knowledge engineering will
remain an art while metrics and evaluation methods are not its backbone.

Concerning KAMET, the main objective is to improve the phase of knowledge
acquisition and knowledge modeling process, making them more efficient and
less error prone. The methodology provides a strong mechanism with which to
achieve KA from multiple knowledge sources in an incremental fashion, and in a
cooperative environment. KAMET is integrated with up-to-date literature, and
seeks to be general.

Before making more detailed conclusions and recommendations, more stud-
ies should be perform to quantify the effects we have pointed out. Future work
should examine KAMET in developing larger KBS. We also think that the prin-
ciples illustrated here may have wider applicability, and should be generalized
to give a deeper understanding of knowledge acquisition.

References

1. Boehm, B.: Software Risk Management. IEEE Computer Society Press. (1989)

2. Boehm, B.: A spiral model of software development and enhancement. IEEE Com-
puters. (1988) 61-62

3. Boehm, B.: Verifying and Validating Software Requirements and Design Specifica-
tion. IEEE Software. January (1984) 75-88

4. Breuker, J. and Wielinga, B.: Models of Expertise in Knowledge Acquisition. G.
Guida and C. Tasso (eds). Topics in Expertise Systems Design: methodologies and
tools. North Holland Publishing Company, Amsterdam. The Netherlands. (1989)

5. Brooks, F.: The Mythical Man-Month. Essays on Software Engineering Anniversary
Edition. Addison-Wesley Publishing Company. (1995)

6. Cairé, O.: KAMET: A comprehensive methodology for knowledge acquisition from
multiple knowledge sources. Ezpert System with Applications, 14, (1/2), (1998) 1-16

7. Cairdé, O.: The KAMET Methodology: Content, Usage and Knowledge Modeling.
In Gaines, B. and Mussen, M. (eds). Proceedings of the 11'* Banff Knowledge Ac-
quisition for Knowledge-Based Systems Workshop (KAW’98). SRGD Publications,
Department of Computer Science, University of Calgary, Proc-1, (1998) 1-20

8. Gilb, T.: Principles of Software Engineering Management. Chapter 6, Addison Wes-
ley Publishing Company. (1998)

9. Vamos, T.: Expert Systems and the Ontology of Knowledge Representation. In Lee,
J.; Liebowitz, J.& Chae, Y.(Eds). Critical Technology, Cognizant Communication
Corporation, (1996) 3-12

Knowledge acquisition of predicate argument
structures from technical texts using Machine
Learning: the system Asium

David Faure & Claire Nédellec

Laboratoire de Recherche en Informatique, UMR 86-23 du CNRS,
Equipe Inférence et Apprentissage,
Université Paris-Sud, bat 490, F-91405 Orsay,
{faure,cn }@lri.fr,
Tél {david, claire}: +33 (0)1.69.15.66.{07, 26}
Fax: 433 (0)1.69.15.65.86

Abstract. In this paper, we describe the Machine Learning system,
astuM!, which learns Subcaterorization Frames of verbs and ontologies
from the syntactic parsing of technical texts in natural language. The
restrictions of selection in the subcategorization frames are filled by the
ontology’s concepts. Applications requiring such knowledge are crucial
and numerous. The most direct applications are semantic control of texts
and syntactic parsing disambiguation.

This knowledge acquisition task cannot be fully automatically performed.
Instead,we propose a cooperative ML method which provides the user
with a global view of the acquisition task and also with acquisition tools
like automatic concepts splitting, example generation, and an ontology
view with attachments to the verbs. Validation steps using these features
are intertwined with learning steps so that the user validates the concepts
as they are learned. Experiments performed on two different corpora
(cooking domain and patents) give very promising results.

Keywords: machine learning, natural language processing, ontology,
predicate argument structure, corpus-based learning, clustering.

1 Introduction

Semantic knowledge acquisition from texts, such as predicate argument
structures and ontologies is a crucial and difficult task and the manual
acquisition is obviously long even in limited domains. New automatic
methods involving both Natural Language Processing (NLP) and Ma-
chine Learning (ML) techniques ([Zelle93], among others) can give very
good results in a short time. In this paper, we present ASIUM, a system
that learns cooperatively from syntacticaly parsed texts without man-
ual annotations, ontologies and subcategorization frames of verbs (SF)
for specific domains following the principle of “domain dependence”?
[Grefenstette92]. Subcategorization frames represent here a subcase of
predicate argument structures where the predicate is restricted to a verb.

! Acquisition of Semantlc knowledge Using Machine learning methods.
2 “A semantic structure developed for one domain would not be applicable to another”.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 329-334, 1999.
© Springer-Verlag Berlin Heidelberg 1999

330 D. Faure and C. Nédellec

ASIUM is based on an original unsupervised conceptual clustering
method and, although the process cannot be fully automatized, provides
interactive features in order to support the knowledge acquisition task.

We will show here how Astum is able to learn knowledge of good
quality from possibly noisy texts and how ASIUM’s cooperative features,
together with its inductive capabilities, allow to acquire ontologies and
SFin reasonable time?.

2 Our approach

We attempt to acquire SF and ontologies from texts for texts control
purposes for DASSAULT AVIATION company. Initially, we attempted to au-
tomatically revise and complete SF of a draft ontology manually acquired
by a domain expert. This attemp failed for two main reasons: first the
expert has too many a priori on the texts and second, he used incremental
method to acquire the ontology. Revision of the acquired knowledge with
respect to the training texts required profond reorganization of the on-
tology that incremental and even cooperative ML revision methods were
not able to handle: it was locally consistent, but any revision leads to
deeply restructuring it. This experiment illustrates one of the limitations
of manual acquisition by domain experts without linguists and the need
for knowledge acquisition tools.

Our aim is to learn SF and an ontology because no such bases were
available. The few existing bases are too general and thus incomplete
(EuroWorpNEeT or WorpNET). In a specific domain, the vocabulary as
well as its possible usage are reduced, which makes such ontologies overly
general. On the other hand, they may lack some specific terminology of
the application domain.

As opposed to the approach consisting of completing and specializ-
ing general ontologies for specific domains as [Basili97] with WorpNeT,
the targeted approach we have chosen, even for English, is to learn suit-
able knowledge from a representative corpus of the domain, thus avoiding
inconsistency risks.

3 Knowledge learned
ASIUM learns verb SF and ontologies. Here is an example of a SF for the
verb to inject: <to inject> <object: combustible> <in: furnace>.

The two couples <object: combustible> and <in: furnace> are the sub-
categories of the verb to inject; object is a syntactic role and in is a
preposition introducing an adjunct while combustible and furnace are their
restrictions of selection. More generally a SF as ASIUM learns it, has the
fOHOWing form: <verb> <syntactic role|preposition: concept*>x.

The subcategories are arguments and adjuncts of the verb. In our
framework, restrictions of selection (RS) can be filled with an exhaustive
list of nouns (in canonical form) or by one or more concepts defined in

About ten hours for the cooking domain of about 3 Mo of texts and 1120 verbs.

Knowledge Acquisition of Predicate Argument Structures from Technical Texts 331

an ontology, where the meaning of the concepts is characterized by the
SF they appear in. The ontology represents generality relations between
concepts in the form of a directed acyclic graph. The axioms only express
subsumption (IS-A) relationships between unary predicates or concepts.
For instance, the ontology could define fuel, gaz and carbon as combustible,
and carbon as both combustible and burning wastes. Our method learns such
an ontology and SFin a cooperative and unsupervised (in the ML sense)
manner from texts.

4 Overview of the method

The method implemented in the ASIUM system is included in a knowledge
acquisition chain. It consists of the syntactic parser SYLEX [Constant95]
providing AsiuM with all interpretations? of parsed sentences including
attachments of noun phrases® to verbs and clauses, without any pre or
postprocessing.

As a first step, ASIUM automatically extracts instantiated subcatego-
rization frames from the syntactic parsing of clauses. The instantiated SF
is similar to a SF but the RS are the actual head nouns occurring in the
clause instead of concepts: <verb> <prep. | syntactic role: head noun>x.

Preliminary experiments show that instantiated SF are sufficient with
respect to the learning task and that the ML method is robust with
respect to parsing ambiguities or even failures.

The learning method relies on the observation of syntactic regulari-
ties in the context of words [Harris68]. We assume here that head nouns
occuring with the same couple verb+preposition/syntactic role represent
a so-called basic class and have a semantic similarity in the same line as
[Grefenstette92], [Peat91] or others, but our method is based on a double
reqularity model: ASTUM gathers nouns together as representing a concept
only if they share at least two different (verb+preposition/syntactic role)
contexts as in [Grishman94]. Experiments show that it forms more reli-
able concepts, thus requiring less involvement from the user. Our similar-
ity measure computes the overlap between two lists of nouns® (Details in
[Faure98]). As usual in conceptual clustering, the validity of the concepts
learned relies on the quality of the similarity measure between clusters
which here increases with the size of their intersection.

Basic classes are then successively aggregated by a bottom-up
breadth-first conceptual clustering method to form the concepts of the
ontology level by level with expert validation and/or labelling at each
level. Thus a given cluster cannot be used in a new construction before
it has been validated. For complexity reasons, the number of clusters to
be aggregated is restricted to two, but this does not affect the relevance
of the learned concept as shown in [Faure98]. Verb SF are learned in

* In case of ambiguity, ASTUM takes all of them.
® Nouns phrases are reduced to head nouns (stopwords and adjectives are removed).

6 Sim(Cy,C>) = 1 for lists with the same nouns and Sim(Cy, C2) = 0 for lists without
any common nouns.

332 D. Faure and C. Nédellec

parallel so that each new concept fills the corresponding RS then result-
ing in the generalization of the initial synthetic frames which allows to
cover examples which did not occur as such in texts. Thus, the clustering
process does not only identify the lists of nouns occuring after the same
verb+preposition/finction but also augments this list by induction.

For example, from those instan-
tiated SF, <to travel> <subject: [father,neighbor,friend]><by: [car,train]>
and <to drive> <subject: [friend,colleaguel> <object: [car,motor-bikel>,
ASIUM learns both concepts <Human>, <Motorized vehicle> defined as
father,neighbor,friend,colleague and car,train,motor-bike and both
SF7 <to travel> <subject: Human> <by: Motorized vehicle> and <to drive>
<subject: Human> <object: Motorized vehicle>.

The risk of over-generalization is controlled both by a clustering
threshold and the user. Concept learning could not be fully automated
since the attachment of the concepts learned as RS of verbs must be val-
idated by an expert in order to limit the risk of over-generality that the
clustering threshold cannot completely avoid. Thus concept formation is
intertwined with cooperative validation steps where the domain expert
assesses and refines the learning results on line if needed, given acqui-
sition tools like automatic concepts splitting, examples generation and
ontology view with attachments to the verbs.

5 Experimentations

ASIUM has been applied first on a cooking recipe corpora in French with
the aim of applying it to maintenance texts at DASSAULT AVIATION for
language control purposes. Second, we have applied AsiuMm on Oxy-fuel
burner (a specific kind of burner using oxidants) patents for technical
watch.

Evaluation of the unsupervised learned knowledge quality is a very
difficult problem for which we have currently no solutions, but only high-
lights. First, ASIUM is included in a chain. Its efficiency could be partially
measured by the utility and the improvement of the final task performance
but once an error has been identified in the final output, locating the orig-
inal faulty component is difficult in case an intermediate evaluation is not
possible. Second, evaluating the cooperative system independently of the
user is difficult. Third, the results of the learning process should be evalu-
ated with respect to the quantity” and the nature of the user’s work using
counters on each type of action®. Counters will only give a partial view
on the quality of the learned knowledge and the quality of the interaction
tools and should be completed. Other evaluations of the quality of the
results regarding redundancy of the corpora and of the induction effect
in terms of completeness have been done in [Faure98]. They should be
completed by correctness measures. As no negative example is available,

" Duration of the cooperative process regarding time needed in order to learn the same
knowledge by hand.
& For instance, how many irrevelant inductions did the user refuse?

Knowledge Acquisition of Predicate Argument Structures from Technical Texts 333

the measure of (verb+preposition/functiont+noun) induced from a training
set and not useful in a test set could be a good indicator of correctness.
An evaluation of ASIUM results, done independently from a final ap-
plication can not give a final answer to the evaluation question, only hits.
For instance, the ontologies and SF learned could be compared to other
lexicons but it would not only require the measurement of the similarity
[Shaw89] but also the nature of the difference in case of a discrepancy.

6 Related Work

As proposed by [Hindle90] and [Pereira93], our method clusters nouns
on the basis of syntactic regularities but without restricting the syntac-
tic roles to be learned from subjects and objects. Our claim is that in
technical domains the verbs are not only characterized by their argu-
ments. Compared to [Grefenstette92], or [Bourigault96], Asium exploits
two levels of regularities in the context instead of one. In AsiuM this
would amount to learning basic classes as concepts which is obviously
not suitable. [Brent91] learns the SF from large corpora from untagged
texts with an automatic approach and focuses on learning five given SF.
[Buchholz98] learns SF comparable to the ones learned by asium with
a supervised approach which is very time-consuming for the expert. In
the same framework, woLFIE [Thompson95] coupled with cHILL [Zelle93],
learns case-roles and a lexicon from semantically annotated corpora by
hand. Case-roles differ from SF as learned by AsiuMm in that prepositions
and syntactic roles are replaced by semantic roles such as agent or patient.
Such information allows one to distinguish among the different semantic
roles of given prepositions. As opposed to ASIUM ontology, the RS learned
by WOLFIE are lists of attribute-values defining the concepts. Moreover
WOLFIE requires that the input sentences parsed by CHILL are all anno-
tated by semantic labels (roles and restrictions). Unsupervised learning,
as in ASIUM, delays concept labeling after learning, thus reducing consid-
erably the end-user task. In the same way, semantic roles could be labeled
once ASIUM learns the SF by assuming that different restrictions (couples
syntactic role/preposition+concept) reflect different semantic roles.

7 Conclusion

In this paper, we have presented a cooperative ML system, AsiuM, which
is able to acquire subcategorization frames with restrictions of selection
and ontology for specific domains from syntactically parsed technical texts
in natural language. Texts and parsing may be noisy. The knowledge
acquisition task is based on an original unsupervised clustering method.
Needed expert validation and adjustment are supported by cooperative
tools giving the expert a global and manageable view on the whole corpus
helping him to integrate the needed domain knowledge that would not
appear in the corpus.

Preliminary experiments on corpora of cooking recipes in French, and
patents in English, have shown the applicability of the method to texts

334 D. Faure and C. Nédellec

in restricted and technical domains and the usefulness of the cooperative
approach for such knowledge acquisition.

Further work will address evaluation aspects and semantic classes of
verb learning from SF and ontologies.

Acknowledgement: This work is partially supported by the CEC through the ES-
PRIT contract LTR 20237 (ILP 2).

References

[Basili97] R. Basili and M. T. Pazienza. Lexical Acquisition for Information Extrac-
tion. In Maria Teresa Pazienza, editor, Information Extraction: A Multidis-
ciplinary Approach to an Fmerging Information Technology, pages 14-18,
Frascati, Italy, July 1997. LNAI Tutorial, Springer.

[Bourigault96] D. Bourigault, I. Gonzalez-Mullier, and C. Gros. LEXTER, a Natural
Language Processing Tool for Terminology Extraction. In 7th FURALEX
International Congress, Goteborg, August 1996.

[Brent91] M. R. Brent. Automatic acquisition of subcategorization frames from un-
tagged text. In Proceedings of the 29st annual meeting of the Association
for Computational Linguistics, ACL, pages 209-214, 1991.

[Buchholz98] S. Buchholz. Distinguishing Complements from Adjuncts using Memory-
Based Learning. In Proceedings of the ESSLLI’98 workshop on Automated
Acquisition of Syntax and Parsing, 1998. ,

[Constant95] P. Constant. I’analyseur Linguistique SYLEX. In 5éme FEcole d’été du
CNET, 1995.

[Faure98] D. Faure and C. Nédellec. A Corpus-based Conceptual Clustering Method
for Verb Frames and Ontology Acquisition. In Paola Velardi, editor, LREC
workshop on Adapting lexical and corpus ressources to sublanguages and
applications, pages 5—12, Granada, Spain, May 1998.

[Grefenstette92] G. Grefenstette. Sextant: exploring unexplored contexts for semantic
extraction from syntactic analysis. In Proceedings of the 30st annual meet-
ing of the Assoctation for Computational Linguistics, ACL, 1992. 14-18.

[Grishman94] R. Grishman and J. Sterling. Generalizing Automatically Generated
Selectional Patterns. Proceedings of COLING 94 15th International Con-
ference on Computational Linguistics, Kyoto, Japan, August 1994.

[Harris68] 7. Harris. Mathematical Structures of Language. New York: Wiley, 1968.

[Hindle90] D. Hindle. Noun classification from predicate-argument structures. In
Proceedings of the 28st annual meeting of the Association for Computational
Linguistics, ACL, Pittsburgh, PA, pages 1268-1275, 1990.

[Peat91] H.J. Peat and P. Willet. The limitations of term co-occurrence data for
query expansion in document retrieval systems. Journal of the American
Society for Information Science, 42(5):378-383, 1991.

[Pereira93] F. Pereira, N. Tishby, and L. Lee. Distributional Clustering of English
Words. In Proceedings of the 31st annual meeting of the Assoctation for
Computational Linguistics, ACL, pages 183-190, 1993.

[Shaw89] M.L.G. Shaw and B. R. Gaines. Comparing conceptual structures: con-
sensus, conflict, correspondence and contrast. In Knowledge Acquisition,
volume 1, pages 341-363, 1989.

[Thompson95] C. A. Thompson. Acquisition of a Lexicon from Semantic Representa-
tions of Sentences. In 838rd Annual Meeting of the Association of Compu-
tational Linguistics, Boston, MA July, (ACL-95)., pages 335-337, 1995.

[Zelle93] J. M. Zelle and R. J. Mooney. Learning semantic grammars with construc-
tive inductive logic programming. Proceedings of the Fleventh National
Conference on Artificial Intelligence, pages 817-822, 1993.

An Interoperative Environment
for Developing Expert Systems

Noriaki Izumi, Akira Maruyama,
Atsuyuki Suzuki, Takahira Yamaguchi

Shizuoka University
3 5 1 Johokn Hamamatsu Shiznoka 432 8011 Japan

Abstract. This paper proposes the interoperation environment which
enables an expert system to get information available to improve its per-
formance from others. First, we have given a method library of reusable
templates in order to provide a correspondence between specification and
implementation of inference structures. Next, a cooperation method has
been presented, using the difference arising in the context of the cor-
respondence between inference primitives of an originator and those of
recipients. The wrapper with conversion facilities has been also provided,
using a common domain ontology developed manually. After designing
and implementing such an interoperation environment, experiments have
been done among four heterogeneous expert systems. Furthermore, it has
been shown that an expert system finds a way to perform a given task
better by the interoperation with other three expert systems.

1 Introduction

As expert systems have been built up in many real fields over the past decade,
the research on Cooperative Distributed Expert Systems (CDES) has emerged,
integrating two kinds of technology from knowledge acquisition and software
agents. The work in the field of CDES focuses on the cooperation among dis-
tributed expert systems but has not yet been getting into cooperation in real
complex domains at a semantic level.

In order to develop a cooperative knowledge system as industrial applications
in real and large scale, at present, few attentions are payed for knowledge level
analysis and knowledge modeling, As seen in the fields of software agents and
CDES, we are still in shallow interoperation just at a syntactic level among dis-
tributed heterogeneous expert systems. Even if useful information is acquired,
there is a significant issue how the information is reflected in the implimentation-
sturacture of knowledge systems. Thus, in this paper, we propose an environment
for deep interoperation among four heterogeneous expert systems at a semantic
level, modeling them at a proper level of granularity of knowledge, defining the
relationship between models and implementations, using the difference arising in
the context of the correspondence between the inference structure of an origina-
tor and the one of recipients, and presenting a wrapper with conversion facilities
using a common domain ontology.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 335-340, 1999.
© Springer-Verlag Berlin Heidelberg 1999

336 N.Izumi et al.

In the remainder of this paper, we first describe methods of modeling, oper-
ationalizing, cooperating and communicating (wrapping) heterogeneous expert
systems. Next, we put the methods together into an interoperative environment,
INDIES(an Interoperative eNvironment for Development and Improvement for
Expert Systems) for them. The empirical results have shown us that a financial
management expert system is supported by other three expert systems in finding
a better solution.

2 Modeling and Implementing Expert Systems

In order for distributed expert systems to exchange useful information applicable
to their better performance from others, the information about inference engines
and knowledge bases, must be lifted from the implementation details to some
proper conceptual details. In the field of knowledge engineering, the methodology
has recently been developed to specify the semantics of expert systems free from
implementation details.

Common KADS[1] is one of the well-organized knowledge libraries that pro-
vides inference primitives called canonical functions, such as Select, Compare,
Merge and so on. We rebuild and extends canonical functions into “REPOSIT
(REusable Pieces Of Specification-Implementation Templates)” which combines
declarative semantics employed in Common KADS and procedural semantics
like Prolog.

Each method of REPOSIT, as an inference primitive, has two types of ex-
pressions: one is the relationship among input, output and reference knowledge,
which consists of a specification library, and the other is a prolog-based repre-
sentation which consists of an implementation library. In REPOSIT framework,
rectangles express methods corresponding to inference primitives and quarter-
circles express knowledge as data used in the connected methods(Fig. 1. (a)).

To reflect a received information on their implementation, REPOSIT sup-
ports step by step operationalization of abstract models into detailed implemen-
tation descriptions from the following standpoint:

a) providing refinement policies,

b) standardizing the knowledge (data) management,

¢) classifying the adding patterns of control structures.

In order to refine REPOSIT specifications, expressed as knowledge-flow-
diagram (combination of methods and knowledge), we replace an abstract method
with combinations of methods as follows:

1. dividing a method into data-type judgements and a function definition,

2. refining a method into combinations of fine-grained methods, and

3. replacing an operation for a set with the repetition of an operation for its
element.

After applying the refinement rules described above, we augment a knowledge-
flow-diagram with control structures, such as conditional branches, a distinction
of deterministic and non-deterministic actions, and repetitions. To put it con-

An Interoperative Environment for Developing Expert Systems 337

Input_Data

Input_Data

[Reference,Da@—-l reposiUunct\orl W
X posit_funct
I T
reposit_function((tost{ Input_Deta). Yes
oi(Input_Data). 1
g‘é’;‘;@aigo ata, reposit uncl(Input_Data, Ref_Datal, Output_Data)}
Output_Data) " replace(Input_Data, Output_Data) H
(a) a basic correspondence (b) a conditional branch (c) non-deterministic

Input_Data
rec_functior

Yes

Input_Data
ton_tne, [
Ref_Data function_body

assemble

Output_Data

rec_function(input_Data, Ref_Data, Output_Data) :-
{test(Input_Data), |,
replace(Input_Data, Output_Data)}

; top_func(Input_Data, Ref_Data, Output_Data) :-
{ function_body(Input_Data, Ref_Data, Mid_Data), for_each(Atom, Input_Data, [
replace(Mid_Data, Input_ Data); function_body(Atom, Ref_Data, Output_Atom
rec_function(Input_Data, Ref_Data, Output_Data)} assembie(Output_Afom, Output_Data)])
(d) a recursive structure (e) a iteration structure

Fig. 1. REPOSIT Expressions

crete, we replace an abstract method with fine-grained methods in the following
procedure:

(a) adding conditional (Fig. 1. (b)),

(b) clarifying non-deterministic actions (Fig. 1. (¢)), and

(c) developing loop structures (Fig. 1. (d)(e)).
After applying the above augmentation, we can get a prolog-based description
corresponding to the augmented knowledge-flow-diagrams, which is available
for implementation. To put the description executable, we give a data structre,
consisting of atoms and lists as data primitives. In order to employ a name of
knowledge in the specification directly, we define the primitive expressions of
knowledge, which support a generic method of data-call-by-name as follows:

atom(Atom_id, [Catq : Valy,...,Catn : Valn]), (1)
list(List_id,[Atomq,Atomsy,..., Atomy]), (2)
alias(Alias name, Atom id or List_id)). (3)

In the above formulas, Atom_id and List_id represent entities consisting knowl-
edge, and Alias name corresponds the name of the entities

After given a data structure, a prolog-based description of specification can
be refined into the prolog-implementation codes by using REPOSIT library for
implementation, as in the same way of the specification-refinement.

