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This chapter considers the scalability issue from the machine learning and data mining point of view, to 
extract knowledge from huge amounts of data, studying in turn both supervised and unsupervised learning 
and thus providing an introduction to the sequel of the book. It focuses on ensemble based approaches 
that learn classifiers on subsets of data, to reduce the amount of data that must be fit in computer memory 
at any time. In the unsupervised learning case, the authors concentrate on data streams: they offer an 
overview of existing algorithms to deal with such data and propose an online variant of the classic fuzzy 
c-means, experimented on datasets containing up to 5 millions magnetic resonance images.
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Foreword

Scalability is one of the main problems practitioners have to cope with when grasping a real-world 
application in data management or information analysis. The size of databases and data warehouses, 
associated with incompleteness of information and missing values has been a major difficulty from the 
early beginning of their studies. Modern digital devices, Internet possibilities, and distributed networks 
are among the most powerful means of storing, retrieving, and sharing information. The amounts of 
documents and data available for the users are continuously increasing, whatever their nature may be: 
text, video, music, images, multimedia, Web. The ways to access these documents and data are also di-
verse: exchanges within communities, social networks and peer to peer communications have increased 
the complexity of transfers from data repositories to users. 

To increase the efficiency of existing algorithms is a necessity. Dimension reduction or dynamic treat-
ment of data avoiding their storage is for instance a solution to large scale learning systems. Moreover, 
alternative approaches to classic information retrieval, knowledge discovery and data analysis need to be 
created, in order to cope with the complexity of the problem to solve, due to the size, the heterogeneity, 
the incompleteness of data and their access paths. Thinking differently is also a necessity since classic 
statistics or machine learning methods have their limits. System science provides interesting paradigms 
for the handling of complex systems, always taking the user into account, in a holistic involvement of 
all components of the system. Active learning involving the user is for example a solution to the dif-
ficulty of using supervised learning in huge training sets. Another lesson from systems science is the 
exploitation of synergies between components of the system, and this capacity is well understood in the 
complementarity between medias, for instance between text and image.

Fuzzy knowledge representation and logic are among the efficient tools for the management of complex 
systems, since they bring solutions to the incompleteness, inaccuracy and uncertainty, inherent to large 
scale and heterogeneous information reservoirs, taking into account synthetic descriptions of isolated 
elements and reducing individual treatments. Providing an interface between numerical data represen-
tations by computers and symbolic representations well understood by humans, fuzzy logic fills in the 
gap between technological needs and usability requirements. Concepts such as fuzzy categories, fuzzy 
quantifiers, fuzzy prototypes, fuzzy aggregation methods, fuzzy learning algorithms, fuzzy databases, 
and fuzzy graphs have proved their utility in the construction of scalable algorithms.

The present book is certainly of particular interest for the diversity of addressed topics, covering a 
large spectrum in scalability management. Anne Laurent and Marie-Jeanne Lesot are experts in theoretical 
and methodological study of fuzzy techniques, and they have moreover coped with various real world 
large-scale problems. The group of experts they have gathered to prepare this volume is unquestionably 
qualified to provide solutions to researchers and practitioners in search of efficient algorithms and models 
for complex and large dataset management and analysis.
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Scalability is understood in this book from several points of view. The first one is the size of avail-
able data implying difficulties in their tractability, with regard to memory size or computation time. This 
aspect is strongly related to the complexity of involved algorithms. 

The second point of view regards the form of the algorithm results and the capability of human us-
ers to understand and grasp these results, through summaries and visualization solutions. This aspect is 
more related to a cognitive framework. 

The scalability of knowledge representation is at the crossroads of these points of view, dealing with 
ontologies or formal languages, as well as a variety of concepts in a fuzzy setting. 

The classic scalability problem in hardware is another point of view, revisited here in the light of 
modern electronic solutions and fuzzy computation.

This book deals with all these aspects under a fuzzy logic based perspective. A sample of applications 
is also presented as a showcase, pointing out the efficiency of fuzzy approaches to the construction of 
scalable algorithms. Potential applications of such approaches go far beyond the domains tackled here 
and this book opens the door to a vast spectrum of forthcoming works.

Bernadette Bouchon-Meunier
LIP6 / UPMC / CNRS, France

Bernadette Bouchon-Meunier is the head of the department of Databases and Machine Learning in the Computer Science 
Laboratory of the University Paris 6 (LIP6). Graduate from the Ecole Normale Superieure at Cachan, she received the degrees 
of B.S. in Mathematics and Computer Science, Ph.D. in Applied Mathematics and D. Sc. in Computer Science from the Univer-
sity of Pierre and Marie Curie. Editor-in-Chief of the International Journal of Uncertainty, Fuzziness and Knowledge-based 
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and chair of the IEEE French Chapter on Computational Intelligence.. Her present research interests include approximate 
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Preface

The fuzzy logic and the fuzzy set theory have been proposed by Lotfi Zadeh in 1965, and largely de-
veloped since, in various directions, including reasoning, control, data representation and data mining. 
They now provide numerous tools to handle data in a very relevant and comprehensive way, in particular 
offering theoretically well founded means to deal with uncertainty and imprecision. Furthermore, they 
constitute an interface between numerical and linguistic representations, increasing the interpretability 
of the developed tools and making it possible to compute with words, using the expression proposed by 
L. Zadeh in 1996.

Despite these advantages, fuzzy approaches often suffer from the opinion that they cannot address 
huge amounts of data and are inappropriate because of scalability difficulties: a high computational 
complexity or high memory requirements are feared, that might hinder their applications to very large 
datasets, as occur more and more frequently nowadays. Now this is not the case, as many applications, 
including industrial success stories, have shown that fuzziness and scalability are not antagonistic con-
cepts. This book aims at highlighting the relevance of fuzzy methods for huge datasets, considering both 
the theoretical and practical points of view and bringing together contributions from various fields.

This book gathers up-to-date methods and algorithms that tackle this problem, showing that fuzzy 
logic is a very powerful way to provide users with relevant results within reasonable time and memory. 
The chapters cover a wide range of research areas where very large databases are involved, considering 
among others issues related to data representation and structuring, in particular in data warehouses, as 
well as the related querying problems, and the extraction of relevant and characterizing information 
from large datasets, to summarize them in a flexible, robust and interpretable way that takes into account 
uncertainty and imprecision. The book also includes success stories based on fuzzy logic that address 
real world challenges to handle huge amounts of data for practical tasks. The databases considered in the 
various chapters take different forms, including data warehouses, data cubes, tabular or relational data, 
and different application types, among which multimedia, medical, bioinformatics, financial, Semantic 
Web or data stream contexts. 

The book aims at providing researchers, master students, engineers and practitioners the state-of-the-
art tools to address the new challenges of current applications that must now both remain scalable and 
provide user-friendly and actionable results. The readers will get a panorama of the existing methods, 
algorithms and applications devoted to scalability and fuzziness. They will find the necessary material 
concerning implementation issues and solutions, algorithms, evaluation, case studies and real applica-
tions. Besides, being the very first reference gathering scalable fuzzy methods from various fields, this 
book contributes to bridging the gap between research communities (e.g., databases, machine learning) 
that are not always enough combined and mixed.
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The book is organized in four complementary sections: after two introductory chapters that provide 
general overviews on fuzziness and scalability from two different points of view, the second section, 
entitled “Databases and Queries,” is devoted to methods that consider data structuring as the core of the 
approach and propose either flexible representations, through the incorporation of fuzzy components in 
the data, or flexible queries that make interactions of the user with the database easy and intuitive thanks 
to linguistic formulations. The third section, called “Summarization,” tackles the complexity of huge 
datasets through the extraction of relevant and characteristic information that provide summaries of the 
whole data. In this context, fuzzy approaches offer a linguistic interface to increase the interpretability of 
the results, flexibility and tools to handle imprecision and uncertainty. Lastly, the fourth section, entitled 
“Real-World Challenges,” presents success stories involving fuzzy approaches, considering various do-
mains such as stream, multimedia and biological data. In the following, we detail each section in turn.

The first two chapters of the book introduce general overviews, respectively from the hardware point 
of view, and from a machine learning perspective. 

The chapter “Electronic Hardware for Fuzzy Computation,” by Koldo Basterretxea and Inés del Campo, 
presents a comprehensive synthesis of the state of the art and the progress in the electronic hardware 
design for the fuzzy computation field over the past two decades, in particular for the implementation 
of fuzzy inference systems. The authors show how fuzzy hardware has evolved, from general purpose 
processors (GPPs) to high performance reconfigurable computing (HPRC), as well as the development of 
the hardware/software codesign methodology. They discuss their relationships with the scalability issue, 
and the new trends and challenges to be faced. The last part of the chapter, dedicated to the architectures 
proposed to speed up fuzzy data mining processing specifically, constitutes a promising research direc-
tion for the development and improvement of implementation of fuzzy data mining algorithms.

Chapter 2, entitled “Scaling Fuzzy Models” by Lawrence O. Hall, Dmitry B. Goldgof, Juana Canul-
Reich, Prodip Hore, Weijian Cheng and Larry Shoemaker, considers the scalability issue from the machine 
learning and data mining point of view, to extract knowledge from huge amounts of data, studying in 
turn both supervised and unsupervised learning. It focuses on ensemble based approaches that basically 
consist in learning classifiers on subsets of data, to reduce the amount of data that must be fit in com-
puter memory at any time. This approach is also used in Chapter 15 in the case of fuzzy random forests 
to handle large multimedia datasets. In the unsupervised learning case, the authors concentrate on data 
streams that are more and more common nowadays and can lead to very large datasets to be handled 
incrementally. They offer an overview of existing algorithms to deal with such data and propose an on-
line variant of the classic fuzzy c-means. Their experimental results, performed on datasets containing 
up to 5 millions magnetic resonance images, illustrate the possibility to apply fuzzy approaches to data 
mining from huge datasets. 

The chapters of the second section, Chapters 3 to 7, address the topic of databases and queries coupled 
with fuzzy methods: they consider the scalability issue from the point of view of data structuring and 
organization, as well as for the querying step. Chapters 3, 4 and 5 mainly focus on the data storing is-
sue, respectively considering data warehouses adapted to fuzzy set representation (chapter 3), fuzzy 
data cubes following the OLAP model (Chapter 4) and fuzzy description logic to both represent and 
exploit imprecise data in a logical reasoning framework (Chapter 5). Chapters 6 and 7 concentrate on 
queries, considering two different types: chapter 6 considers linguistic data queries and more specifically 
quantified linguistic queries, proposing a framework to model and answer them. Chapter 7 focuses on 
the results provided by queries submitted to search engines and tackles the problem of managing them 
through a flexible exploratory language. 
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More precisely, Chapter 3, entitled “Using Fuzzy Song Sets in Music Warehouses” by François Deliège 
and Torben Bach Pedersen, considers data warehouses used to manage large collections of music data, 
in the purpose of designing music recommendation systems. The authors introduce a fuzzy representa-
tion through the concept of fuzzy songs and study several solutions for storing and managing fuzzy sets 
in general, considering three options, namely tables, arrays and compressed bitmaps. They construct 
theoretical estimates for the cost of each solution that are also studied experimentally and compared for 
various data collection sizes. Furthermore, they discuss the definition of an algebra to query the built data 
cubes and examine the operators both from a theoretical and practical point of view. Thus this chapter 
provides both an insight on theoretical works on scalability issues for storing and managing fuzzy sets, 
and an example of a real world challenge.

In the same framework of data warehouses and OLAP systems, the chapter “Mining Association 
Rules from Fuzzy DataCubes,” by Nicolás Marín, Carlos Molina, Daniel Sánchez and M. Amparo Vila, 
investigates the particular topic of on-line analytical mining (OLAM) which aims at coupling data mining 
and OLAP, bridging the gap between sections II and III of the book. The authors consider association 
rules which are one of the most used data mining techniques to extract summarized knowledge from 
data, focusing on the particular framework of data cubes for which they must be further studied. The 
authors propose methods to support imprecision which results from the multiple data sources handled 
in such applications and constitutes a challenge when designing association rule mining algorithms. The 
chapter studies the influence of the fuzzy logic use for different size problems, both in terms of the cube 
density (number of records) and topology (number of dimensions), comparing the results with a crisp 
approach. Experiments are performed on medical, financial and census data.

In Chapter 5, entitled “Scalable Reasoning with Tractable Fuzzy Ontology Languages,” Giorgos Stoilos, 
Jeff Z. Pan, and Giorgos Stamou consider another data model that is in particular adapted to databases in 
the form of ontology, namely the fuzzy description logic format. The latter offers the possibility to both 
model and reason with imprecise knowledge in a formal framework that provides expressive means to 
represent and query information. It is of particular use to handle fuzziness in Semantic Web applications 
whose high current development makes such works crucial. The authors show that the increased expres-
sivity does not come at the expense of efficiency and that there exist methods capable of scaling up to 
millions of data. More precisely, the authors study the scalability of the two main inference services in 
this enriched data description language, which are query answering and classification (i.e., computation 
of the implied concept hierarchy). To that aim, they consider two languages: on one hand, they show 
how Fuzzy DL-Lite provides scalable algorithms for expressive queries over fuzzy ontologies; on the 
other hand, they show how Fuzzy EL+ leads to very efficient algorithms for classification and extend 
it to allow for fuzzy subsumption.

Focusing on the issue of query formulation, in particular for expressive queries, Chapter 6, entitled 
“A Random Set and Prototype Theory Model of Linguistic Query Evaluation” by Jonathan Lawry and 
Yongchuan Tang, deals with linguistic data queries, that belongs to the computing with words domain 
introduced by Zadeh in 1996. More precisely the authors consider quantified data queries, for which a 
new interpretation based on a combination of the random set theory and prototype theory is proposed: 
concepts are defined as random set neighborhood of a set of prototypes, which means that a linguistic 
label is deemed appropriate to describe an instance if the latter is sufficiently close to the prototypes of the 
label. Quantifiers are then defined as random set constraints on ratios or absolute values. These notions 
are then combined to a methodology to evaluate the quality of quantified statements about instances, so 
as to answer quantified linguistic queries.
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The chapter “A Flexible Language for Exploring Clustered Search Results,” by Gloria Bordogna, 
Alessandro Campi, Stefania Ronchi and Giuseppe Psaila, considers specific types of queries, namely 
those submitted to search engines: they tackle the more and more crucial problem of managing the results 
from search engines that can be very large, and automatically extracting hidden relations from them. 
Assuming that the set of documents retrieved by a search engine is given in the form of a set of clusters, 
the authors propose a flexible exploratory language for manipulating the groups of clustered documents 
returned by several engines. To that aim, they define various operators among which refinement, union, 
coalescing and reclustering and propose several ranking criteria and functions based on the fuzzy set 
theory. This makes it possible to preserve the interpretability of the retrieved results despite the large 
amount of answers obtained for the query.

The chapters in the next section, Chapters 8 to 13, consider a different approach on the problem of 
scalability and fuzziness and address the topic of exploiting fuzzy tools to summarize huge amounts of 
data to extract from them relevant information that captures their main characteristics. Several approaches 
can be distinguished, referring to different types of data mining tools, as detailed below. Chapter 8 con-
siders linguistic summaries, and uses fuzzy logic to model the linguistic information, Chapter 9 proposes 
an aggregation operator relevant to summarize statistics in particular. Chapters 10 and 11 consider the 
association rules to summarize data. Chapters 12 and 13 belong to the fuzzy clustering framework. It 
must be underlined that Chapter 4 also considers association rules, in the case where data are stored in 
a structure as fuzzy cubes. 

More precisely, Chapter 8, entitled “Linguistic Data Summarization: A High Scalability through 
the Use of Natural Language?” by Janusz Kacprzyk and Sławomir Zadrożny, studies user-friendly 
data summaries through the use of natural language, and a fuzzy logic based model. The focus is laid 
on the interpretability of the summaries, defining scalability as the capability of algorithms to preserve 
understandable and intuitive results even when the dataset sizes increase, at a more perceptual or cogni-
tive level than the usual “technical scalability.” The authors offer a general discussion of the scalability 
notion and show how linguistic summaries answer its perceptual definition, detailing their automatic 
extraction from very large databases.

The summarization process is also the topic of Chapter 9, “Human Focused Summarizing Statistics 
Using OWA Operators” by Ronald R. Yager, that provides a description of the order weighted averaging 
operator (OWA). This operator generates summarizing statistics over large datasets. The author details 
its flexibility derived from weight generating functions as well as methods to adapt them to the data 
analysts, based on graphical and linguistic specifications.

Another common way to summarize datasets consists in extracting association rules that underline 
frequent and regular relations in the data. Chapter 10, entitled “(Approximate) Frequent Item Set Mining 
Made Simple with a Split and Merge Algorithm” by Christian Borgelt and Xiaomeng Wang, considers 
this framework and focuses on its computationally most complex part, namely the problem of mining 
frequent itemsets. In order to improve its scalability, the authors propose efficient data structures and 
processing schemes, using a split and merge technique, that can be applied even if all data cannot be 
loaded into the main memory. Approximation is introduced by considering that missing items can be 
inserted into transactions with a user-specified penalty. The authors study the behavior of the proposed 
algorithm and compare it to some well-known itemsets mining algorithms, providing a comprehensive 
overview of methods.

The chapter “Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases,” by 
Trevor Martin and Yun Shen, also considers the domain of association rules learning when huge amounts 
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of data are to be handled, focusing on the case where the data are grouped into hierarchically organized 
categories. The aim is then to extract rules to describe relations between these categories; fuzziness allows 
avoiding the difficulties raised when crisp separations must be defined. They propose a new definition 
of fuzzy confidence to be consistent with the framework addressed in the chapter.

Chapter 12, entitled “Fuzzy Cluster Analysis of Larger Data Sets” by Roland Winkler, Frank Klawonn, 
Frank Höppner and Rudolf Kruse, explores another method for data summarization, namely fuzzy clus-
tering. The authors propose to combine two approaches to decrease the computation time and improve 
the scalability of the classic fuzzy c-means algorithm, based on a theoretical analysis of the reasons 
for the high complexity, both for time and memory, and on an efficient data structure. Indeed the high 
computational cost of the fuzzy c-means is basically due to the fact that all data belong to all clusters: 
the membership degrees can be very low, but do not equal 0, which also implies that all data have an 
influence on all clusters. The authors combine a modification of the fuzzifier function to avoid this effect 
with a suitable data organization exploiting a neighborhood representation of the data to significantly 
speed up the algorithm. The efficiency of the proposed method is illustrated through experiments.

Chapter 13, entitled “Fuzzy Clustering with Repulsive Prototypes” by Frank Rehm, Roland Winkler 
and Rudolf Kruse, also considers fuzzy clustering, focusing on the selection of the appropriate number 
of clusters: the latter is classically determined in a procedure that consists in testing several values and 
choosing the optimal one according to a validation criterion. This process can be very time consuming, 
the authors propose to address this problem as an integrated part of the clustering process, by making the 
algorithm insensitive to too high values for this parameter. To that aim, they modify the update equations 
for the cluster centers, to impose a repulsive effect between centers, rejecting the unnecessary ones to 
locations where they do not disturb the result. Both the classic fuzzy c-means and its Gustafson-Kessel 
variant are considered.

The last section of the book, Chapters 14 to 16, is dedicated to real world challenges that consider 
the scalability of fuzzy methods from a practical point of view, showing success stories in different do-
mains and using different techniques, both for supervised and unsupervised data mining issues. Chapter 
14 considers massive stream data describing car warranty data. Chapter 15 addresses the indexation of 
huge amounts of multimedia data using random forest trees, following the same approach as the one 
presented in Chapter 2. Chapter 16 belongs to the bioinformatics domain that is among the domains 
that currently give rise to the largest datasets to handle, it more precisely focuses on micro-array data. 
Chapter 3 that describes a data warehouse used to manage large collections of music data also belongs 
to this real world challenges section.

Chapter 14, entitled “Early Warning from Car Warranty Data using a Fuzzy Logic Technique” by 
Mark Last, Yael Mendelson, Sugato Chakrabarty and Karishma Batra, addresses the problem of detecting 
as early as possible problems on cars by managing data stored in a warranty database which contains 
customer claims recording information on dealer location, car model, car manufacturing and selling dates, 
claim date, mileage to date, complaint code, labor code, and so on. Warranty databases constitute massive 
stream data that are updated with thousands of new claims on a daily basis. This chapter introduces an 
original approach to mine these data streams by proposing a fuzzy method for the automatic detection 
of evolving maintenance problems. For this purpose, the authors propose to study frequency histograms 
using a method based on a cognitive model of human perception instead of crisp statistical models. The 
obtained results reveal significant emerging and decreasing trends in the car warranty data.

The problem of video mining is tackled in Chapter 15, entitled “High Scale Fuzzy Video Mining” by 
Christophe Marsala and Marcin Detyniecki, where the authors propose to use forests of fuzzy decision 
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trees to perform automatic indexing of huge volumes of video shots. The main purpose of the chapter is 
to detect high-level semantic concepts such as “indoor,” “map,” or “military staff” that can then be used 
for any query and treatment on videos. This data mining problem requires addressing large, unbalanced 
and multiclass datasets and takes place in the highly competitive context of the TRECVid challenge or-
ganized by NIST. The authors report the success of the fuzzy ensemble learning approach they propose, 
that proves to be both tractable and of high quality. They also underline the robustness advantage of the 
fuzzy framework that improves the results as compared to other data mining tools. 

Chapter 16, entitled “Fuzzy Clustering of Large Relational Bioinformatics Datasets” by Mihail Popescu 
considers a practical problem of fuzzy clustering with very large relational datasets, in the framework of 
bioinformatics to extract information from micro-array data. It describes the whole process of how such 
problems can be addressed, presenting the theoretical machine learning methods to be used as well as 
the practical processing system. The considered three-step approach consists in subsampling the data, 
clustering the sample data and then extending the results to the whole dataset. The practical system 
describes the methods applied to select the appropriate method parameters, including the fuzzifier and 
the number of clusters, determined using a cluster validity index. It also describes the adjustments that 
appear to be necessary to handle the real dataset, in particular regarding the sampling step. The experi-
ments are performed with real data containing around 37,000 gene sequences.

The book thus gathers contributions from various research domains that address the combined issue 
of fuzziness and scalability from different perspectives, including both theoretical and experimental 
points of view, considering different definitions of scalability and different topics related to the fuzzy 
logic and fuzzy set theory use. The variety of these points of view is one of the key features of this book, 
making it a precious guide for researchers, students and practitioners.

Anne Laurent and Marie-Jeanne Lesot
Editors
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Electronic Hardware for 
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INTRODUCTION

Electronic hardware development for fuzzy inference-based computing systems (fuzzy hardware) has 
been an active research area almost since the first papers on successful fuzzy logic applications, mainly 
fuzzy controllers, were published in the early eighties. Although historically, due to the greater flexibility 
and compatibility, as well as the advantages and easiness of using high level languages, the majority of 
fuzzy inference system (FIS) implementations have been software developments to be run on general 
purpose processors (GPP), only concurrent computation architectures with specific processing units 

AbsTRACT

This chapter describes two decades of evolution of electronic hardware for fuzzy computing, and dis-
cusses the new trends and challenges that are currently being faced in this field. Firstly the authors 
analyze the main design approaches performed since first fuzzy chip designs were published and until 
the consolidation of reconfigurable hardware: the digital approach and the analog approach. Secondly, 
the evolution of fuzzy hardware based on reconfigurable devices, from traditional field programmable 
gate arrays to complex system-on-programmable chip solutions, is described and its relationship with 
the scalability issue is explained. The reconfigurable approach is completed by analyzing a cutting 
edge design methodology known as dynamic partial reconfiguration and by reviewing some evolvable 
fuzzy hardware designs. Lastly, regarding fuzzy data-mining processing, the main proposals to speed 
up data-mining workloads are presented: multiprocessor architectures, reconfigurable hardware, and 
high performance reconfigurable computing.
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can take greatest advantage of fuzzy computation schemes. The development of fuzzy hardware has 
been mainly motivated by real-time operation demands, or by low power and/or small area occupation 
requirements. In this sense, the first fuzzy hardware researchers basically tried to design fuzzy chips 
capable of processing fuzzy control laws in a more efficient manner in terms of processing speed, oc-
cupied area and consumed power. But not only is computing efficiency a concern for fuzzy hardware 
designers; system programmability, compatibility of input/output signals and scalability at various levels 
(word-length, partition of the input and output domains, number of rules, or overall throughput gain) 
are also important features to be considered.

Design of fuzzy hardware is strongly conditioned by the target application it is addressed to. In 
consequence, many different application-specific designs have been reported, each of them showing 
characteristic features, strengths and weaknesses. The choice of the development platform and imple-
mentation technology is closely linked with this issue, and may itself bias the obtainable final features. 
Despite this, implementation of a general purpose fuzzy ASIC (Application Specific Integrated Circuit) 
suitable for any fuzzy rule-based application has been somehow sought but never achieved by fuzzy 
hardware designers, both in academic and in commercial contexts. It has been the arrival of high capac-
ity reconfigurable hardware and the drastic changes in the design processes of complex digital systems 
associated with this technology that has finally made obsolete the general purpose fuzzy hardware 
objective. Last generation reconfigurable hardware platforms allow the implementation of optimized 
complex hardware/software codesigned adaptive and on-the-fly reconfigurable systems for application 
specific computation. The combination of reconfigurable hardware with the use of standardized hardware 
description languages (HDL) has entailed the transference of the task of achieving desirable features 
such as flexibility, scalability, reusability, etc from the hardware itself to the description or modeling of 
this hardware.

Fuzzy data management and analysis methods do not rest normally on a rule-based inference scheme, 
so the development of hardware for fuzzy data-mining has usually little to do with what is referred to as 
“fuzzy hardware”. In fact, fuzzy data-mining algorithms have been traditionally implemented by software 
applications running on GPPs, since there were not usually tight requirements for computation time, 
occupied silicon area or consumed power. On the contrary, flexibility, scalability and good interaction 
with data base storage systems were the only concerns. Nonetheless, nowadays, due to the increasing 
complexity of data-mining algorithms and the growing amount of data to be processed by them, some-
times with time constraints, more attention is being paid to the hardware acceleration of this kind of 
application. This field can be considered, together with scientific computation, a natural target for high 
performance computing (HPC). Consequently, specific hardware development for parallel processing 
or coprocessing of data-mining algorithms has been gaining relevance in recent years.

The chapter is organized as follows: Section 2 introduces the main hardware implementation variants 
performed since first fuzzy hardware chips were published and until the consolidation of reconfigu-
rable hardware for complex digital system implementation. First of all, the distinctive characteristics of 
fuzzy inference-based computation that pushed researchers to find specifically designed hardware are 
described. Secondly we summarize the general pros and cons of the two main design approaches used 
for fuzzy hardware realizations, the digital approach and the analog approach; the performance indexes 
used for fuzzy hardware characterization are also briefly discussed. The bulk of the section follows by 
analyzing the different solutions proposed by hardware designers both for digital and analog approaches 
in a taxonomical way, giving examples of the most representative publications in the area. In Section 3 
the evolution of fuzzy hardware implementations based on reconfigurable hardware and its relationship 
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with the scalability issue are explained. A short description of the FPGA (Field Programmable Gate Ar-
ray) technology and the repercussions of the development of hardware description languages are given, 
and the fruitful synergism between FISs and FPGAs are enumerated. The section continues with the 
description of the hardware/software codesign methodology and its contribution to the fuzzy hardware 
design, and introduces the associated concept of System on Programmable Chip (SoPC), giving examples 
of reported designs in this area. The Section is completed by analyzing the cutting edge design meth-
odology known as Dynamic Partial Reconfiguration and by reviewing some evolvable fuzzy hardware 
designs, and is closed by highlighting the new trends and challenges to be faced by the reconfigurable 
hardware technology. Lastly, Section 4 is devoted to the hardware implementation proposals for fuzzy 
data-mining processing, as it presents very distinct characteristics and requirements compared to fuzzy 
rule-based inference systems. Section 5 concludes this chapter summing up the described main concepts 
and giving some concluding remarks.

HARDWARE IMPLEMENTATION OF FUZZY INFERENCE sYsTEMs

As mentioned in the introduction, design and implementation of a FIS strongly depends on the require-
ments of the target application. When the hardware implementation of a FIS is considered, this is due to 
the special requirements of computation time, occupied area and/or power consumption that the application 
to be performed may demand. Each application field of FISs has its own characteristics which condition 
the system design: process control, industrial automation, embedded control, signal processing, pattern 
recognition, or data analysis and decision making –when making use of fuzzy rule-based schemes– all 
share a common computational scheme but all show specific processing and interfacing requirement,. In 
order to understand the reasons that have pushed researchers to investigate new hardware architectures 
for fuzzy systems, it is worth to briefly analyzing the specificities of fuzzy computation.

Distinctive Characteristics of Fuzzy Computation

There are three main aspects of fuzzy computation that have motivated the design of ad-hoc hardware 
to overcome the limits imposed by the processing on general purpose processors: parallelism, use of 
specific non-standard operators, and the intensive computation of non-linear functions.

Parallelism: The typical three processing stages of a fuzzy inference, that is, fuzzification, inference, 
and defuzzification, are performed sequentially (see Figure 1). However, at each stage internal operations 
can be carried out in parallel. At the fuzzification stage parallelism is possible because several member-
ship degrees at a time must be computed for an input value, and there may be more than one input. At 
the inference stage the computation of the degrees of truth of several rules are performed in parallel, 
since more than one rule may be activated at the same time. Finally, to compute the output value, which 
is usually crisp, the partial conclusions of the rules must be obtained from the consequents, and these 
values are combined to obtain the final general conclusion and the defuzzified value. GPPs are sequential 
machines, so all these operations are performed serially. It is obvious that the more input variables in the 
input domain and the more rules defined in the inference engine, the more time-consuming is a fuzzy 
inference in a sequential processor and the more worthwhile it is to parallelize it.

Specific non-standard operators: Fuzzy computing requires intensively performing some basic 
operations that cannot be efficiently executed by GPPs. Maximum and minimum operations and de-
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fuzzification functions, for instance, are very time-consuming on GPPs. While some software solutions 
have been proposed by adding new instructions implemented as microprograms to the microproces-
sors, implementation of dedicated fuzzy functional blocks is the most efficient solution regarding the 
computation time.

Computation of non-linear functions: Any fuzzy computing system is based on fuzzy logic theory, 
and the core concept of this logic is the concept of membership degree to a given set. To represent the 
membership degrees, fuzzy logic uses membership functions (MF), which are, in the most general case, 
monotone smooth non-linear functions such as sigmoidal functions, Gaussians, generalized bells and 
so on. The computation of such functions is very demanding for any processor and hence this has been 
one of the most analyzed aspects of fuzzy hardware design. In fact, to overcome this problem, many 
fuzzy hardware designs rested on simple triangular or trapezoidal membership function representations. 
This is a valid approach, as it is demonstrated that FISs keep their universal approximation property 
even when simple piecewise-linear (PWL) MFs are used (Castro, 1996), but this is a property based on 
an existence theorem that does not consider quantitative implications. For a given number of MFs and 
rules, the system’s plasticity –capability of representing information– is degraded when using simple 
PWL MFs, so simpler MFs imply a more complex rule base (Basterretxea et al., 2007).

Hardware implementations must always be oriented to achieve maximum simplicity. There are of 
course some “tricks” that hardware designers have developed to adapt the computation of fuzzy algorithms 
to the characteristics of hardware technologies. Hardware engineers have often modified mathematical 
operations or other computational features to produce more hardware-friendly algorithms. Sometimes 
this means reducing the accuracy, in the sense that produced processing does not replicate exactly the 
underlying mathematical functions. This is the case of the diverse circuits designed for approximating the 
non-linear functions used to represent MFs, or the reduction of quantization levels when memory-based 
solutions are implemented. At other times accuracy is not affected but some limitations are imposed 
on the system, such as the allowed maximum overlapping degree of MFs or their configurability, for 
instance. Sometimes however, a closer and more detailed study of how an electronic circuit processes 
data can lead to discovering regularities that can be exploited, or ways to avoid useless or repetitive 
calculations, with no impact on computational accuracy or system flexibility. One example of this is 
the use of register files to store truth tables obtained from the computation of the degree of truth of 
an antecedent, since the same antecedent is usually repeated in several rules (Ascia & Catania, 1998). 
Another common example is a technique consisting in the implementation of “active rule detectors”, 
that is, for each input, detecting which rules will be activated and which rules will produce no output 
(not active), so only those rules with a positive degree of truth in their antecedents are processed (see 

Figure 1. Basic computational scheme of a fuzzy rule-based system
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Hamzeh et al., 2009 and references herein). Sometimes the search for hardware-friendly algorithms 
has pushed researchers to work on the mathematical basis of fuzzy logic, hence inducing the definition 
of new operators such as the operators used for piecewise-linear or -multilinear (PWM) fuzzy systems 
(Rovatti & Borgatti, 1997; Sasaki & Ueno, 1994), as well as parameterized defuzzification methods 
such as the height method, weighted fuzzy mean, Yager´s method, etc. (Baturone et al, 2000). In the 
next subsection we examine some of these design strategies, described by fuzzy hardware researchers 
in papers and books, the most significant of which are referenced in the text.

Hardware Design strategies and Implementation Technologies

Traditionally there have been two main approaches to the implementation of FISs: using GPP based 
machines and the development of dedicated hardware. Obviously, using pure software solutions run-
ning on GPPs –microprocessors, microcontrollers or digital signal processors– is the least expensive 
and more flexible procedure, but generally it is the slowest one. On the contrary, the development of 
ad-hoc hardware for high performance fuzzy processing implemented in ASIC technology requires a 
longer design time and much more effort, in order to culminate in a faster system, although very often 
with poor generality. Halfway approaches are also possible though. One option is to customize GPPs by 
introducing fuzzy dedicated instructions, which sometimes is referred to as software expansion. Another 
option consists in splitting fuzzy operations from the CPU instruction-set and developing an external 
fuzzy coprocessor to execute those operations faster, which is called hardware expansion. The main 
problem in using fuzzy coprocessors is that the I/O signal transmission between the processor and the 
coprocessor is usually a bottleneck that impedes fast operation. This section is devoted to describing the 
most representative design solutions for dedicated fuzzy hardware reported in the last two decades, leav-
ing the GPP-based approaches and the direct memory mapping-based implementations aside. However, 
each reported hardware design is unique, generally differing the ones from the others in various aspects, 
so it is not possible to make a complete catalogue of developed fuzzy processors over the years. Yet there 
are some common characteristics of different reported solutions that can be, and will be, emphasized 
and that allow us to make a somewhat taxonomical description of fuzzy hardware design.

The first fuzzy processing device was implemented in 1985 by Togai and Watanabe (1986), from the 
AT&T Bell laboratories. It was a digital VLSI chip with one input and one output capable of executing 
250,000 FRPS (Fuzzy Rules Per Second) with no defuzzification. Previously Yamakawa had built the 
first analog fuzzy circuits based on bipolar transistors, but it was not until 1988 that he reported the first 
analog fuzzy controller chip (Yamakawa, 1988). The controller was implemented in bipolar technology 
and was capable of evaluating 1 Mega FIPS (Fuzzy Inference Per Second) including defuzzification, or 
10 MFIPS without it. These two works represent, respectively, the beginning of the race to produce the 
fastest, smallest and/or the least power-consuming fuzzy chip in the two main design methodologies. 
These are directly linked to implementation technology: the analog hardware and the digital hardware. 
Both approaches have their own pros and cons, which are summed up below.

Digital FIS Hardware vs. Analog FIS Hardware

When facing the designing of fuzzy hardware, both in the analog and the digital approaches, some 
designers have developed very specific dedicated architectures with the aim of achieving the higher 
processing speed together with an efficient use of silicon for a given application. Other designers have 
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tried to make more flexible, general purpose fuzzy chips. The more dedicated circuits implement quite 
simple computation algorithms on simple architectures. The more general application targeted circuits 
include programmability options by implementing different MF shape and/or inference method selec-
tion capabilities, various defuzzification methods and also scalability features to some extent (bit level 
scalability, MF level scalability, selectable number of rules etc.). In any case, the selection of the digital 
or the analog approach itself may bias the achievable features. The main characteristics of both ap-
proaches are:

Digital Hardware

Use of well known and well characterized target technology.• 
Structured and systematic design process and availability of • EDA (Electronic Design Automation) 
tools to obtain reliable and lower cost integrated circuits.
Connectivity to other digital processing conventional units.• 
More flexible devices with easy programmability and external parameter selection.• 
Adjustable accuracy and resolution.• 
High area occupation. This is due to the big quantity of transistors required to implement fuzzy • 
operators (max, min, etc.), the coded representation of the membership functions by bit sequenc-
es, and the probable need of A/D (Analog to Digital) and D/A (Digital to Analog) converters to 
transform the input and output signals.

Analog Hardware

Better speed/area ratio.• 
No need for A/D and D/A interfaces (controllers).• 
Lower power dissipation.• 
Analog design is a costly long-cycle, generally manual process, although some automated design • 
tools have been developed (Lemaitre et al., 1993; Manaresi et al., 1996).
Lower precision due to noise and temperature drifts.• 
Lower flexibility.• 

Characterization of Fuzzy Hardware Performance

When referring to the performance of fuzzy hardware implementations we have used the term speed, 
but we have not defined exactly what the term speed means in this context. We have even used the more 
specific terms FIPS and FRPS, as the majority of authors do, in order to characterize their designs. 
However, different authors may use different performance indexes, and sometimes these indexes can 
be misleading when employed to compare the performance of systems with different architectures and 
functionalities. The most used performance indexes in the related literature are:

Maximum clock frequency (digital and mixed signal designs).• 
Number of • fuzzy logic inferences per second (FLIPS) or fuzzy inferences per second (FIPS), 
where the concept fuzzy inference is fuzzy itself or ill-defined.
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Number of fuzzy rules per second (• FRPS).
Number of basic fuzzy operations per second.• 

None of these terms is a reliable measure of the real system performance, especially in the digital 
approach, as far as other factors such as the parallelism, the on-chip fuzzification or defuzification opera-
tions and others may be involved. In (Patyra et al., 1996) a more realistic speed measure is proposed to 
characterize any fuzzy hardware design. This index is the input/output delay time of the system –which 
is often used in analog designs–, defined as the total delay time from the moment of providing the input 
variable to the FIS device until the generation of a crisp action at the output1. But in order to make a 
performance comparison of different designs, more performance indexes have to be added to the bare 
processing speed. The author proposes the following set of index parameters:

Number of inputs.• 
Number of outputs.• 
Number of linguistic rules in the knowledge base.• 
Number of MFs in the input universe of discourse.• 
Number of MFs in the output universe of discourse.• 
Number of binary vectors characterizing the membership function (resolution of the input uni-• 
verse of discourse for digital designs).
Number of bits in a single binary vector (resolution of the membership degree for digital • 
designs).
Input-to-output time delay.• 

This set of parameters, which was defined to make a comparative study of the state-of-the-art dedicated 
digital fuzzy logic controllers at the time of publication, summarizes perfectly the main architectural 
characteristics to be considered in the design of a fuzzy chip. To complete the picture, dissipated power 
should be also considered.

Digital Implementations

The first digital hardware realizations, such as the above mentioned pioneering work of Togai and 
Watanabe, used parallel rule processing architectures by providing a data path for each rule (Figure 2). 
This configuration allows fast operation but is very area consuming and imposes a maximum number 
of rules, so its scalability, in this sense, is limited. The provided fuzzy inference method was the max-
min inference rule, so circuits for maximum and minimum operators were implemented. Max and min 
operations were performed serially to save silicon area, since the max-min operator structure had to 
be replicated for each rule. Membership functions were implemented by storing the function values in 
memory look-up tables. By using memories any membership function shape can be stored, but occupied 
memory grows exponentially with the resolution, and hence memories are only used with low resolu-
tions. Obviously, decreasing the resolution in the discretization of the input values and the membership 
degrees negatively affects the system performance (del Campo & Tarela, 1999; del Campo et al. 2001). 
Moreover, in a parallel processing architecture the memory size required to store the MFs is proportional 
to the number of rules, so severe limitations were imposed on the processing engine.



8

Electronic Hardware for Fuzzy Computation

To overcome the above described limitations, many designers have implemented sequential rule 
processing architectures. Serialized architectures are more flexible but do not exploit all the parallelism 
of fuzzy systems and, since the number of clock-cycles required for processing the rules is proportional 
to the number of the latter, they are generally slower. The rule base is stored symbolically in a memory, 
and the generation of the membership functions is performed by circuitry that is shared by all the rules, 

Figure 2. Pure parallel implementation scheme of a three-input-one-output FIS with n rules (min-max 
operation blocks replicate the graphically depicted input processing). MFs are linked to the rules and 
stored individually for parallel processing.

Figure 3. Serialized implementation scheme of a three-input-one-output FIS with single data-path for 
all rules (min-max operation blocks replicate the graphically depicted input processing). Rules are 
stored in memory using labels of antecedent and consequent MFs, and only one rule can be addressed 
every clock cycle.
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that is, there is a fuzzy partition of the universes of discourse for each input variable (Figure 3). For 
sequential fuzzy processors, memory size is still a problem for systems with a high input dimensionality 
(many input variables), as memory size grows exponentially with the dimensionality of the input domain. 
There have been proposed some alternative memory organization proposals that optimize memory us-
age and achieve a linear proportionality between memory size and input dimensionality (Eichfeld et al., 
1992; Eichfeld et al., 1995; Hollstein et al., 1996), although these optimized organizations apply severe 
restrictions to the allowed MF overlapping degree.

Input Stage: Pure memory approach to the MF representation is very flexible, but is very memory 
demanding too. An alternative approach that saves memory resources consists in storing only some 
values that define the shape, usually piecewise-linear, of the MFs. These values may represent both the 
breakpoints and the slopes of the interpolating linear functions. The operations required to calculate 
a membership degree are usually a search of the domain segment the input value belongs to, and the 
computation of the linear function defined for each domain segment. The amount of linear functions 
needed to describe a MF is limited, and the more complex shape is wanted the more memory must be 
used to store the function parameters. There are very simple designs restricted to represent elementary 
Λ, S or Z shapes (Ascia et al., 1997), and other more developed implementations capable of representing 
more complex PWL functions (Eichfield, 1996; Halgamuge, 1994; Hollstein et al., 1996). The allowed 
overlapping between MFs is also a concern, but in any case, the required memory is much lower than 
for a look-up-table approach.

The drawback is the need for additional though quite simple, membership function circuits (MFC) 
to compute the membership degrees. The use of pure MFCs (circuits that directly compute the MF 
through an algorithm) to process the membership degrees in digital implementations, unlike in the 
analog approach, is quite rare. These circuits approximate, with adjustable accuracy and full program-
mability, continuous nonlinear functions like Gaussians, sigmoidals or generalized bells that boost the 
knowledge representation capability of the FISs with almost no memory cost (Basterretxea et al., 2002; 
Basterretxea et al., 2006).

Rule processing: A common strategy that improves the performance of serial processing architectures 
consists in evaluating only the active rules, that is, the rules with non-zero output. The active rules are 
detected after calculating the membership degrees of the antecedents or by comparing the input values 
with the supports of the MFs. When a non-zero fuzzified data is detected, the number of active MFs and 
their degrees of membership are saved. Then, an associative memory in which the rule antecedents ad-
dress their consequents is accessed to retrieve the consequents of active rules. Any rule that shares a MF 
that is not activated by a system input will have a null output, so there is no need for it to be processed 
and computation time is saved. The active rule selection operation is critical for the active rule driven 
processors and different implementations have been reported. Some of them perform the detection of 
active rules in parallel with fuzzification (Weiwei et al., 2004), saving clock-cycles and reducing latency, 
but are static non-adaptable selectors for predefined MFs. In the majority of designs, hence, the selection 
begins late after fuzzification, as explained above (D’Amore et al., 2001; Ikeda et al., 1992; Watanabe et 
al., 1990). In (Ascia & Catania, 2000), an active rule selector that uses two fuzzification units to operate 
in parallel is described, obtaining a process two times faster than for simple selectors. Another limitation 
imposed by these designs is a severe restriction in MF overlapping, usually allowing the overlapping 
of just two MFs. Moreover, these selectors are not scalable in terms of the number of inputs, MFs or 
bit-width. Recently, some more sophisticated algorithms have been proposed to obtain fully scalable, 
faster and overlapping restriction-free active rule detectors (Hamez et al., 2008).
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As an increase in the dimensionality of the input space causes an exponential growth in the complexity 
of the system when using grid partitions -this problem is known as the curse of dimensionality-, some 
designers have searched for alternative architectures in order to tackle this problem. This is the case of 
the above mentioned PWL and PWM fuzzy systems (Rovatti, 1998). In piecewise linear and multilinear 
systems the inference procedure is reformulated to have a complexity O(n.log n), being n the number 
of input variables. The underlying idea is a sort of active rule processing scheme applied to a restricted 
fuzzy modeling. Imposed restrictions are as follows: the MFs are triangular shaped, they are normalized, 
and they overlap in pairs. These constraints guarantee that, given an input vector, only two antecedents 
per input dimension provide non-zero activation values, so a corresponding “active cell” is defined in 
the input domain partition. Once this active cell is identified and its corresponding parameters loaded, 
a single inference kernel processes the output (del Campo et al., 2008; Rovatti et al., 1998;). Of course, 
this improvement in performance means storing many intermediate pre-computed results, so memory 
requirements are notably increased. Similar architectures are proposed in (Baturone et al., 1998; Vidal-
Verdú et al., 1998) for mixed analog/digital fuzzy chips.

Output Stage: The last of the processing units in a FIS, that is, the defuzzification stage, is of main 
importance, as it is one of the most time-consuming operations. Generally speaking, defuzzification 
requires multipliers, adders, substracters, accumulators and a divider. There are many defuzzification 
methods proposed. The most common defuzzification method for hardware implementations is the 
Center-of-Area, but it is not very hardware-friendly itself –although not so time consuming as the more 
extended centroid of area–, so several alternatives to optimize the hardware have been proposed, usually 
with the aim of avoiding the multipliers (Watanabe et al., 1990) or the divider (Ruiz et al., 1995). In any 
case, defuzzification operations are not easily subject to rigorous mathematical analysis, so alternative 
non Mamdani-like fuzzy inference systems that do not employ fuzzy consequences, such us the very 
popular Sugeno-type fuzzy inference systems, have been widely used both in software and hardware 
implementations.

With the aim of simplifying the implementation of fuzzy operators and reduce occupied area, some 
researchers have worked on alternative representations of digital numbers that allow their serial pro-
cessing. These are the so-called pulse-based techniques, including stochastic computation, pulse-width 
modulation and bit-serial arithmetic. In these alternative approaches, numbers are represented as streams 
of individual bits and system precision is controlled in time rather than in area. With the present gigahertz 
clock rates, it is possible to compute numbers serially with highly pipelined architectures and achieve 
good throughput while hardware complexity is dramatically reduced for high accuracy number repre-
sentations –see (Dick et al., 2008) and references herein–. Depending on the representation, arithmetic 
operations like multiplication, probabilistic sums, and probabilistic negation in the stochastic repre-
sentation, or maximum, minimum, and difference in pulse-width modulation are performed by simple 
two-input one-output logic gates. Bit-serial arithmetic operators are also much simpler than parallel-bit 
implementations. The major drawback of these approaches is the high clock frequencies required, only 
achievable by state of the art devices that may imply higher power consumption.

Analog Implementations

In spite of their design complexity and lower accuracy, analog realizations have sometimes been preferred 
for their high speed, low area, and low power consumption, mainly for highly parallel and high input/
output dimensionality. Input-output delay times reported for various analog designs are as low as tenths 
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of microseconds (D’Amore et al., 2001; Peters et al., 1995), or even less –63 ns in (Amirkhanzdeh et 
al., 2005)–. As they process the fuzzy rules in parallel, time response does not depend on the complexity 
of the inference engine. When input signals are taken from sensors and output signals excite actuators, 
using fuzzy analog chips avoids the use of A/D and D/A converters, since the majority of sensors and 
actuators cope with analog signals. On the other hand, compared to the digital approach, analog designs 
are less efficient with regard to rearrangement and programmability, and show relatively low accuracy, 
although analog designers sometimes claim that this is not a severe limitation in view of the typical 
demands of fuzzy control applications.

The first analog fuzzy chips were designed by Yamakawa (1988) in bipolar technology. Analog 
design is much more “artistic” than digital design since it is less hierarchical and structured, and the 
same specifications can be reached in many different ways. Consequently, it is more difficult to make a 
taxonomical description of analog fuzzy chips, which are almost exclusively fuzzy controllers. In any 
case, in the continuous-time analog design framework, two main design styles can be distinguished: 
current-mode circuits and voltage-mode circuits. There are also some designs with transconductance 
blocks, which work with voltages as inputs and currents as outputs. Current-mode circuits appear to 
be the best suited option since basic fuzzy operations can be implemented with very few transistors. 
Adding and subtracting operations are simple wire connections, and multiple input maximum and mini-
mum operators are also very simple circuits (Baturone et al., 1994; Lemaitre et al., 1994), as depicted 
in Figure 4. Another advantage of current-mode circuits is that they are capable of operating with very 
low voltage supplies. However, current-mode MFCs use current mirrors to replicate their outputs, as 
their fan-out is 1. From the technological point of view, most current-mode designs use MOS (Metal 
Oxide Semiconductor) transistors.

Voltage-mode circuits interface much better than current-mode circuits do with the majority of sensors 
and transductors, which usually have voltage-mode output signals. Another advantage is that the input 
and output signals of the circuits can drive various inputs at the same time with no need of additional 
circuitry. Voltage-mode fuzzy chips usually use transconductance-mode MFCs based on differential-
pairs of transistors operating in weak inversion (Dick et al., 2008) or in strong inversion (Baturone et 
al. 1994 ; Guo et al., 1996; Landlot, 1996; Lemaitre et al., 1994; Ota & Wilamowski, 1996; Peters et 

Figure 4. Current-mode analog fuzzy circuit examples: (a) transconductance membership function circuit, 
(b) max operator (concept diagram), (c) min operator (concept diagram). Analog circuits use much less 
transistors than their digital counterparts: an 8 bit resolution MF occupies 256 bytes of memory, and 
around 430 transistors are needed to implement an 8 bit MAX/MIN CMOS digital circuit.
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al., 1995; Rojas et al., 1996; Ruiz et al., 1995;.Vidal-Verdú & Rodríguez-Vázquez, 1995) to produce 
smooth non-linear MFs, although there are some pure voltage mode designs, such as those circuits of 
Yamakawa (1993) implemented in bipolar technology. Some researchers have exploited the subthreshold 
operation mode of MOS transistors with floating gates to obtain very low consuming building blocks 
with the ability to store information in the MOSFET (MOS Field Effect Transistor) gates (Marshall & 
Collins, 1997). Voltage-mode designs are usually implemented with single ended amplifiers, resistors 
and capacitors (RC-Active), or with differential amplifiers and capacitors (MOSFET-C). Transconduc-
tance designs use OTAs (Operational Transconductance Amplifiers) and capacitors as basic building 
blocs. The OTA-based design is more structured, but it occupies more silicon area (Indue et al., 1991; 
Tsukano & Inoue, 1995).

An alternative to continuous-time analog design is the use of switched circuits or discrete-time cir-
cuits. The aim of switched circuits is to obtain a superior precision and better programmability compared 
to the classical analog designs, but maintaining a high processing speed with less area occupation and 
power consumption than a digital counterpart. Switched design is based on the use of a clock-signal 
to control the operation of switches, so the behavior of the circuit is controlled by the clock-period. A 
drawback of switched design is that basic operations are not implemented at transistor level, but with 
operational amplifiers or comparators, so the occupied silicon area is bigger. There are two main discrete-
time analog design techniques: switched capacitors (SC), which are voltage-mode and switched current 
(SI), which are current-mode. Some discrete-time analog FIS implementations were published in the 
nineties (Huertas et al., 1993; Fattaruso et al., 1994; Çilingiroglu et al., 1997). Going further, hybrid 
analog/digital implementations such as those described in (Amirkhanzdeh et al., 2005; Baturone et al., 
1997, Bouras et al., 1998; Miki & Yamakawa, 1995; Yosefi et al., 2007) have been presented as a good 
alternative to pure analog circuits, combining the strengths of both analog and digital approaches. In 
these designs, analog circuitry is used to perform a highly parallel fuzzy inference engine with low area, 
high speed and low power consumption, and digital circuitry is used to provide high programmability 
and long term storage for the system parameters.

sCALAbILITY AND NEW TRENDs IN FUZZY HARDWARE

As is clear from the preceding section, a great research effort was dedicated in the decade of the 1980s 
and early 1990s to the design and implementation of fuzzy hardware. Many of those works were de-
veloped by means of ASIC technology with the aim of achieving high performance requirements for 
real-time applications. As exposed above, this technology is suitable to fit the specificities of fuzzy 
computation, but it suffers from several drawbacks such as low flexibility, long development cycles, 
and a complex design methodology that results in expensive solutions that rapidly become obsolete. 
However, the present situation of fuzzy hardware design is other than it was ten to fifteen years ago, as 
is the design of any other complex digital system. Nowadays flexible solutions for high-performance 
fuzzy computation may be easily developed and updated by means of user-friendly CAD (Computer 
Aided Design) tools. This is a consequence of the development of new hardware platforms and new 
design paradigms that have broaden the implementation choices by giving new freedom degrees and 
new tools to the design process.

With regard to the platforms, the use of reconfigurable hardware –mainly FPGAs– and the integra-
tion of whole digital systems –processors, dedicated circuits, memory and other peripherals– on a single 
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chip (System on Chip or SoC) has narrowed the gap between general purpose hardware and dedicated 
hardware approaches, and between software and hardware. General-purpose fuzzy hardware imple-
mentations are rarely published nowadays, and there are no reports of new commercial fuzzy chips. 
Instead, ad-hoc solutions targeted to specific applications are designed and implemented on configurable 
hardware platforms. If the target application or its requirements change, the system is redesigned and 
rapidly implemented by reconfiguring the hardware. In this sense, the present availability of synthesiz-
ers based on standard HDLs enhance desired properties of hardware architectures such us modularity, 
reusability and scalability.

The scalability of a fuzzy system is closely related to the technology of reconfigurable hardware; it 
measures the ability of the system to improve its performance after adding hardware, proportionally to 
the new resources. This property is closely linked to the fraction of parallelism allowed by the algorithms 
and the availability of resources in the target platform. Concerning fuzzy computation, a scalable fuzzy 
system is efficient and practical when applied to complex situations such as multidimensional problems 
with a large number of membership functions and a large rule base. A useful tool in designing for scal-
ability is the well known Amdahl’s Law (Amdahl, 1967) which gives a measure of the speedup that can 
be achieved by exploiting parallel processing. It states that the maximum speedup that can be achieved 
by adding new functional modules to the parallelizable fraction of an algorithm is limited by the frac-
tion of the calculation that is sequential. For instance, the inference algorithm in a FIS allows a certain 
degree of parallelism but it necessarily involves a fraction of serial computation (the same states for 
defuzzification algorithms). In summary, hardware designers have to carefully analyze the performance 
and scalability issues before making decisions about the system architecture. Finally, note that the scal-
ability property, applied to electronic systems, is sometimes used to quantify specific requirements for 
a particular dimension such as load, precision, etc.

Reconfigurable Hardware

With the aim of better understanding the state-of-the-art in reconfigurable hardware for fuzzy computa-
tion, let us briefly introduce some background concepts concerning FPGA technology. An FPGA is a 
semiconductor device which can be configured by the user, after the chip is manufactured, to implement 
virtually any digital function as long as its available resources are adequate.

Figure 5 illustrates the general structure of a typical static random access memory (SRAM)-based 
FPGA. Most FPGAs consist of a matrix of configurable logic blocks (LBs), a configurable routing 
structure, and I/O blocks that drive the I/O pads of the chip. A circuit is implemented in the FPGA by 
programming each LB to implement a small part of the logic and by programming the routing structure 
to make the necessary connections between LBs, while the I/O blocks are programmed to operate as 
either input pads or output pads. The programming information is a string of ‘0’ and ‘1’ (bitstream) 
generated after automatic mapping of the design onto the FPGA. This information, commonly referred 
to as configware, is stored in SRAM cells during the configuration process of the device (the configura-
tion memory is not shown in Figure 5). The actual circuit is easily updated by reconfiguring the device 
with a new bitstream.

The whole development cycle of FPGA solutions is supported by user-friendly CAD tools, developed 
by the vendors or third party companies, which dramatically reduce the development time. The inherent 
reconfigurability of FPGAs, without additional costs, eases system prototyping and architecture update. 
Although FPGAs cannot match ASICs in performance, the former delivers a better performance/cost 



14

Electronic Hardware for Fuzzy Computation

ratio than the latter whenever the parallelism can be exploited. Undoubtedly FPGAs outperform ASICs 
in terms of the flexibility (in a broad sense) and development time.

Reconfigurable Fuzzy Processing

Since first fuzzy chips based on FPGAs were reported in the literature in the early 1990s (Manzoul & 
Jayabharathi, 1994; Hossain & Manzoul, 1993), both the capacity and the performance of FPGA devices 
have been greatly improved due to the rapid evolution of microelectronic technology over the past years. 
Those preliminary works were devoted to the development of small scale fuzzy controllers, with no strict 
requirements in performance or in power dissipation. Most of them used simplified approaches, mainly 
look-up tables, to implement either the whole system or the most time-consuming operations (Hung & 
Zajak, 1995; Manzoul & Jayabharathi, 1994: Manzoul & Jayabharathi, 1995). To overcome the capacity 
limitations imposed by early FPGA technology, some researchers proposed the partition of the system 
functionality into multiple programmable devices –e.g. FPGAs and EPROMs (Erasable Programmable 
Read Only Memory)– (Hollstein et al., 1996; Hung & Zajak, 1995). In addition, FPGAs were also used 
at that time with prototyping purposes, as a previous step to the fabrication of ASIC fuzzy chips with 
better performance (Hossain & Manzoul, 1993).

Beside the technological evolution, FPGA design tools and methodologies have also evolved from 
a design flow based on schematics to a more flexible design flow centered on HDLs. Standard HDLs, 
namely VHDL and Verilog, are nowadays the most widely used mean to describe, simulate and syn-
thesize digital circuits. With the integration of HDLs into the design flow, the reconfigurable approach 
has gained in flexibility, portability and scalability; HDL allows the designer to define generic and 
parameterizable architectures which can be easily resized and resynthetized. Therefore, the scalability 
problem associated with FPGA solutions has to do more with system modeling –i.e. HDL model– than 
with electronic design. Towards the middle of the 90s, some researchers began to exploit the benefits of 
HDL specifications to develop fuzzy hardware. Some of them went a step further by developing CAD 
tools, mainly based on VHDL, for rapid prototyping of fuzzy hardware (Hollstein et al., 1996; Kim, 
2000). The ultimate goal of these tools is to fulfill the requirements of a wide range of applications in 
terms of fuzzy model type –fuzzy operators, inference mechanism, fuzzification and defuzzification 
strategies–, complexity –number of I/O variables and size of the rule base–, and performance.

Figure 5. Structure of a typical SRAM-based FPGA
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However, despite the methodological advances introduced by HDLs in the past decade, large fuzzy 
systems still exceeded the size of a single device so they had to be split into several FPGAs. In this 
situation, another way to tackle the problem of capacity limitation was proposed: the global run-time 
reconfiguration method where the computation of the fuzzy system is divided into several temporally 
independent tasks (Kim, 2000). Each task is configured onto a single FPGA, one task at a time, while 
a memory board is used for storing the intermediate results between consecutive configurations. This 
work can be seen as the first precedent in the field of fuzzy computation of the method nowadays known 
as partial run-time reconfiguration method.

In the framework of present FPGA technology, previous drawbacks have been largely overcome and 
current technology provides a realistic approach to the development of hardware for high-performance 
fuzzy computation. Let us outline some significant examples. For instance, fuzzy logic has been suc-
cessfully applied to controlling the behavior of mobile robots. In (Li et al., 2003) the authors present an 
FPGA-based car-like mobile robot which uses fuzzy rules to model the experience of a skilled driver to 
perform the parking task. Two FISs were implemented on a single FPGA of the Altera’s FLEX family, 
one to control the steering angle and the other to control the speed of the car. Fuzzy hardware based 
on FPGAs has also been used in the field of image processing. In (Louverdis & Andreadis, 2003) the 
authors propose a fuzzy processor suitable for morphological color image processing. The processor 
is capable of performing the basic morphological operations of standard and soft erosion/dilation for 
color images with 24-bit resolution. The prototype (54 rules) was implemented on a FLEX10K device 
of Altera and provided a performance of 601 KiloFLIPS with a typical clock frequency of 65 MHz. A 
survey of FPGA-based intelligent controllers for modern industrial systems can be found in (Monmasson 
& Cirstea, 2007). This review includes the implementation of a fuzzy controller for a synchronous stand-
alone generator. The proposed design aims to improve the efficiency of diesel-engine-driven generators 
by allowing optimum speed operation. The fuzzy controller was modeled and simulated using VHDL 
and the prototype was synthesized and implemented into a low-cost Xilinx XC4010 FPGA. This solu-
tion greatly improved the control performance while keeping a high level of flexibility. Finally, another 
perspective of the suitability of FPGA to develop fuzzy computation is provided in (Chowdhury et al., 
2008). This work presents the development of a smart processing FIS for clinical diagnostic applications 
in rural areas of Third World countries. The authors point out that FPGA technology is very useful in 
these countries due to low investment, portability, short design cycle and the scope of reprogrammabil-
ity for improvement without any additional cost. The whole system has been realized on an Altera’s 
Cyclone II chip which can be interfaced with a wireless transceiver and other telecommunication media 
for telediagnostic applications.

The Synergism between FISs and FPGAs

Summing up, in addition to the well known advantages of FPGAs, there are several specific advantages 
of reconfigurable hardware technology that make it specially suited to implementing real-time scalable 
fuzzy algorithms:

Some • FPGA families (e.g. Xilinx’s Virtex family) incorporate internal RAM blocks to the generic 
structure depicted in Figure 5. These memory blocks are very useful for implementing large fuzzy 
systems because of the huge amount of information involved in the definition of membership 
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functions and rules that demands large on-chip memory resources. Distributed RAM blocks are 
also useful for mapping memory-based approximations.
The availability of a dense and flexible interconnection architecture (i.e. configurable routing in • 
Figure 5) fits the requirements of high performance FISs. Most fuzzy models can be viewed as a 
layered structure, similar to an artificial neural network, where each layer consists of several par-
allel processing units densely connected with the neighboring layers. The interconnection scheme 
of such systems requires high flexibility in the segmentation of the routing paths to avoid addi-
tional propagation delays.
Modern • FPGA families include higher level functionalities, such as multipliers or generic DSP 
(Digital Signal Processing) blocks, embedded into the silicon. These resources are very useful 
for implementing both the inference engine (e.g. Sugeno type fuzzy inferences) and the defuzzi-
fication stage because they are faster and occupy less area compared to if building them from 
primitives.
The capacity of FPGAs has increased according to Moore’s Law since the first families appeared • 
on the market, so, even very large fuzzy systems (e.g. data mining applications) may soon be 
implemented on a single FPGA, provided that the architecture is scalable enough.
Rapid prototyping on FPGAs is a useful feature in developing for • scalability. Reconfigurable de-
vices and tools allow the designer to develop fuzzy systems with different sizes and compare the 
achieved performance in order to experimentally verify the scalability of the architecture.

In what follows we will continue to uncover potential advantages of FPGAs for fuzzy computation, 
especially those concerning the latest advances in reconfigurable technologies.

Hardware/software Codesign

In the last decade new design methodologies and tools have emerged to deal with the challenges of new 
electronic platforms. In this sense, hardware/software (HW/SW) codesign (De Micheli, 1997; Wolf, 
2003) has been proposed as an optimal solution for many systems where a trade-off between versatil-
ity and performance is required. This approach proposes the partition of the computation algorithms 
into HW and SW blocks by searching for the partition that optimizes the performance parameters of 
the whole system. A recent work in the field of fuzzy computation (Cabrera et al., 2004) concludes that 
HW/SW solutions, with an adequate partition, can often outperform classical solutions, based either 
on HW or SW, for designing high-speed and low-consumption fuzzy control systems. In this work the 
authors implement the inference mechanism and a simplified defuzzification method in the hardware 
partition whereas the remaining tasks (initialization, I/O processing, etc) are implemented in software. 
On the basis of this partition of tasks, the authors present two HW/SW prototypes: i) a medium complex-
ity FPGA interfaced with an external microcontroller, and ii) a single Xilinx’s Spartan2 FPGA with an 
embedded microcontroller core. The main advantage of the second approach, where all the parts of the 
fuzzy system are integrated in a single chip, is the direct interfacing of HW and SW modules with the 
consequent savings in I/O delays and hardware resources.

Meanwhile, a milestone in the evolution of reconfigurable hardware has been to combine the logic 
blocks and interconnects of traditional FPGAs (logic fabric) with embedded microprocessors and related 
peripherals to form a system-on-a-programmable chip (SoPC). Some examples are the Excalibur family 
of Altera (Altera Corp., 2002) which incorporated an ARM processor core, and the Virtex-II Pro, Vir-
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tex-4, and Virtex-5 families manufactured by Xilinx, which include one or more PowerPCs embedded 
within the logic blocks (Xilinx Inc., 2008a). A similar approach, but less efficient in terms of area and 
performance, consists in using soft-processor cores instead of hard-cores that are implemented within 
the FPGA logic; two widely used soft-cores are the Xilinx’s MicroBlaze (Xilinx Inc., 2008b) and the 
Altera’s NIOS processors (Altera corp., 2008). These new features of reconfigurable hardware have 
been exploited to develop a new enhanced generation of fuzzy systems.

The analysis of the above mentioned works shows that to obtain efficient HW/SW architectures the 
regular and recurrent computations have to be implemented in the hardware partition and the irregular 
or less frequent computations are better suited to a software development (see Figure 6). For example, 
the implementation of a PWL fuzzy controller using a SoPC of the Altera’s Excalibur family has been 
reported in (Echevarría et al., 2005). The system is a three-input single-output PID (Proportional-Integral-
Derivative) fuzzy controller with a cellular architecture. The main processing blocks of the proposed 
architecture are a hyperplane generator and a preprocessing module. On the one hand, since the hyperplane 
generator is a typical sum of products, it has been efficiently implemented in the hardware partition. 
On the other hand, the preprocessing module, which involves a sorting algorithm, has been developed 
by simple software procedures. The ARM processor operates up to 200 MHz and the hyperplane unit 
performs the evaluation of the output in only two clock cycles with a maximum frequency of 84 MHz. 
Another approach to SoPC-based fuzzy computation can be found in (Sánchez-Solano et al., 2007) where 
a complete design methodology and tool chain is presented. The proposed design flow combines standard 
FPGA implementation tools with a specific environment (Xfuzzy) for the development of fuzzy controllers 
as IP (Intellectual Property) modules. The design flow has been used to develop a fuzzy controller, on 
a Xilinx’s Spartan device, for solving the navigation tasks of an autonomous vehicle. 60% of the FPGA 
resources are dedicated to implementing the MicroBlaze soft core and its associated components, and 
the remaining 40% corresponds to the fuzzy inference IP core. Both the processor and the fuzzy core 
operate with a 50 MHz clock; the fuzzy core completes one inference in 16 clock cycles.

However, the impact of using configurable hardware and HW/SW codesign techniques is greater 
when hybrid systems, based on the synergism of fuzzy logic and other computational intelligence tech-

Figure 6. HW/SW co-design for fuzzy computation: a SoPC-based solution
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niques (mainly neural networks), are considered. Hybrid neuro-fuzzy systems combine typical fuzzy 
systems with the learning algorithms of neural networks. The latter are used to adapt parameters of the 
fuzzy system as membership functions or rules. A few years ago, Reyneri (2003) performed an in-depth 
analysis of the implementation issues of neuro-fuzzy hardware. This work points out the limitations, 
advantages and drawbacks of different implementation techniques and draws attention to HW/SW code-
sign as the most promising research area concerning the implementation of neuro-fuzzy systems, since 
it allows the fast design of complex systems with the highest performance/cost ratio. Recently, several 
publications account for HW/SW solutions for neuro-fuzzy computation (del Campo et al., 2008, Kung 
& Tsai, 2007; Reyneri & Renga, 2004).

In (del Campo et al., 2008) an efficient HW/SW implementation of an adaptive neuro-fuzzy system 
based on a SoPC is presented. The Excalibur device family, which embeds an ARM processor core, has 
been used to prototype a neuro-fuzzy architecture. The microprocessor performs the learning algorithm 
(gradient-descent method plus least-square estimator) and the I/O data processing, while a Sugeno-type 
inference algorithm is implemented in the FPGA logic fabric. The main motivation to develop a hetero-
geneous HW/SW solution is the nature of neuro-fuzzy algorithms: the embedded processor provides 
flexibility and high precision to implement the learning algorithms, while the logic fabric allows the 
development of parallel hardware for high-speed fuzzy inferences. Along the same line is the adaptive 
fuzzy controller for speed control of a permanent magnet synchronous motor drive developed in (Kung 
& Tsai, 2007). The authors argued that the modules requiring fast processing but simple computation 
are suitable to be implemented by hardware, whereas control algorithms with heavy computation can 
be realized by software. They selected a device of the Altera’s Cyclone family and a soft processor core, 
the NIOS II IP core, to develop the prototype.

Another recent proposal in HW/SW fuzzy computation is the context switchable fuzzy inference 
chip (Qao et al., 2006). The authors have developed a reconfigurable fuzzy inference chip (RFIC) on a 
Virtex II FPGA which allows for online changes in the rules. The RFIC uses a formatted memory map to 
encode the fuzzy relational knowledge and the inference model. Any change in the rules (context switch) 
is achieved via a loadable register, so there is no need to reconfigure the FPGA. A remarkable feature 
of this work is the suitability of the RFIC to develop evolvable fuzzy hardware. The block architecture 
suggested by the authors consists of the RFIC as fuzzy processing unit and an evolution module that 
generates the new context. The evolution module (i.e. genetic algorithms) can be developed by using a 
processor core. If the architecture is developed as a SoPC, it supports intrinsic hardware evolution (real 
hardware is used during the evolutionary process). The potentiality of this trend will be analyzed later 
after introducing partial reconfiguration techniques.

Although HW/SW solutions enhance reconfigurable hardware, there are also a few drawbacks that 
have to be considered. The main drawback is the bottleneck of the HW/SW interface. The communication 
overload between the microprocessor and the HW block can reduce the whole system performance. To 
avoid this problem, the transfer rate of data and parameters has to be high enough to take advantage of 
the parallelism of hardware. The limited bandwidth of the HW/SW interface is also an important obstacle 
in designing for scalability, no matter what the scalability of the hardware or the software may be. In 
this sense, a different kind of architecture known as network-on-chip (NOC) has been proposed recently 
to deal with the communication problem in an efficient way. NOCs feature a router-based network for 
on-chip communication among different cores (i.e. processor cores, memories and specific IP cores). 
This emerging paradigm, as yet unexploited in the field of fuzzy computation, is suitable for the design 
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of reconfigurable fuzzy systems with a high level of parallelism, better performance and enhanced scal-
ability in comparison with a conventional bus-based architecture.

Dynamic Partial Reconfiguration

Dynamic partial reconfiguration is a new design methodology for reconfigurable hardware that consists 
in the ability to reconfigure selected parts of an FPGA anytime after its initial configuration while the 
device is still active (run-time reconfiguration). Potential advantages of partial reconfiguration for fuzzy 
hardware are multiple: self-reconfiguration, adaptability, scalability, reduction of power dissipation, and 
reduction of device size, among others.

The most popular partially reconfigurable architecture is the Virtex II series of Xilinx. These SRAM-
based FPGAs have a fine-grained architecture, similar to that depicted in Figure 5, but improved with the 
addition of RAM blocks and hardware multipliers. Parts of the hardware on the reconfigurable device can 
be changed at run-time by reprogramming only selected SRAM cells of the configuration memory, while 
all other parts stay unaffected and operative. The device has different internal and external reconfigura-
tion interfaces of which the internal configuration access port (ICAP) is of particular interest because it 
is accessible from the components within the FPGA (see Figure 6). Thus, a processor core embedded in 
the FPGA can be used to control the internal configuration port during run-time. Since the system itself 
decides to load new configuration data and initiates the reconfiguration task, this reconfiguration style 
is known as self-reconfiguration. The above ideas have inspired the development of new approaches for 
fuzzy computation, the evolution of reconfigurable hardware being the most innovative.

The configuration bitstream of a FPGA determines the function implemented by each logic block and 
each interconnection switch (see Figure 6). Adaptation of the circuit functionality is achieved by modifi-
cations in the bitstream, in the same way that evolution of living beings is accomplished by modification 
in the DNA strings. In this sense, there is an analogy between the bitstream in a FPGA and the genetic 
sequence in living beings that has pushed researchers to apply the principles of artificial evolution to 
reconfigurable hardware design. Concerning FPGA, evolvable fuzzy hardware uses genetic algorithms 
for searching for a bitstream (i.e. genome) that configures the device with a circuit that satisfies the 
design specification. Upegui (2005) proposes three methodologies for evolving hardware by means of 
dynamic partial reconfiguration of the Virtex II family. Each methodology is related to a different level 
of abstraction and granularity in the elementary components used to evolve the circuit: modular evolu-
tion, node evolution, and bitstream evolution.

Node evolution methodology has been applied to evolve fuzzy computation hardware in the pioneering 
work by Mermoud et al. (2005). They use the difference-based reconfiguration flow (Eto, 2007) where 
the designer is able to change the configuration of FPGA components such as LUTs (Look-Up Tables), 
multiplexers, RAM blocks or I/O resources. After the modifications have been performed, a partial bit-
stream can be generated including only the differences between the initial and modified bitstream. Since 
only a limited number of bits are changed, the reconfiguration time is considerably reduced if compared 
with the reconfiguration of a full bitstream. In this application, system evolution implies the modifica-
tion of LUT functions. The proposed implementation co-evolves two species (i.e. MFs and rules) in a 
4-input single-output FIS with 3 triangular MFs per input and a total of 20 rules. The genome describing 
the FIS consists of two individuals; the first one encodes the vertices of the triangular antecedents while 
the second one encodes the connections between the antecedents and the rules, the fuzzy operators and 
the consequents. The genome encoding is a key feature of the scalability of the system; it can be easily 



20

Electronic Hardware for Fuzzy Computation

extended to increase the number of inputs and/or rules of the FIS. The main drawback of this solution is 
that each partial bitstream has to be generated externally by the FPGA vendor tool. However, to overcome 
this limitation, the authors are refining the implementation in order to allow on-chip evolution (Upegui, 
2006). Performing on-chip evolution on FPGAs is a promising trend for fuzzy computation and adapt-
able systems, however, there is still much research effort to be done in this area.

HARDWARE FOR FUZZY DATA-MININg

Fuzzy data-mining techniques such as fuzzy clustering or fuzzy decision-tree algorithms are not fuzzy 
rule-based processing schemes. In fact these algorithms are used to find structure in raw data, so very 
often are useful for generating fuzzy rules not from expert knowledge but from non-directly interpretable 
data sets. Hence, hardware design for fuzzy data-mining algorithm processing, except for the possible 
need of input fuzzification or the use of common fuzzy operators such us max or min, has little to do 
with the systems previously analyzed in this chapter. In any case, data-mining algorithms have been 
traditionally implemented by software applications running on GPPs, since flexibility, scalability and 
good interface with data-bases is more important for these systems than computation time, area or power 
consumption. However, due to the increasing amount of data to be processed by data-mining algorithms 
and the more and more frequent high speed processing specifications, the hardware development for 
parallel processing or coprocessing of data-mining algorithms is gaining relevance. A few papers and 
reports on hardware design and implementations for fuzzy data-mining algorithms speed up have seen 
the light in the last few years, mainly related to fuzzy clustering algorithms. Let us review some of them 
in this section.

Multiprocessor architectures: One of the characteristics of data-mining algorithms to be exploited 
for process acceleration is their intrinsic parallelism, so the first steps to speed up data-mining applica-
tions have been oriented to algorithm parallelization. The main data-mining algorithms, fuzzy set theory-
based ones included, have been investigated with the aim of speeding up their processing: association 
rule-based (Agrawal & Shafer, 1996; Shen et al., 1999), decision trees (Kubota et al., 2000) and fuzzy 
decision trees (Kim et al., 1999), clustering (Boutsinas & Gnardellis, 2002), and fuzzy clustering (Mode-
nesi et al., 2007; Rahimi et al., 2004). The hardware implementation of the parallelized algorithms has 
been performed in various manners using conventional processors, such as by using distributed memory 
(Modenesi et al., 2007; Xu et al., 2003) or shared memory multiprocessor architectures (Jin et al., 2005; 
Modenesi et al., 2007; Syeda et al., 2002;), or in grid environments (Cannataro et al., 2004). All of them 
report good scalability figures.

Regarding fuzzy data-mining algorithms, in (Modenesi et al., 2007) for instance, a fuzzy C-means-
based parallel cluster analysis is performed in two multiprocessor architectures: a PC cluster and a 
multiprocessor machine. Unlike in previous published parallel implementations, where only strategies 
to distribute the iterative process to find cluster centers are considered, this work describes how to 
parallelize the entire cluster analysis, including the determination of cluster centers and the optimal 
number of clusters by computing a cluster validity index. This is an iterative process where the cluster-
ing algorithm is computed for a range of number of clusters and the performance index is computed for 
every partition generated. When all partitions have been computed, the partition corresponding to the 
maximum performance index is chosen. The algorithm begins by splitting the data equally among the 
available processors. Each processor computes de geometrical center of its local data and communicates 
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this center to a master processor, which sets the initial centers and broadcasts them so that all proces-
sors have the same centers values at the beginning of the fuzzy C-means clustering algorithm. After 
convergence is achieved in a processor, a distance factor needed to calculate the global validity index 
is computed in its local data and this value is sent to the master, where the validity index is calculated 
and stored. If the range of number of clusters is covered, the algorithm stops, otherwise returns to the 
set of initial centers performed by the master processor. This whole procedure is repeated as many times 
as the desired range of number of clusters to obtain the partition with the best performance index. The 
authors conclude that the bigger the datasets are, the more variables implied and the more number of 
clusters to be generated, the higher the speeding up of the algorithm in multiprocessor computation is, 
that is, it behaves in a scalable manner.

The same research team has investigated a multiprocessor based parallelization of fuzzy rule based 
classifiers by deriving a fuzzy rule based classifier for each input variable to aggregate the partial con-
clusions into a global one (Evsukoff et al., 2005). In this case, a single variable classifier is assigned to 
a different processor in a parallel architecture, and partial conclusions are synchronized and processed 
by a master processor. This approach is applied to a very large database and results are compared with 
a parallel neural network architecture.

Reconfigurable hardware: In recent years some efforts have been focused on designing ad-hoc 
hardware accelerators to speed up data-mining workloads. As clustering algorithms are, to some ex-
tent, data streaming applications, experimentation on their implementation on data streaming targeted 
off-the-shelf hardware can be found, as in (Harris, 2005), where a fuzzy C-means adaptive algorithm 
is programmed on a commercial graphic processing unit. With the maturing of FPGA technology, re-
searchers working on intensive data-mining applications immediately became aware of the benefits of 
exploiting the fine-grain parallelism and scalability easiness of reconfigurable logic devices as hardware 
coprocessors: exploring the properties of a FPGA coprocessor system in the domain of query process-
ing for computation-intensive data mining applications (Leung et al., 1999), implementing clustering 
algorithms on reconfigurable fabrics (Baker & Prasanna, 2005; Estlick et al., 2001), improving the data 
transfers for large data sets (Zhang et al., 2004) or developing text mining IP-cores for FPGAs (Free-
man & Jayasooriya, 2006) . In (Choundary et al., 2007), for instance, the authors describe a generic 
data-mining system architecture that can be customized for specific applications. This is achieved by 
implementing kernels with very time-consuming data-mining specific calculations on reconfigurable 
hardware (FPGAs). Once the critical kernels of various data-mining algorithms are identified, specific 
hardware can be implemented to process them in a processor/coprocessor architecture. Since kernels 
remain the same for a given application, the required logic can be loaded before the process begins by 
programming the FPGA. In the case study performed by these researchers, the fuzzy C-means is one of 
the analyzed algorithms. The kernels identified as critical for this algorithm are the clustering process, 
the distance calculation and the fuzzy sum. Ad-hoc hardware logic for these kernels is designed and pro-
grammed in a FPGA. The system has been tested with datasets of various sizes, and it has been observed 
that the bigger the dataset the bigger the improvement in the speed up. The authors report overall speed 
ups from 11x to 80x in the fuzzy C-means algorithm. Besides this, the experimental results strongly 
suggest that the designed system is scalable.

High performance reconfigurable computing: A relatively new and very promising research field 
on high performance computing that can be naturally targeted to intensive and/or real-time data-mining 
applications is the one known as high performance reconfigurable computing (HPRC). HPRC combines 
parallel processing theory and techniques used in high end supercomputers and computer clusters with 
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state-of-the-art hardware acceleration devices, such as the most advanced FPGAs. These systems are 
able to exploit coarse-grained functional parallelism as well as the fine-grain parallelism intrinsic to the 
FPGA internal architectures (Buell et al., 2007). Nearly all major high performance computing vendors 
such as SRC Computers (SRC-7family), Cray (XR1) or Silicon Graphics (RASC Technology) now have 
HPRC highly scalable product lines, reflecting a clear belief in the huge potential of reconfigurable 
computing. The first parallel-computing architectures including FPGAs were not designed to be scalable, 
but recent HPRC computers use stackable crossbar switches connected to parallel buses that allow for 
implementing different, highly scalable topologies. Commercial firms such as Nallatech, for instance, 
have introduced a family of scalable cluster optimized FPGA HPRC products to either upgrade exist-
ing HPC cluster environments or to build new clusters with off-the-shelf FPGA computing technology 
(Cantle, 2006).

Some vendors like Exegy have developed specific data mining targeted systems by combining 
software with reconfigurable hardware to produce applications that perform at hardware processing 
speeds, while retaining the flexibility of software (Dutcher, 2006). Exegy claims its systems have vir-
tually zero latency and near linear throughput gains by adding appliances (linear scalability). For the 
highest performance systems, where I/O band and FPGA interface latency requirements are higher than 
standard parallel buses (PCIx) can offer, specific solutions for data I/O management are implemented. 
Some examples are Silicon Graphics’ RASC blade technology and NUMAlink® interconnect with its 
Scalable System Port solution, SRC’s Hi-Bar Switch for its SRC-7 family, and Cray’s SeaStar2+ for its 
XR1 Reconfigurable Processing Blade. HPRC provides performance increases that are often of orders 
of magnitude compared to scalar microprocessors-only-based solutions. In addition, power consumption 
per gigaflop (floating-point operation per second) is dramatically reduced, form factors are diminished, 
and the overall price/performance ratio is notably lower. All these promising features make us think 
HPRC will soon be a preferred option for cutting edge fuzzy (and non-fuzzy) data-mining algorithm 
processing of large data-bases.

CONCLUDINg REMARKs

In this chapter we have seen that electronic hardware design for fuzzy computing has been a very ac-
tive research field during the last twenty years, beginning early after the first successful applications of 
fuzzy inference systems were published. Specificity of fuzzy processing computational characteristics 
combined with high speed, small area, and/or low power requirements have pushed designers to inves-
tigate into new hardware implementations to obtain high performance fuzzy ASICs targeted to specific 
applications, which generally have been fuzzy controllers. Both the digital approach and the analog ap-
proach have been followed in the design process, producing fuzzy chips with distinctive performance 
characteristics, strengths and weaknesses. However, in the last decade the number of reported works 
on FIS analog implementations has suffered a progressive decay that clearly shows a loss of interest 
in this technology for applications in this area. This tendency is closely related to the never ending and 
comparatively much faster advances in digital technologies, and more precisely, to the rapid develop-
ment of digital reconfigurable devices and the associated drastic changes in design and implementation 
methodologies.

The consolidation of reconfigurable hardware, particularly FPGA technology, together with the stan-
dard use of hardware description languages for digital system modeling have revolutionized the field 



23

Electronic Hardware for Fuzzy Computation

of digital system design in many areas, particularly in fuzzy hardware design. New design methodolo-
gies such as the hardware/software codesign, and bioinspired techniques such as the genetic algorithms 
have produced novel and more efficient and flexible hardware designs and have broadened the research 
perspectives in this field:

HW/SW co-design techniques, applied to the development of SoPCs, make it possible to imple-• 
ment a complete fuzzy inference system, including system peripherals, on a single chip with the 
consequent savings in size, cost and power consumption.
Several present applications of • fuzzy computation require enhanced capabilities to deal with com-
plex problems. This feature involves the hybridization of the fuzzy algorithm with other tech-
niques poorly suited for hardware implementation. Thus, the heterogeneity (HW/SW) of SoPCs is 
tailored to the computational demands of hybrid fuzzy systems.
Current design methodologies for FPGAs promote the use of soft IP cores (i.e. netlist or • HDL) as 
building blocks for complex hardware design. The availability of reliable and previously tested IP 
cores addresses the needs for rapid prototyping, design reuse and scalability.
Partial hardware reconfiguration is emerging as a promising solution to enhance digital • fuzzy 
hardware with the capability of self-adaptation. Although this technology is not yet mature, it is 
expected that over the next few years FPGA manufacturers improve design tools to fully support 
dynamic partial reconfiguration.

Hardware design for fuzzy data-mining, which traditionally has been implemented on general purpose 
machines, has become the object of investigation in the last few years as a consequence of the huge 
amount of data to be processed and the more frequent requirements for high speed applications. On the 
one hand, various hardware coprocessors for speeding up data-mining algorithms have been recently 
published. On the other hand, recent advances in high performance reconfigurable computing foretell 
a very promising outlook for low cost, high performance, linearly scalable data-mining processing 
environments. Nevertheless, there are still some challenges for HPRC applications that must be faced: 
double-precision floating-point performance, memory bandwidth and ease of use of development tools 
for HPC programmers not familiarized with electronic engineering computing EDA tools are some of 
these.
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ENDNOTE

1  In pipelined designs attention must be paid, of course, to possible variations in the system through-
put when new inputs are introduced to the system.
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INTRODUCTION

Scaling fuzzy learning systems can be a challenge, because the search space for fuzzy models is larger 
than that of crisp models. Here, we are concerned with scaling fuzzy systems as the size of the data grows. 
There are now many collections of data that are terabytes in size and we are moving towards petabyte 
collections such as a digital Sloan sky survey (Giannella et al., 2006, Gray and Szalay, 2004).

AbsTRACT

This chapter examines how to scale algorithms which learn fuzzy models from the increasing amounts 
of labeled or unlabeled data that are becoming available. Large data repositories are increasingly 
available, such as records of network transmissions, customer transactions, medical data, and so on. 
A question arises about how to utilize the data effectively for both supervised and unsupervised fuzzy 
learning. This chapter will focus on ensemble approaches to learning fuzzy models for large data sets 
which may be labeled or unlabeled. Further, the authors examine ways of scaling fuzzy clustering to 
extremely large data sets. Examples from existing data repositories, some quite large, will be given to 
show the approaches discussed here are effective.
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If learning fuzzy models requires more computation time than learning crisp models and it is a struggle 
to enable crisp learning models to scale, can we scale fuzzy models of learning? The good news is that 
scalability is certainly possible as the number of examples grow large or very large. We do not examine 
the issues with large numbers of features which are a significant problem, for at least supervised fuzzy 
learning.

Methods for scaling supervised fuzzy learning methods and unsupervised fuzzy learning methods 
(though only clustering algorithms) will be discussed. An obvious approach is to subsample the data 
such that each subset is a size that is amenable for learning, but captures the information inherent in the 
full data set. It is a good approach, but one that has pitfalls in knowing when to stop adding data to the 
training set (Domingos and Hulten, 2000). Some good papers in the area of subsampling are (Provost 
and Kolluri, 1999,Wang et al., 2008, Provost et al., 1999, Pavlov et al., 2000). Decomposition of the 
data is the other major approach one can envision. It is this approach, leading to an ensemble or group 
of models that is the focus of this chapter.

For labeled data which enables supervised learning, We will show that an ensemble approach can 
be used to increase the accuracy of the fuzzy classifier. This is a necessary condition to working with 
disjoint subsets to enable the construction of fuzzy classifiers on very large data sets. However, we will 
focus on relatively small data sets where the goal is to increase accuracy, not to scale. The same ap-
proach using disjoint subsets will allow for scalable fuzzy classifiers to be developed. For unsupervised 
learning, examples will be given which show that the clustering approaches presented here produce data 
partitions which are comparable to those obtainable when clustering all of the data.

Ensembles

An ensemble, for our purposes, is made up of a set of models. The models may be created through super-
vised or unsupervised learning. The models in the ensemble need to be diverse. The idea of diversity is that 
they make different types of errors and in the aggregate errors are corrected (Banfield et al., 2005).

The models may be created from different underlying learning algorithms. However, the most com-
mon way to create an ensemble is to use different data sets and the same underlying learning algorithm. 
A common approach is to use bootstrap aggregation or bagging (Breiman, 1996), which is selection 
with replacement to create different training data sets. This has the effect of weighting the data, as some 
of it is left out (0 weight) and some of it is duplicated (doubled, tripled or more in weight). On average 
about 63% of the training data will be in a given bag which is the same size as the training data. The 
assumption that the training and test data are independently identically distributed is implicit in bagging. 
The use of bagging to create an ensemble typically improves the classification accuracy (Banfield, et 
al., 2007, Dietterich, 2000).

Boosting is another popular algorithm for creating ensembles of classifiers (Freund and Schapire, 
1996). It focusses on misclassified examples by giving them a higher weight. For our purposes, it is a 
sequential algorithm (you do not know what is incorrect until the next model/classifier in the ensemble 
is built). There have been efforts to make it scalable (Chawla, 2004), but they have not been applied to 
fuzzy classification approaches.

As fuzzy learning algorithms typically scale poorly with the number of training examples, methods 
that allow for minimal training data set sizes, but produce accuracy comparable to all the data are desir-
able. Recent work has shown that an ensemble can be created from disjoint training data sets or data sets 
that have no overlap and obtain accuracy on unseen test data that is equivalent (or sometimes better) than 
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training on all of the data (Chawla, et.al. 2001). For large data sets, this means you can build classifiers 
in parallel on subsets of the training data to get the same accuracy as training with all of the data. Now, 
you can train on data that would not fit in main memory, for example.

scaling supervised Fuzzy Learning

There are a number of ways to scale learning. Subsampling the data for a smaller training set is an impor-
tant approach. As the number of fuzzy rules grow with the number of features, effective feature selection 
can be a big help. Other approaches are to optimize the learning algorithm or develop algorithms which 
scale better, at perhaps the cost of some precision.

In this section, we focus on one particular approach using ensembles. Essentially, this is the subsam-
pling approach with a twist that all of the training examples are used by the union of classifiers in the 
ensemble. Each learning algorithm will get a unique set of training examples. It is certainly also feasible 
to give them overlapping sets, but for true scalability to very large or extreme data unique or disjoint 
sets are likely the best. You will overall use less data with the disjoint data sets, which may be important 
when the size of the data is very large. A disjoint data set can be given to each learning algorithm for 
building a classifier which will almost certainly result in a diverse set of classifiers.

In order to be confident that the combination of classifiers built on disjoint data sets will result in 
accuracy comparable to building a single classifier on all the data, it is useful to look at experiments 
with smaller data sets. We will present experiments using 20 smaller data sets and bagging to show that 
bagging can improve the accuracy of fuzzy classifiers. Where bagging works, one can expect that classi-
fiers built from disjoint data subsets of reasonable size can be combined to produce accuracy comparable 
to learning on all the data (Shoemaker et al., 2008). So, our experiments here show that bagging can be 
applied to increase the accuracy of fuzzy classifiers.

The classifiers in the ensemble do not need to be of the same type. However, the most typical con-
figuration is to use classifiers that are all of the same type. We will illustrate the idea of an ensemble of 
classifiers by using the ANFIS (Adaptive Neuro-Fuzzy Inference Systems) fuzzy neural network (fl-
toolbox, 2006) learning algorithm to generate classifiers. It is widely available as part of the MATLAB 
Fuzzy Logic Toolbox.

An adaptive network can be considered as a superset of feed-forward neural networks with supervised 
learning. ANFIS is a type of Neuro-fuzzy network which has the fuzzy rules embedded within the neural 
network. Figure 1 shows the structure of an adaptive network. Node functions are represented by squares 
if they have parameters, which make them adaptive, and by circles if they do not have parameters. The 
links have no associated weights and they only represent direction flow. For further details on ANFIS, 
see (Jyh and Roger, 1993).

The ensemble building approach here is simple. It is a modification of bagging (bootstrap aggrega-
tion) (Breiman, 1996) in which training sets are selected from the overall data by selecting data, with 
replacement, until a bag of the chosen size (usually 100%) is created. This essentially re-weights the 
examples in the training set for each classifier.

For scalability, one would simply divide the data into n disjoint subsets of tractable size. Learn n 
classifiers using ANFIS. Then, given a test example you will get n fuzzy predictions. These need to 
be combined. They can be combined by using a majority vote (e.g. harden each decision and take the 
class that most often has the highest fuzzy membership). Perhaps a better combination is to add up all 
the fuzzy memberships and average them. Then take the higher average membership. The reader can 
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certainly think of other possible, combination methods which may be better, but we will present the 
above two.

The approach of building n classifiers trained on disjoint subsets of data and then combining them 
has been shown to provide accuracies comparable to those obtained using all the data (Shoemaker et al., 
2008). The advantages are that each classifier can be trained in parallel on tractable size data sets. This 
can enable learning from data which cannot be fit in computer memory or that will require calculation 
time that is not feasible for the problem. It allows for using more data in the training process (all of it for 
example) than you could if you subsample to enable timely learning. Experimental evidence has shown 
that this approach is successful with decision trees and neural networks as the underlying base classifiers. 
As long as the classifiers make different errors (have a diversity of responses) and have “reasonable” 
accuracy, one can expect that any underlying learning algorithm can be exploited to produce the classi-
fiers (Kuncheva, 2004). If fuzzy classifiers which make different errors, but generally have comparable 
accuracy, can be constructed an ensemble approach may work for them.

There has not been very much work on ensembles of fuzzy classifiers and no work that we are aware 
of on scaling fuzzy classifiers for really large data sets. A clear reason for this is the fact that fuzzy 
classifiers have been found most useful for their explanation capabilities. That is, they are very good at 
producing understandable sets of rules (Klawonn et al., 1996). If you have very large data sets where 
you get lots of fuzzy rules and even worse have to combine them, you will lose the understandability. 
Then the question becomes did you get a fast, accurate overall classifier. People have either not obtained 
more accuracy through ensembles of fuzzy classifiers or not tried this approach to get higher accuracy. 
Perhaps because of the loss of interpretability.

In the following subsection, we will show up some results from bagging ANFIS classifiers. The posi-
tive aspect of the results is that you can get a statistically significant increase in accuracy on a number 
of data sets using bagging and a fuzzy learning approach. Of course, an interpretable set of rules no 

Figure 1. Structure of an adaptive network
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longer exists. The results also suggest that scalability using disjoint training data sets without a loss in 
accuracy is attainable.

