
Lecture Notes in Computer Science 2678
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

Wil van der Aalst Arthur ter Hofstede
Mathias Weske (Eds.)

Business Process
Management

International Conference, BPM 2003
Eindhoven, The Netherlands, June 26-27, 2003
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Wil M.P. van der Aalst
Eindhoven University of Technology
Department of Information and Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: w.m.p.v.d.aalst@tm.tue.nl

Arthur ter Hofstede
Queensland University of Technology
Centre for Information Technology Innovation
GPO Box 2434, Brisbane Qld 4001, Australia
E-mail: a.terhofstede@qut.edu.au

Mathias Weske
Potsdam University
Hasso Plattner Institute for Software Systems Engineering
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
E-mail: mathias.weske@hpi.uni-potsdam.de

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): H.3.5, H.4.1, H.5.3, K.4.3, K.4.4, K.6, J.1

ISSN 0302-9743
ISBN 3-540-40318-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin GmbH
Printed on acid-free paper SPIN: 10927564 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the International Conference on Busin-
ess Process Management: On the Application of Formal Methods to “Process-
Aware” Information Systems (BPM 2003), Eindhoven, The Netherlands, June
26-27, 2003. The conference was held in conjunction with the 24th Internatio-
nal Conference on Application and Theory of Petri Nets (ICATPN 2003) and
followed by the 30th International Colloquium on Automata, Languages and
Programming (ICALP 2003). The aim of co-locating these conferences is to
stimulate interaction between researchers and practitioners working on formal
methods and business process management.

BPM 2003 was organized by the Information Systems (IS) and Information
& Technology (I&T) research groups of the Technische Universiteit Eindhoven
(TU/e), Eindhoven, The Netherlands. We would like to thank the members of the
program committee (see next page) and the reviewers for their efforts in selecting
the papers. We received contributions from 27 countries. In total 77 papers
were submitted. Of these papers, 25 papers were accepted for publication in
these proceedings and presentation at the conference. In addition to the regular
presentations, invited lectures were given by John Hoogland, Skip Ellis, Jon
Pyke, and Kees van Hee.

BPM 2003 and ICATPN 2003 were supported by the following institutions
and organizations: KNAW, NWO, Deloitte & Touche, Pallas Athena, BETA,
Philips, Gemeente Eindhoven, Sodexho, OCE, FileNet, TU/e, SIGPAM, EMISA,
and Atos Origin.

We would like to acknowledge the support of the people in the IS and I&T
research groups involved in the organization of ICATPN 2003 and BPM 2003.
Specifically we would like to thank Eric Verbeek for his technical support and
Hajo Reijers for chairing the organization committee. Finally, we would like to
mention the excellent co-operation with Springer-Verlag during the preparation
of this volume.

April 2003 Wil van der Aalst
Arthur ter Hofstede

Mathias Weske

Organizing Committee

Wil van der Aalst
Cecile Brouwer
Kees van Hee
Reinier Post

Hajo Reijers (chair)
Natalia Sidorova
Eric Verbeek
Ineke Withagen

Tool Demonstration

Eric Verbeek (chair)

Program Committee

Wil van der Aalst, The Netherlands
(co-chair)
Fabio Casati, USA
Jörg Desel, Germany
Susanna Donatelli, Italy
Jan Dietz, The Netherlands
Dimitrios Georgakopoulos, USA
Kees van Hee, The Netherlands
Arthur ter Hofstede, Australia (co-
chair)
Geert-Jan Houben, The Netherlands
Stefan Jablonski, Germany

Akhil Kumar, USA
Ronald Lee, USA
Dan Marinescu, USA
Giorgio De Michelis, Italy
Andreas Oberweis, Germany
Michael Rosemann, Australia
Edward Stohr, USA
Gottfried Vossen, Germany
Mathias Weske, Germany (co-chair)
Leon Zhao, USA

Referees

Ad Aerts
Alessandra Agostini
Donald Baker
Giuseppe Berio
Henry H. Bi
Ladislau Boloni
Malu Castellanos
Andrzej Cichocki
Isaac Council
Alexandra Cristea
Flavio De Paoli
Antonio Di Leva
Piercarlo Giolito
Ed Glantz

Markus Gruene
Bart-Jan Hommes
Vera Hsu
Jens Hündling
Jens Lechtenbörger
Kirsten Lenz
Rong Liu
Marco Loregian
Therani Madhusudan
Christian Meiler
Marco von Mevius
Marian Nodine
Natalia Sidorova
Carla Simone

VIII Organization

Shuang Sun
Jinesh Varia
Marc Voorhoeve
Loucif Zerguini

Zuopeng Zhang
Jerry Wang
Te-Wei Wang
Peter Westerkamp

Table of Contents

Introduction

Business Process Management: A Survey . 1
Wil M.P. van der Aalst (Eindhoven University of Technology),
Arthur H.M. ter Hofstede (Queensland University of Technology),
Mathias Weske (University of Potsdam)

Full Papers

Workflow: A Language for Composing Web Services 13
Giacomo Piccinelli (University College London), Scott Lane Williams
(Hewlett-Packard Software & Solutions)

Mining Most Specific Workflow Models from Event-Based Data 25
Guido Schimm (OFFIS)

Evaluation of Correctness Criteria for Dynamic Workflow Changes 41
Stefanie Rinderle, Manfred Reichert, Peter Dadam
(University of Ulm)

Integrated Business Process Management: Using State-Based
Business Rules to Communicate between Disparate Stakeholders 58
Donald C. McDermid (Edith Cowan University)

Structuring Business Objectives: A Business Process Modeling Perspective 72
Dina Neiger, Leonid Churilov (Monash University)

Use Cases as Workflows . 88
Michel Chaudron, Kees van Hee, Lou Somers
(Eindhoven University of Technology)

A Model to Support Collaborative Work in Virtual Enterprises 104
Olivier Perrin (ECOO, LORIA), Franck Wynen (ECOO, LORIA),
Julia Bitcheva (ECOO LORIA, FTRD), Claude Godart
(ECOO, LORIA)

Towards a Library for Process Programming . 120
Guangxin Yang (Bell-Labs Research)

Generating a Process Model from a Process Audit Log 136
Mati Golani (IBM – Haifa Research Lab.), Shlomit S. Pinter
(IBM – Haifa Research Lab.)

Contracting Workflows and Protocol Patterns . 152
Andries van Dijk (Deloitte & Touche Management & ICT Consultants)

X Table of Contents

Security in Business Process Engineering . 168
Michael Backes, Birgit Pfitzmann, Michael Waidner
(IBM Zurich Research Laboratory)

Query Nets: Interacting Workflow Modules That Ensure
Global Termination . 184
Rob J. van Glabbeek, David G. Stork (Ricoh Innovations)

Generic Recurrent Patterns in Business Processes . 200
Jan L.G. Dietz (Delft University of Technology)

Personal Schedules for Workflow Systems . 216
Johann Eder, Horst Pichler, Wolfgang Gruber,
Michael Ninaus (University of Klagenfurt),

A Process-Oriented Model for Authentication on the Basis of a Coloured
Petri Net . 232
Peter Lory (University of Regensburg)

Pattern Based Workflow Design Using Reference Nets 246
Daniel Moldt, Heiko Rölke (University of Hamburg)

A Model for Process Service Interaction . 261
Karim Bäına (LORIA-INRIA-CNRS), Samir Tata (Institut National
des Télécommunications/GET France), Khalid Benali
(LORIA-INRIA-CNRS) (UMR 7503)

Exception Handling in the BPEL4WS Language . 276
Francisco Curbera, Rania Khalaf (IBM TJ Watson Research Center),
Frank Leymann (IBM Software Group), Sanjiva Weerawarana (IBM
TJ Watson Research Center)

Ratios to Support the Exploration of Business Process Models 291
Andreas Dietzsch (Schweizerische Mobiliar Versicherungsgesellschaft)

Integrating Business Process Reengineering with Information Systems
Development: Issues & Implications . 302
Vishanth Weerakkody, Wendy Currie
(Brunel University)

Undo in Workflow Management Systems . 321
Alessandra Agostini (University of Milano), Giorgio De Michelis,
Marco Loregian (University of Milano Bicocca)

A Top-Down Petri Net-Based Approach for Dynamic Workflow Modeling 336
Piotr Chrza̧stowski-Wachtel (Warsaw University),
Boualem Benatallah, Rachid Hamadi (The University of New South
Wales), Milton O’Dell (Justwin Technologies Pty Ltd), Adi Susanto
(The University of New South Wales)

Table of Contents XI

A Case-Based Framework for Workflow Model Management 354
Therani Madhusudan, J. Leon Zhao
(University of Arizona)

Tool Papers

ADEPT Workflow Management System: Flexible Support for
Enterprise-Wide Business Processes . 370
Manfred Reichert, Stefanie Rinderle, Peter Dadam
(University of Ulm)

Modelling and Validation with VipTool . 380
Jörg Desel, Gabriel Juhás, Robert Lorenz, Christian Neumair
(Catholic University of Eichstätt)

Author Index . 391

Business Process Management: A Survey

Wil M.P. van der Aalst1, Arthur H.M. ter Hofstede2, and Mathias Weske3

1 Department of Technology Management
Eindhoven University of Technology, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl
2 Centre for Information Technology Innovation
Queensland University of Technology, Australia

a.terhofstede@qut.edu.au
3 Hasso Plattner Institute for Software Systems Engineering

University of Potsdam, Potsdam, Germany
mathias.weske@hpi.uni-potsdam.de

Abstract. Business Process Management (BPM) includes methods,
techniques, and tools to support the design, enactment, management,
and analysis of operational business processes. It can be considered as
an extension of classical Workflow Management (WFM) systems and
approaches. Although the practical relevance of BPM is undisputed, a
clear definition of BPM and related acronyms such as BAM, BPA, and
STP are missing. Moreover, a clear scientific foundation is missing. In
this paper, we try to demystify the acronyms in this domain, describe
the state-of-the-art technology, and argue that BPM could benefit from
formal methods/languages (cf. Petri nets, process algebras, etc.).

Keywords: Business Process Management, Workflow Management, For-
mal Methods.

1 Introduction

This volume of Springer Lecture Notes in Computer Science is devoted to the
“Conference on Business Process Management: On the Application of Formal
Methods to Process-Aware Information Systems” taking place in Eindhoven
(The Netherlands) in June 2003. To put the contributions to this conference
into perspective, we discuss the ideas, technology, and foundations hidden be-
hind acronyms like WFM, BPM, BAM, BPA, STP, etc. The goal of this paper
is to provide an overview of the scientific and practical issues in the context of
business process management systems. This way we hope to trigger researchers
and practitioners to address the challenges in this domain. The definition of a
business process management system used throughout this paper is: a generic
software system that is driven by explicit process designs to enact and manage
operational business processes. The system should be process-aware and generic
in the sense that it is possible to modify the processes it supports. The process
designs are often graphical and the focus is on structured processes that need to
handle many cases.

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 1–12, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

2 W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske

To show the relevance of business process management systems, it is inter-
esting to put them in a historical perspective. Consider Figure 1, which shows
some of the ongoing trends in information systems [3]. This figure shows that
today’s information systems consist of a number of layers. The center is formed
by the operating system, i.e., the software that makes the hardware work. The
second layer consists of generic applications that can be used in a wide range
of enterprises. Moreover, these applications are typically used within multiple
departments within the same enterprise. Examples of such generic applications
are a database management system, a text editor, and a spreadsheet program.
The third layer consists of domain specific applications. These applications are
only used within specific types of enterprises and departments. Examples are
decision support systems for vehicle routing, call center software, and human
resource management software. The fourth layer consists of tailor-made applica-
tions. These applications are developed for specific organizations.

operating
system

generic
applications

domain
specific

applications

tailor-made
applications

Trends in
information

systems

1. From programming to
assembling.
2. From data orientation to
process orientation.
3. From design to redesign
and organic growth.

Fig. 1. Trends relevant for business process management [3].

In the sixties the second and third layer were missing. Information systems
were built on top of a small operating system with limited functionality. Since
no generic nor domain specific software was available, these systems mainly
consisted of tailor-made applications. Since then, the second and third layer have
developed and the ongoing trend is that the four circles are increasing in size,
i.e., they are moving to the outside while absorbing new functionality. Today’s

Business Process Management: A Survey 3

operating systems offer much more functionality. Database management systems
that reside in the second layer offer functionality which used to be in tailor-made
applications. As a result of this trend, the emphasis shifted from programming
to assembling of complex software systems. The challenge no longer is the coding
of individual modules but orchestrating and gluing together pieces of software
from each of the four layers.

Another trend is the shift from data to processes. The seventies and eighties
were dominated by data-driven approaches. The focus of information technol-
ogy was on storing and retrieving information and as a result data modeling was
the starting point for building an information system. The modeling of business
processes was often neglected and processes had to adapt to information tech-
nology. Management trends such as business process reengineering illustrate the
increased emphasis on processes. As a result, system engineers are resorting to
a more process driven approach.

The last trend we would like to mention is the shift from carefully planned
designs to redesign and organic growth. Due to the omnipresence of the Inter-
net and its standards, information systems change on-the-fly. As a result, fewer
systems are built from scratch. In many cases existing applications are partly
used in the new system. Although component-based software development still
has its problems, the goal is clear and it is easy to see that software development
has become more dynamic.

The trends shown in Figure 1 provide a historical context for business process
management systems. Business process management systems are either separate
applications residing in the second layer or are integrated components in the do-
main specific applications, i.e., the third layer. Notable examples of business pro-
cess management systems residing in the second layer are workflow management
systems [6,19,22,23,24] such as Staffware, MQSeries, and COSA, and case han-
dling systems such as FLOWer. Note that leading enterprise resource planning
systems populating the third layer also offer a workflow management module.
The workflow engines of SAP, Baan, PeopleSoft, Oracle, and JD Edwards can
be considered as integrated business process management systems. The idea to
isolate the management of business processes in a separate component is consis-
tent with the three trends identified. Business process management systems can
be used to avoid hard-coding the work processes into tailor-made applications
and thus support the shift from programming to assembling. Moreover, process
orientation, redesign, and organic growth are supported. For example, today’s
workflow management systems can be used to integrate existing applications
and support process change by merely changing the workflow diagram. Isolating
the management of business processes in a separate component is also consistent
with recent developments in the domain of web services: Web services composi-
tion languages such as BPEL4WS, BPML, WSCI, XLANG, and WSFL can be
used to glue services defined using WSDL together.

An interesting starting point from a scientific perspective is the early work
on office information systems. In the seventies, people like Skip Ellis [13], Anatol
Holt [17], and Michael Zisman [28] already worked on so-called office informa-

4 W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske

tion systems, which were driven by explicit process models. It is interesting to
see that the three pioneers in this area independently used Petri-net variants to
model office procedures. During the seventies and eighties there was great opti-
mism about the applicability of office information systems. Unfortunately, few
applications succeeded. As a result of these experiences, both the application of
this technology and research almost stopped for a decade. Consequently, hardly
any advances were made in the eighties. In the nineties, there again was a huge
interest in these systems. The number of workflow management systems devel-
oped in the past decade and the many papers on workflow technology illustrate
the revival of office information systems. Today workflow management systems
are readily available [22]. However, their application is still limited to specific
industries such as banking and insurance. As was indicated by Skip Ellis it is
important to learn from these ups and downs [14]. The failures in the eighties
can be explained by both technical and conceptual problems. In the eighties,
networks were slow or not present at all, there were no suitable graphical inter-
faces, and proper development software was missing. However, there were also
more fundamental problems: a unified way of modeling processes was missing
and the systems were too rigid to be used by people in the workplace. Most of the
technical problems have been resolved by now. However, the more conceptual
problems remain. Good standards for business process modeling are still missing
and even today’s workflow management systems enforce unnecessary constraints
on the process logic (e.g., processes are made more sequential).

2 Business Process Management Demystified

Many people consider Business Process Management (BPM) to be the “next
step” after the workflow wave of the nineties. Therefore, we use workflow termi-
nology to define BPM. The Workflow Management Coalition (WfMC) defines
workflow as: “The automation of a business process, in whole or part, dur-
ing which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.” [22]. A Workflow
Management System (WFMS) is defined as: “A system that defines, creates and
manages the execution of workflows through the use of software, running on
one or more workflow engines, which is able to interpret the process definition,
interact with workflow participants and, where required, invoke the use of IT
tools and applications.” [22]. Note that both definitions emphasize the focus on
enactment, i.e., the use of software to support the execution of operational pro-
cesses. In the last couple of years, many researchers and practitioners started to
realize that the traditional focus on enactment is too restrictive. As a result new
terms like BPM have been coined. There exist many definitions of BPM but in
most cases it clearly includes Workflow Management (WFM). We define BPM as
follows: Supporting business processes using methods, techniques, and software
to design, enact, control, and analyze operational processes involving humans,
organizations, applications, documents and other sources of information. Note
that this definition restricts BPM to operational processes, i.e., processes at the

Business Process Management: A Survey 5

strategic level or processes that cannot be made explicit are excluded. Note that
systems supporting BPM need to be “process aware”, i.e., without information
about the operational processes at hand little support is possible.

process
design

system
configuration

process
enactment

diagnosis

Workflow
Management

Business
Process

Management

Fig. 2. The BPM lifecyle to compare Workflow Management and Business Process
Management.

Figure 2 shows the relationship between WFM and BPM using the BPM
lifecyle. The BPM lifecyle describes the various phases in support of operational
business processes. In the design phase, the processes are (re)designed. In the
configuration phase, designs are implemented by configuring a process aware
information system (e.g., a WFMS). After configuration, the enactment phase
starts where the operational business processes are executed using the system
configured. In the diagnosis phase, the operational processes are analyzed to
identify problems and to find things that can be improved. The focus of tradi-
tional workflow management (systems) is on the lower half of the BPM lifecyle.
As a result there is little support for the diagnosis phase. Moreover, support in
the design phase is limited to providing an editor and analysis and real design
support are missing. It is remarkable that few WFM systems support simula-
tion, verification, and validation of process designs. It is also remarkable that few
systems support the collection and interpretation of real-time data. Note that
most WFM systems log data on cases and tasks executed. However, no tools to
support any form of diagnosis are offered by the traditional systems.

Currently, many workflow vendors are positioning their systems as BPM
systems. Gartner expects the BPM market to grow and also identifies Business
Process Analysis (BPA) as an important aspect [16]. It is expected that the
BPA market will continue to grow. Note that BPA covers aspects neglected by
traditional workflow products (e.g., diagnosis, simulation, etc.). Business Activity
Monitoring (BAM) is one of the emerging areas in BPA. The goal of BAM tools
is to use data logged by the information system to diagnose the operational
processes. An example is the ARIS Process Performance Manager (PPM) of IDS
Scheer [18]. ARIS PPM extracts information from audit trails (i.e., information
logged during the execution of cases) and displays this information in a graphical
way (e.g., flow times, bottlenecks, utilization, etc.). BAM also includes process

6 W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske

mining, i.e., extracting process models from logs [10]. BAM creates a number of
scientific and practical challenges (e.g., which processes can be discovered and
how much data is needed to provide useful information).

When it comes to redesigning operational processes two trends can be iden-
tified: Straight Through Processing (STP) and Case Handling (CH). STP refers
to the complete automation of a business process, i.e., handling cases without
human involvement. STP is often only possible if the process is redesigned. More-
over, STP is often only possible for a selected set of cases. The latter means that
cases are split into two groups: (1) cases that can be handled automatically (in
Dutch these cases are called “Gladde gevallen”) and (2) cases that require hu-
man involvement. By separating both groups it is often possible to reduce flow
time and cut costs. While STP strives for more automation, CH addresses the
problem that many processes are much too variable or too complex to capture
in a process diagram [4]. In CH the normal route of a case is modeled but at
the same time other routes are allowed if not explicitly excluded. One way to
do this is to make workflows data-driven rather than process-driven and allow
for authorizations to skip or undo activities. Also the focus is on the case as a
whole rather than on individual work-items distributed over work-lists.

To summarize: BPM extends the traditional WFM approach by support for
the diagnosis phase (cf. BPA and BAM software) and allowing for new ways to
support operational processes (cf. CH and STP). In the remainder, we focus on
the scientific foundations and current technology.

3 On the Interplay between Business Process
Management and Formal Methods

Business Process Models should have a formal foundation. Well-known reasons
(see e.g. [1]) include: 1) formal models do not leave any scope for ambiguity, and
2) formal models increase the potential for analysis (see also e.g. [26]).

It is desirable that a Business Process Model can be understood by the various
stakeholders involved in an as straightforward manner as possible. This could
e.g. be achieved through the use of graphical representations. At the same time,
these stakeholders should assign the same meaning to such a model, there should
not be any scope for alternative interpretations. Business Process Models can
be quite complex and the use of a formal language for their specification is the
only sure way to guarantee that alternative interpretations are ruled out. After
consensus among the stakeholders has been reached, a business process model
can be deployed and if a formal language was used, its behavior can be explained
in terms of the formal semantics of that specification language. As remarked
in [21], the lack of a formal semantics has resulted in different interpretations
by vendors of even basic control flow constructs, definitions in natural language
such as provided by the Workflow Management Coalition are not precise enough.

As always, it is preferable to identify any problems in software before it is
actually deployed. In the case of Business Process Models this is especially im-
portant as they may involve core business and/or complex business transactions.

Business Process Management: A Survey 7

To reduce the risk of costly corrections, a thorough analysis of a Business Pro-
cess Model can be beneficial. Analysis of Business Process Models can also be
used to investigate ways of improving processes (e.g. reducing their cost). Formal
languages may have associated analysis techniques which can be used for inves-
tigating properties of specifications. These techniques can then be relied upon
to provide insight into the behavior and characteristics of a Business Process
Model specified in such a language.

In [1] three reasons are stated arguing the benefits of the use of Petri nets
for the specification of workflows. The reasons brought forward are the fact that
Petri nets are formal, have associated analysis techniques, and are state-based
rather than event-based. The development of Woflan (see e.g. [25]) demonstrates
that workflows specified as workflow nets [2], a subclass of Petri nets, can be
analyzed in order to determine whether they are e.g. deadlock free. In the context
of UML activity diagrams, tool support for verification is discussed in [15].

Through the notion of place, Petri nets provide natural support for modeling
the stages in between processing. State-based patterns such as deferred choice,
interleaved paralled routing, and milestone can therefore be specified straightfor-
wardly. A description of these patterns can be found in [9]. Petri nets though also
have some deficiencies when it comes to the specification of certain control flow
dependencies (see [7]). This observation has led to the development of YAWL [8]
(Yet Another Workflow Language) of which the formal semantics is specified as
a transition system.

It is interesting to observe that a concept such as the deferred choice, while
easily captured in terms of Petri nets, is not often supported in languages of
“classical” workflow management systems (see [9]). Two recently proposed stan-
dards for web service composition, BPEL4WS and BPML, however, provide
direct support for this construct (see [27]) and [5] resp.). In web services compo-
sition it is important to capture the interactions between the various services and
a formalism such as the π-calculus seems to be a natural candidate to provide
a formal foundation for such interactions. While it is sometimes claimed that
BPML is based on the π-calculus, there does not seem to be a precise definition
of this relation (note that in [12], it is stated that “there is currently no evidence
that BPEL4WS is based on a formal semantics”). We believe that it is important
that such relations are fully formalized.

Formally defined Business Process Modeling Languages can be compared in
terms of their expressive power. For some classes of workflow modeling languages,
abstractions of some existing approaches, comparative expressiveness has been
studied in [21,20]. These results are in the context of a specific notion of equiv-
alence, addressing the issue of when two workflow models can be considered
expressing the same workflow. Expressiveness results give insight into what can
and cannot be expressed in some approaches and more research is needed in this
area as it could provide more guidance for language development.

8 W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske

4 Available Technology and Emerging Standards

Based on the definition of Business Process Management proposed in Section 2,
a characterization of its main concepts is provided, and the technology currently
available or on the horizon is discussed. Some of the key aspects of business
process management already mentioned in Sections 1 and 2 are re-visited, and
the current state of available technology and emerging standards are discussed.

One of the main aspects and certainly an activity typically carried out in early
phases of business process management projects is the design of business pro-
cesses. There is a close relationship between business process design and business
process modeling, where the former refers to the overall design process involving
multiple steps and the latter refers to the actual representation of the business
process in terms of a business process model using a process language. To this
end, the term business process modeling is used to characterize the identifica-
tion and (typically rather informal) specification of the business processes at
hand. This phase includes modeling of activities and their causal and temporal
relationships as well as specific business rules that process executions have to
comply with.

Business process modeling has a decade long tradition, and a variety of prod-
ucts are commercially available to support this phase, based on different process
languages. Given this situation, it is not surprising that the selection of a par-
ticular product is an important step in many BPM projects, and, consequently,
appropriate selection criteria have been studied extensively. Besides organiza-
tional, economical, and aspects related to the overall IT infrastructure of the
enterprise at hand, the expressive power of the process language as well as inter-
faces to related software systems are important criteria, most prominently inter-
faces to process enactment systems (such as workflow management systems) and
to software responsible for modeling personnel and organizational structures of
the enterprise. Not only the expressive power but also a well-defined semantics
of the process language deserves a central role during product selection. How-
ever, this aspect is considered only in a small number of recent business process
management projects.

Business process analysis aims at investigating properties of business pro-
cesses that are neither obvious nor trivial. To this end, the term analysis is used
with a rather broad meaning, including for example simulation and diagnosis,
verification and performance analysis. Process simulation facilitates process di-
agnosis in the sense that by simulating real-world cases, domain experts can
acknowledge correct modeling or propose modifications of the original process
model. If business process models are expressed in process languages with a clear
semantics, their structural properties can be analyzed. If, for example, certain
parts of processes can never be reached, an obvious modeling mistake occurred
that should be fixed. While basic structural properties of process models have
been studied for some time, it is remarkable that few software products actually
support them. However structural analysis of process models requires a clear for-
mal semantics of the underlying process language, which might not be present.
In some products, a pragmatic approach to process modeling is preferred to a

Business Process Management: A Survey 9

formal one; especially if the main goal of process modeling is discussion with
domain experts rather than process analysis or process enactment. However, we
mention that formal semantics of process languages and intuitiveness and ease
of use are no contradicting goals, and recent approaches seem to support this
observation.

The next aspect of BPM and traditionally a very strong one is process en-
actment. However, before process enactment is discussed, we provide a coarse
classification of business processes that paves the way for a discussion of dif-
ferent types of process enactment systems. In the early days of BPM when in
the application side business process modeling and in the IT enactment side
workflow management were the only options, processes with a static structure
were focused. The main reason behind this obvious limitation was as follows:
Modeling a process and providing infrastructure for its enactment incurs con-
siderable effort. To provide satisfactory return on investment, a large number of
individual cases have to benefit from this new technology. This type of straight-
through-process is also called production workflow [23]. While there are success-
ful workflow projects on this type of straight-through processes, this restriction
of workflow technology proved fatal for applications in more dynamic environ-
ments. In some cases where traditional workflow technology was used in these
advanced settings, new workflow solutions were partly circumvented or even ne-
glected. As a response to this situation, considerable work in ad-hoc, flexible
and case-based workflow was (and is being) conducted, both in academia and
in industry. Recently, case handling is studied in depth as a new paradigm for
supporting knowledge-intensive business processes with loose structuring. Based
on the brief characterization of case handling provided above, we mention that in
the case handling paradigm knowledge workers enjoy a great degree of freedom
in organizing and performing their work which they are knowledgeable about.
Some of the concepts of case handling are already present in commercial case
handling systems.

Standardization has a long history in workflow management. Fueled by infor-
mation system heterogeneity that also includes workflow management systems,
organizations started to form interest groups aiming at standardizing interfaces
between workflow management systems and components, with the goal of en-
hancing interoperability and fostering the workflow market. The most prominent
organization in this context is the WorkflowManagement Coalition (WfMC) that
was formed in 1993 and today has over 300 member organizations, including all
major workflow vendors as well as workflow users and interested academia [22].
The basis of WfMC activities is the so called WfMC Reference Architecture that
defines standard workflow system components interfaces. Despite the fact that
all major vendors are organized in WfMC and a number of important contri-
butions on practical workflow aspects have been made, many people feel that
WfMC’s ambitious goals have yet to be reached.

A more recent standardization effort in the BPM context is related to the cur-
rent momentum of XML and Web services technology. Web services is a promis-
ing technology to foster interoperability between information system based –

10 W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske

conceptually – on the service oriented architecture paradigm [11] and – tech-
nologically – on open standards and light-weight protocols and systems. While
Web services technology has not yet reached maturity level, there is considerable
effort under way by literally all major software vendors. The need for standard-
ization is clearly acknowledged in this context, and important contributions have
been made. However, as sketched in Section 2, recently a trend of new standards
proposals as well as merging of proposals can be experienced in the Web ser-
vices context. Besides these recent developments, Web services are seen as an
important infrastructure to foster business processes by composing individual
Web services to represent complex processes, which can even span multiple or-
ganizations. While Web services composition is a young discipline and a number
of proposals are being discussed, we currently experience what seems to be a
slow consolidation of recent standardization effort around Web services compo-
sition, based on the BPEL4WS and associated proposals. However, at this point
industry seems more involved in standardization than in systems design and
development. While there is some controversy on these upcoming standards, it
seems that at least industry goes with the flow. In any case, Web services in
general and Web services composition in particular can be expected to play an
important role in future business process systems technology. This will include
both processes within organizations and, more strongly, between organizations.

5 Conclusion

This paper provides an overview of Business Process Management (BPM) and
serves as an introduction to this volume of Springer Lecture Notes in Computer
Science devoted to the “Conference on Business Process Management: On the
Application of Formal Methods to Process-Aware Information Systems”. The
goal is to put the contributions to this conference into perspective. Section 1
puts BPM in its historical perspective going back to the late seventies. Section 2
defines BPM and compares it with workflow management. Based on this the
paper zooms into the formal foundations of BPM on the one hand (Section 3)
and technology and emerging standards for BPM on the other hand (Section 4).
This way, the paper reflects the objective of this conference: Bringing together
(computer) scientists and practitioners to work on advancing BPM methods,
techniques, and tools.

References

1. W.M.P. van der Aalst. Three Good Reasons for Using a Petri-net-based Workflow
Management System. In S. Navathe and T. Wakayama, editors, Proceedings of
the International Working Conference on Information and Process Integration in
Enterprises (IPIC’96), pages 179–201, Cambridge, Massachusetts, Nov 1996.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

Business Process Management: A Survey 11

3. W.M.P. van der Aalst. Making Work Flow: On the Application of Petri nets to
Business Process Management. In J. Esparza and C. Lakos, editors, Application
and Theory of Petri Nets 2002, volume 2360 of Lecture Notes in Computer Science,
pages 1–22. Springer-Verlag, Berlin, 2002.

4. W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management: Product-
Driven Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International
ACM SIGGROUP Conference on Supporting Group Work (GROUP 2001), pages
42–51. ACM Press, New York, 2001.

5. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-
Based Analysis of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05,
Queensland University of Technology, Brisbane, 2002.

6. W.M.P. van der Aalst and K.M. van Hee.Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

7. W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Ex-
pressive Power of (Petri-net-based) Workflow Languages. In K. Jensen, editor,
Proceedings of the Fourth Workshop on the Practical Use of Coloured Petri Nets
and CPN Tools (CPN 2002), volume 560 of DAIMI, pages 1–20, Aarhus, Denmark,
August 2002. University of Aarhus.

8. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Work-
flow Language. QUT Technical report, FIT-TR-2002-06, Queensland University of
Technology, Brisbane, 2002.

9. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. QUT Technical report, FIT-TR-2002-02, Queensland Univer-
sity of Technology, Brisbane, 2002. (Also see
http://www.tm.tue.nl/it/research/patterns.) To appear in Distributed and Parallel
Databases.

10. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 2003 (to appear).

11. S. Burbeck. The Tao of e-Business Services. IBM Corporation, http://www-
4.ibm.com/software/developer/library/ws-tao/index.html, 2000.

12. DAML-S and Related Technologies.
www.daml.org/services/daml-s/0.7/survey.pdf, 2003.

13. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information
Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling
of Computer Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

14. C.A. Ellis and G. Nutt. Workflow: The Process Spectrum. In A. Sheth, editor,
Proceedings of the NSF Workshop on Workflow and Process Automation in Infor-
mation Systems, pages 140–145, Athens, Georgia, May 1996.

15. H. Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. PhD thesis, University of Twente, Enschede, The Netherlands, 2002.

16. Gartner. Gartner’s Application Development and Maintenance Research Note M-
16-8153, The BPA Market Cathes another Major Updraft.
http://www.gartner.com, 2002.

17. A. W. Holt. Coordination Technology and Petri Nets. In G. Rozenberg, editor,
Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science,
pages 278–296. Springer-Verlag, Berlin, 1985.

18. IDS Scheer. ARIS Process Performance Manager (ARIS PPM). http://www.ids-
scheer.com, 2002.

12 W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske

19. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

20. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane, Australia, 2003. Available via http://www.tm.tue.nl/it/research/patterns.

21. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamen-
tals of Control Flow in Workflows (Revised version). QUT Technical report,
FIT-TR-2002-03, Queensland University of Technology, Brisbane, 2002. (Also see
http://www.tm.tue.nl/it/research/patterns.) To appear in Acta Informatica.

22. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition.
John Wiley and Sons, New York, 1997.

23. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

24. D.C. Marinescu. Internet-Based Workflow Management: Towards a Semantic
Web, volume 40 of Wiley Series on Parallel and Distributed Computing. Wiley-
Interscience, New York, 2002.

25. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

26. Dirk Wodtke and Gerhard Weikum. A formal foundation for distributed workflow
execution based on state charts. In Foto N. Afrati and Phokion G. Kolaitis, editors,
Proceedings of the 6th International Conference on Database Theory – ICDT ’97,
Delphi, Greece, January 8–10, 1997, volume 1186 of Lecture Notes in Computer
Science, pages 230–246. Springer, 1997.

27. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern-
Based Analysis of BPEL4WS. QUT Technical report, FIT-TR-2002-04, Queens-
land University of Technology, Brisbane, 2002.

28. M.D. Zisman. Representation, Specification and Automation of Office Procedures.
PhD thesis, University of Pennsylvania, Warton School of Business, 1977.

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 13–24, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Workflow: A Language for Composing Web Services

Giacomo Piccinelli1 and Scott Lane Williams2

1 University College London, Gower Street
WC1E 6BT London, United Kingdom
G.Piccinelli@cs.ucl.ac.uk

2 Hewlett-Packard Software & Solutions, 11000 Wolf Road
95014-0691 Cupertino (CA), USA
Scott_L_Williams@HP.com

Abstract. The introduction of Web Services has a profound impact on
component models. The interaction processes behind a service become integral
part of the component type, and as such formally described and automatically
manageable. Workflow emerges as the reference model for the description of
interaction processes associated to individual web services. In the DySCo
(Dynamic Service Composition) project, we investigate the use of workflow for
both the modelling and implementation of composite solutions based on web
services. Key aspect of DySCo is the separation between composition and
coordination logic. In this paper, we discuss the composition model defined in
DySCo, and a technology framework to enforce it.

1 Introduction

Since their early definition, composition has been a central concept for web services.
From a business perspective, web services represent a new channel for the offer as
well as the acquisition of business services. Peculiarity of the web service channel is
that the interaction process between service provider and service consumer is
completely automated. Beyond electronic data transfer, automation extends to all
aspects of business interaction. Negotiation of service delivery terms and management
of service-level agreements are just some examples. A comprehensive description of
the foundational and operational aspects of the web service model can be found in
[5,14].

In the web service model, the provider of a new web service WS drives the
composition of internal and external capabilities in order to produce a new capability.
Both internal and external capabilities are modelled as web services that act as service
components for WS. Similarly, WS can be used as service component for other web
services. The fact that a capability is available internally or needs to be acquired
externally reflects on the design of a service. Still, the web service model enforces a
clear separation between a service component and the related service provider.
Different providers can be used for the same capability under different circumstances,
and the selection logic is integral part of the overall design of a web service.

14 G. Piccinelli and S.L. Williams

Fig. 1. Monitoring console in the prototype for the service composition system of FreightMixer

The decupling of web service and web service provider is closely related to the
most noticeable feature of the web service model: process-oriented interfaces. In
traditional component models, method signatures represent the only information on
the interaction requirements of a component. While the invocation of a method can
trigger complex interaction processes, interaction logic is not formally exposed. In the
web service model, the interaction processes associated to a web service are explicitly
formalized and exposed. WSCI (Web Service Choreography Language) [1] and
WSFL (Web Service Flow Language) [8] are examples of languages for the
formalization of interaction processes associated to web services. The rationale for
process-oriented interfaces is composition in general, and dynamic composition in
particular. The composition logic for a web service depends on the interaction
processes of the service components for their orchestration. Interaction processes are
central to the selection logic for service providers.

The objective of the DySCo (Dynamic Service Composition) [11] project is the
development of a modelling and technology framework for the dynamic composition
of web services. The distinctive element for DySCo with respect to other approaches
[2,5,8,17] is the separation between composition logic and coordination logic. The
designer can concentrate on the coordination of business capabilities, which are
modelled as business roles. The coordination logic for the service providers is derived
automatically based on the roles that each provider commits to play. In DySCo as

Workflow: A Language for Composing Web Services 15

well as in the wider web service community, workflow [4,6] is the reference model
for the formalization of both interaction logic and composition logic of web services.

In this paper, we first introduce (Section 2) a reference scenario for service
composition based on the FreightMixer prototype. In (Section 3), we discuss some of
the requirements for web service composition, with special focus on the dynamic
aspects of composition. In (Section 4), we describe the composition model adopted in
DySCo. In (Section 5), we present an overview of technology in the DySCo
framework. In (Section 6), we report on related works. In (Section 7), we present
some conclusions and remarks drawn from our involvement in DySCo.

2 Service Composition in FreightMixer

FreightMixer is a provider of freight services. Peculiarity of FreightMixer is a
business model entirely based on web services. The company is not a real one, but it
represents a realistic scenario for the use of web services. The scenario provides a
conceptual framework that can be applied to a wide range of business contexts. More
details can be found in [11]. In this section we summarize the service composition
model used by FreightMixer.

The freight market is highly competitive, and customers explore multiple options
before every shipment. Customers send RFQs (request for quote) to specific
providers. Alternatively, customers can use auction-based instruments made available
by electronic marketplaces. Switching costs are negligible, and the best offer wins the
deal. Service providers are under pressure for competitive pricing of comparable
levels of service. In terms of service execution, customer’s main concern is that
service-level agreements are respected (e.g. level of notification). The main concern
for service providers is the cost of the execution infrastructure. Fixed costs are quite
significant, and full utilization of resources is crucial. For example, the cost of
shipping a container is almost independent from the content. Maximum usage of
capacity translates into lower costs per unit.

FreightMixer offers an end-to-end freight service without owning fixed transport or
transport-related infrastructure. When a new service request arrives, FreightMixer
acquires services from other providers and combines them into a complete package.
The result of the combined services constitutes the infrastructure upon which
FreightMixer bases its offer. The composite nature of FreightMixer’s offer is
completely transparent to the customer. In terms of service execution, the providers
for some of the service components may interact directly with the customer. Still, the
interaction is on behalf and under the responsibility of FreightMixer. Providers of
service components may also interact with each other. The interaction between
service providers as well as with the customer depends on the overall composition
logic decided by FreightMixer, and is regulated by the agreements between
FreightMixer and each individual service provider.

In (Fig. 1) is represented the monitoring console for a prototype system that
implements FreightMixer’s operational model. The panel on the left contains the list
of the service requests for which a solution is currently under development. Focusing
on a specific service request (e.g. sending goods from Rabat to Cape Town), the main
panel presents the various options under consideration. For each leg of each route, the

16 G. Piccinelli and S.L. Williams

system presents the results of the ongoing negotiations. Expanding one of the legs, the
system shows the ongoing negotiations for the specific leg. The system shows the
various negotiation parameters, and in particular the service deliver process required
to any service provider that wants to cover that leg. Service delivery processes are
fundamental for service composition. Individual processes reflect the requirements for
the provider of a leg of transport, the provider of the previous leg, the provider of the
next leg, and the providers of corollary services such as insurance. Processes also
reflect monitoring requirements from FreightMixer, and special requirements from the
customer (e.g. notification). While not represented in the picture, the system
simultaneously manages the negotiation with the customer. The system also monitors
the execution of the complete solution if the deal is won. More details can be found in
[11,13].

The core value of FreightMixer lays in the capability to aggregate the appropriate
mix of service providers around a single objective. FreightMixer exploits competitive
offer from other providers for the implementation of a solution matching the needs of
its customers. The success of FreightMixer depends on the ability to acquire spare
capacity at low cost, and to efficiently combine different resources. Service
composition and negotiation are the pillars of FreightMixer’s business model, and
web services play a key role in their automation.

3 Requirements for Dynamic Composition

The concept of dynamic composition [10,16] is subject to different characterizations
within the web service community. One aspect of web service composition is the
binding between formal and actual provider for a service [14]. The set of service
providers involved in an instance of a composite web service can be dynamically
populated, hence the reference to dynamic composition. To avoid ambiguity, we refer
to such aspect of composition as aggregation. Explicit management of aggregation
logic is an important requirement for dynamic composition.

A second aspect of dynamic composition is the coordination of different web
services [18]. The mainstream approach is to have a single entity responsible for
coordination, hence the reference to coordination as orchestration. While agreeing on
the need for a centre of responsibility in a composite service, our view on the
orchestration model is that more can be added in order to capture the full potential for
web service composition. In particular, we refer to peer-to-peer interaction and
delegation. Using the FreightMixer example, the providers of two legs of transport
route may need to interact with each other directly in the context of the overall service
created by FreightMixer. We propose both delegation and peer-to-peer interaction as
key requirements for dynamic composition.

Considering the application domain for web services, business applications
represent the most important source of requirements for web services in general and
composition in particular. The close relation between business services and web
services has strong implications on web service solutions. Business processes are the
driving force behind business services, and the association of business processes with
workflow models and technology [4] has deep roots in the business world. Leveraging
the conceptual framework and technology associated with workflow is a general

Workflow: A Language for Composing Web Services 17

Table 1. Basic grammar for workflow processes. N is a set of variable names. V is a set of
constant names (values). R is a set of resource names. T is a set of task names. The condition c
in the choice is a binary function with domain N.

Table 2. Labelled Transition System (LTS) defining the process evolution function ��in the
algebra (W, �)

requirement for web services. In the specific case of composition, workflow
represents an important source of opportunities as well as requirements. Coordination
of different capabilities towards the achievement of a specific objective is a
fundamental concept in the workflow model. A mapping between workflow and web
services can immediately leverage existing expertise on the business side as well as
on the technical side. On the technical side, integration between web service and
workflow technology can provide an important integration route towards existing
business applications.

18 G. Piccinelli and S.L. Williams

4 Web Service Composition in DySCo

The objective for DySCo can be summarized as a composition framework for web
services that match the requirements of a company such as FreightMixer. Initial
results on the composition methodology developed in DySCo can be found in [11].
The aggregation aspects of the methodology are described in [13]. In this paper, we
discuss the composition model defined in DySCo. The focus is on the separation
enforced by the model between composition and coordination logic.
The composition model defined in DySCo is based on the workflow model. Both
composition and coordination logics are specified as workflows. The designer of the
web service defines the composition logic once. Specific tools in the DySCo
framework automatically derive the coordination logic required for different
aggregation patterns. Delegation and peer-to-peer interaction are integral part of both
the composition and the coordination models.
In the remaining part of this section, we first give an overview of the workflow model
(Section 4.1). We then describe in more detail the composition (Section 4.2) and
coordination (Section 4.3) models defined in the DySCo framework.

4.1 The Workflow Model

The objective of workflow [6] is to model and manage the coordination of a set of
resources towards the achievement of a given result. Resources are modelled as
independent and self-contained units that have the capability to perform specific tasks.
While resources may be capable of autonomous behaviour, the tasks specified in a
workflow are performed only upon request. The coordination logic in the workflow
model is based on an orchestration approach. A single logical entity is in charge of
maintaining the state of the process, and to request the resources to perform tasks. An
algebraic characterisation (W, �) for workflow processes is given in (Tab. 1 and Tab.
2).

The atomic element in the specification of a workflow process (Tab. 1) is the task.
A task is defined by a name that indicates the activity required to a resource, as well
as a name that indicates the resource that has to perform the activity. The specification
for a task includes indications on the information that is supplied to a resource, and on
the information that the resource will produce as a result of the activity. The flow
logic for the process is expressed (Tab. 1) by the sequence, choice, concurrent, and
loop operators. An operational definition for the execution semantics of a workflow
process is described by the LTS in (Tab. 2).

The execution semantics for a workflow process is based on the concept of a global
state ��that contains a selection of the information generated during the execution of
the process. The execution of a task (Tab. 2 - step) relies on a function �w) to extract
form � the information required by the resource. In the same way, a function (v)
feeds into � new information generated by the resource. Only one resource is
involved in each task (r�R). Transactional access to ��is not explicit in the basic
workflow model. The execution semantics also defines a concept of visibility over the
evolution of the process. In the case of a task, a function � defines the information to

Workflow: A Language for Composing Web Services 19

make visible based on the task name, the resource name, and the information involved
in the execution of the task itself.

A detailed discussion of the theoretical framework for workflow is outside the
scope of this paper, and more information can be found in [7,9]. The reason why we
focus our description on tasks more than on flow control will become apparent in the
next section.

4.2 The DySCo Composition Model

One of the main limitations that prevent the traditional workflow model from fully
exploiting the compositional potential of web service is the focus on activities. The
unit of process in a traditional workflow revolves around asking a resource to perform
an activity (task). The result from one task then constitutes the input for other tasks.
The resource involved in a task is not aware of the resources involved in other tasks.
The interaction between different resources is mediated by the process manager,
which acts as logical point of concentration for the data flow associated to the
process.
The composition model we propose for web services retains the overall structure of
traditional workflow (Tab. 1 and Tab. 2), with exception of the task. In DySCo the
focus shifts from activity to interaction. Resources become roles, and the task
becomes an interaction step. In an interaction step, sets of roles interact towards the
achievement of a given objective. In traditional workflow, the task name contains
sufficient information for the resource to understand precisely the activity to perform.
In an interactive step, the step name contains sufficient information for the roles
involved to understand precisely the way in which they have to interact with each
other. As in traditional workflow, information from the overall state of the process
may be provided as input for the execution of an interactive step. An interactive step
may produce output information that contributes to the state of the overall process.
 Given the set R of role names and the set S of names of interactive steps, the entry for
the task in the process grammar of (Tab.1) becomes:

sr(�) interactive step (��: N���V�� r �R s �S)

The entry (step) for the process evolution function in the LTS of (Tab. 2) is replaced
by:

(int-step)���::sr(�) — l (t, v, s´) ���v�´::	 where �´=
�(s, r, �w�) r �R v �R

The involvement of multiple roles in an interactive step affects both the output
function
�and the visibility function � for the step. The output function takes into
consideration the contributions from all the roles involved in the step. The visibility
function can give different perspectives on the execution of the interactive step
depending on the set of roles defined by the observer. The granularity as well as the
complexity of the interaction can vary between steps, but interactive steps maintain
the atomicity property typical of tasks in traditional workflow.

20 G. Piccinelli and S.L. Williams

The use of roles enforces a level of indirection between capabilities and capability
providers. In particular, the interaction between the multiple roles in an interaction
step is independent from the providers that will cover each role. Similarly to resource
names in traditional workflow, role names are used consistently across different steps
in one process. The equivalent of a task in traditional workflow can be obtained with
an interactive step that specifies only one role. Similar conditions can also be created
in the aggregation phase if one provider covers all the roles in an interactive step.
Interactive steps and direct interaction between roles enable explicit modelling of
peer-to-peer interaction, as well as delegation. Peer-to-peer interaction and delegation
constitute the basis for both the coordination and the aggregation models adopted in
DySCo.

Feedback

Financial Update

Development Check

Fig. 2. Section of process modelled by FreightMixer. The customer first verifies the stage of
delivery. There is then an exchange of information between customer and transport provider.
The final step involves the interaction between customer and a financial institution.

4.3 The DySCo Coordination Model

The coordination model adopted in DySCo operates at role level, and is entirely based
on peer-to-peer interaction. The approach is to derive from a DySCo process D a set
of traditional workflow processes {Pj}, such that the result of the combination of all
the Pj is equivalent to D. A detailed description of the equivalence relation is outside
the scope of the paper, but the general idea is that it is based on the classic notion of
bisimulation [9]. The visible aspects of process execution are modelled by functions
such as � (Tab.1) and � (int-step).
Given a DySCo process D and the set R of all the roles involved in D, let us consider
P(R) the set of all the possible subsets of R. Let us also consider C (P(R)) the set of all
the subsets of P(R), such that c � C(P(R)) implies that the union of all the sets in c is
equal to R. Given a set c = {cj} � C(P(R)) the coordination model defines a set W =
{Wj} of traditional workflow processes such that there is a one-to-one relation
between the elements of c and W. Each process Wj contains the orchestration logic for
the web services of the provider covering the roles in the corresponding cj, as well as

Workflow: A Language for Composing Web Services 21

Fig. 3. Two components of the DySCo implementation framework. On the left, the design
environment for DySCo processes. On the right, the projection generator (view on the creation
of role groups).

the interaction and synchronisation logic with other providers. The interaction logic in
Wj refers to the exchange of service-level information between providers.
Synchronisation logic refers to the signalling between providers required in order to
align the global flow of execution.

For example, FreightMixer may have a DySCo process F (Fig. 2) related to a
service offer based on frequent customer updates. One of the steps in the process can
be Development Check, which specifies the gathering of information by some roles
(e.g. customer) from other roles (e.g. transport provider and financial institution). For
the entity covering the role transport provider, the Wt related to F describes the usage
logic for internal service capabilities (e.g. to generate a report). Wt also indicates to

22 G. Piccinelli and S.L. Williams

send the report to customer, or to expect customer to potentially ask for it. Copy of the
report is sent also to the financial institution. The Wc for the customer specifies to
wait for a communication from the transport provider, or the option to ask for the
report. The next step in F is Feedback, which specifies an exchange of validation
messages between some roles (e.g. customer) and other roles (e.g. only to the
transport provider). Wc and Wt capture the activity required to the related entities. Wc,
Wt, and Wf (financial institution) also include synchronisation mechanisms such that
the financial institution does not start the activities involved in Financial Update until
Feedback is completed.

The coordination model preserves the level of indirection introduced by the
composition model between a capability (captured by a role) and the web services that
implement the capability. Such indirection has direct consequences on delegation as
well as aggregation. In terms of delegation, the main implication is that trust models
for service providers can be based on the roles they play in the composite solution, in
addition to the web services they offer. In terms of aggregation, the shift is from the
provision of sets of web services to the fulfilment of a specific role. The impact on
models and techniques for negotiation are described in [13].

5 The DySCo Implementation Framework

The DySCo implementation framework includes development tools (Fig. 3) as well as
execution infrastructure to support the complete lifecycle of a composite web service.
In this section, we describe the part of the framework related to the definition of the
composition logic for the web service. We also describe the components involved in
the automatic generation of the coordination logic for specific configurations of role
distributions.

 The composition logic for a web service is described using a graphical
environment (Fig. 3, left) based on an extension of the commercial tool iGrafx�. The
process model derives from the reference standard for workflow processes specified
by the WfMC (Workflow Management Coalition) [6]. The design environment for
DySCo covers processes as well as steps. In addition to the flow operators in the basic
workflow model (Tab. 1), specific design patterns allow the use of higher-level
constructs. Multiple branching and conditional loops are examples of such constructs.
The use of sub processes is also possible. Concerning interactive steps, the interaction
logic for the roles is based on an abstract execution environment also defined in
DySCo. The abstract execution environment includes concepts such as a virtual
repository shared by the roles, as well as direct role-to-role interaction (see [11] for
more detail). The specification of the steps is based on workflow. The design
environment is the same for both processes and steps. Libraries can be created for
processes as well as steps. As an example of library for interactive steps, we captured
and collected in one library all the currently specified PIPs (Partner Interaction
Processes) specified in the RosettaNet standard [12,15].

The composition logic for the web service involves multiple roles. The
coordination logic for the actual providers (and consumers) involved in the different
instances of the web service depends on the roles that each party covers. The
projection generation environment (Fig. 3, right) allows the automatic generation of
the coordination logic for different configurations of role groups. When the files

Workflow: A Language for Composing Web Services 23

containing the composition logic are loaded into the projection generator, the tool
automatically derives all the roles involved. It is then possible to specify a number of
group names, and the association between roles and groups. Once all the roles have
been assigned to at least one group, the tool generates for each group the workflow
processes describing the related coordination logic. The activity can be repeated for
different role groups. As specified in the DySCo coordination model, the projection
generator adds synchronisation operations to the service logic required to the roles in
a group. The control over the algorithms used for the creation of the projections
makes possible formal proofs of equivalence between projections and the process
from which they derive.

6 Related Works

Resulting from the convergence of XLANG [17] and WSFL [8], BPEL4WS [2] is the
main representative of a recent stream of activities promoting workflow as the
reference model for the composition of web services. The focus of BPEL4WS is on
the internal aspects of a composite solution. WSCI [1] (led by SUN) is the main
representative of the complementary stream of activities promoting workflow as a
model for the external aspects of web services. In terms of technology platforms,
almost every commercial product for workflow management currently supports or has
plans to support web services.

Currently focused on the more general problem of business-to-business (B2B)
integration, the work of organisations such as ebXML [3] and RosettaNet [15] plays a
fundamental role for web services. The creation of a common ontology including
dictionaries as well as processes is a prerequisite for an effective automation of
composition. The W3C organisation [5] acts as aggregation point for the work on
architectures, protocols, and description models for web services.

7 Conclusions

While composition in general is at the centre of the web service model, the
application context for web services sets specific requirements on composition
models. Business applications and business services represent the main application
domain for web services, and workflow represents the most established conceptual
framework for the composition of business capabilities. We propose that workflow
can play a central role for web services, both in terms of model and technology.

In the DySCo (Dynamic Service Composition) project, the workflow model
becomes the basis for a multi-layered composition framework for web services. The
distinctive aspect of DySCo is the separation of composition logic from coordination
and aggregation logic. The model enforces a level of indirection between the
capabilities involved in a composite solution and the configuration of web services
that deliver such capabilities. The implementation framework for DySCo makes
explicit reuse of workflow technology for the modelling and enactment of composite
solutions.

24 G. Piccinelli and S.L. Williams

References

1. Arkin A., and Alt.: Web Services Choreography Interface (WSCI) 1.0. W3C Note (2002)
2. Curbera F., and Alt.: Business Process Execution Language for Web Services (BPEL4WS)

1.0. IBM online resources, (2002)
3. ebXML: Reference Web Site for the Organization. http://www.ebXML.org (2002)
4. Georgakopoulos D., Hornick M.F., Sheth A.P.: An Overview of Workflow Management:

From Process Modeling to Workflow Automation Infrastructure. In: Distributed and
Parallel Databases Vol. 3 No. 2 (1995)

5. Haas H., and Alt.: Web Services Activity. W3C Working Groups (2002)
6. Holligsworth, D.: The Workflow Reference Model. Workflow Management Coalition

(WfMC) (1994)
7. Hoare C.A.R.: Communicating Sequential Processes. In: Communication of the ACM,

Vol. 21 No. 8 (1978)
8. Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM (2002)
9. Milner R.: Communication and Concurrency. Prentice-Hall (1989)
10. Nierstrasz, O., and Meijler, T. D.: Requirements for a Composition Language. In:

Ciancarini, P., Nierstrasz, O., Yonezawa, A. (Eds.): Object-Based Models and Languages
for Concurrent Systems, LNCS 924 (1995)

11. Piccinelli G., Di Vitantonio G., and Mokrushin L.: Dynamic Service Aggregation in
Electronic Marketplaces. In: Computer Networks Journal, Vol. 37 No. 2, Elsevier Science
(2001)

12. Piccinelli G., Finkelstein A., Stammers E.: Automated Engineering of e-Business
Processes: the RosettaNet Case Study. In: Proc. 6th Int. Conf. on Systemic, Cybernetics,
and Informatics, Orlando, Florida, USA (2002)

13. Piccinelli G., Preist C., and Bartolini C.: E-Service Composition: Supporting Dynamic
Definition of Process-oriented Negotiation Parameters. In: Proc. IEEE 2nd e-Negotiations
Workshop, Munich, Germany (2001)

14. Kuno H.: Surveying the E-Services Technical Landscape. In: Proc. 2nd Int. Workshop on
Advance Issues of E-Commerce and Web-Based Information Systems (WECWIS).
Milpitas, California, USA (2000)

15. RosettaNet: Reference Web Site for the Organization. http://www.RosettaNet.org (2002)
16. Seaborne A., Stammers E., Casati F., Piccinelli G., and Shan M.: A framework for

business composition. In: Proc. W3C Workshop on Web Services, San Jose, CA, USA
(2001)

17. Thatte S.: XLANG – Web Services for Business Process Design. Microsoft (2001)
18. Stearns M. and Piccinelli G.: Managing Interaction Concerns in Web-Service Systems. In:

Proc. 2nd IEEE Int. Workshop on Aspect Oriented Programming for Distributed Computing
Systems (AOPDCS), Vienna, Austria (2002)

Mining Most Specific Workflow Models from
Event-Based Data

Guido Schimm

OFFIS, Escherweg 2,
26121 Oldenburg, Germany

schimm@offis.de

Abstract. This paper presents an approach on mining most specific
workflow models from event-based data. The approach is embedded in
the context of data mining and knowledge discovery in databases. It con-
sists of two parts. The first one is an introduction of a block-structured
workflow model representation and the second one is an extraction proce-
dure for workflow models based on that model representation. This paper
describes both parts in detail and also outlines preceding and subsequent
steps.

1 Introduction

Today, workflow management systems are applied in many organizations. Set-
ting up and maintaining a workflow management system require workflow mod-
els which prescribe how business processes should be managed by the system.
Typically, the user is required to provide these models. Constructing process
models from scratch is a difficult and error-prone task that often requires the
use of an expert. An alternative way to construct workflow models from scratch
is to extract them from event-based data captured in form of logs from running
business processes. The goal of workflow mining is to extract workflow models
for business processes from such logs.

In this paper we present an approach on mining most specific workflow mod-
els. A model is considered to be most specific according a given log if it is
complete and minimal. Completeness describes that a model should preserve all
the dependencies between activities that are present in the log. Minimality as-
sures that the model should neither introduce paths of execution nor spurious
dependencies between activities which are not present in the log.

Let us assume that the execution of process instances from which we have
captured a log is controlled by knowledge that only the actors have in mind.
This process-related knowledge is called the implicit model. In case that a log
does not cover all possible ways of executing a process, the mined workflow
model may be different from the implicit model due to the fact that it contains
dependencies between activities which are not part of the implicit model. The
obvious limitation of mining workflow models is that the quality of a mined
model, with respect to its implicit model, depends on how much the log covers

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 25–40, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

26 G. Schimm

the implicit model. Also, its characteristic to be most specific can only be related
to the log, not to the implicit model itself.

The rest of the paper is organized as follows. The following section outlines
the context in which our approach is embedded. In section 3 we define the
input. A workflow model representation is outlined in section 4. In section 5
we describe our mining process in detail, followed by a short description of
engineering the output in section 6. An experimental evaluation is outlined in
section 7. Subsequently, we discuss related work and conclude the paper with a
summary.

2 Mining Framework

We consider the mining of workflow models from event based data to be a process
of knowledge discovery in databases (KDD)[1]. A KDD process roughly consists
of the following steps: data consolidation, selection and preprocessing, data min-
ing, interpretation and evaluation. In this paper, we focus on the data mining
step and its interfaces to the preceding and subsequent steps.

Generally, data mining consists of two tasks. The first task is to define a
model representation. Based on this the second task is the extraction of models
from data using appropriate algorithms. Workflow mining can be considered
a data mining method that uses a particular workflow meta-model as model
representation and specialized algorithms for extracting workflow models from
logs. The interfaces of the workflow mining step to its preceding and subsequent
steps are given by a definition of its input and a transformation of its output.

3 Defining the Input

Monitoring process instances provides a large amount of data of different events
that occur while an instance is being executed. Because we are interested in
extracting models that describe control flows between activities within processes
we consider events which are related to the life cycle of an activity.

Let us use the finite state machine depicted in Figure 1 to describe the life
cycle of an activity. In this paper, we focus on two kinds of events: Start and
Complete. An event of kind Start marks the transition from the state Scheduled
into the the state Active. An event of kind Complete marks the transition from
the state Running into the state Completed.

For each activity captured in form of a pair of Start and Complete events we
distinguish its type, occurrence, and instance. Two activities of the same type, i.e.
the same kind of activity, are differentiated into multiple occurrences if they are
embedded in different contexts. The context of an activity is defined by the set
of other activities for which a precedence relation to that activity exists. Often,
it is enforced that each activity within the same process is named differently. In
this case we capture exactly one occurrence per activity. We capture an activity
occurrence that is executed at least ones, i.e. we get one activity instance. We

Mining Most Specific Workflow Models 27

Fig. 1. Finite state machine for the life cycle of an activity

read multiple instances of an activity occurrence if it is performed repeatedly,
e.g. inside a loop.

We log an instance of a business process executed under the control of a
monitoring tool in form of a trace. A trace consists of a set of events of the life
cycle of each activity performed inside a particular process instance. It is defined
as follows.

Definition 1. Let e = (c, o, i, s, t) denote an event of starting or completing the
instance i(i ∈ N) of an activity occurrence o at the logical point in time t(t ≥ 1)
as part of executing a process instance c, where s ∈ {Start, Complete} is called
stereotype of e. A trace E(c) = ({e = (c′, o, i, s, t) | c′ = c}, <t) is the set of all
events of an instance c ordered by time, where every event has a unique t.

Mining a model for a business process is based on a set of traces, called the
log of the business process. A log is defined as follows.

Definition 2. Let C(p) = {c1, . . . , cn} be a set of instances for a particular
business process p. A log L(p) = {E(c) | c ∈ C(p)} is a set of traces captured for
p.

For a particular business process we select the traces into a log. Before we
can start mining we check the log in order to detect inconsistencies. We expect
each activity instance in each trace to have exactly one event of stereotype Start
and one event of stereotype Complete, such that each Start event comes always
before the corresponding Complete event. Inconsistent traces are eliminated.

4 Model Representation

The model representation, i.e. the meta-model the extracted workflow models
are based on, is a block-oriented model. It defines that each workflow model
consists of an arbitrary number of nested building blocks. Building blocks are
differentiated into operators and terms. Operators combine building blocks and

New

Terminated

ActiveScheduled Completed

Suspended

CompleteStartSchedule

Withdraw Abort

ResumeSuspend

28 G. Schimm

define the control flow of a workflow model. Basic terms are references for activity
occurrences or sub-workflows that are embedded into a control flow. We use
references to activity occurrences instead of activity occurrences because this
allows us to have partial synchronization for an activity occurrence.

We build a block-structured model top-down by setting one operator as start-
ing point of the workflow model and nest other operators until we get the desired
control flow structure. At the bottom of this structure we embed basic terms into
operators and terminate the nesting process. Therefore, each process model can
be represented in form of a tree whose leafs are always operators. Beside the tree
representation of block-structured models we can write them in form of terms.
Furthermore, block-structured models can be represented in form of diagrams,
too. Block-structured models have some advantages: They are well-formed and
always sound. Therefore, using this kind of meta-model we are sure that the
extracted workflow models do not contain any deadlocks or other anomalies.

Fig. 2. A simple process model

In this paper we use a basic block-oriented meta-model that consists of ac-
tivity occurrence references as basic terms and n-ary operators for sequences,
parallels, and alternatives. The Sequence operator defines that all embedded
blocks are performed in a sequential order. Let S denote the Sequence operator

Mining Most Specific Workflow Models 29

and let a and b denote two activity occurrence references, then S(a, b) is a work-
flow model defining that activity a is performed before activity b. In contrast,
the Parallel operator defines that all embedded blocks can be executed in par-
allel, i.e. that no precedence relation exists between the embedded blocks. Let
P denote the Parallel operator, and let a and b denote two activity occurrence
references, then P(a, b) is a workflow model defining that activity a and activity
b can be performed independently, i.e. in any order or in parallel. The Alterna-
tive operator defines a choice of exactly one block out of all its embedded blocks.
This operator is supplemented by a set of rules determining the choice. Let A
denote the Alternative operator, and let a and b denote two activity occurrence
references, then A(a, b) is a workflow model defining that either activity a or
activity b is executed. Additionally, we define a Loop operator L. The Loop op-
erator contains only one block that is executed repeatedly until its loop condition
holds.

For example, Figure 2 shows the process model A(P(S(a, b), (c, d)),S(P(c,
S(b, a)), d)) in form of a diagram. The root of this model is a alternative operator
that contains all other blocks in a hierarchical manner, such that all activity
occurrence references are embedded in a nested control flow.

For our meta-model we define an algebra that consists of a set of axioms
covering distributivity, associativity, commutativity, and idempotency. These
axioms are the basis of term rewriting systems that can be used in order to
transform workflow models. A set of basic axioms used by our workflow mining
approach is shown in Table 1. Associativity is defined for all operators (A2, A5,
A8). Distributivity is defined in form of left distributivity of the Sequence op-
erator over the Alternative operator (A4), and in form of full distributivity of
the Parallel operator over the Alternative operator (A7). Note that this algebra
does not contain an axiom for the right or full distributivity of the Sequence op-
erator over the Alternative operator because this would lead to different models
depending on the time a decision is made. Commutativity of embedded blocks
is defined for Alternative and Parallel operators (A1, A6). Idempotency is only
defined for the Alternative operator (A3).

Table 1. Basic algebra

A1: A1(x1, . . . , xn) = · · · = An!(xn, . . . , x1)
A2: A(. . . , x1, . . . , xn, . . .) = A(. . . , A(x1, . . . , xn), . . .)
A3: A(x, x, . . .) = x
A4: S(A(x1, . . . , xn), y1, . . . , ym) =
A(S1(x1, y1, . . . , ym), . . . ,Sn(xn, y1, . . . , yn))

A5: S(. . . , x1, . . . , xn, . . .) = S(. . . ,S(x1, . . . , xn), . . .)
A6: P1(x1, . . . , xn) = · · · = Pn!(xn, . . . , x1)
A7: P(A(x1, . . . , xn), y1, . . . , ym) =
A(P1(x1, y1, . . . , ym), . . . ,Pn(xn, y1, . . . , yn))

A8: P(. . . , x1, . . . , xn, . . .) = P(. . . , P (x1, . . . , xn), . . .)

30 G. Schimm

The basic meta-model can be supplemented with further operators and basic
terms. For example, one can define a Parallel operator that controls the order
of starting its embedded blocks as well as a non-exclusive Alternative operator.
Also, an basic term that represents sub-processes may be defined. In this paper
we use only the basic meta-model outlined above.

5 Mining Workflow Models

In the previous sections we have defined the input of the mining process and a
model representation. Now, we can describe how to mine most specific workflow
models from input. Our mining process consists of five steps which are performed
on a log L(p) for a process p in sequential order. Following, each step is described
in the order of application.

5.1 Labeling Multiple Activity Instances

A trace may contain events for multiple instances of the same activity occurrence.
These instances result from executing an activity occurrence repeatedly within a
process instance. Due to the fact that a workflow model only contains references
for activity occurrences, we now substitute each instance of a set of multiple
instances by a single instance of an activity occurrence. For this purpose we
define the following labeling operator.

Definition 3. Let E(c) denote a trace, E(c) ∈ L(p). The operator ζ : E → E,

ζ(e) =

{
e : |{e′ | e, e′ ∈ E(c) ∧ e′.o = e.o ∧ e′.s = e.s}| = 1
(c, k, 1, s, t) : otherwise, where k = o ◦ i represents a concatination

is called labeling operator.

The labeling operator is applied to each event in each trace of the log L(p).
It transforms events, such that each instance of a set of multiple instances of an
activity occurrence within a particular E(c) is represented by a single instance
of an activity occurrence that is artificially differentiated by the label k = o ◦ i.

5.2 Grouping Traces into Classes

In this step, we group traces of a log into trace classes. The way of grouping
depends on the meta-model. For the basic meta-model the building of trace
classes is defined as follows.

Let us consider a trace. Its sequence of events can be splitted into alter-
nating subsequences which only contain events of the same stereotype. Each
subsequence is called a cluster of the trace.

Mining Most Specific Workflow Models 31

Definition 4. Let γ(E(c)) = {E(c)+1 , E(c)−
1 , E(c)+2 , . . . , E(c)−

q } denote the
clustering of E(c), where E(c)+1 is the first set of subsequent events of stereotype
Start, E(c)−

1 is the first set of subsequent events of stereotype Complete, and so
on.

The type of an event is a tuple containing the activity occurrence and the
stereotype. For the basic meta-model we define the equivalence of traces as
follows.

Definition 5. Let κ : {(C,O,N, S, T)} → {(O,S)}, with κ(e) = (e.o, e.s), de-
note a projection on event e, where o denotes the activity occurrence of e and s
denotes its stereotype. κ(e) is called the type of e. Two events e and e′ are equiv-
alent, e ≡ e′, iff they have the same type, κ(e) = κ(e′). Two traces E(c) and
E(c′) are equivalent, E(c) ≡ E(c′), iff clusters at the same position contain the
same subset of equivalent events, ∀E(c)+/−

i ∈ γ(E(c)),∀E(c′)+/−
i ∈ γ(E(c′)) :

{κ(e) | e ∈ E(c)+/−
i } = {κ(e′) | e′ ∈ E(c′)+/−

i } ⇔ E(c) ≡ E(c′).

Note, that the order of events within a cluster is not relevant. A trace class
can now be defined as an ordered set of clusters that contains the event types of
its member traces.

Definition 6. Let ρ(p)h denote a part {E(c1), . . . E(cm)|E(c1) ≡ · · · ≡ E(cm)}
of equivalent traces of a partition of L(p) based on the equivalence relation E(c) ≡
E(c′). Dh = {U+

1 = {κ(e) | e ∈ ∪E(ci)+1 }, U−
1 = {κ(e) | e ∈ ∪E(ci)−

1 }, . . . , U−
q

= {κ(e) | e ∈ ∪E(ci)−
q } | ∀E(ci) : E(ci) ∈ ρ(p)h, 1 ≤ i ≤ |ρ(p)|} is the trace class

of ρ(p), where U+/−
l , 1 ≤ l ≤ q, denote the clusters of event types.

For a log L(p) we can now determine the partition D(L(p)) whose parts
are trace classes (Dh)1≤h≤l consisting of equivalent traces. The number of trace
classes for D(L(p)) depends on the variability of the process instances captured
in L(p). It ranges from 1 to the number of traces.

5.3 Extracting Precedence Relations

For each trace class Dh, Dh ∈ D(L(p)), we now extract a precedence relation.
It relates two event types for which we detect a dependency.

Algorithm 1. Let Rh = {(o, o′) | o ∈ O ∪ α, o′ ∈ O} denote the precedence
relation for Dh, where α is an initiating activity occurrence that marks the
start of a process. Let R(L(p)) = (Rh)1≤h≤k denote the family of all prece-
dence relations for D(L(p)). Let µ : U → {o | (o, s) ∈ U} be a projection
function that returns all activity occurrences of the event types of a cluster U .
Let ϕ : U → {Start, Complete} denote a function that returns the stereotype of
a cluster U . S is a set. Input: D(L(p)).

32 G. Schimm

For each Dh, Dh ∈ D(L(p)) {
Rh := ∅
S := α

For each U+/−
i , U

+/−
i ∈ Dh, i = 1, . . . , q {

If ϕ(U+/−
i) = Start {

Rh := Rh ∪ {(o, o′)|o ∈ S, o′ ∈ µ(U+
i)}

}
Else { S := S ∪ µ(U−

i) }
}

}
R(L(p)) = R(L(p)) ∪Rh

}
Return R(L(p))

Algorithm 1 shows that we use transitive dependencies between activity oc-
currences, e.g. ∀o, o′, o′′ ∈ ⋃

µ(Ui), Ui ∈ Dh : (o, o′) ∈ Rh ∧ (o′, o′′) ∈ Rh ⇒
(o, o′′) ∈ Rh. Also note that we extract the precedence relation for each trace
class separately.

Example 1. Let D1 = {{(a, Start), (c, Start)}, {(a,Complete)}, {(b, Start)},
{(c, Complete)}, {(d, Start)}, {(b, Complete), (d,Complete)}}, D2 = {{(a, Start),
(c, Start)}, {(c, Complete)}, {(d, Start)}, {(a,Complete)}, {(b, Start)}, {(b,
Complete), (d,Complete)}}, and D3 = {{(c, Start), (b, Start)}, {(c, Complete),
(b, Complete)}, {(a, Start)}, {(a,Complete)}, {(d, Start)}, {(d,Complete)}}
be the trace classes for a log. Figure 3 shows the precedence relations Ri that is
extracted from Di by applying Algorithm 1.

R1R1 R2 R3R3

Fig. 3. Graphs of example precedence relations

At this point the relations in R(L(p)) may contain pseudo dependencies.
Pseudo dependencies are dependencies which actually do not exist in the im-
plicit model. They occur randomly and are caused by random execution times
or delays. For example, activities which are embedded in parallel sequences are
often performed in a pseudo sequential order due to the fact that they are embed-
ded in opposite ends of their sequences. In order to detect pseudo dependencies
in relations we group together all relations which have the same set of activity

a

�

c d

ba

�

c d

ba

�

c d

ba

�

c d

b b

�

c d

ab

�

c d

a

Mining Most Specific Workflow Models 33

occurrences. The main indicator to decide whether a dependency is real or spu-
rious is that a pseudo dependency is a dependency that is not found in every
relation of such a group. We use the following algorithm for pseudo dependency
detection and elimination.

Algorithm 2. Let β : R → {o | (o, o′) ∈ R ∨ (o′, o) ∈ R} denote a function
which returns the set of activity occurrences of a relation R. Let Bj denote a
part of a partition of (R(L(p)) that is defined by the equivalence relation β(R) =
β(R′) ⇔ R ≡ R′. Let φ : R → R′ denote a function that computes the transitive
reduction of a precedence relation. U, V are sets of relations; u, v are sets. Input:
R(L(p)).

For each Bj{
U := Bj

While |U | > 0 {
v := R1, V := R1, R1 ∈ U
U := U \R1
For each Ri, Ri ∈ U {
u := R1 ∩Ri

If β(u) = β(R1) {
V := V ∪Ri

U := U \Ri

v := v ∩Ri

}
}

R(L(p)) := R(L(p)) \ V
R(L(p)) := R(L(p)) ∪ φ(v)
}

}
Return R(L(p))

Algorithm 2 returns the adjusted precedence relations R′(L(p)) describing
each alternative path of executing the process p as it was captured in L(p).

R2R2
R1R1

Fig. 4. Graphs of adjusted precedence relations

b

�

c d

ab

�

c d

aa

�

c d

ba

�

c d

ba

�

c d

b

34 G. Schimm

Example 2. Applying Algorithm 2 on R(L(p)) = {R1, R2, R3} from Example 1
results in R′(L(p)) = {R1, R2} which is depicted in Figure 4. Note that R1 and
R2 from R(L(p)) are merged into R1 of R′(L(p)).

5.4 Model Synthesis

In this step we generate an initial model for p from R′(L(p)). First, we generate
a sub-model for each path represented by a precedence relation Rh ∈ R(L(p)).
Then, a model for the overall workflow is assembled from all sub-models. We use
algorithm 3 that handles both task.

Algorithm 3. Let f(Rh) = {αo1, o1o2, . . . , ok−1ok}, ok ∈ {o | (o, o′) /∈ Rh ∧
(o′, o) ∈ Rh}, denote a path in Rh starting at α and ending at an activity occur-
rence ok that do not have any successor. Let F (R) = {f(Rh)} denote the set of
paths for R(L(p)). Let η : f(Rh) → {o | ((o, o′) ∈ f(Rh) ∨ (o′, o) ∈ f(Rh)) ∧ o �=
α} denote a function that returns all activity occurrences of a path in ascending
order. Let ψ : O → A be a function that returns an unique activity occurrence
reference for an activity occurrence. sbn and bm are variables of type block.
Input: R(L(p)).

For each Rh, Rh ∈ R(L(p)){
For each fi(Rh), fi(Rh) ∈ F (R) {
sbi := S(ψ(o1), ψ(o2), . . .), oj ∈ η(fi(Rh)), 1 ≤ j ≤ |η(fi(Rh))|

}
bh := P(sb1, . . . , sbn)

}
Return A(b1, . . . , bm)

We apply algorithm 3 on R(L(p)). It results an initial model M(L(p)) in the
form A(P(S(. . .), . . .), . . .).

Example 3. Applying Algorithm 3 on R′(L(p)) from Example 2 results in the
model A(P(S(a, b), (c, d)),S(P(c,S(b, a)), d)) depicted in Figure 2.

5.5 Model Transformation

In this step we transform the initial model into a consolidated and anticipative
form. For this purpose we use three different kinds of transformations. First, we
detect loops and complete the model with appropriate loop operators. Second,
we merge parallel paths in the model by applying a term rewriting system. Third,
we change the decision structure of the model in order to make it an anticipatory
model.

In section 5.1 we used a labeling operator to artificially differentiate multiple
instances of an activity occurrence within a case. Actually, we want to have loop
operators containing activity occurrences for those occurrences. At this point we
construct loop operators for the labeled occurrences.

Mining Most Specific Workflow Models 35

Algorithm 4. Let Π(S) denote a minimal partition of the activity occurrence
references in a sequence S(a, a′, . . .), so that for each part π the following holds:
∀a, a′, ψ−1(a) = o ◦ i, ψ−1(a′) = o ◦ j : a ∈ π ⇒ a′ ∈ π ∧ ∀a, a′, a′′, a′′′ ∈
π, ψ−1(a) = o ◦ i, ψ−1(a′) = o ◦ j, ψ−1(a′′) = o ◦ (i+ 1), ψ−1(a′′′) = o ◦ (j + 1) :
a < a′ < a′′ < a′′′. Let θ : π → (o, o′, . . .) denote a function that returns the
sequence of all activity occurrences in the order in which their first occurrence is
found in π, and let Ψ : (o, o′, . . .) → (ψ(o), ψ(o′), . . .) be a function that returns a
sequence of activity occurrence references for a sequence of activity occurrences.
Let ξ : A → {0, 1} denote a function that returns 1 iff a is a reference for a
labeled activity occurrence, and 0 otherwise. Input: M(pj).

∀Si ∈ M {
a� := first labeled a in Si

a� := last labeled a in Si

Split S into Sp, Sb, Sp where
Sp := S(a, . . . , a′), a′ < a�
Sb := S(a′′, . . .),∀a : a� < a < a� ∧ ξ(a) = 0
Sl := S(a�, a′′′, . . . , a�),∀a : ξ(a) = 1
Ss := S(a′′′′, . . .), a′′′′ > a�

Determine Π(Sl)
For each πk, πk ∈ Π(Sl){
bk = L(Sk(Ψ(θ(πk))))

}
S := S(Sp,P(Sb, b1, . . . , bl), Ss)

}
After constructing loops we merge sequences and loops, respectively, em-

bedded in parallel operators by applying a term rewriting system (TRS1) that
consists of the following rewritings:

Note, that b denotes a block, i.e. an operator or a term. Because TRS1 is
not confluent we have to specify the order of application. We always apply the
first rewriting before the second one if both rewritings are applicable.

Example 4. Let b1, b′1, . . . , bn, b′n denote references for activity occurrences b1, . . . ,
bn. Given the model: P(S(b1, b2, b3, b4),S(b′1, b

′
2, b5, b6),S(b7, b′5, b

′
6)) Applying

TRS1 produces: P(S(b1, b2,P(S(b3, b4),S(b5, b6))),S(b7, b′5, b
′
6))

Up to now we have mined models from a retrospective perspective. Actually,
we want workflow models in order to prescribe the order of executing activities.
Therefore, we make a shift from the retrospective perspective to an anticipatory
perspective at this point. We do so by splitting the overall Alternative operator
of M(L(p)) into partial Alternative operators, and moving any of these operators

36 G. Schimm

to its very latest possible position in its model. For this purpose only, we use the
left distributivity of the Alternative operator over the Sequence operator.

We use the following term rewriting system TRS2 based on the left and
right distributivity of the Alternative operator over the Sequence operator and
the Parallel operator.

Because TRS2 is not confluent we have to specify the order of application of its
rewritings. Again, we apply the left distribution before right distribution. We
use this order because the left distribution has the desired affect of changing
points in time decisions have to be made.

Example 5. Let b1, b′1, . . . , bn, b′n denote references for activity occurrences b1, . . . ,
bn. Given the model: A(S(b1, b2, b3, b4, b5),S(b′1, b

′
2, b6, b6),P(b8, b9, b10),P(b′9,

b′10, b11)) Applying TRS2 produces: A(S(b1, b2,A(S(b3, b4, b5),S(b6, b7))),P(b9,
b10,A(b8, b11)))

At this point we have mined a workflow model from a workflow log.

5.6 Complete and Minimal Models

We expect our mining procedure to extract models wich are complete and min-
imal. Let us summarize how this is achieved regarding the entire process.

Before we start we eliminate inconsistent traces, i.e. the handling of noise is
considered to be completed before we run the mining procedure. Based on this,
each trace goes into a trace class. In doing so, we ensure that every behavior pre-
sented in the log is taken into account and the resulting model is complete. From
each trace class exactly one precedence relation is separately extracted. Then,
only such precedence relations are merged which differ in eliminated pseudo de-
pendencies. After that, a separate sub-model is extracted from each precedence
relation. The term rewriting operating on this model only permits the merging
of blocks which are embedded in equal contexts.

We stress on separate handling because it is key in order to mine min-
imal models. For example, let us consider two simple precedence relations
R1 = {(α, a), (a, c), (c, e)} and R2 = {(α, b), (b, c), (c, e)} as extract from a log.
In case that we process R1 ∪R2 instead of processing both relations separately,
this results in a model that introduces the possibility of executing e after a and
c were executed. But this execution sequence is never found in the log. With our
approach the model A(S(a, c, e),S(b, c, d)) is constructed. Note that there is no
term rewriting or any other transformation that adulterates the sequences.

Mining Most Specific Workflow Models 37

In case that there are non-desired paths in a model these can be eliminated
in the subsequent evaluation stage of the KDD process. For example, such paths
may base on very few traces and therefore considered to be irrelevant exceptions.
Also, such paths can represent valuable process knowledge. However, the decision
about that is not subject to a mining procedure. It is subject to a subsequent
model evaluation performed by a user.

6 Engineering the Output

The process mining output comes in form of workflow models based on the meta-
model described above. At this point we want to transform these models into
models applicable in different workflow systems. A common format for exchang-
ing models between different workflow systems is the WfMC Interface 1: Process
Definition Interchange[2]. This interface includes a common meta-model for de-
scribing process definitions and a textual grammar for the interchange of process
definitions, called Workflow Process Definition Language (WPDL). Also, there
is a XML version of this language, called XPDL. In order to deploy our models
to different workflow systems we can transform them into WPDL-models.

There is a structural difference between our models and WPDL-models in the
sense that is WPDL does not support activity occurrence references. Therefore, it
is necessary to first insert an additional synchronization of multiple references of
the same activity occurrence which are embedded in multiple parallel operators.
For this purpose, we expand each reference of an activity occurrence for which
there are more than one references embedded in a parallel operator, such that
each of these parallel operators contains all such references together. After then,
we apply the term rewriting system TRS1 to the expanded model.

Example 6. Let b1, b′1, . . . , bn, b′n denote references for activity occurrences b1, . . . ,
bn. Given the model: P(S(b1, b2,P(b3, b4)),S(b5, b′4),S(b6,P(b′4, b7))) Its ex-
panded form is: P(S(b1, b2,P(b3, b4, b7)),S(b5,P(b′3, b

′
4, b7),S(b6,P(b′3, b

′
4, b

′
7)))

Applying TRS1 results in: S(P(S(b1, b2), b5, b6),P(b3, b4, b7)) Note, that there
is now an additional synchronization of b4 with b3 and b7.

After this we can transform a model into WPDL. Algorithm 5 performs a
simple transformation.

Algorithm 5. Let b denote a block of a workflow model. Let φ : B → T , where
T = {S,P,A,L,O}, denote a function that returns the type of a Block b. Let
createActivity(T) be a subroutine that creates and writes a WPDL Route Activ-
ity, let createLoopActivity(T) be a subroutine that creates and writes a WPDL
Loop Activity, and let writeActivity(B) denote a subroutine that writes a WPDL
Activity for an activity instance b, where φ(b) = O. Let P, P ′, D denote sets of
WPDL Activities. Let writeTransitions(P, P’) denote a subroutine that writes
WPDL Transitions from all p ∈ P to all p′ ∈ P ′, and let callSelf(B, D) be a
recursive execution of the algorithm. Input: b := M , P := ∅.

38 G. Schimm

If φ(b) = S {
For each b′ embedded in b ordered by S {
P := callSelf(b′, P)
}

Return P
}
If φ(b) = P ∨ φ(b) = A {
D := createActivity(φ(b))
writeTransitions(P,D)
For each b′ embedded in b {
P ′ := P ′ ∪ callSelf(b′, D)

}
D := createActivity(φ(b))
writeTransitions(P ′, D)
Return D

}
If φ(b) = L {
D := createLoopActivity(L)
writeTransitions(P,D)
b′ := the block embedded inside the loop
P := callSelf(b′, D)
writeTransitions(P,D)
Return D

}
If φ(b) = O {
writeActivity(ϕ(b))
writeTransitions(P,ϕ(b))
Return ϕ(b)

}

Besides a transformation of models into WPDL/XPDL, one can provide fur-
ther algorithms for transforming models into proprietary workflow description
languages for particular workflow systems, for example, IBMs Flow Description
Language (FDL) used by IBM MQSeries Workflow.

7 Experimental Evaluation

Our approach is implemented by a tool named Process Miner. It is able to
read traces of a particular process stored in files of a common XML format or
databases and to extract a workflow model based on these traces. The mined
workflow models are represented in a graphical editor. With this editor an user
can edit the model and export it to a workflow management system. Also, mod-
els can be simulated by the tool in order to analyze their performance before
deploying them in a workflow management application.

Mining Most Specific Workflow Models 39

Using a meta-model that consist of Sequence, Parallel, Loop and Alternative
operators as well as activity occurrence references we have tested the approach
on data from different sources. At the one side we used synthetic data. At the
other side we used event based data produced by IBM MQSeries Workflow.
While executing workflow instances this workflow system logs the events con-
cerning the start and the completion of an activity instance within a particular
process instance. The mined models covered the ones which underlies the process
instances producing the input data.

8 Related Work

Our approach is close related to the work in [3,4,5,6,7,8].
Mining workflow models was first considered by Agrawal et al. [3,4]. Their

approach defines a workflow model as a graph supplemented by conditions for
transitions between graph nodes. They divide the mining of workflow models
into two problems. The first one is called graph mining. The approach presents
a solution for this problem in form of an algorithm for extracting a graph from
event-based data. The algorithm is based on the key concepts of defining transi-
tive relations between activities and building a graph from it that is transformed
into its transitive reduction. In contrast to our approach, they consider an ac-
tivity to be atomic and mix different different paths of execution. The second
problem is about supplementing the graph with conditions in order to distin-
guish alternative and parallel splits within a workflow model. This problem is
called condition mining. It is not treated by the approach.

Herbst and Karagiannis deal in their approach with mining workflow models
with non-unique tasks names [5,6]. The approach consists of two steps. In the
first step, a stochastic task graph is induced from a workflow log. This is done by
using a search procedure which embeds a graph generation algorithm in order
to find a mapping from activity instances to activity nodes in the graph. The
second step transforms the graph into an ADONIS workflow model. This step
is more extensive than the transformation in our approach because stochastic
task graphs do not explicitly outline a synchronization structure, so that this
structure has to be extracted in the second step.

In [7,8] van der Aalst and Weijters present an approach on mining workflow
nets which is based on counting frequencies of dependencies between activities.
The nodes of a workflow net represent activities found in the workflow log.
Dependencies between the activities are represented by arcs between the appro-
priate nodes. In order to decide whether a dependency is represented by the
workflow net they use heuristic rules in combination with threshold values. In
addition, their approach deals with noisy logs.

There are many similarities between the approaches above and our approach.
We consider our approach to be different by the following facts. First, it aims
to extract the most specific model for a given workflow log. Second, it explicitly
considers time consuming activities instead of atomic activities. Third, it is based
on a block-structured meta-model that can be supplemented with application
specific basic terms and operators.

40 G. Schimm

9 Summary

In this paper we have presented an approach on mining most specific workflow
models from event-based data. We considered process mining a special data
mining that requires the development of an appropriate process meta-model
and the development of algorithms extracting models based on this meta-model
from event based data. According to this we have outlined a block-structured
process meta-model consisting of a set of basic operators and supplemented by
an basic algebra. Based on this meta-model we described our mining process in
detail. In order to deploy mined models we have outlined a simple transformation
of workflow models into a common exchange format. Also, we have outlined an
overview over the experimental evaluation of our approach and related work.

References

1. Fayyad, U., Piatesky-Shapiro, G., Smyth, P.: From data mining to knowledge dis-
covery in databases. AI Magazine (1996) 37–54

2. WorkflowManagementCoalition: Interface 1: Process definition interchange pro-
cess model. http://www.wfmc.org/standards/docs/TC-1016-P-v11-IF1-Process-
definition-Interchange.pdf (1999) Document Number WfMC TC-1016-P.

3. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proceedings of the 6. International Conference on Extending Database
Technology (EDBT). (1998) 469–483

4. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. IBM Research Report RJ 10100, IBM Almaden Research Center / IBM Ger-
man Software Development Lab (1998) www.almaden.ibm.com/cs/quest.

5. Herbst, J., Karagiannis, D.: Integrating machine learning and workflow management
to support acquisition and adaption of workflow models. In: Proceedings of the
Ninth International Workshop on Database and Expert Systems Applications, IEEE
(1998) 745–752 IEEE.

6. Herbst, J.: Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. Dissertation, Universität Ulm (2001)

7. van der Aalst, W.: Process design by discovery: Harvesting workflow knowledge
from ad-hoc executions. (In Jarke, M., O’Leary, D., Studer, R., eds.: Knowledge
Management: An Interdisciplinary Approach, Dagstuhl Seminar Report Nr. 281)
http://aifbhermes.aifb.uni-karlsruhe.de/dagstuhl-km-2000.

8. van der Aalst, W., Weijters, A.: Workflow mining - discovering workflow models
from event-based data. In: Proceedings ECAI Workshop ”Knowledge Discovery
from Temporal and Spatial Data”, ECAI 2002, Lyon (22.06.2002) 78–84
http://tasda.elibel.tm.fr/ecai02/w12.pdf.

Evaluation of Correctness Criteria for Dynamic
Workflow Changes�

Stefanie Rinderle, Manfred Reichert, and Peter Dadam

University of Ulm, Faculty of Computer Science,
Dept. Databases and Information Systems

{rinderle, reichert, dadam}@informatik.uni-ulm.de

Abstract. The capability to dynamically adapt in-progress workflows
(WF) is an essential requirement for any workflow management system
(WfMS). This fact has been recognized by the WF community for a long
time and different approaches in the area of adaptive workflows have
been developed so far. They either enable WF type changes and their
propagation to in-progress WF instances or (ad-hoc) changes of single
WF instances. Thus, at first glance, many of the major problems related
to dynamic WF changes seem to be solved. However, this picture changes
when digging deeper into the approaches and considering implementation
and usability issues as well. This paper presents important criteria for
the correct adaptation of running workflows and analyzes how actual
approaches satisfy them. At this, we demonstrate the strengths of the
different approaches and provide additional solutions to overcome current
limitations. These solutions comprise comprehensive correctness criteria
as well as migration rules for change realization.

1 Introduction

A rapidly changing environment and a turbulent market force any company to
change their business processes ever more frequently [1]. Process changes become
necessary, for example, when new laws come into effect, optimized or restructured
business processes are to be implemented, exceptional situations occur, or rapid
reactions to a changed market are required. Therefore, a critical challenge for
the competitiveness of any enterprise is its ability to quickly react to business
process changes [2,3,4].

As pointed out in [2], basically, changes can take place at two levels – the
WF type and the WF instance level. Very often changes at the WF instance
level are applied in an ad-hoc manner, leading to WF instances with biased ex-
ecution schema when compared to their original WF schema – in the following,
we denote these WF instances as biased. Ad-hoc changes become necessary in
conjunction with real-world exceptions, e.g., a sudden circulatory collapse of a
� This work was done within the research project “Change management in adaptive
workflow systems”, which has been founded by the German Research Community
(DFG).

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 41–57, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

42 S. Rinderle, M. Reichert, and P. Dadam

patient, and they usually affect only single WF instances. As opposed to this, in
conjunction with schema changes at the WF type level, a collection of related
instances may have to be adapted. The challenging question is how to propagate
WF type changes to running WF instances, but without violating correctness
and consistency properties set out by the used WF meta model. In other words,
how can we smoothly migrate WF instances to a changed WF schema? Addi-
tionally, in case of concurrent changes (e.g., concurrent changes at the type and
instance level), the exciting question arises how to synchronize them (e.g., how
to propagate WF type changes to biased WF instances).

There is a multitude of approaches dealing with flexibility in WfMS [1,2,4,5,
6,7,8]. All of them present very interesting, but partially strongly differing ideas
and solutions. Therefore, it is an important job to summarize central criteria for
adaptive workflows and to compare actual approaches by using these criteria.
Furthermore, we sketch suitable solutions for ”still dangling” issues, e.g., related
to the problem of checking compliance of WF instances with a modified schema.

At first, we summarize important criteria for different change scenarios, which
are necessary to achieve a correct and consistent ”post-change”-behavior.

1. Completeness: The WF designer must not be restricted, neither by the
used WF meta model nor the offered change operations. Therefore, a WF
meta model ought to provide a complete set of control and data flow con-
structs, e.g., allow the designer to model sequences, parallel/alternative
branchings, and loops [3]. For practical purposes, at minimum, change opera-
tions for inserting and deleting activities as well as control/data dependencies
between them are required. Furthermore, it must be able to combine change
primitives to define complex changes, e.g., to modify the order of activities.

2. Correctness: The ultimate ambition of all adaptive WF meta models must
be correctness of dynamic changes [1,2,4,5,6,7,8]; i.e., introducing changes to
the runtime system without causing inconsistencies or errors (like deadlocks
or improperly invoked activity programs). Therefore, adequate correctness
criteria are needed. These criteria must not be too restrictive, i.e., no WF
instance should be needlessly excluded from applying a dynamic change.
Furthermore, it must be clear how the imposed correctness criteria can be
easily and quickly checked by the WfMS. This is especially important for
large-scale environments with hundreds up to thousands of WF instances.

3. Change Realization: Assuming that a dynamic change can be correctly
propagated to a WF instance I (along the stated correctness criteria), it
should be possible to automatically migrate I to the new schema. In this
context, the WF instance state as well as dependent data structures (e.g.,
user worklists) must be correctly and efficiently adapted.

In the following, we provide a classification of actual approaches which is
based on the semantics of the underlying WF meta models and on the above cri-
teria. We point out where the strengths and weaknesses of these approaches lie.
To overcome current limitations we discuss solutions which can be easily trans-
ferred to other WF models (e.g., a comprehensive correctness criterion, efficient
compliance checks, and formal propositions regarding concurrent changes).

Evaluation of Correctness Criteria for Dynamic Workflow Changes 43

In Section 2 we give an overview of current approaches dealing with flexibility
in WfMS and classify them with respect to their semantics. Section 3 summarizes
and classifies correctness criteria for adaptive workflows. In Section 4 we show
how the different approaches realize dynamic WF changes. Section 5 presents a
critical discussion and Section 6 closes with a short summary.

2 Approaches Dealing with Flexibility

Figure 1 summarizes adaptive WF meta models which enable a flexible pro-
cess support. According to [9], we classify those WF meta models according
to the evaluation strategies applied for executing WF instances during runtime.
The first strategy uses only one type of (control flow) token passing through each
WF instance (True-Tokens). The other strategy is based on two types of tokens –
True- and False-Tokens. True-Tokens represent activities that are to be executed
next and False-Tokens describe activities which have been skipped. Approaches
which solely use True-Tokens (cf. Fig. 2) have a True-Semantics and include, for
example, Petri-Net-based formalisms [2,5,10,1]. Approaches which, in addition,
use False-Tokens to represent skipped activities or skipped execution branches
can be found in the area of graph-based WF meta models [8,7]. They can be
further divided according to the way they represent the True- and False-Tokens.
One possibility is to gain these tokens (and therefore the state of running in-
stances) from execution histories [4], which log events like start and completion
of activity executions (cf. Fig. 3). Alternatively, special (model-inherent) mark-
ings of activities and/or control edges, which represent a consolidated view on
the history logs, can be used [6,7,8] (cf. Fig. 4).

2.1 Approaches with True-Semantics

In [2], a WF schema is represented by a WF Net which is a labeled
place/transition net N = (P, T, F, l) (cf. Fig. 2). Thereby, P denotes the set
of places, T the set of transitions, F ⊆ (T × P) ∪ (P × T) the set of directed
arcs, and l the labeling function, which assigns a label to each transition. The
dynamic behavior of a WF instance is described by a marked WF net (N, s)
with marking (function) s and associated marking rules. The authors abstract
from data flow issues, WF attributes and WF resources and consider only one
WF instance at a time.

The approach presented in [5,14,10] is based on Flow Nets, which are closely
related to WF nets. In Chautauqua [14], Flow Nets are generalized to Informa-
tion Control Networks (ICN). They allow the enactment of a new WF instance
by creating an instance specific token, which represents a data form of the en-
acted ICN. In doing so, data flow is carried out by passing the token through
the ICN. WF instances (with same WF type) are distinguished by the use of
coloured tokens and are controlled by the same ICN. A meta language to support
dynamic evolution of processes is presented in [10]. In the following, however,

44 S. Rinderle, M. Reichert, and P. Dadam

Adaptive WF meta models✘✘✘✾ �
Models with
True-Semantics (→ Sect. 2.1)

� WF Nets [2]
� Flow Nets [5,10]
� MWMS/WF Net Models [1]

Models with True/False-Semantics (→ Sect. 2.2)
✘✘✘✾ �

Case1: Using History Logs
� WIDE [4]

Case2: Model-Inherent Markings
� WASA2 [7]
� ADEPT/WSM-Nets [8]
� BREEZE [6]

Further: � ROK [3], � MOKASSIN [11], � UltraFlow [12], � TRAM [13]

Fig. 1. Selected Approaches Dealing With Flexibility Issues

we focus on the formalisms of Flow Nets as described above. An example for the
above approaches is depicted in Fig. 2a.

Another interesting approach is presented by MWMS [1]. The authors use
Net Models (NM), which are marked, acyclic Free-Choice Petri Nets. Data flow
issues are not taken into account. A NM Σ can be mapped to a Sequential Model
(SM) A which represents the global states and state transitions of Σ. Thus, A
is comparable to the reachability graph of Petri Net Σ.

2.2 Approaches with True/False-Semantics

Case 1: Approaches based on History Logs
The most famous example and also one of the first approaches dealing with dy-
namic WF changes was offered byWIDE [4], which uses a graph-based WF meta
model. The modeling of sequential, parallel, alternative, and iterative activity
executions is possible. Furthermore, there is a set of global process variables
associated with each WF schema S. A WF instance I on WF schema S can be
described by S and by its execution history H = (〈εSI,0, µ

S
I,0〉, . . . , 〈εSI,i, µ

S
I,i〉),

where εSI,k denotes the kth completion of a task execution in I and µS
I,i denotes

related write operations on WF variables performed by εSI,k.
In WIDE, WF schemata can be described either graphically or by using

predecessor and successor functions. Fig. 3 shows the latter variant.
Case 2: Approaches Using Model Inherent Markings
WASA2 [7] introduces an object-oriented WF meta model. It comprises one
generic class Workflow of which WF schema and WF instance are instances.
Workflows are modeled by using a graph-based WF language comparable to
activity nets applied in IBM MQ Series Workflow. In more detail, aWF schema
S = (VS , CS , DS) is a tuple with sets of activity nodes VS , control connectors CS ,
and data connectors DS . Similarly, a WF instance I can be described. The flow
of data is modeled by data connectors which map output and input parameters
of subsequent activities. A WF schema S is correct iff all input parameters are
correctly supplied by a type-conform output parameter and the graph structure

Evaluation of Correctness Criteria for Dynamic Workflow Changes 45

admit prepare

take blood lab test A lab test B validate

X-ray report

calc. dose &
give drug

examine aftercare

a)

admit prepare

take blood

lab test A

lab test B

validate

X-ray report

calc. dose &
give drug

examine aftercare

b)

ultrasonic

old change region

lab test A lab test B SCOC for parallelization of labTestA
and labTestB (upsizing)

(with flow jumpers j1, j2, j3 and silent
transition λ)

Projection-inheritance-preserving
transformation rule

inform

inform

O

j1 j2 j3

new change
region

flow jumpers

insertion of activity ultrasonic

N1 change1

N2

change2

Fig. 2. A Petri-Net-Based Workflow With Changes ([2,5,10])

is acyclic (i.e., no deadlocks will occur). The state of a WF instance is denoted
by the marking of the instance nodes (model-inherent).

Another approach with model-inherent markings is based onWell-Structured
Marking-Nets (WSM-Nets) as applied in our ADEPT WfMS [8], for example.
WSM-Nets are serial-parallel graphs with distinguishable node and edge types,
where loops and branchings are modeled in a block-oriented fashion (block struc-
ture). This structure is relaxed by offering sync edges, which allow to define
precedence relations between activities of parallel branches. We first provide two
self-explanatory definitions for WSM-Nets (cf. Def. 1) and for WF instances (cf.
Def. 2) based on them.

Definition 1 (Well-Structured Marking-Net, WSM-Nets). A tuple
S = (N, D, NT, CtrlE, SyncE, LoopE, DataE, EC) is called a Well-Structured
Marking-Net if the following holds:

– N is a set of activities and D a set of process data elements
– NT: N �→ {StartFlow, EndFlow, Activity, AndSplit, AndJoin,

XOrSplit, XOrJoin, StartLoop, EndLoop}
– CtrlE ⊂ N × N is a precedence relation
– SyncE ⊂ N × N is a precedence relation between activities of parallel executed
branches

– LoopE ⊂ N × N is a set of loop backward edges
– DataE ⊆ N × D × {read, write} is a set of read/write data links between
activities and data elements

– EC: CtrlE ∪ SyncE ∪ LoopE �→Predicates(D) where Predicates(D) de-
notes the set of all valid transition conditions on data elements from D.

46 S. Rinderle, M. Reichert, and P. Dadam

Fig. 3. WF Instance Including History Logs in WIDE

A WSM-Net is correct iff
• Sfwd = (N, CtrlE, SyncE) is an acyclic graph, i.e., the use of sync edges must
not cause undesired cycles leading to deadlocks (for details see [8]),
• for each split (loop start) node there is a unique join (loop end) node, and
• S is structured following a block concept, for which control blocks (sequences,
branchings, loops) can be nested but must not overlap.

Definition 2 (WF Instance Based On WSM-Nets). A WF instance I is
defined by a tuple (S, MS , V alS, H) where
– S = (N, D, NT, CtrlE, SyncE, ...) denotes the WSM-Net the execution of I
is based on.

– MS = (NSS, ESS) describes node and edge markings of I:
NSS: N �→ {NotActivated, Activated, Running, Completed, Skipped}
ESS: (CtrlE ∪ SyncE ∪ LoopE) �→ {TrueSignaled, FalseSignaled}

– ValS is a function on D. It reflects for each data element d ∈ D either its
current value or the value UNDEFINED (if d has not been written yet).

– H = < e0, . . . , ek > is the execution history of I. e0, . . . , ek denote the start
and end events of activity executions. For each started activity X the values
of data elements read by X and for each completed activity Y the values of
data elements written by Y are logged.

Activities marked as Activated are ready to fire and can then be worked on,
i.e., their status changes to Running. Activities with marking Skipped cannot
longer be selected for execution. An example of a WF instance based on a WSM-
Net is shown in Fig. 4. Another approach using WF graphs similar to WSM-Nets
but without loops is offered by BREEZE [6].

3 Correctness Criteria for Dynamic WF Changes

We first focus on WF schema changes at the type level and their propagation
to running WF instances. Regarding correctness, however, it is not important

Evaluation of Correctness Criteria for Dynamic Workflow Changes 47

admit

prepare

takeblood

StartLoop Activity AndSplit
labTestA labTestB validate

xRay report

calc. dose&
give drug

examine

EndLoop

aftercare

AndJoin

bloodVal XRay patientData

LoopE

CtrlEdge

DataE:
d=(examine, patientData, write)

DataElement

 NS = Activated NS = Running ES = TrueSignaled

 NS = Completed ES = FalseSignaled

a) WF Instance On WSMN

b) Changes
'= (insertActivity(ultraSonic, xRay, report), insertDataElement(ultrasonic),
 insertDataEdge(ultrasonic, ultrasonic, write),

insertDataEdge(ultrasonic, report, read))

c) Reduced Execution History
Start(admit), End(admit), Start(StartLoop, it=2), End(StartLoop), Start(prepare), End(prepare), Start(takeblood), End(takeblood),
Start(labTestA), Start(xRay), End(labTestA^bloodVal.resultA=4.3), Start(labTestB), End(xRay^xRay=xRay256(2).jpg

2nd iteration:

Fig. 4. A (Clinical) WF Instance Based On WSM-Nets

whether a WF type (and therefore a collection of running instances) or a single
WF instance is affected by a change. At the end of this section we provide a
correctness criterion to handle concurrent changes at the type and the instance
level (i.e., to correctly propagate WF type changes to biased WF instances).