3 Interoperating Distributed Expert Systems

3.1 Cooperation for Distributed Expert Systems

In order to interoperate expert systems, we employ a specification-sharing(SS)-
based cooperation, called assisted coordination[2]. The shared specification comes

338 N.Izumi et al.

Inference Structure Inference Structure
(The Recipient) (The Originator)

(1) Pairs of the same inference primitives

Compute the correspondence value
from the context

(Recipient ES) (originator ES)

Coutput D >

*‘—’ Iil

Fig. 2. A message generation facility

from REPOSIT library which serves as a common method ontology and a com-
mon domain ontology.

Although one expert system (originator) can get the information about ca-
pabilities of the other expert system (recipient) through the shared specification,
it is important to identify the information available to (be able to) improve the
originator. Because it costs too much to find out differences in extensive range to
the whole inference structure, we adopt only the difference arising in the small
context of correspondence between inference primitive of an originator and those
of a recipient.

A method to find out the difference, arising between an originator and a
recipient, is presented (Fig. 2) as follows:

1. Making a set of correspondence in which inference primitives are the same

2. computing a correspondence value by taking a look at the context of the
inference primitive,

propagating the correspondence value to pre- and post- inference primitives,
completing propagation over all inference primitives,

picking up a difference with the values, which will be used as a reply message.

-

[S2¢

3.2 Communication between Expert Systems

When one expert system finds a fault in itself(for example, when its output
was wrong or rejected by a user), it asks other expert systems to support it in
changing for a better performance.

Because each expert system is modeled by its own vocabulary, it needs a con-
version facility so that it can understand the messages sent from other expert
systems. This paper calls a wrapper the module to convert one message from one
expert system into another message that can be processed in the other expert
system. When it is communicated between an originator and a recipient, origi-
nator’s wrapper uses a comumnon domain ontology to convert the reply messages
from recipients.

An Interoperative Environment for Developing Expert Systems 339

INDIES ENVIRONMENT

Common Tas}
Ontology

Convertion

/\%L A%
v v

Send a message 1o
Recipient

Send messages
back to Originator

Reference of
common Ontology

Fig. 3. An Overview of INDIES

Table 1. The Number of messages generated by interoperation
Troubleshooting|Scheduling| EV-design| Total
1st 14 14 19 47
2nd 15 15 19 49

The originator tries to reflect a selected message on its own implementation.
When it fails the reflection, the developers manually change the implementations
of the originator based on the selected message. If the same fault still exists, or
another fault comes up, when the modified originator’s performance is tested, the
above-mentioned interoperation process is repeated and another reply message
is given to the originator until the originator’s performance improves or the
recipients send no reply message.

4 INDIES Implementation and Experimental Results

As the methods of modeling, operationalizing, cooperating and communicat-
ing (wrapping) distributed expert systems come up, we put them together into
an interoperation environment for distributed expert systems INDIES(Fig. 3).
INDIES has been implemented by SWI-Prolog ver. 2.9.6 with XPCE ver. 4.9.7.

Experiments have been done to how the financial management expert system
FIMCOES]|3](originator) is supported by a troubleshooting, an electric power
management job scheduling and an elevator design expert systems through the
interoperation in INDIES. Afterwards, the originator gets into INDIES, and
sends its models and correspondence value desired (24 in this experiment) to
the other three expert systems (recipients).

At the first interoperation, the originator received 47 reply messages from
other three recipients(Table 1.). According to the selected message ‘ADD “Prop-
agate using an enterprise model” ’, the new inference primitive of “propagate
using an enterprise model” has been put just before “compare” primitive in
FIMCOES inference structure. After implementing a new FIMCOES with the

340 N.Izumi et al.

modification, we found that the modified FIMCOES had 4.7% performance gain
compared to the original FIMCOES.

At the second interoperation, the originator received 49 reply messages from
other three recipients (Table 1). Further examination showed that two messages,
brought 11.1% performance gain to FIMCOES but other reply messages not.

5 Related Work and Discussions

In the field of CDES, much work focuses on strategies of unifying solutions that
include uncertainty from multiple expert systems that use different representa-
tion of uncertainty. However, few systems try to deal with the management of
semantics, at present.

On the other hand, R.Dieng’s work [4] manages issues in cooperative knowledge-
based systems. The specification to interoperate knowledge-based systems from
the point of multi-agent systems has been analyzed, but not yet launched into
full implementations and evaluation in real task-domains, as shown here.

As compared with our previous work[5] without REPOSIT, more than two
weeks are needed as a cost of reflecting received messages in the originator’s
implementation, while REPOSIT reduces the cont into at most two days.

In the remainder of this paper, we have described the methods of modeling,
operationalizing, cooperating and communicating distributed expert systems.
Then, these methods have been put together into an interoperative environment
INDIES. The experiment results have shown that the interoperation works on
the four heterogeneous expert systers.

Message generation and selection facilities are still static. So, we are inves-
tigating various types of making correspondence and checking applicapabilities
about the messages exchanged. Furthermore, we will pay much more attention
to automatic construction of a common domain ontology.

References

1. Breuker, J., Van de Velde, W.: Common KADS Library for Expertise Modeling.
I0S Press (1994)

2. Genesereth, M.R., Ketchpcl, S.P.: Software Agents. CACM.37 (1994) 48-53

3. Garcia, P. V. D., Yamaguchi, T.: A Financial Management Consultation Expert
System with Constraint Satisfaction and Knowledge Refinement. The Third Pacific
Rim International Conference on Artificial Intelligence. (1994) 979-985

4. Dieng, R.: Agent-Based Method for Building a Cooperative Knowledge-Based Sys-

tem. Workshop on Heterogeneous Cooperative Knowledge-Bases.International Sym-

posium on Fifth Generation Computer Systems (1994) 237-251

Yamaguchi, T.: DESIRE: An Interoperative Environment for Distributed Expert

Systems. ECAI'98 Wrokshop on Applications of Ontologies and Problem-Solving

Methods. (1998) 120-125

t

This article was processed using the INTEX macro package with LLNCS style

On the Use of Meaningful Names in
Knowledge-Based Systems

M.G. Jansen and P. Beys

Department of Social Science Informatics, University of Amsterdam

Roetersstraat 15, 1018 WB Amsterdam, The Netherlands
Tel: +20 525 6795; Email: jansen@swi.psy.uva.nl

1 Introduction

In contemporary Knowledge Engineering (KE) the emphasis lies on the study of the
description of two types of artefacts: Problem Solving Methods (PSMs) and ontologies.
According to many authors (for example (Motta, 1998), (Schreiber et al., 1999)) PSMs
have a strong relation to a certain task or problem type. One reason for this is the
recognition of what is known as the interaction problem (Bylander & Chandrasekaran,
1988). This states that a reasoning strategy cannot be described without knowing on
what domain knowledge it will be applied, and, vice versa, that domain knowledge
cannot be represented without knowing for what reasoning task it will be used.

Since the task always has some influence on the way knowledge is represented, a
PSM is always related to a task and poses some requirements on the domain knowledge
it uses. This is mirrored in the notion of assumption (Benjamins et al., 1996). It is used
to describe the interaction between a method, a task and domain knowledge in order to
keep them separated as much as possible and so facilitate their potential for reuse.

Another way of describing PSMs is by describing their functionality. In such de-
scriptions the requirements of a PSM on the domain knowledge it uses are strictly for-
mal. In this sense the semantics of a PSM can be described much like a computer
program.

However the relation a PSM has with the task it should be used for is often left
implicit. The way this is often done is by using names in the description of the PSM
which forces an interpretation upon humans but not machines. One of the disadvantages
of such names is their lack of formal semantics which results in their being redundant
in functional descriptions. From a formal point of view it is not clear that a method
has a relation to a specific task. Indeed, one could ask whether a given method when
considered abstractly could not be used for totally different tasks, at least in theory. (The
notion of PSMs being task-neutral as put forward by Beys and van Someren (Beys et al.,
1996) reflects this idea.) Without the use of these names however it is often difficult
to relate a method and the representation of domain knowledge to a task or problem
type. It will be argued here to make this interpretation explicit by using ontologies. The

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 341-348, 1999.
© Springer-Verlag Berlin Heidelberg 1999

342 M.G. Jansen and P. Beys

practical implications of such an enterprise will not be elaborated upon and are in need
of further study.

This paper is structured as follows: First, in section 2 the redundancy of meaningful
names in abstract descriptions is discussed. They however play an important part in
what is defined here as knowledge. Section 3 and 4 are used to describe the role of
meaningful names in PSMs. Section 3 contains a sketchy introduction in describing the
semantics of PSMs. It is followed by an example of a description of C&D in Section
4. The point here to be made is that meaningful names are redundant in the description
of the semantics of the method. Section 5 contains a suggested solution which is about
ontologies. Finally a conclusion, questions and answers are presented.

2 Meaningful names in knowledge representation

Let us first be clear what we mean by knowledge in this paper. Without going into a
philosophical discussion knowledge is taken here to be any a posteriori contingency.
This means that any statement which represents a possible state of affairs in the world,
which is sometimes true and sometimes false is regarded as knowledge. Tautologies,
such as it rains or it doesn’t rain” and contradictions do not fall under this definition.
Note that mathematical and logical theorems which can be proved within an axiomatic
system are tautologies. All axioms are tautologies by definition and any theorem de-
rived from them is also a tautology. Of course such a viewpoint on the nature of knowl-
edge is open for debate, but we will not elaborate upon it here.

A second assumption on the nature of knowledge is that a sentence must go with an
interpretation. For example a proposition p which can be true or false doesn’t suffice
as knowledge. It must be knowledge of something, or to put it another way it must go
together with some interpretation. It must be clear what p denotes.

In order to illustrate why these assumptions are important a small system is pre-
sented in Example 1. It consists of a number of facts which are of all the form
isa(X,Y). In a very simple way it represents what is generally known as an isa-
hierarchy. Under the header of FACTS a number of statements are listed followed by a
very simple procedure which checks whether a statement of the form isa (X, Y) can
be unified with an element from the transitive closure of the i sa relationship.

FACTS:

isa (mammal, animal) .

isa(bird, animal) .

isa(reptile, animal).

isa(cat, mammal) .

INFERENCE :

Input: isa(X,Y).

Output: True or False.

Precondition: X or Y are variables or constants.

Postcondition: True iff the input can be unified with
an element of the transitive closure of the isa relation.

False otherwise.

On the Use of Meaningful Names in Knowledge-Based Systems 343

Example 1

An important point to make here is that nothing guarantees us that a fact like
isa (mammal, animal) isindeed arepresentation of the knowledge that a mammal
is an animal. To put it another way: it lacks semantics.

The implicit assumption when using such statements is that the reader, or the user
of a system like the one in Example 1 is familiar with the intended meaning of the
names being used. It is difficult to make this assumption explicit. Still, it may be of
vital importance for the reuse and maintenance of knowledge represented in some form
or other.

To appreciate this remark compare the system in Example 1 to an isomorphic copy
in Example 2. From our assumptions regarding the nature of knowledge it follows
that the system in Example 2 is devoid of knowledge about the world. We do not
know what r (c1, c2) denotes but we have a pretty good idea about the denotation
of isa (mammal, animal). Still, the systems are isomorphic which means that in
a predicate logic they can not be distinguished. To put it another way: A computer
doesn’t matter whether it gets to execute system 1 or 2, they are just the same.

These two systems might be identical to a computer, they are not to us. What we see
in Example 2 can be described as the skeleton, the form without content. In Example 1
the system has content: it contains knowledge about the world.

This problem is essential for what we would like to call knowledge-based systems.
A system which has a list of facts which uses non-meaningful names does not represent
any knowledge at all. At least not in the way we have defined knowledge here. It is
concerned mainly with form not content (see (Sowa, 1997)).

FACTS:

r(cl, c2).

r(c3, c2).

r(c4, c2).

r(c5, cl).

INFERENCE :

Input: r(X,Y).

Output: True or False.

Precondition: X or Y are variables or constants.

Postcondition: True iff the input can be unified with
an element of the transitive closure of the r relation.

False otherwise.

Example 2

3 Semantics of PSMs

According to the CommonKADS methodology (Schreiber et al., 1999) a PSM consists
of a number of inferences with a control structure. The method aims at realizing the
goal of a particular type of problem, like diagnosis, planning, assessment, etc. The in-
ferences describe the lowest level of functional decomposition in the knowledge model.
They each carry out a primitive reasoning step and as such can be considered as a pro-
gram or procedure of which the internal structure is hidden.

344 M.G. Jansen and P. Beys

Benjamins et al (Benjamins et al., 1996) view the architecture of a PSM as con-
sisting of functional specifications, requirements and operational specifications. Here
functional specification means a declarative description of the in- output relation of the
PSM. In general such a specification should describe what a software artefact does, in-
dependent from how this behaviour is achieved (Fensel, 1995). Here we’ll follow this
line of description with some minor modifications. Instead of input- output relations
we use pre- and post-conditions as described by Dijkstra (Dijkstra, 1976). A very brief
introduction into some main concepts is given here.

We assume that a PSM can be regarded as a program. It has input arguments and
passes through a sequence of states. The first state the PSM is in is called the initial
state, successful execution (termination) will leave the PSM in the so-called final state.
The post-condition imposes (as its name says) a condition on the final state. It is just
a predicate which describes what the final state should look like after computation.
Assuming that a PSM is deterministic (every state has only one successor) and R is a
post-condition there are three possibilities:

Activation of the PSM will lead to a state satisfying R.

Activation of the PSM will lead to a state satisfying non-R.

Activation of the PSM will not lead to a final state; it doesn’t terminate.

The condition which characterizes all initial states such that activation of the PSM
certainly results in a final state satisfying a given postcondition R is said to be the weak-
est pre-condition corresponding to that post-condition. The extension of the weakest
pre-condition is thus the set of all initial states which are guaranteed to result to a de-
sired final state after execution of the PSM.

In the next section the PSM Cover & Differentiate will be looked at.

4 A brief description of Cover & Differentiate

Cover & Differentiate is a PSM for diagnostic tasks. The reasoning part of the method
consists, as the name indicates, of two main steps: A cover inference step in which
potential explanations for symptoms are generated and a step called differentiate which
confirms or rejects explanations. The main knowledge structure C&D works upon is
called a causal network. In what follows the description of Schreiber et al (Schreiber
et al., 1993) will be used.

As said before C&D operates on a causal network. Each node in the network repre-
sents a state concept and is linked to others by a binary relation with the name causes.
Initial nodes represent causes, final nodes symptoms and intermediate nodes denote in-
ternal states. The concept of qualifier is used to confirm or reject potential causes or
states within the network. This is done by means of a binary relation called manifesta-
tions.

The inference structure which achieves the reasoning mechanism of C&D consists
of two inference steps:

1. For each observed symptom, a set of potential explanations is generated, causally
linked as specified in the causal network. This step is achieved by the so-called cover
inference.

On the Use of Meaningful Names in Knowledge-Based Systems 345

2. Each potential explanation resulting from the previous inference is analyzed
and subsequently either confirmed or rejected by means of a differentiate step. This
step consists of several inferences which will only be discussed briefly here. For more
details about these the reader is referred to (Schreiber et al., 1993).

Cover Inference

The cover inference is stated as follows: An explanation S, for a state S; is marked
as considered when S» possibly causes Sy, i.e. when causes(Ss,S1).

Anticipate Inference

The anticipate inference is the first of a number of inferences that make up the
differentiate step. It states that if a state S;is considered as an explanation for a state S,
and S; always causes another state S3 then S3 should be true as well. In this case Sy is
accepted as explanation for Se and S3, otherwise it is rejected.

Prefer & Rule Out

These inferences state that considered explanations which have a positive or neg-
ative qualifier attached to them are preferred, ruled out respectively, if the qualifier is
observed. States which are preferred are being accepted as explanations, those which
are ruled rejected.

In order to describe the post-condition for this method properly we have to intro-
duce some vocabulary. The PSM will need two sorts of input which can simply be
described as sets. A set O of observed symptoms (being a subset of a set off all possible
symptoms) and a set () of observed qualifiers. The causal network will be described as
a graph G = (R, V), where R represents the transitive causes relation and V' the nodes
in the network. (Actually we must make clear here which nodes are symptoms, states,
explanations and qualifiers. Also note that there are two relations in the example causal
network. We skip the technicalities which smoothen such details.)

The desired post-condition for PSM.¢.4(O, ()) should look something like this:

There is a ¢ which is an explanation of the observed symptoms O iff

c causes s

if ¢ causes s/ then s/ € O, for all s/.

if c causes s and ¢/ causes s and only is linked to an observed qualifier then ¢/ does
not explain s

About the pre-condition we can form some idea as well. For all input sets as de-
scribed the PSM could give the result described in the post-condition. ! Note that both
the graph and the input are kept invariant; they do not change during the execution of
the program and are true in every state.

Of course this description is far from being formal, but it is presented here just to
give some idea what the pre- and post-condition should look like.

The reason for giving this expose here is to make a point about using meaningful
names. Note that in the description of the post-condition causes is still being used,
while we could have used any symbol. In fact from a formal point of view there is noth-
ing causal to this relation. The same holds for what we have called symptoms, qualifiers
etc. These are just names which could be replaced without loss of functionality by other
names, provided that every occurrence of a name is replaced by its substitute.

UIf there is no explanation for some observed symbols then both sides of the iff-statement in the post-
condition are false.

346 M.G. Jansen and P. Beys

But if we don’t use the name causes how do we know it is a causal network? And if
we don’t know if we’re dealing with a causal network how do we know if we can use the
method for diagnosis? To generalize these questions: If you replace meaningful names
describing a PSM (and since we have considered a PSM to be similar to a program or
algorithm we have every right to do so) how do you know to which task it is related?
Who tells us that the same PSM after substitution with other names can not be used for
different tasks?

It is not difficult to show that the same PSM_¢ 4 can be used for other purposes. If
we replace causes by has_feature, symptoms by descriptions ofattributes and
states by objects and attributes we can use it for classification. By lack of space
we must leave it to the reader to verify this claim, using the provisory pre- and post-
conditions described above.

5 The need for ontologies

The problem described here is that any functional description only refers to logical
form, not content and one can always find a different interpretation where the form is
preserved but the content changed. If knowledge (in the sense it is defined above) is
represented it always should come with an interpretation. This interpretation is almost
always given implicitly by the use of meaningful names. What we have tried to make
clear is that from a theoretical point of view this is not correct. The practical implication
this might have is also hinted upon. By making use of meaningful names a PSM is
related to a certain task, but the possibility of using it for other tasks not thought of
remains totally obscure. By separating the interpretation of the PSM from what we
called its abstract form this should be overcome.

A way of making such interpretations explicit should be looked for. The rudimen-
tary answer proposed here is the use of ontologies.

The construction of ontologies should provide knowledge-based systems with con-
tent (Sowa, 1997). In fact ontologies can be used to make an intended interpretation for
meaningful names more explicit. This can be done very similar to the way a sentence
in first order logic is given semantics.

To illustrate this point consider an interpretation of the sentence isa (cat,
mammal) in first order logic.

As domain we take the set {cat, mammal}.?

The characteristic function ¢ for isa will be as follows: ¢(cat, mammal) = 1,
¢(cat, cat) = 1, p(mammal, mammal) = 1, p(mammal, cat) = 0.

The denotation of cat: cat.

The denotation of mammal: mammal.

Similarly a functional description of a method and the data-structure it operates
upon can be given semantics with the help of an ontology. The abstract non-logical
symbols in the description of a method can be given an interpretation by linking them to
an ontology. In this way the functional description is provided with content. And what

20f course the elements of this domain set are not mere symbols but their denotation, the actual concept
of cat and mammal. Note that one can easily give other interpretations of the constants cat and mammal
and that a computer will not care which interpretation one chooses.

On the Use of Meaningful Names in Knowledge-Based Systems 347

is even more important: The functional abstract description of the method is completely
separated from the intended interpretation.

It is the primary purpose of an ontology to provide the semantics of the names in a
knowledge-based system. In this sense ontologies can be seen as meta-level theories.
They provide the interpretations or content of a knowledge-based system.

The description of a PSM should therefore consists of two parts. First a functional,
formal description of the method is needed. This should not contain any meaningful
names at all, for they are, as has been shown, redundant.

Second, the abstract symbolism of the functional description should be mapped onto
an ontology, or to put it another way: The ontology should be mapped onto the func-
tional description. This should give the structure its semantics by actually providing an
intended interpretation. In a sense the empy structure can be regarded to be task-neutral,
only when mapped to an ontology becomes a method related to a task.

6 Possible criticism and conclusion

Meaningful names play an important role in knowledge-based systems. They are
mainly used to represent knowledge about the world. It has been argued here that
the assumption that the meaning of such names is clear, is often left implicit. In the
previous sections is has been argued that the implicit use of meaningful names should
be made explicit by making the distinction between a purely functional description of a
method or data-structure and an interpretation of it. By defining a mapping between a
task-neutral description and an ontology such an interpretation can be explicitly defined.

There seems good reason to investigate the implicit assumptions which underlie
both the specification of problem solving methods and knowledge representation in
general. Anyway it seems helpful to increase the awareness of the importance of mean-
ingful names in knowledge-based systems as they indicate assumptions which are still
on a intuitive level.

Finally there is criticism. Here follow some questions, remarks and brief answers.

Criticism 1: What’s new? It all has been said and done.

Answer: It is not our purpose to make a claim to originality here. Reading the
literature and talking to people we came to the conclusion that the subject is not that
trivial to most people and therefore worth writing down.

Criticism 2: How do you use those mappings between PSM and ontologies? It will
never work, it is too complicated.

Answer: Well if you write a program using meaningful names you leave the map-
ping to the computer. The machine doesn’t care whether you use cat, C5678 or any
other name. But we do care. It is true that we did not specify here how ontology map-
pings should work in practice, but the point we want to make is that the interpretation
should be separated from the abstract method. That this is complicated in practice may
very well be true. But so is life.

Criticism 3: would never use C&D for classification purposes. It is not efficient.

Answer: You probably are right. Efficiency was not an issue here. The point of
view here was computational and should be appreciated as such. We do not claim that

348 M.G. Jansen and P. Beys

you can use C&D for classification without problem. But from the specification without
using meaningful names it is obscure why one shouldn’t do so.

Critisism 4: How could you say Example 2 has no knowledge? It is full of knowl-
edge for example: r has no cycles.

Answer: We limited the notion of knowledge to make clear that what is important
is what r stands for. As long as that is not clear we say that is doesn’t contain knowl-
edge. Example 2 is a structure that can be used to describe many state of affairs in the
world. That r doesn’t contain cycles is an a priori truth from that perspective. Of course
according to a more traditional definition of knowledge you are right. Our definition
has no metaphysical pretensions. It was just put forward to make a point.

References

BENJAMINS, V. R., FENSEL, D., & STRAATMAN, R. (1996). Assumptions of
problem-solving methods and their role in knowledge engineering. In Wabhlster,
W., editor, Proc. ECAI-96, pages 408—412.J. Wiley & Sons, Ltd.

BEYS, P., BENJAMINS, V. R., & VAN HEDST, G. (1996). Remedy-
ing the reusability-usability tradeoff for problem-solving methods. In
Gaines, B. R. & Musen, M. A., editors, Proceedings of the 10th
Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, pages
2.1-2.20, Alberta, Canada. SRDG Publications, University of Calgary.
http://ksi.cpsc.ucalgary.ca:80/KAW/KAW96/KAW96Proc.html.

BYLANDER, T. & CHANDRASEKARAN, B. (1988). Generic tasks in knowledge-based
reasoning: The right level of abstraction for knowledge acquisition. In Gaines,
B. & Boose, J., editors, Knowledge Acquisition for Knowledge Based Systems,
volume 1, pages 65-77. London, Academic Press.

DUKSTRA, E. W. (1976). A Discipline of Programming. Englewood Cliffs, New
Jersey, Prentice-Hall.