Experiments and Results

The ANFIS classifier was tested on twenty data sets, both without bagging and with 2 types of vote 
counting for the bagged ensemble (Canul-Reich et al., 2007). Each bag of training data was of the same 
size as the original training data, often called bagging at 100%. So, each of training data sets consisted 
of examples chosen at random with replacement from the original data. The data sets were all public 
domain mostly from the UCI repository (UCIrepository, 2006). ANFIS results are typically poor for 
datasets with more than six features due to the size of the fuzzy search space. In the data mining tool, 
Weka (Weka, 2006), the gain ratio feature selector was used to choose the best 6 features for data sets 
with more than six features. Table 1 shows the characteristics of the data sets used.

Each experiment on a data set begins with a stratified separation of the data into approximately 2/3 
of the examples for training, and the remaining examples (approximately 1/3) for testing. The strati-
fication process is intended to preserve the class distribution present in the original data set for both 
training and testing sets. Then for each of 100 bags, the bag of data was created by randomly drawing 

Table 1. The 20 data sets used. The number of attributes used, the total attributes, number of instances 
and classes are shown 

Data Set Attributes used Total Attributes # Instances # Classes

balance_scale 4 4 625 3

breast 6 9 699 2

cmc 6 9 1473 3

dermatology 6 34 366 6

glass 6 9 214 7

haberman 3 3 306 2

heart-statlog 6 13 270 2

Ionosphere 6 34 351 2

iris 4 4 150 3

monks1 6 6 432 2

monks2 6 6 432 2

newthyroid 5 5 215 3

page-blocks 6 10 5473 5

phoneme 5 5 5404 2

pima (5) 5 8 768 2

satimage_test (6) 6 36 2000 6

Tae 5 5 151 3

vehicle (6) 6 18 846 4

wine (6) 6 13 178 3

yeast (4) 4 8 1484 10
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with replacement from the stratified training set until the number of examples in the bag equals the 
stratified training set size. This bag probably will have numerous instances of examples that are in the 
bag more than once. Conversely, some of the examples in the stratified set will not be drawn and put 
into the bag. These out-of-bag examples are used for the checking or validation set. The checking set is 
used by ANFIS to prevent overfitting the training data, especially if the data has noise or if the number 
of training epochs is large.

In order to evaluate both methods of bagging with a single classifier that does not use bagging, one 
instance of each unique example in the stratified training set was used to create the training data set. 
This can also be viewed as simply removing all duplicates or multiple instances of examples from the 
bag. This method uses the same checking set used for the bagging trials, which should provide a fair 
comparison of bagging vs. no bagging.

ANFIS was run using the data in the newly formed training set (either a bag or that bag with du-
plicates removed) as an input to train the FIS (Fuzzy Inference System). A separate checking FIS is 
generated that captures the parameters of the training FIS in the epoch of minimum error, which results 
in a more accurate model. When the training process is complete, the checking FIS is used to classify 
the unseen test data.

The above process was repeated in each experiment for the number of bags we chose to use for 
experiments, which was 100. Each new bagged and non bagged classifier was formed from the same 
stratified training set that was selected from the entire data set before the first bag was formed.

When all 100 classifiers have been created, two different types of ensemble voting were performed 
on the outputs generated by the checking FIS for test examples. In the first type of voting, the predictions 
for each test example consisted of the defuzzified outputs from the checking FIS. These real numbers 
are rounded to crisp values (whole numbers) and any resulting value that is invalid or out-of-range is 
changed to the closest valid class value. Then the 100 crisp votes are counted and the predicted class 
for the example is the one with the majority of votes. In the case of ties, the class with the lower number 
wins.

Here, we note that just one output is used to discriminate among classes. In the other type of ensemble 
voting, the 100 defuzzified votes are simply added. Then the mean or average value is determined. 
This value is then rounded to a valid, crisp class value and is designated as the class predicted by the 
ensemble. For example, consider the case of 3 classifiers predicting 0.4, 1 and 0.4 respectively for a 
sample (prediction ≤ 0.5 means class 1 and prediction > 0.5 means class 2). Under the majority-of-votes 
criteria, these individual predictions are clearly 1, 2, 1, resulting in a majority of votes for class 1. Under 
the mean-of-defuzzified-votes criteria, the mean of the three original predictions is calculated, that is 
0.6, resulting in a combined prediction for class 2 for the sample.

The process described above was performed 25 times and average accuracies are reported.

Analysis of Results

In Table 2 the average test accuracies are shown for 25 test runs using the ANFIS checking FIS for 10 
epochs. A visual representation of these results is shown in Figure 2.

Figure 2 shows higher accuracy was achieved with the defuzzified ensemble voting method on 
fifteen out of twenty test data. The worst accuracy consistently came from the majority vote bagging 
ensemble method.
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In Table 3 the average test accuracies are shown for 25 test runs using the ANFIS checking FIS for 
20 epochs.

Table 3 and Figure 3 indicate that higher accuracy was achieved on the glass and yeast data sets with 
bagging using the defuzzified mean.

Figure 4 shows a head-to-head comparison of 10 vs. 20 epochs for test accuracies using defuzzified 
voting of predictions from the checking FIS generated using bags of data. The accuracy with 20 epochs 
was greater than or equal to that of 10 epochs, except for the iris and newthyroid datasets.

The significance of the accuracy difference between bagging and a single classifier was evaluated 
using the Friedman-Holm Test, which was discussed in (Demsar, 2006). The procedure allows the com-
parison of two or more classifiers over multiple data sets and determines whether there is a statistically 
significant difference in the accuracies. It uses the ranks of the classifier on each data set, ranging from 
1-3 here. Ties of 1, for example, are each given 1.5, and smaller is better.

Briefly, the Friedman test is a “non-parametric equivalent of the repeated-measures ANOVA” (Demsar, 
2006). ANOVA is a statistical method for testing differences between the performances of classifiers 
measured on the same test environment with the null-hypothesis being that there is no differences be-
tween them. When the null-hypothesis is rejected, a post-hoc test follows. Holm’s procedure was applied 
in our work. It consists of sequentially testing ordered hypotheses starting from the most significant p 

Table 2. Average test accuracies in % for 25 runs using checking FIS for 10 epochs with standard devia-
tions in (). A bold value indicates the highest accuracy for that data set 

Data set No bags Bags majority vote Bags mean defuzzified

Balance_scale 71.229 (2.34) 69.627 (2.75) 71.522 (2.14)

breast 92.769 (0.90) 81.236 (2.48) 93.579 (1.25)

cmc 31.801 (1.68) 28.318 (1.91) 31.479 (1.92)

dermatology 51.825 (1.07) 50.426 (3.05) 52.262 (1.07)

glass 48.602 (3.98) 41.556 (4.05) 48.167 (6.93)

haberman 73.739 (1.19) 72.078 (3.18) 73.882 (1.81)

heart-statlog 74.189 (2.73) 70.133 (3.28) 75.467 (4.09)

ionosphere 85.733 (1.59) 70.598 (2.0) 87.111 (2.18)

iris 95.642 (2.26) 92.960 (3.01) 96.080 (3.13)

monks1 69.271 (2.68) 56.889 (2.15) 74.083 (3.13)

monks2 76.247 (2.47) 54.806 (3.27) 78.722 (3.47)

newthyroid 86.863 (1.63) 79.944 (4.11) 88.000 (1.92)

page-blocks 86.992 (0.78) 82.692 (0.96) 87.163 (0.88)

phoneme 79.603 (0.77) 78.735 (0.77) 79.847 (0.86)

pima 74.484 (1.7) 71.125 (1.6) 75.484 (1.87)

satimage-test 61.110 (1.02) 56.102 (1.02) 61.985 (1.48)

tae 46.013 (4.31) 41.961 (5.0) 44.863 (5.56)

vehicle 47.869 (1.70) 53.475 (2.45) 49.418 (2.44)

wine 81.667 (2.63) 51.667 (5.09) 90.200 (4.01)

yeast 32.693 (1.65) 36.065 (2.08) 32.630 (1.94)
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value, if its corresponding hypothesis is rejected the procedure goes on with the next p value, which is 
tested and so forth until a null hypothesis that cannot be rejected is found.

The Friedman-Holm test results show that using ANFIS, the bagging approach with the membership 
function based combination method was statistically significantly better than a single classifier, at the 
95% threshold.

sCALINg UNsUPERvIsED FUZZY LEARNINg

Clustering streaming data presents the problem of not having all the data available at one time. Further, 
the total size of the data may be larger than will fit in the available memory of a typical computer. If 
the data is very large, it is a challenge to apply fuzzy clustering algorithms to get a partition in a timely 
manner. In this section, we present an online fuzzy clustering algorithm (OFCM) (Hore et al., 2008) 
which can be used to cluster streaming data, as well as very large data sets which might be treated as 
streaming data. OFCM can provide partitions equivalent to fuzzy c means (FCM). It processes the data 
as each independent chunk of data arrives. That is, the algorithm can perform well even if the data is 
evolving over time. Results on several large volumes of magnetic resonance images show that the new 
algorithm produces partitions which are very close to what you could get if you clustered all the data at 
one time. That shows that this algorithm is an accurate approach for online clustering.

Clustering streaming data has become an important issue due to the increasing availability of large 
amounts of data collected over time. Due to the reducing costs of recording data, the sources of stream-

Figure 2. Average test accuracies for 25 runs using checking FIS for 10 epochs
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ing data are growing rapidly. Features of streaming data are that it arrives at different times and the 
size of the streaming data can be so enormous that we cannot store all of it. Instead, we must process 
the data as it arrives, or in chunks, and delete it to free memory for incoming data. In many cases, the 
streaming data cannot be revisited due to its evolving nature (Aggarwal et al., 2003, Aggarwal et al., 
2004, Yang, 2003, Cao et al., 2006, Nasraoui et al., 2003, Hore et al., 2007a). That is, random access is 
impossible. To find meaningful clusters under these constraints, a number of clustering algorithms based 
on the single pass approach (O’Callaghan et al., 2002, Guha et al., 2003, Hore et al., 2007b) have been 
proposed. The single pass approach can work well for scaling classical clustering algorithms, but may 
not fit for clustering streaming data (Aggarwal et al., 2003). The reason is that streaming data might 
evolve over time and a single pass view of the entire stream tends to make algorithms insensitive to an 
evolving distribution (Aggarwal et al., 2003, Hore et al., 2007b).

A good streaming algorithm should not only extract meaningful information from the entire data 
set, but also respond to dynamic changes. As stated in (Aggarwal et al., 2003), a streaming clustering 
algorithm should be able to produce a good quality partition even if data is evolving considerably over 
time. Streaming methodology may also be used for scaling purposes when clustering very large stored 
data sets. One advantage of streaming algorithms over many single pass and other scalable algorithms 
(Farnstrom et al., 2000, Pal and Bezdek, 2002, Hathaway and Bezdek, 2006, Hore et al., 2007a) is that 
they don’t require random access to data and process data in whatever order it may arrive.

Table 3. Average test accuracies in % for 25 runs using checking FIS for 20 epochs with standard devia-
tions in (). A bold value indicates the highest accuracy for that data set 

Data set No bags Bags majority vote Bags mean defuzzified

balance_scale 72.484 (2.23) 72.057 (2.41) 72.632 (2.40)

breast 92.764 (0.91) 81.270 (2.47) 93.614 (1.23)

cmc 32.006 (1.65) 28.554 (1.85) 31.796 (1.89)

dermatology 52.139 (0.98) 50.787 (2.98) 52.361 (1.12)

glass 42.284 (2.55) 40.444 (4.00) 50.833 (5.95)

haberman 73.736 (1.21) 72.078 (3.02) 74.000 (1.72)

heart-statlog 74.801 (2.6) 68.178 (3.11) 78.044 (3.74)

ionosphere 86.007 (1.51) 71.179 (2.13) 87.282 (2.21)

iris 95.365 (1.97) 91.040 (3.75) 95.920 (2.2)

monks1 71.224 (1.80) 56.694 (2.57) 75.556 (2.57)

monks2 82.601 (2.99) 62.083 (2.75) 84.806 (4.23)

newthyroid 86.279 (2.32) 80.278 (5.26) 87.333 (3.24)

page-blocks 88.140 (0.75) 82.323 (0.90) 88.743 (0.83)

phoneme 80.096 (0.75) 79.119 (0.87) 80.391 (0.82)

pima 74.516 (1.69) 71.125 (1.59) 75.500 (1.84)

satimage-test 61.403 (1.02) 56.492 (1.01) 62.309 (1.4)

tae 46.049 (4.31) 41.961 (5.0) 45.098 (5.55)

vehicle 48.326 (1.72) 53.887 (2.42) 49.773 (2.38)

wine 82.099 (2.45) 52.933 (5.68) 90.267 (4.58)

yeast 34.386 (1.64) 34.537 (1.83) 35.515 (2.58)
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Short Review of Algorithms for Clustering Streaming Data Sets

Recently a number of algorithms have been proposed for clustering streaming data sets (Aggarwal et 
al., 2003, Aggarwal et al., 2004, Yang, 2003, Cao et al., 2006, Nasraoui et al., 2003, O’Callaghan et 
al., 2002, Hore et al., 2007a, Dai et al., 2004, Beringer and Hullermeier, 2006). Most of them address 
the crisp case, clustering streaming data by using either hard c means or its variants or other crisp algo-
rithms. In (O’Callaghan et al., 2002) a streaming algorithm was proposed using a k-Median algorithm 
called LOCALSEARCH. They showed that their LOCALSEARCH algorithm was better in quality but 
computationally expensive compared to hard-c-means. They viewed the streaming data as arriving in 
chunks and then, after clustering, memory was purged by representing the clustering solution by weighted 
centroids. Then they applied the LOCALSEARCH algorithm to the weighted centroids obtained from 
chunks to obtain weighted centroids of the entire stream seen so far. They showed that their algorithm 
outperformed BIRCH (Zhang et al., 1996) in terms of quality measured in sum of squared distance. 
This method of freeing the memory is similar to the method of creating a discard set in the single pass 
hard c means algorithm (Farnstrom et al., 2000). OFCM summarizes clustering results in a similar way 
(Hore et al., 2008). The difference between (O’Callaghan et al., 2002, Farnstrom et al., 2000) and our 
approach is in the fact that in fuzzy clustering an example may not completely belong to a particular 
cluster. Our method of summarizing clustering results involves a fuzzy membership matrix and fuzzy 
centroids, which do not exist for the crisp cases. So in (O’Callaghan et al., 2002), clustering streaming 
data was approached using a single pass view of the data.

Figure 3. Average test accuracies for 25 runs using checking FIS for 20 epochs
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In (Aggarwal et al., 2003), it was pointed out that a streaming algorithm may not be viewed as single 
pass clustering problem because they are generally blind to evolving distributions and a single pass 
algorithm over an entire stream will be dominated by outdated history. They proposed a framework for 
analysis of clusters over different time frames. They stored summary statistics describing the streaming 
data periodically using micro-clusters which was the online component of their algorithm, and later 
analyzed these summary statistics of clusters, known as the offline components, over a user provided 
time horizon. They showed the superiority of their algorithm compared to (O’Callaghan et al., 2002) on 
data with an evolving distribution.

In (Hore et al., 2007b), a streaming FCM (SFCM) algorithm was proposed. When the first chunk of 
data arrives, the algorithm will cluster the chunk of data into c cluster centroids using FCM. Memory 
is freed by summarizing cluster centroids into c weighted points using the fuzzy matrix obtained dur-
ing the clustering. When a second or later chunk of data comes, it will be clustered with the weighted 
points of previous clustered chunks. How many chunks of history to use for clustering with a new 
chunk is predefined by the users. The first chunk’s cluster centroids are initialized randomly while the 
other chunks’ are initialized as the last chunk’s cluster centroids. Their experiments showed this method 
could provide results comparable with FCM only in the case the amount of clustering history to use is 
selected properly.

In (Hore et al., 2007a), a single pass FCM (SPFCM) method was proposed. They separated the large 
data into several partial data accesses (PDA). The first PDA was clustered into c cluster centroids. Then 

Figure 4. Average test accuracies for 25 runs using 100 bags, and defuzzified checking FIS outputs for 
10 and 20 epochs
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the data in memory was condensed into c weighted points. Those weighted points will be clustered 
with new points in the next PDA. In their experiments, the method provided excellent partitions, almost 
the same as FCM’s. There was a significant speedup compared with FCM. However, single pass FCM 
requires randomly reordering the entire data to avoid unpredictable results. So, its performance drops 
when processing data in the order it arrives.

In (Cao et al., 2006) a density based streaming algorithm DenStream was proposed. The design 
philosophy of the DenStream algorithm was similar to (Aggarwal et al., 2003) as they too had an online 
component for summarizing cluster information and then an offline component later to combine clus-
ters. They used the density based DBSCAN algorithm (Ester et al., 1996) in their work. Using a density 
based clustering algorithm they were able to discover arbitrary shape clusters and show the robustness 
of their algorithm towards noise. However, density based algorithms are different from fuzzy clustering 
algorithms as they try to optimize a different objective function. In (Cho et al., 2006) a framework for 
efficiently archiving high volumes of streaming data was proposed, which reduces disk access for storing 
and retrieving data. They grouped incoming data into clusters and stored them instead of raw data.

Many other relevant single pass or scalable algorithms include using hard c means, EM (Jain and 
Dubes, 1988), Hierarchical Clustering and their variants (Aggarwal et al., 2004, Zhang et al., 1996, 
Bradley et al., 1998, Gupta and Grossman, 2004, Neal and Hinton, 1998, Karkkainen and Franti, 2007). 
A streaming algorithm using artificial immune system (AIS) models was also proposed in (Nasraoui 
et al., 2003). As stated before the fuzzy c means algorithm optimizes a different objective function and 
also the single pass approach may not be suitable for clustering an evolving stream.

Non-incremental algorithms for speeding up fuzzy c means or hard c means (Pal and Bezdek, 
2002,

Hathaway and Bezdek, 2006, Zhang et al., 1996, S.Eschrich et al., 2003, Cheng et al., 1998, Guha 
et al., 1998) are not generally applicable to clustering streaming data sets because they assume all the 
data can be loaded into memory. In (J. Lazaro and Cuadrado, 2003) a modified FCM was proposed to 
simplify hardware implementation and obtain parallelism for real time video processing, but it is very 
application specific and not applicable for data streams. In (Liu and Meng, 2004) a data driven fuzzy 
clustering method based on the Maximum Entropy Principle was proposed for a real time robot-tracking 
application. It is application specific and does not have the same objective function as FCM.

Thus some work has been done for hard-c-means and fuzzy-c-means clustering applied to streaming 
data and large data. However, as stated in (Hathaway and Bezdek, 2006), the crisp clustering methods 
may not be easily generalized to their fuzzy counterparts. The fuzzy methods we examined above have 
constraints including having to select a properly predefined history and an inability to handle evolving 
streams.

Online Fuzzy C Means

Due to the constraints of limited memory and computation time, a streaming algorithm may be able to 
load only a relatively small amount of the data at a time depending upon the speed of the stream and 
hardware capability. As in (O’Callaghan et al., 2002), we assume the data is both arriving and processed 
in chunks, that is, n

1
 data points arrive at time t

1
, n

2
 at t

2
, and so on.

We cluster data in each chunk by fuzzy c means (FCM), and we have to decide the number of clus-
ters c for each chunk. In the worst case, all data in a given chunk might come from one class only and 
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in the best case data might come from all n classes. If we set the number of clusters to be always c  
(highest resolution under the assumption we know the upper bound on the number of clusters), there 
are 2 cases:

 Case A: If less than c classes arrive in a chunk, then we are overclustering. Overclustering may 
not cause any information loss. Information loss is only certain to occur when we undercluster.

 Case B: If exactly c classes come in a chunk, then we are partitioning the data correctly, that is, 
neither overclustering nor underclustering.

In both cases, setting the number of clusters to be equal to c, the maximum number of classes in 
the data set, will likely not cause any information loss. So we set the number of clusters to be c in each 
chunk.

Data in each chunk is clustered by FCM. The objective function (J
m

) minimized by FCM is defined 
as follows:
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distance metric. We have used the Euclidean distance.
After data in one chunk is clustered by FCM, memory is freed by condensing the clustering solution 

in the memory into c weighted examples. The c weighted examples are represented by the c cluster cen-
troids obtained after clustering. Their weights are calculated using the membership matrix as follows:

w u i c
i j
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n
1
 is the number of examples in memory.

The weighted centroids of each final partition are saved with weights as calculated above. The 
weighted centroids of all chunks form an ensemble of weighted clustering solutions. The ensemble is 
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then merged into c final clusters. The merging operation is done by clustering all the weighted centroids 
in the ensemble using their weights. Weighted FCM (WFCM) is used for this purpose:

We modified the objective function of FCM (similar to [Karkkainen and Franti, 2007]) to take into 
effect the weighted examples.

Assuming there are n
c

 weighted examples in total, the cluster centroids for WFCM are calculated 
as:
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It should be noted that the modification of the objective function does not change the convergence prop-
erty of FCM because a weighted example can be thought of as many identical singleton examples.

To speed up clustering, we initialize the clustering process for each chunk with the final centroids 
obtained from clustering the previous chunk. This knowledge propagation allows for faster convergence, 
provided the distribution does not change rapidly, which might often be the case.

The size of the ensemble of weighted centroids is not likely to be large because it consists of only 
weighted centroids. If in any case it becomes large, similar to (O’Callaghan et al., 2002) the weighted 
centroids from the ensemble can be incrementally loaded and reclustered into c weighted centroids. This 
will decrease the ensemble size, which can be finally merged into c partitions in memory.

Data sets for Experiments

Nine real data sets were used, including Iris, KDD98, Plankton and 6 magnetic resonance image data 
sets (MRI-4, MRI-5, MRI-6, MRI-7, MRI-8, and MRI-9). Below we list details of those data sets. Note 
that value of m used in FCM was m=1.2 for the KDD98 data set and m=2 for the other 8 data sets.

The Iris plant data set consists of 150 examples each with 4 numeric attributes (Merz and Murphy, 
n.d.) and 3 classes of 50 examples each. One class is linearly separable from the other two. We clustered 
this data set into 3 clusters. KDD98 is the data set used in the 1998 KDD contest (kddcup08, 1998). This 
data set is about people who gave a charitable donation in response to direct mailing request. It was used 
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in (Farnstrom et al., 2000), and has been pre-processed in the same way. After processing the original 
data, it has 95412 examples and 56 features. As done in (Farnstrom et al., 2000), we clustered this data 
into 10 clusters. The code for preprocessing is available at http://www-cse.ucsd.edu/users/elkan/skm.
html. The Plankton data set (Luo, et al. 2005) consists of 419358 samples of plankton images from the 
underwater SIPPER camera which records 8 gray levels. There are 26 features extracted. The samples 
were taken from the twelve most commonly encountered classes of plankton during acquisition in the 
Gulf of Mexico. The class sizes range from about 11,337 to 74,053 examples. We clustered this data set 
into 12 clusters. Table 4 summarizes all the data sets.

With the MRI data set, we fetched data for the experiments along the axial plane, from the bottom of 
the brain (neck) to the top of the skull. The distribution of tissues in the human brain naturally evolves 
as we go up or down along the axial plane, and there also will be different amounts of tissues at different 
locations. So we believe MRI images provide good data sets to study our streaming algorithm in a real 
life scenario. Specific details include (1) The MRI-4 data set was created by concatenating 96 slices of 
MR images, T1 weighted, of size 512X512 from a single human brain. The magnetic field strength was 
1.5 Tesla. After air and skull were removed using the brain extraction tool (BET2) (Jenkinson et al., 
2005), there were 3,621,971 examples. The code for the BET2 is available at http://www.fmrib.ox.ac.
uk/analysis/research/bet/. We clustered this data set into 3 clusters. (2) The MRI-5 data set was created 
by concatenating 144 slices of MR images, T1 weighted, of size 256X256 from a single human brain. 
The magnetic field strength was 3 Tesla. After air and skull were removed using the brain extraction 
tool (BET2) (Jenkinson et al., 2005), there were 1,248,595 examples. Intensity homogeneity on this data 
set was corrected using an implementation of the bias correction algorithm from (Cohen et al., 2000). 
We clustered this data set into 3 clusters. (3) The MRI-6 data set was created by concatenating 96 slices 
of MR images, T1 weighted, of size 512X512 from a single human brain. The magnetic field strength 
was 1.5 Tesla. After air and skull were removed using the brain extraction tool, BET2 (Jenkinson et al., 
2005), there were 4,948,180 examples. We clustered this data set into 3 clusters. (4) The MRI-7 data 
set was created by concatenating 96 slices of MR images, T1 weighted, of size 512X512 from a single 
human brain. The magnetic field strength was 1.5 Tesla. After air and skull were removed using the 
brain extraction tool, BET2, there were 4,031,593 examples. We clustered this data set into 3 clusters. 
(5) The MRI-8 data set was created by concatenating 144 slices of MR images, T1 weighted, of size 

Table 4. Summary of data sets. The number of attributes used, number of instances and classes are 
shown 

Data Set Attributes used # Instances # Classes

Iris 4 150 3

KDD98 56 95412 10

Plankton 26 419358 12

MRI-4 3 3621971 3

MRI-5 3 1248595 3

MRI-6 3 4948180 3

MRI-7 3 4031593 3

MRI-8 3 1236969 3

MRI-9 3 1504594 3
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256X256 from a single human brain. The magnetic field strength was 3 Tesla. After air and skull were 
removed using the brain extraction tool, BET2, there were 1,236,969 examples. Intensity homogeneity 
on this data set was corrected using an implementation of the bias correction algorithm in (Cohen et al., 
2000). We clustered this data set into 3 clusters. (6) The MRI-9 data set was created by concatenating 
144 slices of MR images, T1 weighted, of size 256X256 from a single human brain. The magnetic field 
strength was 3 Tesla. After air and skull were removed using the brain extraction tool, BET2, there were 
1,504,594 examples. Intensity homogeneity on this data set was also corrected. We clustered this data 
set into 3 clusters.

Experimental setup and Results

In (Hathaway and Bezdek, 2006) a reformulated optimization criteria R
m

 (mathematically equivalent 
to J

m
 in equation (1)) was given as:
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The new formulation has the advantage that it does not require the U matrix and can be directly 
computed from the final cluster centroids. For large data sets, where the whole data set cannot be loaded 
into memory, R

m
 can be computed by incrementally loading examples from the disk.

For KDD98, Plankton and the 6 MRI data sets, 5% of the data was loaded in each chunk. For the Iris 
data set, we fetched 25 examples in each chunk. So, it required 6 time instants to fetch the full data set. 
We will compare the performance of streaming FCM (Hore et al., 2007b) and OFCM under this setting. 
We also compared the results of the single pass FCM (SPFCM) algorithm on these data with the same 
chunk size as used for SFCM and OFCM experiments. Results of experiments on the single pass algo-
rithm (SPFCM) running with and without scrambling (randomly reordered) the data is also reported.

The results of OFCM and SPFCM were compared with the clustering quality obtained at the end of 
the stream for the SFCM algorithm. The difference in quality is computed according to:
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m
1
 is the mean R

m
 value for experiments with FCM and m

2
 is the mean R

m
 value for experiments 

with OFCM, SPFCM and SFCM.
That is, the difference in R

m
 value expressed in percentage, of the OFCM, SPFCM, and SFCM 

algorithms from the quality obtained by clustering all the data at once using FCM.
All results are an average of 32 random experiments, each starting with a random initialization at 

the beginning of the stream. On each data set all algorithms had the same random initializations. Table 
5 shows the performance of the SFCM, OFCM, and SPFCM algorithms compared to clustering the 
entire stream at once.
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In the table, HISn means SFCM using a history of n chunks. For the single pass experiments, in the 
table SPFCM denotes clustering was done on the randomly reordered data set, while SFCM” means data 
was clustered the way it comes: the way SFCM and OFCM algorithms fetches data.

In Table 5, we see SPFCM, as expected, provides unpredictable clustering quality when it processes 
data as it comes. When the same data sets were scrambled, it always produced excellent quality. For 
processing data in a typical stream setting (processed as it comes), either SFCM (with appropriate his-
tory) or OFCM can be used. The results in Table 3 show that OFCM is always superior to SFCM in 
producing a clustering solution as good as clustering the full stream at once. OFCM always obtained 
good quality partitions; even for the Iris experiment the quality difference is only 0.21661%. Generally, 
usage of history greater than or equal to 2 resulted in poor partitions, at least in the context of produc-
ing clustering quality (at the end of stream) as good as clustering the entire data stream at once. On the 
KDD98 data set, any amount of history usage gives good quality; however, with HIS1 and HIS2 average 
quality was even better than the average quality of FCM. OFCM varied from FCM by 1% for MRI-6 
and 2.9% for Plankton. There are still small variations on large data sets. The quality of OFCM always 
was better than SFCM in producing a partition as good as clustering the full data set. Thus, OFCM can 
be thought of as a generalized single pass FCM algorithm that like streaming algorithms can process 
data as it comes, while at the end of the stream it can produce clustering quality as good as clustering 
the entire data stream.

summary

In this chapter, we have focused on ways of dividing data to enable fuzzy learning systems both super-
vised and unsupervised to scale. The approaches focused upon do not throw away any of the data, but 
instead they use disjoint subsets of the data to build individual classifiers or data partitions.

We have briefly discussed other approaches, based on subsampling, to building scalable fuzzy learn-
ing systems. The issues with subsampling are in selecting the right subsample or right set of examples 
which enable learning a good model. Typical approaches stop too early when they use things like the 
chi-squared test. Subsampling is an area deserving of further research.

Table 5. Difference in Quality (in percentage) of the SFCM, OFCM, and SPFCM algorithms compared to 
clustering all the stream at once with FCM. SPFCM” means clustering without scrambling the data 

HIS1 
(%)

HIS2 
(%)

HIS3 
(%)

HIS4 
(%)

HIS5 
(%)

SPFCM” 
(%)

SPFCM 
(%)

OFCM 
(%)

MRI-4 0.7082 1.0378 6.654 12.9819 17.6392 8.8818 0.0026 0.17447

MRI-5 2.4084 3.8948 11.1541 18.0348 23.1885 10.4976 0.0011 0.17691

MRI-6 6.7014 4.2827 10.2577 15.7393 19.5325 8.2708 0.0009 1.1098

MRI-7 1.2444 22.0437 69.0189 109.1186 141.9229 84.72 0.0065 0.439

MRI-8 0.584 15.7915 41.5251 63.6055 82.3348 47.623 0.0027 0.2398

MRI-9 0.5464 13.0416 35.9483 53.7082 67.0518 40.582 0.0141 0.2995

Iris 5.2772 2.3517 90.083 91.2483 91.565 79.6733 0.1117 0.21661

KDD -0.0567 -0.0585 0.0169 0.0127 0.0098 -0.1315 -0.0324 -0.07934

Plan- 
Kton 14.2393 11.7439 10.1547 8.7612 8.6569 4.02337 0.0046 2.95274



48

Scaling Fuzzy Models

For supervised learning to show the possibilities of ensembles, we have compared ANFIS with and 
without bagging to classify twenty data sets. Results were computed two different ways:

a)  Ensemble class votes for each example from the defuzzified output of the FIS for each bag were 
individually converted to crisp class values. Then, the predicted class for each test instance was 
found using a majority vote of these crisp values.

b)  The mean of the sum of the defuzzified FIS outputs for each bag was converted to a crisp class 
prediction for the ensemble.

c)  Feature reduction was done via the gain ratio feature selector in Weka for all data sets with more 
than 6 features. Other sets of features chosen differently would result in different accuracies, but 
similar conclusions.

The mean defuzzified output gave the most accurate results. It is advisable not to make crisp the 
defuzzified outputs of each FIS before these values are combined in a vote. Otherwise, the benefit of 
the fuzzy membership functions is lost and lower accuracies result.

The Freidman/Holm test for determining significance of differences in accuracies for our classifier 
methods was performed, resulting in the conclusion bagging is statistically better than a single classifier 
at the 95% level.

It is interesting that fuzzy models have enough variability to benefit from an ensemble formulation. 
This suggests that ensembles of fuzzy classifiers where each is built on a disjoint subset of data can be 
used to generate an accurate scalable fuzzy classifier.

For unsupervised learning, we have shown that tractable size data subsets, or chunks of the stream, 
can be clustered in the usual way. You get an ensemble of data partitions which must then be combined. 
One way to combine them is to simply cluster weighted class centers, centroids, of the data in each 
partition. Using online fuzzy clustering, the centroids of the individual data partitions are given weights 
based on the membership of the examples assigned to the clusters they represent. The centroids then 
form weighted examples which can be clustered to obtain the centroids of final data partition. Any future 
data can be assigned to the nearest cluster. If one needs to assign all of the data to the final clustered 
centroids, this can be done by sending the clustered centroids to processors where the data resides and 
to determine their class.

The online fuzzy clustering process results in cluster centers that are very similar to those obtained 
by clustering all of the data using fuzzy c-means. So, in cases where you could not possibly cluster all 
the data at once due to its size one may expect that the partition will be similar to a venerable, well-
known clustering algorithm. Hence, there is evidence that scaling fuzzy clustering algorithms can be 
effective.

This chapter has outlined methods of using ensembles to enable fuzzy learning systems to scale 
whether the data is labeled or unlabeled. In the case of labeled data there will be many fuzzy rules (for 
instance) reducing the interpretability of the system. For clustering, there should be no loss in interpret-
ability. The ensemble approaches outlined here are viable ways of scaling fuzzy learning systems.



49

Scaling Fuzzy Models

ACKNOWLEDgMENT

This research was partially supported by the Department of Energy through the ASCI PPPE Data Dis-
covery Program, Contract number: DE-AC04-76DO00789 and the Department of Defense, National 
Functional Genomics Center Project, under award number DAMD 17-02-2-0051. Views and opinions 
of, endorsements by, the author(s) do not reflect those of the US Army or the Department of Defense. 
Partial support was also received from the National Institutes of Health under grant number 1 R01 
EB00822-01.

REFERENCEs

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. 
In VLDB ’2003: Proceedings of the 29th international conference on Very large data bases (pp. 81-92). 
VLDB Endowment.

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2004). A framework for projected clustering of high 
dimensional data streams. In VLDB ’04: Proceedings of the Thirtieth international conference on Very 
large data bases (pp. 852-863). VLDB Endowment.

Banfield, R., Hall, L., Bowyer, K., & Kegelmeyer, W. (2005). Ensemble diversity measures and their 
application to thinning. Information Fusion, 6, 49–62. doi:10.1016/j.inffus.2004.04.005

Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2007). A comparison of decision tree 
ensemble creation techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1), 
173–180. doi:10.1109/TPAMI.2007.250609

Beringer, J., & Hullermeier, E. (2006). Online clustering of parallel data streams. Data & Knowledge 
Engineering, 58, 180–204. doi:10.1016/j.datak.2005.05.009

Bradley, P. S., Fayyad, U., & Reina, C. (1998). Scaling clustering algorithms to large databases. In Pro-
ceedings of the International Conference on Knowledge Discovery and Data Mining (pp. 9-15).

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

Canul-Reich, J., Shoemaker, L., & Hall, L. (2007). Ensembles of fuzzy classifiers. In Proceedings of 
the IEEE International Conference on Fuzzy Systems.

Cao, F., Ester, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving data stream 
with noise. In Proceedings of the 2006 SIAM Conference on Data Mining (pp. 328-339).

Chawla, N., Moore, T. E., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2001). Bagging is a small-
data-set phenomenon. In Proceedings of the International Conference on Computer Vision and Pattern 
Recognition (CVPR) (pp. 68-69).

Chawla, N. V., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2004). Learning ensembles from bites: 
A scalable and accurate approach. Journal of Machine Learning Research, 5, 421–451.



50

Scaling Fuzzy Models

Cheng, T. W., Goldgof, D. B., & Hall, L. O. (1998). Fast fuzzy clustering. Fuzzy Sets and Systems, 93, 
49–56. doi:10.1016/S0165-0114(96)00232-1

Cho, K., Jo, S., Jang, H., Kim, S. M., & Song, J. (2006). DCF: An efficient data stream clustering frame-
work for streaming applications. In Database and expert systems applications (pp. 114-122). Berlin, 
Germany; Springer.

Cohen, M., DuBois, R., & Zeineh, M. (2000). Rapid and effective correction of RF inhomogeneity 
for high field magnetic resonance imaging. Human Brain Mapping, 10, 204–211. doi:10.1002/1097-
0193(200008)10:4<204::AID-HBM60>3.0.CO;2-2

Dai, B.-R., Huang, J.-W., Yeh, M.-Y., & Chen, M.-S. (2004). Clustering on demand for multiple data 
streams. In Proceedings of the Fourth IEEE International Conference on Data Mining, 2004. ICDM 
’04 (pp. 367-370).

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Machine Learning, 7, 
1–30.

Dietterich, T. (2000). An experimental comparison of three methods for constructing ensem-
bles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40, 139–157. 
doi:10.1023/A:1007607513941

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the Sixth Inter-
national Conference on Knowledge Discovery and Data Mining (pp. 71-80).

Eschrich, S., Ke, J., Hall, L. O., & Goldgof, D. (2003). Fast accurate fuzzy clustering through data reduc-
tion. IEEE transactions on Fuzzy Systems, 11, 262–270. doi:10.1109/TFUZZ.2003.809902

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters 
in large spatial databases with noise. In Proceedings of 2nd International Conference on Knowledge 
Discovery and Data Mining (KDD-96) (pp. 226-231).

Farnstrom, F., Lewis, J., & Elkan, C. (2000). Scalability of clustering algorithms revisited. SIGKDD 
Explorations, 2, 51–57. doi:10.1145/360402.360419

fltoolbox. (2006). The mathworks - fuzzy logic toolbox. Retrieved from http://www.mathworks.ch/access/
helpdesk r13/help/toolbox/fuzzy/fuzzy.html

Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In Proceedings of the 
International Conference on Machine Learning (pp. 148-156).

Giannella, C., Dutta, H., Borne, K. D., Wolff, R., & Kargupta, H. (2006). Distributed data mining for 
astronomy catalogs. In Proceedings of the 9th Workshop on Mining Scientific and Engineering Datasets, 
Proceedings of the SIAM International Conference on Data Mining.

Gray, J., & Szalay, A. (2004). Where the rubber meets the sky: Bridging the gap between databases and 
science (Tech. Rep. MSR-TR-2004-110). Redmond, WA: Microsoft.

Guha, S., Meyerson, A., Mishra, N., Motwani, R., & O’Callaghan, L. (2003). Clustering data streams: 
Theory and practice. Knowledge and Data Engineering . IEEE Transactions on, 15(3), 515–528.



51

Scaling Fuzzy Models

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm for large databases. 
In Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 73-84).

Gupta, C., & Grossman, R. (2004). GenIc: A single pass generalized incremental algorithm for clustering. 
In Proceedings of the Fourth SIAM International Conference on Data Mining (SDM) (pp. 22-24).

Hathaway, R. J., & Bezdek, J. C. (2006). Extending fuzzy and probabilistic clustering to very large data 
sets. Computational Statistics & Data Analysis, 51(1), 215–234. doi:10.1016/j.csda.2006.02.008

Hore, P., Hall, L., & Goldgof, D. (2007a). Creating streaming iterative soft clustering algorithms. In 
Proceedings of the Fuzzy Information Processing Society, 2007. NAFIPS ’07. Annual Meeting of the 
North American Fuzzy Information Processing Society (pp. 484-488).

Hore, P., Hall, L., Goldgof, D., & Cheng, W. (2008). Online fuzzy c means. In Proceedings of the Fuzzy 
Information Processing Society, 2008. NAFIPS 2008. Annual Meeting of the North American Fuzzy 
Information Processing Society (pp. 1-5).

Hore, P., Hall, L. O., & Goldgof, D. B. (2007b). A fuzzy c means variant for clustering evolving data 
streams. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Mon-
treal (pp. 360-365).

Jain, A., & Dubes, R. (1988). Algorithms for clustering data. Englewood Cliffs, NJ: Prentice Hall.

Jenkinson, M., Pechaud, M., & Smith, S. (2005). BET2: MR-based estimation of brain, skull and scalp 
surfaces. In Proceedings of the Eleventh Annual Meeting of the Organization for Human Brain Map-
ping.

Jyh, S., & Jang, R. (1993). Anfis: Adaptive-network-based fuzzy inference system. IEEE Transactions 
on Systems, Man, and Cybernetics, 23, 665–685. doi:10.1109/21.256541

Karkkainen, I., & Franti, P. (2007). Gradual model generator for singlepass clustering. Pattern Recogni-
tion, 40(3), 784–795. doi:10.1016/j.patcog.2006.06.023

kddcup08. (1998). Kdd cup data. Retrieved from http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.
html

Klawonn, F., Gebhardt, J., & Kruse, R. (1996). Foundations of fuzzy systems. New York: John Wiley 
and Sons.

Kuncheva, L. I. (2004). Combining pattern classifiers: Methods and algorithms. New York; Wiley-
Interscience.

Lazaro, J., Arias, J., Martin, J. L., & Cuadrado, C. (2003). Modified fuzzy c-means clustering algorithm 
for real-time applications. In Field-programmable logic and applications (pp. 2778). Berlin, Germany: 
Springer.

Liu, P., & Meng, M.-H. (2004). Online data-driven fuzzy clustering with applications to real-time robotic 
tracking. IEEE transactions on Fuzzy Systems, 12(4), 516–523. doi:10.1109/TFUZZ.2004.832521



52

Scaling Fuzzy Models

Luo, T., Kramer, K., Goldgof, D. B., Hall, L. O., Samson, S., Remsen, A., & Hopkins, T. (2005). Ac-
tive learning to recognize multiple types of plankton. Journal of Machine Learning Research, 6(Apr), 
589–613.

Merz, C., & Murphy, P. (n.d.). UCI repository of machine learning databases Univ. of CA., Dept. of CIS, 
Irvine, CA. Retrieved from http://www.ics.uci.edu/˜ mlearn/MLRepository.html

Nasraoui, O., Uribe, C., Coronel, C., & Gonzalez, F. (2003). Tecno-streams: Tracking evolving clusters 
in noisy data streams with a scalable immune system learning model. In Proceedings of the Third IEEE 
International Conference on Data Mining, 2003. ICDM 2003 (pp. 235-242).

Neal, R. M., & Hinton, G. E. (1998). A view of the em algorithm that justifies incremental, sparse, and 
other variants. In Learning in Graphical Models (pp. 355-368).

O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002). Streaming-data algorithms 
for high-quality clustering. In Proceedings of the 18th IEEE International Conference on Data Engineer-
ing (pp. 685-694).

Pal, N., & Bezdek, J. (2002). Complexity reduction for “large image” processing. IEEE Transactions 
on Systems, Man, and Cybernetics . Part B, 32(5), 598–611.

Pavlov, D., Chudova, D., & Smyth, P. (2000). Towards scalable support vector machines using squash-
ing. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and 
data mining (pp. 295-299).

Provost, F., Jensen, D., & Oates, T. (1999). Efficient progressive sampling. In Proceedings of the Fifth 
International Conference on Knowledge Discovery and Data Mining (pp. 23-32). New York: ACM 
Press.

Provost, F., & Kolluri, V. (1999). A survey of methods for scaling up inductive algorithms. Data Mining 
and Knowledge Discovery, 3, 131–169. doi:10.1023/A:1009876119989

Shoemaker, L., Banfield, R., Hall, L., Bowyer, K., & Kegelmeyer, W. P. (2008). Using classifier ensembles 
to label spatially disjoint data. Information Fusion, 9(1), 120–133. doi:10.1016/j.inffus.2007.08.001

UCIrepository. (2006). Uci machine learning repository. Retrieved from http://www.ics.uci.edu/ mlearn/
MLRepository.html

Wang, L., Bezdek, J. C., Leckie, C., & Kotagiri, R. (2008). Selective sampling for approximate cluster-
ing of very large data sets. International Journal of Intelligent Systems, 23(3), 313–331. doi:10.1002/
int.20268

Weka. (2006). Weka 3 - data mining with open source machine learning software in java. Retrieved from 
http://www.cs.waikato.ac.nz/ml/weka/

Yang, J. (2003). Dynamic clustering of evolving streams with a single pass. In Proceedings of the 19th 
International Conference on Data Engineering, 2003 (pp. 695-697).

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very 
large databases. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data (pp. 103-114). New 
York: ACM Press.



Section 2
Databases and Queries



54

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

Using Fuzzy Song Sets 
in Music Warehouses
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INTRODUCTION

Automatic music recommendation systems have recently gained tremendous popularity. To provide per-
tinent recommendations, music recommendation systems use fuzzy set theory (Zadeh, 1965) to combine 
user profiles, music features, and user feedback information. However, at the current growing speed, 
the database element of any recommendation system will soon become a bottleneck. Hence, appropri-
ate musical data management tools, able to manipulate fuzzy sets and scale to large music collection 

AbsTRACT

The emergence of music recommendation systems calls for the development of new data management 
technologies able to query vast music collections. In this chapter, the authors present a music warehouse 
prototype able to perform efficient nearest neighbor searches in an arbitrary song similarity space. 
Using fuzzy songs sets, the music warehouse offers a practical solution to three concrete musical data 
management scenarios: user musical preferences, user feedback, and song similarities. The authors 
investigate three practical approaches to tackle the storage issues of fuzzy song sets: tables, arrays, 
and compressed bitmaps. They confront theoretical estimates with practical implementation results and 
prove that, from a storage point of view, arrays and compressed bitmaps are both effective data struc-
ture solutions. With respect to speed, the authors show that operations on compressed bitmap offer a 
significant grain in performances for fuzzy song sets comprising a large number of songs. Finally, the 
authors argue that the presented results are not limited to music recommendations system but can be 
applied to other domains.
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and growing user communities, are needed. Music Warehouses (MWs) are dedicated data warehouses 
optimized for the storage and analysis of music content.

The contributions of this chapter are fourfold. First, based on a previous case study (Deliège & 
Pedersen, 2006), we propose three generic usage scenarios illustrating the current demands in musical 
data management. To answer these demands, we define fuzzy song sets and develop a query algebra for 
them. Second, to demonstrate the usefulness of fuzzy song sets, a prototypical MW composed of two 
multidimensional cubes is presented. Fuzzy song sets prove to be an adequate data representation to 
manipulate musical information. Third, we discuss three solutions for storing fuzzy song sets and fuzzy 
sets in general. We construct theoretical estimates for each storage solution. A practical implementa-
tion shows that the storage overhead represents a major part of the storage consumption and that two 
solutions are viable for large music collections. Fourth, we benchmark and compare the performance 
of the main operators previously presented for various sizes of both data structures. Experiments are 
conducted on a real music collection.

This chapter demonstrates how fuzzy set theory can be used in the context of music recommenda-
tion systems. All results presented in this chapter can be directly applied to standard fuzzy sets; the 
presented storage solutions remain generic and can thus be applied to a vast range of domains besides 
music recommendation and user preferences.

The remainder of this chapter is organized as follows. After presenting the related work on fuzzy 
sets for the management of musical data, we present three information scenarios that are commonly 
treated by music recommendation systems. We proceed by defining fuzzy song sets and an algebra. 
Two prototypical multidimensional cubes are presented; they illustrate the use of the algebra through 
query examples. Storage solutions are then discussed and precise storage estimates are proposed and 
experimentally validated. Next, a comparison of the performance of the fuzzy song set operators on 
the bitmap and array representations is conducted. Finally, we conclude and describe promising future 
research directions.

RELATED WORK

Research on music recommendation systems has received a lot of attention lately. Current trends on 
playlist generation are focused on how to improve recommendations based on user-specific constrains. 
For example, a playlist generator that learns music preferences by taking user feedback into account 
was presented by Pauws & Eggen (2001). Other new interesting approaches concentrate on aggregating 
different music features; for instance, Bosteels & Keere (2007) study the use of generalized conjunctions 
and disjunctions of fuzzy sets theory for combining audio similarity measures. However, fewer research-
ers have addressed the scalability issues raised by these methods in terms of storage and performance 
(Aucouturier & Pachet, 2002; Pampalk, 2005). This chapter focuses specifically on the storage and 
performance issues and proposes to manipulate a large collection of musical data where song similari-
ties, user preferences and user feedbacks are represented with fuzzy sets.

A traditional database approach is to use a relational model such as the one proposed by Rubenstein 
that extends the entity-relationship data model to implement the notion of hierarchical ordering, com-
monly found in musical data (Rubenstein, 1987). A multimedia data model, following the layered model 
paradigm that consists of a data definition layer, a data manipulation layer, a data presentation layer, and 
a control layer, is presented by Wynblatt & Schloss (1995), but no query language is proposed. None 
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of those models adopts a multidimensional approach by representing data in cubes, a very convenient 
structure for performing on-the-fly analysis of large volumes of data that has already proved its strengths 
in data warehouses (Pedersen & Jensen, 2001). Finally, a music data model, its algebra and a query 
language are presented by Wang, Li, & Shi (2004). The data model is able to structure both the musical 
content and the metadata but does not address performance optimization issues. In particular, it does 
not provide an adequate framework to perform similarity based search. Jensen et al. address this issue 
and offer a multi-dimensional model that supports dimension hierarchies (Jensen, Mungure, Pedersen, 
& Sørensen, 2007). We extend that multidimensional model by integrating fuzzy sets and addressing 
additional usage scenarios. Furthermore, this implementation proves to be able to handle a much larger 
music collection of a realistic size in the context of an MW.

The use of bitmaps in multidimensional databases is frequent. Different compression schemes exist 
to reduce the storage consumption of bitmaps. The Word Align Hybrid (Wu, Otoo, & Shoshani, 2006), 
WAH, and the Byte-aligned Bitmap Compression (Antoshenkov, 1994), BBC, are two very common 
compression algorithms. BBC offers a very good compression ratio and performs bitwise logical opera-
tions efficiently. WAH performs bitwise operations much faster than BBC but consumes more storage 
space. We propose a modified version of WAH compression technique to represent fuzzy sets. We show 
how fuzzy set operators can be adapted to directly manipulate the compressed representations in order 
to preserve the performance.

Significant efforts have been made in representing imprecise information in database models (Codd, 
1979). Relational models and object oriented database models have already been extended to handle 
imprecision utilizing the fuzzy set theory (Prade & Testemale, 1984; Bordogna, Lucarella, & Pasi, 1994). 
This chapter proposes pragmatic solutions to store and manipulate fuzzy sets within multidimensional 
data cubes. It significantly extends our previous work (Deliège & Pedersen, 2007) in several ways: im-
proving the WAH compression algorithm, revising size estimates, and implementing and benchmarking 
the operators. While our focus is on musical data, we believe our approach can easily be generalized to 
the similarity matrices extensively used in fuzzy databases, e.g., to perform fuzzy joins.

QUERY sCENARIO

The data obtained from a music recommendations system has to be organized to answer specific queries. 
Examples of such query scenarios are presented below.

User Feedback

The user’s opinion about the system’s previous recommendations is a valuable piece of information for 
improving the future suggestion, e.g., by reinforcement learning. For each song played, the user can 
grade if the suggestion was wise based on the criteria provided, referred to as the query context. The 
query context can be the artist similarity, the genre similarity, the beat similarity, or any other similar-
ity measure available to the system to perform a selection. The grading reflects if a proposed song was 
relevant in the given query context. For example, it is possible to retrieve the list of songs Mary liked 
when she asked for a list of rock songs or the ten songs she liked the most when she asked for similar 
songs to a song made by “U2”.
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Typically, the data obtained should contain:

the profile of a registered user in the system;• 
the query context provided by the user; and• 
the list of songs and marks so that for each song proposed, the user can grade how much he liked • 
a particular song being part of the proposition.

Grades are given on a per song basis, they reflect if the user believes the song deserves its place 
among the suggested list of songs: strongly disagrees, neutral, likes, and loves. While the grade must not 
be a numerical value, we assume that a mapping function to the interval [0,1] exists so that when a user 
believes a song definitely deserves its place in the list, a high value in the interval should be given.

User Musical Profile

Regardless of any given query context, some songs should never be proposed to Mary as she simply 
can’t stand them or, on the contrary, some songs should be proposed more often as they are marked as 
Mary’s favorites. Therefore, recommendation systems often offer to their users the possibility to rate 
any song on a fan-scale ranging from “I love it” to “I hate it” depending if they like the song or not. 
Such information is useful for building network based on users having similar musical taste. The data-
base backend of the recommendation system should be able to find users similar to Mary based on his 
favorite and loathed songs.

The User Musical Preferences contains two different pieces of information:

a reference to a user registered; and• 
a list of songs associated with their respective grades on the fan-scale.• 

As above, we assume the mapping to the interval [0,1] so that if Mary hates a song, a low score 
is assigned; and if she loves it, a value close to 1 should be used. So, musical profiles can be used to 
modify the frequency a given song appears as a recommendation and build recommendation based on 
profile similarities.

songs similarities

Finally, music recommendation system should be able to compare songs. For each pair of songs, the 
system is able to provide a similarity value with respect to a given aspect of the song such as the release 
year, the genre, the theme, the lyrics, or the tempo. The similarity values should indicate if two songs 
are “very different”, “different”, “somewhat similar”, or “very similar” from the perspective of any 
given aspect of the song. For example, the song “We will rock you” by Queen is “very different” from 
the song “Twinkle, twinkle little star” with respect to their genre similarity aspect.

To compare songs, three pieces of information are necessary:

a pair of compared songs;• 
a similarity function that maps to a pair of songs to a similarity value; and• 
a similarity value reflecting how similar the two songs are.• 
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Again, we assume that the similarity values can be mapped to the interval [0,1] so that if two songs 
are very different, a value close to 0 should be used, and if they are very similar, a value close to 1 
should be used instead.

The scenario is very generic; very few assumptions are made about the properties of the functions 
used to compute the similarity values. In particular, the similarity functions do not have to fulfill the 
mathematical properties of a metric: the non-negativity, the identity of indiscernibles, the triangular 
inequality, and the symmetry properties. They do not have to be defined over the whole domain of song 
pairs. This allows similarities to be based on a wide diversity of song attributes.

AN ALgEbRA FOR FUZZY sONg sETs

In this section, we introduce fuzzy song sets as well as operators and functions to manipulate them.
Let X be the set of all songs. Then, a fuzzy song set, A, is a fuzzy set defined over X such that:

/ : , ( ) 0,1
A A

A x x x X x  

and is defined as a set of pairs m
A

x x( )/ , where x is a song, m
A

x( ) , referred to as the membership 
degree of x, is a real number belonging to [0,1], and / denotes the association of the two values as com-
monly expressed in the fuzzy logic literature (Galindo, Piattini, & Urrutia, 2005). When μA(x) = 0, song 
x does not belong to A, and when μA(x) = 1, x completely belongs to A.

Operators

The following operators are classically used in order to manipulate song sets.

Equality

Let A and B be two fuzzy song sets. A is equal to B iff for all song the membership degree of a song in 
A is equal to the membership degree of the same song in B.

A B x X x x
A B

= Û " Î ( ) = ( )   , m m
 

Subset

Let A and B be two fuzzy song sets. A is included in B iff for all song, the membership degree a song in 
A is lower than the membership degree of the same song in B.

A B x X x x
A B

 Í Û " Î ( ) £, ( )m m  

Note that the empty fuzzy song set defined with the null membership function, i.e., " Î ( ) =x X x,m 0 , 
is a subset of all fuzzy sets.
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Union

Let A and B be two fuzzy song sets over X. The union of A and B is a fuzzy song set with, for each song, 
a membership degree equal to the maximum membership degree associated to that song in A and B.

A B x x
A B

Ç = ( ){ }Çm /
 

m mm
A B A B

x x xÇ ( ) = ( )( )max , ( )
 

Intersection

Let A and B be two fuzzy sets over X. The intersection of A and B is a fuzzy song set with, for each song, 
a membership degree equal to the minimum membership degree associated to that song in A and B.

A B x x
A B

Ç = ( ){ }Çm /
 

m m m
A B A B

x x xÇ ( ) = ( )( )min , ( )
  

Negation

Let A be a fuzzy set over X. The negation of A is a fuzzy song set with the membership degree of each 
song equal to its symmetric value on the interval [0,1].

- = -{ }A x
A

1 m ( )
 

Reduction

Let A be a fuzzy set over X.The reduction of A is a subset of A such that membership degrees smaller 
than α are set to 0.

Reduce
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( ) ( )

a m

m
m m a

a

a

A x x

x if x

if

A

A
A A

=

=
³

0 mm a
A

x( ) <
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The reduction operator changes the membership degree of songs below a given threshold to 0. It allows 
the construction of more complex operators that allow the reducing the membership degree granularity 
over ranges of membership degrees.
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Top

Let A be a fuzzy set over X. The Topk subset of A is a fuzzy song with the membership degree of all ele-
ments not having the k highest membership degree set to 0 and the membership degree of the k highest 
elements of A set to their respective membership degree in A.

Top
k
a m m m, ( ) / | , , , ( )A x x x x X i j x x

Ak i j A i A j( ) = " Î £ < ( ) ³{ }1
 

m
m
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=
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í
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î
ïïï

( )    

            otherwise0
 

Note that the Topk subset of A is not unique, e.g., when all elements have an identical membership 
degree. The Topk operator returns a fuzzy song set with all membership degrees set to zero except for 
k elements with the highest membership degrees that remain unchanged. Topk is a cornerstone for the 
development of complex operators based on relative ordering of the membership degrees. Note also 
that Topk(A) can not be defined as the subset of A having all its elements having a membership greater 
or equal to the one not included since Topk(A) contains all the elements of A.

Average

Let A1,…,Ai be i fuzzy song sets. The average of A1,…,Ai is a fuzzy song set that assigns to each song 
a membership degree equal to the arithmetic mean of the membership degrees of that song in the given 
sets.

Avg x x
A A A Ai i1 1, , , ,
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The average operator in fuzzy sets is the pendant of the common average operator and is very useful 
to aggregate data, a common operation in data warehousing in order to gain some overview over large 
datasets.

Functions

The following functions are defined on song sets. They extract information from the song sets to real 
values or crisp sets.
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Support

The support of A is the crisp subset of X that includes all the elements having a non-zero membership 
degree in A.

Support xA x X
A( ) = Î ( )>{ : }m 0

 

Cardinality

The cardinality of A is the sum of the membership degrees of all its elements.

# ( )A x
x X

A
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Î
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Distance

The Minkowski distance of order p ³ Î1   between two song sets is defined as follows.

d A B x x
p
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The 1-norm distance is the Manhattan distance, the 2-norm distance is the Euclidean distance, and 
the ∞-norm is the Chebyshev distance.

THE MUsIC WAREHOUsE CUbEs

This section presents two data cubes built to serve queries introduced in the scenarios. In data warehouses, 
data are logically organized in cubes. A cube is a generalization of a flat two-dimensional spreadsheets 
to multiple dimensions. While spreadsheets have rows and columns that are combined to form cells, 
cubes have dimensions that are combined to form facts. Each fact has numeric measures attached to it. 
To capture the context of a fact, dimensions are organized into hierarchies. Hierarchies define group-
ings and aggregation functions to be performed, e.g., a counter or an average. The two cubes presented 
below show how fuzzy song sets can be integrated into a multi-dimensional model and how they can 
be queried.

The song similarity Cube

The Song Similarity cube captures similarity between songs with respect to selected similarity func-
tions. The cube is composed of two dimensions: a song dimension and similarity dimension; they are 
represented in Figure 1. The song dimension captures all the details about a song, including editorial 
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information such as the artist name, the publication year or any acoustic information such as the beat 
of the song or its genre. For each of these attributes, similarity functions can be created, e.g., an artist 
similarity function that gathers information from external web sites and social networks, or a similarity 
function that compares the genre wherein songs have been classified, aware that some genres are more 
similar than others, or the timbre comparison that uses low-level extracted information to provide a full 
comparison matrix.

Each dimension has a hierarchy, which defines how the data can be aggregated to provide differ-
ent degrees of granularity, e.g., the similarity of songs between sub-genres and the similarity of songs 
between coarsely defined genres. Similarity function of coarser granularity can also span over differ-
ent attributes, e.g., to provide some average similarity values out of attributes obtained using different 
extraction algorithms.

At its most detailed level, the cube is organized based on a star schema, using three tables: the song 
dimension table, the similarity function table and the closest songs fact table. The closest songs fact 
tables is composed of three attributes: a reference to a song (referred to as the seed song), a reference to 
a similarity function, and a fuzzy song set. The notion of similarity between a song and the seed song is 
represented by the fuzzy song set membership degree. The closest songs take a high membership degree 
while the farthest songs have a low membership degree.

Data of the Song Similarity are shown in Tables 1, 2, and 3.
Typical queries involve the intersection, union, and reduction operators. The queries can be performed 

on the song seeds using pieces of information such as the artist or the creation year. Closest Songs Cube 
usage examples are presented below. The example assumes the creation of a new SQL data type, called 
FZSET, using object-relational extensibility functionality like found in PostgreSQL. For example, the 
closest songs attribute in the fact table is of type FZSET. The FZSET implementation details will be 
discussed further.

Example 1:
“What are the songs that have a similar beat to the song “One” by U2?”

SELECT SUPPORT(REDUCE(0.6, c.songs) 

FROM closest_songs c 

INNER JOIN songs as a USING (song_id) 

INNER JOIN similarity_functions as b USING (c.sim_id) 

WHERE a.title = ‘one’ AND a.artist = ‘U2’ and b.sim = ‘beat 1’ 

Figure 1. Dimensions composing the Song Similarity Cube
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In a star schema, the fact table and the 2 dimensions tables are joined to form the cube. Retriev-
ing the similarities between a song and all the others simply requires selecting a song and a similarity 
function from the dimension tables and retrieving the corresponding FZSET in the closest song table. 
The support function transforms an FZSET data type into a regular SQL crisp set of elements having 
non-zero membership degrees.

Example 2:
“Find the beat similarity between two songs; the first song is identified with the artist, album, 

and title attributes from the song dimension, the second is identified using its unique key.”

SELECT MU(c.songs,el) 

FROM closest_songs c 

INNER JOIN songs as a USING (song_id) 

INNER JOIN similarity_functions as b USING (sim_id) 

WHERE a.artist = ‘U2’ AND a.album=’Achtung Baby’ AND a.title=’One’ and b.sim = ‘beat 1’ 

GROUP BY a.album_id 

The mu function returns the membership value associated to a given element. The similarity between 
two songs can be obtained by retrieving the full fuzzy song set representing song similarities for the 

Table 1. CubeSong dimension 

song id title Artist album beat genre

1 One U2 Achtung Baby DATA DATA

2 One U2 Miss Sarajevo DATA DATA

3 Paint it black Rolling Stones Aftermath DATA DATA

Table 2. Similarity function dimension 

Sim id Sim function Sim type

1 beat 1 beat

2 beat 2 beat

3 genre 1 genre

Table 3. Closest songs fact 

song_id sim_id Closest_songs

1 1 { 1.0/1; 0.5/2; 0.0/3 }

1 2 { 1.0/1; 0.7/2; 0.1/3 }

1 3 { 0.9/1; 0.4/2; 0.1/3 }

2 1 { 1.0/1; 0.5/2; 0.4/3 }

2 1 { 1.0/1; 0.5/2; 0.3/3 }

3 1 { 1.0/1; 0.5/2; 0.5/3 }
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first song, and filtering out the results to only return the element matching the second song. However, 
with such an operation being so common, optimization based on the physical storage structure of the 
fuzzy song set can be performed, thus motivating the need for creating a specific element search func-
tion within a fuzzy song set.

Example 3:
“Retrieve the 100 songs having the most similar beat to the songs made by U2.”

SELECT SUPPORT(TOP(100, UNION(c.songs)) 

FROM closest_songs c 

INNER JOIN songs as a USING (song_id) 

INNER JOIN similarity_functions as b USING (sim_id) 

WHERE a.artist = ‘U2’ AND b.sim = ‘beat 1’ 

GROUP BY a.album_id 

Aggregation functions allow multiple fuzzy song sets to be retrieved and combined. In Example 3, 
multiple songs are matching the selection criteria in the song dimension, causing multiple fuzzy song 
sets to be retrieved from the closest song table. The fuzzy song sets are then combined using the union 
operator; finally the elements with the 100 highest membership degrees are returned.

Example 4:
“Return the similar songs to the given song across the different beat similarity functions avail-

able.”

SELECT SUPPORT(AVG(songs)) 

FROM closest_songs c 

INNER JOIN songs as a USING (song_id) 

INNER JOIN similarity_functions as b USING (sim_id) 

WHERE a.title = ‘one’ AND a.artist = ‘U2’ and b.sim = ‘beat’ 

GROUP BY a.albumid, b.similarity_function_group 

As in a spreadsheet, aggregation can be performed on both dimensions. Example 4 retrieves all the 
versions of a song in the different albums of an artist and returns an average over similarity functions 
of the same type, such as the beat, the genre, or the mood.

The User Feedback Cube

The User Feedback Cube collects relevance statistics about the songs proposed to users by the music 
recommendation system. As illustrated by Figure 2, the User Feedback Cube is composed of two di-
mensions: the user dimension and the query dimension. For each user and query, the user feedback is 
stored. The feedback given for a particular played song is stored as a membership degree representing 
how relevant the proposed song is in the context of the query. A very low membership degree is given 
when a user believes the song should not have been proposed. The Feedback and the Favorite Songs 
attributes are both defined using the FZSET abstract data type. The user dimension is composed of a 
hierarchy allowing users to be aggregated along the various attributes composing their profiles. One 
of these attributes is a fuzzy song set representing the user’s favorite songs; it becomes thus simple to 
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compare groups of users created based on the users’ musical tastes. The hierarchy on the query dimen-
sion permits to obtain overview along group of semantically close queries.

Example 5:
“What are the favorite songs three users have in common?”

SELECT SUPPORT(REDUCE(0.8, INTER(Favorite songs)) 

FROM users 

WHERE user_id = 1 OR user_id = 2 OR user_id = 3; 

Retrieving the songs three users like is an immediate query using the proposed algebra; only the user 
dimension table is required. Here, the aggregation form of the intersection function allows straight-forward 
selection of the intersection between three multiple sets. The Reduce operator selects only the songs 
resulting from the intersection with a membership degree above 0.8. The support operator transform the 
fuzzy song set object into a crisp set that can be manipulated with the regular SQL algebra.

Data from the User Feedback Cube are shown in Tables 4, 5, and 6.
Example 6:
“Who are the 100 users that have the most similar taste to John’s taste?”

SELECT b.user_id 

FROM users as a, users as b 

WHERE a.user_id = 1 

ORDER BY distance(a.favorite_songs, b.favorite_songs) ASC 

LIMIT 100; 

Example 6 illustrates how, using a self-join, the user dimension can be used to find similarities be-
tween users based on their favorite songs.

Example 7:
“Per query type, what are the songs users born in the 80’s were usually happy to hear?”

SELECT SUPPORT(REDUCE(0.8, AVERAGE(uf.feedback)), q.query_type 

FROM user_feedbacks as uf 

INNER JOIN users as u USING (user_id) 

Figure 2. Dimensions composing the User Feedback Cube
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INNER JOIN queries as q USING (query_id) 

WHERE ‘1 JAN 80’ <= u.DOB AND u.DOB <= ‘31 DEC 89’ 

GROUP BY q.query_type; 

Using the user dimension, only the users born in the 80’s are selected, and the average feedback per 
query type is then calculated. Again, using the reduce and support operators, only the songs with a high 
membership degree are output as crisp sets.

Example 8:
“What are the 100 songs that fans of ‘Elvis’ liked the most when they asked for Rock songs?”

SELECT SUPPORT(TOP 100(AVERAGE(uf.feedback))) 

FROM user_feedbacks as uf 

INNER JOIN queries as q USING (query_id) 

WHERE u.user_id IN ( 

SELECT user 

FROM songs 

WHERE SUPPORT(TOP(10,favorite song)) = song_id AND artist = ‘Elvis’ 

) AND q.query = ‘Rock songs’ 

Table 4. Users dimension 

User id Name DOB Favorite songs

1 John 01 Jan 80 { 1.0/1; 0.5/2; 0.0/3 }

2 Nadia 02 Feb 70 { 1.0/41; 0.7/42; 0.1/43 }

3 Natalie 03 Mar 60 { 0.9/11; 0.4/22; 0.1/33 }

4 Adam 04 Apr 83 { 0.2/1; 0.47/; 0.13/23 }

Table 5. Queries dimension 

Query id Query Query type

1 Rock songs Genre

2 Pop songs Genre

3 Songs marked as favorite by users with similar music profiles Social

4 New song releases Editorial

Table 6. User feedbacks fact 

User id Query id Feedback

1 1 { 1.0/1; 0.5/2; 0.0/3 }

1 2 { 1.0/1; 0.7/2; 0.1/3 }

3 1 { 0.9/1 0.4/2; 0.1/3 }
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Example 8 performs an aggregation of the user feedback. The selection of the users for the aggrega-
tion is performed using the favorite songs in the user dimension. Thus, both fuzzy song sets in the user 
dimension table and the fact table are used.

sTORAgE OPTIONs

In this section, three different storage options for representing fuzzy song sets in the MW are presented: 
tables, arrays, and bitmaps. A prototypical MW where song elements are uniquely identified using 32 
bits is used to illustrate the discussion. The proposed MW can reach a size of over 4 billion songs and 
at least 100 different membership degrees.

Table

The first solution is to represent the fuzzy song set attribute as a table with three columns: (seed song, 
song, membership degree). Let s be the size of the seed song set, e the size of the song set, and m the size 
of the set of all the values the membership degree can take. The size of the payload, i.e., the size of the 
data when not considering the overhead due to the DBMS, denoted p, can be calculated as follows.

p s e log s log e log m= + +   . ( )
2 2 2  

where log
2
s , log

2
e , and log

2
m  are the minimum number of bits required to store respectively a seed 

song, a song, and a membership degree.
The quadratic growth can be limited by admitting only k songs for each seed song to be physically 

stored in the table and letting the remaining songs take a default membership degree. The selection of 
which song should be represented is dependent on the application. Here, we assume that the elements 
with the highest membership degree are interesting; this is performed using the Topk operator. The size 
of the payload can then be estimated as follows.

p s k log s log e log m= + +    . ( )
2 2 2  

When 232 seed songs are present, the database reaches its maximum capacity. In such case, the size 
of the payload, if only the 1000 elements with the highest membership degree are physically stored, 
reaches 36 TB. On a data set composed of 10,000,000 seeds, the payload attains 84 GB.

Array

A second approach is to use one-dimensional arrays containing the songs and their associated member-
ship degrees for representing fuzzy song sets. The data is stored in a table with two columns: (seed song, 
array). As with tables, only the k (≤e) most similar songs should be physically stored. The size of the 
payload grows as follows.
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p s log s k log e log m= + +   ( ( ))
2 2 2  

When storing the 1000 closest songs of 232 song seeds, the size of the payload is reduced to 19 TB; 
on a data set composed of 10,000,000 song seeds, the payload reaches a size of 44 GB However, since 
the probability of having no songs for a particular membership degree is small, ordering the fuzzy song 
set by membership degrees allows membership degrees to be stored using one bit relatively to each 
other: a bit set means to move to the next lower membership degree, a bit unset means to keep the same 
membership degree. In the unlikely case of a gap in the sequence of membership degrees, a dummy ele-
ment, referred to as the empty element, is used to jump to the next membership degree. For large gaps, 
successive empty elements are used.

For example, the fuzzy song set {100 / 1234,100 / 2345,99 / 3456,97 / 4567,96 / 5678} is repre-
sented by the array [{1234,100}, {2345,100}, {3456,99}, {4567,97}, {5678,96}] that is compressed as 
[{1234,0], {2345,1}, {3456,1}, {0,1}, {4567,1}, {5678,0}], where only one bit is required to capture a 
decrement of the membership degree, and 0 is the empty element.

The compression ratio, r, obtained is as follows.

r
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In order to be efficient, i.e., r > 1, the number of empty elements, noted x, in the data set has to 
remain limited.
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The compression ratio in the best (no empty element) and worst (m − 1 empty elements) case sce-
narios are:
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For high k values, the likelihood of using empty elements vanishes, therefore causing r− to asymp-
totically converge to r+ as k increases. Figure 4 shows the compression ratio r+ and r− for membership 
degrees represented on 7 bits (128 different values), and fuzzy song set and song seeds represented using 

Figure 3. organization of a compressed array
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32 bits. For k = 1000, the compression ratio ranges between 1.04 and 1.18. The full similarity matrix 
represented with compressed arrays takes 17 TB.

bitmap

A third option is to use bitmaps to represent fuzzy song sets. In a bitmap (Chan & Ioannidis, 1998), 
each element is represented by a position in a sequence of bits. Typically, in a bitmap index, a bitmap 
for each attribute value is created. The size of each bitmap is equal to the cardinality of the indexed ele-
ments. Fuzzy song sets can be constructed using the same structure. A fuzzy song set is composed of a 
bitmap for each membership degree an element can have. As illustrated in Figure 5, each song element 
is represented with a bit set in the bitmap corresponding to its membership degree.

A fuzzy song set where the membership degree has a cardinality of m is represented with m bitmaps 
of song elements, where each bitmap has a size of e bits. Thus the size of a fuzzy song set using bitmaps 
is as follows.

p s s m e= +  (log )
2  

Figure 4. best and worst compression ratio for the arrays

Figure 5. representation of a fuzzy song set with an array of bitmaps
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The bitmap size can be dramatically reduced using compression algorithms. The Word Aligned 
Hybrid (WAH) bitmap compression method offers a good compression ratio on sparse bitmaps while 
preserving query performances (Wu, Otoo, & Shoshani, 2006).

Briefly, in a WAH-compressed bitmap, the bitmap is divided in 32 bit long words. The first bit of 
each word is used to mark if the word is a literal word or a fill word. If the first bit of a word starts with 
a unset bit, the word is a literal word; the remaining bits are then used to store a classical 31 bit long 
bitmap. A fill word starts with a set bit and indicates the presence of a run composed of homogeneous 
31 bit long groups of set or unset bits; thus, fill words are of two kinds: 0-Fills or 1-Fills. The second 
bit of a fill word is used to differentiate runs of unset bits from runs of set bits. The remaining 30 bits 
are used to count the number of homogeneous 31 bit long groups the run contains.

Figure 6 shows an example of how the bitmap composed of 9∗0, 3∗1, 56∗0, 69∗1, 98∗0, 3∗1 and 
6∗0 can be compressed using WAH. First, the uncompressed bitmap is divided into groups of 31 bits. 
If a group forms a literal word, an unset bit is prepended to it. Otherwise, the group is replaced by an 
appropriate fill word and a counter of the number of identical consecutive groups following the current 
group.

The WAH compression becomes effective when many consecutive zeros or ones can be represented 
with fill words. In the worst bit distribution, i.e., a random bitmap, the WAH algorithm reduces the size 
of the bitmap as follows.
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Figure 6. The WAH bitmap compression
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where n is the size of the bitmap in bits, d is the bit density, i.e., the fraction of bits set, and w is the word 
length, (32 bits in our example). Using the topk operator, the bit density is d = k/e. On a fuzzy song set 
of 232 songs where only 1,000 songs are physically stored and n = 232, d = 1,000 / 232, the size of each 
bitmap is 64,000 bits.

As previously illustrated by Figure 5, a bitmap is constructed for each of the membership degree a 
song element can possibly take. The fuzzy song set is then represented using an array composed of 100 
bitmaps, but this does not affect the size of the overall bitmap as the bit density of in each bitmap will 
proportionally decrease, maintaining the bit density in the full bitmap unchanged.
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Figure 7. estimated payload storage requirements
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In arrays, the seed elements only have to be stored once per FZSET. Arrays take thus half the stor-
age requirements of tables. With arrays, however, the data need to be compressed and reorganized, thus 
leading to an overall increase in complexity. The array compression scheme is focused on compressing 
the membership degree. The compression occurs on the 7 bits used to represent the membership degree 
but leave the 32 bits representing each element untouched; thus limiting the maximum compression 
performance that can be achieved. Bitmaps, on the other hand, are focused in compressing the 32 bits 
representing the elements; this is done by imposing a position to each song element. These important 
structural differences will have an impact on the implementation of operators and functions.

storage Estimates and benchmark

This section describes the storage requirements for the implementation of the Song Similarity Cube fact 
table. Therefore, some parts of the following are dependent on the DBMS chosen for implementing the 
cube. We calculate some storage requirements estimates for each of data structure. As our estimates 
match experimental results, we proceed on predicting the size of each storage option depending on the 
number of fuzzy elements they contain.

The experience was conducted on PostgreSQL 8.3, well-known for its scalability. As already explained, 
the songs can be uniquely identified using 32 bits and the membership degree of each song element has 
a granularity of 100. The dataset used for the implementation consists of 150,834 songs, gathered from 
the Intelligent Sound project. Song similarities are computed using a genre classifier collecting acoustic 
features from a popular media player (Lehn-Schiøler, Arenas-García, Petersen, & Hansen, 2006)

The expected table overhead in PostgreSQL can be estimated by considering tuple overhead and page 
overhead (PostgreSQL, 2008). In our configuration, pages have a fixed size of 8 KB. Since tuples are 
not allowed to span over multiple pages, PostgreSQL uses secondary storage tables, referred to as The 
Oversized-Attribute Storage Technique (TOAST) tables, to store large attributes. Using TOAST, large 
field values are compressed and/or broken up into multiple physical rows. TOAST tables use the Lempel-
Ziv, briefly LZ, compression technique to reduce their size (Ziv & Lempel, 1977). The compression of 
‘toasted’ attributes being optional, we will compare the different possible setups.

In a table, the number of rows is the product of the number of seeds and the number of elements per 
seed: 150,834.1000 = 150,834,000 rows. Each page has a size of 8KB, with a header of 24 bytes, thus 
leaving 8,168 bytes of free space. Each row has a payload of 4 + 4 + 4 + 1 = 17 bytes. Each tuple is 
stored after a 20 bytes long header, and is aligned to start on the 32nd byte. Therefore, the size of each 
row in the table is 31 + 17 bytes. Thus, each page can accommodate 185 rows, and 150,834,000 rows 
will require 815,319 pages, thus taking a disk space of 815,319 ∗ 8 KB = 6,369.67 MB. In our storage 
experiment on the 150,834 songs, gathered from the iSound database, this is exactly the storage size 
taken on disk; thus indicating that our estimate is precise.

For arrays, each element has to be aligned on 4 bytes, thus 8 bytes are necessary to store the element 
and the membership degree. Additionally, 4 bytes are used to store the size of the array. Each array has 
therefore a size of 4 + 4 + 1000 ∗ 8 = 8008 bytes not allowing two tuples to fit on a single page. Therefore 
150,834 pages of 8 KB are needed, causing the storage requirements to be 1,178 MB.

For bitmaps, in the worst case compression scenario, each of the 1,000 elements requires both a fill-
word and a literal word, e.g., when a 0-fill word is required between each set bit. A word takes 4 bytes, 
thus 8 bytes per elements and 8,000 bytes per bitmap. For each bitmap, an additional 4 bytes long integer 
is required to keep track of the size of the data, thus adding 100 ∗ 4 bytes. Thus a bitmap cannot fit on 
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a page and has to be moved to an auxiliary toast table, where each bitmap is split into chunks of 2,000 
bytes. In that case, 4 rows per bitmap attribute are required in the auxiliary table. Storage estimates 
show that in the most pessimist case 1,472 MB are required to store the bitmaps. In the selected dataset, 
183,184 pages are required to store the bitmaps. The total space taken by the WAH compressed bitmap 
storage representation is therefore: 1,431 MB.

If the number of element increases, a similar storage technique using an auxiliary TOAST table is 
required for the array data structure. As with bitmaps, data larger than 2,000 bytes is split into 2,000 bytes 
chunks. Each array is therefore divided into 5 chunks, and 150,834∗5 chunks are needed. For each data 
chunk, a 31 bytes long header has to be added. Since 8,168 bytes of storage are available per page, only 
4 chunks can be stored per page and 188,543 pages are needed. The total size of the array data structure 
is 1,472 MB when stored using a TOAST table.

Further compression of TOAST data using standard LZ algorithm can be performed. The compres-
sion ratios are data depending.

Table 7 shows the storage requirements for the three storage options. In addition, the space required 
to index seed songs and similarity functions using a standard B-Tree and storage requirements for LZ-
compressed data are presented.

Our experiments show that the real size requirements match the estimates. While table are certainly 
the most straightforward solution, they are a bad choice for data storage requirements and indexing pur-
poses. With respect to the payload, the arrays are very promising but suffer from an important overhead 
that makes arrays and WAH compressed bitmaps very comparable in term of storage size. Furthermore, 
since array elements are aligned on 8 bytes, compressing the array does not bring any storage benefit 

Table 7. Comparison of the storage options 

Size (MB)

Table Payload estimate 
Overhead estimate 
Total estimate 
Real size 
B-tree Index 
Total

1,852 
4,518 
6,370 
6,370 
3,231 
9,601

Array Payload estimate 
Overhead estimate 
Total estimate 
Real size 
Real size + LZ 
B-tree Index 
Total

666 
511 
1,178 
1,178 
794 
3 
1,181

WAH Bitmap Payload estimate 1,151

Overhead estimate 296

Total estimate 1,447

Real size 1,447

Real size + LZ 719

B-tree Index 3

Total 1,450
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and adds unnecessary complexity. LZ compression works better on bitmaps, therefore creating a sen-
sible difference in favor of bitmaps; this is observation might, however, be data dependent. Finally, with 
respect to the implementation of the two new data types, WAH-bitmaps are a more complicated data 
structure to build; the compression requires some particular attention and the variable length nature of 
the bitmap brings additional complexity.

Using identical storage estimates, we predict the size of tables, arrays, and bitmap with respect to 
k. Considering that k elements are required in order for the data to be useful, we can thus choose what 
data structure is the most appropriate. The results of the size estimates are shown in Figure 8. For all 
values of k, tables are the worst solution. For k > 2,000, arrays and WAH-compressed bitmaps tend to 
behave very similarly. For lower values of k, due to the data organization in pages, results vary sensibly 
depending on k. However, arrays always keep a slight advantage.

FZsET FUNCTIONs AND OPERATORs

We now compare the array and bitmap storage structure with respect to the performances of their op-
erators.

WAH bitmap Operations

The original WAH compression method has been slightly adapted in order to manipulate bitmaps of 
different lengths. First, the last word, i.e., the remainder of the uncompressed bitmap is stored as if the 
bitmap is extended with extra unset bits to finish the last word. So a bitmap composed of: 10∗0’s, 21∗1’s, 
and 4∗1’s becomes <001FFFFF> <78000000> and not <0001FFFF> <0000000F> as in the original 
algorithm. This allows no particular treatment for the last word and allows expanding existing bitmaps 
without any extra manipulations.

Logical operations on WAH-compressed bitmaps can be performed without decompressing the bit-
maps. Operations are performed by scanning both inputs word by word. If two fill words are met, the 

Figure 8. estimated storage requirements including PostgreSQL overhead
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result will be a fill word of type resulting from the operation; its length is the minimum length of the 
two input fill words. If two literal words, or a literal and a fill word are met, the result will be a literal 
corresponding to the operation.

Listing 1. Pseudo C implementation of the bitwise logical AND operator on two WAH compressed 
bitmaps 

struct wah32run_struct { 
 unsignedint it; // iterator 
 unsignedint data; // decompressed data 
 unsignedint nWords; // group counter 
  bool isFill; 
}; 
staticinline void wah32_run_decode(wah32run run, unsigned int word) { 
 if (WAH32_ISCOUNTER(word)) { 
   run->data = (word > WAH32_ONECOUNTER ?  
   WAH32_ALLONES : WAH32_ALLZEROES); 
   run->nWords = word & WAH32_MASK_COUNTERVALUE; 
   run->isFill = 1; 
  } 
else { 
   run->data = word & WAH32_MASK_LITTERAL; 
  run->nWords = 1; 
   run->isFill = 0; 
 } 
} 
// input: 2 bitmaps represented with 2 dynamic arrays of integers 
// output: 1 bitmap represented with 1 dynamic array of integers 
voidwah32_and(Intlist x, Intlist y, Intlist rtnBitmap) { 
 unsignedint nWords = 0; // minimum counter 
 wah32run xrun, yrun;  
 xrun = wah32_run_init(); // initialize data struct 
 yrun = wah32_run_init(); // initialize data struct 
 while (xrun->it < intlist_size(x) && yrun->it < intlist_size(y)) 
{ 
  if (xrun->nWords == 0) // load a new word from x 
    wah32_run_decode(xrun,*intlist_getp(x,xrun->it)); 
  if (yrun->nWords == 0) // load a new word from y 
   wah32_run_decode(yrun,*intlist_getp(y,yrun->it)); 
  if (xrun->isFill && yrun->isFill) { 
   // appends a fill word with counter = minimum counter 
   nWords = min(xrun->nWords, yrun->nWords); 
   wah32_appendFill(rtnBitmap, nWords,  
    xrun->data & yrun->data); 
   xrun->nWords -= nWords; 
   yrun->nWords -= nWords; 
  }  
  else { 
    // append a literal word to the bitmap 
    wah32_appendLit(rtnBitmap, xrun->data & yrun->data); 
    (xrun->nWords)--; 
    (yrun->nWords)--; 
   } 
  if (xrun->nWords == 0)(xrun->it)++; 
  if (yrun->nWords == 0)(yrun->it)++; 
  } 
  wah32_run_free(xrun); 
  wah32_run_free(yrun); 
}
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Intersection and Union

The computation of the intersection or the union of two fuzzy song sets represented in arrays is performed 
by a modified sort-merge. The arrays are first decompressed and sorted by element. In our experiment, 
the sorting of the array with respect to its elements is done using the quicksort algorithm. Once sorted, the 
membership degrees of identical elements are compared. For an intersection, if both elements are present, 
the minimum membership degree is placed in the array; for a union, the maximum membership degree 
of both elements or the membership degree of the existing element are placed in the return array.

The computation of the WAH union is performed as follows. In the WAH bitmap representation, the 
elements are organized per membership degree. For each membership degree starting from the highest, 
we perform a logical OR on the compressed bitmaps. To prevent future operations to set a bit already 
set previously for another membership degree, we have to maintain a history of bit, also represented 
using a WAH-bitmap. This costs two additional operations on the bitmaps, a compressed NOT-AND 
to check that a bit was not previously set, and a compressed or, to maintain the history up to date as 
we scan through the various membership degree. Pseudo C code for performing the union is shown in 
Listing 2, results are shown in Figure 9. The computational cost of the “OR”, the “NOT-AND”, and the 
“OR” for maintaining the set bit history are shown in Figure 9. The WAH union is the sum of the three 
operations.

No update of the history is needed when handling the last bitmap, thus the CPU time reaches a ceil-
ing when no more elements are added to a bitmap corresponding to a level higher than 1. After 2000 
elements, all the bitmaps have elements. New elements are added in the last bitmap corresponding to 
the lowest membership degree.

For sparse bitmaps, the number of elements grows linearly with the number of elements. As the den-
sity of bits set increases, the proportion of literal words increases, thus increasing the likelihood of new 
element being added to existing literals rather than splitting fill words into literals. Figure 10 shows the 
average input and output length of the bitmaps used for benchmarking the CPU time of the “OR” opera-
tion. After 2000 elements, the length growth diminishes due to the increase in the number of literals.

The union of arrays is highly efficient for low numbers of elements. As expected, their performances 
decrease as the number of elements increases. Additionally, the sort operation significantly increases 
the computation time. Note, however, that the resulting set is sorted, thus preventing successive sort 

Listing 2. Pseudo C implementation of the union of fuzzy song sets represented with two arrays of WAH 
compressed bitmaps with membership degree ranging from 0 to 100 

wahbitmap * union(wahbitmap *x, wahbitmap *y) { 
 wahbitmap tmp, history; // temporary and history bitmaps 
wahbitmap z[101]; // z is the return array of bitmap 
 unsignedshort mu; // membership degree 
 for (mu = 100; mu >= 2 ; mu--) { 
   tmp = wah_or(x[mu],y[mu]); // logical or, save in tmp 
   z[mu] = wah_notand(history,tmp); // check with history 
   history = wah_or(history,tmp); // update history 
  } 
  // for mu = 1, no history update  
 tmp = wah_or(x[mu],y[mu],); // logical or  
 z[1] = wah_notand(history,tmp); // check with history 
 return z; 
} 
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operations to be necessary, e.g., in case the function is used for an aggregation. But, even in the best 
case scenario, when no sorting of the elements is required, the CPU time spent on the union of arrays is 
proportional to the number of elements in the sets. Bitmap operations, however, are linearly proportional 
to the number of words in the input bitmap and not directly to number of elements, i.e., the number 
of bits set. As the number of elements increases, bitmaps will keep a nearly constant processing time 
where arrays will be proportional to the number of elements. Efficiency of the array and bitmaps union 
operations on the song similarity dataset is shown in Figure 11.

Top

The top operation for the array data structure requires ordering the elements with respect to their member-
ship degrees. Since the number of membership degrees is limited, the sort is performed using a bucket 
sort whose complexity is linear in the number of elements.

Figure 9. CPU time required for the various steps of a union of fuzzy song sets represented with bit-
maps

Figure 10. Input and output length depending on the number of song elements stored
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For WAH bitmaps, the elements are already grouped by membership degree. The only operation 
required is to scan the compressed bitmap, starting with the highest membership degree. As soon as k 
elements are found, the scan stops. The number of operations is thus only depending on the number 
of words needed to be read during the scan before k set bits are found. Unlike arrays, the operation is 
independent from the total number of elements in the bitmaps. Pseudo C code for performing the top 
is shown in Listing 3.

Finally, returning the resulting WAH bitmaps is performed simply by copying the input bitmaps and 
truncating it at the right place. Sorting the array is a slower process as it requires copying elements one 
by one. The CPU time spent for performing top operations depending on the size of the fuzzy song set 
are shown in Figure 12.

Reduce

On an array, the reduce operation requires scanning the elements of the array; the computational cost 
is therefore proportional to the number of elements. In a WAH bitmap, since the elements are already 
organized per membership degree, the operation only consists of deleting the bitmaps corresponding to 
membership degree lower than alpha from the input bitmap. Pseudo C code for performing the reduce 
operation is shown in Listing 4. The computation time results are shown in Figure 13.

gENERALIZATION TO OTHER DOMAINs

The generalization from fuzzy song sets to other domains with respect to the storage solutions is im-
mediate for both arrays and WAH bitmaps.

For fuzzy sets requiring a fine level granularity, i.e., a high cardinality of membership degrees, the 
number of bits used to represent the membership degree on uncompressed arrays grows logarithmically. 
On compressed arrays, for fuzzy sets with at least one element per membership degree, no size differ-
ence will be noticed. Similarly, WAH bitmaps are well known to scale very well with high cardinality 
attributes as their size is bounded by the total number of elements and not the number of bitmaps.

Figure 11. comparison between the performances of the union operator for arrays and WAH bitmaps
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Listing 3. Pseudo C implementation of the top operation of a fuzzy song set represented by an array of 
WAH compressed bitmaps with membership degree ranging from 0 to 100 

wahbitmap * wah_top(wahbitmap * x, unsignedint k) { 
  for (mu = 100; mu >= 0; mu--) { 
  if (k > 0) wah_truncate_k(&k,x[mu]); 
  else x[mu] = 0; 
  } 
 return x; 
} 
wahbitmap wah_truncate_k(unsignedint *k, wahbitmap x){ 
 while (xrun->it < bitmap_size(x)) { 
   tmp = bitmap_get(x,xrun->it); // get new word 
   wahrun_decode(xrun,*tmp); // decode the current word 
   nWords += xrun->nWords; // update the word counter 
  if (xrun->isFill && xrun->data == ALLONES) { 
   if (setbitcount + 31 * xrun->nWords > *k) { 
     // append trailing fills then a literal 
     // set k = 0 and leave 
     // ... 
    } 
    setbitcount += 31 * xrun->nWords; 
   } 
  else { 
   if (setbitcount + bitCount(xrun->data) > *k) { 
     // need to find which bit exactly is the k 
     // override trailing bit with 0 
     // set k = 0 and leave 
     // ... 
    } 
    setbitcount += bitCount(xrun->data); 
   } 
   xrun->it++; // point to next word 
  } 
  *n-=setbitcount; // remaining number of bits not found 
}

Figure 12. Comparison between the performances of the top operator for arrays and WAH bitmaps
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Finally, the performance studies of the previously presented operators are directly applicable to fuzzy 
sets. For other operators, e.g., intersections defined using different t-norms, new performance studies 
are required. For WAH bitmaps, the computational time will be proportional to the number of logical 
bitwise operations required on the compressed bitmaps.

CONCLUsION AND FUTURE WORK

As music recommendation systems are becoming increasingly popular, new efficient tools able to man-
age large collections of musical attributes are urgently needed. Fuzzy sets prove to be well suited for 
addressing various problematic scenarios commonly encountered in recommendation systems. After 
defining fuzzy song sets and presenting an algebra to manipulate them, we demonstrate the usefulness 
of fuzzy song sets and their operators to handle various information management scenarios in the con-
text of a music warehouse. For this purpose we create two multidimensional cubes: the Song Similarity 
Cube and the User Feedback Cube. Three data options, arrays, tables and WAH bitmaps, are envisioned 
for representing fuzzy song sets. We proceed by discussing the impact of these data structures on the 
storage space and operators performance.

With respect to storage, while arrays first show to be a very good choice from a theoretical point of 
view, they suffer from a significant overhead. Estimates taking into account DBMS overheads show 
that the differences between WAH bitmaps and arrays vanish as the number of elements grows. The 

Listing 4. Pseudo C implementation of the reduce operation of a fuzzy song set represented by an array 
of WAH compressed bitmaps with membership degree ranging from 0 to 100 

wahbitmap * wah_reduce(wahbitmap *x, unsignedint alpha) { 
 for (mu = alpha - 1; mu > 0; mu--) { 
   x[mu] = 0;  
 } 
 return x; 
}

Figure 13. comparison between the performances of the reduce operator for arrays and WAH bitmaps
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different data organizations in WAH bitmaps and in arrays cause operators to behave very differently 
depending on the number of elements. Arrays are very efficient when the number of elements remains 
limited. However, due to frequent sorting operations, arrays behave poorly for larger sets. Requiring 
more complex management, bitmaps suffer from a higher starting overhead that is mostly visible when 
the number of elements is low. As the number of elements grows, operations on bitmap are faster than 
on arrays. In our experiment with the largest number of elements, the Union operator on WAH bitmaps 
is performed 5 times faster than on arrays, the speedup factor is 7 for the Top operator and 85 for the 
Reduce operator.

