

Scalable Fuzzy Algorithms
for Data Management and
Analysis:
Methods and Design

Anne Laurent
LIRMM, University Montpellier 2, France

Marie-Jeanne Lesot
LIP6, University Paris 6, France

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Senior Managing Editor: Jamie Snavely
Assistant Managing Editor: Michael Brehm
Publishing Assistant: Sean Woznicki
Typesetter: Mike Killian, Sean Woznicki
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Scalable fuzzy algorithms for data management and analysis : methods and design / Anne Laurent and Marie-Jeanne Lesot,
editors.

 p. cm.
 Includes bibliographical references and index.
 Summary: "This book presents up-to-date techniques for addressing data management problems with logic and memory
use"--Provided by publisher.

 ISBN 978-1-60566-858-1 (hardcover) -- ISBN 978-1-60566-859-8 (ebook) 1.
Database management. 2. Fuzzy logic. 3. Algorithms. 4. Machine learning.
I. Laurent, Anne, 1976- II. Lesot, Marie-Jeanne, 1978-
 QA76.9.D3S267 2009
 006.3'1--dc22
 2009028581

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

List of Reviewers
Sadok Ben Yahia, Faculty of Sciences of Tunis, Tunisia
Sandra Bringay, LIRMM, Univ Montpellier 3, France
Guillaume Cleuziou, LIFO, Orléans University, France
Thanh Ha Dang, LIP6, University of Paris 6, France
Federico Del Razo Lopez, Instituto Tecnológico de Toluca, Mexico
Nicolas Labroche, LIP6, University of Paris 6, France
Dominique Laurent, ETIS, Cergy-Pontoise University, France
Cécile Low Kam, LIRMM, Univ Montpellier 2, France
Christophe Marsala, LIP6, University of Paris 6, France
Jordi Nin Guerrero, CSIC, Spanish National Research Council, Spain
Yoann Pitarch, LIRMM, Univ Montpellier 2, France
Marc Plantevit, GREYC, Université de Basse-Normandie, France
Pascal Poncelet, LIRMM, Univ Montpellier 2, France
Julien Rabatel, LIRMM, Univ Montpellier 2, France
Chedy Raïssi, National University of Singapore, Singapore
Liva Ralaivola, LIF, Université de la Méditerranée, France
Maria Rifqi, LIP6, University of Paris 6, France
Mathieu Roche, LIRMM, Univ Montpellier 3, France
Fatiha Saïs, LRI, INRIA-Saclay, France
Paola Salle, LIRMM, Univ Montpellier 2, France
Maguelonne Teisseire, CEMAGREF Montpellier, France

Foreword ...xiii

Preface .. xv

Acknowledgment... xxi

Section 1
Introductory Chapters

Chapter 1
Electronic Hardware for Fuzzy Computation.. 1

Koldo Basterretxea, Universidad del País Vasco/Euskal Herriko Unibertsitatea
 (UPV/EHU), Spain
Inés del Campo, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Spain

Chapter 2
Scaling Fuzzy Models.. 31

Lawrence O. Hall, University of South Florida, USA
Dmitry B. Goldgof, University of South Florida, USA
Juana Canul-Reich, University of South Florida, USA
Prodip Hore, University of South Florida, USA
Weijian Cheng, University of South Florida, USA
Larry Shoemaker, University of South Florida, USA

Section 2
Databases and Queries

Chapter 3
Using Fuzzy Song Sets in Music Warehouses... 54

François Deliège, Aalborg University, Denmark
Torben Bach Pedersen, Aalborg University, Denmark

Table of Contents

Chapter 4
Mining Association Rules from Fuzzy DataCubes ... 84

Nicolás Marín, University of Granada, Spain
Carlos Molina, University of Jaen, Spain
Daniel Sánchez, University of Granada, Spain
M. Amparo Vila, University of Granada, Spain

Chapter 5
Scalable Reasoning with Tractable Fuzzy Ontology Languages .. 130

Giorgos Stoilos, National and Technical University of Athens, Greece
Jeff Z. Pan, University of Aberdeen, UK
Giorgos Stamou, National and Technical University of Athens, Greece

Chapter 6
A Random Set and Prototype Theory Model of Linguistic Query Evaluation 159

Jonathan Lawry, University of Bristol, UK
Yongchuan Tang, Zhejiang University, PR China

Chapter 7
A Flexible Language for Exploring Clustered Search Results ... 179

Gloria Bordogna, CNR IDPA, Italy
Alessandro Campi, Politecnico di Milano, Italy
Stefania Ronchi, Politecnico di Milano, Italy
Giuseppe Psaila, Università di Bergamo, Italy

Section 3
Summarization

Chapter 8
Linguistic Data Summarization: A High Scalability through the Use of Natural Language? 214

Janusz Kacprzyk, Polish Academy of Sciences, Poland
Sławomir Zadrożny, Polish Academy of Sciences, Poland

Chapter 9
Human Focused Summarizing Statistics Using OWA Operators ... 238

Ronald R. Yager, Iona College, USA

Chapter 10
(Approximate) Frequent Item Set Mining Made Simple with a Split and Merge Algorithm 254

Christian Borgelt, European Center for Soft Computing, Spain
Xiaomeng Wang, Otto-von-Guericke University of Magdeburg, Germany

Chapter 11
Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases 273

Trevor Martin, University of Bristol, UK; Intelligent Systems Research Centre, BT Innovate, UK
Yun Shen, University of Bristol, UK

Chapter 12
Fuzzy Cluster Analysis of Larger Data Sets ... 302

Roland Winkler, German Aerospace Center Braunschweig, Germany
Frank Klawonn, University of Applied Sciences Braunschweig/Wolfenbüttel, Germany
Frank Höppner, University of Applied Sciences Braunschweig/Wolfenbüttel, Germany
Rudolf Kruse, Otto-von-Guericke University Magdeburg, Germany

Chapter 13
Fuzzy Clustering with Repulsive Prototypes .. 332

Frank Rehm, German Aerospace Center, Germany
Roland Winkler, German Aerospace Center, Germany
Rudolf Kruse, Otto-von-Guericke University Magdeburg, Germany

Section 4
Real-World Challenges

Chapter 14
Early Warning from Car Warranty Data using a Fuzzy Logic Technique .. 347

Mark Last, Ben-Gurion University of the Negev, Israel
Yael Mendelson, Formerly of Ben-Gurion University of the Negev, Israel
Sugato Chakrabarty, India Science Lab, GM Technical Center, India
Karishma Batra, Formerly of India Science Lab, GM Technical Center, India

Chapter 15
High Scale Fuzzy Video Mining ... 365

Christophe Marsala, Université Pierre et Marie Curie Paris6, France
Marcin Detyniecki, Université Pierre et Marie Curie Paris6, France

Chapter 16
Fuzzy Clustering of Large Relational Bioinformatics Datasets.. 379

Mihail Popescu, University of Missouri, USA

Compilation of References ... 400

About the Contributors .. 429

Index ... 438

Foreword ...xiii

Preface .. xv

Acknowledgment... xxi

Section 1
Introductory Chapters

Chapter 1
Electronic Hardware for Fuzzy Computation.. 1

Koldo Basterretxea, Universidad del País Vasco/Euskal Herriko Unibertsitatea
 (UPV/EHU), Spain
Inés del Campo, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Spain

This chapter presents a comprehensive synthesis of the state of the art and the progress in the electronic
hardware design for the fuzzy computation field over the past two decades, in particular for the imple-
mentation of fuzzy inference systems. The authors show how fuzzy hardware has evolved, from gen-
eral purpose processors (GPPs) to high performance reconfigurable computing (HPRC), as well as the
development of the hardware/software codesign methodology. The last part of the chapter is dedicated
to research directions for the development and improvement of architecture to directly implement and
thus speed up fuzzy data mining algorithms.

Chapter 2
Scaling Fuzzy Models.. 31

Lawrence O. Hall, University of South Florida, USA
Dmitry B. Goldgof, University of South Florida, USA
Juana Canul-Reich, University of South Florida, USA
Prodip Hore, University of South Florida, USA
Weijian Cheng, University of South Florida, USA
Larry Shoemaker, University of South Florida, USA

Detailed Table of Contents

This chapter considers the scalability issue from the machine learning and data mining point of view, to
extract knowledge from huge amounts of data, studying in turn both supervised and unsupervised learning
and thus providing an introduction to the sequel of the book. It focuses on ensemble based approaches
that learn classifiers on subsets of data, to reduce the amount of data that must be fit in computer memory
at any time. In the unsupervised learning case, the authors concentrate on data streams: they offer an
overview of existing algorithms to deal with such data and propose an online variant of the classic fuzzy
c-means, experimented on datasets containing up to 5 millions magnetic resonance images.

Section 2
Databases and Queries

Chapter 3
Using Fuzzy Song Sets in Music Warehouses .. 54

François Deliège, Aalborg University, Denmark
Torben Bach Pedersen, Aalborg University, Denmark

This chapter considers the framework of data warehouses when managing large collections of music data,
in the purpose of designing music recommendation systems. A fuzzy representation through the concept
of fuzzy songs is introduced and several solutions for storing and managing fuzzy sets in general are
studied: three options are considered, namely tables, arrays and compressed bitmaps. Theoretical cost
estimates are built for these alternatives that are also studied experimentally for various data collection
sizes. Furthermore an algebra to query the built data cubes is defined; the operators are examined both
from a theoretical and a practical point of view.

Chapter 4
Mining Association Rules from Fuzzy DataCubes ... 84

Nicolás Marín, University of Granada, Spain
Carlos Molina, University of Jaen, Spain
Daniel Sánchez, University of Granada, Spain
M. Amparo Vila, University of Granada, Spain

In the framework of data warehouses and OLAP systems, this chapter investigates the particular topic
of on-line analytical mining (OLAM) which aims at coupling data mining and OLAP. The authors con-
sider association rules which are one of the most used data mining techniques to extract summarized
knowledge from data, focusing on the case of data cubes for which they must be further studied. The
authors propose methods to support imprecision which results from the multiple data sources handled in
such applications and constitutes a challenge when designing association rule mining algorithms. They
study the influence of the fuzzy logic use for different size problems, both in terms of the cube density
(number of records) and topology (number of dimensions), comparing the results with a crisp approach.
Experiments are performed on medical, financial and census data.

Chapter 5
Scalable Reasoning with Tractable Fuzzy Ontology Languages .. 130

Giorgos Stoilos, National and Technical University of Athens, Greece
Jeff Z. Pan, University of Aberdeen, UK
Giorgos Stamou, National and Technical University of Athens, Greece

This chapter considers a data model that is in particular adapted to databases in the form of ontology,
namely the fuzzy description logic format: which is of particular use to handle fuzziness in Semantic
Web applications whose high current development makes such works crucial. The authors show that
its high expressivity does not come at the expense of efficiency and that there exist methods capable
of scaling up to millions of data. The authors study the two main inference services, which are query
answering and classification. They show how the Fuzzy DL-Lite language provides scalable algorithms
for expressive queries over fuzzy ontologies, and how Fuzzy EL+ leads to very efficient algorithms for
classification, extended to fuzzy subsumption.

Chapter 6
A Random Set and Prototype Theory Model of Linguistic Query Evaluation 159

Jonathan Lawry, University of Bristol, UK
Yongchuan Tang, Zhejiang University, PR China

Focusing on the issue of query formulation, this chapter deals with quantified linguistic data queries,
for which a new interpretation based on a combination of the random set theory and prototype theory
is proposed: concepts are defined as random set neighborhood of a set of prototypes, which means that
a linguistic label is deemed appropriate to describe an instance if the latter is sufficiently close to the
prototypes of the label. Quantifiers are then defined as random set constraints on ratios or absolute val-
ues. These notions are then combined to a methodology to evaluate the quality of quantified statements
about instances, so as to answer expressive quantified linguistic queries.

Chapter 7
A Flexible Language for Exploring Clustered Search Results ... 179

Gloria Bordogna, CNR IDPA, Italy
Alessandro Campi, Politecnico di Milano, Italy
Stefania Ronchi, Politecnico di Milano, Italy
Giuseppe Psaila, Università di Bergamo, Italy

This chapter considers a specific type of queries, namely those submitted to search engines: it tackles
the more and more crucial problem of managing the results from search engines and automatically
extracting hidden relations from these results that can be very large. Assuming that the set of retrieved
documents is given in the form of a set of clusters, the authors propose a flexible exploratory language
for manipulating the groups of clustered documents returned by several engines. To that aim, they define
various operators among which refinement, union, coalescing and reclustering and propose several ranking
criteria and functions based on the fuzzy set theory. This makes it possible to preserve the interpretability
of the retrieved results despite the large amount of answers obtained for the query.

Section 3
Summarization

Chapter 8
Linguistic Data Summarization: A High Scalability through the Use of Natural Language? 214

Janusz Kacprzyk, Polish Academy of Sciences, Poland
Sławomir Zadrożny, Polish Academy of Sciences, Poland

This chapter studies how to mine huge volumes of data for user-friendly summaries, through the use
of the natural language and a fuzzy logic based model. The focus is laid on the interpretability of the
summaries, defining scalability as the capability of algorithms to preserve understandable and intui-
tive results even when the dataset sizes increase, at a more perceptual or cognitive level than the usual
“technical scalability.” The authors offer a general discussion of the scalability notion and show how
linguistic summaries answer its perceptual definition, detailing their automatic extraction from very
large databases.

Chapter 9
Human Focused Summarizing Statistics Using OWA Operators ... 238

Ronald R. Yager, Iona College, USA

This chapter provides a description of the order weighted averaging operator (OWA) that generates
summarizing statistics over large datasets. The author details its flexibility derived from weight gener-
ating functions as well as methods to adapt them to the data analysts, based on graphical and linguistic
specifications.

Chapter 10
(Approximate) Frequent Item Set Mining Made Simple with a Split and Merge Algorithm 254

Christian Borgelt, European Center for Soft Computing, Spain
Xiaomeng Wang, Otto-von-Guericke University of Magdeburg, Germany

This chapter considers the framework of summaries based on association rules, and focuses on its com-
putationally most complex part, namely the problem of mining frequent itemsets. In order to improve its
scalability, the authors propose efficient data structures and processing schemes, using a split and merge
technique, that can be applied even if all data cannot be loaded into the main memory. Approximation
is introduced by considering that missing items can be inserted into transactions with a user-specified
penalty. The authors study the behavior of the proposed algorithm and compare it to some well-known
itemsets mining algorithms, providing a comprehensive overview of methods.

Chapter 11
Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases 273

Trevor Martin, University of Bristol, UK; Intelligent Systems Research Centre, BT Innovate, UK
Yun Shen, University of Bristol, UK

This chapter considers the domain of association rules learning when huge amount of data are to be
handled, focusing on the case where the data are grouped into hierarchically organized categories. The
aim is then to extract rules to describe relations between these categories; fuzziness allows avoiding
the difficulties raised when crisp separations must be defined. A new definition of fuzzy confidence is
proposed to be consistent with the framework addressed in the chapter.

Chapter 12
Fuzzy Cluster Analysis of Larger Data Sets ... 302

Roland Winkler, German Aerospace Center Braunschweig, Germany
Frank Klawonn, University of Applied Sciences Braunschweig/Wolfenbüttel, Germany
Frank Höppner, University of Applied Sciences Braunschweig/Wolfenbüttel, Germany
Rudolf Kruse, Otto-von-Guericke University Magdeburg, Germany

This chapter explores data summarization, through fuzzy clustering. The authors propose to combine two
approaches to decrease the computation time and improve the scalability of the classic fuzzy c-means
algorithm, based on a theoretical analysis of the reasons for the high complexity, both for time and
memory, and on an efficient data structure. The authors combine a modification of the fuzzifier function
with a suitable data organization exploiting a neighborhood representation to significantly speed up the
algorithm. The efficiency of the proposed method is illustrated through experiments.

Chapter 13
Fuzzy Clustering with Repulsive Prototypes .. 332

Frank Rehm, German Aerospace Center, Germany
Roland Winkler, German Aerospace Center, Germany
Rudolf Kruse, Otto-von-Guericke University Magdeburg, Germany

This chapter considers fuzzy clustering focusing on the selection of the appropriate number of clusters:
the latter is classically determined in a procedure that consists in testing several values and choosing the
optimal one according to a validation criterion, which can be very time consuming. The authors propose
to address this problem as an integrated part of the clustering process, by making the algorithm insensitive
to too high values for this parameter: they modify the update equations for the cluster centers, to impose
a repulsive effect between centers, rejecting the unnecessary ones to locations where they do not disturb
the result. Both the classic fuzzy c-means and its Gustafson-Kessel variant are considered.

Section 4
Real-World Challenges

Chapter 14
Early Warning from Car Warranty Data using a Fuzzy Logic Technique .. 347

Mark Last, Ben-Gurion University of the Negev, Israel
Yael Mendelson, Formerly of Ben-Gurion University of the Negev, Israel
Sugato Chakrabarty, India Science Lab, GM Technical Center, India
Karishma Batra, Formerly of India Science Lab, GM Technical Center, India

This chapter addresses the problem of detecting as early as possible problems on cars by managing data
stored in a warranty database which contains customer claims recording information on dealer loca-
tion, car model, car manufacturing and selling dates, claim date, mileage to date, complaint code, labor
code, and so on. Warranty databases constitute massive stream data that are updated with thousands of
new claims on a daily basis. This chapter introduces an original approach to mine these data streams
by proposing a fuzzy method for the automatic detection of evolving maintenance problems. For this
purpose, the authors propose to study frequency histograms using a method based on a cognitive model
of human perception instead of crisp statistical models.

Chapter 15
High Scale Fuzzy Video Mining ... 365

Christophe Marsala, Université Pierre et Marie Curie Paris6, France
Marcin Detyniecki, Université Pierre et Marie Curie Paris6, France

This chapter proposes to use forests of fuzzy decision trees to perform automatic indexing of huge vol-
umes of video shots. The main purpose of the chapter is to detect high-level semantic concepts such as
“indoor,” “map,” or “military staff” that can then be used for any query and treatment on videos. This
data mining problem requires addressing large, unbalanced and multiclass datasets and takes place in
the highly competitive context of the TRECVid challenge organized by NIST. The authors report the
success of the fuzzy ensemble learning approach they propose, that proves to be both tractable and of
high quality. They also underline the robustness advantage of the fuzzy framework that improves the
results as compared to other data mining tools.

Chapter 16
Fuzzy Clustering of Large Relational Bioinformatics Datasets.. 379

Mihail Popescu, University of Missouri, USA

This chapter considers a fuzzy clustering issue with very large relational datasets, in the framework of
bioinformatics to extract information from micro-array data. It describes the whole process of how such
problems can be addressed, presenting the theoretical machine learning methods to be used as well as
the practical processing system. The considered three-step approach consists in subsampling the data,
clustering the sample data and then extending the results to the whole dataset. The practical system
describes the methods applied to select the appropriate method parameters, including the fuzzifier and
the number of clusters, determined using a cluster validity index. It also describes the adjustments that
appear to be necessary to handle the real dataset, in particular regarding the sampling step. The experi-
ments are performed with real data containing around 37,000 gene sequences.

Compilation of References ... 400

About the Contributors .. 429

Index ... 438

 xiii

Foreword

Scalability is one of the main problems practitioners have to cope with when grasping a real-world
application in data management or information analysis. The size of databases and data warehouses,
associated with incompleteness of information and missing values has been a major difficulty from the
early beginning of their studies. Modern digital devices, Internet possibilities, and distributed networks
are among the most powerful means of storing, retrieving, and sharing information. The amounts of
documents and data available for the users are continuously increasing, whatever their nature may be:
text, video, music, images, multimedia, Web. The ways to access these documents and data are also di-
verse: exchanges within communities, social networks and peer to peer communications have increased
the complexity of transfers from data repositories to users.

To increase the efficiency of existing algorithms is a necessity. Dimension reduction or dynamic treat-
ment of data avoiding their storage is for instance a solution to large scale learning systems. Moreover,
alternative approaches to classic information retrieval, knowledge discovery and data analysis need to be
created, in order to cope with the complexity of the problem to solve, due to the size, the heterogeneity,
the incompleteness of data and their access paths. Thinking differently is also a necessity since classic
statistics or machine learning methods have their limits. System science provides interesting paradigms
for the handling of complex systems, always taking the user into account, in a holistic involvement of
all components of the system. Active learning involving the user is for example a solution to the dif-
ficulty of using supervised learning in huge training sets. Another lesson from systems science is the
exploitation of synergies between components of the system, and this capacity is well understood in the
complementarity between medias, for instance between text and image.

Fuzzy knowledge representation and logic are among the efficient tools for the management of complex
systems, since they bring solutions to the incompleteness, inaccuracy and uncertainty, inherent to large
scale and heterogeneous information reservoirs, taking into account synthetic descriptions of isolated
elements and reducing individual treatments. Providing an interface between numerical data represen-
tations by computers and symbolic representations well understood by humans, fuzzy logic fills in the
gap between technological needs and usability requirements. Concepts such as fuzzy categories, fuzzy
quantifiers, fuzzy prototypes, fuzzy aggregation methods, fuzzy learning algorithms, fuzzy databases,
and fuzzy graphs have proved their utility in the construction of scalable algorithms.

The present book is certainly of particular interest for the diversity of addressed topics, covering a
large spectrum in scalability management. Anne Laurent and Marie-Jeanne Lesot are experts in theoretical
and methodological study of fuzzy techniques, and they have moreover coped with various real world
large-scale problems. The group of experts they have gathered to prepare this volume is unquestionably
qualified to provide solutions to researchers and practitioners in search of efficient algorithms and models
for complex and large dataset management and analysis.

xiv

Scalability is understood in this book from several points of view. The first one is the size of avail-
able data implying difficulties in their tractability, with regard to memory size or computation time. This
aspect is strongly related to the complexity of involved algorithms.

The second point of view regards the form of the algorithm results and the capability of human us-
ers to understand and grasp these results, through summaries and visualization solutions. This aspect is
more related to a cognitive framework.

The scalability of knowledge representation is at the crossroads of these points of view, dealing with
ontologies or formal languages, as well as a variety of concepts in a fuzzy setting.

The classic scalability problem in hardware is another point of view, revisited here in the light of
modern electronic solutions and fuzzy computation.

This book deals with all these aspects under a fuzzy logic based perspective. A sample of applications
is also presented as a showcase, pointing out the efficiency of fuzzy approaches to the construction of
scalable algorithms. Potential applications of such approaches go far beyond the domains tackled here
and this book opens the door to a vast spectrum of forthcoming works.

Bernadette Bouchon-Meunier
LIP6 / UPMC / CNRS, France

Bernadette Bouchon-Meunier is the head of the department of Databases and Machine Learning in the Computer Science
Laboratory of the University Paris 6 (LIP6). Graduate from the Ecole Normale Superieure at Cachan, she received the degrees
of B.S. in Mathematics and Computer Science, Ph.D. in Applied Mathematics and D. Sc. in Computer Science from the Univer-
sity of Pierre and Marie Curie. Editor-in-Chief of the International Journal of Uncertainty, Fuzziness and Knowledge-based
Systems, she is a co-founder and co-executive director of the International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-based Systems (IPMU) held every other year since 1986. She is an IEEE senior member
and chair of the IEEE French Chapter on Computational Intelligence.. Her present research interests include approximate
and similarity-based reasoning, as well as the application of fuzzy logic and machine learning techniques to decision-making,
data mining, risk forecasting, information retrieval and user modeling.

 xv

Preface

The fuzzy logic and the fuzzy set theory have been proposed by Lotfi Zadeh in 1965, and largely de-
veloped since, in various directions, including reasoning, control, data representation and data mining.
They now provide numerous tools to handle data in a very relevant and comprehensive way, in particular
offering theoretically well founded means to deal with uncertainty and imprecision. Furthermore, they
constitute an interface between numerical and linguistic representations, increasing the interpretability
of the developed tools and making it possible to compute with words, using the expression proposed by
L. Zadeh in 1996.

Despite these advantages, fuzzy approaches often suffer from the opinion that they cannot address
huge amounts of data and are inappropriate because of scalability difficulties: a high computational
complexity or high memory requirements are feared, that might hinder their applications to very large
datasets, as occur more and more frequently nowadays. Now this is not the case, as many applications,
including industrial success stories, have shown that fuzziness and scalability are not antagonistic con-
cepts. This book aims at highlighting the relevance of fuzzy methods for huge datasets, considering both
the theoretical and practical points of view and bringing together contributions from various fields.

This book gathers up-to-date methods and algorithms that tackle this problem, showing that fuzzy
logic is a very powerful way to provide users with relevant results within reasonable time and memory.
The chapters cover a wide range of research areas where very large databases are involved, considering
among others issues related to data representation and structuring, in particular in data warehouses, as
well as the related querying problems, and the extraction of relevant and characterizing information
from large datasets, to summarize them in a flexible, robust and interpretable way that takes into account
uncertainty and imprecision. The book also includes success stories based on fuzzy logic that address
real world challenges to handle huge amounts of data for practical tasks. The databases considered in the
various chapters take different forms, including data warehouses, data cubes, tabular or relational data,
and different application types, among which multimedia, medical, bioinformatics, financial, Semantic
Web or data stream contexts.

The book aims at providing researchers, master students, engineers and practitioners the state-of-the-
art tools to address the new challenges of current applications that must now both remain scalable and
provide user-friendly and actionable results. The readers will get a panorama of the existing methods,
algorithms and applications devoted to scalability and fuzziness. They will find the necessary material
concerning implementation issues and solutions, algorithms, evaluation, case studies and real applica-
tions. Besides, being the very first reference gathering scalable fuzzy methods from various fields, this
book contributes to bridging the gap between research communities (e.g., databases, machine learning)
that are not always enough combined and mixed.

xvi

The book is organized in four complementary sections: after two introductory chapters that provide
general overviews on fuzziness and scalability from two different points of view, the second section,
entitled “Databases and Queries,” is devoted to methods that consider data structuring as the core of the
approach and propose either flexible representations, through the incorporation of fuzzy components in
the data, or flexible queries that make interactions of the user with the database easy and intuitive thanks
to linguistic formulations. The third section, called “Summarization,” tackles the complexity of huge
datasets through the extraction of relevant and characteristic information that provide summaries of the
whole data. In this context, fuzzy approaches offer a linguistic interface to increase the interpretability of
the results, flexibility and tools to handle imprecision and uncertainty. Lastly, the fourth section, entitled
“Real-World Challenges,” presents success stories involving fuzzy approaches, considering various do-
mains such as stream, multimedia and biological data. In the following, we detail each section in turn.

The first two chapters of the book introduce general overviews, respectively from the hardware point
of view, and from a machine learning perspective.

The chapter “Electronic Hardware for Fuzzy Computation,” by Koldo Basterretxea and Inés del Campo,
presents a comprehensive synthesis of the state of the art and the progress in the electronic hardware
design for the fuzzy computation field over the past two decades, in particular for the implementation
of fuzzy inference systems. The authors show how fuzzy hardware has evolved, from general purpose
processors (GPPs) to high performance reconfigurable computing (HPRC), as well as the development of
the hardware/software codesign methodology. They discuss their relationships with the scalability issue,
and the new trends and challenges to be faced. The last part of the chapter, dedicated to the architectures
proposed to speed up fuzzy data mining processing specifically, constitutes a promising research direc-
tion for the development and improvement of implementation of fuzzy data mining algorithms.

Chapter 2, entitled “Scaling Fuzzy Models” by Lawrence O. Hall, Dmitry B. Goldgof, Juana Canul-
Reich, Prodip Hore, Weijian Cheng and Larry Shoemaker, considers the scalability issue from the machine
learning and data mining point of view, to extract knowledge from huge amounts of data, studying in
turn both supervised and unsupervised learning. It focuses on ensemble based approaches that basically
consist in learning classifiers on subsets of data, to reduce the amount of data that must be fit in com-
puter memory at any time. This approach is also used in Chapter 15 in the case of fuzzy random forests
to handle large multimedia datasets. In the unsupervised learning case, the authors concentrate on data
streams that are more and more common nowadays and can lead to very large datasets to be handled
incrementally. They offer an overview of existing algorithms to deal with such data and propose an on-
line variant of the classic fuzzy c-means. Their experimental results, performed on datasets containing
up to 5 millions magnetic resonance images, illustrate the possibility to apply fuzzy approaches to data
mining from huge datasets.

The chapters of the second section, Chapters 3 to 7, address the topic of databases and queries coupled
with fuzzy methods: they consider the scalability issue from the point of view of data structuring and
organization, as well as for the querying step. Chapters 3, 4 and 5 mainly focus on the data storing is-
sue, respectively considering data warehouses adapted to fuzzy set representation (chapter 3), fuzzy
data cubes following the OLAP model (Chapter 4) and fuzzy description logic to both represent and
exploit imprecise data in a logical reasoning framework (Chapter 5). Chapters 6 and 7 concentrate on
queries, considering two different types: chapter 6 considers linguistic data queries and more specifically
quantified linguistic queries, proposing a framework to model and answer them. Chapter 7 focuses on
the results provided by queries submitted to search engines and tackles the problem of managing them
through a flexible exploratory language.

 xvii

More precisely, Chapter 3, entitled “Using Fuzzy Song Sets in Music Warehouses” by François Deliège
and Torben Bach Pedersen, considers data warehouses used to manage large collections of music data,
in the purpose of designing music recommendation systems. The authors introduce a fuzzy representa-
tion through the concept of fuzzy songs and study several solutions for storing and managing fuzzy sets
in general, considering three options, namely tables, arrays and compressed bitmaps. They construct
theoretical estimates for the cost of each solution that are also studied experimentally and compared for
various data collection sizes. Furthermore, they discuss the definition of an algebra to query the built data
cubes and examine the operators both from a theoretical and practical point of view. Thus this chapter
provides both an insight on theoretical works on scalability issues for storing and managing fuzzy sets,
and an example of a real world challenge.

In the same framework of data warehouses and OLAP systems, the chapter “Mining Association
Rules from Fuzzy DataCubes,” by Nicolás Marín, Carlos Molina, Daniel Sánchez and M. Amparo Vila,
investigates the particular topic of on-line analytical mining (OLAM) which aims at coupling data mining
and OLAP, bridging the gap between sections II and III of the book. The authors consider association
rules which are one of the most used data mining techniques to extract summarized knowledge from
data, focusing on the particular framework of data cubes for which they must be further studied. The
authors propose methods to support imprecision which results from the multiple data sources handled
in such applications and constitutes a challenge when designing association rule mining algorithms. The
chapter studies the influence of the fuzzy logic use for different size problems, both in terms of the cube
density (number of records) and topology (number of dimensions), comparing the results with a crisp
approach. Experiments are performed on medical, financial and census data.

In Chapter 5, entitled “Scalable Reasoning with Tractable Fuzzy Ontology Languages,” Giorgos Stoilos,
Jeff Z. Pan, and Giorgos Stamou consider another data model that is in particular adapted to databases in
the form of ontology, namely the fuzzy description logic format. The latter offers the possibility to both
model and reason with imprecise knowledge in a formal framework that provides expressive means to
represent and query information. It is of particular use to handle fuzziness in Semantic Web applications
whose high current development makes such works crucial. The authors show that the increased expres-
sivity does not come at the expense of efficiency and that there exist methods capable of scaling up to
millions of data. More precisely, the authors study the scalability of the two main inference services in
this enriched data description language, which are query answering and classification (i.e., computation
of the implied concept hierarchy). To that aim, they consider two languages: on one hand, they show
how Fuzzy DL-Lite provides scalable algorithms for expressive queries over fuzzy ontologies; on the
other hand, they show how Fuzzy EL+ leads to very efficient algorithms for classification and extend
it to allow for fuzzy subsumption.

Focusing on the issue of query formulation, in particular for expressive queries, Chapter 6, entitled
“A Random Set and Prototype Theory Model of Linguistic Query Evaluation” by Jonathan Lawry and
Yongchuan Tang, deals with linguistic data queries, that belongs to the computing with words domain
introduced by Zadeh in 1996. More precisely the authors consider quantified data queries, for which a
new interpretation based on a combination of the random set theory and prototype theory is proposed:
concepts are defined as random set neighborhood of a set of prototypes, which means that a linguistic
label is deemed appropriate to describe an instance if the latter is sufficiently close to the prototypes of the
label. Quantifiers are then defined as random set constraints on ratios or absolute values. These notions
are then combined to a methodology to evaluate the quality of quantified statements about instances, so
as to answer quantified linguistic queries.

xviii

The chapter “A Flexible Language for Exploring Clustered Search Results,” by Gloria Bordogna,
Alessandro Campi, Stefania Ronchi and Giuseppe Psaila, considers specific types of queries, namely
those submitted to search engines: they tackle the more and more crucial problem of managing the results
from search engines that can be very large, and automatically extracting hidden relations from them.
Assuming that the set of documents retrieved by a search engine is given in the form of a set of clusters,
the authors propose a flexible exploratory language for manipulating the groups of clustered documents
returned by several engines. To that aim, they define various operators among which refinement, union,
coalescing and reclustering and propose several ranking criteria and functions based on the fuzzy set
theory. This makes it possible to preserve the interpretability of the retrieved results despite the large
amount of answers obtained for the query.

The chapters in the next section, Chapters 8 to 13, consider a different approach on the problem of
scalability and fuzziness and address the topic of exploiting fuzzy tools to summarize huge amounts of
data to extract from them relevant information that captures their main characteristics. Several approaches
can be distinguished, referring to different types of data mining tools, as detailed below. Chapter 8 con-
siders linguistic summaries, and uses fuzzy logic to model the linguistic information, Chapter 9 proposes
an aggregation operator relevant to summarize statistics in particular. Chapters 10 and 11 consider the
association rules to summarize data. Chapters 12 and 13 belong to the fuzzy clustering framework. It
must be underlined that Chapter 4 also considers association rules, in the case where data are stored in
a structure as fuzzy cubes.

More precisely, Chapter 8, entitled “Linguistic Data Summarization: A High Scalability through
the Use of Natural Language?” by Janusz Kacprzyk and Sławomir Zadrożny, studies user-friendly
data summaries through the use of natural language, and a fuzzy logic based model. The focus is laid
on the interpretability of the summaries, defining scalability as the capability of algorithms to preserve
understandable and intuitive results even when the dataset sizes increase, at a more perceptual or cogni-
tive level than the usual “technical scalability.” The authors offer a general discussion of the scalability
notion and show how linguistic summaries answer its perceptual definition, detailing their automatic
extraction from very large databases.

The summarization process is also the topic of Chapter 9, “Human Focused Summarizing Statistics
Using OWA Operators” by Ronald R. Yager, that provides a description of the order weighted averaging
operator (OWA). This operator generates summarizing statistics over large datasets. The author details
its flexibility derived from weight generating functions as well as methods to adapt them to the data
analysts, based on graphical and linguistic specifications.

Another common way to summarize datasets consists in extracting association rules that underline
frequent and regular relations in the data. Chapter 10, entitled “(Approximate) Frequent Item Set Mining
Made Simple with a Split and Merge Algorithm” by Christian Borgelt and Xiaomeng Wang, considers
this framework and focuses on its computationally most complex part, namely the problem of mining
frequent itemsets. In order to improve its scalability, the authors propose efficient data structures and
processing schemes, using a split and merge technique, that can be applied even if all data cannot be
loaded into the main memory. Approximation is introduced by considering that missing items can be
inserted into transactions with a user-specified penalty. The authors study the behavior of the proposed
algorithm and compare it to some well-known itemsets mining algorithms, providing a comprehensive
overview of methods.

The chapter “Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases,” by
Trevor Martin and Yun Shen, also considers the domain of association rules learning when huge amounts

 xix

of data are to be handled, focusing on the case where the data are grouped into hierarchically organized
categories. The aim is then to extract rules to describe relations between these categories; fuzziness allows
avoiding the difficulties raised when crisp separations must be defined. They propose a new definition
of fuzzy confidence to be consistent with the framework addressed in the chapter.

Chapter 12, entitled “Fuzzy Cluster Analysis of Larger Data Sets” by Roland Winkler, Frank Klawonn,
Frank Höppner and Rudolf Kruse, explores another method for data summarization, namely fuzzy clus-
tering. The authors propose to combine two approaches to decrease the computation time and improve
the scalability of the classic fuzzy c-means algorithm, based on a theoretical analysis of the reasons
for the high complexity, both for time and memory, and on an efficient data structure. Indeed the high
computational cost of the fuzzy c-means is basically due to the fact that all data belong to all clusters:
the membership degrees can be very low, but do not equal 0, which also implies that all data have an
influence on all clusters. The authors combine a modification of the fuzzifier function to avoid this effect
with a suitable data organization exploiting a neighborhood representation of the data to significantly
speed up the algorithm. The efficiency of the proposed method is illustrated through experiments.

Chapter 13, entitled “Fuzzy Clustering with Repulsive Prototypes” by Frank Rehm, Roland Winkler
and Rudolf Kruse, also considers fuzzy clustering, focusing on the selection of the appropriate number
of clusters: the latter is classically determined in a procedure that consists in testing several values and
choosing the optimal one according to a validation criterion. This process can be very time consuming,
the authors propose to address this problem as an integrated part of the clustering process, by making the
algorithm insensitive to too high values for this parameter. To that aim, they modify the update equations
for the cluster centers, to impose a repulsive effect between centers, rejecting the unnecessary ones to
locations where they do not disturb the result. Both the classic fuzzy c-means and its Gustafson-Kessel
variant are considered.

The last section of the book, Chapters 14 to 16, is dedicated to real world challenges that consider
the scalability of fuzzy methods from a practical point of view, showing success stories in different do-
mains and using different techniques, both for supervised and unsupervised data mining issues. Chapter
14 considers massive stream data describing car warranty data. Chapter 15 addresses the indexation of
huge amounts of multimedia data using random forest trees, following the same approach as the one
presented in Chapter 2. Chapter 16 belongs to the bioinformatics domain that is among the domains
that currently give rise to the largest datasets to handle, it more precisely focuses on micro-array data.
Chapter 3 that describes a data warehouse used to manage large collections of music data also belongs
to this real world challenges section.

Chapter 14, entitled “Early Warning from Car Warranty Data using a Fuzzy Logic Technique” by
Mark Last, Yael Mendelson, Sugato Chakrabarty and Karishma Batra, addresses the problem of detecting
as early as possible problems on cars by managing data stored in a warranty database which contains
customer claims recording information on dealer location, car model, car manufacturing and selling dates,
claim date, mileage to date, complaint code, labor code, and so on. Warranty databases constitute massive
stream data that are updated with thousands of new claims on a daily basis. This chapter introduces an
original approach to mine these data streams by proposing a fuzzy method for the automatic detection
of evolving maintenance problems. For this purpose, the authors propose to study frequency histograms
using a method based on a cognitive model of human perception instead of crisp statistical models. The
obtained results reveal significant emerging and decreasing trends in the car warranty data.

The problem of video mining is tackled in Chapter 15, entitled “High Scale Fuzzy Video Mining” by
Christophe Marsala and Marcin Detyniecki, where the authors propose to use forests of fuzzy decision

xx

trees to perform automatic indexing of huge volumes of video shots. The main purpose of the chapter is
to detect high-level semantic concepts such as “indoor,” “map,” or “military staff” that can then be used
for any query and treatment on videos. This data mining problem requires addressing large, unbalanced
and multiclass datasets and takes place in the highly competitive context of the TRECVid challenge or-
ganized by NIST. The authors report the success of the fuzzy ensemble learning approach they propose,
that proves to be both tractable and of high quality. They also underline the robustness advantage of the
fuzzy framework that improves the results as compared to other data mining tools.

Chapter 16, entitled “Fuzzy Clustering of Large Relational Bioinformatics Datasets” by Mihail Popescu
considers a practical problem of fuzzy clustering with very large relational datasets, in the framework of
bioinformatics to extract information from micro-array data. It describes the whole process of how such
problems can be addressed, presenting the theoretical machine learning methods to be used as well as
the practical processing system. The considered three-step approach consists in subsampling the data,
clustering the sample data and then extending the results to the whole dataset. The practical system
describes the methods applied to select the appropriate method parameters, including the fuzzifier and
the number of clusters, determined using a cluster validity index. It also describes the adjustments that
appear to be necessary to handle the real dataset, in particular regarding the sampling step. The experi-
ments are performed with real data containing around 37,000 gene sequences.

The book thus gathers contributions from various research domains that address the combined issue
of fuzziness and scalability from different perspectives, including both theoretical and experimental
points of view, considering different definitions of scalability and different topics related to the fuzzy
logic and fuzzy set theory use. The variety of these points of view is one of the key features of this book,
making it a precious guide for researchers, students and practitioners.

Anne Laurent and Marie-Jeanne Lesot
Editors

 xxi

Acknowledgment

The editors would like to express their gratitude to all authors, for their precious and high quality contribu-
tions that made this first book on scalability and fuzziness possible. We are honored that the authors, key
researchers from various research communities that address this issue, accepted to participate to this book,
offering a survey on this topic covering a wide range of perspectives on scalability and fuzziness.

The editors’ gratitude also goes to Bernadette Bouchon-Meunier who accepted to write the foreword
of this book, sharing her expertise, in-depth knowledge and hindsight on all aspects of the fuzzy logic
domain in the introduction to this book.

The editors would also like to warmly thank the reviewers whose valuable comments helped to im-
prove the quality of the book: Sadok Ben Yahia, Sandra Bringay, Guillaume Cleuziou, Thanh Ha Dang,
Federico Del Razo Lopez, Nicolas Labroche, Dominique Laurent, Cécile Low Kam, Christophe Marsala,
Jordi Nin Guerrero, Yoann Pitarch, Marc Plantevit, Pascal Poncelet, Julien Rabatel, Chedy Raïssi, Liva
Ralaivola, Maria Rifqi, Mathieu Roche, Fatiha Saïs, Paola Salle, Maguelonne Teisseire.