FENSEL, D. (1995). Formal specification languages in knowledge and software engi-
neering. The Knowledge Engineering Review, 10(4).

MOTTA, E. (1998). Reusable Components for Knowledge Modeling. PhD thesis, The
Open University, Milton Keynes, United Kingdom.

SCHREIBER, A. T., AKKERMANS, J. M., ANJEWIERDEN, A. A., DE HOOG, R.,
SHADBOLT, N. R., DE VELDE, W. V., & WIELINGA, B. J. (1999). Engineering
and Managing Knowledge, The CommonKADS methodology. to appear.

SCHREIBER, A. T., WIELINGA, B. J., & AKKERMANS, J. M. (1993). Using KADS
to analyse problem-solving methods. In Schreiber, A. T., Wielinga, B. J., &
Breuker, J. A., editors, KADS: A Principled Approach to Knowledge-Based System
Development, pages 415-430. London, Academic Press.

Sowa, J. F. (1997). Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations. Book draft.

FMR:AnIncrementalKnowledgeA cquisitionSystem for
FuzzyDomains

Rodrigo Martl’nez—Béjarl, Francisca Ibafiez-Cruz', Thong Le—Giaz, Tri M. Cao’
and Paul Compton®

! Departmento de Inteligencia Artificial, Facultad de Informatica, Universidad de Murcia,
Espinardo(Murcia) — C. P.30071, Spain.Phone: +34 9683 64634. Fax: +34 9683 64651.
E-mail: rodrigo@ dif.um.es

2 Department of Artificial Intelligence, School of Computer Science and Engineering, The
University of New South Wales, Sydney, 2052 NSW, Australia. Phone: +61 2 9385 5518. Fax:
+61 2 9385 5995. Email : compton@cse.unsw.edu.au

Abstract: Ripple Down Rules (RDR) is an incremental Knowledge Acquisition (KA)
technique that allows experts themselves to be in charge of performing the KA as well as the
maintenance of the system. Although there are various real RDR approaches, fuzzy domain
cannot be treated through RDR systems yet. The purpose of this work is to make use of the
RDR advantages to construct fuzzy rule-based systems as well as to strengthen the utility of
RDR in fuzzy domains. This aim has been achieved by introducing some assumptions relative
to fuzzy domain modelling in combination with the construction of a new framework to
manage and acquire (fuzzy) conclusions.

1 Introduction

Ripple down rules (RDR) was developed from the maintenance experience
with an expert system (Compton et al., 1989). The main motivation for developing
RDR was the fact that experts could not explain how they had reached conclusions.
For this reason, RDR uses the knowledge supplied by experts just in the context it was
provided, that is, by following the sequence of evaluated rules. Moreover, if an expert
does not agree with a conclusion, knowledge in the form of a new rule can be added.
In this sense, rules are never removed or corrected, only added.

Multiple Classification Ripple Down Rules (MCRDR) (Kang, 1996) is an
extension of the basic aspects of RDR for providing multiple independent conclusions
for a case. However, current MCRDR approaches cannot be applied to fuzzy domains
as such, since these systems operate with crisp values solely.

The aim of the work presented in this paper is to bring the advantages of
MCRDR to developing fuzzy rule-based systems and to strengthen the utility of
MCRDR in fuzzy domains, particularly in the early stages of development. Thus, by
introducing some assumptions, a system for acquiring and managing knowledge in
fuzzy contexts through MCRDR has been designed and implemented.

2 Fuzzy logic and ripple down rule systems

Fuzzy logic is a method that permits a gradual representation of likeness
between two objects. It is based on Zadeh’s theory of fuzzy sets (Zadeh, 1965). He
defines a membership function to assign a grade of membership between 0 and 1 to
each element in the range of all possible elements under consideration. This grade can
be thought as a measure of compatibility between the element and the concept
represented by the fuzzy set. Formally, the membership function for a fuzzy set A,

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 349-354, 1999.
© Springer-Verlag Berlin Heidelberg 1999

350 R. Martinez-Béjar et al.

written LLA(X), is a real valued function defined as the application pa: X — [0,1] for all
X in a universal set X.

In Fuzzy Logic, there are a number of approaches that allow inference. We
have used the so-called Generalised Modus Ponens (GMP).Through the GMP
technique, the proposition y is B can be derived from the rule “if (x is A) then (y is B)”
when the proposition x is A is true. The GMP can also be employed when the two
propositions x is A and y is B are defined imprecisely. Thus, if a proposition x is A’,
close to x is A, is true, the principle of the GMP is to derive another proposition,
written y is B’ close to y is B. This proposition is generated by taking into account both
the underlying semantics of the implication of the rule and a measure of the likeness
between A and A’. With all, the inference consists of defining a fuzzy set B’, which is
as close to B as A’ is to A.

Many systems use the triple formed by the Z-function, the IT-function and the
S-function (Zadeh, 1975) for defining fuzzy membership functions (i. e., fuzzy sets).
Examples of this are <low, medium, high>, <short, medium, high>, etc. We will term
to each component of T as T}, T,,,, and T,, respectively.

In RDR rules are added by using the justification provided by the expert in
the context of when the same wrong conclusion is reached. The new rules are only
used in the context in which they were provided. The cases which had required new
rules to be added are known as “cornerstone cases”, which maintain the context of the
KB. The system shows the differences between the old and the current case, to the
expert and asks he or she to select some conditions from the list of differences which
justify the new conclusion. These are used for conditions of a new rule and the system
adds into the knowledge base.

With MCRDR, more general systems than those of single classification can
be performed because it allows multiple refinements for a rule. When experts are
maintaining a MCRDR system, they must construct a rule containing the differences
between the case is entered to the system and the case associated to the last true rule in
the KB. This process will be repeated until there is no case (associated to any rule) that
satisfies the rule.

3 Applying RDR systems to fuzzy domains

By using classical RDR engines, fuzzy domains are not accessible, since RDR systems
can only operate with crisp values for the attributes in their rules. Nevertheless, fuzzy
domains are typically concerned with rules following the format IF (X | is V) and (X,
is Vy)andand (X, is V) then Y is A. By assuming that membership functions for
fuzzy attributes follow the triple format <T(x), T,,(x),T(x)> as indicated before, and
that these can be defined as a function of o and v, the following is proposed.

Definition 1: FMR system

Let R be a MCRDR system. R is said to be a fuzzy multiple ripple down rule
(FMR) system, written FMR system, if its rules can be applied to fuzzy domains by
modelling every fuzzy attribute, written A, as follows:

FMR: An Incremental Knowledge Acquisition System for Fuzzy Domains 351

attribute(a,y)is fuzzy_value

A if Aisintended to be a fuzzy attribute;
attributeR(crisp_valuel, crisp_value,,..,crisp_value,),n 21

otherwise

where attribute is the identifier used for A; o and y are the parameters that define the
membership functions for A according to the triple <T\(x), Tin(x),T:(X)>; fuzzy_value
represents a fuzzy value given for A and defined by means of one of the elements of
<T|(x), Tn(x),T(x)> (for example, <high, medium, normal>,< low, short, tall>, etc.);

R represents a mathematical relationship (including equality, order and membership)
between A and the elements of ({crisp_value, -crisp_value,,.., crisp_value,};
crisp_value;, represents the ith non-fuzzy value for A, 1 <i<n.

By considering the referred parameters, some compatibility criterion between
two values of a fuzzy attribute can be defined. For it, we will keep the criterion that the
values that a fuzzy attribute can possess are grouped into semantic compatibility
classes by taking into account that the linguistic tags (i. e., the values) associated to
T)(x) and T,(x), respectively, should not overlap. Thus, given a triple, written < T, Ty,
T3>, containing three different linguistic tags associated to the elements of the triple <
Ti(x), Ti(x), T(x)> ; and given two elements, written V; and V,, belonging to the

3
union set U{ T.}, Vi and V, are defined as being two compatible fuzzy tags, written
i=l
2
compatible_tags (V1, Vy), if V(V12 c ({Ty, YU{T,,,})) where Vi, = {V,}JU {V,}.
k=1
To analyse compatibility between two (eventually) different fuzzy attributes
the relative position of the two sets of parameters defining their respective
membership functions should also be considered. Based on this premise, the following
can be written.

Definition 2: compatible fuzzy attributes

Let F, and F, be two fuzzy attributes belonging to a FMR system represented,
according to definition 1, as “c;.ai(p;) is v;” respectively, where p; = (04, ¥;), 1= 1, 2. F;
and F, are said to be two compatible fuzzy attributes, written compatible_fuzzy_atts
(F, F), if [(F; = F,) or ((ci.a; = c.a;) and (compatible_parameters(p;,p»))] holds
where, compatible_parameters(p;,pz) = [compatible_tags (V1,v2)) and
(within_compatible_ranges (py, p»)) and (sufficient_distance(p;, p»))] where

2

within_compatible_ranges(p;,pj)= V [(ai € PCR(e;,p;)) and (y; € PCR(Y;,p j))];
izj=1
_ . _ Vi -0 .
PCR(x, pr) = [x = MPCD(py), x + MPCD(py)1; MPCD(py) = T,

sufficient_distance(p;,p;)=

352 R. Martinez-Béjar et al.

2
V [(ocj 2a;)and (y; 27;) > (MPCD(p;) =K * MPCDi(pi))];
i%j=1
Kj = I'I]ll'l{BJ - 05, 0.5 - BJ}

Now, let us consider the hypothesis where a fuzzy attribute must be
confronted to a crisp one. The crisp attributes can respond to various formats, namely,
the alphabetical one and the numeric interval-based one. These two possibilities are
considered for the following definitions.

Definition 3: alphabetical compatibility

Let F; and A, be a fuzzy attribute and a non-numerical, crisp attribute in a
FMR system and represented, respectively, as ‘“concept;.attribute;(p ;) is v;” and
“concept,.attribute, = v,” where p; = (0, ;). F; and A, are said to be alphabetically
compatible, written a-compatible(F,;, C;), if (concept,.attribute; = concept,.attribute,)
and (compatible_tags(vy,vs)).

The counterpart of the above definition is the following:

Definition 4: numerical compatibility

Let F; and N, be a fuzzy attribute and a numerical, crisp attribute in a FMR
system and represented, respectively, as ‘“concept;.attribute;(p) is v;” and
“concepty.attribute; € (Ving, Voup)” Where p; =(0,,Y). F; and N, are said to be numerically
compatible, written n-compatible(F,;, N,), if (concept,.attribute; = (concept,.attribute,)

and the following holds
o+ .
(—oo, 5 y:llf v, =T;

[Vinf, Vsup] c [a’ 7] lf Vl = T2’
[79°°) if v, =T

Then, the condition for a given rule in a FMR system to be fired by an input
case, can be established as follows:

Definition 5: fuzzy ripple down rule setting

Let CR; be a condition of a rule, written R; let CI; be a condition for an input
case, written I; and let CR; and CI; be respectively represented (according to the
representation format adopted here) as follows:

Cy-ay (py)is vy if ay is a fuzzy attribute

K= .
{Ck.akR(V'l V',V) otherwise

Where Cy € {CRy, CLi}; k € {1, j}; px = (0, Yi); nx = number of values involved in cy.ay

R is said to be set by I, written set (R, I) if VCR; € R, 3CJ; € I, such that
compatible_ attributes(CR;, CI;) holds where compatible_valued_attributes (CR;, CI;)

FMR: An Incremental Knowledge Acquisition System for Fuzzy Domains 353

»Compatible_fuzzy_atts(CRi ,CI i)if both CR; and CI jare fuzzy attributes;

a - compatible(CR;, CI;) if one of the arguments is a fuzzy attribute and
the other is a non - numerical, crisp one;

n - compatible(CR;, CI;) if one of the arguments is a fuzzy attribute and
the other is a numerical, crisp one;

match(CR;, CI j)if both CR; and CI jare crisp attributes;

true if CR; and CI; are in accordance with their values
match(CR,;, CI,) =
false otherwise

Card(R) Card(I)

R= [Jor;;1= | Joyj.
i=1 j=1

4 Conclusion management and rule condition acquisition in FMR

systems

In FMR , the standard GMP approach is used. So, given a fuzzy rule IF x is A
THEN vy is B, we firstly generate a matrix (termed Fuzzy Associative Memory in
Kosko (1992)) M for storing the association (A, B). Given x cX and ycCY, we are
defining the matrix M (Bouchon-Meunier (1992)) using the Rescher-Gaines
implication, namely, M“(x,y) =1 if fo(x) < fz(y) and O otherwise (Rescher-Gaines
implication).

On the other hand, semantic conflicts among attributes can arise when experts
are shown a set of conclusions after running an input case. Therefore, the system
should have a mechanism to face to the situation where multiple conclusions about the
same attributes and concepts are produced by the system. In FMR, the criteria adopted
to eliminate the (possible) presence of replicate conclusions in semantic terms are the
following. Firstly, the system groups all the conclusions generated for an input case
into compatibility classes according to the criteria indicated before in this article.
Secondly, for every conclusion included in all the so-obtained classes, we make use of
certainty theory.

Although certainty factors for rules are usually supplied by experts in rule-
based systems, in FMR this factor (for each rule) is calculated automatically. For it, the
root node of the FMR tree is supposed to have a certainty factor equals to 1 by default.
For the rest of rules, the certainty factor depends on the correction curve of the rule,
that is, the curve identifying the relation between the number of corrections made from
R and the number of cases seen for R.

In order to get the “best” of the replicate conclusions, given a fuzzy rule
condition, the distance between the parameters defining the attributes of the rule
conditions is considered. Thus, the imprecision factor associated to a fuzzy condition
in a FMR system is defined as being directly proportional to the length of the segment
where the fuzzy membership function for one element of a certain universe can take
several values. In particular, such a factor will depend on the distance between the two
fuzzy boundaries (i. e., o and 7), so that the larger the length of the fuzzy interval, the
larger the imprecision factor of the rule. As o approaches to v, the imprecision factor
approaches to OAlso, he value d'the (fizzy) attrbute is considered to detemne
such a segment.

354 R. Martinez-Béjar et al.

If one expert wants to correct a conclusion of the KB, the rule providing the
right conclusion is added at the end of the path going to the rule that produced the
wrong conclusion. If the approximate conclusion is incorrect from the expert’s
perspective, we use a kind of propose and revise method to adjust the output. With all,
the rule added, if any, should be compatible with and have a less associated
imprecision than the rule that produced the wrong conclusion. Moreover, the new rule
will be added at the end of the path going to the rule that produced the less precise
conclusion. Only fuzzy rules producing new fuzzy conclusions are added at the top of
the FMR knowledge tree.

5 Caaclusions

Ripple down rules (RDR) aim at using the knowledge only in the context
provided by the expert, this context being the sequence of rules evaluated to give a
certain conclusion. MCRDR is a RDR-based approach that allows experts to have
multiple conclusions for a given input case

In real life, there are many problems involving fuzzy terminology. However,
current RDR systems cannot be applied to those. Although fuzzy logic is normally
used to deal with fuzzy domains, RDR systems obligate to assign crisp values to
fuzzy-by-nature attributes.

In this article, a new methodology, based on a set of compatibility criteria
between valued attributes for running cases has been proposed. By considering the
nature of MCRDR systems and some properties relative to fuzzy processing, in this
new approach, experts can be helped to make their choice when they are shown
several conclusions alluding to the same feature. For it, we make use of certainty
factor theory. In our approach, experts do not have to give any certainty factor value
for each condition in a rule. Moreover, given a condition, the system generates a
certainty factor value for this condition from the uncertainty underlying the context of
the rule under question in the KB structure.

The system proposed here is also capable of generating inferred conclusions,
that is, conclusions that are not in the KB. For it, we make use of fuzzy inference by
using the Generalised Modus Ponens approach. Besides, in order to reduce the
(possible) presence of replicate conclusions, the system generates an imprecision-
based factor for each conclusion.

References

Bouchon-Meunier B., (1992). Inferences with imprecisions and Uncertainties in Expert
Systems, Fuzzy Expert Systems Theory, CRC Press.

Compton, P., Horn, R., Quinlan, R. and Lazarus, L. (1989). Maintaining an expert
system, In J. R. Quinlan (Eds.), Applications of Expert Systems, 366-385, London,
Addison Wesley.

Kosko, B., (1992). Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood
Cliffs, N.J.

Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8: 338-353.

Zadeh, L. A. (1975). The Concept of Linguistic Variable and Its Application to
Approximate Reasoning, Information Sciences, 8: 199-248, 301-357; 9: 43-80.

Applying SeSKA to Sisyphus III

Paivikki Parpola
Hauenkalliontie 2 B 54
FIN-02170 Espoo
Finland
Phone: +358 9 420 8482

Helsinki University of Technology
Department of Computer Science and Engineering

Abstract. SeSKA (Seamless Structured Knowledge Acquisition) is a
methodology for constructing and maintaining knowledge bases (KB).
The iterative sequence of development stages creates a series of object-
oriented models, connected by seamless transformations.

Principles of applying SeSKA to the Sisyphus III rock classification prob-
lem are described. Extended semantics of input schemes for SeSKA are
presented. Also conversions from schemes in Sisyphus IIT material are
sketched. The Sisyphus projects are often used as test benches for differ-
ent KA methodologies. A proper evaluation of SeSKA can be made only
after a complete KB has been constructed using it.

1 Introduction

The Sisyphus III Project. The Sisyphus experiments [5] are attempts to com-
pare and evaluate different knowledge acquisition (KA) methods and techniques
[4]. The Sisyphus III project involves classification of rocks based on realistic
interview transcripts and other material.

The SeSKA Methodology. Seamless Structured Knowledge Acquisition
(SeSKA) [1,2] is a methodology for development and maintenance of knowledge
bases (KB). During KB construction, a series of OO models (fig. 1) is created and
part of them are modified during the development process. Seamless transforma-
tions are defined between sequential models. Seamless transformations define the
principles according to which a certain model can be constructed and modified
based on another model. Different models in the chain are described below.

— Domain model (DM) contains domain or abstract concepts and relations.
Concepts are described by a number of features.

— Initial dependency graphs (DG) acquired from different sources. DGs present
inferential dependencies between features of DM concepts. Descriptions can
be attached to different dependencies.

— The actual DG is a combination of initial DGs.

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 355-360, 1999.
© Springer-Verlag Berlin Heidelberg 1999

356 P.Parpola

domain, model
dependency graph 1 + attributes
+ description T

dependency graph 2 | dependency graph
+ description 1+ description

<—>1 inference structure |

dependency graph n
+ description | analysis J«——] design +—{ implementation |

Fig. 1. The chain of models created in order to build a KB. Seamless transformations
are illustrated with arrows.

— Inference structure (IS) presents the structure of possible inference sequences
performed. The IS is shared among three sets of descriptions.

— Collections of analysis, design and implementation descriptions are attached
to inferences in the IS.

Contents of this Paper. Section 2 describes the basic and extended forms of
DM and DG, as well as conversions from other formalisms. Section 3 explains
combining DGs. Section 4 describes the remaining phases of SeSKA. Section 5
contains discussion and conclusions.

2 Information Used as Input

2.1 The Basic DM and DG

DM. Concepts and relations are presented as object classes. Features (prop-
erties or parts) of concepts are presented as attributes of concept classes. The
DM is acquired from knowledge sources but restricted to the essential based on
dependency graphs (see below).

DG. Domain concept features and dependencies between them are presented
as object classes. Features are simultaneously attributes of DM concepts.
DGs can be illustrated using graphical networks or text indentations. A fea-
ture of a concept is presented in the form ’Concept.feature’ (or *Class. attribute’).
The DG is usually formed based on (inferential) dependencies between fea-
tures of concepts, preferably with attached descriptions.

2.2 Possible Extensions and Modifications of the DM and DG

Sisyphus III material cannot be presented in basic DM and DG form. A num-
ber of extensions will be made to the basic DM and DG in order to enable
transformations from schemes used in Sisyphus III material.

Applying SeSKA to Sisyphus III 357

Abstract Concepts. Groups of objects with some common property (with a
common value) can be represented with an abstract concept that can be inher-
ited by the concepts in the group. Abstract concepts can form an inheritance
hierarchy or lattice of several layers.

Nodes in Initial DGs. The following notations are useful when coding knowl-
edge into the DGs. Node names can be extended with an attribute value: Con-
cept.attribute=value’. The forms ’attribute.value’ and ’Concept.value’ can be
used as shortcuts for the presentation as long as they do not cause ambiguities
or confusion. Other shortcuts can also be used, as long as they can be converted
to the form ’Concept.attribute=value’.

Presentation of Protocols through Dependencies. In addition to present-
ing plain inferential dependencies (contents of the KB) in the DG, protocols too
can be presented: each step of a protocol is presented as a DG item, depending
on both the previous step of the protocol and the contents of the current step.

A Wider View of Attributes. In addition to properties and components,
attributes of concepts (possibly appearing as nodes of the DG) can also be
(results of) events, etc. In classification problems like Sisyphus III, dependencies
will be created between the ’identity’ features (i.e. identification) of concepts
and their other features.

2.3 Utilizing Results of Different KE Interviews

The Sisyphus material contains transcripts of KE interviews. In order to be
usable, KE transcripts have to be either (1) converted to formalisms understood
by SeSKA, or (2) used as knowledge sources for extraction of useful knowledge.

Transcripts of item sorts (card sorts) and repertory grid analysis are suitable
for direct conversion due to their formal nature.

Transcripts of structured interviews, self reports and and laddered grid in-
terviews can be used as knowledge sources for manual extraction. The following
kinds of knowledge can be elicited:

— Features of concepts affecting both DM and DG.

— General dependencies between features of abstract or concrete concepts. If
these dependencies (rules) apply only to a certain group of concepts, the
result depends also of the restriction.

— Protocols for performing the task (only structured interviews and self re-
ports). Protocols can be presented in the DGs, as described in section 2.2.

— Groups of concepts with a common property. Also criteria for differentiating
individuals in the group were presented in self reports and laddered grid
interviews.

358 P.Parpola

T T S
o0 g S =

Fig. 2. DG combination: An unnecessary result node (upper left) or an intermediate
node (upper right) can be removed. Two DGs can be joined (lower left). One of two
duplicate dependencies may be removed (lower right). Text descriptions of both of the
duplicate dependencies have to be preserved, however.

The terminology of the interviews should be maintained when information is
first coded to the DM and the DG.

The Sisyphus III material also contains colour photos and micrographs of
rocks. These may be associated with descriptions of dependencies (for identifi-
cation), or as attributes of concepts in the DM.

3 Combining Different DGs Produced

The DGs contain dependencies, acquired from different sources (experts) and
different types of interviews. The terminology of the initial DGs may vary and
has to be harmonized, before or after forming the DGs. Different dependencies
acquired through interviews of a certain type should first be combined, then the
combined results of different techniques can be combined.

3.1 Combining Complementary DGs

DGs containing complementary material can be combined using simplification
and combination rules [1]. These rules may allow bringing together different
fragments of knowledge, even before building a KB. The context of validity has
to be determined for each DG. Two rules for 'remove’, and rules for ’join’ and
‘simplify’ are illustrated in fig. 2. There will almost certainly be overlapping
information left, not removed by the rules. This should be analyzed and edited
carefully, in order to keep the KB manageable.

3.2 Combining Contradicting DGs

Contradicting material is more difficult. There are no absolute rules for these
situations, but common sense can be used. If different experts give different
values for the same attribute, e.g. grain size, of a certain rock, the following
alternatives should be checked:

— Do some of the experts say they are not sure?

Applying SeSKA to Sisyphus III 359

— Does the majority agree? Could someone with a different opinion be wrong?

— Is there a two-way division of opinions? Could this be a question of a bor-
derline?

— Could different samples of the same rock vary in this respect?

Based on the answers either a single or alternative values can be given to the
attribute in question.

There may be alternative protocols to be used. If the protocols differ only
by an insignificant order of steps to be taken, they can be considered the same
protocol. There may remain several separate DGs from combining dependencies
that can be integrated with the help of protocols.

4 Developing the KB

4.1 Forming the Initial Inference Structure

The IS presents the structure of possible inferences, just as in CommonKADS
[3]. The components of the IS are called roles and inferences, and are presented
by objects. Roles in the IS are formed using some suitable heuristics, e.g. “all
attributes that some attribute directly depends on form a role”.