Future research directions include the development of methods for the transparent manipulation of 
arrays and bitmap and the automatic selection of a data structure option during the query plan optimiza-
tion phase. Further research on how to improve the WAH compression performance by using a longer 
alignment without diminishing the compression ratio seems also promising, e.g., for 64 bits system 
architecture.
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INTRODUCTION

As defined by OLAP Council (2007) “On-Line Analytical Processing (OLAP) is a category of software 
technology that enables analysts, managers and executives to gain insight into data through fast, consis-
tent, interactive access to a wide variety of possible views of information that has been transformed from 

AbsTRACT

The use of online analytical processing (OLAP) systems as data sources for data mining techniques has 
been widely studied and has resulted in what is known as online analytical mining (OLAM). As a result 
of both the use of OLAP technology in new fields of knowledge and the merging of data from different 
sources, it has become necessary for models to support imprecision. We, therefore, need OLAM methods 
which are able to deal with this imprecision. Association rules are one of the most used data mining 
techniques. There are several proposals that enable the extraction of association rules on DataCubes 
but few of these deal with imprecision in the process and give as result complex rule sets. In this chapter 
the authors will present a method that manages the imprecision and reduces the complexity. They will 
study the influence of the use of fuzzy logic using different size problems and comparing the results with 
a crisp approach.
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raw data to reflect the real dimensionality of the enterprise as understood by the user”. According to Han 
(1997), the use of OLAP systems in data mining is interesting for the following three main reasons:

Data mining techniques need integrated, consistent and clean data to work with (Fayyad, Piatetsky-• 
Shapiro, Smyth, & Uthurusamy, 1996). The data processing performed when building a data 
warehouse guarantees these qualities in data and converts data warehouses into good data sources 
for data mining.
Users frequently need to explore the stored data, selecting only a portion of them, and might want • 
to analyze data at different abstraction levels (different levels of granularity). OLAP systems are 
designed to ease these operations in a flexible way . The integration of data mining techniques 
with OLAP provides the user with even more flexibility.
It is difficult to predict what knowledge is required a priori. The integrated use of • OLAP and suit-
able data mining methods allows the user to obtain this knowledge using different approaches and 
representations.

Information in decision support systems usually has an ill-defined nature. The use of data from human 
interaction may enrich the analysis (Gorry & Morton, 1971) and, nowadays, it is common for companies 
to require external data for strategic decisions. These external data are not always compatible with the 
format of internal information and even if they are, they are not as reliable as internal data. Moreover, 
information may also be obtained from semi-structured or non-structured sources.

In addition, OLAP systems are now being used in new fields of knowledge (e.g. medical data) that 
present complex domains which are difficult to represent using crisp structures (Lee & Kim, 1997). In 
all these cases, flexible models and query languages are needed to manage this information.

These reasons, among many others, justify the search for multidimensional models which are able 
to represent and manage imprecision. Some significant proposals in this direction can be found in the 
literature (Laurent, 2002; Jensen, Kligys, Pedersen, & Timko, 2004; Alhajj & Kaya, 2003; Molina, Sán-
chez, Vila, & Rodríguez-Ariza, 2006). These proposals support imprecision from different perspectives. 
In (Molina, Sánchez, Vila, & Rodríguez-Ariza, 2006), we propose a fuzzy multidimensional model that 
manages imprecision both in facts and in the definition of hierarchical relationships. These proposals 
organize imprecise data using DataCubes (imprecise DataCubes) and it is therefore necessary to develop 
data mining techniques that can work over these imprecise DataCube models.

Our aim in this chapter is to study the influence of using fuzzy logic in the scalability of a method to 
extract association rules from a fuzzy multidimensional model that can represent and manage impreci-
sion in different aspects: COGARE. As we have already mentioned, previous proposals in the literature 
are directed towards obtaining as many associations as possible. However, they produce complex results 
(e.g. a high number of rules, rules that represent the same knowledge at different detail levels, etc.). In 
contrast, this proposal has two main goals:

Firstly, to manage data imprecision throughout the entire process.• 
Secondly, to reduce the complexity of the final result using both the fuzzy concepts and the hier-• 
archical relation between elements, without reducing the quality of the rule set.

In the literature there are some other approaches to reduce the complexity of the results (closed 
itemsets, maximal itemsets, etc.) but they work on another way because these methods try to reduce the 
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number of rules shown to the user but been able to recover all the association rules. Our approach will 
try to reduce the global number of association, not only the way to represents them.

During all the process fuzzy logic is used. This introduces complex calculation along with the high 
time consuming process of data mining. What we want to do in this chapter is study the influence of 
the use of the fuzzy logic in the process of extraction association rules over fuzzy DataCubes and the 
overload.

Next sections present the data mining method proposed, and after that, the data used for the study 
and the results of the experiments.

AssOCIATION RULE ExTRACTION

In this section, we will briefly describe the main published approaches for association rule extraction. 
We will first discuss classical methods. As the multidimensional models usually define hierarchies, the 
multi-level association methods are interesting when studying the association rule extraction over them. 
The final subsection introduces the proposed method to work on both crisp and fuzzy DataCubes.

Association Rules

Agrawal et al. (Agrawal, Imielinksi, & Swami, 1993) formalized the problem of association rule ex-
traction. Let I= {i1,i2, ..., im} be a set of literals called items and D be a set of transactions, where each 
transaction T is a set of items such that T⊆I. A transaction T contains the set of items X if X ⊆T.

Definition 1. Let I= {i1,i2, ..., im} be a set of literals and D be a set of transactions defined over I. An 
association rule is an implication X→Y, where X⊂I, Y⊂I, and X∩Y = ∅.

The quality of the rules is usually measured in terms of the confidence and the support of the rule. 
The confidence is computed as the percentage of transactions that contain both X and Y with respect 
to the transactions that contain X, while the support of the rule is the percentage of transactions that 
contain XY in the entire dataset. First approaches considers interesting only the rules with a confidence 
and support greater than a threshold. These rules are called strong rules.

The association rule extraction process is divided into two phases:

Discover the frequent item sets, i.e. the sets of items with a support greater than a given • 
threshold.
Build the association rules using the previously obtained frequent item sets.• 

Since the first step is the most time-consuming, there are proposals which focus on the optimization 
of the frequent item set calculation (Agrawal & Sritkant, 1994; Park, Chen, & Yu, 1995; Brin, Motwani, 
Ullman, & Tsur, 1997; Savasere, Omiecinski, & Navathe, 1995; Han, Pei, & Yin, 2000).

Multiple-Level Association Rules

The use of taxonomies over the data is interesting because the desired associations may not appear at 
the most detailed level but at higher levels. Researchers have also paid attention to this approach, and a 
first proposal (Srikant & Agrawal, 1995) applies a rule extraction process to all the levels. The authors 
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define an interest measure that is used to prune the rule set. In this way, a rule is deleted if a rule defined 
at a higher level exists and the first does not give more information. This approach considers the same 
support threshold for all the levels.

When the taxonomy is complex or when a relatively high number of levels is considered, a high 
number of rules appears. Let us explain this with a naive example. Figure 1 represents a possible tax-
onomy over data. Let us suppose that the item set {Age is 13, Date is 05/22/2006} is frequent; then all 
the items that group one of the values will be frequent, and all the combinations of these values will 
also be frequent.

This circumstance will imply that the following item sets will be frequent: {Young, Date is 05/22/2006}, 
{Age is 13, May}, {Young, May}, {No legal age, Date is 05/22/2006}, {No legal age, May}, {Age is 13, 
Year 2006}, {Young, Year 2006} and {No legal age, 2006}.

Therefore, for a single item set we obtain another 8 frequent item sets that represent exactly the same 
information at different abstraction levels. When the method finishes, it will produce a high number of 
rules that are redundant (i.e. they represent the same information at different abstraction levels). This 
fact only increases the complexity for the user.

The method uses an interesting measure to reduce redundant rules if other rules at a higher level give 
at least the same information. However, it allows redundant rules if the concrete ones are of a higher 
quality.

Han and Fu (1995) proposed a top-down approach using a single taxonomy: an item set is considered 
to be frequent if the support is greater than a threshold and all the ancestors are also frequent. The items 
belonging to an item set are all defined at the same detail level. Later the authors adjust the algorithm 
to work with different details level (1999). The authors used different support thresholds for each level 
that must be established by the user (if the taxonomy is complex, this involves a large number of pa-
rameters), and do not consider multiple taxonomies over the items. Thus, if the domain is complex, it 
may not be modeled well.

Shen and Shen (1998) proposed another method that extracts all the strong rules which are defined 
at all the combinations of detail levels using different taxonomies, considering the same threshold. Yen 
(Yen, 2000) used a graph structure to obtain the relationships between elements at all the detail levels. 
Both approaches present the same problems as those mentioned for Srikant and Agrawall’s proposal: a 
large number of rules with redundant information.

Figure 1. Frequent item sets at different levels using the same support threshold
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The method proposed by Lui and Chung (2000) uses a bottom-up approach. In this case, the method 
considers two infrequent item sets of the same size with common items, and generalizes them to a new 
one, which is a candidate frequent item set in a second stage. The support threshold for each item set 
is calculated according to a proposed generality measure. As the generalization process is applied only 
once, if the relationships appear at higher levels, the method will not discover them.

Another approach to association rule extraction using taxonomies is attribute-oriented induction 
(AOI). In this case, the taxonomies are used to raise the abstraction of the items before the process is 
applied. In line with this idea, several methods have been proposed (Han, Cai, & Cercone, 1993; Muyeba 
& Keane, 2000) and these have recently been extended to use fuzzy hierarchies (Angryk & Petry, 2005). 
The idea is to reduce the number of rules decreasing the number of items to consider. The main problem 
of all these approaches is that since generalization is applied before rule extraction, information is lost 
in the process.

Association Rules over DataCubes

Let us now briefly describe some proposals for association rule extraction on DataCubes. The first ap-
proach can be found in (Kamber, Han, & Chiang, 1997). The authors proposed a method that works over 
a very simple multidimensional model (there are neither hierarchies on the dimensions nor grouping 
mechanisms to change the granularity of the data) and which focuses on frequent item set calculation 
to speed up the process using DataCube operations.

Zhu (1998) proposed a more complex approach, with the definition of three different associations:

• Intra-dimensional association: the association is found between elements in the same dimension 
(item dimension), using another dimension to calculate the support (transaction dimension).

• Inter-dimensional association: in this case, the associations hold between elements in different 
dimensions.

• Hybrid association: this association is the result of merging the two previous types. The method 
first looks for intra-dimensional frequent item sets and then for inter-dimensional frequent item 
sets, merging the resulting sets in order to obtain the rules.

In all the cases, the method works over a single abstraction level, and the support threshold is 
therefore a single value. For multi-level association rules, the user must run the method for all the level 
combinations required, defining the same number of support thresholds as executions (something which 
may be very complex for the user) or using the same value for the entire process. As the final result 
is the union of all of the obtained rule sets, there may be a high number of rules and repeated associa-
tions expressed at different abstraction levels (as in Srikant and Agrawal’s proposal as mentioned in the 
previous section).

Finally, Kaya and Alhajj (2003; 2005) propose a method that works over a simple fuzzy multidimen-
sional model. The proposed DataCube structure defines fuzzy relations at the lowest abstraction level and 
does not support imprecision in hierarchies or facts, as well as the normal operations over DataCubes (e.g. 
changing the detail level, reducing the dimensionality of the DataCube, etc.). Under these circumstances, 
users would have less flexibility since they cannot explore the data. The proposed method extracts as-
sociation rules at all abstraction levels, obtaining intra-dimensional and inter-dimensional associations 
as previously presented. The user must establish a support threshold for each level in the DataCube and 
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the threshold for an item set will be the minimum of the threshold established for each item. The authors 
use an interesting measure to reduce certain problems of confidence when measuring the quality of the 
rules, but do not control the redundant associations defined at different abstraction levels.

THE FUZZY MULTIDIMENsIONAL MODEL

Although there is no standard multidimensional model, we shall briefly introduce the common character-
istics of the first models proposed in literature. In classical multidimensional models, we can distinguish 
two different types of data: on the one hand, we have the facts being analyzed, and on the other, the 
dimensions that are the context for the facts. Hierarchies may be defined in the dimensions (Agrawal, 
Gupta, & Sarawagi, 1995;Kimball, 1996;Cabibbo & Torlone, 1997;Cabibbo & Torlone, 1998).

The different levels of the dimensions allow us to access the facts at different levels of granularity. 
In order to do so, classical aggregation operators are needed (maximum, minimum, average, etc.). Other 
models, which do not define explicit hierarchies on the dimensions, use other mechanisms to change 
the detail level (Li & Wang, 1996; Datta & Thomas, 1999). The model proposed by Gray et al. (Gray, 
Chaudhuri, Bosworth, Layman, Reichart, & Venkatrao, 1997) uses a different approach. This model 
defines two extensions of the relational group by (rollup and cube) that are used to group the values 
during the aggregation process.

As the models that define hierarchies usually use many-to-one relations, one element in a level can 
only be grouped by a single value of each upper level in the hierarchy. This makes the final structure of a 
DataCube rigid and well defined in the sense that given two values of the same level in a dimension, the 
set of facts relating to these values have an empty intersection. The normal operations (roll-up, drill-down, 
dice, slice, and pivot) are defined in almost all the models. Eventually, some of the models define other 
operations in order to provide the end user with additional functionality (Agrawal, Gupta, & Sarawagi, 
1995; Gray, Chaudhuri, Bosworth, Layman, Reichart, & Venkatrao, 1997; Datta & Thomas, 1999).

A Fuzzy Multidimensional structure

In this section, we will briefly introduce a fuzzy multidimensional model which we have already de-
veloped to manage data imprecision (Molina, Sánchez, Vila, & Rodríguez-Ariza, 2006). The model is 
provided with explicit hierarchies that can use fuzzy relations between elements in two levels.

Definition 2. A dimension is a tuple d=(l,≤d,l┴,l
┬

) where l={li, i=1,…,n} so that each li is a set of 
values li={ci1, ..., cin} and li∩lj=Ø if i≠j, and ≤d is a partial order relation between the elements of l so that 
li ≤d lk if ∀cij ∈li ⇒∃ckp ∈lk|cij ⊆ckp. l┴ and l

┬
 are two elements of l so that " Îl l

i
l l

d i^ £  and l l
i d
£ T

We use level to denote each element li. In order to identify level l of dimension d we will use d.l. 
The two special levels l⊥ and l

┬
 will be called the base level and top level, respectively. The partial 

order relation in a dimension is what gives the hierarchical relation between the levels. An example of 
dimension on the ages can be found in Figure 2.

The domain of a dimension will be the set of all the values that appear in all the defined levels.
Definition 3. For each dimension d, the domain is dom d l

i
( ) = 

In the above example, the domain of the dimension Age is dom(Age)= {1, ..., 100,Young,Adult,Old,
Yes,No,All}.
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Definition 4. For each li, the set

H l l l l l l l l l
l j j i j d i k j d k d ii
= ¹ Ù £ ÙØ$ £ £{ / }

 

is called the set of children of level li.
This set defines the set of all the levels which are below a certain level (li) in the hierarchy. In ad-

dition, this set gives the set of levels whose values or labels are generalized by the ones included in li. 
Using the same example of the dimension on the ages, the set of children in level All is HAll = {Group, 
Legal age}. In all the dimensions defined for the base level, this set will always be empty (as the defini-
tion shows).

Definition 5. For each li the set

P l l l l l l l l l
l j i j i d j k i d k d ji

= ¹ Ù £ ÙØ$ £ £{ / }
 

and we call this the set of parents of level li.
For a certain level, this set shall give all the levels that group or generalize the values of the level. In 

the hierarchy we have defined, the set of parents in level Age is PAge={Legal age, Group}. In the case of 
the top level of a dimension, this set shall always be empty.

In the case of fuzzy hierarchies, an element can be related to more than one element in the upper 
level and the degree of this relationship is in the interval [0,1]. The kinship relationship defines this 
degree of relationship.

Definition 6. For each pair of levels li and lj such that lj ∈ Hi, we have the relation

m
ij i j

l l: ,´ ® é
ëê

ù
ûú0 1
 

and we call this the kinship relationship.
The degree of inclusion of the elements of a level in the elements of their parent levels can be defined 

using this relation. If we only use the values 0 and 1 and we only allow an element to be included with 
degree 1 in a unique element of its parent levels, this relation represents a crisp hierarchy.

Figure 2. Example of hierarchy over ages
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If we relax these conditions and we allow values to be used in the interval [0,1] without any other 
limitation, we have a fuzzy hierarchical relationship. This allows several hierarchical relations to be 
represented in a more intuitive way. An example can be seen in Figure 3 where we present the group 
of ages according to linguistic labels. Furthermore, this fuzzy relation allows hierarchies to be defined 
where there is imprecision in the relationship between elements of different levels. In this situation, the 
value in the interval shows the degree of confidence in the relation.

Using the relation between elements in two consecutive levels, we can define the relation between 
each pair of values in different levels in a dimension.

Definition 7. For each pair of levels li and lj of dimension d such that l l l l
i d j i j
£ Ù ¹

h
m

m hij
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where ⊗ and ⊕ are a t-norm and a t-conorm, respectively, or operators from the families MOM and 
MAM defined by Yager (1994), which include the t-norms and t-conorms, respectively. This relationship 
is called the extended kinship relationship.

This relation gives us information about the degree of relationship between two values in different 
levels within the same dimension. In order to obtain this value, it considers all the possible paths between 
the elements in the hierarchy. Each one is calculated by aggregating the kinship relationship between 
elements in two consecutive levels using a t-norm. The final value is then the aggregation of the results 
of each path using a t-conorm.

By way of example, we will show how to calculate the value of ηAll,Age(All, 25). In this situation, we 
have two different paths:

• All -Legal age -Age. In Figure 3.a it is possible to see the two ways of reaching 25 from All 
through the level legal age. The result of this path is (1 ⊗ 1) ⊕ (1 ⊗ 0).

• All -Group -Age. This situation is very similar to the previous one. In Figure 3.b it is possible to 
see the three different paths going through the level Group. The result of this path is (1 ⊗ 0.7) ⊕ 
(1 ⊗ 0.3) ⊕ (1 ⊗ 0).

Figure 3. Example of the calculation of the extended kinship relation. a) path All-Legal Age-Age b) path 
All-Group-Age
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We must now aggregate these two values using a t-conorm in order to obtain the final result. If we 
use the maximum as t-conorm and the minimum as t-norm, the result is

((1 ⊗ 1) ⊕ (1 ⊗ 0)) ⊕ ((1 ⊗ 0.7) ⊕ (1 ⊗ 0.3) ⊕ (1 ⊗ 0)) = 

(1 ⊕ 0) ⊗ (0.7 ⊕ 0.3 ⊕ 0) = 1 ⊕ 0.7=1 

Thus, the value of ηAll,Age(All, 25) is 1, which means that the age 25 is grouped by All in level All 
with grade 1.

Definition 8. We say that any pair (h, α) is a fact when h is an m-tuple on the attribute domain we 
want to analyze, and α ∈ [0, 1].

The value α controls the influence of the fact in the analysis. The imprecision of the data is managed 
by assigning an α value that represents this imprecision. When we operate with the facts, the aggregation 
operators must manage these values in the computations. The arguments for the operator can be seen 
as a fuzzy bag (Yager, 1986; Delgado, Martin-Bautista, Sanchez, & Vila, 2003) since they are a set of 
values with a degree in the interval [0,1] that can be duplicated. The result of the aggregation must also 
be a fact. So, in the fuzzy case, the aggregation operators may be defined as follows:

Definition 9. Let B X( )  be all the possible fuzzy bags defined using elements in X , P X( )  be the 
fuzzy power set of X, and Dx be a numeric or natural domain. We define an aggregation operator G as a 
function G B X P X: ( ) ( ) [ , ] ® ´ 0 1

When we apply an aggregation operator, we summarize the information of a bag of values into a 
single value and it is not always possible to undo this operation. If we want to undo operations that 
reduce the level of detail in a DataCube, we therefore need something to prevent this problem and so 
we define the object history that stores a DataCube’s aggregation states.

Definition 10. An object of type history is the recursive structure

H

H A l F G Hn
b

n

0

1

=

=+

W

( , , , , )
 

where:

Ω is the recursive clause,• 
• F is the fact set,
• lb is a set of levels (l1b, ..., lnb),
• A is an application from lb to F (A:lb → F),
• G is an aggregation operator.

This structure enables detail levels of the DataCube to be stored while it is operated on so that it may 
be restored to a previous level of granularity.

We can now define the structure of a fuzzy DataCube. A DataCube can be considered to be the union 
of a set of facts (the variables to analyze) and a set of dimensions (the context of the analysis). In order 
to report the facts and dimensions, we need a correspondence which for each combination of values of 
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the dimension gives us the fact related to these coordinates in the multidimensional space defined by 
the dimensions.

In addition to these DataCube features, we also need the levels that establish the detail level that the 
facts are defined with, and a history-type object that keeps the aggregation states during the operations. 
The DataCube is therefore defined in the following way:

Definition 11. A DataCube is a tuple C =(D, lb,F,A,H) such that

• D =(d1, ..., dn) is a set of dimensions,
• lb =(l1b, ..., lnb) is a set of levels such that lib belongs to di,
• F = R ∪∅ where R is the set of facts and ∅ is a special symbol,
• H is a history-type object,
• A is an application defined as A:l1b×...×lnb →F that gives the relation between the dimensions and 

the facts defined.

If for a a a
n

= ( ,..., )
1

, A a( )


= Æ , this means that no fact is defined for this combination of values. 
Normally, not all the combinations of level values have facts. This situation is shown by the symbol ∅ 
when application A is defined.

The basis of the analysis will be a DataCube defined at the most detailed level. We shall then refine 
the information while operating on the DataCube. This DataCube is basic.

Definition 12. We say that a DataCube is basic if lb =(l1⊥, ..., ln⊥) and H=Ω.

Operations

Once we have the structure of the multidimensional model, we need the operations to analyze the data 
in the DataCube. Over this structure we have defined the usual operations of the multidimensional 
model:

Roll-Up

Going up in the hierarchies to reduce the detail level. In this operation we need to know the facts related 
with each value in the desired level. The set of facts is obtained using the kinship relationships as fol-
lows:

Definition 13. For each value cij belonging to lr, we have the set

F
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where c c c
b ij b

n= ( ,..., , ..., )1 .
Once we have the facts for each value, we must aggregate them to obtain a new fact according to the 

new detail level. The influence of each fact in the aggregation will depend on the relation of the fact with 
the value considered and the α value assigned to the fact. Fuzzy operators are needed for this process.
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This operation may be defined in the following way:
Definition 14. The result of applying roll-up on dimension di, level lir (lir ≠ li⊥), using the aggregation 

operator G on a DataCube C=(D,lb,F,A,H) is another DataCube ¢ = ¢ ¢ ¢ ¢C D l F A H
b
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• F’ is the range of A’,
• H’=(A,lb,F,G,H).

Drill-Down

This operation implies go down in the hierarchies to increase the detail level. In this operation, we use 
the history-type object. Since this structure stored the initial aggregation state when roll-up operations 
were applied, by using the information stored in this structure we can therefore get to a previous detail 
level. The operations may therefore be defined as:

Definition 15. The result of applying drill-down on a DataCube C=(D, lb,F,A,H) where 
H A l F G H

b
= ¢ ¢ ¢ ¢ ¢( , , , , )  is another DataCube ¢ = ¢ ¢ ¢ ¢C D l F A H

b
( , , , , ) .

Dice

This operation consists on a projection over the DataCube using a condition. In this operation we must 
identify the values in the dimension that satisfy the condition or that are related with a value that satisfy 
the condition. This relation is obtained using the kinship relationship. Once we have reduced the values 
in the dimension, we must eliminate the facts for which the coordinates have been removed.

Definition 16. The result of applying dice with the condition β on level lr of dimension di in a Data-
Cube C =(D, lb,F,A,H) is another DataCube ¢ = ¢ ¢ ¢C D l F A

b
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• F’ is the range of A’.
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Slice

The slice operation reduced the dimensionality of the DataCube. When we apply this operation, we 
eliminate one of the DataCube’s dimensions and so we must adapt the granularity of the facts using a 
fuzzy aggregation operator.

Definition 17. The result of applying slice on dimension di using the aggregation operator G in a 
DataCube C =(D,lb,F,A,H) is another DataCube ¢ = ¢ ¢ ¢C D l F A

b
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• F’ is the range of A’.

Pivot

This operation implies to change the order of the dimensions. This operation does not affect the facts, 
only the order of the coordinates that defined them.

Definition 18. The result of applying pivot on dimensions di and dj in a DataCube C=(D,lb,F,A,H) is 
another DataCube ¢ = ¢ ¢ ¢C D l F A
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The properties of these operations have been studied in (Molina, Sánchez, Vila, & Rodríguez-Ariza, 
2006).

COMPLExITY MEAsURE

Since our approach is supposedly driven by the desire to reduce the complexity of the obtained results, 
we therefore need to measure a rule set’s complexity in order to compare different results and decide 
which is the least complex. We follow a similar approach to Atzmueller et al. (Atzmueller, Baumeister, 
& Puppe, 2004) by considering two factors for the complexity:

Number of rules: the greater the number of rules in the results, the greater the complexity for the • 
user. The following section will describe a function to measure this factor.
Complexity of the rule elements: very specific values (e.g. dates) result in more specific informa-• 
tion but are more difficult for the user to understand than elements in higher abstraction levels 
(e.g. months instead of specific dates). Next sections present the functions for measuring the ab-
straction of a rule and a set of rules.
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Number of Rules

As we have already mentioned, a large number of rules will increase the complexity and make the rule 
set harder to understand. We want to measure the complexity as a value in the [0,1] interval. A rule set 
with a complexity value which is close to 0 will have very few rules while a value which is close to 1 
will correspond to a set with a high cardinality. Under these circumstances, a function can be considered 
to measure the complexity if it satisfies the following definition:

Definition 19. A function CNR defined as

C : [ , ]N ® 0 1  

is a complexity function based on the number of rules when CNR(x) ≥ CNR(y), for all x and y such that 
x>y.

All the functions with this behavior can be used to measure the complexity produced by the number 
of rules. Nevertheless, this definition does not take into account the size of the problem, i.e. the number 
of items. If we get a result with 100 rules for a problem that involves relations among 100 items, we can 
intuitively conclude that this set presents less complexity than another with the same number of rules 
for a problem with 10 items. This is why we think that the complexity function should also depend on 
the size of the problem.

Similarly, two result sets for the same problem with either 4000 or 5000 rules will be about as difficult 
to understand. If, however, the sets have either 10 or 100 rules, although the difference in cardinality 
is less than in the other case, there will be a greater difference in complexity from the user’s point of 
view. According to this intuitive behavior, the function should not present a linear behavior. Taking this 
discussion into account, the following function is proposed:

Definition 20. Let N be the number of items in the dimensions of the DataCube C. The complexity 
of the rule set CR over the DataCube C is a function CNR:N → [0,1] with the value

C C e
NR R

C

N
R

( ) = -
-

1  

Figure 4 shows the behavior of the function for three different problem sizes.

Abstraction

The abstraction of an item will depend on the level defined. In a DataCube, elements at higher levels 
will present a higher abstraction than elements at lower ones, since the first ones group the second ones. 
Thus, intuitively, an abstraction function would behave in the following way.

Definition 21. Let D be a dimension. A function A defined as

A: dom(D) → [0, 1] 

is an abstraction function if it satisfies the following properties:
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If • c l c l l P
i i j j j li
Î Ù Î Ù Î  then A(cj) ≥ A(Ci) (the abstraction increases if we go up through the 

hierarchies defined in the dimension).
If • ci ∈ l⊥ then A(ci)=0 (all the elements at the most detailed level (the base level of the dimension) 
have the lowest possible abstraction).
If for • ci ∈ li we get ∀c⊥ ∈ l⊥: ηi⊥(ci,c⊥)=1 then A(ci)=1 (an element that groups all the elements in 
the base level has the highest possible abstraction).

In view of the established properties, the abstraction function must take into account the granularity of 
the elements. One possibility is to define the abstraction according to the levels in the hierarchy. In this 
case, all the items in a level will share the abstraction value. This situation, however, can present ceratin 
problems because elements at the same level will not always have the same granularity. For example, if 
we consider a level to define Legal age, this level has two values: Yes and No. In Spain, both values will 
group different numbers of ages (the value No groups the ages {1,...,17} and Yes the remaining values 
{18,...100,...}) so both have different levels of granularity, and naturally, different levels of (Yes abstrac-
tion group more values so they appear to present higher abstraction than No). Therefore, the proposed 
abstraction function considers each element independently of its level but measures its granularity. The 
following definition presents the abstraction function we have chosen.

Definition 22. A is an abstraction function defined as A:dom(D) → [0, 1] when for an element c l
i i
Î  

the value is

A c
V c

li

l ii( )
( )

=
^  

where |l⊥| represents the number of elements in the base level of the dimension and

Figure 4. Complexity function due to number of rules
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It should be noted that we consider the number of elements in the base level grouped by value in 
order to define the abstraction. This approach is similar to the one proposed by Lui and Chung (Lui & 
Chung, 2000) but considering fuzzy hierarchical relations.

The abstraction of a rule would depend on the items that appear in the rule. Once we know the ab-
straction of each of the items, the abstraction of the whole rule is defined as the average abstraction of 
the items that define the rule.

Definition 23. Let R be a rule with the elements I1, ..., IN and A an abstraction function. The abstrac-
tion of the rule is

A
A I

NR

i
i

N

= =
å ( )

1

 

In order to measure the abstraction of a rule set, we consider the abstraction of each rule that appears 
in the set. Not all the rules, however, have the same importance and some may be more representative 
of the data set according to their support. In order to measure the abstraction of the set, we consider the 
abstraction of each rule weighted by the support of the rule. Under these considerations, the abstraction 
of a rule set is defined as follows.

Definition 24. Let CR = {R1,..., RN} be a rule set with associated support sop(R1), ..., sop(RN) and A 
be an abstraction function. The abstraction of CR would be

A
A sop R

sop R
C

R i
i

N

i
i

NR

i

= =

=

å

å

( )

( )

1

1  

global Measure

In previous sections, we have defined two functions which are useful for measuring the complexity due 
to the number of rules and to the abstraction of a result rule set. In order to define a global measure, we 
now need to combine both functions to obtain a value in [0, 1] that represents the complexity of the set 
according to both factors:

Definition 25. Let α ∈ [0, 1]. We define the global complexity of a rule set CR as

C C C C A
global R NR R CR

( ) ( ) ( ) ( )= ´ + - ´ -a a1 1  

Depending on the value of α, the function controls the relative importance of each complexity mea-
sure in the final value. The abstraction of the items will help in the comprehension of the rules but the 
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number of rules may have a greater influence on the complexity for the final user (intuitively, a low 
number of rules with concrete values will be easier to understand than a high number of rules defined 
at high abstraction levels). Therefore, we suggest a value of α =0.6.

QUALITY MEAsUREs

The method we used is based on the complexity of the result obtained, but controlling the quality loss 
of the rule set. Thus, the method must use a quality measure. We first describe the measures that are 
conventionally used. Later, a new way of computing the quality of a rule set based on these measures 
is introduced.

Classical Measures

In this section, we will present some of the main quality measures used in the literature. We will only 
introduce the expression and briefly comment on the characteristics of these measures. For a deeper 
study, the reader can consult comparative studies about the performances of these measures in (An & 
Cercone, 2004; Dean & Famili, 1997; Pedrycz, 2004; Tan & Kumar, 2000). All the measures can be 
expressed in terms of relative frequencies. If R:A→C is a rule, Table 1 shows the contingency table 
with relative values.

Consistency is the normal quality measure used in association rule extraction, called in this field the 
Confidence of the rule. Its aim is to measure specificity, but various problems arise when very frequent 
items appear. 

Coverage measures the extent to which the domain of the consequent is covered by the rule (the maxi-
mum value is reached when all the elements that satisfy C are covered by the rule). Both the Confidence 
and Coverage, measure two important factors for the rule quality, but if we use them separately we can 
reach bad conclusions (rules that cover few elements in the case of Consistency, or a high number of 
false positives when using the Coverage). To improve the performance, certain authors have proposed a 
combination of both measures: Michalski (1990) uses a weighted combination which concedes greater 
importance to Consistency when it reaches high values, and Brazdil and Torgo (1990) propose a com-
bination that adjusts the Consistency according to the Coverage.

Another classical measure is the Certainty factor, proposed by Shortliffe and Buchanan (1975). This 
has been used in induction systems and measures both direct relations (antecedent implies the conse-

Table 1. Contingency table with relative values 

Satisfy C Not satisfy C

Covered by R
f
rc

f
rc

f
r

Not covered by R
f
rc

f
rc

f
r

f
c

f
c

1
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quent) and indirect relations (when the antecedent appears, it implies no occurrence of the consequent). 
This measure has also been used in association rules (Delgado, Marin, Sanchez, & Vila, 2003) because 
it does not present some of the problems of the Confidence.

Agreement measures use the main diagonal of the contingency table, and Cohen and Coleman’s 
measures are defined in this way. Bruha (1996) proposed two measures that attempt to combine the best 
characteristics of both. Measures from other knowledge fields have also been used to compute the qual-
ity of the rules, such as Information Gain, Logical Sufficiency,and Discrimination. In some situations, 
the measures lack a formal analysis of the dependencies and are empirically defined. An example of 
these measures is IMAFO (Famili, 1990) which combines two measures for the accuracy and coverage 
of the rules.

Table 2 gathers the expressions of the measures based on the contingency values.

Quality Measure for a Rule set

Although all of the previously presented quality measures compute the quality of a given rule, we need to 
measure the quality of an entire rule set. As we have previously done with abstraction, we now propose a 
general measure that takes into account the importance of each rule. We propose the use of the weighted 
arithmetic average. The following definition shows the quality measure for a rule set.

Definition 26. Let CR = {R1,...,RN} be a set of rules, sop(Ri) be the support for rule Ri, and QR be a 
quality measure for the rules. The quality of the rule set is defined as

Q
Q R sop R

sop R
C

R i i
i

C

i
i
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R

R

=
´

=

=

å

å
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( )
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COgARE ALgORITHM

As we have already mentioned, one of the main problem of previous rule extraction methods is the 
complexity of the results. Normally, the number of rules obtained is high and this complicates their 
interpretation. In addition, if the elements used to define the rules have a high level of detail, they will 
be even more complex for the user.

In this section, we will describe method to accomplish this task based on fuzzy DataCubes: COGARE 
(COmplexity Guided Association Rule Extraction). This method extracts inter-dimensional association 
rules and tries to reduce the complexity of the obtained rules using the fuzzy concepts defined in the 
dimensions and hierarchies. The use of fuzzy logic allows concepts to be defined more naturally from 
the user’s point of view. If the rules are defined using these concepts, they will be more understandable 
for the user due to the use of concepts nearer to the user’s language. The hierarchies are helpful in two 
ways:
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Firstly, it is possible that a relation does not appear in a detailed level but can be found at higher • 
detail levels. Thus, by using hierarchies we can extract rules at different abstraction levels and get 
information that does not appear at lower levels;

Table 2. Quality measures 
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Secondly, according to the hierarchical relation between elements, the number of rules can be • 
reduced because some rules can be generalized to a single rule using elements which group the 
elements that appear in the rules we want to reduce.

COGARE is based on these ideas, and two main steps can be identified in the method:

• Rule generation: the extraction begins by obtaining rules at the most detailed possible level. It 
attempts to calculate the frequent item sets at base levels of the dimensions. If an item set is not 
frequent at this level, the method generalizes the items using the hierarchies. This process is re-
peated until the item set is frequent or the elements can no longer be generalized. The rules are 
generated using these frequent item sets.
Generalization process: the result of the previous step is then generalized using the hierarchical • 
relations. In this case, the method tries to reduce the complexity of the result, using more abstract 
elements in the definition of the rules and reducing the cardinality. In this step, the quality loss is 
also controlled.

Since the method is developed to work over fuzzy DataCubes, COGARE manages fuzzy concepts 
in both steps. The following sections will explain each phase.

Rule generation

In this phase, the algorithm extracts association rules between elements at different dimensions and 
multiple levels. We can differentiate two steps:

Measure Expression
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Table 2. continued
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Obtain the frequent item sets.• 
Generate rules using the item sets found in the previous step.• 

COGARE uses an extension of the Apriori algorithm (Agrawal & Sritkant, Fast Algorithms for Min-
ing Association Rules in Large Databases, 1994). Candidates to obtain the frequent 1-itemset (item sets 
that only have 1 element) are all the elements defined at the base level of all the dimensions:

C l
i

D Ci

1
= ^

" Î


 

where C is a DataCube. An item set will be frequent if its support is equal to or greater than a given 
threshold. For the base level, the process uses a value given by the user (thresholdSUP). If the item set is 
not frequent, then it is generalized, considering all the elements in parent levels that are directly con-
nected and that group the item (Figure 5). The new item sets obtained are considered as candidates. This 
process is repeated until the item set is accepted as frequent or we can no longer generalize. We follow 
a similar strategy to Lui and Chung’s proposal (Lui & Chung, 2000).

These new item sets are defined using elements at a more abstract level. Each item may group more 
than one element at the base level. Then, to be considered interesting, the support threshold should be 
defined according to the abstraction level. All the elements at higher levels may group several values 
at the base level; the support threshold should therefore be greater than the one established for these. 
Under these circumstances, the algorithm should use different support thresholds for each abstraction 
level. Some approaches ask the user for a value for each level (Alhajj & Kaya, 2003). Depending on the 
number of dimensions and the level, this approach may imply asking the user for an excessive number 
of values. In order to avoid this problem, we propose that the abstraction of an item set be used in order 
to define the threshold as follows: for an item set I and an abstraction function A, the support threshold 
is defined as

thresholdI = thresholdSUP +(1 − thresholdSUP) × A(I) 

where:

• thresholdSUP is the support threshold established by the user for the basic levels.

Figure 5. Example of generalization of non frequent 1-itemset
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• A(I) is the abstraction of the item set I.

Once the process has all the frequent 1-item sets, it applies an Apriori strategy to obtain frequent 
item sets with more elements: to calculate the frequent k-item sets, it considers as candidates all the 
k-element sets that can be built using the frequent (k − 1)-item sets, as long as all their subsets are fre-
quent. In our case, the item sets must be defined using elements at different dimensions (we look for 
inter-dimensional relations).

The candidate k-item sets are considered frequent if their support is greater than the support threshold 
corresponding to their abstraction (using the previous formulation). As in the 1-item sets case, if a set 
is not frequent, the algorithm considers as new candidates all the possible generalized item sets defined 
using elements at parent levels which group the elements of the set (Figure 6). The pseudo-code of the 
process is shown in Figure 7.

From the frequent item sets, the algorithm builds association rules using the same Apriori method 
(considering a certainty factor threshold thresholdCF instead of a threshold over the rule consistency).

generalization Process

At the end of the previous phase, the algorithm obtains a rule set, trying to represent as much information 
as possible about the DataCube. The method then tries to reduce the complexity of this set. The method 
must deal with the factors we have identified: the number of rules and the abstraction.

The method applies a generalization process to reduce the complexity. This approach works directly on 
the abstraction and indirectly on the number of rules. We shall explain this by means of an example.

Let us suppose we have the following two rules:

If [Patient is 13 years old] then [Severity is low]
If [Patient is 20 years old] then [Severity is low]

We can generalize both antecedents, replacing 13 years old and 20 years old with the value Young 
that groups both elements. The abstraction of the rules will increase because new rules are defined using 
a higher level concept. However, the number of rules also decreases because both rules will be translated 
into the same one as in the generalization:

Figure 6. Example of generalization of non frequent 2-item set
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If [Patient is Young] then [Severity is low]

In view of this, the generalization process is expected to reduce the complexity due to the number of 
rules and abstraction. This process will be applied until the complexity of the result is below a threshold 
established by the user (thresholdComplexity) without disregarding the loss of quality.

The generalization process has two steps. First, it tries to reduce the complexity through generalization 
but without allowing loss of quality. Then, if the method does not obtain a result set below the threshold, 
it applies a generalization allowing the decrease of quality.

Loss-Less Generalization

This first approach applies an iterative generalization but only accepts a new rule set if the quality of the 
new set is greater than or equal to the previous one. The scheme of the process is shown in Figure 8.

The first step in the process is to find the elements that generalize the rule set (CR). The method looks 
at each item in each rule and obtains the elements in the DataCube which group them with a kinship 
relationship which is greater than 0 (μij > 0). Under these circumstances, the method only looks for 
generalization elements at parent levels which are directly connected to the considered item level.

One element must then be chosen to generalize the rule set. In order to select the element, all the items 
are sorted using a heuristic: an element that generalizes more elements would be better if it is supposed 

Figure 7. Algorithm to obtain frequent itemsets
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to greatly increase the abstraction of the result. Then, the method selects the first element. If the method 
generalizes the rule set and obtains a new set with an unacceptable quality (it is lower than the previous 
one), then it could be very expensive in the sense that the method had to recalculate the quality of all 
the generalized rules. In order to sort the elements, the method therefore takes into account the number 
of times an item has been used unsuccessfully in the generalization process.

In this way, the weight of an item I will be calculated as

Weight
N

NI
RG

F

=
´ +b 1  

where NRG represents the number of rules that item I generalizes, NF the times that I has been used and 
the result set was not accepted, and β∈[0,∞) measures the penalty for each failed generalization. Tak-
ing this into account, the method decreasingly sorts the elements according to their weights. Once we 
have the generalized rule set (CR¢ ), we accept it if the complexity has decreased and the quality has 
not decreased:

C CR C CR Q CR Q CR
global global

( ) ( ) ( ) ( )¢ < Ù ¢ ³  

If the new set satisfies the condition, this set becomes the new result, and if the complexity is above 
the threshold, the entire process is repeated. If the set is not accepted, the process takes the next element 
that generalizes the rule set and the process is repeated.

The process finishes if the obtained rule set satisfies the complexity threshold or there are no elements 
to generalize. The pseudo-code is shown in Figure 9.

Figure 8. Generalization process
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Lossy Generalization

If the previous process fails to obtain a rule set with a complexity below the threshold, then we apply 
another generalization process but allowing quality loss. The general process is the same as the one 
shown in Figure 9, but we change the new set acceptance criteria. In this case, for a new rule set to be 
accepted, it must satisfy two constraints:

First, the process compares the reduced complexity and the quality loss to decide if the generaliza-• 
tion is good enough to accept the new rule set. The condition can be written as

QualityLoss < γ × ComplexityLoss 

where γ ∈ [0, +∞) and establishes when the complexity reduction is good enough compared to the 
quality lost.

In any case, the • generalized rule set will not be accepted if its quality is below a threshold based 
on the best quality obtained throughout the entire process:

Q(CR’) ≥ δ × BestQuality 

where δ ∈ [0, 1]. BestQuality will be at least the quality of the first rule set generated, but if when ap-
plying the loss-less generalization we obtained a higher quality rule set and it is accepted, then this new 
quality will be used.

If we set γ =0 or δ = 1, then quality loss is not allowed, so the process performs in exactly the same 
way as the lossless generalization. The pseudo-code of the process is presented in Figure 10.

Figure 9. Loss-less generalization algorithm
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Algorithm

In Figure 11, the main function of COGARE is presented. Let us comment on all the parameters needed 
by the method:

Figure 11. COGARE algorithm

Figure 10. Lossy generalization algorithm
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• C: DataCube to apply the method.
• thresholdComplexity: value in [0,1] with the complexity threshold.
• thresholdSUP: value in [0,1] with the support threshold to accept frequent itemsets. This value will 

be used for items at base levels. For items at other levels, the support threshold is calculated ac-
cording to their abstraction as shown before.

• thresholdCF: value in [-1,1] with the threshold to accept a rule.
β: value in [0, +• ∞) with the penalty for failed generalization elements. This value will have more 
influence on the time taken by the algorithm than on the quality of the results.
δ: value in [0,1] with the quality threshold to preserve.• 
γ: value in [0, +• ∞) indicating the quality loss allowed in order to accept a new rule set.

ExPERIMENTs

To study the scalability of the algorithm we proposed two different experiments:

First, study the influence of the density of the datacubes.• 
Second, consider the influence of the number of dimensions (structure).• 

We now present the datacubes and the parameters used and then the experiments and results for each 
type.

Figure 12. Multidimensional schema over medical data
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The DataCubes

We have used DataCubes defined over three different domains: medical, financial, and census data. For 
each domain, we have defined two multidimensional schemata that model the same information from both 
crisp and fuzzy perspectives. The reason for this choice is to test the influence of using fuzzy logic.

Figure 12, Figure 15, and Figure 18 show the three multidimensional schemata. Fuzzy relations are 
represented by means of a dotted line connecting two levels. Crisp schemata are defined in the same 
way, translating the fuzzy relations into crisp ones (an element would be grouped by a value in the par-
ent level -the one with the greatest kinship relationship value in the fuzzy case).

We will briefly explain the structures of the multidimensional schemata below.

CMedical

This schema is defined over data collected for non-postponed operations which were carried out in 
hospitals in Granada between 2002 and 2004. For the facts, we only consider the data when the patients 
are from Granada. There are 50185 facts with one variable (amount) and 6 dimensions. Let us briefly 
explain each one.

Dimensions

• Patient: in this dimension, we model patient data. The most detailed levels consider the different 
combinations of sex and age of each patient (the base level therefore has 2 sexes for 101 possible 
ages, totalling 202 values). Over this level, we group the patients according to their sex (level sex) 
and age (level age). Over this last one, we group the values more naturally for user (level group), 
and so we define what we can consider to be young, adult and old patients using linguistic terms 
over the concrete values. The definition of these terms is the same as that shown in Figure 2. The 
last level groups all the values so we have called it all with a single value (all). The structure of the 
dimension is as follows: Patient =({Sex and age, Sex, Age, Group, All},≤Patient,Sex and age,All)

• Time: in this dimension we consider the date when the operations took place. Over this level, we 
have defined a normal hierarchy over dates: weekday, month day, month, month and year, and 
year. The level Tem-perature represents information about the average temperature of each month 
in Granada using the values cold, warm and hot to group the values. The relationships between 
the month and the temperature are not crisp because the user normally considers these concepts 
with imprecision. The definition of the relationships are shown in Figure 13. The structure of the 
dimensions is as follows: Time =({Date, Weekday, Month day, month and year, Temperature, 
Year, All},≤Time,Date,All)

• Place: this dimension stores information about where the patients live. Since the definition of the 
metropolitan area of Granada is not clear, we have used a fuzzy relation to establish the relation-
ship between this level and the towns. The structure of the dimension is: Place =({ZIP, Town, 
County, Metropolitan area, All},≤Place,ZIP,All)

• Duration: we also consider the amount of time each operation lasted. The level Range groups 
this information according to three categories: normal, long and very long duration. These 
groups have been defined imprecisely as shown in Figure 14. The structure of the dimension is: 
Duration=({Hours, Range, All},≤Duration,Hours,All)
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• Material: we want to analyze whether any materials were required for the operations, i.e. blood, 
prothesis, implants. The dimension Material models this information and has the following struc-
ture: Material =({Base, Blood, Implant, Prothesis, All},≤Material,Base,All)

• Cause: in this dimension we model the causes according to the codes established by the WHO. We 
consider the 9 main categories as the base level and the description on them. The structure of the 
dimension is as follows: Cause =({Code, Description, All},≤Cause,Code,All)

Measures
The only measure we consider is the number of operations with exactly the same values for all the di-
mensions we have built. This measure has been called the amount.

DataCube
The structure of the DataCube modeling the data is as follows:

CMedical=({Duration, Time, Patient, Material, Place, Cause}, {Amount}∅,Ω,A) 

Figure 13. Definition of level Temperature in dimension Time for CMedical

Figure 14. Definition of level Range in dimension Duration for CMedical
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CFinancial

In this section, we present the structure of the DataCube built using the fuzzy multidimensional model 
presented. We have built a DataCube using the data obtained from Asexor about 872 companies from 
three sectors (service, commercial and industrial) using the National Classification of Economic Activi-
ties (CNAE). In each sector, we differentiate between failed companies and those which have not in 
accordance with Spanish Law applied in 2001. We have considered three economic-financial variables: 
return on asset, working capital, and indebtedness cost, over the years 1998-2000.

Dimensions
We have defined five dimensions. In all of these, we have used the minimum and maximum operator as 
t-norm and t-conorm when calculating the extended kinship relationship. In the following sections, we 
will present the structure of each one.

• Time: the time dimension in this datacube is defined at a detail level of years. The structure of this 
dimension is: Time =({Year, All},≤Time,Year,All), where ≤Time defines the hierarchical relation as: 
Year ≤Time Year, Year ≤Time All, All ≤Time All

• Failure: we have mentioned that we study the companies differentiating between those which have 
failed and those which have not. This dimension gives this information. The basic level (Fail) only 

Figure 15. Multidimensional schema over financial data
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has two values, representing the failure of the company (value Yes) or not (value No), respectively. 
The following structure is associated to the dimension: Failure =({Fail, All},≤Failure,Fail,All).

• Company: this dimension models information about a company. We have used the INFOTEL code 
as the base level. Over this, we have defined the CNAE codes to group the companies according 
to a detail sector classification. Over this, we define the sector level that groups the CNAE codes 
into service, commercial or industrial companies. The other levels represent the number of control 
systems used, the number of changes of social address, the number of trademarks obtained by 
the company and the social form. This hierarchy translated into the fuzzy model proposed cor-
responds to the following structure: Company =({INFOTEL, CNAE, No. control systems, No. 
changes, No. marks, social form, sector, all},≤Company,INFOTEL,All), where ≤Company defines the 
hierarchical relation as shown in the figure.

• Age: the base level of this dimension is the number of years that a company has been in opera-
tion. Over this level, we define another which groups this value in years to classify the companies 
depending on whether they are very young, young, mature or very mature. This kind of concept is 
ill-defined, and they are normally defined using crisp intervals. This is not how people normally 
use these concepts and the previously mentioned edge problem may arise. The use of fuzzy logic 
in this situation is useful as it characterizes the concepts in a more intuitive way. The definition 
we have used is shown in Figure 16. The structure of the dimension Age is: Age =({Years, Group, 
all},≤Age,Years,All).

Figure 16. Definition of level Group in dimension Age for CFinancial

Figure 17. Definition of ranges over the economic-financial variables for CFinancial
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• Return on asset, Indebtness cost, and Working capital: for the three dimensions over the econom-
ic-financial variables we have used the values observed in the data set for these variables to define 
the base level of the dimensions. Over these levels we have defined another (Range) which groups 
the values into five categories to facilitate the analysis. For the user, the use of categorical values 
(e.g. average, low, high, etc.) is more intuitive than numeric values (e.g. a 6.51 return on asset). In 
order to avoid the edge problem, we fuzzify the intervals associated to each category.

We consider five categories according to the distance of the value to the mean of the variable and 
so we have used the categories very low, low, average, high and very high. The values which are very 
near to the mean will be in the average category, those not so near will be in the low or high categories 
if they are lower or higher than the mean, respectively, and so on. We have used the mean, maximum 
and minimum value of the variable to define the categories. Each interval [minimum, mean]and [mean, 
maximum] has been divided into five intervals of width w1 for the first, and w2 for the other. The cat-
egories have then been defined as shown in Figure 17.

The structures of the three dimensions are therefore very similar:

• Return on asset = ({Values, Range, All},≤RoA,Values,All), where ≤RoA defines the hierarchical rela-
tion between the levels.

• Indebtness cost = ({Values, Range, All},≤IC, Values,All),
• Working capital = ({Values, Range, All},≤WC, Values,All).

Figure 18. Multidimensional schema over census data
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Measures
We have used the return on asset and working capital. Both variables are considered as measures and 
dimensions because we want to analyze the relation between both (e.g. return on asset according to the 
working capital or viceversa). All the data is obtained from a reliable source so we assign a value 1 of 
α to all the facts.

DataCube
Finally, the structure of the DataCube is:

CFinancial =({Time, Failure, Company, Return on asset, Working capital},{return on asset, Working  
capital}∅,Ω,A), 

where A is the relation that associates each fact with the corresponding values of the base level of the 
dimensions.

CCensus

This schema has been defined over 34198 facts with one variable (amount) and 9 dimensions using the 
data from adults in the Census database from the University of California2.

Dimensions

• Marital status: this dimension stores information about the individual’s marital status. We con-
sider different aspects about this topic to build the hierarchy as shown. The structure of the dimen-
sion is as follows: Marital status =({Marital status, Married, Married in the past, Married at any 
time, All},≤MT, Marital status,All).

• Education: we also consider the level of education. We have grouped the values according to four 
categories: basic, medium, high, and very high. The relationships are defined imprecisely because 
we usually manage these concepts with imprecise borders between them. Table 3 collects the val-
ues for the relationships. The level Grouped level groups these four categories into normal (values 
basic and medium) and high (high and very high). The dimension has the following structure: 
Education =({Education, Level, Grouped level, All},≤Education,Education,All).

• Person: we consider the combination of the individual’s age, sex and race as the base level. Over 
this level, we group the values according to these three variables. The ages are grouped in the 

Table 3. Relationship between Education and Level in CCensus

Level Education

Basics 1/Preschool, 1/1st-4th, 1/5th-6th, 
1/7th-8th, 0.8/9th

Medium 0.2/9th, 1/10th, 1/11th, 1/12th, 1/HSgrad, 
0.2/Assoc-voc, 0.2/Some-college

High 0.8/Some-college, 0.8/Assoc-voc, 
1/Bachelors, 1/Assoc-acdm, 0.2/Profschool

Very high 0.8/Prof-school, 1/Doctorate, 1/Master
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same way as in the medical DataCube. The races have been categorized depending on whether 
they can be considered as minorities. The black race represents 10% of the population whereas 
others such as amer-indian-eskimo only 3%, and each of these may be considered a minority at 
different degrees. Table 4 shows the kinship relationship.

• Working hours: we also consider the working hours. The values have been grouped according to 
how the number is considered as very low, low, normal, high or very high. In order to build this 
classification, we have used fuzzy intervals because the borders between them are not clear. The 
Figure 19 shows the structures of the intervals.

• Loss capital and Gain capital: these two dimensions represent the loss capital and the gain capi-
tal. The values have been categorized following a similar approach as for the economic-financial 
variables in the CFinancial DataCube but changing the middle value (Figure 20). The structure is 
therefore similar to those proposed for these dimensions in CFinancial.

• Relationship: over the values of the base level (husband, wife, own-child, other-relative, and not-
in-family) we have defined a level to classify the values according to the degree of relationship. 
We have considered the values as direct or not but this classification is not always clear. The Table 
5 shows the defined kinship relationship.

• Country: another variable to classify the measures is the individual’s country. Countries are clas-
sified by continent. The dimension has the following structure: Country =({Country, Continent, 
All},≤Country, Country, All),

Figure 19. Definition of ranges over Hours for CCensus

Figure 20. Definition of ranges over Loss capital and Gain capital for CCensus
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• Job type: in this dimension we consider the job type. The values are grouped according to whether 
the job types are paid (level Paid) and if they correspond to the civil service (level Public).

Measures
We only consider the number of transactions with the same values for all the considered dimensions 
(amount) as measures.

DataCube
Finally, the structure of the DataCube is

CCensus=({Marital status, Person, Working hours, Education, Loss capital, Gain capital, Relationship, 
 Country, Job type}, {amount}∅,Ω,A) 

support Calculation

In all of the DataCubes presented, there is a measure that stores the number of elements in the original 
data sharing the coordinates (e.g. in the medical DataCube, the fact amount represents the number of 
patients of the same sex and age, with the same ZIP code, undergoing the same operation, lasting the 
same amount of time on the same date). When calculating the support, we must therefore consider the 
number of transactions that each fact represents (e.g. in the medical data if a fact amount has the value 
5, this means that these coordinates represent 5 operations).

In crisp DataCubes, this only involves changing one aggregation operator: instead of the count op-
erator, we will use the sum aggregation operator. In fuzzy ones, we also have the sum operator, but it 

Table 5. Kinship relationship between relationships and yes value in Direct 

Relationship μYes,Relationship

Husband 1

Wife 1

Unmarried 0

Own-child 0.5

Other-relative 0.25

Not-in-family 0

Table 4. Kinship relationship between races and yes value in Minority 

Race μYes,Race

Amer-Indian-Eskimo 1

Asian-Pac-Islander 0.7

Black 0.5

Other 1

White 0
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returns fuzzy sets as the result (see (Molina, Sánchez, Vila, & Rodríguez-Ariza, 2006) for further details). 
Concrete values are needed to apply the quality measures and the support. In this case, we will use the 
same approach proposed in (Delgado, Marin, Sanchez, & Vila, 2003). The authors propose the use of 
quantified sentences of the type:

“Q of F are G” 

where F and G are fuzzy sets and Q is a linguistic quantifier for calculating the support. In order to evalu-
ate the sentence and obtain the support, the GD quantifier (Delgado, Sánchez, & Vila, 1999) is used:
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If we consider the quantifier Q(x)= x, it can be proved that it behaves coherently in the crisp case 

(see (Delgado, Marin, Sanchez, & Vila, 2003) for more details). There are two reasons for using this 
approach:

The quantifier GD can be adapted to work over the result of the aggregation operators for the • 
fuzzy multidimensional model.
The support calculation is efficient.• 

Parameter

We have to establish the rest of the parameters of the method:

• thresholdComplexity: we want the method to tray to reduce the complexity as much as possible, so we 
use 0 for this parameter.

• thresholdSUP: for each domain we use a different one:
Medical: 0.1 ◦
Financial: 0.1 ◦
Census: 0.2 ◦

These values are relatively low, but we want the method to extract a high number of rules in order 
to include as much influence of the fuzzy logic calculation as possible.

• thresholdCF: for all the domain we use the value 0.4.
β: we want a high penalization, so 10 is the value chosen.• 
δ: 0.6 so the method will never accept a new rule set if the quality is less tan the 60% of the best • 
quality obtained throughout the process.
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γ: The user normally prefers to lose quality if the method obtains a good complexity reduction. • 
We propose a value of 1.2.

We now have all the elements needed to do the experiments.

Density

To compare the scalability of both approaches (fuzzy and crisp) we consider three different DataCubes 
over three domains and execute the COGARE algorithm with different number of facts comparing the 
time needed. For each domain we consider six different number of facts as 10%, 30%, 50%, 70%, 90%, 
and 100% of the whole set (Table 6 collects the number of facts on each case). As the selection of the 
facts may has influence in the number of frequent itemsets, we build five different DataCubes for each 
size choosing different sets of facts, randomly selected. Over each DataCube we apply the 14 different 
quality measures to reduce the influence of this parameter in the tests. Regarding this, at the end we will 
consider the average value of the 14 measures as the time for that size.

This process is applied for crisp and fuzzy approaches, so we have 2520 results to compare: 3 domains, 
using 2 approaches (fuzzy and crisp), considering 6 different fact sets size, 5 different DataCubes per 
each size, and with 14 quality measures.

Following sections presents the DataCubes used for the tests. After these sections, we present the 
parameters used for the COGARE algorithm, and we finish with the results obtained.

Results

Figure 21 shows graphically the data obtained for the experiments. In Table 7 and Table 9 the data to 
build the graphics is collected.

As you can see, in three domains the behavior of the algorithm is almost lineal and the time for 
fuzzy and, for Medical and Financial, crisp approach is very similar. To compare the results we use the 
regression line for these values. In the case that the size of the DataCube is 0 (no records) the method 
will not be applied because we have no data to work with, so the time spend is zero. Under this fact, we 
can consider than the lineal functions are of the form a´size , where size is the number of facts. Table 
8 shows the regression data.

The quality of the regressions is good enough to get significant results when comparing the coef-
ficients. As we can see, in the case of Medical, the slopes of the function in crisp and fuzzy approaches 
are very similar, so we can conclude that the use of fuzzy logic has no influence on these domains. In 
Financial one, the slopes are very similar but with a small different (around 5.5%), so fuzzy logic has 
a very low influence.

Table 6. Number of facts for each domain 

10% 30% 50% 70% 90% 100%

Medical 5019 15056 25093 35130 45167 50185

Financial 311 934 1556 2178 2801 3112

Census 3420 10259 17099 23239 30778 34198
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The census domain is more interesting because we can find significant differences between the val-
ues. In the fuzzy case, the coefficient is 33.31% higher than the crisp one. So, in this domain the use of 
fuzzy logic has a higher influence, but not enough to change the order of the algorithm (in both cases 
it needs lineal time).

Figure 21. Time and memory result for density test

Table 7. Time for density tests 

Time (seconds)

Domain Approach 10% 30% 50% 70% 90% 100%

Census
Crisp 517.690 1302.905 1938.571 2701.333 4095.571 4686.214

Fuzzy 467.476 1643.310 2554.357 4148.357 5522.000 5911.643

Financial
Crisp 6.167 7.952 9.810 11.452 13.142 13.928

Fuzzy 6.595 8.167 10.095 11.905 14.123 14.929

Medical
Crisp 55.310 109.905 169.357 230.857 288.643 323.642

Fuzzy 55.929 110.000 169.524 229.667 282.357 331.571
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Another important factor in the scalability is the space needed for the executions (memory). Table 9 
collects the average values for each density for the three domains.

To get the regression models we consider three different functions that may fit the results. Table 10 
shows the quality for each approach.

For financial and medical domains the best model is the logarithmic, although the quality for square 
root is very good too. In census domain the best model is the square root, having the logarithmic ap-
proach good quality too. There is no difference between fuzzy and crisp approaches in the order but we 
have to consider the overload in the first approach. Table 11 collects the regression model to compare 
the overload.

In census and medical domains the overload is very similar (3.73% and 3.34% respectively) and for 
financial one the influence is even lower (0.4%). So we can conclude that the influence of using fuzzy 
logic in the memory needed is not very significative.

structure

In this section we presents the experiments to test the influence of the structure of the DataCubes (the 
dimensions) when using fuzzy logic. In that case we will know the influence of the number of dimen-
sions in the time and memory needed. If N is the number of dimensions of a datacube, we build new 
datacubes from 2 to N-1 dimensions for each one, choosing.20 of each number of dimensions. Then we 
consider three executions with each quality measure. So we have 2520 executions.

Table 8. Regression lines 

Domain Approach Expression R2

Financial
Crisp 0.00505x size 0.943

Fuzzy 0.00533x size 0.946

Medical
Crisp 0.00652x size 0.997

Fuzzy 0.00654x size 0.997

Census
Crisp 0.12882x size 0.994

Fuzzy 0.17173x size 0.996

Table 9. Memory for density tests 

Memory (MB)

Domain Approach 10% 30% 50% 70% 90% 100%

Census
Crisp 45.318 68.039 95.551 103.325 108.576 152.102

Fuzzy 47.662 80.639 107.230 102.090 131.070 133.073

Financial
Crisp 14.685 14.923 15.283 15.680 16.099 16.296

Fuzzy 14.759 15.084 15.488 15.744 16.046 15.984

Medical
Crisp 54.510 61.515 74.227 87.939 82.420 86.048

Fuzzy 54.186 63.096 76.245 91.153 89.289 86.444
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Results

The summary of the results for the experiments are shown in Figure 22 and Table 12 and Table 13.
We first consider the time spent on the executions. As in the previous section we try to get a regression 

model for the evolution of the time. We consider three possible models: lineal, quadratic and exponential. 
Table 14 collects the quality of each approach.

For census and medical domains the best results are for exponential regression in crisp and fuzzy 
approaches, although the quality for medical in the case of quadratic is good too. In the case of finan-
cial domain the best model is the quadratic. The first conclusion is that the number of dimensions has a 
higher influence in the complexity than the density. In Table 15 the regression expression are presented 
to compare the crisp and fuzzy approach.

Both crisp and fuzzy approaches have the same complexity for all the domains. But there is an over-
load in the case of fuzzy ones. In financial and medical domains the overload is not very high (17% and 
21% respectively) but in census the influence in higher (158%).

The same analysis is carried out for the memory. In Table 16 the quality of the considered model is 
presented.

As in the time tests, medical and census domains present the same complexity (quadratic in these 
cases) and financial ales expensive one (lineal). So, although the memory needs are important in these 
cases, the number of dimensions has more influence in the time needed. In Table 17 the regression 
expression for memory are shown.

Table 10. Regression quality for memory 

Regression model

Domain Approach Lineal (R2) X ½ 
(R2) Logaritmic (R2)

Census
Crisp 0.9581 0.9875 0.9705

Fuzzy 0.9441 0.9950 0.9901

Financial
Crisp 0.8014 0.9243 0.9716

Fuzzy 0.7981 0.9224 0.9708

Medical
Crisp 0.8731 0.9729 0.9947

Fuzzy 0.8884 0.9760 0.9955

Table 11. Regression models for memory 

Domain Approach Expression (MB)

Financial
Crisp 2.710 x log2(x)

Fuzzy 2.721 x log2(x)

Medical
Crisp 13.351 x log2(x)

Fuzzy 13.796 x log2(x)

Census
Crisp 13.163 x x1/2

Fuzzy 13.654 x x1/2
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Table 12. Time for structure tests 

Time (seconds)

Domain Approach 2 dim. 3 dim. 4 dim. 5 dim. 6 dim. 7 dim. 8 dim

Census
Crisp 2.45 5.3 12.45 32.75 148.7 364.85 1295.06

Fuzzy 2.3 3.4 13.25 58.1 283.6 911.9 3374.33

Financial
Crisp 1.2 2.45 3.3 4.85 7.5 9.5 12

Fuzzy 0.75 3.25 5.75 5.25 7.5 10.65 14.778

Medical
Crisp 12.85 30.95 60 132.75

Fuzzy 11.85 29.55 70.2 162.333

Figure 22. Time and memory results for structure test
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Table 13. Memory for structure tests 

Memory (MB)

Domain Approach 2 dim. 3 dim. 4 dim. 5 dim. 6 dim. 7 dim. 8 dim

Census
Crisp 3.202 5.029 7.739 10.059 32.646 50.891 81.684

Fuzzy 2.851 3.235 5.439 16.431 36.630 63.898 99.461

Financial
Crisp 3.573 4.064 4.871 6.585 8.348 9.824 8.829

Fuzzy 2.041 5.686 8.324 6.656 6.760 9.064 9.246

Medical
Crisp 10.867 27.459 46.313 63.956

Fuzzy 11.310 22.574 44.624 71.625

Table 14. Quality of the regression models for time 

Regression model

Domain Approach Lineal (R2) Quadratic (R2) Exponential (R2)

Census
Crisp 0.5296 0.7144 0.9932

Fuzzy 0.5029 0.6885 0.9891

Financial
Crisp 0.9615 0.9965 0.7370

Fuzzy 0.9531 0.9850 0.7598

Medical
Crisp 0.8661 0.9719 0.9866

Fuzzy 0.8324 0.9560 0.9951

Table 15. Regression expressions for time 

Domain Approach Expression (seconds)

Financial
Crisp 0.1943 x N2

Fuzzy 0.2272 x N2

Medical
Crisp 0.9304 x eN

Fuzzy 1.1233 x eN

Census
Crisp 0.4209 x eN

Fuzzy 1.0881 x eN

Table 16. Regression quality for memory 

Regression model

Domain Approach Lineal (R2) Quadratic (R2) Exponential (R2)

Census
Crisp 0.8012 0.9430 0.9146

Fuzzy 0.7886 0.9399 0.9184

Financial
Crisp 0.9872 0.9009 0.4995

Fuzzy 0.9568 0.8419 0.4678

Medical
Crisp 0.9668 0.9955 0.8845

Fuzzy 0.9382 0.9988 0.9366
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The results are very similar to time models. In all the domains the crisp and fuzzy approaches have 
the same order but the fuzzy ones introduce an overload. In this case, for medical and financial this 
overload is not very important (4.7% and 1.7% respectively). In the census domain the influence is 
higher (21.7%).

CONCLUsION

In this chapter we have compare the performance of an association rule extraction algorithm over fuzzy 
and crisp DataCubes to test the influence of using fuzzy logic in the model. To achieve this goal we 
have build DataCubes over three different domains and considering different number of facts, so we 
can evaluate the scalability of both approaches according to the density of the DataCubes (number of 
records) and the topology (the dimensions)

As result we have the number of dimensions has a higher influence in the scalability of the algorithm 
in time and memory. This situation is normal due to the method extract inter-dimensional association so 
a higher number of dimensions introduce more possible associations. The use of fuzzy logic does not 
change the order of efficiency of the method but introduce an overload in both cases.

Considering the density the influence in most of the domains is not very important (around 5.5% in 
time and 3.5% in memory). Only for one domain the time needed have and overload around 33% which 
may be consider significant.

If we change the topology (dimensions) the influence is higher but this is normal due to the underlying 
multidimensional model has a more complex structure to model the hierarchy. In that case the influence 
in the time is near 20% for two domains and 158% for the other. So the fuzzy logic modeling of the 
hierarchies introduces an important overload but does not change the order of efficiency. The overload in 
the memory needed is not very significant in two domains to (4.7% and 1.7%) but in the other is higher 
(21.7%). So we can conclude that the overload depends on the complexity of the domain to model.

Although we would need more experiments to extends the results, the results indicates that, in the 
case of extracting association rules over DataCubes using COGARE, the fuzzy logic allows to enrich 
the data representation and, due to this fact, introduces an overload in the process but keeping the scal-
ability (order of efficiency) of the algorithm. As it was expected the influence depends on the complexity 
of the domain to model.

Table 17. Regression models for memory 

Domain Approach Expression (MB)

Financial
Crisp 1.287 x N

Fuzzy 1.309 x N

Medical
Crisp 2.690 x N2

Fuzzy 2.815 x N2

Census
Crisp 1.064 xN2

Fuzzy 1.294 x N2
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INTRODUCTION

Nowadays, many applications and domains use some form of knowledge representation language and 
exploit their inference mechanisms in order to improve their capabilities and simulate intelligent human 
behavior. Many such examples exist, like knowledge-based multimedia analysis (Neumann & Möller, 

AbsTRACT

The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology 
languages, like description logics (DLs) and OWL, could play a significant role in the improvement of 
many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy 
reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle 
the scale of data that the Web provides. For those reasons much research effort has been focused on 
providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors 
present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy 
ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms 
for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for 
knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation 
in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.
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2006; Simou et al., 2008a), bioinformatics (Dameron et al., 2004) and databases (Calvanese et al., 1998) 
and more. Nevertheless the most prominent example is undoubtedly the World Wide Web aiming for 
intelligently managing the vast amount of information that lays on the Web. Among several proposals 
for structuring knowledge in such applications, Description Logic based ontologies seem to be an ap-
proach that has gained considerable attention. Description Logics (DLs) (Baader et al., 2002) is a mod-
ern knowledge representation formalism that is a fragment of First-Order Logic, enjoying well-defined 
model-theoretic semantics, decidability and practically efficient reasoning systems. Most importantly 
expressive DLs form the logical underpinnings of the W3C standard language for representing ontolo-
gies in the Semantic Web, namely OWL (Bechhofer et al., 2004; Patel-Schneider et al., 2004). Although 
several successful OWL DL reasoning systems have been developed, like FaCT++1 and Pellet2, even 
very basic and inexpressive DLs come with come with (at least) E TXP IME  computational complexity. 
Thus, their ability to scale in large application like the once found on the Web is still an open issue. For 
those reasons the last years great research effort has been focusing in identifying fragments/clusters of 
the OWL DL language for which it is known that reasoning is scalable and efficient. This research has 
led to the development of several languages, but the two most interesting and predominant ones are EL+ 
(Baader et al.) and DL-Lite (Calvanese et al., 2005; Calavanese et al., 2007). The interesting thing is 
that these languages will most likely form the logical underpinnings of the OWL 2 EL and OWL 2 QL3 
recommendations which consist of profiles/fragments of the upcoming extension of OWL, OWL 24.

Although DLs are relatively quite expressive they feature limitations mainly with what can be said 
about imperfect (uncertain, vague/fuzzy or imprecise) knowledge. Such types of knowledge appears in 
many domains but also in several Semantic Web tasks, like in the representation of trust, in knowledge 
fusion, assessing the similarity between resources and many more. For those reasons fuzzy ontologies 
are envisioned to be useful in the Web (Stoilos et al., 2006) and fuzzy Description Logics (f-DLs) (Höl-
dobler et al., 2005; Straccia, 2001; Tresp & Molito, 1998) have been proposed as formalisms capable 
of capturing and reasoning with such knowledge. Research in f-DLs was mainly focused on providing 
reasoning support for very expressive fuzzy DLs, like reasoning with the f-DL fKD-SHIN (Stoilos et al., 
2007; Stoilos et al. 2005b), reasoning with fKD-SHI (Li et al., 2006), supporting reasoning in f-DLs that 
allow for general concept inclusion axioms (Li et al., 2006; Stoilos et al., 2006), fuzzy extensions of 
the OWL language (Stoilos et al., 2005a) supporting expressive datatypes (Wang et al., 2008) or adding 
more expressive fuzzy features, like comparison expressions (Kang et al., 2006; Lu et al., 2008) and 
concept modifiers (Hölldobler et al., 2006; Wang et al., 2006). Interestingly, there also exist two f-DL 
reasoners, FiRE5 (Stoilos et al., 2007), which supports fKD-SHIN and the fuzzyDL6 (Straccia, 2008), 
which supports fKD-SHIf(D) and fL-SHIf(D). Unfortunately, like their crisp counterparts, fuzzy-SHIN 
and fuzzy-SHIf(D) come with (at least) E TXP IME  computational complexity. Additionally, the practical 
behavior of implementations of such logics would also have to deal with the degrees thus adding more 
to the practical complexity.

Following current research developments in crisp DLs, there is an effort on developing lightweight 
fuzzy ontology languages. In particular, today there exist two such languages, namely fuzzy DL-Lite (Pan 
et al., 2008; Straccia, 2006) and fuzzy EL+ (Stoilos et al., 2008). Like their crisp counterparts, fuzzy DL-
Lite is specifically tailored for data intensive applications, offering for efficient instance retrieval services 
by utilizing datbase technologies, while fuzzy EL+ is especially tailored for applications that require the 
managements of large concept hierarchies/taxonomies offering for efficient classification services. Even 
more interestingly, in the fuzzy case fuzzy DL-Lite allows for far more expressive and flexible queries 
that utilize the power of the fuzzy component. For example, one can issue a query of the form:
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get me all e-shops that are popular [with degrees at least 0.8] and sell good books [with degree at least 
0.9],

adding threshold criteria in the search, or expressing weight/preferences on query atoms like in the 
query

get me all cars that are fast and fancy but consider speed more important [with weight 0.7] than design 
[with weight 0.3].

Similarly important is the fact that in fuzzy EL+ we can support efficient classification over fuzzy 
inclusion axioms. Such axioms can be proven very important is several Semantic Web related tasks 
like in ontology matching (Ferrara et al., 2008), where algorithms establish fuzzy mappings between 
ontologies like the following ones:

onto1: MobilePhone ®
0 7.

 onto1: CellularPhone 

onto1: DarkGrey ®
0 85.

 onto2: Black 

which (fuzzy) map concept MobilePhone from ontology onto1 and CellularPhone from ontology onto2 
with a degree 0.7 since an automatic procedure is not possible to assess the semantic correspondence 
of these two entities. A different problem also arises in the case that there is no actual one-to-one cor-
respondence between all the concepts of two ontologies. For example in the above case one ontology 
defines the concept DarkGrey while the other concept. Still one might want to match these concepts to a 
certain degree. Similar representation mechanisms have also been used in other contexts and frameworks 
like for example searching in Semantic Portals (Holi & Hyvonen, 2006), where again fuzzy subsumption 
was used to define fuzzy mappings between concepts.

The current Chapter has the following two major objectives. On the one hand we want to show that 
it is possible to provide efficient querying services over fuzzy ontologies, even in the case of using very 
expressive queries allowing for thresholds, weights or preferences. For our purposes we will use the f-
DL-Lite language (Pan et al., 2008; Straccia, 2006). On the other hand we also want to cover the second 
most important inference problem of (fuzzy) ontologies, that of concept classification. Thus, we will 
show that indeed there are classes of ontology languages for which such a problem can be decided in 
an efficient way. In this case we will use the fuzzy EL+ (Stoilos et al., 2008) language. More precisely, 
the Chapter focuses on the following major issues:

It overviews some recent work about providing scalable query answering with very expressive ex-• 
tended conjunctive queries over lightweight ontologies created with the fuzzy DL-Lite language. 
The framework is motivated by the field of fuzzy information retrieval (Cross, 1994) where weight-
ed Boolean queries (Waller & Kraft, 1979) have been proposed for retrieving fuzzy information 
from fuzzy relational databases. Nevertheless, the presented approach is general enough to cover 
most of the former popular approaches like the fuzzy implication-based approaches (Bookstein, 
1980; Bordogna, 1996; Radecki, 1979; Yager, 1987) p-norm’s (Salton et al., 1983a), the geomet-
ric mean approach (Chen & Chen), weighted min queries (Sanchez, 1989) and fuzzy aggregation 
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type queries (Vojtas, 2001), as well as to extend them by supporting threshold queries which are 
a natural extension of the entailment problem. Thus, the main strength of the general fuzzy query 
language is the openness on the semantics.
In order to support queries of the above form in Semantic Web applications it presents a method to • 
extend the SPARQL (a well known Semantic Web query language) syntax for the proposed query 
languages in the framework. The extension uses specially formatted SPARQL comments, thus the 
fuzzy queries are still valid SPARQL queries, and it does not affect current SPARQL tools and 
implementations.
It presents the very first scalable query engine for • fuzzy ontologies, based on the ONTOSEARCH2 
system7 (Pan et al., 2006b), which consists of, among others, a query engine for DL-Lite and one 
for fuzzy DL-Lite. The ONTOSEARCH2 implementation of f-DL-Lite is known to be able to 
handle millions of data and its performance has been tested against a benchmark, a fuzzy variant 
of the Lehigh University Benchmark (LUBM) (Guo et al, 2005), called f-LUBM8, that has been 
proposed in the literature (Pan et al., 2008).
It overviews the syntax and semantics of a fuzzy extension of the lightweight fuzzy ontology • 
language f-EL+ (Stoilos et al., 2008). Additionally, it also overviews the reasoning algorithm 
proposed for f-EL+ which is able to polynomialy classify a given fuzzy EL+ ontology which ad-
ditionally allows for fuzzy inclusion axioms (Straccia, 2005).
It not only presents a detailed reasoning algorithm for classifying fuzzy EL+ ontologies which • 
allow for fuzzy inclusion axioms, but it also provides some necessary refinements for the basic al-
gorithm which are know from the classical EL+ language that greatly increase the performance.

The rest of the paper is organized as follows. First we introduce the reader to the necessary mathematical 
background of the rest of the Chapter, by briefly introducing Description Logics and fuzzy Description 
Logics. Then we present fuzzy-DL-Lite and a set of extended weighted query languages that have been 
proposed in the literature for querying fuzzy-DL-Lite ontologies. We also show how querying can be 
supported by the SPARQL language as well as a preliminary implementation of the idea. Subsequently, 
we present a fuzzy extension of the EL+ language providing also a reasoning algorithm for supporting 
classification over fuzzy EL+ ontologies. We also show how one can obtain a refined classification 
algorithm which can be the base of an optimized procedure. Finally, we conclude the Chapter.

bACKgROUND

Description Logic Ontologies

Description Logics (DLs) (Baader et al., 2002) are a family of logic-based knowledge representation 
formalisms designed to represent and reason about the knowledge of an application domain in a struc-
tured and well-understood way. They are based on a common family of languages, called description 
languages, which provide a set of constructors to build concept and role descriptions. Such descriptions 
can then be used to define axioms and assertions of DL knowledge bases and can be reasoned about with 
respect to DL knowledge bases by DL systems. It is known that DLs consist of an expressive fragment 
of First-Order Logic and more precisely a fragment that allows only for unary predicates (corresponding 
to concepts), binary predicates (corresponding to roles), constants (called individuals), while addition-
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ally also restricting the use of the connectives thus reducing their interaction and gaining in reasoning 
efficiency and decidability. The most basic DL language is ALC which is the smallest propositionally 
closed DL, allowing for negation (¬) conjunction (⊓), disjunction (⊔), existential quantification (∃) and 
universal quantification (∀). Then ALC can be extended by adding more expressive means like for 
example the ability to state that a role is transitive or that a role is a super-role of another role, inverse 
roles, singleton concepts (called nominals) or by adding cardinality restrictions. Table 1 summarizes 
the most important and common DL constructors. It presents their name, syntax and the naming scheme 
that is followed in DLs in order to indicate the presence of such operators9. Using the expressivity of 
these DL constructors one can represent the concept of humans who have exactly 3 children specifying 
the concept

Human ⊓ ≥ 3hasChild ⊓ ≤ 3hasChild 

where Human is a concept, and hasChild is a role, or the concept of faulty machines with the concept

Machine ⊓ ∃hasPart.MachinePart ⊓ ∀hasPartFaultyPart 

or the concept of the days of week, writing

{Sunday} ⊔ {Monday} ⊔ … ⊔ {Saturday} 

Table 1. Syntax, Semantics and naming of the most popular DL languages 

DL Operator Syntax Semantics Language

top concept ⊤ ⊤I = DI

ALC

bottom concept ⊥ ⊥I = ∅

negation ¬C (¬C)I = DI \ CI

conjunction C ⊓D (C ⊓D)I = CI ∩ DI

disjunction C ⊔D (C ⊔D)I = CI ∪ DI

existential restriction ∃R.C { }( . ) | . ,I I I IR C a b a b R b C∃ = ∈∆ ∃ 〈 〉 ∈ ∧ ∈

universal restriction ∀R.C { }( . ) | . ,I I I IR C a b a b R b C∀ = ∈∆ ∀ 〈 〉 ∈ → ∈

transitive role axioms Trans(R) { }, , , ,I Ia b b c R a c R〈 〉 〈 〉 ⊆ → 〈 〉 ∈ ALC
R+  or S

Role inclusion axioms R ⊆ S , ,I Ia b R a b S〈 〉 ∈ → 〈 〉 ∈ H

nominals {a} { }a aI I={ } O

inverse roles R- , ( ) ,I Ia b R b a R−〈 〉 ∈ → 〈 〉 ∈ I

at-least restrictions ≥ nR { }( ) | | ,I I InR a b a b R n≥ = ∈∆ 〈 〉 ∈ ≥
N

at-most restrictions ≤ nR { }( ) | | ,I I InR a b a b R n≥ = ∈∆ 〈 〉 ∈ ≤
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where Sunday, Monday,…, Saturday are individuals. Such complex concepts are called concept descrip-
tions. Moreover, we can state that roles hasPart is transitive by the axiom, Trans(hasPart), that role 
hasChild is a sub-role of role hasOffspring, by the axiom hasChild hasChild ⊑ hasOffspring, or that 
role hasParent is the inverse of role hasChild, writing hasParent ⊑ hasChild-. We note here that the set 
of transitive role and role inclusion axioms is usually referred to as RBox R.

Subsequently, one is able to use concept descriptions in order to define new concepts. This is done 
with the aid of axioms. More formally we have: A SHOIN TBox denoted by T, is a finite set of concept 
inclusion axioms, also called concept subsumptions of the form C ⊆ D, and concept equivalence axioms 
of the form C º D where C,D are SHOIN-concepts. With concept one can give names to the created 
concept descriptions. For example in the above case we could have the concept equivalence:

FaultyMachine º Machine ⊓ ∃hasPart.MachinePart ⊓ ∀hasPartFaultPart 

Finally, DLs allow us to create individual axioms, which intuitively account for instance relations 
between objects (pairs of objects) and concepts (roles). A SHOIN ABox A, is a finite set of assertions of 
the form a: C, called concept assertions, of the form (a,b): R, called role assertions, or of the form a = 
b or a ≠ b. Using such expressive means we can describe instance relation like for example that John is 
a parent, by writing john: Parent or that he has Dora as a child, by (john, dora): hasChild.

A knowledge base ∑ is a triple of the form ∑ = 〈T,R,A〉, where T is a TBox, R an RBox and A an 
ABox.

As a fragment of First-Order Logic Description Logics feature well-defined model theoretic seman-
tics which are defined with the aid of interpretations. An interpretation (written as I) is a pair of the 
form á × ñDI I,  where DI is a non-empty set of objects called the domain of interpretation while ×I  is an 
interpretation function which maps each individual a to an element aI ∈ DI each concept C to a subset 
CI ⊆ DI and each role R to a binary relation RI ⊆ DI × DI. The interpretation function can be extended to 
give semantics to concept and role description. Table 1 summarizes the semantics of DL constructors. 
Furthermore, we say an interpretation I satisfies an axiom C ⊆ D if CI ⊆ DI, while it satisfies an axiom 
C º D if CI = DI. I satisfies a TBox T if it satisfies every axiom in T. Then we say that I is a model of T. 
Similarly an interpretation I satisfies an assertion a: C if aI: CI, an assertion (a,b): R if (aI,bI): RI, a = b 
if aI = bI and a ≠ b if aI ≠ bI. I satisfies a knowledge base ∑ if it a model of T, R and A.

Besides their formality knowledge representation languages and DLs also provide a number of infer-
ence services, which can be issued over a created knowledge base. The aim of such services is to extract 
new implied information out of the explicitly stated one. Every knowledge representation language 
usually offers a different set of inference services. Next we present the most common set of services 
offered by Description Logics:

• KB Satisfiability: A KB Σ is satisfiable if and only if (iff) there exists a model I of Σ. Similarly 
we can define the notion of unsatisfiability.

• Concept Satisfiability: A concept C is satisfiable with respect to Σ if there exists a model I of Σ 
such that (s.t.) CI ≠ ∅.

• Concept Subsumption: A concept C is subsumed by a concept D w.r.t. Σ if for every model I of 
Σ it holds that CI ⊆ DI.

• ABox Consistency: An ABox A is consistent if there exists a model for A.
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• Logical Entailment: Given a concept or role axiom, or an assertion ϕ, we say that Σ entails ϕ, 
writing Σ |= ϕ if for every model I of Σ, I satisfies ϕ.

• Conjunctive query answering: A conjunctive query (CQ) q is of the form

q(X) ← ∃Y.conj(X,Y)  (1)

where q(X) is called the head, conj(X,Y) is called the body, X is a vector of variables called distinguished 
variables, Y are existentially quantified variables called the non-distinguished variables, and conj(X,Y) 
is a conjunction of atoms of the form A(u), R(v1, v2), where A,R are respectively named classes and 
named properties, v,v1,v2 are individuals in X and Y or individuals in Σ. Given an evaluation of variables 
[X → S] (where S is a set of individuals), if every model I of Σ satisfies q[X→S], we say Σ entails q[X→S]; 
in this case, S is called a solution of q. A disjunctive query (DQ) is a set of conjunctive queries sharing 
the same head.

Conjunctive query answering actually consists of a retrieval task. Informally, one can understand a 
query as “give me all X such as the conjunction of atoms conj(X,Y) holds.” Then, S will contain the set 
of all individuals that substituted in X will make the body true for some other individuals S′ substituted 
for Y. As it is known it consists of a generalization of the entailment task.

Today, there have been developed several reasoning systems that realize most of the above inference 
problems for SHOIN knowledge bases. The most important and popular ones are FaCT++1 and Pellet2 
and RacerPro10. These tools have shown that although the worst case complexity of reasoning in DLs is 
exponential they can scale quite good in relatively big knowledge bases in most practical applications. 
Nevertheless, it is still unknown if they could scale up to the millions or even billion of (Semantic) Web 
data. Furthermore, regarding conjunctive query answering it is still an open problem if an algorithm 
for answering queries over SHOIN knowledge bases exists. Even if it does we already know that the 
complexity of query answering for SHIN is already 2-E TXP IME -hard (Lutz, 2008).

It is well known that expressive Description Logics form the logical underpinnings of the OWL DL 
ontology language (Horrocks & Patel-Schneider, 2004). OWL is the W3C standard for expressing on-
tologies in the Semantic Web and is actually an XML like rendering of the constructors of the SHOIN 
language, while additionally adding several syntactic sugar constructors for assisting inexperienced 
user of the Web create ontologies. For example, on the one hand it provides the owl:instersectionOf 
constructor for specifying the conjunction of two concepts while on the other hand it also provides the 
rdfs:domain constructor for defining the domain of a role (property) which semantically is a combina-
tion of the existential constructor and a concept inclusion. For more information about OWL the reader 
is referred to (Bechhofer et al., 2004; Patel-Schneider et al., 2004) while for its correspondence with 
expressive DLs to (Horrocks & Patel-Schneider, 2004).

Fuzzy Ontologies

Fuzzy Description Logics (Straccia, 2001) have been proposed as powerful knowledge representation 
languages capable of capturing vague (fuzzy) knowledge that exists in many applications. The intuition 
is to interpret (fuzzy) concepts and (roles) not as subsets of DI and DI × DI, respectively, but with the 
aid of membership function (Zadeh, 1965) giving a fuzzy meaning. Syntactically, one should at least be 
able to specify degrees of membership for instance relations. Thus, fuzzy DL extensions usually keep 
the same syntax for concept and role axioms as their crisp (classical) counterpart, while they extend the 
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syntax of concept and role assertions with membership degrees creating fuzzy assertions (Hölldobler et 
al., 2005; Tresp & Molitor 1998; Stoilos et al., 2007; Straccia, 2001). For example, one is able to state 
that a specific grass is seeing to be green to a degree greater or equal than 0.7, writing (grass:Green) ≥ 
0.7. Hence, fuzziness is added at the instance level. Some notable exceptions found in the literature are 
fuzzy subsumption axioms (Straccia, 2005) and fuzzy nominals (Bobillo et al., 2006) which also extend 
the syntax of concept inclusion axioms and the. Fuzzy subsumption extends classical subsumption with 
degrees of truth. More formally a fuzzy subsumption is a concept axiom of the form 〈C ⊆ D,n〉, where 
n ∈ [0,1]. Note that we will not deal with fuzzy nominals in the current Chapter.

As with classical DLs fuzzy DLs have a formal semantics provided by fuzzy interpretation. Intuitiv-
elly, fuzzy interpretations map concepts to membership functions in order to provide a fuzzy meaning. 
More formally a fuzzy interpretation consists of a pair ,I II = 〈∆ ⋅ 〉 where DI is as before, while I⋅  is a fuzzy 
interpretation function, which maps:

an individual • a to an element a ∈ DI,
a concept name • A to a membership function : [0,1]I IA ∆ → , and
a role name • R to a membership function : [0,1]I I IR ∆ ×∆ → .

Using well known fuzzy set theoretic operations (Klir & Yuan, 1995), like t-norms (t), t-conorms 
(u), fuzzy complements (c) and fuzzy implications (J), fuzzy interpretations can be extended to inter-
pret f-SHOIN-concepts. Table 2 summarizes the syntax and semantics of concept descriptions, concept 
axioms, roles axioms and fuzzy assertions for the fuzzy DL f-SHOIN. In Table 2, a is an arbitrary 
individual of DI.

Now we can proceed to define the inference services of fuzzy Description Logics.

• KB Satisfiability: An f-SHOIN knowledge base Σ is satisfiable (unsatisfiable) iff there exists 
(does not exist) a fuzzy interpretation I which satisfies all axioms in Σ.

• Concept n-satisfiabilty: An f- SHOIN -concept C is n-satisfiable w.r.t. Σ iff there exists a model 
I of Σ in which there exists some a ∈ DI such that CI (a) = n, and n ∈ (0,1].

• Concept Subsumption: An f-SHOIN-concept C is subsumed by D w.r.t. Σ iff in every model I of 
Σ we have that , ( ) ( )I I Ia C a D a∀ ∈∆ ≤ .

• ABox Consistency: An f-SHOIN is consistent (inconsistent) w.r.t. a TBox T and an RBox R if 
there exists (does not exist) a model I of T and R which satisfies every assertion in A.

• Entailment: Given a concept or role axiom or a fuzzy assertion Ψ, we say that Σ entails Ψ, writing 
Σ|= Ψ iff every model I of Σ satisfies Ψ.

• Greater Lower Bound (glb): The greatest lower bound of an individual a to a concept C w.r.t. Σ 
is defined as, { }glb( , , ) sup | | :C a n a C nΣ = Σ = ≥  with sup∅ = 0.

Similarly to OWL and DLs the fuzzy OWL (Stoilos et al., 2005a) proposal consists of an extension 
of the OWL standard in order to represent fuzzy knowledge in the Semantic Web. As in the crisp case 
the logical underpinnings of f-OWL is f-SHOIN, while fuzziness can be captured in the instance level 
in the form of fuzzy instance relations called fuzzy facts. For example, one can have the following f-
OWL instance axiom:
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<HotPlace rdf:about=”Athens” owlx:ineqType=”>=” owlx:degree=”0.85”> 

<closeTo rdf:resource=”Larnaca” owlx:ineqType=”>=” owlx:degree=”0.75”/> 

</HotPlace> 

saying that Athens is a hot place to a degree at least 0.85, while it is close to Larnaca to a degree at least 
equal to 0.75.

sCALAbLE QUERY ANsWERINg WITH FUZZY DL-LITE

In the current section we will review some recent developments on the f-DL-Lite language. More pre-
cisely we will present a framework of very expressive fuzzy conjunctive query languages over the fuzzy 
DL-Lite language. We first introduce fuzzy DL-Lite as a restriction of f-SHOIN and we briefly sketch 

Table 2. Semantic of fuzzy SHOIN -concept descriptions and axioms 

Syntax Semantics

⊤ ⊤I (a) = 1
⊥ ⊥I (a) = 0

¬C ( ) ( ) ( ( ))I IC a c C a¬ =

C⊓D (C ⊓D) I I Ia t C a D a( ) ( ( ), ( ))=

C⊔D (C ⊔D)
I I Ia u C a D a( ) ( ( ), ( ))=

∃R.C { }. ( ) sup ( ( , ), ( ))I I I
bR C a t R a b C b∃ =

∀R.C { }. ( ) inf ( ( , ), ( ))I I I
bR C a R a b C b∀ = J

{a} { } ( )a bI =1  if { }Ib a∈ , { } ( )a bI = 0  otherwise

R- ( ) ( , ) ( , )R b a R a bI I- =

≥ nR { }
1

1, ,
( ) ( ) sup ( ( , ), )

n

p
I I

i i ji i jb b
pR a t t R a b t b b

= <
≥ = ≠



≤ nR { }
1 1

1

1, ,
( ) ( ) sup ( ( , ), )

n

p
I I

i i ji i jb b
pR a t R a b u b b

+

+

= <
≤ = =



J

Trans(R) { }( , ) sup ( ( , ), ( , ))I I I
cR a b t R a c R c b≥

R ⊆ S , . ( , ) ( , )I I Ia b R a b S a b∀ ∈∆ ≤

C ⊆ D . ( ) ( )I I Ia C a D a∀ ∈∆ ≤

C º D . ( ) ( )I I Ia C a D a∀ ∈∆ =

(a:C) ≥ n CI(a) ≥ n
(a,b): R ≥ n RI(a,b) ≥ n
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its query answering algorithm. Then we present the syntax and semantics of the expressive weighted 
query languages. Subsequently, we show how such queries can be supported through SPARQL, a well 
known query language that will consist of a W3C standard, and finally we present an implementation 
of the aforementioned framework.

The Fuzzy DL-Lite Language

In order to gain in reasoning efficiency it is obvious that the DL-Lite language (and its fuzzy extension) 
consists of a restriction of the classical DL constructors.

A DL-Lite ontology (O)11 is a set of axioms of the following forms12:

1.  class inclusion axioms: B ⊆ C where B is called a basic concept defined as:

B:= A | ∃R | ∃R- 

 and C is called a general concept and is defined as

C:= B | ¬B | C1 ⊓ C2 

2.  functional property axioms: Func(R), Func(R-), where R is a role, and
3.  individual axioms: B(a) ≥ n,R(a,b) ≥ n where a and b are individuals.

Note that B(a) ≥ n is just another syntax for (a:B) ≥ n. As we can see in DL-Lite besides limiting the 
number of the available DL constructors one additionally restricts the use of the allowed ones in con-
cept axioms. For example, negation is only allowed in the right-hand side of axioms and only in front 
of basic concepts. Although DL-Lite is significantly restrictive, compared to OWL DL, it is known that 
is expressive enough to represent most features of UML class diagrams. Furthermore, this restrictive-
ness is the reason that DL-Lite provides efficient query answering. More precisely, it is known (and we 
will briefly sketch below) that after careful rewriting conjunctive query answering over DL-Lite can 
be reduced to a set of SQL queries over a relational database system. Consequently, the complexity of 
DL-Lite query answering is L SOG PACE  w.r.t. data, which is obviously far more computationally easy 
than that of SHIN.