Finally the editors would like to acknowledge the IGI Global publishing company for having accepted
to publish this book on Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and
Design. Special thanks go to Joel Gamon who followed the whole process from the first call for chapters
to the publication and whose help was so precious.

Anne Laurent and Marie-Jeanne Lesot
Editors

Section 1
Introductory Chapters

1

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

Electronic Hardware for
Fuzzy Computation

Koldo Basterretxea
Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Spain

Inés del Campo
Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Spain

INTRODUCTION

Electronic hardware development for fuzzy inference-based computing systems (fuzzy hardware) has
been an active research area almost since the first papers on successful fuzzy logic applications, mainly
fuzzy controllers, were published in the early eighties. Although historically, due to the greater flexibility
and compatibility, as well as the advantages and easiness of using high level languages, the majority of
fuzzy inference system (FIS) implementations have been software developments to be run on general
purpose processors (GPP), only concurrent computation architectures with specific processing units

AbsTRACT

This chapter describes two decades of evolution of electronic hardware for fuzzy computing, and dis-
cusses the new trends and challenges that are currently being faced in this field. Firstly the authors
analyze the main design approaches performed since first fuzzy chip designs were published and until
the consolidation of reconfigurable hardware: the digital approach and the analog approach. Secondly,
the evolution of fuzzy hardware based on reconfigurable devices, from traditional field programmable
gate arrays to complex system-on-programmable chip solutions, is described and its relationship with
the scalability issue is explained. The reconfigurable approach is completed by analyzing a cutting
edge design methodology known as dynamic partial reconfiguration and by reviewing some evolvable
fuzzy hardware designs. Lastly, regarding fuzzy data-mining processing, the main proposals to speed
up data-mining workloads are presented: multiprocessor architectures, reconfigurable hardware, and
high performance reconfigurable computing.

DOI: 10.4018/978-1-60566-858-1.ch001

2

Electronic Hardware for Fuzzy Computation

can take greatest advantage of fuzzy computation schemes. The development of fuzzy hardware has
been mainly motivated by real-time operation demands, or by low power and/or small area occupation
requirements. In this sense, the first fuzzy hardware researchers basically tried to design fuzzy chips
capable of processing fuzzy control laws in a more efficient manner in terms of processing speed, oc-
cupied area and consumed power. But not only is computing efficiency a concern for fuzzy hardware
designers; system programmability, compatibility of input/output signals and scalability at various levels
(word-length, partition of the input and output domains, number of rules, or overall throughput gain)
are also important features to be considered.

Design of fuzzy hardware is strongly conditioned by the target application it is addressed to. In
consequence, many different application-specific designs have been reported, each of them showing
characteristic features, strengths and weaknesses. The choice of the development platform and imple-
mentation technology is closely linked with this issue, and may itself bias the obtainable final features.
Despite this, implementation of a general purpose fuzzy ASIC (Application Specific Integrated Circuit)
suitable for any fuzzy rule-based application has been somehow sought but never achieved by fuzzy
hardware designers, both in academic and in commercial contexts. It has been the arrival of high capac-
ity reconfigurable hardware and the drastic changes in the design processes of complex digital systems
associated with this technology that has finally made obsolete the general purpose fuzzy hardware
objective. Last generation reconfigurable hardware platforms allow the implementation of optimized
complex hardware/software codesigned adaptive and on-the-fly reconfigurable systems for application
specific computation. The combination of reconfigurable hardware with the use of standardized hardware
description languages (HDL) has entailed the transference of the task of achieving desirable features
such as flexibility, scalability, reusability, etc from the hardware itself to the description or modeling of
this hardware.

Fuzzy data management and analysis methods do not rest normally on a rule-based inference scheme,
so the development of hardware for fuzzy data-mining has usually little to do with what is referred to as
“fuzzy hardware”. In fact, fuzzy data-mining algorithms have been traditionally implemented by software
applications running on GPPs, since there were not usually tight requirements for computation time,
occupied silicon area or consumed power. On the contrary, flexibility, scalability and good interaction
with data base storage systems were the only concerns. Nonetheless, nowadays, due to the increasing
complexity of data-mining algorithms and the growing amount of data to be processed by them, some-
times with time constraints, more attention is being paid to the hardware acceleration of this kind of
application. This field can be considered, together with scientific computation, a natural target for high
performance computing (HPC). Consequently, specific hardware development for parallel processing
or coprocessing of data-mining algorithms has been gaining relevance in recent years.

The chapter is organized as follows: Section 2 introduces the main hardware implementation variants
performed since first fuzzy hardware chips were published and until the consolidation of reconfigu-
rable hardware for complex digital system implementation. First of all, the distinctive characteristics of
fuzzy inference-based computation that pushed researchers to find specifically designed hardware are
described. Secondly we summarize the general pros and cons of the two main design approaches used
for fuzzy hardware realizations, the digital approach and the analog approach; the performance indexes
used for fuzzy hardware characterization are also briefly discussed. The bulk of the section follows by
analyzing the different solutions proposed by hardware designers both for digital and analog approaches
in a taxonomical way, giving examples of the most representative publications in the area. In Section 3
the evolution of fuzzy hardware implementations based on reconfigurable hardware and its relationship

3

Electronic Hardware for Fuzzy Computation

with the scalability issue are explained. A short description of the FPGA (Field Programmable Gate Ar-
ray) technology and the repercussions of the development of hardware description languages are given,
and the fruitful synergism between FISs and FPGAs are enumerated. The section continues with the
description of the hardware/software codesign methodology and its contribution to the fuzzy hardware
design, and introduces the associated concept of System on Programmable Chip (SoPC), giving examples
of reported designs in this area. The Section is completed by analyzing the cutting edge design meth-
odology known as Dynamic Partial Reconfiguration and by reviewing some evolvable fuzzy hardware
designs, and is closed by highlighting the new trends and challenges to be faced by the reconfigurable
hardware technology. Lastly, Section 4 is devoted to the hardware implementation proposals for fuzzy
data-mining processing, as it presents very distinct characteristics and requirements compared to fuzzy
rule-based inference systems. Section 5 concludes this chapter summing up the described main concepts
and giving some concluding remarks.

HARDWARE IMPLEMENTATION OF FUZZY INFERENCE sYsTEMs

As mentioned in the introduction, design and implementation of a FIS strongly depends on the require-
ments of the target application. When the hardware implementation of a FIS is considered, this is due to
the special requirements of computation time, occupied area and/or power consumption that the application
to be performed may demand. Each application field of FISs has its own characteristics which condition
the system design: process control, industrial automation, embedded control, signal processing, pattern
recognition, or data analysis and decision making –when making use of fuzzy rule-based schemes– all
share a common computational scheme but all show specific processing and interfacing requirement,. In
order to understand the reasons that have pushed researchers to investigate new hardware architectures
for fuzzy systems, it is worth to briefly analyzing the specificities of fuzzy computation.

Distinctive Characteristics of Fuzzy Computation

There are three main aspects of fuzzy computation that have motivated the design of ad-hoc hardware
to overcome the limits imposed by the processing on general purpose processors: parallelism, use of
specific non-standard operators, and the intensive computation of non-linear functions.

Parallelism: The typical three processing stages of a fuzzy inference, that is, fuzzification, inference,
and defuzzification, are performed sequentially (see Figure 1). However, at each stage internal operations
can be carried out in parallel. At the fuzzification stage parallelism is possible because several member-
ship degrees at a time must be computed for an input value, and there may be more than one input. At
the inference stage the computation of the degrees of truth of several rules are performed in parallel,
since more than one rule may be activated at the same time. Finally, to compute the output value, which
is usually crisp, the partial conclusions of the rules must be obtained from the consequents, and these
values are combined to obtain the final general conclusion and the defuzzified value. GPPs are sequential
machines, so all these operations are performed serially. It is obvious that the more input variables in the
input domain and the more rules defined in the inference engine, the more time-consuming is a fuzzy
inference in a sequential processor and the more worthwhile it is to parallelize it.

Specific non-standard operators: Fuzzy computing requires intensively performing some basic
operations that cannot be efficiently executed by GPPs. Maximum and minimum operations and de-

4

Electronic Hardware for Fuzzy Computation

fuzzification functions, for instance, are very time-consuming on GPPs. While some software solutions
have been proposed by adding new instructions implemented as microprograms to the microproces-
sors, implementation of dedicated fuzzy functional blocks is the most efficient solution regarding the
computation time.

Computation of non-linear functions: Any fuzzy computing system is based on fuzzy logic theory,
and the core concept of this logic is the concept of membership degree to a given set. To represent the
membership degrees, fuzzy logic uses membership functions (MF), which are, in the most general case,
monotone smooth non-linear functions such as sigmoidal functions, Gaussians, generalized bells and
so on. The computation of such functions is very demanding for any processor and hence this has been
one of the most analyzed aspects of fuzzy hardware design. In fact, to overcome this problem, many
fuzzy hardware designs rested on simple triangular or trapezoidal membership function representations.
This is a valid approach, as it is demonstrated that FISs keep their universal approximation property
even when simple piecewise-linear (PWL) MFs are used (Castro, 1996), but this is a property based on
an existence theorem that does not consider quantitative implications. For a given number of MFs and
rules, the system’s plasticity –capability of representing information– is degraded when using simple
PWL MFs, so simpler MFs imply a more complex rule base (Basterretxea et al., 2007).

Hardware implementations must always be oriented to achieve maximum simplicity. There are of
course some “tricks” that hardware designers have developed to adapt the computation of fuzzy algorithms
to the characteristics of hardware technologies. Hardware engineers have often modified mathematical
operations or other computational features to produce more hardware-friendly algorithms. Sometimes
this means reducing the accuracy, in the sense that produced processing does not replicate exactly the
underlying mathematical functions. This is the case of the diverse circuits designed for approximating the
non-linear functions used to represent MFs, or the reduction of quantization levels when memory-based
solutions are implemented. At other times accuracy is not affected but some limitations are imposed
on the system, such as the allowed maximum overlapping degree of MFs or their configurability, for
instance. Sometimes however, a closer and more detailed study of how an electronic circuit processes
data can lead to discovering regularities that can be exploited, or ways to avoid useless or repetitive
calculations, with no impact on computational accuracy or system flexibility. One example of this is
the use of register files to store truth tables obtained from the computation of the degree of truth of
an antecedent, since the same antecedent is usually repeated in several rules (Ascia & Catania, 1998).
Another common example is a technique consisting in the implementation of “active rule detectors”,
that is, for each input, detecting which rules will be activated and which rules will produce no output
(not active), so only those rules with a positive degree of truth in their antecedents are processed (see

Figure 1. Basic computational scheme of a fuzzy rule-based system

5

Electronic Hardware for Fuzzy Computation

Hamzeh et al., 2009 and references herein). Sometimes the search for hardware-friendly algorithms
has pushed researchers to work on the mathematical basis of fuzzy logic, hence inducing the definition
of new operators such as the operators used for piecewise-linear or -multilinear (PWM) fuzzy systems
(Rovatti & Borgatti, 1997; Sasaki & Ueno, 1994), as well as parameterized defuzzification methods
such as the height method, weighted fuzzy mean, Yager´s method, etc. (Baturone et al, 2000). In the
next subsection we examine some of these design strategies, described by fuzzy hardware researchers
in papers and books, the most significant of which are referenced in the text.

Hardware Design strategies and Implementation Technologies

Traditionally there have been two main approaches to the implementation of FISs: using GPP based
machines and the development of dedicated hardware. Obviously, using pure software solutions run-
ning on GPPs –microprocessors, microcontrollers or digital signal processors– is the least expensive
and more flexible procedure, but generally it is the slowest one. On the contrary, the development of
ad-hoc hardware for high performance fuzzy processing implemented in ASIC technology requires a
longer design time and much more effort, in order to culminate in a faster system, although very often
with poor generality. Halfway approaches are also possible though. One option is to customize GPPs by
introducing fuzzy dedicated instructions, which sometimes is referred to as software expansion. Another
option consists in splitting fuzzy operations from the CPU instruction-set and developing an external
fuzzy coprocessor to execute those operations faster, which is called hardware expansion. The main
problem in using fuzzy coprocessors is that the I/O signal transmission between the processor and the
coprocessor is usually a bottleneck that impedes fast operation. This section is devoted to describing the
most representative design solutions for dedicated fuzzy hardware reported in the last two decades, leav-
ing the GPP-based approaches and the direct memory mapping-based implementations aside. However,
each reported hardware design is unique, generally differing the ones from the others in various aspects,
so it is not possible to make a complete catalogue of developed fuzzy processors over the years. Yet there
are some common characteristics of different reported solutions that can be, and will be, emphasized
and that allow us to make a somewhat taxonomical description of fuzzy hardware design.

The first fuzzy processing device was implemented in 1985 by Togai and Watanabe (1986), from the
AT&T Bell laboratories. It was a digital VLSI chip with one input and one output capable of executing
250,000 FRPS (Fuzzy Rules Per Second) with no defuzzification. Previously Yamakawa had built the
first analog fuzzy circuits based on bipolar transistors, but it was not until 1988 that he reported the first
analog fuzzy controller chip (Yamakawa, 1988). The controller was implemented in bipolar technology
and was capable of evaluating 1 Mega FIPS (Fuzzy Inference Per Second) including defuzzification, or
10 MFIPS without it. These two works represent, respectively, the beginning of the race to produce the
fastest, smallest and/or the least power-consuming fuzzy chip in the two main design methodologies.
These are directly linked to implementation technology: the analog hardware and the digital hardware.
Both approaches have their own pros and cons, which are summed up below.

Digital FIS Hardware vs. Analog FIS Hardware

When facing the designing of fuzzy hardware, both in the analog and the digital approaches, some
designers have developed very specific dedicated architectures with the aim of achieving the higher
processing speed together with an efficient use of silicon for a given application. Other designers have

6

Electronic Hardware for Fuzzy Computation

tried to make more flexible, general purpose fuzzy chips. The more dedicated circuits implement quite
simple computation algorithms on simple architectures. The more general application targeted circuits
include programmability options by implementing different MF shape and/or inference method selec-
tion capabilities, various defuzzification methods and also scalability features to some extent (bit level
scalability, MF level scalability, selectable number of rules etc.). In any case, the selection of the digital
or the analog approach itself may bias the achievable features. The main characteristics of both ap-
proaches are:

Digital Hardware

Use of well known and well characterized target technology.•
Structured and systematic design process and availability of • EDA (Electronic Design Automation)
tools to obtain reliable and lower cost integrated circuits.
Connectivity to other digital processing conventional units.•
More flexible devices with easy programmability and external parameter selection.•
Adjustable accuracy and resolution.•
High area occupation. This is due to the big quantity of transistors required to implement fuzzy •
operators (max, min, etc.), the coded representation of the membership functions by bit sequenc-
es, and the probable need of A/D (Analog to Digital) and D/A (Digital to Analog) converters to
transform the input and output signals.

Analog Hardware

Better speed/area ratio.•
No need for A/D and D/A interfaces (controllers).•
Lower power dissipation.•
Analog design is a costly long-cycle, generally manual process, although some automated design •
tools have been developed (Lemaitre et al., 1993; Manaresi et al., 1996).
Lower precision due to noise and temperature drifts.•
Lower flexibility.•

Characterization of Fuzzy Hardware Performance

When referring to the performance of fuzzy hardware implementations we have used the term speed,
but we have not defined exactly what the term speed means in this context. We have even used the more
specific terms FIPS and FRPS, as the majority of authors do, in order to characterize their designs.
However, different authors may use different performance indexes, and sometimes these indexes can
be misleading when employed to compare the performance of systems with different architectures and
functionalities. The most used performance indexes in the related literature are:

Maximum clock frequency (digital and mixed signal designs).•
Number of • fuzzy logic inferences per second (FLIPS) or fuzzy inferences per second (FIPS),
where the concept fuzzy inference is fuzzy itself or ill-defined.

7

Electronic Hardware for Fuzzy Computation

Number of fuzzy rules per second (• FRPS).
Number of basic fuzzy operations per second.•

None of these terms is a reliable measure of the real system performance, especially in the digital
approach, as far as other factors such as the parallelism, the on-chip fuzzification or defuzification opera-
tions and others may be involved. In (Patyra et al., 1996) a more realistic speed measure is proposed to
characterize any fuzzy hardware design. This index is the input/output delay time of the system –which
is often used in analog designs–, defined as the total delay time from the moment of providing the input
variable to the FIS device until the generation of a crisp action at the output1. But in order to make a
performance comparison of different designs, more performance indexes have to be added to the bare
processing speed. The author proposes the following set of index parameters:

Number of inputs.•
Number of outputs.•
Number of linguistic rules in the knowledge base.•
Number of MFs in the input universe of discourse.•
Number of MFs in the output universe of discourse.•
Number of binary vectors characterizing the membership function (resolution of the input uni-•
verse of discourse for digital designs).
Number of bits in a single binary vector (resolution of the membership degree for digital •
designs).
Input-to-output time delay.•

This set of parameters, which was defined to make a comparative study of the state-of-the-art dedicated
digital fuzzy logic controllers at the time of publication, summarizes perfectly the main architectural
characteristics to be considered in the design of a fuzzy chip. To complete the picture, dissipated power
should be also considered.

Digital Implementations

The first digital hardware realizations, such as the above mentioned pioneering work of Togai and
Watanabe, used parallel rule processing architectures by providing a data path for each rule (Figure 2).
This configuration allows fast operation but is very area consuming and imposes a maximum number
of rules, so its scalability, in this sense, is limited. The provided fuzzy inference method was the max-
min inference rule, so circuits for maximum and minimum operators were implemented. Max and min
operations were performed serially to save silicon area, since the max-min operator structure had to
be replicated for each rule. Membership functions were implemented by storing the function values in
memory look-up tables. By using memories any membership function shape can be stored, but occupied
memory grows exponentially with the resolution, and hence memories are only used with low resolu-
tions. Obviously, decreasing the resolution in the discretization of the input values and the membership
degrees negatively affects the system performance (del Campo & Tarela, 1999; del Campo et al. 2001).
Moreover, in a parallel processing architecture the memory size required to store the MFs is proportional
to the number of rules, so severe limitations were imposed on the processing engine.

8

Electronic Hardware for Fuzzy Computation

To overcome the above described limitations, many designers have implemented sequential rule
processing architectures. Serialized architectures are more flexible but do not exploit all the parallelism
of fuzzy systems and, since the number of clock-cycles required for processing the rules is proportional
to the number of the latter, they are generally slower. The rule base is stored symbolically in a memory,
and the generation of the membership functions is performed by circuitry that is shared by all the rules,

Figure 2. Pure parallel implementation scheme of a three-input-one-output FIS with n rules (min-max
operation blocks replicate the graphically depicted input processing). MFs are linked to the rules and
stored individually for parallel processing.

Figure 3. Serialized implementation scheme of a three-input-one-output FIS with single data-path for
all rules (min-max operation blocks replicate the graphically depicted input processing). Rules are
stored in memory using labels of antecedent and consequent MFs, and only one rule can be addressed
every clock cycle.

9

Electronic Hardware for Fuzzy Computation

that is, there is a fuzzy partition of the universes of discourse for each input variable (Figure 3). For
sequential fuzzy processors, memory size is still a problem for systems with a high input dimensionality
(many input variables), as memory size grows exponentially with the dimensionality of the input domain.
There have been proposed some alternative memory organization proposals that optimize memory us-
age and achieve a linear proportionality between memory size and input dimensionality (Eichfeld et al.,
1992; Eichfeld et al., 1995; Hollstein et al., 1996), although these optimized organizations apply severe
restrictions to the allowed MF overlapping degree.

Input Stage: Pure memory approach to the MF representation is very flexible, but is very memory
demanding too. An alternative approach that saves memory resources consists in storing only some
values that define the shape, usually piecewise-linear, of the MFs. These values may represent both the
breakpoints and the slopes of the interpolating linear functions. The operations required to calculate
a membership degree are usually a search of the domain segment the input value belongs to, and the
computation of the linear function defined for each domain segment. The amount of linear functions
needed to describe a MF is limited, and the more complex shape is wanted the more memory must be
used to store the function parameters. There are very simple designs restricted to represent elementary
Λ, S or Z shapes (Ascia et al., 1997), and other more developed implementations capable of representing
more complex PWL functions (Eichfield, 1996; Halgamuge, 1994; Hollstein et al., 1996). The allowed
overlapping between MFs is also a concern, but in any case, the required memory is much lower than
for a look-up-table approach.

The drawback is the need for additional though quite simple, membership function circuits (MFC)
to compute the membership degrees. The use of pure MFCs (circuits that directly compute the MF
through an algorithm) to process the membership degrees in digital implementations, unlike in the
analog approach, is quite rare. These circuits approximate, with adjustable accuracy and full program-
mability, continuous nonlinear functions like Gaussians, sigmoidals or generalized bells that boost the
knowledge representation capability of the FISs with almost no memory cost (Basterretxea et al., 2002;
Basterretxea et al., 2006).

Rule processing: A common strategy that improves the performance of serial processing architectures
consists in evaluating only the active rules, that is, the rules with non-zero output. The active rules are
detected after calculating the membership degrees of the antecedents or by comparing the input values
with the supports of the MFs. When a non-zero fuzzified data is detected, the number of active MFs and
their degrees of membership are saved. Then, an associative memory in which the rule antecedents ad-
dress their consequents is accessed to retrieve the consequents of active rules. Any rule that shares a MF
that is not activated by a system input will have a null output, so there is no need for it to be processed
and computation time is saved. The active rule selection operation is critical for the active rule driven
processors and different implementations have been reported. Some of them perform the detection of
active rules in parallel with fuzzification (Weiwei et al., 2004), saving clock-cycles and reducing latency,
but are static non-adaptable selectors for predefined MFs. In the majority of designs, hence, the selection
begins late after fuzzification, as explained above (D’Amore et al., 2001; Ikeda et al., 1992; Watanabe et
al., 1990). In (Ascia & Catania, 2000), an active rule selector that uses two fuzzification units to operate
in parallel is described, obtaining a process two times faster than for simple selectors. Another limitation
imposed by these designs is a severe restriction in MF overlapping, usually allowing the overlapping
of just two MFs. Moreover, these selectors are not scalable in terms of the number of inputs, MFs or
bit-width. Recently, some more sophisticated algorithms have been proposed to obtain fully scalable,
faster and overlapping restriction-free active rule detectors (Hamez et al., 2008).

10

Electronic Hardware for Fuzzy Computation

As an increase in the dimensionality of the input space causes an exponential growth in the complexity
of the system when using grid partitions -this problem is known as the curse of dimensionality-, some
designers have searched for alternative architectures in order to tackle this problem. This is the case of
the above mentioned PWL and PWM fuzzy systems (Rovatti, 1998). In piecewise linear and multilinear
systems the inference procedure is reformulated to have a complexity O(n.log n), being n the number
of input variables. The underlying idea is a sort of active rule processing scheme applied to a restricted
fuzzy modeling. Imposed restrictions are as follows: the MFs are triangular shaped, they are normalized,
and they overlap in pairs. These constraints guarantee that, given an input vector, only two antecedents
per input dimension provide non-zero activation values, so a corresponding “active cell” is defined in
the input domain partition. Once this active cell is identified and its corresponding parameters loaded,
a single inference kernel processes the output (del Campo et al., 2008; Rovatti et al., 1998;). Of course,
this improvement in performance means storing many intermediate pre-computed results, so memory
requirements are notably increased. Similar architectures are proposed in (Baturone et al., 1998; Vidal-
Verdú et al., 1998) for mixed analog/digital fuzzy chips.

Output Stage: The last of the processing units in a FIS, that is, the defuzzification stage, is of main
importance, as it is one of the most time-consuming operations. Generally speaking, defuzzification
requires multipliers, adders, substracters, accumulators and a divider. There are many defuzzification
methods proposed. The most common defuzzification method for hardware implementations is the
Center-of-Area, but it is not very hardware-friendly itself –although not so time consuming as the more
extended centroid of area–, so several alternatives to optimize the hardware have been proposed, usually
with the aim of avoiding the multipliers (Watanabe et al., 1990) or the divider (Ruiz et al., 1995). In any
case, defuzzification operations are not easily subject to rigorous mathematical analysis, so alternative
non Mamdani-like fuzzy inference systems that do not employ fuzzy consequences, such us the very
popular Sugeno-type fuzzy inference systems, have been widely used both in software and hardware
implementations.

With the aim of simplifying the implementation of fuzzy operators and reduce occupied area, some
researchers have worked on alternative representations of digital numbers that allow their serial pro-
cessing. These are the so-called pulse-based techniques, including stochastic computation, pulse-width
modulation and bit-serial arithmetic. In these alternative approaches, numbers are represented as streams
of individual bits and system precision is controlled in time rather than in area. With the present gigahertz
clock rates, it is possible to compute numbers serially with highly pipelined architectures and achieve
good throughput while hardware complexity is dramatically reduced for high accuracy number repre-
sentations –see (Dick et al., 2008) and references herein–. Depending on the representation, arithmetic
operations like multiplication, probabilistic sums, and probabilistic negation in the stochastic repre-
sentation, or maximum, minimum, and difference in pulse-width modulation are performed by simple
two-input one-output logic gates. Bit-serial arithmetic operators are also much simpler than parallel-bit
implementations. The major drawback of these approaches is the high clock frequencies required, only
achievable by state of the art devices that may imply higher power consumption.

Analog Implementations

In spite of their design complexity and lower accuracy, analog realizations have sometimes been preferred
for their high speed, low area, and low power consumption, mainly for highly parallel and high input/
output dimensionality. Input-output delay times reported for various analog designs are as low as tenths

11

Electronic Hardware for Fuzzy Computation

of microseconds (D’Amore et al., 2001; Peters et al., 1995), or even less –63 ns in (Amirkhanzdeh et
al., 2005)–. As they process the fuzzy rules in parallel, time response does not depend on the complexity
of the inference engine. When input signals are taken from sensors and output signals excite actuators,
using fuzzy analog chips avoids the use of A/D and D/A converters, since the majority of sensors and
actuators cope with analog signals. On the other hand, compared to the digital approach, analog designs
are less efficient with regard to rearrangement and programmability, and show relatively low accuracy,
although analog designers sometimes claim that this is not a severe limitation in view of the typical
demands of fuzzy control applications.

The first analog fuzzy chips were designed by Yamakawa (1988) in bipolar technology. Analog
design is much more “artistic” than digital design since it is less hierarchical and structured, and the
same specifications can be reached in many different ways. Consequently, it is more difficult to make a
taxonomical description of analog fuzzy chips, which are almost exclusively fuzzy controllers. In any
case, in the continuous-time analog design framework, two main design styles can be distinguished:
current-mode circuits and voltage-mode circuits. There are also some designs with transconductance
blocks, which work with voltages as inputs and currents as outputs. Current-mode circuits appear to
be the best suited option since basic fuzzy operations can be implemented with very few transistors.
Adding and subtracting operations are simple wire connections, and multiple input maximum and mini-
mum operators are also very simple circuits (Baturone et al., 1994; Lemaitre et al., 1994), as depicted
in Figure 4. Another advantage of current-mode circuits is that they are capable of operating with very
low voltage supplies. However, current-mode MFCs use current mirrors to replicate their outputs, as
their fan-out is 1. From the technological point of view, most current-mode designs use MOS (Metal
Oxide Semiconductor) transistors.

Voltage-mode circuits interface much better than current-mode circuits do with the majority of sensors
and transductors, which usually have voltage-mode output signals. Another advantage is that the input
and output signals of the circuits can drive various inputs at the same time with no need of additional
circuitry. Voltage-mode fuzzy chips usually use transconductance-mode MFCs based on differential-
pairs of transistors operating in weak inversion (Dick et al., 2008) or in strong inversion (Baturone et
al. 1994 ; Guo et al., 1996; Landlot, 1996; Lemaitre et al., 1994; Ota & Wilamowski, 1996; Peters et

Figure 4. Current-mode analog fuzzy circuit examples: (a) transconductance membership function circuit,
(b) max operator (concept diagram), (c) min operator (concept diagram). Analog circuits use much less
transistors than their digital counterparts: an 8 bit resolution MF occupies 256 bytes of memory, and
around 430 transistors are needed to implement an 8 bit MAX/MIN CMOS digital circuit.

12

Electronic Hardware for Fuzzy Computation

al., 1995; Rojas et al., 1996; Ruiz et al., 1995;.Vidal-Verdú & Rodríguez-Vázquez, 1995) to produce
smooth non-linear MFs, although there are some pure voltage mode designs, such as those circuits of
Yamakawa (1993) implemented in bipolar technology. Some researchers have exploited the subthreshold
operation mode of MOS transistors with floating gates to obtain very low consuming building blocks
with the ability to store information in the MOSFET (MOS Field Effect Transistor) gates (Marshall &
Collins, 1997). Voltage-mode designs are usually implemented with single ended amplifiers, resistors
and capacitors (RC-Active), or with differential amplifiers and capacitors (MOSFET-C). Transconduc-
tance designs use OTAs (Operational Transconductance Amplifiers) and capacitors as basic building
blocs. The OTA-based design is more structured, but it occupies more silicon area (Indue et al., 1991;
Tsukano & Inoue, 1995).

An alternative to continuous-time analog design is the use of switched circuits or discrete-time cir-
cuits. The aim of switched circuits is to obtain a superior precision and better programmability compared
to the classical analog designs, but maintaining a high processing speed with less area occupation and
power consumption than a digital counterpart. Switched design is based on the use of a clock-signal
to control the operation of switches, so the behavior of the circuit is controlled by the clock-period. A
drawback of switched design is that basic operations are not implemented at transistor level, but with
operational amplifiers or comparators, so the occupied silicon area is bigger. There are two main discrete-
time analog design techniques: switched capacitors (SC), which are voltage-mode and switched current
(SI), which are current-mode. Some discrete-time analog FIS implementations were published in the
nineties (Huertas et al., 1993; Fattaruso et al., 1994; Çilingiroglu et al., 1997). Going further, hybrid
analog/digital implementations such as those described in (Amirkhanzdeh et al., 2005; Baturone et al.,
1997, Bouras et al., 1998; Miki & Yamakawa, 1995; Yosefi et al., 2007) have been presented as a good
alternative to pure analog circuits, combining the strengths of both analog and digital approaches. In
these designs, analog circuitry is used to perform a highly parallel fuzzy inference engine with low area,
high speed and low power consumption, and digital circuitry is used to provide high programmability
and long term storage for the system parameters.

sCALAbILITY AND NEW TRENDs IN FUZZY HARDWARE

As is clear from the preceding section, a great research effort was dedicated in the decade of the 1980s
and early 1990s to the design and implementation of fuzzy hardware. Many of those works were de-
veloped by means of ASIC technology with the aim of achieving high performance requirements for
real-time applications. As exposed above, this technology is suitable to fit the specificities of fuzzy
computation, but it suffers from several drawbacks such as low flexibility, long development cycles,
and a complex design methodology that results in expensive solutions that rapidly become obsolete.
However, the present situation of fuzzy hardware design is other than it was ten to fifteen years ago, as
is the design of any other complex digital system. Nowadays flexible solutions for high-performance
fuzzy computation may be easily developed and updated by means of user-friendly CAD (Computer
Aided Design) tools. This is a consequence of the development of new hardware platforms and new
design paradigms that have broaden the implementation choices by giving new freedom degrees and
new tools to the design process.

With regard to the platforms, the use of reconfigurable hardware –mainly FPGAs– and the integra-
tion of whole digital systems –processors, dedicated circuits, memory and other peripherals– on a single

13

Electronic Hardware for Fuzzy Computation

chip (System on Chip or SoC) has narrowed the gap between general purpose hardware and dedicated
hardware approaches, and between software and hardware. General-purpose fuzzy hardware imple-
mentations are rarely published nowadays, and there are no reports of new commercial fuzzy chips.
Instead, ad-hoc solutions targeted to specific applications are designed and implemented on configurable
hardware platforms. If the target application or its requirements change, the system is redesigned and
rapidly implemented by reconfiguring the hardware. In this sense, the present availability of synthesiz-
ers based on standard HDLs enhance desired properties of hardware architectures such us modularity,
reusability and scalability.

The scalability of a fuzzy system is closely related to the technology of reconfigurable hardware; it
measures the ability of the system to improve its performance after adding hardware, proportionally to
the new resources. This property is closely linked to the fraction of parallelism allowed by the algorithms
and the availability of resources in the target platform. Concerning fuzzy computation, a scalable fuzzy
system is efficient and practical when applied to complex situations such as multidimensional problems
with a large number of membership functions and a large rule base. A useful tool in designing for scal-
ability is the well known Amdahl’s Law (Amdahl, 1967) which gives a measure of the speedup that can
be achieved by exploiting parallel processing. It states that the maximum speedup that can be achieved
by adding new functional modules to the parallelizable fraction of an algorithm is limited by the frac-
tion of the calculation that is sequential. For instance, the inference algorithm in a FIS allows a certain
degree of parallelism but it necessarily involves a fraction of serial computation (the same states for
defuzzification algorithms). In summary, hardware designers have to carefully analyze the performance
and scalability issues before making decisions about the system architecture. Finally, note that the scal-
ability property, applied to electronic systems, is sometimes used to quantify specific requirements for
a particular dimension such as load, precision, etc.

Reconfigurable Hardware

With the aim of better understanding the state-of-the-art in reconfigurable hardware for fuzzy computa-
tion, let us briefly introduce some background concepts concerning FPGA technology. An FPGA is a
semiconductor device which can be configured by the user, after the chip is manufactured, to implement
virtually any digital function as long as its available resources are adequate.

Figure 5 illustrates the general structure of a typical static random access memory (SRAM)-based
FPGA. Most FPGAs consist of a matrix of configurable logic blocks (LBs), a configurable routing
structure, and I/O blocks that drive the I/O pads of the chip. A circuit is implemented in the FPGA by
programming each LB to implement a small part of the logic and by programming the routing structure
to make the necessary connections between LBs, while the I/O blocks are programmed to operate as
either input pads or output pads. The programming information is a string of ‘0’ and ‘1’ (bitstream)
generated after automatic mapping of the design onto the FPGA. This information, commonly referred
to as configware, is stored in SRAM cells during the configuration process of the device (the configura-
tion memory is not shown in Figure 5). The actual circuit is easily updated by reconfiguring the device
with a new bitstream.

The whole development cycle of FPGA solutions is supported by user-friendly CAD tools, developed
by the vendors or third party companies, which dramatically reduce the development time. The inherent
reconfigurability of FPGAs, without additional costs, eases system prototyping and architecture update.
Although FPGAs cannot match ASICs in performance, the former delivers a better performance/cost

14

Electronic Hardware for Fuzzy Computation

ratio than the latter whenever the parallelism can be exploited. Undoubtedly FPGAs outperform ASICs
in terms of the flexibility (in a broad sense) and development time.

Reconfigurable Fuzzy Processing

Since first fuzzy chips based on FPGAs were reported in the literature in the early 1990s (Manzoul &
Jayabharathi, 1994; Hossain & Manzoul, 1993), both the capacity and the performance of FPGA devices
have been greatly improved due to the rapid evolution of microelectronic technology over the past years.
Those preliminary works were devoted to the development of small scale fuzzy controllers, with no strict
requirements in performance or in power dissipation. Most of them used simplified approaches, mainly
look-up tables, to implement either the whole system or the most time-consuming operations (Hung &
Zajak, 1995; Manzoul & Jayabharathi, 1994: Manzoul & Jayabharathi, 1995). To overcome the capacity
limitations imposed by early FPGA technology, some researchers proposed the partition of the system
functionality into multiple programmable devices –e.g. FPGAs and EPROMs (Erasable Programmable
Read Only Memory)– (Hollstein et al., 1996; Hung & Zajak, 1995). In addition, FPGAs were also used
at that time with prototyping purposes, as a previous step to the fabrication of ASIC fuzzy chips with
better performance (Hossain & Manzoul, 1993).

Beside the technological evolution, FPGA design tools and methodologies have also evolved from
a design flow based on schematics to a more flexible design flow centered on HDLs. Standard HDLs,
namely VHDL and Verilog, are nowadays the most widely used mean to describe, simulate and syn-
thesize digital circuits. With the integration of HDLs into the design flow, the reconfigurable approach
has gained in flexibility, portability and scalability; HDL allows the designer to define generic and
parameterizable architectures which can be easily resized and resynthetized. Therefore, the scalability
problem associated with FPGA solutions has to do more with system modeling –i.e. HDL model– than
with electronic design. Towards the middle of the 90s, some researchers began to exploit the benefits of
HDL specifications to develop fuzzy hardware. Some of them went a step further by developing CAD
tools, mainly based on VHDL, for rapid prototyping of fuzzy hardware (Hollstein et al., 1996; Kim,
2000). The ultimate goal of these tools is to fulfill the requirements of a wide range of applications in
terms of fuzzy model type –fuzzy operators, inference mechanism, fuzzification and defuzzification
strategies–, complexity –number of I/O variables and size of the rule base–, and performance.

Figure 5. Structure of a typical SRAM-based FPGA

15

Electronic Hardware for Fuzzy Computation

However, despite the methodological advances introduced by HDLs in the past decade, large fuzzy
systems still exceeded the size of a single device so they had to be split into several FPGAs. In this
situation, another way to tackle the problem of capacity limitation was proposed: the global run-time
reconfiguration method where the computation of the fuzzy system is divided into several temporally
independent tasks (Kim, 2000). Each task is configured onto a single FPGA, one task at a time, while
a memory board is used for storing the intermediate results between consecutive configurations. This
work can be seen as the first precedent in the field of fuzzy computation of the method nowadays known
as partial run-time reconfiguration method.

In the framework of present FPGA technology, previous drawbacks have been largely overcome and
current technology provides a realistic approach to the development of hardware for high-performance
fuzzy computation. Let us outline some significant examples. For instance, fuzzy logic has been suc-
cessfully applied to controlling the behavior of mobile robots. In (Li et al., 2003) the authors present an
FPGA-based car-like mobile robot which uses fuzzy rules to model the experience of a skilled driver to
perform the parking task. Two FISs were implemented on a single FPGA of the Altera’s FLEX family,
one to control the steering angle and the other to control the speed of the car. Fuzzy hardware based
on FPGAs has also been used in the field of image processing. In (Louverdis & Andreadis, 2003) the
authors propose a fuzzy processor suitable for morphological color image processing. The processor
is capable of performing the basic morphological operations of standard and soft erosion/dilation for
color images with 24-bit resolution. The prototype (54 rules) was implemented on a FLEX10K device
of Altera and provided a performance of 601 KiloFLIPS with a typical clock frequency of 65 MHz. A
survey of FPGA-based intelligent controllers for modern industrial systems can be found in (Monmasson
& Cirstea, 2007). This review includes the implementation of a fuzzy controller for a synchronous stand-
alone generator. The proposed design aims to improve the efficiency of diesel-engine-driven generators
by allowing optimum speed operation. The fuzzy controller was modeled and simulated using VHDL
and the prototype was synthesized and implemented into a low-cost Xilinx XC4010 FPGA. This solu-
tion greatly improved the control performance while keeping a high level of flexibility. Finally, another
perspective of the suitability of FPGA to develop fuzzy computation is provided in (Chowdhury et al.,
2008). This work presents the development of a smart processing FIS for clinical diagnostic applications
in rural areas of Third World countries. The authors point out that FPGA technology is very useful in
these countries due to low investment, portability, short design cycle and the scope of reprogrammabil-
ity for improvement without any additional cost. The whole system has been realized on an Altera’s
Cyclone II chip which can be interfaced with a wireless transceiver and other telecommunication media
for telediagnostic applications.

The Synergism between FISs and FPGAs

Summing up, in addition to the well known advantages of FPGAs, there are several specific advantages
of reconfigurable hardware technology that make it specially suited to implementing real-time scalable
fuzzy algorithms:

Some • FPGA families (e.g. Xilinx’s Virtex family) incorporate internal RAM blocks to the generic
structure depicted in Figure 5. These memory blocks are very useful for implementing large fuzzy
systems because of the huge amount of information involved in the definition of membership

16

Electronic Hardware for Fuzzy Computation

functions and rules that demands large on-chip memory resources. Distributed RAM blocks are
also useful for mapping memory-based approximations.
The availability of a dense and flexible interconnection architecture (i.e. configurable routing in •
Figure 5) fits the requirements of high performance FISs. Most fuzzy models can be viewed as a
layered structure, similar to an artificial neural network, where each layer consists of several par-
allel processing units densely connected with the neighboring layers. The interconnection scheme
of such systems requires high flexibility in the segmentation of the routing paths to avoid addi-
tional propagation delays.
Modern • FPGA families include higher level functionalities, such as multipliers or generic DSP
(Digital Signal Processing) blocks, embedded into the silicon. These resources are very useful
for implementing both the inference engine (e.g. Sugeno type fuzzy inferences) and the defuzzi-
fication stage because they are faster and occupy less area compared to if building them from
primitives.
The capacity of FPGAs has increased according to Moore’s Law since the first families appeared •
on the market, so, even very large fuzzy systems (e.g. data mining applications) may soon be
implemented on a single FPGA, provided that the architecture is scalable enough.
Rapid prototyping on FPGAs is a useful feature in developing for • scalability. Reconfigurable de-
vices and tools allow the designer to develop fuzzy systems with different sizes and compare the
achieved performance in order to experimentally verify the scalability of the architecture.

In what follows we will continue to uncover potential advantages of FPGAs for fuzzy computation,
especially those concerning the latest advances in reconfigurable technologies.