In the following, we assume that a WF schema S is always correctly trans-
formed into another schema S’ by applying change ∆. What this exactly means
depends on the structural and dynamic correctness properties set out by the used
WF meta model. We focus on the discussion how the approaches from Section
2 decide whether an instance I can be correctly migrated to a changed schema
S’ or not. It is remarkable that all discussed solutions are based on formal cor-
rectness criteria. While some of these approaches precisely state how to ensure
correctness in conjunction with dynamic WF changes, others do not address this
point in detail.

We further distinguish between approaches founding their correctness cri-
teria on graph equivalence – WF Nets [2], MWMS [1], and WASA2 [7] – and
approaches with correctness criteria based on execution equivalence – Flow Nets
[5,10], WIDE Nets [4],

and ADEPT WSM-Nets [8]. The core idea of graph equivalence is to map
the WF instance graph of I to the changed WF schema S’. Depending on the
”degree of coverage” it can be decided whether ∆ is applicable to I as well.
Execution equivalence focuses on the work done by I so far. If this work could
have been achieved on S’ as well, I can be smoothly migrated to S’. Note that
both approaches are closely related to each other.

3.1 Approaches Based on Graph Equivalence

WF Nets: A first representative based on graph equivalence (see above) is de-
scribed in [2]. The authors use branching bisimilarity as an equivalence relation
on marked, labeled P/T-Nets (cf. Section 2). It specifies under which conditions
two different marked, labeled P/T-Nets S and S’ have the same (observable)
behavior (notation: S ∼b S

′ ⇐⇒ ∃ branching bisimulation R such that SRS′).

48 S. Rinderle, M. Reichert, and P. Dadam

Informally, a marked, labeled P/T-Net must be able to simulate each action of
an equivalent marked net.

Correctness-Criterion 1 (Branching Bisimilarity) Let S be a marked, la-
beled WF Net and ∆ be a change which transforms S into another marked, labeled
WF Net S’. Then: ∆ can be carried out correctly iff S ∼b S

′.

Generally, it is difficult to ensure Criterion 1 for arbitrary changes. Therefore
the authors restrict the set of possible change operations to those which preserve
special inheritance relations between the old and the new net (e.g., insertion of
activity ultrasonic in Fig. 2b). If these inheritance relations hold after applying
a change, branching bisimilarity between both nets can be ensured. Inheritance-
ensuring change operations are:
• adding sequences as well as parallel, alternative and iterative branches

(direction of inheritance from class to subclass) and
• removing sequences as well as parallel, alternative and iterative branches

(direction of inheritance from class to superclass).
Unfortunately, branching bisimilarity cannot be automatically ensured for

other change operations [2]. The reason for this is a phenomenon called dynamic
change bug. Examples for non-supported operations are order-changing opera-
tions like parallelizing transitions labTestA and labTestB in Fig. 2a. Excluding
those change operations, however, leads to serious problems since related forward
and backward jumps have to be frequently applied in practice.

In MWMS [1] a set of change operations (parallelization, sequentialization
and swapping of activities) is proposed obeying special constraints (summarized
by theMinimal Critical Specification (MCS) for the underlying SM). Intuitively,
only such change operations can be carried out which maintain the given set of
activities and which only change their order relations. For these changes the
following correctness criterion is provided:

Correctness-Criterion 2 (Safe States) Let A = (S,E, T, sin) be a SM and
∆ be a change operation (within the respective MCS). ∆ transforms A into
another SM A′ = (S′, E′, T ′, s′in). Then an instance I on A can be migrated
to A′ iff I is not in an unsafe state. A state of A is unsafe iff there is no
corresponding state in S’

Another approach using graph equivalence is offered by WASA2 [7]. The
author does not explicitly state which changes can be applied. Exemplarily,
operations like adding and deleting activities or changing activity orders are
provided. The decision whether a change ∆ can be applied to an in-progress WF
instance or not is based on a valid mapping of the purged WF instance graph
to the WF schema graph. Thereby, the purged WF instance graph is gained
by deleting all activities which have not been started yet, and by removing all
associated control and data connectors (cf. Fig. 5b). A mapping m : VI �→VS

between a WF instance I = (VI , CI , DI) and a WF schema S′ = (VS′ , CS′ , DS′)
is defined as follows:

Evaluation of Correctness Criteria for Dynamic Workflow Changes 49

A1S A2S A3S A4S

c1S c2S c3S

d1S d2S

A1S

A2S

A3S A4S

c1S’

c2S’ c3S’

c4S d1S’
d2S’

a) WF schema S: WF schema S’:

parallelization of
activities A2S and A3S

A1I A2I

c1I

d1I

b) purged WF instance
graph I (on S):

c) valid mapping m*: I � S’ with

m*(A1I) = A1S’, m*(A2I) = A2S’
m*(c1I) = c1S’, m*(d1I) = d1S’

Fig. 5. Valid mapping in WASA2

∀j′ ∈ VI : ∃j ∈ VS with [m(j’) = j ⇒ SchemaOf(j’) = j (i.e., j’ is based on j)]
∧ [m(j’) = m(k’) ⇒ j′ = k′∀j′, k′ ∈ VI]

With this, the following correctness criterion based on valid mappings be-
tween WF instance graph and WF schema graph can be stated:

Correctness-Criterion 3 (Valid Mapping) Let I = (VI , CI , DI) be a purged
WF instance graph derived from WF schema S. Then: Change ∆ can be correctly
applied to I as well iff ∃ a valid mapping m*: VI �→V ′

S. A mapping m* is valid
if all control connectors between two instance objects i, j ∈ VI have counterparts
i’, j’ ∈ VS′ with SchemaOf(i) = i’ and SchemaOf(j) = j’ and ∀d ∈ DI∃ d’ ∈ DS′

(and vice versa).

Intuitively, an instance I can be migrated to a changed WF schema S’ if
each completed activity of I is also contained in S’ and all control and data
dependencies existing in I have counterparts in S’ (cf. Fig. 5c).

To our knowledge no statements have been published so far, how Criterion 3
can be (efficiently) checked. However, an implementation of WASA2 exists [7].

3.2 Approaches Based on Execution Equivalence

Flow Nets: A first approach based on execution equivalence has been presented
in [5,10] (details of the used Flow Nets have been given in Section 2.1). In [5],
changes of a Flow Net S (with True-Semantics) are carried out by substituting
the marked sub-net N1 of S, which is affected by ∆, by another marked sub-net
N2, which reflects the modifications set out by ∆. Thereby, N1 is referred to as
the old change region and N2 as new change region. As the authors point out, the
selection of the change regions cannot be fixed. Roughly, the old change region
is defined as the smallest marked sub-net containing all activities affected by ∆.
Assume, for example, that in Fig. 2a) change operation ∆ is to parallelize the
so far sequentially ordered activities LabTestA and LabTestB. Then N1 is the
sub-net containing the affected activities LabTestA and LabTestB. To be able to
decide whether ∆ can be correctly propagated to an instance or not the authors
introduce the pre-change (firing) sequence ω to conceptualize the work done by
the WF instance so far. Thereby, ω denotes all transition firings previous to
the introduction of ∆. Based on this, the following correctness criterion can be
formulated:

50 S. Rinderle, M. Reichert, and P. Dadam

Correctness-Criterion 4 (Pre-Change sequence ω) Let ∆ be a change,
which transforms Flow Net S into Flow Net S′. Let further be I an instance
on S with pre-change sequence ω. Then I can be migrated to S’ iff ω can be
continued on S’ as well.

In order to check whether Criterion 4 is met, the authors present two kinds of
change operations and a special change class, the so called Synthetic Cut-Over
Change (SCOC). Applying SCOC, the old change region N1 is maintained in S′

together with N2 (for an example see Fig. 2b); i.e., S’ contains two versions of
the modified subnet. How this ”fusion” of old and new change region is carried
out depends on the applied change. In [5] two change scenarios – Upsizing and
Downsizing – are introduced. Upsizing means that N2 can ”do more” than N1,
i.e., the set of all valid firing sequences on N1 is a subset of all valid firing
sequences on N2. Downsizing is the dual counterpart of upsizing, i.e., N2 can
”do less” than N1. For example, Fig. 2b shows an upsizing. In this case, the
SCOC can be constructed by sticking N1 and N2 together over flow-jumpers
(cf. Fig. 2b). Flow-jumpers are transitions, which map each marking of N1 to a
marking of N2. This way of constructing the SCOC in conjunction with upsizing
operations is correct regarding Criterion 4. In the other case – downsizing – the
SCOC is constructed by merging N1 and N2 over one output place, i.e., instances
with tokens in N1 are further executed according to the old net. Trivially, this
restrictive approach is also correct regarding Criterion 4. Other important change
operations, like the insertion of new activities, are not discussed. Very interesting
is that upsizing and downsizing are excluded by [2] since these changes lead to
the dynamic change bug (cf. Section 3.1).

A widely-used correctness property is the compliance criterion introduced by
WIDE [4]. Intuitively, change ∆ of WF schema S can be correctly propagated
to a WF instance I iff the execution of I, taken place so far, can be ”simulated”
on the modified WF schema S’ as well. Note that Criterion 5 is similar to Cri-
terion 4 at first glance. But Criterion 4 is only based on a snapshot of the WF
execution whereas Criterion 5 takes the whole WF execution into account. Since
the authors work with a history-based execution model, compliance is based on
replaying the execution history H of WF instance I on the changed WF schema
S’. Formally:

Correctness-Criterion 5 (Intuitive Compliance Criterion) Let S be a
WF schema and I be a WF instance on S with execution history H. Let fur-
ther S be transformed into another schema S’ by change operation ∆. Then:
I is compliant with S’ iff H can be produced on S’ as well.

Assume that in WF schema S in Fig. 3 task aftercare is to be deleted. Re-
ferring to execution history H of WF instance I (cf. Fig. 3) the intended deletion
is possible since H contains no entry related to aftercare and can therefore be
(re-)produced on the changed WF schema as well. As opposed to this, the inser-
tion of a new task ultrasonic between tasks xRay and report is not possible
regarding Criterion 5. The reason is that activity ultrasonic has not written

Evaluation of Correctness Criteria for Dynamic Workflow Changes 51

any entries into H during the first loop iteration (note that the loop is actually
in its 2nd iteration). Inserting ultrasonic in the actual loop iteration, how-
ever, would cause no inconsistencies or errors at runtime (irrespective of (rare)
roll-back operations into former loop iterations which become more expensive).
Consequently, Criterion 5 is too restrictive, especially in conjunction with iter-
ative, long-running workflows. Since in [4] no further information about how to
check Criterion 5 is given, we assume that compliance is ensured by trying to
replay the whole execution history on the changed WF schema. Doing so causes
a big overhead due to the possibly extensive volume of the history (caused by
information like user assignments or time stamps).
WSM-Nets: In ADEPT [8], we focus on finding a correctness criterion which

works in conjunction with loops as well as other orthogonal aspects (e.g., data
flow). The key to solution with respect to loops is to be able to differentiate
between completed and future executions of loop iterations. From a formal point
of view there are two possible approaches. One approach is to logically treat
loop structures as being equivalent to respective linear sequences. The other
approach is to maintain the loop construct but to restrict the evaluation to
the relevant parts of the execution history (cf. Def. 3). We adope the second
approach since it facilitates the treatment of nested loops, provides a good basis
for implementation, and leads to ”smart” proofs.

Definition 3 (Reduced Execution History Hred). Let I be a WF instance
with execution history H. The reduced execution history Hred is obtained as
follows: In the absence of loops Hred is identical to H. Otherwise, it is derived
from H by discarding all history entries related to other loop iterations than the
last one (completed loop) or the actual iteration (running loop). (Note that Hred

can be easily produced in conjunction with nested loops as well.)

As an example take Fig. 4c, which shows the reduced execution history for
the instance from Fig. 4a. Taking Def. 3 we now present a comprehensive compli-
ance criterion for WF schema evolution. According to this property, an instance
is compliant with a changed schema iff the reduced execution history can be
produced on the modified schema as well.

Correctness-Criterion 6 (Comprehensive Compliance Criterion) Let I
be a WF instance on WF schema S with execution history H and reduced execu-
tion history Hred. Assume further that a change ∆ transforms S into the correct
WF schema S’. Then I is said to be compliant with S’ iff Hred can be produced
on S’ as well.

Again, the challenging question is how to efficiently check the comprehensive
compliance criterion. We present easily and quickly checkable marking conditions
for each kind of change on WSM-Nets [8] (additive, subtractive, order-changing,
and complex operations). Due to lack of space, we exemplarily summarize these
conditions for additive change operations in Theorem 1.

Theorem 1 (Additive Change Operations On WSM-Nets). Let S = (N,
D, ...) be a correct WSM-Net and I be a WF instance on S with execution history

52 S. Rinderle, M. Reichert, and P. Dadam

Hred. Assume further that change ∆ transforms S into correct WSM-Net S’ =
(N’, D’, ...).
(a) ∆ inserts an activity ninsert (with associated control and sync edges) into S.
Then:

I is compliant with S’ ⇔
∀ n ∈ {x ∈ N | ninsert → x ∈ E’}: NS(n) ∈ {NotActivated, Activated,

Skipped} ∨
ninsert is inserted into an already skipped branch of an XOr-branching

(b) ∆ inserts a control edge nsrc → ndest into S. Then:
I is compliant with S’ ⇔ NS(ndest) ∈ {NotActivated, Activated,

Skipped}
(c) ∆ inserts a sync edge nsrc → ndest into S (nsrc and ndest ordered parallel so
far). Then:

I is compliant with S’ ⇔
[NS(ndest) ∈ {NotActivated, Activated, Skipped}] ∨
[NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed} with

∃ei = END(nsrc), ej = START(ndest) ∈ Hred ∧ i < j))] ∨
[NS(nsrc) = Skipped ∧ NS(ndest) ∈

{Running, Completed}) with
∀ n ∈ Ncritical with NS(n) �= Skipped:

∃ei = START(ndest), ej = END(n) ∈ Hred with j < i),
where Ncritical = (c pred∗(S, nsrc) ¬ c pred∗(S, ndest))
and c pred∗(S, n)) denotes all direct/indirect predecessors of n in S con-

cerning
edges ∈ CtrlE]

For additive change operations, Theorem 1 presents precise conditions for
efficient compliance checks with an estimated complexity of O(n). These condi-
tions base on a consolidated view of the reduced execution history Hred. As an
example take the insertion of activity ultrasonic as defined by change ∆ in Fig.
4b. According to Theorem 1(a) it is only necessary to determine the marking of
the successors of ultrasonic in S’. In our example, activity report is marked
as Activated such that ∆ can be applied to the WF instance depicted in Fig.
4a. To show their efficiency we have implemented several simulations checking
our compliance conditions.

Besides, we explicitly deal with compliance issues in conjunction with data
flow changes. We shortly summarize the basic ideas: Data elements can be always
inserted, but must not be deleted if there was a read or write access on them.
Read data edges eread = (n, d, read) on data element d can only be inserted
or deleted iff activity n is marked as NotActivated, Activated or Skipped.
Write data edges ewrite = (n, d, write) on data element d can only be inserted
or deleted iff activity n has not been completed yet.

3.3 Concurrent Type and Instance Changes

Finally, we want to give an idea how the propagation of WF schema changes to
biased WF instances can be managed correctly in the context of WSM-Nets [8].

Evaluation of Correctness Criteria for Dynamic Workflow Changes 53

But it should be clear that the following conclusions are applicable to other WF
meta models as well. To meet a formal point of view, we first give a definition
of a biased WF instance (compare Def. 1 and 2).

Definition 4 (Biased WF Instance). A biased instance I is described by a
tuple (S, ∆I , MS+∆I , ValS+∆I , H), where S denotes the WSM-Net from which
I was created and ∆I comprises ad-hoc changes op1I , . . ., op

n
I that have been

applied to I so far. WSM-Net SI := S + ∆I , which results from the application
of ∆I to S, is called execution schema of I.

Comparable to the already discussed correctness criteria we introduce a gen-
eral criterion that allows us to argue about both – propagation of WF schema
changes on ”normal” (unbiased) and on biased WF instances. Obviously, when
propagating a WF schema change ∆S to a biased WF instance I we must not
only consider its current state (i.e., marking MS+∆I) but we also have to cope
with structural and semantic conflicts that may exist between the concurrent
changes ∆I and ∆S . (Note that both, ∆I and ∆S have been based on S.) Due
to lack of space we only consider structural conflicts in the following.

Correctness-Criterion 7 (Concurrent Changes) Let S be a correct WSM-
Net and I = (S, ∆I , MS+∆I , ...) be a biased WF instance that was created from
S. Let further ∆S be a change operation, which transforms S into another correct
WSM-Net S’. Then: ∆S may be propagated to biased WF instance I :⇔
1. S* = (S + ∆I) + ∆S is a correct WSM-Net, i.e., ∆S can be correctly applied
to the execution schema SI = (S + ∆I).

2. I is compliant with S*; i.e., the reduced execution history Hred can be pro-
duced on S* as well. The marking MS∗

resulting from this is considered as
a correct marking.

Again, the challenging question is how to efficiently verify the conditions set
out by Criterion 7. A naive solution would be to first generate the WSM-Net
SI + ∆S and then to check whether it satisfies the required structural and dy-
namic properties. Generally, this would be too expensive, in particular if different
WF aspects (control flow, data flow, work assignments, etc.) are concerned or
∆S is to be propagated to a large collection of instances. Instead we must define
appropriate and efficient rules for excluding potential conflicts (e.g., undesired
cycles and deadlocks) between instance and type changes for as many instances
as possible. Due to lack of space we abstain from further details.

4 Change Realization

We have now reached the stage of checking compliance of WF instances with
a changed WF schema. This analysis leads to two instance categories – com-
pliant and non-compliant WF instances [4,6]. We first discuss how the differ-
ent approaches concretely carry out the migration of compliant WF instances

54 S. Rinderle, M. Reichert, and P. Dadam

(instance adaptations). Then a short overview about approaches dealing with
non-compliant WF instances is presented.
Approaches With True-Semantics: For Petri-Net based approaches, in-
stance migration means to find a suitable marking on the changed net.
WF Nets: In [2], for each imposed change operation transfer rules are defined,

which automatically adapt net markings. Concerning the insertion of sequences
and alternative branches, the respective transfer rule maps marking s of the old
net S to the identical marking on the new net S’ (transfer rule is identity function
id : (S, s) �→(S′, s)). As an example take the markings of the net in Fig. 2 before
and after insertion of transition ultrasonic. For other change operations the
insertion of additional tokens becomes necessary. Examples are changes like the
insertion of new parallel branches or the deletion of alternative branches and
sequences which contain tokens. Due to lack of space we abstain from discussing
further transfer rules.
Flow Nets: For the change operations provided by [5,10], trivially, markings

are adapted by constructing the SCOC (cf. Section 3.2). Note that the schema
resulting from a SCOC always contains the marking of the old net.
Approaches With True/False-Semantics: To our knowledge neither
WASA2 [7] nor WIDE [4] provide detailed information about marking adap-
tations. In WIDE, however, follow-up markings may result from the replay of
the execution history. As mentioned in Section 3.2, doing so is very expensive
since execution histories often contain extensive data.
WSM-Nets: Our ADEPT approach is somewhat different regarding mark-

ing adaptations of compliant instances. To keep these adaptations efficient, we
restrict them to those nodes and edges of the respective execution schema SI ,
which constitute the context of the change region. Therefore, for each change
operation op initial sets of nodes end edges to be re-evaluated are determined.
Depending on the result of the evaluation the inspection of additional nodes and
edges may become necessary. In addition, we benefit from well-defined mark-
ing rules as well as the way markings are represented (preserving markings of
passed regions, True/False semantics). As an example take change ∆ in Fig.
4. In the course of the following adaptation, ultrasonic has to be marked as
Activated and marking of report is re-evaluated to NotActivated. Finally,
an algorithm has been formulated, which evaluates instance markings with an
estimated complexity of O(n).
Dealing With Non-Compliant WF Instances: There are several approaches
dealing with (temporarily) non-compliant instances [5,6]. BREEZE [6] provides
a special graph construct which consists of compensation activities. With this,
non-compliant instances are partially rolled back into a compliant state. The
first approach which gives an idea of delayed migration is presented in the area
of Flow Nets [5]. As an example consider Fig. 2. Even if the given instance
passes through the old change region, a delayed migration to the new change
region is possible when another loop iteration takes place. We have adopted this
concept and suggest to keep such (temporary) non compliant instances pending
to migrate.

Evaluation of Correctness Criteria for Dynamic Workflow Changes 55

5 Discussion

WF Nets: In [2], a wide range of change operations is covered and provided with
correctness criteria and (automatic) transfer rules for adapting markings. In case
of selected change operations (e.g., adding new parallel branches) new tokens
can be automatically created when migrating instances. Though the authors
completely abstract from data flow, for practical purposes it is necessary that
tokens carry data flow information as well. Therefore, the semantics of newly
inserted tokens at runtime is not always clear.
Flow Nets: [5,10] introduce a special class of changes, the described SCOC

(cf. Section 3.2). Trivially, applying SCOC changes, marking adaptations are
always correctly performed since the old change region is completely contained
in the new net. For a special kind of changes – upsizing – the states of the old
change region are mapped to states of the new change region by flow-jumpers (cf.
Fig. 2b). [10] suggest to determine these flow jumpers manually which implies a
very experienced WF designer. A very nice idea is offered by delayed migrations,
i.e., the possibility of (temporarily) non-compliant instances to later migrate to
the changes schema, e.g., when a loop back takes place. This approach gets even
more complex when data flow issues are to be taken into account as well.

In MWMS [1] a special class of change operations is offered which provides
correct migration of instances in safe states. Both the imposed WF model and
the offered change operations are strongly restricted. To our knowledge, there
is no detailed discussion about how to check the provided correctness criterion
and how to adapt markings after instance migrations.
WASA2 [7] suggests valid mappings between the purged WF instance graph

and the changed WF schema in order to preserve correctness. Though [7] presents
an implementation there is no detailed conceptualization of the mentioned valid
mappings. In WASA2 the loop problem is not present since only acyclic WF
graphs are allowed. However, WASA2 is one of the few approaches, which benefits
from a concrete implementation of a powerful WF engine.
WIDE [4] has offered a cornerstone for many other approaches – the intuitive

compliance criterion. Unfortunately, this criterion suffers from its restrictions
concerning loops (cf. Section 3). Furthermore, it is not clear how the given cri-
terion can be checked and implemented. If we had assumed that replaying the
whole execution history is necessary this could not be efficiently realized. Gen-
erally, execution history logs are not captured in primary storage and contain
extensive information like work assignments, time stamps, etc.

All discussed approaches – except our ADEPT approach – do not explicitly
deal with data flow aspects. Furthermore, one of the few approaches to care
about orthogonal aspects in conjunction with dynamic WF changes is offered by
BREEZE [6]. Here, WF schema evolution in conjunction with time management
is discussed. As already mentioned concurrent changes have been adressed only
in the area of our ADEPT WSM-Nets so far.

Table 1 compares the discussed approaches along the stated criteria.

56 S. Rinderle, M. Reichert, and P. Dadam

Table 1. A Comparison Of The Discussed Approaches

WF Nets Flow Nets MWMS WASA2 WIDE ADEPT
Completeness of
• WF Model – ◦ – – + +
• Changes – + – + + +
• Correctness Criteria + + + + – +
Checking Compliance + – – – – +
Change Realization + – ? ? + +
Available Implementation ? + ? + ? +

6 Summary and Outlook

In this paper we have compared actual approaches dealing with adaptive work-
flows along fundamental criteria. Thereby the main focus lies on providing cor-
rectness criteria to decide whether a WF instance can be smoothly migrated to a
changed WF schema or not. In many applications, the question how to efficiently
check these criteria, how to accomplish instance migrations, how to implement
the presented concepts, and how to offer change facilities to users remains unan-
swered. Therefore, we have presented simple state conditions for compliance
checks and a nice solution to adapt instance markings after change propaga-
tion. Furthermore, we have discussed issues regarding concurrent changes. We
strictly encourage other research groups to deal with this exciting problem as
well and to provide implementations of their concepts within a powerful WF
engine. There are many other interesting questions mainly concerning imple-
mentation of the presented concepts. Within this, questions related to change
authorization, change analyses, and usability have to be carefully answered.

References

1. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: Proc. BPM ’2000. LNCS 1806, Springer (2000) 218–234

2. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science 270 (2002) 125–203

3. Edmond, D., ter Hofstede, A.: A reflective infrastructure for workflow adaptability.
Data and Knowledge Engineering 34 (2000) 271–304

4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

5. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proc. Int’l Conf. on Org. Comp. Sys. (COOCS ’95), Milpitas, CA (1995) 10–21

6. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. Int’l J Coop IS 9 (2000)

7. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: Proc. 34th Hawaii Int’l Conf. on System Sciences
(HICSS-34). (2001)

Evaluation of Correctness Criteria for Dynamic Workflow Changes 57

8. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. Journal of Intelligent Inf. Systems 10 (1998) 93–129

9. Kiepuszewski, B., ter Hofstede, A., Bussler, C.: On structured workflow modelling.
In: Proc. CAiSE ’00. LNCS 1789, Springer (2000) 431–445

10. Ellis, C., Keddara, K.: A workflow change is a workflow. In: Proc. BPM 2000.
Volume 1806 of LNCS., Springer (2000) 516–534

11. Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: Proc. Int’l
Conf. on Coop. Inf. Systems (CoopIS ’98), New York City (1998) 310–321

12. Fent, A., Reiter, H., Freitag, B.: Design for change: Evolving workflow specifications
in ULTRAflow. In: Proc. CAiSE ’02. (2002) 516–534

13. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In: Proc. CoopIS ’99, Edinburgh (1999)
104–114

14. Ellis, C., Maltzahn, C.: The Chautauqua workflow system. In: Proc. 30th Int’l
Conf. on System Science, Maui (1997)

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 58–71, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Integrated Business Process Management:
Using State-Based Business Rules to Communicate

between Disparate Stakeholders

Donald C. McDermid

School of Computer and Information Science
Edith Cowan University

Perth, Australia
d.mcdermid@ecu.edu.au

Abstract. We need to put more emphasis on managing the communication

between different types of stakeholders and in particular we need to use

diagrammatic constructs that support that communication process. This paper

describes a state-based approach to capturing business rules that has been tested

with different stakeholders in several business process applications. The

examples provided in this paper show the benefits of using this notation as a

means of communicating between three different groups of stakeholders.

1 Introduction

“We ran into trouble because we didn’t know how to manage what we had, not
because we lacked the techniques.” [23] These prophetic words of Aron in 1969 in
those early days of discovery about the software development process still ring true
today. Not only do they still apply to software engineering generally, but it will be
argued in this paper that they also apply to integrated business process management,
especially if we have to communicate with different groups of stakeholders in an
organisation. Figure 1 summarises the overall scope of business process management
as far as this paper is concerned. It is asserted that all stakeholders in business
process management have to be considered because otherwise there will be important
gaps and omissions in the discussion and this is highly likely to lead to the failure of
the business process implementation.

In order for business processes to be successfully implemented, it is argued that
three distinct groups of stakeholders need to be involved. These are the business
people or users themselves, the systems analysts and the programmers (figure 1).
Note that (perhaps uncharacteristically) analysts and programmers have been

Integrated Business Process Management 59

separated into different groupings. These groupings have been chosen because each
group has a distinct ontology and thus worldview and vocabulary about what is
important to them [3]. They have different goals and objectives and the organisation
measures them by different criteria.

Fig. 1. Mapping of Scripts from the Real World to the Machine World (after [29])

Business people work in a relatively unstructured world compared to analysts.
Their worldview and vocabulary are not necessarily bound by the need to work with
specific well-typed constructs such as events, conditions or whatever. They have
become accustomed to leaving the task of formalizing that process to the ‘experts’ i.e.
the systems analysts. And so the question arises as to what construct might best
facilitate that process of formalizing informal statements. The term structured is used
here in preference to the term semi-formal and also to avoid confusion with the term
formal which is often reserved for mathematical specifications [7]. As far as systems
analysts are concerned, informal representations are unacceptable as a starting point
to proper business process definition since they are ambiguous, open to assumptions
or contain omissions.

The next interface to be considered is that between systems analyst and
programmer. In addition to the job title of programmer, they may be named software
engineer, designer, analyst/programmer and so on. Their prime concern is or ensuring
an effective and efficient working artifact. They take no responsibility for the
correctness or completeness of the business process specification. That is the job of
the systems analyst. Yet, importantly, they take many decisions that affect the final
running of a computer-based information system. They take decisions often on
navigational issues, error back-out rules; often they have to elaborate the rather bare
business rules specified by the analyst. Yet again, the question arises as to what
constructs best serve the process of communication between systems analysts on the
one hand who are (relatively speaking) more concerned about whether the right
system is being built (validation) and on the other the programmers who are more
concerned with whether a working system has been built that meets that specification
(in that context verification).

What constructs?

Real
world

Policy
Rules

Process-
ing
Rules

Machine
world

Business

People

Systems

Analysts

Programmers

60 D.C. McDermid

This paper will argue that a notation based on states and which is based on Petri
nets is a good way of serving the needs of integrated business process management.
This argument is dervied from detailed studies that focused on the information and
communication needs between disparate stakeholders, though unfortunately space
limitations do not permit detailed discussion of this aspect. While much of what
follows is necessarily technical in nature, discussion will continue to relate back to the
overall management and communication issues introduced above.

In the next section a definition of a business rule and also an introduction to the
rationale for the four main constructs notation of a diagram that captures business
rules is provided. This is followed by a section that describes the technique itself, in
particular the steps for producing a model of the business process and its rules.
Sections 2, and 3 deal with the communication interface between users and systems
analysts. In section 4, the interface between systems analyst and programmer is
discussed and examples provided of the kind of communication and specification
issues that arise. The paper ends in section 5 with a brief summary.

2 Business Rule Definition and Constructs

The definition of a business rule used here evolved over the course of the author’s
doctoral research [9]. It contains a list of the constructs of a business rule namely
states, events, conditions and signals. States reflect the status of an object of interest
at any given time, so for example a manufacturing work order might occupy the states
unstarted, in progress or completed. Events are actions carried out internally by the
organisation and therefore under the control of and owned by the organisation. They
are considered to be instantaneous occurrences which reflect the organisation’s policy
on what should happen in a particular circumstance eg cancel work order. One
important role of the event is to avoid describing processing detail. Rather, such
detail is best kept separate from ‘policy’ rules as discussed later. Conditions define
the criteria by which objects of interest in the business move from one state to the
next as business events take place. Sometimes many conditions require to be met in
order for an event to take place thus increasing complexity. It is argued that
modelling conditions without the context of states and events (and vice versa) is far
less powerful. Lastly, signals either enter or leave the human activity system.
Signals which enter the system will typically initiate activity within the system and so
these are called triggers. Triggers may be external such as a customer sending an
order or internal such as one department sending a document to another department
which then triggers off some activity. Further, a trigger may be a time trigger eg an
activity beginning at the start of the day or the end of the month. Those signals which
leave the system serve the purpose of informing those outside the system of what has
occurred inside the system and therefore are referred to as messages. Thus, though
some might argue that the idea of a condition is at the heart of a business rule (as in
[10]’s definition), the related constructs of state, event and signal provide a context
for the business rule. While none of the constructs are new, the packaging of them
into a business rule is unique and argued to be necessary for communication amongst
stakeholders.

Integrated Business Process Management 61

The definition of a business rule is as follows, though at this stage the reasoning for
some of the specific wording may not be clear. A business rule is an explicit state
change context in an organisation which describes the states, conditions and signals
associated with events that either change the state of a human activity system so that
subsequently it will respond differently to external stimuli or reinforce the constraints
which govern a human activity system.

One significant aspect of a business rule is the idea of a state change context in a
business rule. This is a unique solution in business rules models ie one not seen in
other definitions. Most other definitions of a business rule focus on conditions and
do not involve the state as a construct (eg [11]). In this definition states are those
anchors upon which the business rule is modelled. Without states it much more
difficult to put a boundary on a business rule. In other words, the state change
context makes business rules modelling more tractable and therefore easier for
communication across disparate stakeholders.

Figure 1 also distinguished business policy rules and business processing rules.
Business policy rules reflect the essence or core of what the business is about. For
example, a bank would want to distinguish overdraft customers from customers with a
positive balance. They will typically be treated differently and different processes
and procedures would be likely to apply. Clearly any human activity system
associated with bank customers would have policies for different types of customers
and what happens to them. Also, observe that such rules would have to contain the
pre-conditions which fire processes or activities in the business eg overdraft
customers are given higher interest rates, reminder letters etc.

At a lower level of abstraction, what may be termed business processing rules can
be seen to exist. These rules arguably are also business rules. Perhaps they are better
described as elaborations of business policy rules. They would contain the detail of
how the processes and procedures are actually carried out as well as the condition(s)
under which the business policy rule is executed. So, for example, a rule expressing
the exact calculation of a sales tax or the detailed sequence of steps in accepting an
order would be classified as a business processing rule. Though business processing
rules are elaborations of policy rules, they can be distinguished in the following way.
A rule is a business policy rule if it only contains the necessary information for an
external observer (ie someone outside the human activity system but associated with
it) to detect that the system has changed state. In other words, business policy rules
only describe the minimum necessary to determine state changes (ie the external
WHAT) whereas business processing rules describe the detailed execution of state
changes (ie the internal HOW). Business processing rules therefore require a
notation, possibly a formal notation, which defines precisely the detail of the state
change. Constraint diagrams and action contracts [12, 13] would appear to have the
richness and formality necessary to specify business processing rules though these
rely on objects rather than states as is the case here. Of course, business policy rules
are deemed more acceptable as an initial model of business processes by the very fact
that they deliberately hide detailed processing aspects, thus allowing dialogue with
users to be conducted at an ‘appropriate’ level – again underlining the assertion that
clear communication is the uppermost consideration.

62 D.C. McDermid

3 Constructing the Business (Policy) Rules Diagram

In this section, for brevity, the term business rule will refer only to those high level
policy rules in a human activity system. (Later section will discuss business
processing rules.) Such a model would be a conceptual model of business policy and
as far as possible therefore be unconstrained and independent of processing
considerations. The section describes how to model business processes using the
constructs defined above and culminates in a set of use cases (populated by the
constructs discussed above) that collectively specify a major business process. At this
point each use case is called a User Business Rules Diagram (UBRD) and for brevity,
this set of use cases (UBRDs) is referred to as the Business Rules Diagram (BRD).
The steps involved in creating the BRD are:

� identify candidate business rules (policy rules),

� identify candidate business events and signals,

� identify candidate objects in problem situation,

� construct object life history for each candidate object identified,

� construct User Business Rules Diagrams

3.1 Identify Candidate Business Rules (Policy Rules)

This is achieved by assembling groups of users together and generating a list of
candidate rules (eg by brainstorming or any other technique discussed earlier).
Afterwards, the list is reviewed and rules which are obviously not policy rules are
removed. Table 1 contains a set of policy rules for an order processing case which
will be used throughout this paper for illustration purposes. Though every reasonable
attempt is made to identify all policy rules, later steps provide an opportunity to
identify rules which have been overlooked here.

Each event and signal at this stage is only a candidate. A business event should be
a significant occurrence in a business process (ie externally verifiable). The event
therefore should have impact on how some component in the system is subsequently
dealt with. Again, it is not vital that every event or signal is identified here, as
subsequent steps may throw up more events. This step could be combined with the
first step into a single session in which two lists are generated. Thus some structure is
being added to the informality.

3.2 Identify Candidate Business Events and Signals

A first-cut list of events and signals is also achieved through a brainstorming/review
process. At this stage, the distinction between an event and a signal may not be so
clear in the minds of users. Both events and signals are considered instantaneous and

Integrated Business Process Management 63

further the exact boundary of the information system may still have to be clarified in
detail. In the first instance it is considered more important to identify through
brainstorming as complete a list as possible and then that list can be classified into
events, triggers or messages. Triggers, such as the receipt of an order from a
customer are coded with a ‘T’ for trigger. Events such as the creation of an
outstanding order item (or back order) due to insufficient stock are coded with a ‘E’
and messages such as the sending of an invoice are coded with an ‘M’. Of course the
act of coding may throw up omissions in the brainstorming process. For example, the
sending of an invoice (ie a message) is a different activity from the creation of the
invoice (which is an event) and thus the list may be added to as omissions are
identified. Table 2 contains a list of candidate business events and signals for the
same order processing sample case.

Table 1. Candidate Business Rules for Sample Case

Orders sent by mail or telephone

Omission on order line leads to deletion of that order line

Credit balance >= order value to accept order, otherwise reject

Stock qty >= order qty for normal order, otherwise outstanding

One invoice for one order

Sum of payments = order value - sum of credit notes

One order may have many credit notes

Many payments per invoice possible

Overdue invoices occur 30 days after Statement

If product line not carried, reject item

If unobtainable multiples reject item

New order created for outstanding items

Only good customers may obtain credit orders

Credit balance reduced for all items on an order including outstanding items

3.3 Identify Candidate Objects in Problem Situation

Object modelling is a way of partitioning a system into components [15]. Such
partitioning is performed to enable individuals working with the system to deal with
properties and aspects of the system at a more local and focussed level (ie at the
object level) as opposed to working with the whole system. For example the object
customer may be perceived to be a component of an order processing system. The
ability to focus on aspects of a customer without reference to a whole business
process which involves customers makes it easier for users to explicate requirements.
Working with objects is considered by many to be natural and intuitive to users [8].

64 D.C. McDermid

Table 2. Candidate List of Business Events and Signals.

Receive customer order T
Delete line E
Reject order E
Create new order E
Send invoice M
Generate credit note E
Receive payment T
Create outstanding item E
Create new customer E
Move to good customer E
Move to bad customer E

Objects may be simple or complex. A simple object is one in which each property is
single-valued; objects whose properties are multi-valued or whose properties are
themselves objects are considered complex [16]. In modelling a business in terms of
objects, there is a need to model complex objects (as is illustrated shortly) to allow
working at the level that users regard as appropriate.

[8] refer to the difference between the real world and a model as a semantic gap
and claim that object-oriented models make for small semantic gaps. The advantage
of this correspondence between real world and model is that users and analyst(s) then
have a common framework in the model to clarify issues concerned with for example
completeness and correctness. The analyst thus learns about the human activity
system through a dialogue with users about the model.

By scanning the lists of events, signals and rules, a candidate list of objects can be
identified. From the two tables above the candidate objects of order, stock and
customer can be identified. Less clear is the existence of another object called
outstanding order item. Assume that the way this sample case operates is that
outstanding order items exist over some time and during that time several may
accumulate from across several orders for the same customer. Such a situation would
justify identifying a separate object and importantly also lead to rewriting the business
rules list and updating it with a new rule ie that an order can be created from
outstanding items from several different initial orders. Note also that in turn, this
ought to lead to updating the events list so that outstanding items are at some point
converted to normal order lines. At any rate, for the purpose of illustration here,
there are four objects ie order, stock, customer and outstanding order item.

An object life history (OLH) is modelled by identifying the sequence of states that
an object occupies over time. [19] defines the state of a system at a moment in time
as ’the set of relevant properties which that system has at that time. Any system has
an unlimited number of properties. Only some of these are relevant to any particular
research.... The value of the relevant properties constitute the state of the system’.
Thus the state of a system (and therefore the state of an object which is some
component of a system) is an abstraction of the system to meet a particular end. For

Integrated Business Process Management 65

the BRD, candidate states are those which are occupied for some period of time and
which are perceived by an external observer as relevant for describing the business
rules of the system. Because states can be validated by external stakeholders, this
makes communication clearer and provides a solid context for clear unambiguous
specification. While the OLH can show the sequence or route that any one instance of
an object may take, it also is a template indicating all possible routes of all instances
of an object (class).

3.4 Construct Object Life Histories for Each Object Identified

Figure 2 contains the object life histories for the four candidate objects. The practice
of modelling object or entity life histories is relatively well established in the
computing community [15, 17, 18] though it is by no means ubiquitous. However,
this practice usually relates to constructing OLHs from simple objects rather than
complex objects. Entities by definition are simple.

States in the OLH are shown as circles and sequence (precedence) is shown by a
single-headed arrow. Note the existence of the deleted state for outstanding order
item. On first inspection this may seem strange in the sense that non-existence is
being modelled rather than some aspect of existence. Also it might be questioned
why this aspect is modelled for one object but not the others. The problem is that
outstanding items are to be ‘converted’ to normal order lines at some point. While the
logic for this has not yet been identified at this point, identifying a deleted state is one
way of flagging that this has to be dealt with later.

Ideas from the work of David Harel and his higraphs are used in the BRD.
Variously referred to as Statechart [20], Higraph [21] and Objectchart [22] his
diagrams incorporate a powerful device known as Harel depth for reducing the visual
complexity of certain diagrams. The basic principle involves using the concept of
depth to delimit the scope of effect of an arc. In figure 3, an object order is shown
which has two states - a telephone order state and a mail order state. Arc b represents
a direct connection to the mail order state and arc d a connection away from the mail
order state. Arcs b and d therefore allow the logic relating to a specific state of an
object to be depicted. On the other hand arcs a and c respectively show connections
to and from the whole object. In other words, these arcs apply equally to all states
within the object, in this case the telephone order state and the mail order state.
Though simple and intuitive this is a powerful mechanism for reducing the number of
arcs necessary on a graph and thus makes the graph more readable.

There are two ways in which Harel depth (sometimes called the Harel blob) is used
in the OLH. The first way is essentially that described above ie where it is desired to
indicate selection. A softbox is drawn around, in this case, the two states of telephone
order and mailed order and the label ‘either’ inserted. See figure 2. Arrows stop and
start at the edge of the softbox indicating that either (but not both) state may exist for
any one instance of an order and that any predecessor and successor states apply to
both. The second way is where there is a need to indicate parallel states. Take the
order OLH for instance. Here, credit-note order (which means that at least one credit-
note has been generated for that order instance), part-paid order and overdue order

66 D.C. McDermid

may all be created provided that the instance is in invoiced order state. However, an
important difference here is that these three states may co-exist ie it is possible that
credit-notes may have been generated while at the same time part-payments have
been received and the order becomes overdue. The ‘parallel’ label indicates the
propensity for parallel existence. See figure 2.

paid
order

invoiced
order

credit
note
order

overdue
order

part
paid
order

phone
order

mail
order

stock
exists

o/s
item
created

o/s
item
deleted

bad
cust

good
cust

temp
cust

Stock

Outstanding
Item

Customer
Order

either

parallel

Fig. 2. OLHs for Candidate Objects

order

tele-
phone
order

mail
order

a
b

c

d

Fig. 3. Illustration of Harel Depth

Integrated Business Process Management 67

3.5 Construct User Business Rules Diagram

The analyst scans the OLHs to identify use cases. [8] use the term ‘use case’ to
describe an episode of use of an information system. A use case represents one
session of interaction with the system; such a session is a meaningful, whole task in
its own right as far as a user of the system is concerned. For example, the episode of
receiving an order and processing it to its acceptance is a use case. One user usually
will perform one use case (though one use case type may be performed by many
users). There are many possible outcomes to a use case. For instance, in processing
an order the possible outcomes might include outright acceptance, outright rejection,
deletion of some ordered lines but acceptance of the rest and so on. For the most part,
one state change (or state creation) will equate to one use case though not always. For
each use case identified, the analyst then assembles the user or users who will have
responsibility for that use case. A User Business Rules Diagram (UBRD) is drawn
for each use case.

The User Business Rules Diagram is constructed by elaborating the states in the
OLHs diagram by adding conditions (ie the candidate business rules), events, triggers
and messages from tables such as tables 1 and 2. The notational constructs used are
defined in figure 4.

The purpose of drawing the UBRD is for the systems analyst to glean as much
information as possible about the business rules concerning the use case. It is
envisaged that the analyst will create the UBRD with the users present and that
therefore it is important that the notational complexity of the UBRD is kept to a
minimum. Figure 5 represents the most complex UBRD in the case study.

S1

xxxxxx
xxxxxx

E2. xxxxx xxxxxx xxx

M1 xxx xxxxx

C4

xxx xxxxx?

4

State

Event

Signal (Trigger or Message)

Condition

Harel blob

Connector symbol (to another sheet)

Fig. 4. Notational Constructs for Business Rules Diagram

68 D.C. McDermid

good
cust
exists?

no
omissions?

stock
exists?

multiples
obtainable?

balance>=
order value?

stock qty
>=
order qty?

NO

YES

reject
orderreject order message

NO

YES

delete line delete line message

NO

YES

NO

YES

NO

YES

create o/s
item

o/s
item
created

YES

create
new
order

order

NO

mailed order phone order

Fig. 5. Accept Order UBRD

Note the ‘flowchart look and feel’ of the UBRD in figure 5. This keeps the
diagram intuitive for the users’ benefit yet at the same time allows the analyst to build
a comprehensive picture of the rules behind a use case. Notice that some outcomes
such as the creation of the outstanding item state do not involve the sending of a
message to the customer. Another situation also arises in figure 5 wherein a deleted
line message is sent to the customer but no state change occurs. Overall this permits
the range of business policy situations to be described in an efficient way.

4 Constructing the Business (Processing) Rules Diagram

In this section the translation of policy rules into processing rules is discussed.
Remember that the significant difference between the two is that the purpose of the
policy rule is that it describes policy at a sufficiently high level of abstraction that
users and analysts can engage in meaningful discussion about the business separate
from computer-based considerations (such as navigation of a website). By contrast,
the purpose of processing rules is for the systems analyst and programmer to engage
in discussion about more computer-based detail. So it is necessary for processing
rules to be able to describe the kinds of detail necessary for implementation of

Integrated Business Process Management 69

computer-based systems. Two examples of the type of additional specification
information required for processing rules are given below.

The first relates to validation and is typical of situations where business rules are
defined at a high level of abstraction by the business people and the computer people
are often left to sort out the detail. Suppose in a bank ATM (Automatic Teller
Machine) system, the customer has to enter a PIN (Personal Identification Number).
The policy rule for this may well be specified at quite a high level such as ‘customers
must enter a valid PIN; if the PIN is not valid, processing does not proceed and the
card is rejected with an error message’. In this situation it has been left to the
computer people to work out exactly what the sequence of entry of data will be and
deal with what should happen if the PIN is entered incorrectly and in particular how
many times a customer may re-attempt to enter the PIN. From a modelling
standpoint, what is happening is that the rules are being elaborated or extended by
describing additional detail. So it is necessary for the technique to be able to allow
itself to be easily and seamlessly extended at this stage.

The second example relates to the need to preserve navigational integrity within
business processes (and reflects the assumption therefore that many business
processes will end up as extranet or intranet applications). One of the biggest
challenges in website design has been to give users the ability to move freely and
quickly within a website with the minimum number of ‘clicks’ yet at the same time
preserve integrity in terms of only allowing authorised access to information. In
poorly designed sites, those inclined often find ways to bypass access rights. So from
a processing rules modelling standpoint, it would be important be able to ensure that
this does not happen. Clearly, states are an excellent vehicle for this as only users in
an acceptable state will get access to a function or to information.

The above examples represent the kind of practical design concern faced in
developing a notation for processing rules. To-date, processing rules have been
modelled across a number of different types of business processes including an
electronic journal website, facilities management and customer relationship
management [24, 25, 26, 27 and 28] and later this year this completed work will be
the subject of a doctoral thesis of which the author is a supervisor. Two aspects of
this research are relevant here. Firstly, the overwhelming evidence from these tests is
that concept of using state as the anchor upon which to model processing rules
continues to be sound and workable. In addition, the constructs of event, condition
and signal are all fundamental to specifying processing rules. The second aspect is
that to describe processing rules adequately, there is a need to distinguish ‘business’
states from ‘processing’ states. Processing states are effectively ‘sub-states’ of
business states in that they allow us to define states that are important in tracking
progress within the computer-based function (e.g. a validation algorithm) but not in
themselves of direct interest to the business function. Thus they have no existence
outside of the function in which they exist i.e. they have no persistence, whereas
business states do.

70 D.C. McDermid

5 Summary

This paper has presented an argument for the overriding need for different
stakeholders to be able to communicate with each other across the whole domain of
business process development. Too often have researchers concentrated on only part
of the process (e.g. the modelling component or the software architecture component)
and this has resulted in a piecemeal, ineffectual approach. Secondly this paper has
described a technique using state-based business rules to capture and model the detail
of business processes. Importantly, it has been demonstrated that the main constructs
of this technique are used seamlessly throughout the whole domain of business
process development as a means of communicating between stakeholders. Thus this
approach can be seen as a means to integrate business process development.

In this paper, no new design constructs have been introduced. All have been in the
literature for some time and will be well understood by researcher and practitioner
alike. However, the thrust of this paper has been that both managerial issues
(especially in terms of managing the communication between groups) and technical
solutions (in terms of choosing the most appropriate constructs to facilitate
communication) need to be blended together in a way that makes the whole process is
viable. In a sense, communication is that biggest challenge we face today in terms of
achieving successful business process management and we need the maturity to
understand how the very rich set of technical wisdom we have (as a discipline)
accumulated over the last forty years can be applied to solve management issues such
as stakeholder communication. As stated in the first sentence of this paper, “We ran
into trouble because we didn’t know how to manage what we had, not because we
lacked the techniques.” [23]

References

1. Greenspan, S., Mylopoulos, J., and Borgida, A., (1994). ‘On Formal Requirements
Modeling Languages: RML Revisited. Proceedings of the 16th International Conference
on Software Engineering. (pp135–147) Los Alamitos, IEEE Press.

2. Vitalari, N. P. (1992). ‘Structuring the Requirements Analysis Process for Information
systems: A Proposition Viewpoint’. In W. W. Cotterman, and Senn J. A. (eds), Challenges
and Strategies for Research in Systems Development (pp163–79): John Wiley, Chichester,
England.

3. Vidgen, R. (1997). ‘Stakeholders, soft systems and technology: separation and mediation
in the analysis of information systems requirements.’ Information Systems Journal 7,
pp21–46.

4. Darke, P., and Shanks, G. (1997). ‘User viewpoint modelling: understanding and
representing user viewpoints during requirements definition.’ Information Systems Journal
7, pp213–239.

5. Leifer, R., Lee, S. and Durgee, J. (1994). ‘Deep structures: real information requirements
determination’. Information and Management, 27, pp275–85.

6. IEEE (1984). Std-830. New York, IEEE.

Integrated Business Process Management 71

7. Pohl, K. (1994). ‘The Three Dimensions of Requirements Engineering: A Framework and
Its Applications.’ Information Systems 19, pp243–258.

8. Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. (1992). Object-oriented
Software Engineering: A Use Case Driven Approach. Wokingham, England: Addison-
Wesley.

9. McDermid, D. C. (1998). The Development of the Business Rules Diagram, PhD Thesis,
Curtin University of Technology, Australia.

10. Loosley, C. (1992). ‘Separation and Integration in the Zachman Framework’. Data Base
Newsletter, 20(1).

11. Appleton, D. (1988). ‘Second Generation Applications’. Database Programming and
Design(Feb), pp48–54.

12. Kent, S. and Gil, J. (1998). ‘Visualising action contracts in object-oriented modelling’.
IEE Software, Vol 145 (2–3), pp70–78.

13. Kent, S. (1997). ‘Constraint diagrams: Visualising invariants in object-oriented models’.
Proceedings of OOPSLA97. ACM Press.

14. Jones, B. (1991). Letter to editor. Database Programming and Design, Nov. p9.
15. Coad, P., and Yourdon, E. (1991). Object-Oriented Analysis. (2nd ed.). Englewood Cliffs,

New Jersey: Yourdon Press.
16. Atknison, M., Banchilhon, F., DeWitt, D., Dittrich, K., Maier, D. and Zdonik, S. (1989).

‘The object-oriented database system manifesto’, Proceedings of the First International
Conference on Deductive and Object-Oriented Databases. Kyoto, Japan.

17. Downs, E., Clare, P., and Coe, I. (1988). Structured systems analysis and design method.
Hemel Hempstead, England: Prentice Hall.

18. Shlaer, S., and Mellor, S. J. (1992). Object Lifecycles: Modeling the World in States.
Englewood Cliffs, New Jersey: Yourdon Press.

19. Ackoff, R. (1971). ‘Towards a system of system concepts’. Management Science, 17,
pp661–71.

20. Harel, D. (1987). ‘Statecharts: A Visual Formalism for Complex Systems’, Science of
Computer Programming 8, pp231–274.

21. Harel, D. (1988). ‘On Visual Formalisms’. Communications of the ACM, 31(5), pp514–30.
22. Coleman, D., Hayes, F. and Bear, S. (1992). ‘Introducing Objectcharts or How to Use

Statecharts in Object-oriented Design’. IEEE Transactions on Software Engineering,
18(1), pp9–18.

23. Thomsett, R. (1993). “Third Wave Project Management: A Handbook for Managing the
Complex Information Systems for the 1990s”, Yourdon Press Computing Series, Prentice-
Hall, New Jersey.

24. Johnstone, M N, McDermid D C and Venable J R (2002), “Shared Use of Diagrams in
Requirements Elicitation: Roles, Expectations and Behaviours”, Proceedings of the 13th

ACIS, Melbourne, Australia, 2002
25. Johnstone, M N, McDermid D C and Venable J R (2002), “Modelling E-Business Security

Requirements: Developer and Client Expectations”, AWRE 2002, Melbourne, Australia.
26. Johnstone, M N and McDermid D C (2001), “Using Ontological Ideas to Facilitate the

Comparison of Requirements Elicitation Methods”, Proceedings of the 12th ACIS, Coffs
Harbour, NSW, Australia, 2001

27. Johnstone, M N, McDermid D C and Venable J R (2000), "Teaching an Old Dog New
Tricks: Modelling Electronic Commerce with Business Rules" In: Gable, G. and Vitale,
M. (eds), Proceedings of the 11th Australasian Conference on Information Systems.

28. Johnstone, M N and McDermid D C (1999), “Extending and Validating the Business
Rules Diagram Method”, Proceedings of the 10th ACIS, Wellington, New Zealand

29. Wand, Y., and Weber, R. (1993). ‘On the Ontological Expressiveness of Information
Systems Analysis and Design Grammars’. Journal of Information Systems, 3, pp217–37.

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 72–87, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Structuring Business Objectives: A Business Process
Modeling Perspective

Dina Neiger and Leonid Churilov

School of Business Systems, Faculty of Information Technology, PO Box 63B, Monash
University, Victoria 3800, Australia

{Dina.Neiger, Leonid.Churilov}@infotech.monash.edu.au

Abstract. Business process modeling assists an enterprise to achieve strategic
objectives by providing methodology and tools to develop integrated business
process models, however there is little discussion on how to identify the strate-
gic objectives or how process and functional objectives link to the strategic ob-
jectives. On the other hand, decision-modeling literature offers well-established
techniques for identification of strategic objectives and associated objectives
networks but lacks discussion of the processes and functions aimed at achieving
these objectives. That neither discipline can provide business with an overall
solution is the main problem addressed by this paper through development of a
formalized model for linking the two sets of objectives. The resulting model is
used to analyze the links between different types of objectives and as a basis for
a practical implementation procedure for business modeling. Concepts discussed
in the paper are illustrated within a Human Resources context.

Keywords: Business process modeling, Design and analysis of business proc-
esses, Decision analysis, Business objectives, Human resources

1 Introduction and Motivation

Integrated enterprise architecture frameworks enable an enterprise to comprehensively
describe its processes, associated objects and flows providing the organization with
tools to enable effective planning, analysis and design of its functions and structures
[16]. Architecture of Integrated Information Systems (ARIS) developed by Scheer
[23], [24], [25] is one of the widely adopted and well-established integrated enterprise
architecture frameworks [7], [16]. At the core of the ARIS representation of the busi-
ness is a descriptive representation of business processes based on a functional view.
Within this framework the functions are grouped into processes which are further
grouped into organizational value added chains aimed at achieving overall organiza-
tional objectives [14], [23], [24], [25]. The goals associated with each level of func-
tional hierarchy are included in the functional view and can also be represented using
an Objective Diagram that allows the modeler to define a network of organizational
goals [24], [10]. There is an agreement in business process modeling literature (e.g.

Structuring Business Objectives: A Business Process Modeling Perspective 73

[7], [23], [24]) that the definition of organizational objectives is the first step in busi-
ness process modeling, however usually there is little discussion of what this involves.

The definition of organizational objectives is also an important first step in business
decision modeling (e.g. [6], [11]) and, unlike process modeling, it is accompanied by
well-established techniques for identifying and structuring objectives using “value-
focusing thinking” methodology developed by Keeney [11]. As this methodology was
developed for and is applied primarily within the decision modeling context, functions
and processes required to achieve these objectives unless explicitly encapsulated
within a given decision making routine such as decision trees, influence diagrams,
Markov chains, mathematical programming etc. (e.g. [6], [32]) are rarely considered.

The problem in continuing separation between two approaches is that real-world
businesses are not split along process and decision modeling lines therefore it is es-
sential to establish how process and decision modeling approaches interact with each
other in order to provide an overall solution. While enterprise modeling researchers
intuitively link processes and objectives (e.g. [35]), a formal model integrating these
approaches through the application of the “value-focused thinking” methodology to
define an objectives structure within the process-modeling context, would result in
more effective process and decision modeling tools. By drawing upon the extensive
research in the modeling methods discussed, this paper addresses the following objec-
tives:
� develop and illustrate a formal linkage model between decision and process mod-

eling approaches to structuring business objectives;
� analyze the relationship between different levels of objectives;
� suggest guidelines for practical application of the “value-focused thinking” meth-

odology to business process modeling; and
� discuss how the application of the “value-focused thinking” methodology impacts

upon the interpretation of existing process modeling tools.
The paper is organized as follows: Section 2 briefly discusses the definition of

business objectives within the “value-focused thinking” and process-modeling frame-
works. In Section 3 the formalized linkage model is introduced and is illustrated in
Section 4 within a Human Resource context. This is followed by the implementation
guidelines in Section 5. In Section 6 the impact of the proposed methodology is dis-
cussed and the paper concludes with a brief summary of the findings.

2 Background

In this section we introduce definitions and modeling approaches adopted by the deci-
sion and process modeling disciplines for describing business objectives.

2.1 Objectives Definition within “Value-Focused Thinking” Framework

Within the classical decision analysis-based “value focused thinking” framework an
objective is defined as: “a statement of something that one wants to strive toward”

74 D. Neiger and L. Churilov

([12] p. 34). The objectives are categorized into two types: fundamental objectives that
“concern the ends that decision makers value in a specific decision context” and
means objectives that “are methods to achieve ends” ([12] p. 34). To assist with the
identification and structuring of objectives Clemen and Reilly ([6] p. 49) summarize
the rules for describing the structure of objectives relationships as follows:

Table 1. How to construct means-objectives networks and fundamental-objectives hierarchies
as appears in Clemen and Reilly [6] page 49 Figure 3.3.

Fundamental Objectives Means Objectives
to move:

ask:

downward in the hierarchy:

What do you mean by that?

away from fundamental objectives:

How could you achieve this?
to move:

ask:

upward in the hierarchy:

Of what more general objective is
this an aspect?

toward fundamental objective:

Why is that important?

As further illustrated in Section 4, the objectives structure that results from the ap-
plication of these definitions, rules and associated procedures for eliciting required in-
formation incorporates fundamental organizational values [6], [12]. Consequently,
each objective within the structure is defined within the context of the overall organ-
izational objectives facilitating a holistic approach to problem solving by decision
makers. Development of an objectives hierarchy is the first step in understanding con-
flicting objectives and developing value trade-offs to feed into a quantitative decision
model such as a Multi-Criteria Decision Model (MCDA) [19]. The benefits of apply-
ing this method in real world organizations have been well-documented [6], [9], [12],
[13], [18], [33] and include a “simple structure for decision makers to understand and
use” ([18], p.1), “uncovering hidden objectives, guiding strategic thinking, improving
communication” ([33], p. 4), “high benefit-to-effort ratios”, “new decision opportuni-
ties” ([13]), etc.

The relative drawback of the methodology is that it does not stipulate how the
means network is translated into the objectives hierarchy or how different levels of the
means network are distinguished. As the business process provides the mechanism for
transformation between different levels of business objectives it should be possible to
overcome most of these problems by tighter integration of links between fundamental
and means objectives with the organizational processes.

2.2 Objectives Definition within ARIS Framework

The “ARIS house of business engineering” developed by Scheer [24] provides tools to
describe a consolidated business model through different views of an extended event-
driven process chain (e-EPC). The latter is based on a concept of an event-controlled
driven process chain (EPC) [20], [24] first developed by “SAP AG …to represent
business processes in a simple, yet, clear manner” ([14], p. 149). For the purposes of
this paper, we are primarily concerned with the process view that describes business

Structuring Business Objectives: A Business Process Modeling Perspective 75

processes by combining functions, events, goals and application software components
of the business model.

Within the ARIS Methods Manual [10] goals are implicitly defined through the
definition of the function as “a technical task or action performed on an object to sup-
port one or more company goals” ([10] p.4-1). This approach assumes that company
goals and objectives are known to the modeler in advance and are supported by func-
tions [25].

The terms “function” and “process” are used interchangeably and synonymously by
Scheer ([25] p. 21) with processes generally described as complex functions at the top
level of the functional tree, and which can be divided into sub-functions to reduce
complexity ([10] p. 4-2). The lowest level of the functional tree consists of elementary
functions defined as “functions which cannot be divided any further for the purpose of
business process analysis” ([10] p. 4-2). Process modeling rules for structuring goals
corresponding to business processes and functions can be summarized as follows ([25]
p. 22): goals can be linked with one another by means of a directed network; functions
are able to support multiple goals; and the association between functions and goals can
be inherited by higher levels.

The main advantage of the integrated process-modeling approach to goal specifica-
tion is that it positions each goal into the overall business context by directly linking
the goal to the relevant function. The discussion of how these goals are to be derived
and relate to the overall goals, however, is limited to the suggestion ([25] p. 22) that
“goals can be derived by critical success factors as developed by Rockart.” As critical
success factors are also derived from organizational goals [22], this does not resolve
where organizational goals come from, how should they be structured and what their
relationship is to process and functional goals.

The relationship between “value-focused” objectives and process goals is discussed
in the next section.

3 Linkage Model

This section includes: a formal description of an EPC; modifications to this descrip-
tion to include objectives and corresponding links; and formalized links between proc-
ess modeling and “value-focused” objectives.

Formal description of an EPC. Keller and Teufel [14] p. 159 provide a formal
description of the EPC as a 7-tuple ()κκ ααττκν ,,,,,,IdEPCM = where:

� Id is a unique identifier of an EPC model described by IdEPCM .

� ν is a non-empty, finite set of nodes of an EPC with ν denoting cardinality of ν .

As an EPC consists of at least one starting and one ending events, and one function
it follows that ∞<ν≤3 .

� κ is a link relationship, which describes the connections between the various types
of nodes, κ is defined as ννκ ×⊆ .

76 D. Neiger and L. Churilov

� κττ , are representations that assign a type to every node or link.

� καα , are representations that assign attributes to every node or link type.

� (x,y) is a link that connects nodes x and y iff yx → , where x refers to the start

node and y refers to the end node and () κ∈ν∈∀ y,x:y,x

Modifications to the EPC description. The types of nodes included in the EPC
description are limited to { }objective functional ,connectors event, function,→ντ : ,

where the function type includes elementary and hierarchically ranked (or complex)
functions that are part of the process represented by the EPC in question. Other types
of nodes and links are excluded from this description because they either do not relate
to objectives or have the same relationship to objectives as one of the included
elements (e.g. functions and hierarchically ranked functions). Therefore the formalism
in this section can be extended to a full e-EPC model without loss of information.

The notation above is used to describe the following sets: functions and functional
objectives (equation 1), processes and process objectives (equation 2), means and fun-
damental objectives (equation 3), and corresponding links (equations 4, 5, 6, 7).

Functions and functional objectives: Let IdF be a finite non-empty set of functions

within an EPC and fO be a finite non-empty set of functional objectives:

(){ }
(){ }objective functional

function

=τν∈=
∈∧=τν∈=

fff

IdId

o\o:O

EPCMff\f:F (1)

Process and process objectives. Let P be a set of processes, where each process rep-
resented by an EPC is defined as a member of a set of all subsets (power set) of the set
of functions within that EPC consistent with the definitions in Section 2.2. Let pO be a

finite non-empty set of process objectives distinct from the set of functional objectives
within that process.

(){ } { } objectiveprocessØ :o:O;pFpowerpId:p:P ppId =≠∧∈∀= (2)

Process objectives and the process are included in another EPC or a value-added
chain (VAD). According to Scheer [24], the EPCs and VADs are combined into a
process hierarchy with the EPCs at the lowest level of the hierarchy including only
elementary functions, the VADs at the top level consisting only of the processes, and
all other levels being a mixture of elementary functions and processes.

Means and fundamental objectives. Let dm O,O be finite, non-empty sets of means and

fundamental objectives independent of the process model.

{ } { }objective lfundamentaobjective means :d:O,:m:O dm == (3)

Structuring Business Objectives: A Business Process Modeling Perspective 77

Links. Directional links describing control flow within an EPC and simple links de-
scribing assignment of objectives to functions and process are included in EPC link
types. Each function and process is linked to at least one objective.

{ }
() ()()

() ()() Oal

Oal

(Oal)link assignment objectives link, flowcontrol

=τ∧κ⊆∃∈∃∈∀

=τ∧κ⊆∃∈∃∈∀
→κτ

κ

κ

κ

pppp

ffffId

o,po,p:OoPp

o,fo,f:OoFf

: (4)

Let � be a finite non-empty set of objectives flow links describing links between
objectives. These links are directional to allow objectives structures to be represented
as directional networks. Note that the structure of relationship between means objec-
tives is represented as a directed network whereas the fundamental objectives structure
is represented as a hierarchy [6].

{ }(Ofl)link flow objectives→µτ µ : (5)

These links are subject to the following constraints:
� In a fully described process, no process objective can be fulfilled without at least

one function contributing to it and each function must contribute to at least one pro-
cess objective.

() () Ofl=τ∧µ⊆∃∈∃∈∀∧∈∃∈∀ µ pfpfffppppff o,oo,o:OoOoOoOo (6)

� Similarly, rules in Table 1 imply that every means objective must link to at least
one fundamental objective to describe what needs to be done for a fundamental
objective to be fulfilled; and every fundamental objective must link to at least one
means objective to describe why a means objective is important.

() () Ofl=τ∧µ⊆∃∈∃∈∀∧∈∃∈∀ µ dmdmmmddddmm o,oo,o:OoOoOoOo (7)

Links between process modeling and “value-focused thinking” objectives. The
links between these types of objectives are defined by the following rules:

Rule 1: Each functional/process objective can correspond to one or more func-
tion/process.

() ()
() () vuo,vo,u:Oo),F(powerv,u

vuo,vo,u:Oo,Fv,u

pId

fId

=⇒ /∧∈∈∀

=⇒ /∧∈∈∀ (8)

Rule 2: Functional objectives and process objectives are a subset of the means objec-
tives, with business process-modeling objectives at each level of the process hierarchy
forming a level within the means objectives network.

mpf OOO ⊆∪ (9)

78 D. Neiger and L. Churilov

The motivation for this rule is as follows:
� the definition of a means objectives discussed in Section 2.1 is consistent with the

definition of a function (and correspondingly a process) discussed in Section 2.2 –
both refer to the action required for a specific objective to be achieved;

� the levels within the network of functional objectives correspond to the levels
within a process hierarchy; and

� the network of objectives developed in accordance with the rules discussed in Sec-
tion 2.1 satisfies functional goals’ requirements provided in Section 2.2.
Rules 3 and 4 below are derived by combining Keeney’s definitions of means and

fundamental objectives [12] p34 with the definitions and rules already described in
this section. Rules 3 and 4 complete the set of rules describing the relationship be-
tween functional, process, means and fundamental objectives.

Rule 3: The set of functional objectives does not intersect with the set of fundamental
objectives; similarly the set of process objectives does not intersect with the set of fun-
damental objectives.

ØØØ =∩∧=∩⇒=∩ dpdfdm OOOOOOSince (10)

Rule 4: The links d,ml between functional/process objectives and fundamental objec-

tives are a subset of the set of links between means objectives and fundamental objec-
tives. This rule allows process modeling objectives to be linked directly to the top
level fundamental objectives as a link to a lower level fundamental objective is
uniquely mapped to a top level fundamental objective through the fundamental objec-
tives hierarchy.

() (){ }
() (){ } 0Ofl

0Ofl

 where,

>=τ∧∈∈=

>=τ∧∈∈=

⊆∪

µ

µ

d,pdpddppdpd,p

d,fdfddffdfd,f

d,md,pd,f

l,o,oOo,Oo:o,o:l

l,o,oOo,Oo:o,o:l

lll (11)

The objectives network satisfying the rules and definitions above is a “value-
focused thinking” network applied directly to the e-EPC functional view. Functional
goals are means objectives and strategic business goals are fundamental objectives.
This model provides a broader decision context for the e-EPC and links means and
fundamental objectives to processes and functions responsible for fulfilling them. The
nature of the links is explored with Systems Dynamics tools in the next section.

4 Illustrative Example

In this section Human Resources (HR) context is used to illustrate the linkage model
and to analyze relationships between different levels of objectives.

Structuring Business Objectives: A Business Process Modeling Perspective 79

4.1 HR Context

HR have a critical role in positioning an enterprise to achieve its corporate objectives
[8], [15], [31], [34]. Traditionally, HR departments provided leadership in the areas of
staff development, remuneration, industrial relations and performance management. In
recent years, the focus of the HR strategies in many organizations has evolved towards
strategic workforce planning and providing line managers with tools and support for
managing their staff [21]. Generally speaking, the focus of the HR information sys-
tems architecture and associated tools is on operational processes and functions such
as administration of payroll and benefits, recruitment, and personnel management (e.g.
[1]). Decision support tools mainly focus on decisions narrowly defined to fit within
the specific techniques such as Markov chains (manpower planning), Linear and Inte-
ger programming (scheduling), Multiple Criteria Decision Analysis (selection), etc.
[32]. The paths of the two methodologies rarely crossed due to the differences in para-
digms and terminology used by the respective disciplines. The linkage model defined
in the previous section can facilitate effective support of HR strategies by improving
understanding of how process modeling and decision support objectives relate to each
other.

4.2 HR Objectives within the “Value-Focused Thinking” Framework

HR literature provides a wealth of information about HR objectives, but these are
rarely distinguished into fundamental and means objectives except to illustrate the ap-
plication of “value-focused thinking” to a specific enterprise or decision context [6],
[9], [12]. The aim of this example is to demonstrate the linkage model within the HR
context rather than construct a universal objectives structure for HR functions. Nev-
ertheless, we have confirmed with the Australian Government and private sector HR
practitioners that the structure presented in this section is a fair representation of HR
objectives in business and government within the Australian context.

To construct a single “value-focused” framework we have reformulated the objec-
tives found in the HR literature (e.g. [3], [4], [5], [17], [21], [26], [28], [29], [30],
[31]) to satisfy Keeney’s definition of the objective, merging similar objectives under
a more general objective and then classified the resulting objectives into a directed
network in accordance with the principles outlined in Section 2.1. This resulted in
three top-level fundamental objectives, twenty lower level fundamental objectives, six
top-level means objectives and over 50 lower level means objectives. The top-level
fundamental objectives were: “max value of HR services to meet organizational ob-
jectives” [5]; “max well-being of employees” [3]; and “max social legitimacy” [4].

Top level means objectives (e.g. [5], [17], [28]) were: 1) “ensure excellence in HR
planning and research” (Planning); 2) “ensure excellence in staffing” (Staffing); 3)
“ensure excellence in training and development” (Training); 4) “ensure excellence in
industrial relations” (IR); 5) “ensure excellence in compensation” (Compensation);
and 6) “ensure excellence and integration of technology of infrastructure relevant to
HR functions” (Technology).

80 D. Neiger and L. Churilov

Complexity of lower levels of means objectives varies considerably from process to
process reflecting different levels of complexity and detail that can arise when identi-
fying objectives within an organization. For example, the Planning process means ob-
jectives consist of one lower level with five objectives, whereas the Training process
objectives network (Figure 1) is considerably more complex.

3. Ensure excellence
in t raining & development

3.1 Align employee
values & att itudes

3.5 Ensure that employees have
the competencies to keep the
organizat ion vaiable
in the short & long term

3.6 Improve return on
invested capital and/or
return on assets by improving
effectiveness & efficiency of
employees

3.3 Increase
employee
awareness of their
 strengths
& weaknesses

3.2 Facilitate
organizat ional
renewal

3.4 Facilitate
team building,
lateral
relationships,
shared visions
 & values

3.7 Increase
HR capability

3.7.2 Ensure that
appropriate HR
tools & techniques
are used by
managers & staff

3.7.1 Ensure that
HR expertise is
available to
managers

3.6.3 Max. flexibility
of employees

3.6.1 Increase
innovat ion

3.6.2 Maintain &
improve quality
of employees

3.6.4 Increase
 commitment of employees
 to organizational goals

3.5.1 Build
strategic
competencies

3.5.3 Develop
organizational
change skills 3.5.4 Improve decision

 making & problem
solving skills

3.5.2 Develop
leadership
competencies
& invest in
leadership growth

Fig. 1. The Training branch of the means objectives network (e.g. objectives 3.6, 3.6.3 [4],
objective 3.6.2 [12], objectives 3.1, 3.3, 3.5.4, 3.6.1 [26], objective 3.4 [30], objectives 3.5,
3.6.4, 3.7, 3.7.1-2 [29], objectives 3.2, 3.5.1-3 [31]).

In HR literature strategic HR objectives are often supported by a description of HR
processes, functions and decisions aimed at achieving these objectives (e.g. [3], [17]).
Likewise in the constructed network, the top level of the HR means objectives corre-
sponds to the six core HR processes used to achieve the fundamental HR objectives.
The next level of means objectives appears to relate to both specific sub-processes and
specific goals within the main process (see Figure 1).

4.3 HR Process Model

For the purposes of illustrating HR processes, standard HR texts (e.g. [5], [17], [28])
were used as a basis for reference models for the core HR processes identified in the
previous section.

The processes were modeled using event-driven process chain methodology [14],
[20], [23], [24], [25]. An example of the process model for the Training process ([5]

Structuring Business Objectives: A Business Process Modeling Perspective 81

ch. 12, [17] ch. 11, [28] ch. 9) is provided in Figure 2. The functional goals were based
on texts used to construct corresponding processes as well as the network of HR ob-
jectives constructed in the previous Section. For example, Milkovich [17] and other
HR authors indicate that evaluation is required in order to “ensure” that HR process
objectives are met, therefore “evaluate training outcomes” function and corresponding
objective was included in the EPC to provide a complete process description and to
enable objective 3.5 in Figure 1 to be met.

recommendat ions
for future training

documented

assess training
needs

new skills
acquired

evaluate
t raining

outcomes

t raining
targets

determined

select and/or design
training methods

and programs

develop
evaluation

criteria

training
schedule
available

deliver
training

key
performance

indicators
available

T raining object ives
aligned with business

needs

Meet training
object ives through

high quality training
delivery

Enable evaluat ion
against object ives &

business outcomes

Provide quality
evaluat ion training
against objectives

Efficiently and
equitably achieve
training targets

Other mngt
processes

Training
st rategy

Other mngt
processes

IR

Planning
Staffing

Demand for
training

established
Other mngt
HR processes

Communicate training
objectives & targets

to staff & mngt

Staff & mngt understand
traininig object ives in the
context of improved org

performance and
individual growth

Other mngt
processes

Legend

Process
Interface

funct ion
functional

goal
event

Logical
Operator
"AND"

Organisat ion Flow /
Resource Flow

Information
Services FlowPlanning

Fig. 2. Business process model (using e-EPC) for the Training process.

82 D. Neiger and L. Churilov

In addition to functional goals, three goals were identified for the overall Training
process: “use resources efficiently and effectively”; “develop competencies”; and
“align behaviors and values”.

4.4 Relationship between Different Levels of Objectives

In order to construct a single objectives hierarchy consistent with the linkage model
presented in Section 3, the relationship between objectives in Section 4.2 and 4.3 was
analyzed. It was found, consistent with the linkage model, that process and functional
objectives represented different levels of means objectives. Furthermore, functional
objectives presented the means of achieving some process objectives and both func-
tional and process objectives presented the means of achieving the fundamental objec-
tives.

Consistent with the linkage model that stipulates that process and functional objec-
tives are a subset of the means objectives it was also found that not all means objec-
tives identified in Section 4.2 were included in process or functional objectives identi-
fied in Section 4.3. Many means objectives illustrated in Figure 1 represented lower
level functional objectives (e.g. objectives relating to specific training skills such as
“decision and problem solving skills” objective in Figure 1) that were not included at
the level of the process model illustrated in Section 4.3. Others were found not to be
relevant to this specific process in their initial form (e.g. “increase HR capability” ob-
jective in Figure 1). As a result of this analysis it became apparent that linkage model
should be extended in the future to include rules that will aid synchronization of the
levels at which objectives network and process model are constructed.

Due to the difference in the levels between the objectives network (Figure 1) and
the process model (Figure 2), it initially appeared that the linkage model rules were
not fully satisfied as a number of process and functional objectives described in Sec-
tion 4.3 were not part of the “value-focused thinking” structure (e.g. “Provide quality
evaluation training against objectives” is not included in Figure 1). Upon closer ex-
amination, these objectives satisfied the definition of the means objectives and, there-
fore, were added to the “value-focused thinking” structure to satisfy the linkage model
requirements. Reconciling the two hierarchies resulted in revisions to the process
model and objectives network initially developed.

Further insight into the relationship between objectives could be gained through the
use of System Dynamics, and in particular, the stock and flow diagram (SFD). The
stock and flow diagram (SFD) is a well established methodology in the business dy-
namics tool kit that uses mental representation of a business to build a quantitative
simulation model of causal relationships between key business quantities and feedback
mechanisms within the business [27]. The SFDs and corresponding simulation models
provide a more complete representation of the system than the objectives network
since they capture the states (stocks) of the system, the rates (flows) at which these
system states change and causal and feedback mechanisms [27].

For example, the relationship between the process objective of “decreasing the gap
between existing and desired competencies” and fundamental objective of “maximiz-

Structuring Business Objectives: A Business Process Modeling Perspective 83

ing well-being of employees” is modeled as a reinforcing feedback loop in an SFD:
increasing gap between existing and desired competencies would decrease the well-
being of employees, decreasing well-being is likely to increase the number of un-
planned staff resignations that will in turn further increase the size of the gap.

Through modeling causal loop links between objectives and the nature of these
links (i.e. reinforcing or balancing), an SFD model facilitates identification of counter-
intuitive or hidden causal relationships. Furthermore, by translating organizational
objectives into a set of Key Performance Indicators (KPIs) simulation can be used to
model the behavior of the system that would lead to better understanding of the proc-
esses and provide opportunities to refine both process models and objectives network
[19].

The final objectives network presented in Figures 3 was the result of a number of
iterations required to incorporate feedback from each of the modeling techniques de-
scribed in this paper and contains only those means objectives that are relevant to the
level of the process model illustrated in Figure 2.

F.1 Max value of HR services to meet org. objectives
F.2 Max well-being of employees
F.3 Max social legitimacy

T.1.1 Min gap between desired & existing
competencies, behaviours & values
T.1.2 Effectively & efficiently use resources

T.2.1 Training objectives aligned with business needs
T.2.2 Meet training objectives through high quality training delivery
T.2.3 Staff & management understand training objectives in the context
of improved org performance and individual growth
T.2.4 Efficiently & equitably achieve training target
T.2.5 Enable evaluation against objectives & business outcomes
T.2.6 Provide quality evaluation of progress against training objectives

Fundamental Objectives

Means Objectives

Process Objectives

Functional Objectives

Fig. 3. Final objectives network for the Training process business model.

84 D. Neiger and L. Churilov

5 Implementation Guidelines

For the formalism presented in Section 3 to be of value to business engineering practi-
tioners, it needs to be accompanied by an implementation model. Based on the experi-
ence described in the previous section we recommend a four-stage iterative imple-
mentation process (Figure 5) with each stage focusing on a specific model while
allowing feedback between stages.

1. objectives hierarchy
 using "value-focused
thinking" methodology

3. objectives hierarchy
of function, process &

fundamental goals

4. Evaluation scales,
KPIs, SFD for

objectives
hierarchy

2. process
model

Fig. 4. Iterative process for the implementation of the linkage model.

In Stage 1, a business analyst (or a team of analysts depending on the scope and the
time frame for the project) in consultation with the key decision makers needs to pro-
duce an objectives network using “value-focused thinking” methodology. The top
level means objectives from this network guides the next stage by identifying key pro-
cesses required to achieve the fundamental objectives.

Through observing business processes or using a reference model in the context of
Business Process Re-eneginering, the analyst constructs process models in Stage 2.
The process model should have means objectives assigned to each function taking into
account objectives already specified in Stage 1.

Using information from Stage 2, Stage 3 assigns means objectives to higher-level
processes and combines them with functional objectives to form a new objective net-
work. Models in Step 1 and Step 2 may need to be revised to reflect linkage model
rules. Means objectives that do not contribute to the objective network in this stage
should remain in the Stage 1 model as they may be required for a lower level process
model or may be relevant for other purposes (e.g. decision making).

In Stage 4, the analyst should first identify a set of KPIs corresponding to the ob-
jectives defined in Stage 3 and then use it to construct an SFD. Additional information
gained in Stage 4 contributes to a review of all models.

A final network of objectives incorporating “value-focused thinking” and process
model objectives is available once all stages are complete, consistent and comply with
the linkage model rules.

Structuring Business Objectives: A Business Process Modeling Perspective 85

6 Discussion

The proposed linkage model has major implications on the interpretation of the role of
processes and functions within an enterprise. The model re-emphasizes that the role of
the business process model is to describe how the fundamental objectives of an enter-
prise (reflecting what is important for the organization) are to be achieved while em-
phasizing that the process and functional objectives alone do not represent the funda-
mental objectives of the enterprise. This differentiation is important since it ensures
via the links between process and fundamental objectives that the focus of the process
is on actions set within a wider organizational context.

Defining process and functional objectives as means objectives also has the benefit
of converting the informal link between processes and enterprise objectives proposed
by some enterprise modeling researchers (e.g. [35]) into a structured process that re-
flects the fundamental values of the enterprise for the identification of process model-
ing objectives. Application of this process results in process and functional goals being
clearly linked to the fundamental organizational and decision-making objectives.

The model also has important implications on the interpretation of the means ob-
jectives network within the “value-focused thinking” methodology. In particular, the
structure of the network becomes considerably more focused and transparent as each
level of the means objective network is reflecting a corresponding level within the
functional network in the process model. The lowest level means objectives corre-
spond to the elementary functional objectives and the top-level means objectives cor-
respond to the top level processes in the model. Means objectives that are not in the
process model are easily identifiable facilitating early identification of appropriate ac-
tion (e.g. decision or additional processes) necessary to fulfill these objectives.

Additional insight is reached as a result of quantitative modeling of the relationship
between objectives using decision analysis tools such as the stock and flow diagram
and corresponding simulation model. For example, causal links between specific ob-
jectives both within and across levels of the network become clearly evident in an
SFD model. On the whole, application of the linkage model highlighted “silent” fea-
tures of the two modeling approaches and was able to provide a path towards a more
comprehensive enterprise model.

7 Summary and Conclusions

Discussion in this paper highlights the benefits of bridging the gap between process
and decision modeling by linking objectives generated by these methods. The formal-
ized linkage model facilitates the integration of strategic, decision and process objec-
tives within a single framework. In essence, the model defines process and functional
objectives as a subset of means objectives and proposes the rules for structuring an
integrated network. Application of the stock and flow diagram provides further in-
sights into the relationship between objectives. Illustration of the model in the HR

86 D. Neiger and L. Churilov

context results in a proposal for a four-stage iterative model to be used as a step-by-
step guide to identification of objectives within a business-modeling context.

The model would further benefit from application to real-life organizations, exten-
sion of linkage rules to guide synchronized decomposition (and expansion) of the ob-
jectives hierarchies and process models, and further exploration of quantitative rela-
tionships between objectives using decision analysis tools.

Acknowledgements. The authors would like to thankfully acknowledge valuable comments of
three anonymous referees.

References

1. Anderson, L.: Understanding Peoplesoft 8. Sybex SanFrancisco (2001)
2. Blain, J., Dodd, B.: Administering SAP R/3: the HR-Human Resources Module. QUE In-

dianapolis (1999)
3. Boxall, P. F.: Strategic Human Resource Management: Beginnings of a New Theoretical

Sophistication? Human Resource Management Journal, Vol. 2, No. 3 (1992) 61–79
4. Boxall, P. F.: Human Resource Strategy and Industry-Based Competition: a Conceptual

Framework and Agenda for Theoretical Development. In Ferris G. F. (ed.): Research in
Personnel and Human Resource Management, Supplement 4 JAI Press Stamford London
(1999) 259–281

5. Cascio, W. F., Awad, E. M.: Human Resource Management: an Information Systems Ap-
proach. Reston Pub. Co. Virginia (1981)

6. Clemen, R. T., Reilly, T.: Making Hard Decisions with DecisionTools. 2nd rev. edn. Dux-
bury, USA (2001)

7. Davis, R.: Business Process Modelling with ARIS: a Practical Guide. Springer-Verlag,
London Berlin Heidelberg (2001)

8. Gratton, L., Hope-Hailey V., Stiles P., Truss C.: Linking Individual Performance to Busi-
ness Strategy: the People Process Model. Human Resource Management, Vol. 38, No. 1
(1999) 17–31

9. Gregory, R., Keeney, R. L.: Creating Policy Alternatives Using Stakeholder Values. Man-
agement Science Vol. 40 No. 8 (1994) 1035–1048

10. IDS Scheer: ARIS Methods Manual. Version 5 IDS Scheer (2000)
11. Keeney, R. L.: Value-Focused Thinking: A Path to Creative Decision Making. Harvard

University Press, Cambridge, Mass : Harvard University Press (1992)
12. Keeney, R. L.: Creativity in Decision Making with Value-Focused Thinking. Sloan Man-

agement Review Summer (1994) 33–41
13. Keeney, R. L.: The Value of Internet Commerce to the Customer. Management Science

Vol. 45 No. 4 (1999) 533–542
14. Keller, G., Teufel, T.: SAP R/3 Process – Oriented Implementation: Iterative Process

Prototyping. Addison Wesley Longman, Harlow, England (1998)
15. Khoong, C. M.: An Integrated System Framework and Analysis Methodology for Man-

power Planning. International Journal of Manpower Vol. 17 No. 1 (1996) 26–46
16. Martin, N., Gregor, S.: Enterprise Architecture and Information Systems Alignment: Pol-

icy, Research and Future Implications. In Wenn, A., McGrath, M., Burstein, F.: Proceed-
ings of the 13th Australasian Conference on Information Systems. Vol. 3 (2002) 1057–
1068

Structuring Business Objectives: A Business Process Modeling Perspective 87

17. Milkovich, G., Boudreau, J. W.: Human Resource Management. 6th edn. Irwin Chicago
(1991)

18. Moussa, N., Moussa, V.: Constructing a Multicriteria Hierarchical Evaluation Model Us-
ing an Aggregation-Disaggregation Approach. Proceedings of the 5th DSI-99 Conference,
Athens July 4–7 (1999) 1403–1409

19. Neiger, D., Churilov, L.: Towards Decision-Enabled Business Process Modelling Tools:
from e-EPC to de-EPC. In Wenn, A., McGrath, M., Burstein, F.: Proceedings of the 13th
Australasian Conference on Information Systems. Vol. 1 (2002) 151–162

20. Nuttgens, M., Field, T., Zimmerman, V.: Business Process Modeling with EPC and UML:
Transformation of Integration? In Schader, M., Korthaus, A. (eds.): The Unified Model-
ling Language – Technical Aspects and Applications, Proceedings (Mannheim, October
1997), Heidelberg (1998) 250–261

21. Rahman bin Idris, A., Eldridge, D.: Reconceptualising Human Resource Planning in Re-
sponse to Institutional Change. International Journal of Manpower Vol. 19 No. 5 (1998)
343–357

22. Rockart, J. F.: Chief Executives Define Their Own Data Needs. Harvard Business Review
March/April (1979) 81–97

23. Scheer, A.-W.: Business process engineering: reference models for industrial enterprises.
Study edn. Springer-Verlag, Berlin, Heidelberg, New York (1998)

24. Scheer, A.-W.: ARIS – Business Process Frameworks. 3rd edn. Springer-Verlag, Berlin
Heidelberg (1999)

25. Scheer, A.-W.: ARIS – Business Process Modeling. 3rd edn. Springer-Verlag, Berlin Hei-
delberg (2000)

26. Schuler, R. S., Walker, J. W. (eds.): Managing HR in the Information Age. Bureau of Na-
tional Affairs Washington (1991)

27. Sterman, J. D.: Business Dynamics: Systems Thinking and Modelling for a Complex
World. The McGraw-Hill Companies, USA (2000)

28. Stone, R. J.: Human Resource Management. 3rd edn. Jacaranda Wiley, Queensland (1998)
29. Treasury Board of Canada Secretariat: Human Resources Management Framework – a

Reference Tool for Managers. 2001 ed. Minister of Public Works and Government Serv-
ices Canada (2001)
http://www.tbs-sct.gc.ca/hr_connexions_rh/sigs/Framework/FRAME_e.html (last accessed
24/12/02)

30. Walker, J. W.: Human Resource Planning, 1990’s Style. Human Resource Planning Vol.
13 No. 4 (1990) 229–240

31. Walker, G., MacDonald, J. R.: Designing and Implementing an HR Scorecard. Human Re-
source Management Vol. 40, No. 4 (2001) 365–377

32. Winston, W. L.: Operations Research: Applications and Algorithms. Wadsworth USA
(1994)

33. Winthrop, M. F.: C2ISR Low Demand/High Density (LD/HD) Aircraft Investment and
Organizational Solutions. (2000)
www.mors.org/education_colloquium/EC2000/presentations/winthrop.ppt (last accessed
18/12/02)

34. Zeffane, R., Mayo, G.: Planning for Human Resources in the 1990s: Development of an
Operational Model. International Journal of Manpower Vol. 15 No. 6 (1994) 36–56

35. Yu, E. S. K., Mylopoulos, J., Lesperance, Y.: AI Models for Business Process
Reengineering. IEEE Expert August (1996) 16–23

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 88–103, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Use Cases as Workflows

Michel Chaudron, Kees van Hee, and Lou Somers

 Eindhoven University of Technology, Dept. Math. & Comp.Science, P.O. Box 513,
NL-5600 MB Eindhoven, The Netherlands

{m.r.v.chaudron, k.m.v.hee, l.j.a.m.somers}@tue.nl

Abstract. In requirements engineering we have to discover the user require-
ments and then we have to transform them into precise system specifications.
There are two essential aspects to be modeled: the data aspect and the process
aspect of the system. There are many techniques available to describe these as-
pects but it is always difficult to integrate these views in a consistent way. Last
decade two techniques are used frequently in requirements engineering: use
cases and workflow models. We show that these techniques can be integrated in
a natural way, using the framework of colored Petri nets. We only sketch the
underlying formal framework and focus on the practical application of the ap-
proach by a case study.

1 Introduction

Requirements engineering is a distinguished field in software engineering since many
years (see e.g. [16]). There are two famous problems: one is to bridge the gap between
informal requirements and formal specifications, the other one is to integrate models
that describe different aspects of a system. Informal requirements are important for the
principals and the potential users of a system, formal specifications are essential for
the software constructors. The last decade use cases are used more and more as a way
to describe requirements. It seems that non-experts understand them better than for
instance data models and dataflow diagrams. There is no formal definition of a use
case that is accepted by a large community of software engineers. It is generally un-
derstood that a use case describes a “piece of functionality” of a system from the
viewpoint of an actor who will work with the system. A use case combines in fact a
data and a process perspective. In the early stages of system development, where the
concept has to be “sold” to the principals and potential users it might be an advantage
that use cases do not have a formal definition: this gives us some freedom to apply the
concept and to interpret a specific use case. However, for the following phases this
lack of precise semantics is a source of problems for the software engineers. There-
fore, it is essential to have formal semantics for use cases. We use workflow theory for
this purpose.

In the field of business process design the use of modeling techniques with a pre-
cise semantics has proven to be very useful: errors and missing parts become clear in
the early stages and it saves work later on. The availability of techniques for verifica-

Use Cases as Workflows 89

tion of models turned out to be very valuable in practice [2]. Another term for busi-
ness process is workflow. There are several formalisms to model workflows, one very
successful one is to describe workflows as a special class of Petri nets, the so-called
workflow nets [4].

In this document we apply results of workflow theory to model use cases. In fact,
we consider use cases as workflows and we show how the field of requirements engi-
neering can profit from the results of the field of business process modeling. A nice
coincidence is that the term “case” occurs in workflow theory for “job” to be handled
and so a workflow can be seen as a case type. Therefore, a use case is modeled as a
case type in the sense of workflows.

The second problem is the integration of models that describe different aspects of
systems. There are many articles about this subject. The use of colored Petri nets as a
framework for integration has proven to be successful (see for instance [9] or [12]).
Here we use the same approach, although we simply say: use cases could be modeled
as workflow nets.

The remainder of this paper is organized as follows. In Section 2 we consider the
place of requirements in the life cycle of a system and the steps to take to describe the
functional requirements for a software engineering project. So non-functional re-
quirements (availability, performance, adaptability, portability and many other “abili-
ties”) are not covered in this paper. In Section 3 we consider the modeling concepts
and in Section 4 we summarize the most important construction techniques. In Section
5 the main course is served: a case study where we show how the proposed approach
should work.

2 Requirements Engineering in the Lifecycle

There are many standards for phasing the lifecycle of a software system. Rational
Unified Process (RUP [13]) is one newest leaves of this tree. We have chosen here the
standard [17] of the European Space Agency (ESA). The reason for this is that it is a
well-documented standard, that the standard is used frequently in practice, and that
last but not least we adopted this standard some years ago for our students in computer
science. The choice of a standard for our purpose is not essential: they all distinguish
requirements in some form.

The ESA standard distinguishes the following phases in the lifecycle of a software
system: user requirements, software requirements, architectural design, detailed design
and production, transfer, operations and maintenance.

Here, the first two phases refer to requirements. We refer to these phases together
as the “requirements phase” with two sub-phases: “user requirements” and “software
specification” because here the main course is the formal specification of the system.

Each phase has some deliverables as output: the product documents that determine
certain aspects of the system. We do not consider the strategy to perform the phases,
so our contribution is applicable to sequential (or waterfall), iterative, incremental, or
time boxing strategies. In this paper we will concentrate on the production of software
requirements and because this phase is in between the user requirements and archi-

90 M. Chaudron, K. van Hee, and L. Somers

tectural design, we touch these topics as well. The user requirements have a certain
overlap with the software requirements, but they are written in the language of the
user. The software requirements are meant for software engineers and they contain
much more details. In our approach we promote the use of formal methods in the early
stages because these methods encourage us to be precise and enable us to use verifi-
cation methods. In this way we are able to discover inconsistencies and errors in a
very early stage, which will pay off in later phases: the later an error is found the more
expensive it is to correct it.

In the software requirements phase we concentrate on the functionality of the sys-
tem to be made. We encourage having a complete logical model of the software in this
phase. (We use here a pragmatic definition of the term “complete”: a model is com-
plete if it contains enough details to build or generate a computer model of the sys-
tem.) A logical model of a system is often considered as a formal specification of a
system. In the architectural design this logical model is translated into the specifica-
tions for the real system. In both phases we distinguish “components”. In the software
requirements the system is one logical component or it may be refined into several
communicating logical components. In the architectural design the components are
physical components: pieces of software, implemented on hardware. It is necessary to
map the logical components to the physical ones. Sometimes it is possible to have a
one-to-one mapping. However, in many cases one logical component is distributed
over several physical components. It also occurs that several logical components are
realized by one physical one.

The activities to be performed in the first two phases are as follows. Some terms are
not explained here but they will be in the next sections. In the user requirements phase
one has to:

1. Identify the stakeholders: all relevant roles that have some interest in the sys-
tem.

2. Identify the actors: all stakeholders and other systems that interact with the
system.

3. Describe (informally) the use cases: the logical “pieces of functionality”.

4. Describe the non-functional requirements like performance or portability. This
includes development constraints like the development environment or the
execution platform.

In the software requirements phase one has to:

5. Transform the use cases into workflows (WF-nets).

6. Make a class model.

7. Describe class lifecycles (workflows).

8. Describe the interactions between all workflows.

9. Connect the workflow transitions and the methods in the class diagrams.

10. Perform logical system decomposition (if necessary).

Use Cases as Workflows 91

Steps 5 and 6 may be performed in reversed order. In fact, all these tasks are per-
formed iteratively, because in tasks 8, 9, and 10 we may discover inconsistencies that
have to be repaired by redoing earlier tasks. In the software requirements phase also
requirements in the form of necessary or desired properties may be formulated in
terms of logic. In addition, non-functional requirements such as timeliness may be
formulated in a formal way in this phase. However, we concentrate on the functional
requirements here. The results of the first steps are described in the User Require-
ments Document (URD), the others in the Software Requirements Document (SRD).
The URD roughly describes the problem the stakeholders need to address, whereas the
SRD describes the specification of the proposed solution.

3 Modeling Framework

In this section we introduce the modeling concepts that are suitable to perform tasks 5
up to 10, i.e. we consider the formalisms with which we model the various aspects of a
system. It is popular to use the modeling techniques of the Unified Modeling Lan-
guage (UML) (see [7] for a concise introduction). This framework consists of many
useful modeling techniques. In fact, we only use uses cases, class models and (a vari-
ant of) activity diagrams from UML. This does not imply that we abandon the others,
but we focus here on the integration of only a few of the modeling techniques.

The things we have to model of a system are in fact the state space and the events
that may change the states of the system. A state of system is defined by a set of data
objects modeled by means of a data model. For events we use a process model. (At
the end of this section we will establish the relationships between the events and data
objects.)

Persistent data objects are modeled by the class model of UML, i.e. data objects
that remain in the system if there are no events. The UML class model also allows us
to define operations on the data, the methods. The volatile data that are produced and
consumed during the events can be modeled with a standard type system or (if it is
complex data) with a language like XML.

For the process modeling we use (high level) Petri nets. (For an introduction, stan-
dard terminology and many important properties of Petri nets we refer to [15] and
[6].) Events are modeled by (the firing of) transitions and states are modeled by the
marking of places. Petri nets are very close to UML activity diagrams, but have better
defined semantics and many possibilities to verify behavioral properties. An alterna-
tive could be to use a process algebra.

The process models occur in two forms in our specifications: as use cases and as
lifecycles for object classes. We require that these processes are a special kind of Petri
nets: workflow nets [4]. Workflow nets have one initial and one final place and each
node of the net lies on a path from the initial to the final place.

An additional requirement is that the workflow nets are sound (c.f. [1]), i.e. each
reachable state (or marking) of the net lies on a path from the initial to the final state
in the state space, where the initial state has only one token in the initial place and the

92 M. Chaudron, K. van Hee, and L. Somers

final state has only one token in the final place. The reason for requiring that all use
cases and lifecycles are sound workflow nets is that this guarantees that all use cases
and lifecycles are proper transactions of the system: with a start and an ensured end.

The transitions in a use case model are activities of the actors that are involved in
the system: users or other systems. Transitions can also be autonomous, which means
that they are executed by the system itself as soon as the transition is enabled. In many
situations the transitions are triggered by users in a user interface.

Tokens in the workflow nets that model use cases, represent the case that is han-
dled. If there is concurrent behavior possible, then a case is represented by more than
one token. Then we assume that each token has a (case) identity and that transitions,
that consume more than one token at the same time, only consume and produce tokens
with the same identity. Besides a case identity, a token may carry some message
(volatile) data. Therefore, the tokens may have values, which means that we work
with colored Petri nets [11].

We often have some global variables that are used in transitions. They are modeled
by global stores, i.e. places that always contain one token and that are connected to
many transitions by a read and write arc. (We normally do not draw these arcs to
global stores in the diagrams.) The instances of a class model may be stored in a
global store. Therefore, we may associate sub-class models to global stores. In fact,
different global stores may have the same sub-class models.

Since we model with colored Petri (or workflow) nets, we obtain the relationship
between data objects and events in a natural way: the states are modeled by the places
marked with colored tokens (which are the data objects) and the events are modeled
by transitions that change the states by consuming and producing colored tokens.

The last concept we need is the t-workflow. This is a Petri net with an initial and fi-
nal transition instead of initial and final place. It is easy to transform one into the
other: put a place (transition) in front of the initial transition (place) and a place (tran-
sition) after the final transition (place) and one obtains the other form of workflow. In
addition, the concept of soundness can be translated for t-workflows: a t-workflow is
sound if and only if its transformation is a sound workflow net.

4 Construction Techniques

There are several ways to build Petri nets in a structured way (see e.g. [8]). Here we
do not present an exhaustive list of construction techniques; we only present some
important techniques for the construction of workflow nets.

For workflow nets, it is essential that the workflows we model are sound. Non-
sound workflows usually have serious modeling errors. Soundness is not the only
property worthwhile to be verified, but it is the most important domain-independent
“sanity check” for models. There are efficient techniques for verifying the soundness
of workflows [18]. So one can model a workflow and check afterwards whether it is
sound or not automatically. We have good experience with an approach that guaran-
tees soundness by the way we construct the models: “soundness by construction”.

Use Cases as Workflows 93

Essentially, there are two approaches to construct workflow nets in a systematic
way:

1. Top down: by stepwise refinement of places and transitions in a given start net.
2. Bottom up: by connecting existing component nets.

In practice, these approaches may be combined.
For the top down approach we have only one transformation rule: replacement. We

start with a given set of basic workflow nets or workflow patterns for which we have a
proof of soundness. Then we refine or replace a place by a sound workflow net or a
transition by sound t-workflows. (There are some difficulties if a sub-workflow can be
triggered two or more times concurrently, cf [10]). In most cases the result is a sound
workflow again.

In the bottom up approach we also need only one basic transformation rule: fusion
of places or transitions, i.e. two places (transitions) are “glued” together to become
one place (transition). We have some standard constructions, sometimes using some
auxiliary building blocks (also Petri nets) to assemble workflow nets: sequential, al-
ternative, parallel and iterative composition. In sequential composition we fuse the
final place (transition) of the first (t-)workflow net with the initial place (transition) of
the second (t-)workflow net. In alternative composition, we fuse the initial places and
the final places of two workflow nets. For the alternative composition of t-workflows,
we need some auxiliary blocks: an or-split and an or-join (see Fig. 1). The parallel
composition of t-workflows is simply the fusion of the initial and final transitions of
the two t-workflows. For the parallel composition of ordinary workflow we need two
auxiliary blocks: an and-join and an and-split (see Fig. 1). For the iterative composi-
tion we need another auxiliary building brick: a sequence of two places with a transi-
tion in the middle. The first place is fused with the final place of the workflow net and
the last place of the building block with the first place of the workflow net. To make a
correct workflow net of this we use this auxiliary block twice: one in front of the iter-
ated net and one at the end. In case of a t-workflow, we use a similar construction.

There is one other important standard construction: asynchronous coupling be-
tween two workflow nets. In this case, we use an auxiliary building block, which is a
sequence of two transitions with a place in the middle. We fuse the first transition with
some transition of one of the two workflow nets and the last transition with some tran-
sition of the other workflow net. Note that in this way we may loose the workflow
structure and even if we have a connected them such that the overall net is again a
workflow net, then it is not sure that it is sound. However, there are some construc-
tions that guarantee soundness (see [5]). Besides the asynchronous coupling, we have
the synchronous coupling: where we just fuse transitions of two workflow nets, not
being the initial or final ones.