Like in other fuzzy extensions to DLs, fuzzy DL-Lite (Straccia, 2006) (or f-DL-Lite for short), extends 
DL-Lite with fuzzy assertions, as described in the previous section. The semantics of f-DL-Lite ontolo-
gies are again defined in terms of fuzzy interpretations. Since we have already presented the semantics 
of most of the constructors used by f-DL-Lite we will not repeat them here. We only note that a fuzzy 
interpretation I satisfies a functional property axiom of the form Func(R) if { }.# | ( , ) 0 1I Ia o R a o∀ ∈∆ > = .

Similarly to crisp DL lite, fuzzy-DL-Lite, provides means to specify role-typing and participation 
constraints but interestingly it assigns fuzzy meaning on them. More precisely, a role-typing assertion 
of the form 1R A∃ ⊆  (resp. 2R A−∃ ⊆ ) states that the first (resp. second) component of a relation R(a,b) 
belongs to A1 (resp. A2) at-least to the membership degree that the relation holds, i.e. 1( , ) ( )I I I I IR a b A a≤  
(resp. 2( ) ( , ) ( , ) ( )I I I I I I I IR b a R a b A b− = ≤ .

Similar to the crisp algorithm, the algorithm for answering conjunctive queries over f-DL-Lite on-
tologies consists mainly of three steps (Calvanese, 2005; Calavanese et al., 2007; Straccia, 2006), which 
can be briefly summarized as follows:
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1.  Normalization: During this step, axioms of the form B ⊆ C1 ∧ C2 are replaced by two axioms of 
the form B ⊆ C1 and B ⊆ C2, while concept axioms are closed under subsumption (⊆) and under 
the rule, if 1 2B B T⊆ ∈  and 3 2B B T⊆ ¬ ∈ , then 1 3{ }T B B∪ ⊆ ¬ . Moreover, the ABox is normalized by 
adding fuzzy assertions ( )R a n∃ ≥  and ( )R b n−∃ ≥  for each R (a,b) ≥ n ∈ A (Calvanese et al., 2005; 
Calavanese et al., 2007).

2.  Query reformulation: In the second step the input query is reformulated by a process known as 
perfect reformulation (Calvanese et al., 2005; Calavanese et al., 2007). The idea is to expand the 
query according to the given concept axioms in order to obtain a set of queries which issued to the 
ABox discarding the TBox will retrieve all the certain answers of the original query as if it was 
issued over the overall knowledge base.

3.  Query evaluation: Finally, the set of conjunctive queries is evaluated over the given ABox.

An important property of the (fuzzy) DL-Lite algorithm is that the ABox can be faithfully stored in a 
data base. Hence, every step that involves assertions of the ABox, like consistency checking and query 
evaluation can be performed by applying SQL queries to the data base.

Expressive Query Languages

How one can efficiently and effectively access fuzzy information has been a significant issue in the 
fuzzy information retrieval community (Cross, 1994). The idea is that fuzziness allows for many new 
capabilities for accessing information. More precisely, the fuzzy degrees can be used in order to provide 
rankings of result sets. Furthermore, these degrees can be combined with degrees issued by the user 
which intuitively represent their preferences about the elements of the query. For example, a user might 
be more interested in retrieving objects that have a certain property than another, or although he/she 
would prefer to see objects satisfying specific constraints he/she is also flexible if his/her criteria could 
not be met to an absolute degree. Thus the results will be ranked according to fuzziness but also accord-
ing to user data. Consequently, approaches to weighted conjunctive queries (Waller & Kraft, 1979) have 
been proposed and many proposals/strategies for combining the user specified degrees with the fuzzy 
degrees have been developed (Bookstein, 1980; Bordogna, 1996; Chen & Chen; Radecki, 1979; Salton 
et al., 1983a; Sanchez, 1989; Yager, 1987).

Pan et al. (2008) were inspired by weighted conjunctive query languages and the work in the field of 
fuzzy information retrieval and extended the classical conjunctive query language of f-DL-Lite with two 
very expressive query languages providing algorithms for evaluating such queries. On the one hand they 
propose new query languages, which generalize the entailment problem, while on the other hand they 
propose a general framework which encapsulates many of the query languages proposed in the literature 
for fuzzy information retrieval. Implementation over f-DL-Lite shows that such expressive queries can 
also be handled in a scalable and efficient way even in fuzzy ontology languages. In the following we 
first introduce conjunctive threshold queries that were proposed in (Pan et al., 2008) and consist of a 
totally new query language, while later on we introduce general fuzzy queries.

Threshold Queries: As it was noted in (Calvanese, 2005; Calavanese et al., 2007) in DL-Lite (and in 
all DLs) the entailment problem is a special case of conjunctive query answering. Since fKD-DL-Lite allows 
for fuzzy assertions, it would be reasonable that our query language was an extension of the entailment 
of fuzzy assertions. This implies that the query language should allow users to write the conjunction of 
fuzzy assertions. Working that way we can define conjunctive threshold queries (CTQ) which extend 
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the atoms A(u),R(v1,v2) in conjunctive queries of the form (1) to the following form 1 1 2 2( ) , ( , )A u t R v v t≥ ≥ , 
where t1,t2 ∈ (0,1] represent thresholds. As it was proven these queries are very important since they 
can be used in order to devise a reasoning algorithm for the fuzzy language fuzzy-CARIN (Mailis et 
al., 2007).

Example. Using threshold queries we can ask a database of human models for all the models of that 
are tall to a degree no less than 0.7 and light to a degree no less than 0.8 using the following conjunctive 
threshold query:

( ) ( ) 1 ( ) 0.7 ( ) 0.8q x Model x Tall x Light x← ≥ ∧ ≥ ∧ ≥  

Obviously, CTQs are more flexible than queries of the form (1) since users are allowed to specify 
for different thresholds to each atom of the query.

Formally, given an fKD-DL-Lite ontology O, a CTQ qT and an evaluation [ ]X S , we say that O 
entails qT (writing O|=qT) if every interpretation I of O satisfies the following condition: for every atom 

1 1 2 2( ) , ( , )A u t R u u t≥ ≥  of qT, we have [ ] 1 1 2 [ ] 2( ) , ( , )I
X S X SA u t R u u t≥ ≥  . Then we say that S is a solution of 

qT. From the above we note that the solution set of a CTQ is crisp. i.e. a tuple either belongs or not to it. 
Disjunctive threshold queries (DTQs) are defined accordingly.

Generalized Fuzzy Queries: Since fKD-DL-Lite allows for fuzzy assertions it would be useful if 
we could find a way to assess a membership degree of a tuple to the result set of a given query. As we 
show this is not the case for CTQs where a tuple either belongs or not to the solution set. For that rea-
son we introduce general fuzzy conjunctive queries. Syntactically, a general fuzzy conjunctive queries 
(GFCQ) extends the atoms A(u),R(v1,v2) of conjunctive queries of the form (1) with those of the form 
A u k R v v k( ) : , ( , ) :1 1 2 2 , where t1,t2 ∈ (0,1] are degrees called weights.

This extension of conjunctive query languages was already proposed in (Waller & Kraft, 1979) for 
fuzzy databases and fuzzy information retrieval. All the approaches that followed argued in favor for 
specific semantics for such queries (Bookstein, 1980; Chen & Chen; Radecki, 1979; Salton et al., 1983a). 
Differently, we will try to use generalized fuzzy operators in order to keep the choice of the semantics 
open. Thus in our case, conjunction of atoms will be performed by a general function denoted by G as 
well as the degree of each atom with the associated weight will be denoted by a function a. To simplify 
the presentation we will represent query atoms of GFCQs with atom ui ( ) . Given a fKD-DL-Lite ontology 
O, a fuzzy interpretation I of O, a GFCQ qF and an evaluation [ ]X S , the truth degree of qF in I for 
the specific evaluation is given by:

1 [ , ']
'

sup ( , ( ) )
I I

n I
i i i X S Y S

S
d G a k atom u=

⊆∆ × ×∆
=  

  

where for 1 ≤ I ≤ n, ki and atomi are as shown before, G is a function that evaluates conjunctions of atoms 
and a is a function that evaluates the weight associated atoms. S:d is called a candidate solution of qF. 
When d > 0, then S:d is called a solution of qF. Additionally, the semantic function must also satisfy the 
following condition:

If atom ui
I

X S Y S( )[ , '] 

= 0  for every valuation S′ and 1 ≤ I ≤ n, then d = 0.  (2)
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General fuzzy disjunctive query (GFDQ) is defined as a set of GFCQs that share the same head.
As we noted above Pan et al. (2008) have left the evaluation of conjunctions and degree associated 

weights open. Consequently, there are many different ways to provide semantics and meaning to our 
queries. In what follows we will briefly overview several such important choices that have been exam-
ined in (Pan et al., 2008).

1.  Fuzzy threshold queries: As we show the result set of CTQs is always a crisp set. This implies that 
if we have a fuzzy assertion of the form (a:C) ≥ 0.18 and a CTQ of the form ( ) ( ) 0.2Tq x C x← ≥  then 
a will not be included in the result set. On the other hand if we choose a t-norm (t) as a function 
for G and an R-implication as a function for a then we obtain fuzzy threshold queries, in which 
the truth degree of qF in I is given by the equation:

1 [ , ']
'

sup ( , ( ) )
I I

n I
i i i X S Y S

S
d t J k atom u=

⊆∆ × ×∆
=  

  

Given some set S′, if for all atoms of the query we have [ , ']( )I
i X S Y S iatom u k→ ≥ , then d = 1. On the other 

hand, if for some atom it was the case that [ , ']( )I
i X S Y S iatom u k→ <  then the R-implication would gradually 

filter (penalize) the membership degree of the solution to the result set according to weight ki.
As it was shown by Bordogna (1996) many of the proposed semantic functions found in the literature, 

like those in (Bookstein, 1980; Buel & Kraft, 1981; Radecki, 1979), can be grouped under the general 
framework of fuzzy threshold queries. Moreover, Pan et al. (2008) show that the (classical) conjunctive 
query language used by Straccia (2006), is also a special case of fuzzy threshold queries if we set all 
weights equal to 1.

2.  Fuzzy aggregation queries: Another commonly used fuzzy operator in fuzzy set literature that 
can be used as a semantic function for interpreting general fuzzy queries is that of fuzzy aggrega-
tion functions (Klir & Yuan, 1995). For example, if we use the weighted average we will get the 
semantic function:

[ , ']
1

'

1

( ( ) )
sup

I I

n
I

i i X S Y S
i

n
S

i
i

k atom u
d

k

=

⊆∆ × ×∆

=

×
=

∑

∑

 



 

Similarly to fuzzy threshold queries, Pan et al. (2008) show that many proposals for semantics of 
weighted queries, like the ones of Salton et al. (1983a) and S.-J. Chen and S.-M. Chen (2000), are special 
cases of the family of fuzzy aggregation queries.

3.  Fuzzy weighted t-norms: If we use the weighted t-norm operators proposed and studied by Chortaras 
et al. (2006) as functions for conjunctions and for associated weights, then the truth degree of qF 
in I is given by:

{ }[ , ']1'
sup min ( , ( , ( ) ))

I I

n
I

i i X S Y SiS
d u k k t k atom u

=⊆∆ × ×∆
= −  

  
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where k ki
n

i= =max 1 . For more information about these fuzzy operators the reader is referred to (Chor-
taras et al., 2006). Once more we can use this generalized class of query languages to show that several 
approaches, like the one proposed by Yager (1987) and Sanchez (1989), fall into it

It is easily shown that the above fuzzy conjunctive query languages satisfy condition (2).
Table 3 depicts fuzzy assertions with the fuzzy concept Tall, while the second one with the fuzzy 

relation hasFriend. Consider now the following GFCQ:

( ) ( ) : 0.8 ( , ) : 0.6q x Tall x hasFriend x y← ∧  

Table 4 summarizes the results of issuing such a query in the above fuzzy knowledge by using several 
of the semantic functions introduced before.

From the above we see that different choices of semantic functions could lead to different ranking 
results since the considered semantics are different. The first semantic function teats weight as thresh-
olds, penalizing the individuals that fail to satisfy them, while the second one aggregates all the degrees. 
The choice of the semantic function is context dependent and as far as we know there are no criteria or 
methodology found in the literature for choosing among them.

supporting Querying with sPARQL

After presenting the abstract syntax and semantics of our proposed languages, and important issue is to 
how such queries can be represented using Semantic Web standards. In the following we show how to 
extend the syntax of SPARQL (Prud’hommeaux & Seaborne, 2006), a well known Semantic Web query 
language, for the proposed languages. We call our extension f-SPARQL. SPARQL is a query language 
(candidate recommendation from the W3C Data Access Working Group13) for getting information from 
RDF graphs. SPARQL allows for a query to constitute of triple patterns, conjunctions, disjunctions and 
optional patterns. A SPARQL query is a quadruple Q = (V,P,DS,SM), where V is a result form, P is a 
graph pattern, DS a data set and SM a set of solution modifiers. Among others, SPARQL allows for select 
queries, formed in a SELECT-FROM-WHERE manner. The result form represents the set of variables 
appearing in the SELECT, the dataset forms the FROM part, constituted by a set of IRIs of RDF docu-
ments, while the graph pattern forms the WHERE part which is constituted by a set of RDF triples.

In order to maintain backward compatibility with existing SPARQL tools, we propose to use spe-
cially formatted SPARQL comments to specify extra information needed in our proposed languages (see 
Table 5). Firstly, one should declare the query type before a select query. For example, #TQ# declares 
a threshold query, while #GFCQ:SEM=FUZZY THRESHOLD# declares a general fuzzy query, with 
the fuzzy threshold semantic functions. Secondly, following each triple in the WHERE clause, one can 

Table 3. Example Consider the following set of fuzzy assertions 

Tall hasFriend

Individual Degree Individual Individual Degree

george 0.8 goerge mary 0.8

tom 0.79 tom mary 0.9

mary 0.75 mary tom 0.9
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use #TH# (resp. #DG#) to specify a threshold in a threshold query (resp. a degree in a general fuzzy 
query). For instance, the threshold query presented in a previous Example can be represented by the 
following f-SPARQL query:

#TQ# 

SELECT ?x WHERE { 

?x rdf:type Model . #TH# 1.0 

?x rdf:type Tall . #TH# 0.7 

?x rdf:type Light . #TH# 0.8 

} 

In the case of general fuzzy queries, one must specify the semantic functions (i.e. a and G). Below 
is an example fuzzy threshold query.

#GFCQ:SEM=FUZZYTHRESHOLD# 

SELECT ?x WHERE { 

?x rdf:type Model . #DG# 1.0 

?x rdf:type Tall . #DG# 0.7 

?x rdf:type Light . #DG# 0.8 

} 

Table 5 presents the f-SPARQL syntax. f-SPARQL extends two of SPARQL’s elements, namely 
the “Query” and the “TriplesBlock” element. As illustrated above, each select query is extended with 

Table 4.

Fuzzy Threshold Queries with the Lukasiewicz operators 
t(a,b) = max(0,a+b−1)  
J(a,b) = min(1,1−a + b) 

Fuzzy Aggregation Queries using weighted average

x d x d

george 1 tom 0.837

tom 0.99 mary 0.81

mary 0.95 george 0.8

Table 5. Syntax of Fuzzy SPARQL 

Query := Prologue (QueryType SelectQuery | ConstructQuery| 
DescribeQuery | AskQuery)

QueryType ::= ‘#TQ# \n’ | ‘#GFCQ:SEM=’ FuzzySemantics ‘# \n’

FuzzySemantics ::= ‘AGGREGATION’ | ‘FUZZYTHRESHOLD’ | 
‘FUZZYTHRESHOLD-1’ | ‘FUZZYWEIGHTEDNORMS’

TriplesBlock := TriplesSameSubject (‘.’ TripleWeight Degree TriplesBlock?)?

TripleWeight := ‘#TH#’ | ‘#DG#‘

Degree := real-number-between-0-and-1-upper-inclusive
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the element QueryType. In particular, for general fuzzy queries, the declaration `#GFCQ:SEM=’ is fol-
lowed by the element FuzzySemantics, which is used to specify the semantic functions, such as the ones 
we presented in the previous section. More precisely, we use the keywords `FUZZYTHRESHOLD’, 
`FUZZYTHRESHOLD-1’, ̀ AGGREGATION’ and ̀ FUZZYWEIGHTEDNORMS’ to indicate the four 
fuzzy general queries we introduced in Section 3.1.2. When one uses `FUZZYTHRESHOLD-1’, the 
fuzzy threshold is set as 1, and the values specified by the #TH# comments are ignored. Finally, the 
`”TriplesBlock” element is extended with the elements TripleWeight and Degree, which are used to as-
sociated a threshold or weight with each triple of the SPARQL query.

The ONTOsEARCH2 system

Our implementation is based on the ONTOSEARCH2 system (Pan et al., 2006b; Thomas et al., 2007), 
which is an infrastructure for supporting ontology searching and query answering. The f-DL-Lite query 
engine is implemented as an extension of the crisp DL-Lite query engine in ONTOSEARCH27 (Pan 
& Thomas, 2007), so as to support threshold queries and general fuzzy queries. The core part of the 
f-DL-Lite query engine includes implementations of algorithms that realize the expressive conjunctive 
queries we have presented in the previous section over fuzzy DL-Lite (Pan et al., 2008). The system was 
written in Java 5 and uses PostgreSQL 8.1 RDBMS for the repository storage. PostgreSQL was setup 
with default installation, no additional configuration was performed.

Users of the f-DL-Lite query engine can submit f-DL-Lite ontologies via the Web interface of ON-
TOSEARCH2, and then submit f-SPARQL queries against their target ontologies. Figure 1 depicts the 
web interface of ONTOSEARCH2.

The fuzzy query engine operates in two modes: TQ mode (for threshold queries) and GFCQ mode 
(for general fuzzy queries). When users submit an f-SPARQL query, the fuzzy query engine parses it, 
so as to determine the query type (whether the query is a threshold query or a general fuzzy query), as 
well as the thresholds (for threshold queries) or degrees (for general fuzzy queries), depending on the 
query types. The implementation over ONTOSEARCH2 has been evaluated against a fuzzy variant of 
the Lehigh University Benchmark (Pan et al., 2008). In brief, the LUBM benchmark has been enriched 
with two fuzzy concepts, that of a “Busy” and a “Famous” for which fuzzy assertions are created. The 
system has been shown to be highly scalable, being able to answer threshold queries and general fuzzy 
queries over about 7,000,000 individuals in a matter of a few seconds, comparable to the query answer-
ing time of classical DL-Lite.

Besides the DL-Lite and the f-DL-Lite query engine, the ONTOSEARCH2 system consists of other 
components, such as the ontology search engine. According to this functionality the implementation has 
been tested with a realistic Semantic Web scenario, which we briefly sketch below.

One of the major limitations of existing ontology search engines is that searching is only based on 
keywords and metadata information of ontologies, rather than semantic entailments of ontologies (e.g., 
one wants to search for ontologies in which Bass Clarinet is a sub-class of Woodwind). On the other 
hand, searching only based on semantic entailments might not be ideal either, as synonyms appearing 
in the metadata could not be exploited.

By making use of the f-DL-Lite query engine, our ontology search engine supports keyword-plus-
entailment searches, such as searching for ontologies in which class X is a sub-class of class Y, and class 
X is associated with the keywords “Bass” and “Clarinet”, while class Y is associated with the keyword 
“Woodwind”. The search could be represented as the following threshold query:
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#TQ# 

SELECT ?x WHERE { 

?x hasKeyword i-bass . #TH# 0.6 

?x hasKeyword i-clarinet . #TH# 0.6 

?x rdfs:subClassOf ?y . 

?y hasKeyword i-woodwind . #TH# 0.7 

} 

where i-bass, i-clarinet and i-woodwind are representative individuals for keywords “Bass”, “Clarinet” 
and “Woodwind”, resp. The thresholds 0.6 and 0.7 can be specified by users.

In order to support keyword-plus-entailment searches, our ontology search engine, for each indexed 
ontology, stores its semantic approximation (in DL-Lite) (Pan & Thomas, 2007) and accompanies each 
ontology in its repository with an f-DL-Lite meta-ontology, which (i) materialises all TBox reasoning based 
on the semantic approximation and, most importantly, (ii) uses fuzzy assertions to represent associations 
of each class (property) and keywords14 appearing in the metadata of the ontology, with some degrees. 
Keywords appearing in the ontology metadata are associated with scores based on ranking factors15. We 
use these scores to calculate the tf idf⋅  (Salton & McGill, 2983b) for each keyword, and normalise them 
using a sigmoid function such as the one shown in the following to a degree between 0 and 1.

w n n( )
.

=
+

-
-

2
1 2 1

1 

Figure 1. The ONTOSEARCH2 Web Interface
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Hence, the ontology search engine can use the f-DL-Lite query engine to query across all the meta-
ontologies in its repository, so as to support keyword-plus-entailment searches. Further discussions of 
this use case go beyond the scope of this paper.

Concluding our presentation in expressive querying over f-DL-Lite ontologies, we would like to 
point out that the respective querying framework is not specifically tailored for f-DL-Lite ontologies. 
This framework has also been implemented in the FiRE5 fuzzy DL reasoner and queries are realized 
through the Sesame RDF triple store16. More precisely, expressive reasoning is firstly applied in order 
to extract new implied information from the facts and axioms, then the knowledge base is stored in a 
proper form in Sesame and finally FiRE uses SPARQL queries to Sesame in order to implement expres-
sive weighted queries (Simou et al., 2008b). The respective implementation has been evaluated against 
an industrial strength scenario about casting actors for TV spots and commercials and its performance 
has been assessed.

sCALAbLE KNOWLEDgE CLAssIFICATION WITH FUZZY EL+

In the current section we will present a fuzzy extension of the EL+ language. EL+ (Baader et al.) is 
another very famous tractable Description Logic that has been proposed in the literature. It actually 
consists of one member of the EL family of languages consisting of EL, EL+ and EL++ (Baader et al., 
2005). The EL family has been developed by an effort to identify the fragment of Description Logics 
that is usually used in creating medical ontologies, like the SNOMED17 (Systematized Nomenclature of 
Medicine) and the Galen18 ontologies. It was only later proved that the used fragment enjoys polynomial 
algorithms for concept classification. This was a very important feature since concept classification is 
a very important (if not the most important) reasoning problem in medical applications, where the clas-
sification of medical terms within the ontologies is required, rather than performing retrieval tasks, as 
is the case for DL-Lite. Thus, differently than DL-Lite, EL+ offers for more expressive means of repre-
senting knowledge (see next section), but still no more than is required to allow for polynomial concept 
classification. Regarding, query answering it has been later shown that conjunctive query answering 
over EL+ ontologies is undecidable (Rosati, 2007), which also justifies the fact that EL+ is not tailored 
for query answering tasks.

In the following we present the fuzzy EL+ language. First we introduce the syntax and semantics, 
while later we focus in providing an algorithm that computes the concept hierarchy of f-EL+ ontolo-
gies. The interesting feature is that the algorithm manages to classify f-EL+ ontologies that allow for 
fuzzy subsumption. Finally, we present some refinements of the algorithm that can be the base for an 
optimized implementation, as in the crisp case.

The Fuzzy EL+ Language

In this section we introduce a fuzzy extension to the EL+ DL. Our semantics will be tailored for the 
operators of the Gödel logic we call our language fG − EL+.

As is the case with DL-Lite, the high efficiency of EL+ is attributed to the restriction of the avail-
able set of constructors. More precisely, fG − EL+ only allows for the top concept (⊤), for full existential 
restrictions (∃R.C) and conjunction (C⊓D). We note that unlike DL-Lite the use of these constructors 
in EL+ concept axioms is unrestricted. Furthermore, in comparison with DL-Lite, EL+ allows for full 
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existential quantification, thus significantly more complex concepts can be defiled. We clarify here that 
since EL+ is more expressive w.r.t. what can be said about concepts, f-DL-Lite classification is also 
tractable (polynomial), but due to the very restricted constructors, not of great interest.

An fG − EL+ ontology consists of a finite set of concept and role axioms. Differently, than f-DL-Lite 
we allow for fuzzy general concept inclusions (f-GCIs) of the form 〈C ⊆ D,n〉, where n ∈ [0,1]. Intuitively, 
these axioms say that the degree of subsethood of C to D is at-least equal to n. In contrast to what we 
have seen until now EL+ allows for what is called complex role inclusion axioms (RIAs) of the form 

1 nR R S⊆ , where   denotes the composition of two roles. Again, we note that EL+ allows for opera-
tors over roles, and more precisely for role composition which is a significant expressive constructor. 
With RIAs one is able to state that a role R is transitive, by R R R⊆  or express right- and left-identity 
rules, which are very important in medical application, by axioms of the form R S R⊆ .

The semantics of fG − EL+ are again provided by the aid of fuzzy interpretations. Again using fuzzy 
set theoretic operators we are able to interpret complex fG − EL concepts. Table 6 summarizes the se-
mantics. Most of them have already been presented in previous sections. Nevertheless the semantics 
of fuzzy inclusion axioms and complex role inclusion axioms are new. In Table 6 t  denotes the sup-t 
composition of two fuzzy roles (Klir & Yuan, 1995). Given an interpretation I we say that I is a model of 
an fG − EL+ ontology if for each f-GCI and RIA, the conditions in this table are satisfied. For example, 
a fuzzy interpretation I satisfies 〈C ⊆ D,n〉 if inf ( ( ), ( ))I I

a C a D a n≥J , where J is a fuzzy implication.
The basic inference problem of fG − EL+ is fuzzy concept subsumption: A concept C is fuzzy 

subsumed by a concept D to a degree n ∈ [0,1] w.r.t. an fG − EL+ ontology O, written ,OC D n〈 ⊆ 〉 if 
inf ( ( ), ( ))I I

a C a D a n≥J  for every model I of O. Moreover we are also interested in the problem of clas-
sifying an fG − EL+ ontology which contains fuzzy-GCIs, i.e. compute all fuzzy subsumptions between 
concepts of the ontology.

As we see, we interpret fuzzy GCIs with the aid of R-implications. This semantics is derived by 
translating C ⊆ D into the First-Order formula ∀x.C(x) → D(x) and then interpreting → with an R-im-
plication and ∀ with inf (Straccia, 2005). Although fuzzy subsumption for fuzzy DLs was first proposed 
by Straccia, several works in the fuzzy set literature regarding this issue already existed. The first idea 
was presented by Bandler and Kohout (1980). Similarly to Straccia, Bandler and Kohout used fuzzy 
implications to give semantics to fuzzy set inclusion. The first attempt to provide axioms that character-
ize the operators used to interpret fuzzy subsumption was presented by Sinha and Dougherty (1993). 
Many of these axioms are satisfied by R-implications, but only the Lukasiewicz implication satisfies 
all of them. A different set of axioms was proposed by Young (1996). Again R-implications are quite 

Table 6. Semantics of f-EL+

Constructor DL Syntax Semantics

top concept ⊤ ⊤I(a) =1

conjunction C ⊓D (C ⊓ D a t C a D aI I I) ( ) ( ( ), ( ))=

existential restriction ∃R.C { }. ( ) sup ( ( , ), ( ))I I I
bR C a t R a b C b∃ =

Fuzzy GCIs 〈C ⊆ D,n〉 inf ( ( ), ( ))I I
a C a D a n≥J

RIAs 1 nR R S⊆ 1 ( , ) ( , )I t t I I
nR R a b S a b⊆ 
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close to satisfying all proposed axioms. Thus, we see that each author provided different set of axioms 
according to the specific problem they wanted to tackle. Sinha and Dougherty (1993) wanted to define 
new mathematical morphology operators, while Young (1993) was studying fuzzy entropy. We conclude 
that R-implications generally provide a good intuition for semantics of fuzzy subsumption.

The use of fuzzy inclusion axioms in fuzzy EL+ was motivated by the field of ontology matching 
and ontology alignment. Ontology matching consists of the process of identifying semantic similarities 
between heterogeneous ontologies. More precisely, an ontology alignment algorithm is never capable 
of assessing the similarity of two entities with 100% confidence. What is more likely is to have degrees 
of confidence for each mapping. For example, in a realistic ontology alignment example and for two 
relatively simple ontologies, o1 and o2, about mobile phones an algorithm can produce the following 
(fuzzy) mappings:

map(o1: MobileDevice, o2: ElectronicDevice, 0.7)	

map(o1: MobilePhone, o2: Phone, 0.6)	

map(o1: MobilePhone, o2: CablePhone, 0.4)	

map(o1: MobilePhone, o2: CellularPhone, 1.0)	

Ferrara et al. (2008) have already proposed the use of fuzzy inclusion axioms of fuzzy DLs in order 
to provide formal semantics to such fuzzy mappings and interpret them. For example, the first mapping 
could be represented by the following fuzzy inclusion axiom . Ferrara et al. (2008) then use the semantics 
of such axioms together with standard fuzzy reasoning services in order to perform fuzzy validation, i.e. to 
refine or remove a mapping according to whether it causes inconsistencies of the fuzzy knowledge base. 
Although, they did not use fuzzy classification services, it is quite evident that if such services could be 
supported then new (inferred) mappings between the two ontologies could be identified. Furthermore, 
Holi & Hyvonen (2006) have also proposed the use of fuzzy inclusion axioms for representing fuzzy 
mappings between search views in Semantic Portals. Again no reasoning over fuzzy subsumption was 
performed. Consequently, from both applications we can note that the use of fuzzy inclusion axioms 
with f-EL+ (that allows for efficient classification) is of great interest.

Classifying Knowledge with Fuzzy EL+

In the current section we will provide a detailed presentation of the algorithm for classifying fuzzy sub-
sumption in f-EL+ ontologies. As we will see in the following the algorithm for fG − EL+ is quite similar 
to the algorithm for classical EL+ modulo the degrees of fuzzy-GCIs. This is to some extent expected 
since on the one hand fuzzy logics are generalization of classical logics which is different compared to 
uncertainty handling logics (probabilistic, possibilistic), thus at the extremes of 0 and 1 they provide 
the same results. On the other hand EL+ is already a sub-boolean logic (it is not propositionally closed 
under negation) so the logical differences with fG − EL+ cannot be revealed. Nevertheless, discover-
ing the degrees of membership in the inference rules (see Table 8) and generalizing the algorithm was 
extremely difficult and involved deep investigation of the properties of fuzzy operators.
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Before applying the polynomial algorithm for classification a fG − EL+ ontology needs to be normal-
ized (Baader et al.). Given an ontology O, we write CNO

U  and CNO to denote the set of concept names 
with and without the top concept (⊤), respectively. Then, an fG − EL+ ontology O is in normal form if

1.  all fuzzy GCIs in O have one of the following forms, where U
i OA CN∈  and B ∈ CNO:

〈A1 ⊓…⊓ ⊆ B,n〉 Ak 

〈A1 ⊆ ∃R.A2,n〉 

〈∃R.A1 ⊆ B,n〉 

2.  all role inclusions are of the form R ⊆ S or 1 2R R S⊆ .

As shown in (Baader et al.) every EL+ ontology O can be turned into a normalized one O′ by exhaus-
tively applying proper normalization rules, which introduce new concept and role names in the ontology. 
The complete set of normalization rules for fG − EL is described in Table 7.where , , , ,U

O iC D CN C C D∉  are 
arbitrary concepts, ,U

OB CN P∈  denotes a new role and A denotes a new concept name.
Lemma. An fG − EL ontology O is satisfiable iff the normalized one O′ is satisfiable.
Theorem. Subsumption w.r.t. fG − EL ontologies can be reduced in linear time to subsumption w.r.t. 

normalized ontologies in fG − EL.
In the following we assume that an input ontology O is in normal form.
Let O be an fG − EL ontology in normal form. Our subsumption algorithm for normalized fG − EL 

ontologies can be restricted to subsumption checking between concept names. More precisely, ,OC D n〈 ⊆ 〉 
iff ' ,OA B n〈 ⊆ 〉, where { }' , , ,O O A C n D B n= ∪ 〈 ⊆ 〉 〈 ⊆ 〉  and A, B are new concept names.

Let RNO be the set of all role names occurring in O. The algorithm computes:

A mapping • S assigning to each concept name of CNO a subset S(A) of [0,1]U
OCN × , and

A mapping • r assigning to each role name R of RNO a ternary relation r(R) which is a subset of 
[0,1]U U

O OCN CN× × .

Table 7. Normalization rules for fG − EL 

NF1 1 nR R S⊆ → 1 1 ,n nR R P P R S− ⊆ ⊆ 

NF2
1C〈  ⊓…⊓ C  ⊓…⊓ ,kC D n⊆ 〉 → ,C A n〈 ⊆ 〉, 1C〈  ⊓…⊓ A  ⊓…⊓ ,kC D n⊆ 〉

NF3 . ,R C D n〈∃ ⊆ 〉 → ,C A n〈 ⊆ 〉, . ,R A D n〈∃ ⊆ 〉

NF4 ,C D n〈 ⊆ 〉 → ,C A n〈 ⊆ 〉, ,A D n〈 ⊆ 〉

NF5 . ,B R C n〈 ⊆ ∃ 〉 → . ,B R A n〈 ⊆ ∃ 〉, ,A C n〈 ⊆ 〉

NF6 B C〈 ⊆  ⊓ ,D n〉 → ,B C n〈 ⊆ 〉, ,B D n〈 ⊆ 〉
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As we can see, due to the presence of fuzzy subsumptions we have extended the mappings S(A), r(R) 
to range over subsets of [0,1]U

OCN ×  and [0,1]U U
O OCN CN× × , respectively. As with crisp EL+ intuitively, 

these mappings make implicit fuzzy subsumption relationships explicit in the sense that

• , ( )B n S A〈 〉 ∈  implies ,A B n〈 ⊆ 〉 and 
• , , ( )A B n r R〈 〉 ∈  implies . ,A R B n〈 ⊆ ∃ 〉.

The mappings are initialized as follows:

• S(A) = {〈A,1〉, 〈⊤,1〉}, for each A ∈ CNO
• r(R) = ∅, for each R ∈ RNO

Then, the sets S(A) and r(R) are extended by applying the completion rules shown in Table 8 until 
no more rules are applied.

Theorem. The algorithm runs in polynomial time and it is sound and complete, i.e. after it terminates 
on input O, we have for all , U

OA B CN∈ , n ∈ (0,1], ,OA B n〈 ⊆ 〉 iff , ' ( )B n S A〈 〉 ∈ , for some n′ ∈ (0,1], with 
n′ ≥ n.

A Refined and Optimised Algorithm

As it was pointed in (Baader et al.) although EL+ is a tractable DL, in practice the above algorithm might 
fail to provide truly tractable, scalable and efficient reasoning. This is due to the fact that the application 
of rules is performed using a naïve brute-force search. This effect is remedied by proposing a refined 
algorithm which is shown to provide truly scalable practical reasoning. The algorithm is realized by 
introducing a set of queues, one for each concept name, which intuitively guide the application of the 
expansion rules. In the following we sketch the necessary modifications to the EL+ refined algorithm 
in order to also provide optimisations for the fG − EL algorithm. Our entries of the queues are of the 
form:

B1,…,Bm → 〈B′, n′〉 and 〈∃R.B, n〉 

Table 8. Completion rules for fG − EL+ 

Rule Description

R1 If 1 1, ( ), , , ( )l lA n S X A n S X〈 〉 ∈ 〈 〉 ∈ , 1A〈  ⊓…⊓ ,lA B k O⊆ 〉∈  and , ( )B m S X〈 〉 ∉ , where 
m n n kl= min( , , , )1   then ( ) : ( ) { , }S X S X B m= ∪ 〈 〉  where m n n kl= min( , , , )1 

R2 If , ( )A n S X〈 〉 ∈ , . ,A R B k O〈 ⊆ ∃ 〉 ∈  and , , ( )X B m r R〈 〉 ∉ , where m n k= min( , )  then 
( ) : ( ) { , , }r R r R X B m= ∪ 〈 〉 , where m n k= min( , )

R3 If 1, , ( )X Y n r R〈 〉 ∈ , 2, ( )A n S Y〈 〉 ∈ , 3. . ,R A B n O〈∃ ⊆ 〉∈  and , ( )B m S X〈 〉 ∉ , where 
m n n n= min( , , )1 2 3  then ( ) : ( ) { , }S X S X B m= ∪ 〈 〉 , where m n n n= min( , , )1 2 3

R4 If , , ( )X Y n r R〈 〉 ∈ , R S O⊆ ∈ , and , , ( )X Y n r S〈 〉 ∉  then ( ) : ( ) { , , }r S r S X Y n= ∪ 〈 〉

R5 If 1, , ( )X Y n r R〈 〉 ∈ , 2, , ( )Y Z n r S〈 〉 ∈ , R S F O⊆ ∈  and , , ( )X Z m r F〈 〉 ∈/ , where m n n= min( , )1 2  
then ( ) : ( ) { , , }r F r F X Z m= ∪ 〈 〉  where m n n= min( , )1 2
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with B1,…,Bm and B′ concept names, R role name, m ≥ 0 and n′ ∈ (0,1]. For m =0 we simply write 〈B′, 
n′〉. Intuitively,

an entry • B1,…,Bm → 〈B′, n′〉 ∈ queue(A) means that 〈B′, k〉, with k = min(n′, n1,…,nm) has to be 
added in S(A) if S(A) already contains information for B1,…,Bm, i.e. entries 〈B1,n1〉,…,〈Bm,nm〉, 
and

• 〈∃R.B, n〉 ∈ queue(A) means that 〈A,B,n〉 has to be added to r(R).

Similarly to the optimised algorithm of EL+ we use the mapping Ô from concepts to sets of queue 
entries as follows:

For each concept name U
OA CN∈ , Â is the minimal set of queue entries such that:

if • 〈A1 ⊓…⊓ Am ⊆ B,n〉 ∈ O and A = Ai, then

1 1 1
ˆ, , , , , , ( )i i mA A A A B n O A− + → 〈 〉 ∈   and 

if • 〈A ⊆ ∃R.B,n〉 ∈ O, then ˆ. , ( )R B n O A〈∃ 〉 ∈ .

Similarly, for each concept ∃R.A, ˆ ( . )O R A∃  is the minimal set of queue entries such that, if ∃R.A ⊆ B 
∈ O, then ˆ, ( . )B n O R A .

Using the above changes the refined algorithm of EL+ can be changed accordingly in order to also 
take into account fuzziness in subsumption axioms and provide an algorithm for processing the queue 
entries.

Theorem. The refined algorithm runs in polynomial time and it is sound and complete, i.e. after it 
terminates on input O, we have for all , U

OA B CN∈ , n ∈ (0,1] that ,OA B n〈 ⊆ 〉 iff , ' ( )B n S A〈 〉 ∈ , for some 
degree n′ ∈ (0,1], with n′ ≥ n.

DIsCUssION AND FUTURE WORK

How to apply Description Logic based ontologies in the Web has been a pressing issue for the Semantic 
Web community (Mika, 2005). On the one hand (Semantic) Web applications would require ontologies to 
be able to handle hundreds of thousands of data in reasonable amount of time in order to deliver services 
to end users, while on the other hand they should be able to deal with fuzzy and imprecise data which 
emerge from automated procedures or are inseparable part of every-day, common, human reasoning. 
Our current Chapter tries to provide the state-of-the-art of works tackling such a problem. On the one 
hand we want to show that handling fuzziness in Semantic Web applications is feasible and we have 
presented a number of fuzzy extensions of popular ontology languages. Nevertheless, our main aim is 
to show that handling vagueness although it adds more expressivity over the crisp (classical) approaches 
can still be done very efficiently and in a way that can scale up to millions of data. Hence, for a certain 
class of fuzzy ontology languages fuzziness and scalability are not antagonistic concepts.

The contribution of the Chapter is divided in two major parts.
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On the first part we present a fuzzy extension of the • DL-Lite language that has been proposed in 
the literature (Straccia, 2006). The DL-Lite language is particularly interesting since it can pro-
vide efficient query answering services and can scale over millions of data. The power of DL-Lite 
lies in the fact that its constructors have been carefully selected such that after careful rewrit-
ing queries over DL-Lite ontologies can be reformulated and issued over a relational database. 
Thus one can exploit the vast amount of research and optimizations that have been developed in 
this field for many years. After reviewing its syntax and semantics we take the fuzzy-DL-Lite 
proposal one step further and present a proposal for performing very expressive weighted/fuzzy 
conjunctive queries over fuzzy-DL-Lite ontologies (Pan et al, 2008). Many of these languages 
have been proposed many years ago in the field of fuzzy information retrieval and querying over 
fuzzy databases (Cross, 1994). Taking these approaches even further we have shown that these 
can be represented under a general framework and the semantic possibilities are merely endless 
adding more, like conjunctive threshold queries which have been proven very important (Mailis 
et al., 2007). Overall, we have shown that evaluating very expressive extended queries over fuzzy 
ontologies are not antagonistic concepts and can be done in a very efficient and scalable way for 
the fuzzy-DL-Lite language.
On the second part of the Chapter we have focused on the second most important inference service • 
of (fuzzy) ontology languages, that of concept (class) classification (i.e. computing the implied 
concept hierarchy). To this extend we focused on the EL+ language, which is known to be able to 
solve such a problem in a very efficient way (Baader et al). Consequently, we present the fuzzy 
EL+ language (Stoilos et al., 2008). Besides the syntax and semantics we also focus in providing 
a classification algorithm for fuzzy EL+ ontologies in order to realize such a problem in the fuzzy 
case. The interesting part in this approach is that fuzzy EL+ ontologies are extended to allow 
for fuzzy subsumption, that is important in several Semantic Web tasks like ontology matching 
(Ferrara et al., 2008) and semantic portals (Holi & Hyvonen, 2006). Furthermore, we have pre-
sented the refinements/optimizations that have been proposed for the classification of the fuzzy 
EL+ algorithm (Stoilos et al., 2008) and can be the base for an efficient implementation. Hence, 
again in this case we have shown that there exist fuzzy ontology languages which can support 
concept classification over fuzzy subsumption in a scalable manner.

In conclusion we have shown that scalability and reasoning over fuzzy ontologies are two concepts 
that can indeed live together. Both of the aforementioned fuzzy ontology languages provide ways to solve 
efficiently the two most important inference problems of ontology languages and Description Logics, 
namely, query answering and entailment and classification.

The main aspect of future work is to investigate how the aforementioned languages and algorithms 
can be extended in order to support in a scalable and efficient way more expressive ontology languages. 
Regarding fuzzy-DL-Lite, scalable querying services for more expressive fuzzy ontology languages, such 
as fuzzy-OWL (Stoilos et al., 2005a), can be performed along the lines of semantic approximation (Pan 
& Thomas, 2007), which is a technique to reduce query answering over OWL DL ontologies to query 
answering over DL-Lite. Regarding fuzzy EL+ an obvious way would be to extend the algorithm for 
supporting classification over fuzzy EL++, which is a fuzzy extension of the well known extension of 
EL+, EL++ (Baader et al., 2005). Although such a fuzzy extension exists in the literature (Mailis et al., 
2008) it is well known that the reasoning algorithm of (fuzzy) EL++ does not usually scale in practical 
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settings due to the lack of refinements (Baader et al.). Investigating such refinements is still an open 
problem even for the classical EL++ language.
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INTRODUCTION

The term computing with words was introduced by Zadeh (Zadeh 1996), (Zadeh 2002) to refer to com-
putation involving natural language expression and queries. Such an approach allows for a high-level 
and intuitive representation of information which is vital for the development of transparent human-
understandable decision making software tools. Zadeh proposed a methodology for computing with 
words incorporating fuzzy set theory and fuzzy quantifiers. Label semantics (Lawry 2004), (Lawry 2006) 
is an alternative framework for linguistic modeling based on random set theory and where emphasis is 
given to decisions concerning the appropriateness of labels to describe a particular instance or object. 
Recent work has demonstrated a clear and natural link between label semantics and the prototype theory 
of concepts. In this paper we will propose a new methodology for evaluating queries about a database 
which involve both linguistic expressions and generalized (linguistic) quantifiers. This approach will 
be based on the combination of prototype theory and random set theory underlying the interpretation of 

AbsTRACT

This chapter proposes a new interpretation of quantified linguistic queries based on a combination of 
random set theory and prototype theory and which is consistent with the label semantics framework. In 
this approach concepts are defined by random set neighbourhoods of a set of prototypes and quantifiers 
are similarly defined by random set constraints on ratios or absolute values. The authors then propose 
a computationally feasible method for evaluating quantified statement describing the elements of a 
database.
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label semantics proposed in (Lawry & Tang 2008), (Lawry & Tang 2009). Furthermore, we will show 
that, given certain assumptions, the evaluation of appropriateness measures for quantified statements is 
computationally tractable. This suggests that the proposed approach has practical potential as a means 
of linguistic query evaluation in information retrieval.

An outline of the paper is as follows: An introduction to label semantics is given, with a brief discus-
sion of the underlying philosophy together with basic definitions including appropriateness measures 
and mass functions. In the next section we describe the prototype theory of label semantics whereby a 
label L is deemed appropriate to describe an instance x, provided x is sufficiently close to the prototypes 
of L. In this interpretation linguistic descriptions are represented by random set neighborhoods of a set 
of prototypes. Following this we then propose a random set, prototype theory interpretation of quanti-
fied linguistic expressions and define measures of the appropriateness of such expressions to describe a 
given set of data elements. We show that such measures can be evaluated using a simple computational 
procedure. Finally, we present conclusions and indicate possible directions for future research.

LAbEL sEMANTICs

In contrast to fuzzy set theory, label semantics encodes the meaning of linguistic labels according to how 
they are used by a population of communicating agents to convey information. From this perspective, 
the focus is on the decision making process an intelligent agent must go through in order to identify 
which labels or expressions can actually be used to describe an object or value. In other words, in order 
to make an assertion describing an object in terms of some set of linguistic labels, an agent must first 
identify which of these labels are appropriate or assertible in this context. Given the way that individuals 
learn language through an ongoing process of interaction with the other communicating agents and with 
the environment, then we can expect there to be considerable uncertainty associated with any decisions 
of this kind. Furthermore, there is a subtle assumption central to the label semantic model, that such 
decisions regarding appropriateness or assertibility are meaningful. For instance, the fuzzy logic view is 
that vague descriptions like ‘John is tall’ are generally only partially true and hence it is not meaningful 
to consider which of a set of given labels can truthfully be used to described John’s height. However, 
we contest that the efficacy of natural language as a means of conveying information between members 
of a population lies in shared conventions governing the appropriate use of words which are, at least 
loosely, adhere to by individuals within the population.

It cannot be denied that in their use of linguistic labels human’s posses a mechanism for deciding 
whether or not to make assertions (e.g. ‘John is tall’) or to agree to a classification (e.g. ‘Yes, that is 
a tree’). Further, although the concepts concerned are vague this underlying decision process is fun-
damentally crisp (bivalent). For instance, you are either willing to assert that ‘x is a tree’ given your 
current knowledge, or you are not. In other words, either tree is an appropriate label to describe x or it 
is not. As humans we are continually faced with making such crisp decisions regarding vague concepts 
as part of our every day use of language. Of course, we may be uncertain about labels and even express 
these doubts (e.g. ‘I’m not sure whether you would call that a tree or a bush, or both’) but the underly-
ing decision is crisp.

Given this decision problem, we suggest that it is useful for agents to adopt what might be called an 
epistemic stance as follows:
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Each individual agent in the population assumes the existence of a set of labeling conventions, valid 
across the whole population, governing what linguistic labels and expression can be appropriately used 
to describe particular instances.

Of course, such linguistic conventions do not need to be imposed by some outside authority, but 
instead would emerge as a result of interactions between agents each adopting the epistemic stance. 
Hence, label semantics does not attempt to link label symbols to fuzzy set concept definitions but rather 
to quantify an agent’s subjective belief that a label L is appropriate to describe an object x and hence 
whether or not it is reasonable to assert that ‘x is L’. Further discussion of the epistemic stance and the 
philosophical underpinnings of label semantics can be found in (Lawry 2008).

Label semantics proposes two fundamental and inter-related measures of the appropriateness of labels 
as descriptions of an object or value. Given a finite set of labels LA, a set of compound expressions LE 
can be generated through recursive application of logical connectives. The labels Li ∈ LA are intended 
to represent words such as adjectives and nouns which describe the underlying universe Ω. In other 
words, Li corresponds to a description label for which the expression ‘x is Li’ is meaningful for any ele-
ment x ∈ Ω. The measure of appropriateness of an expression θ ∈ LE as a description of the element 
x is denoted by μθ (x) and quantifies the agent’s subjective belief that θ can be used to describe x based 
on his/her partial knowledge of the current labeling conventions of the population. From an alternative 
perspective, when faced with an example to describe, an agent may consider each label in LA and attempt 
to identify the subset of labels which are appropriate to use. Let this set be denoted by Dx. In the face of 
their uncertainty regarding labeling conventions the agent will also be uncertain as to the composition 
of Dx, and in label semantics this is quantified by a mass function mx : 2

LA → [0,1] on subsets of labels. 
The relationship between these two measures is described below.

Definition 1. Label Expressions.

Given a finite set of labels LA the corresponding set of label expressions LE is defined recursively 
as follows:

If • L ∈ LA then L ∈ LE
If • q f, Î LE  then Ø Ù Ú Îq q f q f, , LE

The mass function mx on sets of labels then quantifies the agent’s belief that any particular subset of 
labels contains all and only the labels with which it is appropriate to describe x.

Definition 2. Mass Function on Labels.

" Îx W  a mass function on labels is a function m
x

LA: [ , ]2 0 1® such that m F
x

F LA

( ) =
Í
å 1  and 

where for F LAÍ , mx(F) is the belief that Dx = F.
The appropriateness measure,mq x( ) , and the mass function mx are then related to each other on the 

basis that asserting ‘x is θ’ provides direct constraints on Dx. For example, asserting ‘x is L L
1 2
Ù ’, for 

labels L1, L2 ∈ LA is taken as conveying t:he information that both L1 and L2 are appropriate to describe 
x, so that L L D

x1 2
,{ } Í . Similarly, ‘x is ØL ’ implies that L is not appropriate to describe x, so that 
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L D
x

Ï . In general, we can recursively define a mapping l : LE
LA

® 22  from expression to sets of 
subsets of labels, such that the assertion ‘x is θ’ directly implies the constraint Dx ∈ λ(θ) where λ(θ) is 
dependent on the logical structure of θ.

Definition 3. λ-mapping.

l : LE
LA

® 22  is defined recursively as follows: " Îq f, LE

• " ÎL LA
i

l L F LA L F
i i( ) = Í Î{ }:

• l q f l q l fÙ( ) = ( )Ç ( )
• l q f l q l fÚ( ) = ( )È ( )
• l q l qØ( ) = ( )c

Based on the λ-mapping we then define the appropriateness measure μθ (x) as the sum of mx over 
those sets of labels in λ(θ).

Definition 4. Appropriateness Measure.

The appropriateness measure defined by the mass function mx is a function m : ,LA´ ® é
ëê

ù
ûúW 0 1  

satisfying:

" Î " Îq LE x, W  mq
l q

x m F
x

F

( ) = ( )
Î ( )
å  

and where μθ (x) is used as shorthand for μ(θ, x).
Note that in label semantics there is no requirement for the mass associated with the empty set to be 

zero. Instead, mx(∅) quantifies the agent’s belief that none of the labels are appropriate to describe x. 
We might observe that this phenomenon occurs frequently in natural language, especially when label-
ing perceptions generated along some continuum. For example, we occasionally encounter colours for 
which none of our available colour descriptors seem appropriate. Hence, mx(∅) is an indicator of the 
describability of x in terms of the labels in LA.

A PROTOTYPE THEORY INTERPRETATION OF LAbEL sEMANTICs

Prototype theory was proposed by Rosch (Rosch 1973) as a means of defining concepts in terms of 
similarity to prototypical cases. A prototype theory interpretation of label semantics has been proposed 
(Lawry & Tang 2008), (Lawry & Tang 2009) in which the basic labels LA correspond to natural catego-
ries each with an associated set of prototypes. A label L is then deemed to be an appropriate description 
of an element x ∈ Ω provided x is sufficiently similar to the prototypes for L. The requirement of being 
‘sufficiently similar’ is clearly imprecise and is modeled here by introducing an uncertain threshold 
on distance from prototypes. In keeping with the epistemic stance this uncertainty is assumed to be 
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probabilistic in nature. In other words, an agent believes that there is some optimal threshold of this 
kind according to which he or she is best able to abide by the conventions of language when judging 
the appropriateness of labels. However, the agent is uncertain as to exactly what this threshold should 
be and instead defines a probability distribution on potential threshold values.

A distance function d is defined on Ω such that d : ,W2 0® ¥é
ëê )  and satisfies d(x,x) = 0 and d(x,y) = 

d(y,x) for all elements x,y ∈ Ω. This function is then extended to sets of elements such that for S T, ÍW , 
d S T d x y x S y T, inf , : ,( ) = ( ) Î Î{ } . For each label Li ∈ LA let there be a set P

i
ÍW  corresponding 

to prototypical elements for which Li is certainly an appropriate description. Within this framework Li 
is deemed to be appropriate to describe x ∈ Ω provided x is sufficiently close or similar to a prototypi-
cal element in Pi. This is formalized by the requirement that x is within a maximal distance threshold ε 
of Pi i.e. Li is appropriate to describe x if d x P

i
,( ) £ e  where e ³ 0 . From this perspective an agent’s 

uncertainty regarding the appropriateness of a label to describe a value x is characterized by his or her 
uncertainty regarding the distance threshold ε. Here we assume that ε is a random variable and that 
the uncertainty is represented by a probability density function δ for ε defined on [0,∞). Within this 
interpretation a natural definition of the complete description of an element Dx and the associated mass 
function mx can be given as follows:

Definition 5. Prototype Interpretations of Dx and mx.

For e Î ¥é
ëê )0, , x ∈ Ω let D L LA d x P

x i i
e e= Î ( ) £{ }: ,  and m F D F

x x( ) = ={ }( )d e e:  (see 
figure 1)

Appropriateness measures can then be evaluated according to definition 4. Alternatively we can de-
fine a random set neighborhood for each expression θ ∈ LE corresponding to those element of Ω which 
can be appropriately described as θ, and then define μθ (x) as the single point coverage function of this 
random set as follows:

Figure 1. with prototypes P1,…,P7. Dx
e  as ε varies is defined as follows: For ε1, ε2 and ε3 shown in the 

diagram we have that D
x

e1 = Æ , D L L
x

e2
1 2

= { },  and D L L L L
x

e3

1 2 3 4
= { }, , ,
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Definition 6. Random Set Neighborhood of an Expression.

For θ ∈ LE and e Î ¥é
ëê )0, N q

e ÍW  is defined recursively as follows: " Îq f, LE , " Î ¥é
ëê )e 0,

• " ÎL LA
i

,N x d x P
L ii

e e= Î ( ) £{ }W : ,  (figure 2)
• N N Nq f

e
q
e

f
e

Ù = Ç

• N N Nq f
e

q
e

f
e

Ú = È

• N N
c

Ø = ( )q
e

q
e

Theorem 1. Random Neighborhood Representation Theorem (Lawry & Tang 2009).

" Îq LE , x , :x x N  1 

Clearly D
x
e  and N q

e  are both random sets (i.e. set valued variables), the former taking sets of labels 
as values and the latter taking subsets of N q

e  as values. Theorem 1 shows that appropriateness measures 
can be interpreted as single point coverage functions of the random set N q

e . This links label semantics 
with the random set interpretation of fuzzy sets proposed by Goodman and Nguyen (Goodman 1982), 
(Goodman & Nguyen 1985) and (Nguyen 1984) in which membership functions are interpreted as single 
point coverage functions.

QUANTIFIED sTATEMENTs AND QUERY EvALUATION

The use of quantifiers significantly enhances the expressive power of natural language allowing for the 
representation of statements identifying general facts and rules. Linguistic statements can include a wide 
variety of quantifiers, in fact many more that standard universal and existential quantifiers of classical 

Figure 2. Random set neighborhood NLi

e  as ε varies: N N N
L L Li i i

e e e1 2 3Í Í
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logic. Furthermore, general quantifiers can apply to imprecise expressions and can also be themselves 
imprecisely defined. For example, statements such as most men are tall, and about 30% blonde men are 
tall, involve imprecise quantifiers most and about 30% as well as imprecise labels tall and blonde. The 
idea of introducing general quantifiers into formal languages as a means of enhancing their knowledge 
representation capabilities dates back to Barwise and Cooper (Barwise & Cooper 1981). Following 
Zadeh’s original proposal (Zadeh 1983), fuzzy logic has been widely applied to model vague quanti-
fiers such as most, few many etc. See (Liu & Kerre 1998) for an overview of different fuzzy logic based 
interpretations of quantifiers. Indeed, information processing involving fuzzy quantified expressions is 
central to Zadeh’s original formulation of computing with words (Zadeh 1996). However, the methods 
outlined in (Liu & Kerre 1998) do not tend to be based on a clear operational interpretation of fuzzy sets, 
but rather take membership values as primitives. This makes it difficult to assess the validity of defini-
tions from a semantic perspective. Dubois and Prade (Dubois & Prade 1997) identify three potential 
semantics for fuzzy sets as being likelihood, similarity and random sets. In the following we propose a 
concrete model of quantified linguistic queries motivated by and based on a combination of the similar-
ity and the random set view. This provides a clear interpretation of such queries from the perspective of 
the epistemic stance as discussed in a previous section.

Information retrieval and database querying are significant application areas for linguistic quanti-
fiers (see for example (Bosc, Lietard & Pivert 1995) and (Losada et. al. 2004)). A formal framework for 
representing quantified linguistic statements can allow us to define measures of the applicability of such 
statements to a particular database. This can in turn allow users the flexibility to formulate and evaluate 
intuitive natural language queries. In recent work Diaz-Hermida etal (Diaz-Hermida et. al. 2005) have 
proposed a probabilistic approach to fuzzy quantifiers. In this section we propose a new model of lin-
guistic quantified expressions based on the prototype theory interpretation of label semantics described 
in previously. In particular, we introduce measures of the appropriateness of quantified linguistic state-
ment for describing a data set where both quantifiers and basic labels are defined in terms of random 
set neighborhoods.

Suppose we are given a database DB ÍW  corresponding to a finite sample of elements from Ω. 
For S ÍW  let S S DB

DB
= Ç  denote the number of elements from DB contained in S. As in earlier 

sections we assume that the elements of Ω are described in terms of a set of labels LA and where for 
each label Li ∈ Ω there are a set of prototypical cases Pi. We now consider the application of classical 
universal and existential quantifiers to expressions in LE. For θ ∈ LE consider the statement ‘All ele-
ments of DB are θ’. Given the random neighborhood representation of the meaning of θ, according to 
which θ identifies the set N q

e ÍW  (definition 6), then a natural interpretation of this quantified statement 
would be that every element in DB is contained in N q

e  i.e. DB NÍ q
e . Hence, the appropriateness of a 

universally quantified statement of this kind would depend on the probability of the similarity threshold 
ε being such that DB NÍ q

e . Similarly, we propose to interpret existentially quantified statements of the 
form ‘Some element of DB are θ’ as meaning that DB NÇ ¹ Æq

e .

Definition 7. Classical Quantifiers.

For • θ ∈ LE let "( )
DB

q  denote the statement ‘All elements of DB are θ’. The appropriateness of 
this statement to describe DB is given by: m d e

q q
e

"( ) ( ) = Í{ }( )DB DB N:
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For • θ ∈ LE let $( )
DB

q  denote the statement ‘Some elements of DB are θ’. The appropriateness of 
this statement to describe DB is given by: m d e

q q
e

$( ) ( ) = Ç ¹ Æ{ }( )DB DB N:

We now introduce quantifiers describing the proportion of a database which can be described by 
a given expression θ e.g. at least 50% of the men in DB are tall. In fact, this paper focuses entirely on 
proportional quantifiers and their generalizations and does not consider absolute quantifiers e.g. less 
than 10 men in DB are tall. Random set definitions of absolute quantifiers can be given but these lie 
beyond the scope of the current study.

Definition 8. Proportional Quantifiers.

For α • ∈ [0,1], θ ∈ LE let (α)DBθ denote the statement ‘The proportion DB which are θ is (exactly) 
α’. The appropriateness of this expression to describe DB is given by:

 

m d e a
a q

q
e

( ) ( ) = =
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
DB

N

DB
DB:

 

For • a Î é
ëê

ù
ûú0 1, , θ ∈ LE let ³( )a q

DB
 denote the statement ‘The proportion DB which are θ is at 

least α’. The appropriateness of this expression to describe DB is given by:

 

m d e a
a q

q
e

³( ) ( ) = ³
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷
DB

N

DB
DB:

÷÷
 

For • I Í é
ëê

ù
ûú0 1, , θ ∈ LE let I

DB
( ) q  denote the statement ‘The proportion DB which are θ is in I’. 

The appropriateness of this expression to describe DB is given by:

m d e
q

q
e

I
DBDB

N

DB
I( ) ( ) = Î

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
:

 

Relative quantifiers describe the proportion of the database which given it is describable using one 
expression is also describable by a second expression e.g. At least 80% of Swedes in DB are tall.

Definition 9. Relative Quantifiers.

For • q f, Î LE , let "( ) ( )
DB

f q  denote the statement ‘All elements in DB describable as θ, 
are also describable as ϕ’ The appropriateness of this expression to describe DB is given by: 
m d e

f q q f
e

q
e

"( )( ) Ù( ) = ={ }( )DB N N:
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For • q f, Î LE , let $( ) ( )
DB

f q  denote the statement ‘Some elements in DB describable as θ, 
are also describable as ϕ’ The appropriateness of this expression to describe DB is given by: 

m d e
f q q f

e
$( )( ) Ù( ) = ¹ Æ{ }( )DB N:

For • a Î é
ëê

ù
ûú0 1, , q f, Î LE , let a f q( ) ( )

DB
 denote the statement ‘The proportion of elements in 

DB describable as θ, which are also describable as ϕ is exactly α’. The appropriateness of this 
expression to describe DB is given by:

m d e a
a f q

q f
e

q
e( )( )
Ù( ) = =

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö
DB

N

N
DB

DB

:

øø

÷÷÷÷÷÷÷
 

For • a Î é
ëê

ù
ûú0 1, , q f, Î LE , let ³( ) ( )a f q

DB
 denote the statement ‘The proportion of elements 

in DB describable as θ, which are also describable as ϕ is at least α’. The appropriateness of this 
expression to describe DB is given by:

m d e a
a f q

q f
e

q
e³( )( )
Ù( ) = ³

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï
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è

ççççççç
DB

N

N
DB

DB

:
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For • I Í é
ëê

ù
ûú0 1, , q f, Î LE , let I

DB
( ) ( )f q  denote the statement ‘The proportion of elements in DB 

describable as θ, which are also describable as ϕ is in I’. The appropriateness of this expression to 
describe DB is given by:

m d e
f q

q f
e

q
eI

DB

DB

DB
N

N
I( )( )

Ù( ) = Î
ì
í
ïïï

î
ïïï

ü
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ççççççç

ö
:
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The following theorem shows that, using the combined random set and prototype theory approach, 
certain natural properties of quantifiers are preserved from classical logic.

Theorem 2.

1.  If |=θ (i.e. θ is a tautology in Boolean logic) then m
q"( ) ( ) =DB 1

2.  If |= ¬θ (i.e. θ is a contradiction in Boolean logic) m
q$( ) ( ) =DB 0

3.  For all q Î LE m
q q"( )( ) ( ) =DB 1

4.  For all q Î LE m
q q$( ) Ø( ) ( ) =DB 0

5.  If θ |= ϕ then " Î é
ëê

ù
ûúa 0 1, m m

a q a f³( )( ) ³( )( )( ) £ ( )DB DB
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Proof.

From (Lawry & Tang 2008) and (Lawry & Tang 2009) we have that:

1.  If |=θ then ∀ε ≥ 0 N q
e = W  and hence DB NÍ q

e

2.  If If |= ¬θ then ∀ε ≥ 0 N q
e = Æ  and hence N DBq

e Ç = Æ

3.  " Î " ³q eLE, 0 N Nq q
e

q
e

Ù =

4.  " Î " ³q eLE, 0 N q q
e
ÙØ = Æ

In the following definition we introduce linguistic quantifiers in the form of labels describing propor-
tion of the database e.g. about 50% of men in DB are tall or Most Swedes in DB are tall.

Definition 10. Linguistic Quantifiers.

Let LR = {R1,…,Rm} be a set of labels for proportions from the universe [0,1], where label Ri has 
prototypes PRi. Let d′: [0,1]2 → [0,1] be a distance function defined on [0,1] and let ε′ be the threshold 
random variable for d′ with density δ′.

Let • R
i DB

( ) q  denote the statement ‘Ri of DB are θ’ or more precisely ‘the proportion of DB which 
is θ can be described as Ri’. The appropriateness of this expression to describe DB is given by
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Let • R
i DB

( ) ( )f q  denote the statement ‘Ri of DB which are θ are also ϕ’. The appropriateness of 
this expression to describe DB is given by

m d e d e
f q

q f
e

q
e

e
R

DB

DB

R
i i

DB
N

N
N( )( )

Ù ¢( ) = ¢ ¢( ) Î
ì
í
ïïï

î
ïïï

ü
ý
ïïïò

0

1

:
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è
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ø
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¢de

 

Note that definition 10 makes an assumption of independence between the threshold variables ε and 
ε′. This would see justifiable here, since we would expect labeling decisions concerning individual ele-
ments of DB and overall proportions to be taken independently.

When evaluating statements involving proportional quantifiers it is necessary only to consider the 
relevant proportion values within the range of the quantifier, defined as follows:
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Definition 11. Relevant Proportions.

• PP
N

DBq

q
e

e= ³
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

: 0

• PP
N

Nf q

q f
e

q
e

e( )
Ù= ³

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

: 0

Theorem 3.

For I ÍW  and q f, Î LE

• m m
q b q

b q

I
PP I

DB DB( ) ( )
Î Ç

( ) = ( )å

• m m
f q b f q

b
f q

I
PP I

DB DB( )( ) ( )( )
Î Ç

( ) = ( )
( )

å

Proof

• m d e
q

q
e

I
DBDB

N

DB
I( ) ( ) = Î
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åå

bb qq PP IPP I

Similarly replacing • PPθ with PP
f q( )  □

Theorem 4.

For R LR
i
Î  and θ ∈ LE, let PP

tq b b= { }1
, ,  ordered such that ¢ ( ) £ ¢( )+d PR d PR

j i j i
b b, ,

1
 

then

m d e e d e e d e
qR

y

y

t
y

y

t
i

t

t

DB a d a d a( ) -( ) = ¢ ¢( ) ¢ + + ¢ ¢( ) ¢ + ¢ ¢(ò ò
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1 1
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yt
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where a DB
j

i

j

i

= ( )( )
=
å m

b q
1

 and y d PR
j j i
= ¢( )b ,

Proof.

Since Ri is a basic label we have that:
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N PP

d PR

d PR d PR
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Hence by theorem 3 we have that
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Corollary 1.

If m
qRi

DB( ) ( ) = 1  then m
b q1

1( ) ( ) =DB  where b b b q1
= ¢( ) Î{ }arg min , :d PR PP

i

Proof.

By theorem 4 we have that:
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and hence 
1

1

1
y

d

Also 
 

1

1

1

1 1
, , 1

R i
y

d PR d  as required. □

The following theorem show that an imprecisely quantified expression (Ri)θ is certainly appropriate 
to describe DB exactly when an associated (simpler) expression (I)θ is certainly appropriate, where I is 
the set of proportions in PPθ which can certainly be described by Ri.

Theorem 5.

 1
iR

DB  iff  1
I

DB  where : 1
iR

I PP  

Proof.

Clearly, if I ≠ ∅ then I = {β1,…,βk} where  arg max , :
k i

d PR I . In this case, 1
iR k  

implies that 
 1

, , 1
k

k i
y

d PR d  which implies that 

 

0

0
ky

d
. Hence,

 1

1

1k

i

k

y

k tR
y y

DB a d a d

 

 Suppose  1
iR

DB  then I ≠ ∅ since if I = ∅ then  1
1

iR  which is a contradiction by 
corollary 1. Hence,

1

1

1

1
k

k

y

k t
y y

a d a d

 

Also, since  
1

1
iR k  then 

 1

0
k

k

y

y

d  and hence ak = 1 since otherwise  
 1

1
i

k

R
y

DB d . Hence

1

1
j

k

kI
j

DB DB a
 

as required.
 Suppose  1

I
DB  then clearly I ≠ ∅. Hence, ak = 1 and since aj ≥ ak for j ≥ k then aj = 1 for 

j ≥ k. Therefore,



172

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

 1

1
ii

k

R kR
y

DB d  

as required. 

Example 1.

Let Ω = [0,10], d(x,y) = ||x − y|| and 
 1 : 0,1

0 : 1
. Let high ∈ LA be a label describing elements 

of Ω such that Phigh = [7,8]. 
Now consider the queries (∀)DB high and (∃)DB high for the following database:

DB={0.1795, 1.051, 1.075, 7.367, 7.5, 7.57, 7.66, 7.86, 8.06, 8.61} 

Now  7 , 8
high

N  so that  
high

DB N  iff 7 − ε ≤ 0.1795 iff ε ≥ 6.8205. Therefore, 
 

6.8205

0
high

DB d .

Also,  7.367, 7.5, 7.56, 7.66, 7.86
high

DB P  and hence  
high

N DB  for all ε ≥ 0. 

Therefore, 
 

0

1
high

DB d .

Let most ∈ LR where Pmost = [0.6,0.8]. Also let d′(x,y) = ||x − y|| and 
 10 : 0, 0.1

0 : 0.1
. (see figure 

3)
Now consider the query (most)DB high

Figure 3. Appropriateness measures for high together with DB (top) and most (bottom) together with 
PPmost as defined in example 1
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Now 
 5 6 7 8 9

, , , , ,1
10 10 10 10 10high

PP  and d′(1,Pmost) = 0.2, 9
, 0.1

10 most
d P , 

 8
, 0

10 most
d P , 

 7
, 0

10 most
d P , 

 6
, 0

10 most
d P , 5

, 0.1
10 most

d P . Hence, we let

1

8
10

, 
 

2

7
10

, 
 

3

6
10

, 
 

4

9
10

, 
 

5

5
10

,  
6

1 and 

y1 = 0, y2 = 0, y3 = 0, y4 = 0.1, y5 = 0.1, y6 = 0.2 

Therefore, from theorem 4

 0.1 0.2 1

3 4 5 3
0 0.1 0.2

most high
DB a d a d a d a  

where  3 8 7 6
10 10 10

high high high
a DB DB DB

Now 
 

8
10

high DB
N

DB
 if 7 − ε ≤ 1.075 and 7 − ε > 1.051 if 5.925 ≤ ε < 5.949. Hence,

 5.949

8
5.92510

0
most

DB d  

 
7
10

high DB
N

DB
 if 8 + ε ≥ 8.61 if ε ≥ 0.61. Hence, 

 1

7
0.61 0.6110

0.39
most

DB d d
 

 
6
10

high DB
N

DB
 if 8 + ε ≥ 8.06 and 8 + ε > 8.61 if 0.06 ≤ ε < 0.61. Hence 

 0.61 0.61

6
0.06 0.0610

0.55
most

DB d d . Hence 

 
3

0.55 0.39 0.94
most high

DB a
 

Let the label very low be defined by the prototypes Pvery low = [0,1]. Consider the query (≥0.5)DB (very 
low|¬high) (i.e. At least 50% of the not high elements in DB are very low). Now 

 
0,1

very low
N  and 

0,7 8 ,10
high

N  and for  3 
  

0,1
very low high very low high

N N N . Therefore,

 
0,1

0, 7 8 ,10

very low high DB DB

high DB DB DB

N

N  so that 
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0.25 : 0.051

0.5 : 0.051 0.06

0.4 : 0.06 0.075

0.75 : 0.075 0.61

0.6 : 0.61

very low high DB

high DB

N

N

 

From this we have that   
0.25, 0.4, 0.5, 0.6, 0.75

very low high
PP  and from theorem 3 it follows that:

0.5 0.5 0.6 0.75  very low high very low high very low high very low high
DB DB DB DB

 

where

0.06

0.5 
0.051

0.009
very low high

DB d
, 

1

0.6 
0.61

0.39
very low high

DB d
 and  

0.61

0.75  
0.075

0.535
very low high

DB d
 

Hence, 
0.5 

0.009 0.39 0.535 0.934
very low high

DB

Versions of theorems 4 and 5 can be proved for the case of relative quantifiers by replacing Pθ with 
P(ϕ|θ). Hence we also have the following results:

Theorem 6.

For Ri ∈ LR and ϕ, θ ∈ LE, let P(ϕ|θ) = {β1,…, βt} ordered such that 1
, ,

j i j i
d PR d PR  then

2

1 1

1

1 1

t

i

t t

y y

t tR
y y y

DB a d a d a d

 

where 
1

i

j

j
i

a DB  and ,
j j i

y d PR

Theorem 7.

1
iR

DB  iff 1
I

DB  where : 1
iR

I PP  

A sCALEAbLE ALgORITHM FOR EvALUATINg sIMPLE LINgUIsTIC QUERIEs

In this section we propose an algorithm for evaluating linguistic queries on a database which only involve 
basic labels. By considering the computational complexity of this algorithm we show that, for simple 
linguistic queries of this kind, the approach is scaleable to databases with a large number of elements.
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Consider a basic label Li ∈ LA with prototypes Pi. Also consider a database DB of N elements ordered 
such that ,

: 1, ,
i j

DB x j N  where , , 1
, ,

i j i i j i
d x P d x P . In this case, denoting , ,

,
i j i i j

d x P d , we 
clearly have that:

,1

,1 ,1 ,2

,1 , , , 1

,1 , ,

:

:

, , :

, , :

i

i

i i i

L
i i j i j i j

i i N i N

d

x d d

N
x x d d

x x d







  

From this the set of relevant proportions for Li in DB (definition 11) is then given directly by:

, , 1
:

iL i j i j

j
PP d d

N  

Now consider the computational complexity of this algorithm to determine the relevant propor-
tions 

iL
PP . Initially, the elements of DB must be sorted on the basis of their distance from Pi. Using the 

quicksort algorithm this has average computational cost O(N log (N)). Determining 
iL

PP  then requires 
only N checks for di,j ≤ di,j+1 with cost O(N). Hence, the overall computational cost of determining 

iL
PP  

is log logO N N N O N N .
Given 

iL
PP  we know from an earlier section that the evaluation of quantified queries is straightfor-

ward. For example, for 
iL

j
PP

N
 we have that:
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Now assuming that, for a well behaved density function δ, integrals of the above form can be ef-
fectively evaluated in one computational step then for any 0,1I  the computational cost of evaluating 

iI L
DB  is at worst O(N). To see this, recall from theorem 3 that:

i i
Li

I L L
PP I

DB DB  

The cost of this calculation is then bounded by 
iL

PP N .
To evaluate linguistically quantified theory of the form 

j iR L
DB , we see from theorem 4 that this 

only requires us to evaluate 
i

j
L

N

DB  for each 
iL

j
PP

N
 with the additional computational cost of sorting 

the elements of 
iL

PP  relative to their distance from PRj (the prototypes of Rj). Again by using quicksort 
the average computational cost of this operation is O(N log N).

We now consider the evaluation of relative quantifier queries involving basic labels. Let Lr ∈ LA be 
a second label with prototypes Pr. As before order the elements of the database in terms of their distance 
from Pr so that ,

: 1, ,
r k

DB x k N  where , , , 1 , 1
, ,

r k r k r r k r r k
d d x P d x P d . In this case:



176

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

,1 , ,1 ,
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From this we see that the computational cost of determining 
i rL L

PP  is as follows: The elements DB 
must be sorted twice, once with respect to distance from Pi and once with respect to distance from Pr. 
Using quicksort the combined cost of this repeated operation is still O(N log (N)). bj,k must then be calcu-
lated and distances compared for each pair j,k with cost O(N2). Consequently the overall computational 
cost of calculating 

i rL L
PP  is O(N2).

Given 
i rL L

PP  the appropriateness of a simple query such as (I)(Li|Lj) is then determined by:

, 1 , 1

,
, ,

min ,

max ,, :

i j r k

i r
j k

i j r k

d d

I L L
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This requires at most a further 2

i rL L
PP N  calculations and consequently the entire cost of evaluat-

ing such queries from DB, including determining 
i rL L

PP , is O(N2).

CONCLUsION

In this paper we have introduced a new model of linguistic quantified statements based on a combina-
tion of random set theory and prototype theory. The theory is a generalization of Lawry’s label semantic 
framework. We have shown that the proposed model is computationally feasible and hence potentially 
has practical applications in information retrieval.

Overall the proposed model makes a number of simplification assumptions. For instance, we have 
only investigated a limited range of quantifiers essentially based on proportions. In future work a 
thorough study of a wide range of quantifiers should be carried out. Furthermore, we have assumed 
that the appropriateness of labels to describe an example in the database is always judged on the basis 
of the same shared characteristics. In other words, there is one single distance function for comparing 
elements to prototypes for every single label. In many cases the applicability of different labels may be 
judged on the basis of different distance functions defined on different sets of attributes. Future work 
will investigate extending the proposed methods to the multi-criterion case and consider the impact of 
this generalization on computational costs.
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AbsTRACT

In this chapter the authors consider the problem of defining a flexible approach for exploring huge amounts 
of results retrieved by several Internet search services (like search engines). The goal is to offer users 
a way to discover relevant hidden relationships between documents. The proposal is motivated by the 
observation that visualization paradigms, based on either the ranked list or clustered results, do not allow 
users to fully appreciate and understand the retrieved contents. In the case of long ranked lists, the user 
generally analyzes only the first few pages. On the other side, in the case the documents are clustered, 
to understand their contents the user does not have other means that looking at the cluster labels. When 
the same query is submitted to distinct search services, they may produce partially overlapped clustered 
results, where clusters identified by distinct labels collect some common documents. Moreover, clusters 
with similar labels, but containing distinct documents, may be produced as well. In such a situation, it 
may be useful to compare, combine and rank the cluster contents, to filter out relevant documents. In 
this chapter the authors present a novel manipulation language, in which several operators (inspired 
by relational algebra) and distinct ranking methods can be exploited to analyze the clusters’ contents. 
New clusters can be generated and ranked based on distinct criteria, by combining (i.e., overlapping, 
refining and intersecting) clusters in a set oriented fashion. Specifically, the chapter is focused on the 
ranking methods defined for each operator of the language.
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INTRODUCTION

Retrieving useful and relevant information over the Internet is not an easy task by using current search 
engines. Too often, the relevant documents are merged and hidden in the long ranked list of retrieved docu-
ments. The list can span over hundreds of web pages, each one containing just few retrieved items.

To discover the relevant documents, users have to browse the titles of the documents, but generally 
only the first two or three web pages are analyzed, while the content of the successive ones is missed. 
Thus, if users do not find what they are looking for in the first pages, they reformulate a new query try-
ing to capture what they are looking for in the top ranked items.

Some users turned to using meta-search engines, such as mamma, dogpile, Metacrawler etc., in an 
attempt to optimize their search effort. The assumption is that, if one regards a search engine as an expert 
in finding information, by using several experts together one should achieve better results. However this 
is not generally true, since meta-search engines fuse the individual ranked lists of documents retrieved 
by each underlying system by applying rigid and static fusion functions, applying criteria that are not 
transparent to the user. The side effect of list merging is to augment the number of retrieved documents, 
leaving the user skeptics as far as the actual correspondence of the ranking to her/his relevance judg-
ments is concerned. Furthermore, the retrieved documents besides the first page will be hardly analyzed 
by users; thus, this makes much of the meta search engine’s effort useless.

To overcome this problem, some search services such as vivisimo, Snaket, Ask.com, MS AdCenter 
Labs Search Result Clustering etc., have shifted from the usual ranked list to the clustered results para-
digm. This consists in organizing the documents retrieved by a query into containers (i.e., clusters), 
possibly semantically homogeneous with respect to their contents, and in presenting them labeled, so 
as to synthesize their main content focus (Osinski, 2003).

Clustering is often proposed as a viable way of narrowing a search into a more specific query, like 
in Ask.com (Chen &Dumais, 2000; Zamir & Etzioni, 1999; Coates et al., 2001).

On the other side, one problem users encounter with such clustered results, is the inability of fully 
understanding and appreciating the contents of the clusters. This is mainly due to the short and some-
times bad quality of the labels of the clusters, which generally consist of a few terms, or individual short 
phrases, which are automatically extracted from the documents of the cluster based on statistics and 
co-occurrence analysis. Often, several clusters have similar labels that differ just for a single term. To 
effectively explore the cluster contents, users have no other means than clicking on the cluster labels 
and browsing the clusters themselves.

This problem is much more apparent when submitting the same request to distinct search engines, 
each one producing a group of clustered results reflecting distinct criteria. For example, the Gigabits 
search engine clusters retrieved documents by their freshness dating (Last Day, Last Week, Last Month, 
Last Year, etc.), the vivisimo search service presents clustered documents. In such a situation, one may 
want to explore if a given cluster contains documents that are fresh or not; this necessity may occur quite 
frequently in analyzing news streams (RSS) to find out the frequency of a given news story reported by 
media as a function of time.

When the groups of clusters are generated by distinct search services, users may be faced with distinct 
clusters, possibly with the same labels. In this situation, it becomes necessary to explore the relation-
ships between the contents of these clusters to identify common and distinct documents, and re-rank the 
contents of the clusters based on distinct criteria. This may require the application of several manipula-
tion operations, such as the intersection and join of clusters, as well as their union and re-clustering, 
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and so on; the different ranking options for these operations are an important feature, to re-rank the 
content of clusters, and the clusters themselves, so as to make new documents and clusters emerge in top 
positions, depending on distinct criteria. But, currently, there is no means to carry out this exploratory 
activity. This exploratory activity can be useful also in the case in which one formulates distinct queries 
(expressing the same information needs) to the same search engine and wants to explore the contents 
of the retrieved ranked lists.

These considerations motivate our proposal of defining and implementing an interaction framework 
based on a flexible exploratory language for carrying out manipulation operations of groups of clustered 
results, retrieved by one or several search services (basically search engines) over the internet, correlated 
with several ranking functions that can be explicitly specified by users.

It is an exploratory language, since the richness of operators and ranking functions makes it possible 
to either reveal common and implicit contents of the clusters, and implicit relationships between clusters, 
such as similarity and inclusion (i.e., similar, more specific or more general contents).

The language is also flexible, since it allows the application of several ranking criteria to re-organize 
the documents inside each cluster, and the clusters inside each group of retrieved clusters, reflecting 
a distinct semantics, such as content relevance, exhaustiveness of retrieval, novelty of the new cluster 
with respect to the original ones. For example, one can apply a ranking that favors the exhaustivity 
of the clusters’ contents, i.e., the number of documents they group. Another choice could be to rank 
first the clusters obtained by a join of two original clusters, which have a high degree of correlation; 
conversely, one could rank first the clusters exhibiting a greater degree of novelty with respect to the 
common contents of the original clusters. The application of different ranking functions when applying 
a combination operation between clusters allows one to highlight different elements in the top position 
in a controlled manner, reflecting different properties of the clusters.

The formalization of ranking criteria is consistent with the basic operations of intersection and union 
of fuzzy sets, since we regard each cluster as a fuzzy set of documents, and each group, as a fuzzy set 
of clusters (Zadeh, 1965).

Since manipulation operations may require the reuse of intermediate results several times, we have 
conceived the storing of the intermediate results into a database as an essential phase for successive 
manipulation. Furthermore, the local manipulation of results avoids useless network and search services 
overloading; in fact, in current practice, several modified queries are submitted to the search engines, 
trying to capture relevant documents in the first positions of the ranked list, documents that were already 
retrieved by the previous queries, although hidden to the user since they did not occurred in the first 
positions.

In our view, the usual ranked list, produced by search engines is regarded as a group consisting of a 
single cluster that has the query itself as label. Thus, our language can be used to compare the results of 
any search service producing ranked lists too.

While, in (Bordogna, Campi, Psaila, & Ronchi, 2008a) we first proposed the data model and the op-
erators of the language, in this chapter we recall the language and focus on the semantics of the distinct 
ranking methods.

In the next paragraph the background literature related to the proposal is reviewed. Further, a use 
case is introduced to exemplify the usefulness of the language. The successive paragraph defines the 
language, in terms of basic operations, group operators, ranking methods, and group functions, and we 
report about the experimental evaluation about scalability of the algorithms. Finally, the conclusions 
summarize the main achievements.
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bACKgROUND OF THE PROPOsED LANgUAgE

In this paragraph, we review works that are somehow related to our proposal, although they have been 
conceived either with a different purpose than the analysis of web documents retrieved by search services, 
or with distinct functionalities. In fact, to the best of our knowledge, there is not a language similar to 
our proposal.

In conceiving our approach we started from the consideration that “many IR problems are, by nature, 
ranking problems”. This is the starting point also of the approaches known as “to learn how to rank docu-
ments” presented within the ACM SIGIR 2008 Workshop “Learning to rank for information retrieval” 
(Li, Liu, Zhai, 2008), that propose to use learning methods to adapt the ranking of retrieved results in 
order to enhance effectiveness of IR.

Our proposal also shares the idea of the works presented within the ACM SIGIR 2008 Workshop 
“Aggregated search” (Lalmas, Murdock, 2008) that pursue the task of searching and assembling informa-
tion from a variety of sources, placing it in a single interface to improve the effectiveness of retrieval. In 
(White et al., 2008) they propose a metasearch framework directing the search to the engine that yields 
the best results for the current query.

Our solution however is different, since it does not exploit the strict ranking of documents, but it 
exploits the application of clustering techniques to group documents that are homogeneous as far as 
their contents are concerned, and furthermore we propose the use of a manipulation language of group 
of clusters, to re-rank the documents within the clusters based on personal preferences of the user.

A motivation of the utility of our proposal can be found in (Leouski & Croft, 1996). In this pioneer 
work, the authors advocate the need of tools for giving the user more immediate control over the clus-
ters of retrieved web documents; such tools should serve as means for exploring the similarity among 
documents and clusters. They also consider giving the user some means to correct, or even completely 
change, the classification structure. To support the manipulation of clusters, they suggest the develop-
ment of graphic user interfaces.

Indeed, the literature on visual paradigms for the presentation of textual search results is too extensive 
to review; for a survey, the reader can see (Card, Mackinlay, & Shneiderman, 1999; Staley, & Twidale, 
2000). One goal of these approaches is to perform some kind of text mining based on conceptual maps 
visualization (Chung, Chen, Nunamaker, 2003; Kampanya, Shen, Kim, North, & Fox, 2004).

Nevertheless, our proposal is different, since we do not exploit a graphical representation of rela-
tionships between documents at this level, but we provide a language for flexibly exploring the hidden 
relationships. The work presenting the NIRVE prototype (Sebrechts, Cugini, Laskowski, Vasilakis, & 
Miller, 1999) evaluates and compares several graphical interfaces for showing the retrieved results of 
NIST’s PRISE search engine. In the conclusions, it states that ”a good visualization of search results 
depends on a good structure and what often happens is that developers perform a deeper analysis of 
results in order to generate that structure”.

In this respect, we envisage that our proposed language could be employed for the purpose of ex-
ploring and finding a good structure of results that can then be presented by taking advantages of the 
proposed graphic visualization techniques.

Personalization is a distinctive characteristic of our approach, since the manipulation of the clustered 
documents, possibly retrieved by multiple search services, is demanded to the user, who can perform 
distinct kinds of combinations by means of the operators of the language. In this sense, we can regard 
the application of the operators on the retrieved results as a kind of a personal information filter defined 
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by the user or, in other words, the manipulation language can be seeing as a means to define personal-
ized information filters (Agichtein, Brill, Dumais, 2006).

An approach that shares some similarity of intent to our proposal is the Scatter/Gather algorithm 
(Hearst & Pederson, 1996), in that it allows doing dynamic clustering and refinement of search results. 
Its distinctive feature is the way it allows clusters to be selected, recombined (gathered) and re-clustered 
(scattered) by the user. However, the user has to decide which clusters have a relevant theme based solely 
on keywords and titles. No functionality is available to detect the degree of sharing between clusters. 
Furthermore, since new clusters are generated based on re-clustering, the generation criteria remain 
implicit and unknown to the user. On the contrary, in our approach, the user is perfectly aware of the 
criteria that generated the new clusters, since they depend on the applied group operator and the speci-
fied ranking method. Moreover, the intersection and union operations between cluster representatives 
generate the label of the resulting cluster through the processing of its items (titles and snippets), so as 
to reveal and synthesize its hidden semantics. In facts, the label conveys new information previously 
not known on the common contents of the documents in the cluster.

We can also find some similarity of our approach with respect to clustering ensemble techniques, 
that have been defined to compare either the results obtained by the application of distinct clustering 
algorithms on the same set of items, or to compare distinct partitions of the same set of items obtained 
based on distinct views (representations) of the items (Punch, Jain, & Topchy, 2005; Strehl & Ghosh, 
2002; Pagani, Bordogna, & Valle, 2007). The main goal of these techniques is to achieve a robust and 
consensual clustering of the items. Robust clustering is achieved by combining data partitions (form-
ing a clustering ensemble) produced by multiple clustering. The approaches are defined within an 
information-theoretical framework; in fact, mutual information is the underlying concept used in the 
definition of quantitative measures of agreement or consistency between data partitions. The group 
intersection operator of our language takes inspiration from these ideas, since its goal is, given two dis-
tinct partitions (i.e., groups of clusters), to identify the common partitions, i.e., those sharing the same 
sets of documents. If we iteratively apply the intersection operator to a set of groups, we thus find the 
consensual partitions among these groups. As far as the join operator is concerned, it can be regarded as 
the generation of a new partition (group) containing only the unions of the original clusters that have a 
non-empty intersection. Its meaning is that of expanding the result of the intersection operator between 
groups, so as to consider indirect correlations among the items of the original clusters.

As a means for exploring the set of retrieved documents, also the ranking methods have a central role: 
they allow rearranging the ordering of clusters within groups by highlighting either some inner property 
of the clusters themselves, e.g., their exhaustivity in terms of cluster cardinality, or their reliability/qual-
ity in satisfying the search needs of the user, or even their degree of novelty or specificity. To define the 
ranking methods, we based on the literature regarding information retrieval with query weights, and 
flexible querying in fuzzy databases (Buell, & Kraft, 1981; Bosc & Prade, 1997; Galindo, 2008). The 
relative importance semantics for query term weights in extended Boolean information retrieval is here 
revisited for specifying the relative importance of clusters for computing weighted rankings (Bookstein, 
1980; Yager, 1987).
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PRACTICAL UTILITY OF THE ExPLORATORY 
LANgUAgE: A UsE CAsE ExAMPLE

In order to give a practical idea of the kind of exploratory tasks that can be performed by means of the 
proposed language, in this paragraph we introduce a use case.

Let us suppose we want to go on a tour in Napa Valley; to plan the trip, we need to collect information 
concerning wineries, sites to visit, close cities to reach, e.g., by car, as well as hotels and restaurants. The 
search services provide a large set of documents concerning Napa Valley, so it becomes a hard task to 
find, among them, the most relevant ones for our goal. Consequently, it can be convenient to semantically 
characterize them, by organizing them in groups of semantically homogeneous documents (clusters), and 
then to perform a kind of exploratory task, in which we try to combine the results of queries submitted 
to search services, in order to filter out useful documents. This novel practice can be carried out locally, 
thus minimizing the need of new remote searches, as it generally happens with current search services. 
The results obtained by analyzing and combining previously submitted queries could also inspire new 
and more focused queries.

Hereafter, we start a use case example that we will use throughout the chapter to clarify our approach 
and to explain the proposed language.

Example 1: To start our search of information to organize the tour to Napa Valley, we submit the 
query “Napa Valley” to the search services Google, Yahoo! and MSN Live Search.

To have a rapid glance at the main topics retrieved, the documents returned by each service are clus-
tered. This is done on the basis of the documents’ snippets (brief piece of content) shown in the results 
pages. The labels of the obtained clusters are represented in Figure 1.

On the basis of these results, it could be interesting to apply some manipulations on the groups, in 
order to filter out in the top positions results that are most relevant to the user’s needs. For example, it 
may be interesting to keep, in the groups, only the most relevant clusters concerning some particular 
contents (identified through the clusters’ label): this way we reduce the whole set of documents to only 
those that are deemed relevant, and that really cover the desired aspects, thus saving time for their inspec-
tion. To this aim one can use the cluster selection operation of the proposed manipulation language, 
to select only desired clusters in a group.

Figure 1. Clusters examples. The first rows report the group’s identifiers, the search service name and 
the query text that is the group label; the other rows report a cluster identifier within the group, and 
the label of the cluster.
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Alternatively, it may be interesting to obtain new groups in which clusters are composed of the most 
authoritative and reliable documents concerning a specific desired topics only, such as Hotel or Hotel 
and Travel Guide that are deemed relevant by all the search services. In this case we can assume that 
documents recommended by all the search services are the most reliable and authoritative ones; thus we 
want to obtain highly specific clusters containing documents recommended by all the search services. To 
this aim one can use the group intersection operator of the proposed language that allows maintaining 
only the documents that are contained within all the groups.

Another possibility could be to have an overview of the main general topics represented by a combina-
tion of the retrieved clusters. To this end one can specify the group union operator to generate a single 
group by uniting two groups, and then the group coalescing operator to fuse all the clusters within a 
group into a single labeled cluster, expressing by its label the main retrieved contents.

Another case is when we want to generate clusters by the union of clusters that have some correlated 
contents. The group join operator can perform this task.

A final example could be to obtain new groups from the results of previous searches, in such a way 
specific topics, hidden within the retrieved documents, are identified. This can be performed by filtering 
sets of already retrieved documents, based on a more specific request, through the group refinement 
operator.

We may also be interested in re-ordering the new clusters in the resulting group, based on some 
property of clusters and documents, that may differ from the default one, i.e., the initial ranking provided 
by the search service that first retrieved the document.

For example, one could be interested in performing a survey on a topic and be interested in achiev-
ing exhaustive results: in this case, he/she could prefer to rank first the relevant clusters with greatest 
cardinality. To this aim one can apply the group union operator with the cardinality rank method.

An alternative could be to perform an exploratory analysis of the main general topics dealt with in 
the whole set of retrieved documents: in this case, one could prefer to rank first the clusters with great-
est novelty with respect to the clusters from which they originated. To this aim one can apply the group 
join operator with the expansion rank method. Conversely, one could be interested in exploring the 
most exhaustive results retrieved by a previous search on specific topics; in this case, one could prefer 
to rank first the clusters obtained by joining original clusters with greatest correlation. This is achieved 
by applying the group join operator with the correlation rank method.

THE FLExIbLE ExPLORATORY LANgUAgE

In this paragraph we introduce the ingredients of the proposed language. First we define the data model, 
then we introduce the basic operations between clusters derived from fuzzy set operations of union, 
intersection and complement; finally we define the main group operators of the language by discussing, 
for each of them, an application in the context of the use case. Along with the group operators, we also 
define their ranking methods by discussing their semantics.