The same mechanism is also extended to protocols presented in the form of
dependencies. Protocol skeletons are filled in with inferential dependencies.

The descriptions associated with dependencies form the initial analysis de-
scriptions, associated with the corresponding inferences of the IS formed.

4.2 Development and Maintenance of the KB

The three kinds of descriptions, attached to each inference, form three sets of
descriptions, sharing the IS. These sets can be considered to form three models.
Different descriptions of inferences can contain a different number of blocks.

Whenever need for change appears (in e.g. the implementation model) the
corresponding part of the analysis model is traced using the shared IS. Necessary
changes are made in the analysis model, and then propagated to the design and
implementation models. Development is thus cyclic, with information flowing
forward and backward between the three models sharing the IS.

5 Discussion and Conclusions

SeSKA (Seamless Structured Knowledge Acquisition) is a methodology for devel-
oping and maintaining of knowledge bases (KB). During the iterative process, a
series of object-oriented (OO) models, connected with seamless transformations,
is created.

The Sisyphus III problem involves creating a KB for rock classification. The
Sisyphus projects are used as test benches for different KA methodologies. A

360 P.Parpola

proper evaluation of SeSKA can be made only after a complete KB has been
constructed using it.

Acquired knowledge in SeSKA is presented in two kinds of models — the
domain model (DM) and the dependency graph (DG). The DM and DG can be
modified and extended in a number of ways. Conversions from other presenta-
tions, made possible by the extensions, are presented.

Fragments of converted material are combined, applying formal rules or prin-
ciples based on common sense. An initial description of the KB can be formed
based on both inferential and protocol dependencies. The KB is developed uti-
lizing the shared inference structure, guaranteeing traceability.

SeSKA provides a rather thin approach, concerned only with KB develop-
ment, but not with, e.g. user interface (UI) development. This, however, makes
the process uncomplicated and suitable for quick prototyping. When real systems
are built, SeSKA has to be combined with other methods.

The main contributions of this paper are to present the extensions to SeSKA
input and to present principles for combining contradictory knowledge (in ad-
dition to complementary). Current trends of research involve building a rock
classification KB, and applying problem-solving methods to models built using
SeSKA.

SeSKA has been tested manually, as the tool supporting SeSKA is still under
development, using the programming language Java.

Acknowledgments

I thank professor Markku Syrjénen for his advice and encouragement, and Pekka
Jussila, MSc. (tech.), for his comments. I also thank Mr. Michael Vollar for
proofreading my English.

References

1. Parpola, P.: Seamless Development of Structured Knowledge Bases. In Pro-
ceedings of KAWO8, FEleventh Workshop on Knowledge Acquisition, Mod-
eling and Management. Banff, Alberta, Canada, 18th-23rd April, 1998.
http://ksi.cpsc.ucalgary.ca/KAW /KAW98 /parpola/.

2. Parpola, P.: Development and inference in integrated OO models. Proceedings of
CIMCA’99 - The international conference on computational intelligence for mod-
elling, control and automation. Vienna, Austria, 17-19 February, 1999. IOS Press.

3. Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H., van de Velde, W.: Com-
monKADS, a Comprehensive Methodology for KBS Development. IEEE Expert
Vol. 9 (1994) No. 6, pp. 28-37.

4. Schweickert, R., Burton, A. M., Taylor, N. K., Corlett, E. N., Shadbolt, N. R.,
Hedgecock, A. P.: Comparing knowledge elicitation techniques: a case study. Arti-
ficial Intelligence Review (1987) No. 1 (January), pp. 245-253.

5. Shadbolt, N., Crow, L., Tennison, J., Cupit, J.: Sisyphus III Phase 1 Release. Novem-
ber 1996. http://www.psychology.nottingham.ac.uk/research/ai/sisyphus/.

Describing Similar Control Flows for
Families of Problem-Solving Methods

Rainer Perkuhn

Institute AIFB
University of Karlsruhe (TH)
D-76128 Karlsruhe, Germany
e-mail: perkuhn@aifb.uni-karlsruhe.de

Abstract

A library of software components should be essentially more than just a
juxtaposition of its items. For problem-solving methods the notion of a family is
suggested as means to cluster the items and to provide partially a structure of the
library. This paper especially investigates how the similar control flows of the
members of such a family can be described in one framework.

Keywords: Problem Solving Methods, Reuse, Similarities,
Categories of PSMs, Software Architectures, Meta Modeling

1 Introduction

The notion of a problem-solving method (PSM) was inspired by a lot of different
approaches (Generic Tasks [Chandrasekaran, Johnson, and Smith, 1992], Com-
monKADS [Schreiber et al., 1994], Method-to-Task Approach [Eriksson et al., 1995],
Components of Expertise [Steels, 1990], GDM [Terpstra et al., 1993], MIKE [Angele,
Fensel, and Studer, 1996]). PSMs describe the reasoning behaviour of an intelligent
agent. Though, suitable models are especially conceptual ones and “platform-indepen-
dent” by providing modeling primitives on the knowledge level ([Newell, 1982]). Up
to now the competing modeling frameworks converged and reached consensus on the
fundamental issues a common (“unified”) theory has to cover. [Angele et al., 1996],
[Perkuhn, 1997] summarize the synthesis of this development, the new proposal for
UPML ([Fensel et al., 1999]) tries to capture the result in a unified modeling language.

Reuse of PSMs promises time, cost, and quality improvement in the development pro-
cess of a knowledge-based system, incl. maintenance, and a more reasonable assess-
ment of the quality of the resulting product. Mainly, investigations on the reuse of
PSMs focus on the development of libraries ((Motta, 1997], [Breuker and van de
Velde, 1994]) but from a reuse process point of view these are useful only to a limited
extent. Either they offer only a collection of items with no real support of how to select
an appropriate one. Or they attempt to cover a more generalized structure, e.g. task-
method-decomposition trees ([Benjamins, 1993]), but are very poor in showing up the
relations between the possible specializations. The latter approach seems more promis-
ing but evaluations have shown their deficiencies ([Orsvirn, 1996]). The main critics
is that the designer of the library did not consider (and is not able to represent) in his
models of how to adapt the generalized structure to a special application. The tower-
of-adapter approach ([Fensel, 1997]) is derived from the necessity to adapt general
models, like e.g. basic search schemes, to more specialized circumstances, e.g. special
PSMs like propose&revise. In principle, the approach is a constructive one but up to
now it neither offers models that contain the information of the overall structure of the
resulting system in a communicable form - as the conceptual models do - nor offers

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 361-366, 1999.
© Springer-Verlag Berlin Heidelberg 1999

362 R. Perkuhn

construction plans of how to combine the basic templates with some adapters to come
to a certain overall conceptual structure. Of course, adapters might improve the reus-
ability of a system like any other design pattern ((Gamma et al., 1994]) can do. But
especially conceptual models of PSMs contain information that is closer to an architec-
tural description ([Shaw and Garlan, 1996]) of the general structure of the target sys-
tem. Nevertheless the approach is an interesting alternative rsp. completion to indexing
the library with simple keywords or logical formulae-based pre-/post-condition anno-
tations. Actually, it is not far away from object-orientation - another view on reuse that
claims that the inheritance hierarchy provides a reasonable structure of the reuse com-
ponents and, thus, solves a good deal of the indexing problem. But a PSM cannot be
captured completely by the notion of an object in this sense since it e.g. contains an
explicit specification of the control flow. [Perkuhn, 1997] suggested the concept of a
family of PSMs that describes the overall architecture for a class of similar methods. In
the same fashion as in object-orientation it is intended to structure a part of the library.
Thus, only a family has to be retrieved from the library by an additional mechanism.
Afterwards the selection of a PSM corresponds to systematic browsing through the
family. [Perkuhn, 1997] focussed on inference structures while this paper especially
investigates how to describe similar control flows for a range of closely related PSMs.

2 Families of PSMs

Most aspects of a PSM that can be
represented in a specific part of the
model (layer rsp. view) can be dis-
tinguished between eclements like
concepts or roles and steps in the
problem solving process on the one { propose
hand and relations between them on

Decomposition

(partial)
assignment

the other hand. [Perkuhn, 1997]
introduced colouring as a means to propose Inference
express that they are not necessarily | knowledge PIOPOSE Structure
parts of the model. All elements in
the same colour form a region. A
omitted if certain conditions are not
fulfilled. In the example of [Per-
kuhn, 1997] (a family for assign-
ment tasks that covers generate-
and-test, propose-and-exchange, -_> (constraint)
and proposg-ar?d-revise) differgnt
of the knowledge for static roles ; ;

inference structure for the assignment
namely propose, exchange, and family (cf. [Perkuhn, 1997])
revise. The former two are illus-
trated in figure 1. The revise region is part of the refinement of the exchange step that
is not shown here. If one of these static roles cannot be filled, i.e. the knowledge is not
from the model. For these cases it seems to be appropriate to colour and remove all
related connections, too. But in other cases the resulting model has to be kept consis-
tent rsp. coherent. E.g. to restore the coherence of a taxonomy or a sequential control
flow the gap in the model has to be bridged with the transitive closure of the adjacent
relations (cf. figure 2) - if possible and reasonable. Colouring is a creative modeling

coloured region possibly has to be

regions depend on the availability Figure 1. Coloured task decomposition and
available or cannot be acquired either, the corresponding region has to be removed
act and expresses as an epistemological primitive on a cross-model level that the

Describing Similar Control Flows for Families of Problem-Solving Methods 363

stepl step2 step3

O

step2

)

0 0
|
0 0

Y

Figure 2. Optional connections vs. transitive closure of adjacent connections

model should still make sense in all variations with or without the regions in every
context.

Capturing similar control flows imposes additional requirements on the modeling
framework. The control flow specification has to prescribe which steps are performed
in which order. If the reasoning process reaches a state where it can follow different
succeeding paths, the control flow has to specify how to go on. In the ordinary PSM
scenario the decision depends on boolean expressions - normally expressing an inter-
nal state during computation. Resembling the manner of procedural programming lan-
guages if- or case-statement-like expressions evaluate these boolean expressions and
according to their truth value decide for one path. Overlaying different control flows
introduces a new aspect that has to be distinguished from these internal states.

In the example family some variants begin with a propose step, others with a generate
step. Some other variants use the generate step as a fallback action if for a certain vari-
able (“parameter’”) no propose knowledge is applicable. Since in most cases - if pro-
pose is realized - generate is not taken into consideration at all it is not appropriate to
put these two steps into a sequential order. Rather they should be treated as alterna-
tives. An additional mechanism is necessary to handle the fallback variant, but, actu-
ally, this distinction exactly reflects the difference of ordinary inter-process
communication via return values and extra-ordinary exception handling. This new
form of alternative does not depend on an internal state of the computation. It is a kind
of non-deterministic decision point to be resolved with respect to the possible variants.

At the decision point the problem-solving process is in
a state similar to a person that wants to get from one ‘

place to another one. When the person reaches a point

where the path splits and he/she can decide how to go [+founded] \‘[ﬂandom]
on - assuming that both paths still lead to the target

place -, normally, the selection is not arbitrary but

depends on some properties of the alternatives. In this propose
framework these are annotated as features to the dif-

ferent paths. The next step is then determined by an

external strategy that weighs up the different proper-

ties. In the example of the assignment family the alter- I

native paths can be annotated as “founded” on the one

hand, and “random” on the other hand. A usual default

strategy (cf. table 1) would reflect the superiority and Figure 3. Decision criteria

prefer the founded alternative over the random one. annotated as features
strategy “founded” prefer a [+founded] path over any other
strategy “not random” prefer any path over a [+random] one

Table 1 - Two default strategies

364 R. Perkuhn

The following example illustrates how the combination of properties and internal
states is annotated as feature-conditioned boolean expression.

All PSMs of the assignment fam-
ily can be categorized into two
groups: those that work holisti-
cally, i.e. they first complete the
system model (in an inner loop)
before they test and revise it, and
those that work incrementally,
i.e. they already test and revise
incomplete models (partial
assignments) and extend them in
an outer loop. Executing propose
or generate once yields one value
for one variable. So, afterwards
the control flow has the option to
repeat this first step or to test the
system model built up so far.
This general property is not success and
expressed by the feature [+holis- [+limited]
tic] for completing first, and [- success and
holistic] for the interleaving tests. [-holistic] | complete
The logical complement is used
here to express the mutual exclu-
siveness of the two alternatives.
The path back to the beginning Figure 4. A coloured non-deterministic control flow
(the inner loop) is only consid- for the assignment family

ered if the strategy prefers “holis-

tic ways”. The path related to the test is considered if “incremental ways” are preferred
but also at least finally in the holistic case. So, deciding for an incremental strategy has
trivially the following effect: The loop can be ignored but the connection to test has to
be realized as an unconditioned path. The holistic strategy still prefers both paths. But

[+holistic] | not complete [-holistic] or

[+holistic] | complete

(not success or
[-holistic] | not complete) and
[+random]

strategy “holistic” prefer [+holistic] over [-holistic]

strategy “incremental” prefer [-holistic] over [+holistic]

Table 2 - Two complementary strategies to be selected by the user

it is clear that the inner loop should not be repeated infinitely but only until the model
is complete. This is what may be expressed by an ordinary boolean expression like
“complete” or “not complete”. Thus, the feature-conditioned boolean expression has to
be read as: Even if the strategy preferred the path due to the feature, solely the evalua-
tion of the boolean expression determines which path to follow. It is worth while to
mention that the completeness of the model has to be checked only once - either before
or after the test. Thus, this framework is able to cope with different strategies that
cause different global effects on the control flow.

By introducing two modeling primitives, namely features in a somehow non-determin-
istic control flow on the one hand and strategies apart from the control flow on a
“strategy layer” to resolve the non-determinism on the other hand the two different
concerns what alternatives are available and which one should be selected could be
modelled separately. Thus, a family is a parametrized representation of several PMSs
with respect to the optional components and the strategies that can be chosen. This
framework offers the advantage in contrast to other approaches ([ten Teije, 1997]) that

Describing Similar Control Flows for Families of Problem-Solving Methods 365

the parameters are very closely attached to the conceptual models and, by this, can be
exploited in a communicative situation. All parameters can be expressed in a way that
can be understood by an expert but they are also useful for the knowledge engineer.
After selecting a family the parameters can be checked systematically, e.g. with a
questionnaire, to provide actual parameters for an instantiation of the generic family.

3 Conclusion and Related Work

The ambition to make reuse of knowledge (level) models more flexible is not new
([Geldof, 1994]). In the first version KADS ([Schreiber, Wielinga, and Breuker,
1993]) suggested a strategy layer for this purpose. But both only consider the possibil-
ity to chose between different methods with the same competence for one task. Simi-
larly GDM ([Terpstra et al., 1993]) allows the application of alternative rewrite rules
that may cause comparable effects to the graph transformation rules in the approach
presented here. But none of these three frameworks allows to model explicitly decision
criteria or resolution strategies. There is no flexibility related directly to the conceptual
models and there is no way to capture global effects on different strategies. GDM
claims that meta knowledge helps them to cope with some of these problems. But sim-
ilar to task features ([Aamodt et al., 1993]) there is no direct relation to the respective
part of the model so that it could be explained and justified from its context.

Other approaches focus more on strategic aspects. TASK+ ([Pierret-Golbreich and
Talon, 1997]) tries to describe these with abstract data types; DESIRE ([Brazier et al.
1997]) allows to specify multi agent systems. But both are only loosely coupled to the
conceptual models in the sense presented here and they are not able to separate the
concerns on different layers. DESIRE e.g. uses ordinary if-statements for activating
agents, i.e. for selecting the control flow. Thus, the difference between ordinary con-
trol flow and strategic aspects is not obvious in these models.

Very close in spirit is the idea of configuring PSMs via parametric design ([ten Teije et
al., 1996], [ten Teije, 1997]) that is investigated for diagnosis. But the suggested
parameters are only hardly to understand as underpinned by the conceptual model. The
major weakness of the models is the insufficient expressiveness for specifying control
flow especially for capturing alternatives.

The work presented in this paper is the only one that combines the strict relation to the
conceptual models with an explicit layer to capture and specify alternatives and their
resolution.

References

[Aamodt et al., 1993] A. Aamodt, B. Benus, C. Duursma, C. Tomlinson, R. Schrooten, and W.
van der Velde: Task Features and their Use in CommonKADS. Deliverable 1.5. Version 1.0,
Consortium, University of Amsterdam, 1993.

[Angele et al., 1996] J. Angele, S. Decker, R. Perkuhn, and R. Studer: Modeling Problem
Solving Methods in New KARL. In: [KAW, 1996], 1-1 - 1-18.

[Angele, Fensel, and Studer, 1996] J. Angele, D. Fensel, and R. Studer: Domain and Task
Modeling in MIKE. In: A. Sutcliffe, D. Benyon, F. van Assche (eds.): Domain Knowledge for
Interactive System Design, Chapman & Hall, 1996, 149-163.

[Benjamins, 1993] R. Benjamins: Problem Solving Methods for Diagnosis. Ph.D. Thesis,
University of Amsterdam, Amsterdam, 1993.

[Brazier et al. 1997] F.M.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, and J. Treur:
DESIRE: Modeling Multi-Agent Systems in a Compositional Framework. International
Journal of Cooperative Information Systems: Multiagent Systems. 6 (1), 1997, 67-94.

[Breuker and van de Velde, 1994] J.A. Breuker and W. van de Velde (eds.): The CommonKADS
Library for Expertise Modeling. 10S Press, Amsterdam, 1994.

366 R. Perkuhn

[Chandrasekaran, Johnson, and Smith, 1992] B. Chandrasekaran, T.R. Johnson, and J.W.
Smith: Task-Structure Analysis for Knowledge Modeling. Communications of the ACM,
3509), 1992, 124-137.

[Eriksson et al., 1995] H. Eriksson, Y. Shahar, S.W. Tu, A.R. Puerta, and M.A. Musen: Task
Modeling with Reusable Problem-Solving Methods. Artificial Intelligence, 79, 2, 1995, 293-
326.

[Fensel, 1997] D. Fensel: The Tower-of-Adapter Method for Developing and Reusing Problem-
Solving Methods. In: [Plaza and Benjamins, 1997], 97- 112.

[Fensel et al., 1999] D. Fensel, R. Benjamins, S. Decker, M. Gaspari, R. Groenboom, W.
Grosso, M. Musen, E. Motta, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga: The
Component Model of UPML in a Nutshell. To appear in: Proceedings of the 1st Working IFIP
Conference on Sofiware Architecture (WICSAI), San Antonio Texas, USA, February 22-24,
1999.

[Gamma et al., 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns.
Elements of Reusable Object-Oriented Sofiware. Addison-Wesley, Reading/Mass. 1994.

[Geldof, 1994] S. Geldof: Towards More Flexibility in Reuse. In: Proceedings of the 14th
International Conference in Artificial Intelligence, KBS, Expert Systems, Natural Language
of Avignon. Paris, 1994, 65-75.

[Gennari et al., 1994] J.H. Gennari, S. Tu, Th.E. Rothenfluh, and M.A. Musen: Mapping
Domains to Methods in Support of Reuse. International Journal of Human-Computer Studies
(IJHCS), 41, 1994, 399-424.

[KAW, 1996] Proceedings of the 10th Banff Knowledge Acquisition for Knowledge Based
Systems Workshop (KAW ‘96), Banff, Canada, November 1996.

[Motta, 1997] E. Motta: Reusable Components for Knowledge Modeling. Ph.D. Thesis,
Knowledge Media Institute, Open University, Milton Keynes, UK, 1997.

[Newell, 1982] A. Newell: The Knowledge Level. Artificial Intelligence, 18, 1982, 87-127.

[Orsvéarn, 1996] K. Orsviarn: Principles for Libraries of Task Decomposition Methdos -
Conclusions from a Case Study. In: N. Shadbolt, K. O‘Hara, G. Schreiber (eds.): Advances in
Knowledge Acquisition. Proceedings of the 10th European Knowledge Acquisition Workshop
(EKAW96), Nottingham, England, May 1996, Lecture Notes in Artificial Intelligence
(LNAI), vol. 1076, Springer, Berlin, 1996, 48-65.

[Perkuhn, 1997] R. Perkuhn: Reuse of Problem-Solving Methods and Family Resemblances.
In: [Plaza and Benjamins, 1997], 174-189.

[Pierret-Golbreich and Talon, 1997] C. Pierret-Golbreich, X. Talon: Specification of Flexible
Knowledge-Based Systems. In: [Plaza and Benjamins, 1997], 190-204.

[Plaza and Benjamins, 1997] E. Plaza, R. Benjamins (eds.): Knowledge Acquisition, Modeling
and Management. Proceedings of the 10th European Workshop (EKAW97), Sant Feliu de
Guixols, Catalonia, Spain, October 1997, Lecture Notes in Artificial Intelligence (LNAI), vol.
1319, Springer, Berlin, 1997.

[Puerta et al., 1992] A. R. Puerta, J. W. Egar, S. W. Tu, and M. A. Musen: A Multiple-Method
Knowledge Acquisition Shell for the Automatic Generation of Knowledge Acquisition Tools.
Knowledge Acquisition, 4, 1992, 171-196.

[Schreiber, Wielinga, and Breuker, 1993] G. Schreiber, B. Wielinga, and J. Breuker (eds.):
KADS. A Principled Approach to Knowledge-Based System Development. Knowledge-Based
Systems, vol. 11, Academic Press, London, 1993.

[Schreiber et al., 1994] A.Th. Schreiber, B.J. Wielinga, R. de Hoog, H. Akkermans, and W. van
de Velde: CommonKADS: A Comprehensive Methodology for KBS Development. /EEE
Expert, December 1994, 28-37.

[Shaw and Garlan, 1996] M. Shaw, D. Garlan: Software Architectures. Perspectives on an
Emerging Discipline. Prentice Hall, Upper Saddle River, NJ, 1996.

[Steels, 1990] L. Steels: Components of Expertise. 4] Magazine, 11(2), 1990, 29-49.

[ten Teije, 1997] A. ten Teije: Automated Configuration of Problem Solving Methods in
Diagnosis. Ph.D. Thesis, University of Amsterdam, Amsterdam, 1997.

[ten Teije et al., 1996] A. ten Teije, F. van Harmelen, G. Schreiber, and B. Wielinga:
Construction of Problem Solving Methods as Parametric Design. In: [KAW, 1996], 12-1 - 12-
20

[Terpstra et al., 1993] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadbolt: Knowledge
Acquisition Support Through Generalized Directive Models. In: J.-M. David, J.-P. Krivine,
and R. Simmons (eds.): Second Generation Expert Systems, Springer, Berlin, 1993, 428-455.

Meta Knowledge for Extending Diagnostic
Consultation to Critiquing Systems'

Frank Puppe
Institute for Artificial Intelligence and Applied Informatics,
Wiirzburg University, Am Hubland, D-97074 Wiirzburg, Germany

Abstract. Critiquing systems check for weaknesses in the user's solution and may suggest
corrections. Although their usefulness was first emphasized in diagnostic domains [6], the
main success of knowledge based critiquing systems have been in design applications [4,
13]. While in the latter a deep understanding is often not necessary for critiquing purposes,
in complex diagnostic domains the capability to solve the problems is critical for critiquing
systems. However, they need additional knowledge to adjust to the user's solution instead of
merely inferring solutions by themselves. We analyze that knowledge and propose a mini-
mal model for extending a diagnostic consultation to a critiquing shell.

1. Introduction

A critiquing system has been defined as a “decision support system that allows the user to
make the decision first; the system then gives its advice when the user requests it or when
the user’s decision is out of the system’s permissible range” [2]. They are particularly
useful in domains, where knowledge based systems are unable to take legal or economic
responsibility for the adequacy of their solutions. For example, developers of medical
consultation systems would not accept, that they - as legal proxies of their systems - are
responsible for its diagnoses and therapy recommendations in the same way physicians
are. In such situations human experts need the full knowledge to solve problems by them-
selves. Therefore they cannot profit very much from knowledge based systems offering
the same capability, unless there is some synergy effect. This holds not only for medicine,
but for all applications where human experts are still better than knowledge systems and
where wrong decisions might be very dangerous or expensive. While the potential for
synergy between human experts and machine intelligence is large due to their different
strengths and weaknesses, it is not easy to exploit, because someone has to decide, under
what circumstances whose solutions are better. Few knowledge based systems have faced
this challenge, but usually left it to expert users, at best with the support of good explana-
tion components. A major exception are critiquing systems [13], which were popularized
by Perry Miller [6] in the eighties due to his frustration with acceptance problems of
knowledge based systems in medicine.