Synchronous and asynchronous couplings are used frequently when we intercon-
nect use cases and lifecycles. Synchronous coupling is applied if two events in differ-
ent use cases are in fact the same. This construction suffers from the same risks as the
asynchronous one concerning soundness. Asynchronous coupling is used if two
workflows do not have overlapping transitions but still need some coordination: a
transition of one workflow may only execute if a transition of another workflow has

94 M. Chaudron, K. van Hee, and L. Somers

executed before. In a synchronous coupling transitions have to execute simultane-
ously, whereas in an asynchronous coupling transitions have to execute in some order.
In step 8 (see also section 5.4) of the requirements phase we apply these couplings.
There we use a notation technique where we list the transitions per use case and life-
cycle and where we relate them (by an arc) to transitions of other use cases or lifecy-
cles. The relationship has a direction if one of the transitions is taking the initiative:
one transition is triggering the other. If each of the related transitions may take the
initiative, or if they have to execute simultaneously there is un undirected relationship.
The choice for synchronous or asynchronous coupling may be delayed, sometimes
even to step 10.

and split

and join

fuse

A B

fuse

A B

or split

or join

A

fuse
fuse

Fig. 1. Two constructions to compose workflows A and B. Iteration of workflow A

There are two other constructions we like to mention: the use of global stores and
of global transitions. As mentioned before, a global store is a place that always con-
tains one token and that is implicit (i.e. without drawing arcs) connected to a set of
transitions with one consume and one produce arc. So the global stores do not influ-
ence the process flow of our workflow nets, but they are used to store variables that
are shared by different transitions. Typically they are used to store a set of objects (the
instance) of one class. Global transitions are implicit connected to a set of places
(called “superplace”) and if they are enabled by normal places, they consume all to-
kens available in the superplace. This can be used to enforce soundness of a workflow
net and it is used frequently to model exception handling: if some event occurs we
have to cancel the whole transaction. (Note that it is not always possible to simulate
the behavior of a global transition without using inhibitor arcs.)

Use Cases as Workflows 95

5 Case Study: The Web Shop

To illustrate the concepts treated in the previous section, we will develop the require-
ments for a web shop. For a part, a web shop is an ordinary shop, with items that are
stored in warehouses, can be purchased by customers, are paid for, and are shipped.
We will use the shopping cart metaphor, where a customer puts the products he wants
to buy in a cart. In our web shop, a customer buys products that can be configured
according to a certain model. So a model is a type of product. Computers or cars are
typical examples of products in our web shop, but also holiday trips where the con-
figuration is in fact the trip design. In this case study we focus on configurable physi-
cal products.

The actors are the persons, organizations, or systems that interact with the system
we are going to build. In the web shop example, these might be a customer (browsing,
buying, monitoring, feedback), inventory control (back ordering, shipping), the system
administrator (back-up, upgrades), controlling (billing), marketing (pricing, product
profiling, changing product portfolio), or design (page layout, styling).

5.1 Use Case Workflows

A use case corresponds to a task the system has to fulfill. Each use case involves a
number of actors. We will show the workflows of a number of customer related use
cases for the web shop and the rationale for the choices that have been made.

Use case “customer walks shop”. As a first example, we will consider the use case
“customer walks shop”. The corresponding workflow is displayed in Fig. 2. Here the
customer browses through the different models, configures products, adds products to
his shopping cart, and possibly removes products from his shopping cart. Note that we
might have modeled these steps also as four different use cases.

In the workflow definition of Fig. 2 we have constrained the cart manipulation:
once the customer has selected a model, he has to put a product belonging to this
model in his shopping cart, or he has to deselect it before he can view the contents of
his shopping cart. A possible solution would be to define two screens allowing the
customer to do both at the same time: we introduce parallel workflows. This is shown
in the workflow at the left-hand side of Fig. 3. The matching of the input tokens by the
exit transition is done on the case identity of the token.

Another issue is the fact that it would be more realistic to allow an exit from every
state (since the customer may leave the site at any time). This is shown in the
workflow at the right hand side of Fig. 3. Note that the exit may be an explicit user
action, or might also be triggered by a timer event. It would be best to indicate explic-
itly who initiates each action (which actor or the system itself).

96 M. Chaudron, K. van Hee, and L. Somers

enter

configure
model

add to cart

view cart

undo remove item

exit

select model

deselect
model

exit view

Fig. 2. First attempt to model the workflow of the use case “customer walks shop”

enter

configure
model

add to cart

undo

remove item

exit

select model

deselect
model

cart
view

model
view

enter

configure
model

add to cart

view cart

undo remove item

exit

select model

deselect
model

exception exit exception exit

exit view

exception exit

Fig. 3. Two alternatives for the use case “customer walks shop”. The first one allows the cus-
tomer to configure products and to view and manipulate the contents of his shopping cart at the
same time. The other one allows an exit at any time

Use Cases as Workflows 97

Use case “customer buys products”. Another example is the workflow
corresponding to the use case “customer buys products”. Here the customer has a non-
empty shopping cart and wants to buy these items. Two equivalent models are shown
in Fig. 4. We have used a “super place” to model the exceptional exit flows.

For each choice of payment method (inter bank, credit card, cash on delivery, or
paycheck), some customer solvability check has to be applied. The inner workings of
these workflows may be different and will show up once we try to detail the transition
“check customer solvability”. We might also add activities to check the existence of
the customer data and to add newly filled in data into the customer administration.

Use cases “back office” and “handling”. The “back office” use case controls the
work after the customer has agreed upon buying a product. The workflow is shown in
Fig. 5. Only for pay on delivery, we have modeled the possibility that the customer
does not pay.

We will use a simple version of the use case “handling” in which the ordered prod-
ucts are assembled and shipped. Note that for such workflows (like the shipping op-
eration) some standard patterns exist in the literature.

enter

exit

check customer
solvability

accept offer

NOK

retry

OK

exception exit exception exit exception exit

log order

enter

exit

check customer
solvability

accept offer

NOK

retry

OK

exception exit

log order

Fig. 4. Use case “customer buys products”, variants without and with a superplace and a global
transition (“exception exit”)

98 M. Chaudron, K. van Hee, and L. Somers

enter

delayed
payment

exit

immediate
payment

payment
received

pay on delivery

build+ship build+ship

payment
received

no payment
received

handled case

exception exit

enter

exit exception exit

assemble

ship

return

disassemble

Fig. 5. Use cases “back office” and “handling”

5.2 Class Diagram

We use an adapted and extended version of the class diagram pattern for internet
shops of [14]. It only models the classes involved in the customer related use cases.
The elaboration of the payment and billing part of the data model is not treated.

cart customer product

invoice

0..*

0..1

0..*

0..*

1..*

1

1

part type part model 0..* 1 1..* supplier 0..* 1..* 1..*

0..*

1

adheres to

0..1

default
1 0..1

Fig. 6. Class diagram of the web shop

Each visit of a customer to the web shop involves a shopping cart. For “product”
one might think of e.g. a PC configured with a number of components (parts). Each
product adheres to (is configured according to) a model. Such a model has part types

Use Cases as Workflows 99

(like a hard disk) that may be chosen from a number of allowed parts. Of course, a
configured product may only contain those parts that are allowed by the part types of
its model. In the table below, we list some attributes.

Table 1. Classes and some attributes

Class Attribute
cart payment mode
product amount

color
price

model assembly price
part price
customer name

5.3 Class Lifecycles

Each instance of a class in the class diagrams has a lifecycle. We will also use
workflow nets for these lifecycles. Note that each transition in a class lifecycle is usu-
ally caused by an external event.

Many lifecycles are very simple, as shown by the examples of Fig. 7. Note that
once a model has a relation with a product, one is not allowed to change it anymore.
Many products may use the same model at the same time, and an update of such a
model is only allowed if all products have released the model. This is modeled by
having n (an arbitrary large number) tokens in the central state of the model lifecycle.

start

remove product

customer
coupling

insert product

end

abandon

exception end

realize

start

update

delete

end

realize

start

update use

end
release

n

n

n

n

Fig. 7. Lifecycles of shipping cart, product, and model

100 M. Chaudron, K. van Hee, and L. Somers

5.4 Interactions between Workflows

The next step is to associate transitions of the use case workflows and the class lifecy-
cles. In Fig. 8 we show how the transitions are associated.

customer

walks shop

customer
buys

products

handling

product
lifecycle

exit

end

remove product

customer
coupling

insert product

remove item

add to cart

accept offer

retry

configure
model delete

enter

select model
update

start

deselect
model

exception exit

check customer
solvability

realize

log order

assemble

ship return

undo

enter

exit

enter

exit

end

start

abandon

view cart

disassemble

back office

enter

delayed
payment

immediate
payment

pay on delivery

build+ship

exception exit

exit

realize

no payment
received

payment
received

model
lifecycle

start

update

use

release

end

cart
lifecycle

exception exit

exception exit

exception end

exit view

Fig. 8. Relations between workflow transitions. Use case transitions are shown on the left, life
cycle transitions on the right

Use Cases as Workflows 101

Relations between transitions in two use cases. A transition in a use case can start
another use case. This may be the exit transition like in “customer walks shop” that
starts (upon normal termination) the workflow “customer buys products”. It can also
be any other transition: for example, “build+ship” in “back office” starts the workflow
“handling”. This coupling is usually asynchronous.

A transition in a use case can also trigger a transition in another use case. For ex-
ample, “return” in “handling” fuses with the “no payment received” in “back office”.
Here we must fuse the transitions to guarantee that “return” is only allowed to fire in
case of pay on delivery.

Relations between transitions in a use case and a lifecycle. Now we look at the
mapping from use case transitions to lifecycle transitions. This mapping can be
synchronous or asynchronous, but will probably never be realized by transition fusion:
the transitions in a data object can be triggered by many use cases.

A transition in a use case may be associated to multiple lifecycle transitions, each in
a different lifecycle. For example, “remove item” in “customer walks shop” means that
both “delete” and “remove product” should fire.

Multiple transitions in the same or different use cases may also be mapped to one
lifecycle transition. For example, “deselect model” and “remove item” both mean that
“delete” should fire. However, this coupling has a direction: if “delete” fires, this does
not imply that also “deselect model” should fire.

Another reason for not having a one-to-one mapping might be that the modeling
has been performed at different levels of abstraction: a transition corresponds to a
subnet. This does not occur in our example.

Note that not all transitions of a use case have to take part in a mapping. For exam-
ple, the “view cart” transition in the “customer buys items” workflow only retrieves
the current contents of a shopping cart and therefore does not take part in the lifecycle
of the cart.

Relations between transitions in two lifecycles. Usually, we will also have relations
between transitions in different class lifecycles: if a class changes state, a change may
also occur in the state of a dependent class. For example, if we create a product, the
corresponding model will be locked: no one is allowed to change it anymore.

5.5 Coupling Workflow Transitions and Class Methods

In the following table, we give an informal overview of the methods that are called if a
transition of a specific use case fires. In a latter stage, we have to specify exactly what
the input and output parameters of each method are and how they are related to the
data carried by the workflow of a use case.

In the table, we see for example that the workflow “customer walks show” has two
instance variables representing global data (cart and current product). Those are filled
if the “start” transitions of the lifecycles of cart and product fire, which is caused by
the transitions “enter” and “select model” of the workflow.

102 M. Chaudron, K. van Hee, and L. Somers

Table 2. Some workflow transitions and related method calls of lifecycle transitions.

Workflow Transition Class Transition Method call or relation change
enter cart start (creation of new instance)
select
model

product start (creation of new instance)

configure
model

product update Change product-part relation.
Update attributes of product (amount,
color, and price).

undo product update Change product-part relation.
Update attributes of product accord-
ing to default (amount, color, and
price).

deselect
model

product delete --

add to cart cart insert
product

Add relation between cart and prod-
uct.

cart remove
product

Remove relation between cart and
product.

remove
item

product delete --
view cart -- -- --
exit view -- -- --
excep. exit -- -- --

customer walks
shop:
cart,
current product

exit -- -- --
log order cart customer

coupling
Create new customer class if not yet
existing.
Add relation between cart and cus-
tomer class.
Update payment mode attribute.

customer buys
items:
cart,
requested pay-
ment mode

….. ….. ….. …..

6 Conclusions and Future Work

We have shown how workflow theory can be applied to requirements engineering, in
particular for the formalization of use cases. It is again a confirmation that the colored
Petri net framework is a sound base for model integration. The approach presented
here gives a systematic way to develop system specifications and the possibility to
verify properties, in particular soundness. We did not have enough room here to show
how this approach can be continued to decompose a system into logical components,
but [12] and [5] provide a theoretical base to support this approach. Experience in
several software development projects has convinced us that that approach works
well.

We are working on a design method for component based development where
workflow nets are first class citizens, i.e. we try to model all process aspects of a sys-
tem components as workflows. We like to do this using standard techniques like use
cases, sequence charts and activity diagrams as much as possible. The idea is to add
some modeling restrictions (as conventions) to the existing techniques and to limit the
introduction of additional notations as much as possible.

Use Cases as Workflows 103

References

1. Aalst, W. van der: Verification of Workflow Nets. In: Azema, P., Balbo, G. (eds.): Appli-
cation and Theory of Petri Nets 1997. Lecture Notes in Computer Science, Vol. 1248.
Springer-Verlag, Berlin (1997) 407–426

2. Aalst, W. van der, Desel, J., Oberweis, A.: Business Process Management, Models, Tech-
niques, and Empirical Studies. Lecture Notes in Computer Science, Vol. 1806. Springer-
Verlag, Berlin (2000)

3. Aalst, W.M.P. van der: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, Vol. 8, no. 1 (1998) 21–66

4. Aalst, W. van der, Hee, K. van: Workflow Management: Models, Methods, and Systems.
MIT Press, Cambridge (2002)

5. Aalst, W. van der, Hee, K. van, Toorn, R. van der: Component-based Software Architec-
tures: a Framework Based on Inheritance of Behavior. Science of Computer Program-
ming, Vol. 42 (2002) 129–171

6. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer
Science, Vol. 40. Cambridge University Press (1995)

7. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 2nd edn. Addison Wesley (2000)

8. Girault, C., Valk, R.: Petri Nets for System Engineering: A Guide to Modeling, Verifica-
tion, and Applications. Springer-Verlag, Berlin (2002)

9. Hee, K. van: Information Systems Engineering: A Formal Approach. Cambridge Univer-
sity Press (1994)

10. Hee, K. van, Sidorova, N., Voorhoeve, M.: Soundness and Separability of workflow nets.
Submitted for publication

11. Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, Vol.
1: Basic concepts. 2nd corrected printing. Springer-Verlag, Berlin (1997)

12. Kindler, E., Martens, A., Reisig, W.: Inter-Operability of Workflow Applications: Local
Criteria for Global Soundness. In: Aalst, W. van der, Desel, J., Oberweis, A.: Business
Process Management, Models, Techniques, and Empirical Studies. Lecture Notes in Com-
puter Science, Vol. 1806. Springer-Verlag, Berlin (2000) 235–253

13. Kruchten, P.: The Rational Unified Process: An Introduction. 2nd edn. Addison-Wesley
(2000)

14. Fernandez, E. B., Liu, Y., Pan, R.Y.: Patterns for Internet shops. In: Procs. of PLoP 2001,
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/ebfernandez0/P
LoP2001_ebfernandez0_1.pdf

15. Reisig, W.: Petri Nets, An Introduction. Springer-Verlag, Berlin (1985)
16. Sommerville, I.: Software Engineering. 6th edn. Addision-Wesley (2000)
17. Mazza, C., Fairclough, J., Melton, B., de Pablo, D., Scheffer, A., Stevens, R.: ESA Soft-

ware Engineering Standards. Prentice-Hall (1994)
18. Verbeek, H., Aalst, W. van der: Woflan 2.0: A Petri-Net-Based Workflow Diagnosis Tool.

In: Nielsen, M. Simpson, D.: Procs. 21st International Conference on Application and
Theory of Petri Nets. Lecture Notes in Computer Science, Vol. 1825. Springer-Verlag,
Berlin (2000) 475–484

A Model to Support Collaborative Work in
Virtual Enterprises

Olivier Perrin1, Franck Wynen1, Julia Bitcheva1,2, and Claude Godart1

1 LORIA – INRIA – UMR 7503
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

{olivier.perrin,franck.wynen,julia.bitcheva,claude.godart}@loria.fr
2 France Télécom R&D,
22307 Lannion, France

Abstract. Virtual enterprise gathers partners distributed in space, time
and organizations, in order to achieve a common goal. Their business
process realization needs the coordination of their distributed interac-
tions. This paper presents the Synchronization Point model. It provides
support for cooperative process management and coordination. It offers
pertinent information about work progress while maintaining adequate
privacy of information, and supports both long-time transactions and dy-
namic process definition. Then, its data repository and activity manager
helps human interactions in cross-organizational applications.

1 Introduction

Business pressures (margin erosion, development costs, time-based competition)
are placing increased emphasis on how organizations operate and interoperate
with other enterprises to achieve a common business goal [6]. B2B interactions
must take place simply, and organizations must work more directly with their
suppliers and customers, to respond more quickly to changes. In the same time,
rapid growth of web technologies is beginning to transform traditional inter-
enterprise business models and allows virtual enterprise creation.

To enable organizations to adapt to this new business environment, a middle-
ware is required to provide dynamic and flexible integration between partners
in the value chain. Although new technologies will be needed to enable such
integration, they will have to work seamlessly with both intra-enterprise and
inter-enterprise existing business processes, while maintaining the privacy of in-
formation and the autonomy of participants [5,7]. In this paper, we propose a
concept that tries to answer these features and an implementation of this mid-
dleware as a Web service. This work is partially developed in the context of a
cooperation between France Telecom R&D (the e-Process project) and LORIA.

In section 2, we give a definition of a virtual enterprises and a list of awaited
features for cross-organizational processes. We also introduce the idea of a pro-
cess service. The Synchronization Point model is presented extensively in the
next sections: its model is described in section 3, while its implementation is
detailed in section 4. Section 5 gives a short comparison to related work. Section
6 concludes.

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 104–119, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Model to Support Collaborative Work 105

2 Problem Statement

2.1 Virtual Enterprise

A virtual enterprise (VE) is an organization that allows enterprises to create a
partnership for a specific project. To work on this project, the trading partners
have to share competences, resources and processes (or fragments of processes)
and make members work together. But these members belong to different phys-
ical organizations that can be in different places and different time zones.

Contrary to classical organizational structure based on long-standing busi-
ness partnerships, VE organizational model has to be more dynamic and loosely
coupled with the specific business partners. Another difference is that a VE
achieves its objectives by defining and implementing processes that are dis-
tributed across several organizations [15]. Each partner implements a subset
of activities of the overall process (partners work on different activities that can
be composed) or the same activity can be implemented conjointly by several
enterprises. This means that activities must be coordinated and synchronized.
Another requirement is to specify each member contribution by a contract: the
contract specifies deliverables, roles, responsible and contract terms (deadline,
quality, guarantees. . .). To summarize, the virtual enterprise realization needs
to take into account resources, organizational models, contracts between partic-
ipants, and process models. Our virtual enterprise model is described in [1]. In
this paper, we focus on the collaborative process model.

2.2 Cooperative Processes

A process definition consists of a network of activities and their relationships
[20]. In a cooperative process, partners from different enterprises realize both
atomic and composite (sub-processes) activities. In fact, a cooperative process
definition is similar to traditional workflow in the sense that it describes the
flow of the composed process. However, if they could be an acceptable solution
for sequential activities, workflow systems are not fully adequate for the coor-
dination of cooperative activities. As a matter of fact, the major characteristic
of cooperative activities is that they are realized by parallel flows of execution,
modeling the activity of each contributor. When using a traditional workflow
system to model such a cooperative activity, time efficiency could be impaired :
partners may have to wait for termination of all activities before being able to
estimate result compatibility and before making a decision. For faster reaction
to the changes, collaborative partners have to exchange intermediate results be-
fore the end of their contributions. Some flexible workflow systems can manage
intermediate results exchange, but only if these exchanges are anticipated and
modeled before the process execution. But, human collaboration activities are
too unpredictable and cannot be totally anticipated. As the considered collabo-
ration is not fully automated, and the human reaction is uncertain, a VE requires
the ability for dynamic process definition change. Another consequence of the
human participation is the relatively long time of their reactions. The use of

106 O. Perrin et al.

traditional ACID transactions is inappropriate for the long-running activities
because of resource locking. Instead, such activities require long-time transac-
tions : atomicity and isolation levels must be relaxed and intermediate results
can be released before transactions end. A cooperative behavior requires relaxed
forms of transactions that are hardly supported by traditional workflow systems.

On the other hand, groupware tools provide implicit coordination means.
They support multiple partners parallel work by managing divergence through
version storage, but since there is no explicit control of this divergence, the
global data integration is delayed until the last phase. The problem is that the
divergence can then be so high that the global integration is hard to achieve.
To manage this problem, they provide group awareness means, which allow the
participants auto-coordination [8].

Anyway, the solutions are not satisfactory and the problem remains “how to
coordinate cooperative activities ?” The strong interdependency of partners par-
allel work requires intermediate results exchange and process-progress manage-
ment. Our approach tries to combine the advantages of workflow and groupware
tools. By adding the flexibility of group awareness and implicit coordination
to the explicit coordination of workflow systems, we provide both a model and
a tool that allow partners to coordinate themselves during the work progress.
Moreover, we support both long-time transactions and dynamic process changes.

2.3 Process Services

To take part in cooperation projects, an organization must declare what it can of-
fer to partners, thanks to the description of the offered products and services. On
the other hand, external processes will need event feedback, in order to control
their own work progress. However, business processes are part of the enterprise
strategic core, as they represent the organization know-how and contain a lot of
proprietary information. Since all the outcomes are the result of an internal busi-
ness process, partners must not have direct access to this information. So, our
process service is an abstract representation of the enterprise private business
process. The process service model is a layered model, where the process service
layer is a public abstract definition of the outcomes the enterprise is able to de-
liver, and the business process layer is the internal process flow in the enterprise.
The model clearly separates the enterprise offer from its implementation in order
to respect the enterprises privacy needs : no direct access to internal processes
and no restriction for their implementation. Besides the outcomes (products and
events) description, a process service definition (close to definition of [9]) con-
tains the conditions surrounding the offers (inputs, guarantees. . .), as well as
the providers information (access information, communications modes. . .), and
includes information dedicated to the data and activities synchronization, the
transactional management, and the retrieval of the services state [2]. Then, our
process service definition is compliant to the WSDL standard [19]. Using this
abstraction level, the cooperative process realization boils down to the problem
of process services composition and integration. Interactions between process
services have to be coordinated. This is the task of the synchonization point.

A Model to Support Collaborative Work 107

3 Synchronization Process Model

3.1 Introduction

Let us now introduce the Synchronization Point model. A SP is a cooperative
cross-organizational activity that provides facilities for managing coordination
and synchronization of cross-organizational processes. It provides as much in-
teraction and parallelism as possible while trying to guarantee correctness. This
requires a flexible definition of coordination and synchronization criteria at the
beginning of each cooperation in order to allow cooperative process revision
(addition, suppression or modification) as the work progresses.

Process
service

Organization A

Process

Application 1

Private
process

Process
service

Process
service

Application 2

service
layer (public)

Process
service

Organization B

Application 3

Private
process

Process
service

Process
service

Application 4

A A

A

AA

SP

SP

SP

Cooperative process

Cooperative activity

A

SP

Activity

Synchronization

Data and control

point

flows

Business
process

layer (private)

Fig. 1. Process service model and synchronization point

Figure 1 depicts the process service model, and introduces Synchronization
Point (SP) processes. An organization manages its process (private process), us-
ing applications and/or workflows systems. It publishes a process service. Two
(or more) process services participate in a cooperative activity. The idea of co-
operative activity, i.e. an activity explicitly designed to support the cooperation
of a group of agents, is not so developed in the context of process management.
Thus, we introduced here our proper concept: a cooperative activity is handled
by a synchronization point. This SP manages not only the activities as they are
described in the public process service, but also the data managed by these ac-
tivities. It aims to coordinate the data flow, the control flow and the transaction
flow, and it manages the cross-organizational exchange and controls the contract
terms: deadlines, outcomes guarantees,. . . Moreover, the SP also provides tools
allowing partners synchronization for the realization of a common goal.

Thus, a cooperative process definition becomes a set of activities and synchro-
nization points that coordinate partners work. To achieve this coordination, a
SP implements several functions for controlling, deciding and making evolve the
synchronized cooperative process. As a cooperative entity, the SP must provide
object sharing between contributing organizations, communication, awareness
and coordination means :

– object sharing. It is the minimum service to provide for cooperation sup-
port, and this also implies the management of versions and of partner privacy.

108 O. Perrin et al.

This last point is especially important in the context of cross-organizational
processes. In order to preserve and ensure privacy and autonomy of partici-
pants, we must reduce objects inter-visibility (i.e. visibility of a participant
object by another participant) as low as cooperation needs. This can directly
influence the definition of SPs. Of course, it is not because an organization
A shares an object with participant B and B share another object with par-
ticipant C that A accepts to share its object with C. But also, it is not
because A shares the same object with B and C that it wants to synchronize
simultaneously with B and C. Clearly, inter-visibility of objects needs to be
based on contracts that explicitly define privacy rules.

– communication. Partners need to talk to each other, to discuss, to share
artifacts, when they are coordinating their processes and reconciling their
process differences. This potentially includes chat, email, video-conferencing,
white boards and so on. A SP must also support different communication
policies (request/response, solicit response, one-way, notification...).

– coordination. A major difficulty introduced by distribution is the coordi-
nation of the activities of team members. We address this problem as is :

• task coordination (or explicit coordination) based on the hypothesis that
it is possible to define a process and to enforce this process on working
sites. We address this problem thanks to a high-level specialized process
inspired from the Deming virtuous circle (Plan, Do, Check, Act),

• group awareness (or implicit coordination). Being aware of the partners
work is a good way to help coordination of people in the realization
of a common objective. To achieve this, a SP notifies partners of all
events concerning shared data and activities (i.e. creation, modification,
versioning, deletion). In order to provide only pertinent information and
avoid overload, SP allows each participant to create a subscribed events
list so that he/she will be notified only for a kind of event.

To synchronize cross-organizational processes, a SP provides:

– check. To be able to synchronize partners, a SP needs information on their
work progress. To ensure enterprise privacy needs, it does not ask infor-
mation on their internal processes, but uses only the information that are
associated to process services by contract. This information contains a list
of outcomes and a list of properties that outcomes must verify. Outcomes
includes intermediate and final results, predefined events (e.g. end of specific
task, document reception. . .). Properties includes time schedule, quality cri-
teria, and so on. As outcomes and properties are application dependent, the
model makes it possible to structure and store checks and related decisions.
So, the role of a SP is to compare and evaluate the activity outcomes re-
garding a set of predefined criteria (presence of document, quality, schedule,
objective fulfillment. . .). Depending on the result of check, partners implied
in a SP can decide actions. Among these actions, we distinguish (re)planning.

– act. Depending on the result of check, a set of actions is decided by partners.
The objective is to react and fill the gap between the process initially fore-
casted and the executed one. A decision relates an event (why), an action
(what), a group of people in charge of its realization (who) and a schedule

A Model to Support Collaborative Work 109

(when). Events can be either the result of the normal execution of the pro-
cess, or an exception. An action can concern one or several organizations.
Decision are specified in action rules. For instance, what should be dowhen
one partner does not respond, but most important actions undertaken during
control consist in replan the process.

– plan. This SP function supports dynamic process changes. It allows SP
revision (e.g. deadline change, action rule modification. . .) as well as cross-
organizational process adjustment. This adjustment includes the increasing
of resources dedicated to an activity, shift of the end date of an activity,
shift of an activity in a process plan, switch of two activities, addition of an
activity, replacement of an activity by another, suppression of an activity
and so on. Of course, cross-organizational process adjustment is constrained
by the need of autonomy requested by partners.

3.2 Definitions

In the following, we denote a process with upper case letter such as P , Q or
R and we introduce O(P) the set of objects manipulated by the process P and
denote its elements with lower case letters such as x, y or z. Objects of a given
process could be files, data, goals, but also sub-processes and/or activities.

General Definitions. WFMC defines a business process as a set of one ore
more linked procedures or activities that collectively realize a business objective
or policy goal, normally within the context of an organizational structure defining
functional roles and relationships. In our mind, a collaborative business process
represents the different steps among several organizations required to complete
a given task or to achieve a given goal.

Relations. We consider that two processes cooperate if it exists a relationship
between at least one of their objects. We denote this relation rel and use notation:
x rel y where x or y could be both documents or sub-processes. Without control
or cooperation, two divergent versions of the same object may be obtained.

Sat Functions. When a relationship exists between two objects, we associate
and define a Sat function that is able to satisfy the relation, denoted Sat(x rel y).
Satisfying a relation is the result of an activity that consists in checking if x
and y realizes a set of conditions upon both x and y (see 3.2, Synchronization
Activities). We may use static functions to check whether the relation is satisfied
or dynamic functions to ensure that it is. In most cases, we may use both to
perform complex relations among process objects.

∀x, y (x rel y)⇒ ∃ Sat(x rel y) | Dom(Sat(x rel y)) = {true, false} (1)

As previously underlined, objects can be processes and we can write :

∀P, Q (P rel Q)⇒ ∃ Sat(P rel Q) | Dom(Sat(P rel Q)) = {true, false} (2)

110 O. Perrin et al.

Synchronization Point. A synchronization point (SP) is a particular process
denoted P∞Q (pronounced “P synchronized with Q”) such that :

∀x ∈ O(P), y ∈ O(Q) and (x rel y),
P∞Q⇒ Sat(x rel y) ∈ O(P∞Q) ∧Dom(Sat(x rel y)) = {true, false} (3)

A synchronization point allows for synchronizing one cooperation between
two or more processes. It includes every Sat function that resolves relations
between their objects or processes themselves. It exists a bijection among the
existence of a synchronization point and the existence of relation among process
objects. In other words, we assume that 1) we cannot have a synchronization
point without having at least one object relation and 2) all the Sat functions
that resolve relation among process objects of two given processes P and Q are
located in a P∞Q synchronization point. Moreover, we will describe later how
the SP is able to offer a versioned space for all these objects.

A synchronization point is a process that includes parallel activities, and
each of them resolves the Sat function corresponding to the relations among
process objects involved in the cooperation. We separate individual behaviors of
processes P and Q and the behavior of their common synchronization point. In
the same way, if a single process P owns the objects involved in a relation, we
can consider the corresponding Sat function as a sub-process of P∞P :

∀x, y ∈ O(P) (x rel y)⇒ P∞P exists (with P∞P
= P). (4)

Synchronization Activities. A synchronization activity is an activity that
tries to resolve a Sat function. It is included in a synchronization point and
is denoted P∞Q

Sat(x rel y) where Sat(x rel y) is the Sat function that resolves the
relation of two objects x ∈ O(P) and y ∈ O(Q). A synchronization point includes
the Sat functions and the objects involved in relations between processes. Now,
we can define the object set of a SP P∞Q as the set of all shared objects of P
and Q for which it exists both a relation and a Sat function :

n⋃
i=1

xi ∈ O(P) ∪
m⋃

j=1

yj ∈ O(Q) ∪
n∗m⋃
k=1

Satk(
n⋃

i=1

xi relk

m⋃
j=1

yj) | (xi relk yj) (5)

When a synchronization activity failed (the relationship between the two
objects or the two processes can not be satisfied by the Sat function and. the
check has failed), the first option is to accept that the Sat function could be
unsatisfied. A human decision is needed and partners of the collaborative process
are notified that a divergence could exist between the objects. The second option
is to start the replan activity. This activity is dedicated to process execution and
activities in P∞Q must either be retriable or compensatable.

Visibility. In order to preserve and ensure privacy and autonomy of process
participants, we must reduce process object inter-visibility as tiny as cooperation
needs. In a relationship between two processes P and Q such that P is a sub-
process of a process R, P ∈ O(R), and Q is a sub-process of a process S,

A Model to Support Collaborative Work 111

Q ∈ O(S), we may have (P rel Q) ⇒ P∞Q but not R∞S in order to preserve
autonomy of processes R and S. We consider a workflow management system
activity as black box due to the fact that some workflow managements systems
do not respect the WAPI [21] specifications. Thus, to build a relation among
a workflow activity wa and a process P , we must before encapsulate wa as an
object in a process Q and then declare the cooperation such as :

∀P, wa (wa rel P)⇒ ∃Q | wa ∈ O(Q) ∧ Sat(wa rel P) ∈ O(P∞Q) (6)

P∞ Q

Process

Versions
of object o1

P running

Process

Versions
of object o1

Q running

Process
P completed

Process
Q completedVersions

of object o2

Process Versions
of object o2

R running
Process

R completed

running

Process
Versions

of object o1

P running

Process

Versions
of object o1

Q running

Process
P completed

Process
Q completed

Versions
of object o2

Process
Versions

of object o2
R running

Process
R completed

Process
state P∞ QName and state

of the process
Synchronisation point
between 2 processes Data object

Control flow

Data flow

Q∞ R
running

P∞ Q∞ R
running

Fig. 2. Two synchronization points

Multi-process Relationship. We have defined above the meaning of x rel y
and its consequences among processes that include x and y objects. We now
consider relations among three processes to evaluate the meaning of P∞Q∞R.
First, we must keep in mind that processes could be part of different organi-
zations. At process level, we have as many synchronization points as process
relationships. Figure 2a shows a situation where process Q is involved in two
cooperative processes. Thus, P and R are not aware of each other, preserving
their autonomy. In fact, we define a privacy rule where a process is involved in
a synchronization point if and only if a relation exists among one of its objects
and at least one object of the synchronization point. We write :

∀x ∈ O(P1), x ∈ O(P1∞P2∞...∞Pn)⇒ (∃y ∈ O(P2∞...∞Pn) | x rel y) (7)

Definition 7 exposes a recursive way to involve a process in a cooperation.
This allows detecting when visibility agreements are needed for an incoming
process. Thus, we are allowed to propose a synchronization point model where
we share “all necessary but no more and at least, under the control of each
participant”. In reference of the previous example, if a relation exists among
o1 and o2 and if P and R accept to share those objects with each other, we
can merge our two synchronization points in a single one. Figure 2b depicts a
situation where P , Q and R work together.

112 O. Perrin et al.

3.3 State Model

In paragraph about visibility, we discussed the differences between process and
object relationships. In order to coordinate both objects of two processes and
activities belonging to these processes, we introduce the synchronization point
for managing the exisiting relations between objects or processes, and providing
a coordination based on process state and coordination based on object state.

Process. Our process state model is WfMC compliant [20]. We use the defined
states : Initiated (I), Running (R), Suspended (S), Terminated (T), Active (A)
and Complete (C). Thus, we denote the current state of a process or an activity
with an exponent letter (e.g. PT means that the process P is terminated). A
compensatable process implies first the abortion of the execution of the process
instance. A process is retriable when the instance can be invoked a finite number
of times such that the last invocation commits while all the previous ones abort.

Object. For object, we introduce a new state model.
States
Defined (d). The object is defined but empty. We can define relations among
objects and therefore may create synchronizations point. This is generally the
state of an object that is involved by a process at design time.
Instantiated (i). The object now exists in a process repository but is not yet
manipulated. It must be the state of a newly created object or the representation
of a binding between an object and its envelope.
Modified (m). The object is currently modified by one ore more processes or
activities. The process that manipulates the object may read in and write to its
own repository.
Read (r). The object is in read mode. That is, if an object is involved in a
relation, we may have a synchronization activity even if it does nothing else
than checking the object availability. This is a final state.
Delivered (v). The object is posted to the SP repository whose process depends
on. From the process point of view, the work is done and checks can be started.

READING

DEFINED INSTANTIATED

MODIFIED

DELIVERED

Modifies

Read Save

Deliver
Modifies

Deliver

Read

Bind

Fig. 3. Object state model
Transitions
Figure 3 depicts the object state model. However, we assume that some transi-
tions must be unavailable for some object types (e.g. a process cannot modify
an automatic activity such as workflow but just can read its state). We distin-
guish 1) the save transition that consists in storing the object in its repository
during process time and 2) the deliver transition that achieve a modification

A Model to Support Collaborative Work 113

session inside a process and proposes a result (which is know as intermediate
result as the two processes involved in the collaboration do not yet commit) to
the community involved in a synchronization point.

3.4 Semantics and Behavior

We have defined a process model, introduced the synchronization point con-
cept and described process and object state model. In this context, we define a
language in order to describe relations between objects and processes.

We propose the notation (object or process)State ⇒ Transition (object or
process) to express that a transition will depend on an object or process state1.
We assume that the left part (i.e. a pre-condition) is a boolean expression and
must be the result of ((object or process)State==State) = true. Thus, we extend
pre-condition as well to conditions upon dates such that (date)⇒Transition (ob-
ject or process) where (date) means ((predefined date)≥(now))= true. A clearest
notation is :

P State ⇒ Transition (Q) (i.e. if P is in state ”State” then transition on Q) (8)

Moreover, the right part is an action that involves an object or a process in a
transition as defined in a state transition model. For example, if we ask for a
process Q to run when another process P will complete (i.e. such as a sequential
routing), we denote PC ⇒ Run(Q). That corresponds to these properties :

1. C is a state for P object type
2. State of P is equals to Complete
3. Run is a valid transition for Q object type
4. State of Q is compatible to a Run transition (i.e. Q is initiated, suspended,
active or running and Q is a process)

If all the conditions above are satisfied, Q is now in running state. We are able
to distinguish explicit conditions that compose a scenario and implicit ones that
return exceptions. Thus, properties 1 to 3 check for inconsistency at process
definition step while the later allows for capturing process errors at runtime.

3.5 Cooperation Contracts

A necessary condition to the existence of a synchronization point is the definition
of at least one object relation. But with three or more objects, relations may
be complex and should generate more than really necessary synchronization
activities. When an object is involved in several relations at the same time, we
must synchronize it in a single synchronization point or we must define two or
more synchronization points in order to serialize the modifications on the object.
We assume that :

∀x ∈ O(P), y ∈ O(Q), z ∈ O(R),
x rel y ∧ x rel z ⇒ P∞Q∞R ∨ (P∞Q)∞R ∨ (P∞R)∞Q

(9)

1 It is allowed to use both “.” (logical and) and “+” (logical or) to express WfMC operators.

114 O. Perrin et al.

For example, in order to perform a three-part cooperation, we take interest
in Q and R object inter-visibility. Relations x rel y and x rel z mean that P and
Q for a part and P and R in another have accepted to share information but
not this is not true for Q and R yet. In fact, we assume that a contract exists
between P and Q and another exists between P and R. That is, if those contracts
include privacy protection clauses (e.g. protection of a part of a document), we
must not provide entire visibility to R in Q and vice versa. Thus, faced to a
multi-relational description, we must test whether :

– contracts exist and allow users to share their objects in a common synchro-
nization point. This case means that a contract also exists between Q and
R and allows involving P , Q and R in a single synchronization point.

– contracts do not exist and we create synchronizations points for each inde-
pendent cooperation.

– contracts do not exist and process participants meet for a deal. In fact, we
propose new contracts in order to reduce the number of SP.

Therefore, if x rel y, x rel z and Q must process during R we are allowed to
propose a global synchronization point if and only if both Q and R participants
accept to work together. Otherwise, we must serialize two different synchroniza-
tion points, selecting for example P∞Q and pushing its result in a cooperation
with R such as (P∞Q)∞R (i.e. different from (P∞Q∞R)).

Thus, we enlighten here the strong link that exists between relations among
objects and contracts among organizations that own them and we claim that
a relation among objects corresponds to a contract and a Sat function. The
first represents work group awareness through process participants, privacy pol-
icy associated to objects and communication means description and the second
proposes tools designed to resolve relations among objects.

3.6 Repository and Versioning

For each process (i.e. P), we define a repository where objects involved in the
process (i.e. O(P)) are stored during processing time. Process activities use
this repository to manage objects. For each synchronization point, it exists a
repository that allows all the process participants involved in the cooperation for
sharing objects. So, given two processes P and Q that collaborate we may have
three repositories : O(P), O(Q) and O(P∞Q). All the repositories encapsulate
objects and give the ability to define privacy policy in a multi-organizational
virtual enterprise. Last, a repository hides objects inside a process scope.

Different versioning policies exist for synchronization point and for processes.
In fact, a SP repository is considered as a contractual view of one or more orga-
nizations version spaces while processes and activities repositories are considered
as workspaces dedicated to evolution of data. That is, synchronization points,
individual processes (those which are not involved in a cooperation) or merely
processes that manipulate some relation independent objects (objects that are
not shared) have a direct read and/or write access to organizational repositories.
Therefore, they use the versioning policy of the organizational repository they
check in or they check out. On the other hand, processes manage independently

A Model to Support Collaborative Work 115

their own versions in their own repository. So, version mismatches induced by
this policy are hidden by privacy rules on process repositories. Moreover, this
avoids an exponential amount of version synchronization messages between orga-
nizations over Internet. When a synchronization point completes, version spaces
of the processes involved are reconciled, and the synchronization point version
space is reconciled with the organizational repository. This schema for version
management also applies for nested processes and their respective repositories.

4 Implementation

In our architecture, a SP starts when each partner decides to start a coopera-
tive activity with others in order to fulfill a given objective. Each partner only
describes its activities, and contracts are established to express conditions and
terms of data exchange and share. Then, each partner works in autonomy, hav-
ing the ability to deliver ongoing version of its work to others and coordinating
its activities with the synchronization point.

The current implementation is based on a distributed architecture that uses
the web services technology. Each partner hosts a part of the SP repository and
exchanges are done thanks to SOAP messages. Thanks to the level of abstrac-
tion introduced for describing organization processes, the architecture does not
require any specific way of doing things, such as describing precisely the orga-
nizational model or the process model. Moreover, it is not mandatory to have
Òworkflow enabledÓ applications and we do not require an explicit enterprise
model. In fact, we use late binding to couple one activity to respectively an
application, a participant, a workflow engine or a back-end process. The only
requirement is the description of process services and we use WSDL [19] for
describing properties of processes.

A SP is managed by a tier (which can be viewed as a broker) that allows
for storing organizations end-points, projects, abstract descriptions of the pro-
cesses, contracts, roles and all the information about synchronization points. A
contract is a XML document that helps us to filter what is the right information
to provide to the right participant at the right time by setting up the exchange
between two or more partners. A contract references a set of filters, which are
also XML documents used to describe information that can be shared with oth-
ers. Once being processed, the reference of the original document is delivered to
the SP repository thanks to a SOAP message, describing the organization end-
point which delivers it. When another organization wants to access shared data,
it requests the tier which is in charge of maintaining which partner (organization
end-point) in the cooperation is able to deliver this data. In fact, the SP repos-
itory is distributed over all the participants of the cooperative activity. Once
the tier finds the owner, it gives to the provider the end-point of the requester
and the associated filter. Then, a SOAP based peer-to-peer communication is
engaged between the requester and the provider. Of course, this communication
is compliant to the existing contract between the two organizations.

Figure 4 gives an overview of the architecture. We can see on the figure that
the private part of the process can be coupled with any internal application.
Then, the process involved in the SP is published as a process service (aka a

116 O. Perrin et al.

web process service). In the same time, a public repository is dedicated to the
data stored within the SP repository for this particular organization (P∞R
in the figure). When an object is delivered to the SP, it is in fact stored in
this particular repository and the reference of the object is sent and stored in
the tier repository. The service provider is a web service that gives the ability
to communicate with others thanks to messages that are compliant to the W3C
Message Exchange Patterns (MEP) we have defined : the MEP deliver, the MEP
download (which uses the JNLP technology), and the MEP read.

ApplicationApplication

private

Process service
(WSDL description)

Private
process

Application

P∞ R

P,Q

Organization A

Process service
(WSDL description)

Synchronization point web service

Internet

Service providerService provider

Co
op

er
at

iv
e p

ro
ce

ss
sc

op
e

ApplicationApplication

private

Private
process

Application

Organization B

R∞ P

R,S

SOAP messages

Authentication

Artefact
manager

Request manager (JSP + Servlet)

Contract
manager

Activity
manager

Orgs

end-points

registry

TierShared

objects

references

P∞ R

Roles,

contracts,

filters

Fig. 4. Architecture diagram

Control flow is synchronized thanks to synchronization activities (check, act,
and plan) belonging to the SP. This means that when an activity is achieved
(the service provider notifies the tier that a given process service is completed),
its results are delivered to the SP repository and when coordination is done,
next activity starts if and only if all the checks (as defined in the contracts)
are valid and the reconciling operations on shared objects are done. Data flow
is managed thanks to a configuration and version management system named
Toxic [16]. During execution of a multi-partner cooperative process, we manage
all the different versions of artifacts.

By providing a shared space for versions associated with the SP (where ver-
sions of artifacts are delivered), we are able to keep one participant of this SP
in touch with work progress of others. By having access to intermediate results,
each participant can see what others did on shared objects. As objects are under
version control, one can see previous revisions, see differences between versions
and who changed what and when. Of course, this asynchronous awareness can be
considered as simple, but we believe that it can help to ensure that everyone has
up to date information about how the project and the collaborative activities
make progress. Moreover, each participant keeps all the control on his objects,
a mandatory feature for all the partners.

A Model to Support Collaborative Work 117

Finally, another feature provided by the new prototype is the ability to trace
the work that is done during both autonomy periods and collaborative periods.
By storing main states of all the activities, duration of these activities, missed
deadlines or decisions that are taken, we provide a view of what happened and
when, and where the process failed or succeeded.

5 Related Work

Current work in the research field on automating processes is not directly ap-
plicable in the virtual enterprise domain. In fact, there is no common shared
middleware that fits in the needs for spreading across organizations boundaries.
Current propositions lead to tightly couple one organization with another both
at the architecture and process levels. Moreover, transactions models and coor-
dination needs are not accurate. For instance, locking access to shared resources
is not desirable as one organization risks to loss its autonomy. Then, recovery
operations could not be under the responsibility of only one organization. To
summarize, two contradictory needs coexist : the autonomy of partners and the
need to get some information about processes hold by the others.

Our proposition is quite different from existing workflow systems such as
CrossFlow [11] for instance, where organizational model must be replicated and
where applications must be Òworkflow enabledÓ in order to be able to extract
any necessary data the system may need.

Van Der Aalst [17] has proposed a model that is compliant to the WfMC
model. It uses high-level coloured petri nets to model workflows. It is a global
model that can be split into different parts and that provides an expressive no-
tation that allows to model aggregation, loops, branches, concurrency, and time
constraints. The approach also builds on a lifecycle model, and algorithms are
introduced to determine the soundness of a given net. However, the approach is
top-to-bottom and it does not allow to model exceptions, nor compensation. It
also lacks the notion of roles and the model does not take into account commu-
nication between the partners.

In Weske [22], there are some ideas to resolve flexibility in workflows man-
agement systems but multi-enterprises processes are not in the scope of this
reflection. One interesting idea is the definition of a meta-schema for workflows
and the use of graphs for defining workflows.

The work of Casati [4] describes data exchange and process interoperability,
but in a B2B context, where exchanges are limited to peer-to-peer conversations.
The concept of traces is very interesting and we should include this kind of
mechanism in a future version of the prototype.

Georgakopoulos [9] presents in CMI the concept of window of opportunity
which allows for conciliating prescribed activities inherited from WfMS and
optional activities inherited from groupware applications. Our synchronization
point concept helps to provide the same kind of feature, but it wants to be more
general and flexible, and gives the opportunity to exchange intermediate results.

Some works around workflows are available. XPDL [20] is used to define
processes but compensation cannot be modelled. BPML [3] or BPEL4WS [12]

118 O. Perrin et al.

can be used to query the states and control the execution of process instances.
PIP supports interchange between two or more organizations following Rosetta
Net standard [14]. These propositions fail to provide solutions for either long
term transactions, collaboration phases, or binding to internal processes.

6 Conclusion

In this paper, we propose a model and an architecture that support collaboration
and cooperation for multi-enterprises processes. This work tries to offer advan-
tages of both workflow management systems and groupware systems. With the
SP model, different partners can work together and they only need to define co-
operation rules corresponding to contract specification. Then, the SP is able to
coordinate the work progress, and it provides all the participants with accurate
information on work evolution. By including data and control flow management
functions in SP, we allow a flexible process definition. We are able to adjust the
collaboration process definition by updating the SP during work progress and it
is possible to evaluate the cooperative process against a set of given criteria.

The first feature of the SP model is the platform and system independence,
thanks to a certain level of abstraction. Thus, it is easy to integrate the model
with existing back-end systems of organizations and it is not tightly coupled
with workflow-enabled systems. Another feature of the model is the adherence
to component-based design and composability. With this model, it is possible to
compose several processes viewed as components in order to obtain an overall
composed process. This leads to the ability to easily manage multi-enterprises
processes. We are currently evaluating the model against the workflow patterns
proposed in [18]. Then, when you need to cooperate in order to achieve a given
objective, you need to exchange and to provide to others intermediate results,
breaking the ACID properties of classical transactional models that are used by
these WfMS. The SP model tries to break these limits.

Flexibility, portability, and interoperability are also supported and the SP
model offers an effortless enterprise information systems integration, while pre-
serving autonomy of each partner. We do not impose to be compliant to any
model (both process or organizational models) in order to use our model and
our architecture. This is hardly possible when we try to do this using WfMS.
Then, we adopt a service-oriented architecture, and we rely on standards such
as SOAP, WSDL and XML. This allows for accommodating and fitting both the
architecture and the model without to throw away all the work ever done and
to benefit from future enhancements.

References

1. J. Bitcheva and O. Perrin. Virtual Enterprise Meta Model. Technical report, Vision
e-company Research Program, France Telecom R&D, April 2002.

2. J. Bitcheva, O. Perrin and C. Godart. Cross-Organizational Processes Coordina-
tion. Technical Report LORIA A02-R-046, Nancy, May 2002.

3. BPMI. Business Process Management Initiative. www.bpmi.org.

A Model to Support Collaborative Work 119

4. F. Casati, M. Sayal, U. Dayal and M.C. Shan. Integrating Workflow Management
Systems with B2B Interaction Standards. In ICDE 2002, February 2002.

5. Q. Chen, U. Dayal, M. Hsu and M. Griss. Dynamic Agents, Workflow and XML
for E-Commerce Automation. In First International Conference on E-Commerce
and Web-Technology (EC’2000), UK, 2000.

6. A. Dan and F. Parr. Long running application models and cooperating monitors.
In HPTS workshop, Asilomar, CA, 1999.

7. U. Dayal, M. Hsu and R. Ladin. Business Process Coordination: State of the
Art, Trends, and Open Issues. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11–14, 2001, Roma, Italy.

8. P. Dourish and V. Bellotti. Awareness and Coordination in Shared Workspaces.
In Proceedings of the ACM Conference on Computer-Supported Cooperative Work,
ACM Press: Toronto, Ontario,1992, 107–114.

9. D. Georgakopoulos. Collaboration Management Infrastructure (CMI): advance-
ments in Coordination, Awareness, and Integration. November 2001.

10. C. Godart, O. Perrin and H. Skaf-Molli. Cooperative Workflows to Coordinate Co-
operative Asynchronous Applications in a simple Way. In International Conference
on Parallel and Distributed Systems (ICPADS ’2000), July 2000.

11. P. Grefen, K. Aberer, Y. HoffnerC and H. Ludwig. CrossFlow: Cross-
Organizational Workflow Management in Dynamic Virtual Enterprises In Interna-
tional Journal of Computer Systems Science & Engineering, Vol. 15, No. 5, 2000.

12. F. Leyman. Business Process Execution Language for Web Services, 31 July 2002.
13. O. Perrin and C. Godart. A Mail Based and XML based Protocol To Support

Workflow Interoperability. In AI 2002, February 2002.
14. Rosetta Net. PIP, Partner Interchange Process, Rosetta Net Implementation

Framework. www.rosettanet.org.
15. H. Schuster, D. Georgakopoulos, A. Cichocki and D. Baker. Modeling and Com-

posing Service-Based and Reference Process-Based Multi-enterprise Processes. In
CAiSE 2000, LNCS 1789, 2000.

16. Toxic. ECOO group.
17. W. Van der Aalst and K. Van Hee. Workflow Management: Models, Methods, and

Systems. MIT press, Cambridge, MA, 2002.
18. W. Van der Aalst, A. ter Hofstede, B. Kiepuszewski and A. Barros. Workflow

patterns. www.tm.tue.nl/it/research/patterns, July 2002.
19. Web Services Description Language (WSDL) 1.1. W3C, March 2001.
20. WfMC. XML Process Definition Language – XPDL 1.0, December 2002.
21. WfMC. Interface 2: WAPI Specification, WFMC-TC-1009, Version 2.0, July 1998.
22. M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in

a Workflow Management System. In Proceedings of the 34th Hawaii International
Conference on System Sciences, 2001.

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 120–135, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Towards a Library for Process Programming

Guangxin Yang

Bell-Labs Research, Lucent Technologies
 600 Mountain Avenue, Murray Hill, NJ 07974 USA

gxyang@research.bell-labs.com

Abstract. Process programming is regarded as a critical approach in many
cooperative process related areas including software engineering, workflow
management, business process management, etc. Many process models,
languages, and corresponding runtime support systems have been developed.
We argue that a comprehensive library for process programming is essential for
the acceptance, popularity, and success of this new programming paradigm. We
define an architecture of such a library and present some mechanisms on how
the architecture is implemented in the context of P, a process language and
system for developing integrated cooperation applications.

1 Introduction

Process programming is a vital approach in a number of process management related
areas, such as workflow management, process-based software engineering, business
process redesign and reengineering. It concerns primarily with modeling and
describing formally various aspects, e.g. activities, artifacts, roles, tools, and the
interrelationship among them, of an often complex and long duration procedure
within which a group of people cooperate with each other to accomplish a certain task
[Curtis et al. 1992; Salimifard et al. 2001]. The description, or a process program, is
critical to understand, design, simulate, optimize, and support processes in real world
[Fuggetta 2000].

There have been numerous process-modeling techniques, among which language-
based ones are dominant. For example, in the workflow area, people have been
modeling workflow process with various Petri net, directed graph, formal grammar,
etc. based formalisms; in process-centered software engineering, more than a dozen
process languages [Ambrola et al. 1997], including APPL/A [Sutton 1996], SPADE-1
[Bandinelli 1996], HFSP [Katayama 1989], CSPL [Chen 1997], MELMAC [Gruhn et
al. 1992], Merlin [Peuschel et al. 1992], E3 [Jaccheri 1998], EPOS [Conradi et al
1994] have been developed; in business process area, representative work includes
Process Handbook [Malon et al. 1999], the GED framework [Katzenstein et al.
2000], and Process Access Library [Hart et al. 1992] for systematic business process
modeling and analyzing. These efforts have produced more and more mature
understandings of processes and mechanisms to support them.

Process programming is perhaps based on the understanding that "business
processes are software too", a generalization of the well received proposition
"software processes are software too" in the software process community [Osterweil

Towards a Library for Process Programming 121

1987]. Though the power of software reuse is self-evident and many have recognized
that it is critical to share and reuse process programs among different systems to
promote efficiency and interoperability [see some position papers in Proc. of IEEE
International Software Process Workshop, Dijon, France, 1996], few systematic
efforts have been put into developing advanced mechanisms that enable such sharing
and reuse, perhaps partly due to the wide variance in the formalisms, capabilities, and
semantics of process languages. We believe that research on mechanisms for process
reuse will not only be a key enabler to the popularity of process technologies, but also
will lead to better understandings of and more flexible support for processes.

The purpose of this paper is to propose an architecture of reusable process libraries
in general and to present our implementation of in the context of the P language and
system, which is designed for developing cooperative applications [Yang et al. 2001],
in particular. Our findings include:

• Process inheritance, which bases one process definition on another, should be
the primary pattern for process reuse. With explicit process inheritance, process
programmers would be able to exploit the power of abstraction-specialization in
developing process programs.

• Process libraries are conceptually a superset of software libraries. Though the
main purpose of process libraries is to provide reusable process definitions, software
components used at different stages during instance enactments should be also
included in process libraries and should be able to be easily expanded.

• Process enactment services, such as creating and manipulating process
instances, retrieving the runtime information about instances, should be available via
process libraries. The reflection ability to access these services from within process
programs would greatly increase the flexibility of process modeling.

The rest of this paper is organized as follows. In the coming section, we will
propose a process library architecture. The third section details how the architecture is
implemented in the context of P. Comparisons with related work are presented in the
forth section. Conclusions and plans for future work are outlined in the last section.

2 An Architecture of Process Libraries

Process libraries should contain the components that can be used as building blocks
for writing process programs. Obviously, people want to find reusable process
definitions from process libraries to build their own process programs. The problem is
once they have these definitions, how they can reuse them efficiently. Inheritance has
been a very powerful way for software reuse [Krueger 1992]. Since cooperation
processes can be programmed, introducing inheritance to process programming
should boost dramatically the productivity and popularity of this programming
paradigm.

At the same time, cooperative processes are a combination of both coordination
and computation. Although there are strong trends and evidences that in the design of
some cooperation languages people tend to make a separation between these two parts
[Cortes et al. 1996], from the point of view of constructing process libraries, we think
both parts are of equal importance. This is because coordination, in some sense, relies

122 G. Yang

on computation. For example, people need to use some kind of software tool, e.g. a
word processor, a compiler, or access some resources, e.g. a database, a file, to get
their work done. Therefore, elements for accessing these services should be an
integral part of process libraries.

On the other hand, process programs differ from ordinary software programs in
that the former is not directly scheduled by operating systems, but by process systems,
which provide functions for managing process instances. Process management
services of operating systems, such as creating or terminating processes/threads, are
available to any program via certain system calls. Unfortunately, instance
management services of process systems are not generally available from within
process programs. This prevents process programmers from using these services to
build more flexible process programs. Therefore, elements that provide accesses to
these kinds of computation services should also be included in process libraries.

An architecture of process libraries based on these considerations is depicted in
Fig. 1. We identify three critical building blocks, i.e. reusable process definitions,
components for accessing computing services both external and internal to process
systems. Each part should be easily extensible, though not necessarily in the same
way. Since a complex process may involve any computation, a library for that
computation may be included as part of process libraries. It is in this sense that we say
process libraries are a superset of classical software libraries. The next three
subsections will discuss some of the most important issues within each of the three
parts. Our solutions to these issues are presented in Section 3.

Reusable Process Definitions

Components for Services
Internal to Process Systems

Components for Services External to
Process Systems

DBMSes File Systems

Operating System Services

Instance Control

Instance Runtime Info.

Directories

Internet Services

Interfaces to any other resources or services used

Fig. 1. An architecture of process libraries.

Dynamic Modification

Towards a Library for Process Programming 123

2.1 Reusable Process Definitions

Process inheritance has completely difference semantics, as compared with class
inheritance in today’s dominate object-oriented programming (OOP). Class
inheritance focuses on specializing object states and ways for changing these states,
which are described with member variables and methods, while process inheritance
should focuses on specializing task decomposition and descriptions and control and
data flows among different tasks. In the following discussions, if a process inherits
another one, we call the former a subprocess and the latter its superprocess.

Task decomposition can be specialized by adding new task definitions to
subprocesses. Task descriptions can be specialized by adding more details and/or
overriding it with a new task definition. Control and data flows can be customized by
changing the contents exchanged and conditions under which the flows occur. Of
course, the specifics depend heavily on the underlying process models of process
languages. From the perspective of superprocesses, some mechanisms for hiding
these kinds of information from their subprocesses are desirable.

To support the new semantics of inheritance, process systems need to develop new
mechanisms both for process description and process enactment. We can borrow
some ideas from OOP. For example, we can define a task in a process definition as
private, protected, or public to define explicitly its accessibility to its subprocesses.
However these ideas cannot be copied intactly, as the mechanisms for enacting
process instances are quite different from those for executing compiled programs. In
Fig. 1, process definitions are organized into trees according to their inheritance
relationship. Here only single inheritance is shown, though it is also reasonable to
support multiple inheritance.

2.2 Components for Accessing Services External to Process Systems

A process system cannot stand on its own. Instead, it must talk to the outside world to
get information as inputs for instance enactment and to write data to other systems for
sharing or recording purposes. Consequently, we must develop appropriate
mechanisms so that process programs can access various external resources, e.g.
operating systems, file systems, databases, directories, Internet services, or even other
process systems. Components for accessing these resources in process libraries are
virtually unlimited due to the wide application areas of process technologies.

In designing these mechanisms, we need to take into account a number of factors
to address the diversities of external services. We discuss two of them here. The first
one is the representation, i.e. the way in which external services are represented in a
process system. For example, HFSP has a tool interface construct; CSPL has a very
similar tool unit construct. However, from a more general point of view, we believe
that the mechanism should be extended beyond handling only standalone programs to
dealing with external computing services in a truly programmable manner by utilizing
the application programming interfaces exported by these services, if any.

The second factor is the protocol via which a process system talks to the outside
world. In whatever the case, it is the responsibility of the process runtime system to
interpret a process program and to communicate with external computing services
when needed, during which a specific protocol may be followed. Since the protocols
used by external services may vary greatly from low level protocols like TCP/IP to

124 G. Yang

high level standard ones such as RPC, DCOM, and CORBA or proprietary ones such
as Sun Tooltalk and DEC FUSE, the mechanisms should be able to accommodate to
these diversity.

2.3 Components for Accessing Services Internal to Process Systems

Process systems implement various process enactment services and hold dynamic
information about process instances. These services and information could bridge the
somewhat artificial gap that usually exists between the runtime and build-time
functions of process systems. We argue that they should be made available to process
programs so that process modeling could be more flexible. We believe that by
introducing these services and information into process programming, the rigidity of
process programs can be significantly decreased and they can be more flexible and
adaptive to the ever-changing work conditions.

Firstly, process modeling can be more flexible by using in process programs the
runtime information about process instances, which includes when an instance is
created, who created it, which state it is currently in, who are the participants of an
activity, etc.. For example, we can restrict the prospective participants of an activity to
be the actual participants of another activity; we can force a program-defined action
after a certain time period by using the creating time of an activity or process
instance.

Secondly, accessing to instance enactment services gives process programs more
control over process instances. Process systems usually treat process instances as its
first-class citizens. Though they usually implement all the mechanisms for creating
and controlling process instances, few of them support accessing these services from
within process programs. Lacking this ability does no harm for toy applications.
However, complex real world processes do need this kind of control to manage the
creation and enactment of other process instances [Katayama et al. 1991].

Thirdly, for process systems that allow dynamic modifications to process
definitions, accessing to this functionality from within process programs would make
these programs more adaptive to various exception and increase their flexibility.
Adaptivity and flexibility have been a hot topic in workflow research [Klein et al
1998] and recognized as future direction for software process research [Fuggetta
2000]. Existing research has not addressed the possibility and advantage of modifying
process programs from within themselves. Our experience has shown that this
capability is very useful.

3 Implementations in the P Language and System

We have outlined the architecture of reusable process libraries and discussed some of
the important issues in designing these libraries. This section presents how the ideas
are implemented in P. We first give a quick introduction to it as the background.

Towards a Library for Process Programming 125

3.1 P: A Brief Overview

The basic construct of a P process is an activity, which holds the latest result produced
towards the accomplishment of a certain task, e.g. writing a document or a piece of
code, filling a form, or drawing a picture, and which contributes, in certain aspect, to
the accomplishment of the process. The result can be accessed and modified by
cooperators, either exclusively or working together with the applications developed
based on the P runtime system.

The P language provides the constructs for modeling various aspects of a process,
e.g. its process structure, the rules regarding message exchanges among activities, and
the structure and operations of the results held by its activities. More specifically, P
has the following four key constructs:

• A class provides a full-featured object-oriented language for defining the
structures and operations of the results produced in activities and data and control
information passed among them.

• An activity describes a task that is expected to produce a specific result, which
is modeled as a class and is called an activity object (denoted as Õ). An activity can
also be a process, which we call it a nested process.

• A trigger is an event-condition-action rule for exchanging both data and
control information among activities. Conditions and actions are expressions based on
activity objects and other global and predefined objects.

• A process describes how a higher-level task should be enacted by grouping a
number of activities as a logical unit.

The following code describes a review process. For simplicity, we omit the details
of classes CDocument and CReview. The process defines two activities, i.e.
AProposal and AReview, which produce a CDocument and a CReview object
respectively. The trigger in AProposal states that after this activity is finished, the
generated document will be visible to activity AReview, which will then be started so
that a review could be generated. The trigger in AReview states that after a review is
generated, the summary is fed back to the participants of the design activity via email
and if the result is negative, the design activity is restarted so that the design can be
modified and resubmitted. Note that in the triggers, the names AProposal and
AReview denotes the activity objects, which are instances of classes CDocument and
CReview respectively.

class CDocument { ... } //details omitted

class CReview { ... } //details omitted
process PReview startat AProposal

{ //Activity to produce a CDocument object

 public activity AProposal handle CDocument

 {

trigger TDesignFinished as //trigger header

AReview.activity.Resume() //action

after submit activity; //event

}

//activity to generate an CReview object
protected activity AReview handle CReview

126 G. Yang

{

trigger TReivewFinished as

email.SendMessage(AProposal.activity.GetParticipants(),

"Review Result for" + AProposal.GetName(),

AReview.GetReviewSummary()), //action 1

AReview.Approved() ? AProposal.SetApproval():

AProposal.activity.Resume() //action 2

after submit activity;

}

}

For each process instance, the P runtime system maintains some structures to
record the instance’s runtime state and to execute triggers. One of them is the process
object, an instance of the process’es supporting class, which contains two member
variables for each activity, one for the activity object and the other for the activity
instance. The first member variable is for the process instance. For example, for the
process above, the definition of its supporting class is:

class PReview_class4process

{ //supporting class for process PReview

 public CProcessInstance process; //the process instance

public CDocument AProposal; //for activity object

public CActivityInstance AProposal_activity;//activity inst

protected CReview AReview; //for activity object

protectedCActivityInstance AReview_activity;//activity inst

}

CProcessInstance and CActivityInstance are predefined classes for process and
activity instances. We will describe them in more detail later in Section 3.4. The P
runtime system allocates a process object, ����������� , when an instance is initiated
and sets the values for its fields when activities are created. To execute a trigger, the
runtime system first adds to the supporting class the binary form of a temporary
method, which contains a return statement, "return ConditionExpr;", where
ConditionExpr is the trigger condition, executes it and gets the return value. If the
return value is true, another temporary method that contains an expression statement,
"ActionExpr;", where ActionExpr is the action expression, is added and executed.

3.2 Process Inheritance

In P, process inheritance is a mechanism that allows all definitions, i.e. activities and
local classes and processes, of one process, which is called a superprocess, to be part
of those of another, which is called a subprocess. In the subprocess, these definitions
can be used in a way as if they were defined in the subprocess itself. At the same
time, the subprocess can define new definitions and/or to customize some definitions
in its superprocess/es to fulfill its own specific needs. In this way, a process definition
can be reused without losing the capability to be customized. Currently, we support
single inheritance, which means that a process definition can have only one direct
superprocess.

Towards a Library for Process Programming 127

Accordingly, the supporting class for the subprocess is a subclass of the supporting
class for the superprocess. However, since the super class already has one member
variable of class CProcessInstance for the process instance, the subclass will no
longer has such a variable. Instead, the first item in the memory block allocated for
the subclass now contains the identifier of the memory block allocated for the
superclass. In this way, the memory blocks for process objects are chained together.
For example, suppose PPaperReview is a subprocess of PReview. The structure of the
memory block of the process object for an instance of PPaperReview is shown in
Fig.2, where a black cell stores a value converted from the pointer to either an activity
or a process instance object (a C++ object in the memory space of the runtime
system). Note that the first item of PReview now stores the converted pointer to process
instance for PPaperReview (the conversion is done by changing the highest bit from 0
to 1, see Section 3.3 for details.)

PPaperReview Preview

ID�RI�� PReview Pointer to the sub-process instance

ID of Õ AProposal

Pointer to activity instance AProposal

ID of Õ AReview

Pointer to activity instance AReview

Fig. 2. Memory structure for a process object

3.2.1 Customization
An important purpose of using inheritance is to customize some aspects of
superprocesses so that the process definitions can be more appropriate for a more
specific situation. In P, we can customize a superprocess in a number of ways, e.g.
adding new activities, overriding or extending existing activities. A critical issue is to
organize the supporting structures for a subprocess so that all definitions in its
superprocesses would function properly while instances of the subprocess are enacted.

3.2.1.1 Adding New Activities
A new activity, either a simple one or a nested process, can be added to a subprocess
to handle a task that is not described in the superprocesses. By doing this, we
customize the task decomposition of a process. The new activity can communicate
with activities of superprocesses and of the subprocess itself. For each new activity in
the subprocess, we need to add to its supporting class two new member variables and
initialize the corresponding fields in the process object with appropriate values when
the new activity is instantiated. If the new activity is a simple one, the first variable
represents the activity object and the second variable represents the activity instance
object. If the new activity is a nested process, the first variable represents the process
object for the nested process and the second variable represents the process instance
object.

The member variables in the subclass are totally indexed. Index of the first variable
in a subclass equals the index of the last variable of its direct superclass plus one. For
example, in Fig. 2, the index of process, the first variable of PReview is 1. If we add a

128 G. Yang

new activity in PPaperReview, the index of the first variable for this activity would be
6. In this way, any expression, no matter whether it is defined in a superprocess or in
the subprocess, can be evaluated correctly with the process object for an instance of
the subprocess.

3.2.1.2 Overriding or Extending Existing Activities
In some cases, we may just want to customize some aspects of an activity of a
superprocess. For example, we can change the class of the activity object so that the
object produced in this activity can be more specific; we can disable or enable some
of its triggers to turn off or on the communication channels between this activity and
others; we can add new triggers to the activity to change the way it communicate with
other activities; we can change its participant specification; we can even replace the
activity definition with a new one.

As a simple example, the code below defines a subprocess, PPaperReview, of
PReview defined in Section 3.1. We first create a new class CPaper, which inherits
CDocument. Then we customize the design activity by changing the class of the
activity object to CPaper. The review activity is customized by specifying the
participants to be a set of reviewers whose expertise matches the keywords of the
submitted paper and by adding a new trigger that will send a message to the
perspective reviewers every time the review activity is resumed. As indicated by the
keyword extending, the two activity definitions in the subprocess customize the
activities in the superprocess by extending them. Therefore, the trigger definitions in
the superprocess will still be in effect.

class CPaper extend CDocument { … } //details omitted
process PPaperReview extend PReview

{ //make the activity object more specific

 extending activity AProposal handle CPaper

 {

 }

//add participant specification and a new trigger

extending activity AReview handle CReview

{

users reviewerdb.GetReviewers(AProposal.GetKeywords());

trigger TNotifyReviewers as //trigger header

email.SendMessage(

reviewerdb.GetReviewers(AProposal.GetKeywords()),

"Paper for your review",

AProposal.GetPaperURL()) //action

after resume activity; //event

}

}

Overriding or extending an activity does not introduce a new activity (task) to the
process. This means that for that activity, only one activity object and only one
activity instance object will be created. For example, PPaperReview has only two
activities, AProposal, which produces a CPaper object and AReview, which produces
a AReview object. The P runtime system properly reorganizes the supporting

Towards a Library for Process Programming 129

structures for a process instance to reflect this fact. For example, for an instance of
process PPaperReview, after its two activities are both activated, the state of its
process object is shown in Fig. 3. Note that PPaperReview has four variables for the two
extending activities. However, the value of each variable of PReview will be set to that
of the corresponding variable of PPaperReview. In this way, the corresponding variables
represent the same entity (an activity object or an activity instance object).

PPaperReview Preview

ID�RI�� PReview Pointer to the sub-process instance

ID of Õ AProposal ID of Õ AProposal

Pointer to activity instance AProposal Pointer to activity instance AProposal

ID of Õ AReview ID of Õ AReview

Pointer to activity instance AReview Pointer to activity instance AReview

Fig. 3. The process object of process PPaperReview

Overriding and extending differ in how they affect the runtime system in searching
the triggers in activities with the same name in the process inheritance hierarchy.
Starting from the leaf node, the searching ends at the first overriding activity. To
ensure that trigger actions and conditions referring the activity can be correctly
executed or evaluated, we require that the class type of the overriding or extending
activity is the same as or a subclass of that of the activity being overridden or
extended. For an activity that is a nested process, we only allow to override it by
defining a new nested-process activity whose process type is a subprocess of that of
the existing one.

3.2.2 Activity Accessibility
Process inheritance and process nesting raise the issue of activity accessibility, i.e.
whether a subprocess or a nesting process can communicate with the activities in its
superprocesses or the nested process. For example, a process programmer may want
an activity to be used for a completely internal purpose and don’t want any activity in
a subprocess or a nesting process to communicate with it. P has a mechanism that is
very similar to how some object-oriented languages restrict the visibility of class
variables and methods. We define three accessibility modifiers, i.e. private, protected,
and public. A private activity is only accessible in the triggers, participants, etc. of the
activities in the same process definition. A protected activity can be accessed by the
activities in the same process and its subprocesses. A public activity of a nested
process can be accessed from within a nesting process. The P compiler checks the
accessibility of activities when a P process program is compiled. It reports a compiler
error if the rules are violated.

3.3 Native Methods/Objects for External Resources

P is an interpretive language. The P interpreter manages the allocation, release, and
referencing of P objects used for various purposes during the enactment of instances

130 G. Yang

and interprets the binary process codes compiled from P source programs. P also
supports a mechanism that allows the body of a method of a P class to be a native
function residing in a dynamical link library (DLL) on Win32 platforms (our current
implementation). We call it a native method. When a native method is called, the P
interpreter calls the corresponding native function with all actual parameters. The
return value will be copied to P’s storage space. The native function can be written in
any language. Our mechanism is very similar to Java’s Native Interface (JNI).

As a more advanced form of the native method mechanism, another mechanism
allows us to introduce a C++ object running in the memory space of the P runtime
system into the object space of the P interpreter as a P object, which we call it a native
object. The P interpreter will direct a call to a method of a native object to the
corresponding method of the C++ object. For this purpose, we need to write a P class
definition that services as an interface description of the C++ object. (The class
CProcessInstance in Section 3.4.1 is an example.) The identifier of a native object is
a value converted from the pointer of the corresponding C++ object by changing its
highest bit from 0 to 1. (On Win32 platforms, a pointer in the user space is within
range 0 ~ 231 -1. Therefore, the identifier of a native object will be in range 231 ~ 232

 -
1. The identifier of an ordinary P object allocated in P interpreter falls in range 0 ~ 231

-1. Therefore, the P interpreter is able to tell whether an identifier represents an
ordinary P object or a native object.)

The native method/object mechanisms offer a fully extensible and programmable
way for accessing any external services from within P process programs. They are
consistent with the object-oriented pattern for programming P classes. For a certain
resources, all we need to do is to define as a P class an interface for it and implement
the native functions or objects. Based on this mechanism, we have successfully
developed some P classes, e.g. CTime, CMath, CIO, CFileSystem, CEMailAgent, and
CDatabase, and the related native codes for time conversion, mathematical
calculation, input/output, accessing files, sending emails, and accessing a relational
database, with several hours work.

3.3.1 Global Objects
In some applications, some resources may be shared by many process instances. In
these cases, we can install dynamically in a P runtime system objects representing
these resources as global objects, which are accessible from within any process
instance enacted in that runtime system. The P runtime system has the programming
interface for dynamically install and uninstall global objects. A global object can be
either a native object, or a normal P object whose definitions are given in the P
language.

The processes PReview and PPaperReview contain examples on how to use global
objects. There we use two global objects, email, which is an instance of CEMailAgent
for sending Internet email messages, and reviewerdb, which is an instance a subclass
of CDatabase. These objects should be properly installed when instances of PReview
and PPaperReview are enacted.

Towards a Library for Process Programming 131

3.4 Predefined Objects for Internal Services

The P runtime system allocates in its memory space a C++ object that records the
runtime information of the process instance. It also allocates for each activity instance
a C++ object representing the activity instance. For reflection purpose, it installs these
C++ objects as native objects in the P interpreter. In a process program, these objects
can be accessed via two predefined identifiers, i.e. process, activity, in the same way
as ordinary P objects are accessed.

3.4.1 Process
process represents a process instance. It is a native object, which is mapped to a C++
object maintained for the instance in the P runtime system. process is an instance of
class CProcessInstance, whose methods can be divided into four categories:

• Retrieving Information for retrieving certain information, e.g. process name,
display name, state code, start time, and end time, that is determined at runtime.

• Manipulating Instance for changing forcefully, i.e. suspending, resuming,
terminate, and aborting, the state of the process instance.

• Modifying Definition for modifying dynamically the process definition of this
instance so that the instance can be adaptive to changing working setting. Details on
this topic are available in a technical memo [Yang 2002].

• Creating New Instance for creating dynamically a new process instance to
coordinate the accomplishment a new task. The newly created instance will be a top-
level instance and enacted independently of the current one.

The definition of CProcessInstance is given below.

class CProcessInstance

{ //the constructor

public CProcessInstance(){ }

//the name of the process definition

public CString GetProcessName() { }

//return the user friendly name

public CString GetInstanceName() { }

//return the state of this process instance

public tiny GetState() { }

//Get the start time of the process instance

public int GetStartTime() { }

//Get the end time of the process instance

public int GetEndTime() { }

//abort this process instance

public boolean Abort() { }

//terminate this process instance

public boolean Terminate() { }

//resume this process instance

public boolean Resume() { }

//suspend this process instance

public boolean Suspend() { }

//create a new process instance

132 G. Yang

public boolean CreateInstance(CString csProcessName,

 CString csDisplayName, CString csArguments) { }

//modify the definiton of this process

public boolean ModifyDefinition(

 tiny tAction, CString csObjectName,

 CString csSubObjectName, CString csCode) { }

}

3.4.2 Activity
activity represents an activity instance in a process instance. It is also a native object,
which is mapped to the corresponding C++ object in the P runtime system. The P
interpreter records the value converted from the pointer to the C++ object in the
process object for that process instance. activity is an instance of class
CActivityInstance, which has methods for retrieving certain information about the
instance and manipulating it. For simplicity, we will not list the code here. Both
PReview and PPaperReview have examples on how activity can be used. (P compiler
will convert a notation like AReview.activity into AReview_activity, which is a
member in the supporting class for the process.)

4 Comparisons with Related Work

We have outlined the architecture of a library for process programming and presented
our implementation in the context of the P language and system. To the best of our
knowledge, this is the first attempt to find a systematic solution for building reusable
libraries for process programming. Though some ideas such as inheritance, external
resource integration, and reflection are by no means new and have been exploited in
some form in other work, a comparison with this related work would reveal that our
implementation of these ideas are in some sense novel.

Several groups have reported building a process library for sharing and analyzing
purposes. [Gruhn et al. 1998] presents the mechanisms on how to manage the storage
of process definitions in both a relational DBMS and the main memory. These
mechanisms aim at improved performance. The Process Handbook aims at a
repository of business process descriptions to help people redesign existing and invent
new organizational processes and to share ideas of organizational practices. It uses
inheritance as a second dimension, in addition to task decomposition, to explore the
similarities among different processes. The descriptions are made with natural
English, thus the mechanisms like these in this paper for process enactment are out of
their scope. In an similar effort, the Process Asset Library [Hart et al. 1992], the goal
is to organize all assets, e.g. generic process architectures, cycle models, process
elements (or subprocesses or steps), of business processes into one easily available
online database. Again the description, organization, and categorization of business
processes are their main focus.

Some process models and languages such as EPOS, E3, CSPL, and GED
[Katzenstein et al. 2000] support inheritance. However, the inheritance is limited to
describing in an object-oriented fashion various entities, e.g. artifacts, roles, tasks,
involved in software processes. We have not yet seen any process language that

Towards a Library for Process Programming 133

supports truly process level inheritance. Thus none of them has ever tried to develop
related enactment mechanisms. [Aalst et al. 2001] defines formally four different
types of inheritance of processes modeled with WF-net, a special kind of PetriNet.
Their main purpose is to analyze and tackle problems related to transferring running
workflow instances to a new model. We focus on mechanisms for enacting properly
processes inherited from other processes.

External tool integration has been a major concern of nearly all process languages
in software engineering. For those based on classical languages, such as Ada-based
APPL/A, Prolog-based Merlin, it is possible to use the libraries of the base language
directly to access any external resources. Therefore they don’t need any special
construction. For newly defined languages such as SPADE-1, CSPL, and HSPF, they
need to introduce new construction for specifying external tools. For example, CSPL
has a tool construct; an HSPF program can define a tool section to define tools used in
it; SPADE-1 uses more powerful tool integration facilities, such as Sun Tooltalk,
Microsoft OLE2, and DEC FUSE; and E3 uses CORBA. Our native method/object
based mechanism allows external resources to be integrated virtually without any
limitation, though similar mechanism has been used in other general-purpose
languages like Java.

Accessing to internal services is a kind of reflection, a feature also available in
other language like Smalltalk and Java. Reflection in certain limited forms is found in
some process languages. For example, HSPF has a special data type status and two
special operations snap and resume for recording and changing the enactment status
of a process; MELMAC has a command for modifying a process model fragment
immediately before it is enacted; EPOS and SPADE-1 offers basic, reflexive
constructs to support the specification of the “process of change” as part of the
process itself. P's process and activity offer a more comprehensive reflection
mechanism to use from within process programs all the enactment services provided
by the P runtime system. Also it is extensible in the sense that we can easily add new
functions. An added advantage is that they can be used in a consistent object-oriented
manner.

5 Conclusions and Future Work

Process programming as a new programming paradigm is believed to be critical in
many tightly related areas, e.g. software engineering, workflow management, and
business management. We believe that a library with reusable elements for
programming cooperative processes flexibly is essential for the acceptance,
popularity, and success of this new paradigm. We defined an architecture for such a
library and present an implementation in the context of a process programming
language named P. We demonstrated that process inheritance can be an efficient
vehicle for process reuse and developed the mechanisms that implement the
inheritance semantics.

A public release of the P runtime system that contains all the work discussed here
is available at http://blrc.edu.cn/research/p/. The system has been successfully used as
the programming environment for a graduate level course on CSCW in Tsinghua
University and as the software platform for several projects in e-commerce and
workflow management. Recently, we have developed a process program for the

134 G. Yang

ISPW6 reference problem [Kellner et al. 1991]. These experiences show that the
library concepts discussed here work pretty well.

However, there is still a long way to go. Making our library much richer, e.g. by
adding more reusable process definitions into our library, by developing special-
purposed libraries for different application areas, is in our near-term plan. The
architecture and mechanisms need to be further explored and validated in a wider
range of practical applications, with which we may learn something to improve and
enhance our concepts and mechanisms.

A long-term work we are currently considering is whether it is necessary to define
a standard binary format of process programs, and if the answer is yes, what format
should we define. We believe that a standard format will promote significantly
process sharing and reusing. This attempt conforms to NIST’s goal on Process
Specification Language [http://ats.nist.gov/psl/] and WfMC’s on developing a
common process interchange standard based on XML [WfMC 2002]. However, our
effort differs from these in that it tries to achieve sharing from a much lower level.

The work itself is very challenging due to many factors, both technical and non-
technical. For example, process programs are executed by process systems, which
may adopts different process meta-models. It may be difficult, if not impossible, to
map the concepts of one meta-model to the ones of another. However, if this can be
done, all process systems will have a common ground to play on. The libraries for
process programming may then be developed with different process languages.

Acknowledgements. The work presented here is based on the author’s PhD work,
which was supervised by Prof. Shi, Meilin at Tsinghua University and supported by
several grants from China NSF and 863 Plan. The author is grateful for all the
comments and suggestions from the students who ever used P for their coursework.
The author wants to thank Alfred V. Aho and the anonymous reviewers for their
insightful comments and suggestions.

References

Aalst, W. M. P. and Basten, T. Inheritance of workflows: an approach to tackling problems
related to change. Theoretical Computer Science, 2001, 270(12):125–203

Ambriola, V., Conradi, R., and Fuggetta, A. Assessing process-centered software engineering
environments. ACM TOSEM, 1997, 6(3):283–328

Bandinelli, S., Nitto, E. D., and Fuggetta, A. Supporting cooperation in the SPADE-1
environment. IEEE TOSE, 1996, 22(12):841–865

Chen, J. Y. CSPL:an Ada95-like, unix-based process environment. IEEE TOSE, 1997,
23(3):171–184

Conradi, R., Hsgaseth, M., Larsen, J.-O., et al. EPOS: Object-oriented cooperative process
modeling. In: Software Process Modeling and Technology, Finkelstein, A., Kramer, J. and
Nuseibeh, B. Eds. Research Studies Press, London, U.K., 1994

Cortes, M. and Mishra, P. DCWPL: A Programming Language for Describing Collaborative
Work. In: Proc of ACM CSCW, Cambridge, 1996, 21–29

Curtis, B., Kellner, M. I., and Over, J. Process modeling. CACM, 1992, 35(9):75–90
Fuggetta, A. Software process:a roadmap. In: Proc of ACM/IEEE ICSE, Limerick, 2000, 27–34

Towards a Library for Process Programming 135

Gruhn, V. and Schneider, M. Workflow management based on process model repositories. In:
Proc of ACM/IEEE ICSE, Kyoto, 1998, 379–388

Gruhn,V. and Jegelka, R. An evaluation of FUNSOFT nets. In: Proc of the 2nd European
Workshop on Software Process Technology, 1992, LNCS. Springer-Verlag, New York.

Hart, H., Doland, J., Drake, D., et al. STARS process concepts summary. In: Proc of ACM
Conf on TRI-Ada, Orlando, 1992 , 570–594

Jaccheri, M. L., Picco, G. P., and Lago, P. Eliciting software process models with the E3

language. ACM TOSEM, 1998, 7(4):368–410
Katayama, T. A hierarchical and functional software process description and its enaction. In:

Proc of ACM ICSE, Pittsburgh, 1989, 243–252
Katayama, T. and Motizuki, S. What has been learned from applying a formal process model to

a real process. In: Proc of IEEE ISPW, Washington D.C., 1991, 79–81
Katzenstein, G. and Lerch, F. J. Beneath the surface of organizational processes: a social

representation framework for business process redesign. ACM TOIS, 2000, 18(4):383–422
Kellner, M. I., Feiler, P. H., Finkelstein, A., et al. ISPW-6 software process example. In: Proc

of IEEE ISPW, Redondo Beach, 1991, 176–186
Klein, M., Dellarocas, C., and Bernstein, A. eds. Proc of ACM CSCW Workshop on Adaptive

Workflow Systems, Seattle, 1998. (http://ccs.mit.edu/klein/cscw98/.)
Krueger, C. W. Software reuse. ACM Computing Surveys, 1992, 24(2):131–183
Malon, T. W., Crowston, K., Lee J., et al. Tools for inventing organizations: toward a

handbook of organizational processes. Management Science, 1999, 45(3):425–443
Osterweil, L. Software processes are software too. In: Proc of ACM/IEEE ICSE, Monterey,

1987, 2–13
Peuschel, B. and Schafer, W. Concepts and implementation of a rule-based process engine. In:

Proc of ACM/IEEE ICSE, Melbourne(AU), 1992, 262–279
Salimifard, K. and Wright, M. Petri net-based modelling of workflow systems: an overview.

European Journal of Operational Research, 2001, 134, 664–676
Sutton, S. M., Jr., Heimbigner, D., and Osterweil, L. J. APPL/A: a language for software

process programming. ACM TOSEM, 1996, 4(3):221–286
WfMC. Workflow process definition interface – XML process definition language. WFMC-TC-

1025, 2002. (http://www.wfmc.org/.)
Yang, G. and Shi, M. Cova: a programming language for cooperative applications. Science in

China, Series F, 2001, 44(1):73–80
Yang, G. Inheritance-based dynamic process modifications. Bell-Labs Technical Memo, Nov.

2002

Generating a Process Model from a Process
Audit Log

Mati Golani and Shlomit S. Pinter

IBM Research Laboratory in Haifa, Haifa 31905, Israel
{matig, shlomit}@il.ibm.com

http://www-suif.stanford.edu/˜shlomit/

Classification: Process mining

Abstract. Workflow systems utilize a process model for managing busi-
ness processes. The model is typically a directed graph annotated with
activity names. We view the execution of an activity as a time interval,
and present two new algorithms for synthesizing process models from sets
of systems’ executions (audit log). A model graph generated by each of
the algorithms for a process captures all its executions and dependencies
that are present in the log, and preserves existing parallelism.
We compare the model graphs synthesized by our algorithms to those
of [1] by running them on simulated data. We observe that our graphs
are more faithful in the sense that the number of excess and missing
edges is consistently smaller and it depends on the size and quality of
the log. In other words, we show that our time interval approach permits
reconstruction of more accurate workflow model graphs from a log.

1 Introduction

Constructing business processes is a central issue for companies [2,3]. Manag-
ing processes in an automatic or semi-automatic fashion result in a significant
reduction of cost and improves efficiency of business operations, thus, enabling
fast adaptation to changing requirements and more. As a result, developing tech-
niques for constructing and managing business processes is an active research
area [1,4].

Workflow systems utilize a visual model of information flow that is used
for monitoring and managing systems that execute actions (also called activi-
ties or tasks) of predefined situations. The actions together with constraints on
execution order between them define the business process [5]. Commercial work-
flow systems and management consoles need a model of the business process for
scheduling agents (e.g., computers) to execute the actions, control production,
etc. (see [5,2]). For modeling a business process, most ERP/CRM products use
embedded workflow model [6,7].

Many organizations that run their systems using legacy applications do not
have a model of the processes within the organizations. Current tools for model

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 136–151, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Generating a Process Model from a Process Audit Log 137

detection operate on the resource level only. Thus, there is a need for tools to
build business process level models, especially when all executive level measures
such as ”return on investment”, or SLA quality are derived from this level rather
than the resource level. There are few methods for constructing a business pro-
cess model from information stored in a workflow log (a collection of process
execution logs). We follow the approach that represents the model as a directed
graph (workflow graph) with nodes representing activities and an edge from node
A to node B represents that there is a process execution in which A must finish
executing before B starts. In practice, a single business process model can permit
an execution that include a given activity and another execution that may not
include it. Thus, for each process execution the participating edges are selected
with a Boolean function associated with each edge. The function determines
whether the control flow or not along that edge.

Another paradigm is to deal with workflow evolution that updates the process
models according to the logs (see [8,6,9,10,8,11,12,13]).
Contribution: Unlike the event based models in which the execution of an

activity is represented as a single event, we view the execution of an activity
as a time interval (life span) based on its starting and ending events that are
present in the workflow log. For this view we can recognize concurrent activities
with a single process execution, since intersecting life span intervals in a pro-
cess execution represent concurrent activities. In event based models concurrent
activities cannot be recognized in a single process execution. In addition, based
on the data in a log of some workflow systems we can recognize conditions that
specify when activities are immediately concurrent (i.e., modeled as AND-join
from some activity in the model). We present a new algorithm based on our in-
terval model. Given a workflow log we show that compared with the event based
approach, the interval approach permit the reconstruction of a more accurate
process model graph.

We define causality dependence between activities with respect to the process
execution log and describe an algorithm that, given a process execution log,
generates a workflow graph that guarantees the following:

– Completeness: Every process execution in the log can be generated from the
workflow graph.

– Correctness: All the dependencies with respect to the execution log exist in
the workflow graph.

– Preserving parallelism: If two activities, A and B, are concurrent with respect
to the log then there are two paths from start to end such that one includes
A and does not include B and the other includes B and does not include A.

A workflow graph generated by our algorithm resemble the original workflow
graph (the input for the system that generated the log) by having a minimum
number of excess and missing edges. This minimum depends on the size and
quality of the log. The time complexity of the algorithm is O(|ex||V |2), where
|ex|, |V | are the number of executions and activities in the log, respectively.

In their seminal paper [1] the authors build a workflow graph by considering
each activity as an atomic event. This was achieved by taking the finish activity

138 M. Golani and S.S. Pinter

event to be a node in the graph. We show that when the interval view is taken
there is more information that can be used for reconstructing a more accurate
model. We compare our results with those of [1] and show that the quality of
the generated models is better with our algorithm.
Background and Related work: The topic of process discovery has been

dealt for some time [14,4,15,16,17,18]. Our work can be viewed as an extension to
the event based approach taken by [1,16]. They use a single event to denote the
execution of an activity and reconstruct a directed acyclic graphs as the model.
The common approach as describes in those studies was to identify the different
business processes in the execution log and gather the participating activities in
each execution.

In [14,4] Cook and Wolf searched for software processes by investigating
events in concurrent environment. They present three methods for process dis-
covery: A neural networks based, algorithmic approach which builds a finite
state machine where states are fused if their futures (in terms of possible behav-
ior in the next k steps) are identical, and a Markovian approach which uses a
mixture of algorithmic and statistical methods and takes noise in consideration.
The Authors propose specific metrics (entropy, event type counts, periodicity,
and causality) and use these metrics to discover models out of event streams.
However, they do not provide an approach to generate explicit process models.
In [15] they provide a measure to quantify discrepancies between a process model
and the actual behavior as registered using event-based data.

The model generated by [14,4,19] are Petri-nets and finite automata. For
the reconstruction of the models they use frequencies of events sequences in the
log. A learning method for process mining is presented in [20]. A comprehensive
survey on process mining techniques is presented in [21].

The remainder of this paper is organized as follows: In Section 2, we describe
process model and introduce our interval model. In Section 3 we present our new
algorithms for reconstructing a workflow graph from rich executions log. Then,
in Section 4, we present our simulation environment followed by experiment
results and discussion in Section 5. Finally, in Section 6, we conclude with a
short summary.

2 Process Model

The common approach to view workflow modeling is to use a directed graph
composed of a set of nodes each labeled by a name of an activity (two of the
labels are start and end), and a set of directed edges with a Boolean control
function associated with each one of them. There is an edge from a node labeled
by activity A to a node labeled by activity B only if there is an execution where
B can start executing immediately after the termination of activity A; in such a
case the control function on the edge evaluates to one (TRUE). We say that B
is a successor of A and A is a predecessor of B if there is an edge from A to B.
The decision whether B must execute following the execution of A depends on

Generating a Process Model from a Process Audit Log 139

the value of the control function applied to some data available when A is done.
For more details on the model see [1,16].

In this approach, the execution of an activity is thought to be atomic (in-
stantaneous) and no two activities may ever start at the same time; a process
execution in this model is a list of activities. We latter on extend the model to
capture a more accurate view in which the execution of an activity is an interval
along the time axis and two intervals may intersect.

Initially, we assume that there are no directed cycles in the graph and every
label appears at most once in each execution. The assumptions can be removed
by re-labeling activities.

A legal flow is a maximal connected subgraph of the workflow model graph
such that the control function is evaluated to one on each edge in the subgraph
(all nodes are of AND type), both the start and the end activities are in the
subgraph, and every activity (node) is on a directed path from start to end. A
legal flow graph, over a set of activities, is a partial order representing all possible
ways to schedule the selected activities (all possible executions). The meaning
of the order is that an activity can be executed only if all of its predecessor
activities in the flow graph finished executing (AND join) and only when its
done, its successor activities can start executing (AND split). Since the successor
activities can execute concurrently we say that they are immediately concurrent.

We define an execution over a workflow graph to be a consistent linearization
of a legal flow (i.e., preserves edge ordering) that is represented by a list of
activities, A = a1, a2, ..., an, starting with the start activity, a1, and ends with
the end (target) activity, an.

From the assumptions on the workflow graph we know that no activity ap-
pears more than once in an execution list.

Figure 1 is an example of a workflow model graph and two legal flow sub-
graphs. In flow (a) the control function is evaluated to 0 on the edge from A to
C and the edge from B to D. In flow (b) the value is 0 on the edge from B to
C. Execution (A, B, C, D) is a legal execution in both flows, but (A, C, B, D)
is an execution only in Flow (b). Those are also the only executions legal in our
example.

Fig. 1. A sample workflow model graph and two legal flows

140 M. Golani and S.S. Pinter

For a given workflow model graph we define two conditions:

[CA] Activities ai and aj are concurrent activities if there are two executions of
a legal flow such that ai appears before aj in one execution, and ai appears
after aj in the other execution.

[NS] Activity ai is not im-successor of aj if ai �= aj+1 in all legal executions.
From the edge semantics it means that ai never immediately succeeds aj .

Note that concurrent activities are defined with respect to a single flow. Both
conditions will be refined for the interval view.

In Figure 1 B and C are concurrent activities due to flow (b) for which both
executions are legal, and D is not im-successor of A.

There is no way to reconstruct the workflow model graph from the two exe-
cutions since they are also the only executions legal for a workflow model graph
for which there is no edge from B to C. The task of reconstruction is harder
when only some of the executions are known. Assume that we know only of (A,
B, C, D), then we can only reconstruct a strait line graph. We later on show
that in the interval model we get, in addition, executions of the form (A, B ‖ C,
D) indicating that B and C were executed concurrently. In such a case we can
infer the existence of flow (b) with a single execution. Graph (b) can’t replace
(a) as the model since (a) also comprise the option for the control function from
B to D to evaluate to 0.

Given two activities ai and aj in a workflow graph. Activity ai depends on
activity aj iff whenever ai appears in some legal execution over the workflow
graph, aj must appear in that same execution some time earlier (i.e., j < i and
the time of the termination event of aj is smaller than the time of the ready
event of ai). This definition of dependence implies that ai cannot run unless aj

ran sometime earlier (causality). In Figure 1 activity D depends on A.
For example: Given a workflow graph (e.g., for a process of verifying car

building) that contains the activities: “ship a car” and “final checks”, we know
that “ship a car” depends on “final checks”. Indeed, our definition implies that
in every execution of the flow graph it must be the case that if “ship a car”
appears then “final checks” must appear sometime earlier.

Claim. : Given a workflow model graph and two of its activities ai and aj , such
that ai depends on aj , then there is a path from activity aj to activity ai in the
graph and in every legal flow.

2.1 Log Structure and the Interval Model

The log of a workflow contains monitored data that refers to process executions.
Each execution of a process is composed of executed activities ordered on a time
axis. In some systems the monitored data is a single event per executed activity
and the time in which it occurs. Some other systems generate richer audit trails
that contain more events per executed activity. One example is the MQWorkflow
Audit trail that follows the WFMC audit standard [22] and provides logs that
contain start and stop events for each activity (in addition to other events),

Generating a Process Model from a Process Audit Log 141

the details of the running business process instance, and its business process
template.

For each process instance (execution) we consider those logged records that
contain the following events of an activity: {ready, started, restarted, ended nor-
mally, force finished, terminated}. Clearly, one can remove those executions that
contain noisy events; e.g., if a force finished event indicates noise in the process
workflow the corresponding executions can be removed. We say that an event is
a start event if it is one of {started, restarted}, and it is a termination event if
it is not a ready or a start event. Each record in the log contains additional data
such as: time, process name, process ID (an execution), Activity name, Activity
ID, and User ID.

An activity has to be ready before it can start. Once it has started it can
end normally, be forced, or terminate. The life-span of an executed activity is
defined to be the time interval from its start event to its termination event, and
the extended life-span is defined to be the time interval from its ready event to
its termination event. Each event indicates a change in the state of the system;
thus, for example, a system in a ready state will stay in that state until a start
event occurs.

In what follows we refer only to events of a single process ID and view it as
an execution. In a distributed system the time stamps of events are given locally
by each component. As a result we may have a case were the order between two
events, as indicated by the time stamps, is incorrect. We assume that the time
stamps of events imply that if activity B is a successor of activity A (there is an
edge from A to B in the graph) then the time of the ready event of activity B is
greater than the time of the termination event of A. This does not imply a total
order on the events, but rather it says that the clocks keep causality order. The
assumption on the time stamps can be easily maintained either with a global
clock when exists, or by adding the time of the termination event to the data
used in the control functions that trigger the successor’s activities.

Since errors, like exceptions, may create execution instances which are not
compatible with the business process, the respective log have a noisy data. Such
noise is handled during the construction of the work flow graph.

Note that the successor relationship between activities is kept both by the
times of a richer audit trail and the execution generated from a log that has a
single event per executed activity.

The following condition can be derived from the information in a rich audit
trail in addition to CA and NS above:

[rCA] For a given list of activity events (execution) of some process, activi-
ties ai and aj are concurrent activities if there is an overlap between the
extended life-spans of ai and aj (e.g. there is a time slot in which both
activities are in a ready/active state).

142 M. Golani and S.S. Pinter

3 Reconstructing a Workflow Graph

We next describe the problem of reconstructing a model workflow graph form a
given set of executions (process log) that are generated in a workflow system.

Given two activities ai and aj in a process log. Activity ai depends on aj with
respect to the process log iff whenever ai appears in some execution in the log, aj

must appear in that execution some time earlier and the time of the termination
event of aj is smaller than the time of the ready event of ai.

Note that the definition of dependence over the process log in [1] does not
imply our notion of dependence over the log or even over the workflow graph
since they, for example, permit the execution of the dependent activity without
its cause.

Since many legal executions may not be present in the log and since parallel
activities appear sequentially in an execution, some none dependent activities
can be considered as dependent with respect to the log.

For a given process log L we define:

[CAL] Activities ai and aj are concurrent activities with respect to L if one of
the following conditions is satisfied:
– There are two executions in L, over the same set of activities, such that
ai appears before aj in one execution and ai appears after aj in the other
execution.

– If there is an execution in L such that the extended life-spans of ai and
aj overlap.

[NSL] Activity ai is not a successor of aj with respect to L if for every execution
in L at most one of aj or ai is present.

A reconstructed workflow graph G is consistent with a process log L if the
following conditions hold:

– Completeness: Every execution in L can be generated from G.
– Correctness: All the dependencies with respect to L exist in G; i.e., For every

dependence with respect to L, there is a corresponding path in G.
– Preserving parallelism: If two activities, A and B, are concurrent with respect

to L then there are two paths, in G, from start to end such that one includes
A and does not include B and the other includes B and does not include A.

A consistent workflow graph of a given process log is optimal if it has the
smallest number of excess and absent edges (with respect to the original model
graph) over all consistent workflow graphs defined by that log.

3.1 Constructing the Process Execution Graph

We present an algorithm for reconstructing a workflow graph with the interval
approach.

The workflow model graph is generated by combining graphs that are gener-
ated from the process executions in the log. In the first step, a graph is generated

Generating a Process Model from a Process Audit Log 143

for each execution (execution graph). The interleaving of intervals in a single ex-
ecution makes this graph non-trivial. During this step we keep information of
overlap intervals. Next, a single graph is generated for all the execution graphs
that have the same set of activities. In the last step the graphs are merged
together and strongly connected components are handled.

Combining executions graphs is done in two steps. The reason for combining
first executions that run over the same set of activities stems from the observation
that, in general, they were all run on a single subset of the workflow graph (i.e.,
the parameters for the business process that used to select the participating
edges were the same). Thus, the resulting graph corresponds to a flow graph.

Given an execution from a process log where activity events are sorted based
on time, the following algorithm builds an execution graph. During the genera-
tion of the graph we maintain two sets of nodes: current frontier and next
frontier. The nodes in the current frontier are the latest nodes that were
added to the graph and their out degree is zero at that stage. In addition, we
maintain two markers along the time axis: current time, and next time.
Algorithm for generating an execution graph
The first node in the graph is the start activity (the first in every execution).

Let the start node be the current frontier set and the time of its finish event
be the current time.

The following steps are executed until the time of the finish event of the end
(target) activity is the value of current time.

1. Let the time of the first finish event that followed current time be next
time.

2. Add to the graph a node for each activity that has its ready event between
current time and next time. This set of nodes is the new frontier.

3. Add an edge from each node in current frontier to every node in new
frontier.

4. Change the current frontier to be the set of activities that include the
activity finished in next time and all the activities that finished between
next time and the first ready event that followed next time (when exists).
Let current time be the time of the latest finish event among the activities
in this set.

We demonstrate the algorithm on the graph in Figure 2.
The following is a set of rich executions where a letter corresponds to a ready

event and a tagged letter is a termination event:

1. (A,A’,B,C,D,C’,E,B’,F,D’,F’,G,G’,E’,H,H’)
2. (A,A’,C,B,D,D’, B’,G,C’,E,F,F’,G’,E’,H,H’)
3. (A,A’,C,C’,F,E,E’,F’,H,H’)
4. (A,A’,D,D’,G,G’,H,H’)

In Figure 3 and Figure 4 we provide the process execution graphs of the four
executions.

144 M. Golani and S.S. Pinter

Fig. 2. A sample work flow graph

Fig. 3. Execution graphs for executions 1 and 2

It is simple to show that an execution graph is a legal flow graph for that
execution. Nevertheless, from a single execution we may not be able to find all
the available parallelism. In such a case, at this stage, we may have redundant
edges that may be removed when combining the graph with other execution
graphs on the same set of activities.

To handle noise we maintain a weight on each edge. The weight indicates
how many executions are coherent with the edge. Thus, assuming that noise is
relatively rare (e.g. less than 5%) edges with small weight can be filtered out.

3.2 Combining Execution Graphs

In this step we first combine execution graphs that have the same set of activities.
We refer to the new graph as the reconstructed flow graph.

Fig. 4. Execution graphs for executions 3 and 4

Generating a Process Model from a Process Audit Log 145

During the scan of the events (in the step above) we also generated a set,
fedges, of pairs that comprise the “forbidden” edges. If two activities overlap
then there is a pair (forbidden edge) in this set. For example, in execution 1 we
can see that activity B overlap each of C, D, and E.

For a given set of execution graphs over the same set of nodes, the recon-
structed flow graph is a graph F = (V,E) such that:

– V is the set of activities comprising the nodes of the execution graphs.
– The set of edges E is generated by taking the union of all the edges in the

execution graphs and removing the forbidden edges.

The type of concurrency presented by a forbidden edge is always true since it
is derived from a single execution. Other forms of concurrency are derived from
multiple executions.

To show that all the executions can still be generated from the flow graph we
use two observations: (i) by the assumption that all the executions over the same
set of edges were generated from a single flow graph (same set of parameters -
values of the control functions - were used to select the graph), all the combined
executions are consistent with a single partial order, thus there are no cycles; (ii)
if an edge was removed then there is an execution - the one that is responsible
for getting the edge into the forbidden set - that explore the relevant parallelism
and thus its continuation can be used to compensate for the removed edge.