Hardware/software Codesign

In the last decade new design methodologies and tools have emerged to deal with the challenges of new
electronic platforms. In this sense, hardware/software (HW/SW) codesign (De Micheli, 1997; Wolf,
2003) has been proposed as an optimal solution for many systems where a trade-off between versatil-
ity and performance is required. This approach proposes the partition of the computation algorithms
into HW and SW blocks by searching for the partition that optimizes the performance parameters of
the whole system. A recent work in the field of fuzzy computation (Cabrera et al., 2004) concludes that
HW/SW solutions, with an adequate partition, can often outperform classical solutions, based either
on HW or SW, for designing high-speed and low-consumption fuzzy control systems. In this work the
authors implement the inference mechanism and a simplified defuzzification method in the hardware
partition whereas the remaining tasks (initialization, I/O processing, etc) are implemented in software.
On the basis of this partition of tasks, the authors present two HW/SW prototypes: i) a medium complex-
ity FPGA interfaced with an external microcontroller, and ii) a single Xilinx’s Spartan2 FPGA with an
embedded microcontroller core. The main advantage of the second approach, where all the parts of the
fuzzy system are integrated in a single chip, is the direct interfacing of HW and SW modules with the
consequent savings in I/O delays and hardware resources.

Meanwhile, a milestone in the evolution of reconfigurable hardware has been to combine the logic
blocks and interconnects of traditional FPGAs (logic fabric) with embedded microprocessors and related
peripherals to form a system-on-a-programmable chip (SoPC). Some examples are the Excalibur family
of Altera (Altera Corp., 2002) which incorporated an ARM processor core, and the Virtex-II Pro, Vir-

17

Electronic Hardware for Fuzzy Computation

tex-4, and Virtex-5 families manufactured by Xilinx, which include one or more PowerPCs embedded
within the logic blocks (Xilinx Inc., 2008a). A similar approach, but less efficient in terms of area and
performance, consists in using soft-processor cores instead of hard-cores that are implemented within
the FPGA logic; two widely used soft-cores are the Xilinx’s MicroBlaze (Xilinx Inc., 2008b) and the
Altera’s NIOS processors (Altera corp., 2008). These new features of reconfigurable hardware have
been exploited to develop a new enhanced generation of fuzzy systems.

The analysis of the above mentioned works shows that to obtain efficient HW/SW architectures the
regular and recurrent computations have to be implemented in the hardware partition and the irregular
or less frequent computations are better suited to a software development (see Figure 6). For example,
the implementation of a PWL fuzzy controller using a SoPC of the Altera’s Excalibur family has been
reported in (Echevarría et al., 2005). The system is a three-input single-output PID (Proportional-Integral-
Derivative) fuzzy controller with a cellular architecture. The main processing blocks of the proposed
architecture are a hyperplane generator and a preprocessing module. On the one hand, since the hyperplane
generator is a typical sum of products, it has been efficiently implemented in the hardware partition.
On the other hand, the preprocessing module, which involves a sorting algorithm, has been developed
by simple software procedures. The ARM processor operates up to 200 MHz and the hyperplane unit
performs the evaluation of the output in only two clock cycles with a maximum frequency of 84 MHz.
Another approach to SoPC-based fuzzy computation can be found in (Sánchez-Solano et al., 2007) where
a complete design methodology and tool chain is presented. The proposed design flow combines standard
FPGA implementation tools with a specific environment (Xfuzzy) for the development of fuzzy controllers
as IP (Intellectual Property) modules. The design flow has been used to develop a fuzzy controller, on
a Xilinx’s Spartan device, for solving the navigation tasks of an autonomous vehicle. 60% of the FPGA
resources are dedicated to implementing the MicroBlaze soft core and its associated components, and
the remaining 40% corresponds to the fuzzy inference IP core. Both the processor and the fuzzy core
operate with a 50 MHz clock; the fuzzy core completes one inference in 16 clock cycles.

However, the impact of using configurable hardware and HW/SW codesign techniques is greater
when hybrid systems, based on the synergism of fuzzy logic and other computational intelligence tech-

Figure 6. HW/SW co-design for fuzzy computation: a SoPC-based solution

18

Electronic Hardware for Fuzzy Computation

niques (mainly neural networks), are considered. Hybrid neuro-fuzzy systems combine typical fuzzy
systems with the learning algorithms of neural networks. The latter are used to adapt parameters of the
fuzzy system as membership functions or rules. A few years ago, Reyneri (2003) performed an in-depth
analysis of the implementation issues of neuro-fuzzy hardware. This work points out the limitations,
advantages and drawbacks of different implementation techniques and draws attention to HW/SW code-
sign as the most promising research area concerning the implementation of neuro-fuzzy systems, since
it allows the fast design of complex systems with the highest performance/cost ratio. Recently, several
publications account for HW/SW solutions for neuro-fuzzy computation (del Campo et al., 2008, Kung
& Tsai, 2007; Reyneri & Renga, 2004).

In (del Campo et al., 2008) an efficient HW/SW implementation of an adaptive neuro-fuzzy system
based on a SoPC is presented. The Excalibur device family, which embeds an ARM processor core, has
been used to prototype a neuro-fuzzy architecture. The microprocessor performs the learning algorithm
(gradient-descent method plus least-square estimator) and the I/O data processing, while a Sugeno-type
inference algorithm is implemented in the FPGA logic fabric. The main motivation to develop a hetero-
geneous HW/SW solution is the nature of neuro-fuzzy algorithms: the embedded processor provides
flexibility and high precision to implement the learning algorithms, while the logic fabric allows the
development of parallel hardware for high-speed fuzzy inferences. Along the same line is the adaptive
fuzzy controller for speed control of a permanent magnet synchronous motor drive developed in (Kung
& Tsai, 2007). The authors argued that the modules requiring fast processing but simple computation
are suitable to be implemented by hardware, whereas control algorithms with heavy computation can
be realized by software. They selected a device of the Altera’s Cyclone family and a soft processor core,
the NIOS II IP core, to develop the prototype.

Another recent proposal in HW/SW fuzzy computation is the context switchable fuzzy inference
chip (Qao et al., 2006). The authors have developed a reconfigurable fuzzy inference chip (RFIC) on a
Virtex II FPGA which allows for online changes in the rules. The RFIC uses a formatted memory map to
encode the fuzzy relational knowledge and the inference model. Any change in the rules (context switch)
is achieved via a loadable register, so there is no need to reconfigure the FPGA. A remarkable feature
of this work is the suitability of the RFIC to develop evolvable fuzzy hardware. The block architecture
suggested by the authors consists of the RFIC as fuzzy processing unit and an evolution module that
generates the new context. The evolution module (i.e. genetic algorithms) can be developed by using a
processor core. If the architecture is developed as a SoPC, it supports intrinsic hardware evolution (real
hardware is used during the evolutionary process). The potentiality of this trend will be analyzed later
after introducing partial reconfiguration techniques.

Although HW/SW solutions enhance reconfigurable hardware, there are also a few drawbacks that
have to be considered. The main drawback is the bottleneck of the HW/SW interface. The communication
overload between the microprocessor and the HW block can reduce the whole system performance. To
avoid this problem, the transfer rate of data and parameters has to be high enough to take advantage of
the parallelism of hardware. The limited bandwidth of the HW/SW interface is also an important obstacle
in designing for scalability, no matter what the scalability of the hardware or the software may be. In
this sense, a different kind of architecture known as network-on-chip (NOC) has been proposed recently
to deal with the communication problem in an efficient way. NOCs feature a router-based network for
on-chip communication among different cores (i.e. processor cores, memories and specific IP cores).
This emerging paradigm, as yet unexploited in the field of fuzzy computation, is suitable for the design

19

Electronic Hardware for Fuzzy Computation

of reconfigurable fuzzy systems with a high level of parallelism, better performance and enhanced scal-
ability in comparison with a conventional bus-based architecture.

Dynamic Partial Reconfiguration

Dynamic partial reconfiguration is a new design methodology for reconfigurable hardware that consists
in the ability to reconfigure selected parts of an FPGA anytime after its initial configuration while the
device is still active (run-time reconfiguration). Potential advantages of partial reconfiguration for fuzzy
hardware are multiple: self-reconfiguration, adaptability, scalability, reduction of power dissipation, and
reduction of device size, among others.

The most popular partially reconfigurable architecture is the Virtex II series of Xilinx. These SRAM-
based FPGAs have a fine-grained architecture, similar to that depicted in Figure 5, but improved with the
addition of RAM blocks and hardware multipliers. Parts of the hardware on the reconfigurable device can
be changed at run-time by reprogramming only selected SRAM cells of the configuration memory, while
all other parts stay unaffected and operative. The device has different internal and external reconfigura-
tion interfaces of which the internal configuration access port (ICAP) is of particular interest because it
is accessible from the components within the FPGA (see Figure 6). Thus, a processor core embedded in
the FPGA can be used to control the internal configuration port during run-time. Since the system itself
decides to load new configuration data and initiates the reconfiguration task, this reconfiguration style
is known as self-reconfiguration. The above ideas have inspired the development of new approaches for
fuzzy computation, the evolution of reconfigurable hardware being the most innovative.

The configuration bitstream of a FPGA determines the function implemented by each logic block and
each interconnection switch (see Figure 6). Adaptation of the circuit functionality is achieved by modifi-
cations in the bitstream, in the same way that evolution of living beings is accomplished by modification
in the DNA strings. In this sense, there is an analogy between the bitstream in a FPGA and the genetic
sequence in living beings that has pushed researchers to apply the principles of artificial evolution to
reconfigurable hardware design. Concerning FPGA, evolvable fuzzy hardware uses genetic algorithms
for searching for a bitstream (i.e. genome) that configures the device with a circuit that satisfies the
design specification. Upegui (2005) proposes three methodologies for evolving hardware by means of
dynamic partial reconfiguration of the Virtex II family. Each methodology is related to a different level
of abstraction and granularity in the elementary components used to evolve the circuit: modular evolu-
tion, node evolution, and bitstream evolution.

Node evolution methodology has been applied to evolve fuzzy computation hardware in the pioneering
work by Mermoud et al. (2005). They use the difference-based reconfiguration flow (Eto, 2007) where
the designer is able to change the configuration of FPGA components such as LUTs (Look-Up Tables),
multiplexers, RAM blocks or I/O resources. After the modifications have been performed, a partial bit-
stream can be generated including only the differences between the initial and modified bitstream. Since
only a limited number of bits are changed, the reconfiguration time is considerably reduced if compared
with the reconfiguration of a full bitstream. In this application, system evolution implies the modifica-
tion of LUT functions. The proposed implementation co-evolves two species (i.e. MFs and rules) in a
4-input single-output FIS with 3 triangular MFs per input and a total of 20 rules. The genome describing
the FIS consists of two individuals; the first one encodes the vertices of the triangular antecedents while
the second one encodes the connections between the antecedents and the rules, the fuzzy operators and
the consequents. The genome encoding is a key feature of the scalability of the system; it can be easily

20

Electronic Hardware for Fuzzy Computation

extended to increase the number of inputs and/or rules of the FIS. The main drawback of this solution is
that each partial bitstream has to be generated externally by the FPGA vendor tool. However, to overcome
this limitation, the authors are refining the implementation in order to allow on-chip evolution (Upegui,
2006). Performing on-chip evolution on FPGAs is a promising trend for fuzzy computation and adapt-
able systems, however, there is still much research effort to be done in this area.

HARDWARE FOR FUZZY DATA-MININg

Fuzzy data-mining techniques such as fuzzy clustering or fuzzy decision-tree algorithms are not fuzzy
rule-based processing schemes. In fact these algorithms are used to find structure in raw data, so very
often are useful for generating fuzzy rules not from expert knowledge but from non-directly interpretable
data sets. Hence, hardware design for fuzzy data-mining algorithm processing, except for the possible
need of input fuzzification or the use of common fuzzy operators such us max or min, has little to do
with the systems previously analyzed in this chapter. In any case, data-mining algorithms have been
traditionally implemented by software applications running on GPPs, since flexibility, scalability and
good interface with data-bases is more important for these systems than computation time, area or power
consumption. However, due to the increasing amount of data to be processed by data-mining algorithms
and the more and more frequent high speed processing specifications, the hardware development for
parallel processing or coprocessing of data-mining algorithms is gaining relevance. A few papers and
reports on hardware design and implementations for fuzzy data-mining algorithms speed up have seen
the light in the last few years, mainly related to fuzzy clustering algorithms. Let us review some of them
in this section.

Multiprocessor architectures: One of the characteristics of data-mining algorithms to be exploited
for process acceleration is their intrinsic parallelism, so the first steps to speed up data-mining applica-
tions have been oriented to algorithm parallelization. The main data-mining algorithms, fuzzy set theory-
based ones included, have been investigated with the aim of speeding up their processing: association
rule-based (Agrawal & Shafer, 1996; Shen et al., 1999), decision trees (Kubota et al., 2000) and fuzzy
decision trees (Kim et al., 1999), clustering (Boutsinas & Gnardellis, 2002), and fuzzy clustering (Mode-
nesi et al., 2007; Rahimi et al., 2004). The hardware implementation of the parallelized algorithms has
been performed in various manners using conventional processors, such as by using distributed memory
(Modenesi et al., 2007; Xu et al., 2003) or shared memory multiprocessor architectures (Jin et al., 2005;
Modenesi et al., 2007; Syeda et al., 2002;), or in grid environments (Cannataro et al., 2004). All of them
report good scalability figures.

Regarding fuzzy data-mining algorithms, in (Modenesi et al., 2007) for instance, a fuzzy C-means-
based parallel cluster analysis is performed in two multiprocessor architectures: a PC cluster and a
multiprocessor machine. Unlike in previous published parallel implementations, where only strategies
to distribute the iterative process to find cluster centers are considered, this work describes how to
parallelize the entire cluster analysis, including the determination of cluster centers and the optimal
number of clusters by computing a cluster validity index. This is an iterative process where the cluster-
ing algorithm is computed for a range of number of clusters and the performance index is computed for
every partition generated. When all partitions have been computed, the partition corresponding to the
maximum performance index is chosen. The algorithm begins by splitting the data equally among the
available processors. Each processor computes de geometrical center of its local data and communicates

21

Electronic Hardware for Fuzzy Computation

this center to a master processor, which sets the initial centers and broadcasts them so that all proces-
sors have the same centers values at the beginning of the fuzzy C-means clustering algorithm. After
convergence is achieved in a processor, a distance factor needed to calculate the global validity index
is computed in its local data and this value is sent to the master, where the validity index is calculated
and stored. If the range of number of clusters is covered, the algorithm stops, otherwise returns to the
set of initial centers performed by the master processor. This whole procedure is repeated as many times
as the desired range of number of clusters to obtain the partition with the best performance index. The
authors conclude that the bigger the datasets are, the more variables implied and the more number of
clusters to be generated, the higher the speeding up of the algorithm in multiprocessor computation is,
that is, it behaves in a scalable manner.

The same research team has investigated a multiprocessor based parallelization of fuzzy rule based
classifiers by deriving a fuzzy rule based classifier for each input variable to aggregate the partial con-
clusions into a global one (Evsukoff et al., 2005). In this case, a single variable classifier is assigned to
a different processor in a parallel architecture, and partial conclusions are synchronized and processed
by a master processor. This approach is applied to a very large database and results are compared with
a parallel neural network architecture.

Reconfigurable hardware: In recent years some efforts have been focused on designing ad-hoc
hardware accelerators to speed up data-mining workloads. As clustering algorithms are, to some ex-
tent, data streaming applications, experimentation on their implementation on data streaming targeted
off-the-shelf hardware can be found, as in (Harris, 2005), where a fuzzy C-means adaptive algorithm
is programmed on a commercial graphic processing unit. With the maturing of FPGA technology, re-
searchers working on intensive data-mining applications immediately became aware of the benefits of
exploiting the fine-grain parallelism and scalability easiness of reconfigurable logic devices as hardware
coprocessors: exploring the properties of a FPGA coprocessor system in the domain of query process-
ing for computation-intensive data mining applications (Leung et al., 1999), implementing clustering
algorithms on reconfigurable fabrics (Baker & Prasanna, 2005; Estlick et al., 2001), improving the data
transfers for large data sets (Zhang et al., 2004) or developing text mining IP-cores for FPGAs (Free-
man & Jayasooriya, 2006) . In (Choundary et al., 2007), for instance, the authors describe a generic
data-mining system architecture that can be customized for specific applications. This is achieved by
implementing kernels with very time-consuming data-mining specific calculations on reconfigurable
hardware (FPGAs). Once the critical kernels of various data-mining algorithms are identified, specific
hardware can be implemented to process them in a processor/coprocessor architecture. Since kernels
remain the same for a given application, the required logic can be loaded before the process begins by
programming the FPGA. In the case study performed by these researchers, the fuzzy C-means is one of
the analyzed algorithms. The kernels identified as critical for this algorithm are the clustering process,
the distance calculation and the fuzzy sum. Ad-hoc hardware logic for these kernels is designed and pro-
grammed in a FPGA. The system has been tested with datasets of various sizes, and it has been observed
that the bigger the dataset the bigger the improvement in the speed up. The authors report overall speed
ups from 11x to 80x in the fuzzy C-means algorithm. Besides this, the experimental results strongly
suggest that the designed system is scalable.

High performance reconfigurable computing: A relatively new and very promising research field
on high performance computing that can be naturally targeted to intensive and/or real-time data-mining
applications is the one known as high performance reconfigurable computing (HPRC). HPRC combines
parallel processing theory and techniques used in high end supercomputers and computer clusters with

22

Electronic Hardware for Fuzzy Computation

state-of-the-art hardware acceleration devices, such as the most advanced FPGAs. These systems are
able to exploit coarse-grained functional parallelism as well as the fine-grain parallelism intrinsic to the
FPGA internal architectures (Buell et al., 2007). Nearly all major high performance computing vendors
such as SRC Computers (SRC-7family), Cray (XR1) or Silicon Graphics (RASC Technology) now have
HPRC highly scalable product lines, reflecting a clear belief in the huge potential of reconfigurable
computing. The first parallel-computing architectures including FPGAs were not designed to be scalable,
but recent HPRC computers use stackable crossbar switches connected to parallel buses that allow for
implementing different, highly scalable topologies. Commercial firms such as Nallatech, for instance,
have introduced a family of scalable cluster optimized FPGA HPRC products to either upgrade exist-
ing HPC cluster environments or to build new clusters with off-the-shelf FPGA computing technology
(Cantle, 2006).

Some vendors like Exegy have developed specific data mining targeted systems by combining
software with reconfigurable hardware to produce applications that perform at hardware processing
speeds, while retaining the flexibility of software (Dutcher, 2006). Exegy claims its systems have vir-
tually zero latency and near linear throughput gains by adding appliances (linear scalability). For the
highest performance systems, where I/O band and FPGA interface latency requirements are higher than
standard parallel buses (PCIx) can offer, specific solutions for data I/O management are implemented.
Some examples are Silicon Graphics’ RASC blade technology and NUMAlink® interconnect with its
Scalable System Port solution, SRC’s Hi-Bar Switch for its SRC-7 family, and Cray’s SeaStar2+ for its
XR1 Reconfigurable Processing Blade. HPRC provides performance increases that are often of orders
of magnitude compared to scalar microprocessors-only-based solutions. In addition, power consumption
per gigaflop (floating-point operation per second) is dramatically reduced, form factors are diminished,
and the overall price/performance ratio is notably lower. All these promising features make us think
HPRC will soon be a preferred option for cutting edge fuzzy (and non-fuzzy) data-mining algorithm
processing of large data-bases.

CONCLUDINg REMARKs

In this chapter we have seen that electronic hardware design for fuzzy computing has been a very ac-
tive research field during the last twenty years, beginning early after the first successful applications of
fuzzy inference systems were published. Specificity of fuzzy processing computational characteristics
combined with high speed, small area, and/or low power requirements have pushed designers to inves-
tigate into new hardware implementations to obtain high performance fuzzy ASICs targeted to specific
applications, which generally have been fuzzy controllers. Both the digital approach and the analog ap-
proach have been followed in the design process, producing fuzzy chips with distinctive performance
characteristics, strengths and weaknesses. However, in the last decade the number of reported works
on FIS analog implementations has suffered a progressive decay that clearly shows a loss of interest
in this technology for applications in this area. This tendency is closely related to the never ending and
comparatively much faster advances in digital technologies, and more precisely, to the rapid develop-
ment of digital reconfigurable devices and the associated drastic changes in design and implementation
methodologies.

The consolidation of reconfigurable hardware, particularly FPGA technology, together with the stan-
dard use of hardware description languages for digital system modeling have revolutionized the field

23

Electronic Hardware for Fuzzy Computation

of digital system design in many areas, particularly in fuzzy hardware design. New design methodolo-
gies such as the hardware/software codesign, and bioinspired techniques such as the genetic algorithms
have produced novel and more efficient and flexible hardware designs and have broadened the research
perspectives in this field:

HW/SW co-design techniques, applied to the development of SoPCs, make it possible to imple-•
ment a complete fuzzy inference system, including system peripherals, on a single chip with the
consequent savings in size, cost and power consumption.
Several present applications of • fuzzy computation require enhanced capabilities to deal with com-
plex problems. This feature involves the hybridization of the fuzzy algorithm with other tech-
niques poorly suited for hardware implementation. Thus, the heterogeneity (HW/SW) of SoPCs is
tailored to the computational demands of hybrid fuzzy systems.
Current design methodologies for FPGAs promote the use of soft IP cores (i.e. netlist or • HDL) as
building blocks for complex hardware design. The availability of reliable and previously tested IP
cores addresses the needs for rapid prototyping, design reuse and scalability.
Partial hardware reconfiguration is emerging as a promising solution to enhance digital • fuzzy
hardware with the capability of self-adaptation. Although this technology is not yet mature, it is
expected that over the next few years FPGA manufacturers improve design tools to fully support
dynamic partial reconfiguration.

Hardware design for fuzzy data-mining, which traditionally has been implemented on general purpose
machines, has become the object of investigation in the last few years as a consequence of the huge
amount of data to be processed and the more frequent requirements for high speed applications. On the
one hand, various hardware coprocessors for speeding up data-mining algorithms have been recently
published. On the other hand, recent advances in high performance reconfigurable computing foretell
a very promising outlook for low cost, high performance, linearly scalable data-mining processing
environments. Nevertheless, there are still some challenges for HPRC applications that must be faced:
double-precision floating-point performance, memory bandwidth and ease of use of development tools
for HPC programmers not familiarized with electronic engineering computing EDA tools are some of
these.

REFERENCEs

Agrawal, R., & Shafer, J. C. (1996). Parallel mining of association rules. IEEE Transactions on Knowl-
edge and Data Engineering, 8(6), 962–969. doi:10.1109/69.553164

Altera Corporation. (2002). Excalibur device overview (ver 2.0, May 2002), data sheet. Retrieved De-
cember 1, 2008, from http://www.altera.com/literature/ds/ds_arm.pdf

Altera Corporation. (2008). NIOS II processor reference handbook (ver 8.1, Nov 2008). Retrieved De-
cember 1, 2008, from http://www.altera.com/literature/lit_nio2.jsp

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the AFIPS spring joint computer conference (Vol. 30, pp. 483-485).

24

Electronic Hardware for Fuzzy Computation

Amirkhanzdeh, R., Khoei, A., & Hadidi, Kh. (2005). A mixed-signal current-mode fuzzy logic control-
ler. [AEÜ]. International Journal of Electronics and Communications, 59, 177–184. doi:10.1016/j.
aeue.2004.11.019

Ascia, G., & Catania, V. (1998). A parallel processor architecture for real-time fuzzy applications. In A.
Kandel, & G. Langholz (Eds.), Fuzzy hardware architectures and applications (pp. 182-196).

Ascia, G., & Catania, V. (2000). A pipeline parallel architecture for a fuzzy inference processor. In Pro-
ceedings of the Ninth IEEE International Conference on Fuzzy Systems (pp. 257-262).

Ascia, G., Catania, V., Ficili, G., Palazzo, S., & Panno, D. (1997). A VLSI Fuzzy expert system
for real-time traffic control in ATM networks. IEEE transactions on Fuzzy Systems, 5(1), 20–31.
doi:10.1109/91.554444

Baker, Z. K., & Prasanna, V. K. (2005). Efficient parallel data mining with the apriori algorithm on
FPGAs. In Proceedings of the 13th IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (pp. 3-15).

Basterretxea, K., Tarela, J. M., & del Campo, I. (2002). Digital design of sigmoid approximator for
artificial neural networks. Electronics Letters, 38(1), 35–37. doi:10.1049/el:20020008

Basterretxea, K., Tarela, J. M., & del Campo, I. (2006). Digital Gaussian membership function circuit
for neuro-fuzzy hardware. Electronics Letters, 42(1), 44–46. doi:10.1049/el:20063712

Basterretxea, K., Tarela, J. M., del Campo, I., & Bosque, G. (2007). An experimental study on non-linear
function computation for neural/fuzzy hardware design. IEEE Transactions on Neural Networks, 18(1),
266–283. doi:10.1109/TNN.2006.884680

Baturone, I., Barriga, A., & Sánchez-Solano, S. (1994). Current-mode multiple-input maximum circuit.
Electronics Letters, 30(9), 678–680. doi:10.1049/el:19940510

Baturone, I., Barriga, A., Sánchez-Solano, S., & Huertas, J. L. (1998). Mixed-signal design of a fully
parallel fuzzy processor. Electronics Letters, 34(5), 437–438. doi:10.1049/el:19980392

Baturone, I., Barriga, A., Sánchez-Solano, S., Jiménez-Fernández, C. J., & López, D. R. (2000). Micro-
electronic design of fuzzy-logic-based systems. Boca Raton, FL: CRC Press LLC.

Baturone, I., Sánchez-Solano, S., Barriga, A., & Huertas, J. L. (1997). Implementation of CMOS
fuzzy controllers as mixed-signal integrated circuits. IEEE transactions on Fuzzy Systems, 5(1), 1–19.
doi:10.1109/91.554443

Bouras, S., Kotronakis, M., Suyama, K., & Tsividis, Y. (1998). Mixed analog-digital fuzzy logic controller
with continuous-amplitude fuzzy inferences and defuzzification. IEEE transactions on Fuzzy Systems,
6(2), 205–215. doi:10.1109/91.669017

Boutsinas, B., & Gnardellis, T. (2002). On distributing the clustering process. Pattern Recognition Let-
ters, 23, 999–1008. doi:10.1016/S0167-8655(02)00031-4

Buell, D., El-Ghazawi, T., Gaj, K., & Kindratenko, V. (2007). High-performance reconfigurable com-
puting. IEEE Computer, 23-27.

25

Electronic Hardware for Fuzzy Computation

Cabrera, A., Sánchez-Solano, S., Brox, P., Barriga, A., & Senhadji, R. (2004). Hardware/software
codesign of configurable fuzzy control system. Applied Soft Computing, 4(3), 271–285. doi:10.1016/j.
asoc.2004.03.006

Cannataro, M., Congiusta, A., Pugliese, A., Talia, D., & Trunfio, P. (2004). Distributed data mining on
grids: Services, tools, and applications. IEEE Transactions on Systems, Man and Cybernetics . Part B,
34(6), 2451–2465.

Cantle, A. (2006). Scalable cluster-based FPGA HPC system solutions. Xcell Journal, (58), 35-37.

Castro, J. L. (1996). Fuzzy logic controllers are universal approximators. IEEE Transactions on Systems,
Man, and Cybernetics, 25(4), 629–635. doi:10.1109/21.370193

Choudhary, A., Narayanan, R., Özisikyilmaz, B., Memik, G., Zambreno, J., & Pisharat, J. (2007). Opti-
mizing data mining workloads using hardware accelerators. In Proc. of the 10th Workshop on Computer
Architecture Evaluation Using Commercial Workloads (CAECW).

Chowdhury, S. R., Chakrabarti, D., & Saha, H. (2008). FPGA realization of a smart processing system
for clinical diagnostic applications using pipelined datapath architectures. Microprocessors and Micro-
systems, 32(2), 107–120. doi:10.1016/j.micpro.2007.12.001

Çilingiroglu, U., Pamir, B., Günay, Z. S., & Dülger, F. (1997). Sampled-analog implementation
of application-specific fuzzy controllers. IEEE transactions on Fuzzy Systems, 5(3), 431–442.
doi:10.1109/91.618278

D’Amore, R., Saotome, O., & Kienitz, K. H. (2001). A two-input, one-output bit-scalable architecture
for fuzzy processors. IEEE J. Design Test Computation, 18, 56–64. doi:10.1109/54.936249

De Micheli (Ed.). (1997). Special issue on hardware/software codesign. Proceedings of the IEEE,
85(3).

del Campo, I., Echanobe, J., Bosque, G., & Tarela, J. M. (2008). Efficient hardware/software imple-
mentation of an adaptive neuro-fuzzy system. IEEE transactions on Fuzzy Systems, 16(3), 761–778.
doi:10.1109/TFUZZ.2007.905918

del Campo, I., & Tarela, J. M. (1999). Consequences of the digitization on the performance of a fuzzy
logic controller. IEEE transactions on Fuzzy Systems, 7(1), 85–92. doi:10.1109/91.746317

del Campo, I., Tarela, J. M., & Basterretxea, K. (2001). Quantisation errors in digital implementations
of fuzzy controllers. In R. S. H. Istepanian & J. F. Whidborne (Eds.), Digital controller implementation
and fragility. A modern perspective (pp. 253-274). Berlin, Germany: Springer.

Dick, S., Gaudet, V., & Bai, H. (2008). Bit-serial arithmetic: A novel approach to fuzzy hardware imple-
mentation. In Proceedings of the Fuzzy Information Processing Society, 2008. NAFIPS 2008. Annual
Meeting of the North American (pp. 1-6).

Dutcher, B. (2006). Mining data without limits. Xcell Journal, (57), 64-66.

26

Electronic Hardware for Fuzzy Computation

Echevarría, P., Martínez, M. V., Echanobe, J., del Campo, I., & Tarela, J. M. (2005). Design and HW/
SW implementation of a class of piecewise-linear fuzzy system. In Proceedings of the XII Seminario
Anual de Automática, Electrónica Industrial e Instrumentación, SAAEI 05 (pp. 360-364).

Eichfeld, H., Klimke, M., Menke, M., Nolles, J., & Künemund, T. (1995). A general-purpose fuzzy
inference processor. IEEE Micro, 15(3), 12–17. doi:10.1109/40.387677

Eichfeld, H., Künemund, T., & Menke, M. (1996). A 12b general-purpose fuzzy logic controller chip.
IEEE transactions on Fuzzy Systems, 4(4), 460–475. doi:10.1109/91.544305

Eichfeld, H., Löhner, M., & Müller, M. (1992). Architecture of a CMOS fuzzy logic controller with
optimized organisation and operator design. In Proceedings of the First International Conference on
Fuzzy Systems, FUZ-IEEE (pp. 1317-1323). Washington, DC: IEEE Computer Society Press.

Estlick, M., Leeser, M., Szymanski, J., & Theiler, J. (2001). Algorithmic transformations in the imple-
mentation of k-means clustering on reconfigurable hardware. In Proceedings of the Ninth Annual IEEE
Symposium on Field Programmable Custom Computing Machines 2001 (FCCM ‘01) (pp. 103-110).

Eto, E. (2007). Difference-based partial reconfiguration (ver 2.0, 2007), application note: Virtex ar-
chitectures. Retrieved December 1, 2008, from http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp290.pdf

Evsukoff, A. G., Costa, M. C. A., & Ebecken, F. F. (2005). Parallel implementation of a fuzzy rule based
classifier. In M. Daydé et al. (Eds.), Proceedings of the VECPAR 2004 (LNCS 3402, pp. 184-193). Berlin,
Germany: Springer-Verlag.

Fattaruso, J. W., Mahant-Shetti, S. S., & Barton, J. B. (1994). A fuzzy logic inference processor. IEEE
Journal of Solid-State Circuits, 29(4), 397–402. doi:10.1109/4.280687

Freeman, M., & Jayasooriya, T. (2006). Hardware support for language aware information mining. In
B. Gabrys, R.J. Howlett, & L.C. Jain (Eds.), Proceedings of the KES 2006, Part III (LNAI 4253, pp.
415-423). Berlin, Germany: Springer-Verlag.

Guo, S., Peters, L., & Surmann, H. (1996). Design and application of an analog fuzzy logic controller.
IEEE transactions on Fuzzy Systems, 4(4), 429–438. doi:10.1109/91.544303

Halgamuge, S. K., Hollstein, T., Kirschbaum, A., & Glesner, M. (1994). Automatic generation of ap-
plication specific fuzzy controllers for rapid-prototyping. In Proceedings of the IEEE International
Conference on Fuzzy Systems (pp. 1638-1641).

Hamzeh, M., Mahdiani, H. R., Saghafi, A., Fakhraie, S. M., & Lucas, C. (2009). Computationally effi-
cient active rule detection method: Algorithm and architecture. Fuzzy Sets and Systems, 160(4), 554–568.
doi:10.1016/j.fss.2008.05.009

Harris, C. (2005). Using programmable graphics hardware to implement the fuzzy c-means algorithm.
Unpublished honors dissertation, The University of Western Australia.

Hollstein, T., Halgamuge, S. K., & Glesner, M. (1996). Computer-aided design of fuzzy sys-
tems based on generic VHDL specifications. IEEE transactions on Fuzzy Systems, 4(4), 403–417.
doi:10.1109/91.544301

27

Electronic Hardware for Fuzzy Computation

Hossain, A., & Manzoul, M. A. (1993). Hardware implementation of fuzzy replacement algorithm
for cache memories using field-programmable gate arrays. Cybernetics and Systems, 24(2), 81–90.
doi:10.1080/01969729308961701

Huertas, J. L., Sánchez-Solano, S., Barriga, A., & Baturone, I. (1993). A fuzzy controller using switched-
capacitor techniques. In Proceedings of the IEEE International Conference on Fuzzy Systems (pp. 516-
529).

Hung, D. L., & Zajak, W. F. (1995). Design and Implementation of a hardware fuzzy inference system.
Information Sciences-Applications, 3(3), 193–207. doi:10.1016/1069-0115(94)00042-Z

Ikeda, H., Kisu, N., Hiramoto, Y., & Nakamura, S. (1992). A fuzzy inference coprocessor using a flex-
ible active-rule-driven architecture. In Proceedings of the IEEE International. Conference on Fuzzy
Systems (pp. 537-544).

Indue, T., Motomura, T., & Matsuo, R. (1991). New OTA-based analog circuits for fuzzy member-
ship functions and maximum operations. IEIC Transactions on Communication Electronics, 74(11),
3619–3621.

Jin, R., Yang, G., & Agrawal, G. (2005). Shared memory parallelization of data mining algorithms:
Techniques, programming interface, and performance. IEEE Transactions on Knowledge and Data
Engineering, 17(1), 71–89. doi:10.1109/TKDE.2005.18

Kim, D. (2000). An implementation of fuzzy logic controller on the reconfigurable FPGA system. IEEE
Transactions on Industrial Electronics, 47(3), 703–715. doi:10.1109/41.847911

Kim, M. W., Lee, J. G., & Min, C. (1999). Efficient fuzzy rule generation based on fuzzy decision tree
for data mining. In . Proceedings of the IEEE International Fuzzy Systems Conference FUZZ-IEEE,
99, 1223–1228.

Kubota, K., Nakase, A., Sakai, H., & Oyanagi, S. (2000). Parallelization of decision tree algorithm and
its performance evaluation. In Proceedings of the Fourth International Conference on High Performance
Computing in the Asia-Pacific Region, Vol. 2 (pp. 574-579).

Kung, Y.-S., & Tsai, M.-H. (2007). FPGA-based speed control IC for PMSM drive with adaptive fuzzy
control. IEEE Transactions on Power Electronics, 22(6), 2476–2486. doi:10.1109/TPEL.2007.909185

Landlot, O. (1996). Low power analog fuzzy rule implementation based on a linear MOS transistor
network. In Proceedings of the 5th International Conference on Microelectronics for Neural Networks
and Fuzzy Systems (pp. 86-93).

Lemaitre, L., Patyra, M. J., & Mlynek, D. (1993). Synthesis and design automation of analog fuzzy logic
VLSI circuits. In Proceedings of the IEEE Symposium on Multiple-Valued Logic (pp. 74-79).

Lemaitre, L., Patyra, M. J., & Mlynek, D. (1994). Analysis and design of CMOS fuzzy logic controller
in current mode. IEEE Journal of Solid State Circuits, 29(3), 317–322. doi:10.1109/4.278355

Leung, K. T., Ercegovac, M., & Muntz, R. R. (1999). Exploiting reconfigurable FPGA for parallel
query processing in computation intensive data mining applications (UC MICRO Technical Report).
University of California, Los Angeles, Computer Science Department.

28

Electronic Hardware for Fuzzy Computation

Li, T. H. S., Chang, S. J., & Chen, Y. X. (2003). Implementation of human-like driving skills by autono-
mous fuzzy behavior control on an FPGA-based car-like mobile robot. IEEE Transactions on Industrial
Electronics, 50(5), 867–880. doi:10.1109/TIE.2003.817490

Louverdis, G., & Andreadis, I. (2003). Design and implementation of a fuzzy hardware structure for
morphological color image processing. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 13(3), 277–288. doi:10.1109/TCSVT.2003.809830

Manaresi, N., Rovatti, R., Franchi, E., Guerrieri, R., & Baccarani, G. (1996). A silicon compiler of analog
fuzzy controllers: From behavioral specifications to layout. IEEE transactions on Fuzzy Systems, 4(4),
418–428. doi:10.1109/91.544302

Manzoul, M. A., & Jayabharathi, D. (1994). CAD tool for implementation of fuzzy controllers on FPGAs.
Cybernetics and Systems, 25(4), 599–609. doi:10.1080/01969729408902344

Manzoul, M. A., & Jayabharathi, D. (1995). FPGA for fuzzy controllers. IEEE Transactions on Systems,
Man, and Cybernetics, 25(1), 213–216. doi:10.1109/21.362948

Marshall, G. F., & Collins, S. (1997). Fuzzy logic architecture using subthreshold analogue floating-gate
devices. IEEE transactions on Fuzzy Systems, 5(1), 32–43. doi:10.1109/91.554445

Mermoud, G., Upegui, A., Peña, C. A., & Sanchez, E. (2005). A dynamically-reconfigurable FPGA
platform for evolving fuzzy systems. In Computational Intelligence and Bioinspired Systems (LNCS
3512, pp. 572-581). Berlin, Germany: Springer-Verlag.

Miki, T., & Yamakawa, T. (1995). Fuzzy inference on an analog fuzzy chip. IEEE Micro, 15(4), 8–18.
doi:10.1109/40.400638

Modenesi, M. V., Costa, M. C. A., Evsukoff, A. G., & Ebecken, N. F. F. (2007). Parallel fuzzy c-means
cluster analysis. In Proceedings of the High performance computing for computational science – VEC-
PAR 2006 (pp. 52-65). Berlin, Germany: Springer.

Monmasson, E., & Cirstea, M. N. (2007). FPGA design methodology for industrial control systems – a re-
view. IEEE Transactions on Industrial Electronics, 54(4), 1824–1842. doi:10.1109/TIE.2007.898281

Ota, Y., & Wilamowski, M. (1996). CMOS implementation of a voltage-mode fuzzy min-max controller.
Journal of Circuits . Systems and Computers, 6(2), 171–184.

Patyra, M. J., Grantner, J. L., & Koster, K. (1996). Digital fuzzy logic controller: Design and implemen-
tation. IEEE transactions on Fuzzy Systems, 4(4), 439–459. doi:10.1109/91.544304

Peters, L., Guo, S., & Camposano, R. (1995). A novel analog fuzzy controller for intelligent sensors.
Fuzzy Sets and Systems, 70, 235–247. doi:10.1016/0165-0114(94)00221-R

Qao, Q., Lim, M. H., Li, J. H., Ong, Y. S., & Ng, W. L. (2006). A context switchable fuzzy inference
chip. IEEE transactions on Fuzzy Systems, 14(4), 552–567. doi:10.1109/TFUZZ.2006.876735

Rahimi, S., Zargham, M., Thakre, A., & Chhillar, D. (2004). A parallel fuzzy c-means algorithm for
image segmentation. In Proceedings of the IEEE Annual Meeting of the Fuzzy Information NAFIPS ‘04
(Vol. 1, pp. 234-237).

29

Electronic Hardware for Fuzzy Computation

Reyneri, L. M. (2003). Implementation issues of neuro-fuzzy hardware: Going toward HW/SW codesign.
IEEE Transactions on Neural Networks, 14(1), 176–194. doi:10.1109/TNN.2002.806955

Reyneri, L. M., & Renga, F. (2004). Speeding-up the design of HW/SW implementations of neuro-fuzzy
systems using the CodeSimulink environment. Applied Soft Computing, 4(3), 227–240. doi:10.1016/j.
asoc.2004.03.003

Rojas, I., Pelayo, F. J., Ortega, J., & Prieto, A. (1996). A CMOS implementation of fuzzy controllers
based on adaptive membership function ranges. In Proceedings of the Fifth International Conference
on Microelectronics for Neural Networks and Fuzzy Systems (pp. 317-321). Washington, DC: IEEE
Comp. Soc. Press.

Rovatti, R. (1998). Fuzzy piecewise multilinear and piecewise linear systems as universal approximators
in Sobolev norms. IEEE transactions on Fuzzy Systems, 6(2), 235–249. doi:10.1109/91.669022

Rovatti, R., & Borgatti, M. (1997). Maximum-throughput implementation of piecewise-linear fuzzy
systems. In Proceedings of the Sixth IEEE International Conference on Fuzzy Systems. Vol. 2 (pp. 767-
772).