We recall that the proposed language offers a means that users, performing web searches by pos-
sibly multiple search services, can exploit to filter relevant documents already retrieved, but hidden to 
them within the huge amount of retrieved results. The specification of the operators of the language for 
manipulating groups of clustered documents can serve to distinct purposes, as it will be discussed along 
with the introduction of the operators. It is worth pointing out that the applicability of the operators 
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of the language can be far more general than the combination of clustered results obtained by distinct 
search services. One could apply the operators also to explore the results retrieved by distinct queries 
submitted to the same search engine. In fact it is not necessary that the results are clustered, they can be 
organized as the usual ranked list retrieved by search engines, since the operators regard the ranked list 
as a group, containing one single cluster labeled by the terms of the query that retrieved the list.

The Data Model

Consider a query q submitted to a search engine; the query result is a ranked list of documents, that we 
call ranked items.

Definition 1: Ranked Item

A ranked item r represents a document retrieved by a web search. It is defined as a tuple:

r:(uri, title, snippet, irank) 

where: uri is the Uniform Resource Identifier of the ranked web document; title is the document title 
and snippet is an excerpt of the document, made by a set of sentences that may contain the keywords 
of the query; irank is a score (in the range [0,1]) that expresses the estimated relevance of the retrieved 
document with respect to the query. Distinct items in distinct results lists may represent the same docu-
ment. In facts, we assume that a document is uniquely identified by its uri (Coates et al., 2001) (near 
duplicates are not detected), while it may have distinct snippets and irank when retrieved by different 
search services. We assume that irank is a function of the position of the item in the query result list.

Definition 2: Cluster

A cluster representative c is a set of ranked items, having itself a rank. It is defined as a tuple:

c:(label, crank, items) 

where: label is a set of terms that semantically synthesizes the cluster’s content; crank is a score (in 
the range [0,1]) depending on the ranks of the items belonging to the cluster; items is the set of ranked 
items constituting the cluster.

With |c| we denote the cardinality of the cluster representative, that is defined as |c|≡|c.items|. A 
cluster label c.label is generally automatically generated by a function SynthLabel(c.items). Function 
SynthLabel (R) generates a representative label from the set of ranked items R (or ranked clusters C 
in the case of a group), by extracting the most meaningful non-stopwords terms from within titles and 
snippets associated with items in R. The significance of a term is determined based on the occurrences 
of the terms. The labeling algorithm is described in subparagraph “Labeling Algorithm” .

The default value of crank of a cluster is defined as its natural rank (see Definition 7). When a 
cluster belongs to a group generated by one operator of the language, its crank can assume a different 
semantics corresponding to the ranking method that the operator supports, and that has been applied to 
produce the cluster.
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For the sake of simplicity, in the remainder of the chapter, we use the term cluster to intend cluster 
representative.

Definition 3: Group

A group g is a not empty and ordered set of clusters. It is the main element of the data model and it is 
defined as a pair:

g: (l; <c1; … ; cn>) 

in which l is the label of the group, automatically generated by function SynthLabel, and with <c1; … ; 
cn> we denote the list of clusters. A special kind of group is the empty group, that is defined as g0:= (l; 
∅). This group can be explicitly generated by the user through the function EmptyGroup (see Defini-
tion 26).

A group g can contain a single cluster. Observe that a particular kind of cluster is the one that repre-
sents the ranked list obtained as the result of a query q; in this case, c:label= q.

The procedure that generates a group is initially activated by a search operator, named CQuery, that 
allows users to query a search service (e.g., Google, Yahoo!, MSN Search) and to cluster the results. We 
assume that a search service retrieves a maximum of N documents: in particular, in the case of Yahoo! 
Search API, N is upper limited to 100, while in the case of MSN Live Search API, N is upper limited to 
50.

On this basis, for each retrieved document, the operator builds an item r, whose irank value depends 
on the position of the document in the result list: r.irank=(N−Pos(d)+1)/N, where Pos(d) is the position 
of the document in the query result list. In this way, a document in the first positions has a rank r.irank 
very close to 1.

The ranked list obtained as a result by the search operator, is then clustered by applying the Lingo 
algorithm (Osinsli, 2003). Lingo is used to perform a flat crisp clustering of the query results on the 
basis of their snippets and titles. Once clusters are obtained, they are labeled. Finally also the groups 
are labeled to synthesize the most central contents retrieved by all their clusters. The labeling algorithm 
is hereafter described.

Labeling Algorithm

When a new cluster or a new group is generated, it is fundamental to be able to synthesize its main 
contents through a label. To this end, we designed and implemented a labeling algorithm that exploits 
the representation of documents in a vector space. The label of both a cluster and a group is built by 
function SynthLabel starting from the documents within. This guarantees that the associative property 
of the operators of the language generating groups and clusters is satisfied. In particular, the labeling 
algorithm performs the following steps.

Extraction of the • M most frequent terms from title and snippet of each document (M is an empiri-
cal value chosen to minimize the selection of terms with a low frequency, e.g., equal to one); filter-
ing of terms that appeared in at least more than one document, and creation of the base of terms. 
In particular, title and snippet for documents are tokenized, deprived of stop-words and finally 
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stemmed. Then, from the totality of the resulting terms, the first N terms with greatest frequency 
are extracted. The set of all extracted terms, excluding duplicates and those appearing in several 
documents, originates the complete base of terms where the vectors are represented.
Definition of the documents vectors with respect to the base of terms. Each vector is defined by • n 
components, where n is the term space size. The value of each vector component is the number of 
occurrences of the corresponding term within the title plus snippet.
Identification of the • centroid vector of the cluster, also called the average vector of the set of docu-
ments. The centroid vector, defined as the average of all the vectors of the documents belonging to 
the cluster or group, identifies the typical concepts of the cluster (or group); for this reason, it can 
be used as a prototype vector to identify a meaningful label.
Identification of the vector associated with the document (or a cluster) closest to the centroid vec-• 
tor, using the cosine similarity measure.

For each document (cluster) vector, the value of cosine similarity with respect to the centroid vector 
is evaluated. The vector obtaining the greatest value of similarity will be the candidate for the definition 
of the label. In fact, the label is defined as the corresponding document title (resp. cluster label).

basic Operations

In order to define the operators and the functions that constitute the proposed language, it is necessary 
to define some basic operations on sets of ranked items and on cluster labels.

The basic operations that we are going to define work on two input sets of ranked items R1 and R2 
and generate a new set of ranked items R’.

Definition 4: Ranked Intersection

The operation RIntersect, denoted as ∩R, performs the intersection of two sets of ranked items. R’ con-
tains all ranked items r’ such that there are two ranked items r1∈ R1 and r2∈ R2 which refer to the same 
uri. The irank of r’ is defined as the minimum irank value of r1 and r2.

Formally: r’ ∈ R’, if and only if there exists r1∈ R1 and r2∈ R2 such that:

r’.uri = r1.uri = r2.uri then 

r’.title = Comb(r1.title, r2.title, r1.irank, r2.irank, ∩R); 

r’.snippet = Comb(r1.snippet, r2.snippet, r1.irank, r2.irank, ∩R); 

r’.irank = min(r1.irank, r2.irank). 

r’.irank is the common level of relevance of both the retrieved items in the web searches from which R1 
and R2 are obtained. This choice is in accordance with the interpretation of the sets of ranked items R1 
and R2 as fuzzy sets of items, in which the irank of an item is its membership degree. The intersection of 
two fuzzy sets generates a fuzzy set in which the membership degree of an item is the minimum of the 
original membership degrees r1.irank and r2.irank (Dubois and Prade, 1988). In the case of ∩R, function 
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Comb selects between the two input strings, the one with lowest irank value.

Definition 5: Ranked Union

The operation RUnion, denoted as ∪R, performs the union of two sets of ranked items. R’ contains all 
ranked items r’ such that there is a ranked item r1 ∈ R1 (resp. r2 ∈ R2) such that r1 (resp. r2) refers to the 
same uri.

Formally: r’ ∈ R’, if and only if one of the two following situations occurs.

1)  If there exists r1∈ R1 (respectively exists r2∈ R2) with r’.uri = r1.uri (r’.uri = r2.uri), and there not 
exists r2∈ R2 (respectively there not exists r1∈ R1) with r’.uri = r2.uri (r’.uri = r1.uri), then r’ = r1 
(r’ =r2 in the dual case).

2)  If there exist r1∈ R1 and r2∈ R2 such that: r’.uri = r1.uri = r2.uri then

r’.title = Comb(r1.title, r2.title, r1.irank, r2.irank, ∪ R); 

r’.snippet = Comb(r1.snippet, r2.snippet, r1.irank, r2.irank, ∪ R); 

r’.irank = max(r1.irank, r2.irank). 

Differently from the case of ∩R, the irank of a ranked item r’ in the result of ∪R is the maximum of 
irank values of items r1 ∈ R1 1 and r2 ∈ R2, because it represents the best level of relevance obtained 
by the retrieved items in both the web searches. This is also consistent with the definition of union of 
fuzzy sets by interpreting the irank as the membership degree (Dubois and Prade, 1988). Consistently 
with this fuzzy set interpretation, in this case function Comb selects between the two input strings, the 
one with greatest irank value.

Notice that it may occur that several ranked items get the same irank value in the generated cluster. 
This is not regarded as a problem since this situation indicates that the corresponding items belong to 
the cluster with the same degree.

Properties. The associative, commutative, monotonicity and idempotency properties hold for ranked 
intersection and ranked union, since they are the intersection and union operations between fuzzy sets 
based on the min and the max.

The cluster label is generated by function SynthLabel(c.items) described above.

group Operators

In this paragraph, we define the algebra for groups of clusters by defining the group operators.
The first operation that a user may wish to perform is to search information by submitting a query 

to one or more search engines. To this end the following operator is provided.

Definition 6: CQuery

The CQuery operator allows to submit a query to a given search service and cluster the results. It is 
responsible for the start up of the process supported by the proposed language. It is defined as
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CQuery: G × S × {0,1}→G CQuery(g, s, b) →g’ 

where G is the set of groups, S is the set of names of available services, s is the service that evaluates the 
query q=g.l, b is a Boolean value, while g’ is the resulting group of clusters whose label g’.l=g.l.

When the user wants to submit a query to a service for the first time (when no groups are available), 
the input group is an empty group generated by the function EmptyGroup (see paragraph “Functions 
on Groups”).

In order to allow the user to submit a query to a search service without clustering the ranked list of 
documents, she/he can specify the value b=0 in input. In this case the resulting group g contains one 
single cluster, i.e., the trivial cluster that contains an item for each document retrieved by the search 
service. When b=1 the results are clustered and labeled by function SynthLabel.

Definition 7: Natural Rank

Each set of items R (and consequently, each cluster c) has a Natural Rank (denoted as NRank(R)) that 
is the average of ranks of items in the set. Formally

NRank(R) =(∑r∈R r.irank)/∣R∣ 

If we refer to a cluster c, the natural rank of c, that we denote simply by NRank(c), is the natural rank 
of its items (i.e., NRank(c.items)).

Figure 2. Clusters selection

Figure 3. Expanded clusters. Each cluster is expanded with the items in it; for each item, we report its 
uri, its rank r and (posQ: n) that is its position in the original ranked list retrieved by the query through 
the search service in the corresponding column.
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This ranking method is the default one, that reflects the ordering of the items retrieved by the search 
services belonging to the cluster.

Example 2: let us observe the labels of the clusters in Figure 1, and let us assume that we want to plan 
a tour. We can easily identify which of them are most closely related to our needs for planning a tour. To 
this aim, we may want to select a subset of clusters. Therefore we introduce the following operator.

Definition 8: Cluster Selection

The Cluster Selection operator σ allows selecting the clusters in a group.
It is defined as:

σ (g,P)→g’ 

where g is the group whose clusters must be selected, and P is a predicate on positions of clusters in the 
group, or on cluster labels; the selected clusters maintain the original order.

Returning to Example 2 and assuming that we are planning a wine-tour, the clusters about gastronomy, 
wine and touristic topics are the most interesting ones. The reduced set of clusters on which we focus is 
depicted in Figure 2. In Figure 3 we show the selected clusters with their contents.

On the other side, one may wish to cancel some retrieved clusters about uninteresting topics. To this 
end we introduce the following operator.

Definition 9: Cluster Deletion

The Cluster Deletion operator defined as:

δ (g,P)→g’ 

deletes clusters in a group g that satisfy predicate P. (thus, g’ contains all clusters in g that do not satisfy 
P).

Since a group is an ordered list of clusters, one may desire to see the clusters in it ordered with respect 
to their crank, or may desire to change the default ordering by specifying preferences for a different 
ranking method. To this aim we provide the following operator.

Definition 10: Group Sorting

Since a group is an ordered list of clusters, group sorting operators must be provided. Shortly, operator 
S(g;L) → g’ sorts clusters in g based on the ordered list of positions L; operator Ŝ(g) → g’ sorts clusters 
in g with respect to their crank in decreasing order.

The list of simple operators might be longer; however, they are not essential in this chapter, and for 
the sake of space we do not further discuss this topic.

Example 3: let us suppose that we want to filter out the most reliable documents within the clusters 
in Figure 3, we could identify the common documents retrieved by all the three search engines. To this 
aim we introduce the following operator.
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Definition 11: Group Intersection

The first complex operator we introduce is the Group Intersection. Intuitively, it is a quite straightforward 
wish of users to intersect clusters in two groups, to find more specific clusters. The assumption is that 
the more search services retrieve a document, the more the document content is worth analyzing.

The Group Intersection operator ∩ is defined as:

∩:G×G×T∩→G ∩(g1, g2, t)→g’ 

where g1 and g2 are the groups of clusters to intersect, g’ is the resulting group, t is the ranking method 
adopted to evaluate the crank of clusters in g’.

t∈T∩={Natural,WNatural, Cardinality,Weighted }. 

For each pair of clusters c1 ∈ g1, c2 ∈ g2, such that their intersection is not empty (i.e., ∣c1..items∩R 
c2..items)|≠0), there is a cluster c’∈g’. c’ is defined as follows:

c’.items= c1..items∩R c2..items, 

c’.label=SynthLabel(c’.items). 

If t is Natural, the crank value is obtained as:

c’crank=NRank(c’.items). 

If t is WNatural, the crank value is obtained as:

c’crank=WNRank(c’.items, c1.crank, c2crank, g1, g2). 

If t is Cardinality, the crank value of each resulting cluster is defined as: c’crank=CardRank(c’,g’).
If t is Weighted, the crank value is obtained as:

c’.crank=WminRank(c1.items, c1.crank, c2.items, c2crank, c’.items). 

g’.l=SynthLabel(C) with C the set of ranked clusters in g’. 

The operator provides four distinct methods to compute the ranking of resulting clusters, each one 
reflecting a distinct semantics.

If t is Natural, the crank value of a cluster is obtained by computing its Natural Rank as defined in 
Definition 7. In this way, the relevance of a cluster is defined by the average of the ranks of the items 
common to both intersected clusters. Thus, this ranking criterion reflects the relevance judgments of the 
search services that first retrieved the items, and is independent of the properties of the original clusters 
to which they belong. Instead, if t is WNatural, the crank value of each resulting cluster is obtained by 
means of function WNRank, defined by the following definition.
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Definition 12: Weighted Natural Rank

Each set of items R (and consequently, each cluster c) has a Weighted Natural Rank (denoted as WNRank(R, 
C1, C2, g1, g2)) that is the weighted average of ranks of items in the cluster, with weights C1 and C2 of 
the original clusters. Formally:

WNrank(R, C1, C2, g1, g2) = C1*C2 NRank(R)/(MaxRank(g1) * MaxRank(g2)) 

where function MaxRank is defined as MaxRank(g) = max {c.crank | c∈g}
This ranking method reflects the ordering of the items retrieved by the search services belonging to 

the cluster by also taking into account the relevance, i.e., quality or reliability, of the cluster determined 
by a previous search.

Instead, if t is Cardinality, the crank value of each resulting cluster is obtained by means of function 
CardRank, defined by the following definition.

Definition 13: Cardinality Rank

Given the group g’ obtained by intersecting two groups, the Cardinality Rank of each cluster c’ is the 
ratio between the cardinality of c’ and the maximum cardinality of the clusters in g’:

CardRank(c’,g’)=|c’.items|/maxc∈g’|c|. 

The cardinality rank determines the relevance of clusters, locally within the group: the largest clus-
ter has crank equals to 1, while the others have a smaller value: it determines the rank of the cluster in 
the group based on its cardinality, i.e., the number of items it contains. This can be useful when one is 
interested in analyzing first big sets of documents about a relevant topic, giving higher importance to 
clusters that are larger than the others in the same group. The semantics of this ranking criterion is to 
favor, in the first positions of the generated group, the most exhaustive clusters, i.e., the most populous 
ones, which are likely to bear much information. This ranking can be useful in the case of a surveyor, 
who wants to retrieve as much as possible information on the interesting contents, and that is, at the 
same time, recommended by all the search services, i.e., anything that is worth analyzing. The focus of 
the use of the group intersection operator with the cardinality rank option is to perform a quality survey 
on a topic.

Finally, if t is Weighted, the crank value is obtained by means of function WMinRank, defined in the 
following definition.

Definition 14: Weighted Minimum Rank

Given a set of items R’, obtained combining sets R1 and R2 of ranked items belonging to clusters with 
crank C1 and C2 respectively, its Weighted Minimum Rank (denoted as WMinRank) is the average of the 
iranks of items in R’, weighted with respect to the crank of C1 and C2. Formally:
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WMinRank(R1,C1,R2,C2, R’)= 
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Where r1 ∈R1 and r2 ∈R2 are the original items describing the same document represented by r’ with 
r’.uri= r1.uri=r2.uri). We assume r1.rank=0 (r2.rank=0) if there is not an item r1∈R1 (r2∈R2) with r’.uri 
= r1.uri (r’.uri= r2.uri).

By choosing this ranking method, one is willing to apply a weighted ranking method that reflects a 
twofold criteria: it determines the rank not only based on the natural ranks of items, but also on the basis 
of the cranks C1 and C2 of the incoming clusters. This way, one wants to take into account the search 
engines votes of the items, and at the same time wants to weight these contributions with respect to the 
relevance of the original clusters to which they belong. This means that one is willing to consider, as 
indications of relevance of the cluster contents (that can be interpreted as either reliability or quality), 
the ranking C1 and C2 determined by the application of the combination operations that produced the 
clusters c1 and c2. The final rank reflects the semantics of the intersection between fuzzy sets of items r 
with membership degrees r.irank having distinct priorities (C1 and C2) (Yager, 1987)

In fact, the reader can notice that the irank value of the two input items is weighted with the one 
complement of the crank value of the cluster. Consequently, the irank of items in the cluster with great-
est priority, i.e., with greatest ranked cluster (cluster in the top position of the group) are more likely 
to contribute to the weighted rank of the intersection. This definition is in accordance with the goal of 
being cautious in determining the rank of an item common to the original clusters since we favor the 
minimum irank of the most relevant, i.e., reliable or authoritative, cluster.

Properties. The associative property holds for the Group Intersection Operator, provided that the 
same ranking method is chosen for all the occurrences of the group intersection operator in the expres-
sion. The commutative property holds as well, since, it holds for ranked intersection.

Returning to the example 3, in order to filter out the most reliable documents by all the three search 
engines in Figure 3 we apply the operators reported in the headings of groups depicted in Figure 4. Con-
sider groups g4 and g5: first of all, we intersect g1 and g2, obtaining group g4; then, we further intersect 
g4 with g3, obtaining group g5. The obtained clusters in g5 are the intersection of c1=Wine Wineries and 
c4 =Travel Guide from g1, of c1 =Wine Tasting and Wineries and c3=Plan your Travel Vacation from g2, 
of c1 =Wine Wineries and c4 =Napa Valley Hotel from g3. Since the intersection is an associative opera-
tion, we can write the expression to obtain g5 in a different way. This is done to obtain groups g6 and 
g7, depicted in Figure 4. Looking at groups g5 and g7, the reader can see that they are identical, apart 
for the expressions that generated them. For this reason, cluster cl.1 in g5 and cluster cl.1 in g7 have the 
same label label5,1.

After having generated several groups of results, one may desire to explore their implicit correla-
tions, and unify those clusters that share some common documents in order to reduce the redundancy 
of having the same documents in distinct clusters, and at the same time to eliminate the clusters that 
do not share anything with other clusters, i.e., that are uncorrelated. To this aim the following operator 
can be applied.

Definition 15: Group Join

The second complex operator we introduce is the Group Join operator.
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The Group Join operator   is defined as:

 


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1 2
, , '

	

where g1 and g2 are the groups of clusters to join, g’ is the resulting group. t is the ranking method adopted 
to evaluate the crank of clusters in g’.

t∈T  = {Νatural, WNatural, Cardinality, Weighted, Correlation, Expansion, Weighted-Correla-
tion, Weighted-Expansion}.	

For each pair of clusters c1 ∈g1, c2 ∈g2, such that their intersection is not empty (i.e., |c1.items ∩R 
c2.items)|≠0), there is a cluster c’∈g’ defined as follows:

c’.items = c1.items ∪R c2.items,	

c’.label=SynthLabel(c’.items).	

If t is Natural, WNatural or Weighted, or Correlation, or Expansion, or Weighted-Correlation, or 
Weighted-Expansion, c’.crank is respectively obtained as:

c’.crank=NRank(c’.items),	

c’.crank=WNRank(c’.itemsm c1.crank c2.crank, g1, g2),	

c’.crank= WMaxRank(c1.items, c1.crank, c2.items, c2.crank, c’.items)	

c’.crank = CRank(c1.items, c2.items)	

c’.crank = ERank(c1.items, c2.items)	

Figure 4. Group Intersection. In the expressions, t denotes a generic ranking method
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c’.crank = WCRank(c1.items, c1.crank, c2.items, c2.crank) 

c’.crank = WERank(c1.items, c1.crank, c2.items, c2.crank) 

Finally, g’.l = SynthLabel(C) with C set of ranked clusters in g’.
The Group Join operator can be used to explicit indirect correlations between the topics represented 

by the clusters in the two groups. The basic idea underlying its definition is that if two clusters overlap, 
i.e., have some common items, it means that the contents of these items are related with both topics rep-
resented by the clusters. This may hint the existence of an implicit relationship between the two topics. 
By assuming that topics can be organized into a hierarchy, by grouping the two overlapping clusters into 
a single one, we may reveal the more general topic representing the whole content of the new cluster, 
which subsumes, as most specific topics, those of the original clusters.

As for group intersection, the natural rank is the basic rank value of a cluster. An alternative is to 
compute the rank in a weighted way; in this case we define the WmaxRank criterion, since we want to 
give more chance in determining the final rank to the items belonging to the highest weighted cluster.

Definition 16: Weighted Maximum Rank

Given a cluster c’, obtained by combining clusters c1 and c2, its Weighted Maximum Rank is defined 
as

WMaxRank(R1,C1,R2,C2, R’)= 

max( * . , * . )
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where r1∈ R1 and r2∈ R2 are ranked items of clusters c1.and c2, respectively.
By choosing this ranking method one is willing to apply a weighted ranking method that reflects a 

twofold criteria: it determines the rank not only based on the natural ranks of items, but also on the basis 
of the ranks C1 and C2 of the incoming clusters, i.e, their assumed reliability or quality. This way, one 
wants to take into account the search engines votes of the items, and at the same time wants to weight 
these contributions with respect to the relevance C1 and C2, of the original clusters to which they belong. 
The final rank reflects the semantics of the union of fuzzy sets of items r with membership degrees 
r.irank, having distinct priorities (C1 and C2) (Bookstein, 1980). In fact, the reader can notice that the 
irank value of the two input items is weighted with the crank value of the cluster. Consequently, the 
irank of items in the cluster with greatest priority, i.e., with greatest ranked cluster (cluster in the top 
position of the group) are more likely to contribute to the weighted rank of the union. This definition 
is in accordance with the goal of being optimistic in determining the rank of an item belonging at least 
to one of the original clusters, since we favor the maximum irank of the most relevant (i.e., reliable or 
authoritative) cluster.

A third alternative to compute the ranking of clusters after a join is the Correlation Rank, that esti-
mates the degree of correlation of the two incoming clusters.
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Definition 17: Correlation Rank

Given two sets of ranked items R1 and R2 of clusters c1 and c2, their Correlation Rank (shortly, CRank) 
is the overlapping value between R1 and R2. Formally, we define the CRank as the fuzzy Jaccard coef-
ficient (Dubois & Prade, 1982) between two clusters c1 and c2, regarded as fuzzy sets of items, with 
irank their membership values:

CRank(R1, R2)= 
R R
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where I= R1∩
RR2 and U= R1∪

RR2, r1∈ R1 and r2∈ R2; the items r1∈ R1 and r2∈ R2 belonging to I with 
r1.uri= r2.uri describe the same document; we assume r1.irank =0 (r2.irank = 0) if there is not an item 
r1∈ R1 (r2∈ R2). Note that the membership degree, i.e., irank, of an item r belonging to the intersection 
R1∩

RR2 is computed as the minimum between the irank values of the document and the two clusters of 
belonging, respectively, while that of the union R1∪

RR2 is the maximum.
This ranking method computes a degree of overlapping of the clusters c1 and c2, that is interpreted as 

a correlation measure of the contents of the two clusters. The properties of this measure allow deriving 
some interesting properties of the relationships between the two clusters and the generated cluster:

the greater is the membership value • irank of an item to a cluster, the more is the contribution of 
the item to determine the degree of overlapping.
since the overlapping measure is symmetric, it establishes a bi-directional relationships between • 
the topics of the clusters;

• CRank assumes the maximum value of one only when R1 and R2 contain exactly the same items, 
with the same irank values; this allows to state than when CRank(R1,R2)=1 the two clusters c1 and 
c2 deal with the same topic;

• CRank assumes the minimum value of zero only when R1 and R2 do not share any items; in this 
case when CRank(R1,R2)=0 the two clusters c1 and c2 deal with distinct topics;
finally, the more the clusters are overlapped, the more they share some contents, i.e., the more re-• 
lated they are. If CRank(R1,R2)>0.5 it means that they share more with respect to what they do not 
share, and vice versa. We can assume that the topics of the two clusters c1 and c2 are strictly related 
if their CRank(R1,R2) > 0.5, while they are weakly related when 0<CRank(R1,R2)≤0.5. In the case 
in which CRank(R1,R2)>0.5, by joining the two clusters c1 and c2 to generate a cluster c’ we can 
guess that two specific and related topics are subsumed into a more general topic, that is still spe-
cific. In particular, the degree of specificity of the topic of c’ is likely to increase with the increase 
of CRank(R1,R2) to one. In this case, we can expect that the shared items of c1 and c2 will preva-
lently determine the label of the generated cluster c’. Thus the generated label should not convey 
much novelty with respect to the labels of c1 and c2. On the other side, when 0<CRank(R1,R2)≤0.5, 
by joining the two clusters c1 and c2 we generate a cluster c’ representing a very broad topic, since 
in this case the not shared items prevail over the shared ones. In this case, we can expect that the 
label of c’ is more heavily determined by the non-common items; consequently, the new label 
should convey much novelty with respect to the original labels of c1 and c2.
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A fourth alternative to compute the ranking of a cluster after a join, is the Expansion Rank.

Definition 18: Expansion Rank

Given two sets of ranked items R1 and R2, their Expansion Rank (shortly, ERank) is the complementary 
value of their CRank. Formally:

ERank(R1, R2)= 1 1
1 2
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By specifying this ranking option, one wants to favor, in the top positions, the generated clusters c’ 
that convey much novelty with respect to the original weakly related clusters c1 and c2. The lesser the 
two topics (represented by the original clusters) are related, the greater the novelty of joined cluster. This 
hints to the fact that the cluster with high novelty rank can represent a very general topic.

Another alternative to compute the ranking of clusters after a join is to weight the correlation rank.

Definition 19: Weighted Correlation Rank

Given two sets of ranked items R1 and R2, their Weighted-Correlation Rank (shortly, WCRank) is defined 
as the weighted CRank of the two fuzzy sets R1 and R2.

Formally:
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where I= R1 ∩
R R2 and U= R1 ∪

R R2, r1∈R1, r2∈R2 and C1 and C2 are the crank of the clusters c1 and c2, 
respectively; the items r1∈R1 and r2∈R2 belonging to I with r1.uri= r2.uri describe the same document; 
we assume r1.irank =0 (r2.irank = 0) if there is not an item r1∈R1 (r2∈R2).

With this ranking criterion, we want to penalize more heavily the contributions of the items belonging 
to the least relevant clusters. The idea is that the relevance of clusters, intended as either reliability or 
quality, is propagated to their items when computing their overlapping degree. The crank of the clus-
ters are used to decrease the membership degrees of the items so that the lower the crank the greater 
the reduction that is applied to the membership value of the item. This way, the overlapping degree is 
more heavily determined by the items belonging to the most relevant clusters. By applying this ranking 
method, one expects to rank, in top positions, clusters c’ derived by the joining of relevant and highly 
correlated original clusters c1and c2.

Finally, it is possible to choose the Weighted Expansion Rank.
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Definition 20: Weighted Expansion Rank

Given two sets of ranked items R1 and R2, their Weighted Expansion Rank (shortly WERank) is the 
complement of the weighted correlation rank.

WERank R C R C
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Its semantics is that of the expansion rank in which we take into account that the contributions of the 
items (i.e., their ranking values) to the overlapping degree is modified by the relevance of the cluster they 
come from. By applying this ranking method, one expects to rank, in top positions, clusters c’ obtained 
by joining relevant and weakly correlated clusters c1and c2. In this case, the contributions of the items to 
the overlapping degree are more penalized if they belong to the most relevant clusters. Thus, the most 
relevant clusters contribute more heavily to determine the novelty WErank of the generated cluster.

Properties. The associative property holds for the Group Join Operator, provided that the same 
ranking method is chosen for all the occurrences of the group join operator in the expression. The com-
mutative property holds as well, since, it holds for ranked union.

Example 4: The application of the group join operator to our running example is shown in Figure 5. 
The unified clusters that group documents common to the original clusters are about both topics (such 
as Wine Wineries and Wine Tasting and Wineries), and at the same time, include also not common docu-
ments, which are apparently unrelated. This is the case of clusters Plan your Travel vacation and Wine 
Wineries which both contain some documents, such as Featured Wineries in Napa Valley - Plan your 
Wine Tasting Room Tour. By joining these two clusters together, we generate a more populous cluster in 
which information about wineries and travel vacations are included. At this point, we could also sort the 
resulting clusters with respect to the degree of correlation (i.e., overlapping) between the two original 
clusters, to identify the most correlated topics. In this example, in the same result cluster there are docu-

Figure 5. Group Join. In the expressions, t denotes a generic ranking method
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ments both concerning only Wineries or only Travel Vacation, and containing both. We can so expand 
the intersection between the two original clusters with documents correlated with them.

Observing the various ranks reported in Figure 5 for clusters, it is possible to see that different rank-
ing methods give a different relevance to clusters.

For example, in group g8, the weighted rank is similar for both the clusters, but the correlation rank 
is quite different: in fact, cluster cl.1 has CRank=0.333, while cluster cl.2 has CRank=0.143; this means 
that clusters joined together to obtain cl.2 were less correlated than the ones joined to form cl.1. This 
result is coherent with the expansion rank: ERank=0.857 for cluster cl.2, that is much higher than the 
expansion rank for cluster cl.1.

If we observe the basic weighted rank (WMaxRank), it is evident that its values are coherent with 
respect to the correlation rank; however, the distance between the two values is much smaller than the 
distance between the values of the correlation rank; this is due to the fact that the crank values of original 
clusters influence the final rank.

Finally, we can notice that sorting clusters in g8 based on cardinality ranking and (weighted) expan-
sion ranking, results in clusters sorted in a different order than the one depicted in the figure.

Now, let us consider the need to refine the clusters in a group on the basis of the clusters belonging 
to another reference group. This my be useful in the case in which one has retrieved information about 
a topic and wants to refine this, on the basis of the results retrieved with respect to another topic. For 
example, one has retrieved the keynote comments on Napa Valley Wineries and wants to refine the results 
of Napa Valley Restaurants. To this aim one can use the following operator.

Definition 21: Group Refinement

The Group Refinement operator   is defined as:

 



: ( , , ) 'G G T G g g t g´ ´ ® ®
1 2  

where g1 is the group to refine on the basis of g2, g’ is the resulting group. t is the ranking method adopted 
to evaluate the crank of clusters in g’.

t TÎ =


{ Natural, WNatural, Cardinality, Refinement} 

The use of this operator is to refine the clusters in a group, based on clusters in another group.
For each cluster ck ∈g1, for each cluster ci∈g2, I c items c items

i k
R

i= Ç. . .
If at least one Ii ≠∅, there is a cluster c’∈g’ defined as follows:

c items
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,
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È
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c’.label=SynthLabel(c’.items), where G = |g2|. 

While the group join operator generates a cluster representing a more general topic than the topics 
in both the original clusters, the refinement operator can be regarded as generating clusters specializing 
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the topics of the clusters in the first group on the basis of the topics of any cluster in the second group. 
The idea underlying this operator is that we want to collect, in a unique cluster, the items that belong to 
both a cluster ck ∈g1 and any of the clusters in the second group g2. This way, by eliminating some items 
from ck we generate a cluster representing a more specific topic with respect to ck, but not necessarily 
more specific with respect to the clusters of the second group. The clusters of the second group act then 
as a filter on the contents of each cluster in the first group.

If t is Natural or WNatural the crank value is obtained by applying Definitions 7 and 8:
If t is Cardinality, the crank value of each resulting cluster (called Cardinality Rank). is defined as 

in Definition 13.

Definition 22: Refinement Rank

If t is Refinement, the crank value of a cluster c’, generated from a cluster ck ∈ g1 (called Refinement 
Ranking) and the clusters in the second group g2 is obtained as:

c crank
c items

c items
k

' .
' .

.
=

. 

This is indeed an inclusion degree of the cluster ck in the resulting cluster c’, i.e., in any of the clusters 
of g2. and it expresses how much original contents of ck is kept in the refinement based on g2.

When using this ranking method, one is willing to favor, in top positions, the clusters c’ generated by 
a cluster ck of g1 that has maintained in c’ as much as possible all its original items. This ranking method 
satisfies some interesting properties:

When c’.crank=1 it means that the whole content of ck is kept in the resulting cluster c’.
When c’.crank=0 it means that the result is empty, then no item of ck is contained in any cluster of 

g2 . Intermediate values of c’.crank mean that only some items of ck are present in c’. Notice that the 
contrary is not generally true since this measure is not symmetric.

Example 5: Suppose that, by analyzing the results in Figure 5, we discover that no cluster has been 
retrieved concerning restaurants (i.e., with the word Restaurant in the label). We could take a remedy by 
submitting the new query “Napa Valley Restaurants” to Yahoo!; the resulting clusters shown in Figure 6 
(strongly focused on restaurants) are used to filter out sub-clusters of documents concerning restaurants 
from within clusters in the previous lists (we refine clusters in the first list).

During a search session in which the user has submitted several queries to the search services and has 
applied several operators to manipulate the retrieved results, one may have generated too many groups 
and too many clusters, and may wish to reduce their number. To this aim the following two operators 
can be applied.

Definition 23: Group Union

The group union operator c1∪ c2 = c’ generates c’ in such a way it contains all clusters in c1 and all 
clusters in c2. This operator can be useful during long interactive search and processing sessions, when 
too many groups have been generated. It makes it possible to collect together two or more groups in a 
single group.
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Definition 24: Group Coalescing

The group coalescing operator ⊕(c)=c’ generates c’ in such a way that c’ contains only one cluster, 
obtained by applying the ranked union operation to all clusters in c.

This operator may be necessary in long interactive processing sessions, when too many clusters have 
been generated in a group. It makes it possible to fuse all clusters in a group into one global cluster.

After complex transformations, it might be necessary to reapply the clustering method to a group. In 
fact, re-clustering documents in a group may let new and unexpected semantic information emerge.

Definition 25: Reclustering

The Reclustering Operator Cluster(c)=c’ performs the ranked union of all clusters in c, and generates c’ 
in such a way that it contains all the clusters obtained by clustering all ranked documents.

Closure Property of Group Operators: The data model and the group operators were designed in such 
a way the Closure Property holds: operators are defined on groups and generate groups.

Functions on groups

The group operators so far described allows to conduct a powerful exploratory activity: by combining 
groups, the user can discover useful information and may be inspired for new searches; the results of 
these new searches might be combined with previously computed groups, and so on. The distinct rank-
ing methods let users re-arrange the contents of the groups so as to make more evident some properties 
of the clusters that can be of interest for a search.

However, being an exploratory activity, it might be useful to evaluate the results of group operations 
without actually building and storing a new group. If the user were provided with functions that returns 
a quantitative summary of what would be obtained by applying an operator on already computed groups, 
the user could decide whether to actually apply a group operator to obtain a new group.

For this reason, the proposed language provides some useful evaluation functions that we introduce 
in this sub-paragraph.

Figure 6. Group Refinement. In the expression labeling the group on the right, t denotes a generic rank-
ing method
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Definition 26: EmptyGroup Function

The first function that we need to define is the EmptyGroup function, that makes it possible to generate 
an empty group with a desired label l. It is defined as:

EmptyGroup(l)→g0 where g0=(l,∅) 

This function is necessary to generate the input group for the CQuery operator when the user wants 
to submit a query for the first time. This allows to archive the closure of the whole set of group opera-
tors.

Definition 27: Selection Function

Selection function, se , evaluates the effect of a cluster selection. It is defined as:

se
,(g,P)→(nc,mincard,maxcard, mincrank,maxcrank) 

where g is the group to which to apply the selection, and P is the selection predicate. The function pro-
duces a 5-tuple with the following fields: nc is the number of clusters that would be selected, mincard 
and maxcard are, respectively, the minimum and maximum cardinality of clusters that would be selected, 
while mincrank and maxcrank are, respectively, their minimum and maximum crank values.

Definition 28: Intersection, Join and Refinement functions

Three functions are defined, corresponding to the main group operators: ∩ε evaluates intersection, e  
evaluates join, e  evaluates refinement.

∩ε (g1, g2, t) → (nc,mincard,maxcard, mincrank,maxcrank) 

e (g1, g2, t) → (nc,mincard,maxcard, mincrank,maxcrank) 

e (g1, g2, t) → (nc,mincard,maxcard, mincrank,maxcrank) 

where g1 and g2 are the groups of clusters to intersect (resp. join or refine). t is the ranking method adopted 
to evaluate the crank of clusters that would be produced: for ∩ε it is chosen among the methods Natural, 
WNatural, Weighted and Cardinality; for e , it is chosen among the methods Natural, WNatural, 
Weighted, Correlation, Expansion, Weighted-Correlation, Weighted-Expansion and Cardinality; for e , 
it is chosen among the methods Natural, WNatural, Refinement and Cardinality.

As for selection evaluation, the functions produces a 5-tuple with the previously defined fields.
Example 6: An example of application of these functions could be proposed on each of the operators 

previously described. For the group intersection, for example, whose results are represented in Figure 
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4, we may want to know if it is convenient (in terms of obtained results) to execute the operation g4: 
g1∩g2. To this aim, we can compute ∩ε(g1, g2,t) that will return, as a result,

(nc=2, mincard=1, maxcard=2, mincrank=0.8723, maxcrank=0.9771)=(2,1,2,0.8723,0.9771) 

On the basis of this information, the user can see that only two clusters are retrieved containing a total 
of three documents with high minimum and maximum rank (in the range [0,1]). Thus it can be worth 
executing the intersection operator.

sCALAbILITY IssUEs

In this paragraph we analyze the complexity of the operators of the proposed language and run some 
experiments in which we apply the operators to combine groups containing increasing number of clusters 
so as to evaluate the efficiency of the approach.

Computational Complexity

The operators previously defined are applied to pairs of groups and are executed in several subsequent 
steps. Thus, in order to study the computational complexity of the operators, it is necessary to study the 
computational complexity of the basic steps.

First of all, let us consider the ranked intersection and ranked union of two clusters c1 and c2. These 
operations can be implemented in a very efficient way. In fact, if we maintain the list of documents in a 
cluster ordered by document uri, ranked intersection and ranked union can be implemented on the basis 
of a merge operation, whose complexity is O(∣c1∣+∣c2∣).

Let us consider now operators such as group intersections, group join and group refinement. These 
are binary operators that explore combinations of each cluster in the first operand with each cluster in 
the second operand. Thus, if with N1 and N2 we denote the number of clusters in the first and second 
group operand, respectively, the complexity of such operators is O(N1 ⋅ N2).

Consequently, if we denote with c the maximum cardinality of clusters and with N=max(N1, N2) the 
maximum number of clusters in the input groups, the final complexity of the main algorithm (intersec-
tion, join, refinement) is O(c ⋅ N2).

Another step is the labeling algorithm applied to generate the clusters’ and the groups’ labels. We 
recall that the cluster labels are generated based on the snippets and the titles of their ranked items, i.e., 
short pieces of text, while the labels of the groups are generated from the analysis of the cluster labels. 
If we indicate by c the number of the items (i.e, either the number of ranked items in a cluster, or the 
number of clusters in a group), and with k the maximum number of the single terms either within the 
snippets plus titles, or within the cluster labels, the complexity of this labeling algorithm is determined 
by the following steps.

First we need to rank, in decreasing frequency, the c⋅k terms to select the m most frequent ones. This 
is performed in O(c⋅ k log (c⋅ k)). Then, the vector base of the m dimensional space is built in which the 
ranked items (clusters) vectors are mapped: this has a complexity O(c⋅m log (c⋅m)). Finally, the centroid 
vector is computed in O(c⋅m), and the title (or label) of closest element is chosen with a complexity 
O(c).
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The reader can assume that the labeling task is computationally expensive. Nevertheless this phase is 
not critical, as each element contains a limited number of words, since we consider titles and snippets, 
not the entire documents. Further the labeling is performed only for the generated clusters that do not 
grow quadratically. Consequently, as the reader can see in the experiments reported hereafter, the critical 
phase is the execution of the main algorithm (intersection, join).

Experiments

In order to evaluate the scalability of our proposal, we conducted a set of experiments. The experiments 
were performed on a PC powered by an Intel Pentium 4 641 3.2 GHZ processor, equipped with 1 GByte 
RAM (of type DDR2 PC2-4200 SYNCH DRAM NON-ECC), a 256 GByte Hard Disk (Serial ATA II). 
The installed operating system is Linux Fedora 6 Core Distribution (kernel version 2.6.20-1.2952.fc6). 
Java classes were compiled with JDK version 1.6.0 03. Classes were executed using the Java Runtime 
Environment JRE1.6.0 03.

We ran separately experiments on the intersection and join operators. We considered two sets of 
source groups, reported in Figure 7 and Figure 10. The first set is obtained by performing the following 
queries: “London” to Google, “London” to Yahoo, “New York” to Goggle, “New York” to Yahoo, “Los 
Angeles” to Yahoo. For each query, the first 100 ranked items are considered, and the clustering algorithm 
is applied. Finally, five groups are obtained: group g1 contains clusters resulting from the first query; 
group g3 unites clusters obtained by the first and the second query; group g5 unites clusters obtained by 
the first, the second and the third query; group g7 unites clusters obtained by all queries except the last 
one; group g9 unites all clusters obtained by all the queries.

The groups reported in Figure 10 are obtained in the same way: groups g2, g4,g6, g8 and g10 unites the 
clusters obtained by queries “London Hotels” to Google, “London Hotels” to Yahoo, “New York Hotels” 
to Google, “New York Hotels” to Yahoo and “Los Angeles Hotels” to Yahoo.

Figure 8 reports the results of the first set of experiments. Each group reported in Figure 7 was in-
tersected with itself. This way, it is possible to obtain a large number of clusters in the resulting groups. 
The table reports the execution times for the five experiments. In particular, we separately consider the 
Data Loading time, the time needed by the main algorithm (in this case, the intersection algorithm), the 
time needed for labelling the group (that analyzes all documents in the resulting clusters), the time for 
sorting the group and finally the time needed to write the resulting XML document that describes the 

Figure 7. First set of input groups for operators. With (query, engine) we denote that the specified query 
is submitted to the specified engine, taking the first 100 documents. Groups from g3 to g9 are obtained 
by uniting the clusters obtained for each single query.
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resulting group. Figure 9 shows a chart with the overall execution time, the Data Loading time, the Main 
Algorithm time and the Group Labelling time (the other items are negligible, in comparison).

Notice that, while the data loading time grows linearly, the other components of the implementation 
behaves in a quadratic way, thus meeting the considerations about complexity previously reported.

The reader can also observe that the overall execution time in the last case is still limited to one 
minute and a half, even though the large number of resulting clusters.

In the second sets of experiments performed on the intersection operator, groups g1 were intersected 
with group g2, group g3 with group g4, group g5 with group g6, group g7 with group g8 and group g9 with 
group g10. For each pair, groups are rather heterogeneous, so that the number of intersecting clusters 
is small, as the reader can see in Figure 10. Similarly to the previous experiment, Figure 12 shows the 
chart of the execution times reported in Figure 11.

The reader can see the behavior of the algorithm is still quadratic.
However, we must point out that the number of clusters actually intersecting, and thus generating 

a new cluster, are far less than the potential number indicated on the x-axis: in the case indicated by 
500x500 documents on the x-axis which are grouped in 112 x 98 clusters, only 101 clusters are generated, 
and in the case of 400x400 documents partitioned into 89 x 76 clusters only 95 clusters are generated 

Figure 8. First experiments of application of the group intersection operator. Execution times are in 
milliseconds

Figure 9. Chart of the experiments reported in Figure 8 of application of the group intersection. Execu-
tion times are in milliseconds
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Figure 11. Second experiments on application of the group intersection operator. Execution times are 
in milliseconds

Figure 10. Second set of input groups. With the pair (query, engine) we denote that the specified query is 
submitted to the specified engine, taking the first 100 documents. Groups from g43 to g10 are obtained 
by uniting the clusters obtained for each single query.

Figure 12. Chart of the experiments of application of the group intersection operator reported in Figure 
11. Execution times are in milliseconds
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containing only a subset of the items in the original clusters. So, we can observe that the efforts needed 
to manage the generated clusters is not very significant, since the steps Group Labeling, Group Sorting 
and Writing XML File are applied only to the actual generated clusters containing few ranked items. To 
conclude, most of the effort of the algorithm implementing the group intersection operator is due to the 
need of checking each cluster in the first operand with each cluster in the second, to determine if they 
intersect, and this heavily affects the execution times.

We repeated the same experiments by applying the join operator to the same sets of source groups. 
Recall from the definition of the operators that the group join operator produces the same number of 
clusters than the group intersection; however, the resulting clusters are larger, since they contain all the 
documents in both the intersecting source clusters. Consequently, this set of experiments is useful to 
understand the impact of data structures necessary to manage the resulting clusters before writing the 
final XML document to disk.

The reader can easily see from Figure 13, Figure 14, Figure 15, Figure 16 that the behavior of the 
operator is still quadratic. However, the time needed to manage the data structure is significant: in the 
case denoted 500x500, the join algorithm needed 192167msec, while the intersection algorithm needed 
38527msec; the consequence is that the main algorithm dominates the execution times, and in charts 

Figure 13. First experiments of application of the join operator. Execution times are in milliseconds

Figure 14. Chart of the experiments of application of the join operator reported in Figure 13. Execution 
times are in milliseconds
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reported in Figure 14 and Figure 16 the dashed line corresponding to the main algorithm is substantially 
overlapped with the thick line corresponding to the overall process.

CONCLUsION

In this chapter, we addressed the problem of defining a language for manipulating huge amounts of re-
sults provided by search services over the Internet. The work is motivated by the need to better exploit, 
in an integrated way, the results obtained by different search services like, e.g., web search engines, that 
generally produced long ranked lists. The large number of documents retrieved by such services con-
stitute a serious obstacle for users, that are not able to extract a semantic summarization of the results. 
The language can be useful also to explore the results obtained by submitting distinct queries to the 
same search service, to filter out redundant documents, to reveal implicit correlations, and to overview 
the main retrieved contents.

The proposed language provides operators to manipulate, in a complex and controlled way, groups 
of ranked clusters of retrieved documents.

Further, each operator can be specified with distinct ranking methods to favor, in top positions, 
clusters having distinct properties. The richness of the proposed language allows users to integrate the 

Figure 15.Second experiments of application of the join operator. Execution times are in milliseconds

Figure 16. Chart of the experiments of application of the join operator reported in Figure 15. Execution 
times are in milliseconds
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results of different search services in several ways, then revealing more general or more specific topics 
than those carried by the single documents.

We have developed a software prototype, named Matrioshka, that supports the proposed language. 
Based on a Service Oriented Architecture, it provides a web service interface, that can be exploited to 
develop multi-channel applications (http://matrioshka.unibg.it) (Bordogna, Campi, Psaila, & Ronchi, 
2008b)

The Matrioshka system is based on a client-server architecture. It is constituted by three main parts: 
the Client Side Components handle the user interaction; the Server Side Component interfaces the 
search engines and executes the clustering operations; finally, the Communication Layer dispatches the 
messages between client and server.

Along with the core capabilities of Matrioshka, we have also developed a comprehensive infrastruc-
ture with the twofold purpose of supporting the user in editing queries, executing them and analyzing 
the results, so that the process can be fully tracked.

Consequently, Matrioshka is an interaction framework, in which the client provides a query editor 
for the user, the server either executes the queries and builds the groups containing clusters, or executes 
the operations on previously generated groups.
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Linguistic Data Summarization:
A High Scalability through the 

Use of Natural Language?

Janusz Kacprzyk
Polish Academy of Sciences, Poland
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INTRODUCTION

The purpose of this paper is to present a novel, different argument for the usefulness and power of lin-
guistic data(base) summarization the essence of which was proposed by Yager (1982), and an extended, 
implementable version was shown by Kacprzyk & Yager (2001) and Kacprzyk, Yager & Zadrożny 
(2000).

We consider our further developments of the basic solutions presented in those papers which are 
relevant for our discussion, notably:

AbsTRACT

The authors discuss aspects related to the scalability of data mining tools meant in a different way 
than whether a data mining tool retains its intended functionality as the problem size increases. They 
introduce a new concept of a cognitive (perceptual) scalability meant as whether as the problem size 
increases the method remains fully functional in the sense of being able to provide intuitively appealing 
and comprehensible results to the human user. The authors argue that the use of natural language in the 
linguistic data summaries provides a high cognitive (perceptional) scalability because natural language 
is the only fully natural means of human communication and provides a common language for individu-
als and groups of different backgrounds, skills, knowledge. They show that the use of Zadeh’s protoform 
as general representations of linguistic data summaries, proposed by Kacprzyk and Zadrożny (2002; 
2005a; 2005b), amplify this advantage leading to an ultimate cognitive (perceptual) scalability.

DOI: 10.4018/978-1-60566-858-1.ch008
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a close relation between the • linguistic data summarization and fuzzy database querying, to be more 
specific using fuzzy queries with linguistic quantifiers proposed by us (Kacprzyk & Ziółkowski, 
1986) and in a much more extended form in (Kacprzyk, Zadrożny & Ziółkowski, 1989), and even 
more so in FQUERY for Access (Kacprzyk & Zadrożny, 2001b),
our general approach to • linguistic data summarization viewed as an interactive process in which 
fuzzy querying makes possible the articulation of the user’s intentions, interests and information 
needs proposed by Kacprzyk & Zadrożny (1998; 2001a), and
our formulation of • linguistic data summarization in terms not only of the calculus of linguisti-
cally quantified proposition but in terms of Zadeh’s protoforms (cf. (Kacprzyk & Zadrożny, 2002; 
2005a; 2005b)) which can provide an extraordinary transparency, versatility and generality.

Our purpose in this paper will not be, however, a traditional exposition of the essence of those ideas 
which have been presented in our papers as referred to above, and which have proved to be very effec-
tive and efficient. We will discuss these tools and techniques from the perspective of this volume, that 
is, from the perspective of scalability of data mining (knowledge discovery) tools and techniques. In 
the case of linguistic data(base) summarization this will have a couple of aspects exemplified by both 
more technical computation time and memory related aspects of the scalability of databases and que-
rying, and more conceptual aspects of what might be called a cognitive or perceptional scalability of 
tools from the point of view of human facilities and capabilities. Ultimately, we will argue that linguistic 
data summarization may be viewed from some points of view, notably with respect to the cognitive 
and perceptual scalability, as an ultimately scalable (in the cognitive or perceptual sense) tool for data 
mining and knowledge discovery.

bACKgROUND

The first question we should ask is: What is actually meant by scalability, in particular in the context 
of broadly perceived information technology? Usually, scalability is meant in two basic ways. First, it 
is understood as the ability of a computer application or system (i.e. hardware and/or software) to con-
tinue to function when the size of the problem in question (e.g. the size of a computer network, number 
of clients, size of data sets, etc.) changes, usually grows up. In our context of a broadly perceived data 
analysis, in this paper the scalability will be meant in the upward sense. Second, in a modern view, 
scalability is meant as the ability of a computer application and/or system not only to function as the 
size of the problem and/or context increases (or decreases but this case will not be considered) but to 
even take advantage of that increase in size and volume, for instance to provide more adequate results 
because of a larger basic data set, or an ability to more adequately grasp the very essence of a larger data 
set. Needless to say that scalability is a desirable property of any application or system, and virtually all 
nontrivial applications and systems are designed and implemented with scalability in mind.

As one can expect, though scalability is easily intuitively comprehensible, it is difficult to define, 
and may mean different things to different people, in particular when they come from different areas. 
What is relevant to us, a scalable online transaction processing system or database management system 
is the one that can be upgraded to process more transactions by adding new processors, devices and 
storage, and which can be upgraded easily and transparently. This is one of the reasons that we concern 
the scalability in the sense of what happens when the size and volume of data increase.
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Scalability is a multidimensional concept. For instance, people often confuse performance and scal-
ability. As pointed out by Haines (2006): “The terms “performance” and “scalability” are commonly 
used interchangeably but the two are distinct: performance measures the speed with which a single 
request can be executed, while scalability measures the ability of a request to maintain its performance 
under increasing size and volume. For example, the performance of a request may be said to generate 
a valid response within three seconds, but the scalability of the request concerns the ability to maintain 
that three-second response time as the user load increases” (p. 224). This distinction has a great impact 
for our discussion, and will be dealt with later.

Viewed simplistically, scalability is about “doing more of something” like responding to more user 
requests, executing more work or handling more data. Traditionally, this is done by either increasing 
the sheer computing power and/or data handling power exemplified by using parallel computation, grid 
computing, etc.

In this context a popular belief is that databases do not scale up well, i.e. that it is difficult to keep 
growing the size of a database, or too hard to handle the load of an increasing number of concurrent users. 
In other words, it is often believed that systems that are database centric are fundamentally incapable of 
efficiently coping with the (growing) demands of high performance distributed computing. This may be 
true to some extent even in view of a growing storage capacity at a diminishing cost, parallelization of 
processing, new software developments, etc. One can easily reach limits of the same inherent nature as 
those characteristic for even the best, most advances and densely packed traditional silicon integrated 
circuits: sooner or later, a new type of processors (biological?) will be needed.

This example of an unavoidable necessity of a technological change in processors can be rephrased 
in the context of the scaling up of database centric systems and applications which is what our work is 
concerned with.

Now, let us present the basic context we will be operating in, and issues related to scalability. We 
are concerned with data summarization which is one of basic capabilities of any “intelligent” system, 
and since for the human being the only fully natural means of communication is natural language, a 
linguistic summarization would be very desirable, exemplified by, for a data set on employees, a state-
ment (linguistic summary) “almost all young and well qualified employees are well paid”.

Unfortunately, data summarization is still in general unsolved a problem. Very many techniques are 
available but they are not “intelligent enough”, and not human-consistent, partly due to a limited use of 
natural language (cf. Lesh & Mitzenmacher, 2004).

We deal with a conceptually simple approach to the linguistic database summaries introduced by Yager 
(1982; 1991; 1996), and then considerably advanced by Kacprzyk (2000), Kacprzyk & Yager (2001), 
and Kacprzyk, Yager & Zadrożny (2000; 2001), Zadrożny and Kacprzyk (1999), and implemented in 
Kacprzyk and Zadrożny (2000a-d; 2001a-e; 2002; 2003; 2005b). In this approach linguistic data sum-
maries are derived as linguistically quantified propositions as, e.g., “most of the employees are young 
and well paid”, with a degree of truth (validity), possibly extended with other measures.

For an effective and efficient derivation of linguistic summaries, we employ Kacprzyk and Zadrożny’s 
(1998; 2000a-d; 2001a) interactive approach to linguistic summaries in which the determination of a 
class of summaries of interest is done via Kacprzyk and Zadrożny’s (1994; 1995a-b; 2001b) FQUERY 
for Access, a fuzzy querying add-in to Microsoft Access, extended to the querying over the Internet in 
Kacprzyk and Zadrożny (2000b). Since a fully automatic generation of linguistic summaries is not feasible 
at present, mainly because it is difficult if not impossible at all to automatically reveal the user’s real 
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intentions, interests and information needs, an interaction with the user is assumed for the determination 
of a class of summaries of interest, and this is done via the above fuzzy querying add-in.

Extending Kacprzyk & Zadrożny (2002; 2005a; 2005b), we show that by relating various types 
of linguistic summaries to fuzzy queries, with various known and sought elements, we can arrive at a 
hierarchy of prototypical forms, or – in Zadeh’s (2002) terminology – protoforms, of linguistic data 
summaries. This seems to be a very powerful conceptual idea because it provides a simple structural 
expression, with a comprehensible semantics, of even the most complicated linguistic summaries.

Notice that, first, through the use of natural language to present (verbalize) the very essence and 
contents of data with respect to an aspect in question we certainly attain a high, maybe even the best 
scalability. First, natural language can express that information in a fully comprehensible way no mat-
ter how large the data set is. Second, such simple linguistically quantified propositions with which 
data summaries are equated may semantically be adequate as representations of data sets of any size as 
they represent some highly abstracted linguistic statements, of a simple syntax and of what might be 
described as a “commonsense based” semantics. Third, protoforms of linguistic summaries provide a 
uniform, easily comprehensible form of linguistic summaries for any size of data sets, and virtually all 
intentions and information needs of the user. Finally, natural language summaries are comprehensible 
to individuals, small and larger groups, people from different backgrounds, people coming from various 
geographic locations, sexes, age groups, etc. Clearly, an obvious condition of an agreed upon semantics 
of language used should be assumed but this is a prerequisite of any human communication, and any 
implementation of a computer system to be employed by various human users.

A natural question is: what is the relation of the approach and view presented in this paper to the 
problem of natural language generation (NLG), and in particular to the scalability of natural language 
generation. We will not deal in more detail with these important issues. For an analysis of relations 
between the linguistic data summaries used in this paper, and in all our previous works, and some ex-
tension of the template based approach to natural language generation we refer the reader to Kacprzyk 
& Zadrożny (2009). Moreover, for very interesting remarks and their justification that natural language 
generation itself can be viewed as a very effective and efficient, yet conceptually simple and natural, 
and extremely human consistent way to improve the scalability of a dialog system, we refer the reader 
to Reiter (1995).

For more detail on the issue of scalable natural language generation we refer the reader to, for in-
stance, Klarner (2004). Basically, in those works scalability of the natural language generation is also 
considered in the context of dialog systems, i.e. slightly more general than in our context of just the 
linguistic summarization of numerical sets of data, but concerns many aspects that are relevant for us 
too. Basically, scalability for (spoken) dialog systems is meant as the ability to:

enlarge the domain content by modifying and extending its thematic orientation,• 
refine the domain language to extend the linguistic coverage and expressibility of the domain,• 
change the application domain which usually concerns the two above ones and can lead to com-• 
pletely new requirements for a dialog system and its parts,
change the discourse domain which may alter the discourse type within the same domain.• 

As it can clearly be seen there are strong, intrinsic relations between our concept of a linguistic data 
summary, and its protoform based representation, and various concepts of scalability both in a general 
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context of systems and applications in information technology, database related technology, and – finally 
– natural language generation (NLG).

It should be noted that our approach to scalability is different than that of most researchers who prac-
tically equate the property of scalability with whether, and how well, a given approach, tool, technique, 
… can retain its functionality, effectiveness and efficiency when the size of the problem is growing, 
i.e. in our case the size of a data set is growing. This is upward scalability. Sometimes very relevant is 
downward scalability when the size of the problem is diminishing. A trivial example is that (many if not 
all) statistical methods are not downward scalable in this sense because they do not work properly for 
small problems (samples). The downward scalability is in general difficult to deal with.

Most works on the (upward) scalability concern the efficiency of search for a solution, here for a best 
linguistic summary, which may be called a technical scalability. In this work we are basically concerned 
with a much more general and foundational type of scalability, which might be called a conceptual or 
perceptional scalability which has to do with a fundamental question: will our tools remain conceptually 
or perceptually appropriate (human consistent) when our problem will greatly increase? We will advo-
cate that due to the use of natural language we obtain an ultimate conceptual or perceptional scalability 
because a natural language statement will always be comprehensible to the human being(s) no matter 
what size of the data set it is meant to represent. We will also give some remarks on technical scalability 
by, first, reviewing some approaches that make possible the generation of linguistic summaries for large 
data sets. We will not, however, mention our approach based on a relation between the generation of 
linguistic data summaries and association rules which was originally proposed by Kacprzyk & Zadrożny 
(2001d; 2003). This approach shows a different perspective and its role in the context of scalability, both 
technical and cognitive (perceptual), of linguistic data summaries needs a different exposition which 
will be presented in a next paper.

We will present now in more detail an implementation of our interactive approach to the derivation 
of linguistic summaries, and while discussing particular elements we will indicate relations to those 
scalability issues and aspects mentioned above. We hope that this will provide another justification to 
the power of both linguistic data summaries in the simple sense assumed here, and the power of Zadeh’s 
protoforms, and maybe even – more generally – the power of Zadeh’s computing with words and per-
ceptions paradigm (cf. Zadeh & Kacprzyk, 1999). All this will be presented in a novel, not yet explored 
perspective of a conceptual (perceptional) scalability.

LINgUIsTIC DATA(bAsE) sUMMARIEs

Data summarization is one of basic capabilities now needed by any “intelligent” system that is meant to 
operate in real life situations. Basically, due to the availability of relatively cheap and efficient hardware 
and software tools, we usually face an abundance of data that is beyond human cognitive, perceptional 
and comprehension skills.

Since for the human being the only fully natural means of communication is natural language, a 
linguistic (say, by a sentence or a small number of sentences in a natural language) summarization of a 
set of data would be very desirable and human consistent. For instance, having a data set on employees, 
a statement (linguistic summary) like “almost all younger and well qualified employees are well paid” 
would be useful and human consistent in many cases.
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Unfortunately, data summarization is still in general unsolved a problem in spite of vast research ef-
forts. Very many techniques are available but they are not “intelligent enough”, and not human consistent, 
partly due to a little use of natural language. This concerns, e.g., summarizing statistics, exemplified by 
the average, median, minimum, maximum, α-percentile, etc. which – in spite of recent efforts to soften 
them – are still far from being able to reflect a real human perception of their essence.

Linguistic Data summarization: The basic Case

In this paper we will use a simple yet effective and efficient approach to the linguistic summarization of 
data sets (databases) proposed by Yager (1982), and then presented in a more advanced, and implement-
able form by Kacprzyk & Yager (2001), and Kacprzyk, Yager & Zadrożny (2000). This will provide a 
point of departure for our further analysis of more complicated and realistic summaries.

In Yager’s (1982) approach, we have (we use here the author’s terminology):

• V is a quality (attribute) of interest, e.g. salary in a database of workers,
• Y y y

n
= { }1

, ,  is a set of objects (records) that manifest quality V, e.g. the set of workers; hence 
V(yi) are values of quality V for object yi ∈ Y;

• D = {V(y1),…,V(yn)} is a set of data (the “database” on question)

A linguisticsummary of a data set consists of:

a summarizer • S (e.g. young),
a quantity in agreement • Q (e.g. most),
truth • T - e.g. 0.7,

as, e.g., “T(most of employees are young)=0.7”. The truth T may be meant in a more general sense, e.g. 
as validity or, even more generally, as some quality or goodness of a linguistic summary.

Basically, given a set of data D, we can hypothetize any appropriate summarizer S and any quantity 
in agreement Q, and the assumed measure of truth will indicate the truth of the statement that Q data 
items satisfy the statement (summarizer) S.

Notice that we consider here some specific, basic form of a linguistic summary. We do not consider 
other forms of summaries exemplified by “over 70% of employees are under 35 years of age” that may 
be viewed to provide similar information as “most of employees are young” because the latter are clearly 
outside of the class of linguistic summaries considered. Notice also that we discuss here the linguistic 
summarization of sets of numeric values only. One can clearly imagine the linguistic summarization of 
symbolic attributes but this relevant problem is outside of the scope of this paper. We do not consider 
here the linguistic summarization of textual information.

We should also note that we do not consider in this paper some other approaches to the linguistic 
summarization of databases (data sets) that are based on a different philosophy, exemplified by works by 
Bosc et al. (2002), Dubois & Prade (1992), Raschia & Mouaddib (2002) or Rasmussen & Yager (1996; 
1997a; 1997b; 1999). Basically, one can very briefly summarize the approaches employed as follows. 
First, Bosc et al. (1992) use a gradual rule view of linguistic summaries, which has been proposed by 
Dubois & Prade (1992) and use linguistic quantifiers as tools for the aggregation. Rasmussen & Yager 
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(1999) consider both the traditional Yager summaries and a type of Dubois & Prade’s gradual rules 
showing that they can be obtained (or, more precisely, verified) via some extension of SQL. Raschia 
& Mouaddib (2002) propose, and develop in a series of papers, a different approach based on hierar-
chical summaries, their tree representations, and relations to OLAP based techniques. Summaries are 
here meant as aggregated (“generalized”) tuples which cover parts of the database at different levels of 
abstraction.

We will not consider some other related techniques exemplified by the mining of fuzzy association 
rules (cf. (Chen, Liu & Li, 2001; Chen & Wei, 2002; Chen, Wei & Kerre; 2000; Hu, Chen & Tzeng, 2002; 
Lee & Lee-Kwang, 1997)), even in the context of linguistic summaries (cf. (Kacprzyk and Zadrożny, 
2001d; 2003)). These approaches reflect a different perspective and, as already mentioned, will be a 
subject of a next paper which will consider scalability of linguistic data summaries in a comprehensive 
way, as a confluence of the technical and conceptual (perceptional) scalability.

First, we should consider the forms of the particular elements of a linguistic summary in our sense. 
Since we use natural language throughout our analysis, as it is the only fully natural and human consis-
tent means of communication for the humans, we assume the summarizer S to be a linguistic expression 
semantically represented by a fuzzy set like, for instance “young” would be represented as a fuzzy set 
in the universe of discourse as, e.g., {1, 2, ..., 90}, i.e. containing possible values of the human age, and 
“young” could be given as, e.g., a fuzzy set with a non-increasing membership function in that universe 
such that, in a simple case of a piecewise linear membership function, the age up to 35 years is for sure 
“young”, i.e. the grade of membership is equal to 1, the age over 50 years is for sure “not young”, i.e. 
the grade of membership is equal to 0, and for the ages between 35 and 50 years the grades of member-
ship are between 1 and 0, the higher the age the lower its corresponding grade of membership. A simple 
one-attribute-related summarizer exemplified by “young” can clearly be extended to some confluence 
of attribute values as, e.g., “young and well paid”.

Clearly, in the context of linguistic summarization of data, the most interesting are more sophisticated, 
human-consistent summarizers (concepts) as, e.g.:

productive workers,• 
stimulating work environment,• 
difficult orders, etc.• 

whose definition involves complicated combinations of attributes, e.g.: a hierarchy (not all attributes 
are of the same importance), the attribute values are ANDed and/or ORed, k out of n, most, etc. of them 
should be accounted for, etc. The definition, processing and generation of such non-trivial summarizers 
needs some specific tools and techniques to be discussed later.

The quantity in agreement, Q, is an indication of the extent to which the data satisfy the summary. 
Once again, a precise indication is not human consistent, and a linguistic term represented by a fuzzy 
set is employed. Basically, two types of such a linguistic quantity in agreement can be used:

absolute as, e.g., “about 5”, “more or less 100”, “several”, and• 
relative as, e.g., “a few”, “more or less a half”, “most”, almost all”etc.• 

Notice that the above linguistic expressions are the so-called fuzzy linguistic quantifiers (cf. Zadeh, 
1983) that can be handled by fuzzy logic.
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Similarly as for the fuzzy summarizer, the form (basically, the definition of a fuzzy linguistic quanti-
fier) of a fuzzy quantity in agreement is also subjective, and can be either predefined or elicited from 
the user.

The calculation of the truth (or, more generally, validity) of the linguistic summary considered above 
is equivalent to the calculation of the truth value (from the unit interval) of a linguistically quantified 
statement (e.g., “most of the employees are young”). This can be calculated by using two most relevant 
techniques: Zadeh’s (1983) calculus of linguistically quantified statements (cf. (Zadeh & Kacprzyk, 
1999) or Yager’s (1988) OWA operators (cf. (Yager & Kacprzyk, 1997)). Since these calculi are well 
known and are widely used in many works involving linguistic quantifier based aggregation of partial 
scores, we will discuss them only briefly in what follows and will refer the reader to, for instance, Za-
deh’s (1983; 1985) or Yager’s (1988) source papers for more details.

A linguistically quantified proposition, exemplified by “most experts are convinced”, is written as 
" ' "Qy Fs are  where Q is a linguistic quantifier (e.g., most), Y y= { }  is a set of objects (e.g., experts), 
and F is a property (e.g., convinced). Importance B may be added yielding " ' "QBy s F are , e.g., “most 
(Q) of the important (B) experts (y’s) are convinced (F)”. The problem is to find truth(  are Qy s F' )  or 
truth(  are QBy s F' ) , respectively, knowing truth(y is F y Y), " Î  which is done here using Zadeh’s 
(1983; 1985) fuzzy logic based calculus of linguistically quantified propositions.

Property F and importance B are fuzzy sets in Y, and a (proportional, nondecreasing) linguistic 
quantifier Q is assumed to be a fuzzy set in [0,1] as, e.g.
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Then, due to Zadeh (1983)
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These formulas are clearly based on the non-fuzzy cardinalities of the respective fuzzy sets, the so-
called Σ-Counts (cf. Zadeh, 1983).

An OWA operator (Yager, 1988; Yager & Kacprzyk, 1997) of dimension p is a mapping F p: [ , ] [ , ]0 1 0 1®  
if associated with F is a weighting vector W w w

p
T= [ , , ]

1
 , w w w

i p
Î + + =[ , ], ,0 1 1

1
  and

F x x w b w b W B
p p p

T( , , )
1 1 1
 = + =  (4)

where bi is the i-th largest element among x x
p1

, , , B b b
p

= [ , , ]
1
 .

The OWA weights may be found from the membership function of Q due to (cf. Yager, 1988):
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The OWA operators can model a wide array of aggregation operators (including linguistic quantifiers), 
from w w

p1 1
0= = =-  and w

p
= 1  which corresponds to “all”, to w

1
1=  and w w

p2
0= = =

which corresponds to ” at least one”, through all intermediate situations, and that is why they are widely 
employed.

An important case is when with the OWA operator importance qualification of the particular pieces of 
data is associated. Suppose that with the data A a a

p
= [ , , ]

1
 , a vector of importances V v v

p
= [ , , ]

1
 , 

such that v
i
Î [ , ]0 1  is the importance of a i p

i
, , ,= 1 , v v

p1
1+ = , is associated. Then, for an 

ordered weighted averaging operator with importance qualification based on a linguistic quantifier Q, 
denoted OWAQ, Yager (1988) proposed that, first, some redefinition of the OWA’s weights wi

' s  into 
w

i
' s  is performed, and (4) becomes
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where u
k

 is the importance of bk, i.e. the k-largest element of A.

some Other validity Measures of Linguistic summaries

The basic validity criterion, i.e. the truth of a linguistically quantified statement given by (2) and (3), 
is certainly the most natural and important but it does not grasp all aspects of a linguistic summary. We 
will present here some other quality (validity) criteria, notably those proposed by Kacprzyk & Yager 
(2001), and Kacprzyk, Yager & Zadrożny (2000).

First, Yager (1982) proposed a measure of informativeness whose essence is: suppose that we have 
a data set, whose elements are from a space X. One can view the data set itself as its own most informa-
tive description, and any other summary implies a loss of information, and therefore informativeness 
comes into play

The degree of truth is unfortunately not a good measure of informativeness (cf. Yager, 1982; 1991). 
Let the summary be characterized by the triple (S, Q, T), and let a related summary be characterized by 
the triple (Sc, Qc, T) such that Sc is the negation of S, i.e. μS

c(.) = 1 - μS(.), and similarly μQ
c(.) = 1 - μQ(.). 

Then, Yager (1982; 1991) proposed the following measure of informativeness of a summary
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I T SP Q SP S T Sp Q Sp Sc c= × × Ú - ×[ ( ) ( )] [( ) ( ) ( )]1  (8)

where SP(Q) is the specificity of Q given as

SP Q
Q

d( ) = ò
1

0

1

card a
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where Qα is the α-cut of Q and card(.) is the “cardinality” (in fact, the area) of the respective set; and 
similarly for Qc, S, Sc. Notice that in (8) we also have the specificity of S/Sc, SP(S/Sc), which is meant 
similarly.

The rationale behind this measure of informativeness differs from that of, e.g., Chen, Liu & Li (2001). 
Unfortunately, this measure of informativeness is by no means a definite solution. First, let us briefly 
mention George and Srikanth’s (1996a; 1996b) proposal. Suppose that a linguistic summary of interest 
involves more than 1 attribute (e.g., “age”, “salary” and “seniority” in the case of employees). Basically, 
for the same set of data, two summaries are generated:

a constraint descriptor which is the most specific description (summary) that fits the largest num-• 
ber of tuples in the relation (database) involving the attributes in question,
a constituent descriptor which is the description (summary) that fits the largest subset of tuples with • 
the condition that each tuple attribute value takes on at least a threshold value of membership.

George and Srikanth (1996a; 1996b) use these two summaries to derive a fitness function (goodness of 
a summary) that is later used for deriving a solution (a best summary) via a genetic algorithm they employ. 
This fitness function represents a compromise between the most specific summary (corresponding to the 
constraint descriptor) and the most general summary (corresponding to the constituent descriptor).

Then, some additional measures have been developed by Kacprzyk & Yager (2001) and Kacprzyk, 
Yager & Zadrożny (2000). Let us briefly repeat some basic notation. We have a data set (database) D 
that concerns some objects (e.g. employees) Y = {y1, ..., yn} described by some attribute V (e.g. age) 
taking on values in a set X = {x1, x2, ...} exemplified by {20, 21, ..., 100} or even {very young, young, 
..., old, very old} though this case will not be considered here. Let di=V(yi) denote the value of attribute 
V for object yi. Therefore, the data set to be summarized is given as a table

D = [d1,...,dn]=[V(y1), V(y2), ..., V(yn)]  (10)

In a more realistic case the data set is described by more than one attribute. Let V={V1, V2,..., Vm} be 
a set of such attributes taking values in Xi, i = 1, ..., m; Vj(yi) denotes the value of attribute Vj for object 
yi, and attribute Vj takes on its values from a set Xj.

The data set to be summarized is therefore:

D = {[V1(y1), V2(y1),..., Vm(y1)], [V1(y2), V2(y2),..., Vm(y2)], ..., [V1(yn), V2(yn),..., Vm(yn)]}  (11)

In case of multiple (m) attributes the description (summarizer) S is assumed as a family of fuzzy sets 
S={S1, S2,,... Sm} where Si ∈ S is a fuzzy set in Xi, i=1,...,m. Then, μS(yi), i = 1,2,…, n, may be defined 
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as:

μS(yi) = minj∈{1,2,...,m}[ μSj (Vj(yi))]  (12)

and

r
y

n

S i
i

n

= =
å m ( )

1

 (13)

and T=μQ(r).
So, having S, we can calculate the truth value T of a summary for any quantity in agreement. To find 

a best (optimal) summary, we should calculate T for each possible summarizer, and for each record in 
the database in question which may be computationally prohibitive for virtually all non-trivial databases 
and number of attributes. Therefore, from the point of view of scalability, this suggests that the process 
of finding an optimal linguistic summary is not technically scalable.

A natural line of reasoning would be to either limit the number of attributes of interest or to limit 
the class of possible summaries by setting a more specific description (e.g. very young, young and well 
paid, etc. employees). This will limit the search space, and may help attain an acceptable technical scal-
ability.

We will deal now with the second option. The user can limit the scope of a linguistic summary to, for 
instance, those for which the “age” takes on the value “young” only, i.e. to fix the summarizer related to 
that attribute. This would correspond to the searching of the database using the query wg equated with the 
fuzzy set in Xg corresponding to “young” related to attribute Vg (i.e. age), i.e. characterized by m

wg
(.) . 

In such a case, μS(yi) given by (12) becomes

μS(yi) = minj∈{1,2,...,m}[μSj (Vj(yi)) Ù  m
wg

 (Vg(yi)], i=1, ..., n (14)

where “Ù” is the minimum (or, more generally, a t-norm), and then
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and T=μQ(r). This is clearly related to how Zadeh’s calculus of linguistically quantified propositions 
works.

Now, we will briefly mention the 5 quality measures of linguistic database summaries, in particular four 
additional ones as introduced in Kacprzyk & Yager (2001), and Kacprzyk, Yager & Zadrożny (2000):

a truth value [which basically corresponds to the degree of truth of a linguistically quantified • 
proposition representing the summary given by, say, (2) or (3)],
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a degree of imprecision,• 
a degree of covering,• 
a degree of appropriateness,• 
a length of a summary.• 

For notational simplicity later on, let us rewrite (12) and (1) as:

μS(di) = minj∈{1,2,...,m}[(μSj (Vj(yi))], i=1, ..., n (16)

and
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where, clearly, (16) and (17) are equivalent to (12) and (15) though rewritten in the form more suitable 
for our present discussion.

The degree of truth, T1, is the basic validity criterion introduced in the source Yager’s (1982) work 
and commonly employed. It is clearly equal to

T1 = μQ(r)  (18)

which results directly from Zadeh’s (1983; 1985) calculus of linguistically quantified propositions.
The degree of imprecision is an obvious and important validity criterion. Basically, a very imprecise 

linguistic summary (e.g. on almost all winter days the temperature is rather cold) has a very high degree 
of truth yet it is not useful.

Suppose that description (summarizer) S is given as a family of fuzzy sets S={S1, S2, ... Sm}. For a 
fuzzy set Sj, j=1, ..., m, we can define its degree of fuzziness as, e.g.:

in(Sj)= 
card { : ( )>0  }

card  

x X x

X

j S

j

j
Î ¼

 (19)

where card denotes the cardinality of the corresponding (nonfuzzy) set and the domains Xj are all as-
sumed to be finite (what is reasonable from the practical point of view). That is, the “flatter” the fuzzy 
set Sj the higher the value of in(Sj).

The degree of imprecision, T2, of the summary – or, in fact, of S – is then defined as:

T2 =1- 
j m

jm S
=
Õ
1,...,

in( )  (20)
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Notice that the degree of imprecision T2 depends on the form of the summary only and not on the 
database, that is its calculation does not require the searching of the database (all its records) which is 
very important.

The degree of covering, T3, is defined as
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and the denominator of (21) is assumed to be different from 0 - otherwise T3 is defined to be equal 0.
The degree of covering says how many objects in the data set corresponding to the query wg are 

“covered” by the particular summary. Its interpretation is simple as, e.g., if it is equal to 0.15, then this 
means that 15% of the objects are consistent with the summary in question. The value of this degree 
depends clearly on the contents of the database.

The degree of appropriateness is probably the most relevant measure. Suppose that the summary 
containing the description (fuzzy sets) S = (S1,S2,..., Sm) is partitioned into m partial summaries each of 
which encompasses the particular attributes V1,V2,..., Vm, such that each partial summary corresponds to 
one fuzzy set only, then if we denote:

Sj(yi)= μSj (Vj(yi))  (23)

then
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The degree of appropriateness means that, for a database concerning the employees, if – for instance 
– 50% of them are less than 25 years old and 50% are highly qualified, then we may expect that 25% of 
the employees would be less than 25 years old and highly qualified; this would correspond to a typical, 
fully expected situation. However, if the degree of appropriateness is, e.g., 0.39 (i.e. 39% are less than 
25 years old and highly qualified), then the summary found reflects an interesting, not fully expected 
relation in our data. This degree describes therefore how characteristic for the particular database the 
summary found is. T4 is very important because a trivial summary like, for instance, “100% of employees 
is of some age” has truth equal 1 but its degree of appropriateness is clearly equal 0.

The length of a summary is relevant because a long summary is not easily comprehensible by the 
human user. This length, T5, may be defined in various ways, and the below form has proven to be use-
ful:

T5=2 (0.5cardS)  (25)

Now, the (total) degree of validity, T, of a particular linguistic summary is defined as the weighted 
average of the above 5 degrees of validity, i.e.:

T= T(T1, T2, T3, T4, T5; w1, w2, w3, w4, w5) =∑i=1,2, ..., 5wiTi (26)

and the problem is to find an optimal summary, S* ∈ {S}, such that

S* = arg maxS ∑i=1,2,...,5wiT (27)

where: w1,...,w5 are weights assigned to the particular degrees of validity, with values from the unit 
interval, the higher, the more important such that ∑i=1,2,...,5wi =1.

The definition of weights, w1,...,w5, is a problem in itself, and will not be dealt with in more detail. 
The weights can be predefined or elicited from the user.

As we have already mentioned, the linguistic summarization meant in terms of (27) is clearly not 
technically scalable, even if some more sophisticated search techniques are used which limit the size of 
the problem as exemplified by George & Srikanth’s (1996a; 1996b) use of a genetic algorithm. How-
ever, let us notice that the situation is completely different when cognitive (perceptional) scalability is 
accounted for. It is clear that the very concept of linguistic data summary as presented above is what 
might be said totally cognitively (perceptionally) scalable because it is comprehensible to a human be-
ing, either an individual or a group of individuals, no matter what size of the data set is, and also to a 
large extent independently of the background, sex, age, etc. of the individuals. This is a direct result of, 
on the one hand, the use of natural language, which is the only fully natural means of articulation and 
communication of a human being, and – on the other hand – of a simple and intuitively appealing form 
of a linguistic summary which basically says what most of the data exhibit, i.e. what usually happens 
(holds). This is in fact what is looked for and found by all data analysis tools and techniques.

PRACTICAL DETERMINATION OF LINgUIsTIC DATA sUMMARIEs

One can clearly notice that a fully automatic determination of a best linguistic summary, i.e. the solu-
tion of (26) may be infeasible in practice due to a high number of possible summaries. In (Kacprzyk & 
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Zadrożny, 1998; 2001a) an interactive approach was proposed with a user assistance in the definition of 
summarizers, by the indication of attributes and their combinations of interest. This proceeds via a user 
interface of a fuzzy querying add-on. Basically, the queries (referring to summarizers) allowed are:

• simple as, e.g., “salary is high”
• compound as, e.g., “salary is low AND age is old”
• compound (with quantifier), as, e.g., “most of {salary is high, age is young, ..., training is well 

above average}.

We will also use ”natural” linguistic terms, i.e. (7±2!) exemplified by: very low, low, medium, high, 
very high, and also “comprehensible” fuzzy linguistic quantifiers as: most, almost all, ..., etc.

In (Kacprzyk &Zadrożny, 1994; 1995a; 1995b; 2001b), a conventional DBMS is used, and a fuzzy 
querying tool is developed to allow for queries with fuzzy (linguistic) elements of the “simple”, “com-
pound” and “compound with quantifier” types. This fuzzy querying system (add in) has been developed 
for Microsoft Access® but its concept is clearly applicable to any DBMS. The main problems to be 
solved are here: (1) how to extend the syntax and semantics of the query, and (2) how to provide an easy 
way of eliciting and manipulating those terms by the user.

We will now briefly describe the very essence of FQUERY for Access, emphasizing those aspects 
which are relevant for the purposes of this paper. One should notice that we will use here terms, exem-
plified by “attributes”, “fields”, etc. as used in our source papers on FQUERY for Access, which should 
help the interested readers follow more specialized discussions concerning FUERY for Access given in 
these papers. These insignificant terminological differences should not lead to any confusion or misun-
derstanding. It should be noted that a slightly different approach to the use of linguistic quantifiers in 
fuzzy queries has been proposed – cf. Bosc, Lietard & Pivert (1995) – but it will not be used here.

FQUERY for Access is embedded in the native Access’s environment as an add-in. All the code and 
data is put into a database file, a library, installed by the user. Definitions of attributes, fuzzy values 
etc. are maintained in a dictionary (a set of regular tables), and a mechanism for putting them into the 
Query-By-Example (QBE) sheet (grid) is provided. Linguistic terms are represented within a query as 
parameters, and a query transformation is performed to provide for their proper interpretation during 
the query execution.

FQUERY for Access is an add-in that makes it possible to use fuzzy terms in queries. Briefly speak-
ing, the following types of fuzzy terms are available:

fuzzy values, exemplified by • low in “profitability is low”,
fuzzy relations, exemplified by • much greater than in “income is much greater than spending”, 
and
linguistic quantifiers, exemplified by • most in “most conditions have to be met”.

The elements of the first two types are elementary building blocks of fuzzy queries in FQUERY for 
Access. They are meaningful in the context of numerical fields only. There are also other fuzzy constructs 
allowed which may be used with scalar fields.

If a field is to be used in a query in connection with a fuzzy value, it has to be defined as an attribute. 
The definition of an attribute consists of two numbers: the attribute’s values lower (LL) and upper (UL) 
limit. They set the interval which the field’s values are assumed to belong to, according to the user. This 
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interval depends on the meaning of the given field. For example, for age (of a person), the reasonable 
interval would be, e.g., [18,65], in a particular context, i.e. for a specific group. Such a concept of an 
attribute makes it possible to universally define fuzzy values.

Fuzzy values are defined as fuzzy sets on [-10, +10]. Then, the matching degree md(⋅,⋅) of a simple 
condition referring to attribute AT and fuzzy value FV against a record R is calculated by:

md( ( ( )AT=FV,R)= R(AT)
FV

m t  

where: R(AT) is the value of attribute AT in record R, m
FV

 is the membership function of fuzzy value 
FV, τ: [LLAT,ULAT]→[-10,10] is the mapping from the interval defining AT onto [-10,10] so that we may 
use the same fuzzy values for different fields. A meaningful interpretation is secured by τ which makes 
it possible to treat all fields domains as ranging over the unified interval [-10,10]. For simplicity, it is 
assumed that the membership functions of fuzzy values are trapezoidal.

Linguistic quantifiers provide for a flexible aggregation of simple conditions. In FQUERY for Access 
the fuzzy linguistic quantifiers are defined in Zadeh’s (1983; 1985) sense, as fuzzy set on [0, 10] interval 
instead of the original [0, 1] – cf. most given as (1). They may be interpreted either using original Zadeh’s 
(1983) approach or via the OWA operators (cf. (Yager, 1988) or (Yager & Kacprzyk, 1997)); Zadeh’s 
interpretation will be considered in what follows. The membership functions of fuzzy linguistic quanti-
fiers are assumed piece-wise linear, hence two numbers from [0,10] are needed. Again, a mapping from 
[0, N], where N is the number of conditions aggregated, to [0,10] is employed to calculate the matching 
degree of a query. More precisely, the matching degree, md(⋅,⋅), for the query “Q of N conditions are 
satisfied” for record R is equal to

md Q md
i

( , [ ( ( ))]condition ,R)= condition ,R
i Q i

m t å  

and we can also assign different importance degrees for particular conditions. Then, the aggregation 
formula is equivalent to (3). The importance is identified with a fuzzy set on [0,1], and then treated as 
property B in (3).

Before a fuzzy term may be used in a query, it has to be defined using the toolbar provided by FQUERY 
for Access and stored internally. This feature, i.e. maintenance of dictionaries of fuzzy terms defined by 
users, strongly supports our approach to data summarization discussed in this paper. In fact, the package 
comes with a set of predefined fuzzy terms but the user may enrich the dictionary too.

When the user initiates the execution of a query it is automatically transformed by appropriate 
FQUERY for Access’s routines and then run as a native query of Access. The transformation consists 
primarily in the replacement of parameters referring to fuzzy terms by calls to functions implemented by 
the package which secure a proper interpretation of these fuzzy terms. Then, the query is run by Access 
as usually. Details can be found in Kacprzyk & Zadrożny (1994 – 1995b).

It is obvious that fuzzy queries directly correspond to summarizers in linguistic summaries. Thus, the 
derivation of a linguistic summary may proceed in an interactive (user assisted) way as follows:

the user formulates a set of linguistic summaries of interest (relevance) using the • fuzzy querying 
add in,
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the system retrieves records from the database and calculates the validity of each summary ad-• 
opted, and
a best (most appropriate) linguistic summary is chosen.• 

The use of fuzzy querying is very relevant because we can restate the summarization in the fuzzy 
querying context. First, (2) may be interpreted as:

“Most records match query S”  (28)

where S replaces F in (2) since we refer here directly to the concept of a summarizer (of course, S is in 
fact the whole condition, e.g., price = high, while F is just the fuzzy value, i.e. high in this condition; 
this should not lead to confusion).

Similarly, (3) may be interpreted as:

“Most records meeting conditions B match query S”  (29)

Thus, (29) says something only about a subset of records specified by (28). In database terminology, 
B corresponds to a filter and (29) claims that most records passing through B match query S. Moreover, 
since the filter may be fuzzy, a record may pass through it to a degree from [0,1].

And, again, one can argue for a very high conceptual (perceptional) scalability of linguistic data 
summaries because their determination boils down to a well known process of database querying which 
virtually all users of computer systems, even novice users, are accustomed to.

Looking at the form of (28) and (29), which specify the user’s interest and intent as to linguistic data 
summaries put in the context of database querying, it was proposed by Kacprzyk & Zadrożny (2002; 
2005b) that the concept of a protoform in the sense of Zadeh (2002; 2006) is highly relevant. A proto-
form is defined as an abstract prototype, that is, in our context, for the query (summary) given by (28) 
and (29) as follows, respectively:

“Most R’s are S”  (30)

and

“Most BR’s are S”  (31)

where R means “records”, B is a filter, and S is a query.
Since protoforms can obviously form a hierarchy, we can define higher level (more abstract) proto-

forms, for instance replacing most by a generic linguistic quantifier Q, we obtain, respectively:

“QR’s are S”  (32)

and

“QBR’s are S”  (33)
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Obviously, the more abstract protoforms correspond to cases in which we assume less about sum-
maries sought. There are two limit cases, where we: (1) assume totally abstract protoform or (2) assume 
all elements of a protoform are given as specific linguistic terms. In case 1 data summarization will be 
extremely time consuming, as the search space may be enormous, but may produce interesting, unex-
pected views on data. In case 2 the user has to guess a good candidate formula for summarization but 
the evaluation is fairly simple, just equivalent to the answering of a (fuzzy) query. Thus, the second case 
refers to the summarization known as ad hoc queries.

Then, going further along this line, we can show in Table 1 a classification of linguistic summaries 
into 5 basic types corresponding to protoforms of a more and more abstracted form.where Sstructure denotes 
that attributes and their connection in a summary are known, while Svalue denotes a summarizer sought.

Type 1 may be easily produced by a simple extension of fuzzy querying as in Kacprzyk & Zadrożny’s 
(2001b) FQUERY for Access. Basically, the user has to construct a query – a candidate summary, and 
it has to be determined what is the fraction of rows matching this query and what linguistic quantifier 
best denotes this fraction. A Type 2 summary is a straightforward extension of Type 1 by adding a fuzzy 
filter. Type 3 summaries require much more effort. Their primary goal is to determine typical (excep-
tional) values of an attribute. So, query S consists of only one simple condition built of the attribute 
whose typical (exceptional) value is sought, the “=” relational operator and a placeholder for the value 
sought. For example, using the following summary in the context of personal data: Q = “most” and S = 
“age=?” (here “?” denotes a placeholder mentioned above) we look for a typical value of age. A Type 4 
summary may produce typical (exceptional) values for some, possibly fuzzy, subset of rows. From the 
computational point of view Type 5 summaries represent the most general form considered here: fuzzy 
rules describing dependencies between specific values of particular attributes. Here the use of B is es-
sential, while previously it was optional. The summaries of Type 1 and 3 have been implemented as an 
extension to Kacprzyk & Zadrożny’s (1994; 1995a-b; 2001b) FQUERY for Access. Two approaches to 
Type 5 summaries have been proposed. Firstly, a subset of such summaries may be produced by exploiting 
similarities with the association rules concept (Agrawal & Srikant, 1994) and employing their efficient 
algorithms. Second, genetic algorithm may be employed to search the summaries’ space as initiated by 
George & Srikanth (1996a; 1996b). We will not consider these issues because they refer more to techni-
cal scalability and are dealt with in a different perspective than the one assumed in this paper.

Clearly, the protoforms are a powerful conceptual tool because we can formulate many different types 
of linguistic summaries in a uniform way, and devise a uniform and universal way to handle different 
linguistic summaries. Therefore, Kacprzyk & Zadrożny (2002; 2005) have certainly confirmed frequent 
claims by Zadeh and other researchers that protoforms are powerful indeed.

Notice, that all our previous statements about a very high conceptual (perceptional) scalability of 
linguistic data summaries in the form considered here are valid to an even higher extent when protoforms 

Table 1. Classification of linguistic summaries 

Type Given Sought Remarks

1 S Q Simple summaries through ad-hoc queries

2 S B Q Conditional summaries through ad-hoc queries

3 Q Sstructure Svalue Simple value oriented summaries

4 Q Sstructure B Svalue Conditional value oriented summaries

5 Nothing S B Q General fuzy rules
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are involved. Namely, the simplicity and intuitive appeal of the protoforms used in the context of linguistic 
data summaries make them applicable to data sets of any size. Even if the size of a data set increases, the 
very essence of a particular protoform just catches the contents of the data set in a user comprehensible 
form. And, by imposing a general template on the form of a summary, a protoform would presumably 
make the transition to the analysis of data sets of a larger size much smoother because no new general 
pattern of expected results would be necessary. That is why one can argue that our approach of using 
linguistic data summaries for data mining (knowledge discovery) can be viewed as a significant step 
towards the ultimate scalability of data mining (knowledge discovery) tools and techniques in all cases 
when the human user plays a significant role.

sOME FUTURE REsEARCH DIRECTIONs

Among many possible future works related to the concept of a cognitive (perceptional) scalability of data 
mining tools and techniques via linguistic data summaries, the following ones seem important and viable. 
First, the issue of a “comprehensive” scalability of linguistic data summaries can be considered in the 
sense that both the traditionally meant scalability (i.e. the retaining of functionality as the problem size, 
for instance the size of a database, increases) and the cognitive (perceptional) scalability proposed are 
combined. This has to do with many aspects including the development of more effective and efficient 
fuzzy querying tools, and of generation methods of linguistic data summaries, for instance using some 
more advanced evolutionary tools than in George & Srikanth (1996b).

An interesting future research direction would be to extend the arguments of this paper to cover an-
other relevant approach to linguistic data summaries, namely through the use of gradual rules introduced 
by Dubois & Prade (1992). Similarly, an interesting issue would be to analyze yet another, different 
approach to linguistic summarization by Raschia & Mouaddib (2002), maybe even more so by consid-
ering their later papers in which a relation to OLAP has been indicated. The use of another approach to 
the introduction of quantified statements into fuzzy queries due to Bosc, Lietard and Pivert (1995) and 
their later works can be interesting.