If the log does not contain all the possible executions over a set of activities,
then the set of edges in the reconstructed flow graph may be different from that
of the corresponding original legal flow graph in spite of them being compatible
(both can be used for generating the given set of executions). Note that at this
stage all the nodes are of type AND as in the corresponding legal flow graph.

Next we merge all flow graphs to get the merged flow graph. Following this
merge, some of the nodes are changed to have an OR semantics. The merge is
done similar to the previous step but the forbidden set is now empty. Condition
NSL and the second part of condition CAL are kept during the merge but this
may not be the case with the first part of CAL. As a result we may get cycles
in the merged flow graph. In the last step we break the strongly connected
components in the merged flow graph and get the workflow graph.

For a given graph G, we denote by N(G) the set of nodes in G, and A(G) is
the set of its edges.
Algorithm for breaking strongly connected components
Given a merged flow graph F = (V,E).

1. The nodes in each strongly connected component H in F , are partitioned
into 4 sets:
Mh = {v ∈ N(H) | A(v) ⊆ A(H)} that is, all there adjecent edges are in

the strongly connected component.
Bh = {v ∈ N(H) | exist x, y ∈ {N(F) −N(H)} and (v, x), (y, v) ∈ A(v)}

that is, they have at least one incoming edge and one outgoing edge that
are not in the strongly connected component.

146 M. Golani and S.S. Pinter

Ih = {v ∈ N(H)−N(Bh) | exists x ∈ {N(F)−N(H)} and (x, v) ∈ A(v)}
Oh = {v ∈ N(H)−N(Bh) | exists x ∈ {N(F)−N(H)} and (v, x) ∈ A(v)}
(i) Remove the edges in A(Bh) and the edges going from N(Bh) to N(Ih)
(ii) Remove the edges going from N(Mh) to N(Ih)

2. The procedure is applied recursively to each of the remainig strongly con-
nected subcomponents.

Claim. : Every execution in the log can be generated from the merged flow
graph.

In our running example, the resulting flow graphs of executions 1 and 2 are
given in Figure 5. We can see that the edge from F to G of the first execution
is not in the combined graph. The graph does not change when the other two
flow graphs are merged. The only difference is that some of the nodes are now
have an OR semantics. It is simple to see that the graph is compatible with all
the executions and only a single edge (the dashed edge) is not in the original
workflow graph.

Fig. 5. The resulting flow graph

4 Simulation Environment and Algorithms

For comparing different algorithms we wrote a process graph generator and used
it to generate a process graph and a set of legal flow subgraphs. Executions were
generated from the flow graphs to serve as input to the reconstruction algorithms.

4.1 Generating a Process Graph

Business processes do not take an arbitrary shape. They are usually more struc-
tured than random graphs; we use that knowledge to guide some decisions when
generating workflow graphs for testing our algorithms. Every graph is a DAG
with one source and one sink. Every node has at most 4 adjacent edges. This

Generating a Process Model from a Process Audit Log 147

forces an out/in degree of 3 or less to each node. The edges are generated by
randomly selecting a node, u, and then a second node, v. If there is an edge from
u to v we remove it, otherwise we add an edge from u to v only if it complies
with the restriction on process graphs (e.g., the in/out degree is smaller then 3,
there is no path from v to u). The number of times that this step is carried on
is bounded by a number proportional to a polynomial in the number of nodes
(the type of the graph). To complete the process graph, the source and target
nodes are added with edges from the source node to nodes with in-degree zero
and edges from nodes with out degree zero to the target node.

We use the process graph generator to generate three types of process graphs:
with 10, 25, and 50 nodes (activities). For the experiment we used 50 graphs from
each of the three types to get a collection of 150 process graphs.

For each one of the 150 process graphs we generated a set of legal flow graphs.
The number of flow graphs generated depends on the type of the graph, such
that 5, 10, and 10 flow graphs are generated for process graphs of size 10, 25,
and 50 nodes respectively.

4.2 Generating a Flow Graph for the Simulation

A legal flow graph is generated from each process graph with the following
procedure:

1. Put the source node in a working set.
2. Select a node, v, from the working set.
3. Randomly select an outgoing edge from v and mark it. The rest of the

outgoing edges from v are randomly chosen (with probability 0.4) and the
chosen edges are marked. This guarantees that there is at least one outgoing
edge from v which is marked.

4. The respective destinashion nodes of marked edges are being added to the
working set if they were never there before.

5. Delete from the graph outgoing edges from v that were not marked, and
remove v from the working set.

6. Recursively remove from the graph nodes that have no incoming edge (other
then the source node).

7. Repeat this procedure from Step 2 until the working set is empty.

The motivation for selecting an additional outgoing edge with probability
of 0.4 is implied from the observation that many real life flow graphs have out
degree of two. As a result our simulated graphs are similar to real life scenarios.

Due to the probabilistic nature of the procedure for generating flow graphs,
some of the nodes and edges of the simulated process graph are never selected.
Thus, we take the simulated process model graph to be the union of all the flow
graphs that are generated from a single process graph. This process model graph
is now fully covered by the flow graphs and it is used for comparing the quality
of the reconstruction algorithms.

For each flow graph we generate an execution log that contains random ex-
ecutions (lists of events). The number of executions per flow graph varied from
100 to 150000. See technical report for more detailes.

148 M. Golani and S.S. Pinter

5 Experiment Results

We tested three algorithms. Our interval algorithm (Interval Sorted) described
in section 3.1, a modified version (Interval) of our algorithm in which we merge
all the execution graphs into one graph in a single step, and the Non-Interval
algorithm, which is the second algorithm described in [1]. For the last algorithm
we use the finish events to represent activities executions.

Every value presented in the following histograms is the average over 50
runs of each algorithm. The quality of the algorithm is measured by comparing
the synthesized graphs with the generated process graph (the input). The edges
that are in the generated graph but not in the synthesized graph are the missing
edges, and those in the synthesized graph but not in the generated graph are
the excess edges.

We show the average percentage of missing and excess edges for each of the
three algorithms as function of the size of the log.

In Figure 6 each input graph has 10 nodes.
The average missing edges percentage of each of the three algorithms is rela-

tively stable and is independent with the log size. The Interval Sorted algorithm
gives the best results. The average excess edges percentage is relatively stable
for the Non-Interval algorithm, and varies from 4% down to 2%. The interval
algorithms are much more sensitive and vary from 1% in short logs down to 0.1%
in long logs.

Fig. 6. Comparing the algorithms on logs from graphs with 10 nodes

In Figure 7 each input graph has 17 nodes.
The average missing edges percentage of each of the three algorithms is rela-

tively stable and is independent with the log size. The Interval Sorted algorithm
gives the best results (between 10% and 9%). The average excess edges percent-
age is relatively stable for the Non-Interval algorithm. As for 10 nodes graphs,
the interval algorithms are more sensitive to the size of the logs.

In Figure 8 each input graph has 25 nodes.
The average missing edges percentage and the average excess edges are rel-

atively stable for the Non-Interval algorithm. The Interval Sorted is sensitive to

Generating a Process Model from a Process Audit Log 149

Fig. 7. Comparing the algorithms on logs from graphs with 17 nodes

Fig. 8. Comparing the algorithms on logs from graphs with 25 nodes

the size of the log and improves when the logs have more executions; it pro-
vides the best results when the number of missing edges is counted. The average
missing edges percentage is relatively stable for the Interval algorithm, yet the
algorithm is sensitive to the log-size for the excess edges. The interval algorithm
gives the best results for excess edges.

In Figure 9 we compare execution times versus log size, and versus the size
of the input graph.

5.1 Summary

One issue of concern is the percentage of missing edges. All three algorithms
miss some portion of the original edges. This portion does not depend on the
number of executions (size of the log). There is a threshold of about 10% missed
edges even in very large logs. An experiment that builds the graphs from the logs
without any cleaning showed that there are still about the same 10% of missing
edges (the number of excess edges was very high).

Both interval algorithms are more accurate (in resemblance to the original
model) than the Non-Interval. The policy of what algorithm to use is naturally
a question of what is more important.

150 M. Golani and S.S. Pinter

Fig. 9. Performance results

References

1. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Advances in Database Technology - EDBT’98, 6th International Con-
ference on Extending Database Technology, Valencia, Spain, March 23-27, 1998,
Proceedings. Volume 1377 of Lecture Notes in Computer Science., Springer (1998)

2. Georgakopoulos, D., Hornick, M.: An overview of workflow management: From
process modeling to workflow authomation infrastructure. Distributed and Parallel
Database 3 (1995) 119–153

3. Wastell, D., White, P., Kawalek, P.: A methodology for business process re-design:
experiences and issues. Journal of Strategic Information Systems 3 (1994) 23–40

4. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: Sixth Inter-
national Symposium on the Foundation of Software Engineering (FSE-6). (1998)
35–45

5. Hollingsworth, D.: The workflow reference model. Technical Report TC00-1003
issue 1.1, workflow management coalition, UK (1995)

6. Ellis, C., Kkeddara, K.: A workflow change is a workflow. In: W.M.P. van der
Aalst, J. Desel, and A. Oberweis, editors. Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2000, Berlin, Germany, Springer-Verlag (2002)
45–63

7. van der Aalst, W., van Hee, K.: workflow Management: Models, Methods, and
Systems. Number TC00-1003 issue 1.1. MIT press, Cambridge, MA (2002)

8. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. In: In proceedings
of ER 96, Cottubus, Germany (1996) 438–455

9. van der Aalst, W., Jablonski, S.: Dealing with workflow change: Identification
of issues and solutions. International Journal of Computer Systems, Science,and
Engineering 15 (2000) 267–276

10. Agostini, A., Michelis, G.D.: Improving flexibility of workflow management sys-
tems. In: In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Lecture
Notes in Computer Science. Volume 1806., Berlin, Germany, Springer-Verlag (2000)
218–234

11. Klein, M., Dellarocas, C., A. Bernstein, e.: Towards adaptive workflow systems.
In: Proceedings of the CSCW-98 Workshop Towards Adaptive workflow Systems,
Seattle, Washington (1998)

Generating a Process Model from a Process Audit Log 151

12. Klein, M., Dellarocas, C., editors, A.B.: A knowledge-based approach to handling
exceptions in workflow systems. Special issue of the journal of Computer Supported
Cooperative Work 9 (2000) 399–412

13. Schimm, G.: Process miner - a tool for mining process schemes from event-based
data. In: Proceedings of the 8th European Conference on Artificial Intelligence
(JELIA), volume 2424 of Lecture Notes in Computer Science, Berlin, Springer-
Verlag (2002)

14. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-data.
ACM, Transactions on software Engineering and Methodology (1998) 215–249

15. Cook, J., Wolf, A.: Software process validation: Quantitatively measuring the cor-
respondence of a process to a model. ACM Transactions on Software Engineering
and Methodology 8 (1999) 147–176

16. Herbst, J., Karagiannis, D.: An inductive approach to the acquisition and adapta-
tion of workflow models. In: Proceedings of the IJCAI’99 Workshop on intelligent
Workflow and Process Management: The new frontier for AI in Business, Stock-
holm, Sweden (1999) 52–57

17. Herbst, J., Karagiannis, D.: Integrating machine learning and workflow manage-
ment to support acquisition and adaptation of workflow models. International
Journal of Intelligent Systems in Accounting, Finance and Management 9 (2000)
67–92

18. Weijters, A., van der Aalst, W.: Rediscovering workflow models from event-based
data. In: Proceedings of the 11th Dutch-Belgian Conference on Machine Learning.
(2001) 93–100

19. van der Aalst, W., van Dongen, B.: Discovering workflow performance models
from timed logs. In: In Y. Han, S. Tai, and D. Wikarski, editors, International
Conference on Engineering and Deployment of Cooperative Information Systems
(EDCIS 2002), volume 2480 of Lecture Notes in Computer Science, Berlin, Ger-
many, Springer-Verlag (2002) 201–217

20. Maruster, L., Weijters, A., van der Aalst, W., van den Bosch, A.: Process mining:
Discovering direct successors in process logs. In: Proceedings of the 5th Interna-
tional Conference on Discovery Science (Discovery Science 2002), volume 2534 of
Lecture Notes in Artificial Intelligence, Berlin, Germany, Springer-Verlag (2002)
364–373

21. van der Aalst, W., Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters, A.:
Workflow mining: A survey of issues and approaches. Technical report, workflow
management coalition, UK (2003)

22. workflow management coalition: Interface 5 - audit data specification. Technical
Report WFMC-TC-1015 issue 1.1, workflow management coalition, UK (1998)

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 152–167, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Contracting Workflows and Protocol Patterns

Andries van Dijk

 Deloitte & Touche Management & ICT Consultants, Postbus 300,
1180 AH, Amstelveen, The Netherlands

anvandijk@deloitte.nl

Abstract. Inter-organizational business processes often involve contracting. ICT
solutions for contracting processes must offer high flexibility in changing the
structure of the contracting process. This can be achieved by ‘process-aware’
software components which are configured by an explicit model of the con-
tracting process: the contracting workflow. However, the design of a contracting
workflow from scratch is a complex task. We propose a solution in which con-
tracting workflows are composed from standard building blocks and show that
protocol patterns for business transaction protocols are a necessity for making
these standard building blocks available. Finally, we propose a number of proto-
col patterns for the negotiation phase in a transaction.

1 Electronic Contracting

Inter-organizational business processes often involve contracting. When one organiza-
tion buys something from another organization, a distinction between ‘products’ and
‘services’ is often made. Although products and services differ in many ways, the
question is whether these differences are relevant from the perspective of the con-
tracting process. This question is answered by for instance Normann and Ramirez [7],
who state “whether customers buy a ‘product’ or a ‘service’, they really buy access to
resources”. Hence, the authors use the term ‘offering’ to refer to both ‘product’ and
‘service’. Others, like Merz et al [6], have the same approach when they consider
payments and tangible goods as services too. In this paper, we will use the term
‘service’ as a synonym for both ‘product’ and ‘service’.

Service contracting involves information exchange between partners, for which elec-
tronic communication is one of the options. The term ‘electronic contracting’ was
already mentioned by Lee in 1988 [5]. In this paper, we define a ‘contract’ as ‘an
agreement between two parties in which the mutual obligations are stated’. Further-
more, we define the term ‘electronic contracting’ as ‘a contracting process in which
the communication between parties is performed by electronic means and in which the
processes at the involved parties are supported by computer applications.’ The term
‘electronic contracting’ is used for a variety of phenomena. This paper is focused on a

Contracting Workflows and Protocol Patterns 153

specific part of this area, which is demarcated by the following characteristics that
define a class of service contracting processes.

• Loosely coupled organizations
We assume a relationship between service clients and service providers where all
communication is performed by exchanging structured messages, of which only
the data types (static aspects) and constraints on the sequence of message types
(dynamic aspects) are mutually agreed. We assume no knowledge of each others
business processes for the participating organizations.

• Buyer side only
Electronic contracting of services always involves a buyer (client) and a seller
(provider). Although these parties communicate via a common message protocol,
they execute different processes. This paper focuses on the contracting workflow
executed by the buyer (service client). The seller (service provider) is treated as a
black box, of which only the external interface (transaction protocol) is known.

• Multiple required services, Multiple available providers
A contracting process is performed for a business case in the enterprise informa-
tion system. This paper focuses on the more complex contracting processes where
each business case requires N different services to be contracted, for which M dif-
ferent service providers are available.

• Dependencies between services
We assume dependencies between required services that define the order in which
services must be contracted. For example, service B must be contracted when
service A has been completed (sequential relation). Or, service B must be con-
tracted only if service A could not be contracted (alternative relation).

Apart from a demarcation of the class of processes under consideration, we further
limit the scope of this paper by focusing on the dynamic aspects of contracting proc-
esses only. Data aspects involved in contracting processes, for instance deriving the
details of required services from case data or evaluating a received offer, are not in the
scope of this paper. A framework for capturing the data aspects of contracting proc-
esses is given by Van Dijk [3].

2 Modeling Technique and Approach

Different approaches have been proposed for modeling of the communication between
partners in a buying process. In this paper, we view contracting processes as inter-
organizational workflows and use Petri Nets as modeling technique. This choice is
made for the following reasons.

154 A. van Dijk

• Workflow management techniques based on Petri Nets have a sound theoretical
basis and have been successfully applied to internal business processes like shown
by Van der Aalst and Van Hee [1]. Since business processes are becoming inter-
organizational increasingly, the application of workflow management techniques
to inter-organizational processes is an obvious choice.

• Workflow management techniques have proven to be a good solution for repeat-
ing, well-structured and potentially long-running processes. The character of the
demarcated class of service contracting processes has many similarities with this
kind of processes.

• Workflow management techniques are increasingly integrated in software tools for
electronic messaging. Apparently, the market recognizes the usefulness of
workflow management in combination with electronic business.

internal workflow

Service
Provider

Service
Provider

contracting workflow

…..

message exchange
defined by
transaction protocols}

Fig. 1. Position of Contracting Workflow and Transaction Protocols

Clearly, a contracting workflow that involves multiple required services, each of
which is controlled by a transaction protocol with multiple messages, can grow to a
complexity where it is very difficult for a user to design this workflow from scratch.
We therefore propose the following approach.

1. We define a standard high-level workflow structure for the contracting process of a
single service (see section 3). The tasks in this high-level workflow need further
refinement by replacing it by a sub-net. We assume a library of sub-nets that can
be used for that purpose.

Contracting Workflows and Protocol Patterns 155

2. We start with an empty workflow (start and end place only) and add the standard
high-level workflow structure for each different service involved in the process.

3. We add transitions and places to the high-level workflow to model the dependen-
cies between the services (contracting requirements).

4. We add transitions and places to make the high-level workflow sound.

5. We create the final contracting workflow by substituting each task in the high-level
contracting workflow with a proper sub-net from the library of sub-nets..

3 A Framework for Contracting a Single Service

A number of frameworks for contracting processes, based on buying products or
services from a third party, can be found in literature, e.g. Action Workflow, DEMO
(Dynamic Essential Modeling of Organizations) by Dietz [2] and BAT (Business as
Action game Theory) by Goldkuhl [2]. These frameworks share the idea that business
transactions consist of four phases:

• Phase 1: Specification
In the specification phase, the service client specifies the details of the service to
be contracted. In fact, because each service requires a service provider to execute
his business process, the specification phase is in its essence the creation of a case
token for the workflow in the service providers information system.

• Phase 2: Negotiation
The negotiation phase aims at establishing a contract with a service provider for
the specified service. This research focuses on service contracting processes in
situations of partial knowledge. This, and the fact that external service providers
are often autonomous organizations, implies that a service client can not simply
assign a task to a service provider but has to negotiate with the service provider in-
stead. A contract is established only if there is an offer made by the provider and
an acceptance of the offer by the client. The negotiation phase ends either with a
contract after which the execution phase starts, or without contract after which the
process ends (failed).

• Phase 3: Execution
If a negotiation process resulted in a contract, both service client and service pro-
vider will have to fulfill the commitments they entered in the contract. An impor-
tant aspect of the execution phase is the exchange of status information from serv-
ice provider to service client, used by the service client to monitor the fulfillment
of the contract. The execution phase ends either with the completion of the execu-

156 A. van Dijk

tion after which the acceptance phase starts, or it ends with an abortion of the exe-
cution after which the process ends.

• Phase 4: Acceptance
The objective of the acceptance phase is to obtain a mutual agreement on the ful-
fillment of commitments. The service provider declares the fulfillment of his
commitments, the service client accepts this declaration and settles the financial
obligations towards the service provider. Settlement of financial obligations is
however outside the scope of this research. During the acceptance phase, informa-
tion must be exchanged between service client and service provider. At this point,
mutual satisfaction is obtained and the transaction is completed.

This results in a standard structure for contracting one service:

start

skipped

specified

failed

executed completed

Specification Negotiation Execution Acceptance

committed

aborted

Fig. 2. High-level workflow structure for contracting a single service

4 A Contracting Workflow for Multiple Services

When multiple services are involved in a contracting process, there are always con-
tracting requirements defining the dependencies between the different services. For
example: service A can only be contracted after service B has been contracted. Or:
when service A can not be contracted, service B must be contracted. This section
discusses the rules according to which a contracting workflow for multiple services is
composed from the building blocks defined before and from the contracting require-
ments.

Copy the high-level workflow structure
The starting point for each contracting workflow is a source place ‘start’ and a sink
place ‘end’. The first step in creating the contracting workflow is to add the transitions
and places (see Figure 2) of the high-level workflow structure for each individual
service. This step can be fully automated in the configuration environment of a soft-
ware component for contracting processes, when the user defines a list of required
services.

Model the dependencies between services
The second step in creating the contracting workflow is to add transitions and places
that model the contracting requirements, i.e. the conditions under which a token is

Contracting Workflows and Protocol Patterns 157

produced in the ‘start’ place of the structure from Figure 2. This step can be partially
automated when we assume a relative small number of types of dependencies between
services. If the user can define the contracting requirements by selecting from the list
of services and a list of dependency types, the corresponding changes to the contract-
ing workflow can be made automatically. To illustrate this, we give two examples of
dependencies between services and the corresponding representation in the contracting
workflow.

Example 1 – ‘B starts when A failed’
In this type of dependency, service B is an alternative for service A. The dependency
is modeled by an extra processor that consumes a token from place ‘failed_A’ and
produces the token in place ‘start_B’.

start_A

skipped_A

specified_A

failed_A

executed_A completed_A
Specification

A
Negotiation

A
Execution

A
Acceptance

A

committed_A

aborted_A

start_B

skipped_B

specified_B

failed_B

executed_B completed_B

Specification
B

Negotiation
B

Execution
B

Acceptance
B

committed_B

aborted_B

T

Fig. 3. Example of dependency ‘B starts when A failed’

Example 2 – B starts when A is committed
Another typical type of triggering is when the contracting for a service B is started
when another service A has been contracted. This dependency is modeled by dupli-
cating the place ‘committed_A’ into ‘committed_1A’ and ‘committed_2A’ and adding
a transition that consumes a token from place ‘committed_1A’ and producing the
token in places ‘committed_2A’ and ‘start_B’.

start_A

skipped_A

specified_A

failed_A

executed_A completed_A

Specification
A

Negotiation
A

Execution
A

Acceptance
A

committed
1A

aborted_A

start_B

skipped_B

specified_B

failed_B

executed_B

completed_B

Specification
B

Negotiation
B

Execution
b

Acceptance
B

committed_B

aborted_B

committed
2A

Fig. 4. Example of dependency ‘B starts when A is committed’

158 A. van Dijk

Make the high-level contracting workflow sound
We require contracting workflows to be a sound WF-net if we omit the places via
which message tokens are exchanged with workflows of service providers. At this
point, we have created a structure which is not a sound WF-net. Therefore, the third
step in creating the contracting workflow is to add those transitions and places to the
high-level contracting workflow that make the resulting high-level contracting
workflow a sound WF-net. This can be done by analyzing the distribution of tokens in
possible end-states. There after, new transitions and places are added in such a way
that in each end-state the tokens that define the end-state are consumed and one token
is produced in place ‘end’. This task can be automated completely. An example of a
sound high-level contracting workflow is given in Figure 5. The example is about a
company in which employees have to travel frequently. Each business trip requires
two flights to be booked (outbound and inbound). If the employee is not able to travel
on one day, a hotel reservation has to be made. Finally, if the employee wants to, a
rental car must be made available at the airport of arrival.

Refinement of the high-level contracting workflow
The high-level contracting workflow that we have defined so far is a sound workflow,
but is still a high-level workflow where the tasks need further refinement by replacing
each task with a sub-net. The structure of the sub-net by which a task in the high-level
workflow is replaced depends highly on the transaction protocol that defines the dy-
namics of the information exchange between service client and service provider. A
standard set of sub-nets that can be substituted in the task of the high-level workflow
can only exist when there is some type of standardization in transaction protocols. This
is why we propose to standardize a relative small number of transaction protocol pat-
terns, on the basis of which we can define the business transactions in specific situa-
tions.

5 Transaction Protocol Patterns

Clearly, there is not a single transaction protocol common to all possible service types.
Differences in transaction protocols are likely to occur due to differences in legisla-
tion, business model, fulfillment processes, etc. However, although we can not present
a single transaction protocol for all services, we are able to define patterns for trans-
action protocols. We define a protocol pattern as “a transaction protocol pattern cap-
tures the underlying common structure of a set of transaction protocols with different
message types but identical dynamic behavior.” Since a transaction protocol encom-
passes the consecutive negotiation, execution and acceptance phases, it can be seen as
composed of three smaller transaction protocols, one for each phase. In the rest of this
section, we will present patterns for the negotiation phase. Requirements to protocol
patterns and correctness criteria can be found in Van Dijk [3].

Contracting Workflows and Protocol Patterns 159

st
ar

t_
A

co
m

pl
et

ed
_A

fa
ile

d_
A

O
ut

bo
un

d
F

lig
ht

st
ar

t

T 1

T 2

st
ar

t_
B

co
m

pl
et

ed
_B

fa
ile

d_
B

In
bo

un
d

F
lig

ht

fa
ile

d_
C

co
m

pl
et

ed
_C

C
an

ce
l

In
bo

un
d

F
lig

ht

T 3
st

ar
t_

C

st
ar

t_
E

M
ed

iu
m

C
ar

st
ar

t_
D

sk
ip

pe
d_

D

fa
ile

d_
D

H
ot

el

co
m

pl
et

ed
_D

sk
ip

pe
d_

E

fa
ile

d_
E

co
m

pl
et

ed
_E

T 4

st
ar

t_
F

C
om

pa
ct

C
ar

T 5

fa
ile

d_
F

co
m

pl
et

ed
_F

E 2

E 2
E 3

b

a

c

E 4
en

d

Fig. 5. Example of a sound high-level contracting workflow

160 A. van Dijk

Negotiation Pattern: ‘Implicit Accept’

This negotiation pattern is used in situations where there is no explicit response by the
service provider to a request made by the service client. Instead, the contract is con-
sidered to be established after the request has been made. Clearly, this variant can only
be applied under circumstances where the implicit accept is agreed in previous agree-
ments or laws.

c
1 Request contract p

1

committedS
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Fig. 6. The ‘implicit accept’ protocol pattern

Negotiation Pattern: ‘Binding Request’

This negotiation pattern is used in a situation where a service client makes a binding
request to a service provider, who responds by either accepting or rejecting the re-
quest. If the service provider accepts the request, a service contract is established, after
which the execution protocol starts. If the service provider rejects the request, neither
of the parties has a commitment to each other and the transaction ends.

c
1 Request contract p

1

requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Reject contract

Accept contract

committed

p
2

c
2

c
3

p
3

Fig. 7. The ‘binding request’ protocol pattern

Contracting Workflows and Protocol Patterns 161

Negotiation Pattern: ‘Single Binding Offer’

Instead of requesting a contract from a service provider directly, a service client can
also request an offer from a service provider. Offers can be binding or non-binding.
This negotiation pattern is based on a single binding offer given by the service pro-
vider to the service client. When the service provider receives a request for an offer,
he either responds by sending a notification that he will not make an offer (e.g. be-
cause he is not able to fulfill the request) or he responds by sending an offer message.
When the service client receives an offer, he will either accept the offer after which a
service contract is established and the execution phase starts, or he rejects the offer
after which neither of the parties has a commitment to each other and the transaction
ends.

c
1 Request contract p

1

offer requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Reject offer

Accept offer

committed

p
4

c
4

c
5

p
5

No offer p
2

c
2

Offer p
3

c
3

offer made

Fig. 8. The ‘single binding offer’ protocol pattern

162 A. van Dijk

Negotiation Pattern: ‘Single Non-binding Offer’

An extension to the ‘single binding offer’ pattern emerges when the service provider
sends a non-binding offer instead of a binding offer. This leaves the possibility that
after the service client accepted the offer the contract can still not be established, e.g.
because the resources required for the fulfillment have been exhausted in the period
between sending the offer and accepting it. The pattern is equal to the ‘single binding
offer’ pattern, but has two additional message types that can be received by the service
client after he accepted the offer. The confirm accept message indicates that a service
contract has been established and the execution phase started. The reject accept mes-
sage indicates that no contract could be established after all which ends the transaction
and leaves both parties without any obligation towards each other.

c
1 Request offer p

1

offer requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Reject offer

Accept offer

committed

p
4

c
4

c
5

p
5

No offer p
2

c
2

Offer p
3

c
3

offer made

Reject accept p
6

c
6

Confirm accept p
7

c
7

offer accepted

Fig. 9. The ‘single non-binding offer’ protocol pattern

Contracting Workflows and Protocol Patterns 163

Negotiation pattern ‘Multiple Binding Offers’

An extension to the ‘single binding offer’ pattern is to allow the service provider to
send multiple binding offers instead of a single binding offer, in order to give the
service client alternatives to choose from. The negotiation pattern starts with a request
from the service client to the service provider. The provider answers either by sending
an offer, or by sending a notification that he will not send an offer. If the service pro-
vider sends one offer, he can send an arbitrary number of additional offers thereafter.
When the service client received one or more offers, he evaluates them and either
rejects all offers by sending a reject offers message or he accepts the offer he finds
‘best’ by sending an accept offer message, which contains a reference to the particular
offer he is accepting. If the service client accepts an offer, a service contract is estab-
lished and the execution phase starts. Otherwise, the transaction ends and leaves both
parties without any obligation towards each other.

c
1 Request offer p

1

offer requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Additional offer

committed

c
4

p
4

No offer p
2

c
2

Offer p
3

c
3

offer made

Reject offers p
4

c
5

Accept offer p
6

c
6

Fig. 10. The ‘multiple binding offers’ protocol pattern

164 A. van Dijk

Negotiation pattern: ‘Multiple Non-binding Offers’

An extension to the ‘multiple binding offers’ pattern emerges when the service pro-
vider sends non-binding offers instead of binding offers. This leaves the possibility
that after the service client accepted an offer the contract can still not be established,
e.g. because the resources required for the fulfillment have been exhausted in the pe-
riod between sending the offer and accepting it. The pattern is equal to the ‘multiple
binding offers’ pattern, but has two additional message types that can be received by
the service client after he accepted the offer. The confirm accept message indicates
that a service contract has been established and the execution phase started. The reject
accept message indicates that no contract could be established. However, the transac-
tion returns to state ‘offer made’, in which the service client can cancel the negotiation
or accept another offer from the pool of offers received from the service provider. In
the same state, the service provider can send new offers to the service client.

c
1 Request offer p

1

offer requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Additional offer

committed

c
4

p
4

No offer p
2

c
2

Offer p
3

c
3

offer made

Reject offers p
4

c
5

Accept offer p
6

c
6

Reject accept p
7

c
7

Confirm accept p
8

c
8

offer accepted

Fig. 11. The ‘multiple non-binding offers’ protocol pattern

Contracting Workflows and Protocol Patterns 165

Negotiation Pattern: ‘Single Binding Counter Offer’

An extension to the ‘binding request’ pattern is to allow the possibility of a binding
counter offer by the service provider as a third type of response to a direct request for
a contract. When the service provider makes a counter offer, the negotiation process
enters a state in which the service client can either accept or reject the counter offer
and in which the service provider can withdraw the counter offer. If the service client
accepts the counter offer, a service contract is established and the execution phase
starts. Otherwise, the transaction ends leaving both parties without any obligations
towards each other.

c
1 Request contract p

1

contract requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

committed

p
7

c
5

Reject contract p
2

c
2

Counter offer p
4

c
4

offer made

Accept contract p
3

c
3

Accept offer

Reject offer

Withdraw offer

p
5

p
6

c
6

c
7

Fig. 12. The ‘single binding counter offer’ protocol pattern

166 A. van Dijk

Negotiation Pattern: ‘Alternating Binding Counter Offers’

An extension to the ‘single binding counter offer’ pattern is to allow the possibility of
a counter offer to be followed by a different counter offer made by either the service
client of service provider. If a counter offer is made, it replaces all earlier made coun-
ter offers. Hence, a maximum of one counter offer can be under consideration at each
moment. The party that made the current counter offer can replace it by a different
counter offer or withdraw it. The party that did not make the counter offer under con-
sideration can either accept it, reject it, or make a counter offer himself. If a party
accepts an offer made by the other party, a service contract is established and the exe-
cution phase starts. Otherwise, the transaction ends leaving both parties without any
obligations towards each other.

c
1 Request contract p

1

contract requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

committed

p
8

c
6

Reject contract p
2

c
2

Counter offer P p
4

c
4

offer by P

Accept contract p
3

c
3

Accept offer P

Reject offer P

Withdraw offer P

p
6

p
7

c
7

c
8

p
5Replace offer Pc

5

p
e

c
c Accept offer C

Reject offer C

Withdraw offer C

p
c

p
d

c
d

c
e

p
bReplace offer Cc

b

p
9Counter offer Pc

9

p
aCounter offer Cc

a

offer by C

Fig. 13. The ‘alternating binding counter offers’ protocol pattern

Contracting Workflows and Protocol Patterns 167

6 Conclusions and Future Research

We have proposed a method for the efficient design of contracting workflows in the
configuration process of ‘process-aware’ ICT components for contracting. The method
proposes a standard high-level structure of contracting workflows of which the tasks
can be replaced by sub-nets from a library. A prerequisite for this library of sub-nets is
a clear standardization of transaction protocols. We propose to standardize a number
of protocol patterns on the basis of which specific transaction protocols can be de-
fined. This paper has given an example of possible protocol patterns for the negotia-
tion phase.

Further research has to be conducted to design a set of protocol patterns that is suffi-
cient for the majority of transaction protocols. Mapping of existing transaction proto-
cols to the proposed protocol patterns and the formal standardization process itself are
major activities. Another line of research is to extend the Petri Nets defining a trans-
action protocol with additional quality of service properties (cost of providing serv-
ices, response times, failure rates, etc.). A transaction protocol extended with these
properties can act as an interface agreement between communicating parties. A next
step would be the specification of a repository in which a party can publish the trans-
action protocols that define the external behavior of his services.

References

1. Aalst, W.M.P. van der And K.M. Van Hee, Workflow Management: Models, Methods and
Systems, MIT Press, Cambridge, MA, 2001.

2. Dietz, J.L.G., Introduction to DEMO, Samson Bedrijfsinformatie, 1996.
3. Dijk, A. van, The Contracting Agent – concepts and architecture of a generic software com-

ponent for electronic business based on outsourcing of work, Ph.D. Thesis, Eindhoven Uni-
versity of Technology, 2001.

4. Goldkuhl, G., Generic Business Frameworks and Action Modeling, Proc. of 1st Inter-
national workshop on Communication Modeling, Springer-Verlag, 1996.

5. Lee, R.M., A Logic Model for Electronic Contracting, Decision Support Systems, Vol. 4,
No. 1, pages 27–44, 1988.

6. Merz, M., F. Griffel, T. Tu, S. M ü ller-Wilken, H. Weinreich, M. Boger and W. Lamersdorf,
Supporting Electronic Commerce Transactions with Contracting Ser-vices, International
Journal of Cooperative Information Systems, Vol. 7, No. 4, World Scientific, 1998.

7. Normann, R. and R. Ramirez, Designing interactive strategy: from value chain to value
constellation, John Wiley & Sons Ltd, 1994.

Security in Business Process Engineering

Michael Backes, Birgit Pfitzmann, and Michael Waidner

IBM Zurich Research Laboratory, Rüschlikon, Switzerland
{mbc,bpf,wmi}@zurich.ibm.com

Abstract. We present a general methodology for integrating arbitrary security
requirements in the development of business processes in a both elegant and
rigorous way. We show how trust relationships between different parties and their
respective security goals can be reflected in a specification, which results in a
realistic modeling of business processes in the presence of malicious adversaries.
Special attention is given to the incorporation of cryptography in the development
process with the main goal of achieving specifications that are sufficiently simple
to be suited for formal verification, yet allow for a provably secure cryptographic
implementation.

Keywords: Security in Business Process Modeling, Design, Verification and Val-
idation

1 Introduction

For typical distributed business processes, especially those that run over the Internet,
from supply chains over business federations to virtual enterprises, security plays a
crucial role. For instance, analysts often see lack of security as a major impediment
to the adoption of web services. However, the notion of security is often neglected in
business-process models, which usually concentrate on modeling the process in a way
that functional correctness can be shown, either manually or using formal proof tools
like model checking. In contrast to features that are crucial for functional correctness,
security features are typically integrated in an application in an ad-hoc manner, often
during the actual implementation process. However, this approach brings about several
problems.

First, the integration of security features into a development process is not well
understood. In particular, a crucial ingredient for adequately modeling security issues –
the incorporation of trust assumptions into a specification – is usually not considered,
and hence needs further investigation.

Secondly, integrating security properties by hand is difficult and error-prone, and
thus lack of experience of individual developers often leads to security leaks. As these
developers usually do not have a strong background in security they need to be provided
with concrete guidelines and suitable tools for the development of secure applications.

Thirdly, achieving security goals often relies on an appropriate use of cryptographic
protocols, e.g., for achieving secrecy for a particular message, the underlying key ex-
change, or larger cryptographic protocols like payment systems or fair exchange. How-
ever, incorporating cryptography already in the specification is surely not desired since

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 168–183, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Security in Business Process Engineering 169

this would significantly complicate the use of formal methods in case a validation of
security properties is desired. More precisely, a suitable tool would have to cope with
probabilism, computational restrictions, error probabilities, and other essential details
for reasoning about real cryptographic primitives in a meaningful way. No such tool
exists yet. Hence abstractions for such protocols should be provided that are as simple
as possible on the one hand, yet extensive enough to allow for being securely imple-
mented on the other hand. One of the main problems in all prior work is the use of
oversimplified abstractions, which are insufficient in the sense that they cannot be se-
curely implemented, even if provably secure cryptographic primitives are used. Today, a
large variety of applications presupposes the use of cryptographic protocols (but without
actually specifying them), which exemplifies the demand for a common formal model
that can deal with these issues on the one hand, but can still be conveniently used for
expressing and analyzing a large variety of applications.

1.1 Our Contribution
This work presents a guideline how to integrate arbitrary security requirements in the
specification of business process modeling in a both elegant and rigorous way. Before an
application is specified, the developer should be aware of the security goals he wants to
achieve. This is shown on the right-hand side of Figure 1. The security properties consid-
ered in this work are especially not restricted to commonly analyzed, message-specific
properties like secrecy or authenticity of specific message, but comprise sophisticated
properties like probabilistic non-interference (absence of probabilistic flow of informa-
tion), fair exchange, or privacy guarantees based on privacy policies. Although these
properties are essential for lots of business processes, their incorporation in the design
process has not been well understood yet. Furthermore, the trust relationship between
different parties has to be reflected in the design. We investigate the notion of trust
models for this purpose, and we show how they can be used to allow for a convenient
incorporation of trust into the development process. As shown in Figure 1, after reflect-
ing these features in the specification, common approaches on step-wise refinement can
be applied.

Our further work is based on a probabilistic model of reactive networks for expressing
and analyzing cryptographic protocols from [26]. By exploiting the benefits of this
approach, we show how business processes including security issues can be specified
in a way that is suited for formal verification as the use of probabilism that arises from
the underlying cryptography can be avoided on this layer without destroying the link
to the (necessarily probabilistic) cryptographic implementation. This means that the
crypto-related parts of a specification can be refined automatically without any further
assistance of the developer yielding a concrete implementation of the system (provided
that the parts that are not related to security are sufficiently specified) such that this
refinement preserves all security properties of the specification. This is also shown on
the right-hand side of Figure 1. Here, a concrete implementation with still abstract
representations of cryptography can be easily and securely refined, since the model
offers an appropriate interface for a cryptographic library, and the abstract specification
provided by the model ensures a correct deployment. As the final result of our whole
approach, we obtain a concrete proposal for a secure implementation of the specification
including an appropriate deployment of actual cryptography.

170 M. Backes, B. Pfitzmann, and M. Waidner

Specification

Implementation with
Informal Abstract Crypto

...Step-wise
Refinement

Refined Specification

Ad-hoc Cryptographic
Libraries

Ad-hoc
Deployment

Specification
with Security

Implementation with Security
and Abstract Crypto

...Step-wise
Refinement

Refined Specification
with Security

Rigorously Defined
Cryptographic Primitives

Deployment as
Refinement

Security Requirements,
Trust Models

Fig. 1. A usual development approach based on step-wise refinement is shown on the left side.
The right side shows the main extensions of our approach, i.e., including security requirements
and trust models into specifications, and appropriate refinement of cryptographic abstractions.

This stands in blatant contrast to prior approaches that make implicit or explicit use
of real cryptography, in which the development of an application stops to be elaborate
if it comes to the implementation of real crypto.

1.2 Prior Work
The early days of business-process modeling were stamped by the use of pictures that
described the interaction between different components of the system. This is still very
common at a high level of abstraction, but nowadays merging different views on the
process within suitable specification languages, usually workflow management systems
or UML. However, if formal validation is desired, there is a need to equip such languages
with a non-ambiguous semantics before, e.g., model checking techniques can be applied.
Hence, research on business process modeling has recently started to encode business-
process diagrams into a formal model that can be given a suitable semantics, usually
based on interacting state machines [17,11], petri nets [15], or graph grammars [16].
Based on the language ConGolog, a more action-oriented representation of business
processes is presented in [18]. However, these works did not explicitly take security
aspects into account.

Besides the mentioned models, well-known standards for business modeling like
ebXML and WSFL emerged that included security issues by postulating the use of
secure and reliable message transmission, but they do not define this notion beyond
the informal description, nor do they address more complex security goals. For a nice
overview, see [22].

Up to now, models that explicitly address the incorporation of security issues in
the design process are typically extensions of a fragment of UML that can be given

Security in Business Process Engineering 171

the desired semantics. They address more general notions of security than in the stan-
dards like multi-level security [14] or role-based access control [19]. Although these
are already significant results in this area, several important features like probabilis-
tic flow of information and faithful representation of cryptography as described above
have not been addressed yet. However, as some of the above work is at least implic-
itly based on cryptographic techniques like ensuring authenticity in access control or
secrecy for transmitting confidential information in multi-level security, abstraction ver-
sions of cryptographic primitives like secure channels are included there, following the
approach of Dolev andYao [10]. Using these abstractions allows for fairly simple proofs
of security properties. From the view of cryptography however, these abstractions are
unfaithful in the sense that they cannot be securely implemented even if provably secure
cryptographic primitives are used. A concrete counterexample is given in [25]. Being
more precise, there is no guarantee that properties of these abstractions are also valid for
the concrete implementation.

2 Security Requirements and Trust Models

This section investigates the incorporation of security requirements and trust models into
the specification of a business process. We further introduce a certifies mail protocol as
a running example, which we will consecutively develop as the paper proceeds.

To incorporate security in the development of a business process, several aspects
naturally have to be taken into account. First the addressed security properties have to be
identified. Up to now, this task usually has been restricted to relatively simple security
properties like secrecy of a specific message, but typical processes that are based on more
sophisticated protocols often presuppose achieving more general security properties like
fair exchange or absence of information flow. Secondly, the relationship of trust between
the different parties has to be investigated and incorporated in the design, i.e., which
users trust which other users for which purpose. Further comprised by this point is that a
developer might be interested in the number of malicious participants that the considered
application can successfully tolerate. Dealing with questions of this kind leads to the
notion of trust models, which are common in the security community, but have not been
properly addressed for business process modeling so far.

2.1 Security Goals
Before starting to develop a secure application, the desired security goals have to be
determined. Typically, the addressed security goals are restricted to either single-sided
security, e.g., by establishing security using a trusted computing base that can be eval-
uated according to Common Criteria, or to channel- or message-specific properties like
secrecy of a particular channel, which can (hopefully) be achieved in a single step by a
suitable deployment of encryption schemes. However, this is not sufficient for living up
to the multilateral security demands of multiple sides that are running a complex proto-
col. A typical example in business modeling are fair exchange systems, where different
“basic” security goals collide from different sides and have to be achieved at once, e.g.,
a buyer wants to receive the ordered goods if he properly pays for them whereas a seller
wants to receive his money if he delivers the goods. Dealing with such general goals for
multiple parties is much more difficult for the developer since it is not sufficient to, e.g.,

172 M. Backes, B. Pfitzmann, and M. Waidner

simply classify a channel as being secure, but the security property may depend on the
continuous interaction of several parties, or may even change over time. Hence, incor-
porating such properties in formal specification gives rise to several questions, which
are often circumvented by including the property in prose without defining it beyond
the reach of an informal description. However, this mainly passes on the problem to the
implementor who now has to derive a secure implementation without sufficient guide-
lines by the specification. Hence a formal model for business processes should allow for
expressing arbitrary security goals, and it should further provide concrete guidelines
how a secure implementation can be achieved from a secure specification.

2.2 Trust Models
Typically, a trust model refers to one specific property only, i.e., one system might use
different trust models for different properties. For example, a user might trust another user
of his own company to proof-read some unpublished work without using it for its own
advantage, but not to use his company credit card. Many companies and governments
even officially do not have a centralized trust model, i.e., different departments are often
not allowed to share all their knowledge and delegate all their tasks to each other.

For a meaningful incorporation of trust in the development process, a trust model
has to meet the demands of two different points of view.

First, it has to specify which parties trust each other for which purpose, respectively
which parties are considered as being potentially dishonest. This represents the individual
demands and relationships between the different users. Obviously, these trust relation-
ships heavily depend on the addressed security requirements, so it should be avoided
to lump together all kinds of security requirements, but each requirement may need an
individual treatment. This is an important feature in our underlying model, where differ-
ent requirements can be expressed as integrity, privacy, and liveness requirements. For
dealing with security issues in the presence of malicious adversaries, this view usually
captures the number of dishonest parties that a system can successfully tolerate without
losing its promised security properties. The common way to capture this formally is to
use access structures. An access structure ACC is a subset of the powerset of all partic-
ipants, representing the honest participants or correct hardware components; for the set
M = {1, . . . , n} of participants, e.g., we have ACC ⊆ 2M. ACC has to be closed under
element insertion, i.e., withA ∈ ACC andA ⊆ B, we haveB ∈ ACC. For cryptographic
protocols, typical examples are threshold structures, which state that at least t parties
have to be honest to guarantee the desired property, i.e., ACC = {A ∈ 2M | |A| ≥ t}.
However, such threshold structures do not always adequately model trust for business
processes, since the amount of tolerable malicious parties does not only rely on the ac-
tual number of such participants, but it might additionally reflect the users’ privileges,
rights, and influence, and hence their respective power to attack the system. Obviously,
it will usually be much more difficult to keep data secret from a corrupted CEO with all
her privileges than from a usual employee. Similarly, corrupting a pivotal server storing
sensitive data like secret keys for lots of employees will surely be more attractive than
corrupting a stand-alone workstation of a single employee.

Secondly, it has to be specified which information may leak from a communication
and how the adversary (respectively the dishonest parties) can interfere in the commu-
nication process, e.g., by modifying messages in transit. This corresponds to an external

Security in Business Process Engineering 173

view of trust, which is captured using a channel model. Formally, a channel model is a
function χmapping each connection of a system model to an element of the set {s, r, i},
representing (s)ecure, (r)eliable, or (i)nsecure channels. The set can be extended to other
connection types. Both access structures and channel models will be further treated when
we introduce our formal model.

2.3 A Certified Mail System as Running Example
In order to illustrate the need for the previously mentioned security goals, we continue
with a simple example system: a certified mail system, which models a fair exchange of
a message against a receipt, i.e., the message is delivered if and only if a valid receipt is
issued. If this condition is violated, then the cheated person should be able to successfully
complain at a trusted third party. Certified mail is an important primitive for electronic-
commerce processes and other atomicity services.

Here and in the following, we let M := {1, . . . , n} denote the set of the users of
the certified mail system, and these users can communicate with each other over an
insecure network like the Internet. In our certified mail system, this set has to comprise
one distinguished trust third party v that has to be honest, i.e., it is trusted by both the
sender and the recipient.

In order to implement such a system, each participant at first has to be able to check
the authenticity of an incoming message. This obviously cannot be achieved that easily
in the presence of malicious adversaries and an insecure network, since it allows for
modifying a message and faking its origin without granting the recipient a possibility to
detect this tampering. For successfully complaining at the third party in case of cheating,
a party has to be forced to issue a commitment before it will actually receive the desired
goods. The cheated user can use this commitment to convince the verifier in case of a
cheating contractual partner. Cryptographic protocols are well-suited for these tasks.

3 General Model Description

This section contains a brief review of the asynchronous model of probabilistic reactive
systems from [26], on which our subsequent work is based. The model itself is very
rigorously defined, but we use an informal description here due to lack of space. The
model is based on interacting state-machines as a common approach in business process
modeling; actually, the whole model has many similarities with other commonly used
models. The main difference is the incorporation of probabilism for dealing with the
concrete versions of cryptography in a meaningful way.

The machine model is probabilistic state-transition machines, similar to probabilistic
I/O automata as sketched by Lynch [21]. In prior formal models for business process
modeling, the usage of probabilism is avoided by assuming either deterministic or non-
deterministic machines. Although this is reasonable if the model does not intend to
address security properties, which are either explicitly or – more often – implicitly
based on cryptographic techniques, it does not allow for a meaningful analysis in the
presence of cryptography.

Communication between different machines is done via ports. Inspired by the CSP-
Notation [12], we write output and input ports as p! and p? respectively. Connections
are defined implicitly by naming convention, that is port p! sends messages to p?. To

174 M. Backes, B. Pfitzmann, and M. Waidner

achieve asynchronous timing, a message is not directly sent to its recipient, but it is first
stored in a special machine p̃ called a buffer and waits to be scheduled.

If a machine wants to schedule the i-th message of buffer p̃ (this machine must have
the unique clock out-port p�!) it simply sends i at p�!. The buffer then schedules the i-th
message and removes it from its internal list. In our case, most buffers are scheduled
by the adversary, i.e., he has the clock out-port. The concept of buffers is essentially
the same as in other state-based business-process models, which simply postulate the
network to be asynchronous without mentioning where messages in transit are stored,
but reasoning about cryptography in a meaningful way presupposes a higher level of
rigorousness. Moreover, note that these buffers do not have to be explicitly taken care
of when modeling a system. They are implicitly added in the model to allow for an
asynchronous definition of time and a meaningful analysis of security properties.

If a machine is switched, it receives an input tuple at its input ports and performs its
transition function yielding a new state and an output tuple in the deterministic case, or
a finite distribution over the set of states and possible outputs in the probabilistic case.
At each switching step of one particular machine, at most one value can arrive at every
input port and the machine can at most produce one output per port.

A collection C of machines is a finite set of machines with pairwise different machine
names and disjoint sets of ports. A port of a collection is called free if its connecting port
is not in the collection. These port will be connected to the users and the adversary. A
collection C is called closed if it has no free ports except a special master-clock in-port
clk�?. This port will be used to resolve situation where the execution cannot proceed.

For a closed collection, runs (sometimes called traces or executions) are defined as
follows. Scheduling of machines is done sequentially, so we have exactly one active
machine M at any time. If this machine has cloc out-ports, it is allowed to select the next
message to be scheduled as explained above. If that message exists, it is delivered by the
buffer and the unique receiving machine is the next active machine. If M tries to schedule
multiple messages, only one is taken, and if it schedules none or the message does not
exist, the special master scheduler is scheduled using the master-clock in-port clk�?.
For a formal definition of runs, see [26]. Due to the probabilistic transition functions
of the individual machines, we further obtain a probability space over the runs, which
will be useful for adequately expressing sophisticated security goals like probabilistic
flow of information. We further define the restriction of a run to a set M̂ of machines by
restricting the run to those steps where a machine M ∈ M̂ is switched. This is called the
view of M̂ .

3.1 Security-Specific System Parts Based on Trust Models

For security purposes, special collections are needed, because an adversary may have
taken over parts of the initially intended system. This is handled by considering a system
to be a set of possible structures, i.e., we have one structure for each element of the trust
model. First, the actual system part is defined and then the environment, consisting of
users and the adversary. Each structure furthermore separates the set of free ports into
specified ports S and others. The specified ports are those where a certain service is
guaranteed. Typical examples of inputs at specified ports are “send message m to id”
for a message transmission system or “pay amount x to id” for a payment system. In

Security in Business Process Engineering 175

the upcoming security definition, only the events at the specified ports have to be taken
care of. This allows abstract specifications with tolerable imperfections, which can be
explicitly granted to the adversary at the remaining ports of the system. A structure is
completed to a configuration by adding machines H and A, modeling the joint honest
users and the adversary, respectively. The machine H is restricted to the specified ports
S , A connects to the remaining free ports of the structure and both machines can interact,
e.g., in order to model active attacks.

Configurations are always closed, i.e., no inputs or outputs are related to some ex-
ternal participant. This is suitable since users and the adversary are explicitly contained
in the configuration, so there is no need to model them externally as often done in other
formal models. We will see that including the users in the model allows for using the con-
cept of simulatability that, roughly speaking, reflects the notion of a cryptographically
secure implementation.

3.2 Standard Cryptographic Systems

In a standard cryptographic system, the structures are derived from one intended struc-
ture and a trust model. The intended structure typically consists of n machines Mu, one
for each possible user. This is shown on the left-hand side of Figure 2. The trust model
consists of the already mentioned access structure ACC and channel model χ, cf. Sec-
tion 2.2. Here, the access structure contains the possible sets of uncorrupted machines
(among the intended ones), and the channel model classifies each channel as secure,
reliable (authentic but not private) or insecure. Now, we have one structure for each
element H of ACC, i.e.,

Sys = {(M̂H,SH) | H ∈ ACC}

in which only the machines contained in H are considered, i.e., we have M̂H = {Mu |u ∈
H}. The remaining machines are absorbed into the adversary. Now we modify the
channels between two correct machines according to the channel model in the following
way. If a connection c is considered as secure (χ(c) = s), it remains unchanged, i.e.,
both parties are directly connected, and the adversary does not learn anything about
communications on that channel. If a connection is reliable (χ(c) = r), every output is
additionally sent to the adversary corresponding to listening on a channel without the
ability of changing the content. This corresponds to an authenticated channel. Finally,
messages sent on insecure connections (χ(c) = i) have to pass through the adversary,
i.e., he can read and modify them in transit. A configuration of such a structure, after
taking the trust model into account, is shown on the right-hand side of Figure 2. After
these modifications, each derivation represents a realistic scenario for the particular trust
model, where information may leak or authenticity may not be guaranteed because of
an insecure network like the Internet, or where exchange of public keys can be precisely
modeled using authenticated channels.

3.3 Simulatability

Simulatability is an important cryptographic concept, which allows for securely refining
the cryptographic parts of a specification. Simulatability essentially means that whatever

176 M. Backes, B. Pfitzmann, and M. Waidner

H

M1 M3M2

H

M1 M3M2

A

User
Chosen-message

attacks etc.

Machines
Adversary

clk ?S

Fig. 2. A configuration of an intended structure is shown on the left-hand side (for n = 3). The
right-hand side shows a derivation induced by the trust model. In this case, we haveH = {1, 2}, so
the third machine is absorbed into the adversary, and the channel model classifies the connection
between the correct machine as authenticated.

might happen to an honest user H in a real system Sys real can also happen to the
same honest user in an ideal System Sys id. Formally speaking, for every configuration
conf 1 of Sys real there is a configuration conf 2 of Sys id with the same users yielding
indistinguishable views of H in both systems. We abbreviate this by Sys real ≥sec Sys id.
Indistinguishability is a well-defined cryptographic notion from [29].

Several nice results on simulatability exist. At first, there exists a composition theo-
rem stating that a step-wise refinement maintains the simulatability property [26]. More-
over, integrity and privacy properties (more precisely, integrity properties formulated in
a linear-time logic and non-interference properties) are preserved under simulatability[4,
2], which allows for proving properties on a high-level abstract layer that can be refined
later down to the cryptographic layer without destroying the already proven properties.
These theorems are essential for modular proofs.

Hence, the analysis of security properties only has to be done for the abstract specifi-
cation, and the results magically carry over to the actual cryptographic implementation.
In the upcoming section, this approach is used to define abstractions of commonly used
cryptographic primitives, which can be implemented in the sense of simulatability. The
benefit is that these abstractions can be conveniently used within a specification, and
serve as a construction kit for designing large processes out of these small building
blocks. Refining the crypto-related parts can then be easily, but securely achieved with-
out any additional work. Hence designers or process analysts are not forced to have a
strong background in security.

4 Towards a Secure Implementation: Refinement Using Common
Cryptographic Primitives

In this section, we investigate the notion of refinement of a process within our model,
distinguishing between refinement on the component level, on the action level, or on
the trust level. As the refinement of abstract cryptographic specifications by real cryp-
tographic protocols is one of the main benefits of our model, we continue with a brief
review on abstract and concrete versions of the most important cryptographic primitives
comprising secure channels, certified mail, and a simulatable cryptographic library.

Security in Business Process Engineering 177

4.1 Security in Different Layers of Refinement

Refinement is an important aspect of a design process, as shown in Figure 1. The part
where our model is most beneficial is that it enables sound refinement of abstract spec-
ifications of cryptographic protocols by real cryptographic protocols. However, the in-
clusion of trust and security requirements may influence all layers.

Another important argument for having a joint model of business processes and
cryptographic protocols is that typical business-process modeling may occur again under
a layer with cryptographic protocols.

All this is illustrated in Figure 3. Part 1 of this figure shows an abstract cryptographic

Ideal FairExchange

1. Abstract
cryptographic
primitive

s r

TTP

S R

TTP

S R

TTP1

S R

LogCrypt

Web

Protocol
TTP2 TTP3

2. Concrete
cryptographic
protocol

3a. Internal
refinement of TTP

3b. Refining trust
by distribution

4. Like 3a for
each TTPi

Fig. 3. Different types of refinement.

primitive, here fair exchange as sketched in Section 2.3. In an overall business-modeling
process, this may be one element after previous refinements.

Part 2 of the figure shows refinement by a real cryptographic protocol. This is pri-
marily component refinement because the behavior of the abstract primitive is modeled
by one state machine, while the real protocol shows the real three parties of such a
protocol. Further, it contains action refinement: On the abstract layer, the fair exchange
is essentially one step (exchange or not, depending on certain preconditions; only asyn-
chrony and giving the adversary a choice to disrupt the protocol breaks this step up a
bit). The real protocol contains several real state transitions corresponding to an input
of a protocol message, an internal action of one party, and output of the next protocol
message.

We show two possible next refinement steps: Part 3a of the figure shows business-
process modeling of the party TTP. While in the cryptographic protocol its action is
only a few monolithic state transitions, for a real such party quite complicated internal
workflows must be designed. The figure just shows a web-service frontend, a protocol
engine, a crypto engine and a logging component that interact to implement the state
transitions. Further, one needs management components for these functional components

178 M. Backes, B. Pfitzmann, and M. Waidner

and approval workflows for use of the management components. This may be treated as
a standard business-process modeling and implementation issue without further specific
security considerations, because the trust model in Layer 2 was that users s and r have
to trust TTP. However, it is better to refine the trust model on this layer, so that nobody
needs to trust all components of TTP. For instance, web-service frontends are less trusted
than crypto engines. “Refinement” for trust means that no new trust may be introduced.
More precisely, the system with the trust model inherited from the higher layer must
fulfill the higher-layer properties, but the more we can restrict the necessary trust in
sub-components the better.

Part 3b shows another way of refining the trust: Requiring s and r to trust TTP,
even with respect to the organization as such and not its components, is quite a strong
restriction. We may want to distribute this power. The figure shows refinement of TTP by
a cryptographic protocol for secure state-machine distribution with 2-out-of-3 trust, i.e.,
as long as two of the three organizations TTP1, TTP2, and TTP3 are trustworthy, the
overall protocol is as secure as that on the higher layer. This goes along with a refinement
of the messaging interface of components S and R to interact with the distributed TTP.
(See [8] for real protocols achieving this.) After this step, for each individual TTPi ,
business-process modeling as in Step 3a may be applied.

4.2 Secure Channels

In the following, we review the fundamental primitive of secure channels, which will
probably serve as the foundation of upcoming modeling examples due to its simplicity
but generality. We start with the concrete implementation, and continue with a deter-
ministic, but faithful abstraction, i.e., properties proved for this specification carry over
to the concrete implementation. It was a longstanding open question whether such “be-
nign” abstractions exist, which was answered in the affirmative for some of the most
important cryptographic primitives so far. The solution to the problem was to augment
naive abstractions with tolerable imperfections to obtain idealized systems for which
practical protocols exist.

Concrete Implementation. Our real system is a standard cryptographic system of the
form where any subset of participants may be dishonest. It uses asymmetric encryption
and digital signatures as cryptographic primitives. A user u can let his machine create
signature and encryption keys that are sent to other users over authenticated channels.
Messages sent from user u to user v are signed and encrypted by Mu and sent to Mv

over an insecure channel, representing a real network. The adversary can schedule the
communication between correct machines and send arbitrary messages to arbitrary users
(but only using the identity of the dishonest users).

Abstract Specification. The abstract specification is a system of the form SysSecMess
ideal =

(THH,SH) | H ∈ ACC} where THH is a deterministic machine modeling an idealized
behavior of the real system. A user can again let THH create signature and encryption
keys, or send messages to arbitrary users. In contrast to the real system, no keys are
actually generated, but THH only stores that a key generation of the particular user
has happened and informs the adversary of this fact. If a message should be sent from
user u to user v then this message is not sent over the network, but simply stored in

Security in Business Process Engineering 179

an internal array of THH. Now THH tells the adversary that a message has been sent
from u to v, and gives it a handle to the particular position in the array that contains the
message, along with the actual length of the plaintext message. The adversary can use
this information to schedule the message, which is then delivered by the trusted host.

Intuitively, the machine THH models the key essence of sending of encrypted mes-
sages and authenticated key exchange. The adversary does neither learn anything on the
content of a sent message nor does he has the possibility to alter it, but he is explicitly
granted certain information like the length of the plaintext, and that a message has indeed
been sent. These are the already mentioned tolerable imperfections, which stem from
the fact that a cryptographic implementation cannot avoid the adversary from learning
this particular information on his own, at least not with reasonable loss of complexity.
Hence, modeling these imperfections also within the specification is the key element for
achieving secure implementations.

Some Variants. For secure channels, several variants have already been proven with
a simulatability definition like ordered channels [3], which guarantee maintaining the
order of sent messages, or reliable channels [5], which guarantee eventual delivery of a
message. One of the most important extension is the cryptographic firewall [4] which uses
digital signatures to establish a virtual private network, i.e., it builds up a firewall around
users which are only connected via an insecure network like the Internet. The firewall is
mainly achieved be augmenting the secure channel primitive with a filtering system that
sorts out message, which are sent by senders outside of the firewall. The secure channels
already provide authenticity of messages and their origins, hence the filtering procedure
precisely sorts out the desired message. However, certain complications have to be taken
into account like avoiding denial-of-service attacks etc.

4.3 A Primitive for Certified Mail

Now we review the primitive for our running example of certified mail.

Concrete Implementation. The real system is again a standard cryptographic system;
however, now a specific party TTP must be honest, i.e., all sets in ACC contain it.

The system starts with a key-exchange phase. Later, for each exchange, the sender s
and recipient r run a subprotocol. As an example, we sketch the efficient asynchronous
protocol from [1].

It consists of a four-message standard flow, and two subprotocols where one of the
original parties complains to TTP, and TTP fairly aborts or finalizes this exchange.
In Message 1, the sender gives a commitment to the mail. A commitment is a lower
cryptographic primitive that fixes a message, but, like encryption, does not allow the
message to be read yet. In Message 2, the recipient signs that he is willing to provide
a receipt if this commitment is opened to him. In Message 3, the sender opens the
commitment, i.e., sends the message and a verification value, and in Message 4, the
recipient sends a receipt.

If the recipient does not send the receipt (or due to the asynchronous network or
an outside adversary it is delayed for too long), the sender shows Messages 1 to 3 to
TTP. If the recipient has sent the promise (Message 2) and does not receive the opened
commitment, he also complains to TTP with Messages 1 and 2. If a sender-complaint

180 M. Backes, B. Pfitzmann, and M. Waidner

arrives first, TTP provides a replacement receipt. If a recipient-complaint arrives first,
TTP signs for the recipient that the exchange was aborted.

Abstract Specification. The abstract specification again essentially consists of one de-
terministic trusted host THCertMail

H in each structure. The main inputs are of the form
(send, r,m) for sending a mail m to a recipient r, and (receive, s) for a recipient to
indicate willingness to get a mail from s and provide a receipt. Essentially, the trusted
host looks whether there are two matching inputs; if yes, it outputs the message m to
r and a success indicator to s. A detailed specification is already subtle and interesting
for the higher processes. First, we need transaction identifiers as additional parameters
to define which inputs match. Secondly, we have to choose between the simple inputs
just defined and a so-called labeled variant where the recipient also agrees to a subject
for the mail to be received, i.e., the above inputs have yet additional parameters. This
may be of more use in many applications. Thirdly, there are inputs to show and verify
a receipt, because that is the purpose of receipts in a higher protocol. Finally, we have
to model the power of an adversary in realistic protocols like the one above: He may
learn of exchanges even between honest participants, but not the message and subject
involved, and he can force protocols to end unsuccessfully.

4.4 A Foundation for Sophisticated Cryptographic Protocols: A Cryptographic
Library

When using more sophisticated protocols, we cannot only rely on simple secure channels,
since several messages might be encrypted twofold, nonces might have to be included
etc. Moreover, plugging in cryptographic primitives in larger protocols in a naive way
may give rise to man-in-the-middle attacks, type confusion attacks, and so on. Hence,
we need a more sophisticated system that takes care of all these subtleties, mainly by
following the rules of robust protocol design. Moreover, it should allow for composing
messages, for including important design principles like nonces etc.

Recently, a simulatable cryptographic library has been introduced in [6], which
provides these important design principles, and serves as a powerful tool for integrating
security in the analysis (and the design) of business processes. We omit a more detailed
description due to lack of space.

4.5 Modeling the Certified Mail System

In the following, we express the certified mail system of Section 2.3 in our model. The
system offers each user one port for sending and receiving messages from the system,
respectively. Using the conventions of [26], these ports are named outu ! and inu? for
user u. (The corresponding ports outu? and inu ! are then ports of the system.) These
ports are also the specified ports of the system. Using the abstract primitive THCertMail

for certified mail from Section 4.3, we can now easily derive an abstract version of our
system that has the desired functionality. This is shown at the left-hand side of Figure 4.
The derivation of a concrete implementation is also very simple. We just have to replace
the abstract system THCertMail with its predefined secure implementation, consisting
of the actual protocol machines MCertMail

u . Since this implementation has been derived
according to the simulatability paradigm (cf. Section 3.3), the desired integrity property

Security in Business Process Engineering 181

A

H

clk ?

inu!

outu!

outu? outv?

outv!

inv!

inv?inu?

... S

TH

H

clk ?

inu!

outu!

outu? outv?

outv!

inv!

inv?inu?

... S

Mu
CertMail

ACertMail
Mv

CertMail

Fig. 4. Refinement of the Certified Mail Specification. The abstract primitive is replaced by its
concrete cryptographic counterpart.

of certified mail carries over to the implementation without any further work, i.e., this
implementation is provably secure if the specification can be proven to be secure. Hence,
the final step is the actual validation of the specification, preferably using formal methods.
The feasibility of formal methods for this task is the topic of the next section.

5 On the Applicability of Formal Methods

The formal verification of security issues for arbitrary (non business-related) processes
has been subject to lots of papers in the literature (a very partial list includes [27,
20,24]). Just as we did in the previous section, the use of actual cryptography was
avoided by considering abstractions. However, the used abstractions are oversimplified
in the sense that no secure implementation of them is known. Thus the above concepts
for formal verification cannot be easily transfered to the demands of business process
modeling, which was one of the main reasons why we decided to base our work on a
more cryptographic approach. The disadvantage is that applying formal methods to the
abstractions of the previous section is more time-consuming, and also not investigated
that well.

As already mentioned in the previous section, all our abstractions are at least deter-
ministic hence we do not have to consider tools for dealing with probabilism like proba-
bilistic model checking. Moreover, no such tool exists for dealing with the cryptographic
details like error probabilities. Because of avoiding these problems, our abstractions are
in scope of formal proof systems, at least of formal theorem provers, for which signif-
icant results on proving medium-size examples of this kind already exist, e.g., in [3,2]
using the theorem prover PVS [23]. All of our abstractions presented above are surely in
scope of theorem proving, and further work in this area may additionally benefit from
specialized tools such as SAL [7] – an extension of PVS – that provides an environment
for the analysis of systems specified as state machines.

However, the use of automated model checking instead of theorem proving would
surely be very promising as it has become a very popular method to verify the properties
of finite-state concurrent systems [9]. It is also the more common approach in the business
process community, mainly because it has been successfully used in other models to
verify medium-sized examples [13,17]. Since interacting finite-state machines are the
foundation of these techniques, they are as well applicable to our underlying model. More

182 M. Backes, B. Pfitzmann, and M. Waidner

precisely, if we avoid using our cryptographic abstractions from the previous section,
and concentrate on modeling common examples without security just as prior work does,
using our model for this task does not impose any disadvantages.

When using our abstractions, the main problem could be that they are simply too
complex for being model-checked, which hence needs further investigation. However,
the basic primitives like secure channels or the cryptographic firewall are surely feasible
for current model checkers. In contrast to that, the more sophisticated abstractions like
certified mail or even the cryptographic library have very complex transition functions
that are additionally based on complex and unbounded datastructure like a database
with different types of entries. An ad-hoc application of a model checker will fail almost
surely, but we are confident that the complexity can be further reduced by developing or
adapting commonly data-independence techniques, e.g., [28].

References

1. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange.
In Proc. 19th IEEE Symposium on Security & Privacy, pages 86–99, 1998.

2. M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of secu-
rity protocols. In Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), volume 2607 of Lecture Notes in Computer Science, pages 675–686. Springer, 2003.

3. M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound implementations
using composition and formally verified bisimulation. In Proc. 11th Symposium on Formal
Methods Europe (FME 2002), volume 2391 of Lecture Notes in Computer Science, pages
310–329. Springer, 2002.

4. M. Backes and B. Pfitzmann. Computational probabilistic non-interference. In Proc. 7th
European Symposium on Research in Computer Security (ESORICS), volume 2502 of Lecture
Notes in Computer Science, pages 1–23. Springer, 2002.

5. M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial fairness and liveness. In
Proc. 15th IEEE Computer Security Foundations Workshop (CSFW), pages 160–174, 2002.

6. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library.
IACR Cryptology ePrint Archive 2003/015, Jan. 2003. http://eprint.iacr.org/.

7. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muñoz, S. Owre, H. Rueß, J. Rushby, V. Rusu,
H. Saı̈di, N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL. In LFM 2000: Fifth
NASA Langley Formal Methods Workshop, pages 187–196, 2000.

8. C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the Internet. In Proc.
International Conference on Dependable Systems and Networks (DSN), pages 167–176, 2002.

9. E. Clark, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
10. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 29(2):198–208, 1983.
11. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The Statemate Approach.

McGraw-Hill, 1998.
12. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer

Science, Prentice Hall, Hemel Hempstead, 1985.
13. W. Janssen, R. Mateescu, S. Mauw, P. Fennema, and P. van der Stappen. Model checking

for managers. In Proc. Theoretical and Practical Aspects of SPIN Model Checking, volume
1680 of Lecture Notes in Computer Science, pages 92–107. Springer, 1999.

14. J. Jürjens. Towards development of secure systems using UMLsec. In Proc. Fundamental
Approaches for Software Engineering (FASE), pages 187–200, 2001.

Security in Business Process Engineering 183

15. E. Kindler and T. Vesper. A temporal logic for events and states. In Proc. 19th Interna-
tional Conference on Application and Theory of Petri Nets, volume 1420 of Lecture Notes in
Computer Science, pages 365–384. Springer, 1998.

16. C. Klauck and H.-J. Mueller. Formal business process engineering based on grammer graphs.
International Journal on Production Economics, 50:129–140, 1997.

17. J. Koehler, G. Tirenni, and S. Kumaran. From business process model to consistent imple-
mentation:A case for formal verification methods. In Proc. 6th IEEE International Enterprise
Distributed Object Computing Conference (EDOC), pages 96–106, 2002.

18. M. Koubarakis and D. Plexousakis. A formal model for business process modelling and
design. In Proc. Conference on Advanced Information System Engineering, pages 142–156,
2000.

19. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-based modeling language
for model-driven security. In Proc. 5th International Conference on the Unified Modeling
Language, volume 2460 of Lecture Notes in Computer Science, pages 425–441. Springer,
2002.

20. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Proc. 2nd International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer, 1996.

21. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco, 1996.
22. D. O’Riordan. Business process standards for web services. available at

http://www.webservicesarchitect.com/content/articles/BPSFWSBDO.pdf.
23. S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. In Proc. 11th

International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in
Computer Science, pages 748–752. springer, 1992.

24. L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Cryp-
tology, 6(1):85–128, 1998.

25. B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems.
Presented at the DERA/RHUL Workshop on Secure Architectures and Information Flow,
Electronic Notes in Theoretical Computer Science (ENTCS), March 2000.
http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/menu.htm.

26. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. In Proc. 22nd IEEE Symposium on Security & Privacy,
pages 184–200, 2001.

27. A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In
Proc. 8th IEEE Computer Security Foundations Workshop (CSFW), pages 98–107, 1995.

28. A. W. Roscoe and P. Broadfoot. Proving security protocols with model checkers by data
independence techniques. Journal of Computer Security, 7(2,3):147–190, 1998.

29. A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 80–91, 1982.

Query Nets: Interacting Workflow Modules That Ensure
Global Termination

Rob J. van Glabbeek and David G. Stork

Ricoh Innovations
2882 Sand Hill Rd. Suite 115

Menlo Park, CA 94025-7022, USA
rvg@cs.stanford.edu
stork@rii.ricoh.com

Abstract. We address cross-organizational workflows, such as document work-
flows, which consist of multiple workflow modules each of which can interact with
others by sending and receiving messages. Our goal is to guarantee that the global
workflow network has properties such as termination while merely requiring prop-
erties that can be checked locally in individual modules. The resulting query nets
are based on predicate/transition Petri nets and implement formal constructs for
business rules, thereby ensuring such global termination. Our method does not
require the notion of a global specification, as employed by Kindler, Martens and
Reisig.

Introduction

This paper deals with the formal modeling of business processes that transform an input
into an output by performing several tasks, or by delegating these tasks to other such
business processes. Examples are an insurance company, that takes as input a claim and
yields as output a decision on that claim, or a car dealership that takes as input a broken
car and yields as output a repaired one. Both businesses follow a pre-established protocol
to transform input into output. Such a protocol is called a workflow.

In this paper we focus on workflows that span several organizations. Each organi-
zation employs a local workflow, and these local workflows may delegate tasks to local
workflows of other organizations. This is done by presenting an input to the other orga-
nization’s workflow, awaiting the generation of an output, and proceeding with the task
at hand using that output. (This paradigm is essentially the Nested Subprocesses Model,
the second interoperability scenario identified by the Workflow Management Coalition
[8].) Naturally, our work also applies to modular workflows within one organization.

Take as example the car dealership. The car dealership’s workflow is initiated by a
customer dropping off a broken car. In case the car dealership can repair the car, that’s
what they do; otherwise the problem is described to the car’s manufacturer in Detroit, and
their answer will be used to carry out the repair. The repaired car constitutes the output
of the workflow; it can be picked up by the customer. The manufacturer’s workflow can
be initiated by a question about the repair of a car, and its output is an answer to that
question. Some questions are dealt with by asking the local dealership that is supposed
to carry out the repair, and using the answer of the dealership as output.

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 184–199, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Query Nets: Interacting Workflow Modules 185

In this paper we allow workflows that can deal with different types of input and
output. The dealership’s workflow for instance can also accept a client shopping for a
car as input, in which case the output may be a sale. Or it can take anyone’s question
on how to repair a car as input, and present an answer to that question as output. In the
latter case, difficult questions may be dealt with by asking the manufacturer.

The described workflows of the car dealership and the manufacturer are graphically
displayed in Fig. 1. In Section 1 we will formalize this representation as a Petri net.

Fig. 1. Petri net representation of the car dealership’s workflow and the manufacturer’s workflow,
as well as their interaction (the dashed arcs). The dealership accepts as input a client shopping
for a car, a broken car, or a question on the repair of a car. As the latter two types of input are
treated similarly, they are collected in the same input place.
Faced with an input of a car, the first task of the dealership is to examine it. Depending on whether
the exam yields a way to repair the car or not, the output of this task is either the car and a report
on how to fix the car, or the car and a description of the problem for which no fix has been found.
In Petri nets, tasks are represented by transitions (the boxes) whose output types are fixed, so the
examination needs to be modeled by two transitions.
The shaded part of the dealership’s workflow deals with the querying of the manufacturer. With
dotted lines we added the alternative of returning the car to the customer unrepaired.

An important property of a workflow is termination. On any given input the work-
flow should eventually produce an output and stop. Let’s continue the example of the
dealership. If a repair does not succeed, the workflow may prescribe to try to repair the

186 R.J. van Glabbeek and D.G. Stork

car again, possibly using another method. When faced with a car that can never be fixed,
such a workflow leads to an unending series of attempts to repair the car, and the process
will not terminate. This is unacceptable behavior. When all reasonable methods have
been tried, the dealership should give up and return the car to the customer unrepaired.
Workflows should embody protocols to avoid infinite loops and ensure termination.

When the management of the car dealership inspects its workflow to see if termination
is ensured, it has little information on the workflow used by the manufacturer, which is
called as a subroutine. Yet, if the manufacturer’s workflow fails to terminate, so will the
dealership’s workflow. Given the workflow sketched above, and the absence of time-outs
or other tricks to ensure termination of the invocation of the manufacturer’s workflow,
the best that can be ensured is a conditional termination property. The car dealership’s
workflow may be shown to terminate on the condition that the manufacturer’s workflow
does. We call this local termination.

It is in the car dealership’s interest to ensure global or unconditional termination
of its workflow. This can be achieved by verifying that the car dealership’s workflow
is locally terminating, and the manufacturer’s workflow is unconditionally terminating.
When the car dealership trusts the manufacturer enough, the verification of the termina-
tion of the manufacturer’s workflow may happen locally by the manufacturer, and the
verdict taken on faith by the car dealership. However, verifying global termination of the
manufacturer’s workflow may not be so easy. It could be that the manufacturer delegates
tasks to others, and those might delegate subtasks even further. In general we are dealing
with a network of local workflows, and it may be verified locally that each local work-
flow in the network is locally terminating, i.e., terminating on the condition that all other
workflows in the network are terminating. The question now arises whether such local
termination properties of the local workflows are sufficient to guarantee termination of
the global workflow.

This needs not always be the case. In could for instance be that the dealership receives
as input a car that they do not know how to repair. According to protocol, they ask the
manufacturer how to deal with this specific problem. The manufacturer on the other hand
may have classified this question as one that ought to be answered by the local dealership.
According to protocol, the manufacturer’s workflow will pose the question to the local
dealership that asked it in the first place. Strictly following protocol, the dealership now
deals with the question by asking the manufacturer (again), and an infinite loop results.
Thus the car dropped of at the dealership will never be repaired and the global workflow
fails to terminate.

In practice, an infinite loop as sketched above will be prevented by some business rule.
The dealership will never ask the same question twice to the manufacturer in the course
of dealing with the same repair. Once the manufacturer echoes back the dealership’s
original question, the dealership either asks a different question to the manufacturer—a
question that doesn’t lend itself to being thoughtlessly echoed back to the dealership—or
it solves the problem at hand without involving the manufacturer.

The current paper presents a framework for specifying cross-organizational work-
flows in which such business rules can be implemented. It introduces the concept of a
query net, which is a locally terminating workflow module that, when embedded in a
cross-organizational workflow, will never delegate the same task twice to another work-
flow module. We establish that in cross-organizational workflow networks built out of
such query nets global termination is ensured.

Query Nets: Interacting Workflow Modules 187

In order to ensure global termination of a cross-organizational workflow network,
all that is required is that the individual workflow modules in the network are query nets,
a requirement that can be checked locally for each of these modules. Unlike in the work
of Kindler, Martens and Reisig [6] there is no need to show correctness of the modules
with respect to a fairness-closed specification, specifying the interactions between all
modules in the global network.

1 Cross-Organizational Workflow Nets

This section presents a Petri net model for cross-organizational workflow. For the purpose
of establishing notation and terminology we start out by reviewing basic place/ transition
Petri nets. Then we present a form of the more powerful predicate/transition nets, which
regard tokens as structured entities. Finally, we arrive at our model by equipping these
nets with input and output places and a novel mechanism and implicit protocol for one
net to call another as a subroutine.

1.1 Place/Transition Nets

A place/transition net is a tuple (S, T, F) where S and T are disjoint sets of places
(Stellen in German) and transitions, and F: (S×T)∪ (T ×S) → IN is the flow relation.
The elements of S and T are represented graphically by circles and boxes, respectively.
For p, q ∈ S ∪ T there are F (p, q) arcs from x to y.

When a place/transition net represents a concurrent system, a global state of such a
system is given as a marking M : S → IN. Such a state is depicted by placing M(s)
tokens in each place s. A marked place/transition net is a tuple (S, T, F,M) comprising
a place/transition net (S, T, F) and a marking M .

For two markings M and M ′: S → IN we write M ⊆ M ′ if M(s) ≤ M ′(s) for all
s ∈ S. The markingM +M ′: S → IN is given by (M +M ′)(s) = M(s)+M ′(s). The
function M −M ′: S → Z is given by (M −M ′)(s) = M(s) −M ′(s); this function
need not yield a marking because it might specify a negative number of tokens in a place.

The multisets of preplaces •t and postplaces t• : S → IN of a transition t ∈ T in
a place/transition net are given by •t(s) = F (s, t) and t•(s) = F (t, s) for s ∈ S. A
transition t is enabled under a marking M , written M [t\/, if •t ⊆ M . In that case t can
fire underM , yielding the markingM ′ = M − •t+ t•, writtenM [t\/M ′.

If a transition t fires, for every arc from a place s to t, a token moves along that
arc from s to t. These tokens are consumed during the firing, but also new tokens are
created, namely one for every outgoing arc of t. These new tokens end up in the places
at the end of those arcs. The firing of t is possible only if there are sufficiently many
tokens in the preplaces of t.

1.2 Predicate/Transition Nets

A predicate/transition net [3] (sometimes called coloured Petri net [5]) is a Petri net in
which the tokens are structured entities. We use a set of variables V = {x, y, . . .} to
range over the possible tokens in such a net, and a suitable collection IF of formulas over

188 R.J. van Glabbeek and D.G. Stork

those variables, expressing combinations of properties of the tokens referenced by the
variables occurring in those formulas. The specification of IF varies with the application.

A predicate/transition net is given as a quadruple (S, T, F, λ) where, as above, S and
T are disjoint sets of places and transitions, but now the flow relation F is a subset of
(S×V ×T)∪ (T ×V ×S), and λ: T → IF allocates to each transition a formula called
the transition guard [7]. As above, the elements of S and T are represented graphically
by circles and boxes, respectively, while an element (p, x, q) ∈ F is represented as
an arc from p to q, labeled with variable x. A formula λ(t) is written next to the box
representing the transition t.

An arc (s, x, t) ∈ F with s ∈ S, x ∈ V and t ∈ T indicates that upon firing the
transition t, a token x is taken from place s. An arc (t, y, s′) ∈ F with t ∈ T , y ∈ V and
s′ ∈ S indicates that upon firing t a token y is deposited in place s′. The transition guard
λ(t) selects properties of the input tokens that have to be satisfied for the transition to
fire, and simultaneously specifies the relation between the input and the output tokens.
The formula λ(t) may contain free occurrences of the variables allocated to the arcs
leading to or from t. These variables refer to the transition’s input and output tokens.
Consider as an example a transition that consumes input tokens x and y, and produces an
output token z. The transition guard could then be a formula that says that the transition
may only fire if y is a cryptographic key, and x is a PGP document that successfully
decrypts with that key; if these conditions are met, the decrypted document z is emitted.

The Petri net of Fig. 1 is a predicate/transition net. The arc-labels such as “car” and
“report” are variables. The transition guard λ2 says that the variable “car” refers to a car
for which a repair can be found, or alternatively to a question on the repair of a car for
which a repair can be found; if this condition is not satisfied, the λ2-labeled transition
cannot fire. Moreover, λ2 specifies the relation between the car and the report on how to
fix it. The same variable “car” labels both an input and an output arc of the transition;
this indicates that the car or question passes through this transition unchanged.

1.3 Marked Predicate/Transition Nets and the Firing Rule

A framework for predicate/transition nets specifies a set V of variables, a collection IF
of formulas over V , a domain D of possible tokens, and an evaluation function. The
latter specifies, for each formula ϕ ∈ IF and each assignment ξ : V → D of tokens
to variables, whether ϕ evaluates to true of false under ξ; let ϕ[ξ] denote the result
of this evaluation. Any specification of a predicate/transition net presupposes such a
framework.

A marking of a predicate/transition net is an allocation of tokens to the places of the
net, formally defined as a functionM: S×D → IN, that specifies for every place s ∈ S
and token d ∈ D how many copies of d reside in s. A marked predicate/transition net is a
tuple (S,T,F,λ,M) comprising a predicate/transition net (S,T,F,λ) and a marking M .

In a marked predicate/transition net a transition t can fire if there is an assignment
ξ of tokens to variables such that the transition guard λ(t) evaluates to true, and for
every x-labeled arc from a place s to t there is an input token ξ(x) in s. As a result of
firing t, these input tokens are taken away and for every y-labeled arc from t to a place
s′ an output token ξ(y) is deposited in s′.

Here is a more formal description of the firing rule, where the notions M ⊆ M ′,
M +M ′ and M −M ′ are defined just as for markings with only one argument. For a

Query Nets: Interacting Workflow Modules 189

transition t ∈ T in a predicate/transition net and an assignment ξ: V → D, the input and
output markings •t[ξ] and t[ξ]• : S × D → IN of t under ξ are given by

•t[ξ] = {|(s, ξ(x)) | (s, x, t) ∈ F |} and t[ξ]• = {|(s, ξ(x)) | (t, x, s) ∈ F |}
in which {|, |} are multiset brackets. A transition t is enabled under a markingM , written
M [t\/, if there exists an assignment ξ: V → D such that λ(t)[ξ] is true and •t[ξ] ⊆ M .
In that case t can fire under M , yielding the marking M ′ = M − •t[ξ] + t[ξ]•, written
M [t\/M ′.

1.4 Fairness

A firing sequence in a Petri net is a possibly infinite alternating sequence of markings
and transitions M0, t1,M1, t2,M2, . . . such that M0[t1 \

/ M1[t2 \
/ M2 · · ·. We say that

markingM ′ is reachable from markingM if there is a firing sequence starting withM
and ending with M ′.

In a Petri net, complete runs of the represented system are represented by firing
sequences. However, not every firing sequence represents a complete run. Some finite
firing sequences merely represent partial runs, and some infinite ones do not correspond
with runs that could occur in practice. Those firing sequences that do model complete
runs are called fair. Fairness can be formalized in many ways, often requiring a more
involved definition of a Petri net, and often depending on certain progress or fairness
assumptions made on the behavior of nets. In our simple nets we call a firing sequence
fair if there is no transition t such that from a certain marking in the sequence onwards,
t is continuously enabled but never fires. In particular, a finite firing sequence is fair if
and only if in its last marking no transition is enabled. For a more subtle approach to
fairness see for example Kindler, Martens & Reisig [6].

1.5 Workflow Nets

Workflow nets are defined in van der Aalst [1,2] employing place/transition nets. Here
we extend the definition to predicate/transition nets. A workflow net (S, T, F, λ, i, o) is
a predicate/transition net (S, T, F, λ) with two special places, i and o. A workflow net
represents a business process that converts an input into an output. The input and output
are represented by tokens, presented by the environment to the net’s input place i, and
removed from its output place o. The specification of a workflow nets does not involve
the notion of an initial marking; a workflow net starts out empty, and may start firing
using tokens dropped in the input place i by the environment of the net.

1.6 Multi-organizational Workflow Nets

In this paper we view the parallel composition of any number of business processes as a
single global business process. Imagine two shops, each with their own procedures for
handing input and output. While we generally consider them as two separate business
processes, we might choose instead to treat them as a single global business process,
perhaps because of joint ownership or some other binding relation between the two.
When representing processes as Petri nets, their parallel composition is represented by

190 R.J. van Glabbeek and D.G. Stork

the disjoint union of these nets. In the case of workflow nets, this representation leads
to a proliferation of input and output places. Therefore we will consider workflow nets
with multiple pairs of input and output places. These will also be suitable to represent
business processes that can deal with different types of input that are treated in different
ways and lead to different types of output.

A multi-organizational workflow net W= (S, T, F, λ, IO) is a predicate/transition
net (S, T, F, λ) equipped with a set IO of input/output ports, each port p ∈ IO consisting
of an input place pin ∈ S and an output place pout ∈ S.

Each of the two workflows of Fig. 1, not including the dashed arcs between them,
can be regarded as a multi-organizational workflow net. The dealership’s workflow has
two input/output ports, namely “client” and “car (or question on repair car)”.

1.7 Workflow Modules

We define a workflow module (S, T, F, λ, IO,Q) to be a multi-organizational workflow
net equipped with a set Q of query ports. Each query port q ∈ Q consists of two
transitions q? and q! ∈ T and two places qpre and qactive ∈ S, connected by arcs
(qpre, x1, q?), (q?, x2, qactive) and (qactive, x3, q!) ∈ F . There are no other arcs to or
from qactive. The arcs leading to qpre should be such that qpre receives at most one
token for each input received by the workflow module. In some cases this is achieved
by allowing only arcs to qpre from transitions that have an input place pin with p ∈ IO
as preplace (Fig. 2).

Fig. 2. A query port in a workflow module. The query port q consists of a query transition q?

sending a query to another workflow module, a query transition q! receiving the answer from the
other module, a query place qpre ensuring that in each run of the workflow module the query
transition q? can be fired at most once, and a query place qactive ensuring that q? fires before q!.

Query Nets: Interacting Workflow Modules 191

Workflow modules represent business processes with the ability to invoke other
business processes as subroutines. Each query port q ∈ Q models (a) the invocation
of another business process (the target process of the port) by sending it an input, and
(b) the receipt of the corresponding output. The query transition q? represents the act of
invoking the target process. The transition guard λ(q?) may contain free occurrences of
the variable x?. This variable represents the input that is presented to the target process.
The query transition q! represents the receipt of an output from the target process. The
transition guard λ(q!) may contain free occurrences of the variable x!, referring to that
output. This guard may relate x! with variables labeling outgoing arcs of q!; however, it
is not allowed to restrict the enabling of q! based on the value of x!.

The query place qpre ensures that in each run of the workflow started by single token
in an input place, the query transition q? can fire at most once. In order to model a business
process that in one such run invokes another business process twice as a subroutine, one
needs two different query ports. When the target process has been invoked, but its output
has not yet been collected, the query place qactive contains a token. This design ensures
that q! can fire only after the firing of q?.

1.8 Modular Workflow Architectures

A modular workflow architecture is a finite set of workflow modules, together with an
allocation, to each query port in each module in the architecture, of an input/output port
of another (or the same) workflow module (Fig. 3). The input/output port allocated to a
query port is called the target of that query port. We assume that query ports in different
modules in the architecture have different names.

A modular workflow architecture models a collection of interconnected business
processes. Each of these business processes is represented by a workflow module. Oc-
casionally such a business process delegates a subtask to another business process. This
delegation is modeled by the query ports. The target of a query port indicates to which
business process the subtask is delegated. A business process may dynamically choose a
module to which a task should be delegated (e.g. in vendor selection) by routing control
through a chosen query port.

A modular network architecture can be represented by a single multi-organizational
workflow net, called the cross-organizational workflow net representing the architecture.
This is done by taking the disjoint union of its constituent workflow modules, and con-
necting every query port q in every module, through arcs (q?, x?, pin) and (pout , x!, q!),
with the input and output places pin and pout of the target port p of q (Fig. 4). The
input/output ports of the cross-organizational workflow net are those of the constituent
modules. Figure 1 shows a modular workflow architecture that is made into a cross-
organizational workflow net by adding the dashed arcs.

2 Workflow Nets for Multiple Cases

A case is a run of a business process invoked by a single input. In a workflow net a
case starts when a token is deposited by the environment in the input place of the net,
and ends when a token arrives at the output place. In van der Aalst [1,2], workflows are
considered to be case driven, meaning that every case can be considered as running in

192 R.J. van Glabbeek and D.G. Stork

Fig. 3. A modular workflow architecture consisting of four workflow modules with six query ports.
The query ports q4 and q5 share the same target p4/5.

Fig. 4. A query port in a workflow module and its connection in a cross-organizational workflow
net to the target of that port.

a fresh copy of the workflow net. This approach guarantees that different cases do not
influence each other, a property we call case independence.

The case driven approach would unduly complicate the constructions of the present
paper. We consider different cases to be running in parallel in the same workflow net,
which can happen in particular in workflow modules within modular workflow architec-
tures, namely when a module is invoked twice as a subroutine in the course of executing

Query Nets: Interacting Workflow Modules 193

a single case of another module. Nevertheless, case independence can be ensured easily
in predicate/transition nets by assigning a unique identifier to every case. In practice, this
identifier could consist of the name and address of whomever presented the case to the
workflow, and the time of submission. To this end we assume that every token deposited
in the input place of a workflow net carries a unique case identifier. The transition guards
of each transition will require that that transition fires only when all incoming tokens
have the same identifier. Each output token will have that identifier as well. This method
precludes any interference between cases.

In this section, we first formally define case independence, and then describe a
method to transform any multi-organizational workflow net into a case independent one
under the assumption made above. Subsequently we extend this method to workflow
modules in such a way that the case-independence of modules is preserved when these
modules are embedded in a cross-organizational workflow net.

2.1 Case Independence

A multi-organizational workflow netW enjoys case independence if any firing sequence
M0[t1\

/M1[t2\
/M2[t3\

/ · · · where M0 is a marking that only puts tokens in input places
ofW , can be obtained by interleaving firing sequences that start with markings that put
only one token in an input place. This means that, if the initial markingM0 has n tokens,
each markingMi can be written asMi1+ · · ·+Min, such that, for j = 1, ..., n,M0j puts
only a single token in an input place, and for each transition ti in the sequence, there is
a j ∈ {1, ..., n} such thatM(i−1)j [tj\

/Mij andM(i−1)k = Mik for k = j. In words, the
given firing sequence can be decomposed into n firing sequences starting with a 1-token
marking, and every transition ti belongs to one of these n firing sequences.

We do not aim for general case independence, but merely for case independence
under the assumption that the environment supplies tokens that are tagged with distinct
identifiers from a set ID . We call this ID-case independence. It is formally defined just
as case independence above, but only for initial markings M0 that supply tokens of the
form (id, d) with id ∈ ID such that all supplied tokens have distinct identifiers.

2.2 Ensuring Case Independence

LetW = (S, T, F, λ, IO) be a multi-organizational workflow net designed for the case
driven approach, in a framework with D the set of possible tokens. Let ID be a set of
possible identifiers, and take D′ = ID × D = {(id, d) | id ∈ ID ∧ d ∈ D}, the set of
possible tokens with attached identifiers. Suppose {x1, . . . , xn} is the set of variables
labeling the arcs entering and leaving a transition t ∈ T , then we define λ′(t) to be

∃ id∈ ID : x1 =(id, x′
1) ∧ · · · ∧ xn =(id, x′

n) ∧ λ(t)[x′
i/xi (i=1, ..., n)]

where λ(t)[x′
i/xi (i= 1, ..., n)] denotes the result of substituting x′

i for xi in λ(t) for
i = 1, ..., n. Now W ′ = (S, T, F, λ′, IO) is a multi-organizational workflow net that
behaves just like W when presented with a single input token, but in which ID-case
independence is guaranteed. The framework in which W ′ is specified uses the domain
D′ of possible tokens and a suitably extended collection IF′ of formulas.

194 R.J. van Glabbeek and D.G. Stork

2.3 Ensuring Case Independence in Modular Workflow Architectures

We consider a modular workflow architecture to be ID-case independent if its indi-
vidual modules are case independent under the assumption that tokens deposited by
the environment of the architecture in input places of the modules of the architec-
ture have distinct identifiers, chosen from the set ID . For our main results below,
ID-case independence of modular workflow architectures is essential. ID-case inde-
pendence of modular workflow architectures can be achieved by the method described
in Sect. 2.2, provided that all tokens deposited in input places of the modules of the
architecture have distinct identifiers. Such tokens may be provided by the environ-
ment or by query transitions. Therefore we have to require that query transitions never
emit tokens with identical identifiers to input ports of any given module. This require-
ment will be fulfilled when query ports augment the identifier of a case they are deal-
ing with with their own identity. To this end, for a collection of identifiers ID sup-
plied by the environment, and a collection of Q of potential names of query ports
appearing in a modular workflow architectures, let IDQ be the collection of identi-
fiers id∗q1 ∗q2 ∗ · · · ∗qk with k ∈ IN, id ∈ ID and qj ∈ Q for j = 1, ..., k. Such
identifiers consist of a global case identifier id from ID , attached to a token by the envi-
ronment, together with a sequence of names of query ports that the token passed through
in succession. For a query port q ∈ Q the transition guards λ′(q?) and λ′(q!) now are
∃ id∈IDQ : x1 =(id, x′

1)∧· · ·∧xn =(id, x′
n)∧x? =(id∗q, x′

?)∧λ(q?)[x′
i/xi (i=1, ..., n,?)] and

∃ id∈IDQ : x1 =(id, x′
1)∧· · ·∧xn =(id, x′

n)∧x! =(id∗q, x′
!)∧λ(q!)[x′

i/xi (i=1, . . . , n, !)].
It could be that in a single case a single module invokes another module twice by means
of different query ports. Using the names of those ports to augment the case identifier
results in the invoked module only receiving tokens with distinct identifiers. Here it is
crucial that in a single case any particular query port q be used only once. For this reason
we introduced the query places qpre .

We call a workflow module manifestly ID-case independent if it has been made ID-
case independent by the method above. If all workflow modules in a modular workflow
architecture are manifestly ID-case independent, then surely the architecture itself is
ID-case independent.

In a modular workflow architecture consisting of manifestly ID-case independent
workflow modules the type of token identifiers is that of a stack. Tokens deposited by
the environment are assumed to have an identifier id ∈ ID . Whenever a token passes
though a query transition q? into another module (containing the target of q) the name q
of the corresponding query port is appended to the identifier, or “pushed on the token’s
stack”. Within a module the identifier of tokens is preserved. When a token is retrieved
by the query transition q! from the output place of the target of q, the name q is popped
from the token’s stack.

3 Proper Termination

Typically, van der Aalst [1,2] requires workflow nets to be sound, in the sense that
(1) if a token is put in the input place, a token will eventually appear in the output place,
(2) when a token appears in the output place, no other tokens are left in the net, and
(3) every transition in the net can under some circumstance be fired.

Query Nets: Interacting Workflow Modules 195

These properties are formalized as follows (where the marking {|i|} is the multiset that
only contains the input place of the workflow net):

(1) Any fair firing sequence starting with {|i|} contains a marking with a token in o.
(2) Any marking that is reachable from {|i|} and has a token in o, must equal {|o|}.
(3) For any transition t there is a firing sequence starting with {|i|} in which t appears.

In van der Aalst [1,2] workflow nets are required to satisfy

(4∗) The input place i does not have incoming arcs and the output place o does not have
outgoing arcs. Furthermore, for every place or transition r ∈ S ∪ T there should be
a path in the net from i to o via r.

This structural property implies that (4) in the marking {|o|} no transition is enabled.
In this paper, we will drop the structural requirement (4∗) but retain its consequence (4),
which will be treated as an additional soundness requirement.

Soundness property (1) says that the workflow net is guaranteed to provide an output
token, and property (2) adds that when the environment retrieves this token from the
output place, no tokens remain in the net. In combination with the assumed case inde-
pendence of workflow nets, properties (1) and (2) imply that for each token put in the
input place, exactly one token will eventually appear in the output place. It is not hard
to find counterexamples showing that this does not follow without case independence.

Soundness property (3) is one of parsimony, and has no bearing on the operational
behavior of the workflow net.Any workflow net can be transformed into an operationally
equivalent one that satisfies this property, namely by deleting all transitions that can never
be fired. We will not be concerned with this soundness property here, and instead use a
concept of soundness consisting of properties (1), (2), and (4). This form of soundness
is called proper termination [4].

The following definition extends this concept to multi-organizational workflow nets
for which all tokens are of the form (id, d) with id a case identifier. From here onwards
we work in a framework for predicate/transition nets in which all token have this form.
Now a marking is a multiset of elements (s, (id, d)) with s a place in the net. As the case
identifier is supplied by the environment dropping a token in an input place, and that
environment is hoping for an output token pertaining to the same case, only tokens of
the form (id, d′) count as legitimate output when an input (id, d) was supplied. Tokens
with any other identifier may pass through output places casually.
Definition 1. A multi-organizational workflow net is properly terminating if

(1) Any fair firing sequence starting with a marking {|(pin , (id, d))|} for some input/
output port p ∈ IO contains a marking with a token (id, d′) in pout .

(2) Any marking that is reachable from a marking {|(pin , (id, d))|} and has a token
(id, d′) in pout , must equal {|(pout , (id, d′))|}.

(4) In a marking {|(pout , (id, d))|} no transition is enabled.

Note that because in a workflow module in a modular workflow architecture a query
transition q! lacks its incoming arc (pout , x!, q!) where p is the target of q, proper termi-
nation of the workflow module can be understood as proper termination of the workflow
module enriched with such an arc, under the assumption that a token is supplied over
this arc, i.e., under the assumption that the workflow invoked by q? terminates. This is
what we called local termination in the introduction. Also note that, in view of the firing
rule for predicate/transition nets, proper termination is required for any token supplied
over this arc, i.e., for any output returned by the invoked workflow.

196 R.J. van Glabbeek and D.G. Stork

3.1 Proper Termination of Modular Workflow Architectures

We consider a modular workflow architecture to be properly terminating whenever the
cross-organizational workflow net representing the architecture is properly terminating.
The main goal of this paper is to formulate conditions on workflow modules in an
architecture that guarantee proper termination of the architecture itself.

Lemma 1. If all workflow modules in a modular workflow architecture satisfy prop-
erty (4) of Definition 1, then the cross-organizational workflow net W representing the
architecture satisfies property (4).

Proof. Let M be a marking {|(pout , (id, d))|} of W . As in each of the queries q in W
the place qactive is not marked, none of the query transitions q! is enabled under M .
Any other transition t in W is enabled under M only if in the module containing t, t is
enabled under the restriction of M to that module, which is either {|(pout , (id, d))|} or
the empty marking. As that module satisfies (4), t is not enabled under {|(pout , (id, d))|},
and thus certainly not under the empty marking.

Lemma 2. If all workflow modules in a manifestly ID-case independent modular work-
flow architecture satisfy properties (2,4) of Definition 1, then the cross-organizational
workflow net W representing the architecture satisfies property (2).

Proof. Let σ be a firing sequence inW starting with {|(p0in , (id0, d0))|}, and letM be a
marking in σ with a token (id0, d′

0) in p0out . As W is manifestly ID-case independent,
each token occurring in a marking in σ has a case identifier of the form id0∗q1∗q2∗· · ·∗qk.
Here we also use that inW there are no transitions without incoming arcs, which follows
from the assumption thatW satisfies (4). Furthermore, each transition inσ has a transition
guard of the form ∃id ∈ IDQ : ϕ and therefore can be annotated with the identifier
id ∈ IDQ that enabled it. For any id ∈ IDQ and any markingM ′ letM ′ \id consist of
the elements (s, (id, d)) ofM , and let σ \id be obtained from σ by replacing its markings
M ′ by M ′ \id, and by skipping the transitions that are not annotated with id. From the
manifest ID-case independence ofW it follows that σ \id is a firing sequence in one of
the modules (that we call Wid). It follows immediately from the assumption that Wid0

satisfies (2) that M \id0 = {|(p0out , (id0, d′
0))|}.

With induction on k > 0, we establish that M \id0∗q1∗q2∗· · ·∗qk is empty, which
finishes the argument. So assumeM \id is either {|(p0out , (id0, d′

0))|} or empty. It has to
be shown that M \id∗q is empty. In case σ \id does not contain the transition q? this
is trivial. In case σ \id does contain q?, it must also contain q!, as M \id has no tokens
in qactive . Hence σ \id∗q starts with a marking {|(pin , (id∗q, d))|} and has a marking
M ′ with a token (id∗q, d′) in pout , where p is the target of q. As Wid∗q satisfies (2),
M ′ \id∗q = {|(pout , (id, d′))|}, and M \id∗q must be empty.

It is not hard to see that a modular workflow architecture may fail to be properly
terminating if it fails to be ID-case independent, or if some its workflow modules fail
to be properly terminating. However, (manifest) ID-case independence and proper ter-
mination of the workflow modules in a modular workflow architecture are not sufficient
conditions to guarantee proper termination of a modular workflow architecture. A fail-
ure of proper termination of a modular workflow architecture may occur in the case of
loops in the connections between its workflow modules. If, for example, moduleA keeps
calling module B and vice versa, as can happen in the car dealership example from the

Query Nets: Interacting Workflow Modules 197

introduction, the resulting architecture has a loop and the associated queries will never
be answered.