Rovatti, R., Ferrari, A., & Borgatti, M. (1998). Automatic implementation of piecewise-linear fuzzy
systems addressing memory-performance trade-off. In A. Kandel & G. Langholz (Eds.), Fuzzy hardware
(pp. 159-179). Amsterdam: Kluwer Academic Publishers.

Ruiz, A., Gutiérrez, J., & Felipe-Frenández, J. A. (1995). A fuzzy controller with an optimized defuzzi-
fication algorithm. IEEE Micro, 15(6), 76.40-76.49.

Sanchez-Solano, S., Cabrera, A. J., Baturone, I., Moreno-Velo, F. J., & Brox, M. (2007). FPGA Imple-
mentation of embedded fuzzy controllers for robotic applications. IEEE Transactions on Industrial
Electronics, 54(4), 1937–1945. doi:10.1109/TIE.2007.898292

Sasaki, M., & Ueno, F. (1994). A novel implementation of fuzzy logic controller using new meet opera-
tion. In Proceedings of the Third IEEE International Conference on Fuzzy Systems (pp. 1676-1681).

Shen, L., Shen, H., & Cheng, L. (1999). New algorithms for efficient mining of association rules. In-
formation Sciences, 118, 251–268. doi:10.1016/S0020-0255(99)00035-3

Syeda, M., Zhang, Y.-Q., & Pan, Y. (2002). Parallel granular neural networks for fast credit card fraud
detection. In Proceedings of the 2002 IEEE international Conference on Fuzzy Systems (pp. 572-577).

Togai, M., & Watanabe, H. (1986). Expert system on a chip: An engine for real-time approximate rea-
soning. IEEE Expert, 1(3), 55–62. doi:10.1109/MEX.1986.4306980

Tsukano, K., & Inoue, T. (1995). Synthesis of operational transconductance amplifier-based ana-
log fuzzy functional blocks and its application. IEEE transactions on Fuzzy Systems, 3(1), 61–68.
doi:10.1109/91.366571

Upegui, A. (2006). Dynamically reconfigurable bio-inspired hardware. Unpublished doctoral disserta-
tion, École Polytechnique Fédérale de Lausanne, Switzerland.

30

Electronic Hardware for Fuzzy Computation

Upegui, A., & Sanchez, E. (2005). Evolving hardware by dynamically reconfiguring Xilinx FPGAs.
In Evolvable systems: From biology to hardware (LNCS 3637, pp. 56-65). Berlin, Germay: Springer-
Verlag.

Vidal-Verdú, F., Navas-González, R., & Rodríguez-Vázquez, A. (1998). Multiplexing architecture
for mixed-signal CMOS fuzzy controller. Electronics Letters, 34(14), 1437–1438. doi:10.1049/
el:19980968

Vidal-Verdú, F., & Rodríguez-Vázquez, A. (1995). Using building blocks to design analog-fuzzy con-
trollers. IEEE Micro, 15(4), 49–57. doi:10.1109/40.400633

Watanabe, H., Dettlof, W. D., & Yount, K. E. (1990). A VLSI fuzzy logic controller with reconfigurable,
cascadable architecture. IEEE Journal of Solid State Circuits, 25(2), 376–382. doi:10.1109/4.52159

Weiwei, J., Dongming, J., & Xun, Z. (2004). VLSI design and implementation of a fuzzy logic controller
for engine idle speed. In Proceedings of the 7th International Conference on Solid-State and Integrated
Circuits Technology (pp. 2067-2070).

Wolf, W. (Ed.). (2003). A decade of hardware/software codesign. Computer, 36(4), 38–43. doi:10.1109/
MC.2003.1193227

Xilinx Inc. (2008). Microblaze processor reference guide (ver 9.0, 2008). Retrieved December 1, 2008,
from http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf

Xilinx Inc. (2008). Virtex-5 family overview (ver 4.4, 2008), data sheet. Retrieved December 1, 2008,
from http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

Xu, B., Lu, J., Zhang, Y., Xu, L., Chen, H., & Yang, H. (2003). Parallel algorithm for mining fuzzy as-
sociation rules. In Proceedings of the 2003 International Conference on Cyberworlds (pp. 288-293).

Yamakawa, T. (1988). High-speed fuzzy controller hardware system: The mega-FIPS machine. Informa-
tion Sciences, 45, 113–128. doi:10.1016/0020-0255(88)90036-9

Yamakawa, T. (1993). A fuzzy inference engine in nonlinear analog mode and its application to a fuzzy
control. IEEE Transactions on Neural Networks, 4(3), 496–522. doi:10.1109/72.217192

Yosefi, G., Khoei, A., & Hadidi, K. (2007). Design of a new CMOS controllable mixed-signal current
mode fuzzy logic controller (FLC) chip. In Proceedings of the IEEE International Conference on Elec-
tronics, Circuits and Systems (pp. 951-954).

Zhang, Q., Chamberlain, R. D., Indeck, R., West, B. M., & White, J. (2004). Massively parallel data
mining using reconfigurable hardware: Approximate string matching. In Proceedings of the 18th Annual
IEEE International Parallel and Distributed Processing Symposium (IPDPS’04).

ENDNOTE

1 In pipelined designs attention must be paid, of course, to possible variations in the system through-
put when new inputs are introduced to the system.

31

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

Scaling Fuzzy Models
Lawrence O. Hall

University of South Florida, USA

Dmitry B. Goldgof
University of South Florida, USA

Juana Canul-Reich
University of South Florida, USA

Prodip Hore
University of South Florida, USA

Weijian Cheng
University of South Florida, USA

Larry Shoemaker
University of South Florida, USA

INTRODUCTION

Scaling fuzzy learning systems can be a challenge, because the search space for fuzzy models is larger
than that of crisp models. Here, we are concerned with scaling fuzzy systems as the size of the data grows.
There are now many collections of data that are terabytes in size and we are moving towards petabyte
collections such as a digital Sloan sky survey (Giannella et al., 2006, Gray and Szalay, 2004).

AbsTRACT

This chapter examines how to scale algorithms which learn fuzzy models from the increasing amounts
of labeled or unlabeled data that are becoming available. Large data repositories are increasingly
available, such as records of network transmissions, customer transactions, medical data, and so on.
A question arises about how to utilize the data effectively for both supervised and unsupervised fuzzy
learning. This chapter will focus on ensemble approaches to learning fuzzy models for large data sets
which may be labeled or unlabeled. Further, the authors examine ways of scaling fuzzy clustering to
extremely large data sets. Examples from existing data repositories, some quite large, will be given to
show the approaches discussed here are effective.

DOI: 10.4018/978-1-60566-858-1.ch002

32

Scaling Fuzzy Models

If learning fuzzy models requires more computation time than learning crisp models and it is a struggle
to enable crisp learning models to scale, can we scale fuzzy models of learning? The good news is that
scalability is certainly possible as the number of examples grow large or very large. We do not examine
the issues with large numbers of features which are a significant problem, for at least supervised fuzzy
learning.

Methods for scaling supervised fuzzy learning methods and unsupervised fuzzy learning methods
(though only clustering algorithms) will be discussed. An obvious approach is to subsample the data
such that each subset is a size that is amenable for learning, but captures the information inherent in the
full data set. It is a good approach, but one that has pitfalls in knowing when to stop adding data to the
training set (Domingos and Hulten, 2000). Some good papers in the area of subsampling are (Provost
and Kolluri, 1999,Wang et al., 2008, Provost et al., 1999, Pavlov et al., 2000). Decomposition of the
data is the other major approach one can envision. It is this approach, leading to an ensemble or group
of models that is the focus of this chapter.

For labeled data which enables supervised learning, We will show that an ensemble approach can
be used to increase the accuracy of the fuzzy classifier. This is a necessary condition to working with
disjoint subsets to enable the construction of fuzzy classifiers on very large data sets. However, we will
focus on relatively small data sets where the goal is to increase accuracy, not to scale. The same ap-
proach using disjoint subsets will allow for scalable fuzzy classifiers to be developed. For unsupervised
learning, examples will be given which show that the clustering approaches presented here produce data
partitions which are comparable to those obtainable when clustering all of the data.

Ensembles

An ensemble, for our purposes, is made up of a set of models. The models may be created through super-
vised or unsupervised learning. The models in the ensemble need to be diverse. The idea of diversity is that
they make different types of errors and in the aggregate errors are corrected (Banfield et al., 2005).

The models may be created from different underlying learning algorithms. However, the most com-
mon way to create an ensemble is to use different data sets and the same underlying learning algorithm.
A common approach is to use bootstrap aggregation or bagging (Breiman, 1996), which is selection
with replacement to create different training data sets. This has the effect of weighting the data, as some
of it is left out (0 weight) and some of it is duplicated (doubled, tripled or more in weight). On average
about 63% of the training data will be in a given bag which is the same size as the training data. The
assumption that the training and test data are independently identically distributed is implicit in bagging.
The use of bagging to create an ensemble typically improves the classification accuracy (Banfield, et
al., 2007, Dietterich, 2000).

Boosting is another popular algorithm for creating ensembles of classifiers (Freund and Schapire,
1996). It focusses on misclassified examples by giving them a higher weight. For our purposes, it is a
sequential algorithm (you do not know what is incorrect until the next model/classifier in the ensemble
is built). There have been efforts to make it scalable (Chawla, 2004), but they have not been applied to
fuzzy classification approaches.

As fuzzy learning algorithms typically scale poorly with the number of training examples, methods
that allow for minimal training data set sizes, but produce accuracy comparable to all the data are desir-
able. Recent work has shown that an ensemble can be created from disjoint training data sets or data sets
that have no overlap and obtain accuracy on unseen test data that is equivalent (or sometimes better) than

33

Scaling Fuzzy Models

training on all of the data (Chawla, et.al. 2001). For large data sets, this means you can build classifiers
in parallel on subsets of the training data to get the same accuracy as training with all of the data. Now,
you can train on data that would not fit in main memory, for example.

scaling supervised Fuzzy Learning

There are a number of ways to scale learning. Subsampling the data for a smaller training set is an impor-
tant approach. As the number of fuzzy rules grow with the number of features, effective feature selection
can be a big help. Other approaches are to optimize the learning algorithm or develop algorithms which
scale better, at perhaps the cost of some precision.

In this section, we focus on one particular approach using ensembles. Essentially, this is the subsam-
pling approach with a twist that all of the training examples are used by the union of classifiers in the
ensemble. Each learning algorithm will get a unique set of training examples. It is certainly also feasible
to give them overlapping sets, but for true scalability to very large or extreme data unique or disjoint
sets are likely the best. You will overall use less data with the disjoint data sets, which may be important
when the size of the data is very large. A disjoint data set can be given to each learning algorithm for
building a classifier which will almost certainly result in a diverse set of classifiers.

In order to be confident that the combination of classifiers built on disjoint data sets will result in
accuracy comparable to building a single classifier on all the data, it is useful to look at experiments
with smaller data sets. We will present experiments using 20 smaller data sets and bagging to show that
bagging can improve the accuracy of fuzzy classifiers. Where bagging works, one can expect that classi-
fiers built from disjoint data subsets of reasonable size can be combined to produce accuracy comparable
to learning on all the data (Shoemaker et al., 2008). So, our experiments here show that bagging can be
applied to increase the accuracy of fuzzy classifiers.

The classifiers in the ensemble do not need to be of the same type. However, the most typical con-
figuration is to use classifiers that are all of the same type. We will illustrate the idea of an ensemble of
classifiers by using the ANFIS (Adaptive Neuro-Fuzzy Inference Systems) fuzzy neural network (fl-
toolbox, 2006) learning algorithm to generate classifiers. It is widely available as part of the MATLAB
Fuzzy Logic Toolbox.

An adaptive network can be considered as a superset of feed-forward neural networks with supervised
learning. ANFIS is a type of Neuro-fuzzy network which has the fuzzy rules embedded within the neural
network. Figure 1 shows the structure of an adaptive network. Node functions are represented by squares
if they have parameters, which make them adaptive, and by circles if they do not have parameters. The
links have no associated weights and they only represent direction flow. For further details on ANFIS,
see (Jyh and Roger, 1993).

The ensemble building approach here is simple. It is a modification of bagging (bootstrap aggrega-
tion) (Breiman, 1996) in which training sets are selected from the overall data by selecting data, with
replacement, until a bag of the chosen size (usually 100%) is created. This essentially re-weights the
examples in the training set for each classifier.

For scalability, one would simply divide the data into n disjoint subsets of tractable size. Learn n
classifiers using ANFIS. Then, given a test example you will get n fuzzy predictions. These need to
be combined. They can be combined by using a majority vote (e.g. harden each decision and take the
class that most often has the highest fuzzy membership). Perhaps a better combination is to add up all
the fuzzy memberships and average them. Then take the higher average membership. The reader can

34

Scaling Fuzzy Models

certainly think of other possible, combination methods which may be better, but we will present the
above two.

The approach of building n classifiers trained on disjoint subsets of data and then combining them
has been shown to provide accuracies comparable to those obtained using all the data (Shoemaker et al.,
2008). The advantages are that each classifier can be trained in parallel on tractable size data sets. This
can enable learning from data which cannot be fit in computer memory or that will require calculation
time that is not feasible for the problem. It allows for using more data in the training process (all of it for
example) than you could if you subsample to enable timely learning. Experimental evidence has shown
that this approach is successful with decision trees and neural networks as the underlying base classifiers.
As long as the classifiers make different errors (have a diversity of responses) and have “reasonable”
accuracy, one can expect that any underlying learning algorithm can be exploited to produce the classi-
fiers (Kuncheva, 2004). If fuzzy classifiers which make different errors, but generally have comparable
accuracy, can be constructed an ensemble approach may work for them.

There has not been very much work on ensembles of fuzzy classifiers and no work that we are aware
of on scaling fuzzy classifiers for really large data sets. A clear reason for this is the fact that fuzzy
classifiers have been found most useful for their explanation capabilities. That is, they are very good at
producing understandable sets of rules (Klawonn et al., 1996). If you have very large data sets where
you get lots of fuzzy rules and even worse have to combine them, you will lose the understandability.
Then the question becomes did you get a fast, accurate overall classifier. People have either not obtained
more accuracy through ensembles of fuzzy classifiers or not tried this approach to get higher accuracy.
Perhaps because of the loss of interpretability.

In the following subsection, we will show up some results from bagging ANFIS classifiers. The posi-
tive aspect of the results is that you can get a statistically significant increase in accuracy on a number
of data sets using bagging and a fuzzy learning approach. Of course, an interpretable set of rules no

Figure 1. Structure of an adaptive network

35

Scaling Fuzzy Models

longer exists. The results also suggest that scalability using disjoint training data sets without a loss in
accuracy is attainable.

Experiments and Results

The ANFIS classifier was tested on twenty data sets, both without bagging and with 2 types of vote
counting for the bagged ensemble (Canul-Reich et al., 2007). Each bag of training data was of the same
size as the original training data, often called bagging at 100%. So, each of training data sets consisted
of examples chosen at random with replacement from the original data. The data sets were all public
domain mostly from the UCI repository (UCIrepository, 2006). ANFIS results are typically poor for
datasets with more than six features due to the size of the fuzzy search space. In the data mining tool,
Weka (Weka, 2006), the gain ratio feature selector was used to choose the best 6 features for data sets
with more than six features. Table 1 shows the characteristics of the data sets used.

Each experiment on a data set begins with a stratified separation of the data into approximately 2/3
of the examples for training, and the remaining examples (approximately 1/3) for testing. The strati-
fication process is intended to preserve the class distribution present in the original data set for both
training and testing sets. Then for each of 100 bags, the bag of data was created by randomly drawing

Table 1. The 20 data sets used. The number of attributes used, the total attributes, number of instances
and classes are shown

Data Set Attributes used Total Attributes # Instances # Classes

balance_scale 4 4 625 3

breast 6 9 699 2

cmc 6 9 1473 3

dermatology 6 34 366 6

glass 6 9 214 7

haberman 3 3 306 2

heart-statlog 6 13 270 2

Ionosphere 6 34 351 2

iris 4 4 150 3

monks1 6 6 432 2

monks2 6 6 432 2

newthyroid 5 5 215 3

page-blocks 6 10 5473 5

phoneme 5 5 5404 2

pima (5) 5 8 768 2

satimage_test (6) 6 36 2000 6

Tae 5 5 151 3

vehicle (6) 6 18 846 4

wine (6) 6 13 178 3

yeast (4) 4 8 1484 10

36

Scaling Fuzzy Models

with replacement from the stratified training set until the number of examples in the bag equals the
stratified training set size. This bag probably will have numerous instances of examples that are in the
bag more than once. Conversely, some of the examples in the stratified set will not be drawn and put
into the bag. These out-of-bag examples are used for the checking or validation set. The checking set is
used by ANFIS to prevent overfitting the training data, especially if the data has noise or if the number
of training epochs is large.

In order to evaluate both methods of bagging with a single classifier that does not use bagging, one
instance of each unique example in the stratified training set was used to create the training data set.
This can also be viewed as simply removing all duplicates or multiple instances of examples from the
bag. This method uses the same checking set used for the bagging trials, which should provide a fair
comparison of bagging vs. no bagging.

ANFIS was run using the data in the newly formed training set (either a bag or that bag with du-
plicates removed) as an input to train the FIS (Fuzzy Inference System). A separate checking FIS is
generated that captures the parameters of the training FIS in the epoch of minimum error, which results
in a more accurate model. When the training process is complete, the checking FIS is used to classify
the unseen test data.

The above process was repeated in each experiment for the number of bags we chose to use for
experiments, which was 100. Each new bagged and non bagged classifier was formed from the same
stratified training set that was selected from the entire data set before the first bag was formed.

When all 100 classifiers have been created, two different types of ensemble voting were performed
on the outputs generated by the checking FIS for test examples. In the first type of voting, the predictions
for each test example consisted of the defuzzified outputs from the checking FIS. These real numbers
are rounded to crisp values (whole numbers) and any resulting value that is invalid or out-of-range is
changed to the closest valid class value. Then the 100 crisp votes are counted and the predicted class
for the example is the one with the majority of votes. In the case of ties, the class with the lower number
wins.

Here, we note that just one output is used to discriminate among classes. In the other type of ensemble
voting, the 100 defuzzified votes are simply added. Then the mean or average value is determined.
This value is then rounded to a valid, crisp class value and is designated as the class predicted by the
ensemble. For example, consider the case of 3 classifiers predicting 0.4, 1 and 0.4 respectively for a
sample (prediction ≤ 0.5 means class 1 and prediction > 0.5 means class 2). Under the majority-of-votes
criteria, these individual predictions are clearly 1, 2, 1, resulting in a majority of votes for class 1. Under
the mean-of-defuzzified-votes criteria, the mean of the three original predictions is calculated, that is
0.6, resulting in a combined prediction for class 2 for the sample.

The process described above was performed 25 times and average accuracies are reported.

Analysis of Results

In Table 2 the average test accuracies are shown for 25 test runs using the ANFIS checking FIS for 10
epochs. A visual representation of these results is shown in Figure 2.

Figure 2 shows higher accuracy was achieved with the defuzzified ensemble voting method on
fifteen out of twenty test data. The worst accuracy consistently came from the majority vote bagging
ensemble method.

37

Scaling Fuzzy Models

In Table 3 the average test accuracies are shown for 25 test runs using the ANFIS checking FIS for
20 epochs.

Table 3 and Figure 3 indicate that higher accuracy was achieved on the glass and yeast data sets with
bagging using the defuzzified mean.

Figure 4 shows a head-to-head comparison of 10 vs. 20 epochs for test accuracies using defuzzified
voting of predictions from the checking FIS generated using bags of data. The accuracy with 20 epochs
was greater than or equal to that of 10 epochs, except for the iris and newthyroid datasets.

The significance of the accuracy difference between bagging and a single classifier was evaluated
using the Friedman-Holm Test, which was discussed in (Demsar, 2006). The procedure allows the com-
parison of two or more classifiers over multiple data sets and determines whether there is a statistically
significant difference in the accuracies. It uses the ranks of the classifier on each data set, ranging from
1-3 here. Ties of 1, for example, are each given 1.5, and smaller is better.

Briefly, the Friedman test is a “non-parametric equivalent of the repeated-measures ANOVA” (Demsar,
2006). ANOVA is a statistical method for testing differences between the performances of classifiers
measured on the same test environment with the null-hypothesis being that there is no differences be-
tween them. When the null-hypothesis is rejected, a post-hoc test follows. Holm’s procedure was applied
in our work. It consists of sequentially testing ordered hypotheses starting from the most significant p

Table 2. Average test accuracies in % for 25 runs using checking FIS for 10 epochs with standard devia-
tions in (). A bold value indicates the highest accuracy for that data set

Data set No bags Bags majority vote Bags mean defuzzified

Balance_scale 71.229 (2.34) 69.627 (2.75) 71.522 (2.14)

breast 92.769 (0.90) 81.236 (2.48) 93.579 (1.25)

cmc 31.801 (1.68) 28.318 (1.91) 31.479 (1.92)

dermatology 51.825 (1.07) 50.426 (3.05) 52.262 (1.07)

glass 48.602 (3.98) 41.556 (4.05) 48.167 (6.93)

haberman 73.739 (1.19) 72.078 (3.18) 73.882 (1.81)

heart-statlog 74.189 (2.73) 70.133 (3.28) 75.467 (4.09)

ionosphere 85.733 (1.59) 70.598 (2.0) 87.111 (2.18)

iris 95.642 (2.26) 92.960 (3.01) 96.080 (3.13)

monks1 69.271 (2.68) 56.889 (2.15) 74.083 (3.13)

monks2 76.247 (2.47) 54.806 (3.27) 78.722 (3.47)

newthyroid 86.863 (1.63) 79.944 (4.11) 88.000 (1.92)

page-blocks 86.992 (0.78) 82.692 (0.96) 87.163 (0.88)

phoneme 79.603 (0.77) 78.735 (0.77) 79.847 (0.86)

pima 74.484 (1.7) 71.125 (1.6) 75.484 (1.87)

satimage-test 61.110 (1.02) 56.102 (1.02) 61.985 (1.48)

tae 46.013 (4.31) 41.961 (5.0) 44.863 (5.56)

vehicle 47.869 (1.70) 53.475 (2.45) 49.418 (2.44)

wine 81.667 (2.63) 51.667 (5.09) 90.200 (4.01)

yeast 32.693 (1.65) 36.065 (2.08) 32.630 (1.94)

38

Scaling Fuzzy Models

value, if its corresponding hypothesis is rejected the procedure goes on with the next p value, which is
tested and so forth until a null hypothesis that cannot be rejected is found.

The Friedman-Holm test results show that using ANFIS, the bagging approach with the membership
function based combination method was statistically significantly better than a single classifier, at the
95% threshold.

sCALINg UNsUPERvIsED FUZZY LEARNINg

Clustering streaming data presents the problem of not having all the data available at one time. Further,
the total size of the data may be larger than will fit in the available memory of a typical computer. If
the data is very large, it is a challenge to apply fuzzy clustering algorithms to get a partition in a timely
manner. In this section, we present an online fuzzy clustering algorithm (OFCM) (Hore et al., 2008)
which can be used to cluster streaming data, as well as very large data sets which might be treated as
streaming data. OFCM can provide partitions equivalent to fuzzy c means (FCM). It processes the data
as each independent chunk of data arrives. That is, the algorithm can perform well even if the data is
evolving over time. Results on several large volumes of magnetic resonance images show that the new
algorithm produces partitions which are very close to what you could get if you clustered all the data at
one time. That shows that this algorithm is an accurate approach for online clustering.

Clustering streaming data has become an important issue due to the increasing availability of large
amounts of data collected over time. Due to the reducing costs of recording data, the sources of stream-

Figure 2. Average test accuracies for 25 runs using checking FIS for 10 epochs

39

Scaling Fuzzy Models

ing data are growing rapidly. Features of streaming data are that it arrives at different times and the
size of the streaming data can be so enormous that we cannot store all of it. Instead, we must process
the data as it arrives, or in chunks, and delete it to free memory for incoming data. In many cases, the
streaming data cannot be revisited due to its evolving nature (Aggarwal et al., 2003, Aggarwal et al.,
2004, Yang, 2003, Cao et al., 2006, Nasraoui et al., 2003, Hore et al., 2007a). That is, random access is
impossible. To find meaningful clusters under these constraints, a number of clustering algorithms based
on the single pass approach (O’Callaghan et al., 2002, Guha et al., 2003, Hore et al., 2007b) have been
proposed. The single pass approach can work well for scaling classical clustering algorithms, but may
not fit for clustering streaming data (Aggarwal et al., 2003). The reason is that streaming data might
evolve over time and a single pass view of the entire stream tends to make algorithms insensitive to an
evolving distribution (Aggarwal et al., 2003, Hore et al., 2007b).

A good streaming algorithm should not only extract meaningful information from the entire data
set, but also respond to dynamic changes. As stated in (Aggarwal et al., 2003), a streaming clustering
algorithm should be able to produce a good quality partition even if data is evolving considerably over
time. Streaming methodology may also be used for scaling purposes when clustering very large stored
data sets. One advantage of streaming algorithms over many single pass and other scalable algorithms
(Farnstrom et al., 2000, Pal and Bezdek, 2002, Hathaway and Bezdek, 2006, Hore et al., 2007a) is that
they don’t require random access to data and process data in whatever order it may arrive.

Table 3. Average test accuracies in % for 25 runs using checking FIS for 20 epochs with standard devia-
tions in (). A bold value indicates the highest accuracy for that data set

Data set No bags Bags majority vote Bags mean defuzzified

balance_scale 72.484 (2.23) 72.057 (2.41) 72.632 (2.40)

breast 92.764 (0.91) 81.270 (2.47) 93.614 (1.23)

cmc 32.006 (1.65) 28.554 (1.85) 31.796 (1.89)

dermatology 52.139 (0.98) 50.787 (2.98) 52.361 (1.12)

glass 42.284 (2.55) 40.444 (4.00) 50.833 (5.95)

haberman 73.736 (1.21) 72.078 (3.02) 74.000 (1.72)

heart-statlog 74.801 (2.6) 68.178 (3.11) 78.044 (3.74)

ionosphere 86.007 (1.51) 71.179 (2.13) 87.282 (2.21)

iris 95.365 (1.97) 91.040 (3.75) 95.920 (2.2)

monks1 71.224 (1.80) 56.694 (2.57) 75.556 (2.57)

monks2 82.601 (2.99) 62.083 (2.75) 84.806 (4.23)

newthyroid 86.279 (2.32) 80.278 (5.26) 87.333 (3.24)

page-blocks 88.140 (0.75) 82.323 (0.90) 88.743 (0.83)

phoneme 80.096 (0.75) 79.119 (0.87) 80.391 (0.82)

pima 74.516 (1.69) 71.125 (1.59) 75.500 (1.84)

satimage-test 61.403 (1.02) 56.492 (1.01) 62.309 (1.4)

tae 46.049 (4.31) 41.961 (5.0) 45.098 (5.55)

vehicle 48.326 (1.72) 53.887 (2.42) 49.773 (2.38)

wine 82.099 (2.45) 52.933 (5.68) 90.267 (4.58)

yeast 34.386 (1.64) 34.537 (1.83) 35.515 (2.58)

40

Scaling Fuzzy Models

Short Review of Algorithms for Clustering Streaming Data Sets

Recently a number of algorithms have been proposed for clustering streaming data sets (Aggarwal et
al., 2003, Aggarwal et al., 2004, Yang, 2003, Cao et al., 2006, Nasraoui et al., 2003, O’Callaghan et
al., 2002, Hore et al., 2007a, Dai et al., 2004, Beringer and Hullermeier, 2006). Most of them address
the crisp case, clustering streaming data by using either hard c means or its variants or other crisp algo-
rithms. In (O’Callaghan et al., 2002) a streaming algorithm was proposed using a k-Median algorithm
called LOCALSEARCH. They showed that their LOCALSEARCH algorithm was better in quality but
computationally expensive compared to hard-c-means. They viewed the streaming data as arriving in
chunks and then, after clustering, memory was purged by representing the clustering solution by weighted
centroids. Then they applied the LOCALSEARCH algorithm to the weighted centroids obtained from
chunks to obtain weighted centroids of the entire stream seen so far. They showed that their algorithm
outperformed BIRCH (Zhang et al., 1996) in terms of quality measured in sum of squared distance.
This method of freeing the memory is similar to the method of creating a discard set in the single pass
hard c means algorithm (Farnstrom et al., 2000). OFCM summarizes clustering results in a similar way
(Hore et al., 2008). The difference between (O’Callaghan et al., 2002, Farnstrom et al., 2000) and our
approach is in the fact that in fuzzy clustering an example may not completely belong to a particular
cluster. Our method of summarizing clustering results involves a fuzzy membership matrix and fuzzy
centroids, which do not exist for the crisp cases. So in (O’Callaghan et al., 2002), clustering streaming
data was approached using a single pass view of the data.

Figure 3. Average test accuracies for 25 runs using checking FIS for 20 epochs

41

Scaling Fuzzy Models

In (Aggarwal et al., 2003), it was pointed out that a streaming algorithm may not be viewed as single
pass clustering problem because they are generally blind to evolving distributions and a single pass
algorithm over an entire stream will be dominated by outdated history. They proposed a framework for
analysis of clusters over different time frames. They stored summary statistics describing the streaming
data periodically using micro-clusters which was the online component of their algorithm, and later
analyzed these summary statistics of clusters, known as the offline components, over a user provided
time horizon. They showed the superiority of their algorithm compared to (O’Callaghan et al., 2002) on
data with an evolving distribution.

In (Hore et al., 2007b), a streaming FCM (SFCM) algorithm was proposed. When the first chunk of
data arrives, the algorithm will cluster the chunk of data into c cluster centroids using FCM. Memory
is freed by summarizing cluster centroids into c weighted points using the fuzzy matrix obtained dur-
ing the clustering. When a second or later chunk of data comes, it will be clustered with the weighted
points of previous clustered chunks. How many chunks of history to use for clustering with a new
chunk is predefined by the users. The first chunk’s cluster centroids are initialized randomly while the
other chunks’ are initialized as the last chunk’s cluster centroids. Their experiments showed this method
could provide results comparable with FCM only in the case the amount of clustering history to use is
selected properly.

In (Hore et al., 2007a), a single pass FCM (SPFCM) method was proposed. They separated the large
data into several partial data accesses (PDA). The first PDA was clustered into c cluster centroids. Then

Figure 4. Average test accuracies for 25 runs using 100 bags, and defuzzified checking FIS outputs for
10 and 20 epochs

42

Scaling Fuzzy Models

the data in memory was condensed into c weighted points. Those weighted points will be clustered
with new points in the next PDA. In their experiments, the method provided excellent partitions, almost
the same as FCM’s. There was a significant speedup compared with FCM. However, single pass FCM
requires randomly reordering the entire data to avoid unpredictable results. So, its performance drops
when processing data in the order it arrives.

In (Cao et al., 2006) a density based streaming algorithm DenStream was proposed. The design
philosophy of the DenStream algorithm was similar to (Aggarwal et al., 2003) as they too had an online
component for summarizing cluster information and then an offline component later to combine clus-
ters. They used the density based DBSCAN algorithm (Ester et al., 1996) in their work. Using a density
based clustering algorithm they were able to discover arbitrary shape clusters and show the robustness
of their algorithm towards noise. However, density based algorithms are different from fuzzy clustering
algorithms as they try to optimize a different objective function. In (Cho et al., 2006) a framework for
efficiently archiving high volumes of streaming data was proposed, which reduces disk access for storing
and retrieving data. They grouped incoming data into clusters and stored them instead of raw data.

Many other relevant single pass or scalable algorithms include using hard c means, EM (Jain and
Dubes, 1988), Hierarchical Clustering and their variants (Aggarwal et al., 2004, Zhang et al., 1996,
Bradley et al., 1998, Gupta and Grossman, 2004, Neal and Hinton, 1998, Karkkainen and Franti, 2007).
A streaming algorithm using artificial immune system (AIS) models was also proposed in (Nasraoui
et al., 2003). As stated before the fuzzy c means algorithm optimizes a different objective function and
also the single pass approach may not be suitable for clustering an evolving stream.

Non-incremental algorithms for speeding up fuzzy c means or hard c means (Pal and Bezdek,
2002,

Hathaway and Bezdek, 2006, Zhang et al., 1996, S.Eschrich et al., 2003, Cheng et al., 1998, Guha
et al., 1998) are not generally applicable to clustering streaming data sets because they assume all the
data can be loaded into memory. In (J. Lazaro and Cuadrado, 2003) a modified FCM was proposed to
simplify hardware implementation and obtain parallelism for real time video processing, but it is very
application specific and not applicable for data streams. In (Liu and Meng, 2004) a data driven fuzzy
clustering method based on the Maximum Entropy Principle was proposed for a real time robot-tracking
application. It is application specific and does not have the same objective function as FCM.

Thus some work has been done for hard-c-means and fuzzy-c-means clustering applied to streaming
data and large data. However, as stated in (Hathaway and Bezdek, 2006), the crisp clustering methods
may not be easily generalized to their fuzzy counterparts. The fuzzy methods we examined above have
constraints including having to select a properly predefined history and an inability to handle evolving
streams.

Online Fuzzy C Means

Due to the constraints of limited memory and computation time, a streaming algorithm may be able to
load only a relatively small amount of the data at a time depending upon the speed of the stream and
hardware capability. As in (O’Callaghan et al., 2002), we assume the data is both arriving and processed
in chunks, that is, n

1
 data points arrive at time t

1
, n

2
 at t

2
, and so on.

We cluster data in each chunk by fuzzy c means (FCM), and we have to decide the number of clus-
ters c for each chunk. In the worst case, all data in a given chunk might come from one class only and

43

Scaling Fuzzy Models

in the best case data might come from all n classes. If we set the number of clusters to be always c
(highest resolution under the assumption we know the upper bound on the number of clusters), there
are 2 cases:

 Case A: If less than c classes arrive in a chunk, then we are overclustering. Overclustering may
not cause any information loss. Information loss is only certain to occur when we undercluster.

 Case B: If exactly c classes come in a chunk, then we are partitioning the data correctly, that is,
neither overclustering nor underclustering.

In both cases, setting the number of clusters to be equal to c, the maximum number of classes in
the data set, will likely not cause any information loss. So we set the number of clusters to be c in each
chunk.

Data in each chunk is clustered by FCM. The objective function (J
m

) minimized by FCM is defined
as follows:

J U V U D x v
m i

c

k

n

ik
m

ik k i
, = (,)

=1 =1() å å (1)

U and V can be calculated as:

U
D x v

D x v
ik j

c ik k i
m

jk k j
m

=
,

,
=1

2
1

2
1

å
()

()

æ

è

ççççççççç

ö

ø

÷÷÷÷÷÷÷÷

-

- ÷÷÷

é

ë

ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
úú

-1

 (2)

v

u x

u
i

j

n

ij
m

j

j

n

ij
m

=

()

()

=1

=1

å

å (3)

where U
ik

: is the membership value of the kth example, x
k

, in the ith cluster, v
i
: is the ith cluster

centroid, n: is the number of examples, c: is the number of clusters, D x v x v
ik k i k i

, = :
2() - is the

distance metric. We have used the Euclidean distance.
After data in one chunk is clustered by FCM, memory is freed by condensing the clustering solution

in the memory into c weighted examples. The c weighted examples are represented by the c cluster cen-
troids obtained after clustering. Their weights are calculated using the membership matrix as follows:

w u i c
i j

n

ij
= ,1

=1
1å £ £ (4)

n
1
 is the number of examples in memory.

The weighted centroids of each final partition are saved with weights as calculated above. The
weighted centroids of all chunks form an ensemble of weighted clustering solutions. The ensemble is

44

Scaling Fuzzy Models

then merged into c final clusters. The merging operation is done by clustering all the weighted centroids
in the ensemble using their weights. Weighted FCM (WFCM) is used for this purpose:

We modified the objective function of FCM (similar to [Karkkainen and Franti, 2007]) to take into
effect the weighted examples.

Assuming there are n
c

 weighted examples in total, the cluster centroids for WFCM are calculated
as:

V

w u x

w u
i c x X

i

j

n
c

j ij
m

j

j

n
c

j ij
m j

=

()

()
, 1 , .=1

'

=1

' '
å

å
£ £ Î

¢x
j
 may be an original example or a weighted centroid and ¢X is the union of the original examples

and all weighted examples (centroids). The w
j
 are calculated from equation (4) for any added centroids

and are 1 for the original examples. The weights of the n
c

 weighted examples are calculated from con-
densation/summarization of clustering at previous time instants.

The membership matrix is calculated as follows:

u
x v

x v
ij

l

c
j i

j l

m

=
=1

'

'

2
1

å
-

-

æ

è

çççççç

ö

ø

÷÷÷÷÷÷÷

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

-

--

£ £

1

,1 i c and 1 £ £j n
c
.

It should be noted that the modification of the objective function does not change the convergence prop-
erty of FCM because a weighted example can be thought of as many identical singleton examples.

To speed up clustering, we initialize the clustering process for each chunk with the final centroids
obtained from clustering the previous chunk. This knowledge propagation allows for faster convergence,
provided the distribution does not change rapidly, which might often be the case.

The size of the ensemble of weighted centroids is not likely to be large because it consists of only
weighted centroids. If in any case it becomes large, similar to (O’Callaghan et al., 2002) the weighted
centroids from the ensemble can be incrementally loaded and reclustered into c weighted centroids. This
will decrease the ensemble size, which can be finally merged into c partitions in memory.

Data sets for Experiments

Nine real data sets were used, including Iris, KDD98, Plankton and 6 magnetic resonance image data
sets (MRI-4, MRI-5, MRI-6, MRI-7, MRI-8, and MRI-9). Below we list details of those data sets. Note
that value of m used in FCM was m=1.2 for the KDD98 data set and m=2 for the other 8 data sets.

The Iris plant data set consists of 150 examples each with 4 numeric attributes (Merz and Murphy,
n.d.) and 3 classes of 50 examples each. One class is linearly separable from the other two. We clustered
this data set into 3 clusters. KDD98 is the data set used in the 1998 KDD contest (kddcup08, 1998). This
data set is about people who gave a charitable donation in response to direct mailing request. It was used

45

Scaling Fuzzy Models

in (Farnstrom et al., 2000), and has been pre-processed in the same way. After processing the original
data, it has 95412 examples and 56 features. As done in (Farnstrom et al., 2000), we clustered this data
into 10 clusters. The code for preprocessing is available at http://www-cse.ucsd.edu/users/elkan/skm.
html. The Plankton data set (Luo, et al. 2005) consists of 419358 samples of plankton images from the
underwater SIPPER camera which records 8 gray levels. There are 26 features extracted. The samples
were taken from the twelve most commonly encountered classes of plankton during acquisition in the
Gulf of Mexico. The class sizes range from about 11,337 to 74,053 examples. We clustered this data set
into 12 clusters. Table 4 summarizes all the data sets.

With the MRI data set, we fetched data for the experiments along the axial plane, from the bottom of
the brain (neck) to the top of the skull. The distribution of tissues in the human brain naturally evolves
as we go up or down along the axial plane, and there also will be different amounts of tissues at different
locations. So we believe MRI images provide good data sets to study our streaming algorithm in a real
life scenario. Specific details include (1) The MRI-4 data set was created by concatenating 96 slices of
MR images, T1 weighted, of size 512X512 from a single human brain. The magnetic field strength was
1.5 Tesla. After air and skull were removed using the brain extraction tool (BET2) (Jenkinson et al.,
2005), there were 3,621,971 examples. The code for the BET2 is available at http://www.fmrib.ox.ac.
uk/analysis/research/bet/. We clustered this data set into 3 clusters. (2) The MRI-5 data set was created
by concatenating 144 slices of MR images, T1 weighted, of size 256X256 from a single human brain.
The magnetic field strength was 3 Tesla. After air and skull were removed using the brain extraction
tool (BET2) (Jenkinson et al., 2005), there were 1,248,595 examples. Intensity homogeneity on this data
set was corrected using an implementation of the bias correction algorithm from (Cohen et al., 2000).
We clustered this data set into 3 clusters. (3) The MRI-6 data set was created by concatenating 96 slices
of MR images, T1 weighted, of size 512X512 from a single human brain. The magnetic field strength
was 1.5 Tesla. After air and skull were removed using the brain extraction tool, BET2 (Jenkinson et al.,
2005), there were 4,948,180 examples. We clustered this data set into 3 clusters. (4) The MRI-7 data
set was created by concatenating 96 slices of MR images, T1 weighted, of size 512X512 from a single
human brain. The magnetic field strength was 1.5 Tesla. After air and skull were removed using the
brain extraction tool, BET2, there were 4,031,593 examples. We clustered this data set into 3 clusters.
(5) The MRI-8 data set was created by concatenating 144 slices of MR images, T1 weighted, of size

Table 4. Summary of data sets. The number of attributes used, number of instances and classes are
shown

Data Set Attributes used # Instances # Classes

Iris 4 150 3

KDD98 56 95412 10

Plankton 26 419358 12

MRI-4 3 3621971 3

MRI-5 3 1248595 3

MRI-6 3 4948180 3

MRI-7 3 4031593 3

MRI-8 3 1236969 3

MRI-9 3 1504594 3

46

Scaling Fuzzy Models

256X256 from a single human brain. The magnetic field strength was 3 Tesla. After air and skull were
removed using the brain extraction tool, BET2, there were 1,236,969 examples. Intensity homogeneity
on this data set was corrected using an implementation of the bias correction algorithm in (Cohen et al.,
2000). We clustered this data set into 3 clusters. (6) The MRI-9 data set was created by concatenating
144 slices of MR images, T1 weighted, of size 256X256 from a single human brain. The magnetic field
strength was 3 Tesla. After air and skull were removed using the brain extraction tool, BET2, there were
1,504,594 examples. Intensity homogeneity on this data set was also corrected. We clustered this data
set into 3 clusters.