Finally, one can also consider in the perspective of cognitive (perceptional) scalability the use of 
various protoforms extending our works Kacprzyk & Zadrożny (2005a; 2005b), in which an approach 
has also been proposed relating the generation of linguistic data summaries to some ways of generat-
ing some fuzzy association rules so that quite effective and efficient (though maybe not fully scalable) 
algorithms for association rule mining can be employed.

CONCLUDINg REMARKs

We have discussed some aspects related to a crucial issue of scalability of data mining (knowledge dis-
covery) tools and techniques by considering some special modern approach in that area, the so called 
linguistic data summaries.

We have argued first that the scalability should be meant in a more sophisticated way than just in 
terms of whether a particular tool and/or technique can retain its intended functionality, effectiveness 
and efficiency as the size of the problem (here the size and volume of data) increases.



233

Linguistic Data Summarization

We have introduced a new concept of a cognitive (perceptional) scalability whose essence is whether 
as the size of the problem increases a particular method will be fully functional, effective and efficient, 
but in the sense of being able to provide intuitively appealing and comprehensible results. We have ar-
gued that the use of natural language in the linguistic summaries provides a high cognitive (perceptual) 
scalability because natural language is the only fully natural means of articulation and communication 
of a human being, and also the use of natural language provides a common language for both the indi-
viduals and groups of different background, technical skills, knowledge, etc. No other communication 
means, as numbers or graphics, exhibit this property to the same extent.

Then, going even further in this direction, we have shown that Zadeh’s protoform as general repre-
sentations of linguistic data summaries, as proposed by Kacprzyk and Zadrożny (2002; 2005a; 2005b) 
amplify even more this advantage leading to what might be called an ultimate cognitive (perceptual) 
scalability.
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Chapter 9

Human Focused Summarizing 
Statistics Using OWA Operators

Ronald R. Yager
Iona College, USA

INTRODUCTION

While many applications make use of the Ordered Weighted Averaging (OWA) operator (Yager, 1988) 
one under-explored application has been in summarizing data sets. We note that formally the OWA op-
erator can be used to model different types of summarizing statistics depending on the choice of OWA 
weighting vector. Summarizing statistics are of particular importance in the field of data management 
and analysis and data mining (Tan, Steinbach & Kumar, 2006; Bouchon-Meunier, Rifqi & Lesot, 2008). 
Among the most well known summarizing statistics are the average, median and mode. While these have 
been extremely useful they don’t completely enable the kinds of sophisticated analysis desired by modern 

AbsTRACT

The ordered weighted averaging (OWA) operator is introduced and the author discusses how it can 
provide a basis for generating summarizing statistics over large data sets. The author further notes 
how different forms of OWA operators, and hence different summarizing statistics, can be induced us-
ing weight-generating functions. The author shows how these weight-generating functions can provide 
a vehicle with which a data analyst can express desired summarizing statistics. Modern data analysis 
requires the use of more human focused summarizing statistics then those classically used. The author’s 
goal here is to develop to ideas to enable a human focused approach to summarizing statistics. Using 
these ideas we can envision a computer aided construction of the weight generating functions based 
upon a combination of graphical and linguistic specifications provided by a data analyst describing his 
desired summarization.
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data analysts. Intelligent data analysis requires the use of concepts appropriate for understanding by hu-
man cognition, which are often expressed in linguistic terms. With the availability of modern computing 
technology allowing rapid processing of vast amounts of data the only thing keeping us from providing 
this capability, is the availability of computable representations of human focused cognitive concepts. 
In this work we take a step in this direction. Our human focused approach to developing summarizing 
statistics makes use of two fundamental developments in computational intelligence. The first is ability 
to specify different OWA weighting vectors in terms of functions called weight-generating functions. 
The second is the ability to represent, with the aid of fuzzy sets, many linguistic and cognitive concepts 
in terms of functions. Here then a data analyst can input a function corresponding to some cognitive 
concept to induce the type of summary statistic they are interested in. Using these ideas we can envision 
a computer aided construction of the weight generating functions based upon a combination of graphical 
and linguistic specifications provided by a data analyst. The important point here is that now we have 
the framework to begin to develop a tools allowing both natural language and graphical input for aiding 
a data analyst in describing to the machine the types of intelligent summaries that may be desired.

Aspects and concerns with issues related to scalability are implicit in the approach discussed here. 
The use of summarization provides an important historically well established means of addressing large 
amounts of data by reducing it to a small number of characterizing statistics that can easily be com-
prehended by human decision makers and analysts (Stigler, 2002). Here we advance this approach by 
introducing methods for user-customizable summarizing statistics. In addition, the formal computational 
methodology used, based on the OWA operator, is computational inexpensive in terms of time as it only 
involves ordering and linear aggregation.

From a more general perspective, concerns about scalability can, in addition to being related to man-
aging large amounts of data, can also be concerned with issues involving the description and modeling 
of complex concepts. By using linguistic terms and simple graphical constructs in coordination with 
the OWA operator we are providing a simple scalable methodology for modeling complex cognitive 
concepts. It is here that the work presented here is suggesting a new direction, cognitive scalability. An 
important benefit of the human use of categorization and concept formation in language is to provide a 
means to simplify the complex environment in which they must function. The approach presented here 
can be seen as part an agenda of bringing this scalability implicit in language to computational machines. 
It is a kind of computing with words.

OWA OPERATORs

The Ordered Weighted Averaging (OWA) operator of dimension n is a mapping F:Rn → R such that 

F(a1, ..., an) = w b
j j

j

n

=
å

1

 where bj is the jthlargest of the ai. The wj are weights such that wj ∈ [0, 1] and 

w
j

j

n

=
å =

1

1 . An alternative representation of the OWA operator can be had by letting dj be the jthsmallest 
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.Letting vj = wn+1-j we 

can express F(a1, ..., an) = 
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vj dj. Here vj is the weight associated with jth smallest of the arguments. 

We shall find it intuitively more satisfying to use this representation of the OWA operator. Collectively 
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we can represent the vj by an n-dimension vector V called the weighting vector. In this vector the weights 
associated with the smaller arguments are at the top. A further notational convenience can be had if we 
let D be the n–dimensional vector whose components are the dj, we call D the ordered argument vector. 
Using this we get F(a1, ..., an) = VTD.

If index is a mapping such that index(j) is the index of the jth smallest of the arguments then dj = 
aindex(j), using this we get F(a1, ..., an) = ∑j vj aindex(j).

The OWA operator is characterized by its weighting vector V. By selecting different V we obtain 
different types of aggregations. Yager (1996) suggested an approach for obtaining the weights using a 
functional characterization. Let f: [0, 1] → [0, 1] satisfy: 1. f(0) = 0, 2. f(1) = 1 and 3. f(x) ≥ f(y) if x > 
y. Using this function we specify the weights for j = 1 to n as

vj = f( j
n

) - f( j
n
-1 ). 

We call f the weight-generating function (wg function).
Using the weight generating function to generate the weights has a number of useful features. One 

property is that we can use a weight generating function to specify weights in a consistent manner for 
aggregations of different cardinalities. Secondly, particularly in the case of large n, a functional speci-
fication is often simpler than direct specification of the weights. Thirdly the use of a visual (graphical) 
characterization of the weight generating function can be helpful in understanding the performance 
and properties of the resulting aggregations. Another benefit is the availability of parameterization. We 
can easily modify the performance of the aggregation by changing the parameters in the function. For 
example the function f(x) = xr provides a valid weight generator function for all r ∈ [0, ∞]. However 
vastly different performances are obtained as we modify r.

Another important benefit is the possibility of associating the function f with some linguistic or 
cognitive concept. This feature is based upon the ability of fuzzy subsets to provide a representation 
of cognitive and linguistic concepts using membership grades in the unit interval (Zadeh, 1983). Here 
then one can linguistically specify some aggregation imperative, which can then be modeled as a fuzzy 
subset. This fuzzy subset can be used to denote a related weight generating function f.

We now provide some definitions and properties associated with these wg functions. First we can 
express the OWA aggregation directly in terms of the wg function

F(a1, ..., an) = 
j

n

=
å

1

(f( j
n

) - f( j
n
-1 )) dj = dn + 

j

n

=

-

å
1

1

f( j
n

)(dj - dj-1) = dn - 
j

n

=

-

å
1

1

f( j
n

)(dj+1 - dj). 

If f1 and f2 are two wg functions we denote f1 ≤ f2 if f1(x) ≤ f2(x) for all x and we say f2 is more rapid. 
From the above we observe the more rapid the weight generating function the smaller the aggregation, 
if f2 ≥ f1 then for all arguments f2(a1, ..., an) ≤ f1(a1, ..., an).

We now introduce some characterizing features associated with a wg function. Consider the three 
weighting vectors shown below:



241

Human Focused Summarizing Statistics Using OWA Operators

V1 = 

0 8

0 2

0

0

0

.

.

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

V2 = 

0

0

0

0 2

0 8

.

.

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

V3 = 

0

1 3

1 3

1 3

0

/

/

/

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

 

These are clearly distinguished from each other by the fact that the first gives preference to the lower 
values in the aggregation, the second gives preference to the higher values and the third makes no distinc-
tion in this respect, it is neutral or unbiased. In the following we introduce a measure that characterizes 
a weight generating function with respect to this feature. If f is a weight generating function we define 

Bias(f) = 1 - f x dx( )
0

1

ò . We note that 0 ≤ Bias(f) ≤ 1 and if f1 ≤ f2 then Bias(f2) ≤ Bias(f1). This character-
izes any OWA aggregation based on the wg functions bias with respect to giving more weight to larger 
or smaller argument values. In particular those f’s with lower values of bias below 0.5, have a tendency 
to give more weight to the smaller arguments in the aggregation while those with higher values of Bias 
given preference to the bigger values in the aggregation. An f with Bias(f) = 0.5 is neutral or unbiased 

in its preference, it give equal consideration to high and low values. We note that f x dx( )
0

1

ò  is the area 
under the curve f(x) thus Bias(f) = 1 - Area(f).

Consider now the two weighting vectors: I. v1 = v2 = v3 = v4 = v5 = 0.2 II. v1 = v2 = v4 = v5 = 0 and v3 
= 1. While they are both unbiased with respect to their handling large and small values they are clearly 
different in terms of their distribution of the weights. In the first case all arguments are treated the same 
while in the second case we only use one argument to determine the aggregated value. Yager (1988) 
suggested an entropy-like measure to capture this feature. If V is an n-dimensional weighting vector 

with components vj then Disp(V) = - v v
j j

j

n

ln é
ëê

ù
ûú

=
å

1

 is called the disparity of V. The characterization a 

wg function f with respect to its disparity is Disp(f) = df
dx

df
dx

dx
0

1

ò
é

ë
ê
ê

ù

û
ú
úln . We call Disp(f) the disparity of 

f. For the types of wg functions of interest here we have Disp(f) ≥ 0.
The smaller Disp(f) the more uniformly the weights are distributed. The case when Disp(f) = 0 cor-

responds to the case where all weights are the same. As Disp(f) gets larger, the less this equality in the 
weights. In the most disparate case, when all the weight is focused on one data element, we get Disp(f) 
= ∝.

MODELINg bAsIC sTATIsTICs WITH OWA OPERATORs

Here we begin to consider the role of OWA operators in providing summarizing statistics. We shall let 
A = <a1, ..., an> and refer to this as our data set. Formally A is a bag (Yager, 1986). We recall a bag is 
a collection of elements, which like a set is indifferent to the ordering of its members but unlike a set 
allows duplication. We shall let F(A) indicate the OWA aggregation of the elements in the data set A, 
F(A) = VTD = ∑j vj dj where dj = aindex(j). By appropriately selecting the weighting vector V be can provide 
many different summarizing statistics.



242

Human Focused Summarizing Statistics Using OWA Operators

If V is selected such that vj = 1/n for all n then F(a1, ..., an) = 1/n ∑j aj, this is the average. The median 
can also be modeled. If n is odd we let vq = 1, where q = (n+1)/2 and vj = 0 for all other j. If n is even 
we let vq = 0.5 and vq+1 = 0.5 where q = n/2.

If V is such that v1 = 1 and vj = 0 for all j ≠ 1 then VTD = Minj[aj], thus we get the minimal element 
in the data set. We shall denote this vector as V∧. If V is such that vn = 1 and vj = 0 for all j ≠ n then VTD 
= Maxj[aj], we get the maximal value in the data set. We shall denote this vector as V∨. More generally 
we can consider the kth representative value. If V is such that vk = 1 and vj = 0 for all j ≠ k and then VTD 
= aindex(k) it selects the kth smallest element in the data set.

A large body of established and as well as new summarizing statistics can be obtained if we begin to 
consider the use of weight generating (wg) functions of the type discussed earlier. We recall with a wg 

function f we have vj = f( j
n

) - f( j
n
-1 ). The average is obtained when f(x) = x. The Min is obtained if f 

is f∧ where f∧(0) = 0 and f∧(x) = 1 for all x ≠ 0. Thus using f∧ we get V∧. The Max summarizing statistics 
is obtained if f is f∨ where f∨(x) = 0 for x ≠ 1 and f∨(1) = 1. Using f∨ we get V∨. For any wg function 
f∨(x) ≤ f(x) ≤ f∧(x) for all x,. This implies that for any data set A and any weight generating function f 
we have F∧(A) ≤ F(A) ≤ F∨(A) where F is the OWA aggregation generated by f. This of supports the 
property that Min(A) ≤ F(A) ≤ Max(A).

An often-used summarizing statistic is the α percentile. We recall that if A is our data set the αth per-
centile is an element contained in A such that approximately α % of the elements in A are less then it and 
(100 - α) % are more then it. This statistic can easily be modeled with the OWA operator. Consider the 
function shown in figure 1 where f(x) = 0 if x < α and f(x) = 1 if x ≥ α. For this function we get that vq 
= 1, for q such that (q-1)/n ≤ α ≤ q/n and vj = 0 for all other j. If we let q = Int(nα), the integer portion of 
nα.we get F(A) = dq = aindex(q). It evaluates to the qth smallest element in A. In particular α portion of the 
arguments are smaller than aindex(q) and (1–α) portion are bigger. Thus we see that this weight generating 
function provides the α percentile element of the data set. We note that the median is a special case of the 
preceding where α = 0.5. The 25% percentile occurs when α = 0.25 and 75% requires α = 0.75. We also 
note that Max and Min are also special cases of this class. For the Max, α = 1 and for the Min, α = 0.

For this class Bias(f) = α. This class of summarizers is the most disparate, it only users one element 
in the aggregation, hence Disp(f) = ∝

The mean where all weights are 1/n is obtained using the wg function f(x) = x. For this function 

the Bias(f) = 1 - x dx
0

1

ò  = 0.5, it is unbiased with respect to high and low values. In addition we have 

Figure 1. Percentile function
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Disp(f) = 0. This is consistent with the fact that the smallest disparity occurs when we equally allocate 
the weights among all the data set elements.

We have shown that the mean, median, the Max, and Min and all percentile summarizing statistics 
can be expressed using this OWA formulation. Let us now look beyond these classical summarizing 
statistics and try to provide some new ones to aid in obtaining more intuitive summaries.

A CLAss OF LINEAR sTATIsTICs

Consider the summarizing statistic associated with the function shown in figure 2. For this function we 

have f(x) = 0 for x ≤ ρ, f(x) = x p
p

-
-1 2

 for ρ < x < 1 -ρ and f(x) = 1 for x ≥ ρ.

This can be seen as a summarizing statistic that discounts the upper and lower ρ portion of the data 
set. It can be seen as a kind of outlier discounting aggregation. If n is the cardinality of our data set and 

nρ is an integer then: vj = 0 for j = 1 to nρ, vj =
1 1

1 2n p( )-
 for j = nρ + 1 to n - nρ and vj = 0 for j = n - nρ 

+ 1 to n. This gives us F(A) = 1 1
1 2 1

1

n p
d

j
j np

n p

( )

( )

- = +

-

å
If np is not an integer we get a slight modification. In the following we let Int(nρ) denote the integer 

portion of nρ. If nρ ≠ Int(nρ) and Δ = nρ - Int(nρ) then we get

vj = 0 for j = 1 to Int(nρ) 

vj = 1 1
1 2n p( )-

 (1 - Δ) for j = Int(nρ) + 1 

vj = 1 1
1 2n p( )-

 for j = Int(nρ)+ 2 to n - Int(nρ) - 1 

vj = 
1 1

1 2n p( )-
 (1 - Δ) for j = n - Int(nρ) - 1 

Figure 2. Discounting type weight function
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vj = 0 for j = n - Int(nρ) + 1 to n 

We see that only a slight modification has occurred in two weights. In the following we shall assume, 
unless it hides a substantial issue, that we always have an integer when we perform operations like nρ. 
In real application with large data a small change in ρ can always assure this.

Essentially here the data in the middle are averaged using weights 1/n * Slope where 1/(1-2ρ) is the 
Slope. For this wg function Bias(f) = 0.5 for all ρ. This is a neutral type aggregation with respect to its 
bias. It can also be shown that Disp(f) = -ln[1 - 2ρ]. We see the disparity is dependent upon ρ, as ρ de-
creases the disparity decreases. As ρ increases the disparity increases because more elements are being 
eliminated from the summarization process and more of the weight is being focused on the remaining 
elements. We note that since 1/(1-2ρ) is the slope we have Disp(f) = - ln(1 - 2ρ) = ln(Slope), it is the 
log of the slope.

While the preceding statistic can be viewed as an outlier discounting type of statistic we note that 
as ρ increases and approaches its largest allowable value, ρ = 0.5 we obtain the median statistic. Thus 
we see that this provides a family of unbiased statistics running between the simple average and the 
median. The difference being the number of data elements discounted. The median discounts all except 
the middle one. It is the most disparate member of this family. We see that for median with ρ = 0.5 we 
have Disp(f) = ∞ .

Essentially with this wg function, assuming nρ is an integer, we average the middle elements with 

weight 1
n

 * 1
1 2- p

 where 1
1 2- p

 is the slope. We can express this as

Midρ(A) = 1 1
1 2n p( )-

 d
j

j np

n p

= +

-

å
1

1( )

 

If ρ = 0 we get the mean and if ρ = 0.5 we get the median
In figure 3 we show a slightly more general class of weight generating functions.

Here f(x) = 0 for 0 ≤ x ≤ a, f(x) = x a
b a
-
-

 for a ≤ x ≤ b and f(x) = 1 for x ≥ b. This wg function generates 

an unbalanced discounting. Assuming integers for na and nb we get: vj = 0 for j = 1 to na, vj = 1
n

 1
b a-

 

for j = na + 1 to nb and vj = 0 for j = nb + 1 to n. In this case our statistic is F(A) = 1
n

 
1

1b a
d

j
j na

nb

- = +
å . 

Figure 3. Unbalanced Discounting
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Here Bias(f) = 1
2

 (b + a) and Disp(f) = -ln(b - a). Again we see Disp(f) = ln(Slope). The steeper the slope 

the more the disparity. We note that if we define Sum(i, k) = d
j

j

k

=
å

1

 then we see this statistic is F(A) = 
1
1 1( )k - +

 Sum(i, k). It is a linear statistic.

Let us look at some specific examples of summarizing statistics of the class corresponding to those 
in figure 3. We call these linear type summaries. Consider the summary based upon the weight generat-
ing function shown in figure 4 where a = 0 and b = ρ. This corresponds to a summary which takes the 

average of lowest ρ % of data values. Here vj = 1
np

 for j = 1 to nρ and vj = 0 for all others. This has a 

bias of 1
2

 ρ and disparity of -ln(ρ).

A closely related summarizing statistic is captured using the wg function shown in figure 5. This 
has a = 1 - ρ and b = 1. This can be seen as corresponding to a statistic that takes the average of the ρ 
percent of the largest data values. Here our weight is vj = 1/(nρ) for the bigger values and zero for the 
others. It has a bias of 1 - 0.5 ρ, the complement of the preceding wg function. Its disparity is the same 
as the preceding -ln(ρ).

An interesting example of summarizing statistic is shown in figure 6. Here we are discounting the 
upper ρ portion in calculating the average. This can have particular usefulness in situations in which we 

Figure 4. Lower ρ percent

Figure 5. Upper ρ percent
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are trying to obtain the average of some non-negative quantity such as salary or gross income. In these 
situations it is often the case, especially in financial type data, that there exists a small portion of people 
whose incomes are so astronomical that including them in a summary calculation greatly distorts the 
statistic. The use of a statistic such as that shown in Figure 6 provides for a discounting of these outli-
ers. For example, if the government is interested in summarizing the effects of some policy on salary or 
income it may find this a useful statistic.

A gENERAL OWA APPROACH TO sUMMARIZINg sTATIsTICs

More generally we can use the connection between a wg function and the resulting summarizing statistic 
to allow a user to express there desired statistic in terms of a function f. We note that visual or graphical 
descriptions are particularly appropriate here. In support of this type of approach let us describe some 
features of the wg function and relate them to the properties of the resulting summarizing statistic. As 
we have indicated a wg function must be a mapping from the unit interval into the unit interval. It must 
be monotonic and satisfy f(0) = 0 and f(1) = 1. Figure 7 generically represents such a function.

A correspondence holds between the abscissa, x axis, and the ordered position of the data. In particular 
low x’s correspond to the smaller data values in the data set and higher x’s correspond to the bigger data 
values in the data set. The form of f for the low values of x describe how we are going to handle the 
smaller data set values while the form of f for high values of x describe how we handle the larger data 

Figure 6. Discounting top ρ portion

Figure 7. Generic Weight generating function
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values. More specifically the change in ordinate values, the derivative of f(x), tells us how we allocate 
the weight. Thus if [x1, x2] is a range on the x scale the difference f(x2) – f(x1) indicates what portion of 
the total weight of one will be assigned to the data set elements falling between the nx1 and nx2 smallest. 

If x1 n = k1 and x2 n = k2 then v
j

j k

k

=
å

1

2

 = f(x2) - f(x1). In particular we see that flat sections of f correspond 

to ranges of data elements contributing little to summary, while steep portions of f correspond to ranges 
getting much of the weight.

Using figure 8 as an illustration we see that much of the weight would be allocated to data elements 
dj where j lies between nα1 and nα2. Since f(x) is relatively flat in the range for x = 0 to α1 little of the 
weights would be assigned to the data elements dj where j lies between 1 and nα1 and similarly the flat-
ness of f(x) in the interval of α2 to 1 would result in little of the weight being assigned to the dj when j 
is in the range nα2 to n.

Using these ideas we can envision a computer aided construction of the weight generating function 
based upon a combination of graphical and linguistic specifications provided by a data analyst. Here 
then an analyst can input the specifications of a wg function which can induce the type of summary 
they are interested in. Once having obtained a formulation for f we use these to obtain the weights. The 
important point here being that we now have the understanding to begin to develop a graphical language 
for aiding a data analyst in describing to the machine various sophisticated types of summaries that may 
be desired

Actually once having formulated f it may be more useful to try to best match this f with a wg func-
tion from a set of available well defined functional forms. This makes it easily to actually generate the 
weights. Following we shall describe some useful classes of nonlinear wg functions.

Consider the class of functions f(x) = xr for r ∈ [0, ∞]. This has three special cases: when r → 0 we 
get f(x) → f∧(x) the Min statistic, when r = 1 we get that f(x) = x the average and when r → ∞ we get 
f(x) → f∨(x) the Max statistic. The essential feature of this class of wg functions is that for r < 1 we al-
locate more of the weights to the smaller valued data elements while for r > 1, we allocate more of the 
weights to the larger valued elements in the data set. As r goes to its extremes of 0 and ∞ the allocation 
becomes more disparate ending in the Min when r = 0 and the Max when r → ∝.

For this class of wg functions vj = ( )
j
n

r  - ( )
j
n

r-1  = 
j j

n

r r

r

- -( )1
. The Bias of this wg function is 

Bias(f) = r/(r + 1) and Disp(f) = log(r) + r
r
-1 .

Figure 8. Illustrative weight generating function
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This class of wg functions can be further generalized if we consider the wg functions defined by: f(x) 

= 0 for 0 ≤ x ≤ a, f(x) = ( x a
b a
-
-

)r for a ≤ x ≤ b and f(x) = 1 for b ≤ x ≤ 1 Here we have three parameters: 

a, b, and r. When r = 1 we get the a linear form f(x) = x a
b a
-
-

. When r → 0 we get the a percentile, f(x) 

= 0 for x < a and f(x) = 1 for x ≥ a while for r → ∞ we get the b percentile, f(x) = 0 for x < b and f(x) 
= 1 for x ≥ b.

WEIgHTED sUMMARIZINg sTATIsTICs

In (Yager, 1998) we discussed importance weighted OWA aggregations denoted WOWA aggregation. 
Here we shall consider their use in the construction of weighted summarizing statistics. Let A = (a1, 
..., an) be a data set and let ui ≥ 0 be the importance associated with the data point ai. Let f be a weight 
generating function guiding the aggregation. Again we let index(i) be the index of the ith smallest data 

value. We denote T(j) = u
index i

i

j

( )
=
å

1

, the sum of the importances of the j smallest data points. We denote 

T = T(n), it is the sum of all the importance weights. By default we let T(0) = 0. We now let zj = f(T j
T
( ) ) 

- f(T j
T

( )-1 ) and define the WOWA aggregation as

Ff((ui, ai)) = z a
j index j

j

n

( )
=
å

1

. 

We can use an alternative notation. Let u
u

Tj

j=  and Sj = 
T

T
j  = 

1

11T
u u

index i index i
i

j

i

j

( ) ( )
=

=-
åå . Using 

this we have zj = f(Sj) - f(Sj - 1).
In the case where f(x) = x we have f(Sj) = Sj and zj = Sj - Sj-1 = â index(j) thus Ff(ui, ai) = 

u a u a
index j index j i i

i

n

j

n

( ) ( )=
-=
åå

11

. This is the ordinary weighted average.

Interesting uses of this WOWA aggregation can be made in data analysis. Assume we have a collec-
tion of data about a group of people containing their salary and age. Assume we want to calculate the 
average salary of the young people. Here we can define the concept young as a fuzzy subset, young. We 
can then calculate for each person the degree to which they are young and use these as our importance 
in the WOWA summarization. Thus if (agei, salaryi) is the information available about the ith person then 

ui = young(agei), the membership grade of agei in young. We then can use u salary
i i

i

n

=
å

1

 to give us the 
average salary of the young people.

A more sophisticated statistic associated with this data set is the following. Assume we want to calculate 
“the average salary of the ρ portion of the young people with the lowest salary”. To obtain this we use the 

wg function f shown in figure 4. Here f(x) = 1
r

 x for 0 ≤ x ≤ ρ and f(x) = 1 for x > ρ. Our weights for the 

WOWA aggregation are obtained from ẑj = f(Sj) - f(Sj-1). Without loss of generality we assume there is a 

q such that Sq = u
index x

i

q

( )
=
å

1

 = ρ hence 1
r

 Sq = 1. In this case aindex(i) for i = 1 to q constitute the smallest 
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data points with ρ portion of the importance weight. Here we get zj = 
1
r

 û
index j( )

 for j = 1 to q and zj = 

0 for j > q. Using this we get the desired summary as Ff((ui, ai)) = z a u a
i index j

j

n

index j index j
j

q

( ) ( ) ( )
=

= =
å å1

1 1r
.

In the preceding we have considered the situation in which the weights are obtained as a result of 
the satisfaction of some condition by the object. Thus the WOWA provided some kind of conditioned 
aggregation. We have looked at the asituation in which the property on which we are conditioning is 
different from the actual value being aggregated. Some interesting statistics can be obtained if we allow 
the weight to be related to the value being aggregated. Let us look at some of these.

Assume we have a data set A = {a1, ..., an}of salaries. Assume we desire to calculate the average of 
the salaries over the value b. In this case we can assign weights such that ui = 0 if ai ≤ b and ui = 1 if ai 
> b and then use a WOWA aggregation. If we want to calculate the average of the salaries greater than 
50% of the maximum we let a* = Maxj[aj] and then define uj = 0 if aj ≤ 0.5 a* and uj = 1 if aj > 0.5 a*.

Another example is to obtain the average salary of the people with high salaries. Here we would 
define a fuzzy subset H corresponding to the concept high salary and the let ui be the membership de-
gree of ai in H, ui = H(ai). Furthermore we note the concept “high salary” can be absolute or relative. 
That is, H can be defined based upon some independent idea of what we mean by high salary or it can 
be dependent upon the set A.

MODELINg THE MODE

We recall the mode corresponds to the value with the most replications in a data set. Here we provide a 
OWA representation of the mode as well as some generalizations of it. In order to capture the mode we 
must describe the Induced OWA (IOWA) operator (Yager & Filev, 1999) and the concept of similar-
ity. We note the power average introduced in Yager (2001) provides a data aggregation that manifests 
features of average and the mode.

The IOWA operator is an extension of the OWA that operates on pairs. Assume (ai, hi) are a collec-
tion of n data point and let V be an n-dimensional OWA vector, vj ∈ [0, 1] and ∑j vj = 1. Let h–index 
be an index function such that h–index(j) is the index of the jth smallest of the hi. We now define the h 
Induced OWA aggregation as I–F((ai, hi)) = ∑j v ah–index(j). Thus in the OWA operator while we aggrega-
tor the ai we order them by their h value. In the light of this for the pair (ai, hi) we call ai the argument 
or data variable and hi the order inducing value.

We define similarity as a function that takes any pair of data points into the unit interval, Sim(ai, 
aj) ∈ [0, 1]. The larger Sim(ai, aj) the more similar the data points. While the definition of similarity is 
generally context dependent we require some properties on Sim. First it must be commutative Sim(ai, 
aj) = Sim(aj, ai). Secondly it must be reflexive Sim(ai, aj) = 1 if ai = aj. However, we don’t require that 
ai = aj for Sim(ai, aj) = 1, two elements can be maximally similar even if they are not equal. We also 
require that if a1 > a2 > a3 then Sim(a1, a2) ≥ Sim(a1, a3), this is a kind of transitivity. There is an inverse 
relationship between similarity and the distance metric, Dist(a, b) = a-b. In particular the preceding is 
equivalent to requiring if Dist(a, b) ≥ Dist(a, c) then Sim(a, c) ≥ Sim(a, b). However we are not neces-
sarily requiring Dist(a, b) ≥ Dist(c, d) ⇒ Sim(a, b) ≤ Sim(c, d). The lack of this condition allows us, for 
some purposes, to consider salaries of $10 million or $10.5 million to be more similar then salaries of 
$10,000 and $100,000.
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We now introduce some prototypical similarity relations. A prototypical binary similarity relation 
is defined by Sim(a, b) = 1 if a-b ≤ Δ and Sim(a, b) = 0 if a-b > Δ. We note that when Δ = 0 we get S(a, 
b) = 1 if a = b and S(a, b) = 0 if a ≠ b, we denote this relation, as SIM*. SIM* is the most strict in the 
sense that if Sim is any similarity relation then Sim(x, y) ≥ SIM*(x, y). Another useful similarity rela-

tion is Sim(a, b) = e
a b

-
-( )2

2m . Here μ is a parameter such that the larger μ the more generous the similarity 
measure. In the special case when our data points are restricted to the unit interval we can use Sim(a, 
b) = 1 - a-b.

We shall now introduce a new class of summarizing statistics based upon the idea of similarity and 
the IOWA aggregation operator. Assume we have a data set A= {a1, ..., an} and let Sim be a similarity 

relation on A. Let S(ai) = Sim a a
i j

j

n

( , )
=
å

1

 be the total of the similarities for data point ai. We call this the 
similarity score of ai.

To obtain our new class of summarizing statistics we use the collection of pairs (ai, hi) where ai is a 
data point and hi = S(ai) is its similarity score. Consider the IOWA aggregation F((ai, hi)) where ai is the 
argument value and hi is the order inducing value and V is an OWA weighting vector. In this case F((ai, 

hi)) = v a
j s index j

j

n

-
=
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 where s-index(j) is the index of the data point with the jth smallest similarity. So 

here we are ordering the data by their similarity score and then combining the data values using the 
vector V. Here F((ai, hi)) is going to be our summarizing statistic.

Let us now look at some special cases of this aggregation and see what kinds of summarizing statis-
tics we get. We note that in formulating this summarizing statistic we have two degrees of freedom, the 
weighting vector V and the similarity measure. By appropriately selecting these we can get different 
summarizing statistics.

Initially we use the strict binary measure, SIM*. In this case we shall denote the similarity score as of 

ai as S*. Choosing V such that vn = 1 and vj = 0 for all j ≠ n we get â = v a
j s index j

j

n

* ( )-
=
å

1

 = a
S index n* ( )-

. Here 

we get the data point with the largest similarity score. However since we are using SIM* this is the data 
value which has the most number of replications, it is the mode. Thus using this choice of Sim and V 
we have obtained a representation of the mode.

Let us now take advantage of the generality of this formulation and consider another example of 
weighting vector V. Consider the vector V where v1 = 1 and vj = 0 for j ≠ n. In this case â = a

S index* ( )- 1
. 

Here we get the data point with the smallest similarity score. From our definition of SIM* we see that 
a

S index* ( )- 1
 is the data value having the least number of replications. Thus whereas the mode, a

S index n* ( )-
, 

can be seen being a kind of most typical value, this new statistic, a
S index* ( )- 1

, can be seen as a most atypi-
cal or unusual value in the data set.

We have seen that by selecting V we are able to get significant extreme elements from the data set. 
By selecting V using f∧ gives us the most typical element in the set while selecting V using f∨ gives us 
the most atypical element in the data set. We note that in the case of the ordinary OWA aggregation, 
where we are just aggregating the data points without the order inducing variable, using the weighting 
vectors generated from f∧ and f∨ also gives us extreme elements from the data set; however, the diversity 
is based of the value, we get the largest and smallest valued elements in the data set. Here our diversity 
is with respect to being the most typical and least typical. Thus we see that the use of similarity along 
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with the IOWA aggregation can provide us with tools which can help us understand a data set along 
another dimension.

We can consider the use of other weight vectors or wg functions f with the similarity induc-
ing ordering. If we use f(x) = x we get V such that vj = 1/n. In this case our statistic is F((ai, hi)) = 

v a
n

a
j s index j

j

n

i
i

n

* ( )-
= =
å å=

1 1

1 , the ordinary average.

Consider now using the wg function f shown in figure 9 in the aggregation F((ai, hi)). For small ρ we 
can be seen to be removing the ρn most atypical values from the aggregation. So here we are taking an 
average that eliminates the atypical values. This can be seen as eliminating “outliers”, where the idea of 
outlier is not based on the value but is based on the number of replications. The less they’re replicated 
the more they are outliers or atypical. On the other hand if ρ is big, close to one, then we see that we 
essentially obtain an average of the most typical values in the data set.

Consider the wg function shown in figure 4 in the aggregation F((ai, hi)). Here, for small ρ, we are 
taking an average of the atypical values. On the other hand as ρ increases we are taking an average which 
eliminates the most typical elements. This may be an interesting statistic.

Consider now using the wg function shown in figure 1 in the aggregation This generates a statistic, 
normally a hard one, which calculates the data point for which α portion of the data points are less typi-
cal, more unique, while 1 - α portion of the data have values that are more typical . For α = 0.5 we find 
the data value that lies in the middle with respect to its typicality –atypicality.

Figure 9. ρ Elimination

Figure 10. Histogram of Data Set
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An understanding of the approaches developed and the role of the wg function f can be had if we 
consider the histogram representation of a data set depicted in figure 10. In this figure the abscissa axis 
corresponds to the data point values and the ordinate axis corresponds to the count of points having 
that value. In our original OWA method, F((ai)), we take an aggregation of the data values in which the 
OWA weights are determined by the wg f(x) so that the form of f(x) in the low range of x determines the 
weights for the smaller data values and the form of f(x) in the high range of x determines the weights 
for the bigger data values. In the case where we use the similarity and the induced OWA, F((ai, hi)), 
while we are still taking aggregation of the data values the role of the wg function is different. Here the 
OWA weights are determined by the wg f(x) so that the form of f(x) in the low range of x determines the 
weights for the data values with the smaller count and the form of f(x) in the high range of x determines 
the weights for the data values with the larger counts. With this understanding we can construct the wg 
function to generate desired summarizing statistics. In addition we note that the importance weight ui 
associated with a data point can be seen as affecting the count. Instead of counting a data value as one 
we count it by its importance weight.

CONCLUsION

In the preceding we have investigated the use of the OWA operator as a basis for providing summarizing 
statistics. We showed the centrality of the weight generating function in inducing the various statistics 
and begun to get an understanding of the relationship between the wg functions and the resulting statistic. 
We envision the use of fuzzy methods to enrich the capability of this approach. Specifically we see fuzzy 
logic as providing a bridge for translating linguistically expressed requirements for data summarizing 
into mathematical functional forms which can then be used as weight generating functions. We feel this 
work is an early step to the development of tools enabling the kind of man-machine cooperation enabling 
the human focused summarizing statistics.
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INTRODUCTION

It may not even be an exaggeration to say that the tasks of frequent item set mining and association rule 
induction started the popular research area of data mining. At least, however, these tasks have a strong 
and long-standing tradition in data mining and knowledge discovery in databases and account for a huge 
number of publications in data mining conferences and journals. The enormous research efforts devoted 
to these tasks have led to a variety of sophisticated and efficient algorithms to find frequent item sets. 
Among the best-known are Apriori (Agrawal and Srikant 1994, Agrawal et al. 1996), Eclat (Zaki et al. 
1997) and FP-growth (Han et al. 2000).

AbsTRACT

In this chapter the authors introduce SaM, a split and merge algorithm for frequent item set mining. Its 
core advantages are its extremely simple data structure and processing scheme, which not only make 
it very easy to implement, but also fairly easy to execute on external storage, thus rendering it a highly 
useful method if the data to mine cannot be loaded into main memory. Furthermore, the authors present 
extensions of this algorithm, which allow for approximate or “fuzzy” frequent item set mining in the 
sense that missing items can be inserted into transactions with a user-specified penalty. Finally, they 
present experiments comparing their new method with classical frequent item set mining algorithms (like 
Apriori, Eclat and FP-growth) and with the approximate frequent item set mining version of RElim (an 
algorithm the authors proposed in an earlier paper and improved in the meantime).

DOI: 10.4018/978-1-60566-858-1.ch010
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Nevertheless, there is still room for improvement: while Eclat, which is the simplest of the men-
tioned algorithms, can be fairly slow on some data sets (compared to other algorithms), FP-growth, 
which is usually the fastest algorithm, employs a sophisticated data structure and requires to load the 
transaction data to mine into main memory. Hence a simpler processing scheme, which still maintains 
efficiency, is desirable. Other lines of improvement include filtering the found frequent item sets and 
association rules (see, for example, [Webb and Zhang 2005, Webb 2007]), identifying temporal changes 
in discovered patterns (see, for example, [Böttcher et al. 2005, Böttcher et al. 2007]), and discovering 
fault-tolerant or approximate frequent item sets (see, for example, [Cheng et al. 2001, Pei et al. 2001, 
Wang et al. 2005]).

In this paper we introduce SaM, a split and merge algorithm for frequent item set mining. Its core 
advantages are its extremely simple data structure and processing scheme, which not only make it very 
easy to implement, but also fairly easy to execute on external storage, thus rendering it a highly useful 
method if the data to mine cannot be loaded into main memory. Furthermore, we present extensions of 
this algorithm, which allow for approximate or ”fuzzy” frequent item set mining in the sense that miss-
ing items can be inserted into transactions with a user-specified penalty. We developed this algorithm 
as a simplification of the (already very simple) RElim algorithm (Borgelt 2005b), which we improved 
in the meantime.

The rest of this paper is structured as follows: first we briefly review the fundamentals of frequent 
item set mining, and especially the basic divide-and-conquer scheme underlying many frequent item set 
mining algorithms. Secondly, we present our SaM (Split and Merge) algorithm for exact frequent item 
set mining and compare it experimentally to classic frequent item set mining algorithms like Apriori, 
Eclat, and FP-growth, but also our own RElim algorithm (Borgelt 2005b). In the next step we review 
approximate or “fuzzy” frequent item set mining in the sense that missing items can be inserted into 
transactions with a user-specified penalty. Based on this review we present two extensions of our SaM 
algorithm that allow to perform such approximate frequent item set mining with unlimited and limited 
item insertions, respectively. These extensions are then experimentally compared to the corresponding 
extensions of the RElim algorithm (Wang et al 2005). Finally, we draw conclusions from our discussion 
and experiments.

FREQUENT ITEM sET MININg

Frequent item set mining is a data analysis method that was originally developed for market basket 
analysis. It aims at finding regularities in the shopping behavior of the customers of supermarkets, mail-
order companies and online shops. In particular, it tries to identify sets of products that are frequently 
bought together. Once identified, such sets of associated products may be exploited to optimize the 
organization of the products on the shelves of a supermarket or on the pages of a mail-order catalog or 
web shop, may be used to suggest other products a customer could be interested in, or may give hints 
which products may conveniently be bundled.

Formally, the task of frequent item set mining can be described as follows: we are given a set B of 
items, called the item base, and a database T of transactions. Each item represents a product, and the 
item base represents the set of all products offered by a store. The term item set refers to any subset of 
the item base B. Each transaction is an item set and represents a set of products that has been bought by 
an actual customer. Since two or even more customers may have bought the exact same set of products, 
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the total of all transactions must be represented as a vector, a bag or a multiset1, since in a simple set 
each transaction could occur at most once. Note that the item base B is usually not given explicitly, but 
only implicitly as the union of all transactions.

The support sT(I) of an item set I Í  B is the number of transactions in the database T it is contained 
in. Given a user-specified minimum support smin Î  IN (an integer number), an item set I is called fre-
quent in T iff sT(I) ≥ smin. The goal of frequent item set mining is to identify all item sets I Í  B that 
are frequent in a given transaction database T. Note that the task of frequent item set mining may also 
be defined with a relative minimum support (a number in the real interval [0,1]), which is the fraction 
of transactions in T that must contain an item set I in order to make I frequent. However, this alternative 
definition is obviously equivalent.

A standard approach to find all frequent item sets w.r.t. a given database T and support threshold 
smin, which is adopted by basically all frequent item set mining algorithms (except those of the Apriori 
family), is a depth-first search in the subset lattice of the item base B. Viewed properly, this approach 
can be interpreted as a simple divide-and-conquer scheme. For some chosen item i, the problem to find 
all frequent item sets is split into two subproblems: (1) find all frequent item sets containing the item 
i and (2) find all frequent item sets not containing the item i. Each subproblem is then further divided 
based on another item j: find all frequent item sets containing (1.1) both items i and j, (1.2) item i, but 
not j, (2.1) item j, but not i, (2.2) neither item i nor j etc. In this way all possible item sets are eventually 
considered.

All subproblems that occur in this divide-and-conquer recursion can be defined by a conditional 
transaction database and a prefix. The prefix is a set of items that has to be added to all frequent item sets 
that are discovered in the conditional database. Formally, all subproblems are tuples S = (C, P), where C 
is a conditional database and P Í  B is a prefix. The initial problem, with which the recursion is started, 
is S = (T, Ø), where T is the given transaction database to mine and the prefix is empty. A subproblem 
S0 = (C0, P0) is processed as follows: Choose an item i Î  B0, where B0 is the set of items occurring in 
C0. This choice is arbitrary, but usually follows some predefined order of the items. If s i s

C0
( )

min
³ , then 

report the item set P0 È  {i} as frequent with the support s i
C0

( ) , and form the subproblem S1 = (C1, P1) 
with P1 = P0 È  {i}. The conditional database C1 comprises all transactions in C0 that contain the item 
i, but with the item i removed. This also implies that transactions that contain no other item than i are 
entirely removed: no empty transactions are ever kept. If C1 is not empty, S1 is processed recursively. In 
any case (that is, regardless of whether s i s

C0
( )

min
³  or not), form the subproblem S2 = (C2, P2), where 

P2 = P0 and the conditional database C2 comprises all transactions in C0 (including those that do not 
contain the item i), but again with the item i removed. If C2 is not empty, S2 is processed recursively.

Eclat, FP-growth, RElim and several other frequent item set mining algorithms all follow this basic 
recursive processing scheme. They differ mainly in how they represent the conditional transaction da-
tabases and thus in how they do the support counting. There are basically two fundamental approaches, 
namely horizontal and vertical representations. In a horizontal representation, the database is stored as 
a list (or array) of transactions, each of which is a list (or array) of the items contained in it. In a vertical 
representation, a database is represented by first referring with a list (or array) to the different items. 
For each item a list of transaction identifiers is stored, which indicate the transactions that contain the 
item.

However, this distinction is not pure, since there are many algorithms that use a combination of the 
two forms of representing a database. For example, while Eclat uses a purely vertical representation, 
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FP-growth combines in its FP-tree structure a vertical representation (links between branches) and a 
(compressed) horizontal representation (prefix tree of transactions). RElim uses basically a horizontal 
representation, but groups transactions w.r.t. their leading item, which is, at least partially, a vertical 
representation. The SaM algorithm presented below is, to the best of our knowledge, the first frequent 
item set mining algorithm that is based on the general processing scheme outlined above and uses a 
purely horizontal representation.2

The basic processing scheme can easily be improved with so-called perfect extension pruning, which 
relies on the following idea: given an item set I, an item i Ï  I is called a perfect extension of I if I and 
I È  {i} have the same support, that is, if i is contained in all transactions containing I. Perfect exten-
sions have the following properties: (1) if the item i is a perfect extension of an item set I, then it is also 
a perfect extension of any item set I Í  J as long as i Ï  J and (2) if I is a frequent item set and K is the 
set of all perfect extensions of I, then all sets I È  J with J Î  2K (where 2K denotes the power set of K) 
are also frequent and have the same support as I.

These properties can be exploited by collecting in the recursion not only prefix items, but also, in a 
third element of a subproblem description, perfect extension items. Once identified, perfect extension 
items are no longer processed in the recursion, but are only used to generate all supersets of the prefix that 
have the same support. Depending on the data set, this can lead to a considerable acceleration. It should 
be clear that this optimization can, in principle, be applied in all frequent item set mining algorithms.3

A sIMPLE sPLIT AND MERgE ALgORITHM

The SaM (Split and Merge) algorithm presented in this paper can be seen as a simplification of the 
already fairly simple RElim (Recursive Elimination) algorithm, which we proposed in (Borgelt 2005b) 
and extended to approximate or “fuzzy” frequent item set mining in (Wang et al. 2005). While RElim 
represents a (conditional) database by storing one transaction list for each item, the split and merge 
algorithm presented here uses only a single transaction list, stored as an array. This array is processed 
with a simple split and merge scheme, which computes a conditional database, processes this conditional 
database recursively, and eliminates the split item from the original (conditional) database.

SaM preprocesses a given transaction database in a way that is very similar to the preprocessing used 
by many other frequent item set mining algorithms. The steps are illustrated in Figure 1 for a simple 
example transaction database. Step 1 shows the transaction database in its original form. In step 2 the 
frequencies of individual items are determined from this input in order to be able to discard infrequent 
items immediately. If we assume a minimum support of three transactions for our example, there are 
no infrequent items, so all items are kept. In step 3 the (frequent) items in each transaction are sorted 
according to their frequency in the transaction database, since it is well known that processing the items 
in the order of increasing frequency usually leads to the shortest execution times. In step 4 the transac-
tions are sorted lexicographically into descending order, with item comparisons again being decided by 
the item frequencies, although here the item with the higher frequency precedes the item with the lower 
frequency. (This order, which may appear strange at first sight, is chosen to take care of the fact that in 
a lexicographic order a word is preceded by any of its prefixes.) In step 5 the data structure on which 
SaM operates is built by combining equal transactions and setting up an array, in which each element 
consists of two fields: an occurrence counter and a pointer to the sorted transaction. This data structure 
is then processed recursively to find the frequent item sets.
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The basic operations of the recursive processing, which follows the general depth-first/divide-
and-conquer scheme reviewed above, are illustrated in Figure 2. In the split step (see the left part of 
Figure 2) the given array is split w.r.t. the leading item of the first transaction (item e in our example): 
all array elements referring to transactions starting with this item are transferred to a new array. In this 
process the pointer (in)to the transaction is advanced by one item, so that the common leading item is 
“removed” from all transactions. Obviously, this new array represents the conditional database of the 
first subproblem (see the description of the general depth-first/ divide-and-conquer scheme), which is 
then processed recursively to find all frequent items sets containing the split item (provided this item is 
frequent – otherwise the recursion is skipped as it cannot yield any frequent item sets).

The conditional database for frequent item sets not containing this item (needed for the second sub-
problem – see the description of the general depth-first/divide-and-conquer scheme) is obtained with 
a simple merge step (see the right part of Figure 2). The created new array and the rest of the original 
array (which refers to all transactions starting with a different item) are combined with a procedure that 
is almost identical to one phase of the well-known mergesort algorithm. Since both arrays are obviously 
lexicographically sorted, one merging traversal suffices to create a lexicographically sorted merged array. 

Figure 1. The example database: original form (1), item frequencies (2), transactions with sorted items 
(3), lexicographically sorted transactions (4), and the used data structure (5)

Figure 2. The basic operations of the SaM algorithm: split (left) and merge (right)
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The only difference to a mergesort phase is that equal transactions (or transaction suffixes) are combined. 
That is, there is always just one instance of each transaction (suffix), while its number of occurrences 
is kept in the occurrence counter. In our example this results in the merged array having two elements 
less than the input arrays together: the transaction (suffixes) c b d and b d, which occur in both arrays, 
are combined and their occurrence counters are increased to 2.

Note that in both the split and the merge step only the array elements (that is, the occurrence counter 
and the (advanced) transaction pointer) are copied to a new array. There is no need to copy the transac-
tions themselves (that is, the item arrays), since no changes are ever made to them. (In the split step the 
leading item is not actually removed, but only skipped by advancing the pointer (in)to the transaction.) 
Hence it suffices to have one global copy of all transactions, which is merely referred to in different 
ways from different arrays used in the processing.

Note also that the merge result may be created in the array that represented the original (conditional) 
database, since its front elements have been cleared in the split step. In addition, the array for the split 
database can be reused after the recursion for the split w.r.t. the next item. As a consequence, each recur-
sion step, which expands the prefix of the conditional database, only needs to allocate one new array, 
with a size that is limited to the size of the input array of that recursion step. This makes the algorithm 
not only simple in structure, but also very efficient in terms of memory consumption.

Finally, note that the fact that only a simple array is used as the underlying data structure, the algo-
rithm can fairly easily be implemented to work on external storage or a (relational) database system. 
There is, in principle, no need to load the transactions into main memory and even the array may easily 
be stored as a simple (relational) table. The split operation can then be implemented as an SQL select 
statement. The merge operation is very similar to a join, even though it may require a more sophisticated 
comparison of transactions (depending on how the transactions are actually stored).

Pseudo-code of the recursive procedure is shown in Figure 3. As can be seen, a single page of code is 
sufficient to describe the whole recursion in detail. The actual C code we developed is even shorter than 
this pseudo-code, despite the fact that the C code contains additional functionality (like, for example, 
perfect extension pruning – see the general description of frequent pattern mining), because certain 
operations needed in this algorithm can be written very concisely in C (especially when using pointer 
arithmetic to process arrays).

ExACT FREQUENT ITEM sET MININg ExPERIMENTs

In order to evaluate the proposed SaM algorithm, we ran it against our own implementations of Apriori 
(Borgelt 2003), Eclat (Borgelt 2003), FP-growth (Borgelt 2005a), and RElim (Borgelt 2005b), all of 
which rely on the same code to read the transaction database and to report found frequent item sets. 
Of course, using our own implementations has the disadvantage that not all of these implementations 
reach the speed of the fastest known implementations.4 However, it has the important advantage that 
any differences in execution time can only be attributed to differences in the actual processing scheme, 
as all other parts of the programs are identical (loading transactions, reporting item sets). Therefore we 
believe that the measured execution times are still reasonably expressive and allow us to compare the 
different approaches in a reliable manner.

We ran experiments on five data sets, which were also used in (Borgelt 2003, Borgelt 2005a, Borgelt 
2005b). As they exhibit different characteristics, the advantages and disadvantages of the different 
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algorithms can be observed well. These data sets are: census (a data set derived from an extract of the 
US census bureau data of 1994, which was preprocessed by discretizing numeric attributes), chess (a 
data set listing chess end game positions for king vs. king and rook), mushroom (a data set describing 
poisonous and edible mushrooms by different attributes), BMS-Webview-1 (a web click stream from 
a leg-care company that no longer exists, which has been used in the KDD cup 2000 [Kohavi et al. 
2000]), and T10I4D100K (an artificial data set generated with IBM’s well-known data generator). The 
first three data sets are available from the UCI machine learning repository (Blake and Merz 1998). 
The shell script used to discretize the numeric attributes of the census data set can be found at the URL 
mentioned below.

Figure 3. Pseudo-code of the SaM algorithm. The actual C code is even shorter than this description, 
despite the fact that it contains additional functionality (like perfect extension pruning), because certain 
operations that are needed in this algorithm can be written very concisely in C (using pointer arithmetic 
to process arrays).
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The first three data sets can be characterized as “dense”, meaning that on average a rather high frac-
tion of all items is present in each transaction (the average transaction length divided by the number of 
different items is 0.1, 0.5, and 0.2, respectively, for these data sets), while the last two are rather “sparse” 
(the average transaction length divided by the number of different items is 0.01 and 0.005, respectively, 
for these data sets).5

For the experiments we used an Intel Core 2 Quad Q9300 machine with 3 GB of main memory running 
openSuSE Linux 11.0 (32 bit) and gcc version 4.3.1. The results for these data sets are shown in Figure 
4. Each diagram in this figure refers to one data set and shows the decimal logarithm of the execution 
time in seconds (excluding the time to load the transaction database) over the minimum support (stated 
as the number of transactions that must contain an item set in order to render it frequent).

These results show a fairly clear picture: SaM performs extremely well on dense data sets. It is the 
fastest algorithm for the census data set and (though only by a very small margin) on the chess data set. 
On the mushroom data set it performs on par with FP-growth and Relim, while it is faster than Eclat 
and Apriori. On “sparse” data sets, however, SaM struggles. On the artificial data set T10I4D100K it 
performs particularly badly and catches up with the performance of other algorithms only at the lowest 
support levels.6 On BMS-Webview-1 it performs somewhat better, but again reaches the performance 
of other algorithms only for fairly low support values.

Given SaM’s processing scheme, the cause of this behavior is easily found: it is clearly the merge 
operation. Such a merge operation is most efficient if the two lists to merge do not differ too much in 
length. Because of this, the recursive procedure of the mergesort algorithm splits its input into two lists 
of roughly equal length. If, to consider an extreme case, it would always merge single elements with 
the (recursively sorted) rest of the list, its time complexity would deteriorate from O(n log n) to O(n2). 
The same applies to SaM: in a dense data set it is more likely that the two transaction lists do not differ 
too much in length, while in a sparse data set it can rather be expected that the list containing the split 
item will be rather short compared to the rest. As a consequence, SaM performs well on dense data sets, 
but poorly on sparse ones.

The main reason for the merge operation is to keep the list sorted, so that (1) all transactions with 
the same leading item are grouped together and (2) equal transactions (or transaction suffixes) can be 
combined, thus reducing the number of objects to process. The obvious alternative to achieve (1), namely 
to set up a separate list for each item, is employed by the RElim algorithm, which, as these experiments 
show, performs considerably better on sparse data sets. On T10I4D100K it even outperforms all other 
algorithms by a clear margin if the list for the next item to be processed is not sorted in order to combine 
duplicate entries (grey curve in Figure 4). The reason is that the sorting, which in RElim only serves the 
purpose to eliminate possible duplicates, causes higher costs than the gains resulting from having fewer 
transactions to process. On all other data sets sorting the list (and thus removing duplicates) speeds up 
the processing, thus providing another piece of evidence why SaM performs badly on T10I4100K.

These insights lead, of course, to several ideas how SaM could be improved. However, we do not 
explore these possibilities in this paper, but leave them for future work.

APPROxIMATE FREQUENT ITEM sET MININg

In many applications of frequent item set mining the considered transactions do not contain all items that 
are actually present. However, all of the algorithms mentioned so far seek to discover frequent item sets 
based on exact matching and thus are not equipped to meet the needs arising in these applications.



262

(Approximate) Frequent Item Set Mining Made Simple

An example is the analysis of alarm sequences in telecommunication networks. A core task of analyz-
ing alarm sequences is to find collections of alarms occurring frequently together – so-called episodes. 
In (Mannila et al. 1997) a time window was introduced that moves along the alarm sequence to build a 
sequence of partially overlapping windows. Each window captures a specific slice of the alarm sequence. 
In this way the problem of finding frequent episodes is transformed into the problem of finding frequent 
item sets in a database of transactions, where each alarm can be treated as an item, the alarms in a time 
window as a transaction, and the support of an episode is the number of windows in which the episode 
occurred. Unfortunately, alarms often get delayed, lost, or repeated due to noise, transmission errors, 
failing links etc. If alarms do not get through or are delayed, they can be missing from the transaction 
(time window) its associated items (alarms) occur in. If we required exact containment of an item set 
in this case, the support of some item sets, which could be frequent if the items did not get lost, may be 
smaller than the user-specified minimum. This leads to a possible loss of potentially interesting frequent 
item sets and to possibly distorted support values.

To cope with such missing information, we introduce the notion of an approximate or “fuzzy” frequent 
item set. In contrast to research on fuzzy association rules (see, for example, [Kuok et al. 1998]), where 
a fuzzy approach is used to handle quantitative items, we use the term “fuzzy” to refer to an item set that 

Figure 4. Experimental results on five different data sets. Each diagram shows the minimum support (as 
the minimum number of transactions that contain an item set) on the horizontal axis and the decimal 
logarithm of the execution time in seconds on the vertical axis. The data sets underlying the diagrams 
on the left are rather dense; those underlying the diagrams on the right are rather sparse.
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may not be found exactly in all supporting transactions, but only approximately. Related work in this 
direction includes (Cheng et al. 2001, Pei et al. 2001), where Apriori-like algorithms were introduced 
and mining with approximate matching was performed by counting the number of different items in 
the two item sets to be compared. In this paper, however, we adopt a more general scheme, based on an 
approximate matching approach, which exhibits a much higher flexibility. Our approach employs two 
core ingredients: edit costs and transaction weights (Wang et al. 2005).

Edit costs: The distance between two item sets can conveniently be defined as the costs of the cheap-
est sequence of edit operations needed to transform one item set into the other (Moen 2000).

Here we consider only insertions, since they are very easy to implement with our algorithm.7 With 
the help of an “insertion cost” or “insertion penalty” a flexible and general framework for modeling 
approximate matching between two item sets can be established. The interpretation of such costs or 
penalties depends, of course, on the application. In addition, different items can be associated with dif-
ferent insertion costs. For example, in telecommunication networks different alarms can have a different 
probability of getting lost: usually alarms originating in lower levels of the module hierarchy get lost 
more easily than alarms originating in higher levels. Therefore the former can be associated with lower 
insertion costs than the latter. The insertion of a certain item may also be completely inhibited by as-
signing a very high insertion cost.

Transaction weights: Each transaction t in the original database T is associated with a weight w(t). 
The initial weight of each transaction is 1. When inserting an item i into a transaction t, its weight is 
“penalized” with a cost c(i) associated with the item. Formally, this can be described by a combination 
function: the new weight of the transaction t after inserting an item i Ï  t is w{i} = f(w(t), c(i)) where f is 
a function that combines the weight w(t) before editing and the insertion cost c(i). There is, of course, a 
wide variety of possible combination functions. For example, any t-norm may be used. For simplicity, we 
use multiplication here, that is, w{i} = w(t) c(i), but this is a more or less arbitrary choice. Note, however, 
that with this choice lower values of c(i) mean higher costs as they penalize the weight more, but it has 
the advantage that it is easily extended to an insertion of multiple items: w t w t c i

i i kk

m
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( ) ( ) ( )

1 1
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It should be clear that it is wØ(t) = 1 due to the initial weighting w(t) = 1.

How many insertions into a transaction are allowed may be limited by a user-specified lower bound 
wmin for the transaction weight. If the weight of a transaction falls below this threshold, it is not con-
sidered in further mining steps and thus no further items may be inserted into it. Of course, this weight 
may also be set to zero (unlimited insertions). As a consequence, the fuzzy support of an item set I w.r.t. 
a transaction database T can be defined as s w t w w t

T I tt T I t
( )
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( ( ) ) ( )fuzzy = ³ ×-Î -å t , where τ(φ) is a 

kind of “truth function”, which is 1 if φ is true and 0 otherwise.
Note that SaM is particularly well suited to handle this scheme of item insertions, because it relies on 

a horizontal transaction representation, which makes it very simple to incorporate transaction weights 
into the mining process. With other algorithms (with the exception of RElim, which also uses a basi-
cally horizontal representation), more effort is usually needed in order to extend them to approximate 
frequent item set mining.

For the implementation of the approximate frequent item set mining scheme outlined above, it is 
important to distinguish between unlimited item insertions (that is, wmin = 0) and limited item insertions 
(that is, wmin > 0). The reason is that with wmin = 0 a transaction always contributes to the support of 
any item set (because, in principle, all items of the item set could be inserted), while with wmin > 0 a 
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transaction only contributes to those item sets which it can be made to contain by inserting items without 
reducing the transaction weight below the threshold wmin .

As a consequence it is possible to combine equal transactions (or transaction suffixes) without restric-
tion if wmin = 0: if we have two equal transactions (or transactions suffixes) t1 and t2 with weights w1 
and w2, respectively, we can combine t1 and t2 into one transaction (suffix) t with weight w1 + w2 even 
if w1 ≠ w2. If another item i needs to be inserted into t1 and t2 in order to make them contain a given 
item set I, the distributive law (that is, the fact that w1 c(i) + w2 c(i) = (w1 + w2) c(i)) ensures that we 
still compute the correct support for the item set I in this case.

If, however, we have wmin > 0 and, say, w1 > w2, then using (w1 + w2) c(i) as the support contrib-
uted by the combined transaction t to the support of the item set I may be wrong, since it may be that w1 
c(i) > wmin, but w2 c(i) < wmin. In this case the support contributed by the two transactions t1 and t2 
would rather be w1 c(i). Effectively, transaction t2 does not contribute, since its weight would fall below 
the minimum transaction weight threshold by inserting the item i. Hence, under these circumstances, 
we can combine equal transactions (or transaction suffixes) only if they have the same weight (that is, 
only if w1 = w2).

UNLIMITED ITEM INsERTIONs

If unlimited item insertions are possible (wmin = 0), only a minor change has to be made to the data 
structure: instead of an integer occurrence counter for the transactions (or transaction suffixes), we need 
a real-valued transaction weight. In the processing, the split step stays the same (see Figure 5 on the left). 
However, now it only yields an intermediate database, into which all transactions (or transaction suffixes) 
have been transferred that actually contain the split item under consideration (item e in the example).

In order to build the full conditional database, we have to add those transactions that do not contain 
the split item, but can be made to contain it by inserting it. This is achieved in the merge step, in which 
two parallel merge operations are carried out now (see Figure 5 on the right). The first part (shown in 
black) is the merge that yields (as in the basic algorithm) the conditional database for frequent item sets 
not containing the split item. The second part (shown in blue) adds those transactions that do not contain 
the split item, weighted down with the insertion penalty, to the intermediate database created in the split 
step. Of course, this second part of the merge operation is only carried out, if c(i) > 0, where i is the split 
item, because otherwise no support would be contributed by the transactions not containing the item i 
and hence it would not be necessary to add them. In such a case the result of the split step would already 
yield the conditional database for frequent item sets containing the split item.

Note that in both parts of the merge operation equal transactions (or transaction suffixes) can be com-
bined regardless of their weight. As a consequence we have in Figure 5 entries like for the transaction 
(suffix) c b d, with a weight of 1.2, which stands for one occurrence with weight 1 and one occurrence 
with weight 0.2 (due to the penalty factor 0.2, needed to account for the insertion of item e). As an ad-
ditional illustration, Figure 6 shows the split and merge operations for the second recursion level (which 
work on the conditional database for the prefix e constructed on the first level).
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LIMITED ITEM INsERTIONs

If item insertions are limited by a threshold for the transaction weight (wmin > 0), we have to represent 
the transaction weight explicitly and keep it separate from the number of occurrences of the transac-
tion. Therefore the data structure must be extended to comprise, per transaction (suffix), (1) a pointer 
to the item array, (2) an integer occurrence counter, and (3) a real-valued transaction weight. The last 
field will be subject to a thresholding operation by wmin and no transactions with this field lower than 
wmin will ever be kept. In addition, there may now be array elements that refer to the same transaction 
(suffix) – that is, the same list of items – and which differ only in the transaction weight (and maybe, of 
course, at the same time in the occurrence counter).

Figure 5. The extended operations: unlimited item insertions, first recursion level

Figure 6. The extended operations: unlimited item insertions, second recursion level
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The processing scheme is illustrated in Figure 7 with the same example as before. The split step is 
still essentially the same and only the merge step is modified. The difference consists, as already pointed 
out, in the fact that equal transactions (or transaction suffixes) can no longer be combined if they differ in 
weight. As a consequence, there are now, in the result of the second part of the merge operation (shown 
in blue) two array elements for c b d and two for b d, which carry a different weight (one has a weight 
of 1, the other a weight of 0.2). As already explained above, this is necessary, because two transactions 
with different weight may reach, due to item insertions, the transaction weight threshold at different 
times and thus cannot be combined.

Of course, it rarely happens on the first level of the recursion that transactions are discarded due to 
the weight threshold. This can only occur on the first level, if the insertion penalty factor of the split item 
is already smaller than the transaction weight threshold, which is equivalent to inhibiting insertions of 
the split item altogether. Therefore, in order to illustrate this aspect of the processing scheme, Figure 8 
shows the operations on the second recursion level, where the conditional database with prefix e (that is, 
for frequent item sets containing item e) is processed. Here the second part of the merge process actually 
discards transactions if we set a transaction weight limit of 0.1: all transactions, which need two items 
(namely both e and a) to be inserted, are not copied.

APPROxIMATE FREQUENT ITEM sET MININg ExPERIMENTs

Since we want to present several diagrams per data set in order to illustrate the influence of the different 
parameters (insertion penalty factor, number of items with a non-vanishing penalty factor, threshold for 
the transaction weight), we limit our report to the results on two of the five data sets used for the exact 
mining experiments. We chose census and BMS-Webview-1, one dense and one sparse data set, since 
SaM and RElim (the two algorithms of which we have implementations that can find approximate fre-

Figure 7. The extended operations: limited item insertions, first recursion level
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quent item sets) exhibit a significantly different behavior on dense and sparse data sets (as can already 
be seen from the exact mining results).

The results are shown in Figure 9 for the census data set and in Figure 10 for the BMS-Webview-1 
data set. In both figures the diagrams on the left show the decimal logarithm of the number of found 
frequent item sets, while the diagrams on the right show the decimal logarithm of the execution times (in 
seconds) for our implementations of SaM and RElim. The different parameters we tested in our experi-
ments are: insertion penalty factors of 1/8 = 0.125, 1/16 = 0.0625, and 1/32 = 0.03125, non-vanishing 
insertion penalty factors for 10, 20, and 40 items, and transaction weight thresholds that allowed for 1, 
2 or an unlimited number of item insertions.8

As can be seen from the diagrams on the left of each figure, the two data sets react very differently 
to the possibility of inserting items into transactions. While the number of found frequent item sets rises 
steeply with all parameters for the census data set, it rises only very moderately for the BMS-Webview-1 
data set, with the factor even leveling off for lower support values. As it seems, this effect is due, to a 
large degree, to the sparseness of the BMS-Webview-1 data set (this needs closer examination, though, 
and provides a direction for future work).

As could be expected from the results of the basic algorithms on the five data sets used for the exact 
mining experiments, SaM fares better on the dense data set (census), beating RElim by basically the 
same margin (factor) in all parameter settings, while SaM is clearly outperformed by RElim on the sparse 
data set (BMS-Webview-1), even though the two algorithms were on par without item insertion. On both 
data sets, the number of insertions that are allowed has, not surprisingly, the strongest influence: with 
two insertions about an order of magnitude larger times result than with only one insertion. However, 
the possibility to combine equal transactions with different weights still seems to keep the execution 
times for unlimited insertions within limits.

The number of items with a non-vanishing penalty factor and the value of the penalty factor itself seem 
to have a similar influence: doubling the number of items leads to roughly the same effect as keeping 

Figure 8. The extended operations: limited item insertions, second recursion level
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the number the same and doubling the penalty factor. This is plausible, since there should not be much 
difference in having the possibility to insert twice the number items or preserving twice the transaction 
weight per item insertion. Note, however, that doubling the penalty factor from 1/32 to 1/16 has only a 
comparatively small effect on the BMS-Webview-1 data set compared to doubling from 1/16 to 1/8. On 
the census data set the effects are a bit more in line.

Figure 9. Experimental results on census data; left: frequent item sets, right: execution times
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Overall it should be noted that the execution times, though considerably increased over those obtained 
without item insertions, still remain within acceptable limits. Even with 40 items having an insertion 
penalty factor of 1/8 and unlimited insertions, few execution times exceed 180 seconds (log(180) ≈ 2.25). 
In addition, we can observe the interesting effect on the BMS-Webview-1 data set that at the highest 
parameter settings the execution times become almost independent of the minimum support threshold.

Figure 10. Experimental results on webview1; left: frequent item sets, right: execution times
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CONCLUsION

In this paper we presented a very simple split and merge algorithm for frequent item set mining, which, 
due to the fact that it uses a purely horizontal transaction representation, lends itself well to an extension 
to approximate or “fuzzy” frequent item set mining. In addition, it is a highly recommendable method if 
the data to mine cannot be loaded into main memory and thus the data has to be processed on external 
storage or in a (relational) database system. As our experimental results show, our SaM algorithm performs 
excellently on dense data sets, but shows certain weaknesses on sparse data sets. This applies not only 
for exact mining, but also for approximate frequent item set mining. However, our experiments provide 
some evidence (to be substantiated on other data sets) that approximate frequent item set mining is much 
more useful for dense data sets as more additional frequent item sets can be found on these. Hence SaM 
performs better in the (likely) more relevant case. Most importantly, however, one should note that with 
both SaM and RElim the execution times remain bearable (in the order of a few minutes).

sOFTWARE

An implementation of the • SaM algorithm in C can be found at: http://www.borgelt.net/sam.html
while an implementation of the • RElim algorithm in C is available at: http://www.borgelt.net/
relim.html
Implementations of other • frequent item set mining algorithms can be found at: http://www.borgelt.
net/fpm.html
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ENDNOTEs

1 Alternatively, each transaction may be enhanced by a unique transaction identifier, and these en-
hanced transactions may then be combined in a simple set.

2  Note that Apriori, which also uses a purely horizontal representation, relies on a different process-
ing scheme, since it traverses the subset lattice level-wise rather than depth-first.

3  Note that exploiting perfect extensions in the search for frequent item sets and restricting this search 
to so-called closed item sets are not equivalent, even though a closed item set can be defined as 
an item set that does not possess any perfect extensions. The reason is that in the search, due to 
the guidance by a global order of the items, not all possible extensions are considered and thus an 
item set may be non-closed even though none of the considered extensions is perfect.

4  In particular, in [Rasz 2004] an FP-growth implementation was presented, which is highly optimized 
to how modern processor access their main memory [Rasz et al. 2005].

5  Note that the density defined in this way is equivalent to the fraction of ones in a bit matrix repre-
sentation of the transaction database, which may be the more common form in which this measure 
can be defined.

6  It should be noted, though, that SaM’s execution times on T10I4D100K are always around 5 sec-
onds on this data set and thus not unbearable.

7  Note that deletions are implicit in the mining process anyway (as we search for subsets of the 
transactions). Only replacements are an additional case we do not consider here.

8  Since we used the same insertion penalty factor c(i) for all items having c(i) > 0, the transaction 
weight threshold effectively limits the number of insertions regardless of which items are inserted. 
Hence this description is more expressive than stating the actual values wmin used.
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INTRODUCTION

A key feature of human intelligence is our ability to categorise and summarise large quantities of data, 
whether this data arises from sensory input or from other sources. The ability to group multiple enti-
ties together into an (approximately) uniform whole allows us to efficiently represent a whole group 
as a single concept, enabling us to reason, and to derive knowledge, about groups of entities. A simple 
form of derived knowledge is association - essentially, that the extensions of two concepts overlap 
significantly. One of the fundamental tenets underlying fuzzy set theory (Zadeh, 1965) is the idea that 
humans work with groups of entities (or conceptual categories) that are loosely defined, able to admit 
elements according to some scale of membership rather than according to an absolute yes/no test. This 

AbsTRACT

When working with large datasets, a natural approach is to group similar items into categories (or 
sets) and summarise the data in terms of such categories. Fuzzy set theory allows us to represent and 
reason about sets of objects without providing crisp definitions for each group, an approach that often 
reflects the human interpretation of categories. Given two or more hierarchical sets of categories, our 
aim is to determine the correspondence between categories (e.g., approximate equivalence). Association 
rules are a useful tool in knowledge discovery from databases but are normally defined in terms of crisp 
rather than fuzzy categories. In this chapter, the authors describe a new method for calculating a fuzzy 
confidence value for association rules between fuzzy categories, using a novel approach based on mass 
assignment theory.
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is particularly true where the knowledge and/or reasoning uses natural language - humans can com-
municate quickly and efficiently with an informal shared understanding of the vocabulary. Although 
different individuals may have slightly different interpretations of terms, meaning can still be conveyed 
sufficiently accurately in almost all cases.

A further step in the idea of grouping entities together leads us to the notion of a taxonomy, i.e. a 
hierarchical series of progressively more refined categories. This enables us to represent / reason about 
problems at the appropriate level of granularity, and the use of taxonomic hierarchies to organise infor-
mation and sets of objects into manageable chunks (granules) is widespread. For example, taxonomies 
serve as the main organisational principle for the grouping of species, for systems of government (na-
tional - regional - local), for corporate and command structures, for libraries, for document repositories 
and very many other applications.

Granules were informally defined by (Zadeh, 1997) as a way of decomposing a whole into parts, 
generally in a hierarchical way using fuzzy representations. Although in principle a taxonomic hierarchy 
is crisply defined, in practice there is often a degree of arbitrariness in its definition. For example, we 
might divide the countries of the world by continent at the top level of a taxonomic hierarchy. However, 
continents do not have crisp definitions - Europe contains some definite members (e.g. France, Germany) 
but at the Eastern and South-Eastern border, the question of which countries belong / do not belong is 
less clear. Iceland is generally included in Europe despite being physically closer to Greenland (part of 
North America). Thus although the word “Europe” denotes a set of countries (i.e. it is a granule) and can 
be used as the basis for communication between humans, it does not have an unambiguous definition in 
terms of the elements that belong to the set. Different “authorities” adopt different definitions - the set 
of countries eligible to enter European football competitions differs from the set of countries eligible to 
enter the Eurovision song contest, for example.

Of course, mathematical and some legal taxonomic structures can be very precisely defined - in plane 
geometry, the class of polyhedra further subdivides into triangles, quadrilaterals, etc and triangles may 
be subdivided into equilateral, isosceles etc. Such definitions admit no uncertainty. Most information 
systems model the world in some way, and need to represent categories which correspond to the loosely 
defined classes used by humans in natural language. For example, a company may wish to divide adults 
into customers and non-customers, and then sub-divide these into high-value customers, dissatisfied 
customers, potential customers, etc. Such categories are not necessarily distinct (i.e. they may be a 
covering rather than a partition) but more importantly, membership in these categories is graded - cus-
tomer X may be highly dissatisfied and about to find a new supplier whilst customer Y is only mildly 
dissatisfied. We argue that most hierarchical taxonomies involve graded or loosely defined categories, 
but the nature of computerised information systems means that a more-or-less arbitrary decision has to 
be made on borderline cases, giving the taxonomy the appearance of a crisp, well-defined hierarchy. 
This may not be a problem as long as a rigorous and consistent criterion for membership is used (e.g. a 
dissatisfied customer is defined as one who has made at least two calls complaining about service), but 
the lack of subjectivity in a definition is rare. The use of graded membership (fuzziness) in categories 
enhances their expressive power and usefulness.

There is rarely a unique way of splitting data into conceptual categories, and numerous methodologies 
exist to aid with design of databases and similar information systems. Our previous work “Smart Queries 
and Adaptive Data” (SQuAD) project is concerned with adding structure to data (i.e. moving up the meta-
data scale) and refining approximate knowledge (in the form of fuzzy association rules) from this data 
(see (Martin et al., 2008b) (Martin & Azvine, 2003, 2005; Martin et al., 2007b)). The aim is to assist in 
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the creation of useful information from diverse sources of semi-structured data - allowing extraction and 
integration from multiple sources of information and re-organisation based on an individual’s personal 
categories. The final stage is to look for strong associations between different (fuzzy) categories. This 
is the main point of the work reported here - given two different conceptual categorisation hierarchies, 
how can we find correspondences (e.g. approximate equivalence) between classes?

Association rules (in their crisp form) are a well-established technique for knowledge discovery in 
databases, enabling “interesting” relations to be discovered. There have been a number of proposals to 
develop fuzzy association rules, that is to discover the degree of association between fuzzy categories. 
Some of our recent work has used mass assignment theory (Baldwin, 1992; 1994; Baldwin et al., 1995) 
to develop a novel approach able to find a point valued association strength between fuzzy categories 
(Martin et al., 2007a) and an interval-valued version (Martin & Shen, 2008).

In common with other work on fuzzy association rules, this work assumes there is a crisp value for the 
rule confidence. We note that much of the power of fuzzy approaches arises from the ability to produce 
fuzzy results, i.e. to effectively postpone the decision on whether a given element “belongs” to a set or 
not. For example, if a cooling fan is controlled by the control rules

if temperature is • a little high, increase fan speed slightly
if temperature is • a little low, decrease fan speed slightly

then a traditional approach requires us to specify precise limits for the intervals “a little high” and “a little 
low”, and precise single values for a “slight” increase or decrease in speed. In contrast, a fuzzy control 
approach allows us to return the fuzzy definitions and propagate them through the inference process, only 
converting to a crisp value at the final stage when a decision must be made to change the fan speed. In 
a similar vein, we argue that, in looking for association strengths between fuzzy categories, it is better 
to propagate the fuzziness through the calculation and produce a fuzzy value rather than a single value 
to represent the association strength. Our mantra is fuzzy in, fuzzy out.

In this paper we describe a new method for calculating a fuzzy confidence for association rules between 
normal fuzzy categories (or granules), to be used in finding correspondences between fuzzy taxonomies. 
We briefly summarise previous discussion of the semantics of fuzzy sets when used to describe granules, 
and problems that arise from fuzzy association rule approaches based on crisp cardinalities of fuzzy sets. 
Some difficulties with our previous interval-based confidence measure are also outlined.

The main contribution of this paper is a novel mass assignment-based method for calculating a fuzzy 
confidence in associations between fuzzy categories. It relies on a new method of converting fuzzy rela-
tions to mass assignments and a definition of membership in the fuzzy confidence values related to the 
movement of mass needed to produce that association confidence value, relative to the confidence value 
derived from a least prejudiced mass assignment. We show that minimum and maximum values for the 
confidence can be found quickly, and memberships calculated based on the corresponding mass assign-
ments. A “conceptual” algorithm is presented, although the actual implementation is considerably more 
efficient. Finally, some results are presented showing that the algorithm can scale to large calculations 
and comparing results to our previous implementation.
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FUZZY sETs IN INFORMATION sYsTEMs

Many authors (e.g. (Bosc & Bouchon-Meunier, 1994)) have proposed the use of fuzzy sets to model 
uncertain values in databases and other knowledge based applications. The standard interpretation of 
a fuzzy set in this context is as a possibility distribution - that is to say it represents a single valued at-
tribute which is not known exactly. For example we might use the fuzzy set tall to represent the height 
of a specific person or low to represent the value shown on a dice. The fuzzy sets tall and low admit a 
range of values, to a greater or lesser degree; the actual value is taken from the range. Knowing that a 
dice value val is even restricts the possible values to val=2 XOR val=4 XOR val=6 (where XOR is an 
exclusive or). If a fuzzy set on the same universe is defined as low = {1/1, 2/1, 3/0.4} then knowing 
the value val is low restricts the possible values to val=1 XOR val=2 XOR val=3 with corresponding 
memberships.

The conjunctive interpretation of a fuzzy set occurs when the attribute can have multiple values. 
For example, a person may be able to speak several languages; we could model this as a fuzzy set of 
languages, where membership would depend on the degree of fluency. This is formally a relation rather 
than a function on the underlying sets. Our position is to make a distinction between the conjunctive 
interpretation - modelled by a monadic fuzzy relation – and the disjunctive interpretation – modelled 
by a possibility distribution. To emphasise the distinction, we use the notation

F(a) = {x/μ(x) | x ∈ U} 

to denote a single valued attribute F of some object a (i.e. a possibility distribution over a universe U) 
and

R(a) = [x/χ(x) | x ∈ U] 

to denote a multi-valued attribute (relation). Fuzzy categories (granules) represent the latter case, since 
we have multiple values that satisfy the predicate to a greater or lesser degree.

ExTENDINg AssOCIATION RULEs TO FUZZY CATEgORIEs

In creating association rules within transaction databases (e.g. (Agrawal & Srikant, 1994), see also 
(Dubois et al., 2006) for a clear overview), the standard approach is to consider a table in which columns 
correspond to items and each row is a transaction. A column contains 1 if the item was bought, and 0 
otherwise. The aim of association rule mining is to determine whether or not there are links between 
two disjoint subsets of items – for example, do customers generally buy biscuits and cheese when beer, 
lager and wine are bought? These disjoint subsets can represent categories, as described earlier.

Let I denote the set of items, so that any transaction can be represented as tr ⊆ I, and consider X, the 
set of all transactions (strictly speaking, X is a multi-set but can be made into a set by adding a unique 
identifier to each transaction). We must also specify two categories (or itemsets) s and t, which are non-
empty, non-overlapping subsets of I,

t ⊂ I 
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s ⊂ I	

s ∩ t = ∅	

and the sets of transactions containing s and t

S x x X s x

T x x X t x 	

An association rule is of the form s => t and is interpreted as stating that when the items in s appear 
in a transaction, it is likely that the items in t will also appear i.e. it is not an implication in the formal 
logical sense. A slight abuse of notation allows us to use S => T or s => t as the rule.

Most authors use two measures to assess the significance of association rules. The support of a rule s 
=> t is the number (or relative number) of transactions in which both s and t appear, and the confidence 
of the rule is an estimate (based on the samples) of the conditional probability of t being contained in a 
transaction given that it contains s

Support(s,   t)=|S∩T|	 (1)

and

,
S T

Conf s t
S 	 (2)

Typically a threshold is chosen for the support, so that only frequently occurring sets of items s and 
t are considered; a second threshold filters out rules of low confidence.

For example, consider a database of sales employees, salaries and sales figures. A mining task might 
be to find out whether the good sales figures are achieved by the highly paid employees. Given the 
database table in Figure 1, we can obtain rule confidences ranging from 1/3 up to 1 by different crisp 
definitions of “good sales” and “high salary”, as shown on the right of Figure 1. Although this is a 
contrived example, such sensitivity to the cut-off points adopted for crisp definitions is a good indication 
that a fuzzy approach is more in line with human understanding of the categories.

Figure 1. A simple database of names (a, b, c, d), sales and salary figures (left) and (right) the confi-
dences for an association rule good sales => high salary arising from different crisp definitions of the 
terms good sales and high salary.
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Various approaches to fuzzifying association rules have been proposed e.g. (Bosc & Pivert, 2001; 
Dubois et al., 2006; Kacprzyk & Zadrozny, 2003). The standard extension to the fuzzy case is to treat 
the (multi-) sets S, T as fuzzy and find the intersection and cardinality using a t-norm and sigma-count 
respectively.

,
S T

x X

S
x X

x
Conf S T

x
 (3)

In the example of Figure 1, a fuzzy approach would categorise employees according to whether their 
salaries are high, (or medium or low) and also according to whether their sales figures are good, moder-
ate or poor. Taking a simple linear membership function from 0 to the maximum value in goodSales 
and highSalary leads to

S = [a/1, b/0.8, c/0.5, d/0.2] 

and

T = [a/1, b/0.4, c/0.8, d/0.7] 

which gives a confidence of 0.84 for the association S=>T using eq. (3). NB this example is used 
throughout the paper.

As pointed out by (Dubois et al., 2006), using min and the sigma count for cardinality can be unsat-
isfactory because it does not distinguish between several tuples with low memberships and few tuples 
with high memberships - for example,

1

2

1

1

S x

T x  

leads to Conf(S, T) = 0 but

1 2 3 1000

1 2 3 1000

1, 0.01, 0.01, , 0.01

0.01, 1, 0.01, , 0.01

S x x x x

T x x x x  

leads to

1000 0.01
, 0.91

1 999 0.01
Conf S T

 

which is extremely high for two almost disjoint sets (this example originally appeared in (Martin-
Bautista et al., 2000)). Using a fuzzy cardinality (i.e. a fuzzy set over the possible cardinality values) 
is also potentially problematic since the result is a possibility distribution over rational numbers, and 
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the extension principle (Zadeh, 1975) gives a wider bound than it should, due to neglect of interactions 
between the numerator and denominator in this expression. For example, given

S = [x1/1, x2/0.8] 

T = [x1/1, x2/0.4]. 

the fuzzy cardinalities are

|S ∩ T | = {1/1, 2/0.4},  

|S | = {1/1, 2/0.8} 

leading (by the extension principle) to a confidence of {0.5/0.8, 1/1, 2/0.4} which is clearly incorrect 
as the confidence cannot be greater than 1. We conclude that neither the crisp nor the fuzzy cardinality 
method is satisfactory. In addition to the problems outlined above, any attempt to derive a crisp associa-
tion confidence from fuzzy categories is hiding the uncertainty - as is well known from fuzzy control, 
an output is generally at least as fuzzy as the inputs. Whilst it is possible to defuzzify to an approximate 
crisp value, this should only be done when necessary.

A number of approaches to association rules have been proposed - for example (Delgado et al., 2003), 
where the fuzzy association rule is interpreted as a quantified sentence. The confidence of the fuzzy 
association rule S ⇒ T in the set of fuzzy transactions X is the evaluation of the quantified sentence 
“Q of Xs are Xt ” where Q is a fuzzy quantifier and Xs (resp Xt) is the (fuzzy) subset of transactions 
containing s (resp t)

Our previous work (Martin et al., 2008a; Martin & Shen, 2008) started from the fact that a relation 
represents a conjunctive set of ordered n-tuples i.e. a conjunction of n ground clauses, and used mass 
assignment theory (Baldwin et al 1995; Baldwin 1992; Baldwin 1994) as representation. For example, 
if U is the set of dice values then we could define a (crisp) predicate differBy4or5 on U × U as the set 
of pairs

[(1,6), (1,5), (2,6), (5,1), (6,1), (6, 2)] 

This is a conjunctive set, in that each pair satisfies the predicate. In a similar way, a fuzzy relation 
represents a set of n-tuples that satisfy a predicate to some degree. Thus differByLargeAmount could 
be represented by

[(1,6)/1, (1,5)/0.6, (2,6)/0.6, (5,1)/0.6, (6,1)/1, (6,2)/0.6] 

The interpretation is not that a single pair satisfies this predicate, but that one set of pairs satisfies it 
(out of several possible sets of pairs). Thus we represent it as a mass assignment on possible relations:
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1

2

1 1 2

(1, 6),(6,1)

(1, 6),(1, 5),(2, 6),(5,1),(6,1),(6,2)

: 0.4, , : 0.6

R

R

m R R R  

This is equivalent to treating the fuzzy relation as a fuzzy set of crisp relations:

differ by large amount={R1/1,R2/0.6} 

Similarly, a monadic fuzzy predicate largeValue defines a set of 1-tuples such as [6/1, 5/0.8, 4/0.3] 
which is written as a fuzzy set of crisp relations:

large value={[6]/1,[6,5]/0.8,[6,5,4]/0.3} 

and has the mass assignment

mlarge value={{[6]}:0.2,{[6],[6,5]}:0.5,{[6],[6,5,4]}:0.3} 

Our subsequent studies show that this approach can sometimes overestimate the difference between 
full and nearly-full membership, which can lead to unreasonably large intervals calculated for the con-
fidence of association rules. For example, under this interpretation, the monadic fuzzy relation S = [a/1 
b/0.98]has the mass assignment

mS={{[a]}:0.02,   {[a],   [a,b]}:0.98} 

The normal mass assignment interpretation allows us to redistribute the mass on {[a], [a,b]} to either 
of the relations [a] or [a,b] which leads to the family of distributions:

S = [a]: 1-x, [a,b]: x where 0 ≤ x ≤ 0.98 

This flexibility in re-assigning mass means that for a source relation S = [a/1 b/0.98] and a target 
relation T = [a/1 b/0.98 c/0.02] we get an interval [0.51, 1] which is surprisingly wide considering the 
two relations are so similar. We emphasise that this behaviour arises mostly in contrived cases and that 
smaller intervals are calculated in the vast majority of “real” association rules that have been considered 
in our experimental studies such as (Martin & Shen, 2008). Nevertheless, our opinion is that further 
study is justified.

ALTERNATIvE INTERPRETATION OF RELATIONs As MAss AssIgNMENTs

This section outlines our new interpretation of fuzzy relations as mass assignments. As in previous work, 
we assume that the fuzzy relations are normalised. The approach discussed above, which we will refer 
to as an open world approach, treats partial membership of a tuple x in a relation R (i.e. 0 < χR(x) < 1) as 
an upper bound for the mass that can be assigned to any set of tuples including x. This leads to a wide 
range of mass distributions that can be derived from the fuzzy relation R.
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In the open world approach, for any tuple x such that χR(x) < 1, the total mass that can be assigned 
to relations containing x is given by

1, ,

0
R

t x xn
x t

m t x
 (4)

In the largeValue example above, consider the element x=5, which has χR(x) = 0.8; the relations 
containing 5 are [5, 6] and [4, 5, 6] and we have

0 ≤ mlargeValue([5,6]) + mlargeValue([4,5,6]) ≤ 0.8 

This gives a considerable degree of flexibility in assigning mass.
Our alternative interpretation - the closed world approach - regards partial membership of a tuple x 

in a relation R (i.e. 0 < χR(x) < 1) as strictly equal to the total mass assigned to the sets of tuples which 
include x, i.e.

1, ,
R

t x xn
x t

m t x
 (5)

This means there is no flexibility in the range of mass distributions that can be derived from the 
fuzzy relation R. However, there is flexibility in the mass assignments when R is combined with an 
assignment corresponding to another relation, for example in calculating association confidences as 
described later.

Under this interpretation, the monadic fuzzy relation largeValue discussed above has

mlargeValue={[6]:0.2,      [6, 5]:0.5,      [6, 5, 4]:0.3} 

and clearly

mlargeValue([5,6]) + mlargeValue([4,5,6]) = 0.8 

CLOsED WORLD MAss-bAsED AssOCIATION RULEs

For a source category

1/ 1 2 2
( ), / ( ),..., / ( )

s s ss s
S x x x x x x x x x

 

and a target category

1/ 1 2 2
( ), / ( ),..., / ( )

T T TT T
T x x x x x x x x x
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we can define the corresponding mass assignments as follows. Let the set of distinct memberships in 
S be

( )(1) (2), , ..., sn

S S S S
x x x  

where

( )(1) (2) ... sn

S S S
x x x  

and nS ≤ |S|. Let

( )i
i S S

S x x  

Then the mass assignment corresponding to S is : ( ) ,1
i s i s

S m S i n  where

( ) ( 1)( ) k k
s k S S

m S x x  (6)

and we define

( ) 0i
S s

x if i n  

For example, the fuzzy category

S = [a/1, b/0.8, c/0.5, d/0.2] 

has the corresponding mass assignment

: 0.2, , : 0.3, , , : 0.3, , , , : 0.2
S

M a a b a b c a b c d  

We can calculate the confidence in the association between the categories S and T using mass assign-
ment theory. In general, this will be an interval as we are free to move mass (consistently) between the 
cells corresponding to Si and T j for each i, j.

For two mass assignments

: , 1

: , 1
S i S i S

T j T j T

M S m S i n

M T m T j n  

the composite mass assignment is

:
S T

M M M

X m X  
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where m is specified by the composite mass allocation function, subject to

1

1

T

S

n

ij S i
j
n

ij T j
i

m m S

m m T
 

This can be visualised using a mass tableau (see (Baldwin, 1992)) as shown in Figure 2. Each row 
(column) represents a relation of the source (target) mass assignment,. The mass associated with a row 
(column) can be distributed amongst the cells provided row and column constraints are satisfied. We 
label the rows S1, S2, … SnS and columns T1, T2, … TnT , and assign mass mij to cell (i, j) subject to row 
and column constraints. The confidence in the association rule is given by

,

1

,

1

1

S T

S T

S

ij i j
i j

n n

ij i
i j

ij i j
i j
n n

ij i
i j

n
i

i S
i

m S T
n

conf M
d

m S

where n m S T

d m S

S m  (7)

Clearly n ≥ 0, d >0 and d is a constant for a given source relation S, irrespective of M. For example 
consider the fuzzy categories

S = [a/1, b/0.8, c/0.5, d/0.2] 

Figure 2. The mass tableau, showing intersections Si ∩ Tj and the least prejudiced mass distribution. 
The corresponding point valued rule confidence is 1.86 / 2.5 = 0.744
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and

T = [a/1, b/0.4, c/0.8, d/0.7] 

Clearly the mass can be allocated in many ways, subject to row and column constraints. One notable 
assignment is the least prejudiced distribution, obtained by taking the product of source and target masses 
for each cell as shown in figure 2. This corresponds to the minimum entropy combination of the source 
and target mass assignments. Different assignments lead to the minimum and maximum confidences.

In the next section, we analyse the effect of moving mass between cells on the confidence and show 
how the maximum and minimum confidence values can be found quickly.

FAsT CALCULATION OF FUZZY CONFIDENCE INTERvAL

We take an arbitrary mass assignment M, and consider the change in confidence when we move mass 
to create another assignment M*.

In order to conform to row and column constraints, the net transfer of mass within any row or column 
is zero. Thus the simplest transfer of mass involves four cells, as shown in figure 3. We refer to this as 
an elementary mass transfer, denoted

1 1 2 2
,( , ), ,E x i j i j  

and write

*
1 1 2 2

( ,( , ),( ))M M E x i j i j  

where 1 1 2 2
, , , ,E x i j i j  indicates that mass x is moved into cells (i1, j1) and (i2, j2) from cells (i1, j2) 

and (i2, j1) and we assume i1 < i2 and j1 < j2
For example, consider the tableau shown in Figure 2. We can move a mass of 0.04 from the top right 

hand corner to the top left; in order to satisfy row and column constraints, we must also move 0.04 from 
the bottom left to bottom right, yielding the tableau shown in Figure 4.

Figure 3. An elementary mass transfer. If x > 0 then it is termed a positive elementary mass transfer; if 
x < 0 it is termed a negative elementary mass transfer
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Theorem 1.

Let Minit and Mfinal be different allocations of mass to cells in a tableau, both conforming to row and 
column constraints. Then we can convert Minit to Mfinal by a finite sequence of p elementary mass transfers 
E1+E2 + … +Ep.

Proof.