Below we define a subclass of acyclic modular workflow architectures for which
the requirements that its modules are manifestly ID-case independent and properly ter-
minating are sufficient to ensure proper termination of the architecture. In Sect. 3.3 we
will show that the condition of acyclicality can be omitted when equipping workflow
modules with a simple business rule that, in essence, prohibits the posing of the same
query twice. Workflow modules that are so equipped will be called query nets.

3.2 Acyclic Architectures

The connectivity graph of a modular workflow architecture has as its nodes the workflow
modules in the architecture, and a directed edge A → B whenever workflow module A
has one or more query ports with a target in B. Figure 5 shows the connectivity graph
of the modular workflow architecture of Fig. 3. An architecture is called acyclic if its
connectivity graph has no cycles.

A C

D

B

Fig. 5. Connectivity graph of the modular workflow architecture of Fig. 3. The letters represent
workflow modules and the arcs represent queries. This architecture is cyclic because module B
contains a query port with a target in module C and vice versa.

Theorem 1. If all workflow modules in an acyclic modular workflow architecture are
manifestly ID-case independent and properly terminating, then the architecture itself is
properly terminating.

Proof. That the cross-organizational workflow netW representing the architecture sat-
isfies properties (4) and (2) of Definition 1 follows from Lemma’s 1 and 2. Now consider
a fair firing sequence σ inW starting with a marking {|(pin , (id, d))|}. Using the notation
and results from the proof of Lemma 2, σ \id is a firing sequence of the module Wid.
In case this firing sequence is fair, as Wid satisfies (1), σ \id, and hence also σ, must
contain a marking with a token (id, d′) in pout , which had to be established. The only
way σ \id can fail to be fair in Wid, even though σ is fair in W , is when there is a
query transition q! inWid that, from a certain marking in σ \id onwards, is continuously
enabled but never fires. In σ this query transition cannot be continuously enabled, which
is possible only when σ \id∗q is a firing sequence in Wid∗q starting with a marking
{|(p1in , (id∗q, d1))|} but having no marking with a token (id∗q, d′

1) in the output place
p1out of the target p1 of q. (If a such token does arrive in p1out and q! never fires, that token
is stuck in p1out by properties (2) and (4) of Wid∗q, contradicting the fairness of σ.) As
Wid∗q satisfies (1), σ \id∗q cannot be fair, even though σ is. This can only be explained

198 R.J. van Glabbeek and D.G. Stork

by a query transition q′
! inWid∗q, with similar properties as q! above. Continuing in this

vein, we find an infinite sequence of query transitions q? visited by σ, contradicting the
acyclicality of the architecture.

3.3 Query Nets

A query net is a properly terminating manifestly ID-case independent workflow module
that never poses the same query twice. The latter can be achieved by a clause in the
transition guards of query transitions q? forbidding the transition to fire when the token
identifier contains the name q of that query already. Thus a query net implements a
business rule that prevents getting stuck in an infinite loop. The requirement of proper
termination moreover implies that the workflow module should embody a backup plan
to deal with the situation that the interaction with other workflow modules would have
given rise to such a loop. This backup plan may involve a transition that can fire as
an alternative to q? when q? appears in the identifier of an token. Such an alternative
transition must have qpre as one of its input places. An example of this is the transition
“admit car cannot be repaired” in Fig. 1. We can now state our main result.

Theorem 2. If all workflow modules in a modular workflow architecture are query nets,
then the architecture is properly terminating.

Proof. Exactly as for Theorem 1, but this time an infinite sequence of query transitions
q? without matching q!’s cannot be visited, because there are only finitely many queries
in the architecture, and no query can occur twice in the sequence.

In fact, Theorems 1 and 2 can be combined and strengthened by merely requiring that
all workflow modules in the modular workflow architecture are manifestly ID-case in-
dependent and properly terminating , and that in any cycle in the connectivity graph of
the architecture there is at least one query net.

The dealership’s workflow of Fig. 1 is, for adequate choices of the transition guards
λi, a query net. The manufacturer’s workflow on the other hand is not, as its query is not
equipped with a backup plan. Nevertheless, the cross-organizational workflow net that
combines both modules is, for adequate choices of the λi’s, properly terminating.

4 Conclusion and Comparison with Related Work

Petri nets have been established as a powerful model for workflow applications. Van der
Aalst [1,2] has proposed soundness criteria that guarantee that in a business application
modeled by a workflow net every case submitted to the workflow will be completed,
and with no references to it remaining in the net. In this paper we examined cross-
organizational business applications that are modeled by collections of communicating
workflow nets. The amalgamation of all these workflows into a single workflow net
may be too large for possibly automated formal analysis. Moreover, individual business
partners that operate one of the workflows in the collection may be reluctant to provide
the complete specification of their workflow, as result of which nobody can know the
complete specification of the amalgamated workflow. For this reason, we explored ways
to establish global termination properties for the amalgamated workflow by investigating
whether local termination properties hold for the individual workflows in the collection.

Query Nets: Interacting Workflow Modules 199

We proposed local properties that can be checked for individual workflow nets in the
collection (by the organizations that operate these individual workflows), without the
need for any knowledge of the other workflows in the collection. These local properties
guarantee global termination of the amalgamation.

Addressing the same issue, Kindler, Martens and Reisig [6] establish that global
termination of the amalgamated workflow is implied by local termination of the com-
ponent workflows, provided those components are locally correct with respect to a
fairness-closed specification. In fact, their definition of a fairness-closed specification
is carefully crafted in such a way that this result holds. In many realistic applications
global termination fails even when local termination of the component workflows holds
(see Section 1.4 in [6]). It turns out that in such cases there is no fairness-closed specifi-
cation for which the component workflows are locally correct. Thus these specifications
are essential. A problem is that fairness-closed specifications specify the interactions
between all workflow modules in the amalgamated workflow. Thus checking correct-
ness of a workflow module with respect to such a specification requires more than local
knowledge about that module.

In our approach there is no need for such fairness-closed specifications. Instead, for
each of the modules we check locally that a simple business rule is obeyed, that in essence
prohibits asking the same question twice. In this way we ensure global termination by
checking local properties only.

References

1. Wil M. P. van der Aalst (1999): Interorganizational Workflows: An Approach Based on
Message Sequence Charts and Petri Nets. Systems Analysis—Modelling—Simulation 34(3),
pp. 335–367.

2. Wil M. P. van der Aalst & Kees M. van Hee (2002): Workflow Management: Models,
Methods, and Systems. MIT Press.

3. Hartmann J.Genrich (1987): Predicate/Transition nets. InWilfried Brauer,Wolfgang Reisig
& Grzegorz Rozenberg, editors: Petri nets: Central Models and Their Properties, Advances in
Petri nets 1986, Part I, LNCS 254, Springer, pp. 207–247.

4. K. Gostellow, V. Cerf, G. Estrin & S. Volansky (1972): Proper Termination of Flow-of-
control in Programs Involving Concurrent Processes. ACM Sigplan 7(11), pp. 15–27.

5. Kurt Jensen (1994): An Introduction to the Theoretical Aspects of Coloured Petri Nets.
In Jaco W. de Bakker, Willem-Paul de Roever & Grzegorz Rozenberg, editors: A Decade of
Concurrency, LNCS 803, Springer, pp. 230–272.
Available from http://www.daimi.au.dk/˜kjensen/papers books/rex.pdf.

6. EkkartKindler,AxelMartens&WolfgangReisig (2000): Inter-operability ofWorkflow
Applications: Local Criteria for Global Soundness. In Wil van der Aalst et al., editor: Business
Process Management, LNCS 1806, Springer, pp. 235–253.

7. Einar Smith (1998): Principles of High-level Petri Nets. In Wolfgang Reisig & Grzegorz
Rozenberg, editors: Lectures on Petri nets I: Basic models, Advances in Petri nets, LNCS 1491,
Springer, pp. 174–210.

8. Workflow Management Coalition (1995): The Workflow Reference Model. Available
from http://www.wfmc.org/.

Generic Recurrent Patterns in Business Processes

Jan L.G. Dietz

Delft University of Technology

P.O. Box 5031, NL-2600GA Delft

j.l.g.dietz@its.tudelft.nl

Abstract. There doesn't seem to be much commonality among business

processes, even not if they belong to the same kind of organization. However,

by applying the right kind of abstraction from realization issues and by rooting

this abstraction is the CAP-theory, it appears that there is a generic recurrent

pattern in all business processes. This pattern, called the transaction, is

presented and elaborated in this paper. The part of the underlying CAP-theory

(Coordination-Actors-Production) that is necessary for understanding and

appreciating it is explained. The focus in this paper is on the Coordination

aspect. An outlook is given on the potential benefits of the transaction pattern

for the analysis and design of business processes.

1 Introduction

The business in different processes organizations seem to be very different, even in

organizations of the same kind. At least, one gets this impression when surveying the

divergent models process analysts make of the processes in similar organizations. It

looks as if every business process is a unique sequence of steps that just happens to be

as it is, or that just happens to be conceived so by modelers. However, business

processes are not as unique and as arbitrary as they seem to be at first sight. Over ten

years of practical experience with the DEMO1 methodology has demonstrated that the

business processes in all organizations display generic recurrent patterns. These

patterns are universal in the sense that they do not depend on the kind of organization.

Otherwise said, they occur equally in manufacturing companies, service companies,

governmental agencies, shops, unions etc. Much like physical things are governed by

the laws of physics, the 'business' behavior of people obeys socionomic laws. It is the

purpose of this paper to provide both theoretical and practical evidence for the

existence of these laws, and to elucidate the benefits of using the existing socionomic

patterns for the modeling, analysis, design, and engineering of business processes2.

1 DEMO is an acronym for ‘Demo Engineering Methodology for Organizations’. The

methodology is primarily meant to demonstrate that Organization Engineering is a sensible

and valuable concept, and that a sound theoretical basis can be provided for it.
2 The constraints on the size of the paper prohibit to explain everything at the desired level of

detail. A full account is given in the homonymic publication on www.demo.nl

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 200−215, 2003.
 Springer-Verlag Berlin Heidelberg 2003

An organization can be studied from a functional or from a constructional

perspective. Taking the functional perspective means that one looks at the function of

an organization with respect to its environment, and at the behavior it displays when

functioning. For example, a hospital is an organization of which the (primary)

function is to provide health care to people. Its behavior can be described in terms of

the number of patients that are treated per period, the distribution of the treatment

duration etc. A model of an organization from the functional perspective is called a

black-box model. The functional perspective is typically taken by managers and

administrators. A well-known kind of black-box model is the value chain [22]. Taking

the constructional perspective on an organization means that one wants to understand

how its function and behavior are brought about by its construction and operation.

The models used to study organizations in this perspective are called white-box

models. As will be shown in the next sections, the operating principle of an

organization consists of the ability of human beings to enter into and comply with

commitments towards each other. The constructional perspective on organizations has

not so long a tradition as the functional one has. Although this perspective would be

the right one for them, in practice few designers of business processes and workflows

appear and few developers of ICT-applications do take it.

From the constructional perspective, an organization may be modeled as a discrete

dynamic system in the category of social systems [7], which has the next properties.

Its composition consists of active elements, i.e. elements that possess the ability to

perform actions. Each of these elements is defined by the specific set of actions it is

able to execute. They are activated by the actions of (other) active elements. At any

moment, the system is in a particular state. State transitions take place as the result of

actions of the active elements. They occur at discrete points in time and take place

instantaneously [15]. Conceiving an organization as a discrete dynamic system,

means that the members of the organization take the role of active elements of the

system. This may be justified by considering that the people in an organization do

have their own specific tasks and that they collaborate (in mutual interaction) in order

to bring about the function of the organization. It also means that one disregards the

possibly continuous character of the operation of an organization by only taking the

state of the system into account at particular time intervals. Generally spoken, this is

justified by considering that for the purpose of controlling the (business) processes in

the organization, it is sufficient to know the state and the progress of these processes

at discrete points in time. The same consideration justifies that state changes take

place instantaneously.

The outline of the paper is as follows. In section 2, the theory behind the DEMO

methodology is presented as far as it is needed for the remainder of the paper. In

section 3, the generic recurrent pattern of a transaction is introduced and elaborated.

The universal applicability of this pattern is demonstrated in section 4, taking a

pizzeria as the example case. Several DEMO-models are presented to illustrate the

practical application of the transaction concept. In section 5, the research outcomes

are discussed, in comparison with other contemporary approaches that model

organizations as discrete dynamic systems. It also contains the conclusions that can be

drawn, and some suggestions for future research.

201Generic Recurrent Patterns in Business Processes

2 The CAP-Theory

In this section, a brief overview is given of the so-called CAP-theory, which

underlies the DEMO methodology [11, 12, 13]. It is a theory about the construction

and operation of organizations. The name ‘CAP’ stands for Coordination, Actors and

Production. These are the primary concepts for understanding the operation of

organizations and for analyzing and designing their business processes. Following the

distinction of system categories as proposed by Bunge [7], an organization is a social

system, i.e. a system of which the elements are social individuals or subjects.

Organizations are a specialization of social systems, the distinctive property being

that they are designed to serve a particular purpose. This purpose can generally be

defined as delivering products to its environment. The products may be material

(goods) or immaterial (services). The bringing about of products is where the

production part of CAP stands for. Products are brought about by subjects acting in

particular actor roles. This is where the actors part of CAP stands for. The actors co-

operate, i.e. they activate each other in order to collectively realize the Production.

This is where the coordination part of CAP stands for. In this paper, the focus is on

the coordination, since this aspect is the most important one for understanding the

generic recurrent patterns.

Stated more specifically, the subjects in an organization perform two kinds of acts:

production acts (or P-acts for short) and coordination acts (or C-acts for short). By

performing production acts, they contribute to bringing about the goods and/or

services that are delivered to the environment of the organization. The character of a

production act is material or immaterial. Examples of material acts are all

manufacturing acts as well as storage and transportation acts of goods. Examples of

immaterial acts are the judgment by a court to condemn someone, the decision to

grant an insurance claim, and appointing someone president. By performing

coordination acts, subjects enter into and comply with commitments and agreements

towards each other regarding the performance of production acts. The notion of

coordination is taken broadly; it encompasses all interaction between subjects in an

organization as well as between them and subjects in the environment.

In order to abstract from the particular subject that performs an action and to

concentrate on the organizational role of the subject in performing that action, the

notion of actor role is introduced. It is defined as the ‘amount’ of authority to perform

particular acts. An actor role may be played by several subjects and a subject may

play several actor roles. An actor is a subject in his/her fulfillment of an actor role.

The result of successfully performing a production act is a production fact or P-fact

(cf. figure 1). Examples of production facts (in the context of a library) are

“membership M has started to exist” and “the fine for loan L has been paid”. The

variables M and L denote particular instances of the entity type membership and loan

respectively. Examples of coordination acts are the requesting and the promising of a

production fact, e.g. requesting to become member of the library. The result of

successfully performing a coordination act is a coordination fact or C-fact. An

202 J.L.G. Dietz

example of a coordination fact is the being requested of the production fact

“membership #387 has started to exist”.

C-
World Actors P-

World

C-act P-act

C-fact P-fact

COORDINATION PRODUCTIONACTORS

Fig. 1. The operational model of an organization

In conformity with the distinction between production acts and coordination acts,

two worlds can be distinguished in which each of these kinds of acts have effect: the

production world or P-world and the coordination world or C-world respectively. A

state of the P-world is a set of P-facts, and a state of the C-world is a set of C-facts.

The creation of the P-fact “membership #387 has started to exist” is a state transition

in the P-world. The creation of the C-fact “(membership #387 has started to exist) is

requested” is a state transition in the C-world. A particular transition at a particular

point in time (e.g. creating the P-fact “membership #387 has started to exist”) is an

event.

2.1 Coordination

Coordination takes place in communication. Research in the so-called Language

Action Perspective (LAP) has shed a new, clarifying light on human communication

[4, 9, 10, 14, 28]. In order to cope adequately with the coordination part of the CAP-

theory, the major findings of the LAP research have been adopted in the CAP-theory

as the Communicative Action Principle (C-CAP for short). According to the C-CAP, a

coordination act is performed by one actor (called the performer) and directed to

another actor (called the addressee). The generic structure of a coordination act is

exhibited in figure 2.

 John request Mary membership #387 has started to exist 1/4/2002

performer intention addressee fact time

 proposition

Fig. 2. The structure of a coordination act

The example concerns the request by the subject John towards the subject Mary to

become member of the library. Every new case of a person becoming member, is

conceived as the creation of a new instance of the entity type membership. In the

203Generic Recurrent Patterns in Business Processes

example, the instance created is #387, of which John is the member. The proposition

in a coordination act consists of a fact and an associated time. The fact is a production

fact. The time attribute refers to the time period in which the fact is the case (in which

it is said to exist). In the example of figure 3, its meaning is the requested starting date

of the membership. The intention of a coordination act represents the ‘social attitude’

taken by the performer with respect to the proposition. The term is borrowed from

Searle [25] and we use it to distinguish coordination acts from communicative acts

where the term ‘illocution’ is commonly used to refer to the ‘attitude’ of the speaker

[14, 24]. Examples of intentions in DEMO are: request, promise, state and accept.

They belong to Habermas’ category of regulativa [9, 14].

forma

informa

performa

A0 Æ A1

< A0, A1, i(p) >
pa

< A0, A1, inform (pa) > < A1, A0, confirm (pa) >

ia1 ia2

< A0, express (ia1) >

< A0, A1, transmit (ia1) >

< A1, perceive (ia1) >

< A1, express (ia2) >

< A1, A0, transmit (ia2) >

< A0, perceive (ia2) >

i(p)

Fig. 3. The process of performing a coordination act

A coordination act is brought about in a sequence of communicative acts, that goes

through all three layers of communication (cf. [13]). Figure 3 exhibits the three kinds

of acts that have to be executed: performative, informative, and formative acts. The

combined box and disk at the top of the figure represents both the coordination act

(the box) and the resulting coordination fact (the disk). They are identified by ‘i(p)’,

where ‘i’ is the intention and ‘p’ the proposition. Actor A0 is the performer of the

coordination act and A1 is the addressee. There are three conditions that must be

satisfied for successfully performing a coordination act: the performa-condition, the

informa-condition and the forma-condition. By satisfying the performa-condition is

meant that the correct social understanding is raised in Mary. In the given example it

is the understanding of being committed to respond in a socially appropriate way to

the request (intention i) by John regarding him becoming member of the library

(proposition p). The performative act, noted as < A0, A1, i(p) > succeeds if this

performa-condition is satisfied. A necessary precondition for the performa-condition

is the informa-condition, by which is meant the establishment of the intellectual

understanding of the coordination act by Mary. Satisfying this condition is usually

204 J.L.G. Dietz

achieved through so-called informative exchanges. Basically, such an exchange

consists of the informative acts < A0, A1, inform (pa) > and < A0, A1, confirm (pa)>,

but it may also contain a number of question-assertion pairs in which the intellectual

understanding is clarified. They belong to Habermas’ category of constativa [9,

14].The forma-condition concerns the establishment of the linguistic understanding of

the coordination act. It is satisfied if there is a well-functioning communication

channel between John and Mary, through which they are able to perform the

formative acts that realize the informative acts. For example, the informative act,

noted as < A0, A1, inform(pa) > and referred to as ‘ia1’, consists at the forma-layer of

expressing the content in a sentence by John, transmitting the sentence from John to

Mary, and perceiving the sentence by Mary.

2.2 Actors

In most discrete dynamic system approaches, a simple trigger-action or event-

response principle is adopted for modeling the operation of the active elements. This

is perfectly well for physical, chemical and biological systems and even for rational

systems like all information systems, as applied e.g. in [15] or in Petri Net Models [2,

21]. However, such a principle is too mechanistic for social systems, it wouldn't do

justice to the social character of human beings. Therefore the Committed Agenda

Principle (A-CAP for short) is introduced to explain the 'operation' of actors. It states

that at every moment an actor has at his disposal a set of actions to take, called his

agenda. An agenda-item or agendum is a C-fact to which the actor has committed

himself to respond. For example (cf. figure 2), if John has successfully requested

Mary to become member of the library, the created C-fact "(membership #387 has

started to exist) is requested" has become an agendum for Mary. She has to deal with

it in a responsible way, i.e. to respond socially adequate, which includes acting in

time. For every kind of agendum, there is a particular action rule that serves as a

guideline for dealing with the agendum. Action rules in DEMO are similar to the

ECAA rules as discussed in [17].

2.3 Production

Performing a production act (P-act) means creating a production fact (P-fact),

thereby causing the corresponding transition of the state of the P-world to occur. By

applying the Core Activity Principle (P-CAP for short), one can distinguish the

essential business acts from supporting acts. To find the essential acts and facts, one

starts from the so-called independent transactions. These are the transactions in which

the final products are delivered to the environment. In the action rule of which the

corresponding P-fact is the outcome, the existence of other P-facts may be stated as a

necessary condition for establishing it. The same holds for the action rules concerning

these ’component’ P-facts. Put differently, a final product may be an assembly of

parts, sub-parts etc. For example, in order to make John member of the library, Mary

will ask John to pay the membership fee. This payment is considered to be a ’part’ of

the ’assembly’represented by the P-fact "membership #387 has started to exist".

205Generic Recurrent Patterns in Business Processes

3 The Transaction Pattern

In the previous section we have seen that an organization is a system of actors who

perform two kinds of acts: production acts and coordination acts. But how are these

acts related? Do they occur in particular structures or patterns or is any structure or

pattern possible? At first sight, i.e. when surveying the enormous diversity of business

processes in practice, the answer seems to be that there are at least many ’really’

different processes. Fortunately, it appears that they can be considered as variants of

one generic recurrent pattern of interaction between two actor roles. The pattern is

called transaction and its universal regularity is called the OER-paradigm. The letters

O, E and R refer to the three phases in which a transaction evolves: de order phase

(O-phase for short), the execution phase (E-phase for short), and the result phase (R-

phase for short). One of the two partaking actor roles is called the initiator, the other

one the executor of the transaction. In the order phase, the initiator and the executor

pursue to reach agreement about the production fact that the executor is going to

produce for the initiator. In the execution phase, this production fact is actually

brought about by the executor. In the result phase, the initiator and the executor

pursue to reach agreement about the production fact that is actually produced (which

might differ from the one that was originally requested). Only if this agreement is

reached will the production fact become existing. The moment at which it starts to

exist is the very moment of having reached agreement between the two actor roles (to

be precise: between the two subjects that actually play the role of initiator and

executor respectively). Every transaction is an instance of a particular transaction

type; this transaction type corresponds with the type of the production fact that is the

target/result of the transaction. For example, transactions regarding the P-fact type

"membership M has started to exist" are of the same type. In section 2, the definition

of actor role was provided. It can be made more specific now: an actor role is the

’amount’ of authority that is necessary and sufficient to be the executor of exactly one

transaction type. Being the executor of a transaction type includes being allowed to

perform also all C-acts that are necessary to (eventually) perform the P-act.

3.1 The Basic Pattern and the Standard Pattern

The of transaction is of process a a sequence acts and resulting facts. Such a

process can adequately and conveniently be modeled as a (colored) Petri-Net [2, 21]:

the transitions (boxes in the Petri-Net Diagram) represent acts and the places (disks in

the Petri-Net Diagram) represent facts. However, because of the special character of

interaction processes, a special type of Petri-Net is introduced, called the CAP-Net. It

is a further improvement of the net as presented in [5]. A distinctive feature of the

CAP-Net, compared to the Petri-Net, is that every transition (act) has exactly one

output place (fact). Figure 4 exhibits the CAP-Net of the basic pattern of a

transaction. An open or white box represents a C-act type and an open or white disk

represents a C-fact type. A gray box represents a P-act type and a gray diamond a P-

fact type. The initial C-act is drawn with a bold line, as is every terminal C-fact. The

gray colored frames, denoted by "initiator" and "executor" represent the responsibility

areas of the two partaking actor roles. As an illustrating example we take the buying

206 J.L.G. Dietz

of a loaf at the bakery's store. The customer plays the role of initiator, the baker plays

the role of executor. The process starts with the request by the customer for delivering

a loaf.

rq

pmpm

st

ac

initiator executor

rq

st

ac

rq: request
pm: promise
st: state
ac: accept

E
-p

ha
se

R
-p

ha
se

O
-p

ha
se

Fig. 4. CAP-Net of the basic pattern of a transaction

The result is the C-fact that the delivery is requested ("rq"). This C-fact is drawn

between the two actor roles to show that it is a fact in their intersubjective world (cf.

[14]). Both actors are allowed to know the fact. The C-fact "rq" is an agendum for the

executor (the baker). As the outcome of dealing with the agendum, the baker promises

to deliver the requested loaf, which brings the process in the state promised (the C-

fact "pm"). This fact is an agendum for the baker. In dealing with it, the baker

produces the P-fact. The P-act consists of the decision by the baker to sell the

requested loaf to the customer. The P-fact is the transferred ownership of the loaf. The

reason for coloring P-act types and P-fact types gray is to emphasize that they belong

to the subjective world of the executor. They are principally not knowable to the

initiator. Next, the baker states that the delivery of the loaf has been done, resulting in

the (intersubjective) C-fact "st". This fact is an agendum for the customer. He

responds to it by accepting the produced P-fact, which brings the process in the

successful terminal state "ac". Figure 4 also shows the three phases of a transaction.

The O-phase starts with the "request" act and ends with the state "promised". The E-

phase starts with the "execution" act and ends with the state "executed". The R-phase

starts with the "state" act and ends with the state "accepted".

At first sight, the whole process looks somewhat overdone. In particular the

promise and the accept seem to be superfluous. They are not however; the basic

pattern must always be passed through for establishing a new P-fact. A few comments

are in place however. First, performing a coordination act does not necessarily mean

that there is oral or written communication. Every (physical) act may count as a

communicative act [24, 25]. For example, in the bakery's shop the "state" act is

usually performed by putting the loaf on the counter in front of the customer. This act

counts as performing the "state" act. Second, C-acts may be performed tacitly. Tacitly

performing a C-act however is still performing that C-act! This becomes clear in case

207Generic Recurrent Patterns in Business Processes

of a breakdown [16,28]. In particular the promise and the accept are often performed

tacitly. Further elaboration of this issue is beyond the scope of this paper.

The pattern exhibited in figure 4 is also called the success pattern, the course that is

taken when the initiator and the executor keep consenting each other's acts. However,

they may also dissent. There are two states where this may happen, namely the states

"requested" and "stated". Instead of promising one may respond to a request by

declining it, and instead of accepting one may respond to a statement by a reject. The

reason for declining a request by the executor of a transaction or for rejecting a

statement by the initiator, is in principle a mixture of the three validity claims of

Habermas’ theory [9, 14]. It brings the process in the intersubjective state "declined"

or "rejected" respectively. These states are indicated by a double disk, meaning that

they are discussion states. If a transaction ends up in a discussion state, the two actors

must ‘sit together’, discuss the situation at hand and negotiate about how to get out of

it. The basic pattern from figure 4, extended with the two dissent patterns is called

the standard pattern. It is shown in figure 5.

rq

pmpm

st

ac

initiator executor

rq

st

ac

dc

qt qt

rj

sp sp

rq: request
pm: promise
st: state
ac: accept

dc: decline
qt: quit
rj: reject
sp: stop

dc

rj

E
-p

h
a

s
e

R
-p

h
a

s
e

O
-p

h
a

s
e

Fig. 5. CAP-Net of the standard pattern of a transaction

3.2 The Cancellation Patterns

In practice, it is quite common that either the initiator or the executor of a

transaction wants to revoke an act (which may result in a partial or complete roll-back

of the transaction). This is accommodated by the option to cancel any C-act in the

basic pattern at any time. The CAP-Nets in the figure 6 through 9 exhibit all

cancellation patterns. The acts and facts from the standard pattern are colored cyan in

208 J.L.G. Dietz

order to distinguish them easily from the cancellation acts and facts. Every

cancellation starts with a "cancel" act on which a conditional C-fact is put

(represented by the dotted arrow). Only if the C-fact exists can the cancellation be

performed. We take the bakery's shop example to explain the four cancellation

patterns.

cl: cancel
al: allow
rf: refuse

initiator executor

qt al

rf

rq

qt

rf

cl cl

al

Fig. 6. CAP-Net of the cancellation of a request

Cancellation of the request occurs when the customer for some reason gets remorse

about his initial request, e.g. because he sees in the shop a new kind of loaf that looks

pleasant to him. The "cancel" act by the customer brings the process in the discussion

state "cancelled". Normally, the baker will be inclined to please the customer and thus

will allow the cancellation. From the state "allowed" that is reached then, the

customer quits the transaction (and in this particular case immediately starts a new

one). The baker may however very well refuse, e.g. if the transaction has already be

completed and has taken place two days ago! The state "refused" is a terminal state

for the cancellation, meaning that the C-fact "requested" remains to be the case.

dcal

rfrf

dc

clcl

initiator executor

cl: cancel
al: allow
rf: refuse

al

pm

Fig. 7. CAP-Net of the cancellation of a promise

An example of canceling a promise is that the baker, after having promised,

discovers that the last loaf of the kind the customer requested (which he had seen

lying on the shelve) has meanwhile been sold by his assistant to another customer. If

the customer allows the cancellation, the transaction process will be brought in the

discussion state "declined" by the baker. From there they can negotiate about some

other loaf. If the customer refuses, the C-fact "promised" remains to be the case.

However, this doesn't help the customer much: he still will not get the loaf he wanted

since there is none left. The transaction will forever stay in that state.

209Generic Recurrent Patterns in Business Processes

al

rfrf

cl cl

al

initiator executor

cl: cancel

al: allow

rf: refuse

st

Fig. 8. CAP-Net of the cancellation of a statement

If the baker, after having put the loaf in front of the customer, discovers himself

that the loaf is not quite okay, he may cancel his statement (e.g. in order to avoid the

reject by the customer). After having explained in the discussion state "cancelled"

why he did it, the customer will usually be inclined to allow the cancellation. The

baker then redoes the execution act (decides to give the customer another loaf). But

the customer may also refuse, which entails that he is willing to accept the loaf. The

state "refused" is a terminal state for the cancellation, meaning that the C-fact "stated"

remains to be the case.

cl: cancel
al: allow
rf: refuse

initiator executor

al

rfrf

cl

al

ac

rjrj

cl

Fig. 9. CAP-Net of the cancellation of an acceptance

Suppose the whole transaction was (successfully) completed but, being outside the

shop and having looked carefully at the loaf, the customer regrets his acceptance. He

may then re-enter the shop and tell the baker that he wants to revoke his acceptance

act. The reaction of the baker now probably depends on the relationship with the

customer. If the baker considers the relationship important, he will allow the

cancellation, after which the customer brings the transaction in the state "rejected".

From there the most plausible act for the baker is to cancel his statement act (cf.

figure 8 and the explanation given there). If the baker doesn't care much about the

customer relationship, he may refuse, which means that the C-fact "accepted" remains

to be the case.

For a complete understanding of the transaction pattern, the CAP-Nets of figures 6

through 9 must be superposed on the standard pattern of figure 5. The resulting

complete pattern can rightly be called universal for the next reasons. First, the

standard pattern has a firm theoretical legitimation in the social action theory of

Habermas [9, 14]. Second, the four cancellation patterns (superposed on the standard

pattern) are necessary and sufficient to allow for all possible rollback requirements.

Every instance of any transaction type is some course through this complete pattern.

210 J.L.G. Dietz

4 Business Processes

The transaction concept, as introduced in the previous section, is the molecular

component of business processes, the coordination and production acts and facts

being the atoms [13]. We will demonstrate in this section how business processes can

be modeled as compositions of transactions. As the illustrating example, the case of a

pizzeria is taken from [13]. The starting point in modeling is the identification of the

independent transactions, i.e. the transactions in which final products are delivered to

the environment. By applying the P-CAP (Core Activity Principle) to the pizzeria

case, it appears that the final product (T1: delivering order) is an 'assembly' of three

'parts': dealing with the baking of the pizza's of an order, the transporting of these

pizza's to the customer's address, and the payment of the order. They are listed in

figure 10 as T2, T4 and T5. T2 is itself an 'assembly' of a (only at run time known)

number of T3's. The variable ‘O’ denotes an instance of a customer order; the variable

'P' denotes a particular pizza kind. For example, if an order consists of two pizza's

Vesuvio and one Capriccioso, there are three different pizza instances in the order.

transaction resulting P-fact

T1 delivering_order F1 order O has been delivered

T2 baking_order F2 the pizzas of order O are baked

T3 baking_pizza F3 a pizza of kind P is baked

T4 transporting_order F4 the pizzas of order O are transported

T5 paying_order F5 order O has been paid

Fig. 10. Interaction Table of the pizzeria case

It is convenient to have a simple symbol for the complete pattern of a transaction in

order to draw very concise (but at the same time very precise!) models of business

processes. The transaction symbol used in DEMO consists of a diamond (the

production symbol) 'embedded in' a disk (the coordination symbol). Figure 11 shows

the so-called Interaction Diagram of the pizzeria case, in which the transaction

symbol occurs, next to a box for actor roles. By convention, the executor of a

transaction type gets the same number as the transaction type. So, the executor of T1

in the pizzeria case is A1. The initiator of T1, who apparently is an actor in the

environment of the pizzeria, is 'hidden' in the system actor S1. From the product

structure of the final product, it follows that A1 is the initiator of transaction types T2,

T4 and T5. The executors of these transaction types are respectively numbered A2,

A4 and A5 (who is 'hidden' in S1). Actor role A2 is the initiator of transactions T3, of

which A3 is the executor. A transaction symbol is connected through straight lines

with its initiator and executor. The small black box on the edge of an actor box at the

junction with a transaction link indicates the executor. Because the initiator of T1 is

an actor in the environment of the organization (hidden in S1), transaction T1 is

drawn on the system boundary. The same holds for T5, of which the executor is an

actor role in the environment (also hidden in S1). The actor roles A1, A2, A3 and A4

are inside the system boundary, meaning that they belong to the responsibility of the

pizzeria.

211Generic Recurrent Patterns in Business Processes

S1

customer

A1

deliverer

T1

A2

dealer

A4

trans-

porter

T2

T4T5

pizzeria

A3

baker
T3

Fig. 11. Interaction Diagram of the pizzeria case

The transaction symbol also occurs in the Process Phase Diagram (figure 12). It

exhibits the causal and conditional relationships between transactions. There is a

proportional time axis from top to bottom. The symbols of T1 and T2 are stretched in

order to accommodate the placing of the other transactions. T1 is initiated externally.

T2, T4 and T5 are initiated from the E-phase of T1, transaction T3 is initiated from

the E-phase of T2. This is denoted by the arrows (causal links) to the 'top' of the

respective symbols. The actual start of T4 has to wait for the completion of T2.

Likewise, T5 has to wait for the completion of T4, the execution of T2 waits for the

completion of all T3's within the same order, and the execution of T1 waits for the

completion of T5. Waiting is denoted by the dotted arrows (conditional links).

T5

T4

T1/R

T1/O

T1/E

delivering_order

baking_order

transporting_order

paying_order

T3

T2/O

T2/E

T2/R

baking_pizza

1..n

Fig. 12. Process Phase Diagram of the pizzeria case

212 J.L.G. Dietz

The Process Phase Diagram suggests a convenient and rigorous definition of a

business process: a business process is an independent transaction type together with

all its dependent transaction types, where dependent means: causally linked.

Figure 13 exhibits the Process Step Diagram of the business process of figure 12.

A Process Step Diagram is a compact CAP-Net: instead of drawing separately a box

for an act X and a disk for the resulting fact X, the disk is drawn inside the box. X

now stands both for the intention of the act (e.g. request) and for the intention of the

resulting fact (e.g. requested). For simplicity, only the basic pattern of the transactions

is drawn. The arrows have the same meaning as in figure 12.

T1

rq

T1

pm

T2

rq

T2

pm

T2

ac
T2

st
T2

T4
rq

T4
pm

T4

ac
T4

st
T4

T1

ac
T1

st
T1

A0 customer A1 deliverer A2 dealer

A4 transporter

T5

rq
T5
pm

T5
ac

T5

st
T5

A4 payer

T3

rq

T3

pm

T3

ac
T3

st
T3

A3 baker

1..n

Fig. 13. Process Step Diagram of the pizzeria case

5 Discussion and Conclusions

Most publications concerning the application of generic patterns in modeling

processes are not so much about business processes but rather about workflows.

Although of course 'a word is just a word', we like to plea strongly for maintaining a

strict distinction between the implementation and technology independent notion of

business process (like the one presented in this paper) and an implementation related

notion. The last one is commonly referred to by the term 'workflow' (cf. the definition

by the Workflow Management Coalition). A few publications can be found regarding

213Generic Recurrent Patterns in Business Processes

workflow patterns, e.g. [1, 8]. The common interest in these papers is to specify

workflows for the purpose of 'programming' workflow management systems. Because

of that aim, emphasis is put on formality and correctness. Consequently, easily

verifiable modeling techniques, like Petri-Nets, are applied. This interest is quite

different from the interest in the design and analysis of business processes, as exposed

in this paper. Nevertheless, an attempt is made to evaluate the transaction pattern with

the patterns discussed in [3]. The outcome is that they can all be accomodated (Note.

Lack of space prohibits to give a full account of the evaluation).

The first conclusion to be drawn is that a considerable effort has to be made yet to

bridge the gap between the abstracted transaction pattern and the concrete workflow

patterns that are used in specifying workflows for the implementation of workflow

systems. The feasibility of deriving workflows from DEMO business processes

however, has been demonstrated already in [20], which reports about the automatic

translation of Process Step Diagrams into Petri-Nets. A second conclusion is that the

presented generic transaction pattern is a very valuable help for the modeling and

understanding of business processes, abstracted from their implementation. In several

aspects (like the Core Activity Principle) it differs from similar approaches [18, 19,

26, 27]

Over sixty practical projects have been coducted in the past ten years. The

common experience is that DEMO offers several advantages: comprehenisibility,

modularity, completeness, integrality, consistency, objectivity, and a substantial

reduction of duration and costs. There are several research projects running in which

the DEMO transaction concept plays a crucial role. One of them is the derivation of

use cases from business process models. Another one is the modeling of health care

processes using the transaction concept. These processes are among the most

complicated business processes, where all of the twenty patterns listed in [3] occur

time and again. A third one is the development of a generic information systems

component that supports the complete pattern of a transaction type and keeps track of

the progress of all of its instances, running sequentially or in parallel. Among the

recently proposed projects is one that concerns the development of transaction-based

architectures for the alignment of business and ICT-applications.

References

1. Aalst, W.M.P., The Application of Petri Nets to Workflow Management, The Journal

of Circuits, Systems and Computers, 1998

2. Aalst, W.M.P. van der, Hee, K.M. van, Workflow Management: Models, Methods

and Systems, MIT Press, MA, 2001

3. Aalst, W.M.P. van der, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Baros,

Workflow Patterns, 2002 (to appear in Distributed and Parallel Databases)

4. Austin,J.L., How to do things with words Harvard University Press, Cambridge MA,,

1962

5. Barjis, J., Dietz, J.L.G., Business Process Modeling and Analysis Using GERT
stNetworks, Proc. of the 1 International Conference on Enterprise Information

Systems, vol II, pp 748-756, ISBN 972-98050-0-8.

214 J.L.G. Dietz

6. Bunge, M.A., Treatise on Basic Philosophy, vol.3, The Furniture of the World, D.

Reidel Publishing Company, Dordrecht, The Netherlands, 1977

7. Bunge, M.A., Treatise on Basic Philosophy, vol.4, A World of Systems, D. Reidel

Publishing Company, Dordrecht, The Netherlands, 1979

8. Christensen, S., Petrucci, L., Towards a Modular Analysis of Coloured Petri Nets, in:

Jensen, K., Application and Theory of Petri Nets, LNCS 616, Springer-Verlag, 1992.

9. Dietz, J.L.G., G.A.M. Widdershoven, Speech Acts or Communicative Action? Proc.

2nd European Conf. on CSCW, Kluwer Academic Publishers, Boston, 1991

10. Dietz, J.L.G., G. Goldkuhl, M. Lind, V.E. van Reijswoud, The Communicative

Action Paradigm for Business Modeling, in: Goldkuhl, G., Lind, M., Seigerroth, U.
rd(eds.), Proc. of the 3 LAP workshop, Jönköping Int. Business School, 1998

11. Dietz, J.L.G., Understanding and Modeling Business Processes with DEMO, in:

Proceedings of the ER Conceptual Modeling Conference, Paris, 1999

12. Dietz, J.L.G., DEMO: Towards a discipline of organisation engineering, European

Journal of Operational Research, nr. 128, 2001, pp 351--363

13. Dietz, J.L.G., The Atoms, Molecules and Fibers of Organizations, 2003 (to appear in

Data and Knowledge Engineering)

14. Habermas, J., Theorie des Kommunikatives Handelns, Erster Band, Suhrkamp

Verlag, Frankfurt am Main, 1981

15. Hee, K.M. van, Houben, G-J., Dietz, J.L.G., Modelling of discrete dynamic systems;

framework and examples, Information Systems, vol 14, 1989.

16. Heidegger, M., Sein und Zeit, Neomarius Verlag, Tübingen, Germany, 1927

17. Knolmayer, G., R. Endl, M. Pfahrer, Modeling Processes and Workflows by Business

Rules, in: Aalst, W. van der, J. Desel, A, Oberweis (Eds.), Business Process

Management, Lecture Notes in Computer Science 1806, Springer-Verlag, 2000

18. Lind, M, Goldkuhl, G., Generic Layered Patterns for Business Modelling, in: Schoop,

M., Taylor, J. (eds.), Proceedings of the Sixth International Workshop on the

Language-Action Perspective on Communication Modelling, RWTH Aachen, 2001

19. Medina-Mora, R., T. Winograd, R. Flores, F. Flores, The Action Workflow Approach

to Workflow Management Technology. In: J. Turner, R. Kraut (Eds.), Proceedings of

the 4th Conference on Computer Supported Cooperative Work. ACM, New York

20. Oren, E, Het vertalen van Designer Modellen naar ExSpect, IS research report, Delft

University of Technology, 2002 (in Dutch).

21. Peterson, J.L., 1981. Petri net theory and the modeling of systems. Prentice-Hall, Inc.,

Englewood Cliffs, NJ.

22. Porter, M.E., 1985. Competitive Advantage, Creating and sustaining superior

performance. The Free Press, New York.

23. Reijswoud, V.E. van, J.B.F. Mulder, J.L.G. Dietz, Speech Act Based Business

Process and Information Modeling with DEMO, Information Systems Journal, 1999

24. Searle, J.R., Speech Acts, an Essay in the Philosophy of Language, Cambridge

University Press, Cambridge MA, 1969

25. Searle, J.R., The Construction of Social Reality, Allen Lane, The Penguin Press,

London, 1995

26. Schäl, T., 1996. Workflow Management Systems for Process Organisations. Lecture

Notes in Computer Science 1096, Springer, Berlin.

27. Stamper, R., Liu, K., Hafkamp, M. & Ades, Y. (2000) “Understanding the Roles of

Signs and Norms in Organizations”, Journal of Behavior and Information

Technology.

28. Winograd, T, F. Flores, 1986. Understanding Computers and Cognition: A New

Foundation for Design. Ablex, Norwood NJ.

215Generic Recurrent Patterns in Business Processes

Personal Schedules for Workflow Systems

Johann Eder, Horst Pichler, Wolfgang Gruber, and Michael Ninaus

University of Klagenfurt
Institute for Informatics-Systems

{eder,horst,wolfgang}@isys.uni-klu.ac.at
mninaus@edu.uni-klu.ac.at

Abstract. Personal schedules allow workflow participants to improve
their performance of activity executions. Participants are no longer
surprised by the entries in their work-lists but receive advance infor-
mation about (potential) future activity assignments, allowing better
possibilities for work-planning. The personal schedule system is based
on a probabilistic workflow time management system using duration
histograms. A personal schedule collects future activity assignments
together with their probability and their timing requirements and allows
to analyze the workload of a participant and to support the scheduling
of activities with the goal of reduced turn-around times and reduced
number of violations of temporal constraints.

Keywords: workflow system, time plans, temporal constraints, schedul-
ing, personal scheduling

1 Introduction

In the execution of workflows, workflow participants are typically ”surprised” by
the activities they should perform, surprised in the sense that they find these
activities in their to-do-lists when these activities are ready, i.e. all preceding
activities are finished. Information about upcoming activities would be much
earlier available in the workflow system. For an example, when the first activity
of a sequence is ready, the succeeding activities will be ready soon. Current
workflow systems do not make use of this information and do not forward this
information to the participants depriving them of the possibility of planning
their work ahead. For administrative processes, in particular in settings where
workflow participants have dispositive competencies and have to manage their
schedules this strategy leads to suboptimal results. The main shortcomings are
the following:

– longer retention period of activities in work-lists before they are taken up
– longer turnaround time
– no workload balancing
– considerable number of deadline violations

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 216–231, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Personal Schedules for Workflow Systems 217

Reasons for this situation might be that workflow systems typically do not
compute schedules due to the partial knowledge they have about the execution
of their processes, the impossibility to know the actual flow at decision points
at process instantiation time and typical variance in the execution of individual
tasks. Nevertheless, several research proposals and prototypical implementations
(e.g. [4,6,2,8]) propose improvements. The main idea of these efforts is to make
best use of the available information. The approach presented in this paper
follows these directions. We aim at improving the planning situation of workflow
participants by making them information about their future workload available
early and provide them with means for digesting and using this information.

For an improvement of the sketched planning situation we envision the fol-
lowing scenario: In current workflow systems every participant owns a work-list
which provides information about every activity that has been assigned to him.
These activities may arrive from several workflow systems and stem from sev-
eral instances of one specific workflow. We enhance the idea of the work-list to a
personal schedule which contains not only the ”ready” activities but also those
which might become ready in near future. E.g. when a workflow-instance starts
and the first activity is assigned to a participant the actors of all succeeding
activities receive information about tasks that may be assigned to them soon,
together with temporal characteristics, constraints and the probability of the
assignment.

In practice we find that people are involved in workflows managed by differ-
ent workflow systems and have additional responsibility not supported by any
workflow system. So general central scheduling approaches like they have been
developed and are used in production management and ERP systems cannot
not be used in such environments. Personal schedules are primarily intended as
a support structure for individuals organizing the execution of their workload in
time striving for improved performance.

Our personal schedule approach is based on a probabilistic time management
system [3] which uses duration histograms to express the uncertainty of workflow
time plans stemming from variations in activity execution durations and from
the unpredictability of control decisions.

The rest of the paper is organized as follows: In section 2 we introduce our
workflow model and all basic definitions used in the following, and we summarize
our probabilistic time management concept. In section 3 we show how to com-
pute time plans for workflows. In section 4 we present the concept of personal
schedules, and in section 5 the algorithms for the computation of personal sched-
ules and their manipulation is covered. In section 6 we discuss some applications
and draw some conclusions.

2 Workflow Model and Time Histograms

2.1 Basic Definitions and Assumptions

We define a rather generic structured workflow model that we use in the rest
of this paper and introduce the time plan on base of a probabilistic timed graph

218 J. Eder et al.

A 2 B 5

E 5

D 7

C 3 F 1

J 3

K 11

M 6

G 2

30%

70%

H 9

I 6

90%
10%

L 4

N 1

O 6

P 15

Q 15

2%

2%

48%

48
%

R 3

S 3 T 2

Activity

Name Duration

Sequential Execution

Parallel Execution

%

Conditional Execution

%

Fig. 1. Example workflow process schema

as a structure for representing probabilistic information about the duration of
activities and processes.

Essentially, a workflow is a collection of activities, and dependencies between
activities. Activities correspond to individual steps in a business process. Depen-
dencies determine the execution sequence of activities and the data flow between
them. Activities can be executed sequentially, in parallel (and-splits) or condi-
tional (or-splits). Consequently, a structured workflow can be represented by a
directed acyclic graph, where nodes correspond to activities and edges corre-
spond to dependencies between activities. Additionally the model contains the
expected duration for each activity and statistically weighted values for each
conditional branch, defined by administrator estimations or average values from
past executions.

Figure 1 shows an example workflow schema. The 3 routes after B (and-
split) will be processed concurrently. The workflow continues with S (and-join)
not until M , G and R are finished. An example for a conditional execution is E.
In this case only one specific path after E (or-split) will be chosen, which results
in 2 different possible execution-routes from E to L (or-join) and 8 possible
routes between E and T . H will be executed after E in 9 out of 10 cases and
O will be executed after L in 4.8 out of 10 cases. Assuming that each branching
decision is an independent event the probability that a workflow-instance will
execute the path from E via H and O to T can be calculated as 0.9·0.48 = 0.432.

2.2 Time Histograms

As stated above activities can have multiple start-times and end-times due to
conditional branches depending on the execution path. To represent probabilistic
values of possible start-times and end-times (complex) activities we enhance the
idea of duration histograms [3] to start time histograms and end time histograms
which will subsequently be merged into the probabilistic timed graph.

To represent these non-scalar values we use time-probability tuples. E.g.,
the path from A to E is sequential and unambiguously determined, therefore E
holds a set with only one start-time tuple (1.0, 7) where the second value specifies

Personal Schedules for Workflow Systems 219

the start-time and the first value specifies the according execution-probability.
The start-time is calculated by adding the duration of all predecessor-activities.
The activity L can be reached on two routes (via H and via I) each with its
own execution probability, thus L holds a set of two different start-time tuples
{(0.1, 18), (0.9, 21)}. Note that the probabilities always sum up to 1.0.

In contrast, according to ePERT and similar approaches [10,4,6], end-times
are interpreted as upper bounds for the execution of an activity. For the calcu-
lation we have to change our point of view on the workflow-process and start
from the last activity T , initialized with a given deadline δ, which can be pro-
vided by an administrator or calculated from start-times. Furthermore we treat
splits as joins and vice-versa. E.g., the reverse-path from T to R is sequential
and unambiguously determined, therefore R holds a set with only one end-time
tuple (1.0, 43). The second value specifies the end-time, which is calculated by
subtracting the duration of all successor-activities from an assumed deadline
δ = 48. Activity L can be reached on four routes (via N , O, P and Q), thus it
would have four end-times tuples (0.02, 25), (0.02, 25), (0.48, 34), (0.48, 39).

Since our approach is set based and we do not need any knowledge about
coherences between tuples and paths anyway, it is possible and necessary to
aggregate tuples with equal time-information by adding their probability. Which
results in a set with three different tuples {(0.04, 25), (0.48, 34), (0.48, 39)} for
activity L.

These sets can be represented as histograms which are formally defined as
follows:

Definition 1 (Time Histogram) A time histogram H is a binary relation
with n rows (p, t) with probability p and time-information t.

A time histogram H is valid, if
∑n

i=1 pi = 1 for (pi, ti) ∈ H.
An extended time histogram T is a relation of n rows (pi, ci, ti), (probability

p, cumulated probability c, and time-information t), with
∑n

i=1 pi = 1, and ci =∑
tj≤ti

pj for 1 ≤ i ≤ n.
A cumulated time histogram is the projection of an extended time histogram

on the cumulated probabilities and the time information.

The various start-times of an activity are represented in a start time histogram
or S-histogram, where the time t is represented by the start-time-value s. The
upper-bounds are stored in an end time histogram or E-histogram, where the
time t is represented by the end-time-value e. The probabilistic timed graph (see
figure 2) is generated by calculating the S-histograms and E-histograms of all
activities.

2.3 Calculation of the Probabilistic Timed Graph

The calculation of the graph starts with the initialization of the start activity’s
S-histogram with (1.0, 0). To determine the S-histograms for all remaining ac-
tivities the forward-calculations specified below have to be applied depending on
the corresponding control structures (sequence, conditional, parallel).

220 J. Eder et al.

70%

30%

90%

10%

48
%

48%

2%

2%

A 2 B 5

C 3 F 1

K 11

J 3

M 6

S 3 T 2

R 3

Q 15

P 15

O 6

N 1

L 4

I 6

H 9

D 7 G 2

E 5

1.0 2 1.0 7

1.0 7

1.0 7

7.036 21.0 0

.004

.432

.048

.432

.048

5

11

14

16

19

10

16

19

21

24

.036

.004

.432

.048

.432

.048

.036 12

.004 15

.432 21

.048 24

.432 26

.048 29

.30 25

.70 33

1.0 41

.30 26

.70 34

1.0 10

1.0 11 1.0 37

1.0 11 1.0 37

.70 14

.30 22

1.0 14 1.0 43

1.0 12 .04 21

.48 30

.48 35

1.0 12 .04 21

.48 30

.48 35

.04 25

.48 34

.48 39

.10 18

.90 21

.10 22

.90 25

1.0 40

1.0 40.10 22

.90 25

1.0 40.10 22

.90 25

1.0 40.10 22

.90 25

.048 23

.432 26

.048 28

.432 31

.004 37

.036 40

1.0 43

.034 26

.014 28

.432 29

.048 31

.432 34

.004 40

.036 43

1.0 46 1.0 48.034 29

.014 31

.432 32

.048 34

.432 37

.004 43

.036 46

1.0 43

Activity with
Time-Histograms

Name Duration

S-Hist E-Hist

Fig. 2. Probabilistic timed graph with S-histograms and E-histograms

Definition 2 (Sequential Execution) For two sequential activities B and C
we define the S-histogram of the successor activity C on basis of the predecessors
S-histogram SB and its duration dB as

SC = SB + dB = {(p, s+ dB)|(p, s) ∈ B}
For the successors S-histogram the predecessors duration d is added to each
start-time s of the predecessor. Examples for the calculation of sequences are the
activities B,D, E, O and T . Note that this calculation rule has to be applied
for all successor activities of sequences as well as all activities located after split-
nodes. The calculation of join-nodes vary dependent on their type.

Definition 3 (Conditional Execution) Let Bi, with duration di and S-histo-
gram SBi , be conditionally executed predecessors for or-join activity C and qi the
corresponding branching probabilities, then the S-histogram SC is defined as

S′
C = {(Bi, p ∗ qi, s+ di)|(p, s) ∈ SBi}

SC = {(
∑

y, z))|(x, y, z) ∈ S′
C}

Each tuple (p, s) of every predecessors S-histogram is aggregated into the suc-
cessors S-histogram by adding the predecessors duration di to the start time
s and weighting the corresponding starting-probability p with the predecessors
branching factor qi. The set S′

C is an intermediate step to distinguish tuples
with equal probabilities which are finally aggregated in the calculation of SC (as
described in the example in section 2.2). Note that the sum of all probabilities
of the resulting histogram is always 1, and thus it is a valid time histogram.
Examples are the activities L,M, and R in Figure 2.

After and-splits all succeeding routes will be processed concurrently. To calcu-
late the S-histogram for activities located after and-joins we define the following
operation.

Personal Schedules for Workflow Systems 221

ACTIVITY X d = 6 ACTIVITY Y d = 4 ACTIVITY Z

12
13
15
15

0.49
0.21
0.21
0.09

p = p
iX
*p

kY
s = max(s

iX
+d

X
,s

kY
+d

Y
)p

i
s

i
+ds

i
p

k
s

k
+ds

k

x0.70
0.30

12
15

6
9

0.70
0.30

6
9

10
13

Fig. 3. Parallel execution of X and Y joining in Z

Definition 4 (Parallel Execution) Let B1 and B2 be predecessors with S-
histograms SB1,2 and durations dB1,2 which are executed in parallel before and-
join activity C, then the successors S-histogram SC is defined as

S′
C = {(pB1 , pB2 , pB1 ∗ pB2 , SB1 , SB2 ,max((sB1 + dB1), (sB2 + dB2) |

(pB1 , sB1) ∈ SB1 , (pB2 , sB2) ∈ SB2}
SC = {(

∑
w, z)|(u, v, w, x, y, z) ∈ S′

C}

Again S′
C is used as intermediate step for probability aggregation. This defini-

tion can be extended to any number of predecessor activities due to the oper-
ations associativity. An example result for three predecessors can be found in
figure 4 (S-histogram of and-join activity S). An example calculation for two
predecessors is illustrated in figure 3 where 2 parallel activities X and Y with
SX = {(0.7, 6), (0.3, 9)}, SY = {(0.7, 6), (0.3, 9)}, dX = 6 and dY = 4 join in
activity Z. Note that we calculate the successor start-times from each predeces-
sors start-time and duration sBi + dBi . Assuming that the concurrent activities
are completely independent from each other, all possible end-time combinations
have to be calculated whereas the greater end-time and the product of the prob-
abilities are chosen for the resulting S-histogram.

Before starting the backward-calculation it is necessary to initialize the E-
histogram of the end-activity with (1.0, δ). δ is the workflows deadline, which can
be chosen freely or calculated as structural deadline δ = max(s|(p, s) ∈ SZ where
Z denotes the workflows last activity. As stated above we have to reverse our
point of view on the workflow, that means the calculation starts from the last
activity, splits are treated as joins and vice-versa. The calculation-algorithms
for S-histograms (see definitions in section 2.3) must be modified as follows:
Calculate the E-histograms of activities on base of their successors (instead of
predecessors). For sequences and conditionals subtract the successor durations d
from their end-times e (instead of adding to s). For parallel execution calculate
the predecessors end-times from the successor end-times and durations as e− d
(instead of their start-times s+d) and use the min-operator instead of the max-
operator.

222 J. Eder et al.

2.4 Additional Issues on Time Histograms

For further issues in computations with time histograms we refer to [3]. Such
issues are representation and calculation of iterations, compression of time his-
tograms, checking the satisfiability of temporal constraints, and run-time assess-
ments of the temporal situation of workflow execution.

3 Time Plans

The probabilistic timed graph is the basis for the calculation of time plans which
contain probabilistic information about execution intervals of activities.

3.1 X-Values

There is still one essential piece of information, which the probabilistic timed
graph does not provide for time plans: The probability that an activity will not
be assigned and executed at all. E.g. in figure 2 the probability that the path via
activity H will be chosen is 90%. Based on the fact that conditional branching-
decisions are unknown in advance, the ”uncertainty-factor” that any other path
will be chosen and the activity will not be assigned is 10%. For L it is 0% because
this activity will be assigned and executed in any case.

That knowledge may be of no interest in an overall process view, but for a
participant who is supposed to execute an activity it is crucial. This information
is stored in the X-value of each activity in the workflow.

Definition 5 (X-Value) Let xA be the X-value of an activity A, such that xA

specifies the probability of not executing A.

The calculation of the X-value can be linked to the forward-calculation of the
probabilistic timed graph and can be determined for every activity as follows
(see also figure 4):

– Initialization of first activity with XFirstActiviy = 0.
– For two sequential activities B and C, the X-value of the successor activity
C is XC = XB .

– For an activity C which succeeds an or-split activity B with a branching
probability qC the X-value is XC = 1 − ((1 −XB) ∗ qC).

– For an or-join activity C which succeeds multiple activities Bi, where 2 ≤
i ≤ n, the X-value is XC = 1 − ∑

(XBi).
– For an activity C which succeeds an and-split activity B the X-value is
XC = XB .

– For an and-join activity C which succeeds multiple activities Bi, where 2 ≤
i ≤ n, the X-value is defined as XC = XB1 = XB2 = ... = XBn).

Personal Schedules for Workflow Systems 223

A 2

X
19
17
16
14
11
5
2

X
0
0
0
0
0
0
0

0.000
0.033
0.047
0.479
0.527
0.959
0.963
1.000

B 5

X
24
22
21
19
16
10
7

X
2
2
2
2
2
2
2

0.000
0.033
0.047
0.479
0.527
0.959
0.963
1.000

E 5

D 7

X
41

X
7

0.000
1.000

C 3

X
25
38

X
7
7

0.000
0.700
1.000

X
29
26
24
21
15
12

X
7
7
7
7
7
7

0.000
0.048
0.480
0.528
0.960
0.964
1.000

F 1

X
26
34

X
10
10

0.000
0.700
1.000

J 3

X
37

X
11

0.300
1.000

K 11

X
37

X
11

0.700
1.000

M 6

X
48
48

X
14
22

0.000
0.700
1.000

G 2

X
18

X
14

0.000
1.000

H 9

X
35
30
21

X
12
12
12

0.100
0.514
0.864
1.000

I 6

X
35
30
21

X
12
12
12

0.900
0.948
0.996
1.000

90
%

10%

L 4

X
39
34
25
39
34
25

X
18
18
18
21
21
21

0.000
0.046
0.096
0.100
0.480
0.960
1.000

N 1

X
40
40

X
22
25

0.520
0.588
1.000

O 6

X
40
40

X
22
25

0.520
0.588
1.000

P 15

X
40
40

X
22
25

0.980
0.980
1.000

P 15

X
40
40

X
22
25

0.980
0.980
1.000

2%
2%

48%

48
%

R 3

X
43
43
43
43
43
43

X
23
26
28
31
37
40

0.000
0.048
0.480
0.528
0.960
0.964
1.000

S 3

X
46
46
46
46
46
46
46

X
26
28
29
31
34
40
43

0.000
0.033
0.048
0.480
0.528
0.960
0.964
1.000

T 2

X
48
48
48
48
48
48
48

X
29
31
32
34
37
43
46

0.000
0.033
0.048
0.480
0.528
0.960
0.964
1.000

Activity with X-
Value & Time-Plan

Name Duration

prob.
...
..

time-interval
...
..

X-value

Fig. 4. Workflow with calculated time plans

3.2 Calculation of Time Plans

A time plan that holds all possible execution-intervals for an activity is defined
as follows:

Definition 6 (Time Plan) The time plan TA on an activity A is a set of tu-
ples (p, s, e) which is calculated on basis of A’s cumulated S-histogram SA, its
cumulated E-histogram EA and its X-value xA where

TA = {(cS ∗ cE ∗ (1 − xA) + xA, s, e)|(cS , s) ∈ SA ∧ (cE , e) ∈ EA}
Note that we used cumulated histograms which can be determined as stated
in definition 1. Basically we create the cartesian product of the cumulated S-
histogram and the cumulated E-histogram weighted by the activity’s X-value,
which takes the potential non-assignment of the activity into account. One tuple
(p, s, e) defines the probability p that no time-constrained is violated (deadline)
when the activity starts and ends in the time-interval [s..e]. Figure 4 shows our
example workflow with calculated time-plans for all activities. In this example
each activity holds a tuple with probability p = 1.0, which means that an ex-
ecution of the particular activity without constraint-violation is possible in the
according time-interval.

Definition 7 (Safe Interval) A time plan TA of an activity A is safe

iff ∃(p, s, e) ∈ TA with p = 1.0

and (s,e) is called the safe interval of A.

Taking a closer look on the time plan of activity H in figure 4, there are some
conclusions that can be drawn: (a) H will not start before 12, (b) if H starts

224 J. Eder et al.

and ends in the safe interval [12..21] an execution without violating any time-
constraints can be guaranteed, (c) in time interval [12..30] there exists an 86.4%-
chance that an execution without violating any time-constraints is possible, (d)
in time interval [12..35] there exists an 51.4%-chance that an execution without
violating any time-constraints is possible and (e) according to the X-value there
is 10% chance that H will not be executed at all.

4 Definition of Personal Schedules

Based on time plans one can calculate future workloads for participants in terms
of personal schedules, which are not comparable with machine scheduling plans,
because a participant still has the freedom of choice whether he executes a certain
activity or not and when he executes it. They are intended for the support of
predictive personal scheduling issues by providing knowledge about upcoming
activities, possible future bottle-necks and the detection of upcoming violations
of time constraints as early as possible.

We assume that each workflow participant is responsible for executing ac-
tivities from different workflows and different workflow instances. Therefore a
number of instance activities including time plans and X-values are provided for
a participant from the workflow-system(s). Note that these activities are possible
future-tasks of the participant, but may not be assigned at all due to branching
decisions that lead to different execution-routes in the workflow(s). Such future
assignments of activities are represented as personal schedules formally defined
as follows:

Definition 8 (Personal Schedule) A personal schedule PSρ of participant ρ
is defined as a set of tuples (v, p, s, e) with (p, s, e) ∈ Tv and:

v. . . activity that participant ρ must work off
Tv. . . time plan of activity v
p. . . probability to meet execution of v in (s, e)
s. . . planned start time of activity v
e. . . planned end time of activity v

(e = s+ d, d . . .execution time of activity v)

For each activity the personal schedule PS contains a planned execution
interval [s..e] and the corresponding probability p to meet execution within this
interval from the time plan Tv. A personal schedule is not an optimized plan
but only one possible execution order used for workload calculations. Since we
are working on administrative workflows, the real execution order is always up
to the participant himself. Nonetheless we envision a situation where personal
schedules support participants in choosing a most efficient execution order in
the context of all integrated workflows.

We assume that instance activities of one participant can not be executed in
parallel. Therefore the planned execution intervals of a personal schedule must
not overlap:

Personal Schedules for Workflow Systems 225

A 6

activity instance A

B 10

activity instance B

C 12

activity instance C

X

8

8

X

22

20

0.00

0.60

1.00

X

0

4

X

14

14

0.00

0.90

1.00

X

18

X

30

0.00

1.00

Fig. 5. Example: future activities including time plans for one participant

Definition 9 (Non-overlapping) A personal schedule PS is called non over-
lapping iff ∀(v1, p1, s1, e1) ∈ PS and ∀(v2, p2, s2, e2) ∈ PS where (v1, p1, s1, e1) �=
(v2, p2, s2, e2) → ¬((s1 < s2 < e1) ∨ (s1 < e2 < e1)).

As personal schedules predict future workload using probabilities, we are
faced with uncertainties and estimations. In contrast to production planning
systems, the purpose here, is not to find the optimal plan. Moreover in this
context this would lead to a schedule algorithm which is known to be np-hard
[1]. We therefore reduce complexity by using earliest deadline first strategy. That
means we are planning activities consecutively starting with the activity having
the earliest deadline and so on.

5 Calculation of Personal Schedules for Workflows

Having time plans for all future activities of a participant enables one to make
some predictions about the work-list behavior of this participant in the near
future. We calculate personal schedules as a simulation of the activities that will
be added to the work-list of a participant. This way potential overload can be
detected and the probability for this overload occurring can be determined as
well. In this section we show how to calculate personal schedules and how to
interpret them.

To illustrate the steps of the algorithm we introduce the following example:
Figure 5 shows some activities that one participant is supposed to execute in the
near future and for which the personal schedule calculation will be calculated.

For each activity the time plan contains a safe interval, in which the execution
should be scheduled if somehow possible. The safe interval of an activity is that
period of the time plan, for which the probability is p = 1.0 (as described in
definition 7 above). Therefore the safe intervals for the activities of the example
are (see figure 5 and figure 6):

– safe interval of A = [4..14],
– safe interval of B = [8..20],
– safe interval of C = [18..30].

The objective of the algorithm is to find an execution period for all activities
without overlaps, which should furthermore lie within their safe intervals. An
overlap would mean to risk temporal restriction violations due to an overload

226 J. Eder et al.

on the participant. And execution outside the safe interval can lead to tem-
poral constraint violations in the associated workflow. Nevertheless, even if no
non-overlapping execution period in the safe interval can be determined for an
activity, the probability, with which the entire personal schedule can be held will
be computed. This value can be important for decisions about continuation or
interruption of activities and workflows.

This pseudo-code describes the calculation of a personal schedule in detail
followed by some explanatory remarks based on the example.

Input V set of activities including time plans
type normal, min or max personal schedule
period for min or max personal schedule

Out PS personal schedule

FUNCTION calculatePersonalSchedule(V, type, period)
BEGIN

V.sort() //sort activities by their deadlines
PS := ∅
noPlanFound = FALSE
FOR every (v ∈ V) AND WHILE (NOT noPlanFound)

bestPlan := ∅
bestPeriodFound = FALSE
v.timePlan.sort() //sort time plan entries descending by probabilities
FOR every (period ∈ v.timePlan) AND WHILE (NOT bestPeriodFound)

IF (period.startTime = ’x’) THEN
//X-value, activity is planned to be not executed
bestPlan.weight(period.getProbability())
bestPeriodFound = TRUE

ELSE
//find non-overlapping time interval in period
newPeriod := getFreePeriod(PS, period, v.executionTime)
newPeriod.probability = period.getProbability()
//if period is safe
IF (newPeriod.getProbability() = 1.0) THEN

check constraints for minimized or maximized personal schedule
bestPlan.add(a, newPeriod)
bestPeriodFound = TRUE

//if period is overlapping with other intervals
ELSE IF (newPeriod.getProbability() = 0.0) THEN

newPeriod.endTime := period.endTime
newPeriod.startTime := newPeriod.endTime - v.executionTime
//try to shift conflicting activities
newPlan := freePeriod(bestPlan, newPeriod)
IF (newPlan �= ∅) THEN

bestPlan := newPlan
bestPlan.add(a, freePeriod)

END-IF
//if period is not safe but non-overlapping
ELSE

newPlan = PS
newPlan.add(a, newPeriod)
IF (newPlan.getProbability() > bestPlan.getProbability()) THEN

bestPlan := newPlan
ELSE

bestPeriodFound = TRUE
END-IF

END-IF
END-IF

END-FOR
IF (bestPeriodFound = FALSE) THEN

noPlanFound = TRUE
ELSE

PS := bestPlan

Personal Schedules for Workflow Systems 227

END-IF
END-FOR
RETURN PS

END

function getFreePeriod()
Returns a time interval of the specified length that lies within the
specified period, if such an interval exists without overlapping with
other intervals of the specified personal schedule.

function freePeriod()
Returns a new personal schedule containing all activities of the specified
personal schedule. In the new personal schedule the execution times of all
are shifted, so that there is no overlapping with the specified period.

The determination of a valid start time is processed as follows. We start with
an empty personal schedule. The activities are inserted using earliest-deadline-
first, which is in our example activity A with a safe-interval deadline of 14.
When inserting the first activity there is obviously no overlap with other activity-
executions possible. Therefore the execution of A can be planned at 4, the be-
ginning of A’s safe interval, and since its duration is 6 the execution interval for
A is scheduled in [4..10].

If there are any overlaps with other execution intervals in the personal sched-
ule the earliest start time in the safe interval without overlaps must be deter-
mined. When inserting activity B, the start time of its safe-interval 8 collides
with the execution interval [4..10] of A. So it has to be shifted to the end of A’s
execution interval: 10. Execution of B with duration 10 and starting with 10 is
still in the safe-interval [8..20] of B, thus execution of B can be scheduled in the
interval [10..20].

No we try to insert activity C after the execution-interval of B, but no non-
overlapping execution period can be found in the safe interval and shifting is
not possible. So we try to determine a better schedule by shifting the conflicting
activity to an earlier start-time. This is demonstrated in our example where
the start time of activity C cannot be delayed to resolve the conflict and so
the other activities must be moved to earlier start-times, even if that means,
that they move out of their safe interval. This is accomplished recursively, until
an execution plan without overlaps has been found, which finally results in a
personal schedule PS = {(A, 0.9, 2, 8), (B, 1.0, 8, 18), (C, 1.0, 18, 30)}.

If even recursive shifting of the activities does not result in a non-overlapping
execution plan, then the entire personal schedule computation will be aborted.
In this case a successful treatment of participants activities is not possible and
an escalation decisions must be made quickly, which could be abortion of the
activity and its workflow instance, rescheduling of the workflow-instance or other
actions as described in [8,9].

228 J. Eder et al.

� t

a
c
t
i
v
i
t
y

i
n
s
t
a
n
c
e

0 10 20 30�
�

A

B

C

1. adding activity A

�� t

a
c
t
i
v
i
t
y

i
n
s
t
a
n
c
e

0 10 20 30��
��

A

B

C

���
��

��
safe intervall p=1.0

intervall with p<1.0

planned execuction period

2. adding activity B

� t

a
c
t
i
v
i
t
y

i
n
s
t
a
n
c
e

0 10 20 30�
�

A

B

C

����
����

3. adding activity C

�� t

a
c
t
i
v
i
t
y

i
n
s
t
a
n
c
e

0 10 20 30��
��

A

B

C

���
����

4. recursive shifting

��
outside

interval!�

Fig. 6. Example: calculation of a personal schedule

5.1 Admissibility of a Personal Schedule

In our example we could solve problems with overlapping activities by shifting
A and B to earlier start-times, but now another problem arises: The resulting
personal schedule can no longer be guaranteed, because A is now outside its
safe interval, which means that violations of time restrictions may occur. In that
case we have to make some statements about how ”safe” or ”unsafe” a personal
schedule is.

A personal schedule is safe, if all its activities can be executed in their planned
interval without restrictions. Restrictions arise if an activity is not ready at the
planned start time and can not be assigned to the participant. Another reason
could be that the scheduled end of the activity leads to deadline violations in
the associated workflow instance (the personal schedule ”collides” with the time
plan). We call this characteristic the admissibility of a personal schedule.

Definition 10 (Admissibility of a Personal Schedule) Let PS be a per-
sonal schedule and let pi be the probabilities of the activities vi of PS. The
admissibility of PS is defined as ζ =

∏
pi|(vi, pi, ei, si) ∈ PS. A personal sched-

ule is safe, iff ζ = 1.0.

For our example the admissibility can be calculated as: ζ = 0.9∗1.0∗1.0 = 0.9,
assuming that the execution of every instance activity is an independent event.
That means that there is 90% chance that this personal schedule can be met
and no time constraint violation, that makes escalation decisions necessary, will
occur.

Personal Schedules for Workflow Systems 229

5.2 Workload of a Personal Schedule

Another statement which can be made from the computed personal schedules
refers to the workload of participants in certain time intervals. Using a personal
schedule it is possible to determine the expected workload for a given period,
i.e., for one day or for one week. The workload of a participant within any period
can be determined from the overlap of the desired period with all activity entries
of the personal schedule. Formally the workload of a personal schedule is defined
as:

Definition 11 (Workload of a Personal Schedule) Let PSρ be the per-
sonal schedule of participant ρ. The workload of the personal schedule within
a period γ = (s, e) is defined as:

η =
∑

overlap(γ, (si, ei))|(vi, pi, si, ei) ∈ PSρ

overlap((s1, e1), (s2, e2)) = max(min(e1, e2)−max(s1, s2), 0) returns the overlap
between two time intervals.

E.g. assuming that the time-units in our example are days, the workload for
the first week (0, 7) may be determined as:

η(0,7) = overlap((0, 7), (2, 8)) + overlap((0, 7), (8, 18)) +
overlap((0, 7), (18, 30)) = 5 + 0 + 0 = 5.

That means that the participant, for whom our example personal schedule was
provided, is busy on 5 out of 7 days in the coming week.

5.3 Minimized Personal Schedule

A minimized personal schedule represents a variant of the original personal
schedule, in which we try to shift as much activities as possible out of a certain
period without violating time restrictions. This computation makes only sense
on on safe personal schedules, since otherwise the minimum workload would be
larger than the available time.

By shifting activities out of a certain period, one receives the minimum load
for a participant from the workflow in this period and thus a good basis for
various planning decisions (i.e., accept additional orders, vacation planning, . . .).
The computation of a minimized personal schedule is made similar to the original
personal schedule calculation. An additional constraint is added: Try to move
all activities, whose planned execution time overlaps with the given minimized
period, out of this period. Shifting the activities may only take place within their
safe interval.

5.4 Maximized Personal Schedule

A maximized personal schedule represents another variant of the original per-
sonal schedule, in which we try to shift as much activities as possible in a certain

230 J. Eder et al.

period without violating time restrictions. The determination of maximized per-
sonal schedules makes sense in order to avoid unbalanced workloads. It has to
be considered that by shifting the activities their execution can be unnecessarily
delayed. Buffer time is lost and cannot be used by following activities if time
exceeding occurs.

6 Applications and Conclusions

In the previous sections we introduced probabilistic timed graphs, time plans and
personal schedules. Finally we want to describe some applications to demonstrate
how this information can be used in workflow systems.

– Provide early information about future activities for participants: At the
start of a workflow instance participants can already be informed about
their future tasks since this information is contained in the computed time
plans.

– Recognize delays because of overload: The admissibility of a personal sched-
ule is limited due to the overloading of the participants. If this admissibility
of the personal schedule is monitored, then delays in the instances can be
recognized and by observing them over a certain time period bottlenecks can
be identified.

– The admissibility of a personal schedule gives information about the proba-
bility with which a successful execution of the instances, the participant is
involved in, is possible. This value can be linked with threshold values, in
order to be able to accomplish automatic control of the current instances. It
could be specified that if the admissibility of a workflow instance falls below
95%, a warning is triggered. For critical workflows the value could also be set
conservatively to 100%. Further a second value (i.e., 80%) could be specified
causing an error alarm to occur if the admissibility of the personal schedule
falls below this threshold. Such a model is called traffic light model (see [4])
since different states are assigned to each workflow instance according to its
admissibility: green, yellow, red.

– Determine overloaded and idle participants: When computing and evaluating
the future workload for certain periods (i.e., next week, next month, . . .),
then it is easy to recognize whether certain participants will be overloaded
or will have idle time left. This way the basis for controlling interferences
is given. We have to admit that these mechanisms could also be used to
observe the efficiency of employees (which was never our intention).

– Before the start of a new workflow instance a personal schedule can be
calculated to check if the new instance will lead to some constraint violations
due to capacity bottlenecks. If the personal schedule is safe, then the instance
can be started without any problems. Otherwise it should be considered
whether measures have to be taken in order to ensure a successful execution
of all instances, or if a delay of the new instance is necessary. It may be
useful to embed the computation and analysis of personal schedules into a
system for scenario planning.

Personal Schedules for Workflow Systems 231

– Early warning systems and scenario planning: Future bottlenecks and ex-
ceeding of time limits should be recognized as early as possible. An early
warning system for workflow systems can be established with personal sched-
ules. Before starting a new workflow instance personal schedules for all par-
ticipants are computed. By computing the admissibility, the probability for
successful execution can be determined, before wasting any time to the new
instance. Now one can decide whether the instance has to be started at all,
to delay the execution of the instance or perhaps use additional resources to
accelerate some tasks.

The main objective of personal schedules is to make information about future
tasks available for workflow participants as early as possible and to provide them
a preview of their future working schedule. The integration of personal schedules
into personal digital assistants, and work-list managers, as well as feedback from
personal schedulers to workflow time managers are subject of ongoing research.

References

1. J. Brucker. Scheduling Algorithms. Springer Verlag, 1998.
2. C. Bussler. Workflow Instance Scheduling with Project Management Tools. In 9th

Workshop DEXA’98, 1998. IEEE Computer Society Press.
3. J. Eder and H. Pichler Duration Histograms for Workflow Systems In Proceedings

of the Working Conference on Engineering Information Systems in the Internet
Context, 2002, Kanazawa, Japan, Kluwer Academic Publishers, page 239-253.

4. J. Eder and E. Panagos. Managing Time in Workflow Systems. In Workflow
Handbook 2001. Future Strategies INC. in association with Workflow Management
Coalition, 2000.

5. J. Eder, E. Panagos, and M. Rabinovich. Time constraints in workflow systems.
In Proc. International Conference CAiSE’99. Springer Verlag, 1999.

6. O. Marjanovic, M. Orlowska. On modeling and verification of temporal constraints
in production workflows. Knowledge and Information Syst., 1(2), 1999.

7. M. Ninaus Auslastungsberechnungen in probabilistischenWorkflow Systemen Mas-
terthesis. ISYS Department, University of Klagenfurt, Austria, 2002.

8. E. Panagos and M. Rabinovich. Predictive workflow management. In Proceedings
of the 3rd International Workshop on Next Generation Information Technologies
and Systems, Neve Ilan, ISRAEL, June 1997.

9. E. Panagos and M. Rabinovich. Reducing escalation-related costs in WFMSs. In
NATO Advanced Study Institue on Workflow Management Systems and Interop-
erability, Istanbul, Turkey, August 1997.

10. H. Pozewaunig, J. Eder, and W. Liebhart. ePERT: Extending PERT for workflow
management systems. In First European Symposium in Advances in Databases and
Information Systems (ADBIS), St. Petersburg, Russis, 1997.

A Process-Oriented Model for Authentication on
the Basis of a Coloured Petri Net

Peter Lory

Institut für Wirtschaftsinformatik, Universität Regensburg,
D-93040 Regensburg, Germany

Peter.Lory@wiwi.uni-regensburg.de,
http://www.uni-regensburg.de/Fakultaeten/WiWi/lory/

Abstract. Public-key cryptography is a prerequisite for security in dis-
tributed systems and for reliable electronic commerce. The protection of
public keys against attacks is the Achilles’ heel of public-key cryptogra-
phy. It is the goal of public-key infrastructures to provide the authen-
ticity of the public keys for its participants. Formal models (called trust
models) contribute decisively to a deeper understanding of the desir-
able design principles for these infrastructures. The present paper gives
a trust model on the basis of a coloured Petri net. The graphic repre-
sentation of nets of this type makes them easily understandable even for
unexperienced users. In an application in electronic commerce the pro-
cess formalized by this Petri net will be embedded in a cryptographic
protocol which again will be an important part of a larger business pro-
cess. So, the model of this paper is a useful module in business processes
that are common in electronic commerce.

1 Introduction

Public-key cryptography is a prereqisite for electronic commerce and electronic
government. Its basic ideas have been introduced by Diffie and Hellman [3] in
1976. A few years later, Rivest, Shamir and Adleman [18] have made an impor-
tant contribution with their technique that is now well known as RSA-method.
For a survey in the basic concepts and methods of public-key cryptography the
interested reader is referred to standard references such as [14] or [20].

The two most important applications of public-key cryptography are key
management and the generation and verification of digital signatures. The former
generates a secret key shared by two entities that have not shared a secret key
initially. Once such a key is shared by two entities, it allows the application of
the efficient techniques of symmetric cryptography providing confidentiality. The
purpose of digital signatures is the provision of authentification, data integrity
and non-repudiation.

Public-key cryptography is characterized by its asymmetry. Every entity has
a pair of keys: a public key p and its corresponding secret key s. Let pB and

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 232–245, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Process-Oriented Model for Authentication 233

sB denote Bob’s 1 public and secret key, respectively. If Alice wants to send
Bob a confidental message, she encrypts the plaintext by his public key pB . Bob
decrypts the arriving ciphertext by his secret key sB . Conversely, if Bob wants
to sign a digital message, he applies his secret key sB to this message. Alice
can use Bob’s public key pB to verify this signature. It is obvious, that Bob
must protect his secret key in a personal security environment (e. g. a personal
chipcard). Although public keys do not need to be kept secret, and in fact wide
knowledge of an entity’s public key is desirable, the security problem is that
Alice must know for certain that a particular public key really does belong to
Bob. If Alice can be tricked into thinking that Mallory’s public key is Bob’s,
Mallory can impersonate Bob to Alice. The protection of public keys against
attacks is the vulnerable spot of public-key cryptography. Indeed, citing [23]:
This whole business of protecting public keys from tampering is the single most
difficult problem in practical public key applications. It is the Achilles’ heel of
public key cryptography, and a lot of complexity is tied up in solving this one
problem.

It is the goal of a public-key infrastructure (PKI) to solve the above mentioned
problem. For surveys in this area see [15] and [19]. Public-key infrastructures rest
on the concept of a public-key certificate. This is a data structure consisting of
a data part and a signature part. The data part contains cleartext data includ-
ing, as a minimum, a public key, a string identifying the entity to be associated
therewith and a string identifying the issuer of the certificate. The signature
part consists of the digital signature of the issuer over the data part, thereby
binding the entity’s identity to the specified public key. In practice, certificates
obey standards such as X.509 and include additional data fields, for instance
the expiration date. If Alice has several certificates, she can build a chain of
certificates where each public key is certified by the previous entity in the chain,
and where she has specified the first public key as authentic and all intermediate
entities as trustworthy. Section 2 shows how trust can be propagated in a similar
way by the concept of a recommendation. Usually, these pieces of information
are stored at different places. So, a public key infrastructure can be seen as
a distributed database of public-key certificates, recommendations and further
information. Thus, it forms a web of certificates and recommendations. Trust
plays a prominent role in this web. Consequently, models for public-key infras-
tructures are often called trust models. In contrast to other models for public-key
infrastructures (e.g. [4]) the present paper models trust explicitly.

Usually, a user of a public-key infrastructure has a set of statements about
the authenticity of certain bindings between public keys and entities and on
the trustworthiness of certain entities. Together with the available collection of
certificates and recommendations these statements make up the user’s (Alice’s)
view to the public-key infrastructure. It is not the aim of this paper to discuss

1 Please note, that here and in the following entities are often called Alice and Bob
(following tradition in cryptography). However, the reader should keep in mind that
they could be a human, a server, a client machine or a personal token like a chipcard
or something else.

234 P. Lory

the problem, how Alice can find the necessary set of information that enables
her to prove the authenticity of a certain public key. However, it is obvious that
a hierarchical structure or a web of hierarchies can facilitate this procedure.

The present paper focuses on another process: Let the set of statements
(Alice’s view) be given. The user (Alice) has the aim to derive further statements
from this set. For example, let Alice have a certificate that is issued by entity Z
and signed by its public key pZ . Additionally, let Alice have statements on the
trustworthiness of Z and on the authenticity of the binding between pZ and Z.
Let the certificate say that pX is a public key of entity X. Then, these pieces
of information enable Alice to derive the authenticity of the binding between
pX and X. If Alice wants to prove the authenticity of a certain binding, then
in general she has to perform several steps of this type. Hence, she must carry
out a process. This process can be modelled concisely by a coloured Petri net
(for details see Section 4). In an application in electronic commerce this process
will be embedded in a cryptographic protocol which again will be a part of a
larger business process. So, the model of this paper is a useful module in business
processes that are common in electronic commerce.

The occurrence graph is an extremely helpful tool in the analysis of the
dynamic properties of a given coloured Petri net. Indeed, in the case of the
present Petri net it provides all the statements about the authenticity of public
keys that can be derived from Alice’s view. The model in [13] achieves the same
goal by using a logical calculus, from which the present model is derived to a
high extent. However, the modelling technique of coloured Petri nets is more
easily accessible for users in a business process environment.

The paper is organised as follows: Section 2 gives a precise definition of Alice’s
view and gives a few examples. In Section 3 the underlying process is discussed
in detail. Section 4 defines the coloured Petri net trust model. It focuses on the
main aspects of public-key infrastructures and does not yet include certificate
revocation. The occurrence graph (Section 5) is the decisive tool for the determi-
nation of all the statements about authenticity that are consistent with Alice’s
view. Concluding remarks are made in Section 6.

2 Alice’s View

Certificates are produced with the intention to propagate authenticity of public
keys. However, this goal is achieved only if the user of the certificate trusts its
issuer. Since the user cannot know personally all the entities he has to rely on,
there is also a need for propagation of trust. This task is done by recommenda-
tions. Public-key management models that include recommendations have been
proposed in [22], [1], [13], [9]. A recommendation can be considered as a signed
statement about the trustworthiness of another entity. Consequently, it is sim-
ilar to a certificate. Nevertheless, recommendations have an additional feature
that makes them more complicated than certificates. There exist several levels
of trust. Trust of level 1 says, that the trusted entity is trustworthy to issue
certificates. A recommendation of level 1 says that the recommended entity can

A Process-Oriented Model for Authentication 235

be trusted with the same level. Proceeding further in a recursive manner, trust
of level i means, that the entity can be trusted to issue recommendations of level
i− 1 . A recommendation of level i refers to trust of the same level.

Alice as a user sees the web of certificates and recommendations that build
the public-key infrastucture. Let it be her aim to establish the authenticity of
another person’s, for instance Bob’s, public key. For this purpose she builds her
initial view, which includes all the certificates and recommendations that can
be relevant for authenticating Bob’s public key and can be retrieved from the
public-key infrastructure. The latter means any method of obtaining certificates
or recommendations, for instance by accessing a certificate server. Additionally,
Alice’s view includes statements as a part of her belief, such as authenticity of
certain public keys and trust in certain entities. Formally speaking, Alice’s view
is a set of statements of the type given in the following definition (cf. [13]).

Definition 1 (Statements and Alice’s view). Alice’s view is a set of state-
ments of the following type:

– Aut(X,P) says that Alice is convinced that the public key P belongs to entity
X (authenticity).

– Cert(X,P,Y,Q) says that Alice holds a certificate, which asserts that Q is
a public key for entity Y . This certificate is allegedly issued and signed by
entity X. The signature passes verification by the public key P .

– Trust(X,1) says that Alice is convinced that entity X is trustworthy of level
1, i.e. this entity can be trusted for issuing certificates.

– Rec(X,P,Y,i) says that Alice holds a recommendation of level i for entity Y ,
i.e. it asserts that entity Y is trustworthy of level i. This recommendation
is allegedly issued and signed by entity X. The signature passes verification
by the public key P .

– Trust(X,i) with i > 1 says that Alice is convinced that entity X is trustwor-
thy of level i, i.e this entity can be trusted for issuing recommendations of
level i− 1 .

A remark about the word “alleged” in the definitions for certificates and
recommendations seems in place: Without verification, it is not clear that entity
X has issued the certificate or the recommendation, respectively. However, if
Alice can gain evidence that the public key P belongs to entity X, she can
verify that entity X is indeed the issuer.

Alice’s view allows a graphic representation. Figure 1 gives the graphic el-
ements for the statements of Definition 1. The elements for the statements
Cert(X,P, Y,Q) and Rec(X,P, Y, i) nicely illustrate the propagation properties
of certificates and recommendations, respectively.

The model of the present paper imposes no restrictions on the underlying
architecture. Recommendations and certificates can be issued independently.
Indeed, in the following example (from [13]) the chain of certificates and the
chain of recommendations follow different paths.

236 P. Lory

Aut(X, P) :

Trust(X, i) :

Cert(X, P, Y, Q) :

Rec(X, P, Y, i) :

A

A

(X, P)

(X, P)

✲

✲i

✲

✲i

(X, P)

X

(Y, Q)

Y

Fig. 1. Graphic elements illustrating Alice’s view (“A” refers to Alice)

Fig. 2. Alice’s view (Example 1)

Example 1. Let Alice’s view consist of

Aut(X,PX), Aut(W,PW), Trust(X, 1), Trust(W, 3),
Cert(X,PX, Y, PY), Cert(X,PX,Z, PZ), Cert(Y, PY,B, PB),

Rec(W,PW,Z, 2), Rec(Z,PZ, Y, 1) .

Figure 2 illustrates the graph for this view using the the graphic elements given
in Figure 1. This example will be continued in Example 3 (see Section 5).

With the exception of node “A” (for Alice) the nodes in the graph of Figure
2 are pairs of entities and public keys. Each pair represents a binding between
an entity and its alleged public key. Whether this binding is authentic under
Alice’s view or not can be decided by applying formal methods (see Sections 3
and 4). The nodes in the corresponding graphs in [13] are entities alone. This
reflects the implicit assumption in [13] that every entity controls only one key
(in contrast to the present paper); therefore it is not explicitly mentioned which
key is concerned. This fact has raised confusion in papers like [16], [17] and has
been clarified in [10]. The present paper follows [13], [10] and [11] in modelling
trust in persons and not in keys.

A Process-Oriented Model for Authentication 237

Fig. 3. Alice’s view (Example 2)

Example 2. In another example Alice’s view consists of

Aut(X,PX), Aut(W,PW), Trust(W, 3),
Cert(X,PX, Y, PY), Cert(X,PX,Z, PZ), Cert(Y, PY,B, PB),

Rec(W,PW,Z, 2), Rec(Z,PZ, Y, 1), Rec(Z,PZ,X, 1) .

Figure 3 illustrates the graph for this view. At a first glance this example looks
similar to Example 1. Nevertheless, its behaviour is very different (see Example
4 in Section 5).

3 The Underlying Process

As a participant in a public-key infrastructure Alice has a set of statements
collected in her view. It is her aim to derive from this set further Aut- and
Trust-statements that are consistent with her original view. The article [13] treats
Alice’s view as a set of axioms and (similarly to a calculus in propositional logic)
gives inference rules for deriving new statements about the authenticity of public
keys and the trustworthiness of entities. This calculus allows a straightforward
extension to the case where more than one public key may belong to one entity
(as is assumed in the present paper). Using this calculus in a top-down fashion
the set of derivable statements can be produced. This set forms the closure V iew.
It contains exactly those statements that are consistent with Alice’s (original)
view. These statements are called valid.

In [21] a LISP-code based on this calculus is given that allows to decide
whether a given binding between an entity and a public key is authentic un-
der Alice’s view or not. The algorithm starts at this binding and searches in a
bottom-up manner a path to the elements of Alice’s view through the tree of
possible derivations.

The present paper uses the above mentioned top-down approach. However,
it does not employ a calculus but formalizes the derivation process by a coloured
Petri net (for details see Section 4). Petri nets are ideal tools to model processes.
These nets have a graphic representation which makes them easily accessible
even for non-experts. Coloured Petri nets have a well-defined semantics which
unambiguously defines the behaviour of the net.

238 P. Lory

The process Alice has to deal with is a result of Alice’s interest in Aut-
statements. Each of these statements proves the authenticity of a binding be-
tween a public key and an entity. The other statements, Trust, Cert and Rec,
are of no direct value for Alice. Their purpose is to support the derivation of
new Aut-statements. These derivations have to satisfy certain rules. These rules
can be formalized and made precise as transitions in the coloured Petri net.
The first rule uses (among other information) a certificate and derives a new
Aut-statement. The purpose of the second rule is the production of new Trust-
statements. Consequently, this rule employs a recommendation (among other
data). Because all occurrence sequences of the Petri net of Section 4 are finite
(see Theorem 1), the occurrence graph can be computed completely. It immedi-
ately provides the whole set of valid statements about the authenticity of public
keys (see Section 5).

4 The Coloured Petri Net Model

Coloured Petri nets are special high-level Petri nets and have been introduced in
[5] where they were called HL-nets. A thorough description is given in the books
[6], [7], [8]. The coloured Petri-net of Figure 4 models the process of deriving
all the Aut-statements that are consistent with Alice’s view. It will be explained
in detail below. Figure 4 has been drawn by the Design/CPN-software. This
is a graphic computer tool which supports the practical use of coloured Petri
nets. The paper [12] provides a comprehensive road map to its practical use and
gives further references. Resources and technical support on Design/CPN are
available via the web site [2]. All simulations in the present paper including the
occurrence graph analysis in Section 5 have been performed with this software.

The coloured Petri net of Figure 4 uses seven colour sets (types). They
are defined in the global declaration node. The net has four places: Alice,
Certificates, TrustPool and Recommendations. The place Alice acts as a
pool of Aut-statements. Consequently, its colour set is Aut, which is defined as
the cartesian product of the colour sets Entity and Keystr. Thus, a token of
this type is a pair of strings. The first string identifies an entity; the second
string represents a key (cf. Definition 1). The place Certificates collects the
Cert-statements. These statements can be modelled as quadruples of strings
with identifiers for entities in the first and third components and keystrings
in the second and fourth components. The colour set (Cert) of this place is
defined accordingly in the global declaration node. The places TrustPool and
Recommendations act as a pools of Trust-statements and Rec-statements, re-
spectively. The corresponding colour sets, Trust and Rec, are again defined in
the global declaration node according to Definition 1. The initial marking in
Figure 4 corresponds to Alice’s view of the Example 1. Please note, that at each
place the marking is a multi-set (see [6]) over the colour set attached to the
place. For example, the notation 1‘("X","PX") ++ 1‘("W","PW") means that
this multi-set contains one appearance of the token ("X","PX") and one appear-

A Process-Oriented Model for Authentication 239

Rule1
[i>=1]

Certificates
Cert

1‘("X","PX","Y","PY") ++
1‘("X","PX","Z","PZ")++
1‘("Y","PY","B","PB")

TrustPool

Trust

1‘("X",1)++
1‘("W",3)

Alice
Aut

1‘("X","PX")++
1‘("W","PW")

Rule2

[j>=1,k>=2]

Recommendations
Rec 1‘("W","PW","Z",2)++

1‘("Z","PZ","Y",1)

color Entity = string;
color Keystr = string;
color I = int;
color Aut = product Entity * Keystr;
color Cert = product Entity * Keystr * Entity * Keystr;
color Trust = product Entity * I;
color Rec = product Entity * Keystr * Entity * I;
var ent1, ent2, ent3, ent4 : Entity;
var key1, key2, key3 : Keystr;
var i, j, k : I;
fun min(n:I,m:I) = if n>m then m else n;

(ent1,i)

(ent1,i)(ent1,key1)

1‘(ent1,key1)++
1‘(ent2,key2)

(ent3,key3)

(ent3,key3)

(ent3,key3,ent4,j)

1‘(ent3,k)++
1‘(ent4,min(j,k-1))

(ent3,k)

(ent1,key1,ent2,key2)

Fig. 4. The coloured Petri net trust model

ance of the token ("W","PW"). The transitions Rule1 and Rule2 are the core of
the model. They will now be described in detail.

Rule1: This transition has three incoming and two outgoing arcs and a
guard. The variables of this transition are: ent1 and ent2 of colour Entity,
key1 and key2 of colour Keystr, i of colour I. Let now data values be assigned
to these variables according to Table 1. This creates a binding (which should not
be confused with the concept of a binding between an entity and a public key).

The pair consisting of a transition and a binding of its variables forms a
binding element. In order for a binding element to be enabled in a certain marking
of the places, it must be possible to bind data values to the variables appearing
on the surrounding arc expressions and in the guard of this transition such that

240 P. Lory

Table 1. A possible binding

ent1 ← "X"
key1 ← "PX"
ent2 ← "Y"
key2 ← "PY”

i ← 1

1) each of the arc expressions evaluate to tokens which are present in the cor-
responding input place,

2) the guard is satisfied.

In the case of the binding element

(Rule1, binding of Table 1) (1)

these requirements are fulfilled (in the case of the initial marking of Figure 4). If a
binding element is enabled, it is ready to occur. An occurrence of the binding ele-
ment (1) removes a token with the values ("X","PX","Y","PY") from the place
Certificates, it removes a token with the values ("X","PX") from the place
Alice and it removes a token with the values ("X",1) from the place TrustPool.
Further, it adds the tokens ("X","PX") and ("Y","PY") to the place Alice and
the token ("X",1) to the place TrustPool. Hence, the occurrence of the binding
element (1) has the effect, that the token ("X","PX","Y","PY") (represent-
ing the corresponding Cert-statement) is removed from the place Certificates
(the pool of certificates) and the token ("Y","PY") (a new Aut-statement) is
added to the place Alice, which acts as the pool of Aut-statements. The to-
kens ("X","PX") and ("X",1) return to their places. This is essential, because
they may be needed in further steps. It is not necessary to return the token
("X","PX","Y","PY"). This token acts as a certificate with the only purpose
to establish the statement Aut(Y,PY) (represented by the token ("Y","PY").
Once this is done successfully, the certificate cannot be of any further value.

The generalization of this example is straightforward and shows that the
transition Rule1 acts as a producer of statements about the authenticity of public
keys. It states that Alice can derive the authenticity of the binding between the
entity Y and the public key Q (denoted by Aut(Y,Q) and represented in the
model by the token ("Y","Q")), if the following three conditions are satisfied:

1. Alice holds a certificate, which says that Q is a public key for entity Y .
The alleged issuer and signer of this certificate is entity X and the signature
passes verification by the public key P . This is denoted by Cert(X,P,Y,Q)
and represented in the model by the token ("X","P","Y","Q").

2. Alice has or can derive the authenticity of the binding between entity X and
public key P . This is denoted by Aut(X,P) and represented in the model by
the token ("X","P").

A Process-Oriented Model for Authentication 241

3. Alice has or can derive trust of level i with i ≥ 1 for entity X. This is
denoted by Trust(X,i) and represented in the model by the token ("X",i).
It is tacitly assumed that trust of level i implies trust of lower levels.

Rule2: This transition has also three incoming and two outgoing arcs and
a guard. The variables of this transition are: ent3 and ent4 of colour Entity,
key3 and key4 of colour Keystr, i and k of colour I. The reasoning for this
transition is similar to that for transition Rule1. So, an example is omitted here.

The transition Rule2 acts as a producer of statements about the trustwor-
thiness of entities. It states that Alice can derive trust in entity Y of level m
(denoted by Trust(Y,m) and represented in the model by the token ("Y",m)),
if the following three conditions are satisfied:

1. Alice holds a recommendation, which says that Y is trustworthy of level j
with j ≥ m. The alleged issuer and signer of this recommendation is entity X
and the signature passes verification by the public key P . This is denoted by
Rec(X,P,Y,j) and represented in the model by the token ("X","P","Y",j).
It is tacitly assumed that a recommendation of level j implies recommenda-
tions of lower levels.

2. Alice has or can derive the authenticity of the binding between entity X and
public key P . This is denoted by Aut(X,P) and represented in the model by
the token ("X","P").

3. Alice has or can derive trust of level k with k − 1 ≥ m for entity X. This is
denoted by Trust(X,k) and represented in the model by the token ("X",k).
It is again tacitly assumed that trust of level k implies trust of lower levels.

Please note, that the tokens that enter the transition Rule2 from the places
Alice and TrustPool return to their place. This is essential, because they may
be needed in further steps.

The fact that it is not necessary to return the token that enters the transition
from the place Recommendations requires some consideration: Please note, that
the purpose of the transition Rule2 is the production of tokens of the colour
Trust on the place TrustPool. These tokens correspond directly to the Trust-
statements that are present in or can be derived from Alice’s view. Let for a
moment an arc from the transition Rule2 to the place Recommendations be
added to the Petri net and let its arc expression be the same as for the arc in
the opposite direction. It is easy to see that the second components of those
tokens of the colour Trust that can be produced in this modified Petri net
cannot surpass the second components of the corresponding tokens that can be
delivered by the original Petri net of Figure 4. Indeed, let a token on the place
Recommendations be denoted by ("X","P","Y",j). If this token is used in a
binding for transition Rule2 together with the tokens ("X","P") (on the place
Alice) and ("X",k) (on the place TrustPool) and the corresponding binding
element is enabled, then the token ("Y",m) with m = min(j,k-1) is added to
the place TrustPool. Let the token ("X","P","Y",j) be returned to the place
Recommendations in the modified net. When this token is used again in one of
the following steps, it can contribute to the production of a token ("Y",n) with

242 P. Lory

n>m only if a token ("X",l) with l>n is on the place TrustPool. However, the
production of this token cannot depend on the presence of the token ("Y",m)
because every occurrence of transition Rule2 in an enabled binding drops the
second component in the token on place TrustPool.

Theorem 1. All occurrence sequences of the coloured Petri net of Figure 4 are
finite.

Proof: Each occurrence of transition Rule1 in an enabled binding reduces the
number of tokens on place Certificates by one. The same is true for transition
Rule2 with respect to the place Recommendations. So, finally the tokens on the
places Certificates and Recommendations are exhausted.

5 Role of the Occurrence Graph

The prime interest in the application of the coloured Petri net of Figure 4 is
to find all the reachable markings of the place Alice, because these markings
correspond directly to those Aut-statements that can be derived from Alice’s
view, if the marking corresponding to this view is chosen as initial marking. This
is closely related to the concept of the occurrence graph. This graph contains a
node for each reachable marking and an arc for each occurring binding element
(see [6], [7], [8]). Because of Theorem 1 the occurrence graph for the coloured
Petri net of Figure 4 is finite. Consequently, the boundedness properties of the
Petri net can be investigated using the occurrence graph.

Particularly useful is the best upper multi-set bound, which is delivered in
the standard report of the Design/CPN occurrence graph tool. A multi-set m
is defined as an upper multi-set bound for the place p iff M(p) ≤ m for all
markings M that are reachable from the initial marking. Here, M(p) denotes
the marking of place p. The best upper multi-set bound is the smallest multi-
set among these bounds. This definition is sound because the occurrence graph
for the coloured Petri net of Figure 4 is finite. Indeed, the best upper multi-set
bound for the place p is given by the multi-set maxM∈V M(p), where V is the
set of nodes (reachable markings) of the occurrence graph (see Proposition 1.13
in [7]). Consequently, the best upper multi-set bound for the place Alice in
the coloured Petri net of Figure 4 contains exactly those tokens that belong to
reachable markings of this place.

Example 3. In the case of Example 1 Design/CPN calculates the best upper
multi-set bound for the place Alice to
1‘("B","PB") ++ 1‘("W","PW") ++ 1‘("X","PX") ++ 1‘("Y","PY") ++
1‘("Z","PZ").
This notation for a multi-set follows the output of Design/CPN and has been
explained in Section 4. Thus, the result proves the statements

Aut(B,PB), Aut(W,PW), Aut(X,PX), Aut(Y,PY), Aut(Z,PZ).

A Process-Oriented Model for Authentication 243

This example illustrates that recommendations and certificates can be issued
independently. For example W has issued a recommendation for Z without cer-
tifying Z’s public key. It is not even necessary that W knows Z’s public key.

Example 4. In the case of Example 2 Design/CPN calculates the best upper
multi-set bound for the place Alice to 1‘("W","PW") ++ 1‘("X","PX"), thus
proving the statements Aut(W,PW) and Aut(X,PX). This shows that the bind-
ings between Y and PY , between Z and PZ and between B and PB can-
not be proven. Indeed, if X is dishonest (and this is consistent with Alice’s
view), X can fake the recommendation Rec(Z,PZ,X,1) by using a public key
PZ which is the public companion to one of X’s private keys. So, X can
recommend himself/herself. Additionally, he/she can generate fake certificates
Cert(X,PX,Z,PZ), Cert(X,PX,Y,PY), Cert(Y,PY,B,PB) and also the recom-
mendation Rec(Z,PZ,Y,1). Consequently, it must be impossible to derive the
statements Aut(Z,PZ), Aut(Y,PY), and Aut(B,PB).