Experimental setup and Results

In (Hathaway and Bezdek, 2006) a reformulated optimization criteria R
m

 (mathematically equivalent
to J

m
 in equation (1)) was given as:

R V D x v
m

k

n

i

c

ik k i
m

m

() ()
æ

è
çççç

ö

ø
÷÷÷÷÷å å -()

-()

= ,
=1 =1

1

1

1

 (5)

The new formulation has the advantage that it does not require the U matrix and can be directly
computed from the final cluster centroids. For large data sets, where the whole data set cannot be loaded
into memory, R

m
 can be computed by incrementally loading examples from the disk.

For KDD98, Plankton and the 6 MRI data sets, 5% of the data was loaded in each chunk. For the Iris
data set, we fetched 25 examples in each chunk. So, it required 6 time instants to fetch the full data set.
We will compare the performance of streaming FCM (Hore et al., 2007b) and OFCM under this setting.
We also compared the results of the single pass FCM (SPFCM) algorithm on these data with the same
chunk size as used for SFCM and OFCM experiments. Results of experiments on the single pass algo-
rithm (SPFCM) running with and without scrambling (randomly reordered) the data is also reported.

The results of OFCM and SPFCM were compared with the clustering quality obtained at the end of
the stream for the SFCM algorithm. The difference in quality is computed according to:

DQ
m m

m
= 1002 1

1

-æ

è
çççç

ö

ø
÷÷÷÷÷
*

 (6)

m
1
 is the mean R

m
 value for experiments with FCM and m

2
 is the mean R

m
 value for experiments

with OFCM, SPFCM and SFCM.
That is, the difference in R

m
 value expressed in percentage, of the OFCM, SPFCM, and SFCM

algorithms from the quality obtained by clustering all the data at once using FCM.
All results are an average of 32 random experiments, each starting with a random initialization at

the beginning of the stream. On each data set all algorithms had the same random initializations. Table
5 shows the performance of the SFCM, OFCM, and SPFCM algorithms compared to clustering the
entire stream at once.

47

Scaling Fuzzy Models

In the table, HISn means SFCM using a history of n chunks. For the single pass experiments, in the
table SPFCM denotes clustering was done on the randomly reordered data set, while SFCM” means data
was clustered the way it comes: the way SFCM and OFCM algorithms fetches data.

In Table 5, we see SPFCM, as expected, provides unpredictable clustering quality when it processes
data as it comes. When the same data sets were scrambled, it always produced excellent quality. For
processing data in a typical stream setting (processed as it comes), either SFCM (with appropriate his-
tory) or OFCM can be used. The results in Table 3 show that OFCM is always superior to SFCM in
producing a clustering solution as good as clustering the full stream at once. OFCM always obtained
good quality partitions; even for the Iris experiment the quality difference is only 0.21661%. Generally,
usage of history greater than or equal to 2 resulted in poor partitions, at least in the context of produc-
ing clustering quality (at the end of stream) as good as clustering the entire data stream at once. On the
KDD98 data set, any amount of history usage gives good quality; however, with HIS1 and HIS2 average
quality was even better than the average quality of FCM. OFCM varied from FCM by 1% for MRI-6
and 2.9% for Plankton. There are still small variations on large data sets. The quality of OFCM always
was better than SFCM in producing a partition as good as clustering the full data set. Thus, OFCM can
be thought of as a generalized single pass FCM algorithm that like streaming algorithms can process
data as it comes, while at the end of the stream it can produce clustering quality as good as clustering
the entire data stream.

summary

In this chapter, we have focused on ways of dividing data to enable fuzzy learning systems both super-
vised and unsupervised to scale. The approaches focused upon do not throw away any of the data, but
instead they use disjoint subsets of the data to build individual classifiers or data partitions.

We have briefly discussed other approaches, based on subsampling, to building scalable fuzzy learn-
ing systems. The issues with subsampling are in selecting the right subsample or right set of examples
which enable learning a good model. Typical approaches stop too early when they use things like the
chi-squared test. Subsampling is an area deserving of further research.

Table 5. Difference in Quality (in percentage) of the SFCM, OFCM, and SPFCM algorithms compared to
clustering all the stream at once with FCM. SPFCM” means clustering without scrambling the data

HIS1
(%)

HIS2
(%)

HIS3
(%)

HIS4
(%)

HIS5
(%)

SPFCM”
(%)

SPFCM
(%)

OFCM
(%)

MRI-4 0.7082 1.0378 6.654 12.9819 17.6392 8.8818 0.0026 0.17447

MRI-5 2.4084 3.8948 11.1541 18.0348 23.1885 10.4976 0.0011 0.17691

MRI-6 6.7014 4.2827 10.2577 15.7393 19.5325 8.2708 0.0009 1.1098

MRI-7 1.2444 22.0437 69.0189 109.1186 141.9229 84.72 0.0065 0.439

MRI-8 0.584 15.7915 41.5251 63.6055 82.3348 47.623 0.0027 0.2398

MRI-9 0.5464 13.0416 35.9483 53.7082 67.0518 40.582 0.0141 0.2995

Iris 5.2772 2.3517 90.083 91.2483 91.565 79.6733 0.1117 0.21661

KDD -0.0567 -0.0585 0.0169 0.0127 0.0098 -0.1315 -0.0324 -0.07934

Plan-
Kton 14.2393 11.7439 10.1547 8.7612 8.6569 4.02337 0.0046 2.95274

48

Scaling Fuzzy Models

For supervised learning to show the possibilities of ensembles, we have compared ANFIS with and
without bagging to classify twenty data sets. Results were computed two different ways:

a) Ensemble class votes for each example from the defuzzified output of the FIS for each bag were
individually converted to crisp class values. Then, the predicted class for each test instance was
found using a majority vote of these crisp values.

b) The mean of the sum of the defuzzified FIS outputs for each bag was converted to a crisp class
prediction for the ensemble.

c) Feature reduction was done via the gain ratio feature selector in Weka for all data sets with more
than 6 features. Other sets of features chosen differently would result in different accuracies, but
similar conclusions.

The mean defuzzified output gave the most accurate results. It is advisable not to make crisp the
defuzzified outputs of each FIS before these values are combined in a vote. Otherwise, the benefit of
the fuzzy membership functions is lost and lower accuracies result.

The Freidman/Holm test for determining significance of differences in accuracies for our classifier
methods was performed, resulting in the conclusion bagging is statistically better than a single classifier
at the 95% level.

It is interesting that fuzzy models have enough variability to benefit from an ensemble formulation.
This suggests that ensembles of fuzzy classifiers where each is built on a disjoint subset of data can be
used to generate an accurate scalable fuzzy classifier.

For unsupervised learning, we have shown that tractable size data subsets, or chunks of the stream,
can be clustered in the usual way. You get an ensemble of data partitions which must then be combined.
One way to combine them is to simply cluster weighted class centers, centroids, of the data in each
partition. Using online fuzzy clustering, the centroids of the individual data partitions are given weights
based on the membership of the examples assigned to the clusters they represent. The centroids then
form weighted examples which can be clustered to obtain the centroids of final data partition. Any future
data can be assigned to the nearest cluster. If one needs to assign all of the data to the final clustered
centroids, this can be done by sending the clustered centroids to processors where the data resides and
to determine their class.

The online fuzzy clustering process results in cluster centers that are very similar to those obtained
by clustering all of the data using fuzzy c-means. So, in cases where you could not possibly cluster all
the data at once due to its size one may expect that the partition will be similar to a venerable, well-
known clustering algorithm. Hence, there is evidence that scaling fuzzy clustering algorithms can be
effective.

This chapter has outlined methods of using ensembles to enable fuzzy learning systems to scale
whether the data is labeled or unlabeled. In the case of labeled data there will be many fuzzy rules (for
instance) reducing the interpretability of the system. For clustering, there should be no loss in interpret-
ability. The ensemble approaches outlined here are viable ways of scaling fuzzy learning systems.

49

Scaling Fuzzy Models

ACKNOWLEDgMENT

This research was partially supported by the Department of Energy through the ASCI PPPE Data Dis-
covery Program, Contract number: DE-AC04-76DO00789 and the Department of Defense, National
Functional Genomics Center Project, under award number DAMD 17-02-2-0051. Views and opinions
of, endorsements by, the author(s) do not reflect those of the US Army or the Department of Defense.
Partial support was also received from the National Institutes of Health under grant number 1 R01
EB00822-01.

REFERENCEs

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams.
In VLDB ’2003: Proceedings of the 29th international conference on Very large data bases (pp. 81-92).
VLDB Endowment.

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2004). A framework for projected clustering of high
dimensional data streams. In VLDB ’04: Proceedings of the Thirtieth international conference on Very
large data bases (pp. 852-863). VLDB Endowment.

Banfield, R., Hall, L., Bowyer, K., & Kegelmeyer, W. (2005). Ensemble diversity measures and their
application to thinning. Information Fusion, 6, 49–62. doi:10.1016/j.inffus.2004.04.005

Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2007). A comparison of decision tree
ensemble creation techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1),
173–180. doi:10.1109/TPAMI.2007.250609

Beringer, J., & Hullermeier, E. (2006). Online clustering of parallel data streams. Data & Knowledge
Engineering, 58, 180–204. doi:10.1016/j.datak.2005.05.009

Bradley, P. S., Fayyad, U., & Reina, C. (1998). Scaling clustering algorithms to large databases. In Pro-
ceedings of the International Conference on Knowledge Discovery and Data Mining (pp. 9-15).

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

Canul-Reich, J., Shoemaker, L., & Hall, L. (2007). Ensembles of fuzzy classifiers. In Proceedings of
the IEEE International Conference on Fuzzy Systems.

Cao, F., Ester, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving data stream
with noise. In Proceedings of the 2006 SIAM Conference on Data Mining (pp. 328-339).

Chawla, N., Moore, T. E., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2001). Bagging is a small-
data-set phenomenon. In Proceedings of the International Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 68-69).

Chawla, N. V., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2004). Learning ensembles from bites:
A scalable and accurate approach. Journal of Machine Learning Research, 5, 421–451.

50

Scaling Fuzzy Models

Cheng, T. W., Goldgof, D. B., & Hall, L. O. (1998). Fast fuzzy clustering. Fuzzy Sets and Systems, 93,
49–56. doi:10.1016/S0165-0114(96)00232-1

Cho, K., Jo, S., Jang, H., Kim, S. M., & Song, J. (2006). DCF: An efficient data stream clustering frame-
work for streaming applications. In Database and expert systems applications (pp. 114-122). Berlin,
Germany; Springer.

Cohen, M., DuBois, R., & Zeineh, M. (2000). Rapid and effective correction of RF inhomogeneity
for high field magnetic resonance imaging. Human Brain Mapping, 10, 204–211. doi:10.1002/1097-
0193(200008)10:4<204::AID-HBM60>3.0.CO;2-2

Dai, B.-R., Huang, J.-W., Yeh, M.-Y., & Chen, M.-S. (2004). Clustering on demand for multiple data
streams. In Proceedings of the Fourth IEEE International Conference on Data Mining, 2004. ICDM
’04 (pp. 367-370).

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Machine Learning, 7,
1–30.

Dietterich, T. (2000). An experimental comparison of three methods for constructing ensem-
bles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40, 139–157.
doi:10.1023/A:1007607513941

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the Sixth Inter-
national Conference on Knowledge Discovery and Data Mining (pp. 71-80).

Eschrich, S., Ke, J., Hall, L. O., & Goldgof, D. (2003). Fast accurate fuzzy clustering through data reduc-
tion. IEEE transactions on Fuzzy Systems, 11, 262–270. doi:10.1109/TFUZZ.2003.809902

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters
in large spatial databases with noise. In Proceedings of 2nd International Conference on Knowledge
Discovery and Data Mining (KDD-96) (pp. 226-231).

Farnstrom, F., Lewis, J., & Elkan, C. (2000). Scalability of clustering algorithms revisited. SIGKDD
Explorations, 2, 51–57. doi:10.1145/360402.360419

fltoolbox. (2006). The mathworks - fuzzy logic toolbox. Retrieved from http://www.mathworks.ch/access/
helpdesk r13/help/toolbox/fuzzy/fuzzy.html

Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In Proceedings of the
International Conference on Machine Learning (pp. 148-156).

Giannella, C., Dutta, H., Borne, K. D., Wolff, R., & Kargupta, H. (2006). Distributed data mining for
astronomy catalogs. In Proceedings of the 9th Workshop on Mining Scientific and Engineering Datasets,
Proceedings of the SIAM International Conference on Data Mining.

Gray, J., & Szalay, A. (2004). Where the rubber meets the sky: Bridging the gap between databases and
science (Tech. Rep. MSR-TR-2004-110). Redmond, WA: Microsoft.

Guha, S., Meyerson, A., Mishra, N., Motwani, R., & O’Callaghan, L. (2003). Clustering data streams:
Theory and practice. Knowledge and Data Engineering . IEEE Transactions on, 15(3), 515–528.

51

Scaling Fuzzy Models

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm for large databases.
In Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 73-84).

Gupta, C., & Grossman, R. (2004). GenIc: A single pass generalized incremental algorithm for clustering.
In Proceedings of the Fourth SIAM International Conference on Data Mining (SDM) (pp. 22-24).

Hathaway, R. J., & Bezdek, J. C. (2006). Extending fuzzy and probabilistic clustering to very large data
sets. Computational Statistics & Data Analysis, 51(1), 215–234. doi:10.1016/j.csda.2006.02.008

Hore, P., Hall, L., & Goldgof, D. (2007a). Creating streaming iterative soft clustering algorithms. In
Proceedings of the Fuzzy Information Processing Society, 2007. NAFIPS ’07. Annual Meeting of the
North American Fuzzy Information Processing Society (pp. 484-488).

Hore, P., Hall, L., Goldgof, D., & Cheng, W. (2008). Online fuzzy c means. In Proceedings of the Fuzzy
Information Processing Society, 2008. NAFIPS 2008. Annual Meeting of the North American Fuzzy
Information Processing Society (pp. 1-5).

Hore, P., Hall, L. O., & Goldgof, D. B. (2007b). A fuzzy c means variant for clustering evolving data
streams. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Mon-
treal (pp. 360-365).

Jain, A., & Dubes, R. (1988). Algorithms for clustering data. Englewood Cliffs, NJ: Prentice Hall.

Jenkinson, M., Pechaud, M., & Smith, S. (2005). BET2: MR-based estimation of brain, skull and scalp
surfaces. In Proceedings of the Eleventh Annual Meeting of the Organization for Human Brain Map-
ping.

Jyh, S., & Jang, R. (1993). Anfis: Adaptive-network-based fuzzy inference system. IEEE Transactions
on Systems, Man, and Cybernetics, 23, 665–685. doi:10.1109/21.256541

Karkkainen, I., & Franti, P. (2007). Gradual model generator for singlepass clustering. Pattern Recogni-
tion, 40(3), 784–795. doi:10.1016/j.patcog.2006.06.023

kddcup08. (1998). Kdd cup data. Retrieved from http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.
html

Klawonn, F., Gebhardt, J., & Kruse, R. (1996). Foundations of fuzzy systems. New York: John Wiley
and Sons.

Kuncheva, L. I. (2004). Combining pattern classifiers: Methods and algorithms. New York; Wiley-
Interscience.

Lazaro, J., Arias, J., Martin, J. L., & Cuadrado, C. (2003). Modified fuzzy c-means clustering algorithm
for real-time applications. In Field-programmable logic and applications (pp. 2778). Berlin, Germany:
Springer.

Liu, P., & Meng, M.-H. (2004). Online data-driven fuzzy clustering with applications to real-time robotic
tracking. IEEE transactions on Fuzzy Systems, 12(4), 516–523. doi:10.1109/TFUZZ.2004.832521

52

Scaling Fuzzy Models

Luo, T., Kramer, K., Goldgof, D. B., Hall, L. O., Samson, S., Remsen, A., & Hopkins, T. (2005). Ac-
tive learning to recognize multiple types of plankton. Journal of Machine Learning Research, 6(Apr),
589–613.

Merz, C., & Murphy, P. (n.d.). UCI repository of machine learning databases Univ. of CA., Dept. of CIS,
Irvine, CA. Retrieved from http://www.ics.uci.edu/˜ mlearn/MLRepository.html

Nasraoui, O., Uribe, C., Coronel, C., & Gonzalez, F. (2003). Tecno-streams: Tracking evolving clusters
in noisy data streams with a scalable immune system learning model. In Proceedings of the Third IEEE
International Conference on Data Mining, 2003. ICDM 2003 (pp. 235-242).

Neal, R. M., & Hinton, G. E. (1998). A view of the em algorithm that justifies incremental, sparse, and
other variants. In Learning in Graphical Models (pp. 355-368).

O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002). Streaming-data algorithms
for high-quality clustering. In Proceedings of the 18th IEEE International Conference on Data Engineer-
ing (pp. 685-694).

Pal, N., & Bezdek, J. (2002). Complexity reduction for “large image” processing. IEEE Transactions
on Systems, Man, and Cybernetics . Part B, 32(5), 598–611.

Pavlov, D., Chudova, D., & Smyth, P. (2000). Towards scalable support vector machines using squash-
ing. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and
data mining (pp. 295-299).

Provost, F., Jensen, D., & Oates, T. (1999). Efficient progressive sampling. In Proceedings of the Fifth
International Conference on Knowledge Discovery and Data Mining (pp. 23-32). New York: ACM
Press.

Provost, F., & Kolluri, V. (1999). A survey of methods for scaling up inductive algorithms. Data Mining
and Knowledge Discovery, 3, 131–169. doi:10.1023/A:1009876119989

Shoemaker, L., Banfield, R., Hall, L., Bowyer, K., & Kegelmeyer, W. P. (2008). Using classifier ensembles
to label spatially disjoint data. Information Fusion, 9(1), 120–133. doi:10.1016/j.inffus.2007.08.001

UCIrepository. (2006). Uci machine learning repository. Retrieved from http://www.ics.uci.edu/ mlearn/
MLRepository.html

Wang, L., Bezdek, J. C., Leckie, C., & Kotagiri, R. (2008). Selective sampling for approximate cluster-
ing of very large data sets. International Journal of Intelligent Systems, 23(3), 313–331. doi:10.1002/
int.20268

Weka. (2006). Weka 3 - data mining with open source machine learning software in java. Retrieved from
http://www.cs.waikato.ac.nz/ml/weka/

Yang, J. (2003). Dynamic clustering of evolving streams with a single pass. In Proceedings of the 19th
International Conference on Data Engineering, 2003 (pp. 695-697).

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very
large databases. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data (pp. 103-114). New
York: ACM Press.

Section 2
Databases and Queries

54

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

Using Fuzzy Song Sets
in Music Warehouses

François Deliège
Aalborg University, Denmark

Torben Bach Pedersen
Aalborg University, Denmark

INTRODUCTION

Automatic music recommendation systems have recently gained tremendous popularity. To provide per-
tinent recommendations, music recommendation systems use fuzzy set theory (Zadeh, 1965) to combine
user profiles, music features, and user feedback information. However, at the current growing speed,
the database element of any recommendation system will soon become a bottleneck. Hence, appropri-
ate musical data management tools, able to manipulate fuzzy sets and scale to large music collection

AbsTRACT

The emergence of music recommendation systems calls for the development of new data management
technologies able to query vast music collections. In this chapter, the authors present a music warehouse
prototype able to perform efficient nearest neighbor searches in an arbitrary song similarity space.
Using fuzzy songs sets, the music warehouse offers a practical solution to three concrete musical data
management scenarios: user musical preferences, user feedback, and song similarities. The authors
investigate three practical approaches to tackle the storage issues of fuzzy song sets: tables, arrays,
and compressed bitmaps. They confront theoretical estimates with practical implementation results and
prove that, from a storage point of view, arrays and compressed bitmaps are both effective data struc-
ture solutions. With respect to speed, the authors show that operations on compressed bitmap offer a
significant grain in performances for fuzzy song sets comprising a large number of songs. Finally, the
authors argue that the presented results are not limited to music recommendations system but can be
applied to other domains.

DOI: 10.4018/978-1-60566-858-1.ch003

55

Using Fuzzy Song Sets in Music Warehouses

and growing user communities, are needed. Music Warehouses (MWs) are dedicated data warehouses
optimized for the storage and analysis of music content.

The contributions of this chapter are fourfold. First, based on a previous case study (Deliège &
Pedersen, 2006), we propose three generic usage scenarios illustrating the current demands in musical
data management. To answer these demands, we define fuzzy song sets and develop a query algebra for
them. Second, to demonstrate the usefulness of fuzzy song sets, a prototypical MW composed of two
multidimensional cubes is presented. Fuzzy song sets prove to be an adequate data representation to
manipulate musical information. Third, we discuss three solutions for storing fuzzy song sets and fuzzy
sets in general. We construct theoretical estimates for each storage solution. A practical implementa-
tion shows that the storage overhead represents a major part of the storage consumption and that two
solutions are viable for large music collections. Fourth, we benchmark and compare the performance
of the main operators previously presented for various sizes of both data structures. Experiments are
conducted on a real music collection.

This chapter demonstrates how fuzzy set theory can be used in the context of music recommenda-
tion systems. All results presented in this chapter can be directly applied to standard fuzzy sets; the
presented storage solutions remain generic and can thus be applied to a vast range of domains besides
music recommendation and user preferences.

The remainder of this chapter is organized as follows. After presenting the related work on fuzzy
sets for the management of musical data, we present three information scenarios that are commonly
treated by music recommendation systems. We proceed by defining fuzzy song sets and an algebra.
Two prototypical multidimensional cubes are presented; they illustrate the use of the algebra through
query examples. Storage solutions are then discussed and precise storage estimates are proposed and
experimentally validated. Next, a comparison of the performance of the fuzzy song set operators on
the bitmap and array representations is conducted. Finally, we conclude and describe promising future
research directions.

RELATED WORK

Research on music recommendation systems has received a lot of attention lately. Current trends on
playlist generation are focused on how to improve recommendations based on user-specific constrains.
For example, a playlist generator that learns music preferences by taking user feedback into account
was presented by Pauws & Eggen (2001). Other new interesting approaches concentrate on aggregating
different music features; for instance, Bosteels & Keere (2007) study the use of generalized conjunctions
and disjunctions of fuzzy sets theory for combining audio similarity measures. However, fewer research-
ers have addressed the scalability issues raised by these methods in terms of storage and performance
(Aucouturier & Pachet, 2002; Pampalk, 2005). This chapter focuses specifically on the storage and
performance issues and proposes to manipulate a large collection of musical data where song similari-
ties, user preferences and user feedbacks are represented with fuzzy sets.

A traditional database approach is to use a relational model such as the one proposed by Rubenstein
that extends the entity-relationship data model to implement the notion of hierarchical ordering, com-
monly found in musical data (Rubenstein, 1987). A multimedia data model, following the layered model
paradigm that consists of a data definition layer, a data manipulation layer, a data presentation layer, and
a control layer, is presented by Wynblatt & Schloss (1995), but no query language is proposed. None

56

Using Fuzzy Song Sets in Music Warehouses

of those models adopts a multidimensional approach by representing data in cubes, a very convenient
structure for performing on-the-fly analysis of large volumes of data that has already proved its strengths
in data warehouses (Pedersen & Jensen, 2001). Finally, a music data model, its algebra and a query
language are presented by Wang, Li, & Shi (2004). The data model is able to structure both the musical
content and the metadata but does not address performance optimization issues. In particular, it does
not provide an adequate framework to perform similarity based search. Jensen et al. address this issue
and offer a multi-dimensional model that supports dimension hierarchies (Jensen, Mungure, Pedersen,
& Sørensen, 2007). We extend that multidimensional model by integrating fuzzy sets and addressing
additional usage scenarios. Furthermore, this implementation proves to be able to handle a much larger
music collection of a realistic size in the context of an MW.

The use of bitmaps in multidimensional databases is frequent. Different compression schemes exist
to reduce the storage consumption of bitmaps. The Word Align Hybrid (Wu, Otoo, & Shoshani, 2006),
WAH, and the Byte-aligned Bitmap Compression (Antoshenkov, 1994), BBC, are two very common
compression algorithms. BBC offers a very good compression ratio and performs bitwise logical opera-
tions efficiently. WAH performs bitwise operations much faster than BBC but consumes more storage
space. We propose a modified version of WAH compression technique to represent fuzzy sets. We show
how fuzzy set operators can be adapted to directly manipulate the compressed representations in order
to preserve the performance.

Significant efforts have been made in representing imprecise information in database models (Codd,
1979). Relational models and object oriented database models have already been extended to handle
imprecision utilizing the fuzzy set theory (Prade & Testemale, 1984; Bordogna, Lucarella, & Pasi, 1994).
This chapter proposes pragmatic solutions to store and manipulate fuzzy sets within multidimensional
data cubes. It significantly extends our previous work (Deliège & Pedersen, 2007) in several ways: im-
proving the WAH compression algorithm, revising size estimates, and implementing and benchmarking
the operators. While our focus is on musical data, we believe our approach can easily be generalized to
the similarity matrices extensively used in fuzzy databases, e.g., to perform fuzzy joins.

QUERY sCENARIO

The data obtained from a music recommendations system has to be organized to answer specific queries.
Examples of such query scenarios are presented below.

User Feedback

The user’s opinion about the system’s previous recommendations is a valuable piece of information for
improving the future suggestion, e.g., by reinforcement learning. For each song played, the user can
grade if the suggestion was wise based on the criteria provided, referred to as the query context. The
query context can be the artist similarity, the genre similarity, the beat similarity, or any other similar-
ity measure available to the system to perform a selection. The grading reflects if a proposed song was
relevant in the given query context. For example, it is possible to retrieve the list of songs Mary liked
when she asked for a list of rock songs or the ten songs she liked the most when she asked for similar
songs to a song made by “U2”.

57

Using Fuzzy Song Sets in Music Warehouses

Typically, the data obtained should contain:

the profile of a registered user in the system;•
the query context provided by the user; and•
the list of songs and marks so that for each song proposed, the user can grade how much he liked •
a particular song being part of the proposition.

Grades are given on a per song basis, they reflect if the user believes the song deserves its place
among the suggested list of songs: strongly disagrees, neutral, likes, and loves. While the grade must not
be a numerical value, we assume that a mapping function to the interval [0,1] exists so that when a user
believes a song definitely deserves its place in the list, a high value in the interval should be given.

User Musical Profile

Regardless of any given query context, some songs should never be proposed to Mary as she simply
can’t stand them or, on the contrary, some songs should be proposed more often as they are marked as
Mary’s favorites. Therefore, recommendation systems often offer to their users the possibility to rate
any song on a fan-scale ranging from “I love it” to “I hate it” depending if they like the song or not.
Such information is useful for building network based on users having similar musical taste. The data-
base backend of the recommendation system should be able to find users similar to Mary based on his
favorite and loathed songs.

The User Musical Preferences contains two different pieces of information:

a reference to a user registered; and•
a list of songs associated with their respective grades on the fan-scale.•

As above, we assume the mapping to the interval [0,1] so that if Mary hates a song, a low score
is assigned; and if she loves it, a value close to 1 should be used. So, musical profiles can be used to
modify the frequency a given song appears as a recommendation and build recommendation based on
profile similarities.

songs similarities

Finally, music recommendation system should be able to compare songs. For each pair of songs, the
system is able to provide a similarity value with respect to a given aspect of the song such as the release
year, the genre, the theme, the lyrics, or the tempo. The similarity values should indicate if two songs
are “very different”, “different”, “somewhat similar”, or “very similar” from the perspective of any
given aspect of the song. For example, the song “We will rock you” by Queen is “very different” from
the song “Twinkle, twinkle little star” with respect to their genre similarity aspect.

To compare songs, three pieces of information are necessary:

a pair of compared songs;•
a similarity function that maps to a pair of songs to a similarity value; and•
a similarity value reflecting how similar the two songs are.•

58

Using Fuzzy Song Sets in Music Warehouses

Again, we assume that the similarity values can be mapped to the interval [0,1] so that if two songs
are very different, a value close to 0 should be used, and if they are very similar, a value close to 1
should be used instead.

The scenario is very generic; very few assumptions are made about the properties of the functions
used to compute the similarity values. In particular, the similarity functions do not have to fulfill the
mathematical properties of a metric: the non-negativity, the identity of indiscernibles, the triangular
inequality, and the symmetry properties. They do not have to be defined over the whole domain of song
pairs. This allows similarities to be based on a wide diversity of song attributes.

AN ALgEbRA FOR FUZZY sONg sETs

In this section, we introduce fuzzy song sets as well as operators and functions to manipulate them.
Let X be the set of all songs. Then, a fuzzy song set, A, is a fuzzy set defined over X such that:

/ : , () 0,1
A A

A x x x X x

and is defined as a set of pairs m
A

x x()/ , where x is a song, m
A

x() , referred to as the membership
degree of x, is a real number belonging to [0,1], and / denotes the association of the two values as com-
monly expressed in the fuzzy logic literature (Galindo, Piattini, & Urrutia, 2005). When μA(x) = 0, song
x does not belong to A, and when μA(x) = 1, x completely belongs to A.

Operators

The following operators are classically used in order to manipulate song sets.

Equality

Let A and B be two fuzzy song sets. A is equal to B iff for all song the membership degree of a song in
A is equal to the membership degree of the same song in B.

A B x X x x
A B

= Û " Î () = () , m m

Subset

Let A and B be two fuzzy song sets. A is included in B iff for all song, the membership degree a song in
A is lower than the membership degree of the same song in B.

A B x X x x
A B

 Í Û " Î () £, ()m m

Note that the empty fuzzy song set defined with the null membership function, i.e., " Î () =x X x,m 0 ,
is a subset of all fuzzy sets.

59

Using Fuzzy Song Sets in Music Warehouses

Union

Let A and B be two fuzzy song sets over X. The union of A and B is a fuzzy song set with, for each song,
a membership degree equal to the maximum membership degree associated to that song in A and B.

A B x x
A B

Ç = (){ }Çm /

m mm
A B A B

x x xÇ () = ()()max , ()

Intersection

Let A and B be two fuzzy sets over X. The intersection of A and B is a fuzzy song set with, for each song,
a membership degree equal to the minimum membership degree associated to that song in A and B.

A B x x
A B

Ç = (){ }Çm /

m m m
A B A B

x x xÇ () = ()()min , ()

Negation

Let A be a fuzzy set over X. The negation of A is a fuzzy song set with the membership degree of each
song equal to its symmetric value on the interval [0,1].

- = -{ }A x
A

1 m ()

Reduction

Let A be a fuzzy set over X.The reduction of A is a subset of A such that membership degrees smaller
than α are set to 0.

Reduce

(,) { () / }

() ()

a m

m
m m a

a

a

A x x

x if x

if

A

A
A A

=

=
³

0 mm a
A

x() <

ì
í
ïïï

î
ïïï

The reduction operator changes the membership degree of songs below a given threshold to 0. It allows
the construction of more complex operators that allow the reducing the membership degree granularity
over ranges of membership degrees.

60

Using Fuzzy Song Sets in Music Warehouses

Top

Let A be a fuzzy set over X. The Topk subset of A is a fuzzy song with the membership degree of all ele-
ments not having the k highest membership degree set to 0 and the membership degree of the k highest
elements of A set to their respective membership degree in A.

Top
k
a m m m, () / | , , , ()A x x x x X i j x x

Ak i j A i A j() = " Î £ < () ³{ }1

m
m

Ak
Ak

x if i k
=

£ì
í
ïïï

î
ïïï

()

 otherwise0

Note that the Topk subset of A is not unique, e.g., when all elements have an identical membership
degree. The Topk operator returns a fuzzy song set with all membership degrees set to zero except for
k elements with the highest membership degrees that remain unchanged. Topk is a cornerstone for the
development of complex operators based on relative ordering of the membership degrees. Note also
that Topk(A) can not be defined as the subset of A having all its elements having a membership greater
or equal to the one not included since Topk(A) contains all the elements of A.

Average

Let A1,…,Ai be i fuzzy song sets. The average of A1,…,Ai is a fuzzy song set that assigns to each song
a membership degree equal to the arithmetic mean of the membership degrees of that song in the given
sets.

Avg x x
A A A Ai i1 1, , , ,

{ / }¼ ¼= ()m

m
m

A A

j

i

A

i

jx
x

i1

1

, ,

()
¼

=() = å

The average operator in fuzzy sets is the pendant of the common average operator and is very useful
to aggregate data, a common operation in data warehousing in order to gain some overview over large
datasets.

Functions

The following functions are defined on song sets. They extract information from the song sets to real
values or crisp sets.

61

Using Fuzzy Song Sets in Music Warehouses

Support

The support of A is the crisp subset of X that includes all the elements having a non-zero membership
degree in A.

Support xA x X
A() = Î ()>{ : }m 0

Cardinality

The cardinality of A is the sum of the membership degrees of all its elements.

()A x
x X

A
=

Î
åm

Distance

The Minkowski distance of order p ³ Î1  between two song sets is defined as follows.

d A B x x
p

x X
A B

p p

,() = ()- ()
æ

è
çççç

ö

ø
÷÷÷÷÷

Î
å m m

1

The 1-norm distance is the Manhattan distance, the 2-norm distance is the Euclidean distance, and
the ∞-norm is the Chebyshev distance.

THE MUsIC WAREHOUsE CUbEs

This section presents two data cubes built to serve queries introduced in the scenarios. In data warehouses,
data are logically organized in cubes. A cube is a generalization of a flat two-dimensional spreadsheets
to multiple dimensions. While spreadsheets have rows and columns that are combined to form cells,
cubes have dimensions that are combined to form facts. Each fact has numeric measures attached to it.
To capture the context of a fact, dimensions are organized into hierarchies. Hierarchies define group-
ings and aggregation functions to be performed, e.g., a counter or an average. The two cubes presented
below show how fuzzy song sets can be integrated into a multi-dimensional model and how they can
be queried.

The song similarity Cube

The Song Similarity cube captures similarity between songs with respect to selected similarity func-
tions. The cube is composed of two dimensions: a song dimension and similarity dimension; they are
represented in Figure 1. The song dimension captures all the details about a song, including editorial

62

Using Fuzzy Song Sets in Music Warehouses

information such as the artist name, the publication year or any acoustic information such as the beat
of the song or its genre. For each of these attributes, similarity functions can be created, e.g., an artist
similarity function that gathers information from external web sites and social networks, or a similarity
function that compares the genre wherein songs have been classified, aware that some genres are more
similar than others, or the timbre comparison that uses low-level extracted information to provide a full
comparison matrix.

Each dimension has a hierarchy, which defines how the data can be aggregated to provide differ-
ent degrees of granularity, e.g., the similarity of songs between sub-genres and the similarity of songs
between coarsely defined genres. Similarity function of coarser granularity can also span over differ-
ent attributes, e.g., to provide some average similarity values out of attributes obtained using different
extraction algorithms.

At its most detailed level, the cube is organized based on a star schema, using three tables: the song
dimension table, the similarity function table and the closest songs fact table. The closest songs fact
tables is composed of three attributes: a reference to a song (referred to as the seed song), a reference to
a similarity function, and a fuzzy song set. The notion of similarity between a song and the seed song is
represented by the fuzzy song set membership degree. The closest songs take a high membership degree
while the farthest songs have a low membership degree.

Data of the Song Similarity are shown in Tables 1, 2, and 3.
Typical queries involve the intersection, union, and reduction operators. The queries can be performed

on the song seeds using pieces of information such as the artist or the creation year. Closest Songs Cube
usage examples are presented below. The example assumes the creation of a new SQL data type, called
FZSET, using object-relational extensibility functionality like found in PostgreSQL. For example, the
closest songs attribute in the fact table is of type FZSET. The FZSET implementation details will be
discussed further.

Example 1:
“What are the songs that have a similar beat to the song “One” by U2?”

SELECT SUPPORT(REDUCE(0.6, c.songs)

FROM closest_songs c

INNER JOIN songs as a USING (song_id)

INNER JOIN similarity_functions as b USING (c.sim_id)

WHERE a.title = ‘one’ AND a.artist = ‘U2’ and b.sim = ‘beat 1’

Figure 1. Dimensions composing the Song Similarity Cube

63

Using Fuzzy Song Sets in Music Warehouses

In a star schema, the fact table and the 2 dimensions tables are joined to form the cube. Retriev-
ing the similarities between a song and all the others simply requires selecting a song and a similarity
function from the dimension tables and retrieving the corresponding FZSET in the closest song table.
The support function transforms an FZSET data type into a regular SQL crisp set of elements having
non-zero membership degrees.

Example 2:
“Find the beat similarity between two songs; the first song is identified with the artist, album,

and title attributes from the song dimension, the second is identified using its unique key.”

SELECT MU(c.songs,el)

FROM closest_songs c

INNER JOIN songs as a USING (song_id)

INNER JOIN similarity_functions as b USING (sim_id)

WHERE a.artist = ‘U2’ AND a.album=’Achtung Baby’ AND a.title=’One’ and b.sim = ‘beat 1’

GROUP BY a.album_id

The mu function returns the membership value associated to a given element. The similarity between
two songs can be obtained by retrieving the full fuzzy song set representing song similarities for the

Table 1. CubeSong dimension

song id title Artist album beat genre

1 One U2 Achtung Baby DATA DATA

2 One U2 Miss Sarajevo DATA DATA

3 Paint it black Rolling Stones Aftermath DATA DATA

Table 2. Similarity function dimension

Sim id Sim function Sim type

1 beat 1 beat

2 beat 2 beat

3 genre 1 genre

Table 3. Closest songs fact

song_id sim_id Closest_songs

1 1 { 1.0/1; 0.5/2; 0.0/3 }

1 2 { 1.0/1; 0.7/2; 0.1/3 }

1 3 { 0.9/1; 0.4/2; 0.1/3 }

2 1 { 1.0/1; 0.5/2; 0.4/3 }

2 1 { 1.0/1; 0.5/2; 0.3/3 }

3 1 { 1.0/1; 0.5/2; 0.5/3 }

64

Using Fuzzy Song Sets in Music Warehouses

first song, and filtering out the results to only return the element matching the second song. However,
with such an operation being so common, optimization based on the physical storage structure of the
fuzzy song set can be performed, thus motivating the need for creating a specific element search func-
tion within a fuzzy song set.

Example 3:
“Retrieve the 100 songs having the most similar beat to the songs made by U2.”

SELECT SUPPORT(TOP(100, UNION(c.songs))

FROM closest_songs c

INNER JOIN songs as a USING (song_id)

INNER JOIN similarity_functions as b USING (sim_id)

WHERE a.artist = ‘U2’ AND b.sim = ‘beat 1’

GROUP BY a.album_id

Aggregation functions allow multiple fuzzy song sets to be retrieved and combined. In Example 3,
multiple songs are matching the selection criteria in the song dimension, causing multiple fuzzy song
sets to be retrieved from the closest song table. The fuzzy song sets are then combined using the union
operator; finally the elements with the 100 highest membership degrees are returned.

Example 4:
“Return the similar songs to the given song across the different beat similarity functions avail-

able.”

SELECT SUPPORT(AVG(songs))

FROM closest_songs c

INNER JOIN songs as a USING (song_id)

INNER JOIN similarity_functions as b USING (sim_id)

WHERE a.title = ‘one’ AND a.artist = ‘U2’ and b.sim = ‘beat’

GROUP BY a.albumid, b.similarity_function_group

As in a spreadsheet, aggregation can be performed on both dimensions. Example 4 retrieves all the
versions of a song in the different albums of an artist and returns an average over similarity functions
of the same type, such as the beat, the genre, or the mood.

The User Feedback Cube

The User Feedback Cube collects relevance statistics about the songs proposed to users by the music
recommendation system. As illustrated by Figure 2, the User Feedback Cube is composed of two di-
mensions: the user dimension and the query dimension. For each user and query, the user feedback is
stored. The feedback given for a particular played song is stored as a membership degree representing
how relevant the proposed song is in the context of the query. A very low membership degree is given
when a user believes the song should not have been proposed. The Feedback and the Favorite Songs
attributes are both defined using the FZSET abstract data type. The user dimension is composed of a
hierarchy allowing users to be aggregated along the various attributes composing their profiles. One
of these attributes is a fuzzy song set representing the user’s favorite songs; it becomes thus simple to

65

Using Fuzzy Song Sets in Music Warehouses

compare groups of users created based on the users’ musical tastes. The hierarchy on the query dimen-
sion permits to obtain overview along group of semantically close queries.

Example 5:
“What are the favorite songs three users have in common?”

SELECT SUPPORT(REDUCE(0.8, INTER(Favorite songs))

FROM users

WHERE user_id = 1 OR user_id = 2 OR user_id = 3;

Retrieving the songs three users like is an immediate query using the proposed algebra; only the user
dimension table is required. Here, the aggregation form of the intersection function allows straight-forward
selection of the intersection between three multiple sets. The Reduce operator selects only the songs
resulting from the intersection with a membership degree above 0.8. The support operator transform the
fuzzy song set object into a crisp set that can be manipulated with the regular SQL algebra.

Data from the User Feedback Cube are shown in Tables 4, 5, and 6.
Example 6:
“Who are the 100 users that have the most similar taste to John’s taste?”

SELECT b.user_id

FROM users as a, users as b

WHERE a.user_id = 1

ORDER BY distance(a.favorite_songs, b.favorite_songs) ASC

LIMIT 100;

Example 6 illustrates how, using a self-join, the user dimension can be used to find similarities be-
tween users based on their favorite songs.