Define

final init

final init
ij ij ij

M M M

ie M M M  

(where addition and subtraction are defined in the obvious way) and consider the sums of positive and 
negative elements of ΔM

,
0

,
0

( )

( )

ij

ij

n

ij
i j

M

n

ij
i j

M

pos M M

neg M M

 

Clearly pos(ΔM) = neg(ΔM) and both are zero if the assignments Minit and Mfinal are the same.
If they are greater than zero, we construct an elementary mass transfer as follows:
Choose a positive element in ΔM, say at row r1 and column c1. Choose a negative element in the 

same row (r1, c2) and a second negative element in the same column (r2, c1) where clearly r1≠r2 and 
c1≠c2. Since rows and columns in ΔM sum to zero, these elements must exist. The elementary transfer 
is E (x, (i1, j1), (i2, j2)) where

i1 = min(r1, r2) i2 = max(r1, r2) j1=min(c1, c2) j2 = max(c1, c2) 

Figure 4. The mass tableau, from Figure 2 after an elementary mass transfer E(0.04, (1,1), (4,4))
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The sign of x depends on the relative values of r1, r2, c1, c2 and the absolute value of x depends on 
the value of ΔMr2 c2 (and the other affected elements of ΔM)

There are two possibilities for the value of ΔMr2 c2

(i)  ΔMr2 c2 = 0. In this case, |x| is the smallest absolute value of ΔMr1 c1 , ΔMr1 c2 and ΔMr2 c1
(ii)  ΔMr2 c2 ≠ 0. We choose |x| to be the smallest absolute value of ΔMr1 c1, ΔMr1 c2 , ΔMr2 c1 and ΔMr2 c2

x is positive if r1 < r2 and c1 < c2, or if r2 < r1 and c2 < c1 ; otherwise it is negative. 

Writing

*
1 1 2 2

* *

( ,( , ), ,
final

M M E x i j i j

and M M M  

it is clear that

*
1 1 2 2

*
1 1 1 1

*
1 2 1 2

*
2 1 2 1

*
2 2 2 2

,( , ),( , )

i j i j

i j i j

i j i j

i j i j

M M E x i j i j

M M x

M M x

M M x

M M x  

where at least one of *
1 1 1 2 2 1 2 2

, , ,
i j i j i j i j

M M M M  is zero, and every other element of ΔM* is the 
same as the corresponding element in ΔM.

Because x is chosen as the smallest absolute value, each of the four changed cells in ΔM* is either 
zero or has the same sign as the corresponding cell in ΔM

If 2 2
0

r c
M , then *

2 2
0

r c
M  and

*

*

2

2

pos M pos M x

neg M neg M x  

If 
2 2

0
r c

M , then *
2 2

0
r c

M  and

*

*

pos M pos M x

neg M neg M x  

Clearly in either case the sum of positive elements (equivalently, the sum of negative elements) 
decreases after the elementary mass transfer. Furthermore, |x| is a combination (using addition and 
subtraction only) of the values in the original ΔM, in which each value can be used at most once. Hence 
after repeating this process a finite number of times, we will reach the situation in which
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* *( ) ( ) 0pos M neg M  

and the sequence of elementary mass transfers will be those required to convert Minit into Mfinal

Example.

Consider converting the assignment (Table 1), into Table 2, the initial difference is

M  

0.2

0.2

0

0

  

0

0

0

0

  

0

0

0.1

0.1

  

0.2

0.2

0.1

0.1

 

which has pos(ΔM) = 0.6 i.e. the total mass to be moved is 0.6
Choosing r1=1, c1=1, r2=2, c2=4 and x=0.2 yields the positive elementary mass transfer E(0.2, 

(1,1), (2, 4)) so that

M1 = Minit + E(0.2, (1,1), (2, 4)) 

and M1 is given by Table 3.
A second (negative) elementary mass transfer E(-0.1, (3,3), (4, 4)) yields the desired result.

Mfinal = Minit + E(0.2, (1,1), (2, 4)) + E(-0.1, (3,3), (4,4)) 

The change in confidence arising from the elementary transfer

1 1 2 2
( ,( , ),( , ))E x i j i j  

Table 1. 

Minit 0.2 0.1 0.3 0.4

0.2 0 0 0 0.2

0.3 0.2 0 0 0.1

0.3 0 0 0.3 0

0.2 0 0.1 0 0.1

Table 2. 

Mfinal 0.2 0.1 0.3 0.4

0.2 0.2 0 0 0

0.3 0 0 0 0.3

0.3 0 0 0.2 0.1

0.2 0 0.1 0.1 0
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is given by

*
1 1 2 2

1 1 1 2 2 1 2 2

( , ),( , )

i j i j i j i j

conf i j i j conf M conf M

x S T S T S T S T

d  (8)

since the denominator and other terms in the numerator are not changed. The denominator d is defined 
in eq 7.

Theorem 2.

If x is positive in an elementary mass transfer, i.e. we move mass to the left within a higher row and 
to the right within the lower row, then either the confidence increases or is left unchanged.

Proof.

Since i2 > i1 and j2 > j1 we have

2 1 2il i j j
S S andT T  

The sets Si2 and Tj2 can be partitioned as follows

2 1 2 1

2 1 2 1

( )
i i i i

j j j j

S S S S

T T T T  

so that

2 1 1 1 2 1 1

1 2 1 1 1 2 1

2 2 1 1 1 2 1 2 1 1 2 1 2 1

( )

( )

( ) ( )

i j i j i i j

i j i j i j j

i j i j i j j i i j i i j j

S T S T S S T

S T S T S T T

S T S T S T T S S T S S T T  

and we can simplify eq (8) to

Table 3. 

M1 0.2 0.1 0.3 0.4

0.2 0.2 0 0 0

0.3 0 0 0 0.3

0.3 0 0 0.3 0

0.2 0 0.1 0 0.1
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2 1 2 1

1 2 2 2

( ) ( )
(( , ),( , )) i i j j

x S S T T
conf i j i j

d  

Clearly for positive x this is zero or positive, so the confidence will either increase or be un-
changed.

Corollary 2.1.

If x is negative (i.e. we move mass to the right within the higher row and to the left within the lower 
row) then the confidence will either be unchanged or will decrease.

By Theorem 1, any compound transfer of mass may be re-written as a sequence of elementary mass 
transfers. The effect of a compound mass transfer on the rule confidence is dependent on the sets involved 
in the elementary mass transfers.

In Figure 5, the change in confidence is

2 1 2 1 3 2 3 2

1 2conf M conf E conf E

x S S T T x S S T T

d d  

which can clearly be positive, negative or zero depending on the sets S1, S2, S3 and T1, T2, T3.
On the other hand, the compound transfer in Figure 6 has a change of confidence

3 1 3 1 3 2 3 2

3 2 2 1 2 1 3 2 2 1 2 1

1 2conf M conf E conf E

x S S T T x S S T T

d d

x S S T T S S T T S S T T

d
 

Figure 5. Combination of a positive and negative elementary mass transfer. Unless we know the sets Si 
and Tj it is not possible to predict whether the overall result leads to an increase or decrease in confi-
dence
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which is clearly always positive (for positive x).

Corollary 2.2.

From eq 8 and the example in Figure 6, we can see that that for any assignment, the maximum in-
crease in confidence will be obtained by moving as much mass as possible to the top left corner of the 
tableau. The increase in confidence in this case is

1 1

, 1, 1 , ,
S Tn n

S T

x S S T T
conf E x n n

d  

which is larger than any other increase obtained by an elementary mass transfer of x since the cardinality 
of the intersection is the maximum possible in the tableau.

Theorem 3.

The mass assignment leading to maximum association confidence is

, , , 0, ,
i j i i j j j i

S T S S T T T S
M i j min m m max min m m  (9)

Proof.

For an assignment that maximises rule confidence, it must be impossible to choose i1 < i2, j1< j2 
such that there is a positive elementary mass transfer E(x, (i1, j1), (i2, j2), i.e. it must be impossible to 
add mass x to (i1, j1) and (i2, j2) and subtract mass x from (i1, j2) and (i2, j1) whilst maintaining row 
and column constraints.

This is guaranteed if it is impossible for any cell (i, j) in the maximum assignment to be at the top 
left or bottom right corner of a positive elementary mass transfer – i.e.

EITHER (condition 1a) all cells to the right of (i, j) in row i (i.e. cells (i, j+1) to (i, nT)) contain zero 
mass OR (condition 1b) all cells below (i, j) in column j (i.e. cells (i+1, j) to (nS, j)) contain zero 
mass

Figure 6. Combination of a positive and negative elementary mass transfer which must lead to an in-
crease in confidence
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AND
EITHER (condition 2a) all cells to the left of (i, j) in row i (i.e. cells (i, 1) to (i, j-1)) contain zero mass 

OR (condition 2b) all cells above (i, j) in column j (i.e. cells (1, j) to (i-1, j)) contain zero mass.

Lemma 3.1.

Clearly if ( )( , ) i
s

M i j m  then all mass available in the row is in cell (i, j) and there is no further mass 
anywhere in row i, satisfying (1a) and (2a). Hence (i, j) cannot be the top left or bottom right corner of 
a positive elementary mass transfer.

Lemma 3.2.

Similarly if ( )( , ) j
T

M i j m  there is no further mass anywhere in column j, satisfying (1b) and (2b) 
and (i, j) cannot be the top left or bottom right corner of a positive elementary mass transfer.

We proceed by strong induction. It is possible to index cells in the tableau such that the index for cell 
(i, j) is larger than the indices of cells (i-1, j), (i-1, j-1) and (i, j-1). For example, one can start at the top 
left corner and number cells sequentially across the first row, then across the second row etc as shown 
in figure 7. Strong induction allows us to show that the mass in cell (i, j) leads to maximum confidence 
assuming that the masses in all cells with lower index - specifically, cells in the blocks from (1, 1) to (i-1, 
j-1), (1, 1) to (i, j-1) and (1, 1) to (i-1, j) - are allocated in a way that leads to maximum confidence.

Clearly for the first cell, (1, 1), equation 9 reduces to

Figure 7. One possible sequential numbering of the mass tableau such that the index for cell (i, j) is 
larger than the indices of cells (i-1, j), (i-1, j-1) and (i, j-1)

Figure 8. Diagrammatic representation of case 1 – equal mass in rows above and columns to the left 
of(i, j) is allocated to give maximum confidence
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, ,
i j

S T
M i j min m m  

and by lemma 3.1 or 3.2, this corresponds to the maximum assignment.
For an arbitrary cell (i, j), the sum of mass in the rows 1 to i-1 is given by

1
( ) ( )

1

1
i

k i
s s

k

m x
 

and the sum of mass in the columns from 1 to j-1 is

1
( ) ( )

1

1
j

k j
T T

k

m x
 

By the inductive hypothesis, the mass in cells (1, 1) to (i-1, j-1) is allocated in a way that leads to 
maximum confidence, i.e.

11
( ) ( )

1 1

, min 1 ,1
ji

i j
s T

p q

M p q x x
 

We must consider five possible cases, labelled 1, 2(i), 2(ii), 3(i), 3(ii) in Figures 9 and 10.

Case 1.

If

( ) ( )1 1i j
s T

x x  

then equation 9 reduces to

Figure 9. Diagrammatic representation of case 2 (i) – mass in rows above i and columns including and 
to the left of j is allocated to give maximum confidence; no mass in column j is available for cell (i, j)
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1 1
1,1 min ,

S T
M m m

 

and by lemma 3.1 or 3.2, this corresponds to the maximum assignment.

Case 2. If

( ) ( )1 1i j
s T

x x  

then all mass in columns 1 to j-1 will be allocated in cells (1, 1) to (i-1, j-1) and there will be no mass 
in cells (i, 1) to (i, j-1), i.e. condition 2a is satisfied

By the inductive hypothesis, we assume that mass in cells (1, 1) to (i-1, j) is allocated in a way that 
that leads to maximum confidence. The total mass in these cells is

( ) ( ) ( )min(1 , 1i j j
S T S

x m x  

so that (case 2(i)) if

( ) ( ) ( )1 1i j j
S T T

x m x  

then all mass in column j will be allocated in some or all of cells (1, j) to (1, j-1) and there will be no 
mass in cell (i, j) or in any cell below it in column j, satisfying condition (1b). Since conditions (2a) and 
(1b) are satisfied, this allocation leads to maximum confidence. Alternatively (case 2(ii)) if

( ) ( ) ( )1 1i j j
S T T

x m x  

then mass will be allocated in all cells from (1, j) to (1, j-1) and there will be non-zero mass in cell (i, 
j). Eq 9 reduces to

Figure 10. Diagrammatic representation of case 2 (ii) – mass in rows above i and columns including 
and to the left of j is allocated to give maximum confidence; mass in column j is available for cell (i, j) 
and possibly cells lower in the column.
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( ) ( ) ( ) ( )( , ) min ,i j j i
S T T S

M i j m x x x  

Clearly if

( )( , ) i
S

M i j m  

then the allocation to cell (i, j) satisfies conditions (1a) and (2a) by lemma 3.1.Alternatively if

( ) ( ) ( )( , ) (j j i
T T S

M i j m x x  

then this completes the allocation of mass in column j and there will be no further mass in cells (i+1, j) 
to (nS, j) satisfying condition (1b)

In a similar manner (case 3) if

( ) ( )1 1i j
S T

x x  

then all mass in rows 1 to i-1 will be allocated in cells (1, 1) to (i-1, j-1) and there will be no mass in 
cells (1, j) to (i-1, j), i.e. condition 2b is satisfied. We must consider case 3(i)

( ) ( ) ( )1 1j i i
T S S

x m x  

which satisfies condition 1a and case 3(ii)

( ) ( ) ( )1 1j i i
T S S

x m x  

which also satisfies condition 1b
Hence, for all i and j, if the composite mass assignment obeys eq 9, it is impossible to increase rule 

confidence by an elementary mass transfer involving cell (i, j).
NB eq 9 leads to a maximal assignment - there may be other assignments leading to the same con-

fidence, as illustrated by the example in figure 11 which shows the assignment using eq 9 leading to 
maximum confidence 0.68, and a second assignment leading to the same confidence. In this case,

Figure 11. (i) left - assignment Mmax produced by eq 9, leading to the maximum confidence of 0.68 (ii) 
on the right, a different assignment, M2, giving the same confidence
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Mmax = M2 + E(0.1, (1,1), (2,2)) 

where the elementary mass transfer leads to no change in the confidence.

Theorem 4.

The allocation leading to minimum association confidence is

, , , 0, 1 , 1

, , 0, 1, 1

i j i j i i j i i j

S T S T S S T S S T

i j i j j i i j

S T S T T S S T

M i j min m m max min m m m m

min m m max min m m
  

 (10)

Proof.

Similar to the proof of theorem 3. For the induction, cells are indexed from the bottom left corner; 
the total mass in rows i+1 to nS is given by

( ) ( ) ( )

1

Sn
k i i

S S S
k i

m x m
 

Membership Function for Fuzzy Confidence

We define the membership function in terms of the quantity of mass which must be moved (relative to 
the least prejudiced distribution). This can be justified by reference to the Hartley measure or Shannon 
entropy, and will be covered more fully in a future paper.

The least prejudiced distribution is our reference point, and the resultant confidence is taken to have 
membership = 1. Any other assignment of mass requires one or more elementary mass transfers relative 
to the LPD, and we are particularly interested in the mass assignments corresponding to minimum and 
maximum confidence, MMIN and MMAX. We define a fuzzy interval C representing the confidence such 
that

1
LPD

C

pos M M
conf M

N  

where
Because the membership function varies linearly with the amount of mass moved, it is triangular and 

can be calculated quickly by considering the end points. We note that it is possible for the membership 
function to be discontinuous at one end (i.e. to drop abruptly to zero).
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Algorithms and Complexity

We outline the conceptual algorithm needed to calculate the fuzzy intervals. Inputs are assumed to be in 
the appropriate order as described in the section “Closed World Mass-based Association Rules”.

The algorithm calculates minimum, expected and maximum values of the cardinality of the intersec-
tion between two fuzzy categories using a mass assignment representation. It is thus also suitable for 
calculating supports for association rules. The quantity can be calculated once and stored, so that a single 
pass through a database is adequate - this is an important feature when treating very large relations.

Functions mmax and mmin return the values specified by eqs 10 and 9 respectively, and intCard 
returns the cardinality of the intersection

Calculation of fuzzy confidence interval

Inputs: MS[1.....NS],  MT[1.....NT] source, target mass assignments 

S[1 … NS], T[1 … NT], source, target level sets 

LS[1 … NS], LT[1 … NT], sets of distinct memberships in source, target  

Output: a triangular fuzzy number < v1/m1, v2/m2, v3/m3> 

lpdConf = 0   // stores the point value association confidence 

minConf = 0   // stores the minimum value of association confidence  

maxConf=0    // stores the  maximum value of association confidence 

minDiff = 0   // stores pos (Mmin - Mlpd)maxDiff = 0   // 

stores pos (Mmax - Mlpd) 

FOR (i = 1 to NS) 

 FOR (j = 1 to NT) 

  lpdConf = lpdConf + MS[i] * MS[j] * intCard(S[i], T[j] 

  minConf = minConf + mmin(MS[i], LS[i], MT[j], LT[j])* intCard(S[i], T[j] 

  maxConf = maxConf + mmax(MS[i], LS[i], MT[j], LT[j])* intCard(S[i], T[j] 

  IF    mmin(MS[i], LS[i], MT[j], LT[j])  > MS[i] * MS[j] 

  THEN   minDiff = minDiff + mmin(MS[i], LS[i], MT[j], LT[j])  - MS[i] * MS[j] 

  ENDIF 

  IF    mmax(MS[i], LS[i], MT[j], LT[j])  > MS[i] * MS[j] 

  THEN   maxDiff = maxDiff + mmax(MS[i], LS[i], MT[j], LT[j])  - MS[i] * MS[j] 

  ENDIF 

 ENDFOR 

ENDFOR 

IF maxDiff > minDiff  

THEN norm = 1-maxDiff 

ELSE norm = 1-minDiff 

ENDIF 

RETURN (< minConf/(1-minDiff/norm), lpdConf / 1, maxConf/(1-maxDiff/norm) >) 

Note that by making use of the nested structure of the sets, it is not necessary to calculate the intersec-
tion at every step as is suggested by the algorithm above. Furthermore, the algorithm can be re-written so 
that there is a single iteration over elements of the intersection, instead of two iterations over source and 
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target sets. This leads to an overall complexity of O((n+m) log (n+m)). Further details of the algorithm 
and the more efficient implementation will be discussed in a future paper.

Experiments

The algorithm has been implemented in Java and its performance has been investigated using a macbook 
pro running JDK 6 and Mac OS X 10.5.5. The precise timings are not important, but are intended to 
give an idea of the scaling behaviour.

The first experiment takes source and target sets defined over a universe of N elements and compares 
the execution time (y axis) as N increases (x axis) to the theoretically predicted behaviour. As shown by 
Figure 12, good agreement is obtained, with a constant execution overhead.

The second experiment shows that the fuzzy interval calculation is well-behaved in cases where our 
earlier algorithm gave very wide intervals.

Taking S = [x1/1, x2/0.9, x3/0.9, … xN/0.9] and T= [x1/0.9, x2/1, x3/0.9, … xN/0.9], where all interme-
diate elements also have membership 0.9, and varying N leads to the results shown in Figure 13. Clearly 
the method returns reasonable results in these cases - note that the point value is very close to the lower 
limit of the confidence, so that the triangular membership function is truncated at its lower limit.

Figure 12. Scaling behaviour of the algorithm, showing how execution time (y axis) increases as the 
size of the universe(x axis) increases. The lower line shows theoretical behaviour, the upper line is the 
actual behaviour. Log scales are used.
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Finally, we have applied the algorithm to calculation of associations in integrated taxonomic data-
bases of terrorist incidents, as described in (Martin and Shen, 2008). This work integrated data from 
several sources, and recategorised it according to various taxonomic views. For example, where data is 
categorised according to country, we might prefer to look at fuzzy regions such as the “Middle East” or 
“in/near Iraq”. Another fuzzy taxonomic view uses fuzzy categories based on the casualty levels, clas-
sified here as low, medium, high, very-high.

Various associations can be extracted by consideration of fuzzy categories in different taxonomies. 
Although the vast majority of results from that study led to reasonable intervals, there were a few cases 
in which intervals were quite large. As can be seen from Figure 14, much smaller intervals were obtained 
under the closed world method. In these plots (and those shown in Figure 13), the interval for closed 
world rules indicates the extremes of the fuzzy association confidence, with a symmetric triangular 
membership function (possibly truncated on one side). The interval for open world calculations is a 
standard interval, i.e. has membership 1 throughout its range.

sUMMARY

Starting from the premise that fuzzy results should not be prematurely converted into crisp values, we 
have developed a method which returns a fuzzy confidence for the association between two fuzzy sets, 

Figure 13. Confidence intervals and point values for nearly identical source and target sets
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interpreted conjunctively. To our knowledge, this is the only method that generates a fuzzy confidence 
value for association rules. The method was developed in the context of hierarchical analysis but is 
suitable to calculate the fuzzy association between any pair of fuzzy sets.

It has been implemented using an algorithm having logarithmic complexity in the number of elements 
in the fuzzy sets, and experiments show that the implementation scales as expected. In particular, it is 
practical for use on very large fuzzy sets and relations.
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Figure 14. Confidence intervals and point values for associations between the fuzzy categories in/near 
Iraq and Low casualty levels (top) and Medium casualty levels (bottom). The fuzzy confidence (closed 
world plots, right hand side) gives a much tighter interval than the open world calculations (left hand 
side).
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INTRODUCTION

Scalability refers to different facets of an algorithm. For data analyzing tools, there are two main interests: 
first, runtime or storage scalability and second, result quality scalability. Scalability in result quality is 
of interest i.e. for an algorithm that analyses continuous systems that need to be discretised. Another 

AbsTRACT

The application of fuzzy cluster analysis to larger data sets can cause runtime and memory overflow 
problems. While deterministic or hard clustering assigns a data object to a unique cluster, fuzzy clus-
tering distributes the membership of a data object over different clusters. In standard fuzzy clustering, 
membership degrees will (almost) never become zero, so that all data objects are assigned to − even 
with very small membership degrees − all clusters. As a consequence, this does not only demand higher 
computational and memory power, it also leads to the undesired effect that all data objects will always 
influence all clusters, no matter how far away they are from a cluster. New approaches, modifying the 
idea of the fuzzifier, have been developed to avoid the problem of nonzero membership degrees for all 
data and clusters. In this chapter, these ideas will be combined with concepts of speeding up fuzzy clus-
tering by a suitable data organization, so that fuzzy clustering can be applied more efficiently to larger 
data sets.
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example would be an iterative algorithm to find an approximate solution because the addressed problem 
is too complex to solve it correctly. Runtime and storage scalability in contrast is an expression for the 
use of resources (like computation time and local memory) necessary to perform the algorithm. Often it is 
possible to increase the speed of an algorithm using more storage space and vice versa. If both resources 
are limited and crucial to an application, a trade-off between both is not sufficient.

As for prototype-based clustering, the above mentioned scalability in accuracy of the result depends 
on the definition of the term ‘cluster’. In this paper, a cluster is defined as a group of data objects in a 
continuous feature space. The data objects of one group are supposed to be as similar as possible and the 
data objects of different groups should be as different as possible. If this holds, a group of data objects 
is called a cluster. The standard Fuzzy c-Means algorithm (FcM) (Bezdek, 1981) may fail to meet these 
requirements if there are groups of data objects in close proximity, that differ in the density of their data 
objects. This lack of quality is a result of the fact that the Fuzzy c-Means algorithm tends to calculate 
a partition of data objects with equal number of data points. The reason for this is that each data point 
influences all prototypes. Dense groups of data points attract all prototypes, regardless whether there 
is a prototype in the centre of this dense cluster or not. Klawonn and Höppner (2003a) showed that 
this effect occurs due to the calculation of fuzzy membership values. An alternative fuzzifier function 
which explicitly allows membership values of 0 or 1 provides an update scheme which localizes the 
influence of prototypes and provides a better way of expressing the original idea of clusters. This idea 
is presented in Section 4.

The two above mentioned modifications to improve the quality of the clustering result and speeding 
up the calculation process lead to an interesting combination. Since an alternative fuzzifier function 
includes areas where the membership value of all data objects is 0 for a prototype, neighbourhood infor-
mation can be used to save computation time. The combination of these two ideas will be presented in 
this chapter. The first section contains a short introduction to the well known Fuzzy c-Means algorithm, 
mainly to clarify the notation and to found a good basis for the following sections. Section 4 is dedi-
cated to the changed fuzzifier function and in Section 5, the hierarchical data structure that contains the 
neighbourhood information is presented. In Section 6, this information is used to calculate membership 
values for sets of data objects. We finish the chapter with some experimental results and close it with 
the conclusions in Section 8.

RELATED WORK

This work is related to two major fields of fuzzy clustering. In the first field, the concern is to increase 
the clustering quality or to adapt FcM to a specific problem because FcM does not generate the desired 
results. The first approach by Ruspini (1969) of Fuzzy c-Means only considered a fuzzifier value of 2. 
This approach was extended by Dunn (1973) to an adjustable value which influences the softness of the 
fuzzy approach. Later, several approaches were made to change the behaviour of FcM by changing the 
fuzzifier function i.e. (Klawonn & Höppner, 2003a; Klawonn & Höppner, 2003b).

The second large field this work is related to is the concern how to apply an FcM algorithm on very 
large data sets especially if only limited calculation resources are available. In the past, this was a much 
more important issue than it is today. For this work, we consider that the data set can be loaded fully 
into the local memory of the computer which provides random access to the data. Our main concern 
will be to adapt FcM in a way that reduces the runtime of the algorithm.
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Since Fuzzy c-Means is an iterative algorithm, there are in principle three ways to reduce the runtime 
complexity: a reduction of the data set size via sampling (Cheng, Goldgof & Hall, 1995; Hathaway & 
Bezdek, 2006; Eschrich, Ke, Hall & Goldgof, 2003; Shankar & Pal, 1994) a reduction of the number 
of iteration steps (Hershfinkel & Dinstein, 1996), and a faster calculation for each single step (Cannon, 
Dave & Bezdek, 1986). Höppner (2002) presented a way of reducing the complexity of one iteration 
step for large sets of data objects by calculating the membership value for sets of data objects that are 
close together. This is based on a data structure which contains neighbourhood information which we 
will present in Section 5. A similar approaches are presented by in (Pelleg & Moore, 1999) and (Smellie, 
2004) for Hard c-Means. A more geometric approach is used in (Elkan, 2003) also for Hard c-Means. 
These three approaches benefit directly from the fact, that only the closest prototype to a data object 
needs to be considered for the clustering process. In a sense, we do something similar in our approach, 
the difference is, that we consider a set of closest prototypes.

FUZZY C-MEANs ALgORITHM (FCM)

FcM is an algorithm to cluster data sets in a real feature space. The goal is, to find (fuzzy) clusters. In 
this section, a brief mathematical description of FcM is presented.

Definition 1 (Fuzzy Set). Let M be a set and m : [0,1]M ®  be a continuous function, then μ is called 
fuzzy set on M and for x ∈ M is μ(x) referred as the membership degree of x to μ.

Definition 2 (Data). A normed vector space ( , )V ×  is called feature space and a finite, non-empty 
set X x x V

n
= { , , }

1
 Ì  is called data set in V with n n³ Î1, N  data objects. A subset W XÌ  is 

called a cloud of data objects, if all objects in W are considered to belong together.
It is not really necessary that X is a set i.e. that X consists of n different data objects. In our notation, 

we will always use X is an indexed set and we allow objects with different indices to be equal.
Definition 3 (Fuzzy Cluster). Let V be a vector space and X VÌ  a data set in V with n data objects. 

A fuzzy set m : [0,1]X ®  is called fuzzy cluster, if μ is defined by an algorithm. A finite, not empty set 
of fuzzy clusters 

1
= { , , : [0,1]}

c
X  is called fuzzy partition of X, iff for j = 1,…,n holds:

1 = ( ).
=1i

c

i j
xåm

 

The difference between a cloud and a cluster is the entity which defines it. A cloud is specified by a 
human while a cluster is defined by an algorithm. While it is relatively easy for a human to find clouds 
in data sets with up to 3 dimensions, it is almost impossible for higher dimensions because it is harder 
to visualize. For a computer, the dimension is less important and it can in principle process data of 
arbitrary dimension. When designing clustering algorithms, the goal is to achieve a match between the 
clusters derived by the algorithm and the clouds defined by a human. The point here is that the shape of 
clouds that ought to be found by the algorithm influences the type of algorithm that needs to be used. 
FcM belongs to the family of prototype based clustering algorithms. That means clouds have a convex 
form and can be represented by a vector that is called prototype.

Definition 4 (Prototype). Let V be a vector space and X VÌ  be a data set and m : [0,1]X ®  be a 
fuzzy cluster. A vector p ∈ V is called prototype of μ, if p captures the main characteristics of μ.
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For FcM, clouds are considered to be shaped like hyper spheres with the highest density in the middle 
of a cloud and hence the clusters are defined accordingly: the prototype of a cluster is the centre of the 
hyper sphere. In the Fuzzy c-Means algorithm itself, the prototypes are used to calculate the fuzzy sets 
of data objects. The goal of Fuzzy c-Means is to find a fuzzy partition of a data set X into c fuzzy clusters 
so that the prototypes represent the data objects as well as possible.

Definition 5 (Fuzzy c-Means Clustering (FcM)). Let ( , )V ×  be a normed vector space, 
X x x V

n
= { , , }

1
 Ì  a data set, 1

= { , , }
c

  a fuzzy partitioning with the corresponding proto-
types P p p V

c
= { , , }

1
 Ì  and the membership matrix U c nÎ ´[0,1] : u x

ij i j
= ( )m  i c= 1.. , j n= 1.. . 

Let w Î R , w > 1  be the fuzzifier, L = { , , }
1

l l

n
Ì R  some variables. Finally, let d p x

ij i j
= - , 

i c= 1.. , j n= 1..  denote the distance of prototype i to data object j.
The objective functionJ(X,U,P) is to be minimized under the constraint 

i

c

ij
u

=1
= 1å , j = 1..n which 

is expressed with a Lagrange extension l U( , )L  of J:

L X U P u d u
ij ij

j

n

i

c

j ij
i

c
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( , , , )L = + -
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è
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11 11

1
nn

å  (1)

A Fuzzy c-Means clustering is the fuzzy partition Γ in a (local) minimum of U and P.
If a (local) minimum in U and P is reached, the partial derivatives in all variables of U and P van-

ish. This leads to an iterative update scheme for the objective function J which is based on the idea of 
gradient descent. We assume in this paper, that the Euclidean distance is used for the function d. All 
algorithms will be applicable as well for a different (global) distance function. Let t Î N  be a counter 
for the iteration step, then the variables are updated as follows:
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This update scheme is not applicable if one data object is identical to at least one prototype. In the 
unlikely event that such a situation occurs, the update for uij is changed to:

u I
i I

else
ij
t

j
j+

Î
ì

í

ïïïï

î
ïïïï

1 =

1
| |

,

0 ,  
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with I k x p
j j k
= { : = }Î N . For the sake of simplicity, it is assumed that such a situation does not 

appear.
The iteration process is started by some sort of initialization for the prototypes, which can be done 

by using a random process or a more sophisticated method. The iteration is stopped when the sequence 
of membership values converges, i.e. U Ut t

M

+ -1 < e  for some ε > 0 and ×
M

 is the maximum norm 
for matrices. For further information on the family of fuzzy clustering algorithms we refer the reader to 
(Bezdek, Keller, Krishnapuram & Pal, 1999; Höppner, Klawonn, Kruse & Runkler, 1999).

ALTERNATIvE FUZZIFIER FUNCTION

The idea of using fuzzy clustering instead of crisp clustering is that it might not be possible to clearly 
decide whether a data object belongs to just one cluster. For data objects that have no clear nearest pro-
totype, a degree of membership is very useful to express that the clustering algorithm is unsure to which 
prototype the data object belongs. Consider the classical example in Figure 1. In a crisp clustering i.e. 
Hard c-Means, the data object y would be assigned uniquely to one of the two clusters. Fuzzy c-Means 
solves that problem by assigning a data object only to a specific degree to a cluster, so that y would be 
assigned by around 0.5 to both clusters.

As plausible as the concept of a fuzzy cluster is for data objects that can not be assigned uniquely, as 
implausible it is for data objects that are very close to one prototype. Assuming that no data object matches 
exactly a prototype, all data objects belong to some degree to every cluster. Consider for example data 
object x in Figure 1, no matter how close it is to the left prototype, it will always have a strictly larger 
than 0 membership value to the right prototype. In other words, all data objects influence all prototypes, 
so that all prototypes are drawn slightly to the centre of gravity of all data objects, which is not very 
plausible. The effect increases with the number of dimensions of the data set.

Figure 1. Example of a data set with 2 clusters. The Prototypes are represented as filled circles



307

Fuzzy Cluster Analysis of Larger Data Sets

Hard c-Means clustering is plausible for data objects that are very near to exactly one prototype and 
FcM is plausible for data objects that are between at least two prototypes. The question is, why is FcM 
not plausible for data objects that are very near exactly one prototype?

Understanding the Fuzzifier

Klawonn and Höppner (2003a) answered the above formulated question by examining a different objec-
tive function which depends on a continuous, strictly increasing function h : [0,1] [0,1]®  with h(0) = 
0 and h(1) = 1 instead of simply a fuzzifier value:

J
h

i

c

j

n

ij ij
X U P h u d( , , ) = ( )

=1 =1

2åå
 

Hard clustering can now be expressed by defining h as identity or FcM by using an exponential func-
tion h u u( ) = w , w > 1 . Consider the special case of two clusters like in Figure 1. Jh must be minimized 
for every data object and for xj in particular, so that the term

J x u h u d h u d

h u d h u d
min j j j j j j

j j j j

( , ) = ( ) ( )

= ( ) (1 )
1 1 1

2
2 2

2
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2
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must be a minimum. A necessary condition for a minimum is that the derivative of ¶
¶u
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with h′ is the derivation of h. That leads to
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d

d
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( )
= .1

2

2
2

1
2

 (4)

This means, the ratio of the (transformed) membership value gradients must correspond to the ra-
tio of the squared distances. In the case of h u u( ) = w , the derivative of h vanishes if the membership 
value is zero umin = 0: h′(0) = 0. On the other hand, the derivative for umax = 1 is always larger than zero: 
¢ × -h (1) = 1 = > 01w ww . Because the ratio of Equation (4) still holds, there are no corresponding dis-

tances that could cause a crisp membership assignment for the FcM algorithm. For this reason, every 
data object influences all prototypes as long as it is not identical to one of the prototypes.

Crisp c-Means has a different problem, in this case h is the identity: h(u) = u which leads to a deriva-
tive of h′(u) = 1, ∀u. This is not applicable on the update scheme of FcM, since Equation (4) only holds, 
if the distances are equal. So the update function cannot be applied in the above specified way. Still the 
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goal is to minimize J and since only membership values of 0 and 1 are allowed, the membership corre-
sponding to the closest prototype is set to 1 and 0 otherwise. Obviously, there are no fuzzy membership 
values, even if the data objects have almost identical distance to all prototypes.

To solve both problems, the fuzzifier function h must be chosen in a way that h′(0) > 0 and ¢ ¢h u h u( ) < ( )
1 2

 
for all 0 < 1

1 2
£ £u u . The function family of h u u u( ) = (1 )2a a+ - , α ∈ [0.1] satisfies this property. 

The lower bound of the ratio of the membership value gradients is

¢
¢

-
+ -

-
+

h
h

(0)
(1)

=
1

2 (1 )
=

1
1

.
a

a a
a
a  

This means, that the ratio of squared distances must exceed this value or the membership values are 
set to their limits of 0 or 1 respectively. So this fuzzifier function behaves like Hard c-Means if the ratio 

of squared distances is below 1
1
-
+
a
a

 and like FcM with a changed fuzzifier function otherwise. Because 

this is a very intuitive property, h is parameterized by using b a
a

=
1
1
-
+

 from which follows:

a
b
b
b
b

b
b

=
1
1

( ) =
1
1

2
1

.2

-
+
-
+

+
+

h u u u
 

Fuzzy Clustering with Polynomial Fuzzifier Function

Based on the idea above, the update process for fuzzy clustering must be adapted.
Definition 6 (FcM with Polynomial Fuzzifier Function). Let ( , )V ×  be a normed vector space, 

X x x V
n

= { , , }
1
 Ì  a data set, 1

= { , , }
c

  a fuzzy partitioning with the corresponding proto-
types P p p V

c
= { , , }

1
 Ì  and the membership matrix U c nÎ ´[0,1] : u x

ij i j
= ( )m  i = 1..c, j = 1..n. 

Let h : [0,1] [0,1]®  with h u u u( ) =
1
1

2
1

2-
+

+
+

b
b

b
b

, b Î [0,1]  be the polynomial fuzzifier function, 

L = { , , }
1

l l

n
Ì R  some variables and d p x

ij i j
= - , i = 1..c, j = 1..n denotes the distance of pro-

totype i to data object j.

The objective function Jh(X,U,P) is to be minimized under the constraint 
i

c

ij
u

=1
= 1å , j = 1..n which 

is expressed by a Lagrange extension l U( , )L  of Jh:
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As before, for all valid solutions, the Lagrange extension l U( , )L  is equal to zero. As for FcM, L is 
w.r.t. uij and pi are computed to obtain the update formula:
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The parameter λj can be calculated, by using the constraint, 1 =
=1i

c

ij
uå . Mathematically, the 

Lagrange extension transfers the optimization problem into a higher dimensional space and restricts it 
there to a hyper plane of valid solutions. Additionally, if Equation (6) is used without taking into ac-
count that uij

Î [0,1], it will produce membership values that are not restricted to [0,1]. Because the 
sum of all membership values is fixed at 1, it is enough to ensure that no membership value is strictly 
less than zero. In other words, the membership values that are strictly less than zero are set to zero and 
the remaining membership values are reweighted to gain a sum of membership values of 1. Suppose it 
is known for which membership values Equation (6) gives values greater than zero and that the number 
of this membership values is ĉ :
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which leads to the final equation for uij:

u
c

d

d

ij

k
u
kj

c
ij

kj

=
1

1
1 ( 1)

=1
0

2

2

-
+ -

-

æ

è

ççççççççççççççççç

ö

ø³

å
b

b
b

ˆ

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷  (7)

At the first glance, this seems to be circular reasoning. And indeed, it is necessary to know for which 
prototypes the membership value is larger than zero to calculate the membership values. But there is a 
possibility to solve this problem using the result in Lemma 7 and a sequence of tests.

Lemma 7 (Monotonicity of Membership Values). Let the V, X, P, U, Λ, h, β and dij like in Defini-
tion 6, then for each data object xj, j = 1..n and pair of prototypes pi and pk, 1 ,£ £i k c , it holds:
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0 ¹ ³ Þ £u u d d
ij kj ij kj  (8)

d d u u
ij kj ij kj
£ Þ ³  (9)

Proof. Because the membership values of the data objects do not depend on each other, it is enough to 
consider just one data object xj. Also consider for a moment that the membership values are not restricted 
to the interval [0,1]. Then Equation (6) holds for all prototypes. Since λj and β are constants, it is easy 
to see that the membership values are monotonous in the distance values. Because of the restriction to 
the [0,1]-interval, all prototypes with potential membership values less than 0 are excluded from the 
calculation process and their membership value is set to 0. That means, the clustering process is done 
with less prototypes than it would be possible. But because their membership value is set to 0, they 
have no influence on the value of the objective function J. Due to the monotonicity of Equation (6), that 
means that prototypes with a membership value larger than 0 are closer to xj than all others. The same 
holds for a membership value of 1: If there is a prototype to which xj has a membership of 1, all other 
membership values are 0, hence they are further away.

For the first statement, there are two cases:

If • uij > ukj = 0: Then pk is excluded from the calculation and since pi is not excluded, it follows dij 
< dkj.
If • 1 0> ³ >u u

ij kj
: In this case, (6) holds for both values and due to its monotony, it follows dij 

≤ dkj.

The second statement holds, independently of the excluding process. If pi is excluded, so is pk and 
both membership values are set to 0. If only pk is excluded, uij > ukj by construction. And if none of them 
is excluded, Equation (6) holds for both prototypes.

From this lemma, it can be concluded that if Equation (6) for a prototype holds, then it holds for all 
prototypes that are closer to the data object. Even more importantly, it means: if there is one prototype 
for which (6) does not hold, then for all prototypes further away, it does not hold either.

To break the circular reasoning in Equation (7), it is necessary to know the set of prototypes that are 
involved in the calculation of the membership value. With Lemma 7, it is already known that the set of 
prototypes can be split into two subsets, according to their distance to xj, hence the first step is, to sort 
the prototypes w.r.t. the distance to the considered data object. The second step is to find that prototype 
for which Equation (7) still holds, but no prototype further away can be added to the selection. Let ϕ be 
a permutation of (1…c) so that d d

i j c jf f( ) ( )
£ £  holds. Due to Lemma 7 all membership values to the 

prototypes p p
cf f(1) ( 1)

, ,

ˆ-  with d d
i j c jf f( ) ( )

<
ˆ  are greater than 0. Hence, it is sufficient to test whether 

u
c jf( )ˆ

 is greater than 0:
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The test can be done by successively increasing c  until the test fails. Let ĉ  be the highest index for 
which the test was successful. Note that ĉ  has to be calculated for each data object individually, hence 
it might be helpful to consider ĉ  as indexed variable ĉ

j
. Furthermore, it needs to be recalculated in each 

iteration, so that an iteration variable t Î N  is useful:
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for j = 1..n.
Finally, Equation (7) is slightly modified and extended by an iteration variable t Î N :
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The update function for the prototypes does not change much to the one in FcM:
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Figure 2 illustrates the effect of the polynomial fuzzifier function. As it can be seen, the clusters are 
detected very well and data objects very close to a prototype are assigned with membership degree of 1. 
Data objects with no clear nearest prototype are clustered softly. It is worth to point out, that the proto-
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type positions are almost identical to the ones from FcM on the left hand side picture. The polynomial 
fuzzifier function can be of great use if there are different dense clusters or clusters of different number 
of data objects. For more detailed analyses of clustering with polynomial fuzzifier function, see for 
example (Borgelt, 2005; Klawonn & Höppner, 2003a).

NEIgHbOURHOOD REPREsENTATION OF DATA

The approach of Höppner (2002) reveals that it is not necessary to calculate the membership value for 
each pair of data object and prototype separately, because the membership values of close data objects 
might not differ significantly.

Consider the example from the beginning, Figure 1 with normal FcM again. The data objects near 
the left prototype do not have significant influence on the position of the right prototype. In fact, their 
exact position is not of much interest for calculating their membership value to the right prototype. FcM 
is an iterative algorithm, which means, it has a termination test. This test might be U Ut t

M

+ -1 < e  
for some ε > 0 and ×

M
 the maximum norm for matrices as described in Section 3. The value of the 

maximum norm U U u ut t

M
i c j n ij

t
ij
t+ +- -1

=1.. , =1..
1= (| |)max  is the largest difference of all membership 

values between two iteration steps. Since the algorithm terminates if the largest difference in member-
ship values is below ε, no difference in membership values smaller than ε is of interest to the calculation 
process of FcM. Using this tolerance, it is possible to consider groups of close data objects as if they all 
are located at the same position.

Again, consider example 1. The circle around x denotes the space in which x can be moved so that the 
difference in membership values to the right prototype is below ε. This means, all data objects within the 
circle can be considered to be located at position of x and for none would be the difference in member-
ship values towards the right prototype above ε. This gives a basic idea, how to save computation time 

Figure 2. The same data set, clustered with FcM (left) and with polynomial fuzzifier function (right). The 
‘tails’ of the prototypes represent the path they took during the clustering process and the large enclosed 
areas on the right hand side are the convex hulls of all data objects with a membership value of 1. The 
fuzzifier on the left hand side is w = 2  and the β-parameter on the right hand side is β = 0.5. 
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here. But to use this property effectively, the data objects have to be stored in a way that neighbourhood 
information is available. The data structure is organized as a tree and constructed before starting the 
clustering process.

Definition 8 (Neighbourhood Tree). Let V be a normed vector space, X VÌ  be a data set and 
d : R R+ +®  a function with δ(r) < r, r > 0. Let T be a tree and N x X r= ( , , )Î Î +C R  a node with 
C is the set of child nodes. T is called neighbourhood tree, if it holds:

• succ N B x
r

( ) ( )Ì
For all child nodes • N x r

1 1 1 1
= ( , , )C CÎ  holds: r r

1
( )£ d

For all pairs • N x r N x r
1 1 1 1 2 2 2 2
= ( , , ), = ( , , )C C CÎ , N1 ≠ N2 holds: x x r

1 2
> ( )- d

with succ N x succ N
N

( ) = { } ( )È ¢
¢ÎC

 is the set of all successor elements and B x V
r
( ) Ì  is the hyper 

sphere around x with radius r. The neighbourhood tree T of a data set X is the tree that is associated 
with the root node N x X r

root root max
= ( , , )Î C  so that succ(Nroot) = X, x a random element in X and 

r y x y X x
max

= : { }max \- Î{ } .
A node N = (x,C,r) can be seen as a representative of its successor elements succ(N). In this matter, 

a child node N1 = (x1, C1, d1) of N represents a subset of the data objects succ N succ N( ) ( )
1

Ì  which are 
located in the corresponding hyper sphere succ N B x

r
( ) ( )

1
1

1
Ì . Each data object y succ N xÎ ( ) { }\  is 

associated to exactly one of its child nodes. If y is located in the overlap of the hyper spheres of at least 
two child nodes N N

1 2
, Î C : y B x B x

r r
Î Ç

1
1

2
2

( ) ( ) , there is no clear regulation to which child node y 
belongs. It is possible to apply an ordering over the child nodes to associate y to the first child node in 
this ordering, but this is a rather arbitrary regulation. Instead, the neighbourhood tree is extended so that 
y is associated with the closest child node which leads to the definition of a strict neighbourhood tree:

Definition 9 (Strict Neighbourhood Tree). Let V, X, δ and T be like in Definition 8 above. T is 
called strict, if one more restriction is applied on the child nodes of N = (x,C,r):

for all pairs • N x r N x r
1 1 1 1 2 2 2 2
= ( , , ), = ( , , )C C CÎ  holds:

" Î - £ -y succ N y x y x
1 1 1 1 1 2

( ) :  

A strict neighbourhood tree guarantees that a data object belongs to that child, which is closest to 
it. In the unlikely event that a data object has exactly the same distance to several child nodes, the data 
object is associated due to an arbitrary ordering on the child nodes. The following algorithm constructs 
a strict neighbourhood tree from a set of data objects X and the contraction function δ.

Algorithm 10 (Construct a Strict Neighbourhood Tree).

  INPUT: Data set X, function d : R R+ +®   

  OUTPUT: A strict neighbourhood tree T x X r
max

= ( , , )Î C   

1. x randomElement X¬ ( ), Y X x¬ \ { }  



314

Fuzzy Cluster Analysis of Larger Data Sets

2. N x y x y Y
root

¬ Æ - Î( , , { : })max   

3. insert N Y
root

( , )  

4. end.  

5. function insert N x r Y( = ( , = , ), )C Æ   

6.   Z ¬ Æ, Ŷ ¬ Æ, i ¬ 1  

7.   for y YÎ  do   

8.     if $ ¢ Æ ¢ Î Î ¢
¢( , , ) : ( )x r y B x

r
C  do  

9.      ˆ ˆY Y y¬ È { }  

10.     else  

11.      C y r
i
¬ Æ( , , ( ))d , C C¬ È { }C

i
  

12.     Z
i
¬ Æ, Z Z¬ È { }Z

i   

13.     i i¬ + 1  

14.    end if  

15.   end for y  

16.   for ˆ ˆy YÎ  do  

17.    k x y x r
best

k
k k k

¬ - Æ Î
£ £1 | |

{ : ( , , ) }
C

Cmin ˆ   

18.    Z Z y
k
best

k
best

¬ È { }̂  

19.   end for ŷ   

20.   for k ¬ 1 to | |C  do  

21.    ( , , ) = ( , , { : })x r N x z x z Z
k k k k k k
Æ ¬ Æ - Îmax    

22.    if | |> 0Z
k

 do insert N Z
k k

( , ) end if  

23.   end for k  

24. end function

The algorithm constructs a strict neighbourhood tree. A random element is selected to generate the 
root node while the tree is build recursively using the function insert. The first step generates a covering 
for all the represented data objects, Lines 7 until 15. The set Ŷ XÌ  contains the data objects that are 
not used as centres for the child nodes. The covering is generated by testing for each data object x ∈ X, 
if it can be associated to an already existing child node and if not, a new child node is generated. Due to 
simplicity, it is assumed that the data is indexed to avoid problems with the definition of mathematical 
sets. The remaining data objects in Ŷ  that are not used for child construction are subdivided into the 
sets Z Z

1 | |
, , C  according to their closest child node, Line 16 until 19. The recursion is done for each 

child node if at least one additional data object is associated to it (Line 22).
It is desired to not have only few child node’s per node, the function δ must be chosen accordingly, 
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for example d( ) = (
( ( )

1 ( )
)r r

dim V
dim V

×
+

. A nodes maximal number of child nodes is a constant K which 

depends on the dimensions of the underlying vector space V and the function δ. Due to the strict property 
of the neighbourhood tree, it is likely that a nodes centre object is located in the middle of its represented 
data objects. Furthermore, because of the shrinking of the distances in Line 21, it is likely that a node 
has more than one child node, if it represents at least three data objects (The data object contained in 
the node it self and two more). However, the tree is not constructed to be balanced. It is possible, that 
the data set is corrupted in a way, that the algorithm would produce a list-like tree. But such situation 
is more of academic nature because the data set would not be considered for clustering. So in future, it 
is assumed that the data set is not corrupted in such matter, hence the depth of the tree is logarithmic in 
the number of data objects. In Figure 3, 4 levels of a strict neighbourhood tree are shown.

If the data set is not corrupted, the runtime complexity of the algorithm is in O(nlog(n)). All data 
objects, associated to a node N = (x,C,r) are contained in the hyper sphere Br(x). In this hyper sphere, fit 
at most K Î N  hyper spheres of radius δ(r), so that no centre of one hyper sphere is contained in any 
other. Therefore, the computation time of the loops starting in Lines 7 and 16 have both a complexity of 
O(K ∙ succ(N)). The set of all represented data objects of the nodes in one level of the tree, at most the 
full set of data objects, hence one level of the tree is constructed in O(2 ∙ K ∙ n). The height of the tree is 
logarithmic in the number of data objects, so that the construction complexity is in O(2 ∙ K ∙ n). During 
the construction process, it is also possible to store the number of successors |succ(N)| of a node N. This 

Figure 3. These four figures represent 4 succeeding levels in a strict neighbourhood tree. The cross 
symbols represent the centre of gravity of the corresponding data objects
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is important for applying the clustering algorithm later. The storage complexity for the neighbourhood 
tree and its construction is in O(n) because each node stores one data object.

FUZZY CLUsTERINg UsINg NEIgHbOURHOOD INFORMATION

The motivation of constructing the neighbourhood tree is that it is not necessary to calculate the exact 
membership value for each data object, if the difference between the estimated and the real member-
ship value is below the termination threshold " £ £ £ £ - +1 ,1 :| |<1i c j n u u

ij
t

ij
t e  of the clustering 

algorithm. Furthermore, due to the polynomial fuzzifier function, introduced in Section 4 there might be 
vast areas in which the membership values of data objects to one prototype might be 1 or 0. Obviously, 
the membership values for these data objects need not be calculated for each data object individually.

Membership value Interval

Suppose it is desired to calculate the membership value of data object xj to the prototype pi. Given a node 
N = (xj,C,r) in the neighbourhood tree guarantees that all data objects succ(N) are in a hyper sphere Br(xj). 
So the location of the data objects do not vary more than a distance r to the data object xj. Therefore, the 
distances of the data objects y ∈ succ(N) to a prototype pi must be in the interval

[ , ] = [ {0, }, ] .d d p x r p x r
ij ij i j i j
- + - - - +max

 

Consider the hypothetical case that the distance of the data object xk∈ succ(N) (k ≠ j) to the prototype 
pi is reduced, but the distance to all other prototypes is constant, then due to Lemma 7 the membership 
value uik is higher than uij. Again from Lemma 7 follows that if xk is closer to prototype pl (l ≠ i), but 
keeps all other distances fixed, the membership value ukj is lower than uij. So the minimal hypothetical 
membership value of a data object xk∈ succ(N) towards prototype pi would be, if xk reduces its distance 
to all prototypes but pi by r and increases its distance to pi by r. Since the norm ×  is symmetric, it does 
not matter if a data object changes its location or the prototype. According to Equation (10), not the 
actual position of the prototypes is relevant for calculating the membership value, only its distances 
to the data object is important. So instead of considering the data object move inside the hyper sphere 
Br(xj), consider the prototypes change their distance to xj. Based on this idea, the following theorem is 
formulated:

Theorem 11 (Membership Interval). Let V be a normed vector space, X x x V
n

= { , , }
1
 Ì  a data 

set, P p p V
c

= { , , }
1
 Ì  a set of prototypes, xj ∈ X and pi ∈ P and r Î R , r > 0.

" Î Î é
ëê

ù
ûú

- +x B x u I I I
k r j ik i i i

( ) : = ,  

with
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with d p x r
ij i j
- - -= {0, }max  and d p x r

ij i j
+ - +=  are the minimal (maximal) hypothetical dis-

tances of the data object xj in the hyper sphere Br(xj) to the prototype pi. ĉi
-  and ĉ

i
+  denotes the number of 

relevant prototypes and fi
-  (fi

+ ) denote a new ordering of prototypes w.r.t. to the changed distances.
Before proving the statement, please note that the formula for the interval borders is slightly changed 

to Equation (10). This derives from the fact that the sum in the denominator of the fraction in (10) con-

tains the term 
d

d
ij

l jf( )

 with i = ϕ(l). With changed distances, this would result in 
d

d
ij

ij

+

-
 (or 

d

d
ij

ij

-

+
) which is 

not plausible because the distance of the data object xj to the prototype pi cannot increase and decrease at 
the same time. Therefore, this term is excluded from the sum. This change makes it possible to separate 
the distance change of pi to the other prototypes p lf( ) , f( )l i¹ , l c= 1ˆ.

The distance of pi is changed contrary to the other prototype distances. Therefore, position of pi might 
change in the distance ordering of prototypes. The new ordering must be calculated individually for both 
interval borders of each prototype. Let fi

+  be the permutation for the upper bound of the membership 
interval of pi and fi

-  the permutation for the lower bound respectively. Due to the changed distances, it 
is possible that the number of relevant prototypes changes ˆ ˆc c

i
± ¹ . So this number has to be recalculated 

for each interval as well.
Proof. From Lemma 7, we know, that the membership values change monotonously. In case the 

number of relevant prototypes ˆ ˆc c
i i
± =  does not change, the result follows directly from Lemma 7. Not 

clear is, what happens if ˆ ˆc c
i
± ¹ . So the proof shows, that the membership value of xj towards pi does 

not change, if an other prototype pl is added to the set of relevant prototypes exactly at a distance, where 
Equation (10) produces a membership value of zero ulj = 0. So in other words, the membership values 



318

Fuzzy Cluster Analysis of Larger Data Sets

change continuously in the distances towards the prototypes even if the number of relevant prototypes 
changes. With this result and the monotony from Lemma 7, the above theorem is proven.

Without loss of generality, suppose the prototypes are sorted according to their distance, so we do not 
need to consider the permutation. To introduce an additional prototype p

ĉ+1
 to Equation (7) such that its 

membership value is zero u
c j( 1)

= 0
ˆ+ , its distance d

c j( 1)ˆ+  must follow the following condition:
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If Equation (7) is now evaluated for uij adding the additional prototype from the previous calcula-
tion, we obtain:
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This means, the membership value uij does not change by introducing the additional prototype. Now 
it is possible to consider (7) as a continuous function in the distance variables, even if the number of 
involved prototypes ĉ  changes. The only condition up to this point is, that the ordering of the prototypes 
stays the same.
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Therefore it follows with Lemma 7, Equation (7) is a continuous, decreasing function in distances 
dlj with l ≠ i and increasing in dij. If there is a xk ∈ X with u I u u

ik i ij ij
Ï - += [ , ] , there are two cases left 

to consider:

•	 u u
ik ij

< - . Since (7) is continuous and monotonous, it means that d d
ik ij

> +  and/or $ ¹ -l i d d
lk ij

: < .

•	 u u
ik ij

> + . With the same argument, it follows that d d
ik ij

< -  and/or $ ¹ +l i d d
lk ij

: > .

In both cases, x B x
k d i
Ï ( ) . That means, when ever x B x

k d j
Î ( ) , u I

ik i
Î .

Consider a node of the neighbourhood tree: N = (xi,C,r) let its membership interval with distance r be 
I u u

i ij ij
Ì - +[ , ]e e , then all successors succ(N) can be treated exactly like xj hence, their membership 

value towards prototype pi does not need to be calculated individually.
Note that the membership value interval is a very pessimistic estimation, since it is assumed that 

the distances to all prototypes become worst case. In practise, such situation nearly never occurs and 
in most cases, the real range of membership values is far smaller than the calculated interval. A much 
better estimation for the membership interval would arise from the following formula:
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To give a general case solution for this problem is not trivial and might be even impossible. This 
question is subject to further research.

Alternative Fuzzy c-Means

In this subsection, we introduce the Fuzzy-c Means algorithm using a polynomial fuzzifier and the strict 
neighbourhood tree. There are two versions for this algorithm, one with more memory consumption 
and the other which uses a different termination rule. At first, the version which uses more memory is 
presented, because it needs one less user defined parameter and is more consistent with the motivation 
of using neighbourhood information. The other version of the algorithm is presented in the next subsec-
tion.

Algorithm 12 (Modified FcM). INPUT: Data set X, function d : R R+ +® , number of prototypes 
c, termination threshold ε > 0, a parameter β ∈ [0,1] 

  OUTPUT: A fuzzy partition U  
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1. N neighbourhoodTree X
root

¬ ( , )d   

2. P initialize p p
c

¬ ({ , , })
1
   

3. U
c n

¬ [0]
( , )

, ¢ ¬U
c n

[1]
( , )

  

4. while $ £ £ £ £ -1 ,1 :| ' |>i c j n u u
ij ij

e do  

5.   U U¬ ¢   

6.   ¢ ¬ ¢ ¬ ¢ ¬P p p
c

{ 0, , 0}
1

   

7.   T t t
c

¬ ¬ ¬{ 0, , 0}
1

 , Z z z
c

¬ ¬- ¬-{ 1, , 1}
1

   

8.   update N Z
root

( , )  

9.   for i = 1 to c do p
p

ti
i

i

¬ ¢  end for  

10. end while  

11. end.  

12.  

13. function update N x r Z
j

( = ( , , ), )C   

14.   D x p x p
j j c

¬ - -{ , , }
1

2 2
    

15.   f ¬ prototypePermutation x D
j

( , )   

16.   ĉ validPrototypes x D
j

¬ ( , , )f    

17.   for i ¬ 1 to c do  

18.    if z
i
 < 0 do  

19.     ¢ ¬u membershipValue x D i c
ij j

( , , , , , )ˆ f b    

20.     ( , ) ( , , , , , )u u membershipInterval x r D i
j

- + ¬ f b   

21.     if u u
ij

+ - ¢ < e  and ¢ - -u u
ij

< e  do  

22.      z u
i ij
¬ ¢   

23.     end if  

24.    else  

25.     ¢ ¬u z
ij i   

26.    end if  

27.    ¢ ¬ ¢ + ¢ ×p p h u x
i i ij j

( )    

28.    t t h u
i i ij
¬ + ¢( )  

29.   end for i  

30.   for ¢ ÎN C  do update N copy Z( , ( ))¢  end for   

31. end function update

The first part is quite self explaining. The variables P′ and T represent global variables (they are also 
valid in the function update) that are used to calculate the new prototype positions. The recursive update 
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function is evoked as long as at least one membership value changes more than ε. The update function 
itself is a little more complicated. Basically, it traverses the neighbourhood tree in depth first ordering by 
recursively evoking itself. The parameters in Z contains the information whether a set of data objects need 
further calculation and if not, the membership value is stored in Z for the corresponding prototype.

In Line 14, the distances from xj to all prototypes are stored in D because these values are used quite 
often(complexity O(c)). In the next step, the prototypes are sorted according to their distance (complexity 
O(c ∙ log(c))). In Line 16, the number of prototypes with larger than 0 membership function is calculated 
(complexity: O(c)). Then, for each prototype, the new membership value is calculated. In case zi < 0, it 
means the membership interval was not narrow enough, which means the membership value for xj must 

be calculated. This is done in Line 19 with O(1) complexity because 
k

c

k j
d=1

( )
2

1ˆå
f

 can be calculated once 

before the loop is started. Calculating the membership interval however (Line 20), has a complexity 
of O(c), since ĉ

i
±  and the above mentioned sum has to be recalculated with the changed distances for 

each prototype individually. If the resulting membership interval is narrow enough, all subsequent data 
objects are associated with the same membership value for prototype pi. This information is stored in ri 
for use in the next recursions.

In Line 27, the factors for the new prototype position are calculated. Finally, the recursion is per-
formed in Line 30 for all child nodes of N with a copy of the values of Z because they might be changed 
differently in the subsequent branches of the neighbourhood tree. So the overall runtime complexity for 
one iteration step is in

O c c log c c(( ( ) )2+ × +
calculation for one node

  

   

× + × Ìn c n O
n nodes termination test

) (cc n2 ) .×
 

This implementation of the modified FcM is exactly the implementation of the mathematical defini-
tion. Unfortunately, it is not feasible for really many data objects, since the membership matrix U has to 
be stored. This is necessary because the very essence of the algorithm is the use of ε for optimizations. 
Hence the storage complexity of the algorithm is in O(n ∙ c) which might be too much in storage criti-
cal applications.

For means of termination, it is not necessary to store the membership matrix. It would be equally ac-
curate, to test the convergence of FcM using the distance, prototypes move between two iteration steps. It 
is easy to show that the convergence in membership values is equivalent to the convergence in prototype 
position. However, if there is a threshold defined for convergence in prototype positions, it is not trivial 
to calculate a corresponding threshold for convergence in membership values. In a too harsh estimation, 
the membership interval that is used to optimize the clustering process would become extremely small. 
Therefore, these two parameters must be chosen separately by the user. The membership value interval 
can be based on an accuracy parameter εm while the convergence test is done with the threshold εp.

With using a convergence in prototype positions, it is possible to cease storing the membership 
matrix during the calculation process. This gives room for even more optimization because it would 
not be necessary to traverse the entire neighbourhood tree. However, a few technical modifications to 
the neighbourhood tree are required. It is necessary to store the number of successors s | succ(N) | of a 

node N and the centre of gravity of all succeeding data objects: n =
1

( )s
y

y succ NÎå . Both can be easily 

calculated during the construction process of the neighbourhood tree, so that a node is expanded to
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28.	   		  end if  

29.	   	 end for i    

30.	  	  if | |> 0Z  do  

31.	  		   for ¢ ÎN C  do update N copy Z2( , ( ))¢  end for   

32.	  	  end if  

33.	  end function update2

This second algorithm has several advantages over the first version. The storage complexity is in 
O(c + n) rather than O(c ∙ n). Also the calculation can be simplified by using the centre of gravity of a 
node’s successors. This was not possible in the first version, because all membership values had to be 
computed to fill the matrix at all positions, so that the traversing of the neighbourhood tree had to be 
carried out completely.

In detail, the variables P′ and T have the same meaning as in Algorithm 12, they are used to calculate 
the new locations of the prototypes. The variable Z holds now the indices of the prototypes for which 
a membership value needs to be calculated. However, the main difference to the first version of this 
algorithm is in Line 4 where the iteration process is stopped when the difference in prototype position 
converges. All changes in update2 are a possible due to this change. The function update2 differs mainly 
in its behaviour to previously calculated membership values. In its first version, the entire neighbour-
hood tree is traversed. In this version, only for a subset of all prototypes, the calculation is performed 
which is defined by Z in Line 17. So, if the membership value for the prototype i is not already known, 
it is calculated in Lines 17 until 29.

If the calculated membership value interval is narrow enough, the change in location of prototype i is 
calculated using the with s times the centre of gravity of the subtree and i is removed from Z to prevent 
any further calculation in the subtree. For all prototypes the membership interval is not narrow enough, 
the calculation is done solely for xj. The recursion in Line 31 is done only if there are prototype indices 
left in Z.

The drawback of the optimized Algorithm 13 is that the usage of the neighbourhood tree loses its 
justification provided by the termination threshold. On the other hand, this gives the user the advantage 
to manage calculation precision and termination threshold independently. Consider the example pre-
sented in Figure 4. The same data set is clustered with 4 different algorithms. The upper two examples 
are the FcM algorithm with the normal fuzzifier function, once in standard form (left) and once using 
neighbourhood information (right). For the other two examples, the polynomial fuzzifier function was 
used, again once in normal form (left) and once using neighbourhood information (right). As it can be 
seen, the clustering result is almost not influenced by using neighbourhood information. The tails of the 
prototypes show that even the clustering process is almost identical (the difference is not visible in the 
pictures, but the paths differ slightly due to the approximation of using neighbourhood information.) 
even if the membership interval of εm = 0.1 is rather large compared to the calculation accuracy.
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Experimental Results

The four algorithms standard FcM, FcM using Neighbourhood Information(NFcM), FcM with Polyno-
mial Fuzzifier Function(PFcM) and FcM with Polynomial Fuzzifier Function and using Neighbourhood 
Information(NPFcM), compared in this section, differ in their property of scaling. Runtime tests for 
these algorithms regarding the number of data objects and the number of prototypes are presented. The 
values of the parameter β, had no, or only very little influence on the runtime of PFcM and NPFcM. 

Figure 4. The same data set, clustered with FcM (upper left), FcM using neighbourhood information 
(upper right), FcM with Polynomial fuzzifier function (lower left) and FcM with polynomial fuzzifier 
function and using neighbourhood information (lower right). In the two right hand side examples, the 
maximal membership interval length was set to εm = 0.1, in the two above examples, the fuzzifier value 
is set to ω = 2 and in the two lower examples, the fuzziness parameter was set to β = 0.3.
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In all cases, the tests are performed using 2, 5 and 10 dimensional artificial data. It was not focused on 
the algorithm convergence properties because the convergence of the algorithms using neighbourhood 
information does not differ distinctly from those without. The average Euclidean distance (in one experi-
ment) in prototype positions is almost always below 0.001. Still, it is useful to compare FcM with and 
without polynomial fuzzifier functions.

Two different artificially created test environments are used, a hypercube with an edge length of 
1, filled with uniformly distributed data objects (Figure 5) and randomly placed cluster centres with 
normally distributed data objects (Figure 5 right). In the second case, there are always as many clusters 
in the data set as there are prototypes, the number of data objects in the data set is not affected by the 
number of prototypes. In each test, the algorithms perform 100 iterations, which is usually enough for 
convergence.

Since NFcM is already well discussed in (Höppner, 2002), we do not discuss runtime differences 
due to the fuzzifier, a constant value of w = 2  is used in all cases. This value was chosen, because the 
polynomial fuzzifier function of PNcM and NPFcM is a Linear combination of crisp clustering and 
fuzzy clustering with a fuzzifier of w = 2 . Our tests have shown that even a relatively large maximal 
membership value interval of εm = 0.1 is usable for NFcM and NPFcM. The parameter β was set to 0.5. 
The data set and initialization of the prototypes were identical for all clustering algorithms. The genera-
tion of the data, the calculation of the neighbourhood tree as well as the initialization of the prototypes 
was not taken into account.

In Figures 6 and 7, we present our test results. Always on the left hand side, we present the results 
of the test environment with uniformly distributed data objects while on the right side the environment 
with Gaussian clusters is shown. The discussion regarding the algorithms properties is done below.

Figure 5. Two examples for the test data sets: uniform distributed data (left) and Gaussian distributed 
data objects in randomly positioned clusters
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Figure 6. Runtime experiments for2, 5 and 10 dimensions with variations in the number of data objects 
(x-axis, in 1000 data objects). The remaining parameters are: 5 prototypes, ω = 2, β = 0.5, maximal 
membership interval length 0.1, 100 iterations, and no termination due to converging prototype posi-
tions.

Figure 7. Runtime experiments for2, 5 and 10 dimensions with variations in the number of prototypes (x-
axis). The remaining parameters are: 50000 data objects, ω = 2, β = 0.5, maximal membership interval 
length 0.1, 100 iterations, and no termination due to converging prototype positions.
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standard FcM

Not surprisingly, standard FcM has Linear complexity in the number of data objects, number of proto-
types and number of dimensions in all examples. The shape of data sets does not affect the runtime of 
the algorithm.

FcM using Neighbourhood Information

The behaviour of NFcM is quite interesting and shows the potential of the optimization process and 
some problems in FcM with high dimensional data (> 5 dimensions). The potential is well visible in 
the 2-dimensional data sets. If the data reaches a certain density, the runtime of this algorithm does not 
increase because only groups of data objects are used for calculation. This effect is well visible in Figures 
6, graph ‘NFcM 2D’. Even though, the algorithm is linear in the number of prototypes, a higher number 
of prototypes lead to smaller sets of data objects during the calculation (Figure 7).

In higher dimensions, the density of the data object decreases considerably in Figure 6 left, graphs 
NFcM 5D and 10D, if the data objects are uniformly distributed. The result is a huge increase of the 
runtime pruning of the neighbourhood tree works not as good as in 2D. In case of several Gaussian dis-
tributed clusters (Figure 6 right), the density of the data objects is still high enough for the pruning due 
to neighbourhood information. As it is said before, higher dimensional data leads to a reduced density 
and more prototypes leads to smaller sets of data objects during the calculation process. In combination, 
the both effects cause a huge increase in runtime which is even worse than standard Fuzzy c-Means 
because the membership interval still has to be calculated for every data object (Figure 7 left), graphs 
NFcM 5D and 10D.

Very surprisingly is the runtime graph in Figure 7 right for NFcM 10D. The source for this effect is 
that FcM does not work for higher dimensions. In Figure 8, a 2D projection of a 10 dimensional data 

Figure 8. NFcM clustering result from a 10 dimensional data set, projected on 2 dimensions
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set is shown. All prototypes go to the centre of gravity of the complete data set, hence the membership 
values of all data objects are almost identical for all prototypes. This leads to huge sets of data objects 
that can be treated identical, hence the optimization is very effective. Unfortunately, the clustering result 
is completely useless.

It is also worth mentioning again that the difference of the clustering result compared to standard 
FcM is almost identical. In data sets with maximal 5 dimensions or in data sets where the majority of the 
data objects is located in high density areas, this algorithm is almost independent to the number of data 
objects. Hence it is highly scalable in data size if the prototypes are well separated from each other.

FcM with Polynomial Fuzzifier Function

The runtime of this algorithm is no surprise, since it works basically the same way as standard FcM. The 
higher runtime is a result of the increased calculation complexity of the membership value. The proto-
types have to be sorted and a subset has to be calculated for each data object. Therefore, the algorithm 
has a runtime complexity of O(c ∙ log(c)) for each data object. This makes it even less scalable in the 
number of prototypes than FcM.

Also for this algorithm, the clustering result in higher dimensions is questionable at best. But in 
contrast to Fuzzy c-Means, it is not completely useless. Figure 9 shows a 2-dimensional projection of 
the same 10 dimensional data set as in Figure 8, but this time clustered with PFcM.

FcM with Polynomial Fuzzifier Function and using Neighbourhood Information

Finally, this algorithm is a combination of the last two, it uses neighbourhood information as NFcM and 
has a fuzzifier function like PFcM. This combination has several advantages and some disadvantages. 

Figure 9. PFcM clustering result from a 10 dimensional data set, projected on 2 dimensions
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Due to the polynomial fuzzifier function, data objects in the surrounding area of a prototype have a 
membership value of 1. Hence the membership value to all other prototypes is 0 which leads to very 
large sets of data object with a membership interval of 0 length. This can speed up the calculation process 
considerably in comparison to the other algorithms. The drawback, however, is that the prototypes have 
to be sorted for the membership value interval of each prototype. Because only one prototype is changed 
every time, this sorting process has a complexity of O(c). But this must be done for each prototype, 
hence the calculation complexity for each data object is in O(c2).

The algorithm has the same problems with low density data sets as NFcM and which are enforced by 
the much higher runtime complexity. In data sets with well separated high density areas, the algorithm 
is faster, compared to PFcM. This contrast is well visible in Figure 7. In the low density case of uniform 
distributed data, the algorithm is much slower than all others. Only in the 2 dimensional case, the density 
is high enough so that the neighbourhood information can reduce the runtime complexity considerably. 
Like NFcM, NPFcM is highly scalable in data object size if the density areas are well separated and 
found by prototypes. That this is not always the case is shown in Figure 7 right. For each combination of 
parameter, only one runtime test is performed. Depending on the initialization, the algorithm separates 
the data well or less well which has a high impact on the runtime. If there are no high density areas, the 
algorithm has a very bad runtime performance, as can be seen in Figure 6 left and Figure 7 left.

The polynomial fuzzifier function prevents that the clustering result in higher dimensions is com-
pletely useless which makes it possible that the algorithm can use neighbourhood information which 
makes it faster than PFcM.

CONCLUsION

We presented and compared four prototype based algorithms and tested them on two families of arti-
ficial data sets. We showed that using sets of data object that are located close to each other can make 
FcM almost independent of the number of data objects and we have shown that a polynomial fuzzifier 
function can be used to make a FcM-based algorithm more useful for high dimensional data sets. The 
combination of both approaches can be fast, but its performance degrades rapidly if the data set is un-
suited for clustering, that is, it has no dense areas. Approaches that analyse the clustering tendency of a 
dataset beforehand may be applied to circumvent such situations.
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INTRODUCTION

Clustering has become a very popular technique to discover interesting patterns in complex data. Due 
to its clear output, results are easily interpretable by all audience. It is thus not surprising that clustering 
is applied in various domains, e.g. the analysis of gene expression data, customer behavior, air traffic 
management and many more (Raytchev and Murase, 2001, Frigui and Krishnapuram, 1999; Ressom 
et al., 2003; Rehm and Klawonn, 2005). The purpose of clustering is to divide a dataset into differ-
ent groups or clusters such that elements of the same cluster are as similar as possible and elements 
of different clusters are as dissimilar as possible (Duda and Hart, 1973; Bezdek, 1981). It is generally 
applied to data where no class labels are assigned to the single entities. In fact, the intention of using 
clustering is to gain this class information as a result of the clustering process. It is therefore known as 
unsupervised classification.

AbsTRACT

A well known issue with prototype-based clustering is the user’s obligation to know the right number 
of clusters in a dataset in advance or to determine it as a part of the data analysis process. There are 
different approaches to cope with this non-trivial problem. This chapter follows the approach to address 
this problem as an integrated part of the clustering process. An extension to repulsive fuzzy c-means 
clustering is proposed equipping non-Euclidean prototypes with repulsive properties. Experimental 
results are presented that demonstrate the feasibility of the authors’ technique.

DOI: 10.4018/978-1-60566-858-1.ch013
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Most clustering algorithms can be categorized into hierarchical clustering and partitional clustering. 
Hierarchical clustering groups data over a variety of scales by constructing a cluster tree. This tree rep-
resents a multilevel hierarchy, where clusters at one level are joined as clusters at the next level (Duda 
and Hart, 1973). This allows to decide the scale of clustering that is most appropriate for the respective 
application. Hierarchical clustering either builds a hierarchy of clusters bottom-up (agglomerative), 
starting with each sample as a cluster and forming a sequence by successively merging clusters, or splits 
clusters top-down (divisive), starting with all samples in on cluster and successively separating the data 
and forming a sequence of partitions (Duda and Hart, 1973). Partitional clustering attempts to directly 
decompose the dataset into a set of disjoint clusters that ideally comply with the natural grouping pres-
ent in the data.

Prototype-based clustering algorithms represent the most popular class of partitional clustering 
techniques. The nature of prototype-based clustering is that, as a result, some representatives, the 
so-called prototypes, typify a subset of data objects by its position in the center of the respective data 
cluster. Typically, the number of data clusters is not known in advance but must be specified when ap-
plying prototype-based clustering algorithms. In fact, the determination of the exact number of clusters 
is a difficult problem. Most clustering algorithms can partition a dataset into any specified number of 
clusters even if the data contain no cluster structure (Jain and Moreau, 1987). Numerous cluster valid-
ity measures, procedures for determining the number of clusters, have been proposed. Global cluster 
validity measures mostly utilize a kind of square error criterion and condense the clustering result to a 
scalar value after the clustering process which is associated with a huge loss of information. Local clus-
ter validity measures try to estimate the optimal number of clusters as an integrated part the clustering 
process. These techniques mostly over specify the number of clusters for the initial partition and the final 
one has the optimal number of clusters (Timm et al., 2001; Krishnapuram and Freg, 1992; Xiong et al., 
2004). Another approach to assess cluster validity is to visualize the resulting cluster partition and inspect 
it visually (Hathaway and Bezdek, 2003; Hathaway et al., 2006; Havens et al., 2008; Klawonn et al., 
2003; Rehm et al., 2006). Mostly, several runs with various parameter sets must be performed in order 
to find a suitable solution. Besides that, initialization may have a considerable impact on the clustering 
result. Unfortunately, no holistic solution for these problems can be provided until now. However, if 
certain knowledge about the data is available, e.g. what will be the approximate size of the clusters and 
how far are they separated, clustering algorithms can use these information to reduce user load doing 
expert working, e.g. in finding parameters, and finally improve clustering results.

Prototype-based clustering techniques can be distinguished into hard (crisp) clustering and soft 
(fuzzy) clustering. Hard clustering techniques assign each element to exactly one cluster. Since most 
of these algorithms are highly sensitive to noise they are favorably applied on data where clusters are 
well separated. Experiments have demonstrated that fuzzy clustering is more robust against outliers or 
noise. Apart from this, a major advantage of fuzzy clustering over crisp clustering is the ability to express 
ambiguity in the assignment of objects to clusters (Klawonn, 2004; Klawonn, 2006).

Moreover, fuzzy clustering can be subclassified into probabilistic clustering and possibilistic cluster-
ing. Probabilistic approaches generate partitions, where the total membership degree that is equal for 
each data object, is assigned to all clusters gradually. Possibilistic algorithms assign data objects to the 
clusters independently, i.e. the membership value of a data object represents the typicality of the point 
in the cluster or the possibility of the data object belonging to the cluster (Krishnapuram and Keller, 
1993; Lesot and Kruse, 2006; Pal et al., 2005).
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Noise clustering is another approach that can handle the problem of noise or outliers. The idea of 
noise clustering is based on the introduction of a virtual cluster that is supposed to contain all outliers. 
Feature vectors that are about a certain noise distance or further away from any regular cluster get high 
membership degrees to this noise cluster. The regular prototypes can thus better match the regular clusters 
(Dave, 1991; Dave and Krishnapuram, 1997; Wu and Zhou, 2006).

Repulsive clustering makes use of additional knowledge about the expected cluster structure (Win-
kler et al., 2009; Cheng and Wang, 2003; Timm et al., 2001). A recent approach allows to widely over-
specify the number of clusters for a given dataset (Winkler et al., 2009). A repulsive component that is 
associated to each prototype assures that data clusters will be represented by one single prototype only. 
Redundant prototypes will be pushed away to where they have no or only little impact on regular pro-
totypes. Finally they can be detected and eliminated, such that only meaningful prototypes remain. In 
this paper we propose an extension to repulsive clustering, equipping non-Euclidean fuzzy prototypes, 
as they are used with Gustafson-Kessel and alike fuzzy clustering algorithms, with repulsive properties 
(Gustafson and Kessel, 1979).

The rest of the paper is organized as follows. The next section gives a brief overview of related work. 
Then we describe fuzzy clustering and repulsive clustering followed by an introduction of a new exten-
sion that provides non-Euclidean distance measures to repulsive clustering. Results on demonstrative 
examples will be provided before we finally conclude with the last section.

bACKgROUND

(Timm et al., 2001) proposed an approach that combines the partitioning property of probabilistic 
clustering with the robust noise insensibility of possibilistic clustering (Wachs et al., 2006; Qin and 
Suganthan, 2004). A modification of the objective function that integrates both, the probabilistic ap-
proach and the possibilistic approach, and the introduction of a repulsion term provide prototypes with 
repulsive characteristics.

(Cheng and Wang, 2003) introduced a repulsive clustering algorithm that makes no use of proto-
types. Instead, the idea of this approach is that pairs of data objects repulse each other if their distance 
exceeds a predefined threshold. Pairs of data objects that are closer to each other than this distance 
attract each other. This rule is iterated with an appropriate learning rate avoiding widely jumping data 
points. The algorithm converges after some iterations resulting in a layout that accentuates the inherent 
cluster structure.

Clustering with attraction and repulsion (CAR) is an algorithm described in (Raytchev and Murase, 
2001). Two types of opposing forces, attraction and repulsion, operate across in order to autonomously 
organize a dataset. This technique has been successfully applied in the field of image analysis coping 
with the problem of unknown number of clusters and clusters that differ in shape and size.

FUZZY CLUsTERINg

Cluster analysis divides data into groups (clusters) such that similar data objects belong to the same 
cluster and dissimilar data objects to different clusters. The resulting data partition improves data under-



335

Fuzzy Clustering with Repulsive Prototypes

standing and reveals internal data structures. Partitional clustering algorithms provide representatives 
(prototypes) that indicate the center of each cluster.

Fuzzy c-Means Clustering

Fuzzy clustering algorithms aim at minimizing an objective function that describes the sum of weighted 
distances dij between c prototype vectors vi and n feature vectors xj of the feature space Rp :

J u d
i

c

j

n

ij
m

ij
= ( ) .

=1 =1
åå

 (1)

With the fuzzifier m Î ¥(1, ]  one can determine how much the clusters overlap. While high values 
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is used as distance measure for distances between prototype vectors vi and feature vectors xj, the fuzzy 
clustering algorithm is called fuzzy c-means algorithm (FCM). With the Euclidian distance measure 
FCM searches equally sized (hyper)-spherical clusters.

The minimization of the function (1) represents a nonlinear optimization problem that is usually 
solved by means of Lagrange multipliers, applying an alternating optimization scheme (Bezdek, 1980). 
This optimization scheme considers alternatingly one of the parameter sets, either the prototypes
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as fixed, while the other parameter set is optimized according to equations (6) and (7), respectively, until 
the algorithm finally converges.

There are some reasons why FCM should be run several times. First of all, no guarantee can be given 
that the optimal solution can be found, since the alternating optimization scheme can lead to a local opti-
mum. Initialization of the prototypes may impact the final result. Secondly, the exact number of clusters 
is not known in advance in most use cases. In order to determine this parameter, a series of runs with 
different number of prototypes need to be conducted. Cluster validity measures may give hints towards 
the right solution (Bezdek and Pal, 1998; Davies and Bouldin, 1979; Dunn, 1974; Höppner et al., 1999; 
Wu and Yang, 2005). Repulsive clustering provides an alternative approach to obtain an estimate of the 
number of clusters as an integral part of the clustering process.

Repulsive Fuzzy-c Means Clustering

Repulsive clustering is an extension to conventional clustering (Winkler et al., 2009). It makes use of 
additional knowledge about the expected cluster structure and allows to widely overestimate the number 
of clusters for a given dataset. A repulsive component that is associated to each prototype assures that 
data clusters, for which the assumptions are correct, will be represented by one single prototype only. 
Redundant prototypes will be pushed away to where they have no, or only little, impact on regular pro-
totypes. Finally they can be detected and eliminated such that only meaningful prototypes remain.

Equipping FCM-prototypes with repulsive characteristics can be done by a simple modification of 
the update equation (6) for the prototypes:
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Term A is the same as for conventional FCM-clustering. The repulsion of prototypes is calculated 
pairwise for each pair of prototypes based on the relative position of the prototypes (term B), the differ-
ent weight of the prototypes (term C) and the distance between the respective prototypes (term D). The 
parameter t is introduced to distinguish prototypes of succeeding iterations. Thus, the positions of the 
prototypes of the preceding iteration (t − 1) are employed to compute the prototypes of the tth iteration. 
Parameter w  handles the balance between the attracting force of the data and the repulsion between 
prototypes. If the dataset is standardized, w  can be set to 1. Term B is a unified vector describing the 
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direction of the repulsion that exerts prototype vk towards vi. Term C assures that prototypes representing 
more data repulse prototypes representing less data with greater force. This is important since otherwise 
two prototypes could push each other out of a cluster without leaving one inside. The amount of data that 
is represented by one prototype can be expressed by the sum of membership degrees to the respective pro-
totype. Finally, term D takes the distance between prototypes into account. The repulsion should decrease 
with increasing distance between two prototypes. Any monotonously falling and contiunous function 
f : [0,1]R ®  can be used. The following logistic function has proven to work well in practice:

f
s

( ) =
1

1 ( )
x

ea x+ -  (9)

with

a =
(
1

1)
.

ln
a
g s

-

-  (10)

The parameter a describes the gradient of φ  at the point σ. Figure 1 shows the repulsion funtion φ 
for different parameter sets. In this example α and σ are fixed while γ varies. The value σ is the distance 
at which the function φ  has the value 0.5, thus, where the strength of repulsion is halve. γ denotes the 
distance at which the repulsion has almost no effect. Mathematically, almost no effect is described by 
α that should be chosen out of the interval (0,0.5). Usually α is set to 0.05, restricting the repulsion to 
only 0.05 times its maximal strength.

After running repulsive clustering with an overestimated number of prototypes, a simple test 
T : {1, 0}B ®  can be used to determine whether a prototype is inside a data cluster or not

T v
u u

i j

n

ij min( ) =
1 , >

0 , .
=1
å

ì

í

ïïïï

î
ïïïï otherwise

 

T is 1 if the sum of membership degrees for the respective prototype exceeds a user-defined mini-
mum umin that usually depends on the number of data objects. Finally, the position of all positively tested 
prototypes can be used to initialize another prototype-based clustering algorithm, e.g. FCM.

Repulsive clustering has been successfully applied in practical applications where mainly spherical 
clusters can be found (Winkler et al., 2009). Due to the underlying FCM-model that focuses on that 
kind of data, repulsive clustering cannot be applied to data sets comprising ellipsoidal clusters without a 
suitable adaptation of the repulsion process. Since ellipsoidal clusters may overlap and thus prototypes 
of ellipsoidal clusters can be arbitrary close without representing identical data, the repulsion process 
need to be redesigned accordingly. After a brief revision of Gustafson-Kessel clustering, a modification 
of FCM that allows to find ellipsoidal clusters, we will address the problem of cluster repulsion in the 
Gustafson-Kessel clustering environment.
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gustafson-Kessel Clustering

Modifications of the fuzzy c-means algorithm by means of the distance measure allow the algorithm to 
adapt to different cluster shapes. A common representative applying such a modification is the algorithm 
of Gustafson-Kessel (GK) (Gustafson and Kessel, 1979).

Whereas FCM makes the implicit hypothesis that clusters are spherical, GK associates each prototype 
with a fuzzy covariance matrix and thus removes this constraint. This enables GK to find ellipsoidal 
clusters of arbitrary orientations. The fuzzy covariance matrix is defined as the fuzzy equivalent of the 
classic covariance:
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Instead of using the Euclidean distance measure, the Mahalanobis distance is applied (Mahalanobis, 
1936):
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Avoiding J in equation (1) to get minimal, by simply making Ci less positive definite, Ci is constrained 
to the determinant |Ci|, limiting GK to find ellipsoidal clusters of approximately the same size only.

Figure 1. The repulsion function ϕ for different parameter sets
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REPULsIvE gUsTAFsON-KEssEL CLUsTERINg

Since GK-prototypes may represent ellipsoidal cluster of different directions it may occur - quite contrary 
to fuzzy c-means prototypes - that some prototypes have very close (or even equal) positions while rep-
resenting completely different data clusters. Therefore, using the pairwise prototype distance, see term 
D in equation (8), as the driving parameter to control the repulsion process does not lead to the desired 
result. It is neither feasible to simply use the Mahalanobis distance in term D in equation (8) since the 
covariance matrices are derived from the relation of the prototype to the respective data cluster and do 
not correlate to the prototype’s position to other prototypes (see Figure 2).

The above discussion explains that repulsion of prototypes GK-prototypes is fairly different to 
the repulsion of FCM-prototypes. The inverse case - namely the merging of compatible clusters - has 
been solved successfully already. Compatible Cluster Merging (CCM) was proposed as a kind of local 
clustering validity measure for 2D and 3D-datasets (Krishnapuram and Freg, 1992). CCM explores the 
feature space with an overspecified number of GK-prototypes and tries to merge prototypes that seem 
to represent the same data cluster. The merging process is controlled by means of a compatibility rela-
tion that indicates the compatibility of two prototypes if they have the same main orientation, they are 
adjacent to each other and if there is no gap between.

A similar compatibility relation can be used to repulse two prototypes vi and vk that represent one 
cluster redundantly:
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Figure 2. Algorithm 1. Repulsive GK-Clustering
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ei and ek are the eigenvectors that are associated with the largest eigenvalues λi and λk of the respec-
tive matrices Ci and Ck. The scalar product in equation (13) is near 1 if the clusters are parallel and 0 
for orthogonal clusters. The desired degree of parallelism for compatible clusters can be controlled by 
means of γ1. Equation (14) is fulfilled for λ2 near 1 if two prototypes are adjacent along their principle 
eigenvectors. This guarantees that prototypes that represent orthogonally translated clusters will not be 
repulsed. Finally, equation (15) takes the extent of influence of the two prototypes in form of the eigen-
vectors into account. Prototypes that overlap according to this criteria should be repulsed.

It is not advisable to activate the repulsion process only if the above similarity relation indicates the 
compatibility of two prototypes. This would lead to abrupt changes in the membership degrees and the 
prototype positions from one iteration to another and could prevent the algorithms’ convergence. Instead, 
the degree of compatibility should be considered continuously and can be used to weight the repulsion 
intensity. This can be expressed by the product of the parallelism and the orthogonal translation of two 
prototypes. The distance between prototypes needs not to be considered explicitly since the repulsion 
function, equation (9), makes use of this information already. The weighting parameter w
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for the repulsion of GK-prototypes
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tends 1, allowing the repulsion to be maximal, if two prototypes vi and vk represent parts of the same data 
cluster. If w is near 0 the repulsion has no effect and conventional GK-clustering is done. By means of 
d Î +R  one can tune the repulsion process. Small δ = [0,1] favor conventional repulsion disregarding 
the prototype influence direction. Larger δ > 1 require the prototypes to have very similar influence 
directions in order to activate the repulsion.

So far, the repulsion function takes only relative differences in prototype weight into account. In 
unfavorable circumstances this can lead to the setting that a weak prototype, a prototype that represents 
only few data, repulses another weak prototype disproportionally far away. The sum of the membership 
degrees divided by the number of data, so to speak the absolute weight of prototype vk, addresses that 
issue assuring weak prototypes not repulse others significantly.

For repulsive GK-clustering we can adopt update equation (8) by slight changes
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Besides parameter w, that allows weighting of the repulsion, exponent b Î +R  can be used to accen-
tuate the different weight of two competing prototypes. A prototype cannot be pushed out of a cluster by 
one prototype that represents less data. However, larger β > 1 ensure that a prototype will not be pushed 
out of a cluster by numerous weaker prototypes.

In the standard GK clustering numerical problems occur frequently when the number of data samples 
in some clusters is small or when the data within a cluster are nearly linearly correlated. In such a case 
the respective covariance matrix becomes singular and cannot be inverted. The improvements that have 
been proposed in this regard in (Babuka et al., 2002) have been applied to repulsive GK clustering to 
avoid these problems.

Conventional fuzzy clustering mainly scales in the number of data objects, the dimensionality of 
the feature space and the number of prototypes. However, scalability can be interpreted in many ways. 
As this term it is typically used describe the ability of an algorithm to handle growing amounts of work 
in a graceful manner it also concerns the means of generality. For a specific problem, it is feasible to 
design a narrow algorithm. On the other hand, an abstract problem requires a general algorithm. In the 
case of fuzzy c-means (or related algorithms), the parameter c describes the number of clusters that are 
expected in a dataset. If this information is not available, the problem becomes more general. If then 
information about the separation of clusters is available, it can be used to specify the problem statement 
accordingly. Due to its integrated mechanism to cope with an unknown number of clusters repulsive 
clustering provides scalability to conventional clustering.

Figure 3. Clustering of the Gustafson cross using ten prototypes. Two prototypes represent the overlap-
ping clusters. The remaining prototypes are intentionally repulsed
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ExPERIMENTAL REsULTs

Figure 3 and Figure 4 show some experimental results on artificial data. The first figure shows two 
overlapping clusters similar to the Gustafson cross (Gustafson and Kessel, 1979). By means of this data 
one can exemplarily demonstrate the particular characteristic of the GK-algorithm. Due to its capability 
to locally estimate the covariance matrix for each cluster, prototypes can be arbitrarily close, as long 
as they represent different data. Thus, it is very important that this property will be preserved for the 
repulsive GK model, too. As Figure 3 shows, also repulsive GK locates both clusters correctly. Equa-
tion (16) prevents the mutual repulsion of the two prototypes. The redundant prototypes, however, are 
repulsed intentionally such that the data is partitioned in a proper style. Figure 4 depicts an artificial 
dataset comprising four ellipsoidal clusters. As for the first example, ten prototypes were used to explore 
the feature space. While four prototypes find the center of gravity of the regular data clusters correctly, 
the remaining six prototypes are repulsed from the data.

These two examples demonstrate the principle of repulsive GK-clustering. Although, the final par-
titioning result of repulsive GK remains stable across the iterations, it may occur that the prototypes 
slightly move due to oppositional attraction and repulsion by data and other prototypes, respectively. 
The discontinue in change of the membership degrees may serve as a feasible termination criterion for 
the repulsive clustering algorithm instead of the prototypes position.

Figure 4. Artificial data set showing four ellipsoidal clusters. Each of the clusters is represented by one 
prototype. The remaining prototypes are intentionally repulsed
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CONCLUsION

In this paper we have presented a practical extension to repulsive clustering. The proposed technique 
allows to equip GK-prototypes with repulsive properties. The repulsion process is balanced as a func-
tion of prototype weight, pair-wise prototype distance and cluster orientation. Due to its relatedness to 
compatible cluster merging and due to the known constraints of GK, the application of repulsive GK 
is limited to low-dimensional datasets in this stage. However, results on demonstrative examples are 
promising and encourage further research on this topic.
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Introduction

Car manufacturers are responsible for the vehicle maintenance during the entire warranty period. Con-
sequently, the warranty data is being continuously reported by the manufacturer dealers to a central 

Abstract

Car manufacturers are interested to detect evolving problems in a car fleet as early as possible so 
they can take preventive actions and deal with the problems before they become widespread. The vast 
amount of warranty claims recorded by the car dealers makes the manual process of analyzing this 
data hardly feasible. This chapter describes a fuzzy-based methodology for automated detection of 
evolving maintenance problems in massive streams of car warranty data. The empirical distributions 
of time-to-failure and mileage-to-failure are monitored over time using the advanced, fuzzy approach 
to comparison of frequency distributions. The authors’ fuzzy-based early warning tool builds upon an 
automated interpretation of the differences between consecutive histogram plots using a cognitive model 
of human perception rather than “crisp” statistical models. They demonstrate the effectiveness and the 
efficiency of the proposed tool on warranty data that is very similar to the actual data gathered from a 
database within General Motors.
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database. The warranty database is expected to include the following information for each customer 
complaint: dealer location, car model, car manufacturing and selling dates, claim date, mileage to date, 
complaint code, labor code, etc. The taxonomy of labor codes is usually available in a hierarchical form 
corresponding to car systems and sub-systems.