Example 5. In a more complex case (from [21]) let Alice’s view be

Aut(X,PX), Aut(F, PF), Aut(U,PU), Aut(L,PL), Aut(Y, PY 2),
Trust(Y, 3), Trust(U, 6), Trust(L, 36)

Cert(Y, PY,B, PB), Cert(X,PX,Z, PZ), Cert(Z,PZ, Y, PY),
Cert(U,PU,G, PG), Cert(X,PX,H,PH), Cert(G,PG,W,PW),
Cert(W,PW,B, PB), Cert(L,PL,N, PN), Cert(N,PN,B, PB),

Rec(Y, PY,X, 1), Rec(Y, PY, Z, 2), Rec(F, PF,X, 2),
Rec(F, PF,Z, 3), Rec(G,PG,F, 8), Rec(U,PU,G, 13),
Rec(U,PU, F, 1), Rec(X,PX,H, 2), Rec(H,PH,G, 2),

Rec(F, PF,N, 7).

Design/CPN determines in this example the upper multi-set bound for the place
Alice to
1‘("B","PB") ++ 1‘("F","PF") ++ 1‘("G","PG") ++ 1‘("H","PH") ++
1‘("L","PL") ++ 1‘("N","PN") ++ 1‘("U","PU") ++ 1‘("W","PW") ++
1‘("X","PX") ++ 1‘("Y","PY") ++ 1‘("Y","PY2") ++ 1‘("Z","PZ") ,
thus proving the statements

Aut(B,PB), Aut(F, PF), Aut(G,PG), Aut(H,PH),
Aut(L,PL), Aut(N,PN), Aut(U,PU), Aut(W,PW),
Aut(X,PX), Aut(Y, PY), Aut(Y, PY 2), Aut(Z,PZ) .

This example clearly demonstrates the usefulness of computer assistance in de-
termining all the derivable Aut-statements.

In the examples above, the place Alice plays the prominent role, because usu-
ally the main interest is in the valid Aut-statements. These statements directly
correspond to those public keys that are authentic under Alice’s view. If the
interest is in the Trust-statements, the best upper multi-set bound for the place
TrustPool has to be used.

244 P. Lory

6 Conclusions

A coloured Petri net has been presented that models a public-key infrastruc-
ture. Standard software tools for coloured Petri nets (such as Design/CPN) are
directly applicable to this model to determine exactly those bindings between
entities and public keys that can be derived from the initially available infor-
mations on authenticity of public keys, certificates, recommendations and trust
in entities. The use of Petri nets is attractive, because these nets can be under-
stood relatively easily even by unexperienced users. The present Petri net can
be integrated into a more complex Petri net modelling a cryptographic protocol.

Trust models can be divided into two classes: deterministic models and prob-
abilistic models. In the former class the statements can be only valid or not valid,
whereas models of the latter class assign confidence values (for instance between
0 and 1) to statements about authenticity and trust (see [1], [13], [9], [10]). In
this sense the present model is a deterministic model. Its transformation to a
probabilistic model and the incorporation of certificate revocation are topics of
further research.

References

1. Beth, T., Borcherding, M., Klein, B.: Valuation of trust in open systems. In:
D.Gollmann (ed.): Proceedings 1994 Symposium on Research in Computer Secu-
rity (ESORICS’94), Lecture Notes in Computer Science, Vol. 875. Springer, Berlin
(1994) 3–18

2. Design/CPN online. http://www.daimi.au.dk/designCPN/
3. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on

Information Theory 22 (1976) 644–654
4. Henderson, M., Coulter, R., Dawson, E., Okamoto, E.: Modelling trust structures

for public key infrastructures. In: L. Batten and J. Seberry (eds.): Proceedings of
the 7th Australian Conference on Information Security Security and Privacy 2002
(ACISP’2002), Lecture Notes in Computer Science, Vol. 2384. Springer, Berlin
(2002) 56–70

5. Jensen, K.: High-level Petri nets. In: A. Pagnoni, G.Rozenberg (eds.): Applications
and Theory of Petri Nets, Informatik-Fachberichte, Berlin, Vol. 66. Springer, Berlin
(1983) 166–180

6. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume I, Basic Concepts. Springer, Berlin (1997)

7. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume II, Analysis Methods. Springer, Berlin (1997)

8. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume III, Practical Use. Springer, Berlin (1997)

9. Jøsang, A.: An algebra for assessing trust in certification chains. In: J.Kochmar
(ed.): Proceedings of the Network and Distributed Systems Security Symposium
(NDSS’99), Internet Society (1999)

10. Kohlas, R., Maurer, U.: Confidence valuation in a public-key infrastructure based
on uncertain evidence. In: Proceedings of the International Workshop on Prac-
tice and Theory in Public-Key Cryptography 2000 (PKC’2000), Lecture Notes in
Computer Science, Vol. 1751. Springer, Berlin (2000) 93–112

A Process-Oriented Model for Authentication 245

11. Kohlas, R., Maurer, U.: Reasoning about public-key certification: On bindings be-
tween entities and public keys. IEEE Journal on Selected Areas in Communication
18 (2000) 591–600

12. Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s guide to coloured
Petri nets. International Journal on Software Tools for Technology Transfer 2
(1998) 98–132

13. Maurer, U.: Modelling a public-key infrastructure. In: E. Bertino, H.Kurth,
G.Martella, and E.Ṁontolivo (eds.): Proceedings 1996 European Symposium on
Research in Computer Security (ESORICS’96), Lecture Notes in Computer Sci-
ence, Vol. 1146. Springer, Berlin (1996) 325–350

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton, Florida (1997)

15. R. Perlman: An overview of PKI trust models. IEEE Network 13 (1999) 38–43
16. M.K. Reiter and S.G. Stubblebine: Toward acceptable metrics of authentication.

In: Proceedings of the 1997 IEEE Computer Society Symposium on Research in
Security and Privacy (1997) 10–20

17. M.K. Reiter and S.G. Stubblebine: Authentication metric analysis and design.
ACM Trans. Information and Systems Security 2 (1999) 138–158

18. Rivest, R.L., Shamir, A., Adleman, L: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21 (1978) 120–126

19. Stallings, W.: Network Security Essentials - Applications and Standards. Prentice
Hall, Upper Saddle River, New Jersey (2000)

20. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Boca Raton,
Florida (1995)

21. Wölfl, T.: Automatische Schlüssel-Authentifizierung in einem formalen PKI-
Modell. Work done in a student’s project, Institut für Wirtschaftsinformatik, Uni-
versität Regensburg, 2002

22. Yahalom, R., Klein, B., Beth, T.: Trust relationships in secure systems - a dis-
tributed authentication perspective. In: Proceedings of the 1993 IEEE Conference
on Research in Security and Privacy (1993) 150–164.

23. Zimmermann, P.: PGP User’s Guide, Vol. I: Essential Topics. 1994

Pattern Based Workflow Design Using Reference
Nets

Daniel Moldt and Heiko Rölke

University of Hamburg, Computer Science Department
Vogt-Kölln-Str. 30, D-22527 Hamburg

{moldt,roelke}@informatik.uni-hamburg.de

Abstract. The development of workflow applications requires satisfac-
tory concepts and tools. Workflow patterns cover the conceptual part.
To base the patterns on high-level Petri nets allows for the tight inte-
gration of the modelling editor with the actual execution engine. The
development process of workflow applications gains from this.
We propose to use Reference nets as the modelling technique, Renew
as the basic execution engine, and our workflow modelling tool for the
design of workflows. The latter is a plug-in for the Renew editor, which
is based on the use of workflow patterns. The development process is
based on prototyping.

Keywords: IDE, high-level Petri nets, nets within nets, patterns, Ref-
erence nets, Renew, workflow, workflow patterns

1 Introduction

In the workflow area the topic of patterns has gained some attention. At the
workflow pattern page (see [2]) relevant features that have to be covered are
listed. Different workflow languages to model business processes exist, imple-
menting various parts of the patterns. In [9] van der Aalst and ter Hofstede
present YAWL (Yet Another Workflow Language). The main motivation was
that they realized that usual coloured Petri nets are not well suited to model all
of the workflow patterns.

During the last years our group in Hamburg was involved in several projects
which tackled the workflow topics from different sides. First contributions were
based on coloured Petri nets as defined by Jensen ([13]) and the nets within nets
paradigm (see [14]) in [21] and [7].

A workflow engine supporting a concurrent push/pull architecture for arbi-
trarily distributed Java clients was developed on the basis of the Renew tool [24].
This workflow engine was used in several places and projects, e.g. in [20] and
[19]. A substantial progress has been made by incorporating missing features to
extend this tool to a full workflow engine (see [11] and [12]).

The problems mentioned by van der Aalst and ter Hofstede (modelling work-
flow patterns with coloured Petri nets) were not encountered when modelling
workflows with our tool set. Therefore, the question had to be investigated, if
these problems generally are solvable using Reference nets ([17]) as a modelling

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 246–260, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Pattern Based Workflow Design Using Reference Nets 247

language. The triggering event for this investigation was a talk given by Wil van
der Aalst at the CPN Workshop in August, 2002, in Aarhus ([8]).

The goal we had was to show that Reference nets are suitable to model the
workflow patterns in an elegant and easy way. The primary concepts we are
using here are flexible arcs, net instances, and synchronous channels. Some of
the interesting patterns will be shown in this paper. To verify the suitability we
developed a plug-in for the Renew Petri net editor to support the construction
of workflows by simply putting workflow patterns together in a drag-and-drop
manner.

Furthermore the integration into the development process is necessary. There-
fore, we discuss how to apply the tool set, which can be seen as a prototype for
an integrated development environment for workflow based systems.

It is important to notice that this work does not use the possibility of extend-
ing the semantics of Reference nets but only uses given modelling opportunities
and carries them forward to a new application area. This is a fundamental differ-
ence to the proceeding of van der Aalst and ter Hofstede in [9]. They developed
the workflow modelling language YAWL with new constructs and semantics
based on Petri nets and transition systems to reach the same goal.

Structure of the paper. First, section 2 introduces some special features of Ref-
erence nets not present in other Petri net formalisms. In section 3 some of the
criticism of [8] are reproduced and discussed. Alternative modelling approaches
using the Reference net formalism are given. Just knowing these workflow pat-
tern net models is not sufficient for modelling larger workflows. Additional tool
support is needed, which is sketched in section 4. What may be done to fur-
ther promote Renew as a workflow development and execution environment is
discussed in 5.

2 Special Features of Reference Nets

This section shows some features of Reference nets [16,17] that distinguishes
them from other variants of high-level Petri nets. The reader is assumed to be
familiar with the concepts of Petri nets in general [22] and coloured Petri nets
[13].

Reference nets are an implementation of the nets within nets paradigm of
Valk [26,25]. The general idea is that tokens of a so called system net are again
nets, called object nets1. Reference nets allow tokens in different places to refer-
ence the same object net – hence the name. Other variants of nets within nets
are possible [26,15].

Some (special) concepts of Reference nets have proven to be very useful for
the modelling of workflows: net instances together with synchronous channels
and flexible arcs. Because these concepts are not known in many other Petri net
1 The names emphasise the close relationship between nets within nets and concepts

from object oriented programming.

248 D. Moldt and H. Rölke

formalisms (and thus in the corresponding editors) we will now shortly introduce
them together with other differences.

Net Instances. Net instances are similar to objects of an object oriented pro-
gramming language. They are instantiated copies of a template net like objects
are instances of a class. Different instances of the same net can take different
states at the same time and are independent from each other in all respects.

Nets as tokens. Reference nets implement the ”nets within nets” paradigm of
Valk [25]. This paper follows his nomenclature and denominate the surrounding
net system net and the token net object net. Certainly hierarchies of net within
net relationships are permitted, so the denominators depend on the beholders
viewpoint.

Synchronous channels. A synchronous channel [10] permits a fusion of transi-
tions (two at a time) for the duration of one occurrence. In Reference nets (see
[16]) a channel is identified by its name and its arguments. Channels are di-
rected, i.e. exactly one of the two fused transitions indicates the net instance in
which the counterpart of the channel is located. The (counterpart) transition is
not a priori restricted in such a way and can correspondingly be addressed from
any net instance. The flow of information via a synchronous channel can take
place bi-directional and is also possible within one net instance. It is possible
to synchronise more than two transitions at a time by inscribing one transition
with several synchronous channels.

Figure 6 in section 3.3 shows an example of the usage of a synchronous
channel: The examination of a witness (object net) is triggered from the witness
examination (system) net.

Arc types. In addition to the usual arc types Reference nets offer reservation arcs
and test arcs. Reservation arcs carry an arrow tip at both endings and reserve a
token solely for one occurrence of a transition. They are a short hand notation for
two opposite arcs with the same inscription connecting a place and a transition.
Test arcs (no arrow tips) do not draw-off a token from a place allowing a token
to be tested multiple times simultaneously, even by more than one transition
(test on existence). Test arcs are sometimes also known as “read arcs”.

Flexible Arcs. Flexible input arcs and flexible output arcs were introduced by
Reisig in [23]. They allow multiple tokens to be moved by a single arc. Moreover,
the token values and even the number of tokens may vary with the binding of
the transition’s variables. In Renew, these arcs are indicated by attaching two
arrowheads instead of one to the end of the arc.

Figure 1 shows a simple example of a net using (both kinds of) flexible arcs.
The leftmost net is the initial state. Transition t1 is activated and will bind a
new vector2 to the variable v.
2 A vector is a Java container data-type, carrying any number of any object inside.

The syntax of the example is not correct (no such constructor) to make the example
more readable.

Pattern Based Workflow Design Using Reference Nets 249

v = new Vector("a","b","c")

v

v v

v

v = new Vector("a","b","c")

v

v v

v

v = new Vector("a","b","c")

v

v v

v
["a","b","c"] "a"

"b"
"c"

t1

t2

p1 p2 p1 p2

t1

t2

t1

t2

p2p1

firing of t1 firing of t2

Fig. 1. Flexible arc example net

The centre net shows the state after firing t1: The (normal) arc from t1 to
p1 has put the vector v to the place p1 as one object. The flexible arc from t1
to p2 has unpacked the vector and put all contained objects as single tokens to
the place – p2 is now marked with three single tokens.

The firing of transition t2 clears both places: t2 is only activated if all objects
in the vector v are tokens of place p2. If this matches, all these tokens are
removed.

Note that flexible arcs are a part of the concurrent simulator of Renew,
i.e. they do not destroy the Reference nets’ concurrency semantics. Further in-
formation can be found in the original work of Olaf Kummer [17]. Flexible arcs
support different container data types: arrays (original implementation), lists,
collections (a huge group of Java built-in data types) and some more.

Reference Net Workshop

The Reference Net Workshop (in short: Renew) [18,24] is an integrated devel-
opment and simulation environment for Reference nets. It fully supports the
nets within nets idea: The modelling process creates templates of nets. In the
simulation it is possible to generate an arbitrary number of copies of the net
templates (each with its own local behaviour), called net instances. This is done
in the usual way as tokens are generated in other Petri net formalisms. Renew
is written entirely in the programming language Java and uses Java for the in-
scriptions of the Reference nets. It is therefore possible to integrate any Java
object as a token in a Reference net, to call Java object methods from within a
net, and to call a net (via a synchronous channel) from within a Java object.

Renew’s programming sources are available free of charge (see the web page
[24]) and are quite well documented. It is therefore possible to integrate exten-
sions both to the simulation engine (net formalism extensions) as well as to the
development environment (new modelling features). A new version of Renew –
at the time of writing of this paper not yet released – simplifies the creation of

250 D. Moldt and H. Rölke

plug-ins for Renew. This new feature makes it especially easy to add or restrict
modelling possibilities to the Renew editor. This allows for the development of
editors for special Petri net constructs like workflows (see section 4).

3 Reference Net Workflow Patterns

In this section the arguments of van der Aalst and ter Hofstede of the publication
”On the expressive power of Petri net based workflow languages” [8] are repeated
and discussed.3

Three main problems of Petri net workflow models are identified:

1. No specific support for multiple instances.
2. Or-splits and or-joins are difficult to handle.
3. Non-local effects (e.g. cancellation) are not part of the Petri net formalism.

As we will see throughout this section, all three points of criticism can be
solved or at least alleviated by specific constructs of Reference nets. This will be
shown on selected examples.

3.1 Workflow Patterns

In the paper mentioned above, van der Aalst and ter Hofstede argue that many
workflow patterns can easily – almost trivially – be expressed in Petri nets.
Examples for this kind are sequences, and-splits, and and-joins. Other patterns
have no intuitive representation when using traditional coloured Petri nets: They
require extra net constructs that draw off the attention from the essentials that
the pattern should express. The workflow patterns that are dealt with in the
paper are:

I. Basic Control Flow Patterns
1) Sequence
2) Parallel Split (and)
3) Synchronisation (parallel, and)
4) Exclusive Choice (xor)
5) Simple Merge (exclusive, xor)

II. Advanced Branching and Synchronisation Patterns
6) Multi-choice (or)
7) Synchronising Merge (or)
8) Multi-merge
9) Discriminator

III. Structural Patterns
10) Arbitrary Cycles (loop)
11) Implicit Termination

IV. Patterns involving Multiple Instances
12) Multiple Instances Without Synchronisation (fork)
13) Multiple Instance With a Priori Design Time Knowledge

3 The argumentation of [8] is taken up in other papers, e.g. in the YAWL report [9].

Pattern Based Workflow Design Using Reference Nets 251

14) Multiple Instance With a Priori Runtime Knowledge
15) Multiple Instance Without a Priori Runtime Knowledge

V. State-based Patterns
16) Deferred Choice (implicit choice)
17) Interleaved Parallel Routing
18) Milestone

VI. Cancellation Patterns
19) Cancel Activity
20) Cancel Case (Instance)

All patterns in italic letters are seen as problematic to model using coloured
Petri nets. We will exemplarily show the modelling problems as given by van der
Aalst and ter Hofstede and then introduce our solution. As one can see from the
enumeration above, the basic control flow patterns pose no problems, so we can
start with the advanced control patterns.

3.2 Advanced Branching and Synchronisation

Petri nets do not offer the construction of a ”maybe” split or join. It has to be
explicitly stated if exactly one out of n possibilities should be selected or synchro-
nised (modelled by a place) or all possibilities should be carried out (in parallel;
split and join via transitions). There is no such elementary construct that can
decide at runtime which input and output arcs are valid: ”maybe there is/should
be a token or maybe not”. However, in workflows sometimes the construct of
Fig. 2 is desirable.

OR OR

t2

t3

t1 t4
p1 p2

Fig. 2. Or-Split and Join (no Petri net semantics)

Fig. 2 has the following intended meaning: In t1 the decision is made whether
t2, t3 or both should be carried out. This decision is made at runtime, i.e. all
cases are possible. Because this has no mapping to ordinary Petri nets, the figure
cannot express the exact meaning. The next problem is the join after t2 and t3.
Petri nets do not allow a simple model of the desired behaviour, which is that
following transitions (tasks) should only be activated once, no matter if only one
or both of t2 and t3 have fired.

There are some possibilities to model ”around” these problems. Two different
models are sketched in [8]: passing information from split to join or sending

252 D. Moldt and H. Rölke

t3

t2s

t3s

t2e

t3e

!t3

!t2

t2

t1 t23et23s t4

Fig. 3. First proposal: or-split and or-join (v. d. Aalst et al.)

false

true

t2

t3

true

false

true

true
false

true

false

t2s

t23s

t3s

true
t1 t4

Fig. 4. Second proposal: or-split and or-join (v. d. Aalst et al.)

true/false tokens to each possible selection (t2 and t3 in the example) each task
may only be carried out on a ”true”.

Figure 3 and 4 show models of these two proposals.4 It is easy to see that
the ratio of model elements from the idealised case (Fig. 2) and the additional
net elements to model the selection and synchronisation management is quite
unsatisfactory.

To our opinion this modelling overhead is the biggest problem with the pat-
terns above.5. The modelling overhead has to be spent to enumerate all possible
selections. This effort grows exponentially with the number of actions that may
be executed – in the examples only two possibilities are given to keep the models
simple, but in real-world workflows there is no reason to limit the tasks by this
number. (Of course any number of possible actions can be selected by a tree of

4 From now on, all net figures are valid Reference nets.
5 Another inconvenience is the information passed from the split construct to the join

node. This information passing should be automatically handled by the workflow
modelling tool.

Pattern Based Workflow Design Using Reference Nets 253

several (at least log n) or-splits and -joins with two possibilities each, but such
constructs are really confusing and even harder to operate).

This is the situation when the flexible arc comes into play. The flexible arc
allows to put an arbitrary number of tokens (even zero, if desired) onto a place
where the number of tokens has to be known in advance – but may change from
firing to firing at run-time. This is exactly what we need to allow for an elegant
model of the or-split and join.

t2

"t2"

"t3"

taskstaskst1

"t2"

"t3"

t4p1

p2

p3

taskstasks

ask for selection

t3

Fig. 5. Or-split and or-join using flexible arcs

In Figure 5 a possible model is shown. The selection transition t1 prompts
the user for information about which tasks should be carried out (this is not
shown in the model, it may for example be done using a graphical user interface
window) and combines the selection in a data type container (e.g. an array). The
selection has to be known at the join node, so it is passed over to place p2. The
flexible arc from t1 to p1 unpacks the array and puts the appropriate number of
tokens (zero to two) to the place. The tasks are identified by their names, only
those tasks that have been selected may be carried out. After completion of the
tasks tokens are put on place t3. If the tokens on this place match the content
of the container object on place t2, transition t4 is activated and may conclude
the split-join construct. Note that no tokens are left on any of the places.

The enlargement of this pattern to more than two alternatives is absolutely
straight-forward, only transitions for the alternatives (like t2 or t3) have to be
added and the selection process has to be adapted.

3.3 Patterns Involving Multiple Instances

When it comes to multiple instances, Reference nets naturally have a home
game. As stated in the introduction, instances of net schemas are one of their
basic modelling constructs. It is therefore not surprising that the modeller does
not have to deal with hand coded reference counting or other hassles.

Figure 6 shows a possibility to model a simple witness examining example.
For each case zero or more witnesses may register. While the case is open, addi-
tional witnesses may appear and also have to be examined. The case may only
be closed if all registered witnesses have been examined.

254 D. Moldt and H. Rölke

wn wnwn

wnswn:examine()

register

examine

close casenew java.util.Vector()

wn:new witness
action wns.add(on)

wns wns

p1

p2

p3

p4

[]
:examine()

Witness (object net)

Fig. 6. Example for multiple Instances: witness examination

This is done as follows: For each new case the main net of Fig. 6 is instantiated
once. Witnesses are handled as object nets (lower right corner of the figure) of
such an object net for a single case – at least a three step hierarchy is built.

Transition register instantiates a new object net of type witness describing the
examination of a witness. This object net is bound to variable wn and put on
place p1. The reference to the object net is also added to the vector of witnesses
on place p2. Transition examine synchronises with the witness object nets while
they are examined and moves them to place p3. Only if all witnesses have been
examined the case may close (transition close case). This is again ensured by a
flexible arc comparing the vector of all witnesses (place p2) with the witnesses
already processed (place p3). No new witness can register after this event.

3.4 Cancellation Patterns

Cancellation is a general problem in concurrent systems, not only in the workflow
area. Using Reference nets as a modelling language, two approaches are possible:
bookkeeping of tokens in extra places (1:1) or use of encapsulated object net
tokens with restricted interfaces.

In [8] only bookkeeping is considered. The general statement of the paper is
that removing tokens like a vacuum cleaner is too complex due to the exponen-
tially growing number of possible states. However, keeping track of tokens is not
that complicated using the flexible arc concept of Reference nets. For each place
that has to be considered, an additional place is needed containing the mark-
ing information. A cancel activity can now remove the tokens from the original
places together with the extra tokens using the flexible arc concept. The effort
for doing so is only linear to the number of places.

The cancellation of whole (sub-)tasks is even easier following a strict encap-
sulation approach: A task is modelled as an object net and put into a special
hosting place for such subtasks. The hosting place offers synchronous channels
to the task object net enabling it to interact with the outside world. The subtask
may not have other communication possibilities than these channels. If the tasks

Pattern Based Workflow Design Using Reference Nets 255

should be deactivated, it only has to be moved to another place not offering any
channels, for cancellation (deletion) the token has to be removed. The object net
can possibly carry on firing internally but for any (external) user of the workflow
system it disappeared. It is possible to fold all needed communication channels
to one general channel.

Figure 7 illustrates a combination of both ideas (bookkeeping and encap-
sulated net tokens). The net structure is quite similar to the example of the
preceding subsection (Fig. 6).

new java.util.Vector()

ons ons

process

on

ons

on:new objectnet
action ons.add(on)

CANCEL

on on:process()

start p1

pc

action ons.remove(on)

p2

on

stop

ons

Fig. 7. Cancellation using bookkeeping and instances

New object nets are instantiated by transition start and put on place p2.
The vector on place p1 is used for keeping track of the active object nets that
may be workflow (sub-)tasks of any type. These object nets can be stopped by
transition stop, doing so removes them from the vector. While the object nets are
on place p2, internal processing may take place. The communication channels
mentioned above are illustrated by the channel on:process at transition process.
In the object nets (on) not shown in the figure transitions have to be inscribed
with the same channel. The transition CANCEL removes all tokens of p1 and
p2. No further activity is possible.

4 Renew as a Workflow IDE

Integrated development environments (IDEs) can be characterised as tools that
provide a well adjusted set of features to allow to produce code. We propose,
on top of the conceptual framework, a tight integration of the build-time and
run-time part of workflow systems. The components are tools for modelling and
designing workflows and the deployment and enactment tools. In this section we
will explain how these are combined and what the related development processes
are.

The process design and definition6 is usually separated from the process
instantiation and control. We want to integrate them. In [12] a stable version
6 In this text we will follow the terminology published in [3] from the Workflow Man-

agement Coalition (Wfmc) (see [1]).

256 D. Moldt and H. Rölke

of a workflow engine has been introduced for Reference nets. It contains all
necessary features for the workflow enactment service. Due to a tight coupling
to Java any Java accessible application can be connected.

The proposal here is to extend this environment by the workflow patterns
described above and our workflow modelling tool. This allows users to work on
a more abstract level. To explain our approach we present a short scenario.

Basic WFMS Technology. Assume e.g. a shop that is based on a workflow
system (WFS). Each relevant business event is handled by the WFS. For this
system the Workflow Management System (WFMS) presented in [12] is used.
Therefore, we have a push/pull architecture. Tasks can be assigned to roles or
users. Users can ask for a task which can be selected from a pool of tasks, which
again is only visible for authorised persons, supervised by a powerful access con-
trol. The whole system can be distributed in that sense, that there is a server
which allows for high persistence of the running workflows.7 Whenever e.g. a
power failure occurs the system will restart at the same execution step. Every
committed action is made persistent as long as this is supported by the under-
lying database (see [11]). The smallest recordable action is the firing of single
transitions, so fully persistent Petri net workflows are possible. The performance
will be reduced dependent on the underlying hardware. No persistence allows for
faster execution, however, the recovery performance is bad.8 Communication is
based on encryption as strong as necessary. Therefore, the organisational aspects
seem more interesting in this respect. This topic will be picked up again later.

New tool setting. Conventional Workflow tool settings are assuming that there
is only a (fixed) run-time version of the WFS. Our new setting provides for the
augmentation of new workflows to the system at any time. This is done with the
same tools that are used for the enactment. New workflows are modelled using
the patterns introduced above. The specific annotations for the application are
essential information that have to be added to reach the desired functionality.
Such annotations are usually net inscriptions, in our case Java statements. More
advanced Java packages can easily be used within Renew. Therefore, any graphi-
7 According to [3] there can be several servers (=workflow engines) which are con-

nected via a network and can be considered as one logical unit: “Standards to sup-
port this transfer of workflow control enable the development of composite workflow
applications using several different workflow products operating together as a single
logical entity.” ([3] p.9) In [7] an enactment concept of inter-organisational workflows
based on Reference nets has been introduced.

8 Our experience so far is that the performance is reduced by a factor of 10-100
depending on the system configuration. Parameters are:

– Communication speed in the distributed system for database, server and clients.
– Visual output on the server for the workflows.
– The speed of the database.
– The overall architecture of the whole distributed workflow system.

Pattern Based Workflow Design Using Reference Nets 257

cal interface, database, or other functionality that is wrapped by or implemented
in Java code may directly be included. This allows for a fast modelling.

Integration of the new workflows is made by the provision of Reference net
templates. These can be instantiated at run-time. The WFS only needs to know
that there is a new kind of workflow. Workflow names are put in the database
and therefore are instantly available if the according files have been deployed in
the system.9

Besides the deployment and enactment of new workflows often the modifi-
cation of workflows is necessary. Two cases have to be considered: a) Only new
workflows have to be modified. b) Already running workflows have to be mod-
ified. The first case is easy: The according Reference net template is modified
and added to the database of existing workflows. Any new instance of the net
template (=workflow) is then of the new kind.

The second case needs some further discussion: Since the structure of already
existing net instances can not be manipulated in Renew a different concept
is needed. Especially in distributed workflow systems the workflow definition
can be split into several parts: A general frame which contains the specific sub
workflows. The smallest units of such sub workflows are the single actions within
the system. The proposal is to modify the sub workflows. This can be done if
only those sub workflows are instantiated that reflect the actual state of the
system. Within the Renew environment this is the natural view.

The last solution also indicates the flexibility that can be reached when de-
signing workflows. A drawback is that at least one additional level of indirection
is introduced.

Our integrated development environment (IDE) for workflows allows for a
fast prototyping oriented approach. The concept of sub workflows is essential
for this. Workflow patterns allow for a structured view. The concept of sub
workflows supports abstraction. Since Renew allows arbitrary levels of nesting
of Reference nets any finite number of abstraction levels can be reached for the
workflows.

The nesting also supports the separation of the workflows into separated
parts. An extreme version would be to consider each atomic action as a workflow.
The other end would be to consider each workflow as one part. However, this
would lead to the above mentioned problem to modify the workflow at run-time.
Therefore, the level of abstraction is determined by the need of the modifications
of parts of the workflow.

Development Process
When tackling the problem of designing workflows for a business event two ap-
proaches are common: bottom-up and top-down. Assume that several workflows
already exist. These workflows consist of a certain number of sub workflows. Due
to the splitting of workflows some sub workflows may have been already used in
several workflows. Starting from these already existing workflows new workflows
can be composed (bottom-up). Following the top-down approach new workflows
9 This again shows the necessary access control within a well designed organisational

setting. Otherwise arbitrary tasks can be performed in the system.

258 D. Moldt and H. Rölke

can be constructed by refining existing ones and adding new sub workflows ac-
cordingly.

Both ways of workflow design can be used as it is appropriate in a given
situation. The addition could be done in an arbitrary way, however, we propose
to have specific operations which are coupled to the patterns. Analysis of such
restricted models is easier than dealing with arbitrary models. The problem of
the (Java) inscriptions makes the analysis difficult anyway. However, when just
looking at some building blocks which are checked for their correctness and later
on analysing only the net structure based on results and tools (see [6], [4] or [5]),
this is of real advantage for the designers (and the users).

5 Discussion and Outlook

Our first goal was to show that Reference nets are suitable to model workflow
patterns in an elegant and easy way. The patterns not modelled in this paper have
also been investigated which is reflected by the fact that they can be found in
our workflow modelling plug-in for Renew. Due to the availability of a workflow
engine and the tight coupling of that with the modelling tool an integrated
development and enactment environment for workflows is easy to implement.

The three main problems mentioned by van der Aalst and ter Hofstede may
all be solved with the usual Reference nets as defined in [17]. This was possible
due to the concepts of net instances, references to nets, synchronous channels,
and flexible arcs. For example we only have a linear complexity when handling
the cancellation pattern. It is important to notice that we did not extend the
reference formalism for the modelling concepts.

However, we had to put quite some effort (about two person years) into
the development of the workflow tool set all together, that is now supplemented
with the pattern oriented editor plug-in. The persistence and the workflow engine
were the main burden. The development of the pattern modelling plug-in was
relatively easy due to the development of another tool which introduced the
concept of plug-ins for Renew.

Interesting may be that we can control any kind of Java application.10

Only rudimentary work has been done on the connection to analysis tools.
Two simple interfaces for Woflan and the Maria tool are part of Renew. However,
no deep investigations have been made on the integration into the development
process.

For the final practical implementation within the tool set some control is nec-
essary to allow only privileged users to modify or add new (kinds of) workflows.
Otherwise there is the risk of misuse when actually deploying an application.

Another interesting feature is the possibility of inter-organisational workflow
handling as described in [7]. Everything is prepared, however, no practical ex-
perience has been made up to now. Here we expect to face new problems with
respect to security, performance, and may be new problems on the conceptual
side. Mobile workflows which are an obvious concept in this setting will of course
introduce the usual problems of mobile code.
10 If the Java native interface is implemented it can even be any accessible application.

Pattern Based Workflow Design Using Reference Nets 259

Last but not least new kinds of workflow patterns will appear in any case,
since the development in this sector has not reached its end so far.

References

1. Workflow management coalition homepage. URL: http://www.wfmc.org/, 2003.
2. Workflow pattern homepage.

URL: http://tmitwww.tm.tue.nl/research/patterns/, 2003.
3. Workflow reference model.

URL: http://www.wfmc.org/standards/docs/tc003v11.pdf, 2003.
4. Wil M.P. van der Aalst. Verification of workflow nets. Number 1248 of Lecture

Notes in Computer Science, pages 407–426, Springer Verlag, Berlin, 1997.
5. Wil M.P. van der Aalst. WOFLAN: A Petri-net-based workflow analyser. In

International Conference on Application and Theory of Petri Nets in Lisbon 1998,
number 1420 in Lecture Notes in Computer Science, Springer Verlag, Berlin, 1998.

6. Wil M.P. van der Aalst, Jörg Desel, and Andreas Oberweis (Eds.). Business Process
Management: Models, Techniques, and Empirical Studies. Number 1806 in Lecture
Notes in Computer Science. Springer Verlag, Berlin, 2000.

7. Wil M.P. van der Aalst, Daniel Moldt, Rüdiger Valk, and Frank Wienberg. En-
acting Interorganizational Workflows Using Nets in Nets. In J. Becker, M. zur
Mühlen, and M. Rosemann (Eds.), Proceedings of the 1999 Workflow Management
Conference Workflow-based Applications, Working Paper Series of the Department
of Information Systems, pages 117–136, University of Münster, Department of In-
formation Systems, Münster, 1999. Working Paper No. 70.

8. Wil M.P. van der Aalst and Arthur H.M. ter Hofstede. Workflow Patterns: On the
Expressive Power of (Petri-net-based) Workflow Languages. In Kurt Jensen (Ed.),
Proceedings of the Fourth Workshop on the Practical Use of Coloured Petri Nets
and CPN Tools (CPN 2002), volume 560 of DAIMI, pages 1–20, Aarhus, Denmark,
August 2002. University of Aarhus.

9. Wil M.P. van der Aalst and Arthur H.M. ter Hofstede. YAWL: Yet Another Work-
flow Language. QUT Technical report, FIT-TR-2002-06, Queensland University of
Technology, Brisbane, 2002.

10. Søren Christensen and Niels Damgaard Hansen. Coloured Petri nets extended with
channels for synchronous communication. In Robert Valette (Ed.), Application and
Theory of Petri Nets 1994, Proc. of 15th Intern. Conf. Zaragoza, Spain, June 1994,
LNCS, pages 159–178, Springer Verlag, Berlin, June 1994.

11. Thomas Jacob, Olaf Kummer, and Daniel Moldt. Persistent Petri Net Execution.
Petri Net Newsletter, 61:18–26, October 2001.

12. Thomas Jacob, Olaf Kummer, Daniel Moldt, and Ulrich Ultes-Nitsche. Imple-
mentation of Workflow Systems using Reference Nets – Security and Operability
Aspects. pages 139–154, Ny Munkegade, Building 540, DK-8000 Aarhus C, Den-
mark, 2002. Computer Science Department, University of Aarhus. see also:
http://www.daimi.au.dk/CPnets/workshop02/cpn/papers/.

13. Kurt Jensen. Coloured Petri Nets: Volume 1; Basic Concepts, Analysis Methods
and Practical Use. EATCS Monographs on Theoretical Computer Science. Sprin-
ger Verlag, Berlin, 1992.

14. Eike Jessen and Rüdiger Valk. Rechensysteme; Grundlagen der Modellbildung.
Springer Verlag, Berlin, 1987.

260 D. Moldt and H. Rölke

15. Michael Köhler and Heiko Rölke. Mobile object net systems: Concurrency and
mobility. In H.-D. Burkhard, L. Czaja, G. Lindemann, A. Skowron, and P. Starke
(Eds.), Proceedings of the International Workshop on Concurrency, Specification,
and Programming (CS&P 2002), 2002.

16. Olaf Kummer. Simulating synchronous channels and net instances. In J. Desel,
P. Kemper, E. Kindler, and A. Oberweis (Eds.), Forschungsbericht Nr. 694: 5.
Workshop Algorithmen und Werkzeuge für Petrinetze, pages 73–78. University of
Dortmund, Computer Science Department, 1998.

17. Olaf Kummer. Referenznetze. Dissertation, University of Hamburg, Computer
Science Department, Vogt-Kölln Str. 30, 22527 Hamburg, Germany, 2002.

18. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew - User Guide.
University of Hamburg, Computer Science Department, Vogt-Kölln Str. 30, 22527
Hamburg, Germany, 1.6 edition, 2002.

19. Stefan Müller-Wilken. Mobile Geräte in verteilten Anwendungsumgebungen: Ein
Integrationsansatz zwischen Abstraktion und Migration. Dissertation, University
of Hamburg, Computer Science Department, Vogt-Kölln Str. 30, 22527 Hamburg,
Germany, 2002.

20. Stefan Müller-Wilken, Frank Wienberg, and Wilfried Lamersdorf. On integrat-
ing mobile devices into a workflow management scenario. In A. Al-Zobaidie,
A. M. Tjoa, and R. R. Wagner (Eds.), Proc. 11th International Workshop on
Database and Expert Systems Applications (DEXA 2000), pages 186–192, Ham-
burg, October 2000. IEEE Computer Society.

21. Daniel Moldt. Using workflows to structure systems based on object-oriented
coloured Petri nets. In J. Desel, A. Oberweis, W. Reisig, and G. Rozenberg (Eds.),
Petri Nets and Business Process Management, number 217 in Dagstuhl Seminar-
Report, Saarbrücken, 1998.

22. Wolfgang Reisig. Petri Nets: An Introduction. Springer Verlag, Berlin, 1985.
23. Wolfgang Reisig. Petri nets and algebraic specifications. Theoretical Computer

Science, 80(1–2):1–34, 1991.
24. Renew homepage. URL: http://www.renew.de, University of Hamburg, Depart-

ment for Computer Science, Vogt-Kölln Str. 30, 22527 Hamburg, Germany, 2003.
25. Rüdiger Valk. Concurrency in communicating object Petri nets. In G. Agha,

F. De Cindio, and G. Rozenberg (Eds.), Concurrent Object-Oriented Programming
and Petri Nets, number 2001 of Lecture Notes in Computer Science, Springer Ver-
lag, Berlin, 2001.

26. Rüdiger Valk. Petri Nets as Token Objects: An Introduction to Elementary Object
Nets. In Jörg Desel (Ed.), 19th International Conference on Application and Theory
of Petri nets, number 1420 of Lecture Notes in Computer Science, Springer Verlag,
Berlin, 1998.

A Model for Process Service Interaction

Karim Bäına1, Samir Tata2, and Khalid Benali1

1 LORIA-INRIA-CNRS (UMR 7503)
Campus Scientifique B.P. 239 54506 Vanœuvre-lès-Nancy - FRANCE

{baina,benali}@loria.fr
2 Institut National des Télécommunications

9, rue Charles Fourier 91011 Evry Cedex - FRANCE
Samir.Tata@int-evry.fr

Abstract. The design and the achievement of any consequent project
imply the involvement of several people, teams and even enterprises.
These enterprises interact and exchange data, more and more often,
through Internet and the “Web”. However, exchanging data is not
enough for working together, it is also necessary to control and man-
age these exchanges occurring within business processes. Cooperation
between enterprises means interconnecting and coordinating their busi-
ness processes. If a wide spectrum of tools for work coordination ex-
ists, they have been unfortunately developed to only suit the internal
needs of enterprises. Thus, existing work coordination systems are not
adapted to inter-enterprise cooperation. This paper presents a promising
approach for interconnecting processes based on service interaction. Its
aim is to formally present a model for enterprise process interconnec-
tion and coordination through service interaction based on information
sharing between process services, and process services coordination.

1 Introduction

Due to business process automation development, process interconnection and
coordination has become an important matter. If a large number of business
process management systems exist (e.g. workflows, shared agendas, project man-
agers, to do lists), they have been mainly developed to suit internal needs of
enterprises.

In workflow management systems (WFMS), existing interconnection and/or
coordination solutions are mostly static and depend on specific business pro-
cess definition languages and WFMS platforms and with regards to private
data exchange formats, etc. To improve generic process interconnection support
within existing WFMS, related interconnection models deal with awareness and
dataflow formalization between inter-leaving processes (e.g. shared dataspace
models [17], message passing mechanisms [3], event subscription and notification
paradigms [11], remote object invocation [24,16], transfer protocol extension [4]),
or with inter-leaving process control (e.g. transactional protocols [18,8,2]).

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 261–275, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

262 K. Bäına, S. Tata, and K. Benali

Another way to connect and coordinate enterprise processes is based on the
web. For instance, several architectures based on electronic service exchange
between applications exist (e.g. IONA Orbix E2A [13], Sun ONE [19], Mi-
crosoft .NET [15]). However, current specification of Service Oriented Archi-
tectures (SOA), based on service definition language (WSDL), service discovery
registries [22,12] and service invocation protocol (SOAP)[23], are still in the
beginning of their progress. Actually, web services frameworks are not enough
mature to support enterprise process interconnection. For instance, SOA lacks a
lot of rich mechanisms like service matching, service negotiation and contracting,
service sessions, service transactions, service licensing, service security, service
communication and coordination, etc.

In our opinion, the more promising and the more generic approach for in-
terconnecting processes should be service oriented. In other words, to develop
a model for enterprise process interconnection we can use process service in-
teraction. The service concept has been defined in many research fields: object
oriented research [16], process modeling research [10,6], distributed system re-
search, etc. In the field of workflow, a process service may be seen as a software
entity which is able to present process particularities and outcomes without
totally revealing its structure (i.e. its implantation in a WFMS or project man-
agement tool). A process service offers functional abstraction of a process (or
a sub-process) supplied by an enterprise or an enterprise accepts to fulfill with
a predefined quality of service. A process service specifies the work load that
an enterprise accept to fulfill with a predefined quality of service. Process ser-
vice concept has been studied from several points of view : abstract semantics
of process service execution, sub-process service selection, activity coordination
of dynamic process service, process service control flow abstraction, process ser-
vice methods and events wrapping [5], and process service composition [9]. For
us, a process service is seen as a pattern supporting cooperation and dynamic
interconnection between enterprise processes.

Since we beleve that a service oriented approache is a promising approach
and since the SOA approach lak a lot of rich mechanisms, we are developing a
general service oriented approach with the following models :

– a negotiation model for computer supported cooperative work we have de-
veloped in [14] and we have applied to process services to improve SOA
facilities and dynamics [1],

– a model for dynamic selection and interconnection of process service con-
tracts we have developed in [1], and

– a model for process service interaction we present in this paper.

While our previous works dealed with atomic process servicesa [1], this work
focuses on composition, cooperation and interaction of process services for en-
terprises process interconnection. Trying to go further limits of SOA, we present
a generic process service interaction model for interconnection of enterprise pro-
cesses. We will start, in section 2, by defining our process service approach which
is at the heart of our process service interaction model. Then we will present
the two dimensions on which our process service interaction model is based on :

A Model for Process Service Interaction 263

information sharing between process services in section 3, and process services
coordination in section 4. Section 5 will sum up our interaction model. And
finally, section 6 will give some concluding remarks.

2 Process Interconnection through Process Service
Interaction

Existing process management systems often consider process instance as a black
box (process method calls, execution events, and intermediate data are not visi-
ble from outside). This approach does not suit process cooperation needs. One of
the aim of our process service interaction model is to allow processes to cooperate
through partial visibility of their resources (e.g. data sharing, group awareness)
by permitting access to a set of their own methods and events [1].

Service exchange is a high level cooperation paradigm. It’s based upon ex-
isting cooperation paradigms : production (dataspace sharing), communication
(common message format, remote method invocation, notification messages,
group awareness), and coordination (synchronization, coherence criteria check-
ing). Therefore, service exchange offers a better expressiveness and comprehen-
siveness for cooperation situations. Our aim is to develop a service structure
pattern supporting cross organizational processes cooperation.

A process service can represent either the description of a task that an en-
terprise may wish to out-source (e.g. because of time lack, cost reducing, or skill
needs) or a specific task that an enterprise is known to be skilled to accomplish.
This task may be managed by an automatic, a semi-automatic, or a manual pro-
cess. It may be performable by a unique “provider” (atomic process service), or
may need cooperation of several providers (composite process service) (e.g. be-
cause it needs several skills not necessary within the scope of a single provider).
We distinguish thus between two types of process services : atomic process ser-
vice and composite process service. The atomic process service represents the
interface of a process, which its structure is hidden. The composite process ser-
vice is constituted by a set of process services which may be themselves atomic
or composite. A requester can compose the needed process services by using
process services supplied by several providers. To do that, the requester needs a
set tools to describe and manage interactions of the different provided process
services. The interaction model we propose in this paper takes place in this con-
text. It focus on process service coordination by data sharing and control flow
management. We define our process service interaction model as 5 sets :

– a set of access contracts on shared data,
– a set of visible method execution contracts,
– a set of visible event reception contracts,
– a set of coordination contracts based on shared data states,
– a set of coordination contracts based on process service states.

To illustrate our approach, figure 1 shows an example of process service inter-
connection within an e-learning context. LetKManager (an e-learning enterprise)

264 K. Bäına, S. Tata, and K. Benali

be a service requester enterprise. Let WAgency (a web agency enterprise), Cool-
Host (a site hosting enterprise), and e-Store (an e-learning content collection
enterprise) be three (among others) service provider enterprises. These enter-
prises cooperate by providing (and requesting) process services to be achieved
within their cooperation. Process services represent either their skills ans re-
quirements within their cooperation partnership. The enterprise KManager is
the main actor of this cooperation and its aim is to produce e-learning sessions.
To do so, it uses process services provided by its partners. Figure 1 shows how
our model can be applied to interconnect business processes by outsourcing and
composing process services.

Fig. 1. An interconnection example of an e-learning enterprise process services

A Model for Process Service Interaction 265

Within this example, we consider the following set of process services PS,
set of data D, set of access rights AR, set of methods M , and set of events E:

– PS = PSprv ∪ PSreq: the union of provided and requested process services
where

• PSprv = {ps11 (portal development process service), ps22 (portal hosting
process service), ps32 (content collection process service)},

• PSreq = {ps1 := (ps11, ps22) (composite service), ps4 := ps32 (atomic
process service)};

– D = {d1: portal development judicial contract, d2: portal hosting judicial
contract, d3: graphical charter of the portal development, d4: portal proto-
type. . . };

– AR = {read, write};
– M = Mps11 ∪Mps22 ∪Mps32 where

• Mps11 = {getPortalDevelopmentAllocatedHumanResources(),. . . },
• Mps22 = {getPortalHostingStatus(),. . . },
• Mps32 = {getProcessInstanceAchievedModuleDuration(),. . . }

– E = Eps11 ∪Eps22 ∪ Eps32 where
• Eps11 = {ASK FOR MORE SPECIFICATION,. . . },
• Eps22 = {BEGIN PORTAL HOSTING. . . },
• Eps32 = {END MODULE COLLECTION. . . }.

According to the approach we have presented above, we aim to interconnect
processes through process service interaction. We describe interaction through
two dimensions: data sharing and process service coordination. We present, in
the following, these features that we will integrate into our model for process
service interaction.

3 Process Service Information Sharing

The behavior of process service interactions depends on the nature of operations
they perform on the shared information. Process services can share common
data and/or access to private data using methods published by their process
service owners. These accesses have to be controlled so that every process service
provider plays its real role in the composition. For this reason, we define access
contracts for both shared and private data.

We define an access contract as the association of a service, an access right,
and an object. We denote an access contract by Access.
Access(ps, o, ar) def= the process service ps has the access right ar on the object
o modelling some. We express access contracts for shared data in the example
presented in section 2 as:

– Access(ps1, d1, write) (the composite service for portal hosting and develop-
ment can write the portal development contract),

– Access(ps22, d3, read) (the provided service for portal hosting can read
graphical charter of the portal development).

266 K. Bäına, S. Tata, and K. Benali

In a composite process service, each process service provides a set of access
points to its resources for other cooperating process services. These points in-
clude methods remote process services can execute in order to access to private
data. The access to these methods is controlled by execution rights:

Exec(psi,M
′
) def=∀mpsj ∈ M

′
, the process service psi can execute the method

m of the process service psj (i �= j).
In the example presented in section 2 methods of the provided services ps11

and ps22, the required process services ps1 and ps4 are Exec(ps1,M
′
ps11

∪M ′
ps22

)
and Exec(ps4,M

′
ps32

) where

In addition to method visibility, it is necessary to provide to cooperating
process services means to coordinate their actions in an informal way and to
work in an autonomous way while being aware of what occurs in the compos-
ite process service. For this reason, each process service has to provide events
allowing other services to know the state of its execution and its private data.
Since each process service is interested in a specific information, it is beneficial
to control the visibility of process service events:
Recept(psi, E

′) def=∀esj ∈ E′, the process service psi can receive the visible event
e of the process service psj (i �= j).

Concerning event visibility, the process services ps1 and ps4 can receive
from the process services ps11, ps22 and ps32 the following sets of events :
Recept(ps1, E

′
ps11

∪E′
ps22

) and Recept(ps4, E
′
ps32

) where

4 Process Service Coordination

We define process service coordination as a constrained interaction (data sharing,
event reception, and method invocation). This coordination can be based on their
states or on the states of their shared data.

A Model for Process Service Interaction 267

4.1 Coordination Based on Process Service States

We define a coordination contract based on process service states as a set of
coordination rules. These rules denote an association of two process services
and a type of coordination. Each coordination type defines a constraint on the
states of both process services. In order to give some coordination rule examples,
we introduce the concepts of process service states, state sequences, and process
service view sequence. Each process service has a state which reflects its situation
or circumstances that describe it at a given time. We call a state sequence of
a process service ps, that we denote Sps, the ordered complete set of states of
ps. We can define Sps as Sps = {sps

0 , sps
1 , . . . }, where sps

0 is the initial state of
ps and sps

1 , sps
2 ,. . . some of its successive states. A state of a process service ps1

is observed by a process service ps2 if this latter has executed a method of ps1
that returns a value reflecting a state of ps1, or if ps2 receives an event from ps1
showing its state.

For a process service ps1, we call a view sequence of process service ps2, noted
Sps1

ps2
, the subset of Sps1 (states of ps1) observed by ps2. Considering a process

service with a begin and an end, the set of methods it can execute and the set
of events it can receive are finite. Thus, the set Sps1

ps2
is finite. Let Sps1

ps2
= {sps1

ps2,0,
sps1

ps2,1, . . . , sps1
ps2,n−1} be the state sequence of the process service ps1 observed

by ps2, where n is the number of ps1 states observed by ps2. s
ps1
ps2,0 is the initial

state of ps1 observed by ps2 after its beginning and sps1
ps2,n−1 is the last state of

ps1 observed by ps2 before its end. Note that there may be some states of ps1 not
observed by ps2 and which can be produced between two states of ps1 observed
by ps2. We call view sequence of a process service ps all its states and all the
states of other process services that it can observe. Let V ps = Sps ∪ps1∈PS S

ps1
ps

be the view sequence of the process service ps. This set represents the states of
the process service that ps is aware about.

Let SCoor(ps1, ps2, coortype) be a coordination rule based on process service
states, where ps1 and ps2 are two process services from the process service set PS
and coortype be a coordination type belonging to the state based coordination
type set SCoorT . Coordination types we present are inspired from several works.
We mention, among others, those achieved in the transactional field [7], and
those accomplished in workflow interconnection field [24]. In order to introduce
these coordination types, we use the following notations. Let ps be a composite
process service, psi and psj two of its process service components. Let Spsi and
Spsj be their respective state sequences. Let S (s state sequence) be the union
of Spsi and Spsj . We supply S by a partial order relation we denote → that
handles the causality of S elements.

Considering a process service as a transaction with a begin (enact), an end
(commit, abort), and a life cycle, we can express dependencies on process service
states using the transactional approach presented in [7]. Process service state
significant events include Enacted, Preempted, Committed, Aborted,. . . .

Here are some types of state based process service coordination for describing:

– serial dependency of two process services (ECD: Enact-On-Commit Depen-
dency):

268 K. Bäına, S. Tata, and K. Benali

SCoor(ps2, ps1,ECD) def= Enactedps2 ∈ S ⇒ Committedps1 → Enactedps2

– commit dependency of two process services (CD: Commit Dependency):

SCoor(ps2, ps1, CD) def=
Committedps2 ∈ S ⇒ (Committedps1 ∈ S ⇒

(Committedps1 →Committedps2))

Interface 4 of the WfMC (Workflow Management Coalition) [24] supports
workflow processes interconnection by proposing paradigms for workflow inter-
operability. Based on the approach of the WfMC paradigms, we define two new
process service state based coordination types describing:

– asynchronous externalisation of a sub process service (CMD: Chained Model
Dependency):

SCoor(ps2, ps1, CMD) def=
Enactedps2 ∈ S ⇒ Enacted ps1 → Enactedps2

– synchronous externalisation of a sub process service (NMD: Nested sub-
process Model Dependency)

SCoor(ps2, ps1,NMD) def=
(Enactedps2 ∈ S ⇒ Enactedps1 → Enactedps2)∧

(Committedps1 ∈ S ⇒ Committedps2 → Committedps1)

These types of process service state based coordination have been given as
simple examples. We have developed other coordination types that we do not
present in this paper1.

The following state based coordination contracts are expressed for the pro-
cess service of the section 2 :
SCoor(ps11, ps1, NMD): the process service ps11 (portal development provided
process service) is a nested sub-process of the process service ps1 (portal de-
velopment and hosting requested process service) and SCoor(ps22, ps1, NMD):
the process service ps22 (portal hosting provided process service) is a nested
sub-process of the process service ps1.

4.2 Coordination Based on Data States

We define a coordination contract based on data states as the association of two
process services, an object (modeling the data), and a type of coordination ([20],
[21]). To define formally coordination contracts, we use the notion of object state
1 An example of coordination types we have developed is Parallel Synchronized Model
Dependency: ps1 and ps2 are parallel synchronized if they agree on a synchronization
point within which they exchange data then they continue their executions normally.

A Model for Process Service Interaction 269

sequence and process service view sequence that we define in the following before
presenting coordination contracts based on data states.

We call the state sequence of an object o, denoted So, the ordered set of the
states of o. We can define So as So = {so

0, s
o
1, . . .}, where so

0 is the initial state of
the object and so

1, s
o
2, ... are the successive states of o. An object can change its

state when a process service performs an operation that changes the value of one
of its attributes. A process service can observe a state of the object if it performs
an operation which returns a value reflecting the state of this object. Note that
no assumptions are made on the granularity of a state change. Depending on
the context and of the application being specified, this may vary from one single
character change in a textual document to a CAD 2 object replacement. We call
the view sequence of a process service ps on an object o, noted So

ps, the ordered
subset of So (the state sequence of o) restricted to the states observed by ps.

Given an object, a coordination contract binds two process services to express
the fact that there is a constraint on their view sequences. The coordination
is a process service coordination if it expresses constraints on the sequence of
states observed by one or the other of the both process services. It is a state
coordination, if it expresses constraints on only one state observed by one or the
other of the both process services.

For a given object o, the process service ps1 is coordinated to the process
service ps2 on o when So

ps1
is included in so

ps2
. We note this coordination type

SvCoor (Process Service Coordination).

DCoor(ps1, ps2, o,SvCoor)
def= So

ps1
⊂ So

ps2
.

ps1 and ps2 are state coordinated if there exists a state so
ps1,i observed by ps1

and a state so
ps2,j observed by ps2 that are identical. We note this coordination

type StateCoor (State Coordination).

DCoor(ps1, ps2, o, StateCoor)
def=

∃ i ∈ {0..n− 1}, ∃j ∈ {0..m− 1} so
ps1,i = so

ps2,j

where n (respectively m) denotes the number of states observed by ps1 (re-
spectively ps2).

This type of coordination can be used to specify the more general case of
two process services coordinated on an arbitrary state. However, there is a lot
of situations in which such coordination occurs at the beginning or at the end
of one or both of the coordinated process services.

For this reason, we provide specialized coordination types corresponding to
the coordination of :

– a process service initial state and another process service state (Initial state
Coordination):

2 Computer Aided Design.

270 K. Bäına, S. Tata, and K. Benali

DCoor(ps1, ps2, o, ICoor)
def= so

ps1,0 ∈ So
ps2

– the initial states of two process services (Initial States Coordination):

DCoor(ps1, ps2, o, IsCoor)
def= so

ps1,0 = so
ps2,0

– a process service final state and another process service state (Final state
Coordination):

DCoor(ps1, ps2, o,FCoor)
def= so

ps1,n−1 ∈ So
ps2

,
where n is the number of the states of o observed by ps1

– the final states of two process services (Final States Coordination):

DCoor(ps1, ps2, o,FsCoor)
def= so

ps1,n−1 = so
ps2,m−1

where n (respectively m) is the number of the states of o observed by
ps1 (respectively ps2)

– a process service final state with another process service initial state (Serial
Coordination):

DCoor(ps1, ps2, o,SrlCoor)
def= so

ps1,n−1 = so
ps2,0

– two state sequences of two process services (Total Coordination):

DCoor(ps1, ps2, o,TotCoor)
def= n = m ∧ ∀ i ∈ {0..n− 1}, so

ps1,i = so
ps2,i

There are some dependencies between the different coordination types that
lead to implicit coordination types when we define some other stronger coordi-
nation type. For instance we have the following dependencies:

– if the process service ps1 is coordinated to the process service ps2, then the
ps1 initial state is coordinated to another ps2 state:

DCoor(ps1, ps2, o,SvCoor) ⇒ DCoor(ps1, ps2, o, ICoor)

– if the initial states of ps1 and ps2 are coordinated, then the ps1 initial state
is coordinated to another ps2 state and the ps2 initial state is coordinated
to another ps1 state:

DCoor(ps1, ps2, o, IsCoor) ⇒
DCoor(ps1, ps2, o, ICoor) ∧DCoor(ps2, ps1, o, ICoor)

– if the process service ps1 is coordinated to the process service ps2, then the
ps1 final state is coordinated to another ps2 state:

DCoor(ps1, ps2, o,SvCoor) ⇒ DCoor(ps1, ps2, o,FCoor)

A Model for Process Service Interaction 271

– if the final states of ps1 and ps2 are coordinated, then the ps1 final state is
coordinated to another ps2 state and the ps2 final state is coordinated to
another ps1 state:

DCoor(ps1, ps2, o,FsCoor) ⇒
DCoor(ps1, ps2, o,FCoor) ∧DCoor(ps2, ps1, o,FCoor)

– we quote, in addition, here that the total coordination is a strong coor-
dination type that implicit implies other ones. If ps1 and ps2 are totally
coordinated, then

• ps1 is coordinated to ps2 and ps2 is coordinated to ps1:

DCoor(ps1, ps2, o,TotCoor) ⇒
DCoor(ps1, ps2, o,SvCoor) ∧DCoor(ps2, ps1, o,SvCoor)

• the final states of ps1 and ps2 are coordinated:

DCoor(ps1, ps2, o,TotCoor) ⇒ DCoor(ps1, ps2, o,FsCoor)
• the ps1 final state is coordinated to another ps2 state and the ps2 final

state is coordinated to another ps1 state:

DCoor(ps1, ps2, o,TotCoor) ⇒
DCoor(ps1, ps2, o,FCoor) ∧DCoor(ps2, ps1, o,FCoor)

• the initial states of ps1 and ps2 are coordinated:

DCoor(ps1, ps2, o,TotCoor) ⇒ DCoor(ps1, ps2, o, IsCoor)

• the ps1 initial state is coordinated to another ps2 state and the ps2
initial state is coordinated to another ps1 state:

DCoor(ps1, ps2, o,TotCoor) ⇒
DCoor(ps1, ps2, o, ICoor) ∧DCoor(ps2, ps1, o, ICoor)

In the example presented in section 2 the coordination contracts
DCoor(ps1, ps11, d1,TotCoor) based on the data states of the process services
shows that the required process service for portal development and hosting ps1,
and the provided process service for portal development ps11 are totally coordi-
nated on the portal development contract d1.

5 Process Service Interaction Model

In this section, we propose an interaction model which supports information
sharing and coordination between cooperating process services. Thus, this model
can describe needs of roles and coordination management for cooperating process
services.

272 K. Bäına, S. Tata, and K. Benali

Formally, process service interaction model is represented by the tuple (PS,
D, CL) where PS is the set of process services, D is the set of shared documents,
and CL (Contract List) is a set of cooperation contracts. Each contract binds a
set of process services participating to a cooperation by:

– DAL (Data Access List), a set of dynamic access rights on shared documents;

– MAL (Method Access List), a set of dynamic execution rights on methods
made accessible by process services;

– EAL (Event Access List), a set of dynamic reception rights on events pro-
duced by process services;

– DCL (Data Coordination List), a set of dynamic coordination rules based
on process service shared information state;

– SCL (Service Coordination List), a set of dynamic coordination rules based
on process service states.

By dynamic, we mean negotiation based customisation [14].
Here is an example of the tuple (PS, D, CL):
PS = PSfrn ∪ PSreq: the union of the following provided and re-

quested process services PSfrn = {ps11: portal development process service,
ps22: portal hosting process service, ps32: content collection process service} and
PSreq = {ps1 := (ps11, ps22) (composed process service), ps4 := ps32 (atomic
process service)}

D = { d1: portal development judicial contract, d2: portal hosting judicial
contract, d3: portal development graphical charter, d4: portal prototype, d5 : e-
learning module requirements,. . . }

and CL:
DAL = {Access(ps1, d1, read), Access(ps1, d1, write), Access(ps22, d3, read), ...},
MAL = {Exec(ps1, M

′
ps11 ∪M

′
ps22), Exec(ps4, M

′
ps32), ...},

EAL = {Recept(ps1, E
′
ps11 ∪ E

′
ps22), Recept(ps4, E

′
ps32), ...},

DCL = {DCoor(ps1, ps11, d1, TotCoor), DCoor(ps11, ps22, d3, IsCoor), ...},
SCL = {SCoor(ps11, ps1, NMD), SCoor(ps22, ps1, NMD), ...}.

with
M

′
ps11

= {getPortalDevelopmentAllocatedHumanResources(), getPortalDevelopment-
Status(), checkinDocument(), checkoutDocument()},
M

′
ps22

= {getPortalHostingStatus(), checkinDocument(), checkoutDocument()},
M

′
ps32

= {getProcessInstanceAchievedModuleDuration(), checkinDocument(), checkout-
Document()},
E

′
ps11

= {ASK FOR MORE SPECIFICATION,END PORTAL DEVELOPMENT},
E

′
ps22

= {BEGIN PORTAL HOSTING,ASK FOR MORE SPECIFICATION}, and
E

′
ps32

= {END MODULE COLLECTION,PRODUCED NEW MODULE VERSION}

Cooperation rules define explicitly allowed, refused, and compulsory opera-
tions. Information sharing rules, we may define inside a cooperation contract,

A Model for Process Service Interaction 273

assign (negative, or positive) rights on shared documents, on accessible events
and/or methods. Each positive access right enables its possessing process service
to execute a set of operations on shared or private documents, or to receive events
reflecting states of data of other process service. Negative information sharing
rules prohibit to a process service to execute a set of operations or the reception
of a set of events. To respect certain coordination rules inside a cooperation con-
tract, the participating process services have to observe the shared information
states. Actually, if it exists a coordination rule of DCoor(ps1, ps2, d, coortype)
type, then ps have to observe at least a state of d when coortype belongs to
{IsCoor, FsCoor, TotCoor, SrlCoor}.

For a process service ps that participate to a cooperation contracts, we can
define consequently a set of operations that ps can execute, a set of operations
that ps cannot execute, and a set of operations that ps ought to execute. Process
service interaction model defines cooperation contracts between process services.
These contracts model rules for process interconnection. However, cooperation
consistency has to be maintained in order to avoid contradiction between agreed
contracts. A process service ps can respect a cooperation contract if every com-
pulsory operations are accessible, and every compulsory operations are not pro-
hibited. A cooperation contract is thus coherent if it can be respected by every
cooperating process services.

6 Conclusion

Our paper is a contribution in the field of process interconnection. Our pro-
cess service interaction model allows communication and coordination between
process services aiming to interconnect processes, and, therefore, to support
inter-enterprises cooperation. Actually, our process service interaction model
encompasses information sharing between process services, and process services
coordination. Therefore our model allows management of roles and coordination
of services through access rights on shared data, execution rights on process
services methods, reception rights on process services events, and coordination
rights based on data states or on process service states.

Although implementation is not in the intended scope of this paper, we can
mention that we are currently developing an implementation of our process ser-
vice interaction model withinDISCOBOLE (DIStributed COoperation and Busi-
ness prOcess on LinE), our cooperative platform for process service interconnec-
tion. DISCOBOLE is developed in Java on a CORBA bus. Our implementation
relies on a process service structure which may be seen as the development of
a design pattern for cooperation. Actually, a process service may be related to
proxy and adapter patterns. While the proxy pattern limits accesses to process
resources (data access rights Access(ps, d, dr), method visibility Exec(ps, M),
visibility of process service events Recept(ps, E)), the adapter pattern provides
a new interface to the adapted process service (ability to exchange data, coor-
dination ability, ability to control interaction consistency).

274 K. Bäına, S. Tata, and K. Benali

Our next step will be fully explore the cooperation pattern paradigm we have
used to implement our interaction service model. In fact, our model description
and our implementation of it with patterns present two orthogonal views of
process service interaction. We plan to cross fertilize and validate formally these
two orthogonal views to produce an integrated and complete view.

References

1. Bäına, K., Benali, K. and Godart, C.: A process service model for dynamic enter-
prise process interconnection. In 9th Int. Conf. on Cooperative Information Sys-
tems, In Cooperation with VLDB 2001, volume 2172 of LNCS, pages 239–254,
Trento, Italy, September 5–7, 2001. Springer-Verlag.

2. K. Bäına, F. Charoy, C. Godart, D. Grigori, S. el Hadri, H. Skaf, S. Akifuji, T. Sak-
aguchi, Y. Seki, and M. Yoshioka. CORVETTE: A Cooperative Workflow Develop-
ment Experiment. In L. M. Camarinha-Matos, editor, 3rd IFIP Working Confer-
ence on Collaborative Business Ecosystems and Virtual Enterprises (PRO-VE’02),
pages 169–180, Sesimbra, Portugal, May 1–3, 2002. Kluwer Academic Publishers.

3. A. P. Barros and A. H. M. Ter Hofstede. Modelling extensions for concurrent work-
flow coordination. In 4th IFCIS Int. Conf. on Cooperative Information Systems
(CoopIS’99), pages 336–347, Edinburgh, Scotland, September 2–4, 1999. IEEE
Computer Society Press.

4. G. A. Bolcer and G. Kaiser. Swap: Leveraging the web to manage workflow (swap).
In IEEE Internet Computing. IEEE Computer Society,
http://computer.org/internet/, January-February 1999.

5. B. Benatallah, B. Medjahed, A. Boughettaya, A. Elmagarmid, and J. Beard. Com-
posing and maintaining web-based virtual enterprises. In 1st Workshop on Tech-
nologies for E-Services, In cooperation with VLDB 2000 (TES’00), Cairo, Egypt,
September 14–15, 2000.

6. F. Casati, S. Ilnicki, L. J. Jin, and M. C. Shan. eflow: an open, flexible, and config-
urable approach to service composition. In 2nd International Workshop on Advance
Issues of E-Commerce and Web-Based Information Systems (WECWIS’00), pages
125–132, Milpitas, California, June 8–9, 2000.

7. P-K. Chrysanthis and K. Ramamritham. ACTA: The SAGA continues. In Database
Transaction Models for Advanced Applications, pages 349–397. 1992.

8. K. Dutta, D. VanderMeer, A. Datta, and K. Ramamritham. User Action Recov-
ery in Internet SAGAs (iSAGAs). In F. Casati, D. Georgakopoulos, and M-C.
Shan, editors, 2nd Workshop on Technologies for E-Services, In Cooperation with
VLDB’2001 (TES’01), number 2193, pages 132–146, Rome, Italy, September 14–
15, 2001. Springer-Verlag.

9. M.-C. Fauvet, M. Dumas, B. Benatallah, and H. Paik. Peer-to-peer traced exe-
cution of composite services. In F. Casati, D. Georgakopoulos, and M-C. Shan,
editors, 2nd Workshop on Technologies for E-Services, In cooperation with VLDB
2001 (TES’01), volume 2193 of LNCS, pages 103–117, Rome, Italy, September
14–15, 2001. Springer-Verlag.

10. D. Georgakopoulos, H. Schuster, A. Cichocki, and D. Baker. Managing process
and service fusion in virtual enterprises. Information Systems, Special Issue on
Information Systems Support for Electronic Commerce, 24(6), 1999.

11. C. Hagen and G. Alonso. Beyond the black box: Event-based inter-process com-
munication in process support systems. In 19th International Conference on Dis-
tributed Computing Systems (ICDCS’99), Austin, Texas, USA, May/June 1999.

A Model for Process Service Interaction 275

12. IBM. IBM open sources technology for accessing UDDI Business Registry. www-
3.ibm.com/services/uddi/announce012501.html, January 2001.

13. IONA. Orbix E2A, Web Services Integration Platfom. IONA, www.iona.com, 2002.
14. M. Munier, K. Bäına, and K. Benali. A negotiation model for CSCW. In O. Etzion

and P. Scheuermann, editors, 5th IFCIS Int. Conf. on Cooperative Information
Systems, In Cooperation with VLDB 2000 (CoopIS’00), volume 1901 of LNCS,
pages 224–235, Eilat, Israel, September 6–8, 2000. Springer-Verlag.

15. Microsoft. Microsoft .NET. www.microsoft.com/net/, 2001.
16. OMG. Workflow Management Facility Convenience Document combining dtc/99-

07-05 dtc/2000-02-03 (WF RTF 1.3 Report). OMG, ww.omg.org, February 2000.
17. M. Reichert and P. Dadam. A framework for dynamic changes in workflow man-

agement systems. In 8th International Workshop on Database and Expert Systems
Applications (DEXA’97), Toulouse, France, September 1–2, 1997.

18. M. Rusinkiewicz and A. Sheth. Specification and execution of transactional work-
flows. In Won Kim, editor, Modern Database Systems, The Object Model Interop-
erability and beyond, pages 592–620. Addison Wesley, ACM Press, 1995.

19. Sun. Sun Open Net Environment (Sun ONE).
Sun microsystems, www.sun.com/sunone/, 2002.

20. S. Tata. Outils pour la description et la mise en œuvre des interactions coopératives
dans les équipes virtuelles. Thèse en informatique, Université Henry Poincaré –
Nancy I, Loria, Décembre 2000.

21. S. Tata. Policies for Cooperative Virtual Teams. In Proceedings of the 5th In-
ternational Conference on Coordination Models and Languages COORDINATION
2002, York, UK, April 8–11, 2002.

22. UDDI.Org. UDDI V. 2.0 API Specification. www.uddi.org, June 8, 2001.
23. W3C. Simple Object Access Protocol (SOAP) V. 1.1. W3C (World Wide Web

Consortium), www.w3.org/TR/SOAP/, 2000.
24. WFMC. Workflow Standard – Interoperability, Abstract Specification, WFMC-

TC-1012, V. 1.0. Workflow Management Coalition, www.wfmc.org, October 20,
1996.

Exception Handling in the BPEL4WS Language

Francisco Curbera1, Rania Khalaf1, Frank Leymann2, and
Sanjiva Weerawarana1

1 IBM TJ Watson Research Center, Hawthorne, NY 10532, USA
{curbera,rkhalaf,sanjiva}@us.ibm.com

2 IBM Software Group, Boeblingen, Germany
ley1@de.ibm.com

Abstract. Graph oriented models are at the core of most business
process management systems. In recent years, “algebraic” business
process modeling languages based on different process calculi have been
proposed. The semantics of these algebraic process languages are quite
different, and seemingly incompatible, with those of graph oriented
approaches. In this paper we study how the BPEL4WS exception
handling mechanism is used to integrate the algebraic and graph process
models. Unlike other approaches to exception handling in business
processes, the BPEL4WS model does not require that the process
topology be constrained by the exception handling hierarchy, thus
allowing both highly structured and graph based processes to benefit
from it. Based on this exception handling model, we explain “dead path
elimination” (the runtime mechanism by which process termination is
ensured) as a form of exception processing. The integration of dead
path elimination with the exception handling mechanism provides the
semantic base for the integration of the graph and algebraic processes
models in BPEL4WS.

Subject Classifications: Business process modeling, reference models,
process patterns, workflow management systems.

1 Introduction

Graph oriented models [3,14] have been at the core of business process man-
agement systems for over two decades. Most of the industry and a good part
of the academic community approach business processes assuming a graph ori-
ented model, in one shape or another. In recent years several proposals have
been made to base business process languages and systems on process calculi
such as Milner’s Pi calculus [15] and Fournet’s join calculus [9]. These “alge-
braic” approaches have lead to a new perspective in business process design that
radically departs from the graph-oriented model and results in highly structured
modeling languages [17,2].

The critical design issue of the BPEL4WS [6] language has been whether
it is possible to integrate the graph oriented and algebraic approaches within
a unified semantic framework. From a practical perspective, incorporating the

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 276–290, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Exception Handling in the BPEL4WS Language 277

D

F

C2

A

B

C

C1
key:

:switch

:sequenceX

X

X

X
E
X

Fig. 1. Different operational semantics for graph oriented and algebraic process models.

structured control constructs of algebraic languages into a graph based model
can yield many advantages. Structured exception handling, for example, helps
deal with process errors in a consistent manner and results in clearer and easier
to manage processes. Structured control artifacts, such as while loops, provide
simple ways of encoding predefined, complex behavior, ensuring correctness. This
paper explains how BPEL4WS incorporates the algebraic modeling approach
with a graph oriented model.

BPEL4WS, the Business Process Execution Language for Web Services, as-
sumes the graph metamodel of WSFL [7], based on a particular derivation of
Petri nets [14], and the algebraic metamodel of Xlang [17], which derives from
the Pi calculus [15]. The most important difference between these lies in their
distinct operational semantics. In the graph oriented semantics activities are
automatically skipped (or disabled) when they cannot be performed, due for ex-
ample to a boolean condition evaluating to false at a certain point in the graph.
This technique is known as dead path elimination (DPE), and is described in
Section 2 together with the graph and structured process metamodels. DPE
propagates the disabled state transitively across the process graph; as a result,
the local evaluation of a boolean condition to false can have global effects in the
process. In the algebraic process model, control constructs are nested and the
effects of a local evaluation are strictly scoped. Consider the examples in Fig-
ure 1. On the graph-oriented process on the left, when condition C1 evaluates
to false activities B and C are not executed due to DPE propagation. For the
process on the right a false value of condition C2 only implies not executing E;
however, F is not affected and executes normally. If we naively integrated both
parts of the figure by adding a connector linking B to E, it would not be clear
how or whether DPE should be applied.

The goal of this paper is to explain how this problem is solved by BPEL4WS.
The answer is provided in two steps. First, structured exception handling is
incorporated into BPEL4WS in a way such that it works with both structured
processes and arbitrary graphs. Then, a new system exception is introduced to
represent the event by which an activity or task is disabled. The result is that

278 F. Curbera et al.

we are able to explain the operational semantics of both DPE and structured
constructs in terms of a common exception handling mechanism.

This rest of this paper is organized as follows. In Section 2 we provide an
overview the basic operational semantics on which BPEL4WS is based, including
basic process graphs and algebraic constructs. Section 3 discusses prior work on
incorporating exception handling in workflows, focusing on their requirements
on the process structure. Section 4 describes the BPEL4WS exception model.
Section 5 explains how BPEL4WS explains DPE by casting it as a form of
exception handling, and how this leads to the seamless integration of graphs and
algebraic control primitives. Finally, in sections 6 and 7 we review future work
and summarize the contributions of this paper.

2 Process Metamodel

In established workflow systems [1],[14], [10], a workflow consists of a set of
individual activities or tasks, each defining a piece of business logic. Activities
are linked into a directed graph using control connectors (links) that constrain
the order of execution of tasks; in WSFL, but not in BPEL4WS, data connectors
are used to define the transfer of data between them. Initially, all activities with
no control dependencies are activated. When an activity completes its execution,
it activates the control links that originate from it. The positive or negative
activation of each link is governed by a transition condition, a boolean expression
relating the values of data fields and other state of the process. A join condition
is a boolean expression in terms of the values of incoming control links, which
determines whether or not an activity is activated for execution. A join condition
also serves as a synchronization point in the process, since it forces the execution
of an activity to wait until all incoming parallel execution paths reach the join.

The corresponding simplified activity lifecycle diagram is shown in Figure 2.
Initially, an activity is in the default state. Once the values of all its incoming
links are known, the join condition (shown in the diagram as “JC”) is evaluated
in order to decide whether or not it should run. If the join condition evaluates
to true, the activity enters the activated state and runs until it completes. Oth-
erwise, the activity does not run and goes into the disabled state. The “revive”
arc is included to enable iterative execution of a particular activity.

Dead path elimination [13] is the process by which the disabled state of an
activity is propagated downstream through the process graph. Activities that are
disabled set the value of their outgoing control links to false. The join conditions
of all target activities are then evaluated (assuming the values of all incoming
control links are available) and the activities are disabled if the condition eval-
uates to false. The process continues downstream until no more join conditions
can be evaluated. DPE ensures that all wait states introduced by join conditions
are eventually terminated, and thus provides first class support for the common
“synchronizing merge” pattern, see [18], in which the workflow must wait for
multiple paths to converge.

Exception Handling in the BPEL4WS Language 279

JC=true

JC=falsedefault

activated

completed

disabled
revive

execution
complete

revive

Fig. 2. Simplified activity lifecycle diagram.

DPE is implicitly performed by the process engine. Under the assumption
that the execution of individual activities eventually terminates, and that pro-
cess graphs are acyclic, DPE allows a process engine to decide whether a process
instance has terminated by checking the state of its activities. A process termi-
nates when every activity has entered the completed or disabled state (additional
tests are required if iterative execution is enabled).

BPEL4WS does not use data links. Instead, data containers are global and
may be accessed by any activity in the process. Activities specify in their def-
inition which data container they will read from upon beginning and which
container they will write to upon completion.

2.1 Algebraic Control Constructs in BPEL4WS

The BPEL4WS process model presents a number of enhancements to the basic
model introduced above. One of the main characteristics is BPEL4WS’s merging
of the algebraic authoring style with the graph-oriented style of process modeling.

In the algebraic style of authoring, such as the one exhibited by Xlang [17],
there are two kinds of activities, elementary and structured. Elementary activi-
ties perform basic actions, while structured activities act as strictly nested blocks
that contain other activities and impose execution semantics on them.

BPEL4WS processes are created by aggregating elementary and structured
activities using both the control constructs provided by the structured activities
and control links to connect activities (of any kind) into execution graphs. Ele-
mentary activities include the execution of an operation of a business component,
a data manipulation step, the need to wait for a set delay, and the raising of an
exception. There are several types of structured activities, providing several basic
execution models: ordered sequence of steps (the sequence activity), branching
using the now common “case statement” approach (the switch activity), itera-
tive execution (the while activity), execution of one of several alternative paths
based on an incoming event (the pick activity), and also a basic variant of a pro-
cess flow (the flow activity, which can contain an execution graph). Control links

280 F. Curbera et al.

must be contained within a flow activity and require that the source and the
target of the link also be contained in the flow (at any level of nesting). Note that
links may cross the boundaries of structured activities, except for while loops.
Of special importance is the scope construct which provides a unit of recovery
and exception handling in BPEL4WS and which will be discussed in more detail
in Section 4.

To simplify the diagrams and clarify the discussion, in the the rest of this
paper we will make the simplifying assumption that all scopes as well as the
process itself are equipped with a nested flow activity. This allows us to define
arbitrary graphs inside a scope with minimal graphical notation.

3 Exception Handling and Process Structure

Exceptions have been part of the business process modeling for over 20 years
now, dating back to the work of Eder and Liebhart [8] and Reuter [16], and are
supported by most commercial workflow products. Structured exception han-
dling, on the other hand, is a common feature in many structured programming
languages such as C++ and Java. Structured exception handling mechanisms
associate exception handlers with specific program blocks. Handlers factor out
common error handling code and cleanly separate the “main” and “alternate”
execution paths. By properly nesting exception handling blocks, exceptions not
processed at one level are (“vertically”) propagated to the containing blocks un-
til they are processed. If an exception is not handled at any level, the program
is typically terminated. This multi-level processing model makes processes more
resilient and less prone to catastrophic failure.

Exception handling is closely associated with the transactional and recov-
ery properties of processes, see [8,16]. The nested exception handling structure
supports recursive recovery strategies and can be used to reason about the trans-
actional properties and correctness of a process, see [11]. In this paper we do not
deal with transactional aspect of exception handling.

3.1 Exception Handling in Graph-Oriented Processes

WSFL incorporates exceptions as a particular flavor of transition condition in
control links. When an exception is generated at an activity, only those links
labeled with the correct exception are activated while all others are disabled.
Exception handling in WSFL takes place at the local (activity) level, and its
effects are propagated across the process graph by DPE.

Structured exception handling has been proposed for graph oriented process
models by Hagen and Alonso [11] in the Opera process support system. In Opera,
processes are composed of a series of nested blocks and subprocesses, to which
exception handlers are attached. Blocks and subprocess are connected to each
other by control links following a model similar to the one described in Section
2. Exceptions propagate vertically through the block and process containment
hierarchy, while DPE is enabled within each block and subprocess. The result

Exception Handling in the BPEL4WS Language 281

get_rqst EH

procurement ship

process_pymt

send_conf

Fig. 3. A hierarchically structured graph: control links do not cross block boundaries.

get_rqst send_conf

process_pymt
& ship

procurement

EH :sequence, left to right

:simple activity

:all, in parallel

key:

Fig. 4. A fully structured process: structured activities are nested to create more com-
plex execution patterns.

is a layered or structured graph model in which the process structure and the
exception handling hierarchy perfectly match each other.

3.2 Exception Handling in Algebraic Processes

Algebraic process modeling languages such as Xlang [17] and BPML [2] are fully
structured languages in which the control structure of the process is defined by
recursively nesting tasks and primitive control structures. Exception handling
is thus natively “structured’. Exception handling blocks are represented by a
specialized construct (such as Xlang’s “context”) to which exception handlers
are attached, and which is always properly nested within the overall process
hierarchy. The process topology and the exception handling structure are thus
perfectly adapted. Figure 4 shows an example of a fully structured process.

Figures 3 and 4 show a similar process using a graph-oriented hierarchical
structure and a fully structured approach. Observe that in Figure 3 tasks within
a block are not connected to anything outside the block, but blocks themselves
are linked to other tasks and blocks. Exception handlers (“EH” in the figures)
can be added to any block in both cases (directly or using an additional wrapper).

4 Exception Handling in BPEL4WS

BPEL4WS [6] introduces structured exception handling capabilities for both
structured processes and arbitrary graphs. BPEL4WS does not require the pro-
cess topology to follow the exception handling structure, so it would not be

282 F. Curbera et al.

JC=true

JC=false

default

activated

completed

disabled

exception

revive

execution
complete

revive

exception

Fig. 5. Activity lifecycle diagram with exception support.

possible to apply the layered approach followed by Opera in integrating excep-
tion handling and DPE operational semantics. One of the main design challenges
of BPEL4WS was precisely how to perform this integration in a coherent fashion.

This section describes the BPEL4WS exception handling model as imple-
mented by BPWS4J [5]. In Section 5 we explain how the integration of exception
handling and DPE semantics is achieved in BPEL4WS. To focus our discussion
to the problem at hand, we will begin with a simplified version of the BPEL4WS
metamodel, concentrating mainly on simple activities and scopes.

4.1 Exceptions and Activity Lifecycle

We extend the metamodel of Section 2 by introducing activity exceptions and
“scopes”. Exceptions broadly represent any type of error or unusual processing
event occurring at a particular location, that is, at a specific process activity.
Exceptions are globally named and can optionally carry exception data. There
are three types of exceptions in BPEL4WS:

1. Application exceptions are the ones generated by an application that is in-
voked by the process. BPEL4WS assumes a normalized representation of
application signatures and exceptions based on the WSDL language, see [4].

2. Process defined exceptions. A process may explicitly generate an exception
using a throw clause.

3. System exceptions are thrown by the process engine in response to a set
of possible error conditions, including datatype mismatches, asynchronous
termination, etc.

Exceptions cause activities to terminate. Since exceptions represent error
conditions, we deem the state of the activity after the exception has been gener-
ated to be “unsuccessful” or “disabled”, and model this in the modified activity
lifecycle diagram of Figure 5 by an additional arc linking the active state to the
unsuccessfully terminated state. One more arc is added, from the default state
to the disabled one, corresponding to the disablement of activities in the default

Exception Handling in the BPEL4WS Language 283

state in case their scope has received an exception. Observe that this character-
ization requires that the value of all outgoing control links be set to false after
an exception is generated.

4.2 Scopes

Scopes are sets of activities. Scopes are arbitrary sets except for the limitation
that partial overlap of scopes is not allowed, that is, given any two scopes in
a process model, they are either disjoint or one is contained (nested) inside
the other. A scope can have exception handlers attached to it, with the usual
semantics: an exception handler is executed if an exception of the declared type
is generated within the scope. Vertical propagation along the scope containment
hierarchy occurs, as usual, when no appropriate exception handler can be found
in the current scope. The process model is implicitly regarded as the top level
scope.

In the model followed by BPEL4WS and implemented in BPWS4J, an ex-
ception generated at an activity causes the termination of all activities within
the immediately containing scope. It is not possible to continue normal process-
ing within a scope after an exception has been thrown (as allowed in [11], for
example). Formally, all inactive and executing activities within the scope are
immediately terminated just as if an exception had been locally generated (in
fact a special process exception is generated to allow activities and scopes to
perform necessary clean up and recovery before being terminated). Naturally,
the meaning of “immediate” termination depends on the interruptible nature of
each activity. Finally, the state of all activities, except for those already in the
completed state, is set to “disabled”, and, consequently, all outbound control
links are set to false. Termination caused by the generation of a fault within the
enclosing context has been reflected in the updated activity lifecycle diagram of
Figure 5.

The vertical propagation of exceptions and its effect on control links is il-
lustrated in Figure 6: two similar processes are shown, one with an exception
handler on an inner scope, and the other with the handler on the outer scope.
Assume that all transition conditions evaluate to true, and that an exception is
thrown by the activity shown with the “!” sign. In the left diagram, it is caught
by the inner scope’s exception handler (EH) and the link originating from that
scope is therefore allowed to activate normally; however links originating from
inside the scope boundary are disabled (except for those already activated.) In
the diagram on the right, the inner scope has no handler and the exception is
propagated to the parent scope. In this case, links leaving the inner scope are
disabled. The exception is again contained, however, and the final activity at the
bottom still runs.

Scopes are treated as composite activities and follow a similar lifecycle. Just
like any activity, a scope can be the target or the source of a control link.
The activities a scope contains have a control dependency on the scope (an
implicit, required control connector); that is, activities inside the scope cannot
be activated if the scope itself is not activated. Since we do not require the flow of

284 F. Curbera et al.

EH

x
! x

EH

! x

Fig. 6. Scopes and exceptions: an exception is thrown by the activity with “!”. Left:
exception is handled by the inner scope. Right: exceptions not handled are propagated
up to the containing scope. Links are deactivated accordingly.

control to follow the nesting structure of scopes, it is possible that the activities
within the scope may be connected by control links to external activities (out of
the scope).

A scope terminates when the all activities it contains terminate. An active
scope completes successfully when all its contained activities terminate, provided
all exceptions generated are successfully handled by exception handlers at or
within the scope. If the scope is unable to process an exception (because it lacks
the appropriate handler or because a new exception is thrown by the handler
itself) then the scope is considered to have terminated unsuccessfully and enters
the disabled state.

This construction allows us to maintain the usual activation and termina-
tion semantics (and dead path elimination, in particular) for activities as well
as scopes, and to freely combine structured and unstructured authoring styles.
In the structured style (Figure 7a), scopes are treated as isolated blocks. Join
conditions and dead path elimination are used to terminate complete scopes in
the same way as activities. In the unstructured style (Figure 7b), tasks within
the scope can be linked directly to external tasks; the scope may not be explicitly
activated at any time except through activation of the activities it contains. A
combination of both behaviors is also possible, as shown in the Figure 7c.

5 Dead Path Elimination as Exception Handling

Introducing exceptions required us to incorporate minimal updates into the basic
lifecycle state diagram of Section 2. The updated lifecycle of activities provides
two mechanisms with different operational semantics to disable an activity: ex-
ceptions and dead path elimination (join conditions). These mechanisms are
integrated in the BPEL4WS language by casting false join conditions as a par-
ticular type of system exception, the join exception which is generated at an
activity whenever its join condition evaluates to false. This exception is all that

Exception Handling in the BPEL4WS Language 285

EH

EHEH

get_rqst

procurement

ship

process_pymt

send_conf

get_rqst

process_pymt

get_rqst

procurement ship

process_pymt

send_conf

a)structured b)unstructured

c)mixed

procurement

ship

send_conf

Fig. 7. Different graph oriented BPEL4WS authoring styles. a)Links do not cross scope
boundaries. b)Links connect simple activities only. c)Both the scope and its enclosing
activities are linked to other activities.

is needed to reduce DPE operational semantics to exception handling. Moreover,
join exceptions provide a mechanism to generalize DPE semantics to cover alter-
native execution and termination models for process graphs. An updated state
diagram incorporating this change is shown in Figure 8

To understand how join exceptions can reproduce DPE, consider the arrange-
ment shown on the left of Figure 9. There, an activity is contained in a private
scope which is equipped with an empty exception handler for the join exception.
The activity, not the scope, is wired to other activities in the flow.

Assume now that the join condition JC evaluates to false and a join exception
is thrown. Activity A is set to the disabled state, but the exception is caught and
suppressed by the empty handler in the enclosing scope; all outgoing links are
set to false. Thus, in this particular setting, the net effect of a false join condition
is to disable the activity and propagate the false value of the join condition to
all outgoing links. If we now consider a process where all activities are of this
type, it is easy to see that we recover standard DPE behavior.

Discussion. Upward (“vertical”) propagation of exceptions is a well understood
part of the operational semantics of most structured exception handling models.
Among other things, the propagation of an exception along the scope hierarchy
helps ensure that the effect of an error in one activity reaches other activities in
the process as defined by the scope hierarchy. The preceding discussion shows
that dead path elimination is essentially equivalent to the propagation of ex-

286 F. Curbera et al.

JC=true

exceptiondefault

activated

completed

disabled

exception

revive

execution
complete

revive

Fig. 8. Activity lifecycle diagram combining DPE and exceptions.

ceptions (join exceptions in this case) along the process graph; that is, DPE is
nothing but the “topological” or “horizontal” propagation of the join exception.

5.1 Generalizing DPE

Conditional Tasks. Consider now the arrangement shown in the middle of
Figure 9. Again, we have an activity enclosed inside a scope that suppresses the
propagation of join exceptions. However, while incoming links target the activity,
outgoing links start at the enclosing scope, not the activity itself.

When the join condition evaluates to false, the activity is disabled and the
exception suppressed by the empty handler as before. However, since the excep-
tion was caught, the scope terminates successfully, enters the completed state
and the outgoing links are not disabled. The net effect now is to disable the
activity but allow regular execution of downstream activities. This pattern is
thus equivalent to an “if” clause in a structured programming language; it also
provides a simple rendering of the operational semantics of the switch construct
in BPEL4WS in terms of activities, scopes and links.

Observe also that this pattern allows us to separate the synchronization effect
of a join from the DPE processing that follows, under the usual graph oriented
semantics, when the join condition evaluates to false. Recal that synchronization
is achieved because execution does not proceed beyond the join until the values
of all incoming links are received. Under the usual graph semantics, however,
a false join condition implies not only that the target activity is not executed,
but also that all outgoing links are unconditionally disabled. Using a conditional
execution pattern, execution can proceed past the synchonization activity re-
gardless of the value of the join condition, depending only on the values of the
transition conditions attached to links that originate on the enclosing scope.

Scope-Wide Elimination. In the absence of a surrounding scope that sup-
presses the join exception, a false value of a join condition triggers the disable-
ment of all activities (except those already completed) within the immediately

Exception Handling in the BPEL4WS Language 287

DPE Propagation Conditional Tasks ScopeWide Elimination

Fig. 9. Three configurations leading to different exception propagation modes.

enclosing context, which might be provided by the process itself. The disabled
state of an activity is immediately propagated across the scope regardless of
the flow topology. Links emanating from activities inside the scope are disabled
(except for those already enabled); links emanating from the scope itself will be
enabled if the scope processes the exception. This case is shown on the right of
Figure 9, and was also the case exhibited in the example described earlier in
Figure 6.

Observe that we can also characterize this effect as a discrete change in the
level of granularity at which the process deals with the disabled state, from the
individual activity to the wider enclosing scope.

Discussion. The three patterns illustrated in Figure 9 provide three ways of
modeling the dependencies between activities in a process model. Under usual
DPE semantics, every task in the flow has an implicit dependency on the suc-
cessful completion of all other upstream tasks. The dependency is enforced by
the propagation of the disabled state using DPE.

The conditional execution pattern presented here embodies the opposite as-
sumption, since it prevents the downstream propagation of the disabled state of
an activity. In a flow in which each activity follows this pattern, control links
and join conditions can be set to false only when the link’s transition conditions
evaluate to false, that is, only through the effect of the runtime data values ac-
cessible to the process instance. The completion status of a task can only affect
the execution of downstream activities through its effect on data values.

When the immediately enclosing scope is not restricted to one activity, a
dependency between the execution of that activity and all others in the scope
is created. This case represents the situation in which one activity is of such
critical importance to the successful execution of the scope that it cannot fail
without compromising the successful execution of the scope as a whole. Observe
also that the dependency stated here is stronger than the one implied by DPE,
since it is unconditional and cannot be controlled through the join condition.

JH
JC

A

JC

A

JC

A

B B B C

JH JH

288 F. Curbera et al.

Fig. 10. Graph equivalence of sequence and switch constructs in BPEL4WS.

We note finally that it is perfectly possible to combine the three dependency
models outlined above into a single process model. Care must be taken, however,
since the local variations in behavior can be very misleading. As an example,
observe that the conditional execution pattern effectively stops DPE. The com-
bination of DPE-enabled and conditional activities would lead to a sectioning
of the process graph into disjoint areas: inside some of them all tasks would be
reachable by DPE, while in others DPE would not apply. For this reason, while
BPEL4WS allows arbitrary combinations of scopes and links, it recognizes and
provides syntactic support for DPE and non-DPE oriented authoring styles.

5.2 Graph Equivalent of Structured Constructs

The execution patterns described in the previous section can be used to model
BPEL4WS structured constructs in terms of equivalent graphs. Once we do
this it is possible to deal with the combination of the structured and graph
oriented styles in a meaningful way. Consider for example the sequence and
switch constructs that we used in Figure 1. Their equivalent graph representation
is provided in Figure 10.

Note that for each construct we have added two convenience nodes, start and
end, which allow connectors to target and originate on the sequence or switch
blocks themselves. A sequence becomes a simple unconditional linear graph, this
time without associated DPE behavior. Join exceptions are not dealt with at
the activity or sequence level. In the presence of additional (explicit) control
connectors targeting an activity in the sequence, a false transition condition
would thus cause the entire enclosing scope to terminate. The behavior of a
switch block is supported by the conditional execution pattern presented before.
The guards in the branches of the switch, CA and CB, define the transition
conditions (CA) and (!CA ∧ CB) of the corresponding links. Each branch is
enclosed in a scope that prevents the join exceptions generated by false transition
conditions from being propagated.

CA

A

B

end

start

A

end

start

EH

B
EH

!CA . CB

Exception Handling in the BPEL4WS Language 289

6 Future Work

We are already working on providing mechanisms for getting tighter control on
link behavior in faulting scopes. Basically, restricting links originating within a
scope to leave it only if the scope completed seems to be a promising direction.
Furthermore, BPEL4WS supports extended transactions in tight coupling with
exception handling in scopes. Links leaving a scope “too early” result in the need
for cascading both, exception handling and transaction rollback similar to what
has been described in [12]. We want to investigate the impact on cascadation in
situations in which both types of scopes (the one kind described in this paper
and the one sketched here) exist within one and the same process.

7 Conclusion

In this paper we have discussed the integration of graph oriented and algebraic
(structured) process models in the BPEL4WS language. The key to this uni-
fication is an exception handling mechanism that can deal with both algebraic
and graph process models. Using this mechanism, we have explained DPE as the
handling of a particular system exception under a specific process topology. We
have shown how DPE can be generalized by changing the local topology of the
process, and how the generalized patterns we obtain can be used to characterize
the operational semantics of algebraic control constructs in terms of equivalent
graphs.

Acknowledgements. BPEL4WS was a joint effort of the authors of the spec-
ification. Satish Thatte and Dieter Roller played a crucial role in designing the
integration of the DPE and exception handling mechanisms in particular.

References

1. Process Definition Interchange Process Model. Published on the World Wide Web
by the Workflow Management Coaltion as Document Number WfMC TC-1016-P,
Version 1.1, at http://www.wfmc.org, 1999.

2. Assaf Arkin. Business process modeling language - bpml1.0 last call working draft.
Published on the World Wide Web by BPMI.org at http://www.bpmi.org, 2002.

3. E. Best and C. Fernandez. Non-Sequential Processes: A Petri Net View. Springer,
Berlin Heidelberg, 1988.

4. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. Published on the World Wide
Web by W3C at http://www.w3.org/TR/wsdl, Mar 2001.

5. F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, and S. Weerawarana.
BPWS4J. Published on the World Wide Web by IBM at
http://www.alphaworks.ibm.com/tech/bpws4j, Aug 2002.

6. Francisco Curbera, Yaron Goland, Johannes Klein, Frank Leymann, Dieter Roller,
Satish Thatte, and Sanjiva Weerawarana. Business Process Execution Language
for Web Service (BPEL4WS) 1.0. Published on the World Wide Web by BEA
Corp., IBM Corp. and Microsoft Corp. at
http://www.ibm.com/developerworks/library/ws-bpel, August 2002.

290 F. Curbera et al.

7. Francisco Curbera, Frank Leymann, Dieter Roller, and Sanjiva Weerawarana. Web
Services Flow Language (WSFL) 1.0. Published on the World Wide Web by IBM
Corp. at http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
May 2001.

8. J. Eder and W. Liebhart. Workflow recovery. In Proc. Intl. Conf. on Cooperative
Information Systems CoopIS’96, (Bruxelles, Belgium), 1996.

9. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join
calculus. In Proc. 23rd ACM Symposium on Principles of Programming Languages
(POPL ’96), pages 372–385, 1996.

10. Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An overview of
workflow management: From process modeling to workflow automation infrastruc-
ture. Distributed and Parallel Databases, 3(2):119–153, 1995.

11. Claus Hagen and Gustavo Alonso. Flexible exception handling in the OPERA
process support system. In International Conference on Distributed Computing
Systems, pages 526–533, 1998.

12. F. Leymann. Supporting business transactions via partial backward recovery in
workflow management systems. In Proc. BTW’95 (Dresden, Germany), Springer
1995, March 1995.

13. F. Leymann and W. Altenhuber. Managing business processes as an information
resource. IBM Systems Journal, 33:326–347, 1994.

14. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Pren-
tice Hall., 2000.

15. Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

16. A. Reuter. Managing distributed applications with contracts. In Proc. 3rd Intl.
Workshop on High Performance Transaction System (Asilomar, CA), 1989.

17. Satish Thatte. XLANG. Published on the World Wide Web by Microsoft Corp.
at http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm, 2001.

18. Wil M. P. van der Aalst, Alistair P. Barros, Arthur H. M. ter Hofstede, and Bartek
Kiepuszewski. Advanced workflow patterns. In LNCS of Conference on Coopera-
tive Information Systems (CoopIS2000), volume 19 of Lecture Notes for Computer
Science, pages 18–29, 2000.

Ratios to Support the Exploration of Business
Process Models

Andreas Dietzsch

Schweizerische Mobiliar Versicherungsgesellschaft, Bundesgasse 35,
3001 Bern, Switzerland

Andreas.Dietzsch@mobi.ch

Abstract. In 1999 the Swiss Mobiliar Insurance Company (Mobiliar)
started a program to transform to a process oriented organization.
To ensure a unified methodical procedure during this transformation
a competence center was founded. After the first phase the core business
processes were documented. To ensure a continuous usage of this work,
a system of ratios was developed to support the process management.
This paper introduces the main ratios, how they link to models and how
they are used.

Keywords: Business process modeling, design and analysis of business
processes, business process verification and validation

1 Background

As Switzerland’s first private Insurance Company the The Mobiliar Insurance
Company (Mobiliar) provides services for private persons, companies and the
public service sector since 1826.

In 1999 a major project was started to implement a process oriented orga-
nizational structure. The goal was to achieve a systematic, long-range related
development process of the Mobiliar’s business potential. This effort was based
on a comprehensive look at the requirements of business processes’ reorganiza-
tion and at the reformation of the application landscape. To support this work
a methodology for Business Process Reengineering and modeling was provided
by a competence center [3].

The methodology’s design was driven by the need to assure daily business
through every phase of the change process. This is essential because customers
are highly sensitive to risky undertakings of ”their” insurance company. To re-
duce risk of changes to the organization ”evolutionary changes” and ”problem
solving based on models” were constituted as principles of work. Thus, every
change was planned and based on the actual business solution. The consider-
ation of the principle of model based problem solving particularly enables the
definition of activities and the assessment of its consequences without affecting
the ”real world” [4]. To fulfill requirements resulting from applying these princi-
ples, the competence center provides a customized method through situational
method engineering [1], [2].

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 291–301, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

292 A. Dietzsch

After finishing the first transition phase all core business processes were doc-
umented in form of process maps and service specifications as defined by the
PROMET BPR methodology [9]. Some of the business processes were defined in
more detail using the UML. At this state the documentation contains descrip-
tions of more then 50 processes.

Driven by the brisk and vastly changing market situation since fall of 2001
the need for reorganizing the business raises. One idea in this context was to use
the modeled processes as instruments for the support of identification of needs
for change. Consequently the methodology was enriched by concepts supporting
a quantitative analysis of process design. Until today 9 processes were added to
the existing documentation. Thereby the enhanced methodology was used for
modeling.

The following section introduces the method used for business modeling and
the extension for the quantitative analysis of the modeled processes.

2 The Business Process Modeling Methodology

During the project’s phases different goals were strived. These are in sequence
the phase of process engineering, system requirements specification, and process
improvement.

To provide a method, which satisfies these requirements, method fragments
were needed that either partly or completely covered these domains. The follow-
ing section describes, how the specific requirements of each goal were considered
by the engineered methodology.

2.1 Method Support for Business Process Engineering

Because of the business process engineering focus in the first project phase, the
decision was made to use PROMET BPR. Thus from the organizational design
fragment of PROMET BPR the following concepts were selected [3]:

– The process typology, with types of managing, performing and supporting
processes

– The concept of process maps as high aggregated process models, which can
be recursively refined

– Service specification,
– The concept of the sequence of formulating strategy, goals, critical success

factors, and index values

Driven by the need to simplify the communication of the models, the nota-
tion as proposed in [9] and [7] was changed. Thus (graphical) formatting options
such as colors were used to express semantics such as process types. Using this
methodology about 60 processes were defined by process maps and service speci-
fications. Thereby a process map describes the structure of a process, that means
its sub processes and the services consumed and provided. An example of a pro-
cess landscape is shown in figure 1.