Example 7:
“Per query type, what are the songs users born in the 80’s were usually happy to hear?”

SELECT SUPPORT(REDUCE(0.8, AVERAGE(uf.feedback)), q.query_type

FROM user_feedbacks as uf

INNER JOIN users as u USING (user_id)

Figure 2. Dimensions composing the User Feedback Cube

66

Using Fuzzy Song Sets in Music Warehouses

INNER JOIN queries as q USING (query_id)

WHERE ‘1 JAN 80’ <= u.DOB AND u.DOB <= ‘31 DEC 89’

GROUP BY q.query_type;

Using the user dimension, only the users born in the 80’s are selected, and the average feedback per
query type is then calculated. Again, using the reduce and support operators, only the songs with a high
membership degree are output as crisp sets.

Example 8:
“What are the 100 songs that fans of ‘Elvis’ liked the most when they asked for Rock songs?”

SELECT SUPPORT(TOP 100(AVERAGE(uf.feedback)))

FROM user_feedbacks as uf

INNER JOIN queries as q USING (query_id)

WHERE u.user_id IN (

SELECT user

FROM songs

WHERE SUPPORT(TOP(10,favorite song)) = song_id AND artist = ‘Elvis’

) AND q.query = ‘Rock songs’

Table 4. Users dimension

User id Name DOB Favorite songs

1 John 01 Jan 80 { 1.0/1; 0.5/2; 0.0/3 }

2 Nadia 02 Feb 70 { 1.0/41; 0.7/42; 0.1/43 }

3 Natalie 03 Mar 60 { 0.9/11; 0.4/22; 0.1/33 }

4 Adam 04 Apr 83 { 0.2/1; 0.47/; 0.13/23 }

Table 5. Queries dimension

Query id Query Query type

1 Rock songs Genre

2 Pop songs Genre

3 Songs marked as favorite by users with similar music profiles Social

4 New song releases Editorial

Table 6. User feedbacks fact

User id Query id Feedback

1 1 { 1.0/1; 0.5/2; 0.0/3 }

1 2 { 1.0/1; 0.7/2; 0.1/3 }

3 1 { 0.9/1 0.4/2; 0.1/3 }

67

Using Fuzzy Song Sets in Music Warehouses

Example 8 performs an aggregation of the user feedback. The selection of the users for the aggrega-
tion is performed using the favorite songs in the user dimension. Thus, both fuzzy song sets in the user
dimension table and the fact table are used.

sTORAgE OPTIONs

In this section, three different storage options for representing fuzzy song sets in the MW are presented:
tables, arrays, and bitmaps. A prototypical MW where song elements are uniquely identified using 32
bits is used to illustrate the discussion. The proposed MW can reach a size of over 4 billion songs and
at least 100 different membership degrees.

Table

The first solution is to represent the fuzzy song set attribute as a table with three columns: (seed song,
song, membership degree). Let s be the size of the seed song set, e the size of the song set, and m the size
of the set of all the values the membership degree can take. The size of the payload, i.e., the size of the
data when not considering the overhead due to the DBMS, denoted p, can be calculated as follows.

p s e log s log e log m= + + . ()
2 2 2

where log
2
s , log

2
e , and log

2
m are the minimum number of bits required to store respectively a seed

song, a song, and a membership degree.
The quadratic growth can be limited by admitting only k songs for each seed song to be physically

stored in the table and letting the remaining songs take a default membership degree. The selection of
which song should be represented is dependent on the application. Here, we assume that the elements
with the highest membership degree are interesting; this is performed using the Topk operator. The size
of the payload can then be estimated as follows.

p s k log s log e log m= + + . ()
2 2 2

When 232 seed songs are present, the database reaches its maximum capacity. In such case, the size
of the payload, if only the 1000 elements with the highest membership degree are physically stored,
reaches 36 TB. On a data set composed of 10,000,000 seeds, the payload attains 84 GB.

Array

A second approach is to use one-dimensional arrays containing the songs and their associated member-
ship degrees for representing fuzzy song sets. The data is stored in a table with two columns: (seed song,
array). As with tables, only the k (≤e) most similar songs should be physically stored. The size of the
payload grows as follows.

68

Using Fuzzy Song Sets in Music Warehouses

p s log s k log e log m= + + (())
2 2 2

When storing the 1000 closest songs of 232 song seeds, the size of the payload is reduced to 19 TB;
on a data set composed of 10,000,000 song seeds, the payload reaches a size of 44 GB However, since
the probability of having no songs for a particular membership degree is small, ordering the fuzzy song
set by membership degrees allows membership degrees to be stored using one bit relatively to each
other: a bit set means to move to the next lower membership degree, a bit unset means to keep the same
membership degree. In the unlikely case of a gap in the sequence of membership degrees, a dummy ele-
ment, referred to as the empty element, is used to jump to the next membership degree. For large gaps,
successive empty elements are used.

For example, the fuzzy song set {100 / 1234,100 / 2345,99 / 3456,97 / 4567,96 / 5678} is repre-
sented by the array [{1234,100}, {2345,100}, {3456,99}, {4567,97}, {5678,96}] that is compressed as
[{1234,0], {2345,1}, {3456,1}, {0,1}, {4567,1}, {5678,0}], where only one bit is required to capture a
decrement of the membership degree, and 0 is the empty element.

The compression ratio, r, obtained is as follows.

r
k log e log m

k x log e
=

+

+() +

 ()

()
2 2

2
1

In order to be efficient, i.e., r > 1, the number of empty elements, noted x, in the data set has to
remain limited.

x k
m

e
<

-

+

log

log
2

2

1

1

The compression ratio in the best (no empty element) and worst (m − 1 empty elements) case sce-
narios are:

r
m e

e
+ =

+

+

log log

log
2 2

2
1 ,

r k
m e

k m e
- =

+

+ -() +

log log

(log)
2 2

2
1 1

For high k values, the likelihood of using empty elements vanishes, therefore causing r− to asymp-
totically converge to r+ as k increases. Figure 4 shows the compression ratio r+ and r− for membership
degrees represented on 7 bits (128 different values), and fuzzy song set and song seeds represented using

Figure 3. organization of a compressed array

69

Using Fuzzy Song Sets in Music Warehouses

32 bits. For k = 1000, the compression ratio ranges between 1.04 and 1.18. The full similarity matrix
represented with compressed arrays takes 17 TB.

bitmap

A third option is to use bitmaps to represent fuzzy song sets. In a bitmap (Chan & Ioannidis, 1998),
each element is represented by a position in a sequence of bits. Typically, in a bitmap index, a bitmap
for each attribute value is created. The size of each bitmap is equal to the cardinality of the indexed ele-
ments. Fuzzy song sets can be constructed using the same structure. A fuzzy song set is composed of a
bitmap for each membership degree an element can have. As illustrated in Figure 5, each song element
is represented with a bit set in the bitmap corresponding to its membership degree.

A fuzzy song set where the membership degree has a cardinality of m is represented with m bitmaps
of song elements, where each bitmap has a size of e bits. Thus the size of a fuzzy song set using bitmaps
is as follows.

p s s m e= + (log)
2

Figure 4. best and worst compression ratio for the arrays

Figure 5. representation of a fuzzy song set with an array of bitmaps

70

Using Fuzzy Song Sets in Music Warehouses

The bitmap size can be dramatically reduced using compression algorithms. The Word Aligned
Hybrid (WAH) bitmap compression method offers a good compression ratio on sparse bitmaps while
preserving query performances (Wu, Otoo, & Shoshani, 2006).

Briefly, in a WAH-compressed bitmap, the bitmap is divided in 32 bit long words. The first bit of
each word is used to mark if the word is a literal word or a fill word. If the first bit of a word starts with
a unset bit, the word is a literal word; the remaining bits are then used to store a classical 31 bit long
bitmap. A fill word starts with a set bit and indicates the presence of a run composed of homogeneous
31 bit long groups of set or unset bits; thus, fill words are of two kinds: 0-Fills or 1-Fills. The second
bit of a fill word is used to differentiate runs of unset bits from runs of set bits. The remaining 30 bits
are used to count the number of homogeneous 31 bit long groups the run contains.

Figure 6 shows an example of how the bitmap composed of 9∗0, 3∗1, 56∗0, 69∗1, 98∗0, 3∗1 and
6∗0 can be compressed using WAH. First, the uncompressed bitmap is divided into groups of 31 bits.
If a group forms a literal word, an unset bit is prepended to it. Otherwise, the group is replaced by an
appropriate fill word and a counter of the number of identical consecutive groups following the current
group.

The WAH compression becomes effective when many consecutive zeros or ones can be represented
with fill words. In the worst bit distribution, i.e., a random bitmap, the WAH algorithm reduces the size
of the bitmap as follows.

p n d w
n w
w

d d
wah

w w, ,() =
-

- -() -
æ
è
çç

ö
ø
÷÷÷

- -
1

1 1
2 2 2 2

Figure 6. The WAH bitmap compression

71

Using Fuzzy Song Sets in Music Warehouses

where n is the size of the bitmap in bits, d is the bit density, i.e., the fraction of bits set, and w is the word
length, (32 bits in our example). Using the topk operator, the bit density is d = k/e. On a fuzzy song set
of 232 songs where only 1,000 songs are physically stored and n = 232, d = 1,000 / 232, the size of each
bitmap is 64,000 bits.

As previously illustrated by Figure 5, a bitmap is constructed for each of the membership degree a
song element can possibly take. The fuzzy song set is then represented using an array composed of 100
bitmaps, but this does not affect the size of the overall bitmap as the bit density of in each bitmap will
proportionally decrease, maintaining the bit density in the full bitmap unchanged.

p s s p e m
k

e m
w

wah
» +

æ

è
çççç

ö

ø
÷÷÷÷

log (. ,
.

,
2

In an MW of 232 songs, where 1,000 song elements with the highest membership degree are physi-
cally stored, the size of the payload reaches 33 TB. On a data set composed of 10,000,000 song seeds,
the payload size is 76 GB.

Payload Estimate Comparison

Figure 7 shows the expected size for storing a Fuzzy Song Set Attribute (FSSA) for each of the 232 song
seeds and for different values of k. The linear growth of the WAH bitmap with the number of stored
elements is explained by considering k / n ≪ 1 and applying a binomial decomposition. The payload
can then be approximated by p k w

wah
» 2. . .

p n d w

n w
w

d d

n w
w

w
wah

w w

, ,()

=
-

- -() -
æ
è
çç

ö
ø
÷÷÷

»
-

- -

- -

1

1 1

1
1 1 2

2 2 2 2

--()()-()
»

-
-() » =

2 0

1
2 2 2 2

d

nw
w

w d wnd kw

Figure 7. estimated payload storage requirements

72

Using Fuzzy Song Sets in Music Warehouses

In arrays, the seed elements only have to be stored once per FZSET. Arrays take thus half the stor-
age requirements of tables. With arrays, however, the data need to be compressed and reorganized, thus
leading to an overall increase in complexity. The array compression scheme is focused on compressing
the membership degree. The compression occurs on the 7 bits used to represent the membership degree
but leave the 32 bits representing each element untouched; thus limiting the maximum compression
performance that can be achieved. Bitmaps, on the other hand, are focused in compressing the 32 bits
representing the elements; this is done by imposing a position to each song element. These important
structural differences will have an impact on the implementation of operators and functions.

storage Estimates and benchmark

This section describes the storage requirements for the implementation of the Song Similarity Cube fact
table. Therefore, some parts of the following are dependent on the DBMS chosen for implementing the
cube. We calculate some storage requirements estimates for each of data structure. As our estimates
match experimental results, we proceed on predicting the size of each storage option depending on the
number of fuzzy elements they contain.

The experience was conducted on PostgreSQL 8.3, well-known for its scalability. As already explained,
the songs can be uniquely identified using 32 bits and the membership degree of each song element has
a granularity of 100. The dataset used for the implementation consists of 150,834 songs, gathered from
the Intelligent Sound project. Song similarities are computed using a genre classifier collecting acoustic
features from a popular media player (Lehn-Schiøler, Arenas-García, Petersen, & Hansen, 2006)

The expected table overhead in PostgreSQL can be estimated by considering tuple overhead and page
overhead (PostgreSQL, 2008). In our configuration, pages have a fixed size of 8 KB. Since tuples are
not allowed to span over multiple pages, PostgreSQL uses secondary storage tables, referred to as The
Oversized-Attribute Storage Technique (TOAST) tables, to store large attributes. Using TOAST, large
field values are compressed and/or broken up into multiple physical rows. TOAST tables use the Lempel-
Ziv, briefly LZ, compression technique to reduce their size (Ziv & Lempel, 1977). The compression of
‘toasted’ attributes being optional, we will compare the different possible setups.

In a table, the number of rows is the product of the number of seeds and the number of elements per
seed: 150,834.1000 = 150,834,000 rows. Each page has a size of 8KB, with a header of 24 bytes, thus
leaving 8,168 bytes of free space. Each row has a payload of 4 + 4 + 4 + 1 = 17 bytes. Each tuple is
stored after a 20 bytes long header, and is aligned to start on the 32nd byte. Therefore, the size of each
row in the table is 31 + 17 bytes. Thus, each page can accommodate 185 rows, and 150,834,000 rows
will require 815,319 pages, thus taking a disk space of 815,319 ∗ 8 KB = 6,369.67 MB. In our storage
experiment on the 150,834 songs, gathered from the iSound database, this is exactly the storage size
taken on disk; thus indicating that our estimate is precise.

For arrays, each element has to be aligned on 4 bytes, thus 8 bytes are necessary to store the element
and the membership degree. Additionally, 4 bytes are used to store the size of the array. Each array has
therefore a size of 4 + 4 + 1000 ∗ 8 = 8008 bytes not allowing two tuples to fit on a single page. Therefore
150,834 pages of 8 KB are needed, causing the storage requirements to be 1,178 MB.

For bitmaps, in the worst case compression scenario, each of the 1,000 elements requires both a fill-
word and a literal word, e.g., when a 0-fill word is required between each set bit. A word takes 4 bytes,
thus 8 bytes per elements and 8,000 bytes per bitmap. For each bitmap, an additional 4 bytes long integer
is required to keep track of the size of the data, thus adding 100 ∗ 4 bytes. Thus a bitmap cannot fit on

73

Using Fuzzy Song Sets in Music Warehouses

a page and has to be moved to an auxiliary toast table, where each bitmap is split into chunks of 2,000
bytes. In that case, 4 rows per bitmap attribute are required in the auxiliary table. Storage estimates
show that in the most pessimist case 1,472 MB are required to store the bitmaps. In the selected dataset,
183,184 pages are required to store the bitmaps. The total space taken by the WAH compressed bitmap
storage representation is therefore: 1,431 MB.

If the number of element increases, a similar storage technique using an auxiliary TOAST table is
required for the array data structure. As with bitmaps, data larger than 2,000 bytes is split into 2,000 bytes
chunks. Each array is therefore divided into 5 chunks, and 150,834∗5 chunks are needed. For each data
chunk, a 31 bytes long header has to be added. Since 8,168 bytes of storage are available per page, only
4 chunks can be stored per page and 188,543 pages are needed. The total size of the array data structure
is 1,472 MB when stored using a TOAST table.

Further compression of TOAST data using standard LZ algorithm can be performed. The compres-
sion ratios are data depending.

Table 7 shows the storage requirements for the three storage options. In addition, the space required
to index seed songs and similarity functions using a standard B-Tree and storage requirements for LZ-
compressed data are presented.

Our experiments show that the real size requirements match the estimates. While table are certainly
the most straightforward solution, they are a bad choice for data storage requirements and indexing pur-
poses. With respect to the payload, the arrays are very promising but suffer from an important overhead
that makes arrays and WAH compressed bitmaps very comparable in term of storage size. Furthermore,
since array elements are aligned on 8 bytes, compressing the array does not bring any storage benefit

Table 7. Comparison of the storage options

Size (MB)

Table Payload estimate
Overhead estimate
Total estimate
Real size
B-tree Index
Total

1,852
4,518
6,370
6,370
3,231
9,601

Array Payload estimate
Overhead estimate
Total estimate
Real size
Real size + LZ
B-tree Index
Total

666
511
1,178
1,178
794
3
1,181

WAH Bitmap Payload estimate 1,151

Overhead estimate 296

Total estimate 1,447

Real size 1,447

Real size + LZ 719

B-tree Index 3

Total 1,450

74

Using Fuzzy Song Sets in Music Warehouses

and adds unnecessary complexity. LZ compression works better on bitmaps, therefore creating a sen-
sible difference in favor of bitmaps; this is observation might, however, be data dependent. Finally, with
respect to the implementation of the two new data types, WAH-bitmaps are a more complicated data
structure to build; the compression requires some particular attention and the variable length nature of
the bitmap brings additional complexity.

Using identical storage estimates, we predict the size of tables, arrays, and bitmap with respect to
k. Considering that k elements are required in order for the data to be useful, we can thus choose what
data structure is the most appropriate. The results of the size estimates are shown in Figure 8. For all
values of k, tables are the worst solution. For k > 2,000, arrays and WAH-compressed bitmaps tend to
behave very similarly. For lower values of k, due to the data organization in pages, results vary sensibly
depending on k. However, arrays always keep a slight advantage.

FZsET FUNCTIONs AND OPERATORs

We now compare the array and bitmap storage structure with respect to the performances of their op-
erators.

WAH bitmap Operations

The original WAH compression method has been slightly adapted in order to manipulate bitmaps of
different lengths. First, the last word, i.e., the remainder of the uncompressed bitmap is stored as if the
bitmap is extended with extra unset bits to finish the last word. So a bitmap composed of: 10∗0’s, 21∗1’s,
and 4∗1’s becomes <001FFFFF> <78000000> and not <0001FFFF> <0000000F> as in the original
algorithm. This allows no particular treatment for the last word and allows expanding existing bitmaps
without any extra manipulations.

Logical operations on WAH-compressed bitmaps can be performed without decompressing the bit-
maps. Operations are performed by scanning both inputs word by word. If two fill words are met, the

Figure 8. estimated storage requirements including PostgreSQL overhead

75

Using Fuzzy Song Sets in Music Warehouses

result will be a fill word of type resulting from the operation; its length is the minimum length of the
two input fill words. If two literal words, or a literal and a fill word are met, the result will be a literal
corresponding to the operation.

Listing 1. Pseudo C implementation of the bitwise logical AND operator on two WAH compressed
bitmaps

struct wah32run_struct {
 unsignedint it; // iterator
 unsignedint data; // decompressed data
 unsignedint nWords; // group counter
 bool isFill;
};
staticinline void wah32_run_decode(wah32run run, unsigned int word) {
 if (WAH32_ISCOUNTER(word)) {
 run->data = (word > WAH32_ONECOUNTER ?
 WAH32_ALLONES : WAH32_ALLZEROES);
 run->nWords = word & WAH32_MASK_COUNTERVALUE;
 run->isFill = 1;
 }
else {
 run->data = word & WAH32_MASK_LITTERAL;
 run->nWords = 1;
 run->isFill = 0;
 }
}
// input: 2 bitmaps represented with 2 dynamic arrays of integers
// output: 1 bitmap represented with 1 dynamic array of integers
voidwah32_and(Intlist x, Intlist y, Intlist rtnBitmap) {
 unsignedint nWords = 0; // minimum counter
 wah32run xrun, yrun;
 xrun = wah32_run_init(); // initialize data struct
 yrun = wah32_run_init(); // initialize data struct
 while (xrun->it < intlist_size(x) && yrun->it < intlist_size(y))
{
 if (xrun->nWords == 0) // load a new word from x
 wah32_run_decode(xrun,*intlist_getp(x,xrun->it));
 if (yrun->nWords == 0) // load a new word from y
 wah32_run_decode(yrun,*intlist_getp(y,yrun->it));
 if (xrun->isFill && yrun->isFill) {
 // appends a fill word with counter = minimum counter
 nWords = min(xrun->nWords, yrun->nWords);
 wah32_appendFill(rtnBitmap, nWords,
 xrun->data & yrun->data);
 xrun->nWords -= nWords;
 yrun->nWords -= nWords;
 }
 else {
 // append a literal word to the bitmap
 wah32_appendLit(rtnBitmap, xrun->data & yrun->data);
 (xrun->nWords)--;
 (yrun->nWords)--;
 }
 if (xrun->nWords == 0)(xrun->it)++;
 if (yrun->nWords == 0)(yrun->it)++;
 }
 wah32_run_free(xrun);
 wah32_run_free(yrun);
}

76

Using Fuzzy Song Sets in Music Warehouses

Intersection and Union

The computation of the intersection or the union of two fuzzy song sets represented in arrays is performed
by a modified sort-merge. The arrays are first decompressed and sorted by element. In our experiment,
the sorting of the array with respect to its elements is done using the quicksort algorithm. Once sorted, the
membership degrees of identical elements are compared. For an intersection, if both elements are present,
the minimum membership degree is placed in the array; for a union, the maximum membership degree
of both elements or the membership degree of the existing element are placed in the return array.

The computation of the WAH union is performed as follows. In the WAH bitmap representation, the
elements are organized per membership degree. For each membership degree starting from the highest,
we perform a logical OR on the compressed bitmaps. To prevent future operations to set a bit already
set previously for another membership degree, we have to maintain a history of bit, also represented
using a WAH-bitmap. This costs two additional operations on the bitmaps, a compressed NOT-AND
to check that a bit was not previously set, and a compressed or, to maintain the history up to date as
we scan through the various membership degree. Pseudo C code for performing the union is shown in
Listing 2, results are shown in Figure 9. The computational cost of the “OR”, the “NOT-AND”, and the
“OR” for maintaining the set bit history are shown in Figure 9. The WAH union is the sum of the three
operations.

No update of the history is needed when handling the last bitmap, thus the CPU time reaches a ceil-
ing when no more elements are added to a bitmap corresponding to a level higher than 1. After 2000
elements, all the bitmaps have elements. New elements are added in the last bitmap corresponding to
the lowest membership degree.

For sparse bitmaps, the number of elements grows linearly with the number of elements. As the den-
sity of bits set increases, the proportion of literal words increases, thus increasing the likelihood of new
element being added to existing literals rather than splitting fill words into literals. Figure 10 shows the
average input and output length of the bitmaps used for benchmarking the CPU time of the “OR” opera-
tion. After 2000 elements, the length growth diminishes due to the increase in the number of literals.

The union of arrays is highly efficient for low numbers of elements. As expected, their performances
decrease as the number of elements increases. Additionally, the sort operation significantly increases
the computation time. Note, however, that the resulting set is sorted, thus preventing successive sort

Listing 2. Pseudo C implementation of the union of fuzzy song sets represented with two arrays of WAH
compressed bitmaps with membership degree ranging from 0 to 100

wahbitmap * union(wahbitmap *x, wahbitmap *y) {
 wahbitmap tmp, history; // temporary and history bitmaps
wahbitmap z[101]; // z is the return array of bitmap
 unsignedshort mu; // membership degree
 for (mu = 100; mu >= 2 ; mu--) {
 tmp = wah_or(x[mu],y[mu]); // logical or, save in tmp
 z[mu] = wah_notand(history,tmp); // check with history
 history = wah_or(history,tmp); // update history
 }
 // for mu = 1, no history update
 tmp = wah_or(x[mu],y[mu],); // logical or
 z[1] = wah_notand(history,tmp); // check with history
 return z;
}

77

Using Fuzzy Song Sets in Music Warehouses

operations to be necessary, e.g., in case the function is used for an aggregation. But, even in the best
case scenario, when no sorting of the elements is required, the CPU time spent on the union of arrays is
proportional to the number of elements in the sets. Bitmap operations, however, are linearly proportional
to the number of words in the input bitmap and not directly to number of elements, i.e., the number
of bits set. As the number of elements increases, bitmaps will keep a nearly constant processing time
where arrays will be proportional to the number of elements. Efficiency of the array and bitmaps union
operations on the song similarity dataset is shown in Figure 11.

Top

The top operation for the array data structure requires ordering the elements with respect to their member-
ship degrees. Since the number of membership degrees is limited, the sort is performed using a bucket
sort whose complexity is linear in the number of elements.

Figure 9. CPU time required for the various steps of a union of fuzzy song sets represented with bit-
maps

Figure 10. Input and output length depending on the number of song elements stored

78

Using Fuzzy Song Sets in Music Warehouses

For WAH bitmaps, the elements are already grouped by membership degree. The only operation
required is to scan the compressed bitmap, starting with the highest membership degree. As soon as k
elements are found, the scan stops. The number of operations is thus only depending on the number
of words needed to be read during the scan before k set bits are found. Unlike arrays, the operation is
independent from the total number of elements in the bitmaps. Pseudo C code for performing the top
is shown in Listing 3.

Finally, returning the resulting WAH bitmaps is performed simply by copying the input bitmaps and
truncating it at the right place. Sorting the array is a slower process as it requires copying elements one
by one. The CPU time spent for performing top operations depending on the size of the fuzzy song set
are shown in Figure 12.

Reduce

On an array, the reduce operation requires scanning the elements of the array; the computational cost
is therefore proportional to the number of elements. In a WAH bitmap, since the elements are already
organized per membership degree, the operation only consists of deleting the bitmaps corresponding to
membership degree lower than alpha from the input bitmap. Pseudo C code for performing the reduce
operation is shown in Listing 4. The computation time results are shown in Figure 13.

gENERALIZATION TO OTHER DOMAINs

The generalization from fuzzy song sets to other domains with respect to the storage solutions is im-
mediate for both arrays and WAH bitmaps.

For fuzzy sets requiring a fine level granularity, i.e., a high cardinality of membership degrees, the
number of bits used to represent the membership degree on uncompressed arrays grows logarithmically.
On compressed arrays, for fuzzy sets with at least one element per membership degree, no size differ-
ence will be noticed. Similarly, WAH bitmaps are well known to scale very well with high cardinality
attributes as their size is bounded by the total number of elements and not the number of bitmaps.

Figure 11. comparison between the performances of the union operator for arrays and WAH bitmaps

79

Using Fuzzy Song Sets in Music Warehouses

Listing 3. Pseudo C implementation of the top operation of a fuzzy song set represented by an array of
WAH compressed bitmaps with membership degree ranging from 0 to 100

wahbitmap * wah_top(wahbitmap * x, unsignedint k) {
 for (mu = 100; mu >= 0; mu--) {
 if (k > 0) wah_truncate_k(&k,x[mu]);
 else x[mu] = 0;
 }
 return x;
}
wahbitmap wah_truncate_k(unsignedint *k, wahbitmap x){
 while (xrun->it < bitmap_size(x)) {
 tmp = bitmap_get(x,xrun->it); // get new word
 wahrun_decode(xrun,*tmp); // decode the current word
 nWords += xrun->nWords; // update the word counter
 if (xrun->isFill && xrun->data == ALLONES) {
 if (setbitcount + 31 * xrun->nWords > *k) {
 // append trailing fills then a literal
 // set k = 0 and leave
 // ...
 }
 setbitcount += 31 * xrun->nWords;
 }
 else {
 if (setbitcount + bitCount(xrun->data) > *k) {
 // need to find which bit exactly is the k
 // override trailing bit with 0
 // set k = 0 and leave
 // ...
 }
 setbitcount += bitCount(xrun->data);
 }
 xrun->it++; // point to next word
 }
 *n-=setbitcount; // remaining number of bits not found
}

Figure 12. Comparison between the performances of the top operator for arrays and WAH bitmaps

80

Using Fuzzy Song Sets in Music Warehouses

Finally, the performance studies of the previously presented operators are directly applicable to fuzzy
sets. For other operators, e.g., intersections defined using different t-norms, new performance studies
are required. For WAH bitmaps, the computational time will be proportional to the number of logical
bitwise operations required on the compressed bitmaps.

CONCLUsION AND FUTURE WORK

As music recommendation systems are becoming increasingly popular, new efficient tools able to man-
age large collections of musical attributes are urgently needed. Fuzzy sets prove to be well suited for
addressing various problematic scenarios commonly encountered in recommendation systems. After
defining fuzzy song sets and presenting an algebra to manipulate them, we demonstrate the usefulness
of fuzzy song sets and their operators to handle various information management scenarios in the con-
text of a music warehouse. For this purpose we create two multidimensional cubes: the Song Similarity
Cube and the User Feedback Cube. Three data options, arrays, tables and WAH bitmaps, are envisioned
for representing fuzzy song sets. We proceed by discussing the impact of these data structures on the
storage space and operators performance.

With respect to storage, while arrays first show to be a very good choice from a theoretical point of
view, they suffer from a significant overhead. Estimates taking into account DBMS overheads show
that the differences between WAH bitmaps and arrays vanish as the number of elements grows. The

Listing 4. Pseudo C implementation of the reduce operation of a fuzzy song set represented by an array
of WAH compressed bitmaps with membership degree ranging from 0 to 100

wahbitmap * wah_reduce(wahbitmap *x, unsignedint alpha) {
 for (mu = alpha - 1; mu > 0; mu--) {
 x[mu] = 0;
 }
 return x;
}

Figure 13. comparison between the performances of the reduce operator for arrays and WAH bitmaps

81

Using Fuzzy Song Sets in Music Warehouses

different data organizations in WAH bitmaps and in arrays cause operators to behave very differently
depending on the number of elements. Arrays are very efficient when the number of elements remains
limited. However, due to frequent sorting operations, arrays behave poorly for larger sets. Requiring
more complex management, bitmaps suffer from a higher starting overhead that is mostly visible when
the number of elements is low. As the number of elements grows, operations on bitmap are faster than
on arrays. In our experiment with the largest number of elements, the Union operator on WAH bitmaps
is performed 5 times faster than on arrays, the speedup factor is 7 for the Top operator and 85 for the
Reduce operator.

Future research directions include the development of methods for the transparent manipulation of
arrays and bitmap and the automatic selection of a data structure option during the query plan optimiza-
tion phase. Further research on how to improve the WAH compression performance by using a longer
alignment without diminishing the compression ratio seems also promising, e.g., for 64 bits system
architecture.

ACKNOWLEDgMENT

This work was supported by the Danish Research Council for Technology and Production, through the
framework project “Intelligent Sound”1 (STVF No. 26-04-0092).

REFERENCEs

Antoshenkov, G. (1994). U. S. Patent No. 5363098. Washington, DC: U.S. Patent and Trademark Of-
fice.

Aucouturier, J.-J., & Pachet, F. (2002). Scaling up music playlist generation. In Proceedings of the IEEE
International Conference on Multimedia and Expo (ICME’02) (pp. 105-108).

Bordogna, G., Lucarella, D., & Pasi, G. (1994). A fuzzy object oriented data model. In Proceedings of
the IEEE Conference on Fuzzy Systems (pp. 313-318).

Bosteels, K., & Kerre, E. E. (2007). Fuzzy audio similarity measures based on spectrum histograms
and fluctuation patterns. In Proceedings of the International Conference on Multimedia and Ubiquitous
Engineering (MUE07) (pp. 361-365).

Chan, C.-y., & Ioannidis, Y. E. (1998). Bitmap index design and evaluation. In Proceedings of the ACM
SIGMOD 1998 (pp. 355-366). New York: ACM Press.

Codd, E. F. (1979). Extending the database relational model to capture more meaning. ACM Transac-
tions on Database Systems, 4(4), 397–434. doi:10.1145/320107.320109

Deliège, F., & Pedersen, T. B. (2006). Music warehouses: Challenges for the next generation of music
search engines. In Proceedings of the International Workshop on Learning the Semantics of Audio
Signals (pp. 95-105).

82

Using Fuzzy Song Sets in Music Warehouses

Deliège, F., & Pedersen, T. B. (2007). Using fuzzy song sets in music warehouses. In Proceedings of the
International Conference on Music Information Retrieval (ISMIR’07) (pp. 21-26).

Galindo, J., Piattini, M., & Urrutia, A. (2005). Fuzzy databases: Modeling, Design and implementation.
Hershey, PA: IGI Publishing. Intelligent sound. (n.d.). Retrieved from http://www.intelligentsound.org

Jensen, C. A., Mungure, E. M., Pedersen, T. B., & Sørensen, K. (2007). A data and query model for
dynamic playlist generation. In Proceeding of IEEE-MDDM (pp. 65-74).

Lehn-Schiøler, T., Arenas-García, J., Petersen, K. B., & Hansen, L. K. (2006). A genre classification
plug-in for data collection. In Proceedings of the International Conference on Music Information Re-
trieval (ISMIR’06) (pp. 320-321).

Pampalk, E. (2005). Speeding up music similarity. Report on the Music Information Retrieval Evalua-
tion EXchange (MIREX’05).

Pauws, S., & Eggen, B. (2001). PATS: Realization and user evaluation of an automatic playlist genera-
tor. In Proceedings of the International Conference on Music Information Retrieval (ISMIR’02) (pp.
179-192).

Pedersen, T. B., & Jensen, C. (2001). Multidimensional database technology. IEEE Computer, 34(12),
40–46.

Postgre, S. Q. L. (2008). Postgresql manual. Retrieved November 2008, from, http://www.postgresql.
org/docs/8.3/interactive/storage-toast.html

Prade, H., & Testemale, C. (1984). Generalizing database relational algebra for the treatment of incom-
plete or uncertain information and vague queries. Information Sciences, 34, 115–143. doi:10.1016/0020-
0255(84)90020-3

Rubenstein, W. B. (1987). A database design for musical information. In Proceedings of ACM SIGMOD
(pp. 479-490).

Wang, C., Li, J., & Shi, S. (2004). A music data model and its application. In Proceedings of the Inter-
national Conference on Multimedia Modeling (MMM’04) (pp. 79-85).

Wu, K., Otoo, E. J., & Shoshani, A. (2006). Optimizing bitmap indices with efficient compression. ACM
Transactions on Database Systems, 31(1), 1–38. doi:10.1145/1132863.1132864

Wynblatt, M. J., & Schloss, G. A. (1995). Control layer primitives for the layered multimedia data model.
In Proceedings of the ACM International Conference on Multimedia (pp. 167-177).

Zadeh, L. A. (1965). Fuzzy sets as a basis for a theory of possibility. Information and Control, 8, 338–353.
doi:10.1016/S0019-9958(65)90241-X

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory, 23(3), 337–343. doi:10.1109/TIT.1977.1055714

83

Using Fuzzy Song Sets in Music Warehouses

ENDNOTE

1 http://www.intelligentsound.org

84

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

Mining Association Rules
from Fuzzy DataCubes

Nicolás Marín
University of Granada, Spain

Carlos Molina1

University of Jaen, Spain

Daniel Sánchez
University of Granada, Spain

M. Amparo Vila
University of Granada, Spain

INTRODUCTION

As defined by OLAP Council (2007) “On-Line Analytical Processing (OLAP) is a category of software
technology that enables analysts, managers and executives to gain insight into data through fast, consis-
tent, interactive access to a wide variety of possible views of information that has been transformed from

AbsTRACT

The use of online analytical processing (OLAP) systems as data sources for data mining techniques has
been widely studied and has resulted in what is known as online analytical mining (OLAM). As a result
of both the use of OLAP technology in new fields of knowledge and the merging of data from different
sources, it has become necessary for models to support imprecision. We, therefore, need OLAM methods
which are able to deal with this imprecision. Association rules are one of the most used data mining
techniques. There are several proposals that enable the extraction of association rules on DataCubes
but few of these deal with imprecision in the process and give as result complex rule sets. In this chapter
the authors will present a method that manages the imprecision and reduces the complexity. They will
study the influence of the use of fuzzy logic using different size problems and comparing the results with
a crisp approach.

DOI: 10.4018/978-1-60566-858-1.ch004

85

Mining Association Rules from Fuzzy DataCubes

raw data to reflect the real dimensionality of the enterprise as understood by the user”. According to Han
(1997), the use of OLAP systems in data mining is interesting for the following three main reasons:

Data mining techniques need integrated, consistent and clean data to work with (Fayyad, Piatetsky-•
Shapiro, Smyth, & Uthurusamy, 1996). The data processing performed when building a data
warehouse guarantees these qualities in data and converts data warehouses into good data sources
for data mining.
Users frequently need to explore the stored data, selecting only a portion of them, and might want •
to analyze data at different abstraction levels (different levels of granularity). OLAP systems are
designed to ease these operations in a flexible way . The integration of data mining techniques
with OLAP provides the user with even more flexibility.
It is difficult to predict what knowledge is required a priori. The integrated use of • OLAP and suit-
able data mining methods allows the user to obtain this knowledge using different approaches and
representations.

Information in decision support systems usually has an ill-defined nature. The use of data from human
interaction may enrich the analysis (Gorry & Morton, 1971) and, nowadays, it is common for companies
to require external data for strategic decisions. These external data are not always compatible with the
format of internal information and even if they are, they are not as reliable as internal data. Moreover,
information may also be obtained from semi-structured or non-structured sources.

In addition, OLAP systems are now being used in new fields of knowledge (e.g. medical data) that
present complex domains which are difficult to represent using crisp structures (Lee & Kim, 1997). In
all these cases, flexible models and query languages are needed to manage this information.

These reasons, among many others, justify the search for multidimensional models which are able
to represent and manage imprecision. Some significant proposals in this direction can be found in the
literature (Laurent, 2002; Jensen, Kligys, Pedersen, & Timko, 2004; Alhajj & Kaya, 2003; Molina, Sán-
chez, Vila, & Rodríguez-Ariza, 2006). These proposals support imprecision from different perspectives.
In (Molina, Sánchez, Vila, & Rodríguez-Ariza, 2006), we propose a fuzzy multidimensional model that
manages imprecision both in facts and in the definition of hierarchical relationships. These proposals
organize imprecise data using DataCubes (imprecise DataCubes) and it is therefore necessary to develop
data mining techniques that can work over these imprecise DataCube models.

Our aim in this chapter is to study the influence of using fuzzy logic in the scalability of a method to
extract association rules from a fuzzy multidimensional model that can represent and manage impreci-
sion in different aspects: COGARE. As we have already mentioned, previous proposals in the literature
are directed towards obtaining as many associations as possible. However, they produce complex results
(e.g. a high number of rules, rules that represent the same knowledge at different detail levels, etc.). In
contrast, this proposal has two main goals:

Firstly, to manage data imprecision throughout the entire process.•
Secondly, to reduce the complexity of the final result using both the fuzzy concepts and the hier-•
archical relation between elements, without reducing the quality of the rule set.

In the literature there are some other approaches to reduce the complexity of the results (closed
itemsets, maximal itemsets, etc.) but they work on another way because these methods try to reduce the

86

Mining Association Rules from Fuzzy DataCubes

number of rules shown to the user but been able to recover all the association rules. Our approach will
try to reduce the global number of association, not only the way to represents them.

During all the process fuzzy logic is used. This introduces complex calculation along with the high
time consuming process of data mining. What we want to do in this chapter is study the influence of
the use of the fuzzy logic in the process of extraction association rules over fuzzy DataCubes and the
overload.

Next sections present the data mining method proposed, and after that, the data used for the study
and the results of the experiments.

AssOCIATION RULE ExTRACTION

In this section, we will briefly describe the main published approaches for association rule extraction.
We will first discuss classical methods. As the multidimensional models usually define hierarchies, the
multi-level association methods are interesting when studying the association rule extraction over them.
The final subsection introduces the proposed method to work on both crisp and fuzzy DataCubes.

Association Rules

Agrawal et al. (Agrawal, Imielinksi, & Swami, 1993) formalized the problem of association rule ex-
traction. Let I= {i1,i2, ..., im} be a set of literals called items and D be a set of transactions, where each
transaction T is a set of items such that T⊆I. A transaction T contains the set of items X if X ⊆T.

Definition 1. Let I= {i1,i2, ..., im} be a set of literals and D be a set of transactions defined over I. An
association rule is an implication X→Y, where X⊂I, Y⊂I, and X∩Y = ∅.

The quality of the rules is usually measured in terms of the confidence and the support of the rule.
The confidence is computed as the percentage of transactions that contain both X and Y with respect
to the transactions that contain X, while the support of the rule is the percentage of transactions that
contain XY in the entire dataset. First approaches considers interesting only the rules with a confidence
and support greater than a threshold. These rules are called strong rules.

The association rule extraction process is divided into two phases:

Discover the frequent item sets, i.e. the sets of items with a support greater than a given •
threshold.
Build the association rules using the previously obtained frequent item sets.•

Since the first step is the most time-consuming, there are proposals which focus on the optimization
of the frequent item set calculation (Agrawal & Sritkant, 1994; Park, Chen, & Yu, 1995; Brin, Motwani,
Ullman, & Tsur, 1997; Savasere, Omiecinski, & Navathe, 1995; Han, Pei, & Yin, 2000).

Multiple-Level Association Rules

The use of taxonomies over the data is interesting because the desired associations may not appear at
the most detailed level but at higher levels. Researchers have also paid attention to this approach, and a
first proposal (Srikant & Agrawal, 1995) applies a rule extraction process to all the levels. The authors

87

Mining Association Rules from Fuzzy DataCubes

define an interest measure that is used to prune the rule set. In this way, a rule is deleted if a rule defined
at a higher level exists and the first does not give more information. This approach considers the same
support threshold for all the levels.

When the taxonomy is complex or when a relatively high number of levels is considered, a high
number of rules appears. Let us explain this with a naive example. Figure 1 represents a possible tax-
onomy over data. Let us suppose that the item set {Age is 13, Date is 05/22/2006} is frequent; then all
the items that group one of the values will be frequent, and all the combinations of these values will
also be frequent.

This circumstance will imply that the following item sets will be frequent: {Young, Date is 05/22/2006},
{Age is 13, May}, {Young, May}, {No legal age, Date is 05/22/2006}, {No legal age, May}, {Age is 13,
Year 2006}, {Young, Year 2006} and {No legal age, 2006}.