The central warranty database can be used to continuously monitor the empirical distributions of time 
and mileage to failure for various problem types in each new car model. In this chapter, the empirical 
distributions in consecutive time windows are compared to each other using the advanced, fuzzy ap-
proach to comparison of frequency distributions (Last & Kandel, 2002a, 2002b) developed within the 
framework of automated perceptions (Last and Kandel, 1999). This novel monitoring method provides 
an automated interpretation of the differences between histogram plots using a cognitive model of human 
perception rather than rigid statistical models. It is able to discover a positive or a negative shift in the 
histogram of the target distribution, based upon the apparent shift in the central tendency, the sample size, 
and the available domain knowledge. The proposed fuzzy-based method is implemented by the Early 
Warning Tool, which issues a warning about a negative shift whenever the values of the new histogram 
are shifted to the left more than a pre-defined Alarm Threshold and a positive shift whenever the values 
of the new histogram are shifted to the right more than the same threshold. A car manufacturer would 
be particularly interested in timely discovery of negative shifts, which indicate an increase in the prob-
ability of a certain problem type after a lower mileage or a shorter amount of time elapsed since the car 
left the factory or since the previous visit to the dealer. Identifying the most common labor codes (“root 
causes”) associated with negative and positive shifts is another important objective. Fuzzy shifts across 
multiple consecutive periods can be aggregated to compute a long-term trend of the warranty data. The 
proposed Early Warning Tool has also to be highly scalable in the size of the warranty database that is 
updated with thousands of new warranty claims on a daily basis.

This chapter is organized as follows. The next section provides the necessary background on emerg-
ing issues analysis in a car fleet. Then we proceed with describing the steps needed for selecting and 
preparing the warranty data for the early warning purposes. Fuzzy shift and fuzzy trend calculation 
along with the root cause analysis are presented next. The proposed fuzzy-based methodology is then 
demonstrated on warranty data that is very similar to the actual data gathered from a database within a 
major car manufacturer (General Motors). Finally we outline the future research directions and provide 
some concluding remarks.

bACKgROUND

Tracking of warranty trend of a particular product based on the claim distribution over time is an impor-
tant problem of any company and industry. Most companies maintain warranty databases for purposes of 
financial reporting and warranty expense forecasting. Such warranty field data is largely extensive and 
messy, and hence special tools and algorithms are needed to extract useful information. In some cases, 
there are attempts to extract engineering information from such databases. Another important applica-
tion is to use warranty data to detect potentially serious field reliability problems known as emerging 
issues, as early as possible. With detection of sudden emerging issues it is also important to track the 
other trends such as “bygone problem” (the failure rate has decreased back to normal), “emerging issue 
under control” and “emerging issue came gradually over a passage of time”. This is because after some 
action was taken by the manufacturing process or a precautionary measure taken by dealers through 
service enhancement it is important to study the behavior of the trends i.e. after process rectification 
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whether the previous emerging issues trends for a group of failure components now changed to the 
“under control” or “bygone” trends.

In describing the use of warranty data a number of papers and books have been written. Blischke 
and Murthy (1994, 1996) covered a wide range of topics related to warranty issues. General reviews of 
statistical methods for warranty data were provided by Robinson and McDonald (1991), Lawless and 
Kalbfleisch (1992), and Lawless (1998). Specific technical methods for dealing with problems arising in 
field and warranty data (reporting delays, censoring, truncation, and sparsity) were provided, for example 
by Suzuki (2001a, b), Kalbfleisch and Lawless (1988), Lawless, Hu, and Cao (1995), Hu, Lawless and 
Suzuki (1998), Karim, Yamamoto, and Suzuki (2001 a) and Wang and Suzuki (2001 a, b). Kalbfleisch, 
Lawless and Robinson (1991) described prediction methods. Karim, Yamamoto and Suzuki (2001b) 
provided methods for detecting a change point from marginal count warranty data that arise when one 
cannot identify the date of manufacture of units that are serviced under warranty. A generalization of 
the Shewhart process monitoring scheme for early detection of reliability problems was provided by 
Wu and Meeker (2002).

Quite a few statistical algorithms are currently being used for early detection of potential problems. 
However, there are many limitations associated with these methods. Parametric assumptions significantly 
contribute in giving incorrect results as the actual field data rarely follows any of the rigid statistical 
models. Also, the control limits used as thresholds in the control chart technique are static as they are 
based on the previously collected data. Moreover, missing data between the time points is linearly inter-
polated which may cause overestimation and underestimation problems. Another important point to be 
noted is that most of these methods take into account only the number of claims related to a particular 
failure component. It is to be noted that the number of claims may not be a good indicator for tracking 
a true warranty trend, since the number of claims is affected primarily by the number of sold vehicles, 
whereas we are interested in the distribution of time and mileage between failures per vehicle, disregard-
ing the total number of new vehicles on the road. In addition to this, the estimation procedures heavily 
depend on the sample size. If the sample size is low the statistical estimations are considered unreliable 
disregarding any available expert knowledge. In general, most of the statistical algorithms are complex 
in nature and not easily comprehensible. As shown in Last & Kandel (2002a), the fuzzy methods of data 
analysis are more intuitive and their settings can be modified to represent the user prior knowledge.

Detection of emerging trends is important in many different areas beyond product maintenance. Thus, 
Koenigstein et al. (2008) investigate the popularity of new artists according to their local popularity as 
reflected in a file sharing network. Their detection algorithm is able to identify emerging artists based 
on specific patterns of weekly popularity increase, with a 15-30% prediction success. They predict the 
artist success probability using the Kullback-Leibler Divergence for the difference between the actual 
geographical distributions of the weekly downloads and the uniform distribution.

Similar problems of tracking trends and frequency distributions over time arise in mining large amounts 
of sensor data (Cohen et al, 2008). Sensor networks provide a new source of massive, continuous streams 
of information that can be used by automated systems like temperature monitoring, precision agriculture, 
and urban traffic control. One of the main difficulties in mining non-stationary continuous data streams 
is to cope with the changing data concept. The fundamental processes generating most real-time data 
streams may change over years, months and even seconds, at times drastically. This change, also known 
as concept drift, causes the data-mining model generated from past data, to become less accurate in the 
classification of new data. According to Zeira et al. (2004), possible causes for significant changes in the 
performance of a data-mining classification model include changes in the distributions of one or several 
predictive features as well as a change in the distribution of the target (predicted) attribute.
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FUZZY-bAsED MONITORINg OF WARRANTY DATA

This section describes the warranty data monitoring with the Early Warning Tool built upon an auto-
mated interpretation of differences between consecutive histograms. The trend detection and tracking 
process includes the following stages: data selection and preparation, computing fuzzy shifts between 
distributions, exploring the root causes of significant shifts, and fuzzy trend detection. Each stage is 
covered in a separate sub-section.

Data selection and Preparation

The tool Main Screen displays the filtering criteria that can be used for selecting the analyzed data:

• Vehicle selection:
Make (e.g., Buick or Chevy) ◦
Line Series (e.g., Impala) ◦
Platform (e.g., engine used by several line series). ◦

• Period selection (given as a range of dates):
Model Build Dates: only cars manufactured between these dates will be included in the  ◦
analysis.
Delivery Dates: only cars delivered between these dates will be included in the analysis. ◦
Claim Dates: the  ◦ histograms will be based only on claims submitted between these dates. 
This defines the monitoring period (one month, two months, one year, etc.).

• Months in Service (MIS): car age (in months) calculated as the difference between the Claim 
Date and the Delivery Date (given as a range of values)

• Geographical region (e.g., Midwest)
• Labor code: the histograms can be based on a single labor code, a list of labor codes, a single Bill 

of Materials category, a single Vehicle Subsystem category or just all claims satisfying the other 
selection criteria. We assume here that each labor code is a part of a pre-defined taxonomy, where 
it is associated with a specific BOM code and its respective Vehicle Subsystem code. For example, 
the “Replace Battery” Labor Code belongs to the “Battery” BOM Category, which is part of the 
Electrical Subsystem.

• Histogram Selection. The user can choose one of the following variables for creating the 
histograms:
 ◦ TTF (Time to Failure): the software will build histograms for the Time to Failure elapsed 

since the previous claim having any labor code. If there is no previous claim for a car, the 
Time to Failure will be calculated since the Delivery Date.

 ◦ TTF same Vehicle Subsystem: the software will build histograms for Time to Failure elapsed 
since the previous claim having the same Vehicle Subsystem or since the Delivery Date (if 
there is no previous claim).

 ◦ MTF (Mileage to Failure): the software will build histograms for Mileage to Failure elapsed 
since the previous claim of any labor code or for the total car mileage (if this is the first 
claim).

 ◦ MTF same Vehicle Subsystem: the software will build histograms for Mileage to Failure 
elapsed since the previous claim having the same Vehicle Subsystem or for the total car mile-
age (if this is the first claim).
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 ◦ Max TTF/MTF: the software will ignore claims with Time to Failure or Mileage to Failure 
higher than this threshold (empty: no threshold).

• Time Unit. The monitoring period is divided into time units and the histograms of consecutive 
time units within the monitoring period are compared to each other in order to compute fuzzy 
shifts and trends. The available time units include one week (7 days), two weeks (15 days), and 
one month (30 days). For example, dividing the monitoring period between May 1 and June 30 
into 15-day time units will result in four histograms for the following sub-periods: May 1 – May 
15, May 16 – May 31, June 1 – June 15, and June 16 – June 30.

• Claim Selection. The following types of claims can be selected for monitoring:
 ◦ First Claims: the histograms will be based on the first vehicle claims only. This implies that 

all TTF / MTF values will be calculated since the Delivery Date.
 ◦ Others: the histograms will be based on non-first warranty claims only. This implies that all 

TTF / MTF values will be calculated since the date of the previous claim, which does not 
need to be in the selected monitoring period.

 ◦ Both: the histograms will be based on all claims. TTF / MTF values will be calculated since 
the Delivery Date for the first claims or since the date of the previous claim for all other 
claims.

The Main Screen is also used for choosing the number and the boundaries of bins in the histograms 
constructed for every time unit. The histogram bins can be defined either manually or automatically. In 
case of manual selection, the user should specify the upper boundary of each bin except for the last one, 
for which the upper boundary is equal to the maximum value in the monitoring period. The software 
verifies that the upper boundary of each bin is higher than the boundary of the previous one.

In case of automatic bin selection, the user enters the total number of bins, whereas their boundaries 
are determined using equal-frequency discretization over all claims selected during the monitoring period. 
The bin boundaries are found by a single scan of selected claims sorted in the ascending order of their 
TTF / MTF values. The target number of claims in each bin is calculated as the ratio between the total 
number of selected claims and the user-specified number of bins. The upper boundary index of each bin, 
except for the last one, is set to this target number plus the upper boundary index of the previous bin. In 
case of a tie (several claims sharing the same value across the calculated boundary), the upper bound-
ary index is changed to the index of a threshold value closest to the calculated boundary in terms of the 
number of claims. Finding the best number of bins automatically is a subject of our future research.

Computing Fuzzy shifts between Distributions

The Cognitive Process of Shift Detection

The simplest way to detect positive and negative shifts between empirical distributions is by visually 
comparing the distribution histograms. Three simulated examples of histograms representing mileage-
to-failure distributions in a pair of consecutive bi-weekly time units are given in Figure 1, Figure 2, and 
Figure 3. The original mileage-to-failure values have been discretized to 10 bins of equal frequency over 
the entire monitoring period. The curves in the figures show the proportions (relative frequencies) of 
claims in each bin out of the total number of claims in the corresponding time unit. A human observer 
can easily distinguish between the following cases represented by these three figures:
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• Negative (“emerging”) shift between distributions (Figure 1).
Most proportions in the first six bins are  ◦ bigger in the second time unit (T4) than in the first 
one (T3). On the other hand, all proportions of T3 are bigger than the proportions of T4 in 
last four bins.

• Positive (“decreasing”) shift between distributions (Figure 2).
Most proportions in the first four bins are  ◦ smaller in the second time unit (T6) than in the 
first time unit (T5). On the other hand, all proportions of T6 are bigger than or equal to the 
proportions of T5 in the last six bins

• No shift between distributions (Figure 3).
No clear shift between the distributions in time units T6 and T7 can be detected. The two  ◦
curves cross each other at least five times.

The cognitive process of comparing two different histograms, shown on the same chart, can be sum-
marized as follows (based on Last & Kandel, 2002a):

Step 1 – If in most bins there is no significant difference between the proportions, conclude that there 
is no change in the central tendency of parameter values (see an example in Figure 3). Otherwise, go 
to Step 2.

Step 2 – Find an imaginary point between the bins, such that before that “threshold” point, most 
proportions of one distribution are significantly higher (lower) than the proportions of the other one and 
vice versa. In Figure 1, we can locate such a point between bins 6 and 7. The claims in the first time unit 
(T3) have mostly lower frequencies in the bins 1-6 than in the bins 7-10. The opposite is true about the 
values of the second time unit (T4). The resulting picture is that the first distribution (T3) is shifted to 
the right vs. the second distribution (T4).

Step 3 – Make the final conclusion about a positive or a negative shift in the target distribution, 
based upon the apparent shift in the histogram, the sample size, and some tuning parameters that are 
explained below.

This cognitive process is not based on any statistical assumptions about the behavior of the underlying 
distributions. In fact, it is hard to identify any standard distribution representing the mileage histograms 

Figure 1. Distribution Histograms: Time Unit T3 vs. Time Unit T4
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in Figures 2-4. Still, the human perception can be very efficient when dealing with the uncertainty of 
visual representations. The human observations tend to bear some amount of vagueness and are much 
easier to be described by words (e.g., “most”, “significantly”, etc.), than by some crisp mathematical 
terms. Thus, the shift detection can be seen as a particular case of Approximate (or Fuzzy) Reasoning 
(see Kandel et al., 1996). Consequently, the Fuzzy Set theory can be used to model the shift detection 
process.

The histogram construction procedure involves two computationally intensive parts: computing time-
to-failure (TTF) or mileage-to-failure (MTF) values for each warranty claim and sorting the selected 
claims in the ascending order of these values. The TTF/MTF calculation requires finding the previous 
claim for each claim. Thus, its run time complexity is O (n2), where n is the number of recorded claims. 
The computational complexity of sorting n values representing TTF/MTF of n claims is not worse than 
O (n2) (e.g., using the QuickSort algorithm). Once the histograms are built, the complexity of the fuzzy 
shift computation does not depend on the number of underlying claims. Thus, we can say that the pro-
posed approach is relatively scalable, since it is only quadratic in the number of claims.

Figure 2. Distribution Histograms: Time Unit T5 vs. Time Unit T6

Figure 3. Distribution Histograms: Time Unit T6 vs. Time Unit T7
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Pairwise Comparison of Histogram Bins

Based on (Last & Kandel, 2002a), we assume here that the linguistic variable proportion change (de-
noted by d) can take the following two linguistic values: bigger and smaller, each being a fuzzy set. The 
membership function μB associated with the fuzzy set bigger should have the following properties:

Being close to zero, when • d is close to –1.
Being low for • d = 0.
Being close to • 1, when d is close to 1.

Similarly, the membership function μS (smaller) should satisfy the following:

Being close to 1, when d is close to –1.• 
Being low for d = 0.• 
Being close to 0, when d is close to 1.• 

In our model, the following membership functions are used for μS and μB:
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Figure 4. Example of a Decreasing Shift
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d is the difference between measured proportions (relative frequencies) of the same bin in com-• 
pared distributions;

• αS, αB are the scale factors, which determine the scale of the membership functions. More specifi-
cally, these parameters determine the point of these functions intersection with the Y-axis, or the 
degrees of bigger and smaller for d = 0. Last and Kandel (2002a) have proposed the guidelines for 
choosing αS and αB based on the concept of a Type-2 Fuzzy Logic System (Karnik et al., 1999) and 
the user prior knowledge about emerging or decreasing trends in the data.

• β is the shape factor, which can change the shape of the membership function from a constant 
value of 0.5 (β = 0) to a step function, which takes the value of 1.0 for nearly any |d| > 0 (β→∞). 
We associate β with the sample size used for building the histograms. The expression for calculat-
ing β is:

β = γ n min (3)

where nmin is the minimum number of examples in one of the two compared histograms and γ is a linear 
coefficient expressing the user confidence in a sample of a given size.

Detecting Emerging and Decreasing Shifts between Histograms

After calculating the membership grades of each proportion change in the “smaller” and the “bigger” 
fuzzy sets, we can evaluate the fuzzyshift between the compared distributions.

According to the above definition of the threshold point, the number of candidate thresholds is D - 1, 
where D is the number of bins in the histogram of the attribute in question. Each candidate threshold T 
∈ D separates between the bins i = 1,…, T and i= T+1,…, D. We calculate the net shift for a candidate 
threshold T by the following expression:
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where di is the proportion change for the bin i.
Both sum terms of the above expression should be positive if there is a positive shift in the distribu-

tion and negative in the opposite case. When there is no shift, both terms will be close to zero.
The automated process of detecting emerging and decreasing shifts during the monitored period 

includes the following steps:

Step 1: Build Mileage-to-Failure or Time-to-Failure histograms for all time units in the monitored pe-
riod (e.g., build 12 monthly histograms for a one-year period). As indicated above, the histogram 
bins can be selected either manually or automatically

Step 2: For each pair of consecutive time units, Do:
Step 2.1: Use Eq. (4) to calculate the fuzzy shift between distributions NS (T) with respect to each inter-

val bin T = 1, …, D-1 and find the minimal and the maximal values of the net shift.
Step 2.2: Find the threshold T* providing the maximal absolute value of the net shift:
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T* = arg maxT |NS (T)|  (5)

Step 2.3: Normalize the net shift NS (T*) w. r. t. the number of histogram bins D:

NS Norm = NS (T*) / D (6)

Step 3: During the monitored period, find the pairs of consecutive time units having absolute fuzzy 
shifts, which exceed a pre-defined Alarm Threshold. Flag those time unit pairs and notify the user 
of a positive (decreasing) or a negative (emerging) shift, according to the sign of NS Norm.

The selection of the threshold for the maximal absolute value of the net shift depends on the amount 
of early warnings expected from the algorithmic tool. In the extreme case of Alarm Threshold = 0, all 
positive and negative shifts will be presented to the user.

Exploring the Root Causes of significant shifts

Emerging and decreasing shifts between mileage and time to failure distributions, which are computed 
using the procedure described above, represent the overall behavior of all claims recorded during each 
time unit. However, many high positive and low negative shifts in mileage to failure histograms are 
caused by specific failure types, which tend to occur at lower or higher mileage, respectively. In case 
of time to failure histograms, certain failures may occur later, if the shift is positive, or earlier, if the 
shift is negative. Identifying the most frequent failures associated with a positive and, more importantly, 
with a negative shift is a primary interest of a car manufacturer, since they may lead to the root causes 
of those shifts. The proposed process of root cause exploration implemented by the Early Warning Tool 
includes the following steps:

Step 1 - In case of a positive shift, find the intervals (bins) with the highest fuzzy grade of probability 
decrease (representing failures that became less frequent). In case of the negative shift, find the intervals 
with the highest fuzzy grade of probability increase (representing failures that became more frequent). 
In both cases, the corresponding time or mileage threshold T* can be found automatically using Eq. (5). 
Thus, Figure 4 shows that in the case of a positive shift between months 1 and 2, the interval with the 
highest fuzzy grade of probability decrease (above 0.9) represents mileage to failure of 8,500 and less. 
Respectively, Figure 5 shows that in the case of a negative shift between months 8 and 9, the interval 
with the highest fuzzy grade of probability increase (above 0.9) represents mileage to failure of 13,500 
and less.

Step 2 - Retrieve all claims from the time units with the flagged absolute shifts w.r.t. the previous 
time unit such that the claim mileage or time to failure belongs to the bins with the highest fuzzy grade 
of probability change identified in the previous step.

Step 3 - Find the most frequent labor codes in the claims retrieved in the previous step and present 
them to the user. The number of the most frequent labor codes to be presented to the user is one of the 
configurable parameters in the Early Warning Tool. The analysis of these codes can reveal the most 
common causes for the flagged probability shifts (positive and negative) during the monitored period. 
For example, if there is a positive or negative trend persistent over multiple time units, a set of the most 
frequent labor codes recurring in nearly every fuzzy shift may indicate a common root cause of the 
overall trend.
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FROM FUZZY sHIFTs TO FUZZY TRENDs

Shifts between mileage and time to failure distributions may persist over multiple time units. Such shifts 
are particularly important to detect, since they may represent long-term trends in the car maintenance 
data. Figure 6 shows example of an apparently emerging trend across four consecutive time units in a 
given monitoring period. Here we can see a continuous increase in the probability of the three lowest bins 
(1 - 3) and a continuous decrease in the probability of the next five bins (4 – 8). Thus, we can suspect 
that the overall trend of this distribution is “emerging”, which means that in each time unit more cars 
have failures earlier than in the preceding time unit. To quantify a long-term trend in a given distribution, 
we suggest computing the average fuzzy shift during the entire monitored period, which starts with time 
unit t1 and ends at time unit t2, using the following expression:
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Where NSNorm (t) is the normalized net shift between the time units t and t-1 computed using Equation 
(6). In case of Figure 6, t2 = 4, t1 = 1, and, consequently, the overall trend is calculated as an average 
of three fuzzy shifts. In addition to strong trends, Equation (7) is also able to identify weak trends that 
persist over most time units of the monitored period.

CAsE sTUDY

Our simulated case study is based on claims submitted during a monitored period partitioned into four 
time units of equal duration. This could be a four-month period partitioned into four one-month units 

Figure 5. Example of an Emerging Shift
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or a two-month period partitioned into four units of 15 days each. We assume that the original mileage-
to-failure values of each claim have been discretized to eight bins of equal frequency over the entire 
monitored period. The four histograms representing the mileage-to-failure distributions in each time 
unit are superimposed and shown in Figure 6 and the actual histogram proportions are given in Table 
1. The number of claims in each 15-day time unit has been 637, 386, 429, and 288, respectively. Thus, 
about 3,027,600 (the square of the total number of claims) join operations are needed to compute the 
mileage-to-failure value of each claim. On a standard desktop computer (such as Pentium 4 with 3GHz 
CPU and 1GB of RAM), this does not take more than a few seconds of the CPU time using the MS-
AccessTM software.

As indicated above, the membership functions used for μS (“smaller”) and μB (“bigger”) are affected 
by the scale factors αS and αB, respectively. In Figure 7, we analyze the effect of αB on the corresponding 
membership function μB applied to the differences between the first and the second time unit proportions. 
When the value of αB is increased from 0 to 0.1, its impact decreases dramatically and the μB membership 
function becomes very close to zero even for relatively large absolute differences of 0.03 and higher 
(bins 1 and 8). If the user is not interested to miss even minor proportion differences of 0.02, he can 

Figure 6. Example of an Emerging Trend

Table 1. Case Study - Histogram Proportions 

Bin T1 T2 T3 T4

1 0.099 0.135 0.147 0.156

2 0.075 0.111 0.159 0.174

3 0.110 0.127 0.145 0.188

4 0.138 0.122 0.114 0.115

5 0.141 0.119 0.105 0.101

6 0.133 0.114 0.112 0.111

7 0.118 0.117 0.093 0.087

8 0.185 0.155 0.126 0.069
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keep both scale factors equal to zero. Otherwise, the scale factors can be increased beyond 0.1 causing 
all differences between the periods T1 and T2 to be completely ignored.

The effect of the shape factor γ on the μB (“bigger”) membership function is analyzed in Figure 8 for 
αB = 0. Given a fixed amount of observations (claims) in each histogram, increasing the shape factor 
magnifies the “bigger” grades of positive differences and shrinks the “bigger” grades of negative differ-
ences. This means that the user is more confident about both positive and negative differences between 
bin proportions. The same effect will be observed if we increase the amount of observations without 
changing the value of γ. In the case of comparison between time units T1 and T2, the minimum number 
of observations (386) produces relatively high values of μB even for γ = 0.1.

As indicated by Last & Kandel (2002a), both scale factors αS and αB can be modified to represent 
the user prior knowledge about the difference between bin proportions. The three possible cases of that 
prior knowledge are:

The distributions are nearly the same (no significant difference between proportions is expected). • 
In that case, both scale factors should have positive and equal values (e.g., 0.20).
The distributions are different (high absolute differences between proportions are expected). This • 
implies that one of the factors should be negative and the other one – positive or vice versa (e.g., 
αB = -0.20, αS = 0.20 or αB = 0.20, αS = -0.20).
No prior knowledge on the distributions is available. Then we can use α• S = αB= 0.

The last case of no prior knowledge is represented by the leftmost point on Figure 9, where αS = αB 
= 0 produces a negative shift of -0.637 between the time units T1 and T2. Once we increase the values 
of both scale factors (assuming that no shift is expected), the absolute fuzzy shift decreases rapidly to 
0.124 for αS = αB = 0.05 and to 0.003 for αS = αB = 0.10.

Figure 10 represents the second case, where we do expect a shift between proportions. Here we set 
the value of αB to -0.2 and vary αS between 0 and 0.20. Consequently, the absolute fuzzy shift goes up 

Figure 7. Case Study - The effect of the scale factor
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from 0.452 to 0.750 starting with αS = 0.10. This value is higher than the absolute shift of 0.637 based 
on no prior knowledge at all.

Table 2 shows the number of discovered significant shifts during the monitored period as a function 
of the scale and shape parameters. We use here the alarm threshold of 0.5, i.e., only positive shifts above 
0.5 and negative shifts below -0.5 are counted. The table confirms our earlier expectation that more 
shifts are considered significant when the scale parameter values are higher and different in their sign 
from each other. Also, an increase in the shape parameter value causes more shifts to become significant. 
However, for relatively large (0.05 and higher) and identical values of the scale parameters, no shifts 
are considered significant, since as indicated above, these parameter values express our disbelief in any 
difference between the distributions.

Figure 8. Case Study - The effect of the shape factor

Figure 9. Normalized Net Shift as a function of αS = αB
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The average trend over the entire monitored period (T1 – T4) exhibits a similar behavior as a function 
of the scale factors. When the values of both factors are equal and positive, the average trend goes down 
-0.510 to 0.0 as we increase αS and αB from 0 to 0.15. Keeping αB at the level of -0.2 while increasing 
αS from 0 to 0.15 results in an increase of the average trend up to 0.750.

Due to the confidentiality of the actual claims data, we cannot provide here any identifying information 
about the most frequent labor codes found as potential root causes in similar case studies. Still, without 
revealing any sensitive information, we can refer to a specific case of two-month data, which included 
a large cluster of labor codes. The data was partitioned into four 15-day time units and the fuzzy shifts 
between consecutive units were computed using αS = αB = 0 and γ = 0.2. The shift was found positive 
between T1 and T2 and negative between T2 and T3 and between T3 and T4. The root cause analysis 
has revealed a single labor code responsible for more than 20% of all claims causing the positive shift 
in the second time unit. Interestingly enough, the same labor code caused more than 25% of all claims 
between the next two time units, where a negative shift was observed. The same negative trend contin-
ued into the fourth time unit resulting in an increase of the frequency of the same labor code (from 26% 
to 36%) along with 28% of additional claims, where similar labor codes have been involved. Thus, a 
timely fuzzy-based analysis of car warranty data would produce an early warning of an emerging trend 
in certain failure types apparently resulting from the same root cause.

Figure 10. Normalized Net Shift as a function of αS (αB = -0.2) 

Table 2. Case Study - Number of Discovered Shifts 

αS 0.01 0.01 0.05 -0.05 0.1 -0.1

αB 0.01 -0.01 0.05 0.05 0.1 0.1

γ = 0.1 0 0 0 2 0 3

γ = 0.2 2 1 0 3 0 3

γ = 0.5 2 3 0 3 0 3
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FUTURE REsEARCH DIRECTIONs

Fuzzy-based analysis of warranty data for various manufacturing industries can be extended in many 
directions. One important issue is finding the optimal number of histogram bins as a function of the 
number of claims in each time unit and in the entire monitored period. Currently, we assume that the 
user finds this number manually and then applies equal-frequency discretization to the data. Completely 
automating the entire discretization process should provide a significant benefit to the system users.

Automatic determination of the algorithm settings (namely, the values of the shape and the scale 
factors) is another important research question. In a future extension of the algorithm, the best settings 
will be selected based on the algorithm ability to predict future shifts and long-term trends as well as its 
potential contribution to the root cause analysis.

We also intend to compare the fuzzy algorithm performance to some basic statistical techniques for 
time-series analysis and trend detection.

CONCLUsION

In this chapter, we have presented a novel, fuzzy-based method for automated detection of evolving 
maintenance problems in massive streams of warranty data. The method provides an automated com-
parison of frequency histograms, based on a cognitive model of human perception rather than “crisp” 
statistical models. The method has been implemented in the Early Warning Tool, which has been ap-
plied to empirical distributions of time-to-failure and mileage-to-failure of warranty claims of a major 
car manufacturer (GM). The results have revealed significant emerging and decreasing trends in the car 
warranty data. Important clues for the root causes of the discovered trends have also been provided. The 
method can be further enhanced in several directions.
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INTRODUCTION

Nowadays, the amount of recorded video is continually increasing leading to a growing need to find a 
way to handle it automatically. One of the main issues is to be able to index these data with high-level 
semantic concepts (or features) such as “indoor/outdoor”, “people”, “maps”, “military staff”, etc.

Video indexing aims at analyzing a video, to find its seminal content, and to associate concepts to 
any of its part. Today effective video indexing is done manually, by a human operator, who associates 
concepts to parts of a video. However, due to the growth of recorded video, the introduction of automatic 
approaches, as data-mining-based ones, is a promising perspective.

Video mining is typically an inductive machine learning approach. It has as starting point a set of 
correctly labeled examples used to train or to build a model. Later, the model is used to perform an au-
tomatic classification of any of the forthcoming examples, even if they have not been met before. Video 
mining is becoming a very active domain today and several conferences take into account this domain 
in their topics (for instance, the workshop on Video Mining of last IEEE International Conference on 

AbsTRACT

In this chapter, the authors focus on the use of forests of fuzzy decision trees (FFDT) in a video mining 
application. They discuss how to learn from a high scale video data sets and how to use the trained FFDTs 
to detect concepts in a high number of video shots. Moreover, the authors study the effect of the size of 
the forest on the performance; and of the use of fuzzy logic during the classification process. The experi-
ments are performed on a well-know non-video dataset and on a real TV quality video benchmark.
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Data Mining, or ACM Multimedia conferences, etc.). Some works related to video mining can be cited: 
(Pan, J.-Y., & Faloutsos, C., 2002), (Rosenfeld, A. et al.; 2003), (Zhu, X., et al. 2005), the proceedings 
of the TRECVid challenge organized by the US institute NIST.

Inductive machine learning is a well-known research topic with a large set of methods, one of the 
most commonly used approaches being the decision tree approach (DT). However, robustness and 
threshold problems appear when considering classical DTs to handle numerical or imprecisely defined 
data. The introduction of fuzzy set theory, that leads to the construction of fuzzy decision trees (FDT) 
able to smooth out these negative effects.

In the 2005 TRECVID competition, we studied the use of Fuzzy Decision Trees for this kind of ap-
plications (Marsala, C., & Detyniecki, M., 2005). The approach, based on single FDTs (one per concept), 
provided as result a set of classification rules, which were in the one hand, human understandable, thus 
allowing further human development; but in the other hand, this first series of tests enables us to discover 
that, when addressing large, unbalanced, multiclass datasets, a single classifier is not sufficient for direct 
automatic exploitation. Thus, based on these observations, in (Marsala, C., & Detyniecki, M., 2006) 
forests of FDT were introduced to cover better the whole input space. The use of forests of decision trees 
is well-known in classical machine learning, see for instance (Breiman, L., 2001). In fuzzy machine 
learning, forests of fuzzy decision trees have been introduced some years ago and are becoming more 
popular nowadays (Bonissone, P.P. et al., 2008), (Crockett, K., et al. (2001), (Janikow, C. Z., & Faifer, 
M., 2000), (Marsala, C., & Bouchon-Meunier, B., 1997). These approaches differ by the way the FDT 
are multiplied to grow the forest.

In this chapter, we show that this kind of approach is very useful for high scale challenge. First, we 
present how the video is pre-processed in order to obtain a set of descriptors to feed a video mining 
algorithm. Afterwards, we explain how Forest of Fuzzy Decision Trees are built and consecutively used 
to detect concepts in video shots.

In the experimental part of the chapter, we first study on a well-studied dataset both the influence of 
the size of the forest (in terms of number of trees), and the influence of using the FDTs in a fuzzy manner 
or not. Afterward, the proposed approach is confronted to a real world video dataset. The performance 
of FFDTs with respect to other approaches is explored. And the observations obtained on the previous 
dataset are confronted.

FROM vIDEO TO TRAININg sETs

From a video, a sequence of steps, such as the extraction of basic descriptors is necessary to feed the 
video mining algorithm.

First of all, the video is automatically segmented into temporal shots. Here, a shot is a sequence of the 
video with a more or less constant content. The content of a shot is considered to have the same “mean-
ing”. Generally, all the frames that compose a shot are very similar visually and differ only slightly. A 
shot can be very short (less than 1 second), for instance in action sequences of a video, or it can be very 
long, for instance if the sequence in the video shows only a still host talking to the camera. A shot can 
be associated with a set of representative images, called frames. The number of frames can vary from 
at least 1 to more than 10 frames, depending on the complexity of its contents.

Secondly, two kinds of descriptors are extracted from each frame: Visual Information Descriptors 
and Video Information Descriptors. Moreover, frames from the video training set are also associated 
with a set of Class Label obtained through a manual indexation of the videos.
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visual Information Descriptors

The Visual Information Descriptors are obtained directly and exclusively from the frames. In order to 
obtain spatial-related information, each frame is segmented into five overlapping regions (see Figure 
1).

Each of them corresponds to a spatial part of the frame: top, bottom, left, right, and middle. The five 
regions have not the same size to reflect the importance of the contained information based on its posi-
tion. Moreover, regions overlap in order to introduce a dependency between them.

For each region the associated histogram in Hue-Saturation-Value (HSV) space is computed. The 
number of bins of the histogram follows the importance of the region by being valued in a more or less 
precise way: 6x3x3 or 8x3x3.

At the end of these steps, a set of Visual Information Descriptors characterizing each frame is provided. 
This set is composed of values ranging from 0 to 1. Each value represents the frequency of a color in 
the HSV space for the corresponding region it is associated with.

For instance, if the number of bins in the HSV space is 8x3x3 for the “Center” region, and if the 
number of bins is 6x3x3 for the four other regions, the Visual Information Descriptors of a frame is 
composed of 288 numerical values from [0,1].

The main interest in choosing overlapping regions in the frame is to create a link between the regions. 
This link is defined by the fact that their HSV histograms are valued on a same subset of pixels. The aim 
here is to alleviate a drawback of the attribute oriented inductive learning where attributes are usually 
considered as independent. Thus, creating a link between them will enable the learning model to take 
into account information about the color in the frame as a whole.

Here, the use of fuzzy histograms (histograms defined by means of a fuzzy definition of colors) can 
be a very interesting improvement of our approach and deserves further research.

Figure 1. Spatial segmentation of a frame
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Temporal Information Descriptors

The Temporal Information Descriptors are information related to the position of the frames, and of the 
shots, in the video. For every shot, we extract:

the temporal position (time code of the beginning) of the shot and of the frame itself,• 
the duration of the shot containing the frame and the duration of the original shot if the shot results • 
from a merging of smaller shots.

At the end of this step, the Temporal Information Descriptors, a second set of numerical values that 
characterize a shot and its frames is obtained.

Class Label

The Class Label is the result of a human indexation of the video. It corresponds to the correct high-level 
concept(s) (features) to be detected on a given shot.

A concept is associated to each frame of the video through a human indexation process. Thus, the 
shots are described by the concepts appearing in at least one of its frames. Furthermore, a frame can be 
associated with more than one class descriptor.

building a Training set

In order to use the Fuzzy Decision Trees (FDT) learning method, we must have a training set in which 
there are cases with the concept to be recognized and examples that do not possess that concept. More-
over, the decision tree construction methods are based on the hypothesis that the value for the class is 
equally distributed. Thus, we have to balance the number of frames of each class by (randomly) select-
ing a subset of the whole development dataset. Each of such a subset must contain an equal number of 
cases in each class.

LEARNINg AND DETECTINg HIgH LEvEL CONCEPTs

In the particular context of large datasets, as for instance for video indexing, we can focus our attention 
on the elements (here shots) that are classified with a high degree of confidence. In fact, it may be suf-
ficient and more interesting to have some good examples rather than an average classification overall. 
Thus, often in video indexing the classified shots are ranked based on the credibility on the fact that the 
shot contains the concepts or not.

FFDT can be easily used to provide a ranking of shots for a given concept. First, a classification of 
frames is done by means of each tree of the FFDT. Secondly, an aggregation of the results leads to the 
classification of the shot. Finally, the shots are ranked based on the aggregated value, which corresponds 
to credibility that the concepts appear in it.

First of all, we briefly recall how the training enables us to obtain a classifier (FFDT) that will be 
used later to classify and rank the test frames. For more technical details on this method, please refer to 
(Marsala, C., & Detyniecki, M., 2006).
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Fuzzy Decision Trees

Inductive learning raises from the particular to the general. A tree is built, from the root to the leaves, 
by successively partitioning the training set into subsets. Each partition is done by means of a test on 
an attribute and leads to the definition of a node of the tree (for more details, please, refer to Marsala, 
C., & Bouchon-Meunier, B., 1999).

When mining numerical data, with a Fuzzy Decision Tree, a definition of fuzzy values of attributes is 
necessary. In the case of high scale mining, an automatic method is necessary. We build a fuzzy partition 
on the set of values of the numerical descriptors.

Finally, in order to address high scale datasets, the FDT has to be built efficiently and the use of the 
Salammbô software has been introduced in this step. This software has been introduced in (Marsala, 
C., & Bouchon-Meunier, B., 1999). It enables the construction and the use of fuzzy decision trees. A 
lot of parameters can be set (measure of discrimination, family of t-norms, parameters to build fuzzy 
partitions, etc.) in this software to build the FDT. Moreover, it has been written in C that enables it to 
handle very efficiently training sets with a very high number of examples.

Classifying Frames with a Fuzzy Decision Tree

The process of a frame classification (i.e. detecting whether a concept is present), using a single Fuzzy 
Decision Tree is straightforward (Marsala, C., & Detyniecki, M., 2005). From each image-frame low-
level features (in the same description space as for the training) are extracted. Based on this description, 
starting from the top of the tree, decisions are successively performed. The decisions can be made either 
in a classical or in a fuzzy manner as it is explained in the following.

When doing it classically, the decision is to follow one and only one of the branches. Technically the 
decision is done using the 0.5 alpha-cut degree of the fuzzy values. At the end, when a leaf is reached, 
the FDT outputs a single class with a full membership, either “has the class” or “has not the class”, for 
each tested example.

When doing it in a fuzzy manner, if the decision is not crisp, for instance if the case to classify is 
close to the boundaries of the decision frontier, several branches can be followed. At the end the FDT’s 
output is a degree of membership (ranging from 0 to 1) of the example observing the class. In order 
to compute these degrees, the trees are considered as a set of rules. All possible top-to-leaf paths are 
considered as a disjunctive set of rules and each individual path is considered as a conjunction of deci-
sions. Based on this logical representation, the final degree can be computed using standard fuzzy logic 
operators. In this chapter, we consider Zadeh’s family (maximum and minimum) and the Lukasiewicz 
one (bounded sum and its dual)1.

These two families of t-norms have been chosen because their behavior is very different. However, 
any other family of t-norms could be used in this process and it deserves further research. For more details 
on the use of FDTs in fuzzy manner please refer to (Marsala, C., & Bouchon-Meunier, B., 1999).

Forests of Fuzzy Decision Trees

One way to address high scale datasets is to reduce the size of the problem. We propose to create, by 
sampling the large dataset, several smaller ones. Then we train one classifier on each of the size reduced 
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sets. As a result we obtain a set of classifiers, which decisions have to be combined at the decision stage. 
An ensemble of decision tree classifiers is a so-called forest of decision trees.

This approach produces global classifiers that are not only robust, but having their score more reli-
able. Moreover, this technique allows to address another problem often observed in high scale-datasets: 
the balance of positive versus negative examples. In fact, even there is a lot of positive examples, the 
number of negative (or not labeled) examples is quickly overwhelming. If we sample several times 
asymmetrically, so that we obtain balanced smaller training sets, we not only solve the balance problem, 
but we also cover better the larger negative examples space.

A question remains the number of decision trees of need. Later in this chapter we study the influence, 
in terms of performance (error rate), of the number of Decision Trees used in a forest.

In the particular case of video mining, we construct a forest of FDTs for each high-level concept to 
be detected. A FFDT is composed of n Fuzzy Decision Trees. Each FDT Fi of the forest is constructed 
based on the training set Ti, each training set Ti being a balanced random sample of the whole training 
set, as described previously.

Classifying Frames with a Forest of Decision Trees

The classification using a forest of n FDTs, is reduced to an aggregation problem. In fact, for a single 
concept, the classification of a frame k is carried out in two steps:

1.  Classification of the frame by means of the n FDTs of the forest: each frame k is classified by means 
of each FDT Fi in order to obtain a degree di(k) ∈ [0, 1] of having the concept. Thus, n degrees 
di(k), i=1…n are obtained, from the forest, for each k.

2.  Aggregation of the di(k) (i=1…n) degrees, into a single value d(k), which corresponds to the degree 
in which the forest believes that the keyframe k contains the concept.

Two kinds of aggregating methods to compute the degree d(k) were tested:

1.  Simple vote: This basic aggregation corresponds to the sum of all the degrees:

d k d k
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i

n

( ) ( )=
=
å

1  

2.  Weighted vote: Aggregation can also be weighted by taking into account the training accuracy of 
the FDT. Thus, the sum of the degrees becomes
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where wi, from [0, 1] corresponds to the accuracy of the corresponding FDT Fi valued on the training 
set.

Other aggregating methods could be used here and the choice of a convenient operator deserves 
further research. Moreover, a more complex aggregator could be used here in this step. For instance, a 
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model could be tuned on the training data and a machine learning tool could be very useful to improve 
this aggregation.

Detecting a Concept in a shot

The degrees of all the frames d(k) of one shot are aggregated to obtain a global degree D(S). Since it is 
sufficient that at least one frame in the shot presents the concept to be able to state that the shot contains 
the concept, the degree D(S) for the shot S containing the concept is obtained as

D S d k
k S

( ) max ( )=
Î{ }  

Here, the choice of another aggregating operator (as the sum for instance) could also be done and it 
deserves further research in order to study whether it could improve the approach.

So, after this aggregation, for every shot, a degree is obtained. The higher D(S) is, the higher it is 
believed that the shot S contains the corresponding concept.

NUMbER OF DECIsION TREEs FOR HIgH sCALE MININg

As stated before, in order to cover high scale datasets it is suitable to sample the problem into several 
reduced sets of data and go from fuzzy decision trees (FDT) to forests of FDTs.

What is not clear is what is the precise effect, in terms of performance, on the number of trees that 
are used. The performance is measured by the error rate (i.e. the ratio of wrong classifications to the 
total number of classification evaluated). Thus, the error rate ranges from 0 (“no wrong classification”) 
to 1 (“no correct classification”).

Waveform Datasets

In order to avoid any particularities of a video data set, we study the influences of the size of the forest 
and of the choice of the aggregation operators on the well-known Waveform dataset (Breiman, L. et al., 
1984), from the UCI repository (Asuncion, A., & Newman, D., 2007). This dataset is often used in the 
machine learning community and a lot of algorithms have been evaluated on it. For instance, in (Brei-
man, L., 2001) or in (Geurts, P., et al. 2006), some results with this dataset can be found for algorithms 
combining decision trees (Adaboost, Random Forests, ...).

The Waveform dataset has the following interesting properties. There are 3 (symbolic) classes to 
recognize, and 21 real-valued attributes. Data can be noised (as in real-world problems). The dataset is 
composed of a total of 5000 instances and the proportion of positive and negative examples is balanced. 
This dataset comes from an artificial problem where three different triangular functions (named either 1, 
2, or 3) are defined by means of 21 real-valued attributes. For more detail on this dataset, please, refer 
to (Breiman, L. et al., 1984).
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Experiments

In order to correctly measure the error rate, the dataset is decomposed into two subsets: the training set 
composed of 3500 examples, and the test set composed of 1500 examples.

Using the training set Forest of FDTs of different sizes (ranging from 1 to 500 FDTs) are built using 
a similar protocol as the one used for the video indexing application:

• step 1: a class c is chosen from the set of classes
• step 2: the training set is sampled by taking all the examples associated with the class c, and a 

random sample of examples of the other classes (i.e. negative examples). The idea here is to build 
a set of examples where there is the same number of examples of the class c, than examples of 
another class.

• step 3: from this sampling, a FDT is constructed using the Salammbô software (Marsala, C., & 
Bouchon-Meunier, B., 1999).

This process is repeated for each of the three classes in order to obtain three FDT, each one enabling 
the classification of an example with regards to a given class.

In the evaluation step, for each class, each example from the test set was classified by each of the 
FDTs. The classification was repeated three times, each time using the decision in a different manner: 
classical, fuzzy using the Zadeh operators and fuzzy using the Lukasiewicz ones. The individual tree 
classification degrees were then aggregated using a simple vote approach, to determine the final class 
of the example.

Figure 2. Influence of the size of the forest on the error rate
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In Figure 2, we present the variation of the error rate when classifying the test set for various sizes 
of FFDT (in terms of number of trees). We notice that no matter how we use the FDTs (i.e. classically 
or fuzzy) the error rate decreases with the size of the forest.

Moreover, we notice that the error rate has great variations for small sized forests and stabilizes for 
larger ones. There seems to be a boundary error rate of around 0.15 (15% examples are badly classified). 
These results confirm the intuition: the more the number of trees is the lower the error rate. However, 
we remark that there is a limit to this approach. In fact, after a certain number of trees the results do not 
improve and we can even notice a slight worsening. It is also remarkable that a relatively small number 
of trees (for this problem around 100) is needed to get the limit performance.

Now, when comparing the classical use of the FDTs (curve labeled “classical) with the fuzzy-logic-
based use of the same FDTs (curves labeled Zadeh and Lukasiewicz), it becomes clear that the use of the 
fuzzy set theory reduces the error rate for this problem, and this no matter the size of the forest. When 
comparing the fuzzy approaches we notice slight advantage for Zadeh’s logic.

The complexity and runtime of the whole process is relatively low. In fact, the total runtime of all 
the experiment described here, composed of the construction of 500 FDT, the classification of the test 
set by each of these FDT and with each of the presented operators (Classic, Zadeh, and Lukasiewicz), is 
around 7350 seconds on a multiprocessor computer (10 core 2.93 Ghz, 64 Gb RAM, with GNU/Linux 
2.6). This can be explained by the fact that the construction of a FDT was optimized in previous works 
and here the construction of the Forest of FDTs is just related to the number of trees built and, thus, is 
relatively low (taking into account the small number of trees needed to obtain a small error rate).

High scale Mining on Tv video Data

In order to compare our approach to others high scale approaches in a real-world framework, we partici-
pated to the high-level feature extraction task, at the TRECVid 2007 Challenge (Over, P., et al., 2007). 
Here, we only report the results obtained with our submission (Marsala, C., et al., 2007), the interested 
reader could refer to the proceedings of the TRECVid 2007 Challenge to have a good overview of the 
results of the whole participating teams.

The video corpus was composed of 109 videos (around 30 minutes length each) and 18142 refer-
ence shots (shots were provided by (Petersohn, C., 2004)). The challenge addressed 39 concepts: sports 
(1), weather (3), office (5), meeting (6), desert (10), mountain (12), waterscape-waterfront (17), police 
security (23), military staff (24), animal (26), computer TV screen (27), US flag (28), airplane (29), car 
(30), truck (32), boat or ship (33), walking or running (34), people marching (35), explosion fire (36), 
maps (38), and charts (39).

The evaluation process was independently conducted by the NIST institute. Since TRECVid is in-
formation retrieval oriented, and given the size of the test set, each participating team had to propose, 
for each high-level concept, a ranking of at most 2000 video shots from the test set, that contain each 
of the concepts.

Due to the high size of the test corpus, it is impossible to manually annotate all examples for each 
concept. Thus, the TRECVid evaluators propose to evaluate a sample of the selected (by the submissions) 
shots and based on that infer the average precision. Thus, official metric (NIST, 2006) used to evaluate 
the runs was the Inferred Average Precision. Evaluating methods by means of an inferred value is a 
well-known approach whenever the size of the corpus is too large to be fully handled.
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TRECvid Experiments

Several kinds and sizes of forests were studied (and submitted). Here, we focus on two sizes of forests 
(25 FDTs and 35 FDTs) and on the use of fuzzy logic in the classification step (classical use versus Zadeh 
and Lukasiewicz uses). More precisely, four approaches are compared: results obtained by means of a 
forest of 25 FDTs used classically (“F25_Classic”), results of a forest of 25 FDTs used with the Zadeh’s 
t-norms (“F25_Zadeh”), results of a forest of 35 FDTs used with the Zadeh’s t-norms (“F35_Zadeh”), 
and the median of the results for all the participating teams (to TRECVID 2007).

In Figure 3, variations of the Inferred Average Precision (Inf. AP.) are presented. The average preci-
sion combines the ideas behind both precision and recall by considering the precision at different depths 
of a list. It gives a paramount importance to the first shots returned, but also considers the total number 
of correct shots returned. It can be observed that the FFDT performance highly depends on the kind 
of concepts to be recognize. It is greatly linked to the low level descriptors used to represent the shots. 
Some concepts are simple to learn (not only for the FFDTs): waterscape-waterfront (17), animal (26), 
computer TV screen (27), US flag (28), airplane (29), car (30), boat or ship (33). However, concepts, 
such as weather (3), desert (10), US flag (28), people marching (35), need better (specialized) descrip-
tors in order to allow the FFDT to perform better.

In average the FFDTs ranked among the first half of all the approaches that participated to the chal-
lenge. When compared to the median FFDTs perform for some concepts and less good for other and 
this independently of its “difficulty” to be learned. FFDTs outperform for the complex concepts: police 
security (23), military personnel (24), explosion fire (36); and for the simpler ones: TV screen (27), 
airplane (29).

As shown on the Waveform dataset, the increase of number of trees in the forest improves the results. 
Here the Inf. AP. (Inferred Average Precision) of forests of 35 fuzzy trees outperforms forests of 25 
fuzzy trees, for almost all concepts.

Figure 3. Global Inf. Avg. Precision
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In Figure 4, Figure 5, and Figure 6, the number of correct classified shots (hits), for each concept, is 
presented when considering the first 100, 1000 and 2000 shots of the list, respectively. By considering 
the hits we do not take into account the order of the results. These 3 values, for each concept, are part 
of the evaluation metrics available at the TRECVid Challenge.

When considering the number of hits in 100, 1000 and 2000 first shots for the FFDTs compared to 
the median (seen here as a reference point), we observe that the FFDT performs relatively better when 
considering most of the list. We claim that the main reason lies in the fact that the FFDT is a classi-

Figure 4. Good Hits in the 100 firsts

Figure 5. Good Hits in the 1000 firsts
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fication tool and not a ranking tool. In fact, the DTs optimize the decision boundary and the distance 
of the example to the boundary. If, during the learning stage, a shot is naturally put far away from the 
decision boundary (i.e. it is very easy to classify) then it will have a little influence on the selection of 
the boundary.

Based on the previous observation and in order to compare the different approaches it is better to 
choose the full returned list. On Figure 6, we observe that the use of the full power of the fuzzy set 
theory is always better than a classic-approach based. Moreover, we see again that the “F35_Zadeh” 
FFDT performs better than “F25_Zadeh” which highlights the importance of the size of the forest in this 
application too. Thus, confirming the results observed on the Waveform dataset. If we now focus our 
attention on the number of hits at 100 (Figure 4) and we compare the use of Fuzzy Logic (“F25_Zadeh”) 
to the classical use (“F25_Classic”), it appears that in several times the latter outperforms the former. 
In other words, fuzzy logic is good for classification but it aggravates the ranking. This behavior can be 
explained by the fact that the use of degrees of truth on the one hand scrambles the strong decision (good 
for the top of the list), however, on the other hand it improves the overall decision (i.e. classification).

CONCLUsION

In this chapter, we presented the use of forests of fuzzy decision trees (FFDTs) for the high scale video 
mining problem. We showed that FFDTs can be considered as an interesting application of the fuzzy set 
theory to handle such a challenge.

In fact, we believe that, one effective way of addressing high scale data problems, with Fuzzy Deci-
sion Trees, is by splitting the problem by repeatedly sub-sampling the learning space and then for each 
sample train a classifier, leading to a Forest of Fuzzy Decision Trees.

Based on the carried out experiments performed on the well-studied Waveform data set and on the 
TRECVId real video data challenge, we advocate that a good heuristic leading to better results is to have 

Figure 6. Good Hits in the 2000 firsts
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as many FDT as possible. Moreover, we observed that the fuzzy of FFDTs outperforms the classical 
approach in a high scale classification problem.

The results on real world data (TV quality videos) from the TRECVid challenge highlight that this 
approach is already competitive with respect to others’. We show that FFDTs are good at detecting high-
level concepts in shots (classification), but do not optimize the rank of the results.

In this real-world application that took place in a highly competitive context (the TRECVid Challenge 
that involved not only academic teams but also industrial teams) the tools from the fuzzy set theory have 
been proven to be a very sizeable and tractable approach. Moreover, the robustness of these tools when 
handling real-world measures enables the improvement of a classical data mining tools to construct fuzzy 
decision trees and build forests that benefit from the fuzzy degrees offer as output of the trees.

Several future works should be done in order to improve and to study better the proposed approach. 
For instance, the study of other kinds of descriptors to encode the video shots will be conducted in order 
to improve the results for other kinds of high-level concepts. Fuzzy descriptors could be introduced here 
(for instance, to build histograms defined on fuzzy colors, to define the boundaries of a shot, or to handle 
better the temporal measures related to the video) to take into account better this real-world data.

Moreover, several parameters that are used during the construction of the fuzzy decision trees, and 
the ones that are used to set the size of the forest deserve a deeper study. The study and the choice of 
the aggregation operators involved in various step of the use of the FFDT will also be studied deeper 
in order to be optimized for a given domain of application. The influence of the number of the FDTs to 
build a forest deserves also a deeper study that could brought out a better understanding of how to set a 
convenient size for such an ensemble of classifier.

REFERENCEs

Asuncion, A., & Newman, D. (2007). UCI machine learning repository – University of California, 
Irvine, School of Information and Computer Sciences. Retrieved from http://www.ics.uci.edu/~mlearn/
MLRepository.html

Bonissone, P. P., Cadenas, J. M., Garrido, M. C., & Diaz-Valladares, R. A. (2008). A fuzzy random 
forest: Fundamental for design and construction. In Proceedings of the 12th International Conference 
on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’08), 
Malaga, Spain (pp. 1231-1238).

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. New 
York: Chapman and Hall.

Crockett, K., Bandar, Z., & McLean, D. (2001). Growing a fuzzy decision forest. In Proceedings of the 
10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia (pp. 614-617).

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 
3–42. doi:10.1007/s10994-006-6226-1

Janikow, C. Z., & Faifer, M. (2000). Fuzzy decision forest. In Proceedings of the 19th International 
Conference of the North American Fuzzy Information Processing Society (NAFIPS’00) (pp. 218-221).



378

High Scale Fuzzy Video Mining

Marsala, C., & Bouchon-Meunier, B. (1997). Forest of fuzzy decision trees. In M. Mares, R. Mesiar, 
V. Novak, J. Ramik, & A. Stupnanova (Eds.), Proceedings of the Seventh International Fuzzy Systems 
Association World Congress, volume 1, Prague, Czech Republic (pp. 369-374).

Marsala, C., & Bouchon-Meunier, B. (1999). An adaptable system to construct fuzzy decision trees. In 
Proc. of the NAFIPS’99 (North American Fuzzy Information Processing Society), New York, USA (pp. 
223-227).

Marsala, C., & Detyniecki, M. (2005). University of Paris 6 at TRECVID 2005: High-level feature 
extraction. In TREC Video Retrieval Evaluation Online Proceedings. Retrieved from http://www-nlpir.
nist.gov/projects/tvpubs/tv.pubs.org.html

Marsala, C., & Detyniecki, M. (2006). University of Paris 6 at TRECVID 2006: Forests of fuzzy deci-
sion trees for high-level feature extraction. In TREC Video Retrieval Evaluation Online Proceedings. 
Retrieved from http://wwwnlpir.nist.gov/projects/tvpubs/tv.pubs.org.html

Marsala, C., Detyniecki, M., Usunier, N., & Amini, M.-R. (2007). High-level feature detection with 
forests of fuzzy decision trees combined with the rankboost algorithm. In TREC Video Retrieval Evalu-
ation Online Proceedings. Retrieved from http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html

NIST. (2006). Guidelines for the TRECVID 2006 evaluation, National Institute of Standards and Tech-
nology. Retrieved from http://www-nlpir.nist.gov/projects/tv2006/tv2006.html

Over, P., Kraaij, W., & Smeaton, A. F. (2007). Guidelines for the TRECVID 2007 evaluation. National 
Institute of Standards and Technology. Retrieved from http://www-nlpir.nist.gov/projects/tv2007/tv2007.
html

Pan, J.-Y., & Faloutsos, C. (2002). VideoCube: A novel tool for video mining and classification. In 
Proceedings of the International Conference on Asian Digital Libraries (LNCS 2555, pp. 194-205). 
Berlin, Germany: Springer.

Petersohn, C. (2004). Fraunhofer HHI at TRECVID 2004: Shot boundary detection system.(Tech. Rep.). 
In TREC Video Retrieval Evaluation Online Proceedings, TRECVID. Retrieved from http://www-nlpir.
nist.gov/projects/tvpubs/tvpapers04/fraunhofer.pdf

Rosenfeld, C., Doerman, D., & DeMenthon, D. (2003). Video mining. Amsterdam: Kluwer Academic 
Publishers.

Zhu, X., Wu, X., Elmagarmid, A. K., Feng, Z., & Wu, L. (2005). Video data mining: Semantic index-
ing and event detection form the association perspective. IEEE Transactions on Knowledge and Data 
Engineering, 17(5), 665–677. doi:10.1109/TKDE.2005.83

ENDNOTE

1  We recall briefly that, given two values x and y from [0,1], the aggregation by means of the Lukasie-
wicz t-norm is valued as T(x,y)= max(x+y-1,0) and the aggregation by means of the Lukasiewicz 
t-conorm is valued as ⊥(x,y)=min(x+y,1).
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INTRODUCTION

Bioinformatics is, arguably, the application domain where large relational datasets are most abundant. 
There are two main reasons for this abundance. First, numerous genome projects completed in the last 10 
years have generated a large amount of sequence data. For example, the RefSeq database (http://www.
ncbi.nlm.nih.gov/RefSeq/) contains, as of September, 2008, about 5,400 genomes with a total of about 
5.6 million identified protein sequences. At the same time, the total number of sequences deposited in 
another sequence database GenBank, http://www.ncbi.nlm.nih.gov/Genbank (Pruitt, Tatusova & Maglott, 
2007), is close to 85 million. The difference between the numbers of sequences in the two databases 
is represented, in part, by sequences with unknown function. Even for the case of the human genome, 
only about 21,000 genes have been annotated from an estimated total of 30,000. Second, functional 
annotation is a tedious process that is mainly accomplished by comparing the sequence of an unknown 
protein to the sequence of a protein with known functions. The sequence comparison is often performed 

AbsTRACT

In this chapter the author presents a fuzzy clustering methodology that can be employed for large 
relational datasets. Relational data is an N×N matrix that consists of pair-wise dissimilarities among 
N objects. Large relational datasets are encountered in many domains such as psychology or medical 
informatics, but they are abundant in bioinformatics where gene products are compared to each other 
based on various characteristics such as DNA or amino acid sequence. The fuzzy clustering methodol-
ogy is exemplified on a set of about 30,000 human gene products.
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with BLAST (Altshul et al., 1990), one of the most used tool in bioinformatics. When performed on an 
entire genome, this method produces large matrices (relational data) of gene sequence similarity values. 
There are other applications beside sequence comparison where large relational datasets are generated, 
such as gene comparison based on Gene Ontology annotations or microarray expression (Havens et al. 
2008), and document comparison based on Medical Subject Headings (MeSH) annotations.

Clustering plays an important role in genome annotation process. In the first phase of the process, 
after the hypothetical gene boundaries are determined, the gene products are annotated based on their 
sequence similarity to gene products in related species that are well studied. Next, all the gene prod-
ucts in a given genome are clustered based on their sequence similarity in order to find proteins with 
similar functions (Enright, Van Dongen & Ouzounis, 2002). Most of the time, gene products with high 
sequence similarity have similar functions. However, there are gene products with similar functions 
with less than 30% sequence similarity. The well characterized proteins from the same cluster can 
then be used to determine the functions of the unknown members of the group, a strategy often called 
“guilt by association”. The most used annotation type is based on Gene Ontology terms. For example, 
if an annotated gene A clusters together with an annotated gene B due to a high sequence similarity 
(e.g. computed with BLAST) or due to a high similarity of their expression profiles (computed based 
on microarray data), we have reason to believe that B shares all/some of the annotations (functions) 
of A. The most popular clustering algorithms for relational datasets in bioinformatics are hierarchical 
clustering and Markov clustering (Enright, Van Dongen & Ouzounis, 2002). A scalable version of the 
hierarchical clustering algorithm, CURE, has been proposed (Guha et al., 1998), but we are not aware 
of its application to bioinformatics. An implementation of Markov clustering, TRIBE-MCL, has report-
edly grouped about 80,000 sequences in 8,000 clusters in approximately 5 minutes on a Sun Ultra 10 
workstation. However, both previous clustering approaches are crisp, that is, they assign each sequence 
to a unique cluster. Because many proteins have multiple sequence domains that correspond to various 
functions, it is more natural to allow each sequence to belong to multiple clusters (Xu et al., 2008). By 
employing fuzzy clustering, an unknown gene product can be assigned to more than one group, receiving 
in this fashion putative annotations from multiple gene families (Popescu et al., 2004). For example, if 
the unknown gene B has a 0.5 membership in A’s cluster and, at the same time, has a 0.5 membership 
in another cluster where gene C is representative, then we have 50% confidence that B shares both A’s 
and C’s annotations. More applications of the fuzzy clustering in bioinformatics, such as gene product 
summarization and microarray processing, are presented in (Xu et al., 2008).

A relational fuzzy clustering algorithm for very large databases, eNERF, has been recently introduced 
by Bezdek et al. (Bezdek et al., 2006, Wang et al., 2008). However, eNERF was not applied to any large 
bioinformatics data sets. In this paper we intend to employ eNERF to fuzzy cluster the human genome 
sequences available in the RefSeq database. We will concentrate on the process of assigning fuzzy 
memberships to gene products and not on the annotation process itself. For a review of the automatic 
gene annotation methods we refer the reader to (Ouzounis and Karp, 2002) and (Stothard and Wishart, 
2006). We will analyze eNERF behavior both in scalability (speed and memory requirements) and cluster 
coherence. We will also describe eCCV, an extension of the CCV cluster validation algorithm described 
in (Popescu et al., 2008).

The organization of this chapter is as follows: in the first section we describe eNERF, in the second 
one we present eCCV, in the third section we describe the RefSeq human gene product dataset, in the 
next one we show the results obtained on RefSeq data using the presented methodology, and in the last 
section we summarize our experiments.
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ExTENDED NON-EUCLIDEAN RELATIONAL FUZZY C-MEANs (ENERF)

The meaning of the term “large datasets” is elusive due to its relation to available computing resources, 
such as processor speed and memory. Two decades ago, a 500 KB dataset was considered large; now the 
processing limit is in the gigabyte range. Specifically, for relational algorithms that deal with distances 
between objects, the main limitation is the amount of computer memory available. For example, a PC 
with 2GB of memory can directly handle a square distance matrix between about 16,000 objects, number 
that can go up to ~45,000 if the internal memory increases to 16 GB. For comparison, as of February 
2008, GenBank (Benson et al., 2008) contains about 82 million sequences from about 260,000 different 
organisms. Even employing various strategies to increase storage, such as sparse matrices and parallel 
processing, a gap of several orders of magnitude still exists between the number of the possible objects 
(sequences) to compare and the storage capability. This gap needs to be bridged by using modified 
algorithms able to integrate information obtained from various parts of the data.

Aside of the internal memory availability problem, there are other difficulties in handling large re-
lational datasets that new algorithms have to address, such as processing speed and numerical stability. 
One possible approach to modifying existent algorithms for handling large relational datasets can be 
summarized as sample-process-extend (SPE); that is, the regular algorithm application is preceded by a 
sampling scheme and followed by an extension procedure. Among the clustering algorithms developed 
based on the SPE framework, we mention bigVAT (Huband et al., 2005), sVAT (Hathaway et al., 2006), 
geFFCM (Bezdek et al, 2006a) and eNERF (Bezdek et al., 2006, Wang et al., 2008). In what follows, 
we discuss eNERF in more detail.

Relational clustering can be defined as a method for assigning C labels to a set of N objects O = {o1, 
..., oN} using the dissimilarity between them. Based on the type of labeling, we distinguish two classes 
of relational clustering algorithms: hard and fuzzy (or soft). Hard clustering algorithms are those in 
which an object can have only one label at a time, or, in other words, any given object belongs to only 
one group. On the other hand, fuzzy relational clustering algorithms may label an object with multiple 
labels, i.e., they allow the object memberships in multiple groups. The outcome of the hard labeling may 
be represented as a list L, L = {li, ...,lN}, where lj ∈ [1,C] is the label assigned to object oj. However, this 
type of representation does not easily extend to the fuzzy clustering case. To allow for the extension, we 
represent the outcome of the hard clustering as a C × N matrix, U, called membership matrix, in which 
the lj

th element of jth column is 1 if object oj belongs to cluster lj and all the other elements of the column 
are 0. We can easily see that, by using the membership matrix, we are able to represent multiple cluster 
membership degrees by assigning numbers in the [0,1] interval to other elements from the jth column.

eNERF is a relational clustering algorithm that compute fuzzy memberships, U={uij} i∈[1,C],j∈[1,N], 
U∈MfCN, in C clusters for a set of N objects O={o1, ..., oN}, given the dissimilarity matrix between the 
objects DN={dij}i,j∈[1,N]. The elements of the membership matrix U, uij, are subjected to two conditions: 
1) the sum of the memberships of any object j∈[1,N] in all clusters has to sum to 1, and 2) any cluster 
i∈[1,C] has to have some objects assigned to it. Formally, we can define the set of fuzzy partition ma-
trices of size C×N, MfCN, as:
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The fuzzy memberships U={uij} i∈[1,C],j∈[1,N] can be “hardened” by setting ukj=1 for k=argmax(uij) i∈[1,C], 
for any j=[1,N], and uij=0 for any i=[1,C], i≠k. That is, object j is assigned to only one cluster, cluster k, 
for which its membership is maximum. Algorithms such as hierarchical clustering and Markov cluster-
ing produce hard partitions of the data.

Example 1. Consider N=3 gene products o1, o2 and o3. Gene products o1 and o3 have known Gene 
Ontology annotations, GOi, i.e. o1={GO1} and o3={GO2}, while o2 is an unknown gene product. The 
question that we try to answer is: what are the functions of o2? To find its function, we will need to an-
notate o2 with Gene Ontology terms. All three gene products have known (amino acid) sequences. Using 
a sequence comparison algorithm, such as BLAST or Smith-Waterman (Smith and Waterman, 1981), 
we obtain a dissimilarity matrix D3 that may look like:
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Assume that, based on their dissimilarity matrix D3, the three gene products are grouped in two clusters 
using a fuzzy clustering procedure (such as NERFCM, presented later in this chapter). The outcome of 
the clustering is a fuzzy partition Uf23 of the kind given by (1) that may look like:
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In the above fuzzy membership matrix, o2 belongs with degree 0.6 to cluster 1 and with degree 0.4 to 
cluster 2. The fuzzy membership matrix formalism allows us to describe gene product o2 as a member, 
in some degree, of both cluster 1 and cluster 2. As a consequence, based on the “guilt by association” 
conjecture, we can infer both a GO1 and a GO2 functionality for o2 with confidences of 0.6 and 0.4, 
respectively. A “hardened” version of Uf23, Uh23, is given below:
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where, o2 was assigned to the group in which it had the maximum membership (i.e. group 1, therefore 
u21=1 and u22=0). Since o2 has been irrevocably assigned to cluster 1, any information about its GO2 
function is lost.

The eNERF algorithm requires that the elements of the dissimilarity matrix between N objects (also 
called relational matrix) D d i j N

N ij
= { Î é

ëê
ù
ûú}, ,1  satisfy the following conditions:

1.  dii=0, for all i∈ [1,N],
2.  djk≥0, for all j,k∈ [1,N],
3.  djk=dkj, for all j,k∈ [1,N].
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If the dissimilarity matrix DN was obtained by computing the distances between the objects represented 
in some feature space FS ⊂ Rp, then DN is called Euclidean. In general, if DN was obtained by employing 
a dissimilarity measure between objects, such as computing the sequence dissimilarity using BLAST 
(Altschul et al., 1990), it might not be Euclidean. In the mean time, if DN is large, hence not loadable in 
the computer memory, we cannot apply regular fuzzy relational algorithms such as NERFCM (Hathaway 
& Bezdek, 1994). The eNERF algorithm was designed to handle large, non-Euclidean, relational data. 
The eNERF algorithm has three steps:

• sampling: the size of the dissimilarity matrix, DN, is reduced in order to allow loading into mem-
ory and/or for speed-up of the clustering procedure. The size reduction is achieved by choosing 
only n objects of the total of N, n<<N, for further processing. The n sampled objects have to rep-
resent all the clusters present in the data and, most importantly, to allow the dissimilarity matrix 
Dn to be loaded in the memory. The sampling algorithm is discussed in more detail in the next 
subsection;

• clustering: given the dissimilarity matrix and the number of clusters, the fuzzy memberships of 
the n sampled objects in the C clusters, Un={uij} i∈[1,C],j∈[1,n], are computed. In this step, the regular 
non-Euclidean relational fuzzy c-means algorithm, NERFCM (Hathaway & Bezdek, 1994), is 
used. We briefly describe NERFCM in a following subsection;

• extension: given Un and DN, the fuzzy memberships UN for all N objects are computed. The exten-
sion procedure is discussed later in this section.

sampling scheme

Two sampling schemes for relational data were tried in conjunction with eNERF: progressive sampling 
(Bezdek et al., 2006) and selective sampling (Wang et al., 2008). Both sampling schemes rely on select-
ing a set of h “distinguished features” from the set O of N objects, that is, a set of h<<N objects that 
are as far (dissimilar) from each other as possible. We note that the term “features” is a reminiscence of 
the fact that the sampling scheme for relational data was adapted from a similar scheme for object data. 
As a consequence, each row in the dissimilarity matrix DN is considered an object that has as features 
the dissimilarities to all the other N-1 objects. In fact, the “distinguished features” (DF) algorithm is a 
feature selection algorithm that chooses the best features for sampling purposes (Bezdek et al., 2006). 
Although the choice of good objects as DFs will lead to a good partition (clustering) of O, the choice 
of DFs is not directly controlled by the clustering algorithm. The distinguished feature (DF) algorithm 
has the following four steps:

Step 1. Load in memory the dissimilarity matrix DH for H candidate objects, where H is dictated by 
the available memory and n<<H<N. DH is of size H×H.

Step 2. Choose the first row as the first distinguished feature (DF), m1=1. Initialize a search ar-
ray, δ1, that will store the distances from the current distinguished feature to all the other H objects, 
d d1 1 1= { Î é

ëê
ù
ûú}k

k H, , , which in this case is the first row of DH.
Step 3. Compute the ith DF, with index mi, as the object that is farthest away from the (i-1)th DF. The 

index of the farthest object, mi ∈[1,H], is given by the index of the maximum element of the δi-1 array. 
Note that each distinguished feature is an array of length H, which is in fact the mi

th row of DH.
Step 4. Recompute the search array δi by taking the minimum element-wise between δi-1 and the mi

th 
row of matrix DH, that is, the kth element of the new search array is given by dk

j =min{ dk
j

mik
d-1, };
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Step 3 and 4 are repeated h-1 times.
We point out that the “distinguished features” chosen in step 3 of the above DF algorithm must come 

from the candidate rows still available after previous choices were made. For this purpose, a row avail-
ability list has to be maintained - a fact that, for simplicity, we omitted from the algorithm description. 
A summary of the distinguished features (DF) algorithm is given in Figure 1.

The number and the identity of candidate objects loaded in memory, H, depend on the available 
memory. The H objects are usually chosen by random sampling of the N objects to be clustered. How-
ever, even if we can fit into memory the dissimilarity matrix for H objects, its processing might still be 
prohibitive time-wise. For this reason, we would like to further choose n samples from the H available 
to apply the regular clustering on. In the progressive sampling scheme, the first n rows of the matrix DH 
are loaded. Additional rows are added until the distribution of the dissimilarities for each distinguished 
feature approximates the distribution of the entire related row from DH. Specific details about the pro-
gressive sampling procedure can be found in (Bezdek et al., 2006). It was found (Wang et al., 2008), that 
the progressive scheme is very conservative, often resulting in sample size n close to 50% of H, which 
still represent an intractable number in some cases. For this reason, in this work we used the selective 
sampling (SS) scheme described in (Wang et al., 2008).

In the selective sampling scheme, the final n objects are chosen by random sampling of the nearest 
neighbors of the DFs previously found. The main steps of the SS algorithm are:

Step 1: Load the dissimilarity matrix DH for H objects chosen by random sampling of the unload-
able DN;

Step 2: Select h rows {m1, ..., mh} from DH as distinguished features using the DF algorithm given 
above. It is recommended (Bezdek et al., 2006) that h is chosen greater than the expected number of 
clusters, C. Intuitively, if h is too low, it might, indirectly, cause some clusters to be underrepresented 
mainly when n<<N. If h is too high, i.e. h ≅ n, it will increase the time necessary to complete the nearest 
neighbor search (next step). However, since we have the dissimilarities between objects already com-
puted, the increase in computational time is small for an H of about 20,000 which is the limit imposed 
by the available memory in a 2009 desktop computer.

Figure 1. DF Algorithm
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Step 3: For each DF, mj, j∈[1,h] find the set of rows Cj closest to it (i.e. its nearest neighbors). We 
note that, the neighborhood operations are performed in RH, i.e. with distinguished features of length H. 
In (Wang et al., 2008) it is suggested that the DF be vectors in RN, that is, the neighborhood operations 
be performed on the rows of the unloadable matrix DN. While this strategy is possible, it increases the 
computational complexity of the algorithm, since the search procedure has to be conducted in blocks. 
In the example presented in this chapter, we did not deal with this problem since we were able to load 
the entire DN matrix into memory, in other words, for us H ≡ N.

Step 4: From each set of rows Cj, j∈[1,h], choose at random nj samples where nj is given by the 
lower bound of n|Cj|/H and |.| is the number of rows from Cj. We note that, since we rounded off nj, we 
might end up with slightly less samples than n. This might be corrected by taking nh=n-(n1+...+nh-1). A 
summary of the SS algorithm is given in Figure 2.

NERFCM Clustering

NERFCM (Hathaway & Bezdek, 1994) is a clustering algorithm for relational data that assigns C la-
bels to the n sampled objects by computing a fuzzy partition matrix U∈MfCn (Eq. 1). Similarly to FCM 
(Bezdek, 1981), NERCM is an iterative algorithm (alternative optimization) that has three main steps. 
In the first step, an initial guess, U0, for the fuzzy partition matrix U={uij}i∈[1,C],j∈[1,n], is used to compute 
C cluster centers, vi, as

V u u u u
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, i∈[1,C].  (2)

where m∈(1,∞) is a parameter (“fuzzifier”) usually chosen to be m=2. A choice of m toward 1 results 
in harder (less fuzzy) partitions. The initial guess U0 can be obtained by random initialization with 

Figure 2. SS Algorithm
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numbers in [0,1] followed by column normalization. We point out that, unlike FCM that defines the 
cluster centers as a weighted average of the object vectors by their cluster memberships, NERFCM 
uses only the cluster memberships for this task. For this reason, the cluster centers in NERFCM are 
merely normalized memberships of objects in clusters, and they could be seen as a mixture of objects. 
For example, given the membership matrix Uf23 from Example 1 and using Eq.(2), we get v1=(0.56 0.38 
0.06). This cluster center may be interpreted as a virtual object that is 56% similar to o1, 38% similar to 
o2 and 6% similar to o3.

The second step consists in computing the dissimilarity vector di between the ith cluster center and 
the n objects:

d v v v
i n i

t
i n i

tD D= -( ) . ( )0 5 , i∈[1,C],  (3)

where Dn is the dissimilarity matrix between the n sampled objects obtained in the previous section. Us-
ing again the distance matrix, D3, from Example 1 and the cluster center, v1, shown above, we compute 
the dissimilarity vector of the first cluster center as to all objects as d1=(0.2 0.26 0.73)t-0.13=(0.07 0.13 
0.6).

Lastly, an updated fuzzy membership matrix, U’=U
ij

 i∈[1,C],j∈[1,n], is computed as:
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where i∈[1,C] and j∈[1,n]. This equation is similar to the related one from FCM (Bezdek 1981). How-
ever, note that, since in Eq. (3) the dissimilarities are already squared, Eq. (4) does not have the usual 
“2” in the 1/(m-1) power exponent. If dij is smaller than a small value ε, 0<ε<<1, uij is set to 1 and the 
rest of the memberships in cluster i are set to 0.

If Dn is non-Euclidean, some of the computed dissimilarities from Eq. (3) may be negative at this 
point and they can not be used as in Eq. (4). To address this problem, NERFCM uses a β-spread trans-
form (Hathaway & Bezdek, 1994) that increments, at each iteration, the non-diagonal elements of Dn 
with a quantity Δβ, given by

b = - -max{ / || || }
,i j ij i j

d2 2v e
 (5)

where e
j

nR= Î( ,..., , ..., )0 1 0  and ejj=1.
Accordingly, the dissimilarities are modified using:

d d v e
ij ij i
= + D( )× -b / 2

2
, i∈[1,C], j∈[1,n].  (6)

The distances dij that are still negative after the above correction are set to 0. The summary of the 
NERFCM is given in Figure 3.
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Extension scheme

After the fuzzy memberships for the n sampled objects, UfCn, have been computed, an extension scheme 
is necessary to obtain the memberships in the C clusters for the rest of the (N-n) objects that were not 
part of the sample used in the clustering calculation. The initial extension scheme proposed in (Bezdek 
et al., 2006), consists in adding the (N-n) objects one-by-one and iteratively computing UfCn+1 using 
the Eqs. (2) through (6). Even by precomputing several variables, this method is extremely slow due 
to its iterative nature (Wang et al., 2008). Instead, we propose a simpler method that computes the dis-
similarities in Eq. (3) between the (N-n) unsampled objects to the C cluster “centers” of dimension n, 
{vi}, obtained in the previous step (see the output of the NERFCM algorithm above). More precisely, 
Eq. (3) becomes:

d v v v
i N n i

t
i n i

tD D= -( ) . ( )
,

0 5 , i∈[1,C], j∈[n+1,N],  (7)

Because the new extension algorithm is not iterative, it is at least one order of magnitude faster 
than the one proposed in (Bezdek et al., 2006). Moreover, although the previous extension algorithm 
is potentially more precise than one proposed here, they give similar results on our BLAST dataset for 
reasons that will become obvious in the next section. The proposed extension algorithm is summarized 
in Figure 4.

Figure 3. NERFCM Algorithm
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ExTENDED CORRELATION CLUsTER vALIDITY, ECCv

The Correlation Cluster Validity (CCV) (Popescu et al., 2008) is a validity measure for relational data 
sets. Assume we want to estimate the number of clusters for N objects, given the dissimilairty matrix DN 
between them, where N is very large. To reduce the computational time, we employ the same sampling 
strategy as in eNERF. The resulting cluster validity is denoted as extended CCV (eCCV). eCCV con-
sists of two steps: first, apply the SS sampling algorithm to reduce DN to Dn (n<<N) and then estimate 
the number of clusters in Dn using CCV. For a fixed value of C, let U be the final fuzzy partition matrix 
obtained, say, by running NERFCM on Dn. The main idea of CCV is to define a reconstruction matrix 
U* as:

U U U U Ut t* / (max{ })= -1 .  (8)

The assumption used in CCV to find the estimated number of clusters, C, is that the best grouping 
results in a maximum correlation between U* and Dn, that is,

C corr U D
k n

= { ( )}arg max ,*
 (9)

where U
k
*  denotes the reconstruction matrix generated by the k×n fuzzy membership matrix obtained 

by grouping the n objects in k clusters. Here, the correlation between the two matrices will be computed 
using the Pearson correlation. The summary of the eCCV algorithm is given in Figure 5.

REFsEQ gENE PRODUCT DATAsET

To test our clustering methodology, on September 12th 2008 we downloaded the RefSeq database (Pruit 
et al., 2007) build 36.3 in fasta format. RefSeq is a non-redundant, curated, sequence database intended 
to provide a solid foundation for genome annotation and gene characterization. The dataset consisted 
of 37,742 sequences of which about 60% belonged to known genes. About 40% of the human genes are 
either unknown or they have unknown function at this time.

Figure 4. Extension Algorithm



389

Fuzzy Clustering of Large Relational Bioinformatics Datasets

The gene product similarity was computed using BLAST with the “-p” option (protein against pro-
teins) and a cutoff E-score of 10. The similarity between gene products pi and pj, sij, was computed using 
the truncated E-score (Enright, Van Dongen & Ouzounis, 2002) as

S

if E score

if E score

E score i j else
ij
=

- <
- >

- ( )

ì

í

ïïïïï

î

0 0

1 100

100, /
ïïïïïï .  (10)

We mention that the above E-score represents the confidence (so called, “p value”) of the sequence 
similarity score, and not the score itself. For example, if two sequences, s1 and s2, have a BLAST score 
of 385 with a p-value of 0.0001, then the E-score =-log10(0.0001)=4. In addition, the score of s1 vs. s2 
may differ from the score of s2 vs. s1, resulting in a non-symmetrical similarity matrix. Consequently, 
we set sij=sji=0.5(sij+sji). The resulting similarity matrix, S37000, had about 1.5 million non-zero elements, 
that is, it was only 0.1% full (i.e., is a sparse matrix).

There are two characteristics of the RefSeq data set that represent a serious challenge for our clustering 
strategy. First, it is estimated that there are about 9,300 gene product families in our dataset (Finn et al., 
2008). These families can be further grouped in 283 clans (groups of related families). The clan group-
ing was manually performed (Finn et al., 2008), so we consider it to be highly reliable. This information 
might suggest a value for the number of clusters we should use in our eNERF algorithm. Second, the 
distribution of the population in the above families is extremely unbalanced (Enright, Van Dongen & 
Ouzounis, 2002). About 30% of the families have only one member, 3% have more than 50 members, 
and only 0.3% have over 300 members. This distribution information suggests that the upper bound of 
the number of families that we can detect using a 1:10 sampling ratio is around 300, a number that is 
roughly equal to the number of clans. However, the family size distribution will seriously hinder any 
sampling strategy. To address the above challenges we preceded our analysis by a preprocessing step, 
described in the next section, aimed at removing the families with few members.

Figure 5. eCCV Algorithm
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ENERF ExPERIMENTs ON THE REFsEQ DATAsET

Preprocessing of the Refseq Dataset

Because of its sparse nature, the entire S37000 matrix was easily loadable in memory (total size about 
20 MB). However, when it was transformed into a dissimilarity matrix D37000=1-S37000 it required about 
10 GB of data, memory still available on a high-end desktop system (Windows XP64 with 16 GB of 
memory). After this transformation, the rows and the columns of the D37000 dissimilarity matrix were 
rearranged using the Visual Assessment of Cluster Tendency (VAT) algorithm (Bezdek et al., 2002) 
which is essentially a version of the minimum spanning tree algorithm. The result of the reordering was 

Figure 7. The number of gene products with similarity greater than 0 for each reordered gene product 
in the RefSeq dataset

Figure 6. The VAT-reordered distance matrix between the first 2000 gene products of the DV37000 matrix 
(upper-left corner; black=0, white=1)
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a distance matrix denoted DV37000. The intention of the reordering was to separate the large clusters from 
the small clusters. The first 2000 reordered gene products from the upper-left corner of the DV37000 are 
shown in Figure 6.

In Figure 7 we plotted, for each of the 37,742 reordered gene products, the total number of gene 
products that were found to have some level of sequence similarity (as a result of Eq. (10)) to it.

If we assume that the family size is proportional to the number of non-zero similarities per gene 
products, we can see in Figure 7 that VAT did a reasonable job in arranging the large families (over about 
20 members-see the cutoff at index 15,000) at the beginning (left side in Figure 7) of the [1, 37742] 
range. Consequently, we chose to continue our analysis using only the first 15,000 gene products (with 
indices between 1 to 15,000), which means that we used only the 15,000×15,000 upper-left corner of 
the rearranged matrix DV37000, or, equivalently, DV15000. The choice of further use only the gene products 
(i.e. DV15000 matrix) that had more than about 20 neighbors, was made in order to ensure that a 1 in 5 
sampling rate would not drastically change the cluster structure.

Choosing the Fuzzifier, m and the Number of samples, n

In order to choose the value of the fuzzifier m, we used the 360×360 upper-left corner of the DV37000, 
denoted as DV360. Since the value of m depends on the characteristics of the data and not on its size, we 
chose only a small portion of DV3700 to perform this experiment. By visual inspection we estimated that 
there are 3 clusters in DV360: the first one with about 150 members and the other two with about 100 
members each (see Figure 8).

The eNERF performance was estimated with a method similar to one used in Correlation Cluster 
Validity (CCV) (Popescu et al., 2008) by computing the correlation between the reconstruction matrix 
U* (see Eq. (8)) and distance matrix (DV360 in this case). In Figure 8.b we show the reconstruction ma-
trix U* obtained from the fuzzy membership matrix U computed using eNERF with m=1.2 and n=60 

Figure 8. a). The DV360 distance matrix. We assumed that there are 3 clusters in DV360. b) The U *  matrix 
for m=1.2 and n=60. The Pearson correlation between a) and b) is 0.74
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on the DV360 data. The resulting correlation between U* and DV360 is 0.74, which is a reasonably high 
value. More correlation values for m={1.1, 1.2, 1.4, 1.6, 2} and n={60, 90, 120, 150, 180, 240, 360} are 
shown in Figure 9. From this figure, we conclude that eNERF is relatively resilient to down-sampling 
(i.e., choice of n), maintaining a relatively constant performance over sampling range from 1/1 to 1/6. 
Also, the maximum performance was obtained for m=1.2. Consequently, we use m=1.2 in all the sub-
sequent experiments. Moreover, we will use a maximum down-sampling ratio of 1/5 throughout our 
experiments.

In the previous experiments, we observed that increasing the dynamic range of our data set (from 
[0,1]) might improve the clustering results. As explained in the previous section, our similarity score 
came from taking the logarithm of the sequence similarity confidence. As a consequence, we investigated 
the idea of using an exponential transformation to improve cluster separation. When the similarity SV360 
data set was transformed to a dissimilarity using

DVL SV

360

110 1360= --( ) ,  (11)

we obtained a correlation value between eNERF(DVL360) and U* equal to 0.83, which represents an 
increase of 10% versus the non-transformed version. For the experiments that follow we use the trans-
form shown in Eq. (11) and denoted by “L”.

eNERF size Limit

Application of eNERF on the DVL15000 distance matrix with m=1.2, n=3000 and C=300 did not result 
in a correlation coefficient higher than 0.36. Comparing the two matrices, DVL15000 and resulting U*, 
side by side (see Figure 10), we see that, except for the two big clusters around index 5000 and 14000 

Figure 9. The variation of correlation index between U *  and DV360 for various numbers of samples, n, 
and fuzzifiers, m
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respectively, no other gene product groups are visible in the U* matrix. Further reduction in n (increase 
in sampling rate) decreases even further the correlation coefficient.

It seems that eNERF can not directly handle a 15000×15000 distance matrix. We suspect NERFCM 
performance, the imprecision in the number of clusters, the initial guess of the membership matrix, and 
the harsh nature of the data (as explained at the beginning of the results section) for this problem.

The question now is: what is the maximum size that can be handled by eNERF in these circum-
stances? To answer this question, we applied eNERF for various distance matrix sizes, Ns, selected from 
the upper-left corner of DVL15000, which we denote as DVLNs. For each size Ns, the number of samples 
was kept at n=Ns/5. The number of clusters was determined by visual inspection of the DVLNs matrix 
(see Figure 11, row 2). The correlation results for various data sizes for both NERFCM and eNERF are 
given in Figure 11 and Figure 12.

In Figure 12, we see that both NERFCM and eNERF performance drop at about Ns=1000. As a con-
sequence, we chose Ns=1000 as the largest data size that we directly run eNERF without a good estimate 
of the initialization matrix. Also, this result made us belive that, in fact, NERFCM is the primary reason 
for the eNERF failure (the nature of the data set being the second).

Since we are not able to process directly the entire set, DVL15000, we propose a piece-wise eNERF 
initialization procedure that produces estimates for the number of clusters C and the membership matrix, 
U0.

Piece-Wise Cluster Number and Membership Estimation Using eNERF

The DVL15000 dataset was divided in 15 non-overlapping blocks of size 1000×1000. The blocks were 
chosen on the main diagonal where the majority of the non-zero similarities were arranged by VAT (see 
Figure 12). For each block, b, we first estimate the number of clusters, Cb, b∈[1,15], using the eCCV 
procedure previously described in this chapter (see Eq. (8) and (9)). Then, the eNERF algorithm is applied 

Figure 10. a) The DVL15000 BLAST-derived distance matrix and b) the U *  matrix obtained by applying 
eNERF with m=1.2, n=3000 and C=300
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with m=1.2, C=Cb and n=200. The resulting fuzzy membership matrices {Ub}b∈[1,15] are concatenated to 

form the initialization matrix U0 of size C
b

b=
å ´

1

15

15000  (see Figure 13). In our case C
b

b

=
=
å 159

1

15

.

The reconstructed matrix U
0
*  is shown in Figure 14.a. We see that U

0
*  is closer to the data matrix 

shown in Figure 10.a, although the correlation is still low at 0.38.

Analysis of the Fuzzy Memberships generated by eNERF on the Refseq Data

Lastly, after U0 and C are obtained, a last pass of eNERF was performed on the DVL15000 data with 
n=3000, m=1.2 and a final fuzzy partition of the data, UN, was obtained. The resulting reconstructed 

Figure 11. The correlation values for NERFCM and eNERF for various data sizes

Figure 12. Correlation values for NERFCM and eNERF for various data sizes, N
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matrix, U
n
* , shown in Figure 14.b, has a correlation value of 0.6 for the original data matrix, DVL15000. 

Although this value is lower than the “good” eNERF correlation values shown in Figure 12, it is 60% 
higher than the correlation obtained without the piece-wise procedure.

The fuzzy partition UN can now be used to annotate or to summarize the RefSeq clusters using a 
procedure similar to the method shown in (Popescu et al., 2004). However, here we performed a sim-
plified cluster analysis based on hardening the fuzzy partition matrix UN (as explained in Example 1). 
After the hardening process, only about 25% (40) of the 159 clusters, more precisely { 3, 5, 8, 9, 10, 
13, 14, 15, 16, 17, 18, 20, 21, 23, 28, 42, 46, 51, 52, 53, 54, 58, 64, 68, 73, 78, 83, 85, 94, 95, 98, 101, 
103, 104, 116, 142, 144, 157, 158, 159}, were populated. One cluster had 11,314 members with max 

Figure 13. The initialization membership matrix (159 ×15000) generated using the piece-wise proce-
dure

Figure 14. a) The reconstruction matrix, U
0
* ], obtained using the piece-wise eNERF procedure; b) The 

reconstruction matrix, U
n
* , obtained using eNERF with C=159 and U0 obtained using the piece-wise 

procedure
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membership of 1/159. About 0.2% (3910) of the UN fuzzy memberships were higher than 2/159, which 
is not surprising if we remember that the original similarity matrix had only 0.1% non-zero elements. 
The distance matrix for the 3704 gene products identified in the hardened clusters is shown in Figure 
15. We see that the clustering procedure produced expected results by grouping gene products that had 
strong BLAST similarity.

Each hardened cluster contained about 20% unknown proteins (denoted as “LOCxxxxxxx” in Figure 
16). The properties of these unknown proteins can be inferred based on the Gene Ontology functions 
of the known gene products using the computed fuzzy membership matrix as described in (Popescu et 
al., 2004).

The first cluster in Figure 16 contains numerous members of the zinc finger family and forkhead box 
family. These two families are both involved in transcription; the forkhead box members are transcrip-
tion factors and the zinc finger members are related to DNA binding. Similarly, the two families listed in 
cluster no. 2, solute carrier and butyrophilin, have functions related to cellular membrane. In general, the 
computed clusters contain members of multiple families, which is what we intended. Fuzzy clustering 
is intended to group gene products with low degree of homology (sequence similarity under 40%) that 
have a common functions. However, further, more detailed, biological analysis is necessary to determine 
if the clustered gene products share protein domains (hence functions) (see an example of such analysis 
in (Enright, Van Dongen & Ouzounis, 2002)) or if they were mistakenly clustered together.

CONCLUsION

We presented a relational fuzzy clustering algorithm for large datasets, eNERF, and a related cluster 
validity measure, eCCV. The algorithm eNERF has been previously validated on large synthetic rela-

Figure 15. The distance matrix for the 3704 gene products assigned to clusters using the hardening 
procedure (Example 1)
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tional data sets obtained from a small number of balanced (the number of points in each cluster is about 
equivalent) Gaussian clusters. Here we examined eNERF’s behavior on a large bioinformatics data set 
of about 37,000 sequences. The initial results were unexpected, partially due to the characteristics of the 
dataset (numerous, unbalanced clusters) and partially to reasons inherent to the eNERF algorithm, such 
as initialization and number of clusters. We overcame the algorithm shortcomings with a piece-wise 
procedure for finding a reasonable initialization for the fuzzy membership matrix, U0, and by estimating 
the number of clusters with a cluster validity measure, eCCV. The clusters obtained after adapting the 
eNERF algorithm to the characteristics of the RefSeq data set showed reasonable similarity and correla-
tion to the original distance matrix.

Our analysis raised several questions. Why is NERFCM failing for BLAST matrices larger than 
1000×1000? Can NERFCM be defined on a similarity matrix instead of a dissimilarity one in order to 
take advantage of the sparseness of the former? Can fuzzy memberships be used for functional annota-
tion of the 30% un-annotated human gene products? We hope to answer to all these questions in future 
work!
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