Fischer et al. [91] distinguish between two general approaches of critiquing:

e Analytical critiquing: The system checks products with respect to predefined features
and effects. This approach does not need a complete domain model and is particularly
suited for many design problems (e.g. JANUS [3] for kitchen design).

e Differential critiquing: The system generates its own solution, compares it with the
user's solution and points out relevant differences. Many critiquing systems e.g.
HYPERCRITIC [7], a ship damage control system [11] or the electronic cockpit as-
sistant CASSY [5] have a component which represents an ideal expert as yardstick for

' This work has been supported by the Deutsche Forschungsgemeinschaft (DFG; grant Pu 129/2 1).

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 367-372, 1999.
© Springer-Verlag Berlin Heidelberg 1999

368 F.Puppe

the correctness of the user’s decision. However, if the user's solution is radically dif-
ferent from the system's solution, a direct comparison might be not very helpful. This
can be avoided to some degree by evaluating the user's solution step by step in his/her
context.

The main success of critiquing systems lies in the design domain [4, 13]. When an artifact
has to be constructed meeting certain requirements, it is quite easy to check, whether the
solution meets the requirements, even if there is no knowledge how to configure the arti-
fact from primitive elements in the first place. Under these circumstances, critiquing sys-
tems are often easier to build than problem solvers, and they might be very useful to as-
sess the quality of an offered solution, even if they are unable to repair detected problems.
For example, grammar and style checkers in text editors are much easier to build than
generators of well readable sentences. In diagnostic domains, similar situations exist, e.g.,
when a hypothesis can be questioned if certain conditions do not hold. In general how-
ever, to criticize a hypothesis requires knowledge to reconstruct the inference process and
the ability to find better hypotheses. The reason is the inherent probabilistic nature of
most diagnostic domains. If an expert suggests a diagnostic or therapeutic decision s/he
usually has good arguments in favor for it — and as well against it. The problem is the
weighing of both. Since the weight of the arguments depends on the peculiarities of the
case, a critiquing system needs lots of detailed knowledge. This is probably an important
reason, why diagnostic critiquing systems in vague domains did not proceed much beyond
the prototype stage initiated by the pioneering work of Perry Miller.

Therefore we propose a reuse approach: Add additional knowledge for critiquing
to the knowledge of a standard diagnostic problem solver without overburdening the
knowledge provider. It aims at a synthesis between differential and analytic critics [12],
the latter supplementing the differential approach by checking for a minimal performance
standard and by making sure, that the user's solution contains no obvious mistakes stored
in a library.

Electronic Work Environment

Task support software, e.g. problem Expert
solvers, information systems Module

Initiate Task:
- Problem Description
- Proposed Solution

4

/

\\ Criticism Y
Feedback Differential Critiquing
Explanations Analyzer Knowledge

Suggestions
A o
Errors, Problems User
Untaken Qpportumlles Model
Biases
Y .
{ Dial Generator T?Xt
Files
Embedded Critic

Fig. 1: General architecture of critiquing systems, with emphasis on the reuse of the expert module.

Meta Knowledge for Extending Diagnostic Consultation to Critiquing Systems 369

An architecture for critiquing systems is shown in fig. 1 (adapted from [13]). The user
enters a problem description together with a solution. In the problem solving process, s/he
may be supported by task support software, e.g. information or knowledge systems based
on an expert module. The embedded critique consists of a differential analyzer detecting
errors, problems, untaken opportunities or biases in the proposed solution. Based on a user
model, the dialogue generator then decides on what information to present to the user in
what form (criticism, feedback, explanations, suggestions). The difference to the model
from [13] is, that the expert module of the task support software is reused by the critiqu-
ing system and enriched by additional "critiquing knowledge".

Critiquing systems are quite similar to intelligent tutoring systems [14] and in
particular to training systems (e.g. [10]) presenting a problem to the user and providing
feedback in the solution process. The main difference is, that training systems have total
control over the characteristics of the presented problems. Therefore they do not have to
question their problem solving capabilities and face much less uncertainty about the cor-
rectness of their generated feedback than critiquing systems.

Designing a critiquing system depends on an analysis of what can go wrong in
diagnostics. It relates to the quality of the input data, the data gathering process and the
solution. Accordingly, a diagnostic critiquing system can pursue different goals:

e Check for a minimal performance standard. This includes the avoidance of well
known errors as well as the conformity with positive guidelines.

e Check whether the cost/benefit relation for problem solving is acceptable. In many di-
agnostic domains expensive tests for checking everything exist, but there might be a
limit for the total costs refundable in a given case.

e Check the reliability of the input data. This includes, whether sufficient data for
problem solving are available and how reliable the data items are. The latter is par-
ticularly important, if the solution depends on a few critical observations.

e Check, whether better solutions (e.g. more probable) than the proposed one exist and
rate the difference.

e Check, whether plausible alternatives to the proposed solution exist. They need not
necessarily be more probable, but should take the importance of diagnoses into ac-
count, e.g. in medicine, whether they are dangerous, treatable or urgent.

2. Additional critiquing knowledge and inference strategy

To achieve these goals, critiquing systems need additional knowledge besides a know-
ledge base for solving problems:

A minimal performance standard can be expressed with positive and negative
categorical rules or constraints, which might be qualified with a weight and an informal
explanation, e.g. if granites, then glimmer with high weight. This partial knowledge is
used in the way of the analytical critiquing approach. Although a good knowledge base
should implicitly include such knowledge, a critiquing system greatly profits from repre-
senting it explicitly as a different knowledge type. This has several advantages during
knowledge acquisition, which compensate for the redundancy: First, partial knowledge
for avoiding severe mistakes can be seen as a second level of competence, which lessen
the severity of break-downs in the full knowledge base. Second, it is easy to check the
adequacy of categorical knowledge, but much more difficult to decide, whether such
knowledge is implicitly encoded in cases or probabilities of a full knowledge base. Third,

370 F. Puppe

changes in full knowledge bases might have unforeseen side effects, especially if the de-
veloper of the knowledge base is not available. Adding "safety constraints" to a body of
existing knowledge is much less error-prone. The usefulness of this kind of "safety net" in
complex domains is also demonstrated in the medical literature, where so called guide-
lines [8] for ensuring a minimal performance standard in well-circumscribed situations
are gaining popularity. In complex domains, guidelines cannot be complete and there re-
mains considerable room for decisions not covered by the minimal performance standard.
Therefore we classify such guidelines as partial knowledge.

A check of the cost/benefit relation needs knowledge about the costs and benefits
of the diagnostic tests and therapies. While the costs and risks can be easily represented
for each action, the benefits are context-sensitive. There are two strategies: a local strat-
egy, where each test is justified in terms of the hypotheses it helps to clarify, and a global
strategy, where a threshold for the cumulated costs of all tests is precomputed based on
general parameters of the case (e.g. the diagnostic costs for an old car should not exceed x
percent of its current value). While the knowledge for the local strategy is usually con-
tained in a standard knowledge base and its usefulness depends on its overall quality, the
global strategy requires additional knowledge about such thresholds.

Due to our experience, unreliable input data is responsible for most of the errors
of an interactive diagnostic system in routine use. Therefore, some consistency checking
is necessary even in the consultation mode (e.g. for relations like the systolic blood pres-
sure being higher than the diastolic one). However most of the possible errors with input
data cannot be detected by consistency checking. A possible solution would be to request
the user to enter the degree of reliability for every observation. This would be very time-
consuming and therefore lower user acceptance of the whole system. Instead, default val-
ues can be used for the typical reliability of observations (e.g. laboratory data is usually
more reliable than history information). Only in critical instances, the user is requested to
overwrite the default value. They arise if an important conclusion depends on the exis-
tence of a typically uncertain symptom. For example, the density of a rock can be as-
sessed or measured by weighing the clean rock and its water displacement. If assessing is
used as default, the user should overwrite the low default reliability value when measur-
ing. Another situation where one should be cautious about the validity of conclusions is, if
not enough input data is available, either because the respective tests have not been per-
formed or the user answers important questions with "unknown". Therefore, for each con-
clusion the minimal input data requirements should be defined explicitly, e.g. for classi-
fying igneous rocks, one should always be sure about the presence or absence of the key
minerals quartz, feldspar, pyroxene, olivine.

In diagnostics, finding better solutions than the user’s proposal requires the
availability of a fully developed problem solver able to compute and compare the prob-
ability of the user's solution with its own. However, differences between the system’s and
the user’s solution can be due to many causes. Even if the data seems reliable and not too
incomplete, the system might err for lots of other potential reasons, e.g. its knowledge
base might contain errors, the case might be very untypical, there might be different
schools of opinions which are not necessarily better or worse. There are several comple-
mentary solutions to this problem: The system should be critical about the quality of its
own solution. Since this depends on the quality of the knowledge base as a whole or for
inferring each diagnosis, the latter should be specified. This might be done by self-
assessment of the expert who built the knowledge base or by evaluation with cases. Sev-

Meta Knowledge for Extending Diagnostic Consultation to Critiquing Systems 371

eral knowledge bases for the same domain might improve the assessment, e.g. if all of
them agree on the same diagnosis, but disagree with the user’s proposal, there is more
justification to criticize the user than if knowledge bases dissent. The different knowledge
bases might use different representations (e.g. heuristic, causal, case-based or statistic
knowledge), and/or might be developed by different experts. Finally, the system can per-
form a differential analysis, i.e. analyze whether different expectations of the user’s and
its own solution for certain observations exist and compare these expectations with the
actual observations. If some of them are yet unknown, it might suggest to explore them.

Checking for plausible alternatives to the user’s solution is in principle similar to
checking for better solutions, but uses different criteria for making suggestions. The sys-
tem might focus on important diagnoses, either specified by the user or by standard crite-
ria like treatability, danger and urgency. For example, it often makes sense to suggest
therapeutic actions for a treatable diagnosis, which is dangerous without therapy - even if
the diagnosis is not the most probable one. An alternative might be to suggest additional
tests, but the corresponding time delay should be taken into account. If the treatment is
risky in itself, the various outcomes with and without therapy and their probabilities must
be weighed. If all parameters can be quantified, decision theory is the best choice.

The inference strategy of the critiquing system is straightforward. It infers its
own solution and tries to reconstruct the user’s solution based on the problem description.
Besides it checks with its additional knowledge, whether there is some reason for critiqu-
ing the user’s actions (i.e. tests, diagnoses, therapies) in a particular case. The result is a
list of potential critiquing items (in the following summarized as “containers”).

1. Check whether a negative critiquing constraint is violated. Since they represent typical
errors of the user, they are noted in a container named "standard-errors".

2. Check of the explicit positive critiquing rules. If such a rule recommends an action
which the user has not chosen, this is noted in a container "guideline-ignorance".

3. Check of the importance of the system's and the user's diagnoses and the costs and
risks of their tests and therapies. Diagnoses with high importance values are listed in a
container "important-diagnoses" and costly tests and therapies in "high-costs".

4. Reliability check of the input data for the items in the critiquing containers from the
first two steps and for the user's as well as the system's actions. If they depend on sin-
gle data items being marked as unreliable, the system notes these action/data pairs in a
container "increase-reliability".

5. Completeness check of the input data with respect to both the system's and the user's
actions. If important data is missing, the data together with the respective action is re-
corded in a container "increase-completeness".

6. Check the reliability of the system's actions. Actions are listed in a container "high-
rated-system-actions", if the numerical score of their certainty combined with the gen-
eral reliability in the respective part of the knowledge base is rather high.

7. Check for different expectations for observations based on the assumption, that the
system's resp. the user's solution is correct. Record these observations with their re-
spective values and their actual value in a container "differential-analysis".

If there are several knowledge bases, the steps 4-7 are done for each knowledge base in-
dependently. All critiques are rated with a severity number according to importance.

The user feedback is generated from these critiquing containers based on the se-
verity of the items and the user model with preferences concerning the priorities and the
different critiquing types. The user model acts in essence as a filter on the items. There

372 F. Puppe

are many interdependencies between the item in the critiquing containers: The ratings of
standard errors, guideline-ignorance, high-rated-system-diagnoses and differential-analy-
sis depend strongly on the reliability check of the respective input data, and high-rated-
system-diagnoses also depend strongly on the degree of completeness of the necessary in-
put data. If the system’s action list contains important diagnoses not taken into account by
the user, their critiquing priority is increased. Besides presenting potential problems on
the critiquing list, the system also tries to offer remedies, in particular requests for addi-
tional data or for increasing their reliability.

3. Conclusions and Outlook

Diagnostic critiquing systems help the diagnostician in the decision making process indi-
rectly, commenting the user’s decisions only if they seem to be suboptimal. They can re-
use the knowledge base of a well structured diagnostic consultation system needing rela-
tively little additional knowledge as outlined in this paper. Currently we are working on
implementing and evaluating these concepts in various medical domains based within our
diagnostic shell kit D3 [9].

Critiquing systems can also extend the capabilities of intelligent training systems
by enabling them to deal with more realistic cases without clear solutions. A high poten-
tial lies in the promising field of diagnostic multiagent systems [1], where different agents
work together to diagnose complex cases. For example, one agent might critique the re-
sults of another agent if both agents have similar competence profiles.

4. References

[1] Bamberger, S. (1997): Cooperating Diagnostic Expert Systems to Solve Complex Diagnosis
Tasks, in: Proc. of German Conference on Al (KI-97), Springer, LNAI 1303, 325-336.
[2] van Bemmel, J. and Musen, M. (1997): Handbook of Medical Informatics, Springer.
[3] Fischer, G., McCall, R. and Morch, A. (1989): Design Environments for Constructive and Ar-
gumentative Design, in: Human Factor in Computing Systems, Proc. of CHI’'89, ACM, 269-275.
[4] Fischer, G., Lemke, A., Mastaglio, T., and Morch, A. (1991): The Role of Critiquing in Coop-
erative Problem Solving, ACM Transactions on Information Systems 9/3, 123-151.
[5] Gerlach, M. and Onken, R. (1994): CASSY - The Electronic Part of a Human-Electronic Crew,
in: 3 International Workshop on Human-Computer-Teamwork, Cambridge, UK.
[6] Miller, P. (1986): Expert Critiquing Systems, Springer.
[7] Mosseveld, B. and van der Lei, J. (1990): HYPERCRITIC: A Critiquing System for Hyperten-
sion, in: O’Moore et al.: Medical Informatics, Europe ‘90, Springer.
[8] Ohmann, C. (1997): Was ist Qualitdtsmanagement? [What is Quality Management], in: Scheibe
(Hrsg.): Qualitdtsmanagement in der Medizin - Handbuch fiir Klinik und Praxis, ecomed.
[9] Puppe, F. (1998): Knowledge Reuse among Diagnostic Problem Solving Methods in the Shell-
Kit D3, in: International Journal of Human-Computer Studies 49, 627-649.
[10] Puppe, F. and Reinhardt, B. (1995): Generating Case-Oriented Training from Diagnostic Ex-
pert Systems, Machine Mediated Learning 5, No. 3&4, 199-219.
[11] Ramachandran, S. and Wilkins, D. (1996): Temporal Control Structures in Expert Critiquing
Systems, in: TIME-96, Workshop of the FLAIRS 96, Florida.
[12] Rhein-Desel, U. and Puppe, F. (1998): Concepts for a Diagnostic Critiquing Systems in Vague
Domains, Proc. of German Conference on Al (KI-98), Springer, LNAI 1504, 201-212.
[13] Silverman, B. (1992): Survey of Expert Critiquing Systems; Practical and Theoretical Fron-
tiers, CACM 35, No.4, 106-127.
[14] Wenger, E. (1987): Artificial Intelligence and Tutoring Systems, Morgan Kaufman,

Exploitation of XML for
Corporate Knowledge Management

Auguste Rabarijoana, Rose Dieng , Olivier Corby
INRIA, ACACIA Project, 2004 Route des Lucioles, BP 93,
06902 Sophia-Antipolis Cedex, France
E-mail: {Rose.Dieng, Olivier.Corby } @sophia.inria.fr,

Tel: 33-4923848 10 0r33-49238 7871, Fax: 33-492 3877 83

Abstract. This paper emphasizes the interest of XML meta-language for corpo-
rate knowledge management and presents an experiment of enterprise-ontology-
guided search in XML documents constituting a part of a corporate memory.

1 Introduction

Extending the definition proposed by [14], we define a corporate memory (CM) as an
«explicit, disembodied, persistent representation of knowledge and information in an
organization, in order to facilitate their access and reuse by members of the organiza-
tion, for their tasks». Several techniques can be adopted for building the CM [6]: it
may be non computational, database-based, document-based, knowledge-based, case-
based, Web-based... The Web can serve as a basis for information and knowledge dis-
tribution in a uniform way. Ontologies can be exploited for guiding information search
on the Web, as in Ontobroker [7], SHOE [10], and WebCokace [3].

Our work is situated in the context of a document-based corporate memory, distri-
buted through the Web. After showing the interest of XML meta-language for corpo-
rate knowledge management, we will describe an experiment of enterprise ontology-
guided search in XML documents.

2 XML and Knowledge Management

HTML, the most popular language for Web documents, has some drawbacks: lack of
extensibility, of structure and of validation [1]. As HTML is used as a presentation-
oriented markup language, it is very difficult to process information embodied in
HTML. In order to obviate these drawbacks, a working group of W3C created XML
(eXtensible Markup Language) intended to be a standard for creation of markup lan-
guages [8]. XML has been designed for distributing structured documents on the Web.
It is a kind of light SGML (Standard General Markup Language), simplified to meet
Web requirements.

The specification of XML can be found in [2]. Contrarily to HTML, XML allows
the users [1]: (a) to define their own tags and attributes; (b) to define data structures,
and to nest document structures at any level of complexity; (c) to make applications
allowing to test the structural validity of a document; (d) to extract data from a XML
document. As such, the new standard XML has some major advantages for CM mana-
gement, mixing SGML and Web advantages.

Many Views on the Same Data. XML enables to manage information and knowledge

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 373-378, 1999.
© Springer-Verlag Berlin Heidelberg 1999

374 A.Rabarijoana, R. Dieng, and O. Corby

in a unique structured way and enables several different processings. Knowledge ser-
vers retrieve information while clients are in charge of presenting it to users through
adapted interfaces. It is then possible to take users and context into account and to pre-
sent different views of the same data: it may be possible to generate graphic views,
table of contents or to show the data themselves. Furthermore, data are loaded into the
client (the browser) and can be processed locally: e.g. XML data can be processed by
Java applets [1]. Hence, XML may represent for data what Java represents for pro-
grams: transparent portability through machines and operating systems.

Documents Built from Heterogenous Data. XML enables to manage structured
documents and structured data in a uniform way. The XML format has been designed
to enable document description as well as arbitrary data description. It is hence possi-
ble to mix data and documents in order to build virtual documents issued from several
sources. Data may come from a technical data base while text may come from a docu-
ment management environment. Furthermore, it is possible to annotate documents
with modeled knowledge, so-called ontologies.

Standard for Information Exchange. In order to facilitate communication and infor-
mation exchange, a community (i.e. a department, a company, a group of companies of
the same domain, a company and its related providers and clients, etc) may define a
standard domain-oriented or application-oriented vocabulary by means of a DTD
(Document Type Definition). A DTD is a syntactic specification being used as model
for XML documents. A document is considered as valid if it respects the DTD with
which it is associated. Documents or data can then be expressed with the defined XML
markups and then be exchanged using these markups [1].

Document Formatting . XML has a companion formalism called XSL (Extensible
Stylesheet Language), to define document-oriented presentation format. XSL may pre-
sent a document in HTML, PDF, etc. It may also generate a generic format, that may
be postprocessed to generate a standard output format. XSL also enables elementary
document processing such as sorting, generating table of contents, tables, reorganizing
the document structure. Using XSL, it is hence possible to define several output for-
mats for the same document structure: XSL is a document transformation and format-
ting language. It is possible to write once and to publish many times, from the same
source, to different media: digital and paper-based ones. This is very interesting for
CM management.

Hypertext. XML will also offer tools to build powerful hypertext documents by
means of XLL (XML Linking Language), and XPointer, the language that enables
navigation in documents according to their structure. XLL will implement the major
hypertext functionality that can be found in dedicated tools: links between more than
two documents, external links, links with semantics, etc. With external links, docu-
ments can be annotated from the outside, without modifying the source.

Information Search. XML facilitates information search because documents are
structured and, hence, can be considered as a database. It is possible to rely on standar-
dized markups to search information in a structured way. Moreover, the database com-
munity is currently integrating XML with database technology and search languages

Exploitation of XML for Corporate Knowledge Management 375

(cf. XML-QL [5]).

XML and Memory Management. XML as a structured document open standard may
be a good candidate to facilitate migration to new systems or software through long
time period: XML documents exist by themselves, independently of processing tools.

3 Enterprise model - guided search in XML documents

Taking into account those interesting features of XML, we developed the system OSI-
RIX (Ontology-guided Search for Information Retrieval In XML-documents), based on
techniques of enterprise-model-guided search in XML documents.

3.1 Information Search Guided by Knowledge Models

Our main objective is to perform information search in documents on the Web, guided
by knowledge models. The result should include only relevant answers i.e. Web docu-
ments which «correspond semantically» to the request. Instead of developing a specific
extension of HTML, we choose to handle XML documents. The knowledge models
that will guide the search will be CommonKADS expertise models, represented in
standard CML language [13]. Two main phases are necessary: (a) the creation of XML
documents containing structured, semantic information, so that they can be found later
on as answers to requests. This document creation is performed by the document
author or by the CM builder; (b) and search for information in the XML documents. It
is carried out by the OSIRIX system, after a request of the CM user.

Creation of Documents. The documents must be annotated by ontological informa-
tion in order to have a «semantical value» enabling their retrieval.

Translated into Validated by
Ontology DTD . XML documents comprising
. | (model of annotation |- . .
expressed in CML of XML documents) ontological annotations

Fig. 1: Link between CML and XML

This ontological information can stem from an ontology developed by the company
or imported from external world, and upon which the company members agree. From
this ontology, a DTD will be generated by our system OSIRIX: then the documents of
the CM must respect this DTD that indicates the (optional) elements that can be used
as ontological annotations in the documents. We could also require the company mem-
bers to agree directly on a given DTD. But, as a DTD is rather difficult to read, we pre-
fer to require the company members to agree on the ontology supposed represented in
CML. Then, in order to enable to annotate semantically the documents by this onto-
logy, the OSIRIX system generates automatically a DTD based on this ontology.

Search for Information. In order to answer the user’s requests, the system seeks in
the ontological part of the documents, if an ontological answer is present there or not.
The ontological filtering engine finds the documents answers among the candidate
documents. If the system does not find exact answers, it can exploit the ontology to
seek approximate answers: it can exploit the concept hierarchy to find an answer cor-

376 A.Rabarijoana, R. Dieng, and O. Corby

responding to subconcepts of the concept appearing in the initial request. A scenario of
information retrieval is shown in figure 2.