Therefore, for a single item set we obtain another 8 frequent item sets that represent exactly the same
information at different abstraction levels. When the method finishes, it will produce a high number of
rules that are redundant (i.e. they represent the same information at different abstraction levels). This
fact only increases the complexity for the user.

The method uses an interesting measure to reduce redundant rules if other rules at a higher level give
at least the same information. However, it allows redundant rules if the concrete ones are of a higher
quality.

Han and Fu (1995) proposed a top-down approach using a single taxonomy: an item set is considered
to be frequent if the support is greater than a threshold and all the ancestors are also frequent. The items
belonging to an item set are all defined at the same detail level. Later the authors adjust the algorithm
to work with different details level (1999). The authors used different support thresholds for each level
that must be established by the user (if the taxonomy is complex, this involves a large number of pa-
rameters), and do not consider multiple taxonomies over the items. Thus, if the domain is complex, it
may not be modeled well.

Shen and Shen (1998) proposed another method that extracts all the strong rules which are defined
at all the combinations of detail levels using different taxonomies, considering the same threshold. Yen
(Yen, 2000) used a graph structure to obtain the relationships between elements at all the detail levels.
Both approaches present the same problems as those mentioned for Srikant and Agrawall’s proposal: a
large number of rules with redundant information.

Figure 1. Frequent item sets at different levels using the same support threshold

88

Mining Association Rules from Fuzzy DataCubes

The method proposed by Lui and Chung (2000) uses a bottom-up approach. In this case, the method
considers two infrequent item sets of the same size with common items, and generalizes them to a new
one, which is a candidate frequent item set in a second stage. The support threshold for each item set
is calculated according to a proposed generality measure. As the generalization process is applied only
once, if the relationships appear at higher levels, the method will not discover them.

Another approach to association rule extraction using taxonomies is attribute-oriented induction
(AOI). In this case, the taxonomies are used to raise the abstraction of the items before the process is
applied. In line with this idea, several methods have been proposed (Han, Cai, & Cercone, 1993; Muyeba
& Keane, 2000) and these have recently been extended to use fuzzy hierarchies (Angryk & Petry, 2005).
The idea is to reduce the number of rules decreasing the number of items to consider. The main problem
of all these approaches is that since generalization is applied before rule extraction, information is lost
in the process.

Association Rules over DataCubes

Let us now briefly describe some proposals for association rule extraction on DataCubes. The first ap-
proach can be found in (Kamber, Han, & Chiang, 1997). The authors proposed a method that works over
a very simple multidimensional model (there are neither hierarchies on the dimensions nor grouping
mechanisms to change the granularity of the data) and which focuses on frequent item set calculation
to speed up the process using DataCube operations.

Zhu (1998) proposed a more complex approach, with the definition of three different associations:

• Intra-dimensional association: the association is found between elements in the same dimension
(item dimension), using another dimension to calculate the support (transaction dimension).

• Inter-dimensional association: in this case, the associations hold between elements in different
dimensions.

• Hybrid association: this association is the result of merging the two previous types. The method
first looks for intra-dimensional frequent item sets and then for inter-dimensional frequent item
sets, merging the resulting sets in order to obtain the rules.

In all the cases, the method works over a single abstraction level, and the support threshold is
therefore a single value. For multi-level association rules, the user must run the method for all the level
combinations required, defining the same number of support thresholds as executions (something which
may be very complex for the user) or using the same value for the entire process. As the final result
is the union of all of the obtained rule sets, there may be a high number of rules and repeated associa-
tions expressed at different abstraction levels (as in Srikant and Agrawal’s proposal as mentioned in the
previous section).

Finally, Kaya and Alhajj (2003; 2005) propose a method that works over a simple fuzzy multidimen-
sional model. The proposed DataCube structure defines fuzzy relations at the lowest abstraction level and
does not support imprecision in hierarchies or facts, as well as the normal operations over DataCubes (e.g.
changing the detail level, reducing the dimensionality of the DataCube, etc.). Under these circumstances,
users would have less flexibility since they cannot explore the data. The proposed method extracts as-
sociation rules at all abstraction levels, obtaining intra-dimensional and inter-dimensional associations
as previously presented. The user must establish a support threshold for each level in the DataCube and

89

Mining Association Rules from Fuzzy DataCubes

the threshold for an item set will be the minimum of the threshold established for each item. The authors
use an interesting measure to reduce certain problems of confidence when measuring the quality of the
rules, but do not control the redundant associations defined at different abstraction levels.

THE FUZZY MULTIDIMENsIONAL MODEL

Although there is no standard multidimensional model, we shall briefly introduce the common character-
istics of the first models proposed in literature. In classical multidimensional models, we can distinguish
two different types of data: on the one hand, we have the facts being analyzed, and on the other, the
dimensions that are the context for the facts. Hierarchies may be defined in the dimensions (Agrawal,
Gupta, & Sarawagi, 1995;Kimball, 1996;Cabibbo & Torlone, 1997;Cabibbo & Torlone, 1998).

The different levels of the dimensions allow us to access the facts at different levels of granularity.
In order to do so, classical aggregation operators are needed (maximum, minimum, average, etc.). Other
models, which do not define explicit hierarchies on the dimensions, use other mechanisms to change
the detail level (Li & Wang, 1996; Datta & Thomas, 1999). The model proposed by Gray et al. (Gray,
Chaudhuri, Bosworth, Layman, Reichart, & Venkatrao, 1997) uses a different approach. This model
defines two extensions of the relational group by (rollup and cube) that are used to group the values
during the aggregation process.

As the models that define hierarchies usually use many-to-one relations, one element in a level can
only be grouped by a single value of each upper level in the hierarchy. This makes the final structure of a
DataCube rigid and well defined in the sense that given two values of the same level in a dimension, the
set of facts relating to these values have an empty intersection. The normal operations (roll-up, drill-down,
dice, slice, and pivot) are defined in almost all the models. Eventually, some of the models define other
operations in order to provide the end user with additional functionality (Agrawal, Gupta, & Sarawagi,
1995; Gray, Chaudhuri, Bosworth, Layman, Reichart, & Venkatrao, 1997; Datta & Thomas, 1999).

A Fuzzy Multidimensional structure

In this section, we will briefly introduce a fuzzy multidimensional model which we have already de-
veloped to manage data imprecision (Molina, Sánchez, Vila, & Rodríguez-Ariza, 2006). The model is
provided with explicit hierarchies that can use fuzzy relations between elements in two levels.

Definition 2. A dimension is a tuple d=(l,≤d,l┴,l
┬

) where l={li, i=1,…,n} so that each li is a set of
values li={ci1, ..., cin} and li∩lj=Ø if i≠j, and ≤d is a partial order relation between the elements of l so that
li ≤d lk if ∀cij ∈li ⇒∃ckp ∈lk|cij ⊆ckp. l┴ and l

┬
 are two elements of l so that " Îl l

i
l l

d i^ £ and l l
i d
£ T

We use level to denote each element li. In order to identify level l of dimension d we will use d.l.
The two special levels l⊥ and l

┬
 will be called the base level and top level, respectively. The partial

order relation in a dimension is what gives the hierarchical relation between the levels. An example of
dimension on the ages can be found in Figure 2.

The domain of a dimension will be the set of all the values that appear in all the defined levels.
Definition 3. For each dimension d, the domain is dom d l

i
() = 

In the above example, the domain of the dimension Age is dom(Age)= {1, ..., 100,Young,Adult,Old,
Yes,No,All}.

90

Mining Association Rules from Fuzzy DataCubes

Definition 4. For each li, the set

H l l l l l l l l l
l j j i j d i k j d k d ii
= ¹ Ù £ ÙØ$ £ £{ / }

is called the set of children of level li.
This set defines the set of all the levels which are below a certain level (li) in the hierarchy. In ad-

dition, this set gives the set of levels whose values or labels are generalized by the ones included in li.
Using the same example of the dimension on the ages, the set of children in level All is HAll = {Group,
Legal age}. In all the dimensions defined for the base level, this set will always be empty (as the defini-
tion shows).

Definition 5. For each li the set

P l l l l l l l l l
l j i j i d j k i d k d ji

= ¹ Ù £ ÙØ$ £ £{ / }

and we call this the set of parents of level li.
For a certain level, this set shall give all the levels that group or generalize the values of the level. In

the hierarchy we have defined, the set of parents in level Age is PAge={Legal age, Group}. In the case of
the top level of a dimension, this set shall always be empty.

In the case of fuzzy hierarchies, an element can be related to more than one element in the upper
level and the degree of this relationship is in the interval [0,1]. The kinship relationship defines this
degree of relationship.

Definition 6. For each pair of levels li and lj such that lj ∈ Hi, we have the relation

m
ij i j

l l: ,´ ® é
ëê

ù
ûú0 1

and we call this the kinship relationship.
The degree of inclusion of the elements of a level in the elements of their parent levels can be defined

using this relation. If we only use the values 0 and 1 and we only allow an element to be included with
degree 1 in a unique element of its parent levels, this relation represents a crisp hierarchy.

Figure 2. Example of hierarchy over ages

91

Mining Association Rules from Fuzzy DataCubes

If we relax these conditions and we allow values to be used in the interval [0,1] without any other
limitation, we have a fuzzy hierarchical relationship. This allows several hierarchical relations to be
represented in a more intuitive way. An example can be seen in Figure 3 where we present the group
of ages according to linguistic labels. Furthermore, this fuzzy relation allows hierarchies to be defined
where there is imprecision in the relationship between elements of different levels. In this situation, the
value in the interval shows the degree of confidence in the relation.

Using the relation between elements in two consecutive levels, we can define the relation between
each pair of values in different levels in a dimension.

Definition 7. For each pair of levels li and lj of dimension d such that l l l l
i d j i j
£ Ù ¹

h
m

m hij

ij j l

l H c l ik kj
a b

a b si l H

a c c b ot
i

k li k

(,)
(,)

((,) (,))=
Î

Å Å Ä
Î Î

hherwise

ì
í
ïïï

î
ïïï

where ⊗ and ⊕ are a t-norm and a t-conorm, respectively, or operators from the families MOM and
MAM defined by Yager (1994), which include the t-norms and t-conorms, respectively. This relationship
is called the extended kinship relationship.

This relation gives us information about the degree of relationship between two values in different
levels within the same dimension. In order to obtain this value, it considers all the possible paths between
the elements in the hierarchy. Each one is calculated by aggregating the kinship relationship between
elements in two consecutive levels using a t-norm. The final value is then the aggregation of the results
of each path using a t-conorm.

By way of example, we will show how to calculate the value of ηAll,Age(All, 25). In this situation, we
have two different paths:

• All -Legal age -Age. In Figure 3.a it is possible to see the two ways of reaching 25 from All
through the level legal age. The result of this path is (1 ⊗ 1) ⊕ (1 ⊗ 0).

• All -Group -Age. This situation is very similar to the previous one. In Figure 3.b it is possible to
see the three different paths going through the level Group. The result of this path is (1 ⊗ 0.7) ⊕
(1 ⊗ 0.3) ⊕ (1 ⊗ 0).

Figure 3. Example of the calculation of the extended kinship relation. a) path All-Legal Age-Age b) path
All-Group-Age

92

Mining Association Rules from Fuzzy DataCubes

We must now aggregate these two values using a t-conorm in order to obtain the final result. If we
use the maximum as t-conorm and the minimum as t-norm, the result is

((1 ⊗ 1) ⊕ (1 ⊗ 0)) ⊕ ((1 ⊗ 0.7) ⊕ (1 ⊗ 0.3) ⊕ (1 ⊗ 0)) =

(1 ⊕ 0) ⊗ (0.7 ⊕ 0.3 ⊕ 0) = 1 ⊕ 0.7=1

Thus, the value of ηAll,Age(All, 25) is 1, which means that the age 25 is grouped by All in level All
with grade 1.

Definition 8. We say that any pair (h, α) is a fact when h is an m-tuple on the attribute domain we
want to analyze, and α ∈ [0, 1].

The value α controls the influence of the fact in the analysis. The imprecision of the data is managed
by assigning an α value that represents this imprecision. When we operate with the facts, the aggregation
operators must manage these values in the computations. The arguments for the operator can be seen
as a fuzzy bag (Yager, 1986; Delgado, Martin-Bautista, Sanchez, & Vila, 2003) since they are a set of
values with a degree in the interval [0,1] that can be duplicated. The result of the aggregation must also
be a fact. So, in the fuzzy case, the aggregation operators may be defined as follows:

Definition 9. Let B X() be all the possible fuzzy bags defined using elements in X , P X() be the
fuzzy power set of X, and Dx be a numeric or natural domain. We define an aggregation operator G as a
function G B X P X: () () [,] ® ´ 0 1

When we apply an aggregation operator, we summarize the information of a bag of values into a
single value and it is not always possible to undo this operation. If we want to undo operations that
reduce the level of detail in a DataCube, we therefore need something to prevent this problem and so
we define the object history that stores a DataCube’s aggregation states.

Definition 10. An object of type history is the recursive structure

H

H A l F G Hn
b

n

0

1

=

=+

W

(, , , ,)

where:

Ω is the recursive clause,•
• F is the fact set,
• lb is a set of levels (l1b, ..., lnb),
• A is an application from lb to F (A:lb → F),
• G is an aggregation operator.

This structure enables detail levels of the DataCube to be stored while it is operated on so that it may
be restored to a previous level of granularity.

We can now define the structure of a fuzzy DataCube. A DataCube can be considered to be the union
of a set of facts (the variables to analyze) and a set of dimensions (the context of the analysis). In order
to report the facts and dimensions, we need a correspondence which for each combination of values of

93

Mining Association Rules from Fuzzy DataCubes

the dimension gives us the fact related to these coordinates in the multidimensional space defined by
the dimensions.

In addition to these DataCube features, we also need the levels that establish the detail level that the
facts are defined with, and a history-type object that keeps the aggregation states during the operations.
The DataCube is therefore defined in the following way:

Definition 11. A DataCube is a tuple C =(D, lb,F,A,H) such that

• D =(d1, ..., dn) is a set of dimensions,
• lb =(l1b, ..., lnb) is a set of levels such that lib belongs to di,
• F = R ∪∅ where R is the set of facts and ∅ is a special symbol,
• H is a history-type object,
• A is an application defined as A:l1b×...×lnb →F that gives the relation between the dimensions and

the facts defined.

If for a a a
n

= (,...,)
1

, A a()


= Æ , this means that no fact is defined for this combination of values.
Normally, not all the combinations of level values have facts. This situation is shown by the symbol ∅
when application A is defined.

The basis of the analysis will be a DataCube defined at the most detailed level. We shall then refine
the information while operating on the DataCube. This DataCube is basic.

Definition 12. We say that a DataCube is basic if lb =(l1⊥, ..., ln⊥) and H=Ω.

Operations

Once we have the structure of the multidimensional model, we need the operations to analyze the data
in the DataCube. Over this structure we have defined the usual operations of the multidimensional
model:

Roll-Up

Going up in the hierarchies to reduce the detail level. In this operation we need to know the facts related
with each value in the desired level. The set of facts is obtained using the kinship relationships as fol-
lows:

Definition 13. For each value cij belonging to lr, we have the set

F
F c l c c if l l

h h F cA c
c

c
l H

kp k ik ij kp r b

ij

kp

k lr=
Î Ù > ¹

Î Ù $
Î


 

/ (,)

/ (

m 0

)) ={ } =

ì

í
ïïïï

î
ïïïï h if l l

r b

where c c c
b ij b

n= (,..., , ...,)1 .
Once we have the facts for each value, we must aggregate them to obtain a new fact according to the

new detail level. The influence of each fact in the aggregation will depend on the relation of the fact with
the value considered and the α value assigned to the fact. Fuzzy operators are needed for this process.

94

Mining Association Rules from Fuzzy DataCubes

This operation may be defined in the following way:
Definition 14. The result of applying roll-up on dimension di, level lir (lir ≠ li⊥), using the aggregation

operator G on a DataCube C=(D,lb,F,A,H) is another DataCube ¢ = ¢ ¢ ¢ ¢C D l F A H
b

(, , , ,) where

• ¢ =l l l l
b b ir nb

(,..., , ...,)
1

,

• ¢ = Î Ù $A c c c G h h F c A c c c
b r

i
b
n

c b
i

b b
i

b
r
i(,..., , ...,) | (,..., , ...,1 1 nn h) ={ }() ,

• F’ is the range of A’,
• H’=(A,lb,F,G,H).

Drill-Down

This operation implies go down in the hierarchies to increase the detail level. In this operation, we use
the history-type object. Since this structure stored the initial aggregation state when roll-up operations
were applied, by using the information stored in this structure we can therefore get to a previous detail
level. The operations may therefore be defined as:

Definition 15. The result of applying drill-down on a DataCube C=(D, lb,F,A,H) where
H A l F G H

b
= ¢ ¢ ¢ ¢ ¢(, , , ,) is another DataCube ¢ = ¢ ¢ ¢ ¢C D l F A H

b
(, , , ,) .

Dice

This operation consists on a projection over the DataCube using a condition. In this operation we must
identify the values in the dimension that satisfy the condition or that are related with a value that satisfy
the condition. This relation is obtained using the kinship relationship. Once we have reduced the values
in the dimension, we must eliminate the facts for which the coordinates have been removed.

Definition 16. The result of applying dice with the condition β on level lr of dimension di in a Data-
Cube C =(D, lb,F,A,H) is another DataCube ¢ = ¢ ¢ ¢C D l F A

b
(, , , ,)W where

• ¢ = ¢D d d d
i n1

, ..., , ..., with ¢ = ¢ £d l l l
i i d bi

(, , ,)T where ¢ = £l l l l
j b d j
| and

¢ ¢ =

Î Ù{ } ¢ =

Î Ù{d l

c c l c if l l

c c d l c
i j

jk jk j jk j r

jk jk i j rj jk
.

| ()

| . ()

b

d }} ¢ £

Î Ù{ } £ ¢

ì

í

ïïïïï

î

ïïïïï

if l l

c c d l c if l l
j d r

jk jk i j jr jk r d j
| . ()d

where d b h
ij r r r ij r

c c l c c c() () (,)= $ Î Ù > 0 ,

• ¢ = Î ¢ ¢ Ù Ù Î ¢ ¢ ÙA c c c h c d l c d l
b b

i
b
n

b b b
n

n b
(,..., , ...,) (,) |1 1

1
a AA c c h

b b
n(,...,) (,)1 = a ,

• F’ is the range of A’.

95

Mining Association Rules from Fuzzy DataCubes

Slice

The slice operation reduced the dimensionality of the DataCube. When we apply this operation, we
eliminate one of the DataCube’s dimensions and so we must adapt the granularity of the facts using a
fuzzy aggregation operator.

Definition 17. The result of applying slice on dimension di using the aggregation operator G in a
DataCube C =(D,lb,F,A,H) is another DataCube ¢ = ¢ ¢ ¢C D l F A

b
(, , , ,)W where

• ¢ = - +D d d d d
i i n

(,..., , , ...,)
1 1 1

,
• ¢ = - +l l l l l

b ib i b i b nb
(,..., , , ...,)

1 1
,

• ¢ = $- + -A c c c c G h c A c c c
b b

i
b
i

b
n

b
i

b b
i

b
(,..., , , ...,) | (,..., ,1 1 1 1 1 1,, , ...,)c c h

b
i

b
n+ ={ }()1 ,

• F’ is the range of A’.

Pivot

This operation implies to change the order of the dimensions. This operation does not affect the facts,
only the order of the coordinates that defined them.

Definition 18. The result of applying pivot on dimensions di and dj in a DataCube C=(D,lb,F,A,H) is
another DataCube ¢ = ¢ ¢ ¢C D l F A

b
(, , , ,)W where

• ¢ = - + - +D d d d d d d d d
i j i j i j n

(,..., , , , ..., , , , ...,)
1 1 1 1 1

,
• ¢ = - + - +l l l l l l l l l

b b l b jb i b j b ib j b nb
(,..., , , , ..., , , , ...,)

1 1 1 1 1
,

• ¢ =- + - +A c c a c c c c c A
b b

i
b
i

b
i

b
j

b
j

b
j

b
n(,..., , , , ..., , , , ...,) (1 1 1 1 1 cc c a c c a c c

b b
i

b
j

b
i

b
j

b
i

b
j

b
n1 1 1 1 1, ..., , , , ..., , , , ...,)- + - +

The properties of these operations have been studied in (Molina, Sánchez, Vila, & Rodríguez-Ariza,
2006).

COMPLExITY MEAsURE

Since our approach is supposedly driven by the desire to reduce the complexity of the obtained results,
we therefore need to measure a rule set’s complexity in order to compare different results and decide
which is the least complex. We follow a similar approach to Atzmueller et al. (Atzmueller, Baumeister,
& Puppe, 2004) by considering two factors for the complexity:

Number of rules: the greater the number of rules in the results, the greater the complexity for the •
user. The following section will describe a function to measure this factor.
Complexity of the rule elements: very specific values (e.g. dates) result in more specific informa-•
tion but are more difficult for the user to understand than elements in higher abstraction levels
(e.g. months instead of specific dates). Next sections present the functions for measuring the ab-
straction of a rule and a set of rules.

96

Mining Association Rules from Fuzzy DataCubes

Number of Rules

As we have already mentioned, a large number of rules will increase the complexity and make the rule
set harder to understand. We want to measure the complexity as a value in the [0,1] interval. A rule set
with a complexity value which is close to 0 will have very few rules while a value which is close to 1
will correspond to a set with a high cardinality. Under these circumstances, a function can be considered
to measure the complexity if it satisfies the following definition:

Definition 19. A function CNR defined as

C : [,]N ® 0 1

is a complexity function based on the number of rules when CNR(x) ≥ CNR(y), for all x and y such that
x>y.

All the functions with this behavior can be used to measure the complexity produced by the number
of rules. Nevertheless, this definition does not take into account the size of the problem, i.e. the number
of items. If we get a result with 100 rules for a problem that involves relations among 100 items, we can
intuitively conclude that this set presents less complexity than another with the same number of rules
for a problem with 10 items. This is why we think that the complexity function should also depend on
the size of the problem.

Similarly, two result sets for the same problem with either 4000 or 5000 rules will be about as difficult
to understand. If, however, the sets have either 10 or 100 rules, although the difference in cardinality
is less than in the other case, there will be a greater difference in complexity from the user’s point of
view. According to this intuitive behavior, the function should not present a linear behavior. Taking this
discussion into account, the following function is proposed:

Definition 20. Let N be the number of items in the dimensions of the DataCube C. The complexity
of the rule set CR over the DataCube C is a function CNR:N → [0,1] with the value

C C e
NR R

C

N
R

() = -
-

1

Figure 4 shows the behavior of the function for three different problem sizes.

Abstraction

The abstraction of an item will depend on the level defined. In a DataCube, elements at higher levels
will present a higher abstraction than elements at lower ones, since the first ones group the second ones.
Thus, intuitively, an abstraction function would behave in the following way.

Definition 21. Let D be a dimension. A function A defined as

A: dom(D) → [0, 1]

is an abstraction function if it satisfies the following properties:

97

Mining Association Rules from Fuzzy DataCubes

If • c l c l l P
i i j j j li
Î Ù Î Ù Î then A(cj) ≥ A(Ci) (the abstraction increases if we go up through the

hierarchies defined in the dimension).
If • ci ∈ l⊥ then A(ci)=0 (all the elements at the most detailed level (the base level of the dimension)
have the lowest possible abstraction).
If for • ci ∈ li we get ∀c⊥ ∈ l⊥: ηi⊥(ci,c⊥)=1 then A(ci)=1 (an element that groups all the elements in
the base level has the highest possible abstraction).

In view of the established properties, the abstraction function must take into account the granularity of
the elements. One possibility is to define the abstraction according to the levels in the hierarchy. In this
case, all the items in a level will share the abstraction value. This situation, however, can present ceratin
problems because elements at the same level will not always have the same granularity. For example, if
we consider a level to define Legal age, this level has two values: Yes and No. In Spain, both values will
group different numbers of ages (the value No groups the ages {1,...,17} and Yes the remaining values
{18,...100,...}) so both have different levels of granularity, and naturally, different levels of (Yes abstrac-
tion group more values so they appear to present higher abstraction than No). Therefore, the proposed
abstraction function considers each element independently of its level but measures its granularity. The
following definition presents the abstraction function we have chosen.

Definition 22. A is an abstraction function defined as A:dom(D) → [0, 1] when for an element c l
i i
Î

the value is

A c
V c

li

l ii()
()

=
^

where |l⊥| represents the number of elements in the base level of the dimension and

Figure 4. Complexity function due to number of rules

98

Mining Association Rules from Fuzzy DataCubes

V c
c c if l l

otherwise
l i

i i
c l

i

i
()

(,)
=

¹ì

í
ïïï

î
ïïï

^ ^
" Î

^
^ ^

å h

0

It should be noted that we consider the number of elements in the base level grouped by value in
order to define the abstraction. This approach is similar to the one proposed by Lui and Chung (Lui &
Chung, 2000) but considering fuzzy hierarchical relations.

The abstraction of a rule would depend on the items that appear in the rule. Once we know the ab-
straction of each of the items, the abstraction of the whole rule is defined as the average abstraction of
the items that define the rule.

Definition 23. Let R be a rule with the elements I1, ..., IN and A an abstraction function. The abstrac-
tion of the rule is

A
A I

NR

i
i

N

= =
å ()

1

In order to measure the abstraction of a rule set, we consider the abstraction of each rule that appears
in the set. Not all the rules, however, have the same importance and some may be more representative
of the data set according to their support. In order to measure the abstraction of the set, we consider the
abstraction of each rule weighted by the support of the rule. Under these considerations, the abstraction
of a rule set is defined as follows.

Definition 24. Let CR = {R1,..., RN} be a rule set with associated support sop(R1), ..., sop(RN) and A
be an abstraction function. The abstraction of CR would be

A
A sop R

sop R
C

R i
i

N

i
i

NR

i

= =

=

å

å

()

()

1

1

global Measure

In previous sections, we have defined two functions which are useful for measuring the complexity due
to the number of rules and to the abstraction of a result rule set. In order to define a global measure, we
now need to combine both functions to obtain a value in [0, 1] that represents the complexity of the set
according to both factors:

Definition 25. Let α ∈ [0, 1]. We define the global complexity of a rule set CR as

C C C C A
global R NR R CR

() () () ()= ´ + - ´ -a a1 1

Depending on the value of α, the function controls the relative importance of each complexity mea-
sure in the final value. The abstraction of the items will help in the comprehension of the rules but the

99

Mining Association Rules from Fuzzy DataCubes

number of rules may have a greater influence on the complexity for the final user (intuitively, a low
number of rules with concrete values will be easier to understand than a high number of rules defined
at high abstraction levels). Therefore, we suggest a value of α =0.6.

QUALITY MEAsUREs

The method we used is based on the complexity of the result obtained, but controlling the quality loss
of the rule set. Thus, the method must use a quality measure. We first describe the measures that are
conventionally used. Later, a new way of computing the quality of a rule set based on these measures
is introduced.

Classical Measures

In this section, we will present some of the main quality measures used in the literature. We will only
introduce the expression and briefly comment on the characteristics of these measures. For a deeper
study, the reader can consult comparative studies about the performances of these measures in (An &
Cercone, 2004; Dean & Famili, 1997; Pedrycz, 2004; Tan & Kumar, 2000). All the measures can be
expressed in terms of relative frequencies. If R:A→C is a rule, Table 1 shows the contingency table
with relative values.

Consistency is the normal quality measure used in association rule extraction, called in this field the
Confidence of the rule. Its aim is to measure specificity, but various problems arise when very frequent
items appear.

Coverage measures the extent to which the domain of the consequent is covered by the rule (the maxi-
mum value is reached when all the elements that satisfy C are covered by the rule). Both the Confidence
and Coverage, measure two important factors for the rule quality, but if we use them separately we can
reach bad conclusions (rules that cover few elements in the case of Consistency, or a high number of
false positives when using the Coverage). To improve the performance, certain authors have proposed a
combination of both measures: Michalski (1990) uses a weighted combination which concedes greater
importance to Consistency when it reaches high values, and Brazdil and Torgo (1990) propose a com-
bination that adjusts the Consistency according to the Coverage.

Another classical measure is the Certainty factor, proposed by Shortliffe and Buchanan (1975). This
has been used in induction systems and measures both direct relations (antecedent implies the conse-

Table 1. Contingency table with relative values

Satisfy C Not satisfy C

Covered by R
f
rc

f
rc

f
r

Not covered by R
f
rc

f
rc

f
r

f
c

f
c

1

100

Mining Association Rules from Fuzzy DataCubes

quent) and indirect relations (when the antecedent appears, it implies no occurrence of the consequent).
This measure has also been used in association rules (Delgado, Marin, Sanchez, & Vila, 2003) because
it does not present some of the problems of the Confidence.

Agreement measures use the main diagonal of the contingency table, and Cohen and Coleman’s
measures are defined in this way. Bruha (1996) proposed two measures that attempt to combine the best
characteristics of both. Measures from other knowledge fields have also been used to compute the qual-
ity of the rules, such as Information Gain, Logical Sufficiency,and Discrimination. In some situations,
the measures lack a formal analysis of the dependencies and are empirically defined. An example of
these measures is IMAFO (Famili, 1990) which combines two measures for the accuracy and coverage
of the rules.

Table 2 gathers the expressions of the measures based on the contingency values.

Quality Measure for a Rule set

Although all of the previously presented quality measures compute the quality of a given rule, we need to
measure the quality of an entire rule set. As we have previously done with abstraction, we now propose a
general measure that takes into account the importance of each rule. We propose the use of the weighted
arithmetic average. The following definition shows the quality measure for a rule set.

Definition 26. Let CR = {R1,...,RN} be a set of rules, sop(Ri) be the support for rule Ri, and QR be a
quality measure for the rules. The quality of the rule set is defined as

Q
Q R sop R

sop R
C

R i i
i

C

i
i

CR

R

R

=
´

=

=

å

å

() ()

()

1

1

COgARE ALgORITHM

As we have already mentioned, one of the main problem of previous rule extraction methods is the
complexity of the results. Normally, the number of rules obtained is high and this complicates their
interpretation. In addition, if the elements used to define the rules have a high level of detail, they will
be even more complex for the user.

In this section, we will describe method to accomplish this task based on fuzzy DataCubes: COGARE
(COmplexity Guided Association Rule Extraction). This method extracts inter-dimensional association
rules and tries to reduce the complexity of the obtained rules using the fuzzy concepts defined in the
dimensions and hierarchies. The use of fuzzy logic allows concepts to be defined more naturally from
the user’s point of view. If the rules are defined using these concepts, they will be more understandable
for the user due to the use of concepts nearer to the user’s language. The hierarchies are helpful in two
ways:

101

Mining Association Rules from Fuzzy DataCubes

Firstly, it is possible that a relation does not appear in a detailed level but can be found at higher •
detail levels. Thus, by using hierarchies we can extract rules at different abstraction levels and get
information that does not appear at lower levels;

Table 2. Quality measures

Measure Expression

Consistency Cons R
f

f
rc

r

() =

Coverage Cov R
f

f
rc

c

() =

Michalski

M R w Cons R w Conv R() () ()= ´ + ´
1 2 where

w Cons R
1

0 5
1
4

= +. ()
 and

w Cons R
2

0 5
1
4

= -. ()

Brazdil and Torgo BT R Cons R eConv R() () ()= ´ -1

Centainty factor CF R

Cons R f

f
if Cons R f

Cons R f

f
if Cons R f

o

c

c
c

c

c
c

()

()
()

()
()=

-

-
>

-
<

1

0 ttherwise

ì

í

ïïïïïïïïï

î

ïïïïïïïïï

Cohen
Cohen R

Cons R f

Cons R
Cov R

f

c

c

()
()

()
()

=
-

+
æ

è
çççç

ö

ø
÷÷÷÷
-

1
2

1

Coleman Coleman R
Cons R f

f
c

c

()
()

=
-

-1

Bruha

C R Coleman R
Cohen R

1
2

3
() ()

()
= ´

+

C R Coleman R
Cov R

2
1

2
() ()

()
= ´

+

Information gain IG R f
f

fc
rc

r

() log() log= - +

102

Mining Association Rules from Fuzzy DataCubes

Secondly, according to the hierarchical relation between elements, the number of rules can be •
reduced because some rules can be generalized to a single rule using elements which group the
elements that appear in the rules we want to reduce.

COGARE is based on these ideas, and two main steps can be identified in the method:

• Rule generation: the extraction begins by obtaining rules at the most detailed possible level. It
attempts to calculate the frequent item sets at base levels of the dimensions. If an item set is not
frequent at this level, the method generalizes the items using the hierarchies. This process is re-
peated until the item set is frequent or the elements can no longer be generalized. The rules are
generated using these frequent item sets.
Generalization process: the result of the previous step is then generalized using the hierarchical •
relations. In this case, the method tries to reduce the complexity of the result, using more abstract
elements in the definition of the rules and reducing the cardinality. In this step, the quality loss is
also controlled.

Since the method is developed to work over fuzzy DataCubes, COGARE manages fuzzy concepts
in both steps. The following sections will explain each phase.

Rule generation

In this phase, the algorithm extracts association rules between elements at different dimensions and
multiple levels. We can differentiate two steps:

Measure Expression

Logical sufficiency

LS R

f
f

f
f

rc

c

rc

c

() =

Discrimination

D R

f
f

f
f

rc

rc

rc

rc

() log=

IMAFO
IMAFO R AC E

C
() ()= ´ ´10

 where
AC f f

rc rc
= +

 and

E e
C

f

f
rc

c=
-1

Table 2. continued

103

Mining Association Rules from Fuzzy DataCubes

Obtain the frequent item sets.•
Generate rules using the item sets found in the previous step.•

COGARE uses an extension of the Apriori algorithm (Agrawal & Sritkant, Fast Algorithms for Min-
ing Association Rules in Large Databases, 1994). Candidates to obtain the frequent 1-itemset (item sets
that only have 1 element) are all the elements defined at the base level of all the dimensions:

C l
i

D Ci

1
= ^

" Î


where C is a DataCube. An item set will be frequent if its support is equal to or greater than a given
threshold. For the base level, the process uses a value given by the user (thresholdSUP). If the item set is
not frequent, then it is generalized, considering all the elements in parent levels that are directly con-
nected and that group the item (Figure 5). The new item sets obtained are considered as candidates. This
process is repeated until the item set is accepted as frequent or we can no longer generalize. We follow
a similar strategy to Lui and Chung’s proposal (Lui & Chung, 2000).

These new item sets are defined using elements at a more abstract level. Each item may group more
than one element at the base level. Then, to be considered interesting, the support threshold should be
defined according to the abstraction level. All the elements at higher levels may group several values
at the base level; the support threshold should therefore be greater than the one established for these.
Under these circumstances, the algorithm should use different support thresholds for each abstraction
level. Some approaches ask the user for a value for each level (Alhajj & Kaya, 2003). Depending on the
number of dimensions and the level, this approach may imply asking the user for an excessive number
of values. In order to avoid this problem, we propose that the abstraction of an item set be used in order
to define the threshold as follows: for an item set I and an abstraction function A, the support threshold
is defined as

thresholdI = thresholdSUP +(1 − thresholdSUP) × A(I)

where:

• thresholdSUP is the support threshold established by the user for the basic levels.

Figure 5. Example of generalization of non frequent 1-itemset

104

Mining Association Rules from Fuzzy DataCubes

• A(I) is the abstraction of the item set I.

Once the process has all the frequent 1-item sets, it applies an Apriori strategy to obtain frequent
item sets with more elements: to calculate the frequent k-item sets, it considers as candidates all the
k-element sets that can be built using the frequent (k − 1)-item sets, as long as all their subsets are fre-
quent. In our case, the item sets must be defined using elements at different dimensions (we look for
inter-dimensional relations).

The candidate k-item sets are considered frequent if their support is greater than the support threshold
corresponding to their abstraction (using the previous formulation). As in the 1-item sets case, if a set
is not frequent, the algorithm considers as new candidates all the possible generalized item sets defined
using elements at parent levels which group the elements of the set (Figure 6). The pseudo-code of the
process is shown in Figure 7.

From the frequent item sets, the algorithm builds association rules using the same Apriori method
(considering a certainty factor threshold thresholdCF instead of a threshold over the rule consistency).

generalization Process

At the end of the previous phase, the algorithm obtains a rule set, trying to represent as much information
as possible about the DataCube. The method then tries to reduce the complexity of this set. The method
must deal with the factors we have identified: the number of rules and the abstraction.

The method applies a generalization process to reduce the complexity. This approach works directly on
the abstraction and indirectly on the number of rules. We shall explain this by means of an example.

Let us suppose we have the following two rules:

If [Patient is 13 years old] then [Severity is low]
If [Patient is 20 years old] then [Severity is low]

We can generalize both antecedents, replacing 13 years old and 20 years old with the value Young
that groups both elements. The abstraction of the rules will increase because new rules are defined using
a higher level concept. However, the number of rules also decreases because both rules will be translated
into the same one as in the generalization:

Figure 6. Example of generalization of non frequent 2-item set

105

Mining Association Rules from Fuzzy DataCubes

If [Patient is Young] then [Severity is low]

In view of this, the generalization process is expected to reduce the complexity due to the number of
rules and abstraction. This process will be applied until the complexity of the result is below a threshold
established by the user (thresholdComplexity) without disregarding the loss of quality.

The generalization process has two steps. First, it tries to reduce the complexity through generalization
but without allowing loss of quality. Then, if the method does not obtain a result set below the threshold,
it applies a generalization allowing the decrease of quality.

Loss-Less Generalization

This first approach applies an iterative generalization but only accepts a new rule set if the quality of the
new set is greater than or equal to the previous one. The scheme of the process is shown in Figure 8.

The first step in the process is to find the elements that generalize the rule set (CR). The method looks
at each item in each rule and obtains the elements in the DataCube which group them with a kinship
relationship which is greater than 0 (μij > 0). Under these circumstances, the method only looks for
generalization elements at parent levels which are directly connected to the considered item level.

One element must then be chosen to generalize the rule set. In order to select the element, all the items
are sorted using a heuristic: an element that generalizes more elements would be better if it is supposed

Figure 7. Algorithm to obtain frequent itemsets

106

Mining Association Rules from Fuzzy DataCubes

to greatly increase the abstraction of the result. Then, the method selects the first element. If the method
generalizes the rule set and obtains a new set with an unacceptable quality (it is lower than the previous
one), then it could be very expensive in the sense that the method had to recalculate the quality of all
the generalized rules. In order to sort the elements, the method therefore takes into account the number
of times an item has been used unsuccessfully in the generalization process.

In this way, the weight of an item I will be calculated as

Weight
N

NI
RG

F

=
´ +b 1

where NRG represents the number of rules that item I generalizes, NF the times that I has been used and
the result set was not accepted, and β∈[0,∞) measures the penalty for each failed generalization. Tak-
ing this into account, the method decreasingly sorts the elements according to their weights. Once we
have the generalized rule set (CR¢), we accept it if the complexity has decreased and the quality has
not decreased:

C CR C CR Q CR Q CR
global global

() () () ()¢ < Ù ¢ ³

If the new set satisfies the condition, this set becomes the new result, and if the complexity is above
the threshold, the entire process is repeated. If the set is not accepted, the process takes the next element
that generalizes the rule set and the process is repeated.

The process finishes if the obtained rule set satisfies the complexity threshold or there are no elements
to generalize. The pseudo-code is shown in Figure 9.

Figure 8. Generalization process

107

Mining Association Rules from Fuzzy DataCubes

Lossy Generalization

If the previous process fails to obtain a rule set with a complexity below the threshold, then we apply
another generalization process but allowing quality loss. The general process is the same as the one
shown in Figure 9, but we change the new set acceptance criteria. In this case, for a new rule set to be
accepted, it must satisfy two constraints:

First, the process compares the reduced complexity and the quality loss to decide if the generaliza-•
tion is good enough to accept the new rule set. The condition can be written as

QualityLoss < γ × ComplexityLoss

where γ ∈ [0, +∞) and establishes when the complexity reduction is good enough compared to the
quality lost.

In any case, the • generalized rule set will not be accepted if its quality is below a threshold based
on the best quality obtained throughout the entire process:

Q(CR’) ≥ δ × BestQuality

where δ ∈ [0, 1]. BestQuality will be at least the quality of the first rule set generated, but if when ap-
plying the loss-less generalization we obtained a higher quality rule set and it is accepted, then this new
quality will be used.

If we set γ =0 or δ = 1, then quality loss is not allowed, so the process performs in exactly the same
way as the lossless generalization. The pseudo-code of the process is presented in Figure 10.

Figure 9. Loss-less generalization algorithm

108

Mining Association Rules from Fuzzy DataCubes

Algorithm

In Figure 11, the main function of COGARE is presented. Let us comment on all the parameters needed
by the method:

Figure 11. COGARE algorithm

Figure 10. Lossy generalization algorithm

109

Mining Association Rules from Fuzzy DataCubes

• C: DataCube to apply the method.
• thresholdComplexity: value in [0,1] with the complexity threshold.
• thresholdSUP: value in [0,1] with the support threshold to accept frequent itemsets. This value will

be used for items at base levels. For items at other levels, the support threshold is calculated ac-
cording to their abstraction as shown before.

• thresholdCF: value in [-1,1] with the threshold to accept a rule.
β: value in [0, +• ∞) with the penalty for failed generalization elements. This value will have more
influence on the time taken by the algorithm than on the quality of the results.
δ: value in [0,1] with the quality threshold to preserve.•
γ: value in [0, +• ∞) indicating the quality loss allowed in order to accept a new rule set.