Ratios to Support the Exploration of Business Process Models 293

ExpertiseCooperative ReviewCreating Forecasts

Managing Reviews

Reports

Manage-
ment

Feedback

Forecast

Goals

Artifacts
Artefact
Manage-

ment

Expert's
Statement

Assignment

Review Request

Projectplan

Project Proposal

Select Artifacts

Consolitate Results

Expertise
Request

Forecast
Request

Cooperative
Statement

Architecture
Review

Review Plan

Checklist Ressources Plan

Architecture
Draft

Projects

Projects
Review Criteria

Rview
Guidelines

Develop
Enterprise
Architec-

ture

Strategy

Business Process

Service

Legend:

Suppliers
Input-

Interface
Internal Process Structure

Output-
Interface

Customers

Fig. 1. Example of a Process Map

2.2 Supporting Requirements Specification

The next step was to initiate the adoption of the information systems to the
resulting new business needs. For this purpose the system requirements had to be
specified based on the newly created business process model. For this project step
the UML/RUP [8] was considered as adequate to provide the required method
support. The following UML artifacts were selected for modeling requirements
to information systems:

– Business Use Case Model containing Business Use Case Diagram and Busi-
ness Use Case Specification

– Activity Diagrams
– Business Object Model

In contrast to the PROMET BPR fragment, the notations of the UML frag-
ment were not changed. Only a loose coupling of these model elements to those
used from the PROMET BPR methodology was defined until fall of 2001. So a
process defined in a process map only built a frame for a often complex Busi-
ness Use Case Model. The associations between the business use cases of such
a model contained information about the process structure too. In effect there
was more then one place to model such information. Furthermore only basic
concepts of Activity Diagrams were used. So diagrams modeled during this time
don’t contain objects or swim lanes. Corresponding information was placed in
the text section of each business use cases’ specification.

294 A. Dietzsch

To overcome these deficits the UML artifacts were linked to the PROMET
fragment through some semantic constraints. First there has to be a one-to-one
association between business processes of the PROMET fragment and the Busi-
ness Use Cases of the UML fragment. Thus the traceability between a process
map and a Business Use Case was assured.

Furthermore the association types between Business Use Cases were re-
stricted to specialization associations. These are used to express alternatives
in realizing a business process. Thus a variant is modeled as specialization of
a then so called ”abstract” Business Use Case. It defines the inputs and out-
puts of a process. Its variants are differed by the process realization, e. g. the
number of activities or decisions. The Business Use Case Specification document
summarizes these characteristics of the process’ realization.

Other constraints address the Activity Diagrams. In contrast to the standard
UML semantics, they need to contain at least three swim lanes. Two swim lanes
are used to place input objects and output objects of a process. Each class of a
business object in these swim lanes has a one-to-one association to a consumed
or provided service in a process map. At least one swim lane is used to express
the responsibility for performing the activities.

After this phase of process modeling the business process model now consists
of various diagrams at different levels of detail, represented by Process Maps,
Business Use Case models and Activity Diagrams.

2.3 Preparing for Measurement Support

As described earlier, changing market conditions caused a switch of focusing
on to process improvement activities. In this context the idea arose to use the
existing business process models as starting point for the analysis of change
potential. This leads to the demand of ratios for the analysis of the process
models and thus requires to define index values and link them to the concepts
of the methodology.

In PROMET BPR goals are derived from strategy. A goal describes the
services, provided by a business process, and the way, these services will be
produced. Critical success factors are referenced to goals by describing potential
obstacles that arise while trying to produce the planned services. Critical success
factors are implemented through index values, which are formulated based on
measurable phenomenon. For the given methodology these phenomena are the
elements of a Process Map, Business Use Case model, or Activity Diagram. This
relationship is shown in figure 2.

After the described phases the engineered method now consists of concepts
mined out of both PROMET BPR and the UML. The integration of these con-
cepts is realized through mainly semantic constraints.

By summarizing information about the realization of the business process
through ratios, the process management was able to use the process models as
indicators for change potential. The following section describes the system of
ratios formulated based on the engineered method.

Ratios to Support the Exploration of Business Process Models 295

Activity
Diagram

Business Use
Case

Business
Object Model

Business
Process

Service

Business
Object Class

1

1

Activity Swim Lane

Strategy

Business Goal

Index Value

Critical
Success Factor

Variant

1

1..n

3..n

1..n

1

1

1..n

1
0..*

Sub Process

1

1..n

Output
Input

Process Map

Fig. 2. Linking ratios to elements of business process models

3 The System of Ratios

With the ratios linked to the model elements, the analysis of a business process
now can be realized by analyzing the business processes’ interfaces, the subpro-
cesses of the business process, and the elements of the Activity Diagram.

To support this analysis heuristics were formulated. Referring to Wallmüller
the ratios are described by defining the goal of measurement, the measurement
task, the object(s) to measure, and the interpretation of the measured values
[10]. Because of missing experiences with such measurements we assumed initial
values.

According to the levels of detail as described in section 2.2 the analysis starts
at the process model’s highest level of detail with the analysis of process maps. To
identify change candidates, the first step is to analyze each business processes’
interfaces. By relating the number of input objects to the number of output
objects the transformation complexity can be assessed (see table 1).

Another characteristic of a business process, which can be determined by
analyzing process maps, is the directness of adding value. This ratio is based on
the relation between the number of input objects and objects, created within
the process but not provided to the customer (see table 2).

If more than one process is identified as a change candidate, the next step is to
compare the complexity of the process realization. This starts with the analysis
of the Business Use Case(s) linked to the process. In result the standardization
of the business process can be assessed (see table 3). We assume that those

296 A. Dietzsch

Table 1. Assessing the complexity of a transformation

Ratio’s Name Transformation Complexity
Goal of Mea-
surement

Determine the complexity of the system of sub processes required
to perform the business process’ transformation.

Measurement
Task

Determine the relation of the number of input objects I and out-
put objects O. Transformation Complexity = O/I

Object(s) to
Measure

Objects

Interpretation The relation should be between 0.5 and 2. A value smaller then
0.5 means, that a high number of input objects is transformed
into a small number of output objects. We assume that such pro-
cesses tend to subsume a high number of simple activities aimed
to ”assemble” a provided service. Further investigation should be
on the potential to combine those sub processes to one process.
A value greater then 2 means, that a small number of input objects
is transformed into a high number of output objects. We assume
that such processes hide the complexity of providing services in
sub processes and tend to be hardly manageable. Consequently
further investigation should be on the potential to split sub pro-
cesses.

Table 2. Measuring the directness of adding value

Ratio’s Name Directness of Adding Value
Goal of Mea-
surement

Determine the steps required to provide a service.

Measurement
Task

Determine the relation of the number of input objects I and ob-
jects created within the process S. Directness of Adding Value
= S/I

Object(s) to
Measure

Objects

Interpretation The goal is to design specialized processes. That means to only
add specific objects to provide the final service. Consequently we
assume that the relation of consumed objects and those created
during process realization should be about 3 to 1 (30%).

business processes with a high number of variants should be investigated for
change potential.

While the three described ratios can be used to select business processes
to change, the second group subsumes ratios to assess the consequences of a
business processes’ design. This analysis is based on the elements of Activity
Diagrams, e.g. the activities, forks and joins, decisions, and swim lanes.

Ratios to Support the Exploration of Business Process Models 297

Table 3. Assessing a processes standardization

Ratio’s Name Process Standardization
Goal of Mea-
surement

Determine the potential spectrum of the set of instances of a busi-
ness process.

Measurement
Task

Count the specializations of a business use case.

Object(s) to
Measure

Specialization associations

Interpretation A high number of variants indicates a high variance in pro-
cess instances and thus a low standardization. To ensure efficient
manageable processes the number of variants of business process
should not exceed three.

The first step is to determine the complexity of process realization. Here
the starting point is the number of activities that build a process (see table 4).
Deeper analysis should be performed with processes, that are characterized by
a high complexity.

Table 4. Complexity of process realization

Ratio’s Name Complexity of Process Realization
Goal of Mea-
surement

Determine the complexity of a single business process, sub process
or process variant.

Measurement
Task

Count the activities grouped in a business process or business
process variant.

Object(s) to
Measure

Activities within a business process

Interpretation With a high number of activities a business process tends to be
more complex. It is assumed that a complex business process is
hard to manage. To keep a business process manageable the num-
ber of activities should not exceed fifteen.

If a process realization is characterized by a high complexity it can further
be analyzed if it is possible to be reduced. One ratio to indicate such potential
is the degree of concurrence of the processes’ activities (see Table 5).

Another driver of process complexity are the requirements resulting from co-
ordinating activities within a business process (see table 6). We assume, that
the need for coordination is mainly driven by activities performed under differ-
ent responsibilities. By reducing those activities, the process complexity can be
reduced.

298 A. Dietzsch

Table 5. The degree of concurrence of a processes’ activities

Ratio’s Name Degree of Concurrence
Goal of Mea-
surement

Determine the cohesion of activities of a business process.

Measurement
Task

Count the number of activities embedded in forks and joins P .
Determine the relation to the number of activities not in forks
and joins A. Degree of Concurrence = A/P

Object(s) to
Measure

Concurrent activities in activity diagrams

Interpretation A low value of cohesion can indicate the merge of two business pro-
cesses. This can result in obstacles for a focused process manage-
ment. Potentially the complexity of the analyzed business process
can be reduced by dividing the process in two processes.

Table 6. Measuring the demand for coordination

Ratio’s Name Demand for Coordination
Goal of Mea-
surement

Determine the amount of coordination effort, necessary to manage
the process instances.

Measurement
Task

Count the number of transitions to activities in other swim lanes
S. Determine the relation to the total number of transitions T .
Demand for Coordination = S/T

Object(s) to
Measure

responsibility cross cuts in activity diagrams

Interpretation Crossing swim lanes mainly means cooperation and thus induces
the need for communication and coordination. Responsibility cross
cuts are potential losses of process performance and should be
reduced. We assume that the value of this ratio should not exceed
20%.

As described earlier, we assume that one major driver of process complexity,
is the variance of process instances. In Activity Diagrams the ratio addressing
this driver is the frequency of decisions to make (see table 7).

In contrast to Franken et al. [5] the introduced ratios are focused on business
process model measures. Thus not the characteristics of process instances, e.g.
response time, processing time, or throughput, are measured but the impact of
certain model structures on the modeled business processes can be derived.

Ratios to Support the Exploration of Business Process Models 299

Table 7. Measuring the decision frequency

Ratio’s Name Decision Frequency
Goal of Mea-
surement

Indicate the variance possible by realization of the process.

Measurement
Task

Determine the relation between the number of decisionsD to make
within the process and the total number of activities A. Decision
Frequency = D/A

Object(s) to
Measure

Decisions and activities

Interpretation The higher the number of decisions to make within a process the
higher is the variance of process instances. Additionally every deci-
sion potentially increases the required process time and the skills
required for staffing. Increasing the breadth of possible process
instances hinders process standardization. Thus generally the de-
cision frequency should be reduced.

4 Experiences

With the described ratios it is possible to explore the Mobiliar’s process models
at every level of detail. Thereby most ratios are defined at the highest detail
level - the Activity Diagrams (see fig. 3).

Content

 Services
 Processes
 Customers and Suppliers

 Variants of a Process

 Activities
 Input Objects
 Output Objects
 Forks and Joins
 Swim Lanes
 Decisions

Ratios

 Transformation
Complexity

 Directness of Value
Adding

 Process Standardization

 Complexity of Process
Realization

 Degree of Concurrence
 Demand for

Coordination
 Decision Frequency

Process Map

Business Use
Case Model

Activity Diagram

Level of
Processes Model

Fig. 3. Process model elements and the defined ratios

Because the Activity Diagrams are stored in a case tool repository we de-
cided to first analyze this model level. Until now we have implemented scripts
to measure the ”Complexity of Process Realization”, ”Decision Frequency” and
”Transformation Complexity”. We performed an overall analysis over all mod-

300 A. Dietzsch

eled processes, including those modeled before enhancing the methodology. Ad-
ditionally we separately analyzed the process models regarding the used method-
ology version. Knowing that the investigated model basis don’t allow a statistical
”evidence” we measured the following values over all process models.

The average number of activities per Activity Diagram is 9. Thereby the de-
viation is 5.8 so that 3 to 15 activities per process can be considered as ”normal”.
The average ”Decision Frequency” is 32% which means approx. 3 decisions per
diagram. The deviation here is 3. So a ”normal” Activity Diagram contains 0
to 6 decisions. For the 9 processes modeled using the enhanced methodology we
measured the following values:

Ratio Average Deviation
Complexity of Process Realization 8 3.7
Decision Frequency 40% 38%
Transformation Complexity 1.9 1.2

The high decision frequency is interesting because we conclude that these
processes - which are all claims handling processes - are less standardized than
the others. To prove that our interpretation is correct we will now work with
the process management of these processes. Beside this analysis during the last
months these ratios were used by Business Process Engineers to get a quick
insight into modeled processes and to guide the process design.

5 Conclusion

This paper has shown how, based on specific process modeling methodology,
a system of ratios can support the active use of business process models. Fur-
thermore it can give guidance through the process design. First experiences show
that one of the success factors of such an extension of methodology is to focus on
few indicators instead of trying to completely represent the modeled processes.

An advantage of the described system of ratios is that there is no need for
specific tool support to perform business process analysis as for instance in [6].
Thus the process management is now able to assess the business impact of design
decisions originating in the process engineering phase. Supported by the provided
methodology, the potential for process improvement can now be analyzed sys-
tematically. With this extension the character of business process models changes
from a instrument of documentation and communication to an analysis tool, and
thus the value of models increases.

Further work will be on the complete implementation of the introduced ratios
as well as on the evaluation and improvement of the assumed values. Beyond this
a extension of the system of ratios to static structure models is strived. Thus the
value of the Mobiliar’s models and in particular the benefit of applying modeling
to changes processes could further increased.

Ratios to Support the Exploration of Business Process Models 301

References

1. Brinkkemper, S.; Saeki, M.; Harmsen, F.: Assembly Techniques for Method Engi-
neering, In: Pernici, B.; Thanos, C. (Eds.): CaiSE’98, LNCS 1413, Springer, Berlin
et al., 1998, pp. 381–400

2. Brinkkemper, S.; Saeki, M.; Harmsen, F.: Meta-Modelling Based Assembly Tech-
niques for Situational Method Engineering, In : Information Systems 24 (1999) 3,
pp. 209–228

3. Dietzsch, A., Adapting the UML to Business Modeling’s Needs - Experiences in
Situational Method Engineering, Jézéquel, J.-M., Hussmann, H., Cook, S. (Eds.),
UML 2002 - The Unified Modeling Language: Model Engineering, Concepts, and
Tools, Springer, Berlin et al., 2002

4. Esswein, W.: Modellierung der Verteilbarkeit von Daten, In: Fortschrittberichte
VDI Reihe 10: Informatik/ Kommunikationstechnik, Nr. 251. Düsseldorf: VDI-
Verlag, 1993, pp. 170–182

5. Franken, H. M.; Jonkers, H.; de Weger, M. K.: Structural and Quantitative Perspec-
tives on Business Process Modelling and Analysis, In: Kaylan, Ali Riza & Lehman,
Axel (eds.), Proceedings 11th European Simulation Multiconference ESM’97, The
Society for Computer Simulation, San Diego, 1997, pp. 595–599

6. Nissen, H. W.; Zemaneck, G. V.: Knowledge Representation Concepts Supporting
Business Process Analysis, In: Proc. of Reasoning About Structured Objects:
Knowledge Representation meets Databases (KRDB-95), Workshop of the 19th
Annual German Conference on Artificial Intelligence (KI-95), 1995,
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
2/nissen.ps, download: 13-08-2002

7. o. V.: PROMET � Methodenhandbuch für den Entwurf von Geschäftsprozessen,
IMG, St. Gallen, 1997

8. Kruchten, P.: The Rational Unified Process: An Introduction, 2nd ed., Addison
Wesley, Reading, 2000

9. Österle, H.: Business Engineering Prozeß- und Systementwicklung, Band 1: En-
twurfstechniken, 2nd Edition, Springer, Berlin et al., 1995

10. Wallmüller, E.: Software-Qualitätssicherung in der Praxis, Hanser, München,
Wien, 1990

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 302–320, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Integrating Business Process Reengineering with
Information Systems Development: Issues & Implications

Vishanth Weerakkody and Wendy Currie

Centre for Strategic Information Systems
Department of Information Systems & Computing

Brunel University
Uxbridge

Middlesex UB8 3PH

{Vishanth.Weerakkody,Wendy.Currie}@brunel.ac.uk

Abstract. Many organisations in the West have undertaken business process
reengineering initiatives with the aim of improving organisational performance.
These initiatives inevitably involve redesign and alterations to the existing
information systems that support the business processes. The implications for
information systems and how an organisation’s existing systems can evolve to
support a reengineering project is an area, which has been relatively under
researched. Although it is recognised that information systems design and
development is difficult in BPR environments, there is little overlap between
research in BPR and systems analysis, so that there is no shared vocabulary and
perspective. This paper examines how information systems redesign can be
integrated with business process reengineering through a review of relevant
literature and empirical research.

Keywords: business process reengineering (BPR), information systems &
technology (IS/IT), legacy systems

1 Introduction

The highly competitive market environment that emerged with the 1990’s placed
many organisations under increasing pressure to improve performance and reduce the
cost of running their businesses. A pattern emerged where companies were having to
continuously re-skill their people, reshape product portfolios, redirect resources and
redesign processes and IS/IT systems [28][52]. In this context, Business Process
Reengineering (BPR) became a popular mode of organisational change and
improvement in the 1990’s [23][32][19]. However, since the turn of the millennium
the West has become somewhat shy of the BPR concept. Many business and IS/IT
specialists dislike hearing the word ‘BPR’ although their organisations are still
actively involved in some form of reengineering. Present day examples that result in
business and IS/IT reengineering include, Enterprise Integration and Business Process

Integrating Business Process Reengineering with Information Systems Development 303

and Application Outsourcing. Researchers and practitioners today use different
interpretations for BPR to suit their environments and needs. BPR is discussed under
the various rubrics of business process improvement, business process redesign,
business process innovation or business process transformation. Harrington [32] uses
the term ‘business process improvement’ in preference to business process
reengineering.

Information systems, supported by the plethora of information and communication
technologies, sustain the core business processes in most of today’s organisations.
The main benefits of information technology has moved beyond the efficiency and
effectiveness gains of the 1960’s and 1970’s and towards strategic advantage which
will transform the organisation of the future. Therefore, if real benefits are to be
realised from business process change it will often involve redesigning the
information systems and information technologies (IS/IT) that support the processes
[8].

This paper examines the IS/IT - BPR relationship through a review of relevant
literature and exploring practical examples where organisations had to integrated
IS/IT change with process redesign. The paper is divided into four parts. First, the
following section looks in detail at the IS/IT – BPR relationship, the role of IS/IT
professionals in process improvement, and the congruence between BPR and IS
development lifecycles. Second, the paper briefly outlines the approach used to
conduct the research described in the paper. Third, the issues impacting BPR and
IS/IT are explored in the context of two cases presented in section four. Fourth, a
synthesis of the factors impeding the integration of business process and IS/IT
reengineering is compiled in section five. Finally, the paper discusses the conclusions
in section six and suggests areas for further consideration.

2 The Impact of IS/IT on Process Improvement

We are living in a period in which organisations particularly in industrialised nations
are experiencing a huge growth in the use of IS/IT [6][25]. Information systems have
no independent existence of their own unless taken in the context of an organisation
and its business processes [37]. While IS/IT is seen as a driver of organisational
change [49], it can also play a central role in the BPR process [35][45]and conversely
BPR is already changing the way we view IS/IT. Morton [48] suggests that the
largest short-term payoffs from BPR may come from reengineering processes with
IS/IT support. Although the relationship between BPR and IS/IT remains a difficult
one [56][13], companies are likely to engage in IS/IT enabled BPR [9][26]. The
move from mainframe based legacy systems to PC based distributed network systems
is considered as one of the most useful aspects of IS/IT in BPR [34], though this is
often a difficult task which includes changing application software as well as
platforms [38].

304 V. Weerakkody and W. Currie

Behrsin et al., [4] and Ciborra [14] saw the changes faced by the 1990’s businesses
as being fuelled by IS/IT. More recently, the influence of the Internet has further
enhanced the capabilities of IS/IT in the context of business process improvement
[60][23][25]. While enabling organisations to implement innovative business
processes and helping to improve the quality of operations in terms of accuracy and
time scale, IS/IT has provided new methods of working that extend the scope of the
organisation [51]. On the other hand, like BPR, IS/IT is having a negative impact on
people and it is commonly cited as the main factor in causing the decline in the
numbers and role of middle managers [21].

Surveys on the use of IS/IT in BPR programmes confirm that IS/IT is enabling the
majority of the BPR initiatives [16][57][58][20]. An increasing number of business
managers are looking at BPR as a way of applying IS/IT to their business in order to
gain competitive advantage and provide quality products and services to their
customers [33]. Similarly, surveys conducted by Willcocks [67] highlights IS/IT and
its management as one of the top ten critical success factors for BPR programmes;
and in practice over 75% of the top 30% most successful BPR programmes had seen
IS/IT as critical for both enabling radical process redesign and supporting redesigned
processes, thus, signifying the role of IS/IT in BPR.

Given that core business processes in many organisations are usually supported by
IS/IT, BPR will inevitably involve redesign and alterations to these information
systems [56][10][1]. These processes and people performing them in many
organisations often tend to revolve around legacy IS/IT systems. These legacy
systems are sometimes scattered across different hardware and software platforms and
can be at different levels of compatibility with each other. Thus, it is recognised that
IS design and development is difficult in the context of BPR [13][4][56]. The
implications for information systems and how the existing systems can evolve to
support a reengineering project is an area, which has had relatively little research. An
integrated approach is needed to incorporate BPR changes into the business systems
analysis and design (BSAD) life cycle, and to understand how information is used in
processes [39]. Unfortunately, there is little overlap between research in BPR and
systems analysis, so that there is no shared vocabulary and perspective. However,
case studies have revealed that IS/IT redesign will be successful when the political
and human issues surrounding IS development are well understood and explicitly
managed [66][65].

In today's business computing environment there are a number of different
methodologies, tools and techniques for business systems analysis and design and for
business process reengineering. But, it is commonly accepted that they do not support
simultaneous BP and IS reengineering [56][13][42]. The use of different
methodologies for process redesign and IS reengineering results in a gap between
business process models and IS/IT systems [13][65]. This may contribute to the
failure of BPR initiatives especially in cases where the majority of business processes
in the organisation are driven by IS/IT.

Integrating Business Process Reengineering with Information Systems Development 305

2.1 IS Development and Process Redesign: The Relationship

What is the relationship between information systems development and business
process reengineering or redesign? The views from published literature vary.
Hammer & Champy’s [29] view is that IS/IT cannot play an effective leadership role
in BPR though many IS/IT people may not agree with this view. A number of authors
suggest that IS/IT can support fundamental changes to the underlying processes
[56][66][15][36]. Harrington [32] and Davenport & Short [20] promote the idea that
process improvement should be combined with process automation. Kaplan and
Murdock [39] in supporting this view suggest that it is important to take an integrated
look at both process and information flows simultaneously, focusing on how
information is used in the process and how people interact with systems on both a
formal and informal basis.

IS/IT should be viewed as more than an automating or mechanising force;
automating processes for the sake of automation will not lead to significant
improvements, instead IS/IT should be used to fundamentally reshape the way
business is done [46][20]. Hammer & Champy [29] and Harrington [32] agree when
suggesting that automating an inefficient process only helps to produce a ‘faster
mess’.

Although Ciborra [14] questions the applicability of some of the commonly used
IS methodologies to practical business environments, it is stated that existing IS
methodologies such as Structured Systems Analysis & Design (SSADM) and
Information Engineering (IE) overlap with BPR [47]. Earl’s [24] view on the
relationship between BPR and IS stresses that systems analysis and BPR have a lot in
common and share common methods, and suggests that process thinking is the same
as systems thinking. Moreover, some researchers suggest that the initiative to move
towards BPR frequently originates in the IS department [44].

A comparison of the systems analysis and design methodologies and the more
recent BPR literature reveals that approaches to both these areas are based on the
traditional, structured lifecycle approach. The traditional systems analysis and design
lifecycle is based on the following stages: preliminary investigations and
determination of requirements, systems analysis and design, software development,
systems testing and implementation (see [7][18][22]). Similarly, the majority of BPR
approaches are centred around a cycle of: process identification, analysis, redesign
and implementation (see for example [46][61][45]. Therefore, it can be argued that
both BPR and IS development lifecycles share a set of guidelines that are based on the
same principles.

Although it is recognised that IS/IT strategy planning and business process change
activities should be feeding off each other [56], BPR and IS/IT systems development
often proceed independently resulting in a mismatch [64][65]. While some firms
have been able to achieve multiple objectives when redesigning processes with IS/IT
[20], it can be argued that without IS/IT companies may lose much of its power to
transform performance [62]. However, as outlined before reengineering legacy

306 V. Weerakkody and W. Currie

systems often require more effort in comparison to the rest of the process
reengineering work.

The increased level of IS/IT and the complexity of systems used by organisations
make the reengineering process even more complex. In such an environment, it is
helpful to compare the reengineering process with some form of logical construct in
order to understand the IS/IT – process reengineering relationship. In this context,
Zachman’s [69] use of classical architecture (i.e. a process of constructing a building)
to understand and account for the different stages of the IS development process is
useful.

Like the different stages of the IS development process, the BPR process involves
a number of phases (tasks). With a view of rationalising these phases, Zachman’s
[69] representation of the IS development process can be extended and placed in
perspective with the BP&ISR process (table 1). This places the BP&ISR process in
context with a non-technical (constructing a building: as in architecture) as well as a
technical (developing a information system: as in IS development) process, and helps
to understand and justify the relationship between BPR and IS/IT reengineering.

2.2 The Role of IS/IT Professionals in Process Redesign Environments

While the traditional role of IS/IT people were focused more on technical and systems
issues in the past, BPR has provided an opportunity for the IS community to combine
the rigour of the IS discipline with organisational change [3]. It is a well-known fact
that greater business impact can be achieved if IS efforts are focused on business
requirements rather than the simple internal efficiency of business functions [53]. IS
people are well positioned to contribute to process redesign because of their expertise,
techniques and style of thinking [40], especially by recognising any process design
limitations that the BPR tools and techniques may have and establishing ways to
improve them [55].

Davenport & Short [20] propose that although few IT groups have the power and
influence to spearhead process redesign, they can play several important roles.
According to Teng et al., [57] IS/IT people can identify the IS/IT related enabling
opportunities for BPR. Process flows, particularly manufacturing processes in most
organisations are often the result of historical circumstance and should usually be
redesigned before further automation is applied, and the IS/IT unit can get involved in
process redesign by developing a methodology for IT-enabled redesign [20].
Avgerou et al., [1] supports this view and indicate that systems analysis and
organisational process design have always been linked. Willcocks [66] agrees, but
also reminds us that when IS/IT people are heavily implicated in the change process,
the chances of ignoring the more human and organisational, including political and
cultural issues in change are high. However, such problems can be avoided by
involving the process participants and IS/IT users in the reengineering work where the
use of trial and error RAD approach can be more constructive for IS/IT reengineering
than traditional approaches such as SSADM [46][65].

Integrating Business Process Reengineering with Information Systems Development 307

 Table 1. Classical Architecture vs. IS Development vs. BP&ISR

“When developing information systems in the past, companies would first decide
how they wanted to do business and then choose a software package that would
support their proprietary processes” [20a, p125]. However, with best of breed
applications, the sequence is reversed and the business process often has to be
modified to fit the system. For example, ERP systems are a good example of generic
applications. Their design reflects a series of assumptions about the way companies
operate in general. Service providers try to capture best practice scenario from
experience and incorporate these into their applications. This often results in the user
organisation having to restructure their business processes to fit the requirements of
the system [20a]. In this scenario, the IS/IT unit has to play a major role to liase with
business managers and users to reengineer and bridge the gap between the proposed
enterprise systems and the current business processes.

Architecture
Information Systems
Development

Business Process &
Information Systems
Reengineering

Bubble Charts :
Understand the final /
overall structure of the
proposed building.

Scope / Objective : Understand
the business environment that
needs automation as well as the
aims and objectives of the project.

Project Initiation : Understand the business
environment targeted for reengineering as
well as the aims and objectives of the
overall project.

Architect’s Drawings :
Architect’s representation
of the building from the
owner’s perspective.

Model of the Business : Descrip-
tive model of the relationship
between business entities from the
users perspective.

Strategic Planning : Examine the goals,
objectives & IS/IT strategy of the business,
and identify areas for improvement.

Architect’s Plans :
Detailed representation of
the final building from the
architect’s (designers)
perspective.

Model of the IS : Detailed model
of the information system from
the designer’s perspective.

Process Identification : Identification and
mapping of processes in the context of the
current business environment.

Contractor’s Plans :
Analyse and take into
account any issues
constraining the
architect’s plans.

Technology Model : Analyse &
take into account any technology
issues constraining the designer’s
IS model.

Process Analysis : Analyse the identified
processes and their supporting IS/IT
systems and identify problems and
opportunities for improvement.

Shop Plans : Drawing the
detailed plans of the
components that make up
the final structure of the
building.

Detailed Description : Writing
the computer program (software)
that produces the instructions for
running the actual systems.

Process Reengineering : carrying out the
actual process and IS/IT improvement work
(mapping the reengineered processes &
sub-processes).

The Building : The
completed physical
building ready for
occupation.

Information System : The actual
IS/IT system ready for
implementation.

Process Deployment : The reengineered
process ready for implementation.

308 V. Weerakkody and W. Currie

2.3 A New Definition for Business Process & IS/IT Reengineering

In order to accommodate the increasing role of IS/IT in BPR programmes it may be
appropriate to alter the term ‘BPR’ and hereafter refer to it as ‘BP&ISR’. In this
context, Hammer & Champy’s [29] definition of BPR which propose “the
fundamental rethinking and radical redesign of business processes to achieve dramatic
improvements in critical contemporary measures of performance, such as cost,
quality, service and speed” (p32); can be further refined and a new definition for
BP&ISR proposed as follows:

‘BP&ISR is the fundamental rethinking and radical redesign of an organisation’s
business processes and information systems with an aim to achieve significant
improvements in quality and service, and optimise costs and productivity’.

The above definition incorporates the role of IS/IT in BPR and covers a wider
spectrum of the organisational domain than most definitions proposed in the
literature. The following section examines the IS/IT - BPR relationship further as well
as other areas that are important for the integrated implementation of BP&ISR.

2.4 The Need for Integrating IS/IT Redesign with Process Improvement

Surveys reveal that IS/IT expenditure in completed BPR projects range between 22-
36% of the total cost of the project [27]. However, it is also reported that up to 90%
of IT projects fail to meet their goals and less than 25% properly integrate business
and technology objectives [50]. Other surveys indicate that UK companies waste 40%
of the total amount they spend on IS/IT because the systems they build are not aligned
with business strategies [42].

Organisations often tend to use IS/IT to automate accounting, stock control and
other routine functions [48]. However, automating of past procedures usually leads to
‘electronic concrete’, and Martinsons & Revenaugh [43], Remenyi [54], Hutton [36]
and Hammer & Stanton [31] all caution that computerising the original organisation
thinking behind manual approaches only results in the old procedures to operate
faster. Thus, “top management’s principal challenge is not to design systems that will
process data more efficiently but to create an environment in which people can exploit
information more effectively” ([11], p209). “Heavy investments in information
technology have delivered disappointing results, largely because companies tend to
use technology to mechanise old ways of doing business. They leave the existing
processes intact and use computers simply to speed them up” ([30], p104).

Earl [24] expresses the view that IS/IT can be a constraint on BP&ISR, principally
because of the nature of legacy architectures where systems have been built in the
past to support local, functional needs, which result in limitations for process
integration. However, he draws attention to the fact that BP&ISR projects have
encouraged firms to analyse the business first, before designing computer systems.
Yet, this does not prevent pre-existing IS/IT systems being an obstacle to BP&ISR as
UK based surveys by Willcocks [67] highlight technical deficiencies together with

Integrating Business Process Reengineering with Information Systems Development 309

poor IS/IT management as seventh out of ten most significant barriers to
reengineering.

While it is clear from the literature that process improvement and IS/IT change
should happen in parallel, organisations should therefore try and integrate the two.
However, as discussed in section 3.1, many organisations engaged in business
improvement projects tend to use different teams, methods and tools for process
improvement from IS reengineering. While this scenario is captured in figure 1, the
arguments made in this section are further exemplified by the practical cases outlined
in the following section.

 ������������ 				����������
 							������ 										�����				

�����

3 Research Approach

The research described in this paper begins with a review of the relevant literature to
examine the role of IS/IT redesign in BPR. To supplement this a substantial case
study was undertaken in a large multinational organisation in the UK. This case study
was based on participant observation, document collection, formal semi-structured
and informal unstructured interviews. The aim of the case study was to investigate
how IS/IT redesign is integrated in process improvement. The case study was
followed by an action research study in a large South Asian organisation to further
explore the IS/IT-BPR relationship.

 INFORMATION
 SYSTEMS

PEOPLE

 Methods & Approach Reengineer or Replace
Radical or Incremental Methods & Applications

 Process Models IS Models

 BUSINESS
PROCESSES

 G A P

BP&ISR

%XVLQHVV
$QDO\VW

6\VWHPV
$QDO\VW

�������%35 �������,65

Fig. 1. The Gap between Business Process and Information Systems Reengineering

310 V. Weerakkody and W. Currie

Four main approaches to data collection were used in both the case study and
action research with data coming from multiple sources. These were: formal
interviews; informal discussions; observation and document collection.

The philosophy of research adapted draws on the suggestions of Yin [68], Creswell
[17], Tesch [59], and Avison et al., [2] who encourage the mixing of different data
collection strategies.

4 Integrating IS Redesign with BPR: Two Case Studies

This section summarises the case study and action research findings in two
organisations that have attempted to reengineer their business processes and IS/IT
systems. It outlines the approaches used by these two organisations for redesigning
legacy systems and demonstrates how IS/IT redesign was integrated with BPR.

4.1 Organisation ‘A’ : A Multinational Technology Solutions Provider

This case study looks at the process and IS/IT improvement work undertaken in the
UK as part of a very large scale global business reengineering initiative in a leading
multinational – technology provider and consulting organisation. The project was
promoted and supported by senior management, and consequently the objectives were
established at strategic level and seen as fundamental to the long-term organisational
success.

The particular aim was to reengineer and standardise the way in which the
company manages its customer relationships. Ten key business processes were
identified as central to this relationship. A number of systems were being developed
to support these key processes, many of which integrate with legacy systems. Of
these systems 60% of the reengineered business processes were supported by new
information systems, 30% involved integrating new and legacy systems, whilst 10%
relied on reengineering legacy systems to match the redesigned processes. By far the
largest of these was the customer complaints handling system.

The customer complaints handling process at organisation ‘A’ was redesigned at a
strategic level and handed over to a systems design team to reengineer the supporting
IS/IT systems. The approach adopted by the systems development team was to
divide the systems redesign work into manageable modules. Direct modifications
were made to the system design and program code to match the changes in the
business process. Prototyping and Rapid Application Development (RAD) were used
in preference to traditional systems development methods such as SSADM or IE,
which the IS reengineering team believed consume more time and is more complex to
manage although sharing a similar lifecycle as BPR [63].

As the customer complaints handling process had already been reengineered, the
task of the IS/IT people was to modify the supporting systems to align it with the

Integrating Business Process Reengineering with Information Systems Development 311

process. Although the systems reengineering team’s rapid system development and
prototyping approach was practical given the nature and size of the overall
reengineering project, the fact that the process had already been reengineered and
fixed prior to the IS/IT work was a major handicap to the team. This was the case
with the majority of other processes in the project where most of the reengineering
work was IS/IT related, while the processes were already reengineered and fixed at a
strategic level. This BP&ISR approach had contributed to a large number of IS/IT
related problems in the project mirroring the arguments in section 3.

After the IS/IT reengineering work was completed, the team and a few experienced
users tested the reengineered system extensively. This was followed by a parallel run
with the old customer handling system, after which the reengineered version of the
system was delivered to the strategic BPR team for further compatibility testing with
the customer complaints handling process.

When analysing the reengineering work at organisation ‘A’, it was evident that the
business process and IS/IT reengineering work had been undertaken in isolation from
each other. While the process modelling was done by a high level team of consultants
and business planning experts who enjoyed a high level of prestige and recognition,
the IS/IT reengineering work was done by systems analyst and programmers who
were treated as normal employees. The customer complaints handling system
redesign work was a prime example of this scenario where the IS/IT people had less
influence on the overall reengineering work, and were expected to simply follow the
instructions given by the process modelling team. Unfortunately, this scenario is the
opposite of what is considered as best practice in the literature (see section 2).

Perhaps the most significant challenge that organisation A was facing was the
difficulty of communicating between the various process and IS/IT teams involved.
This was aggravated by the difficulty of mapping business processes to legacy
information systems, and the incompatibility between the tools, techniques and
methodologies used for BSAD and BPR. However, one of the most valuable lessons
learnt from the project was that many of these problems could have been avoided had
the process and IS reengineering work been undertaken in integration with each other
[65].

4.2 Organisation ‘B’ – An Organic Based Materials Provider

The Second case study describes the reengineering of key processes in a typical
public limited company in South Asia. The case considers the impact of process
improvement on reengineering legacy IS/IT systems and the computerisation of non-
IS/IT related processes.

In this case, two processes were selected for reengineering by a team of five
(including the author) in an action research setting. The first process involved the
reengineering of cash and cheque payments to suppliers, and the second process
involved the reengineering and introduction of new IS/IT systems to automate the

312 V. Weerakkody and W. Currie

tracking of engineering projects by engineers and the finance department at
organisation B.

As with the previous case study, improvements to the first process required
reengineering work to legacy systems that supported the process. Major
inefficiencies and weaknesses were found in this legacy system at the process analysis
stage. This had to be overcome if any worthwhile improvements were to be made to
the process under review. In this context, the reengineering team proposed a solution,
which involved a combination of changes to manual activities in the process and the
legacy system that was supporting the process. It was clear that substantial savings in
the context of staff time, resources and costs were possible if these changes were
carried out. However, the reengineering team was unable to carry out these changes
on their own and had to involve organisation B’s IT function to perform the changes
to the legacy system.

Due to the integrated nature of the legacy system concerned, the IT function
needed a week to study the proposed changes to the target system. Much to the
disappointment of the reengineering team, the IT function was of the opinion that the
proposed changes to the legacy systems could not be carried out. The reason given
was the risk of, what they described as, a ‘chain reaction’ to other modules in the
integrated system. Nevertheless, the IT staff agreed that the changes proposed by the
reengineering team were genuinely effective and admitted that the legacy system
concerned, which was introduced to company ‘B’ in the early 1990’s, was highly
inefficient and ill-equipped to meet their current business needs.

Analysis of the second process (tracking of engineering projects) revealed that the
introduction of a new IS/IT system would significantly improve both the efficiency
and effectiveness of the process. Given this, the reengineering team proposed
improvements to a number of manual activities and developed a new information
system to support the overall process. By introducing IS/IT to the core of the process,
it was proposed to speed up and reduce the cycle time of the overall process. While
the computerised system involved automatic calculations, transferring of figures,
validations, automatically picking up information from the database, the generation of
a variety of management information reports and standard printouts; it had a number
of data entry standards and controls incorporated helping to eliminate manual errors.

Since the main reengineering effort was focused on computerising the manual
activities involved in the process, the work at this stage involved mostly systems
design and development. A combination of SSADM and IDEF0 (process mapping
diagrams) techniques were used to draw up rough sketches of the ‘To Be’ process and
system models. Whilst the initial analysis and design was done using a structured
approach, the latter part of the system development was done using a RAD approach.

When evaluating the process improvement efforts relating to both processes, it is
clear that they were centred more on IS/IT reengineering than process redesign.
Although the outcome of the first reengineering effort was that the process could not
be implemented due to a legacy system constraint, it answers the question set out in

Integrating Business Process Reengineering with Information Systems Development 313

this paper in the context of the position and the significance of IS/IT redesign in
process reengineering environments. Likewise, the main reengineering effort in the
second process was focused on computerising the manual activities in that process
and therefore involved mostly systems design and development. Therefore, it is fair
to suggest that both projects (at company ‘A’ and ‘B’) helped to exploit the
integration of IS/IT with BPR to a large degree.

5 The Main Barriers Impeding the Integration of BP&ISR:
A Synthesis of Issues

Although some argue that IS/IT is not necessarily an element of BPR type projects of
organisational change, the reality of modern business infrastructure is such that IT
occupies a central role [62][25][20a]. Therefore, it is argued that IS/IT has to play a
major role for process reengineering to be successfully implemented [56][27][65a].

Issues identified in the literature (in section 3) that impede the efforts for integrated
BP&ISR implementation include:

� non-alignment of business and IS/IT strategy;

� poor levels of management commitment;

� constraints imposed by legacy systems;

� risks associated with business and IS/IT change;

� limited scope for team work between business and IS/IT people;

� negative employee attitude;

� red tape and bureaucracy within functionally oriented organisations;

� and lack of frameworks for integrating BP&ISR

The two projects outlined in section 4 further substantiate the above and highlight
the close relationship between BPR and Information Systems. Among the most
significant issues identified in both organisation ‘A’ and ‘B’ were the problems
associated with reengineering legacy systems. This showed that while most of
today’s organisations cannot escape the need to change their pre-existing IS/IT
systems in the event of a process improvement or reengineering project, IS design and
development in the context of BP&ISR can be difficult. The related IS reengineering
problems identified, were: the lack of integration between business process and IS/IT
reengineering; lack of co-ordination and team work between process reengineering
and IS/IT professionals; and the risk associated with reengineering established legacy
systems. The influence of the above factors on BP&ISR is captured in figure 2.

314 V. Weerakkody and W. Currie

6 Conclusion

Whilst the relationship between business process reengineering and IS/IT remains
difficult to understand, it is clear that the reality is BPR and IS/IT often go hand in
hand. The literature has demonstrated that both the technical aspects and analysis
methodologies for IS/IT and BPR are interwoven. Most organisations engaged in
analysing their processes will inevitably have to consider the supporting IS/IT
systems. By the same token, an organisation developing a new IS/IT system will
have to bear in mind the ramifications for their business processes.

Although the significance of IS/IT in BPR was evident in the literature, most
articles do not address this area in adequate depth or provide guidelines for the
practitioner on how to carry out IS redesign in BPR projects. Thus, the authors have
redefined the definition of BPR and called it BP&ISR to accommodate the
reengineering of IS/IT systems that support an organisation’s business processes.

Fig. 2. Factors Impeding BP&ISR

�����

	���

				
��

����
��	

�	��������
��	����	�

�	����������
��	�����

��������
���������

���
���
�����

��������
��������

������
�������

� !"��
#	���$�	
�

Integrating Business Process Reengineering with Information Systems Development 315

Process improvement often involves the reengineering of legacy IS/IT systems as
such systems support the business processes targeted for improvement. This paper
has sought to explore this relationship by reviewing the relevant literature and
comparing this with the realities experienced in two different organisations.

In identifying the positive aspects of this relationship it should be recognised that
this is somewhat a generalisation. The case studies help to expand on this, as the two
companies discovered different levels of compatibility between redesigned business
processes and existing IS/IT systems. In both companies A and B, issues arose as a
result of the incompatibility between the reengineered business processes and the
proposed changes to legacy systems. It was clear in company A that changes were
required in both the process modelling approach and IS/IT redesign approach to
facilitate the integration and mapping of process models with new, reengineered and
existing legacy IS/IT systems. The isolation of business process and information
systems reengineering from each other was clearly the most significant contributor to
a number of problems encountered during the process improvement work in this
organisation.

Recognising the importance of IS/IT in reengineering, the author has extended
Hammer & Champy’s [29] definition of BPR to incorporate the role of IS/IT in
reengineering, ‘BP&ISR’, defined as follows:

‘BP&ISR is the fundamental rethinking and radical redesign of an
organisation’s business processes and information systems with an aim to
achieve significant improvements in quality and service, and optimise costs
and productivity’.

The above definition of BP&ISR, presented from the literature, suggests only
radical redesign of an organisation’s information systems. However, the case studies
described in this paper revealed that radically redesigning pre-exiting information
systems was not always feasible and was an intricate task. Therefore, in order to
accommodate the legacy systems constraints and other key issues impeding BP&ISR
in practice, the conceptual definition of BP&ISR above is modified and a new
definition proposed as follows:

‘BP&ISR is the fundamental rethinking and radical redesign of an organisation’s business
processes and the redesign of legacy information systems or implementation of new information
systems with an aim to achieve significant improvements in quality and service, and optimise
costs and productivity’.

The main difference between the two definitions lie in the approach used to
redesign the organisation’s legacy information systems that support the processes
selected for reengineering. In cases where the redesign of legacy systems is not
feasible, the second definition proposes the introduction of new information systems
to support the reengineered processes.

The primary objective of business process reengineering is to achieve
improvements in efficiency, effectiveness, productivity and speed of service as well

316 V. Weerakkody and W. Currie

as cost savings [29]. Arguably the IS/IT reengineering work in process improvement
environments should also be inspired by the same objectives. By seeking to achieve
these objectives BP&ISR team effectively initiate the process of analysing the
organisation’s IS/IT systems and the overall IS/IT strategy in general. This process
inevitably involves the IS/IT function and thus requires the services of systems
analysts, programmers and other technical people. As the case studies show, the
overall impact of IS/IT on process improvement is significant and the redesign of
IS/IT systems plays an important part in helping to achieve the overall objectives of
any process reengineering initiative. By having to combine IS/IT in process
reengineering, organisations are given the opportunity to rethink their IS/IT strategy
and redesign their legacy systems in line with current business needs. Given this, it is
suggested that companies can use their IS/IT resources to better effect as part of an
integrated ‘process and IS/IT improvement’ project, rather than under the banner of
‘business systems analysis and design’. Moreover, this paper has shown that BPR
supports the better exploitation of IS/IT and conversely IS/IT enables process
improvement. Therefore, at a strategic level it is argued that undertaking integrated
BP&ISR is more beneficial to organisations than isolated business and IS/IT
improvement projects.

The case studies have also illustrated situations where IS/IT can act as a barrier to
business process improvement (as with company B). Furthermore, the case of
company B shows how the integration of IS/IT in process improvement environments
can instigate new BP&ISR possibilities. The findings in this paper illustrates some of
the complexities which exist in the IS/IT-BPR relationship and how BPR and IS/IT
redesign can facilitates each other given the appropriate supporting conditions.
However, more research is needed to explore these conditions and find ways in which
organisations can integrate IS/IT redesign with process change in practical settings.
Given this, further research can focus on promoting ways to incorporate process
change into stand-alone IS/IT development projects that are often used to automate
inefficient business practices.

References

1. Avgerou, C, Cornford, T & Poulymenakou, A (1995), The Challenge of BPR to the
Information Systems Profession, New Technology Work & Employment, 10(2), pp 132–
141.

2. Avison, D, Lau, F, Myers, M & Nielsen, P A (1999), Action Research, Communications
of The ACM, Vol. 42, No. 1, January 1999, pp 94–97.

3. Balmforth, A (1996), Three Dimensions of Business Process Reengineering: The Links to
Information Systems and Market Changes, Proceedings of the 1st UKAIS Conference,
April 1996, Cranfield, UK.

4. Behrsin, M, Mason, G & Sharpe, T (1994), Reshaping IT for Business Flexibility: The IT
Architecture as a Common Language for Dealing with Change, McGraw-Hill, UK.

5. Berrington, C L & Oblich, R L (1995), Translating Business Reengineering Into Bottom-
Line Results, Industrial Engineering, January 1995, Pp 24–27.

6. Bloomfield, B P, Coombs, R, Knights, D & Littler, D (Eds) (1997), The Problematic Of
Information Technology And Organisation, In Information Technology And
Organisations: Strategies, Networks And Integration, Oxford University Press, Pp 1–12

Integrating Business Process Reengineering with Information Systems Development 317

7. Boehm, B W (1988), A Spiral Model Of Software Development And Enhancement,
Computer, May 1988, Pp 61–72.

8. Broadbent, M. And Weill, P (1999), The Implications Of Information Technology
Infrastructure For Business Process Redesign, MIS Quarterly, Vol.23, No.2, Pp.159–182

9. Byrne, B J (1997), Bpr For Line Managers, Idpm Journal, March 1997, Pp 24–25.
10. Carr, D K & Johhanson H J (1995), Best Practices In Reengineering: What Works & What

Doesn’t In The Reengineering Process, Mcgraw-Hill, Ny.
11. Champy, J & Nohria, N (1996), Fast Forward : The Best Ideas On Managing Business

Change, Harvard Business School Press, Boston, Us.
12. Checkland, P (1991), From Framework Through Experience To Learning : The Essential

Nature Of Action Research, In Information Systems Research : Contemporary
Approaches And Emergent Traditions, Edited By Nissen, H E, Klein, H K, &
Hirschheim, R, Elsevier Science Publishers B.V., Holland.

13. Childe, S J, Maull, R S & Bennett, J (1994), Frameworks For Understanding Business
Process Reengineering, International Journal Of Operations & Production Management,
14(12), Pp 22–34.

14. Ciborra, C U (1991), From Thinking To Tinkering : The Grassroots Of Strategic
Information Systems, Proceedings Of The 12th International Conference On Information
Systems, New York, Pp 283–291.

15. Classe, A (1995), Business Process Reengineering: Practice What You Preach, Computer
Weekly, July 27, 1995.

16. Coombs, R & Hull, R (1995), Bpr As ‘It-Enabled Organisational Change’: An
Assessment, New Technology Work And Employment, 10(2), Pp 121–131.

17. Creswell, J (1994), Research Design : Qualitative And Quantitative Approaches, Sage,
UK.

18. Daniels, A & Yeates, D (1989), Basic Systems Analysis, 3rd Edition, Pitman Publishing,
UK.

19. Davenport, T H (1993), Process Innovation: Reengineering Work Through Information
Technology, Harvard Business School Press.

20. Davenport, T H & Short, E J (1990), The New Industrial Engineering: Information
Technology And Business Process Redesign, Sloan Management Review, Summer 1990,
Pp 11–27.

20a. Davenport, T.H. (1998), Putting the Enterprise into the Enterprise System, Harvard
Business Review, July-August 1998, pp.121–131.

21. Dopson, S & Stewart, R (1993), Information Technology, Organisational Restructuring
And The Future Of Middle Management, New Technology Work And Employment, 8(1),
Pp 10–20.

22. Downs, E, Clare, P & Coe, I (1992), Structured Systems Analysis & Design, Second
Edition, Prentice Hall, UK.

23. Dutta & Segev (1999), Transforming Business In The Marketplace, Proceedings Of Hicss,
Hawaii International Conference On Information Systems, 1999

24. Earl, M J (1994), The New & Old Of Business Process Redesign, Journal Of Strategic
Information Systems, 3(1), Pp 5–22.

25. Earl, M & Khan (2001), E-Commerce is Changing the Face of IT, Sloan Management
Review 2001 Vol 43:1 p 64–72

26. Fiedler, K D, Grover V & Teng, J T C (1994), Information Technology-Enabled Change:
The Risks And Rewards Of Business Process Redesign And Automation, Journal Of
Information Technology, Vol. 9, Pp 267–275.

27. Grint, K & Willcocks, L (1995), Business Process Re-Engineering In Theory And
Practice: Business Paradise Regained, New Technology Work And Employment, 10(2),
Pp 99–109.

318 V. Weerakkody and W. Currie

28. Hamel, G & Prahalad, C K (1994), Competing For The Future, Harvard Business School
Press, USA.

29. Hammer, M & Champy, J (1993), Reengineering The Corporation : A Manifesto For
Business Revolution, Harper Collins Publishers Inc., Ny.

30. Hammer, M (1990), Reengineering Work: Don’t Automate, Obliterate, Harvard Business
Review, July/August 1990.

31. Hammer, M & Stanton, S A (1995), Reengineering Revolution Hand Book, Harper Collins
Publishers, UK.

32. Harrington, H J (1991), Business Process Improvement: The Breakthrough Strategy For
Total Quality, Productivity & Competitiveness, Mcgraw Hill, USA.

33. Hickman, L J (1993), Technology & Bpr : Identifying Opportunities For Competitive
Advantage, Proceedings Of The Bcs Case Seminar On Bpr, London, June 1993, In
Software Assistance For Business Reengineering, John Wiley & Sons Ltd., UK.

34. Hoffman, Z (1995), Business Process Reengineering: A New Strategic Paradigm Shift In
Change Management, Bay Zoltan Foundation For Applied Research, Uae.

35. Ho, J K-K (1996), Mpsb Research Explained, Journal Of The Operational Research
Society, 47(7), Pp 843–852.

36. Hutton, G (1995), Bpr: Overcoming Impediments To Change In The Public Sector, New
Technology Work And Employment, 10(2), Pp 147–151.

37. Jayaratna, N (1994), Understanding And Evaluating Methodologies : Nimsad - A
Systemic Framework, Mcgraw-Hill, UK.

38. IBM (1993), Redevelopment Methodology Manual, Version 2, Integrated Systems
Solution Corporation Issc, Lexington, Kentucky, USA.

39. Kaplan, R B & Murdock, L (1991), Rethinking The Corporation: Core Process Redesign,
The Mckinsey Quarterly, November 2, 1991.

40. Khalil, O E M (1997), Implications For The Role Of Information Systems In A Business
Process Reengineering Environment, Information Resources Management Journal, Winter
1997, Pp 36–43.

41. Knights, D, Noble, F & Willmott, H (1997), ‘We Should Be Total Slaves To The
Business’: Aligning Information Technology & Strategy - Issues And Evidence, In
Information Technology And Organisations : Strategies, Networks And Integration,
Edited By Bloomfield, B P, Coombs, R, Knights, D & Littler, D Oxford University Press,
Pp 13–35

42. Lissoni, C (1992), Bridging The Gap Between It Strategy And Ad Reality, Paper Presented
At Ibm’s Isei Conference, September 1992, Oxford, UK.

43. Martinsons, M G & Revenaugh, D L (1997), Re-Engineering Is Dead; Long Live Re-
Engineering, International Journal Of Information Management, 17(2), Pp 79–82.

44. Maull, R & Childe, S (1994), Business Process Reengineering: An Example From The
Banking Sector, International Journal Of Service Industry Management Ijsim, 5(3), Pp 26–
34.

45. Maull, R S, Weaver, A M, Childe, S J & Bennett, J (1994a), The State Of The Art In
Business Process Reengineering In UK Manufacturing Companies, In Operations Strategy
& Performance, Edited By Platts, K W, Gregory M J, Neely A D, Cambridge University
Press 1994, Pp 43–48.

46. Mcmanus, J (1997), If You Want To Succeed In Software Development... Try Rapid
Application Development (Rad), The Computer Bulletin, Bcs, February 1997, 9(10).

47. Mills, M & Mabey, C (1993), Automating Business Process Reengineering With Business
Design Facility, Proceedings Of The Bcs Case Seminar On Bpr, London, June 1993, In
Software Assistance For Business Reengineering, John Wiley & Sons Ltd., UK.

48. Morton, R (1994), Business Process Reengineering And Information Technology, Idpm
Journal, 4(2), Pp 10–11.

Integrating Business Process Reengineering with Information Systems Development 319

49. Orlikowski, W J (1996), Improvising Organisational Transformation Over Time: A
Situated Change Perspective, Information Systems Research , Vol. 7, No. 1, March 1996,
Pp 63–92.

50. Ornewsletter (1996), Why Do It Projects Fail, Operational Research Society, September
1996, No. 309, Pp 12–16.

51. Parker, M M & Benson, R J (1988), Information Economics : Linking Business Perfor-
mance To Information Technology, Prentice Hall, USA.

52. Pascale, R, Millemann, M & Gioja, L (1997), Changing The Way We Change, Harvard
Business Review, Pp 127–139.

53. Radley, I P (1992), Planning For Change, Proceedings Of The 27th Annual Conference
Of The British Production & Inventory Control Society Bpics, November 1992, UK, Pp
37–49.

54. Remenyi, D (1995), Information Systems Mistakes And A New Focus For Information
Systems Management, Proceedings Of The Second European Conference On Information
Technology Investment Evaluation, July 1995, UK.

55. Richards, N (1993), How Can We Reengineer The Business, Proceedings Of The Bcs
Case Seminar On Bpr, London, June 1993, In Software Assistance For Business
Reengineering, John Wiley & Sons Ltd., UK.

56. Stickland, F (1996), Business Process Change: A Systems Thinking Perspective, World
Futures, Vol. 47, Pp 69–77.

57. Teng, J T C, Grover, V & Fiedler, K D (1996), Developing Strategic Perspectives On
Business Process Reengineering : From Process Reconfiguration To Organisational
Change, Omega International Journal Of Management Science, 24(3), Pp 271–294.

58. Teng, J T C, Feidler, K D & Grover, V (1998), An Exploratory Study Of The Influence Of
The Is Function And Organisational Context On Business Process Reengineering Project
Initiatives, Omega International Journal Of Management Science, Vol. 26, No. 6, Pp 679–
698.

59. Tesch, R (1990), Qualitative Research: Analysis Types And Software Tools, Falmer, Ny.
60. Timmers, P (1998), Business Models for Electronic Markets EM – Electronic Markets,

The International, vol. 3.
61. Wastell, D G, White, P & Kawalek, P (1994), A Methodology For Business Process

Redesign: Experiences & Issues, Journal Of Strategic Information Systems, 3(1), Pp 23–
40.

62. Watts, J (1995), An Introduction To Holistic Bpr, Business Change & Reengineering,
Official Journal Of The Institute Of Bpr, John Wiley & Sons, UK, 2(4), Pp 3–6.

63. Weerakkody, V J P, Tagg, C & Bennett, J (1995), Bridging The Gap Between Business
Process Reengineering And Information Systems: Identifying Key Issues, Paper Presented
At The Bit 95 Conference, Manchester, UK, November 8, 1995.

64. Weerakkody, V J P & Hinton C M (1999), Exploiting Information Systems &
Technology Through Business Process Improvement, Knowledge & Process Manage-
ment: The Journal Of Corporate Transformation, Vol 6, No. 1, March 1999, John Wiley &
Sons, Ltd., UK

65. Weerakkody (2001), Identifying Potential Barriers To Business Process & Information
Systems Reengineering In Sri Lanka, Phd Thesis, University Of Hertfordshire, UK,
January 2001)

65a. Weerakkody, V. and Currie, W.L. (2002), An Investigation of the Social and Cultural
Issues Influencing Information Systems Change in South Asian Countries, Proceedings of
the UKAIS Conference, April 2002.

66. Willcocks, L (1995a), It-Enabled Business Process Reengineering: Organisational And
Human Resource Dimensions, Journal Of Strategic Information Systems, 4(3), Pp 279–
301.

320 V. Weerakkody and W. Currie

67. Willcocks, L (1995b), False Promise Or Delivering The Goods? Recent Findings On The
Economics And Impact Of Business Process Reengineering, Proceedings Of The Second
European Conference On Information Technology Investment Evaluation, July 1995, UK.

68. Yin, R K (1994), Case Study Research - Design And Methods, Second Edition, Sage
Publications, London.

69. Zachman, J A (1987), A Framework for Information Systems Architecture, IBM Systems
Journal, Vol 26, No. 3, pp 276–292.

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 321–335, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Undo in Workflow Management Systems

Alessandra Agostini1, Giorgio De Michelis2, and Marco Loregian2

1 University of Milano, DICO, via Comelico 39
20135 Milano, Italy

agostini@dico.unimi.it
2 University of Milano Bicocca, DISCo, via Bicocca degli Arcimboldi 8

20126 Milano, Italy
{gdemich, loregian}@disco.unimib.it

Abstract. Workflow Management Systems are one of the main technology for
supporting Business Processes and they need to be as flexible as possible. One
relevant issue arising from integration between WfMSs and corporate
Information Systems is that of undo strategies, policies and mechanisms. In this
paper the state of the art for the undo problem and the solution adopted in the
framework of the MILANO Workflow Management System are presented.

1 Introduction

The paper by Schmidt and Bannon [1] which opens the first issue of ‘Computer
Supported Cooperative Work: an International Journal’ argues for the relevance of
articulation work within cooperative work arrangements. Articulation work deals both
with the meshing of tasks and performers within a cooperative work process and with
the interleaving of different processes within the work time of a performer. Moreover,
it deals with the continuous changes of cooperative work arrangements. Therefore,
systems supporting articulation work must on the one hand liberate workers as much
as possible from the routine work they need for coordinating themselves (script) [2];
on the other, help them to be aware of the situation where they are performing and to
negotiate new cooperative work arrangements whenever a breakdown occurs (map)
[2]. Finally, they need to be open to continuous changes, in order to support a
continuous updating of both their maps and their scripts. If we restrict our attention to
the main technology supporting Business Processes, i.e. Workflow Management
Systems (WfMSs) (see for example [3], [4], and [5]), the above observations translate
into a quest for flexibility. That is, any WfMS should be oriented to making the
organization as flexible as possible and to supporting its changes. On the one hand
therefore, WfMSs should allow end-users to temporary change the flow of work in
order to handle effectively exceptions and breakdowns. On the other, it should be
possible to implement changes of the workflow model into the already running
workflow instances. In accord with the above considerations, the MILANO WfMS
prototype (see [6], [7] and Section 3) provides as much as possible general solutions
to the previous issues.

Moreover, WfMSs need to be integrated with the tools used by the actors of a
process: productivity tools; specialized systems (e.g., CAD, graphic packages);

322 A. Agostini, G. De Michelis, and M. Loregian

information systems and databases; e-mail and other communication systems. The
complexity of exception handling in a WfMS heavily depends on the type of tools
used together with the WfMS. In particular, if a user updates an information system or
a database, then managing an exception may request to cancel her changes.

Therefore, with the above reflections, we started to analyze in deep the specific
needs of users that have to go back from the current state to a previous state of the
workflow (undo). It emerged that this is not the simple undo we have to manage in
productivity tools, since it does not deal just with undoing the previous action the user
did, but rather with undoing some actions performed by different users. Some hints on
how to better support these cases can be found in the recent literature on collaborative
undo, presenting interesting concepts and solutions (Section 2). Even if these
solutions focus mainly on synchronous cooperation, the different proposals fit quite
well with the integrated support we envision for facing the undo problem in WfMSs.
Section 3 outlines the features of the MILANO WfMS that are relevant for the
treatment of undo and the basic concepts and formalisms adopted in our system.
Section 4 presents the solution we designed for the undo in WfMSs while in Section 5
a simple example is used to explain our solution. Some open problems and further
research directions are discussed in the Conclusion (Section 6).

2 Overview of Undo Models

Various applications provide the possibility to recover from unforeseen errors or
reverse inadvertently issued commands and many proposals already exist to solve the
undo problem both for single-user (e.g., [8], [9]) and groupware applications (e.g.,
[10], [11], [12]). In particular, for systems supporting groups of co-workers the
problem is more critical than for applications supporting single individuals since users
might be especially afraid of destroying artifacts created by colleagues. Typical
examples of collaborative systems in which this problem is particularly relevant are
group editors (e.g., [10], [11], [12]); in these systems the real-time/synchronous
nature characterize more than other aspects the problem and the proposed solutions.
However, when working with WfMSs, further issues become relevant (e.g., [6], [7],
[13], [14], [15], [16], [17], [18], [19], [20], [21]). For instance, in WfMSs operations
can propagate within separate organization sectors and can have different impacts on
individuals and the whole organization. In the following main strategies and models
for facing the undo problem will be shortly presented.

In groupware a first distinction can be made between global and local scope for
undo, depending on whether a user undoes a particular step executed globally, no
matter who issued it, or a step performed by herself, in a so called local context [12].
Of course, cooperative tools must deal with both contexts [22]. Global group undo
always leads to a former application state since also actions performed by different
users are undone to set back the system to a state it was at in a certain moment. In
contrast, local group undo is more complex because, in most cases, it does not lead to
a former application state. Only actions performed at a local site, and thus by a
specific user, are undone and this often leads, when other users’ operations are
interleaved with local ones, to a new and previously un-reached application state.

A core concept for modeling undo strategies is that of timeline [22] from which
different undo modes follow. In [22] the authors give an exhaustive description of this

Undo in Workflow Management Systems 323

concept and of the issues arising from it: divergent timelines, causality and side
effects, multi-level and interleaving timelines. Every application can be described by
its history, meaning the sequence of states it passed through from its start till the
current state. Formally a timeline can then be defined as a directed acyclic graph with
a single root (application start; see [22] for further details), since otherwise a repeated
redo request could produce loops in the system. Undo and redo operations are meta-
commands, meaning they just manipulate history and not other objects in the system.
On these bases three undo strategies can be defined [10]: single step, chronological
and selective. With a single step undo strategy [23] a user undoes only the last locally
performed command. If more than the last command is kept in history then the single
step undo can be repeated until no further previous information remains. With respect
to the chronological undo strategy, it gives the ability to automatically undo a certain
set of commands performed in a particular temporal order, from the latest back to the
selected one. Finally, the selective undo [8], [9], [23] allows undoing any command in
history. It is worth to underline some differences among the above models. A single
step undo in a local context might correspond to a global selective undo since even if
an action was performed last on a site maybe some other actions were issued by other
people sharing the global view. Moreover, both selective and chronological undo
directly refer to a particular command in history but, while for having a chronological
undo all later commands have also to be undone, a selective undo only affects that
particular command and, as a side effect, a new state could also be produced. A
chronological undo needs an explicit and precise timing to be defined for the system:
in case this is not available, selective undo looks the most suitable strategy.

From these strategies two interesting undo frameworks follow: linear and non-
linear undo. In a linear undo model [23] actions can be undone only in a single step or
in a chronological fashion, meaning that to undo a particular command a user has to
undo all the executed commands following it. In a non-linear undo model [24]
selective undo is made possible so that any arbitrary command in history can be
undone without undoing other ones. Implementing a non-linear model, particular
attention has to be paid to every command semantic and effects since interferences
could be possible and some later commands might actually rely on the one being
canceled. These concepts are better illustrated through a couple of graphical
examples.

(a) Initial blank region

(b) After executing O1

(c) After executing O2

(d) After undoing O1

Fig. 1. Example of Non-Linearity

Figure 1 shows the possibility to undo an arbitrary command not affecting the later
ones. Initially the region is blank. O1 draws a grey rectangle in the left side of the
region and then O2 draws a black one in the right side. O1 is later undone and the grey
rectangle is canceled without the need to erase the black one which was
chronologically drawn later. Instead, Figure 2 illustrates the effect of undoing a
command logically related to a later one. The region is initially blank. O1 draws a grey
rectangle on the left side of the region and O2 fills the remaining part of the region
with black color. When O1 is undone then also O2 has to be re-evaluated since the area
to fill is now different.

324 A. Agostini, G. De Michelis, and M. Loregian

(a) Initial blank region

(b) After executing O1

(c) After executing O2

(d) After undoing O1

Fig. 2. Example of relation between commands

Considering the database field, the problem of restoring a previous database state
has already been faced (see for example [19], [20], [25]). Many proposals exist and
most of them can easily be integrated with previous undo models. The most common
approach is based on the requirement of being able to undo, redo, or complete
transactions [25]. A transaction being the unit of locking and recovering which
appears to users as an atomic action. ARIES ([26], [27]) is one of these recovery
methods. It can be easily extended to persistent object oriented languages,
transactional-based operating systems and, as we will later show, also to suitably
designed workflow management systems. ARIES has already been implemented in
such systems as OS/2, DB2, Starburst, and Quicksilver. The key ideas of ARIES are
that recovery repeats history (including actions from transactions that did not commit)
and then undoes the actions of transactions that did not commit before the crash (these
are called “loser transactions”). It logs the progress of a transaction, and its actions
that cause changes to recoverable data objects. The log file ensures either that the
transaction’s committed actions are reflected in the database despite various types of
failures, or that its uncommitted actions are undone. The write ahead logging protocol
asserts that the log records representing changes to some data must already be on
stable storage before the changed data is allowed to replace the previous version of
that data on nonvolatile storage. That is, the system is not allowed to update the
nonvolatile storage version of the database until the log records which describe the
updates have been written to stable storage, each read and write to a data item by a
transaction is blocked until the last transaction that wrote to it has terminated.

3 The Basis of the Project

The work we made on collaborative undo is embedded on the MILANO WfMS
prototype ([6], [7]). The MILANO WfMS is a component of a more comprehensive
groupware platform whose approach to work practices is based on a situated
language-action perspective ([28], [29]) and whose main aim is to support its users in
being aware of the history they share with people with whom they cooperate and of
the activities they are committed to perform in the future (for more details on the
MILANO platform see [30]). The MILANO WfMS, in addition to other usual WfMS
services, allows its users to perform not only in accordance with predefined models of
work processes, but also when facing unforeseen exceptional situations. Moreover,
users are able to modify a procedure definition and, for some classes of changes,
directly apply the changes in running procedure instances without fair of incorrect
executions or incongruent outcomes. In this paper we focus on those functionalities
devoted to handle the cancellation or the revision of some previously executed
actions. In the following, we briefly report those aspects of the MILANO WfMS

Undo in Workflow Management Systems 325

strictly related to the focus of the paper. As in the majority of WfMSs, the MILANO
WfMS allows to define models of the work processes in order to delegate the duty of
coordination as much as possible to the WfMS. We choose—for modeling workflows
in MILANO—a class of Petri Nets named Elementary Net Systems (ENS) [31]. To
simplify the design of workflow models, we allow designers to disregard at the design
phase all possible exceptions, which usually occur during the execution of a work
process. In fact, MILANO allows its users while executing a work process to create
additional paths (jumps) connecting two states of a workflow. In short, whenever the
performer of an activity cannot act in accordance with the model, she can jump to
another state from which the execution can progress again. We distinguish various
categories of jumps on the basis of two main criteria, so that different jumps
(exceptional paths) can be associated to different cases and responsibilities. First,
jumps are distinguished with respect to the direction of the jump in forward and
backward jumps. Forward jumps cause the skipping of some activities while
backward jumps involve going back for re-executing or perfecting some activities.
Second, jumps are distinguished depending on the degree of concurrency of the
skipped or canceled activities. When there is a single running activity we provide
strongly linear jumps, while when is necessary to stop several concurrent activities we
allow weakly linear jumps. Combining the two above criteria, we therefore allow four
classes of jumps: strongly linear and weakly linear backward jumps; strongly linear
and weakly linear forward jumps. In this paper we go into backward jumps; as we
will better see in next Section, strongly linear backward jumps are the basis for
providing users a linear undo mechanism, while weakly linear backward jumps allow
a selective undo function. The MILANO WfMS allows associating to each different
jump a different responsibility, in accordance with the roles and rules of the
organization. For example, strongly linear backward jumps can be under the
responsibility of the actor herself. Other policies may be embedded in MILANO. When
a breakdown occurs, if necessary MILANO automatically opens a conversation for
requesting and discussing with the responsible role the authorization for the jump.
More about the characteristics of the MILANO WfMS can be found in [6] and [7].

Let us now recall the basic terms and notations of workflow modeled by using
ENS; main concepts will be only informally described. The activities composing a
workflow process (formally called transitions) are represented by boxes. The
conditions related to the execution of the activities are called places and are
represented by circles. There are directed arcs from the input places (pre-conditions)
of a transition to the transition, and directed arcs from the transition to its output
places (post-conditions). There are two kinds of arcs: input arcs that connect one
place to one transition, and output arcs that connect one transition to one place. The
state of a place, called its marking, is represented by the presence or absence of a
black dot (token) within the place. The presence of a token in a place means that the
condition holds. A transition is enabled (i.e., the activity may take place) when all its
pre-conditions and none of its post-conditions hold. At the beginning of a work
process, i.e. when a workflow model is selected and initiated, at least one transition
has to be enabled to grant the starting of the process itself.

To implement our new prototype, we build our system in such a way to be as
compatible as possible with already existing Petri Nets based systems. In fact, there
are many tools providing useful functionality such as: drawing and editing a net;
simulating the net behavior; checking some specific structural characteristic; etc. If

326 A. Agostini, G. De Michelis, and M. Loregian

the net describing the work process is described in a standard interchange format
usable both for the specific purposes of the new system and for providing the
additional services available in other tools. Then, it will be only necessary to develop
the specific functions of the new system. We adopt the interchange format defined by
Humboldt University in Berlin (see [32], [33]) in which a description of a Petri Net
consists of two parts. A general part, which is independent of the specific version of
Petri Nets: Petri Net Markup Language (PNML). A specific part for defining each net
own property: Petri Net Type Definition (PNTD). Extracting the typical features of
Petri nets into a PNML results in a uniform file structure for all kinds of Petri Nets.
For particular net types, it remains to fix the special features of this type in a PNTD.

The developed undo module gives functionalities just to simulate the enactment of
a workflow expressed in PNML. What it provides to the user is the possibility to
visualize such a process with a graphical representation and to enact (start) as many
procedures as possible. It also gives the possibility to simulate users behaviors
creating as many clients as possible. Each client gives to procedure’s actors a whole
set of possible actions: do, undo and redo. A simple but powerful mechanism for
document management is also given: forms can be edited and saved in different
versions.

4 Undoing Actions in a WfMS

The undo solutions reviewed in Section 2 focus on real-time applications like group-
editors. WfMSs are quite different, since they are multi-user asynchronous
applications working in a distributed environment (the complex case: there are also
WfMSs with simpler architecture). The main difference is that different people work
on different tasks at the same time and so various possible undo situations can
emerge. We distinguish two main cases: (1) a user needs to undo an action of her
own; and (2) a user needs to undo some action(s) that were performed by other users.
As recalled in Section 3, the previous MILANO version had a sophisticated system for
negotiating authorizations, and in case (2) was always required an authorization.
However, in the new MILANO WfMS, a user can directly undo any previously
executed procedure step—even if it has been performed by a colleague—without any
authorization. In fact, we claim that when skipping some procedure steps (forward
jumps) the authorization is absolutely necessary, whereas in all backward jumps we
could simplify the authorization mechanism. Therefore the undo operation is simply
notified to the responsible person/people (e.g., the performer of the canceled activity).
We call this new category of jumps, without the request of authorization, revised
strongly/weakly linear backward jumps. This way no hierarchy is defined: a clerk can
freely undo an activity performed by her boss.

The algorithm for undo we developed has its roots in two earlier works ([22] and
[24]) which analyze undo from different point of views and present algorithms that
can be usefully merged to be applied to a WfMS. The resulting model is object
oriented and non-linear. Objects handled by the systems are transitions mapping
workflow activities (and sometimes the whole net itself). The main problem
concerning non-linear models is to determine consequential relations among
commands, and then deciding which particular commands should be undone after

Undo in Workflow Management Systems 327

undoing another one [24]. In order to face this problem, firstly we distinguish between
active and inactive transitions. Only an active transition can be undone and only an
inactive transition in an undone state can be redone. Secondly, we define the
following rules specifying the states of transitions and undo propagations:

� A just completed transition is active and in the done state. All transitions (if they
exist) preceding it in the net flow are also active.

� An undo command makes an active transition inactive. All the transitions
completed successively and following it in the flow become also inactive; all
preceding active transitions will keep their active state.

� A redo command makes an inactive transition active. All transitions (if they exist)
preceding and following it in the net will keep their state. Redo commands can
only be applied to the uppermost inactive transition in a line.

Some additional considerations are necessary regarding alternative and parallel
flows that will be discussed in the following. A work process might contain the
possibility for choosing among different alternative (sets of) tasks to be performed
from a particular point on. In Figure 3 left two alternative paths (A, X and B, Y) are
shown.

Fig. 3. Example of alternative activities

In Figure 3 middle, a choice has been made during the work process and the
transition A has been performed while transition B has not. If after doing so there is
an undo request for transition A the choice becomes active again and another
evaluation has to be made to decide again which branch has to be followed (Figure 3,
right). This undo command is fully supported by a linear undo model (i.e., either
chronological or single step) and therefore using MILANO revised strongly linear
backward jumps.

When two or more activities are not directly related one to another they can be
performed at the same time from different people. In a well structured net two or
more concurrent or parallel branches in a net start from a transition (S) (see Figure 4
left) having two or more directed arcs outgoing to two or more places. Every place
will then be a condition starting a parallel branch. Two or more parallel branches will
possibly rejoin in a single transition (E) having them entering in it. Parallel branches
can of course be defined even inside other parallel branches.

What happens when an undo request has to deal with concurrent activities? In the
simplest case the undo can regard a transition before the flow being divided into
parallel sub-flows. That is, for instance, starting from the case shown in Figure 4 left,
undoing transition S. In this case, all the already performed transitions in all
concurrent branches have to be canceled and a chronological undo mechanism or the

A B

�

X Y

A B

X Y

�

A B

X Y

�

328 A. Agostini, G. De Michelis, and M. Loregian

multiple appliance of the single step model completely fit user needs. This is
exploited in MILANO via revised strongly linear backward jumps. When, on the other
hand, we start from a state preceding the re-joining of the parallel branches and the
undo regards a transition within a particular parallel sub-flow; then the undo must
affect only that particular branch of the net. All the other activities within the parallel
branches will not have to be redone. In this case, neither chronological nor single step
models are sufficient, due to the concurrent activities that are not involved in the
undo. Therefore a selective undo model must be provided; this mechanism is still
implemented in MILANO through revised strongly linear backward jumps. Finally, a
further situation should be considered. An undo request involving a transition within a
parallel branch, but starting from a state in which the net has passed its whole parallel
section. Suppose it is the case shown in Figure 4 left: transitions S, A, B, and E have

Fig. 4. Example of concurrent activities

already been performed. Transition A has to be undone then also E has to be undone
while transitions S and B will not be affected from that request. To set the net in the
required state the token now placed immediately after E has to be doubled to fill both
places over E and then the one on the left side will have to move before A (see Figure
4 right). Also in this last complex case, we have to support a selective undo
mechanism. Moreover, weakly linear backward jumps are not sufficient to support
this case (since, in short, they do not allow augmenting the tokens) and therefore a
further category of jumps, weakly relaxed backward linear jumps, has been added to
MILANO to support this situation.

In the new MILANO WfMS prototype a logging mechanism has been developed to
better handle the undo commands. It is provided both for document editing and
management and for operations such as start, completion, release, undo and redo. This
is the way the system is able to trace workflow evolution and also to store information
on who performed any task and when. Each activity has its own local history and
collects information on documents’ versioning (when a document is shared among
multiple activities these notes are accessible from each step). In particular, once an
activity has been completed, the name of the actor who did it is logged so that, in case
the activity has to be redone after an undo command, she will receive the request to
redoing it. Whenever an undo is made, a motivation has to be specified and it is also

S

A B

E

�

S

A B

E

�

�

Undo in Workflow Management Systems 329

logged. This way, not only time and author of undo are traced but also the reason for
undoing is maintained. A global log for the whole system is also provided tracing the
whole evolution from a central viewpoint still recording data from each activity but
keeping them for a general overview of the procedure. It could just be seen as the
complete set of activity records but it collects also information that are not activity
related such as new actors entering the system or new procedures being started,
interleaving with the ones already running. Thanks to it, when all activities
composing a work process have been performed and the work process is completed,
still in MILANO all activities can be reviewed or revised.

Whenever a transition is enabled this means that the task related to it has to be
performed by someone. All enabled transitions have to be shown in some kind of to-
do list according to the role or the personal reference specified for the transition. In
case a role is specified (and no personal reference) then the task related to the
transition will be accessible to different people at the same time. The first person that
chooses to perform the specified activity, starting it, locks the access to it. However, if
a user cannot complete a previously started activity, the user can simply decide to
release it and other actors will be able to re-access and continue the activity. It should
be underlined that, a re-started transition is not reset to its initial situation. Quite the
contrary, if some work was already performed then it is preserved even after the
release operation together with every saved document. This service is made possible
because each operation performed on activities is fully recorded by the system.

The ARIES algorithm ([26], [27]) briefly described in Section 2 is just one of the
well-known approaches that could be inserted within an undo framework to handle
database transactions from inside a WfMS. In our prototype we manage to track
changes on documents and thus we grant a reliable mechanism for storing and
restoring data evolution. We can think of handling interactions between the WfMS
and databases in a way similar to the one adopted for documents. Tracing operations
arises then to an important role in the system. This should make even clearer the
meaning of the previous mentioned concept of timeline [22]. Moreover, activity
definition sets boundaries and limits for transactions sets to be committed. All
transactions within a single activity can be grouped together and considered as a
single complex transaction. ARIES is totally able to robustly handle complex
transition and such a packing mechanism could easily be integrated in MILANO. While
series of completed activities can be safely logged and undone through sequences of
simpler undo operations (relying on database robustness), the problem with ongoing
activities being interrupted could concern broken transactions segmentations: actually
the mechanism of grouping “smaller” transactions into activity-bounded sets leaves
the problem to database management system. A transaction is an atomic unit and can
thus not be divided. Until the activity is not completed then the effects on the database
are not final.

Another interesting approach is that of Leymann [34], [35] with his analysis of
transaction models and the subsequent notion of spheres (atomic spheres and spheres
of compensation). A compensation sphere (see [34]) is any collection of activities of a
process model such that finally either all activities must have run successfully, or all
activities must have been compensated. Each activity within a compensation sphere or
the whole compensation sphere itself is associated with an activity called its
compensating activity. The basic mode of undoing a compensation sphere is to
schedule the compensating activities of all activities within the sphere in an order that
is the reverse of the order in which the proper activities of the compensation sphere

330 A. Agostini, G. De Michelis, and M. Loregian

have run. In this model, compensations are thought to be customizable, meaning that
relations among activities can be defined. It is also a working example of how
database management can be embedded in workflow-based applications. Our undo
solution is coherent with Leymann’s approach, for what regards document
management and transactions on databases or information systems, since undo
perfectly compensates the executed activities. However, Leymann’s work deals with
more general activity types involving irreversible actions as, for example, buying a
machine. We have still not considered this kind of problems, since we think that are
not so directly related with WfMSs. As we will further discuss in the Conclusion, the
problem of irreversibility of the activities of a business process is a general problem
of process design (involving all its dimensions: organization, finance, human
resources and technology) and the Leymann’s approach can be extended to become
the basis for characterizing robust business processes.

5 A Simple Scenario of Use

In this Section we will use a simple work process, the management of the creation of
a new web site for of an organization, to better illustrate the main characteristics of
our undo module. Figure 5 shows its graphical representation. It starts with the
activity Buy domain which reserves the name for the coming web site. At this point
three concurrent tasks—each one composed by one or more activities—are started. In
particular, concurrently to the site design and development phase some activities
devoted to allow a reasoned choice between an in-site dedicated web server and a
subscription of an external hosting are performed. While a technical person is
responsible for defining the HW and SW characteristics of the server and for asking
various cost estimations, an administrative person is in charge of collecting the
providers’ prices for the external hosting option. After that the costs of both
alternatives are calculated the manager responsible for the procedure can choose
between them. At this point either a PC is ordered, received and paid (some
administrative person will be responsible for these aspects) and a technician installs a
Web service on it or, more simply, the hosting subscription is made. As soon as the
design and development of the site is completed too then the web site is finally
published. Some simple cases of undo will now presented referring to the previous
sample process.

Jill is chief manager at ACME Co., one of the most important factories of frozen
pasta in Italy. At present, ACME Co. has a quite simple web site. Therefore Jill
decides that, in order to increase the business, it is necessary to build a totally new
web site for improving the on-line selling services. Therefore, Jill initiates the
predefined workflow handling the creation of a web site and the activity of requesting
and buying a new domain name is allocated. After few moments Jane, an ACME
secretary, is informed that a new activity Buy domain is in her to-do list (for accuracy
sake, as well as in the to-do list of all ACME secretaries). She decides to perform it
and therefore selects and starts the activity. She connects to Internet to perform her
task and, with few clicks of the mouse, is able to reserve and directly pay the
“marvelous” www.acmefrozenpasta.com domain. From now on, three people
contemporaneously work to build the site up. The first one is John, a technician,
which analyzes what kind of computer would be better to purchase. Instead again

Undo in Workflow Management Systems 331

Jane takes care of making some phone calls to different web companies to collect the
prices for hosting services. Finally Jack, the web designer of the ACME Co., starts
planning and implementing the site structure. After some days, John has already
chosen a proper configuration for the server and received back from different
computer companies their estimates. Now he is in the phase of finalizing the report

Fig. 5. The graphical representation of the model of the work process handling the creation of a
new web site

summarizing the prices. However, while reviewing his report and just before
forwarding the document to Jill, by chance he discovered that a new and probably
cheaper server configuration could be used. What a pity; all previously collected
prices are no longer meaningful because the configuration has to be changed. With a
subtle sense of frustration, John undoes his configuring activity (exploiting a
backward linear jump) and later redoes it so the collection of the estimates can be also
made again. “Hum, at least this second round of estimate collection is easier to do
than the first one.”: John thinks. In fact, he can exploit the history recorded by
MILANO and re-send the same messages requesting an estimate to the various
companies just modifying the attached document with the new document containing
the details of the right configuration. After getting all the estimates, both for a
dedicated computer and a hosting case, a choice has to be made and it is up to Jill
comparing prices and choosing the most valuable and affordable solution. In
particular, Jill chooses a special offer made by the Computer-Sellers Inc.: they sell a
limited number of web servers, totally compliant to John’s specifications, for a very
reasonable price. Therefore Jane, receiving the outcomes of Jill’s decision, takes care
of ordering the server. Unfortunately enough, after just a few hours a phone call
arrives to Jane saying that no more web servers are available for that price. In fact, it
was a limited offer. At this point Jane undo (again!) the John’s activity of collection
of prices (exploiting a revised backward linear jump). In fact, the above-mentioned

332 A. Agostini, G. De Michelis, and M. Loregian

offer within his report is no longer valid. As a consequence of the Jane undo, Jill’s
decision and the order of the PC are canceled too. John makes just a small revision to
his report (there is no need to collect estimates again since just a few hours have
passed since they were asked) and completes its task. After that, Jill evaluates again
the prices and actually hosting seems now a more valuable solution and therefore the
previous choice is now changed. Hosting is subscribed with a well-know company at
a reasonable price and, when Jack completes the design activity the site can be
published, opened and the online advertising campaign can be started.

6 Conclusion

Discussing the undo solution of the MILANO WfMS prototype, we read the work by F.
Leymann on irreversible actions and compensation spheres [34, 35]. The latter moved
us to think that irreversibility of activities in a business process is a matter meriting a
closer look if we want that a business process is robust. Robust in the sense that it is
able to support undo and redo during its execution without loss of control. Extending
the insight of Leymann, we can recognize that any activity has some inherently
irreversible features (consumption of time and resources, market transactions with
external actors, etc.), making undo impossible if its irreversibility is not compensated
in a clearly defined way. This means that any business process cannot be robust, if all
its activities are not coupled with their compensation spheres, so that their
irreversibility becomes ineffective. This can be considered a basic guideline for robust
business process design, indicating as a general principle, that every activity must be
designed in such a way to be compensated, when exceptions occur. The undo strategy
sketched above for database and information system transactions is in accordance
with this rule. As another example, deciding that a computer bought for a project, if
no longer needed within the project, must be restituted to the purchasing office, that
will destine it to another project and/or office, is also a way to make the process
robust, since canceled activities do not leave uncommitted resources in an
organization.

The undo solution for WfMSs we have sketched in this paper is from our
viewpoint an important piece allowing to link effectively WfMSs with corporate
information systems. Up to now, WfMSs and information systems have been
conceived, designed and developed as loosely coupled systems, where the former
ones deal with documents while the second ones manage data. But, as we tried to
explain in the previous pages, this separation does not work in real cases and would
restrict the potential of WfMS technology so that it could not handle relevant
processes in the life of an organization. The completion of the integration between
WfMSs and information systems that a well designed and efficient undo realizes
offers to WfMS technology a strong opportunity for gaining new users and
application areas.

Solving the undo problem for WfMSs, we have been forced to reconsider the
architectural issues regarding the integration between the former and information
systems. In the Cooperative Information System manifesto ([36]) one of the authors
and many colleagues have proposed a comprehensive framework proposing a new
approach where cooperative applications and legacy systems are considered together.
Let us recall briefly the main concepts proposed in the Manifesto, from the workflow

Undo in Workflow Management Systems 333

viewpoint. Cooperative Information Systems [37] are characterized by a three-faceted
architecture: system, organizational and group collaboration facets (see [36] and
[38]). From the system point of view, a WfMS must focus on the coordination among
different activities and leaving to the other components the duty of performing them
while avoiding to introduce any constraint to the interaction with other systems. From
the organizational point of view, the WfMS must support and make visible the
workflows: defining part of the rules, roles and procedures characterizing the
company and/or institution where it is used; offering to its users the automation of the
routine tasks; helping them to deal with exceptional situations and breakdowns;
providing the distribution of decision tasks among the users (in accordance with their
roles); simulating their performances under diverse resource allocations; giving a full
support for the change of the workflows checking their consistency; and, finally,
enacting changes in the ongoing workflow instances. Lastly, from the group
collaboration point of view, it is an artifact within the workspace of their users
supporting their performances; for instance, making the workflow transparent when
they are already capable to do the requested activity; making the workflow visible
when they need help in understanding what to do as well as when a breakdown
requires them to negotiate a new cooperative work arrangement.)

In this framework it seems that the undo for a WfMS can be considered as a typical
module at the interface between the group and system facets ([36], [38]).

Acknowledgements. The authors thank the anonymous reviewers who gave useful
suggestions for improving the first version of this paper.

References

1. Schmidt, K., Bannon, L.: Taking CSCW Seriously: Supporting Articulation Work.
Computer Supported Cooperative Work (CSCW). An International Journal, Vol. 1, Nos.
1–2 (1992) 7–40

2. Schmidt, K.: Of maps and scripts: the status of formal constructs in cooperative work. In
S.C. Hayne and W. Prinz (eds.): GROUP’97. Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work. Phoenix, AR, November 16–19.
ACM Press, New York, NY (1997) 138–147

3. Koulopoulos, T.M.: The Workflow Imperative. Van Nostrand Reinhold, New York, NY
(1995)

4. Schael, T.: Workflow Management Systems for Process Organizations. 2nd Edition.
Lecture Notes in Computer Science, Vol. 1096. Springer-Verlag, Berlin, Germany (1998)
142–153

5. White, T.E., Fischer, L. (eds.): The Workflow Paradigm. Future Strategies, Alameda, CA
(1994)

6. Agostini, A., De Michelis, G.: Improving Flexibility of Workflow Management Systems.
In W. van der Aalst, J. Desel, A. Oberweis (eds.): Business Process Management: Models,
Techniques, and Empirical Studies, LNCS 1806. Springer-Verlag, Berlin Heidelberg New
York (2000) 218–234

7. Agostini, A., De Michelis, G.: A light workflow management system using simple process
models. In Computer Supported Cooperative Work: The Journal of Collaborative
Computing, Kluwer Academic Publishers, Vol. 9, No. 3–4 (2000) 335–363

334 A. Agostini, G. De Michelis, and M. Loregian

8. Berlage, T.: A Selective Undo Mechanism for Graphical User Interfaces Based on
Command Objects. ACM Transactions on Computer-Human Interaction, Vol. 1, No. 3
(1994) 269–294

9. Meng, C., Yasue, M., Imamiya, A., Mao, X.: Visualizing histories for selective Undo and
Redo. In Proceedings of APCHI98, Hayama, Japan (1998) 459–464

10. Sun, C.: Undo any operation at any time in group editors. Proceedings of ACM 2000
Conference on Computer Supported Cooperative Work, December, Philadelphia,
Pennsylvania (2000)

11. Wang, X., Bu, J., Chen, C.: Group editing algorithms: Achieving undo in bitmap-based
collaborative graphics editing systems. In CSCW’02. Proceedings of the conference on
Computer Supported Cooperative Work, New Orleans, Louisiana (2002) 68–76

12. Ressel, M., Gunzenhä usler, R.: Reducing the Problems of Group Undo. ACM Digital
Library, Proceedings of Group'99. Phoenix, AR. ACM Press, New York, NY (1999) 131–
139

13. Borgida, A., Murata T.: Tolerating Exceptions in Workflows: a Unified Framework for
Data and Processes. In Proceedings of the International Joint Conference on Work
Activities, Coordination and Collaboration, WACC'99, San Francisco, CA. ACM Press
(1999) 59–68

14. Casati, F., Ceri, S., Paraboschi S., Pozzi, G.: Specification and Implementation of
Exceptions in Workflow Management Systems. ACM Transactions on Computer-Human
Interaction, Vol. 24, No. 3 (1999) 405–451

15. Das, S., Kochut, K., Miller, J. Sheth, A. Worah D.: ORBWork: A Reliable Distributed
CORBA-based Workflow Enactment System for METEOR2. (1997) Technical Report
UGA-CS-TR-97-001, Department of Computer Science, University of Georgia

16. Ellis, C. A., Keddara, K., Rozenberg G.: Dynamic Change within Workflow Systems. In
N. Comstock and C. Ellis (eds.). In Proceedings of the Conference on Organizational
Computing Systems (COOCS’95). Milpitas, CA, August 13–16, 1995. ACM Press, New
York (1995) 10–21

17. Kammer, P.J., Bolcer, G.A., Taylor, R.N., Bergman, M.: Techniques for Supporting
Dynamic and Adaptive Workflow. Computer Supported Cooperative Work. The Journal
of Collaborative Computing. Kluwer Academic Publishers, Vol. 9, Nos. 3–4 (2000) 269–
292

18. Kiepuszewski, B., Muhlberg, R., Orlowska, M.E.: Flowback: Providing Backward
Recovery for Workflow Management Systems. Proceedings of the International
Conference on Management of Data, ACM SIGMOD (1998)

19. Miller, J.A., Palaniswami, D., Sheth, A.P., Kochut, K.J.: WebWork: Meteor2's Web-based
Workflow Management System. Journal of Intelligent Information Systems, Vol. 10, No.
2 (1998) 185–215

20. Miller, J.A., Sheth, A.P., Kochut, K.J., Luo, M.: Recovery Issues in Web-Based
Workflow. LSDIS Lab, Computer Science Department The University of Georgia, Athens,
GA 30602–7404 (1997)

21. Weissenfelds, J., Wodtke, D., Weikum, G., Kotz Dittrich, A.: The Mentor Architecture for
Enterprise-wide Workflow Management. Lecture Notes on Computer Science: Advances
in Workflow Management Systems and Interoperability, Springer-Verlag, Berlin
Heidelberg New York (1997)

22. Edwards, K., Igarashi, T., LaMarca, A., Mynatt E.: A temporal model for multi-level undo
and redo. ACM Transactions on Computer-Human Interaction, Vol. 2, No. 2 (2000) 31–40

23. Prakash, A., Knister, M.J.: A Framework for Undoing Actions in Collaborative Systems.
ACM Transactions on Computer-Human Interaction, Vol. 1, No. 4, December 1994,
(1994) 295–330

24. Zhou, C., Imamiya, A.: Object-based nonlinear undo model. Proceedings of the
COMPSAC '97 - 21st International Computer Software and Applications Conference
(1997) 50–55

Undo in Workflow Management Systems 335

25. Verhofstad, J.S.M.: Recovery Techniques For Database Systems. In ACM Computing
Surveys, Vol. 10, No. 2 (1978) 109–123

26. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: A Transaction
Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM Transactions on Database Systems, Vol. 17, No. 1 (1992) 94–182

27. Kuo, D.: Model and Verification of a Data Manager Based on ARIES. ACM Transactions
on Database Systems, Vol. 21, No. 4, (1996) 427–479

28. Suchman, L.: Plans and Situated Actions. The problem of human-machine
communication. Cambridge University Press, Cambridge, UK (1987)

29. Winograd, T., Flores, F.: Understanding Computer and Cognition: A New Foundation for
Design. Ablex Publishing Corp., Norwood, NJ (1986)

30. Agostini, A., De Michelis, G., Grasso, M.A.: Rethinking CSCW systems: the architecture
of MILANO. In J. Hughes et al. (eds.): ECSCW’97. Proceedings of the Fifth European
Conference on Computer Supported Cooperative Work, Lancaster, UK, September 7–11,
1997. Kluwer Academic Publishers, Dordrecht, The Netherlands (1997) 33–48

31. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In W. Reisig and G. Rozenberg
(eds.): Lectures on Petri Nets I: Basic Models. Lecture Notes on Computer Science, Vol.
1491. Springer-Verlag, Berlin Heidelberg New York (1998) 12–121

32. Jü ngel, M., Kindler, E., Weber, M.: Towards a Generic Interchange Format for Petri Nets
– Position Paper. Humboklt-Universitä t zu Berlin, Institut f ü r Informatik, D-10099 Berlin,
Germany (2000). Proceedings of Meeting on XML/SGML based Interchange Formats for
Petri Nets, 2000.

33. Jü ngel, M., Kindler, E., Weber, M.: The Petri Net Markup Language. Humboklt-
Universit ä t zu Berlin, Institut fü r Informatik, D-10099 Berlin, Germany (2000)

34. Leymann, F.: Supporting Business Transactions via Partial Backward Recovery in
Workflow Management Systems. Proceedings of BTW '95, Springer-Verlag, Berlin
Heidelberg New York (1995)

35. Leymann, F., Roller, D.: Workflow-based Applications. IBM Systems Journal, Vol. 36,
No. 1 (1997) 102–123

36. De Michelis, G., Dubois, E., Jarke, M. Matthes, F., Mylopoulos, J., Papazoglou, M.P.,
Pohl, K., Schmidt, J., Woo, C., Yu, E.: Cooperative Information Systems: A Manifesto. In
M. P. Papazoglou and G. Schlageter (eds.): Cooperative Information Systems: Trends &
Directions, Academic-Press New York (1998) 315–363

37. Papazoglou, M.P., Schlageter, G. (eds.): Cooperative Information Systems: Trends &
Directions. Academic-Press New York (1998)

38. De Michelis, G., Dubois, E., Jarke, M., Matthes, F., Mylopoulos, J., Schmidt, J. W., Woo,
C., Yu E.: A Three-Faceted View of Information Systems: The Challenge of Change.
Communications of the ACM, Vol. 41, No. 12 (1998) 64–70

39. De Michelis, G., Dubois, E., Jarke, M. Matthes, F., Mylopoulos, J., Papazoglou, M.P.,
Pohl, K., Schmidt, J., Woo, C., Yu, E.: Cooperative Information Systems: A Manifesto. In
M. P. Papazoglou and G. Schlageter (eds.): Cooperative Information Systems: Trends &
Directions, Academic-Press New York (1998) 315–363

A Top-Down Petri Net-Based Approach
for Dynamic Workflow Modeling�

Piotr Chrza̧stowski-Wachtel1��, Boualem Benatallah2, Rachid Hamadi2,
Milton O’Dell3, and Adi Susanto2

1 Institute of Informatics, Warsaw University
Banacha 2, PL 02-097 Warszawa, Poland

pch@mimuw.edu.pl
2 School of Computer Science and Engineering

The University of New South Wales, Sydney NSW 2052, Australia
{boualem,rhamadi,adis}@cse.unsw.edu.au

3 Justwin Technologies Pty Ltd
7-9 West Street Suite I.20, Level 1, North Sydney NSW 2060, Australia

modell@justwin.com

Abstract. A top-down approach for workflow design is proposed in the
framework of Petri net theory. Simple but powerful refinement rules are
proposed that guarantee soundness of the resulting workflow nets. The
refinement process supports the definition of regions, which are parts
of the workflow that correspond to logistically related items. Exception
handlers can be associated to regions. Defining regions helps determining
the impact areas of the unexpected events during workflow execution.

1 Introduction

Workflow management systems are used for controlling the execution of business
processes. These processes typically consist of multiple activities, which have to
be performed in a valid sequence [1,2]. Dynamic workflows deal with changes
during the workflow execution. Some of them are unpredictable, and it is hence
necessary to allow flexible modeling and run-time maintenance. The main prob-
lem here is to restrict the impact area of unexpected exceptions. Recovery regions
[3] form a partition of the workflow into areas to which the reaction for the ex-
ceptions is limited to. A flat structure of regions was considered in [3]. Since
exceptions are of different importance, it is reasonable to make the reactions
structured so that we achieve two goals. First, only the minimum part of the
workflow is affected. Second, provide a mechanism for handling exceptions at
� This work is partially supported by an ARC SPIRT grant “Managing Changes in

Dynamic Workflow Environments” between UNSW, QUT, and Justwin Technologies
and by an internal research grant No. BW/ALG/01/2002 of PJWSTK financially
supported by KBN in Poland.

�� Also with Polish-Japanese Institute of Information Technology, Koszykowa 86, PL
02-008 Warszawa, Poland.

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 336–353, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Top-Down Petri Net-Based Approach 337

different levels of the design that often reflect different levels of management.
Certain recovery decisions will be limited to appropriate levels of management.
If the design is made accordingly, the levels will be determined at design phase.

A hierarchical Petri net approach will be presented in this paper. The key idea
is to design a workflow in a top-down manner, starting from a single place and
performing refinements using a given set of rules. The refinement rules guarantee
that the workflow will enjoy the desired soundness property [4]. The refinement
rules are chosen to be simple enough to use and powerful enough to represent
many common workflow patterns identified in [5].

The paper is structured as follows. Section 2 describes the design of work-
flows using basic refinement rules. Section 3 deals with non-refinement rules,
i.e., communication and synchronization, as well as with soundness property.
The recovery regions are presented in Sect. 4. Section 5 describes the HiWorD
(HIerarchical WORkflow Design) tool. Finally, Sect. 6 concludes the paper.

2 Designing Workflows by Refinement

Workflows may represent significantly large business processes, having hundreds
or thousands of actions to be performed upon completion. As usual, when dealing
with complicated processes, it is important to follow a structured design model.

Our approach will concentrate on building a hierarchical workflow model
based on Petri nets, a model used in concurrency theory, which has proven to
support efficiently the hierarchization concept. Since the structure of the top-
level tasks in most workflows is not too complicated, we decide to split the design
process into two phases. First, the design of the overall workflow structure, which
will be restricted by some rules allowing to define tasks in a safe way on top levels.
Then specifying the details of the task description at a lower level, allowing some
primitives, which will make the design safe, in the sense that it will not cause
deadlocks [6,7].

It is tempting to use simpler models as they are easy to analyze and im-
plement, but it is undesirable to limit the expressive power of the model. Our
approach aims at making the workflow structured as in structured programming
languages. A method similar to procedural encapsulation together with the idea
of procedure nesting will be used for determining the workflow integral parts.

At some stage we let the designer define regions. They represent the encap-
sulation concept in the workflow design. We can think of them as milestones
of workflow execution, i.e., the completion of region execution should result in
reaching a state of execution, that typically once completed will not be re-done.
Since our approach aims at unexpected exceptions, we associate with each re-
gion exception handlers that restore the workflow execution within a region once
an exception is raised. Due to the nested structure of regions, different recovery
levels can be described. A good design will reflect the management structure and
support the decisions to be taken at an appropriate level.

We will illustrate the approach using the stepwise refinement method. Places
in Petri net are considered not static states, but rather as representing the state

338 P. Chrza̧stowski-Wachtel et al.

of execution of a part of the workflow. Beginning with a single place, being the
coarsest view of the workflow description (i.e., the root of the refinement tree),
the basic transformations allow to model the sequences of actions, the choice
between two or more tasks, and the parallel split. The five basic refinement
transformations are shown in Fig. 1.

(b) sequential transition split(a) sequential place split

(c) OR-split (d) AND-split (e) Loop

Fig. 1. Basic Refinement Rules

For all the rules displayed in Fig. 1, except the first one, we require that
they can be applied only if there is at least one input and at least one output
arc associated with the node to make the transformation valid. Moreover, we
presume that all the input arcs of the node are copied to all the resulting entry
nodes, and that analogous rule applies to the output arcs.

2.1 Workflow Refinement Rules

The first two pairs are dual, while the Loop-split rule does not have its dual
counterpart. Observe that we do not want to introduce a dual rule of refining
a transition, since we would face the problem of marking the input place. We
would like to mark the whole workflow net (WF net) with only one token in the
input place. This would mean, that the looping place would block its transition
from being ever executed.

t1

t2

t1

t2

t3

t3

p1

p11

p12

t12

t1

t2

p11

t12

p12

t31

t32

p21

Fig. 2. Further Loop Refinement

The Loop-split rule allows us to construct loops having only one input and
one output, both being places. When performing a sequential split, the place

A Top-Down Petri Net-Based Approach 339

that the loop was created from will be refined and the input and the output
of the loop will be separated as in Fig. 2. We can clearly see, that when we
refine the initial loop place, the actions that occur will be performed in any loop
turn (action t12 in this case). When we refine the loop transition, we are in fact
designing actions that should be performed between the failed loop-exit-tests
and re-doing the loop again (t31, t32). So they serve for the re-initialization of
the loop.

It should be noted that not all WF nets can be constructed using the proposed
rules. The following theorem allows to specify most important features of such
nets.

Theorem 1. If we start with a single place and apply the above transformations
under the constraint that, except for the sequential place split, all the transforma-
tions may be applied only if a node has at least one input and at least one output
arc, then the resulting WF net N = 〈P, T,→〉 enjoys the following properties:

1. There is exactly one place pin ∈ P such that ∀x ∈ P ∪ T pin →∗ x. We call
pin the workflow input,

2. There is exactly one place pout ∈ P such that ∀x ∈ P ∪ T x →∗ pout. We
call pout the workflow output,

3. The number of incoming arcs in the WF net is equal to the number of out-
going arcs,

4. The WF net N is a free-choice net, and
5. The WF net N −1 resulting by reversing the arcs is a WF net, which is

obtainable by the same set of refinements.