REQUEST
T) Basic request of general type
Find all possible values of attribute A of object O
2) Basic request of specific type
Find the documents such that the attribute A of object O has value V

SEARCH BY A CLASSIC SEARCH ENGINE

1) Indicate the sites where to search
2) Recognize that a document is a XML document
3) Search the tags corresponding to the keywords of the user’s request

CANDIDATE CANDIDATE CANDIDATE
DOCUMENT DOCUMENT DOCUMENT

ONTOLOGICAL FILTERING ENGINE
1) For a general type query:
Recognize the occurrence of a tag or of an attribute corresponding to the keyword
2) For a specific type query:
Extract the value of the property and test if it answers the request

XML DOCUMENT XML DOCUMENT

RESULT RESULT
Ontological part Ontological part
<L >Ln<ll> <.>..<l>
Textual part Textual part

Fig. 2: Scenario of the information search in XML documents
Example: for the request «Find all the reports written by any company for the project
named GENIE», OSIRIX will find documents having ontological information such as :
<projects>
<name> GENIE</name>
<report> Rapport final du projet Genie, Théme 3, Lot L3.3.2.1
<authors> Nada Matta, Olivier Corby</authorss
<company>INRIA</company>
<title>Description de modéles de coopération et gestion de conflits</
titles>
<date>Juin 1996</date>
</report>

</projects>

3.2 Implementation of the OSIRIX System

Translation Engine from CML into a DTD. The translator of CML to DTD, detailed
in [12], is implemented using the tool PPML (Pretty Printer Minicomputer-Language)
of CENTAUR generator [4], and a manager of object inheritance mechanism. PPML
allows to generate a textual representation starting from a tree of objects. Here is a part
of the translator of the concepts in CML into DTD:

Exploitation of XML for Corporate Knowledge Management 377

concept (*name, *axioms)) ->
[<v>

[<h 1> «<!ELEMENT» *name «(» inhslotvrg(*name) *prop list «)>»]
[<h 1> «<!ATTLIST» *name «name_id» «ID #IMPLIED>»]

def child::*prop list];

con_body (*descr, *super, *prop_list,

Example : from the following concept of an ontology in CML.:

concept report
properties: title: universal

authors: universal

date:

company: universal

end concept report

the following DTD will be generated automatically:

< !ELEMENT report (title?, authors?, date?,

<!ATTLIST report name_id ID #IMPLIED>

<!ELEMENT title (#PCDATA) >

<!ELEMENT authors (#PCDATA) >

<!ELEMENT date (#PCDATA) >

<!ELEMENT company (#PCDATA) >

Once the DTD obtained, the authors create their XML documents, by respecting the

specifications of the DTD.

universal

company?) >

Validation engine. The purpose of the validation engine is to check if the syntax spe-
cified in the DTD is well followed by the documents of the company [2]. We chose the
parser «XML for JAVA» of IBM [9]. The validation of a document allows the company
to make sure that this document can later constitute an answer.

Ontological filtering engine. The ontological filtering engine [12] aims at determi-
ning all the XML elements that are present in a given XML document, and to test the
semantic presence of a concept (or any other entity) in the XML document. We call
«semantic presence» of an attribute (resp. concept) in a XML document, the fact that
this attribute (resp. concept) appears in the XML document as a tag in the ontological
part. Ontological information can be regarded as meta-information and need not be
visible through a browser. The test on the two kinds of basic requests relies on this
«semantic presence».

We used SAX, an event-based application programming interface [11]: it sends
back events to the application, each time that it meets an element, an attribute, a docu-
ment, etc. The type of event depends on the type of data encountered.

Ontolo Translator Validation
expressgg(]i (using PPML DTD parser XML
in CML and inheritance generated (IBM) document
manager) ¥
Elements & - -
attributes < Ont.ologlca.ll filtering)
extracted engine (using SAX)

Fig. 3: Internal architecture of OSIRIX

378 A.Rabarijoana, R. Dieng, and O. Corby

Implementation. We used WebCokace [3] to implement in CML an extension of the
AIADs enterprise ontology [14] that was translated into a DTD (using PPML). We
exploited the IBM validation parser «XML for JAVA», in order to validate the XML
documents w.r.t. the DTD. We implemented the ontological filtering engine. It remains
to implement the query interface and to integrate the ontological filtering engine in a
browser (once browsers for XML will be available).

4 Conclusions

The paper stressed the advantages of XML for corporate knowledge management and
presented OSIRIX that offers enterprise ontology-guided search in XML documents.
As WebCokace [3], it relies on CommonKADS method and CML language: the exten-
sion of AIAI Enterprise ontology was implemented in WebCokace and the translator
was implemented using PPML. The exploitation of XML instead of HTML and a lack
of exploitation of axioms are the main differences between OSIRIX and WebCokace,
Ontobroker [7] or SHOE [10]. Compared to classic search engines, information search
is still keyword-based in OSIRIX, but there, the keywords have a semantics. As a fur-
ther work, we will exploit the CML axioms, we will implement the request interface,
and once XML browsers will be available, we will integrate OSIRIX in them.

References

1. Bosak, J. XML, Java, and the Future of the Web. March 1997. http://sunsite.unc.edu/pub/sun-info/stan-
dards/xml/why/xmlapps.htm

2. Bray, T., Paoli, J., Sperberg-McQueen, C. M. Extensible Markup Language (XML) 1.0 W3C Recommen-
dation. http://www.w3.org/TR/REC-xml

3. Corby, O., Dieng, R. A CommonKADS Expertise Model Web Server, Proc. of ISMICK’97, Compiegne,
(1997).

4. Projet Croap INRIA. The PPML Manual.. Manuel de référence du Pretty Printer Mini-language I et II.

5. Deutsch, A., Fernandez, M., Florescu, D., Levy, A. Suciu, D. XML-QL: A Query Language for XML.
Submission to the World Wide Web Consortium, (1998).

6. Dieng, R., Corby, O., Giboin, A., Ribiere, M. Methods and Tools for Corporate Knowledge Management.
Proc. of KAW’98, Banff, Alberta, Canada, (1998).

7. Fensel, D., Decker, S., Erdmann, M. and Studer, R. Ontobroker: Or How to Enable Intelligent Access to
the WWW. In B. Gaines, M. Musen eds, Proc of KAW’98, Banff, Canada, (1998).

8. Garshol, L. M. Introduction to XML. http://www.stud.ifi.uio.no/~larsga/download/xml/xml_eng.html

. Hiroshi, M., Kent, T. Parser IBM XML for JAVA. http ://www.alphaworks.ibm.com/formula/xml. World

Wide Web Journal

10. Luke, S., Spector, L., Rager, D., Hendler, J. Ontology-based Web Agents. In Proc. of the First Int. Con-
ference on Autonomous Agents, (1997).

11. Megginson Technologies Ltd. SAX 1.0 The Simple API for XML. http://www.megginson.com/SAX/

12. Rabarijoana, A. Aide a la recherche d’informations sur le Web guidée par des modeles de connaissances.
DEA Report, INRIA-Sophia-Antipolis, (1998).

13. Schreiber, G., Wielinga, B., Akkermans, H., van de Velde, W., Anjewierden, A. CML: The Common-
KADS Conceptual Modelling Language. In L. Steels & al, eds, A Future for Knowl. Acqu.: Proc. of
EKAW’94 Hoegaarden, Belgium, (1994) 1-25. Springer-Verlag, LNAI n. 867.

14. Uschold, M., King, M., Moralee, S., Zorgios, Y. The Enterprise Ontology. The Knowledge Engineering
Review , Vol. 13, Special Issue on Putting Ontologies to Use (1996).

R

15. Van Heijst, G, Van der Spek, R., and Kruizinga, E. Organizing Corporate Memories. In B. Gaines, M.
Musen eds, Proc. of KAW’96, Banff, Canada, (1996) 42-1 42-17.

An Oligo-Agents System with Shared
Responsibilities for Knowledge Management

Franz Schmalhofer and Ludger van Elst

German Research Center for Artificial Intelligence (DFKI),
University Bldg. 57, Erwin-Schroedinger-Str., D-67663 Kaiserlautern
{schmalho,elst } @dfki.uni-kl.de

1 Introduction

Management and information sciences as well as everyday practice in organiza-
tions have shown that in the modern information age, knowledge is the most
important asset for any business enterprise [1]. However, many employees of
companies frequently complain that important and interesting information is
not forwarded to them. Simultaneously they sigh about being swamped with
useless information that is arriving at their desktops. Their complaints of ob-
taining too much and too little information is a clear indication that they are not
getting the information which is right for their specific interests and the partic-
ular tasks which were assigned to them. This is specifically true for the modern
information age and the knowledge society where the available information in-
creases dramatically from year to year and the potential speed of distribution
appears to be almost unlimited.

In this paper, we propose a possible solution of the knowledge management
problem with particular regard to the responsibilities that result from different
users cooperating in such systems. In section 2, we present a brief analysis of
knowledge management techniques that are often in use nowadays. Section 3
introduces the structure of an oligo-agents system for knowledge management in
organizations. In section 4, the cornerstones of proposed system are summarized.
Section 5 finishes the paper with a short disussion.

2 Knowledge Management in Multi-User Environments

The problem of getting the right information to the right people at the right time
is the central issue of any practical knowledge management endeavor. Although
it is not exclusively a technical problem, the new intranet-based technologies
can very well help to develop a more complete solution to the distribution and
comprehension of information in organizations.

The technologies which are most frequently used these days for the man-
agement of information in intranets are corporate and organizational memories,
e-mail (including the possibility of defining alias lists), news systems and search
engines. Hierarchical browsing and search engines are used for retrieving some

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 379-384, 1999.
© Springer-Verlag Berlin Heidelberg 1999

380 F. Schmalhofer and L. van Elst

desired information from the organizational memory (information pull). Simi-
lar to a traditional newspaper, electronic news systems are used to distribute
timely information (categorized according some existing areas of interest, e.g.
“rec.music.makers.percussion”). List servers provide similar functionalities for a
more local community. Similar to traditional mail, electronic mail is used for
sending out individual or bulk letters by alias lists (information push).

Each of these tools has explicitly or implicitly built in certain categorizations
or representations about groups of people or groups of documents. For exam-
ple, the categories of a news system represent the different document classes
which are shared between the providers and the consumers of the information
in the news system. Other relevant categorizations, e.g. which persons may be
interested in obtaining some news are, however, neither explicitly nor implicitly
represented in such news systems. E-mail distribution lists in the form of aliases,
on the other hand, are typically organized so that the aliases represent groups
of people who are interested in obtaining similar information. For the knowl-
edge management task in which the different functionalities are combined, all
these different representations are important, even when they are not explicitly
or implicitly represented in the specific tool.

In a more technical description, having the right documents at the right peo-
ple at the right time means that within some given timeframe one achieves 100%
recall with regard to a given information base and 100% precision with respect
to the particular information consumer. As there is of course the well-known
trade-off between precision and recall, this is obviously already a difficult prob-
lem for a single user query of an information base and . For multi-user domains
it does not become any easier, especially because users may independently have
control over one of the parameters as well as different interests whether precision
or recall values should be optimized. Although the forementioned information
tools (e-mail lists, news systems, etc.) may provide important components for
the desired solution, a unifying view which is focused on the concept of time and
information responsibility is needed for achieving some significant progress.

3 The Distribution and Comprehension of Documents
within an Organization

Because in a multi-user environment different people may have separate control
over the recall and precision parameters, not only the technical aspects but
also social entities like responsibilities, contracts and agreements are of central
importance for successful knowledge management. We therefore need to consider
the different social roles of the people participating in such a system.

When an intranet is used as an organizational memory, one usually distin-
guishes between the authors (or information providers) who supply the various
documents, the administrators who maintain the memory system (i.e. they serve
the function of librarians) and the information consumers who read some of the
stored documents. Because the distribution of documents is a separate task in

An Oligo-Agents System with Shared Responsibilities for Knowledge Management 381

its own right, it requires responsible action. This role is taken by a so-called
distributor who is equipped with the required privileges.

The core task of the proposed system involves assigning groups of infor-
mation consumers to groups of documents. As mentioned above, the functions
of news systems and alias lists should be combined with a representation of the
structure and contents of the organizational memory. These functions will be im-
plemented as an oligo-agents system with two types of agents, namely the global
agents (a global manager GloMa and comprehension assistant) and individual
agents (termed ConPersonA, ConPersonB, ...for each information consumer
and ProPersonA, ProPersonB, ...for each information provider, respectively).
These agents live in a three-tier client/server architecture. The global agents
are located at an application server and have access to the organizational mem-
ory. The individual agents are located at the clients and communicate with the
organizational memory via GloMa by using the standard intranet protocols.

Inter-/Intranet

uo13ax [euoneziuesio

provides documents
and basic services
distributes
documents

UOHEUIPI0OD [B120S

ConPersonA

ProP A ;%
roPerson.

present and
converse about
documents

provide and
describe documents

Information

Consumer

Producer/ O
Distributor

suoi3ax [enpiarpuy

Fig. 1. Structure of the oligo-agents system for distribution and comprehension assis-
tance within an organization

As shown in Figure 1, the issue of individual and social responsibilities is
adressed by deviding the system into three regions: The first region embod-
ies the organizational needs, e.g. the requirements of the underlying intranet
or corporate memory. Individual regions embody the personal interests of the

382 F. Schmalhofer and L. van Elst

different individuals who are involved (information providers, distributors and
consumers). A social coodination region serves as a negotiation space for dis-
cussing conflicting as well as consonant interests. The agents located in this
region have access to global knowledge (e.g. about all documents) as well as to
different portions of knowledge that belong to individual agents (provided that
the individual agents enable them, e.g. in the case of a user query).

In the next section, we give a comprehensive overview of the pivotal proper-
ties of the oligo-agents system to accomplish the task of information dissemina-
tion.

4 The Oligo-Agents System in a Nutshell

The central data structures of the proposed system are distribution lists and
interest lists which are conceived as relations between information consumer
groups and document groups. The lists can be described at abstract levels (in-
tensional descriptions) which are based on concrete descriptions. These concrete
descriptions can easily be matched with the information base and thereby the
extensions of the consumer-document relations can be obtained. The distribu-
tion and interest lists are defined by a) the attributes that are already used
in the organizational memory for describing the documents (e.g. document type,
language, version, brief summary, etc.), b)structural properties with respect to
the location where the document is stored in the organizational memory and the
site where an information consumer is organizationally located (e.g. in the or-
ganigram) and ¢) automatic contents analysis techniques that allow a three-level
representation of each document.

The content descriptions of the documents are generated by a comprehen-
sion assistant[2]. This assistant generates word-oriented representations (sur-
face level) as well as more abstract representations in discrete (propositional
level) and continuous (situational level) representation spaces.! The comprehen-
sion assistant coordinates a negotiation process between the different users so
that the representation spaces can be specified in a way that they are useful and
understandable for the various users. Thereby a mutual understanding may be
shared among increasingly more people and increasingly more documents.

The global manager GloMa keeps and maintains repositories that are used
for the definition of user profiles (information consumers), document groups
and distribution and interest lists. Thereby it is possible to use the available
information, consisting of document attributes, document contents and orga-
nizational structures as a whole. Furthermore, GloMa maintains a continually
updated representation of the organizational memory. Each document that is
newly published, updated or translated in the organizational memory must thus
be reported to GloMa. Unlike the openess of the world-wide web, an organi-
zational memory allows the formation of a relatively complete representation,

! Whereas the propositional level’s abstraction are more local (by the application of
ontologies and thesauri), the situational level forms abstractions of entire documents
by latent semantic analysis [3].

An Oligo-Agents System with Shared Responsibilities for Knowledge Management 383

because the relevant actions of the various users can in principle all be reported
to GloMa.

Documents of the organizational memory that participate in the distribution
and comprehension assistant are marked and can thus be distinguised from those
documents that are solely stored (and not to be distributed). Thereby, it is possi-
ble to introduce the assistant function to an increasingly larger set of documents
and the functions of information distribution and storage can be combined in
a gradual manner. Since the responsibilities of authors, administrators and dis-
tributors are clearly defined, the consequences of the various distribution list are
kept under control.

D construction processes ___________ _______Integration processes__ __ __ -
long-term query
(demon)
3-level representation
situational * .
ranked list
L. relevance 3 ’
sample of propositional 3 of relevant
cnmpulanon
documents
surface T
A
ad hoc query
(server)
document document evaluation & .
re-ranking consumer profile
A
;t information provider ;t information consumer

Fig. 2. Knowledge construction and knowledge integration processes for three-level
representations as a means for accomplishing mutual understanding among information
providers and information consumers

Decoupling of definition time, information-identification time and presen-
tation time (through assisting each of these activities by a specialized agent
with an appropriate time concept) allows distribution to be determined either
by the individual or as a common responsibility of administrator, author, distrib-
utors and information consumers. These responsibilities may concern one-shot
distributions as well as periodical repetitions of some general distribution spec-
ification.

Figure 2 shows how the document providers and information consumers of the
organizational memory can employ the distribution and comprehension assistant
to improve their consensual understanding of documents in the organizational
memory. An initial coordination of indiwidual and global concerns (at the defi-

384 F. Schmalhofer and L. van Elst

nition time of potential communications in the intranet) is achieved by a more
or less representative sample of documents from which a three-level represen-
tation. Information-identification is initiated by long-term queries as well as ad
hoc queries. The most relevant information (i.e. the right documents) become
explicitely specified (information identification time). As in most information
retrieval systems, a rather local and simple relevance measure is used, namely
the similarity of a particular document and the user query. Integration pro-
cesses enable an information consumer to converse with the oligo-agents about
his individual relevance rankings of the various selected documents on the basis
of the three-level representation. Such individual re-rankings can be based on
more complex relevance metrics that might consider the whole set of selected
documents and therefore allow for more global aspects like the information gain.

5 Discussion

In this paper, the problem of knowledge management, especially knowledge dis-
semination in an organization, is tackled by proposing the coordination of indi-
vidual and global concerns in an oligo-agents system with shared responsibili-
ties. This system is embedded in an organizational memory. From an application
point of view, the functions that are provided by the distribution and compre-
hension assistant enable the information consumer to get a personalized view
of the organizational memory. This view consists of individual aspects that are
based upon a semantic document analysis as well as upon organizational aspects
in the form of distribution lists in which a distributor determines the portion
of information that is delivered to the consumer. Beyond the concept of a per-
sonal newspaper, this personalized view is supplemented by a clear assignment
of individual and joint responsibilities for different facets of the knowledge man-
agement task, including spacial (location of information and users), temporal
(decoupling time for the different users) and content-oriented (document com-
prehension) aspects. The combination of these elements leads to a flexible tool
for handling information distribution and information gathering, two of the core
problems of knowledge management.

References

1. Nonaka, 1., Takeuchi, H.: The Knowledge-Creating Company. Oxford:University
Press, 1995.

2. van Elst, L.: Ein kooperativer Informationsassistent zum gemeinsamen Verstehen
von Textdokumenten (An information assistant for the cooperative comprehension
of text documents). Master Thesis, Department of Computer Science, University of
Kaiserslautern, 1998.

3. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshmann, R.: Indexing by
Latent Semantic Analysis. Journal of the American Society for Information Science,
41(6), 391-407, 1990.

Veri-KoMoD : Verification of Knowledge Models
in the Mechanical Design Field

Florence SELLINI*** Pierre-Alain YVARS**

* PSA Peugeot Citroén, Knowledge Engineering
DTIVIMTI/CCIC/Charlebourg/LG, 18 rue des Fauvelles,
92256 La Garenne Colombes Cedex, France.

** ISMCM-CESTI, GRIIEM Research Team
3 rue Fernand Hainaut, 93407 St Ouen, France.
Florence.Sellini @wanadoo.fr

Abstract.

Our research takes place in the field of Design Aid Systems for mechanical sets.
The aim of work is to make “right” knowledge model with know-how
capitalisation. We present in this article, our approach to validate a priori
conceptual models. We have made the choice of an explicit representation to
give more efficiency to the verification mechanisms defined. We focus on
Model structure used for product class representation.

1. Introduction

Our research concerns the mechanical design aided field within systems based on
knowledge. Our problem is to acquire the design know-how in order to describe a
product class, and is to model this know-how in order to reuse it inside a design aided
system connected to a geometric modeller.

After reminding of the main important reasons which lead us to validate
knowledge models constructed during KBS application design, we detail our
methodological approach Veri-KoMoD! of Model verifying [6]. In the following
sections, we are focused to the Meta-Models used to describe a product class.

2. Design methodology for the verification of Models

The work presented is based on three axes as follows : “Verification Mechanism
uses References to verify the Knowledge Representation”.

! Verification of Knowledge Models for Design

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 385-390, 1999.
© Springer-Verlag Berlin Heidelberg 1999

386 F. Sellini and P.-A. Yvars
2.1 KoMoD?: a formalism for knowledge representation structure

The structure type used for knowledge modelling is fundamental for the validation
process. If knowledge is not structured enough, then the validation is almost
impossible [4]. For the Know-How knowledge representation on the product design to
be validated (product description and design rules), we need to clearly identify the
used modelling structures. Out of DEKLARE3's models, we defined entities of the
used Meta-Models. Keeping our goal of validating them, we improved these models,
bringing more declarativity to ease the complex knowledge expression.

2.2 The Model of references for verification

The Model of references for verification, also called the C-Model by [1], contains
all the knowledge required to undertake a verification of the conceptual Models that
we use. This Model corresponds to the explicit, detailed description of the Meta-
Models. This knowledge could be classified in three different categories. Firstly, there
is the knowledge which relates to the construction of the Model, the writing
formalism. Then, there is the knowledge which allows the Model to be simplified
during construction, thus preventing any unnecessary overload. Finally, there is the
knowledge concerning Model consistency. It is principally relative to the presence of
relations on connectors. Depending on the case, this knowledge is expressed in the
form of definitions (« what must be»), or rules (« it is prohibited to.. »).

2.3 Definition of verification mechanisms

A differentiation has to be made between two types of verification : macro-
verification and micro-verification.

Macro-verification or verification of the macroscopic structure of the diagram,
involves the consistency of the representation of concepts from a structure viewpoint
and the consistency of interaction between objects. This verification is performed in
reference to the syntax. We will first of all describe the verification of the structure of
the diagram in the sense of relations between concepts, then turn to the verification of
the integrity of the connected diagram with the presence of relations over connectors
and, finally, we will address the overall necessary verification of the diagram.

Micro-verification particularly affects knowledge supported by the concepts. This
is professional knowledge. This verification is performed in consistency with the
syntax of each object defined at Meta-Model level and with the characteristics of the
domain of expertise concerned. It involves considering why it is impossible to cover
professional knowledge as a whole on an overall basis and how to generate the
contexts into which the sets of concepts participating in the same design solution will
be isolated. The distinction made between these two types of verification is not
absolutely linked to a temporal approach, according to which one verification ought to
be made before another.

2 Knowledge Modelling for Design
3 European Esprit Project n°6522

Veri-KoMoD: Verification of Knowledge Models in the Mechanical Design Field 387

3. Focus on knowledge representation structure

In the DEKLARE approach, the result of modelling task, is, on one hand, the class
product model to be design (the WHO), and on the other hand, the model of the
mechanical design process (the HOW).

3.1 A multviewpointsproduct repreentation

The description of the product is made from three basic viewpoints : structural,
functional and geometric. The mechanical parts designer may thus use different
approaches in his design task : specification of functions to be fulfilled, the choice of
structure and the dimensions of a mechanical set that he is not going to reinvent ; he
also has at his disposal a complete geometric representation. A detailed presentation
of this modelling structure is given in [7].

Product Class

Executes
O O

Is compose‘d of

Product Class on
0..n—‘

Is broken down into

Is broken
ol | K
Is broken
down into

|
0..n 0..n

Elementary
Function

Is satisfied/executed by

1.n

Is broken
down into

Is broken
down into

Design
Entity
|
0..n 0..n .
Elementary
Assembly
Composite
Object
dowr‘| into

Technical
Solution

I
Is symb(‘ﬂised by
1.n i.n 0.n

; ' "is a boolean
Design Single Object | composition of"
Entity Part 9 J

Figure 1. Product Meta-Model : functional (1), structural (2) and geometrical (3) points of view.

Is broken

The functional Meta-Model describes the various functions which the entire
product class must fulfil. This is a functional breakdown diagram. A structural Meta-
Model is a structural breakdown diagram of the product which comprises the different
variants existing in the product class. Unlike other views, which are diagrams
describing the overall product, the geometric viewpoint is used to construct the
geometric representation of each component part of the product (parts defined in the
structural view) by using Design Entities (functional surfaces defined in the functional
view (cf. Figure I). Structural and functional views are related to the geometric views

388 F. Sellini and P.-A. Yvars

by “link” elements. The link between the structural view and the geometric view is
made via the Part entity which thus has a dual viewpoint. For the functional and
geometric views, it is the Design Entity which serves as the interface.