Proof. The induction on the number of transformations made completes the
proof of each of these properties. �	

Recall, that a Petri net is a free-choice net if and only if for every two tran-
sitions, if they share any input place, then all their inputs are the same [8]. This
condition guarantees that either both transitions are enabled or none of them is
enabled under any marking.

2.2 On the Expressiveness of Refinement Rules

The proposed transformations are ready to express quite a variety of typical
situations that occur in workflow design. However, there are some restrictions,
that is, not every Petri net with one input and one output place (WF nets are
assumed to have this property) can be generated using these rules.

Consider for instance the WF nets depicted in Fig. 3. These nets cannot be
obtained by applying the rules given in Fig. 1. The net in Fig. 3(a) cannot be
obtained because the total number of arcs being inputs to transitions is 4 and
being outputs is 3, hence violating Theorem 1(3). The net in Fig. 3(b) cannot
be obtained because it is not a free-choice net, thus violating Theorem 1(4).

In fact, to describe intuitively what is the main restriction on the class of
WF nets obtained by the above rules, it should be noted that, although both

340 P. Chrza̧stowski-Wachtel et al.

parallel splits and synchronizations are allowed, the following constraint must
be satisfied: what has been split must be synchronized later. Similarly what has
constituted a simple exclusive choice must be later merged. Recall, that although
the net of Fig. 3(a) violates this principle (an exclusive choice if followed by a
parallel merge), the net of Fig. 3(b) one does not. There is a triple OR-split at
the top and a triple OR-join at the bottom, as well as three AND-splits, each of
them followed by an AND-join. The problem with this net is that, although the
numbers of splits and joins of the same type are the same, the OR- and AND-
splits and joins are shuffled so that we obtain a sequence: OR-split followed by
AND-split followed by OR-join followed by AND-join. In our model, nesting is
allowed but not shuffling.

The first net represents a design structure that we want to avoid since it
causes a deadlock. Similar difficulties would be faced in the dual case of a parallel
split followed by a merge, resulting in a generation of a new token. The latter
situation is at first glance less unsafe. However, the second net represents a kind
of normal situation. Since we don’t want to rule out this kind of behavior, we
will consider such transformations possible on a lower level that will allow us to
represent arrangements of this kind.

(b)(a)

Fig. 3. Nets that can not be obtained by using the basic refinement rules

The proposed rules correspond to the first five patterns1 identified by van der
Aalst et al. [5], but with the restriction that the parallel split must be followed
by the parallel synchronization, while the exclusive choice must be followed by
a simple merge. This restriction is considered not to be a deficiency. Rather
it introduces a sound constraint that prevents us from making obvious design
errors. At the management level the above rules will suffice for a large amount of
cases. What we gain is the guarantee that the resulting WF net is correct with
respect to the soundness conditions as identified in [4].

1 http://www.tm.tue.nl/it/research/patterns/.

A Top-Down Petri Net-Based Approach 341

Definition 1. A sound WF net is a Petri net with places pin and pout that
satisfies the following conditions:

– For each token put in pin, one and only one token eventually appears in pout,
– When the token appears in pout, all other places are empty, and
– For each transition (i.e, task), it is possible to move from the initial state to

a state in which this transition is enabled.

Theorem 2. If we start with a WF net consisting of a single place with no
transitions, and perform only the proposed transformations, then the resulting
WF net is sound.

Proof. The induction on the number of refinements performed completes the
proof. �	

2.3 Refinement Tree

In the next sections we will provide the rules that allow us to construct basic
WF nets in order to support elaborated patterns like communication or synchro-
nization between concurrent parts of the net. In order to do so, it is desirable
to define the notion of concurrency in such nets precisely, and to have a fast
algorithm for determining if two nodes are truly concurrent. For this purpose,
we use the notion of refinement tree, which will be introduced in this section.
We show that the refinement tree will be defined in a unique way for each net
obtained by a sequence of basic refinements.

Note that, after applying several times the transformation rules, we obtain
a tree structure reflecting the order in which the transformations were made.
The places and transitions of the net will label the leaves of the tree, while the
internal nodes will be labeled by the transformation names. Let us assume that
the tree is ordered, so that we can identify the role of each node in case of non-
symmetrical (sequential) transformations. The root of the tree is initially labeled
by the initial place we start our design from. Since each transformation rule is of
the form 〈node〉 ::= 〈net〉, when we apply any of these rules, the node from the
left hand side of the transformation description already exists in the tree being
its leaf. We then create its children labeling them by the resulting nodes, and
marking the new parent node by the transformation name. The tree is uniquely
determined by the order in which the transformations were made.

p1 p2t1
Plan Trip

p3t2
Submit Trip Order

Fig. 4. A Sequence of Two Transitions

Since the refinement tree will be later used for characterization of sound
transformations, which we are going yet to introduce, it would be desirable to

342 P. Chrza̧stowski-Wachtel et al.

associate a unique tree to every WF net that resulted as a sequence of canonical
refinements. So far this is not the case. To illustrate that let us consider the WF
net of Fig. 4, for which three non-isomorphic trees can be created, as depicted
in Fig. 5.

(1)

p1 t1 p2

p3 (1)p1

t1 p2 t2

p3
p1

p2 t2 p3

(1) (1) (1)

t2
t2 (2)

(a) (b) (c)

Fig. 5. Three Non-isomorphic Trees for the Net from Fig. 4

The refinement trees always have internal nodes labeled by the refinement
rules, and the leaf nodes by the transitions and places. The trees are ordered,
so that from such trees we are able to reconstruct the refinement process. The
reason for which we cannot make the opposite (draw the tree when looking at
the net) is that we are too accurate in performing sequences of refinements of
the same kind. We distinguish too many details. Instead, we would prefer to look
at such sequences of refinements as one-level refinements. In case of the example
of Fig. 4, there should be one place sequential split node with five children: p1,
t1, p2, t2, and p3, hence having only two levels instead of three.

We would like to contract the tree in case a parent and all its child nodes are
labeled by the same transformation. In this case we would make all such children
to become siblings of the parent by shifting them one level up. This operation
reflects the extension of the rules to be n-ary instead of binary. For instance,
we could define n-parallel split, n-parallel choice, and so forth. As both place
sequence split and transition sequence split are reflecting a very similar kind of
refinement, we will not distinguish between them, and treat them as one kind of
refinement. The tree resulting from the original tree by such contraction will be
called the refinement tree.

The height of the tree forms a basis for defining complexity of the workflow.
From this point of view the workflow does not become more complicated if we
add one more node to a sequence, but it does if we perform a parallel split in a
sequence or sequentialize something that has been previously split.

To make the refinement tree canonical, hence unique for a given refinement
net, we must define an equivalence relation on the refinement trees, so that
non important differences in the construction will not lead to distinguishing the
resulting two trees as different. The main problem is the importance of the order
of children nodes depending on the kind of the father node. It turns out that if
the sequential refinements take place, the order of children is important, as we

A Top-Down Petri Net-Based Approach 343

wish to distinguish between the first, and the last among the 3 resulting nodes,
which are of the same kind and could be easily confused if the tree was unordered.
At the same time, the other 3 refinement rules make the order irrelevant: there
is no reason why we would have to say which of the nodes is first and which is
the second child. They are identical at this stage. Let us define the equivalence
relation on refinement tree recursively:

Definition 2. Two trees T1 with root v1 and T2 with root v2 are equivalent iff
one of the following conditions holds

– T1 and T2 are one-node trees and the types of the nodes is the same.
– If v1 and v2 are labeled by the sequential refinements, then the number of chil-

dren of v1 is the same as the number of children of v2, and the corresponding
children are equivalent.

– If v1 and v2 are labeled by OR-split, AND-split, or Loop-split, then there is
a bijection between equivalent children of v1 and v2.

It turns out that whenever different orders of refinements lead to the same
net, then the contracted trees are identical for both of them.

Theorem 3. If the WF net N resulted from a sequence of considered refine-
ments then, no matter in which order they were made, the resulting refinement
tree is uniquely determined.

Proof. The proof will be an induction on the number of internal nodes n (each
internal node represents one refinement). The theorem holds trivially for n = 0.
Assume that n > 0 and for every k < n all the nets with at most k internal
nodes have isomorphic trees. Consider a WF net N having n nodes with two
refinement trees of N representing different orders which led to the construction
of N . Each of the trees results as a sequence of refinements. Consider the last
refinement made in the construction of T1 and the last refinement of T2. Let T ′

1
and T ′

2 be the trees before the last refinements made. Consider two cases:
Case 1. The areas touched by the last considered refinements are disjoint (i.e.
none of them has a common node with the other one to share). Let N1 and
N2 be the nets corresponding to T ′

1 and T ′
2. Let N ′

1 be the net resulting from
N1 by undoing the possible refinement which was the last in N2. Similarly let
N ′
2 be the net resulting from N2 by undoing the possible refinement which was

the last in N1. Undoing these refinements is possible thanks to the assumption
about the areas being disjoint. Now we got two isomorphic nets, and since the
number of nodes is smaller than n, their corresponding refinement trees are
also isomorphic. Now the only way to get the initial net N is to redo the two
withdrawn refinements obtaining two isomorphic trees.
Case 2. The last refinement made in the construction of T1 has a node in
common with the last refinement made in the construction of T2. In this case it
is enough to verify that either the two last refinements were done in the same
level, and both were of the same type (in particular sequential refinements of any
type), in which case the order they were made is irrelevant, or they were indeed

344 P. Chrza̧stowski-Wachtel et al.

refinement of different types, in which case we come to the contradiction, because
no pair of different refinements is commutative. And we come to a contradiction:
we cannot obtain the same (isomorphic) net. By not being commutative we mean,
that starting from one node and performing any pair of different refinements (the
only way to get the areas intersected) we always obtain non-isomorphic nets. This
property can be checked manually, as there is a finite number of such pairs. �	

Each WF net hence produces a uniquely determined (up to isomorphism)
refinement tree. We will refer to this tree later, when defining new constructs,
which allow us to have synchronization and communication between parallel
parts. The tree will be used to determine the parallel parts of the WF net.

3 Non-refinement Rules

The refinement rules proposed so far are not sufficient for all situations that can
occur during workflow design. We claim that they suffice for defining the region
structure. Such structure is usually simpler than the detailed design, which may
require more elaborate rules.

The key idea of this approach is to find a set of refinement rules that is
sufficient to design typical workflow behavior. Workflows constructed using such
rules: (i) enjoy all desired properties, such as soundness as mentioned in [7], (ii)
have a structure easy to understand and maintain that reflects the management
structure, and (iii) express most typical workflow patterns.

The structural design we have proposed so far is simple and quite powerful,
being able to represent many real life situations. However, there exist patterns,
which can not be obtained in a hierarchical way. The key problem is the in-
teraction between concurrently enabled activities. We distinguish such patterns,
as they occur in many workflow designs. All these patterns do not follow the
refinement schema, where a single node is being transformed into a more com-
plicated net. The proposed patterns involve more than one node at a time, and
build a net structure between them according to some restrictions that guaran-
tee soundness. The soundness property is the one we would like to keep, even at
a price of some limitations in design freedom.

In fact all the proposed patterns will have something in common. They will
join in certain ways different parts of the WF net by introducing new transitions
or places serving as bridges. The important thing is to restrict such auxiliary
constructs to connect only parallel parts of the net, in order to avoid the situation
where an active part of the net would interact with an inactive one. Another
restriction is that such constructs should not introduce loops, as they could
easily cause deadlock.

In the following, we denote by place-type nodes in the refinement tree places,
sequential place splits, AND-splits, and Loop-splits, while transition-type nodes
stand for sequential transition splits and OR-splits, as identified by the canonical
refinements (see Fig. 1).

A Top-Down Petri Net-Based Approach 345

Definition 3. Two nodes x1 and x2 (places or transitions) in a WF net obtained
as a result of the canonical refinements lie in parallel threads iff in the refinement
tree the only nodes on the path from x1 to x2 are the ones labeled by AND-split,
sequential splits, or Loop-splits, but in this last case only followed by a place-type
node.

Therefore, there may be neither OR-splits nor Loop-splits followed by a
transition-type node (transition, sequential transition split, or OR-split) on the
path joining two nodes that we define being on parallel threads.

The notion of parallel threads will be helpful in defining sound patterns which
allow us to join different parts of the WF net in a non-refinement manner. The
key idea is that when two nodes are in parallel threads, then in all complete runs
(from the token on pin to the marking with a token on pout) either both of them
occur (place holds a token or transition fires) or none. Moreover, for all pairs of
such nodes there exist such runs, in which each of them precedes the other one.

Theorem 4. If a Loop-split followed by a transition-type node or an OR-split
occurs on the path from x1 to x2 in the refinement tree, then there exists a
complete run such that one and only one of x1 and x2 occurs on this run.

Proof. When an OR-split occurs on the path from x1 to x2, then both of the
nodes lie in different choices of one decision. Since the net is free-choice, when we
make the choice in favour of one node, the other one cannot be activated. When
a Loop-split followed by a transition-type node occurs on the path from x1 to
x2 in the refinement tree, it means that x2 occurred as a result of refining the
transition, that closes the loop backwards. Any attempt to enforce the occurrence
of this backward transition is hopeless, since we have free-choice decision whether
to continue the loop or to leave it. Note, that the refinement of the Loop-place
into a sequence produces part of the loop that will always be performed, so there
is no need to exclude the Loop-splits on the path in general. �	

The reverse statement is also valid as stated by the following result.

Theorem 5. If neither a Loop-split followed by a transition-type node nor an
OR-split occurs on the path from x1 to x2 in the refinement tree, then either both
x1 and x2 or none of them occur in all complete runs.

Proof. The sequential splits just carry tokens along the nodes that result after
the split, so indeed a sequential split carries no danger that only one of x1 or
x2 will occur in the complete run. Similarly the AND-split activates both places
simultaneously. The Loop-split pattern followed by a place-type node plays the
role of a part of the loop which will always be executed once a token occurs
in the initial place after the refinement. So the entire sub-net that is the result
of further refinement preserves the desired property. Induction completes the
proof. �	

These two theorems will form the basis for formulating the conditions for
sound non-refinement patterns, which connect existing nodes in the WF net.

346 P. Chrza̧stowski-Wachtel et al.

3.1 Communication

The first of the non-refinement patterns is communication, where one agent
wants to send a message to another, and both are concurrently running. We
assume here that all messages are important and that the receiver will wait for
the expected message until it arrives. This construct is somewhat of different
nature and should be used with extreme care. We will propose a condition that
will allow a safe introduction of a new communication place, creating a buffer
for message passing without loosing soundness condition.

valid

not valid

t1

t3t5

t4

t2

Fig. 6. Communication

In many cases, when the execution of parallel threads appears in a workflow,
a communication should occur involving sending a message from one thread to
another one. We assume that, the recipient of the message should wait until the
message arrives. So we treat messages like signals that enforce synchronization
between parallel parts of a workflow rather than information spread across the
workflow diagram. In order to send a message, one needs to specify the sender
and the receiver, being aware that they are indeed active agents. A deadlock can
occur if the receiver is expecting a message from the sender that is not activated
because, for instance, it was not chosen at an OR-split point.

At design phase, we will create the communication links by pointing at two
partners of communication, but with an additional restriction. They should lie
on parallel threads, and the introduced communication place should not close a
cycle.

Consider the net example of Fig. 6. One can verify, that the transitions t1
and t2 lie on parallel threads. It would be perfectly valid to make a communi-
cation from t1 to t2, as well as the opposite way around. But we do not allow
a communication to be performed between t3 and t4, because in the refinement

A Top-Down Petri Net-Based Approach 347

tree on the path leading from t3 to t4 there is an OR-split. In case a choice for
t5 has been made in favor of t3, the transition t4 would be made dead. In fact
the presence of an OR split on the path between two communicating agents is
inherently bad, as the net is free choice and we can always make a wrong decision
causing a deadlock or a trash token, which could possibly never be taken away.

Moreover, it should not be allowed to send a message to a node, which is our
predecessor in the net, hence closing a cycle. But this will be excluded by the
restriction we impose on the communication agents as defined below.

Definition 4. Let t1 and t2 be two transitions. A place p joining t1 and t2 is a
communication place iff the following conditions are satisfied:

– t1 and t2 lie on parallel threads, and
– Introducing the communication place does not close a cycle.

To preserve soundness, both conditions should be satisfied. In case t1 and t2
are not in parallel threads, a scenario can be created in which soundness is lost.

3.2 Synchronization

It is often the case that two parallel threads should synchronize their activities
before they are completed. We distinguish here between two cases: symmet-
ric synchronization and asymmetric synchronization. The first one occurs when
there are checkpoints in each of them that must be simultaneously reached. The
asymmetric one occurs when one of them is privileged: it does not need to wait
for the other one to proceed, while the other one can not go across the checkpoint
if the first one has not reached it.

(a) Symmetric (b) Asymmetric

Fig. 7. Synchronization

Symmetric Synchronization. The symmetric synchronization can be ob-
tained by the pattern depicted on Fig. 7(a). We are supposed to synchronize
the parallel threads on places p1 and p2. Neither t1 nor t2 may fire unless the
other one is enabled. In other words, we would like to enable both of them as
soon as tokens appear on both p1 and p2. As a result of the synchronization,
the synchronized places p1 and p2 are split and the synchronizing transition st
fires as soon as tokens appear on their “left” halves, i.e., on p11 and p21. It is

t2

t1p11 p12p1

p2

p22

p21

st

t1

t2

st

p22

p12p11

t2p21

t1

348 P. Chrza̧stowski-Wachtel et al.

assumed that, this transition fires without any delay as soon as it is enabled.
As a result of firing st we obtain tokens on places p12 and p22. They enable
transitions t1 and t2 as required.

Asymmetric Synchronization. The asymmetric synchronization can be ob-
tained by the pattern depicted on Fig. 7(b). This time we want to let the upper
thread proceed without waiting for the lower one, but the lower thread should
wait until a token appears on p1 in the upper thread. This pattern, like the
symmetric synchronization, should be made under the same condition as the
communication pattern. In fact, communication involving the transition imme-
diately preceding the synchronization place in the dominating thread could be
an option for realizing this pattern.

Definition 5. Let p1 and p2 be two places. A synchronization pattern may be
added involving p1 and p2, as in Fig. 7, iff the following conditions are satisfied:

– p1 and p2 lie on parallel threads, and
– Introducing the synchronizing transition does not close a cycle.

3.3 Soundness Property

All the introduced patterns have a similar condition: the only parts of a WF
net that can interfere safely (without loosing soundness property) with each
other by some additional constructs, are the ones that occur in parallel threads.
Hence, the threads that were generated from an AND-split as a result of further
refinement of places which were in the right-hand side of the refinement rule.

Theorem 6. If we start with a single place and proceed with the canonical re-
finements as well as with the communication and synchronization patterns under
the given restrictions, then the resulting WF net is sound.

Proof. Let us concentrate on the communication pattern, as the proof for the
synchronization patterns follows the same line of reasoning. Assume, that t1
wants to send a message to t2 involving communication pattern and both lie on
parallel threads, and the introduced new place does not close a cycle. Theorem
4 says that either both transitions will be absent in a complete run (in this case
soundness is trivially preserved) or both will be present. In the latter case the
introduced place may enforce the order in which the transitions will be executed.
If in all runs, in the original net, t1 precedes t2, then the same runs will be
possible after introducing the communication place. If in all runs, in the original
net, t2 precedes t1, then it means that, t2 is a predecessor of t2 in the net, hence
introducing the communication place from t1 to t2 would close a cycle.
If in some runs t1 precedes t2 and in some other ones t2 precedes t1, then in-
troducing the communication place will enforce the order in which they are
executed, but will not cause a trash token or a deadlock. The token put on the
communication place will be consumed by t2. And the communication place can-
not cause a deadlock, because it will withhold t2 from firing until t1 fires, and

A Top-Down Petri Net-Based Approach 349

since neither of them is a predecessor of the other one and the net is free choice,
we can always execute the runs in which t1 precedes t2. �	

Observe that, the conditions under which the communication and synchro-
nization patterns were allowed are also necessary. The reader can verify, that if
the involved nodes do not lie on parallel paths or the introduced net closes a cy-
cle, then there is always a possibility of creating a scenario that causes deadlock
or trash tokens.

4 Recovery Regions

We will now apply the proposed top-down approach to the definition of recovery
regions [3]. We propose another idea, that is, to use the refinement process as a
natural method to define regions.

Regions represent parts of a workflow. Region elements are related to each
other and can be identified as a whole activity to be performed, clearly indicating
its origin and end. We want regions to be workflows themselves, enjoying all the
workflow properties. We also associate with regions exception handlers. Each
exception handler will determine the compensation procedure and entry points,
so that some amount of work done so far can be saved. We would like to restart
the execution of a region at the latest possible entry point. In the sequel, we
introduce the encapsulation mechanism, which will allow us to define recoveries
in a structured way.

4.1 Design Overview

At any step of the refinement process, we can request a place to become a region.
To each region several exception handlers can be assigned. Each such compen-
sation procedure will affect the execution of the region in the following way.
The entire region’s interior will be reset, and tokens will be deposited on certain
places associated with the recovery transition. By resetting the region’s inte-
rior, we mean stopping all the activities being executed, removing all the tokens
from the interior of the region, and performing some compensation procedures
as needed. Depositing tokens means that we specify the entry points, from which
the execution of the region will be resumed. This can save some work done so
far, however quite often it can happen that a default reset, i.e., putting a token
on the region input place, will be performed. The default reset means we will
start executing the whole region from the beginning.

Once a place p is refined to a region, all the subnet resulting from p forms
the region’s interior. The subtree of a node, that was called a region, represents
the interior of a region. The place, being the first one in the left-to-right in-order
traversal of the subtree associated with a region, is the input place of the region,
while the last one is the output place of the region. Note that any region is a
valid WF net by itself.

Regions represent typically the milestones of a workflow execution. Once
passed, they will not usually be redone. The transitions between the regions

350 P. Chrza̧stowski-Wachtel et al.

play an auxiliary role of transferring the control from one or more regions to
some other ones. However, sometimes an unexpected event may necessitate to
move backward and forward between regions, as parts of workflow will have to
be redone or skipped. For example, if a transport of produced garments is stolen
or destroyed, we must go back to the production phase, but usually after the
design phase. On the other hand, if during quality assessment, for instance, we
require three independent checks, and only two are ready by the deadline, we
can decide to skip waiting for the last one to arrive and go to the next phase
which form another region. Such events require triggering a recovery transition
which can cause, for instance, stopping all the activities that concern the stolen
or destroyed goods and initiating the production phase in the first example,
or informing the quality assessment third party about abandoning the need for
the review and preparing the unit which is responsible for the collection of the
reviews to discard anything that comes from it in the second example. Similar
procedures could be taken at any level of the description since every region is a
workflow by itself. The only difference is that the management level is different
and the communication is more local.

4.2 Example: Ordering Flight Tickets

We give here an example of workflow representing ordering flight tickets over
the Internet to illustrate the concepts introduced. A customer plans her/his
trip by specifying the various stages of the overall journey. Then s/he sends
this information together with the list of all participants of the trip and the
information about the credit card to be charged for the ordered tickets to the
travel agent and waits for the submission of the electronic tickets as well as the
final itinerary before preparing for the trip by making other arrangements such
as hotel booking and car renting. When the travel agent receives the customer’s
trip order, s/he will determine the legs for each of the stages, submits these
legs together with the information about the credit card to be charged to the
airline company, and waits for the confirmation of the flights. This information is
completed into an itinerary and sent to the customer. When the airline receives
the tickets order submitted by the agent, the requested seats will be checked
and, if available, assigned to the corresponding participants. After that, the
credit card will be charged and the confirmation of the flights sent. Finally, once
the travel agent receives confirmation, the airline sends the electronic tickets by
e-mail to the customer.

R3R2R1

R5

R4

R6

Fig. 8. Ordering Flight Tickets High-level Workflow

A Top-Down Petri Net-Based Approach 351

Starting from a single place and using a succession of refinement rules, the
high-level workflow shown in Fig. 8 is obtained. Black rectangles stand for silent
(or empty) transitions. By further refining places R1 through R6, we obtain the
flat workflow represented in Fig. 9. An example of regions associated within
the workflow is also given in Fig. 9. Regions are depicted by dotted polygons,
recovery transitions by dashed boxes, and recovery arcs (i.e., arcs linking regions
to recovery transitions) by attaching two arrowheads instead of one to the end
of the arcs. For presentation clarity, we restrict the detail of recovery transitions
to region R3 only. Within a region, for all other (unexpected) exceptions that
do not match the expected exceptions, a default unexpected exception handler
is raised. This can be, for instance, undoing the effects of the activities and
resuming the execution of the region from the beginning. For region R3 in Fig. 9,
this is represented by the recovery transition t3.

Such decisions must be done at an appropriate level. If management levels
are clearly identified then a natural workflow design decision would be to create
regions in a way that reflects the management levels and associates certain priv-
ileges to trigger recoveries at each level. Consider a situation in which manager
A, responsible for part α of the workflow, has a subordinate B, responsible for
part β being a subpart of α. In this case A will be able to perform more general
recoveries, involving parts of the workflow managed by B, because her/his recov-
ery procedures can also reset the part β of the workflow. On the other hand, B
can only handle exceptions for β without having permission to trigger recovery
procedures outside β.

Such exception handling would require channels for communication ready
for transmitting recovery decisions and a language clearly indicating the actions
to be performed, since recoveries should follow some predefined patterns. Typ-
ically, the regions’ structure will create ideal opportunities for the organization
of message transmissions making them hierarchical.

5 Tool Support

To illustrate the viability of the approach presented in this paper, we have de-
veloped HiWorD (HIerarchical WORkflow Designer), a hierarchical Petri net
tool using Java [9]. The tool has been successfully used to hierarchically design
workflow scenarios in a safe and effective way from our project industrial part-
ner Justwin Technologies Pty Ltd2. We plan to integrate the modeling tool with
Justwin Workflow engine.

HiWorD is an editor tool that can be used to provide an efficient way to
design and display workflows, by using the concepts of refinement rules and
regions. In addition to traditional workflow modeling, HiWorD allows, starting
from a single place, the refinement of places and transitions to create hierarchical
workflows. The tool supports also the concept of region. A region is considered
as a refined place in HiWorD for which one or several recovery transitions are
added and each recovery transition is associated with an exception handler.
2 http://www.justwin.com/.

352 P. Chrza̧stowski-Wachtel et al.

Fig. 9. Ordering Flight Tickets Workflow with Regions

This implementation has shown the validity of the approach and its ad-
vantages with regard to the traditional workflow design tools in handling and
supporting hierarchical modeling. It should be noted that HiWorD can also be
extended to interface with commonly used commercial workflow management
systems such as Staffware and IBM MQSeries.

6 Conclusions

In this paper, we proposed a hierarchical model based on Petri nets to design
workflows in a structured way. There are five basic refinement rules and three
rules for adding communication and synchronization mechanisms. Sufficient con-
ditions are proposed to ensure soundness after introducing any of the proposed
constructs. Therefore, the workflow built according to the proposed rules is guar-
anteed to be a sound WF net with no risk of deadlock.

References

1. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases 3 (1995)

2. WfMC: Workflow Management Coalition, Terminology and Glossary, Document
Number WFMC-TC-1011. (1999) http://www.wfmc.org/standards/docs.htm/.

Select Legs

Generate
Itenerary

Issue
Itenerary

Reserve
Seats

Confirm
Flights

Get Tickets
Order

Receive
eTickets

Receive
 Itenerary

Get
Confirmation

i

Plan Trip

R2

Charge
Credit Card

t3

R3

R5

o R6

Submit Trip
Order

Contact
 Agent

Issue
 eTickets

Inform
Airline

Prepare
Trip

o3

i3

R4

R1

Order
Tickets

Get Trip
Order

A Top-Down Petri Net-Based Approach 353

3. Chrzastowski-Wachtel, P.: Recovery Nets: Model for Dynamic Workflows. In: Pro-
ceedings of the 13th Workshop on Concurrency, Specification, and Programming,
Humboldt University Report, Berlin, Germany (2002)

4. Aalst, W.v.d., Hee, K.v.: Workflow Management. Models, Methods and Systems.
MIT Press, Cambridge, Massachusetts (2002)

5. Aalst, W.v.d., Hofstede, A.t., Kiepuszewski, B., Barros, A.: Workflow Patterns.
Technical Report FIT-TR-2002-02, Queensland University of Technology, Brisbane,
Australia (2002)

6. Aalst, W.v.d.: Verification of Workflow Nets. In Azema, P., Balbo, G., eds.: Pro-
ceedings of the Application and Theory of Petri Nets’97, Toulouse, France (1997)

7. Aalst, W.v.d.: The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers 8 (1998) 21–66

8. Desel, J., Esparza, J.: Free Choice Petri Nets. Volume 40 of Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, Cambridge, UK (1995)

9. Benatallah, B., Chrzastowski-Wachtel, P., Hamadi, R., O’Dell, M., Susanto, A.:
HiWorD: A Petri Net-based Hierarchical Workflow Designer. In: Proceedings of
the 3rd International Conference on Application of Concurrency to System Design
(ACSD’03), Guimaraes, Portugal, IEEE Computer Society Press (2003)

A Case-Based Framework for Workflow Model
Management

Therani Madhusudan and J. Leon Zhao

MIS Department, University of Arizona,
Tucson, Arizona 85721

madhu@email.arizona.edu
lzhao@bpa.arizona.edu

Abstract. Case-oriented workflow modeling provides flexibility in spec-
ifying and executing workflows because it is possible to consider unique,
organization-specific business process conditions and thereby minimize
exceptions. However, it is a laborious task for a workflow designer to
derive a case-oriented workflow model from a business specification,
resulting in high modeling overhead. Recent commercial systems are
providing generic templates of common business processes which may
be adapted to an organizations requirements. These templates, called
cases, can be modified individually or multiple cases may be composed
into a more complex workflow and then the assembled workflow may
be modified as needed to meet the business specification. In this paper,
we propose a novel framework for case-oriented retrieval, instantiation
and reuse of workflow models utilizing Case-Based Reasoning (CBR)
techniques. We describe key modules of a prototypical implementation
to facilitate model management activities such as model retrieval, reuse
and composition of component case models from a workflow repository.

Keywords: Case-oriented Workflow Modeling, Case-based Reasoning,
Ad hoc Workflows, Model Reuse

1 Introduction

Business process modeling is a significant activity in enterprises as e-business
and enterprise integration drive the need to deploy business processes online [7].
The business process modeling efforts are knowledge-intensive and require orga-
nizations to formalize a large number of complex inter and intra-organizational
processes to facilitate their ensuing deployment in large-scale workflow systems
[27]. Workflow modeling involves the translation of high-level business require-
ments into workflow schemas that can be executed by certain workflow engines.
Specifying a workflow model is a tedious endeavor because a typical workflow
model requires detailed understanding of the business process logic, the orga-
nizational chart, and the information systems accessed by the workflow. As a
result, reusing existing workflow models and/or their components is highly de-
sirable [15,14]. Recent commercial systems (such as Oracle–11i) are providing

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 354–369, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Case-Based Framework for Workflow Model Management 355

basic business process templates, such as order processing and supplies pur-
chasing, that may be modified to an organizations’ needs by a knowledgeable
workflow designer. However, formal guidelines for reuse of these templates, rules
for their instantiation in an organization or their modification and procedures
for their composition into complex workflows are currently non-existent. In this
paper, we present a formal framework for storage, retrieval, instantiation, reuse
and composition of these generic business process templates, henceforth called
cases.

The need for workflow modeling support has been recognized by researchers
using approaches including a repository of organizational processes [19] and inte-
gration of organizational memory and workflow management systems [31]. How-
ever, to the best of our knowledge, there is no comprehensive approach on the
retrieval and reuse of workflow models. Reuse of workflow models is especially
important for ad hoc workflows where a workflow model is specified for each
business case, leading to case-oriented workflow modeling [30].

Our proposed framework to facilitate reuse of workflow models is based on
utilizing recent advances in Case-based reasoning techniques[16] and XML tech-
nologies. Case-based reasoning(CBR) is a problem solving technique based on
the hypothesis that reasoning is reminding. That is, that problem solving utilizes
past experiences. Two key tenets drive CBR approaches which are: a) similar
problems have similar solutions and b) problems tend to recur in a domain. If
these tenets hold in a domain, future problems are likely to be similar to current
problems and current solutions may be profitably used to develop new solutions.
CBR systems have proved useful in domains with weak models and large amount
of unstructured, experiential knowledge. The technique provides for incremen-
tal knowledge acquisition, knowledge maintenance, increase in problem-solving
efficiency (possibly with manual intervention), increase in solution quality and fi-
nally user acceptance [17,6]. Recent efforts have explored the possibility of using
CBR to tailor software processes depending on the nature of the software project
requirements [13]. The workflow modeling process exhibits CBR-like character-
istics such as occurrence of similar business processes and reuse of similar types
of data and business constraints. Experienced workflow designers derive new
workflow models from existing models based on new business requirements by
recognizing similar process patterns [8]. Therefore, we believe a case-oriented
approach to workflow modeling is feasible. Figure 1 illustrates the CBR problem
solving cycle that consists of the following steps (shown by the solid arrows):
retrieval of relevant cases, reuse of applicable cases, revision of adopted cases via
testing to ensure correctness and retention of past solutions via learning. At each
step, knowledge is reused from the case-base (shown by the dashed by the ar-
row). The CBR cycle allows for both humans and automated tools to coordinate
their activities in the Retrieve, Reuse, Repair and Retain phases.

A framework for instantiating the CBR reasoning cycle to enable workflow
modeling is the main theme of this paper. Our framework consists of a business
case ontology, a data structure for storing cases, and an algorithm for retrieving
business cases and workflow schemas. The retrieval is currently performed based

356 T. Madhusudan and J.L. Zhao

New
Case

Retrieved
CasesPrevious Cases

General
Knowledge

Solved
Case

Tested
Repaired
Case

Learned
Case

REUSE

REVISE

RETRIEVE

RETAIN

Confirmed
Solution Suggested Solution

PROBLEM

Fig. 1. The Case-based reasoning cycle

on exact matching of task characteristics. Further, once such workflow cases are
retrieved, component cases are composed (assembled) into complex workflows.
The composition process may be done manually or feasible assembly alternatives
may be suggested in an automated manner based on AI planning techniques to
the workflow designer. In our framework, we are utilizing the Hierarchical Task
Network framework[23] to facilitate process composition.

The rest of the paper is organized as follows to illustrate the key aspects of our
framework. In Section 2, we provide an overview of the approach with a workflow
design example to illustrate the key issues and describe the overall architecture of
our system. In Section 3, we describe the XML-based representation for workflow
processes in our process repository and its organization. In Section 4, we present
the basic approach to matching and retrieving workflow cases from a repository
and enabling their ensuing composition. Approaches to verification and further
adaptation are briefly outlined. Concluding remarks are in Section 5.

2 Overview of Approach

The flexibility of the CBR-approach provides a framework to facilitate the in-
cremental definition of a workflow specification. Abstract, business level descrip-
tions of workflow requirements can be incrementally refined into formal workflow
models which may then be executed. Further, in a business context, the workflow
case repository provides a means to archive and reuse best business processes,
lessons learnt during their execution and variations encountered under different

A Case-Based Framework for Workflow Model Management 357

business requirements. Also the case repository provides a means to store the in-
formation at multiple levels of abstraction and detail combining both structured
and unstructured business knowledge. The key steps in developing a CBR-based
system are:

1. Case representation development and populating the case repository with
appropriate cases for a given domain.

2. Developing retrieval algorithms for case retrieval based on the notion of
similarity of cues between the new problem description and the case indices.

3. Developing domain dependent procedures for facilitating reuse and adapta-
tion of retrieved cases. It is rare that a solution can be directly applied to a
new problem and usually needs to be modified before validation.

4. Developing composition procedures where cases or their pieces, also called
snippets) may be assembled into more complex models.

We have developed a Case-Oriented Design Assistant for Workflow (CO-
DAW) that utilizes case-based reasoning techniques by implementing each of
the aforementioned steps. During the workflow specification task, a workflow de-
signer will be provided with a high-level description of a business process (by a
business process analyst) and asked to design a structured workflow. The work-
flow designer will use the CODAW system to retrieve past cases that embed
“similar” characteristics to the new requirement. The designer analyses these
cases, selects relevant cases, and composes them into a new solution. During the
workflow modeling process, he may be aided by the CODAW system.

In the context of supporting workflow modeling and design, the CODAW
approach provides a means to store workflow schemas and reuse the knowledge
embedded in the workflow schemas. Workflow cases are of two major types: a)
Prototypical-level cases which contain workflow schemas along with their design
revision history, i.e. how the schema has evolved through time. b) Instance-level
cases which contain descriptions of instances of workflow schemas that have
been enacted either manually or by a system. Both types of cases may contain
semistructured information that embeds design and runtime knowledge about a
business process. Cases of workflow schemas embed knowledge about organiza-
tional structure, relevant roles and a variety of business constraints. Instance-
level cases record information such as the actual agents involved (a particular
staff member for example), tasks used, how the tasks were executed, exceptions
encountered, maintenance activities, the data involved and performance metrics
such as the duration of execution. In our current study, we assume that organi-
zations follow some standards of business processes as proposed in the process
handbook [19]. As a result, it is realistic to expect there is a common language
in organizations on how to express the requirements in business processes with
the widespread adoption of BPR techniques [12]. We further assume that the
final executable workflow schemas are also specified in some given language such
as web services flow language (WSFL), Business process execution language,
BPEL or XML-based process definition language(XPDL) as tools for modeling
these will be available in the near future [5,11,9]. Thus it is viable to envision
the creation of process repositories in the near future.

358 T. Madhusudan and J.L. Zhao

The CBR-framework for Workflow Design is shown in Figure 2 wherein
knowledge from process repositories may be effectively used to facilitate business
process management. Numbers on the directed arrows indicate the steps of the
CBR cycle described earlier, query (1), cue generation (2), trigger retrieval (3),
indexing and repository access (4 & 5.1) and rank (6) and return relevant cases
(7). Alternatively, the retrieved cases may be adapted and verified (8 & 5.2)
or multiple cases composed (8 & 5.3) and the solution returned (9). The CBR
process controller coordinates the different activities of the cycle. The figure il-
lustrates a native XML repository to store the cases, an AI-planning module
that aids composition and a verifier based on model-based checking and Petri
net based techniques. The CBR process controller, the Case-base manager and
the adaptation engine components of the CODAW prototype system are im-
plemented as Lisp-based servlets embedded in JAVA components. Algorithmic
details of the case retrieval and planning-based case composition are discussed
in Section 4.

SERVLET FRAMEWORK

1
2 3

467

XML−based

Repository

PetriNet
Verifier

Planning
based
Composer

5.1

5.2

5.3

ENGINE
ADAPTATION

INDEXER

CASEBASE
MANAGER

CBR
PROCESS
CONTROL

Description
Case
New

CLIENT

89

Fig. 2. Architecture of the CODAW System

We illustrate the utility of our approach with the following business process
modeling scenario in the area of new product development(NPD). One of the
major business processes in an organization is the product development process
[21,29]. With the short product life-cycles and competitive markets in the current
business environment, managing the product development process is key to or-
ganizational success. Key generic activities during product development [29] are:
1) Product planning, 2) Concept development, 3) System level design, 4) Detail

A Case-Based Framework for Workflow Model Management 359

design, 5) Testing and refinement and 6) Production ramp-up. Each of these high
level tasks is further refined into their subtasks in a nested manner. For example
purposes, we focus on the Concept development activity. This can be further
refined into the following subtasks, namely, 1) Identifying customers needs, 2)
Establishing target specification, 3) Concept generation, 4) Concept selection, 5)
Concept testing, 6) Setting final specifications, 7) Project planning, 8) Economic
analysis, 9) Benchmarking and 10) Modeling and prototyping. The subtasks are
executed in various orders ranging from the purely sequential to various concur-
rent schemes depending on the resources available and business constraints. It
is estimated that nearly 80 percent of product costs are committed during this
product development phase and managing this process effectively remains a key
organizational objective to reduce overall product costs. Many organizations are
moving towards standardizing these product development processes to reduce
design cycle times. Coordination of the product development process is intended
to be performed by a workflow system. Shown in Figure 3 is a standard develop-
ment process, which follows a market driven (market-pull) approach to product
development. Figure 3 illustrates an activity diagram (showing all activities and

General
Manager

Marketing Engg.
Design

Manfg. QA

Project Selection

Product definition

Project Review

Concept development

Preliminary design

Detailed design

Testing

Design Review

Purchasing Customer
Service

Generic Roles (Swimlanes)

Tool Fabrication

Production Release

Product Readiness

Sales Testing
Alpha Quality

Planning
Manuals
Field mgmt.

Beta test

Fig. 3. A market-pull based product development process

control flow) representation of the product development process. For brevity,
we have not illustrated decision blocks wherein activities may be iterative or
branch. Shown at the top are the different organizational roles (swimlanes) that
are involved in executing the activity. Activities may be performed by a single
agent or teams of agents. The span of the rectangular boxes denote the various

360 T. Madhusudan and J.L. Zhao

roles involved in performing the activity contained with the box. For example,
Project Selection and Project Review are performed by all roles. Details of
each of the process steps are described in [29].

To illustrate the need for case-oriented workflow modeling, consider that the
business needs evolve and changes are required to the above process. We consider
a strategic change wherein internal manufacturing is being reduced and upcom-
ing product development efforts need to consider outsourcing of manufacturing.
How should the above workflow model (in Figure 3) be modified such that the
tool fabrication step may be outsourced? Many alternatives may be possible. We
outline a possible solution scenario below.

Shown in Figure 4 is a procurement process model within the same orga-
nization used to obtain a variety of consumable and non-consumable services
and supplies for the organization. The model in Figure 4 illustrates a bidding

���
���
���

���
���
���

Announce Tender Requests

Collect Bids

Evaluate Bids

Negotiate

Award Contracts

Execute Contracts

Collect Internal Request

Start

Stop

��
��
��
��

��
��
��
��

Fig. 4. A procurement process

and contracting process wherein offers from vendors, based on tender requests,
are selected based on a variety of criteria. This procurement process captures
the knowledge for outsourcing. To meet our new manufacturing outsourcing
need wherein the tool fabrication is outsourced, a new process model can be
defined as shown in Figure 5. The figure illustrates that the new process is devel-
oped by recognizing how a particular type of outsourcing via bidding may done
and instantiating the same in the context of tool outsourcing. Notice that task
collection of internal requests in the procurement process is replaced by
the task collection of design requirements in the new process (shown in

A Case-Based Framework for Workflow Model Management 361

��
��
��
��

General
Manager

Marketing Engg.
Design

Manfg. QA

Project Selection

Product definition

Project Review

Concept development

Preliminary design

Testing

Design Review

Purchasing Customer
Service

Generic Roles (Swimlanes)

TOOL OUTSOURCING

Detailed design

Announce Tender Requests

Collect Design Reqmts

Start

Collect Bids

Evaluate Bids

Negotiate

Award Contracts

Execute Contracts

Stop

Sales Alpha
Testing

Quality
Planning

Manuals
Field mgmt.

Product Readiness
Production Release

Beta test

Fig. 5. A modified product development process

the dashed rectangular box in Figure 5). We believe such process generation may
be possible if there is a process repository containing a model of the procure-
ment process which may be retrieved and adapted to develop the new product
development process. Another possibility is that the process repository may in-
herently contain a product development process model with outsourcing (say for
the concept design phase) for a particular product model that may have been
followed in the company. There may also be processes wherein instead of tender-
based outsourcing, auction mechanisms may be followed. The process retrieval
and adaptation phase provides a rich source of process modification ideas and
possibilities, in contrast to a conventional approach to workflow design wherein
business process reengineering is performed first and manually collected knowl-
edge is codified. The solution obtained by retrieving process models and combin-
ing them requires additional knowledge and constraints may need to modified
or added and new inconsistencies resolved.

Developing a product development workflow that handles each plausible task
combination for various business scenarios by capturing all the business rules and
constraints is an overwhelming task. For example, the number and type of en-
gineers to participate on the project may vary depending on the product or
business needs. Similarly, depending on the dynamic resource availability tasks
may be outsourced or done inhouse. In the future world of E-business, developing
such integrated processes will be a necessity and developing each process in a
standalone manner would be extremely costly. However, if a process repository,
storing different product development sequences as business cases, for a variety
of products, manufacturing technologies, available suppliers, customer require-

362 T. Madhusudan and J.L. Zhao

ments and process costs was available, these business cases could be retrieved
from the repository and a customized workflow designed for a new product de-
velopment scenario. The above product development scenario illustrates the the
key tenets for applicability of CBR technique, namely problem and solution
recurrence.

Facilitating such process modeling and development is the aim of the CO-
DAW system. In the following sections, we describe a workflow case represen-
tation to store process knowledge and a means to utilize this repository in the
context of workflow design.

3 Case Representation, Indexing, and Repository
Organization

Case representations in CBR systems take a variety of forms from OO meth-
ods to unstructured free text and multimedia [16].We have developed a semi-
structured representation based on XML schemas [20]. The representation is
oriented towards facilitating workflow model generation by adding additional
tags and borrowing freely from standardization efforts such as XPDL, WSFL,
XLANG and BPEL. Further, we have developed tools for interconversion from
our representation to the above standards to facilitate enactment using XSLT
[20].

The process repository in CODAW consists of two kinds of cases: a) proto-
typical workflow schemas as design cases and b) instances of workflow schemas as
execution related cases. Shown in Figure 6 is a partial XML-based representation
for the product development process. We describe the key aspects of the repre-
sentation. The main tag WorkflowSchema consists of a three main sets of tags, a)
Descriptory tags, which are, WSID, WSName,WSType, WSDesc, b) Workflow level
Structural tags such as TaskList, ComponentWorkflows, WorkflowInstances
WFFormalModel, DesignHistory which reflect overall process model, and c)
Task level tags, which are, TaskDesign, TaskDefn, TaskFormal. The repre-
sentation is oriented to enable declarative composition of activities and groups
of activities outlined in [28]. Key ideas to note are that each workflow task is
defined in three ways, namely, a) a state-space declarative AI planning based
representation captured by the tag TaskDesign, b) A formal model representa-
tion using process algebraic representation denoted by tag TaskFormal , and c)
A procedural task definition denoted by TaskDefn which highlights a procedu-
ral implementation of the task. WFFormalModel stores a Petri Net(PNML) based
model for the overall workflow[3]. DesignHistory tracks all the revisions to a
schema over time and justifications for the same. In the figure, we illustrate the
task Project Selection. This task can only be executed when a list of projects
and resources are available illustrated by the predicates in TaskDesign and upon
completion, the task has the effect of adding new projects. In terms of actual
procedural code that represents this task, it is defined by TaskDefn including
all the agents that participate in the manual execution of this task denoted by
Implementation type. The tag TaskFormal embeds a Finite State Process[18]

A Case-Based Framework for Workflow Model Management 363

model of the task consisting of actions such as init, review and sort executed
manually.

In a similar manner, an instance level workflow schema is also defined. Fig-
ure 7 illustrates the XML schema (in a tree-structure of the different tags) for
capturing the execution history of an instance of a workflow schema. Actual
data inputs and outputs, performance metrics of execution and event histories
are stored. During the workflow design process, both types of process related
information are used to guide the process design.

Case development and population of the case-base to bootstrap the over-
all system is a key task in development of the CODAW system. In general for
a given domain, cases can be derived in an organization from best practices
handbook, observation of execution by project teams etc. An initial set of rep-
resentative cases that covers the overall population is necessary. For populating
our repository, we have been collecting a variety of business cases, using the tool
Togethersoft [4]. Cases are constructed in terms of UML activity diagrams and
the workflow is stored in an XML format using UML XMI (XML Metadata In-
terchange) [24] standards from OMG. From this XML format, we extract content
relevant to our tags in the representation mentioned above. Currently we have 75
design cases of various organizational business processes in our repository along
with multiple execution instances for each. The persistent storage scheme in
CODAW is developed based on an Open Source native XML database, namely,
eXist. The storage scheme is managed by the repository manager. The reposi-
tory manager handles and processes queries during the case retrieval phase as
shown in Figure 2 using XQL - the XML Query Language. Cases in the repos-
itory are indexed in multiple ways. An indexing manager is an integral part of
the repository. The indexing facility uses an underlying ontology for describing
the cases mentioned above and an inverted indexing scheme to organize cases.
Further, we also use a free text search engine such as Lucene [2] based on con-
ventional IR techniques to index cases. Additional features of our repository are:
a) Cases in the repository are organized by hierarchical taxonomies considering
case-type, task types, event-types, activities, agents etc. b) Further, a domain
independent ontology for describing cases and its elements is currently being de-
veloped. For example, the predicates inside the PreConditions tag in Figure 6
such as (available ?x) depend on the business ontology. c) Unstructured text
is stored along with a structured workflow model such as the textual description
with the tag WFDesc.

4 Case Retrieval and Composition

Case retrieval and composition of tasks and workflow snippets (subgraphs of
a workflow) are key steps in the CODAW system. We describe the main ideas
behind these two steps. Case retrieval is based on matching different aspects
of the workflow and task representation to inputs provided by the workflow
designer. Case composition is based on the idea that a workflow – a sequence
of tasks – defines a path in a state-space implicitly defined by the preconditions

364 T. Madhusudan and J.L. Zhao

<?xml version="1.0"?><!DOCTYPE WorkflowSchema []>
<WSID> WS2</WSID>
<WSName> Market-Pull Workflow </WSName>
<WSType> ProductDevelopment</WSType>
<WSDesc> A product development process for a new chip </WSDesc>
<TaskList> (Project_Selection, Product_Definition,...) </TaskList>
<ComponentWorkflowsUnModified> WS21 </ComponentWorkflowsUnModified>
<ComponentWorkflowsModified> Null </ComponentWorkflowsModified>
<WorkflowInstances> (WFIns1 WFIns22 WFIns23) </WorkflowInstances>
<WFFormalModel>
<PNModel>
PN-WS2
</PNModel>
</WFFormalModel>
<Tasks>
<Task>
<TaskType> Business </TaskType>
<TaskName> Project_Selection</TaskName>
<TaskDesc> Selects a list of new product ideas to work on </TaskDesc>
<TaskID> 1 </TaskID>
<TaskDesign>
<Parameters>
<Param> ?project_list </Param>
<Param> ?total_budget</Param>
<Param> ?resource_list</Param>
</Parameters>
<PreConditions>
<Predicate> (available ?project_list) </Predicate>
<Predicate> (available ?resource_list) </Predicate>
</PreConditions>
<PostEffects>
<Effect> (add (new_proj_list ?new_list)) </Effect>
<Effect> (add (new_budget ?new_budget)) </Effect>
</PostEffects>
<SubWF> WS25 - A subprocess
</SubWF>
</TaskDesign>
<TaskFormal>
<FSP> PS = (init -> sort_by_cost -> review -> vote -> select </FSP>
</TaskFormal>
<TaskDefn>
<Agent> General_Manager </Agent>
<Agent> Marketing </Agent>
<Agent> Engg_Design </Agent>
<Agent> Manfg </Agent>
<Agent> QA </Agent>
<Agent>Purchasing</Agent>
<Agent> Customer_Service</Agent>
<Procedure>
<ProcedureName> Select_Project </ProcedureName>
<ProcedureSource> HandBook </ProcedureSource>
<Implementation_type> Manual_Team_Execution </Implementation_type>
</Procedure>
<Inputs>
<DataItem> budget </DataItem>
<DataItem> resources </DataItem>
<DataItem> projects </DataItem>
</Inputs>
<Outputs>
<DataItem> selected_projects </DataItem>
<DataItem> remaining_budget </DataItem>
</Outputs>
</TaskDefn>
</Task>

Fig. 6. Product Development Process Case

A Case-Based Framework for Workflow Model Management 365

Fig. 7. Workflow Instance Case Representation

and postconditions of all the tasks in the domain. Hence, composition of tasks
is equivalent to identifying tasks in a sequence that can transform an initial
world state into a final required world state[16]. Two tasks can be linked in a
sequence when the post-conditions of one task in a world state can trigger the
ensuing task by satisfying its prececonditions. In a similar manner, two snippets
of workflows can be sequenced when their post and preconditions are shared in
a world state. Case-based planning is a search technique where the state space is
explored starting from an initial state and tasks required to transform the initial
world state into a final state are sequenced.

The case retrieval routine consists of the following steps:

– Elicit cues from new problem description: the initial query to our system
can be of multiple types, unstructured or structured. Unstructured queries
are a free text description of keywords from initial requirements or a semi-
structured XML-based query looking for specific aspects of a case. For de-
veloping the new product development process in Figure 5, the query could
be product development contains outsourcing wherein contains is a
application-specific query language keyword and the rest are terms. Struc-
tured queries define preconditions or post conditions of particular task, an

WFInstance WFInstanceID

WFSchemaID

DataInputs
1..

NameVal

DataOutputs NameVal

DateStarted

DateCompleted

PerformanceMetrics Total_time

Agent_time

EventsList
1..

Event EventID

DuringTask

Eventtype

Eventcause

EventRepair

SysAdminComments

366 T. Madhusudan and J.L. Zhao

initial state of a workflow or a final goal state of a workflow case or provide
a graph topology of the intended workflow.

– Based on the nature of the query (structured or unstructured), multiple tech-
niques may be used to retrieve cases. For free text queries, we use a conven-
tional vector-space IR approach for case retrieval. For semistructured queries,
since we have implemented the casebase using an XML framework, all rel-
evant cases that match the various XML tags based on XQuery (SQL-like)
framework will be retrieved. Thus using the terms product development
and outsourcing, we search for subgraphs of the workflow case. The pro-
cess of retrieval may return multiple number of cases which need to ranked.
For structured queries, we use predicate-logic based unification of the query
predicates with the predicates in the task representation of the workflows.
For graph-based queries, graph isomorphism algorithms are used to retrieve
the cases.

– Using a similarity metric, sort retrieved cases. The sorting of the cases can
be based on a variety of similarity metrics such as a) number of common
goals of workflow schemas, b) the number of common pre and post conditions
between the retrieved case and the new problem, and c) a weighted sum of
feature-wise similarities, where features could be domain-specific elements
such as number of agents, number of inputs/outputs for a task etc.

The LISP implementation of the case-base manager in the CODAW system is
based on recent algorithms on graph-based search [26,22], automated schema
matching [25] and logic processing algorithms.

Failure to retrieve a similar case may trigger (manually or automatically) the
case composition module in the CODAW system. Case composition is based on
adapting the Hierarchical Task Network domain-independent planning frame-
work to facilitate retrieval of specific tasks or snippets as outlined in [23]. HTN
planning is a technique that creates plans by task decomposition. The planning
problem is specified by an initial task network, which is a collection of tasks
that need to be performed under a specified set of constraints. The planning
process decomposes tasks in the initial task network into progressively smaller
subtasks until the task network contains only primitive tasks or operators. The
decomposition of a task into subtasks is performed using a method from a domain
description. A method specifies how to decompose the task into a set of subtasks.
Each method is associated with various constraints that limit the applicability of
the method to certain conditions and define the relations between the subtasks
of the method. HTN planning performs recursive search of the planning state
space via task decomposition and constraint satisfaction. Readers are referred to
[10] for further details. The CODAW system is based on the Simple Hierarchical
Ordered Planner (SHOP) system [10]. SHOP has been implemented in LISP and
uses a lisp-like lambda-calculus formalism. During task decomposition in CO-
DAW, tasks and subtasks are retrieved via matching from the case-repository
allowing reuse of singleton tasks and possibly workflow schemas.

Case-based composition as outlined above may not lead to a sequence of
tasks that can transform an initial state to a final state. The newly composed

A Case-Based Framework for Workflow Model Management 367

workflow schema may be erroneous in a variety of ways. This new schema may
need to be modified to satisfy a variety of constraints relevant to the workflow.
A variety of domain-independent and domain-dependent techniques are outlined
in [16]. Adaptation in CODAW is equivalent to modifying the hierarchical XML
structure according to various domain-independent and domain-dependent rules.
In our running example, the procurement process can be adapted by changing the
input data, namely, internal requests to design reqmts and propagating the
changes through the procurement workflow before it is embedded in the process
of Figure 5.

An adapted workflow schema may still not be completely correct and needs
to be verified. For purposes of verification of a workflow case, we are exploit-
ing standard Petri net based tools. From our XML-model, we plan to generate
PNML models that can be interactively verified. Currently, we are using a tool
called JARP [1] to facilitate the Petri net-based analysis. Further, inter-task in-
teractions in a workflow can be verified. For each task, as mentioned earlier, we
provide an associated formal FSP-based model to facilitate verification.

A CODAW prototype has been implemented with a focus on the XML-based
repository management and SHOP-based composition. The repository has been
populated with a variety of business process models obtained via business process
analysis projects in real-world contexts. These initial business process models are
modeled using data flow diagrams and UML activity diagrams which are then
manually encoded into the XML representation. Current work is focused on
developing the adaptation and verification aspects of the framework.

5 Discussion and Concluding Remarks

We have described the CODAW system, a framework for facilitating case-
oriented workflow design using CBR techniques. The innovative features pro-
posed are: a XML-based case representation for workflow models that combines
free textual descriptions and a structured declarative representation, a multi-
feature indexing scheme for case retrieval, a graph-based case retrieval algorithm,
and an AI planning-based composition process.

The key phase in a CBR system is the retrieval step. Retrieval in a CBR
system differs from conventional IR systems and databases by providing the
ability to process queries on semistructured data sources. Further, database sys-
tems are designed to do exact matching and IR systems are oriented towards
free text retrieval via term matching. In contrast, the goal of CBR systems is to
retrieve “similar” cases. The notion of “similarity” provides the basis to embed
domain related knowledge for adaptation and composiiton of cases. Furthermore,
the similarity metric provides for handling approximate and incomplete queries.
The quality of solutions developed by CODAW depends on the variety of work-
flows in the repository, the underlying business process ontology and the nature
of the similarity metrics and adaptation rules. Recent research in CBR systems
is focused on mixed-initiative systems wherein human-in-the-loop reasoning is
performed after each step of the CBR cycle to improve the quality of solutions.

368 T. Madhusudan and J.L. Zhao

Another issue of importance is the scalability of the planning algorithm. Devel-
oping workflow design specific heuristics to speed-up planning is key to overall
performance.

Currently, we are continuing to implement the prototype for recommending
similar workflow models. Algorithms for verification, adaptation and composi-
tion based on manipulating the XML case representations are being tested. For
future research, we assume that workflow modules (components) from similar
workflow schemas can be extracted and reassembled to derive the new work-
flow schema. Towards this end, we will a) complete the implementation of the
CODAW prototype, b) evaluate the same in real world settings and compare to
current workflow design tools, and c) based on real-world evaluation, identify
workflow design scenarios wherein such systems are applicable.

References

[1] JARP:Petrinets Analyzer. jarp.sourceforge.net.
[2] Lucene - a component search engine. www.apache.org.
[3] Petri Net Markup Language. www.informatik.hu-berlin.de/top/pnml.
[4] TogetherSoft: UML-based software development. www.togethersoft.com.
[5] Web services flow language. www.ibm.com/software/solutions/

webservices/pdf/WSFL.pdf, 2002.
[6] A. Aamodt and E. Plazas. Case-based reasoning: Foundational issues, methodol-

gical variations, and system approaches. AI Communications, 7(1):39–52, 1994.
[7] S. Aissi, P. Malu, and K. Srinivasan. E-business process modeling: the next big

step. IEEE Computer, 35(5):55 –62, 2002.
[8] F. Casati, S. Castano, M. Fugini, I. Mirbel, and B. Pernici. Using patterns to

design rules in workflows. IEEE Transactions in Software Engineering, 26(8),
2000.

[9] Workflow Management Coalition. XML Process Definition Language. Available
at www.wfmc.org.

[10] D.S.Nau, Y.Cao, A.Lotem, and H.Munoz-Avilla. Shop:simple hierarchical ordered
planner.

[11] F.Curbera, Y. Goland, J. Klein, et al. Business Process Execution Language.
www.ibm.com/software/solutions/webservices/pdf/BPEL.pdf, 2002.

[12] M. Hammer. Reengineering work, don’t automate, obliterate. Harvard Business
Review, 1990.

[13] S. Henninger and K. Baumgarten. A Case-Based Approach to Tailoring Software
Processes. In Proceedings of ICCBR 2001, number 2080 in LNAI, pages 249–262,
2001.

[14] J. Herbst and D. Karagiannis. Integrating machine learning and workflow manage-
ment to support acquisition and adaptation of workflow models. In Ninth Inter-
national Workshop on Database and Expert Systems Applications, pages 745–752,
1998.

[15] G. Joeris and O. Herzog. Managing evolving workflow specifications. In Proceed-
ings. 3rd IFCIS International Conference on Cooperative Information Systems,
pages 310 –319, 1998.

[16] J. L. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, San Mateo,
California, 1993.

A Case-Based Framework for Workflow Model Management 369

[17] D. B. Leake, editor. Case-Based Reasoning: Experiences, Lessons, and Future
Directions. The AAAI Press / The MIT Press, 1996.

[18] Jeff Magee and Jeff Kramer. Concurrency. Wiley, 1999.
[19] T.M. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner,

J. Quimby, C.S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O’Donnell.
Tools for inventing organizations: Towards a handbook of organizational processes.
Management Science, 45(3):425–433, March 1999.

[20] H. Maruyama, K. Tamura, et al. XML and JAVA: Developing Web Applications.
Addison-Wesley, 2002.

[21] A. P. Massey, M.M.Montoya-Weiss, and T.M. O’Driscoll. Performance centered
design of knowledge-intensive processes. Journal of Management Information
Systems, 18(4):37–58, 2002.

[22] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding:A Versatile Graph
Matching Algorithm and its Application to Schema Matching. In Proceedings of
the 18th International Conference on Data Engineering, 2002.

[23] H. Munoz-Avila, D.W. Aha, D. S.Nau, R. Weber, L. Breslow, and F. Yaman.
SiN:integrating case-based reasoning with task-decomposition. In Proceedings of
IJCAI, Seattle,WA,USA, 2001. AAAI.

[24] Object Management Group. UML-XML XMI standard.
Available at www.omg.org.

[25] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
mathcing. VLDB Journal, 10:334–350, 2001.

[26] D. Shasha, J. T. Wang, and R. Giugno. Algorithmics and applications of tree and
graph searching. In Symposium on Principles of Database Systems, pages 39–52,
2002.

[27] R. Tagg. Workflow in different styles of virtual enterprise. In Proceedings. Work-
shop on Information Technology for Virtual Enterprises, pages 21–28, 2001.

[28] G. Trajcevski, C. Baral, and J. Lobo. Formalizing and reasoning about the require-
ments specifications of workflow systems. International Journal on Cooperative
Information Systems, 10(4), 2001.

[29] K.T. Ulrich and S.D. Eppinger. Product design and development. McGraw-Hill,
NY., 1995.

[30] M. Voorhoeve and W. Van der Aalst. Ad-hoc workflow: problems and solutions.
In Proceedings., Eighth International Workshop on Database and Expert Systems
Applications, pages 36–40, 1997.

[31] C Wargitsch. Workbrain: Merging organizational memory and workflow man-
agement systems. In Workshop on ”Knowledge-Based Systems for Knowledge
Management in Enterprises”, 1997.

ADEPT Workflow Management System:�

Flexible Support for Enterprise-Wide Business Processes
– Tool Presentation –

Manfred Reichert, Stefanie Rinderle, and Peter Dadam

University of Ulm, Faculty of Computer Science,
Dept. Databases and Information Systems

{reichert, rinderle, dadam}@informatik.uni-ulm.de

Abstract. In this tool presentation we give an overview of the ADEPT
workflow management system (WfMS), which is one of the few avail-
able research prototypes dealing with enterprise-wide, adaptive work-
flow (WF) management. ADEPT offers sophisticated modeling concepts
and advanced features, like temporal constraint management, ad-hoc WF
changes, WF schema evolution, synchronization of inter-workflow depen-
dencies, and scalability. We sketch these features and describe how they
have been realized within ADEPT. In addition, we show which tools and
interfaces are offered to developers and users in this context. ADEPT
follows a holistic approach, i.e., the described concepts have not been
implemented in an isolated fashion only, but are treated in conjunction
with each other by integrating them within one WfMS.

1 Introduction

Long regarded as technology for the automation of well-structured business pro-
cesses, WF management is in the throes of transformation as more and more
non-traditional applications require comprehensive process support. In many
domains, like hospitals, engineering environments, or e-business, however, high
requirements with respect to functionality, flexibility, and scalability exist [1,2,
3]. In the ADEPT project, we have addressed these requirements from the very
beginning. In the meantime, we have developed an adaptive WfMS prototype,
which allows users to realize flexible, enterprise-wide WF applications.

In this paper, we give an overview of the ADEPT WfMS and its related
concepts, tools, and user as well as programming interfaces. Section 2 summarizes
basic features of the ADEPT WfMS, which have been described in more detail
in previous publications of our group [2,4,5]. In Section 3 we show how these
features have been realized within the ADEPTWfMS. Section 4 sketches selected
projects to demonstrate the usefulness of the developedWfMS. We conclude with
a short summary in Section 5.
� This work was partially performed within the research project ”Change management
in adaptive workflow systems”, which has been founded by the German Research
Community (DFG).

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 370–379, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

ADEPT Workflow Management System 371

2 Features of the ADEPT WfMS

WF Modeling: ADEPT offers advanced concepts for the modeling, analysis,
and verification of WF templates [5]. It enables the explicit definition of control
and data flow, actor and resource assignments, temporal constraints, and pre-
planned exceptions (e.g., forward and backward jumps [6]). This can be done in
an integrated and consistent manner. Thereby ADEPT guarantees static and dy-
namic correctness properties (e.g., no missing input data when invoking activity
programs, no undefined work assignments, no deadlocks), which is an important
prerequisite for later model as well as instance changes. For control flow mod-
eling, a simple, yet powerful formalism is offered. It is based on serial-parallel
graphs with several important extensions necessary to adequately capture real-
world processes. Nevertheless the resulting WF models are easy to understand
for designers as well as for end users. In addition to this graph-based represen-
tation, a precise formal semantics, an equivalent operational semantics, and an
efficient implementation exists.
Temporal Constraints: The handling of temporal constraints is an im-

portant feature of any WfMS. In ADEPT, designers can specify minimal and
maximal durations for WF activities. At runtime, in addition, appointments may
be associated with them. Furthermore, time dependencies between activities are
definable (e.g., ”X must be completed 2 days before Y starts”). ADEPT offers
advanced concepts for specifying such constraints and for checking already at
buildtime whether they are satisfiable or not [2]. Currently, we use Temporal
Constraint Networks for representing time constraints and for checking consis-
tency. At runtime, ADEPT schedules activities according to their starting times,
supervises temporal constraints, and informs users when deadlines are going to
be missed. Problems we have to deal with in this context include uncertainty,
delays, and temporal inconsistencies (e.g., due to model changes).
Ad-hoc WF Changes: The support of ad-hoc changes is a must for WfMS

in order to cover a broad spectrum of processes. At the instance level, ADEPT
enables different kinds of ad-hoc deviations from the pre-modeled WF template
(e.g., to omit activities, to change activity sequences, or to insert activities [5]).
Such dynamic changes, however, must not lead to an unstable system behav-
ior; i.e., none of the guarantees which have been achieved by formal checks at
buildtime must be violated due to the dynamic change. ADEPT ensures this by
introducing formal pre- and post-conditions for change operations. In particular,
a consistent state must be preserved when a WF instance is going to be adapted.
Additionally, ADEPT properly integrates changes with respect to authorization
and documentation. Furthermore, all complexity associated with the adaptation
of WF instance states, the re-mapping of input/output parameters of the com-
ponents affected by a change, the problem of missing input data due to activity
deletion, or the problem of deadlocks is hidden to a large degree from users.
WF Schema Evolution: In order to adequately deal with business pro-

cess changes it is important that adaptations can be quickly performed at the
WF type level as well. Besides versioning, ADEPT supports the propagation of
WF type changes to in-progress WF instances. In doing so, change propagation

372 M. Reichert, S. Rinderle, and P. Dadam

is restricted to those WF instances for which the type change does not con-
flict with current instance state or previous ad-hoc changes. Basic to this is a
comprehensive framework for change propagation which is based on well-defined
compliance criteria for WF instances and on advanced rules for automatically
and efficiently adapting instance markings.
Specification and Synchronization of Inter-WF-Dependencies: Many

WfMS do not provide adequate means for (semantic) inter-workflow coordination
as concurrently executed WF instances are considered completely independent.
Though WF templates are modeled separately from each other in order to re-
main comprehensible and manageable, very often corresponding instances are
semantically inter-related in the one way or another [4]. Pragmatical approaches
like inter-workflow message passing or merging interdependent workflows within
one template do not satisfactorily solve this problem. The latter, for example,
would lead to a large number of templates, each of them very complex and
hard to maintain. ADEPT uses interaction expressions and interaction graphs
as a simple yet powerful mechanisms for the specification and implementation of
inter-WF dependencies [4]. In addition to a graph-based semi-formal interpreta-
tion, a precise formal semantics, an equivalent operational semantics, an efficient
implementation, and detailed complexity analyses exist, which allow us to ac-
tually apply this formalism to coordinate inter-WF dependencies. ADEPT uses
different coordination and subscription protocols to actually employ interaction
expressions for the efficient synchronization of concurrent workflows.
Scalability and Distributed WF Control: In large-scale, enterprise-wide

application scenarios, performance is a critical issue. Due to the high amount of
communication between server(s) and clients the communication network may
become a bottleneck, especially if a large amount of ”long-distance” communi-
cation occurs. To avoid bottlenecks, ADEPT allows to reduce the network load
by partitioning WF graphs and by migrating the control of WF instances from
one server to another during run-time [7,8]; i.e., a WF instance may no longer
be controlled by only one WF server. When performing such a migration, a de-
scription of the instance state is transmitted to the target server. This includes
information about activity states as well as WF relevant data. To avoid unneces-
sary communication between servers, ADEPT allows to control parallel branches
of a WF instance independently from each other (at least as no synchronization
due to other reasons, e.g., a dynamic WF change, becomes necessary).

When designing these features, the following issues have been of interest: How
to maintain robustness and correctness, how does the feature affect application
programming, and how is it made available to the end user? In addition, we have
identified the interdependencies existing between them and we have shown how
the different features work in conjunction with each other.

3 ADEPT Components, Architecture, and Interfaces

We have realized the described features in the ADEPT WfMS. This research
prototype supports WF control and monitoring, demonstrates the feasibility of

ADEPT Workflow Management System 373

dynamic WF changes in a (distributed) WfMS, deals with temporal constraints,
shows which user and programming interfaces are required, and proves that the
concepts work in conjunction with each other as well. All system components
have been implemented in Java, for communication Java RMI has been used.

3.1 ADEPT Buildtime Components

The ADEPT buildtime components enable the definition and management of
WF templates, the description of inter-WF dependencies, the modeling of or-
ganizational entities, the specification of security constraints (Who is allowed
to perform a particular WF change?), and the plug-in of application compo-
nents. All relevant information is stored in the ADEPT repository. In addition,
XML-based descriptions of model data may be generated; e.g., to export tem-
plate descriptions to foreign tools or to exchange them between different WF
servers. However, we do not support the XPDL syntax as defined by the Work-
flow Management Coalition (WfMC). On the one hand, the ADEPT WF meta
model comprises several elements not captured by XPDL, on the other hand the
support of WfMC standards does not have top priority in our research project.

For the modeling and management of WF templates, ADEPT offers a syntax-
driven, graphical WF editor. A sample screen is depicted in Fig. 1. Its upper part
shows a control flow window whereas the lower part displays input parameters of
a selected activity and their mapping to WF data elements (data flow). Activity
attributes are displayed in the right window. To each activity node a (reusable)
template can be assigned. It sets out default properties like minimal/maximum
duration, actor assignments (e.g., based on user roles), associated application
components, and user-defined attributes. The WF designer is supported in cor-
rectly modeling and changing WF templates, i.e., static and dynamic WF prop-
erties as mentioned in Section 2 are guaranteed. To achieve this, the WF editor
enables on-the-fly checks during WF editing as well as complete model checks
initiated by the designer. In any case, a new WF template may only be released
if all checks are successful. This is crucial for the WfMS to achieve a reliable
and stable execution behavior. It is also a prerequisite for dynamic WF changes.
Finally, new releases of a WF template are introduced by deploying the template
to all relevant WF servers. For this, an XML-based description is sent to them
and imported into their run-time databases.

ADEPTdistribution, the distributed variant of the ADEPT WfMS, addition-
ally provides support for assigning WF servers to WF activities. This WF graph
partitioning can be done manually or automatically by the use of a configuration
tool. In the latter case, we make use of repository information (e.g., roles and
locations of users) in order to determine optimal server assignments (i.e., to a
find a partitioning which minimizes overall communication costs at run-time).
Taking our example from Fig. 1, WF instances will be controlled by WF servers
s1 and s2. (Server assignments are displayed below the activity nodes. Accord-
ingly, “perform examination” and “write report” are controlled by s2, whereas
all other activities are carried out by s1.)

374 M. Reichert, S. Rinderle, and P. Dadam

� � � � � �

� � � �

� � � �

Fig. 1. ADEPT Workflow Editor

ADEPT provides several other buildtime components for defining different
aspects of process-oriented information systems:

– ADEPT interaction editor: Powerful tool for defining and managing
inter-workflow dependencies based on interaction expressions and graphs [4].

– ADEPT organization modeler: Graphical tool for describing organiza-
tional entities (e.g., user roles, capabilities, and organizational units) and
their relationships (incl. substitution rules).

– ADEPT application configuration tool: This tool allows the WF de-
signer to assign different application components to the same acitivity tem-
plate. In doing so, the concrete binding of a component at runtime can be
based on user as well as on workstation profiles.

3.2 ADEPT Runtime Clients

ADEPT comprises standard runtime clients for end users as well as for system
and process administrators. These clients enable worklist display and manipu-
lation, WF monitoring, activity program execution, dynamic WF changes, and
system configuration.

For worklist handling, several client programs are available. Besides ”thick”
clients, ADEPT offers a Web client interface whose implementation is based on
servlets. Web clients have a limited functionality when compared to standardWF
clients, in particular concerning activity implementation. Both, thick and thin
clients, however, already provide user interfaces for dynamic changes, giving end
users the possibility, at run-time, to deviate from the pre-modeled task sequence.
In detail, authorized actors may intervene into WF control by inserting, deleting,
or shifting activities. In doing so, respective clients provide the necessary change
context and allow change definition at a high semantic level. In particular, end
users are not burdened with the complexity of dynamic changes; i.e., they must
not deal with the problem of missing input data, the avoidance of deadlocks, or
the graph transformations and state adaptations necessary to realize the change.

ADEPT Workflow Management System 375

To monitor in-progress WF instances and to demonstrate the effects of dy-
namic changes, ADEPT offers a special monitoring client. It allows authorized
users to visualize WF instance graphs, together with the information related to
them. Fig. 2 shows a sample screen of a WF instance created from the template
as depicted in Fig. 1. Activities “admit patient”, “instruct patient”, and “collect
patient data” have been completed (indicated by symbol

√
), whereas activity

“calculate dose” is currently activated (indicated by symbol ✷). Fig. 2 also dis-
plays data elements read and written by the selected activity (“calculate dose”
in the example) as well as detailed information about this activity (e.g., actor
and server assignments, starting time, priority, etc.). All relevant information
is managed by the WF server which controls this activity (s1 in the example).
Actually, the monitoring client only shows the WF instance graph from the view-
point of server s1 (to which it is connected). Normally, this server does not know
how far the execution in the upper branch of the parallel branching (currently
controlled by s2) has proceeded.

Fig. 2. ADEPT Monitoring Client (before the dynamic change of a WF instance)

Let us sketch how a dynamic change of the (distributed) WF instance from
Fig. 2 is realized:
Example: Assume that an authorized user (connected to s1) specifies that activ-
ity “perform allergy test” is to be inserted between node sets {“instruct patient”}
and {“write report”, “produce drug”}; i.e., the allergy test shall be performed af-
ter patient instruction and before reporting and drug production. The resulting
WF instance graph is depicted in Fig. 3. Internally, the change is accomplished
as follows: First of all, to decide whether the insertion is permissible or not,
s1 retrieves information about the global state of the WF instance from other
active servers (s2 in our example). As a result, s1 finds out that activities “write
report” (controlled by s2) and “produce drug” (controlled by s1 itself) have
not been started yet; thus the dynamic insertion is allowed. In the following,
s1 performs all necessary graph transformations to realize the change. It inserts

376 M. Reichert, S. Rinderle, and P. Dadam

activity “perform allergy test” parallel to the minimal block, which contains
the nodes “instruct patient”, “write report”, and “produce drug”. (For this, the
AND split n1, which represents a null task, is inserted). To enforce the desired
control dependencies, three synchronization edges are added (e.g., the edge link-
ing “perform allergy test” with “write report”). Finally, the state of the newly
inserted activity is evaluated, leading to its immediate activation.

Fig. 3. ADEPT monitoring client (after the WF instance change)

3.3 ADEPT System Architecture and Programming Interfaces

The ADEPT WfMS is based on a multi-server architecture (cf. Fig. 4). A WF
instance may either be controlled by a single server or by multiple servers if favor-
able. To each server different clients can be connected, e.g., worklist programs,
monitoring components, and modeling tools. For implementing non-standard
clients, ADEPT offers a rich API. It extends the one-directional client-server
communication in order to enable WF servers to play an active role if need be;
e.g., to initiate requests at the client site in order to get approvals from WF par-
ticipants when performing a change or to immediately notify users when dead-
lines are going to be missed. Which communication model is used depends on the
application scenario and can be configured by developers. Inter-WF dependen-
cies are controlled by an interaction manager, which uses suitable coordination
protocols to ensure that a client does not execute an action which is currently
not permitted according to some inter-workflow dependency.

Server implementation is based on relational DBMS, which enables trans-
actional execution of requests and, therefore, guarantees persistency and con-
sistency of model and instance data. The kernel of the WF server is realized
as a multi-layered architecture. The top level, the Execution Layer, processes
client API calls (e.g., to start an activity or to perform a change). Each call
is decomposed into a set of service requests from the underlying Service Layer,
which comprises services designed along the described features (e.g., for schedul-
ing WF activities, dynamically changing WF instances, managing user worklists,

ADEPT Workflow Management System 377

ADEPT
Server

Kernel
(WF APIprocessing)

Execution Layer

DBMS
(Oracle)

Distribution Layer

Data Access Layer

Application
Databases

Time
Management

Server-t o-Serv er-
Communica ti on
(sy nc hrono us &

asy nc hronous)

Service Layer

Input
Queue

Output
Queue

Processes/Threads

Service
Request

Proces ses /Threa ds

Name and Directory Service

Input
Queue

Application Interface

WF Task
Manager

WF-
Client-
API

Service
Result

Active
Notification

ADEPT
Server

WFd ata

Workflow
Applications

ADEPT Demo Client
ADEPTeditor
ADEPTorganager

 Fig. 4. ADEPT System Architecture

or handling temporal constraints). As an example take an activity completion,
which leads to an update of the time schedule and the state of the respective WF
instance, a role resolution of subsequent steps, and an update of worklists. Each
component of the Service Layer itself decomposes calls into basic operations for
the Data Access Layer (e.g., to read, to create, or to modify WF objects). Fi-
nally, if a migration of the WF control or a synchronization of the WF data
becomes necessary, the Distribution Layer provides the required functionality.

ADEPT provides rich programming interfaces whose functionality goes far
beyond the WfMC API. The offered change operations hide as much of the com-
plexity of a dynamic change from application programmers as possible. Regard-
ing activity insertion, for example, the method dynamicInsertBetweenNodes
can be used: For a given WF instance, a new activity (with id actIdentifier
and activity template actTemplate) can be inserted between node sets
predNodes and succNodes. Information on how to map activity parameters
to process data elements can be passed by the parameter maInfo. ADEPT
allows different settings, e.g., automatic mapping of parameters to existing
data elements or provision of input parameters by automatically generated,
electronic forms.

public class WFProcessInstance {
public WFModificationResult dynamicInsertBetweenNodes(

ActivityTemplate actTemplate, ActivityId actIdentifier,

InsertionArea predNodes, InsertionArea succNodes, ModificationAdjustInfo maInfo)

// other methods

}

4 Practical Use and Lessons Learned

To gain concrete implementation and usability experience we have elaborated
ADEPT within several research projects. Some of them have been carried out
by our department in close cooperation with partners from different application

378 M. Reichert, S. Rinderle, and P. Dadam

domains. Additionally, we deployed the ADEPT WfMS to other research groups
who have used it as platform for implementing sophisticated WF scenarios. In
summary, all these projects helped us to identify basic needs for adaptive work-
flows and to evolve the ADEPT WfMS over time. Current projects working with
ADEPT include CONSENSUS [1], AgentWork [3], and WebFlow [9].

Clinical workflows: We consider hospital processes as being one of the
most challenging application areas for WF technology [2]. Typically, a hospital
comprises decentralized units which participate in a variety of medical and or-
ganizational procedures with different complexity and duration (up to several
months). In a two-years WF project with a Women’s Hospital, we performed an
in-depth analysis of all characteristic WF types, the organizational structures
and responsibilities related to them, the kinds of exceptions which may occur,
and the adequate reactions necessary to deal with them. The identified require-
ments helped us to design the basic features of the ADEPT WfMS and to get
an impression of the change facilities needed. In order to gain concrete experi-
ence with the use of WF technology in general and with the ADEPT WfMS in
particular we implemented selected clinical processes based on them. The goal
was to learn how computer-based process support can be smoothly integrated
in the daily routine work and how adequate user interfaces have to look like. As
a result, it became obvious that WfMS with a proper, secure, and robust han-
dling of exceptional cases are a mandatory prerequisite for any WF-based clinical
application. ADEPT has been perfectly coherent with these requirements.

Automatic WF adaptations: AgentWork [3] offers a system for auto-
matically adapting WF instances. For this, a rule-based approach has been
applied. When exceptional events occur, AgentWork identifies WF instances
to be adapted, determines the change operations to be applied, automatically
performs the change, and notifies WF participants accordingly. AgentWork has
adopted the ADEPT meta model and has used the ADEPT WfMS as implemen-
tation platform. It benefits from the offered features, in particular concerning
WF modeling and execution, ad-hoc changes, and temporal constraint manage-
ment. Apart from this, we had received important feedback which helped us to
evolve the ADEPT user and programming interfaces. Currently, with WebFlow
another project of this group is on its way [9]. It aims at the flexible support of
cross-organizational workflows. Due to its dynamic change facilities, the ADEPT
WfMS will be a core component of WebFlow as well.

Flexible E-negotiations: CONSENSUS offers a flexible support system
for e-negotiations based on parameters like quality, delivery, or warranty [1]. E-
negotiations are required, for example, in conjunction with supply chains and
e-procurement. On the one hand they have to be organized in a process-oriented
manner, on the other hand they require flexibility and dynamism to accommo-
date to the various contingencies and obstacles that can appear during negoti-
ation. For example, if a supplier or a shipping company makes a new offer that
might be of interest for a buying company, the buyer will review negotiation
activities already planned within the WF model and may want to rearrange
them (e.g., to dynamically skip, replace, or shift activities). In this context, the
ADEPT change and verification facilities have proven as perfectly coherent with

ADEPT Workflow Management System 379

the flexibility requirements in e-negotiations. However, there are several require-
ments identified within the CONSENSUS project (e.g., dynamic change of WF
attributes) which have not yet been fully supported by ADEPT (see [1]).

5 Summary

The ADEPT WfMS is the technological answer to the requirements set out by
real-world processes. We have implemented fundamental concepts related to WF
modeling, dynamic changes, temporal constraints, inter-WF dependencies, and
scalability in a powerful research prototype. Currently, the integration of change
propagation facilities in connection with WF schema evolution is on its way.
The lessons learned from the sketched application projects have helped us to
further develop the underlying concepts of the ADEPT WfMS, to improve and
complement its buildtime and runtime components, and to refine user as well
as programming interfaces. Adaptive WF technology as offered by ADEPT will
be core of future WfMS and significantly influence the development of process-
centered applications. It will drastically simplify application programming by
providing rich, high-level interfaces for defining and changing model as well as
instance data. As a consequence, development and adaptation times can be re-
duced by factors when compared to current ”hard-wired” solutions.

References

1. Bassil, S., Benyoucef, M., Keller, R., Kropf, P.: Addressing dynamism in e-
negotiations by workflow management systems. In: Proc. DEXA Workshop. (2002)

2. Dadam, P., Reichert, M., Kuhn, K.: Clinical workflows – the killer application
for process-oriented information systems? In: Proc. 4th Int’l Conf. on Business
Information Systems (BIS ’00), Poznan, Poland (2000) 36–59

3. Müller, R., Rahm, E.: Dealing with logical failures for collaborating workflows. In:
Proc. Int’l 5th Conf. on Coop. Inf. Sys., Eilat (2000) 210–223

4. Heinlein, C.: Workflow and process synchronization with interaction expressions
and graphs. In: Proc. Int’l Conf. Data Eng., Heidelberg (2001) 243–252

5. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

6. Reichert, M., Dadam, P., Bauer, T.: Dealing with backward and forward jumps
in workflow management systems. Int’l Journal Software and Systems Modeling 2
(2003)

7. Bauer, T., Dadam, P.: Efficient distributed workflow management based on variable
server assignments. In: Proc. CAiSE ’00, Stockholm (2000) 94–109

8. Bauer, T., Reichert, M., Dadam, P.: Intra-subnet load balancing in distributed
workflow management systems. Int’l Journal of Cooperative Information Systems
(accepted for publication)

9. Greiner, U., Rahm, E.: WebFlow: A system for the flexible execution of web-based,
cooperative workflows (in German). In: Proc. Database Systems For Business, Tech-
nology and Web (BTW’2003), Leipzig (2003)

Modelling and Validation with VipTool

Jörg Desel, Gabriel Juhás, Robert Lorenz, and Christian Neumair�

Lehrstuhl für Angewandte Informatik
Katholische Universität Eichstätt, 85071 Eichstätt, Germany

{joerg.desel,gabriel.juhas,robert.lorenz,
christian.neumair}@ku-eichstaett.de

Abstract. This paper describes concepts and features of a new ver-
sion of the VipTool. As for the original VipTool, the main issue of this
software package is to generate, analyze and visualize process nets, rep-
resenting the partial order behavior of business process models given by
Petri nets. Whereas the original VipTool was implemented in the script-
ing language Python, the new VipTool is a completely new and modular
implementation in Java that allows to add arbitrary extensions in a more
flexible way. In this new version, several drawbacks that had appeared
previously where eliminated. Moreover, the new VipTool contains ad-
ditional features such as a more comfortable editor as well as eps- and
XML-interfaces. The main improvement is a better support of step-wise
validation of models and specifications and, alternatingly, partial verifica-
tion (testing) of specification implementations. This paper also presents
a small case study explaining how the VipTool supports these design
steps.

1 Introduction

VipTool was originally developed at the University of Karlsruhe within the re-
search project VIP1 as a tool for modelling, simulation, validation and verifica-
tion of business processes using Petri nets. There exist many software packages,
developed at universities or software companies, which support modelling of
business processes using different modelling formalisms (e. g. EPKs [8], differ-
ent variants of Petri nets [1,2] etc.). Most of them, designed to analyze a Petri
net model, compute the state space or use linear algebraic methods (e.g. De-
sign/CPN, INA, Renew). The tool Woflan enables to model business processes
by workflow nets [2], and to check whether the designed model fulfills the desired
properties, such as soundness etc. In comparison, VipTool generates concurrent
runs of a given Petri net model of a business process. If a Petri net is not too
large and has only finite runs, all runs are generated. There exist some other
software packages (e.g. PEP) which use the same theoretical approach of a fi-
nite and complete prefix of the unfolding of a Petri net model ([6]). But in the
case the Petri net is too complex to generate the complete prefix, VipTool still
� supported by DFG: Project ”SPECIMEN”
1 Verification of Information Systems by evaluation of Partially ordered runs

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 380–389, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Modelling and Validation with VipTool 381

generates a substantial set of runs, because these runs are computed on the fly.
Moreover, VipTool is the first tool which is able to visualize these concurrent
runs.

The first version of the VipTool was written in Python [7]. The version of the
VipTool presented here is a complete redesign using standard object oriented de-
sign. It is re-implemented in Java. The paper is organized as follows: In Section
2 the business process design steps supported by VipTool are described. Section
3 presents a brief description of the VipTool features. A simple case study illus-
trates the functionality of VipTool in Section 4. Finally, the conclusion outlines
the future development.

2 The Business Process Design

VipTool was originally designed as a simulation tool for business process models.
Whereas usually simulation creates and visualizes sequences of transition occur-
rences representing events of the business process, VipTool is based on partially
ordered runs, given by process Petri nets. This concept is explained in detail in
[3]. The main advantages of this approach compared to sequential simulation are
shortly:

– a more efficient representation of the behavior of business processes
(a single process net represents a set of sequences of transition occurrences
which can be quite large in the presence of concurrency),

– a higher degree of expressiveness
(the flow of objects and information is explicitly given in process nets by
paths while in general it is not even implicitly given by sequential runs), and

– more efficient analysis methods for runs
(relevant properties can be checked by efficient algorithms, exploiting the
graphical structure of process nets).

One of the main issues of modelling a business process is its analysis with
respect to intended properties. This analysis requires a formalization of both,
the business process and the properties to be analyzed. In turn, the value of
the analysis depends on the correctness of the model with respect to the actual
business process and also on the correctness of the formal representation of the
specification with respect to the actual intended property. To avoid confusion
with the formal interpretation of the term correctness (a model is correct if it
satisfies a property formulated by a specification), we call a model valid if it
faithfully represents the business process. Similarly, a valid specification faith-
fully represents a relevant property. Most approaches to business process design
and according tools assume validity of models and specifications and concentrate
on analysis and verification issues. However, experience shows that in many cases
negative results of analysis or verification are caused by invalid models or invalid
specifications rather than by incorrect business processes. Even worse, positive
results do not mean much if validity of models and specifications cannot be
guaranteed.

382 J. Desel et al.

The paper [4] discusses how validation of Petri net models in general can be
supported by formal means and by Petri net tools. In particular, it is suggested

– to validate models by generation, visualization and inspection of process
nets that represent the behavior of each system component by a process net
component,

– to formalize specifications graphically within the model representation to
avoid error prone new syntactical means,

– to validate specifications of a valid model by presenting separately process
nets that satisfy the specification and those that do not satisfy a specification
(clearly, this only makes sense if specifications can be interpreted on runs
such as linear time temporal logic specifications).

Using this approach, a business process model is designed from constructive
specifications, given by a Petri net that represents an early version of a busi-
ness process or the environment of the business process to be developed, and
declarative specifications, representing required properties of the process.

For complex business processes we suggest a step-wise procedure in [4]. The
first step is creating an initial model representing the constructed specification
explained above. Sometimes this model can be derived by a folding operation
from known scenarios that have to be supported by the business process. In any
case, the model has to be validated, as mentioned above. Then, iteratively, the
following steps are performed:

– A requirement to be implemented is identified and formalized in terms of
the graphical language of the model.

– This formal specification is validated by distinction of those process nets that
satisfy the specification from all other process nets. This way, the question
what behavior is excluded by the specification? gets a clear and intuitive
answer. The specification is changed until it precisely matches the intended
property.

– The valid specification is implemented, i.e., new elements are added to the
model such that the extended model matches all previous and the new spec-
ification. Obviously, this step requires creativity and cannot be automized.
However, again by generation and analysis of process nets it can be tested
whether the extended model satisfies the specifications (actually, when all
runs can be constructed, this test can be viewed as a verification). At this
stage, other verification methods can be applied as well.

– If some requirements are still missing, we start again with the first item,
until all specifications are validated and hold for the designed model.

VipTool supports all above mentioned steps. In particular, process nets repre-
senting partially ordered runs of business processes are generated from a given
Petri net model of the business process. They are visualized, employing particu-
larly adopted graph-drawing algorithms. Specifications can be expressed on the
system level by graphical means. Process nets are analyzed w.r.t. these spec-
ified properties. The distinction of process nets that satisfy a specification is

Modelling and Validation with VipTool 383

supported. For the test phase, simulation stops when an error was detected. At
present, the new version of VipTool only supports low-level Petri nets (whereas
the previous one dealt with a restricted kind of predicate/transition nets). Also,
generation of a model from a given set of runs representing known scenarios has
not been implemented yet.

3 Description of the VipTool

The VipTool consists of VipEditor, which enables the user to design the business
process Petri net model. The modelling is very intuitive and drawing and painting
features can be used analogously as by standard Windows applications. Size,
color, fonts, and other usual graphical parameters can be easily set by the user
for all draw elements (places, transitions, arcs, labels, etc.). All standard editing
features, such as select, move, copy, paste, undo, redo etc. are implemented in the
usual way. The user-friendly environment is supported by many other features,
for example by automatic alignment and by click-and-drag-points of net arcs.
Usual token game simulation is also a part of the VipEditor. Figure 1 shows
a screen-shot of the VipEditor with an example of a simple business process
model.

Fig. 1. Screenshot of VipEditor, including an example net, which is explained later in
a case study.

384 J. Desel et al.

An important feature of every graphical editor is the export of the image to a
file in an appropriate standard graphic format. The VipTool supports exporting
of pictures in Encapsulated Post Script (eps). To support the exchange of Petri
nets between different tools, an XML exchange format was developed in [9]. This
format is now widely accepted as a standard exchange format for Petri nets. The
VipTool allows export of XML files in this format. Figure 2 shows a part of the
XML file of the net from Figure 1.

Fig. 2. A part of the export of the net in Figure 1 to an XML file

The VipEngine computes the runs of the modelled Petri net. The computa-
tion of the runs of the modelled Petri net by VipEngine is based on the con-
struction of the complete prefix of the branching process of the net. In addition
to standard cut-off criteria for terminating potentially infinite runs (described in
[7]), further termination criteria like bounds for the number of events or for the
depth of the branching process (to be specified by the user) are implemented.

Modelling and Validation with VipTool 385

To obtain complete runs within the branching process as fast as possible, the
branching process is first constructed into depth according to the following stra-
tegy: One begins with a certain starting cut (which in the beginning is the cut
of conditions representing the initial marking). When trying to add a new event
to the branching process, first one searches for an event enabled under the ac-
tual cut which uses conditions constructed in the previous step. If this is not
possible, one searches for any event enabled under the actual cut. If there are no
such events, a possible run is finished and stored, and an event is added, which is
enabled under a set of already constructed concurrent conditions. Such possible
events are stored in a list which is always updated after adding an event. Now one
completes the next run by choosing a cut which includes the preset of that event
as the new starting cut and repeating the above strategy. That new starting cut
is chosen to be maximal (w.r.t. the flow relation given by the branching process)
with the property that it includes the preset of the added event. In such a way,
a set of runs is stored on the fly, which cover the whole branching process. Note,
that in general not all possible runs are stored on the fly using this procedure,
since there can be more than one possible new starting cut. Nevertheless that
strategy seems to be a good trade-off between efficiency and completeness. At
last the user can decide to compute the whole set of runs from the constructed
branching process by applying an appropriate clique-algorithm. To guarantee,
that substantial runs are computed on the fly, priority criteria can be employed
in the beginning.

The runs are visualized using VipVisualizer, which is based on the Sugiyama
graph-drawing algorithm accommodated in [7].

As stated above, VipTool allows to specify graphically certain properties
of the business process, like specific forms of forbidden and desired behavior.
Namely, the following three types of specifications are implemented (see e.g.
[3]):

– Facts specify sets of forbidden markings. Facts are visualized via fact tran-
sitions.

– Goals specify two local states which have to satisfy the following property:
If the first local state is reached, then the second local state will eventually
also be reached. Goals are visualized using goal transitions (also known as
Z-transitions, from the German word Ziel).

– Causal chains, which specify two transitions that are not allowed to occur
causally immediately after each other. The causal chains are visualized using
additional places, called common places.

4 Functionality of the VipTool: A Case Study

In this section we briefly illustrate the functionality of the VipTool by a sim-
ple case study. All figures in this section are obtained by eps-export from the
VipTool.

The Petri net model of Figure 1 represents the workflow caused by a damage
report in an insurance company. After the registration (transition Registrate)
of the loss form submitted by a client, the business process divides into two

386 J. Desel et al.

concurrent sub-processes. In the upper one, validity of the client’s insurance
is checked (transition Check Insurance), possibly further queries to the client
can be answered (transitions Ask Query and Process Answer), and finally the
insurance is positively or negatively evaluated (transitions Positive Evaluation
1 and Negative Evaluation 1). In the lower sub-process, the damage itself is
checked (transition Check Damage) and subsequently positively or negatively
evaluated (transitions Positive Evaluation 2 and Negative Evaluation 2). The
two sub-processes join again. Depending on the different evaluations, the damage
is payed or different sorts of refusal letters are sent to the client (transitions Pay
Damage and Send Letter 1-3).

Fig. 3. The net from Figure 1 extended by graphical specifications of three different
types: a fact transition, a goal transition and a common place

In Figure 3, the Petri net from Figure 1 is extended by three specifications:

– The fact transition Fact Transition ought to specify that we do not want to
consider runs where the client is asked for further information, although the
damage is negatively evaluated.

– The goal transition Goal Transition ought to specify that we only want to
consider runs which end by the payment of the damage or the sending of
one of the refusal letters. So runs which stop although further activities are
possible are excluded (progress assumption) and it is assumed that eventually
Positive or Negative Evaluation occurs (fairness assumption).

Common Place

Fact Transition

Check Damage

Pay Damage

Positive Evaluation 1

P5

Send Letter 2

P3 P6

P7

P8

Process Answer

Send Letter 1

P4

Ask Query

P11Start

Negative Evaluation 2

Check Insurance

P9

Goal Transition

Negative Evaluation 1

Registrate
Positive Evaluation 2

P10 Send Letter 3

P2

Modelling and Validation with VipTool 387

Fig. 4. A legal run of the net of Figure 3, with the places involved in the specification
given by the goal transition highlighted.

Fig. 5. An illegal run of the net in Figure 3 with the causal chain, involved by the
common place, highlighted

Fig. 6. A run of the net in Figure 3 which indicates that the specification given by the
fact transition is wrong.

– The common place Common Place ought to specify that we only want to
consider runs where the client is asked at most once for more information.
Actually this requirement is stronger than the previous fairness assumption.

The set of runs computed by the VipEngine is divided into these runs, which
fulfil the above specifications, called legal runs, and runs, which do not fulfil
at least one of the above specifications, called illegal runs. Figure 4 gives an
example of a legal run. The places involved by the goal transition of the above
specification are highlighted by grey color. Checking the set of illegal runs, we

P5 P7Process Answer

P9

Ask Query P4

Positive Evaluation 2P3

Start

Check Damage

Registrate

Positive Evaluation 1

Pay Damage

P2 Check Insurance

P11

P4

P6

P4P2 Process AnswerCheck Insurance Ask Query

Positive Evaluation 2Check Damage P6

P4

Start

P5P5

P3 P9

Registrate

Ask Query

P6

Check Insurance

P3

Ask Query

Start

P4

Registrate

Check Damage P10Negative Evaluation 2

P2 P5

388 J. Desel et al.

Fig. 7. Improved model of the business process. The connection of the added place
Not Yet P10 with transition Ask Query causes that this transition can never follow
transition Negative Evaluation 2.

can observe whether there are desired runs which are still illegal. The Figures
5 and 6 give examples of illegal runs. In Figure 5, the computation of the run
is stopped, because the specification given by the common place is violated.
The causal chain (consisting of two transitions and one place) involved by the
common place is highlighted by grey color.

The computation of the run in Figure 6 is aborted because the specification
given by the fact transition is violated (again the involved places are highlighted).
Nevertheless, we observe that a part of the behavior represented by this run
should not be forbidden: Assume, the client is asked for more information (place
P5) before the damage is negatively evaluated (place P10). In this case, the run
should be completed by sending a refusal letter. So with this run we were able to
realize that the specification given by the fact transition was badly formalized.
Indeed, it is not possible to model the desired specification by one of the three
implemented types of specifications. This leads to the insight that we have to
change the model, to obtain the desired behavior. This is done in Figure 7. By
applying again the above validation steps, one can observe now that this business
process fulfils all desired requirements.

Fact Transition

P6

Send Letter 1

Negative Evaluation 1

Check Damage

P2

Pay Damage

Negative Evaluation 2

P4

Send Letter 3

P8

Send Letter 2

Positive Evaluation 2

Process Answer

Registrate

P5

Start

P9

Ask Query

P10

Not Yet P10

Common Place

P3

Positive Evaluation 1

Goal Transition

Check Insurance P7

P11

Modelling and Validation with VipTool 389

5 Conclusion

We have presented features and implementation of the new VipTool. Emphasis
was on the support of step-wise design of business process models, employing
validation of specifications and verification of models in each step.

The further development of VipTool includes the following tasks:

– The initial model can be obtained by folding of simpler models representing
single scenarios [5]. This folding operation will be supported by the tool

– The supported business process models will be an appropriate class of high-
level Petri nets (as it was the case for the original VipTool [7].

– The constructed concurrent runs will be more abstract than usual process
nets, partly taking the high-level nature of tokens into account. More pre-
cisely, the concept of abstract process nets described in [4] will be imple-
mented.

– The (experienced) user will be enabled to define further graphical specifica-
tion patterns by graphically specifying classes of legal and/or illegal runs in
terms of appropriate process net patterns.

Acknowledgement. We acknowledge the work of all other members of the
VipTool development team: Robin Bergenthum, Thomas Liske, Thomas Loidl,
Sebastian Mauser, Vesna Milijic and Niko Switek.

References

1. W.M.P. van der Aalst, J. Desel and A. Oberweis (Eds.). Business Process Man-
agement. Springer, LNCS 1806, 2000.

2. W.M.P. van der Aalst and K. van Hee. Workflow Management, Models Methods
and Systems. The MIT Press, Cambridge, Massachusetts, 2002.

3. J. Desel. Validation of Process Models by Construction of Process Nets. In [1], pp.
110–128.

4. J. Desel. Model Validation - A Theoretical Issue? In J. Esparza, C. Lakos (Eds.).
Proc. of ICATPN 2002, LNCS 2360, Springer 2002, pp. 23–43.

5. J. Desel and T. Erwin. Hybrid specifications: looking at workflows from a run-time
perspective. International Journal of Computer System Science & Engineering, 15
Nr. 5, pp. 291–302 (2000).

6. J. Esparza, S. Römer and W. Vogler: An Improvement of McMillan’s Unfolding Al-
gorithm. In Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems, TACAS ’96, LNCS 1055, pp. 87–106. Berlin, Heidelberg, New York:
Springer (1996).

7. T. Freytag. Softwarevaliedierung durch Auswertung von Petrinetz-Abläufen. Dis-
sertation, University of Karlsruhe 2001.

8. A.-W. Scheer and M. Nüttgens. ARIS Architecture and Reference Models for
Business Process Management. In [1] pp. 376–390.

9. M. Weber, E. Kindler. The Petri Net Markup Language. To appear in H. Ehrig, W.
Reisig, G. Rozenberg, H. Weber (Eds.). Petri Net Technology for Communication
Based Systems. LNCS 2472, Springer 2003.

Author Index

Aalst, Wil M.P. van der 1
Agostini, Alessandra 321

Backes, Michael 168
Bäına, Karim 261
Benali, Khalid 261
Benatallah, Boualem 336
Bitcheva, Julia 104

Chaudron, Michel 88
Chrza̧stowski-Wachtel, Piotr 336
Churilov, Leonid 72
Curbera, Francisco 276
Currie, Wendy 302

Dadam, Peter 41, 370
Desel, Jörg 380
Dietz, Jan L.G. 200
Dietzsch, Andreas 291
Dijk, Andries van 152

Eder, Johann 216

Glabbeek, Rob J. van 184
Godart, Claude 104
Golani, Mati 136
Gruber, Wolfgang 216

Hamadi, Rachid 336
Hee, Kees van 88
Hofstede, Arthur H.M. ter 1

Juhás, Gabriel 380

Khalaf, Rania 276

Leymann, Frank 276
Loregian, Marco 321
Lorenz, Robert 380
Lory, Peter 232

Madhusudan, Therani 354
McDermid, Donald C. 58
Michelis, Giorgio De 321
Moldt, Daniel 246

Neiger, Dina 72
Neumair, Christian 380
Ninaus, Michael 216

O’Dell, Milton 336

Perrin, Olivier 104
Pfitzmann, Birgit 168
Piccinelli, Giacomo 13
Pichler, Horst 216
Pinter, Shlomit S. 136

Reichert, Manfred 41, 370
Rinderle, Stefanie 41, 370
Rölke, Heiko 246

Schimm, Guido 25
Somers, Lou 88
Stork, David G. 184
Susanto, Adi 336

Tata, Samir 261

Waidner, Michael 168
Weerakkody, Vishanth 302
Weerawarana, Sanjiva 276
Weske, Mathias 1
Williams, Scott Lane 13
Wynen, Franck 104

Yang, Guangxin 120

Zhao, J. Leon 354

	Front matter
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25
	Chapter 26
	Back matter