3.2 Making quite explicit structure relations using declarative knowledge

This paragraph relates to the principal enhancements made to the Models in [5]
which contribute to a more extensive expressivity of knowledge. In order to improve
verification of Models, the explicit nature of the knowledge represented must be
consolidated. To do this, we have integrated cardinalities and meta-constraints called
relation connectors to make structure relations explicit (composition hierarchy
structure). This concept is similar to that of the association constraints in UML [3] or
other entity/association formalisms.

3.2.1 Cardinalities
The use of relation cardinalities seems to be doubly advantageous within the
framework of the Models used. On one hand, it is possible to express the number of
instances referenced to a composite object; on the other hand, an existential
dependence characteristic [2] of the component in relation to the composite can be
expressed. Utilisation of cardinalities expresses :
o the statement of possible (whole) values (discreet or continuous) for the number of
instances,
e the optional or mandatory nature of the relation, therefore the existence of the
component entity.

3.2.2 Meta-cmstraintdefinition

To describe a product class, certain relations have to be expressed, defining how the
components of the product are put together, or the various composition configurations
for a product. In particular, to make this knowledge of the different variants within a
Product class explicit, we have introduced the notion of relation connectors. These
relation connectors are meta-constraints, managed like the other constraints expressed
in the Model, by the propagation driver at the time of implementation. These are
meta-constraints since they are constraints that affect other constraints (profession
constraints expressed in the form of relations
between parameters). In fact, since they affect
Model composition links, they condition whether
certain entities exist or not and the association
between other entities which themselves contain
constraints.

Four basic connectors have been defined for our

needs :
e AND_Equivalent: (+)
e « Atleastone » : (1+)
e Mutual exclusion: (X)
e Implication: (=)

Figure 2. Presence of the connectors

Veri-KoMoD: Verification of Knowledge Models in the Mechanical Design Field 389

These are not logic connectors but are rather similar to constraints. Their behaviour
is governed by their semantics. The connectors have two possible statuses in the
implementation: true and violation : The true status (1) corresponds to a success, and
indicates that the constraint imposed by the presence of the connector is respected.
Violation (0) corresponds to a failure, and indicates that the connector has not been
respected and this therefore corresponds to choices prohibited due to the presence of
this connector. For example, let us look at the table (cf. Table 1) summarising the
behaviour of the AND_Equivalent (+) connector (cf. Figure 2). Table 1 is not a truth
table (or Karnaugh table) in the sense of Boolean algebra. It is a table summarising
the couples of nodes allowed if the AND_Equivalent connector is present.

node* 4 node 5 case in Figure 2
0 0 Violation
0 1 Violation?®
1 0 Violation
1 1 true

Table 1. Behaviour of the AND-Equivalent connector

3.2.3 Making the different variants within the product class explicit
The example in Figure 3, represents the Connecting Rod-Piston assembly

(structural viewpoint). The various assembly possibilities must appear on the Model.
The connectors and cardinalities allow this to be expressed clearly.

Connecting Rod -Piston
Assembly

Connecting
Rod Assembly

Piston
Assembly

1-1 ! 23
| Rod Small End .
Connecting Bushing Plston
Rod Body Ring
22 i 02 02 02 1-1

1 | | 1 I
Connecting Rod
Bearing Cap

Capscrew Nut Snap Ring Circlip Piston Pin

Figure 3. Structural Model of the connecting rod - piston assembly

On the Model in Figure 3, an AND Equivalent (+) connector has been added
between the “Rod small end bushing” and “Snap ring” or “Circlips” elements so that
choice and definition of these is dependent.

4 The value 0 corresponds to the non-active status of the node (value 1 represents the active status).
5 The term violation indicates that the connector does not allow the choice of this configuration.

390 F. Sellini and P.-A. Yvars

The use of cardinalities also allows part of the knowledge to be expressed. In the
case of the parts of the Connecting Rod-Piston assembly, the cardinality (1) for the
“Connecting Rod Body” gives information on the mandatory nature of this element.
In the same way, the “Nut” part has as cardinality of (0-2), therefore it is optional.
The notation used indicates a restriction to only 2 choices : 0 or 2 Nut instances. The
integration of connectors on relations and cardinalities allows a maximum of
information to be made explicit, which, in itself, contributes to the removal of
ambiguity and makes verification when reviewed by the specialist that much easier.

Conclusion

In this article, we have presented a contribution to a priori verification of product
models in mechanical design. Three principal areas have been covered in detail:
concepts and tools for the declarative modelling of product classes, specifically using
connector or meta-constraint ideas, the Model of References for Verification, adapted
to our requirements, as well as the mechanisms to be implemented to put this
approach into operation. The entire set of verification mechanisms demonstrated is in
the process of implementation in the GRIIEM's KoMoD (KnOwledge MOdelling for
Design) design-aid application development. The Model of References for
Verification has been formalised into a set of production rules, interpreted by a first
order object-oriented inference engine. The representation of product knowledge is
performed by the cognitive scientist using KoMoD. The detection of inconsistency is
done automatically in real time for each modelling action the scientist undertakes. The
perspectives given to this work particularly concern integration of the entire set of
verification mechanisms into one software environment.

References

[1] M. Ayel & M.-C. Rousset - La cohérence dans les bases de connaissances pages. Paris,
Cépadues Eds. (1990).

[2] C. Djeraba, G.-T. Nguyen et D. Rieu - Objets composites et liens de dépendance dans un
systéme a base de connaissance, INFORSID'93 , Lille, p. 353-372 (1993).

[3] P.-A. Muller - Modélisation Objet avec UML. Eyrolles ed, 421 pages. PARIS(1997).

[4] C. Pierret-Golbreicht - TASK, un environnement pour le développement de systemes
flexibles, Rapport de Recherche, report n° RR n°1056, LRI Orsay(1996).

[5] A. Saucier - Un modeéle multi-vues du produit pour le développement et l'utilisation de
systemes d'aide a la conception en ingénierie mécanique, PhD Thesis in Mécanique,
ENS de Cachan(1997).

[6] F. Sellini - Contribution a la représentation et a la vérification de Modeles de
connaissances produit en ingénierie d'ensembles mécaniques., PhD Thesis in génie
industriel & informatique, Ecole Centrale de Paris(1999).

[7] F. Sellini & P.-A. Yvars - Méta Modele déclaratif pour la représentation du produit en
conception mécanique, IDMME'98 , Compiegne(1998).

A Flexible Framework for Uncertain Expertise

Heiner Stuckenschmidt and K. Christoph Ranze

Center for Computing Technologies,
Bremen University
P.O.B. 330440, 28334 Bremen, Germany

{heiner,kcr} @tzi.de

Abstract. In this paper we argue that the development of knowledge-
based systems built to work in partially uncertain domains benefit from
the use of different conceptualisations for certain and uncertain parts
of the knowledge. We present conceptualisations that have proven to be
useful, namely the KADS model of expertise and a causal model of un-
certainty that reflects well known approaches to uncertain reasoning like
Bayesian belief nets. After a brief introduction to these conceptualisa-
tions we propose a translation approach that aims at an integration of
these conceptualisations in a common knowledge model that can be used
in a knowledge engineering process.

1 Introduction

Model-based approaches are the leading technology in knowledge-based systems
development. All of these approaches are conceived to guide users to a (formal)
model of the problem-solving process and the underlying domain knowledge. In
real-world applications adjectives like ’probable, 'possible’ or ’incomplete’ are
attached to domain knowledge and data. We summarize these phenomena of
non-categorical knowledge as wuncertainty. Having recognized that uncertainty
plays an important role in the development of knowledge-based systems we have
to find ways to deal with this kind of uncertainty when building knowledge
models. Investigating different KADS-based knowledge engineering approaches
we found no sophisticated formalism for explicit representation of uncertainty.

The problem is not that there are no ways to deal with uncertain knowledge.
There there is a huge amount of elaborated (numerical) calculi representing
and processing uncertain knowledge in application systems. One of the most
prominent approaches are belief nets using subjective probabilities to determine
the value of different random variables.

So what is the real problem that prevents notions of uncertainty to be inte-
grated in existing knowledge engineering approaches? We think that the problem
is that existing approaches for handling uncertainty follow a conceptualisation
used to describe a knowledge domain that is completely different from the one
used in common knowledge engineering approaches.

We argue that if it is neccessary to deal with uncertainty in complex domains
one has to bridge the gap between these different conceptualisations. On one

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 391-396, 1999.
© Springer-Verlag Berlin Heidelberg 1999

392 H. Stuckenschmidt and K.C. Ranze

hand we need rather simple conceptalisation of models of uncertainty to enable
uncertain reasoning. On the other hand we are not willing to give up the more
elaborate conceptualisation of models of expertise that has been proved to be
useful for analysis, model building, and reuse.

Classify using
QAPF diagram for
fine-grained rocks

Determine

’—> P .
grain size

Hand specimen
and image
of a rock

Classify using
QAPF diagram for
coarse-grained rocks

il

Classify by mafic
mineral content

Determine
mineral content

mafics
< 90%?

il

Fig. 1. Rock classification

Figure 1 shows a snapshot of the classification task from the Sisyphus III do-
main [1] which serves as an example for the need of such a combined approach
within this paper. A rock class of a hand specimen is determined through a clas-
sification scheme of mineral contents. The selection of a certain scheme depends
on the grainsize of the specimen which can be computed through image analysis.

In the following we describe the different conceptualisations of expertise and
uncertainty model and present a translation approach to integrate these concep-
tualisations.

2 A Conceptualisation of Expertise

Conceptualisations of expertise are typically subdivided into three kinds of knowl-
edge: domain, inference, and task knowledge as defined in the KADS model of
expertise [6]. In the following we describe this conceptualisation on an abstract
level. Those parts of the real world relevant to the given task are described
with their properties within the domain model. The formal specification of this
knowledge is realized by a set of ontological primitives enabling the user to de-
fine complex structures: concepts, instances of these concepts, attributes of and
relations between concepts. Based on the modeled elements there are inference
actions performing single steps of the problem-solving process. Inference ac-
tions operate on elements from the domain layer. These elements are described
through input-, output- and static roles which are placeholders determining the
role the element plays in the problem-solving process and the type of domain
objects that can play this role. The task layer contains knowledge about how the
elementary inference steps can be combined and executed to achieve a certain
goal. This knowledge is organized in tasks which are compositions of subtasks
including control knowledge about their execution in order to achieve the goal
of the main task. Primitive tasks which do not have subtasks show a one-to-one

A Flexible Framework for Uncertain Expertise =~ 393

correspondence to knowledge sources within the inference layer. Together these
three layers form a model of expertise that claims to capture all aspects of expert
reasoning relevant to the development of knowledge-based systems. A common
model is achieved by connecting the different layers in the sense that the roles of
inferences are filled with domain knowledge and tasks are executed by applying
inferences which produce a result corresponding to the task’s goal.

rock image rock
hand specimen | clagsification | rock class

detect select classific. mineral content execute
hand specimen | mineral content | mineral content rock image scheme classif. scheme classif. scheme | classification | rock class
e = —= = = =

[T

analyze
'visual properties

select
scheme

estimate
grain size

Fig. 2. Task model for rock classification

Figure 2 shows a task model of the given classification problem as an example
of the flavor of expertise models. Further investigations show that the estimation
of the grainsize of a rock through an image analysis produces uncertain results
and might be realized e.g. with a Bayes net. Based on the grainsize a certain
classification scheme has to be selected. The classification of the rock class itself
takes no uncertainty into account, because the classification schemes are based
on clear data and certain information.

3 A Conceptualisation of Uncertainty

In this section we review a conceptualisation of uncertain expertise knowledge
proposed in [4]. The conceptualisation consists of three basic concepts:

A set of hypotheses is a variable, whose values denote different hypotheses
concerning the same assertion. The hypotheses are assumed to be conflicting in
the sense that only one of the hypotheses can be true at a time. Variables are
denoted by small letters. If v is a variable then W, represents the set of all
possible values for v.

A valuation function [7] attaches a degree of certainty taken from a set
of truth values to configurations of hypotheses. In the following, sets of truth
values are always denoted as ¥. Valuation functions are denoted by capitals
corresponding to a valuated variable:

VW, 50 (1)

A set of hypotheses and a valuation function over this set form a basic modeling
element for uncertain domain knowledge which is denoted as phenomenon of
uncertainty. A simple phenomenon of uncertainty U P is a pair consisting of a

394 H. Stuckenschmidt and K.C. Ranze

set W, of hypotheses and a valuation function V' on this set.
UP = (W,,V) (2)

Causal relations [3] are special valuation functions defined on different phe-
nomena of uncertainty mapping one or more phenomena of uncertainty and a
special value set indicating the strength of the causal influence on a target phe-
nomenon. Such a causal relation determines the valuation function of the target
phenomenon using the valuations of the source phenomena and the strength of
the causal relation. Let UP be the set of all phenomena of uncertainty, then a
causal relation is a function F' defined as follows:

F:UP™ x ¥ — UP (3)

This conceptualisation can be used to describe different calculi for handling
uncertainty in a graph-based setting [5] and therefore provides a useful approach
to the specification of uncertain knowledge.

relative size

fine [0, 0.001]
W medium::[0.001,0.005]
r {0.005,1]

grain size

anisothrophy w7 {1cng:: [0,0.7]
a

round:: [0.7,1]
N

coarseness

fine:: [0,0.5]
we{& el

Fig. 3. Detection of grainsize through image analysis

Figure 3 shows the details of the detection of grainsize through image anal-
ysis. There are four variables with their hypothesis sets which are connected
via causal relations. The concrete configuration of the variables r, a and ¢ for a
given specimen is computed through image operators which induce the uncer-
tainty into the model.

4 Mapping the Conceptualisations

The descriptions of common conceptualisations of expertise knowledge on one
hand and knowledge for uncertain reasoning on the other hand reveal significant
differences. While the conceptualisation of models of expertise try to capture all
aspects of the problem-solving process using a variety of different interconnected
modeling primitives, the conceptualisation of uncertain knowledge uses only a
few simple primitives thus enabling efficient processing of uncertainty. Due to
these differences an integration of the conceptualisations raises severe problems.
We propose a different approach using translation mappings between models of

A Flexible Framework for Uncertain Expertise =~ 395

expertise and models of uncertain knowledge. These mappings can be used to
make uncertain inference within the conceptualisation of uncertainty possible
while keeping the advantages of the conceptualisation used in models of exper-
tise. The use of translation mappings imply the following three-step process:

Determination of the language for the model of uncertainty is the first step.
For this purpose, variables and relations of a causal model of uncertainty are
explicitly connected to the terminology in the model of expertise.

Uncertain inference is executed within the model of expertise deriving valu-
ations of previously unknown phenomena.

Determination of assertional knowledge is the last step. It uses the results
of uncertain inferences to state axioms about knowledge to be used in the
problem-solving process within the model of expertise.

During this process two kinds of translation mappings are used. The first one
is a reference mapping that is used to translate the terminology of the model
of expertise into the one used in the model of uncertainty. This means, that
different modeling primitives from the model of expertise (e.g. attributes and
relations) are mapped onto the primitives used for uncertain inference, namely
phenomena of uncertainty. The same holds for inference actions that are trans-
lated into causal relations between in- and output roles that are also described
using phenomena, of uncertainty. To establish a complete connection between
the conceptualisations not only the terminology, but also the assertions have
to be translated. This step mentioned above as ’determination of assertional
knowledge’ is performed by a semantical mapping. This mapping translates val-
uation functions into logical axioms that follow the terminology of the model
of expertise. Doing this, it transfers the results of uncertain inference (which is
essentially a definition of the different valuation functions) into assertions that
can be handled within the conceptualisation of expertise.

classification
schemes

image grain size
features hypothesis

Fig. 4. Detail of an abstract inference scheme for rock classification

model of uncertainty

Using this connection between the different conceptualisations it becomes
possible to formalize the complete problem-solving process as shown in figure
4. The uncertain part of the inference is embedded in the certain model. The
uncertain part is triggered by an evidence that determines a valuation function
over the image features. The result of uncertain reasoning, which in our case
is the grain size of the specimen, is incorporated in the certain model using an

396 H. Stuckenschmidt and K.C. Ranze

acceptance criterion [2] which selects one hypothesis on the basis of the valuation
function over the whole hypotheses set.

5 Discussion

In this paper we showed how different conceptualisations of certain and uncer-
tain knowledge can be integrated into a common problem-solving model. This
enables us to perform a complete analysis of a problem statement containing
uncertainty using elaborated knowledge modeling approaches. Therefore we can
profit from advantages connected with these approaches but we don’t have to
force uncertain knowledge into a complex conceptualisation which is hard to
handle. In our example this leads to the possibility to process uncertain input
from image data and at the same time to use existing classification schemes.
If we had used the conceptualisation of expertise for the whole model it would
have been hard to integrate the image data into the problem-solving process
due to its uncertainty. Using the conceptualisation of uncertainty for the whole
model we would have had to re-specify the classification schemes into an unnat-
ural form. Beside these simplifications of the analysis and modeling process our
approach implies further possibilities. Existing conceptualisations of expertise
can be reused and incorporated into a common model with conceptualisations
of uncertainty (e.g. belief nets) that have been learned from data using machine
learning techniques not applicable to more complex conceptualisations.

References

1. U. Gappa and F. Puppe. A study of knowledge acquisition - experiences from the
sisyphus III experiment for rock classification. In Proceedings of the 11th Workshop
Knowlegde Acquisition for Knowledge-Based Systems, Banff, Alberta Canada, 1998.

2. H. E. Kyburg. Probabilistic acceptance. In Dan Geiger and Prakash Shenoy, editors,
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence,
San Francisco, 1997. Morgan Kaufmann Publishers.

3. J. Pearl. Structural and probabilistic causality. In D.R. Shanks, K.J. Holyoak, and
D.L. Medin, editors, The Psychology of Learning and Motivation, volume 34: Causal
Learning, pages 393—-435. Academic Press, San Diego, CA, 1996.

4. K. C. Ranze and H. Stuckenschmidt. Modelling uncertainty in expertise. In Jose
Cuena, editor, IT & KNOWS Information Technologies and Knowledge Systems,
Proceedings of the XV. IFIP World Computer Congress, Serial Publication of the
Austrian Computer Society, pages 105-118, Vienna/Budapest, September 1998.

5. A. Saffiotti and E. Umkehrer. PULCINELLA - a general tool for propagating uncer-
tainty in valuation networks. In Proceedings of the Tth Conference on Uncertainty
in Al pages 323 — 331, Los Angeles, CA, 1991.

6. Guus Schreiber, Bob Wielinga, and Joost Breuker, editors. KADS: A Principled
Approach to Knowledge-Based Systems Development, volume 11 of Knowledge-Based
Systems. Academic Press, 1993.

7. P.P. Shenoy. Valuation-based systems: A framework for managing uncertainty in
expert systems. In L.A. Zadeh and J. Kacprzyk, editors, Fuzzy Logic for the Man-
agement of Uncertainty. Wiley and Sons, 1989.

Elicitation of Operational Track Grids

Randy P. Wolf
1006 Woods Cove Rd,Scottsboro, AL 35768 USA
rwolf@worldispl.net/(256) 574-3686

No Affiliation

Abstract. Acquisition of operational knowledge is integral to the gen-
eral process of knowledge acquisition and is particularly pertinent to the
process of analyzing problems and their associated domains. A type of
repertory grid known as a track grid can be used to aid such acquisition
and analysis. Track grids can be elicited using track grid analysis but
track grid analysis does not focus on eliciting operational knowledge.
A version of track grid analysis which is specifically tailored to elicit
operational knowledge will be presented.

1 Introduction

Knowledge acquisition (KA) systems are intrinsically concerned with acquiring
operational knowledge! because real-world knowledge is usually concerned with
entities which exist in a state of flux and less so with static Platonic entities. KA
systems which focus on problem-solving methods [2, 3] have an even stronger
association with operational knowledge. Such systems are primarily concerned
with problems which typically require a change of state of the problem from
being ‘unsolved’ to being ‘solved.’

The ubiquitous nature of coexistant, essential operational (subsequently ab-
breviated as ‘O’) knowledge in both general and problem-solving contexts in
conjunction with the assumed value of KA in these contexts provides sufficient
motivation to seek to develop an elicitation technique for acquiring O knowl-
edge. Additional motivation is provided by the presumptive utility of an ability
to acquire such O knowledge in sufficient fidelity to permit the performance of
acquired algorithms. The approach will use a repertory grid form known as track
grids [10-13] to acquire O knowledge. Track grids provide a general KA capabil-
ity based on personal construct theory [6] and repertory grids [1,4,9]. Track grid
analysis (TGA) can acquire O knowledge while acquiring general track grids but
the technique is not, designed to focus on eliciting this type of knowledge.

The major contribution of this paper is to develop an elicitation technique
specific to O track grids because no such technique previously existed. It will be

! This paper considers operational knowledge to be knowledge which describes action:
knowledge about change of state. There are other, somewhat different definitions of
operational knowledge such as defining operational knowledge to be ‘knowing what
to do when’ [8]. A related type of knowledge is strategic knowledge which is defined
to be ‘knowing what to do next’ [5].

D. Fensel and R. Studer (Eds.): EKAW’99, LNAI 1621, pp. 397-402, 1999.
© Springer-Verlag Berlin Heidelberg 1999

398 R.P. Wolf

shown that TGA may be modified so that O knowledge is specifically elicited
while the basic nature of track grid analysis is retained.

2 Background

A track grid is formed by realizing that a conventional repertory grid can be con-
sidered to be equivalent to asking a question and by allowing differing questions
to be asked. Figure 1 shows a known conventional repertory grid:

5 1 1 5 5 Symbolic / Numeric
5 5 5 2 1 Widely available / Not widely available
1 1 1 5 1 Scientific / Business

ADA LISP PROLOG COBOL FORTRAN

Fig. 1. Conventional Repertory Grid.

A grid functions as a question with elements serving as subject(s) of the ques-
tion and with constructs/poles serving as answer(s). The implicit question for
a conventional grid is always the same: ‘what are the constructs which describe
the elements?’ If a repertory grid does not act as a question, does not answer
this question, then the listed ‘constructs’ are not constructs at all according to
personal construct theory [6]. Laddering questions have been used to elicit new
grid information so there is a precedent for using questions to define grids [1].

Figure 2 reformulates Figure 1 into a track grid form. Allowing explicit ques-
tions means that it should be possible to ask any relevant question which pro-
duces a useful answer. Ergo, the question for one grid might ask about some
portion of another grid or about another grid as a whole. The lower grid in
Figure 2 asks about who uses certain languages (an important characteristic of
high level languages). A good basic set of types of questions would be questions
about who, what, when, where, why, and how.

TGA assumes that if a grid is a question then a group of related grids is a
group of related questions. Hence, elicitation is naturally structured as a conver-
sation with the grid questions being asked in an appropriate order. Restating:
elicitation is best accomplished by asking the right person the right questions
at the right time. TGA determines the right questions to ask, the right order
in which to ask the questions, and then asks the questions. To date, groups of
related grids which define an executable procedure have always been created
manually This established the basic feasibility of acquiring grids which contain
sufficient detail to allow a procedure or algorithm to actually be performed but
it did not determine whether it is basically feasible to elicit such groups of grids.

Elicitation of Operational Track Grids 399

What constructs?

— |+ + | — — Symbolic / Numeric

+ + Widely available / Not widely available

+ |+ + | — + Scientific / Business

((ADA LISP PROLOG COBOL FORTRAN

/

!
! Who uses?

+ Used primarily by government programmers / ~

+ + Used primarily by Al researchers / ~

\ + Used primarily by commercial programmers / ~

\ + Used primarily by scientists and engineers / ~

(ADA LISP PROLOG COBOL FORTRAN j

Fig. 2. Track Grids for High Level Languages.

It will be shown that judicious elicitation of appropriate questions and ques-
tion order allows the acquisition of groups of grids that can be performed (O
grid sets). TGA not intended to produce this result is non-O track grid analysis.

3 Non-operational Track Grid Analysis

TGA exists within a framework of track grid analysis and synthesis. TGA is con-
cerned with asking the right questions at the right time to acquire some body of
knowledge. Questioning results can be used to drive a synthesis production sys-
tem: this is track grid synthesis. If the actual results of this synthesis production
system match the expected results then this is reason to believe that the right
questions are being asked at the right time. Figure 3 shows the process.

Initial Track Grid Analysis

Paradigm and
Problem Grids

Control Information Problem Grids

for Predefined Synthesis

Fig. 3. Overall Track Grid Analysis and Synthesis.

400 R.P. Wolf

Initial TGA gets the questions and question order and final analysis obtains
answers to the questions. Two benefits of track grid analysis and synthesis are:

Provides for acquisition of paradigm knowledge (e.g. the object-oriented (OO)
paradigm) without favoring any particular paradigm (paradigm-neutrality).
A given paradigm is concerned with some form of atomic unit (objects for
OO analysis) and the relations of these units (e.g. methods for OO analysis).
It should be possible to tailor a series of questions to fit the atoms and atomic
relations of any given paradigm. Track grids are paradigm-neutral.

Provides for acquisition of synthesis knowledge. Conventional repertory grid
systems typically assume usage in an analytic process.

4 Operational Track Grid Analysis

Operational TGA also operates by asking the right questions at the right time.
Because O grid sets must conform to certain guidelines, the elicitation questions
seek to acquire a group of grids that have a certain structure. In general, non-O
TGA does not seek to acquire groups of grids that have a certain structure.

An O grid set must meet standards similar to those that a computational
procedure must meet. There must be some overall process that is to be performed
which is composed of divisible steps that can actually be performed. There must
be some sequence in which the steps are to be performed. In terms of track
grids, these standards translate to a network structure of grids (although a tree
structure is more common) with some single grid acting as the ‘start’ grid:
the first grid to be executed. This start grid is decomposed into a number of
subordinate grids which act as a definition of the steps to be taken by the start
grid. Each of these subordinate grids may in turn be decomposed. Eventually,
subordinate grids are decomposed into defined primitives which can actually be
performed. Operational TGA acquires this structure.

This particular grid structure is not the only way to arrange O knowledge in
track grids such that the result is performable, is equivalent to a computational
procedure. This is one way to achieve that result, however. Just as track grids
in general are paradigm-neutral, track grids which support execution are also
paradigm-neutral. Studying the acquisition of this grid structure is advantageous
in that it can be shown to map to a universal language[7,13] which in turn is
known to map to a Turing machine, the accepted base model of computation.

Both O and non-O TGA acquire knowledge by asking the right questions at
the right time. Operational TGA assumes a particular structure of questions is
needed, overall non-O TGA does not. However, final non-O TGA uses the ques-
tions acquired during initial analysis and hence does assume a specific sequence
of specific questions. The counterpart of final non-O TGA is the execution of
the acquired algorithm. The following describes the elicitation procedure:

1. Acquire from knowledge source the overall question to be answered(to be
performed):This overall question is an element of the grid(the start grid if
this is the initial call). Conceptually, this technique exploits the equivalency

Elicitation of Operational Track Grids 401

between performing an action (e.g. ‘add 2 numbers’) and answering a parallel
question (e.g. ‘what is the sum of 2 numbers?’).

2. Acquire which subsidiary questions must be answered before the overall ques-
tion can be answered:These subsidiary questions act as poles which apply to
the overall question. These subsidiary questions will also eventually become
the track questions for individual, subsidiary grids.

3. Acquire the sequence for answering these subsidiary questions:Ask ‘what
order’ with the subsidiary questions acting as subject(s).

4. Acquire whether answering each subsidiary question involves a primitive or
further, decompositional questions. In the case of a primitive, a shell script
which can actually be executed is mapped to be a pole which applies to the
subsidiary question. In the case of decomposition, additional subsidiary grid
structure is formed by recursively applying this elicitation procedure.

The short term goal has been to determine the basic feasibility of eliciting
O knowledge. To date, a limited number of processes have been acquired. One
such acquired procedure demonstrated execution, alternation, and iteration: the
characteristics of a universal language. Although this establishes basic feasibil-
ity, capabilities beyond basic feasibility are of interest. Future work will include
using O elicitation to acquire grids sets that heretofor have only been acquired
manually: dyadic elicitation, PCCG [12], and non-O TGA. Also, it would be
useful to elicit operational TGA itself (an ability for self-compilation validates
a compiler so self-elicitation is a worthwhile validation goal) and the track grid
prototype itself. Eventually, other validation tests such as those offered by Sisy-
phus problems will need to be performed.

5 Results and Conclusion

The specific results of this research are the elicitation technique itself and the
characteristics of the resulting acquired operational grids. The elicitation process
is fully automatic in that a single session with a user answering natural language
questions is all that is needed to create an operational grid set. However, if a
primitive is needed which is not already defined, the knowledge source must enter
a definition of the primitive. Assuming no intervention by a knowledge engineer,
this requires programming skill on the part of the user.

The characteristics of a grid set elicited by operational TGA differs in two
ways from manually-created sets. One difference is that no information acquired
that is superfluous to the targeted algorithm. An advantages of track grids is that
not only can ‘how’ a procedure is performed be acquired but also explanatory
information such as questions about ‘why’ or ‘where’ is also typically acquired.
Also, the automatically generated grids of the O grid set contain a fair amount
of automatically generated elements and poles. Every subitem of a manually-
created grid is personally meaningful to some knowledge source. A similar result
is observable when assembler code created by a human is compared to that
created by a compiler. Overall, the result is that operational TGA elicited grid
sets do not seem to be as information rich as manually created sets.

402 R.P. Wolf

The pervasive nature of operational knowledge in general and problem-solving
KA environments indicates a need for an ability to elicit and acquire such knowl-
edge. The application of track grids and particularly of operational track grids
is potentially one way to support this need. The demonstrable basic feasibility
of elicitation of operational knowledge is a positive indicator which encourages
further investigation. However, there is a very real need for further validation
before any judgement can be passed concerning the eventual pragmatic value of
this type of elicitation.

References

[1] Boose, J.H., and Bradshaw, J.M., “Expertise transfer and complex problems: using
AQUINAS as a knowledge-acquisition workbench for knowledge-based systems,”
Boose, J., and Gaines, B. (Eds.), Knowledge Acquisition Tools for Ezpert Systems,
Academic Press, NY, NY, 1988.

[2] Chandrasekaran, B., “Generic Tasks in knowledge-based reasoning: High level
building blocks for expert system design,” IEEE Ezxpert, 1., 23-30, Fall 1986.

[3] Eriksson, H., Shahar, Y., Tu, SSW., Puerta, A.R., and Musen, M.A., “Task Mod-
eling with reusable problem-solving methods,” Artificial Intelligence, 79, 293-326,
1995.

[4] Gaines, B.R., and Shaw, M.L.G., “Knowledge Acquisition Tools Based on Personal
Construct Psychology,” Knowledge Engineering Review, 8(1), 49-85, 1993.

[5] Gruber, T.R., The Acquisition of Strategic Knowledge, Academic Press, San Diego,
1989.

] Kelly, G.A, The Psychology of Personal Constructs, W. W. Norton, NY, NY, 1955.
7] Pratt, T.W., Programming Languages: Design and Implementation, 2nd Edition,
Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[8] Rich. E. and Knight, K., Artificial Intelligence, McGraw-Hill NY, NY, 1991.

[9] Shaw, M.L.G. and Gaines, B.R., “KITTEN: Knowledge Initiation and Transfer

Tools for Experts and Novices,” Knowledge Acquisition Tools for Ezpert Systems,

Boose, J. and Gaines, B. (Eds.), Academic Press, Harcourt Brace Jovanovich, San

Diego, 1988.

[10] R. P. Wolf and H. S. Delugach, “Knowledge Acquisition via the Integration of
Repertory Grids and Conceptual Graphs”, in Auziliary Proceedings, 4th Interna-
tional Conference on Conceptual Structures, (pp. 108-120), P.W. Eklund, G. Ellis
and G. Mann, eds., 1996, University of New South Wales, Sydney, Australia, Aug.
19-23 1996. ISBN 0 7334 1387 0

[11] R. P. Wolf and H. S. Delugach, “Knowledge Acquisition Via Tracked Repertory
Grids”, Technical Report
No. TR-UAH-CS-1996-02, Computer Science Department, Univ. of Alabama in
Huntsville, 1996, ftp://ftp.cs.uah.edu/pub/techreports/ TR-UAH-CS-1996-02

[12] Wolf, R.P., and Delugach, H.S., “PCCG: An Operational Tracked Grid for Cre-
ating Conceptual Graphs,” Lukose, D., Delugach, H. Keeler, M. and Searle, L.
and Sowa, J. (Eds.), Conceptual Structures: Fulfilling Peirce”s Dream, Fifth In-
ternational Conference on Conceptual Structures, ICCS 1997 , 617-620, Seattle,
Washington, USA, Aug. 3-8, 1997.

[13] R. P. Wolf Knowledge Acquisition via Integration of Personal Constructs and Con-
ceptual Graphs Ph.D. Dissertation, University of Alabama at Huntsville, Huntsville,
AL, USA, http://www.umi.com

Althoff, K.-D. 67

Barreiro, J. 323
Benjamins, V.R. 33
Beydoun, G. 309

Beys, P. 341
Biébow, B. 49
Birk, A. 67

Breuker, J. 315

Cairé, O. 323
Cao, T.M. 347
Compton, P. 347
Corby, O. 373
Crow, L. 85

Dieng, R. 373
Domingue, J. 103

Faure, D. 329
Fensel, D. 33

Goasdoué, .F 121
Goémez-Pérez, A. 139
Groot, P. 157

Herlea, D.E. 173
Hofling, B. 191
Hoffmann, A. 309
Hoppenbrouwers, J. 13

Ibanez-Cruz, F. M. 349
Izumi, N. 335

Jansen, M.G. 341
Jonker, C. M. 173

Kalfoglou, Y. 207

Liebig, T. 191

Author Index

Martinez-Béjar, R. 349
Maruyama, A. 335
Messaadia, K. 225
Motta, E. 103

Nédellec, C. 329

O’Leary, D.E. 1
Oussalah, M. 225

Papazoglou, M.P. 13
Parmentier, T. 243
Parpola, P. 355
Perkuhn, R. 361
Puppe, F. 367
Puuronen, S. 259

Rabarijoana, A. 373
Ranze, K.C. 391
Reynaud, C. 121
Robertson, D. 207
Rosner, D. 191
Rojas-Amaya, D. 139

Schmalhofer, F. 379
Sellini, F. 385
Shadbolt, N. 85
Sleeman, D. 291
Solsona, F. 323
Stuckenschmidt, H. 391
Stumme, G. 275
Surmann, D. 67
Suzuki, A. 335
Szulman, S. 49

ten Teije, A. 157
Terziyan, V. 259
Thong, L.-G. 349
Treur, J. 173

404 Author Index

van Elst, L.
van Harmelen,

379

F.

Webel, L. 191

White, S. 29
Wielemaker, J.
Wielinga, B.

1

33

33

157

Wijngaards, N.J.E. 173
Wolf, R.P. 397

Yamaguchi, T. 335
Yvars, P-A. 385

Ziébelin, D. 243

	Front matter
	Knowledge Acquisition, Modeling and Management
	Preface
	Table of Contents

	Chapter 1
	1 Introduction
	2 Reengineering
	3 Reengineer Knowledge Management Computing Artifacts [1]
	4 Stages of Interaction Between Reengineering and Knowledge Management
	4.1 Classic Reengineering
	4.2 Classic Knowledge Management
	4.3 Knowledge Management Support of a Reengineered Process
	4.4 Reengineering and Knowledge Management: Which one first?

	5 Case Study: Texas Instruments’ Capital Budgeting Process
	5.1 Knowledge Management Effort [7]
	5.2 Some Limitations in the Knowledge Management Effort

	6 Reengineering and Ontologies
	7 Reengineering and Knowledge Bases
	7.1 Knowledge Base Types
	7.2 Knowledge Base Content Differences

	8 Reengineering Knowledge Management Systems vs. Reengineering Transaction-Based Systems
	9 Simultaneous Reengineering and Knowledge Management
	10 Summary
	References

	Chapter 2
	1 Introduction
	1.1 Limitations of Index Terms
	1.2 From Terms to Knowledge

	2 Conceptual Network Creation and Maintenance
	2.1 From Indexing Terms to Conceptual Networks
	2.2 Managing Network Growth

	3 Meta-data: the Foundations of Document Description and Discovery
	4 Requirements for E ective Knowledge Navigation
	5 Federating Digital Libraries
	5.1 Conceptual Architecture for Federated Digital Libraries
	5.2 Tight Coupling: a Common Ontology-based Approach
	5.3 Loose Coupling: Inter-linking Independent Thesauri

	6 Information Discovery Strategies
	7 Related Work
	7.1 Query Modi cation and Re nement
	7.2 Clustering Techniques
	7.3 Subject-based Information Gateways

	8 Summary
	References

	Chapter 3
	1 Introduction and motivation
	2 Ingredients
	2.1 Problem-solving methods
	2.2 Ontologies
	2.3 A product description language
	2.4 Interoperability standard

	3 Con guration task of the broker
	4 Execution of the problem solver
	5 Architecture
	6 Conclusions
	Acknowledgment
	References

	Chapter 4
	1 Practical and theoretical basis of TERMINAE
	1.1 Some practical considerations
	1.2 Conclusion about the experiments
	1.3 Some requirements for methods and tools to build a domain ontology

	2 TERMINAE
	2.1 Overview of the tool
	2.2 Knowledge engineering part
	2.3 Linguistic engineering part

	3 State of art
	3.1 The terminological knowledge bases
	3.2 A computational linguistics based knowledge engineering tool
	3.3 A formal ontology building tool
	3.4 An example of strong principle based methodology

	4 Conclusion
	References

	Chapter 5
	1 Introduction
	1.1 Experimental Software Engineering
	1.2 Knowledge Acquisition
	1.3 Requirements on KA in ESE

	2 A Survey of KA Applications in ESE
	2.1 Literature Review
	2.2 Survey Results
	2.3 Observations from the Survey

	3 An Experience Base of Knowledge Elicitation Techniques
	4 A KA methodology for ESE
	4.1 Pre-Study
	4.2 KEL Strategy Development
	4.3 Knowledge Elicitation
	4.4 Knowledge Modelling
	4.5 Example KA Method
	4.6 Validation of the KA Methodology
	4.7 Tool Support for KA in ESE

	5 Conclusions and Future Work
	Acknowledgements
	References

	Chapter 6
	1 Introduction
	2 Knowledge Level Models
	2.1 Problem Solving Methods
	2.2 Ontologies
	2.3 Mapping

	3 The IMPS Architecture
	3.1 The Agent Level Architecture
	3.2 The Multi-Agent Architecture

	4 The Prototype
	5 Scalability
	6 Evaluation
	7 Conclusions
	Acknowledgements
	References

	Chapter 7
	1 Introduction
	2 The Architecture of Planet-Onto
	3 KMI Planet: A Newsroom Agent on the Web
	4 An Ontology for Characterizing Academia-Related Events
	4.1 Modelling Events

	5 Ontology-Driven Story Annotation Using Knote
	6 Connecting People to Knowledge
	6.1 Lois: A Flexible Form-Based Interface for Knowledge Retrieval
	6.2 Story Chasing with NewsHound
	6.3 Providing Personalised Alerts with NewsBoy

	7 Related Work
	8 Conclusions
	Acknowledgements
	References

	Chapter 8
	1 Introduction
	2 Architectural Overview
	2.1 General Presentation
	2.2 The Main Knowledge Components in a PICSEL Mediator
	2.2.1 The Domain Model
	2.2.2 Abstract Descriptions of the Contents of a Source

	2.3 The Information Sources (Relational Databases) Accessible from an Information Server

	3 The Notion of Semantic Concepts
	4 Identifying Semantic Concepts
	4.1 The Preliminary Step: Building the Skeleton of a Graph Representing a Whole ER Model
	4.2 The Identification of Skeletons of Semantic Concepts

	5 Describing Semantic Concepts in CARIN
	5.1 The Semantic Concepts Explorer
	5.2 The Domain Model Explorer
	5.3 A CARIN Sentences Composer

	6 Related Work and Conclusion
	Acknowledgements
	References

	Chapter 9
	1 Introduction
	2 Need for environmental ontologies
	3 Problem scope
	4 Ontological reengineering: method
	5 A case study: Reengineering Standard-Units
	5.1 The need of reviewing Standard Units
	5.2 Reverse engineering
	5.3 Restructure to create a new conceptual model
	5.3.1 Analysis
	5.3.2 Synthesis
	5.3.3 Configuration management: Standard-Units

	5.4 Forward engineering: implementation of the new ontology

	6 Review of Chemical-Elements
	Conclusions
	Acknowledgements
	References

	Chapter 10
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Structure and Contributions of This Paper

	2 A Simple ProblemSolving Method
	3 Anytime ProblemSolvers: PSMs with Bounded Run-Time
	3.1 Operationalisation of an Anytime PSM
	3.2 Competence Description of an Anytime PSM
	3.3 Anytime Properties
	3.4 General Approach to Specifying Anytime PSMs

	4 Writing History
	4.1 Operationalisation of a PSM Extended with a Trace
	4.2 Competence of PSM Extended with a Trace
	4.3 General Approach to Specify Properties of Control Knowledge

	5 Discussion, Summary and Conclusion
	5.1 Discussion of Our Approach
	5.2 Evaluation of KIV
	5.3 Summary and Conclusions

	References

	Chapter 11
	1 Introduction
	2 Representation of Requirements and Scenarios
	2.1 Informal representations
	2.2 Structured semi-formal representations
	2.3 Formal representations

	3 Requirements Refinement and Process Abstraction Levels
	4 Traceability Relations for Requirements and Scenarios
	5 Discussion
	References

	Chapter 12
	1 Introduction
	2 Domain analysis
	3 An ontology for substances
	4 Towards a taxonomy for substance-related actions
	5 Action hierarchies in description logics
	6 Related work
	7 Summary and outlook
	References

	Chapter 13
	1 Introduction
	1.1 Specifications
	1.2 Conceptual errors
	1.3 Our solution
	1.4 Organisation of this paper

	2 Formal ontologies
	2.1 Ontological constraints

	3 Error detection mechanism
	3.1 Meta-interpreters
	3.2 Error checking meta interpreter

	4 Error detection demonstration
	4.1 Ecological model error checking

	5 Discussion
	5.1 Checking the ontological constraints
	5.2 Conclusions

	Acknowledgements
	References

	Chapter 14
	1. Introduction
	2. Knowledge Abstract Levels
	3. The Meta-ontology Level
	3.1 Task Meta-ontology Level
	3.2 PSM Meta-ontology Level
	3.3 Domain Meta-ontology Level
	3.4 Semantic Link Meta-ontology Level
	3.5 Transfer Link Meta-ontology

	4. Ontology Library
	4.1 Task, PSM, and Domain Knowledge Ontologies
	4.2 Semantic Link Ontology
	4.3 Transfer Links Ontology
	4.4 Semantic and Transfer Links Ontologies of the Y-Model

	5. The Application Level
	6. Implementation Level
	7. How to Reuse a Component?
	8. Conclusion
	Bibliography

	Chapter 15
	1 Introduction
	2 Expressing Methodological Knowledge
	3 Distributed Environment
	3.1 Network Configuration.
	3.2 Code Mobility

	4 Distributed Tasks Model
	4.1 Tasks Status and Availability
	4.2 Publication Protocol
	4.3 Modification Protocol
	4.4 Use Protocol

	5 Perspectives: Adaptability of Solving Strategies
	6 Conclusion
	References

	Chapter 16
	1 Introduction
	2 Basic concepts
	3 Deriving the most supported knowledge
	4 Deriving horizontal order of experts
	5 Multilevel vertical structure of experts
	6 Conclusion
	References

	Chapter 17
	1 Introduction
	2 Conceptual Information Systems
	2.1 The Mathematical Background: Formal Concept Analysis
	2.2 The conceptual data model of Conceptual Information Systems: Many-valued contexts and conceptual scales

	3 Preparation of Conceptual Information Systems
	3.1 Theory Driven Design
	3.2 Data Driven Design

	4 Extending Scales by Attribute Exploration
	5 Outlook
	References

	Chapter 18
	1 Introduction
	2 Fitness-for-Purpose
	3 The Plausibility Approximation to Fitness-for-Purpose
	4 Implementation Approach
	4.1 A Brief Introduction to SCREAMER and SCREAMER+
	4.2 A Problem Solving Scenario
	4.3 An Implementation of Plausibility

	5 Summary and Discussion
	Acknowledgements
	References

	Chapter 19
	1 Introduction
	2 Presenting Nested RDR
	3 Supporting KA of Holistic Expertise with NRDR
	4 Theoretical Framework of RDR Structures
	5 Conclusion and Future Work
	References

	Chapter 20
	1 Libraries of PSM and their indexing
	1.1 Functional indexing
	1.2 Features, requirements, preconditions, assumptions and other creatures

	2 Components of PSMs in context
	2.1 Contexts of discovery and of justification
	2.2 Concluding

	References

	Chapter 21
	1 Introduction
	1.1 Needing Methodologies

	2 Getting Deeper: More on Methodologies
	2.1 What Does Risk Mean?
	2.2 Project Management Risks

	3 The KAMET Methodology
	3.1 Life-Cycle Model and Knowledge Integration
	3.2 Further Research

	4 General Conclusions
	References

	Chapter 22
	1 Introduction
	2 Our approach
	3 Knowledge learned
	4 Overview of the method
	5 Experimentations
	6 Related Work
	7 Conclusion
	References

	Chapter 23
	1 Introduction
	2 Modeling and Implementing Expert Systems
	3 Interoperating Distributed Expert Systems
	3.1 Cooperation for Distributed Expert Systems
	3.2 Communication between Expert Systems

	4 INDIES Implementation and Experimental Results
	5 Related Work and Discussions
	References

	Chapter 24
	1 Introduction
	2 Meaningful names in knowledge representation
	3 Semantics of PSMs
	4 A brief description of Cover & Differentiate
	5 The need for ontologies
	6 Possible criticism and conclusion
	References

	Chapter 25
	1 Introduction
	2 Fuzzy logic and ripple down rule systems
	3 Applying RDR systems to fuzzy domains
	4 Conclusion management and rule condition acquisition in FMR systems
	5 Conclusions
	References

	Chapter 26
	1 Introduction
	2 Information Used as Input
	2.1 The Basic DM and DG
	2.2 Possible Extensions and Modi cations of the DM and DG
	2.3 Utilizing Results of Di erent KE Interviews

	3 Combining Di erent DGs Produced
	3.1 Combining Complementary DGs
	3.2 Combining Contradicting DGs

	4 Developing the KB
	4.1 Forming the Initial Inference Structure
	4.2 Development and Maintenance of the KB

	5 Discussion and Conclusions
	Acknowledgments
	References

	Chapter 27
	1 Introduction
	2 Families of PSMs
	3 Conclusion and Related Work
	References

	Chapter 28
	1. Introduction
	2. Additional critiquing knowledge and inference strategy
	3. Conclusions and Outlook
	4. References

	Chapter 29
	1 Introduction
	2 XML and Knowledge Management
	3 Enterprise model - guided search in XML documents
	3.1 Information Search Guided by Knowledge Models
	3.2 Implementation of the OSIRIX System

	4 Conclusions
	References

	Chapter 30
	1 Introduction
	2 Knowledge Management in Multi-User Environments
	3 The Distribution and Comprehension of Documents within an Organization
	4 The Oligo-Agents System in a Nutshell
	5 Discussion
	References

	Chapter 31
	1. Introduction
	2. Design methodology for the verification of Models
	2.1 KoMoD2 : a formalism for knowledge representation structure
	2.2 The Model of references for verification
	2.3 Definition of verification mechanisms

	3. Focus on knowledge representation structure
	3.1 A multi viewpoints product representation
	3.2 Making quite explicit structure relations using declarative knowledge
	3.2.1 Cardinalities
	3.2.2 Meta-constraint definition
	3.2.3 Making the different variants within the product class explicit

	Conclusion
	References

	Chapter 32
	1 Introduction
	2 A Conceptualisation of Expertise
	3 A Conceptualisation of Uncertainty
	4 Mapping the Conceptualisations
	5 Discussion
	References

	Chapter 33
	1 Introduction
	2 Background
	3 Non-operational Track Grid Analysis
	4 Operational Track Grid Analysis
	5 Results and Conclusion
	References

	Back matter
	Author Index