ExPERIMENTs

To study the scalability of the algorithm we proposed two different experiments:

First, study the influence of the density of the datacubes.•
Second, consider the influence of the number of dimensions (structure).•

We now present the datacubes and the parameters used and then the experiments and results for each
type.

Figure 12. Multidimensional schema over medical data

110

Mining Association Rules from Fuzzy DataCubes

The DataCubes

We have used DataCubes defined over three different domains: medical, financial, and census data. For
each domain, we have defined two multidimensional schemata that model the same information from both
crisp and fuzzy perspectives. The reason for this choice is to test the influence of using fuzzy logic.

Figure 12, Figure 15, and Figure 18 show the three multidimensional schemata. Fuzzy relations are
represented by means of a dotted line connecting two levels. Crisp schemata are defined in the same
way, translating the fuzzy relations into crisp ones (an element would be grouped by a value in the par-
ent level -the one with the greatest kinship relationship value in the fuzzy case).

We will briefly explain the structures of the multidimensional schemata below.

CMedical

This schema is defined over data collected for non-postponed operations which were carried out in
hospitals in Granada between 2002 and 2004. For the facts, we only consider the data when the patients
are from Granada. There are 50185 facts with one variable (amount) and 6 dimensions. Let us briefly
explain each one.

Dimensions

• Patient: in this dimension, we model patient data. The most detailed levels consider the different
combinations of sex and age of each patient (the base level therefore has 2 sexes for 101 possible
ages, totalling 202 values). Over this level, we group the patients according to their sex (level sex)
and age (level age). Over this last one, we group the values more naturally for user (level group),
and so we define what we can consider to be young, adult and old patients using linguistic terms
over the concrete values. The definition of these terms is the same as that shown in Figure 2. The
last level groups all the values so we have called it all with a single value (all). The structure of the
dimension is as follows: Patient =({Sex and age, Sex, Age, Group, All},≤Patient,Sex and age,All)

• Time: in this dimension we consider the date when the operations took place. Over this level, we
have defined a normal hierarchy over dates: weekday, month day, month, month and year, and
year. The level Tem-perature represents information about the average temperature of each month
in Granada using the values cold, warm and hot to group the values. The relationships between
the month and the temperature are not crisp because the user normally considers these concepts
with imprecision. The definition of the relationships are shown in Figure 13. The structure of the
dimensions is as follows: Time =({Date, Weekday, Month day, month and year, Temperature,
Year, All},≤Time,Date,All)

• Place: this dimension stores information about where the patients live. Since the definition of the
metropolitan area of Granada is not clear, we have used a fuzzy relation to establish the relation-
ship between this level and the towns. The structure of the dimension is: Place =({ZIP, Town,
County, Metropolitan area, All},≤Place,ZIP,All)

• Duration: we also consider the amount of time each operation lasted. The level Range groups
this information according to three categories: normal, long and very long duration. These
groups have been defined imprecisely as shown in Figure 14. The structure of the dimension is:
Duration=({Hours, Range, All},≤Duration,Hours,All)

111

Mining Association Rules from Fuzzy DataCubes

• Material: we want to analyze whether any materials were required for the operations, i.e. blood,
prothesis, implants. The dimension Material models this information and has the following struc-
ture: Material =({Base, Blood, Implant, Prothesis, All},≤Material,Base,All)

• Cause: in this dimension we model the causes according to the codes established by the WHO. We
consider the 9 main categories as the base level and the description on them. The structure of the
dimension is as follows: Cause =({Code, Description, All},≤Cause,Code,All)

Measures
The only measure we consider is the number of operations with exactly the same values for all the di-
mensions we have built. This measure has been called the amount.

DataCube
The structure of the DataCube modeling the data is as follows:

CMedical=({Duration, Time, Patient, Material, Place, Cause}, {Amount}∅,Ω,A)

Figure 13. Definition of level Temperature in dimension Time for CMedical

Figure 14. Definition of level Range in dimension Duration for CMedical

112

Mining Association Rules from Fuzzy DataCubes

CFinancial

In this section, we present the structure of the DataCube built using the fuzzy multidimensional model
presented. We have built a DataCube using the data obtained from Asexor about 872 companies from
three sectors (service, commercial and industrial) using the National Classification of Economic Activi-
ties (CNAE). In each sector, we differentiate between failed companies and those which have not in
accordance with Spanish Law applied in 2001. We have considered three economic-financial variables:
return on asset, working capital, and indebtedness cost, over the years 1998-2000.

Dimensions
We have defined five dimensions. In all of these, we have used the minimum and maximum operator as
t-norm and t-conorm when calculating the extended kinship relationship. In the following sections, we
will present the structure of each one.

• Time: the time dimension in this datacube is defined at a detail level of years. The structure of this
dimension is: Time =({Year, All},≤Time,Year,All), where ≤Time defines the hierarchical relation as:
Year ≤Time Year, Year ≤Time All, All ≤Time All

• Failure: we have mentioned that we study the companies differentiating between those which have
failed and those which have not. This dimension gives this information. The basic level (Fail) only

Figure 15. Multidimensional schema over financial data

113

Mining Association Rules from Fuzzy DataCubes

has two values, representing the failure of the company (value Yes) or not (value No), respectively.
The following structure is associated to the dimension: Failure =({Fail, All},≤Failure,Fail,All).

• Company: this dimension models information about a company. We have used the INFOTEL code
as the base level. Over this, we have defined the CNAE codes to group the companies according
to a detail sector classification. Over this, we define the sector level that groups the CNAE codes
into service, commercial or industrial companies. The other levels represent the number of control
systems used, the number of changes of social address, the number of trademarks obtained by
the company and the social form. This hierarchy translated into the fuzzy model proposed cor-
responds to the following structure: Company =({INFOTEL, CNAE, No. control systems, No.
changes, No. marks, social form, sector, all},≤Company,INFOTEL,All), where ≤Company defines the
hierarchical relation as shown in the figure.

• Age: the base level of this dimension is the number of years that a company has been in opera-
tion. Over this level, we define another which groups this value in years to classify the companies
depending on whether they are very young, young, mature or very mature. This kind of concept is
ill-defined, and they are normally defined using crisp intervals. This is not how people normally
use these concepts and the previously mentioned edge problem may arise. The use of fuzzy logic
in this situation is useful as it characterizes the concepts in a more intuitive way. The definition
we have used is shown in Figure 16. The structure of the dimension Age is: Age =({Years, Group,
all},≤Age,Years,All).

Figure 16. Definition of level Group in dimension Age for CFinancial

Figure 17. Definition of ranges over the economic-financial variables for CFinancial

114

Mining Association Rules from Fuzzy DataCubes

• Return on asset, Indebtness cost, and Working capital: for the three dimensions over the econom-
ic-financial variables we have used the values observed in the data set for these variables to define
the base level of the dimensions. Over these levels we have defined another (Range) which groups
the values into five categories to facilitate the analysis. For the user, the use of categorical values
(e.g. average, low, high, etc.) is more intuitive than numeric values (e.g. a 6.51 return on asset). In
order to avoid the edge problem, we fuzzify the intervals associated to each category.

We consider five categories according to the distance of the value to the mean of the variable and
so we have used the categories very low, low, average, high and very high. The values which are very
near to the mean will be in the average category, those not so near will be in the low or high categories
if they are lower or higher than the mean, respectively, and so on. We have used the mean, maximum
and minimum value of the variable to define the categories. Each interval [minimum, mean]and [mean,
maximum] has been divided into five intervals of width w1 for the first, and w2 for the other. The cat-
egories have then been defined as shown in Figure 17.

The structures of the three dimensions are therefore very similar:

• Return on asset = ({Values, Range, All},≤RoA,Values,All), where ≤RoA defines the hierarchical rela-
tion between the levels.

• Indebtness cost = ({Values, Range, All},≤IC, Values,All),
• Working capital = ({Values, Range, All},≤WC, Values,All).

Figure 18. Multidimensional schema over census data

115

Mining Association Rules from Fuzzy DataCubes

Measures
We have used the return on asset and working capital. Both variables are considered as measures and
dimensions because we want to analyze the relation between both (e.g. return on asset according to the
working capital or viceversa). All the data is obtained from a reliable source so we assign a value 1 of
α to all the facts.

DataCube
Finally, the structure of the DataCube is:

CFinancial =({Time, Failure, Company, Return on asset, Working capital},{return on asset, Working
capital}∅,Ω,A),

where A is the relation that associates each fact with the corresponding values of the base level of the
dimensions.

CCensus

This schema has been defined over 34198 facts with one variable (amount) and 9 dimensions using the
data from adults in the Census database from the University of California2.

Dimensions

• Marital status: this dimension stores information about the individual’s marital status. We con-
sider different aspects about this topic to build the hierarchy as shown. The structure of the dimen-
sion is as follows: Marital status =({Marital status, Married, Married in the past, Married at any
time, All},≤MT, Marital status,All).

• Education: we also consider the level of education. We have grouped the values according to four
categories: basic, medium, high, and very high. The relationships are defined imprecisely because
we usually manage these concepts with imprecise borders between them. Table 3 collects the val-
ues for the relationships. The level Grouped level groups these four categories into normal (values
basic and medium) and high (high and very high). The dimension has the following structure:
Education =({Education, Level, Grouped level, All},≤Education,Education,All).

• Person: we consider the combination of the individual’s age, sex and race as the base level. Over
this level, we group the values according to these three variables. The ages are grouped in the

Table 3. Relationship between Education and Level in CCensus

Level Education

Basics 1/Preschool, 1/1st-4th, 1/5th-6th,
1/7th-8th, 0.8/9th

Medium 0.2/9th, 1/10th, 1/11th, 1/12th, 1/HSgrad,
0.2/Assoc-voc, 0.2/Some-college

High 0.8/Some-college, 0.8/Assoc-voc,
1/Bachelors, 1/Assoc-acdm, 0.2/Profschool

Very high 0.8/Prof-school, 1/Doctorate, 1/Master

116

Mining Association Rules from Fuzzy DataCubes

same way as in the medical DataCube. The races have been categorized depending on whether
they can be considered as minorities. The black race represents 10% of the population whereas
others such as amer-indian-eskimo only 3%, and each of these may be considered a minority at
different degrees. Table 4 shows the kinship relationship.

• Working hours: we also consider the working hours. The values have been grouped according to
how the number is considered as very low, low, normal, high or very high. In order to build this
classification, we have used fuzzy intervals because the borders between them are not clear. The
Figure 19 shows the structures of the intervals.

• Loss capital and Gain capital: these two dimensions represent the loss capital and the gain capi-
tal. The values have been categorized following a similar approach as for the economic-financial
variables in the CFinancial DataCube but changing the middle value (Figure 20). The structure is
therefore similar to those proposed for these dimensions in CFinancial.

• Relationship: over the values of the base level (husband, wife, own-child, other-relative, and not-
in-family) we have defined a level to classify the values according to the degree of relationship.
We have considered the values as direct or not but this classification is not always clear. The Table
5 shows the defined kinship relationship.

• Country: another variable to classify the measures is the individual’s country. Countries are clas-
sified by continent. The dimension has the following structure: Country =({Country, Continent,
All},≤Country, Country, All),

Figure 19. Definition of ranges over Hours for CCensus

Figure 20. Definition of ranges over Loss capital and Gain capital for CCensus

117

Mining Association Rules from Fuzzy DataCubes

• Job type: in this dimension we consider the job type. The values are grouped according to whether
the job types are paid (level Paid) and if they correspond to the civil service (level Public).

Measures
We only consider the number of transactions with the same values for all the considered dimensions
(amount) as measures.

DataCube
Finally, the structure of the DataCube is

CCensus=({Marital status, Person, Working hours, Education, Loss capital, Gain capital, Relationship,
 Country, Job type}, {amount}∅,Ω,A)

support Calculation

In all of the DataCubes presented, there is a measure that stores the number of elements in the original
data sharing the coordinates (e.g. in the medical DataCube, the fact amount represents the number of
patients of the same sex and age, with the same ZIP code, undergoing the same operation, lasting the
same amount of time on the same date). When calculating the support, we must therefore consider the
number of transactions that each fact represents (e.g. in the medical data if a fact amount has the value
5, this means that these coordinates represent 5 operations).

In crisp DataCubes, this only involves changing one aggregation operator: instead of the count op-
erator, we will use the sum aggregation operator. In fuzzy ones, we also have the sum operator, but it

Table 5. Kinship relationship between relationships and yes value in Direct

Relationship μYes,Relationship

Husband 1

Wife 1

Unmarried 0

Own-child 0.5

Other-relative 0.25

Not-in-family 0

Table 4. Kinship relationship between races and yes value in Minority

Race μYes,Race

Amer-Indian-Eskimo 1

Asian-Pac-Islander 0.7

Black 0.5

Other 1

White 0

118

Mining Association Rules from Fuzzy DataCubes

returns fuzzy sets as the result (see (Molina, Sánchez, Vila, & Rodríguez-Ariza, 2006) for further details).
Concrete values are needed to apply the quality measures and the support. In this case, we will use the
same approach proposed in (Delgado, Marin, Sanchez, & Vila, 2003). The authors propose the use of
quantified sentences of the type:

“Q of F are G”

where F and G are fuzzy sets and Q is a linguistic quantifier for calculating the support. In order to evalu-
ate the sentence and obtain the support, the GD quantifier (Delgado, Sánchez, & Vila, 1999) is used:

GD
G
F

Q
G F

F
Q i i

i

i

æ

è
çççç

ö

ø
÷÷÷÷
= -()

Ç()æ

è

ççççççççç

ö

ø

÷÷÷÷÷÷÷+a a
a

a

1
÷÷÷÷

ÎD
å

ai G F(/)

where D L L(/) () ()G F G F F= Ç È , L()F is the level set of F, and D(/) ,...,G F
p

= { }a a
1

 with
a a

i i
> +1

 for every i∈{1, ..., p}.
If we consider the quantifier Q(x)= x, it can be proved that it behaves coherently in the crisp case

(see (Delgado, Marin, Sanchez, & Vila, 2003) for more details). There are two reasons for using this
approach:

The quantifier GD can be adapted to work over the result of the aggregation operators for the •
fuzzy multidimensional model.
The support calculation is efficient.•

Parameter

We have to establish the rest of the parameters of the method:

• thresholdComplexity: we want the method to tray to reduce the complexity as much as possible, so we
use 0 for this parameter.

• thresholdSUP: for each domain we use a different one:
Medical: 0.1 ◦
Financial: 0.1 ◦
Census: 0.2 ◦

These values are relatively low, but we want the method to extract a high number of rules in order
to include as much influence of the fuzzy logic calculation as possible.

• thresholdCF: for all the domain we use the value 0.4.
β: we want a high penalization, so 10 is the value chosen.•
δ: 0.6 so the method will never accept a new rule set if the quality is less tan the 60% of the best •
quality obtained throughout the process.

119

Mining Association Rules from Fuzzy DataCubes

γ: The user normally prefers to lose quality if the method obtains a good complexity reduction. •
We propose a value of 1.2.

We now have all the elements needed to do the experiments.

Density

To compare the scalability of both approaches (fuzzy and crisp) we consider three different DataCubes
over three domains and execute the COGARE algorithm with different number of facts comparing the
time needed. For each domain we consider six different number of facts as 10%, 30%, 50%, 70%, 90%,
and 100% of the whole set (Table 6 collects the number of facts on each case). As the selection of the
facts may has influence in the number of frequent itemsets, we build five different DataCubes for each
size choosing different sets of facts, randomly selected. Over each DataCube we apply the 14 different
quality measures to reduce the influence of this parameter in the tests. Regarding this, at the end we will
consider the average value of the 14 measures as the time for that size.

This process is applied for crisp and fuzzy approaches, so we have 2520 results to compare: 3 domains,
using 2 approaches (fuzzy and crisp), considering 6 different fact sets size, 5 different DataCubes per
each size, and with 14 quality measures.

Following sections presents the DataCubes used for the tests. After these sections, we present the
parameters used for the COGARE algorithm, and we finish with the results obtained.

Results

Figure 21 shows graphically the data obtained for the experiments. In Table 7 and Table 9 the data to
build the graphics is collected.

As you can see, in three domains the behavior of the algorithm is almost lineal and the time for
fuzzy and, for Medical and Financial, crisp approach is very similar. To compare the results we use the
regression line for these values. In the case that the size of the DataCube is 0 (no records) the method
will not be applied because we have no data to work with, so the time spend is zero. Under this fact, we
can consider than the lineal functions are of the form a´size , where size is the number of facts. Table
8 shows the regression data.

The quality of the regressions is good enough to get significant results when comparing the coef-
ficients. As we can see, in the case of Medical, the slopes of the function in crisp and fuzzy approaches
are very similar, so we can conclude that the use of fuzzy logic has no influence on these domains. In
Financial one, the slopes are very similar but with a small different (around 5.5%), so fuzzy logic has
a very low influence.

Table 6. Number of facts for each domain

10% 30% 50% 70% 90% 100%

Medical 5019 15056 25093 35130 45167 50185

Financial 311 934 1556 2178 2801 3112

Census 3420 10259 17099 23239 30778 34198

120

Mining Association Rules from Fuzzy DataCubes

The census domain is more interesting because we can find significant differences between the val-
ues. In the fuzzy case, the coefficient is 33.31% higher than the crisp one. So, in this domain the use of
fuzzy logic has a higher influence, but not enough to change the order of the algorithm (in both cases
it needs lineal time).

Figure 21. Time and memory result for density test

Table 7. Time for density tests

Time (seconds)

Domain Approach 10% 30% 50% 70% 90% 100%

Census
Crisp 517.690 1302.905 1938.571 2701.333 4095.571 4686.214

Fuzzy 467.476 1643.310 2554.357 4148.357 5522.000 5911.643

Financial
Crisp 6.167 7.952 9.810 11.452 13.142 13.928

Fuzzy 6.595 8.167 10.095 11.905 14.123 14.929

Medical
Crisp 55.310 109.905 169.357 230.857 288.643 323.642

Fuzzy 55.929 110.000 169.524 229.667 282.357 331.571

121

Mining Association Rules from Fuzzy DataCubes

Another important factor in the scalability is the space needed for the executions (memory). Table 9
collects the average values for each density for the three domains.

To get the regression models we consider three different functions that may fit the results. Table 10
shows the quality for each approach.

For financial and medical domains the best model is the logarithmic, although the quality for square
root is very good too. In census domain the best model is the square root, having the logarithmic ap-
proach good quality too. There is no difference between fuzzy and crisp approaches in the order but we
have to consider the overload in the first approach. Table 11 collects the regression model to compare
the overload.

In census and medical domains the overload is very similar (3.73% and 3.34% respectively) and for
financial one the influence is even lower (0.4%). So we can conclude that the influence of using fuzzy
logic in the memory needed is not very significative.

structure

In this section we presents the experiments to test the influence of the structure of the DataCubes (the
dimensions) when using fuzzy logic. In that case we will know the influence of the number of dimen-
sions in the time and memory needed. If N is the number of dimensions of a datacube, we build new
datacubes from 2 to N-1 dimensions for each one, choosing.20 of each number of dimensions. Then we
consider three executions with each quality measure. So we have 2520 executions.

Table 8. Regression lines

Domain Approach Expression R2

Financial
Crisp 0.00505x size 0.943

Fuzzy 0.00533x size 0.946

Medical
Crisp 0.00652x size 0.997

Fuzzy 0.00654x size 0.997

Census
Crisp 0.12882x size 0.994

Fuzzy 0.17173x size 0.996

Table 9. Memory for density tests

Memory (MB)

Domain Approach 10% 30% 50% 70% 90% 100%

Census
Crisp 45.318 68.039 95.551 103.325 108.576 152.102

Fuzzy 47.662 80.639 107.230 102.090 131.070 133.073

Financial
Crisp 14.685 14.923 15.283 15.680 16.099 16.296

Fuzzy 14.759 15.084 15.488 15.744 16.046 15.984

Medical
Crisp 54.510 61.515 74.227 87.939 82.420 86.048

Fuzzy 54.186 63.096 76.245 91.153 89.289 86.444

122

Mining Association Rules from Fuzzy DataCubes

Results

The summary of the results for the experiments are shown in Figure 22 and Table 12 and Table 13.
We first consider the time spent on the executions. As in the previous section we try to get a regression

model for the evolution of the time. We consider three possible models: lineal, quadratic and exponential.
Table 14 collects the quality of each approach.

For census and medical domains the best results are for exponential regression in crisp and fuzzy
approaches, although the quality for medical in the case of quadratic is good too. In the case of finan-
cial domain the best model is the quadratic. The first conclusion is that the number of dimensions has a
higher influence in the complexity than the density. In Table 15 the regression expression are presented
to compare the crisp and fuzzy approach.

Both crisp and fuzzy approaches have the same complexity for all the domains. But there is an over-
load in the case of fuzzy ones. In financial and medical domains the overload is not very high (17% and
21% respectively) but in census the influence in higher (158%).

The same analysis is carried out for the memory. In Table 16 the quality of the considered model is
presented.

As in the time tests, medical and census domains present the same complexity (quadratic in these
cases) and financial ales expensive one (lineal). So, although the memory needs are important in these
cases, the number of dimensions has more influence in the time needed. In Table 17 the regression
expression for memory are shown.

Table 10. Regression quality for memory

Regression model

Domain Approach Lineal (R2) X ½
(R2) Logaritmic (R2)

Census
Crisp 0.9581 0.9875 0.9705

Fuzzy 0.9441 0.9950 0.9901

Financial
Crisp 0.8014 0.9243 0.9716

Fuzzy 0.7981 0.9224 0.9708

Medical
Crisp 0.8731 0.9729 0.9947

Fuzzy 0.8884 0.9760 0.9955

Table 11. Regression models for memory

Domain Approach Expression (MB)

Financial
Crisp 2.710 x log2(x)

Fuzzy 2.721 x log2(x)

Medical
Crisp 13.351 x log2(x)

Fuzzy 13.796 x log2(x)

Census
Crisp 13.163 x x1/2

Fuzzy 13.654 x x1/2

123

Mining Association Rules from Fuzzy DataCubes

Table 12. Time for structure tests

Time (seconds)

Domain Approach 2 dim. 3 dim. 4 dim. 5 dim. 6 dim. 7 dim. 8 dim

Census
Crisp 2.45 5.3 12.45 32.75 148.7 364.85 1295.06

Fuzzy 2.3 3.4 13.25 58.1 283.6 911.9 3374.33

Financial
Crisp 1.2 2.45 3.3 4.85 7.5 9.5 12

Fuzzy 0.75 3.25 5.75 5.25 7.5 10.65 14.778

Medical
Crisp 12.85 30.95 60 132.75

Fuzzy 11.85 29.55 70.2 162.333

Figure 22. Time and memory results for structure test

124

Mining Association Rules from Fuzzy DataCubes

Table 13. Memory for structure tests

Memory (MB)

Domain Approach 2 dim. 3 dim. 4 dim. 5 dim. 6 dim. 7 dim. 8 dim

Census
Crisp 3.202 5.029 7.739 10.059 32.646 50.891 81.684

Fuzzy 2.851 3.235 5.439 16.431 36.630 63.898 99.461

Financial
Crisp 3.573 4.064 4.871 6.585 8.348 9.824 8.829

Fuzzy 2.041 5.686 8.324 6.656 6.760 9.064 9.246

Medical
Crisp 10.867 27.459 46.313 63.956

Fuzzy 11.310 22.574 44.624 71.625

Table 14. Quality of the regression models for time

Regression model

Domain Approach Lineal (R2) Quadratic (R2) Exponential (R2)

Census
Crisp 0.5296 0.7144 0.9932

Fuzzy 0.5029 0.6885 0.9891

Financial
Crisp 0.9615 0.9965 0.7370

Fuzzy 0.9531 0.9850 0.7598

Medical
Crisp 0.8661 0.9719 0.9866

Fuzzy 0.8324 0.9560 0.9951

Table 15. Regression expressions for time

Domain Approach Expression (seconds)

Financial
Crisp 0.1943 x N2

Fuzzy 0.2272 x N2

Medical
Crisp 0.9304 x eN

Fuzzy 1.1233 x eN

Census
Crisp 0.4209 x eN

Fuzzy 1.0881 x eN

Table 16. Regression quality for memory

Regression model

Domain Approach Lineal (R2) Quadratic (R2) Exponential (R2)

Census
Crisp 0.8012 0.9430 0.9146

Fuzzy 0.7886 0.9399 0.9184

Financial
Crisp 0.9872 0.9009 0.4995

Fuzzy 0.9568 0.8419 0.4678

Medical
Crisp 0.9668 0.9955 0.8845

Fuzzy 0.9382 0.9988 0.9366

125

Mining Association Rules from Fuzzy DataCubes

The results are very similar to time models. In all the domains the crisp and fuzzy approaches have
the same order but the fuzzy ones introduce an overload. In this case, for medical and financial this
overload is not very important (4.7% and 1.7% respectively). In the census domain the influence is
higher (21.7%).

CONCLUsION

In this chapter we have compare the performance of an association rule extraction algorithm over fuzzy
and crisp DataCubes to test the influence of using fuzzy logic in the model. To achieve this goal we
have build DataCubes over three different domains and considering different number of facts, so we
can evaluate the scalability of both approaches according to the density of the DataCubes (number of
records) and the topology (the dimensions)

As result we have the number of dimensions has a higher influence in the scalability of the algorithm
in time and memory. This situation is normal due to the method extract inter-dimensional association so
a higher number of dimensions introduce more possible associations. The use of fuzzy logic does not
change the order of efficiency of the method but introduce an overload in both cases.

Considering the density the influence in most of the domains is not very important (around 5.5% in
time and 3.5% in memory). Only for one domain the time needed have and overload around 33% which
may be consider significant.

If we change the topology (dimensions) the influence is higher but this is normal due to the underlying
multidimensional model has a more complex structure to model the hierarchy. In that case the influence
in the time is near 20% for two domains and 158% for the other. So the fuzzy logic modeling of the
hierarchies introduces an important overload but does not change the order of efficiency. The overload in
the memory needed is not very significant in two domains to (4.7% and 1.7%) but in the other is higher
(21.7%). So we can conclude that the overload depends on the complexity of the domain to model.

Although we would need more experiments to extends the results, the results indicates that, in the
case of extracting association rules over DataCubes using COGARE, the fuzzy logic allows to enrich
the data representation and, due to this fact, introduces an overload in the process but keeping the scal-
ability (order of efficiency) of the algorithm. As it was expected the influence depends on the complexity
of the domain to model.

Table 17. Regression models for memory

Domain Approach Expression (MB)

Financial
Crisp 1.287 x N

Fuzzy 1.309 x N

Medical
Crisp 2.690 x N2

Fuzzy 2.815 x N2

Census
Crisp 1.064 xN2

Fuzzy 1.294 x N2

126

Mining Association Rules from Fuzzy DataCubes

REFERENCEs

Agrawal, R., Gupta, A., & Sarawagi, S. (1995). Modeling multidimensional databases. Armonk, NY:
IBM.

Agrawal, R., Imielinksi, T., & Swami, A. (1993). Mining Association Rule Between Sets of Items in
Large Databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management
of data (pp. 207-216). New York: ACM.

Agrawal, R., & Sritkant, R. (1994). Fast algorithms for mining association rules in large databases. In
VLDB ‘94: Proceedings of the 20th International Conference on Very Large Data Bases (pp. 478-499).
San Francisco: Morgan Kaufman.

Alhajj, R., & Kaya, M. (2003). Integrating Fuzziness into OLAP for Multidimensional Fuzzy Associa-
tion Rules Mining. In Proceedings of the Third IEEE International Conference on Data Mining (p. 469).
Washington, DC: IEEE Computer Society.

An, A., & Cercone, N. (2004). An Empirical Study on Rule Quality Measures. In Proceedings of the 7th
International Workshop on New Directions in Rough Sets, Data Mining, and Granular-Soft Computing
(LNCS 1711, pp. 482-491). Berlin, Germany: Springer-Verlag.

Angryk, R. A., & Petry, F. E. (2005). Mining Multi-Level Associations with Fuzzy Hierarchies. In Pro-
ceedings of the 14th IEEE International Conference on Fuzzy Systems, 2005, FUZZ ‘05 (pp. 785-790).
Washington, DC: IEEE.

Atzmueller, M., Baumeister, J., & Puppe, F. (2004). Quality measures for semi-automatic learning of
Simple diagnostic rule bases. In Proceedings of the 15th International Conference on Applications of
Declarative Programming and Knowledge Management (INAP 2004) (pp. 65-78).

Brazdil, P., & Torgo, L. (1990). Knowledge adquisition via knowledge integration. In B. Wielinga et al.
(Eds.), Current trends in knowledge acquisition. Amsterdam: IOS Press.

Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules
for market basket data. In Proceedings of the 1997 ACM SIGMOD international conference on Manage-
ment of data (pp. 255-264). New York: ACM.

Bruha, I. (1996). Machine learning and statistics. John Wiley & Sons Inc.

Cabibbo, L., & Torlone, R. (1997). Querying multidimensional databases. In Proceedings of the 6th
International Workshop on Database Programming Languages (LNCS 1369, pp. 319-335). Berlin,
Germany: Springer.

Cabibbo, L., & Torlone, R. (1998). A logical approach to multidimensional databases. In Proceedings
of the Advances in Database Technologies – EDBT ’98 (LNCS 1377, pp. 183-197). Berlin, Germany:
Springer-Verlag.

Council, O. (n.d.). The OLAP Council. Retrieved from http://www.olapcouncil.org

127

Mining Association Rules from Fuzzy DataCubes

Datta, A., & Thomas, H. (1999). The cube data model: A conceptual model and algebra for on-line
analytical processing in data warehouses. Decision Support Systems, 27, 289–301. doi:10.1016/S0167-
9236(99)00052-4

Dean, P., & Famili, A. (1997). Comparative performance of rule quality measures in an induction system.
Applied Intelligence, 7, 113–124. doi:10.1023/A:1008293727412

Delgado, M., Marin, N., Sanchez, D., & Vila, M. (2003). Fuzzy association rules: General model and
applications. IEEE transactions on Fuzzy Systems, 11, 214–225. doi:10.1109/TFUZZ.2003.809896

Delgado, M., Martin-Bautista, M. J., Sanchez, D., & Vila, M. A. (2003). On a characterization of fuzzy
bags. In Proceedings of the Fuzzy Sets and Systems – IFSA 2003 (LNCS 2715, pp. 119-126). Berlin,
Germany: Springer.

Delgado, M., Sánchez, D., & Vila, M. (1999). Fuzzy cardinality based evaluation of quantified sentences.
International Journal of Approximate Reasoning, 23(1), 23–66. doi:10.1016/S0888-613X(99)00031-6

Famili, A. (1990). Integrating learning and decision-making in intelligent manufacturing systems. Journal
of Intelligent & Robotic Systems, 3, 117–130. doi:10.1007/BF00242160

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in knowledge
discovery and data mining. AAAI/MIT Press.

Gorry, G., & Morton, M. S. (1971). A framework for management information systems. Sloan Manage-
ment Review, 13, 50–70.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., & Venkatrao, M. (1997). Data cube:
A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1, 29–53. doi:10.1023/A:1009726021843

Han, J. (1997). OLAP mining: Integration of OLAP with data mining. In Proceedings of the 7th IFIP
2.6 Working Conference on Database Semantics (pp. 1-11).

Han, J., Cai, Y., & Cercone, N. (1993). Data-driven discovery of quantitative rules in relational databases.
IEEE Transactions on Knowledge and Data Engineering, 5, 29–40. doi:10.1109/69.204089

Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large databases. In Pro-
ceedings of the 21st International Conference on Very Large Data Bases (pp. 420-431). San Francisco:
Morgan Kaufman.

Han, J., & Fu, Y. (1999). Discovery of multiple-level association rules from large databases. IEEE
Transactions on Knowledge and Data Engineering, 11, 798–805. doi:10.1109/69.806937

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Proceedings
of the 2000 ACM SIGMOD international conference on Management of data (pp. 1-12). New York:
ACM.

Jensen, C., Kligys, A., Pedersen, T., & Timko, I. (2004). Multimendional data modeling for location-
based services. The VLDB Journal, 13, 1–21. doi:10.1007/s00778-003-0091-3

128

Mining Association Rules from Fuzzy DataCubes

Kamber, M., Han, J., & Chiang, J. (1997). Metarule-guided mining of multi-dimensional association
rules using data cubes. In Proceedings of the KDD (pp. 207-210).

Kaya, M., & Alhajj, R. (2005). Fuzzy OLAP association rules mining-based modular reinforcement
learning approach for multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics, 35,
326–338.

Kimball, R. (1996). The data warehouse toolkit. John Wiley & Sons.

Laurent, A. (2002). Extraction de connaissances pertinentes à partir de baes de données multidimen-
sionnelles. Laboratoire d’Informatique de Paris 6.

Lee, D. h., & Kim, M. H. (1997). Database sumarization using fuzzy ISA hierarchies. IEEE Transactions
on Systems, Man, and Cybernetics. Part B, Cybernetics, 27, 68–78. doi:10.1109/3477.552184

Li, C., & Wang, X. (1996). A data model for supporting on-line analytical processing. In Proceedings of
the fifth international conference on Information and knowledge management (pp. 81-88). New York:
ACM.

Lui, C.-L., & Chung, F.-L. (2000). Discovery of generalized association rules with multiple minimum
supports. In Principles of data mining and knowledge discovery (LNCS 1910, pp. 510-515). Berlin,
Germany: Springer-Verlag.

Michalski, R. (1990). Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pat-
ter Analysis and Machine Learning, PAMI-2(4), 349–361. doi:10.1109/TPAMI.1980.4767034

Molina, C., Sánchez, D., Vila, M. A., & Rodríguez-Ariza, L. (2006). A new fuzzy multidimensional
model. IEEE transactions on Fuzzy Systems, 14, 897–912. doi:10.1109/TFUZZ.2006.879984

Muyeba, M. K., & Keane, J. A. (2000). Interestingness in attribute-oriented induction (AOI): Multiple-
level rule generation. In Principles of data mining and knowledge discovery (LNCS 1910, pp. 542-549).
Berlin, Germany: Springer-Verlag.

Park, J. S., Chen, M. S., & Yu, P. S. (1995). An effective hash based algoritm for mining association
rules. SIGMOD Record, 24(2), 175–186. doi:10.1145/568271.223813

Pedrycz, W. (2004). Associations and rules in data mining: A link analysis. International Journal of
Intelligent Systems, 19, 653–670. doi:10.1002/int.20016

Savasere, A., Omiecinski, E., & Navathe, S. (1995). An efficient algorithm for mining association rules
in large databases. In Proceedings of the 21st International Conference on Very Large Data Bases (pp.
432-444). San Francisco: Morgan Kaufman.

Shen, L., & Shen, H. (1998). Mining flexible multiple-level association rules in all concept hierarchies
(extended abstract). In Proceedings of the 9th International Conference on Database and Expert Systems
Applications (LNCS 1460, pp. 786-796). Berlin, Germany: Springer.

Shortliffe, E., & Buchanan, B. (1975). A model of inexact reasoning in medicine. Mathematical Biosci-
ences, 23, 351–379. doi:10.1016/0025-5564(75)90047-4

129

Mining Association Rules from Fuzzy DataCubes

Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. (pp. 407-419). San Francisco:
Morgan Kaufmann Publishers Inc.

Tan, P.-N., & Kumar, V. (2000). Interestingness measures for association patterns: A perspective. Future
Generation Computer Systems, 13(2-3), 161–180.

Yager, R. R. (1986). On the theory of bags. International Journal of General Systems, 13, 23–37.
doi:10.1080/03081078608934952

Yager, R. R. (1994). Aggregation operators and fuzzy systems modeling. Fuzzy Sets and Systems, 67,
129–145. doi:10.1016/0165-0114(94)90082-5

Yen, S.-J. (2000). Mining generalized multiple-level association rules., In Principles of data mining and
knowledge discovery (LNCS 1910, pp. 679-684). Berlin, Germany: Springer.

Zhu, H. (1998). On-line analytical mining of association rules. Simon Fraser University.

ENDNOTEs

1 Corresponding author. E-mail: carlosmo@ujaen.es. Partially supported by research project
TIC03175

2 URL: http://kdd.ics.uci.edu

130

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

Scalable Reasoning
with Tractable Fuzzy
Ontology Languages

Giorgos Stoilos
National and Technical University of Athens, Greece

Jeff Z. Pan
University of Aberdeen, UK

Giorgos Stamou
National and Technical University of Athens, Greece

INTRODUCTION

Nowadays, many applications and domains use some form of knowledge representation language and
exploit their inference mechanisms in order to improve their capabilities and simulate intelligent human
behavior. Many such examples exist, like knowledge-based multimedia analysis (Neumann & Möller,

AbsTRACT

The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology
languages, like description logics (DLs) and OWL, could play a significant role in the improvement of
many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy
reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle
the scale of data that the Web provides. For those reasons much research effort has been focused on
providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors
present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy
ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms
for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for
knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation
in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.

DOI: 10.4018/978-1-60566-858-1.ch005

131

Scalable Reasoning with Tractable Fuzzy Ontology Languages

2006; Simou et al., 2008a), bioinformatics (Dameron et al., 2004) and databases (Calvanese et al., 1998)
and more. Nevertheless the most prominent example is undoubtedly the World Wide Web aiming for
intelligently managing the vast amount of information that lays on the Web. Among several proposals
for structuring knowledge in such applications, Description Logic based ontologies seem to be an ap-
proach that has gained considerable attention. Description Logics (DLs) (Baader et al., 2002) is a mod-
ern knowledge representation formalism that is a fragment of First-Order Logic, enjoying well-defined
model-theoretic semantics, decidability and practically efficient reasoning systems. Most importantly
expressive DLs form the logical underpinnings of the W3C standard language for representing ontolo-
gies in the Semantic Web, namely OWL (Bechhofer et al., 2004; Patel-Schneider et al., 2004). Although
several successful OWL DL reasoning systems have been developed, like FaCT++1 and Pellet2, even
very basic and inexpressive DLs come with come with (at least) E TXP IME computational complexity.
Thus, their ability to scale in large application like the once found on the Web is still an open issue. For
those reasons the last years great research effort has been focusing in identifying fragments/clusters of
the OWL DL language for which it is known that reasoning is scalable and efficient. This research has
led to the development of several languages, but the two most interesting and predominant ones are EL+
(Baader et al.) and DL-Lite (Calvanese et al., 2005; Calavanese et al., 2007). The interesting thing is
that these languages will most likely form the logical underpinnings of the OWL 2 EL and OWL 2 QL3
recommendations which consist of profiles/fragments of the upcoming extension of OWL, OWL 24.

Although DLs are relatively quite expressive they feature limitations mainly with what can be said
about imperfect (uncertain, vague/fuzzy or imprecise) knowledge. Such types of knowledge appears in
many domains but also in several Semantic Web tasks, like in the representation of trust, in knowledge
fusion, assessing the similarity between resources and many more. For those reasons fuzzy ontologies
are envisioned to be useful in the Web (Stoilos et al., 2006) and fuzzy Description Logics (f-DLs) (Höl-
dobler et al., 2005; Straccia, 2001; Tresp & Molito, 1998) have been proposed as formalisms capable
of capturing and reasoning with such knowledge. Research in f-DLs was mainly focused on providing
reasoning support for very expressive fuzzy DLs, like reasoning with the f-DL fKD-SHIN (Stoilos et al.,
2007; Stoilos et al. 2005b), reasoning with fKD-SHI (Li et al., 2006), supporting reasoning in f-DLs that
allow for general concept inclusion axioms (Li et al., 2006; Stoilos et al., 2006), fuzzy extensions of
the OWL language (Stoilos et al., 2005a) supporting expressive datatypes (Wang et al., 2008) or adding
more expressive fuzzy features, like comparison expressions (Kang et al., 2006; Lu et al., 2008) and
concept modifiers (Hölldobler et al., 2006; Wang et al., 2006). Interestingly, there also exist two f-DL
reasoners, FiRE5 (Stoilos et al., 2007), which supports fKD-SHIN and the fuzzyDL6 (Straccia, 2008),
which supports fKD-SHIf(D) and fL-SHIf(D). Unfortunately, like their crisp counterparts, fuzzy-SHIN
and fuzzy-SHIf(D) come with (at least) E TXP IME computational complexity. Additionally, the practical
behavior of implementations of such logics would also have to deal with the degrees thus adding more
to the practical complexity.

Following current research developments in crisp DLs, there is an effort on developing lightweight
fuzzy ontology languages. In particular, today there exist two such languages, namely fuzzy DL-Lite (Pan
et al., 2008; Straccia, 2006) and fuzzy EL+ (Stoilos et al., 2008). Like their crisp counterparts, fuzzy DL-
Lite is specifically tailored for data intensive applications, offering for efficient instance retrieval services
by utilizing datbase technologies, while fuzzy EL+ is especially tailored for applications that require the
managements of large concept hierarchies/taxonomies offering for efficient classification services. Even
more interestingly, in the fuzzy case fuzzy DL-Lite allows for far more expressive and flexible queries
that utilize the power of the fuzzy component. For example, one can issue a query of the form:

132

Scalable Reasoning with Tractable Fuzzy Ontology Languages

get me all e-shops that are popular [with degrees at least 0.8] and sell good books [with degree at least
0.9],

adding threshold criteria in the search, or expressing weight/preferences on query atoms like in the
query

get me all cars that are fast and fancy but consider speed more important [with weight 0.7] than design
[with weight 0.3].

Similarly important is the fact that in fuzzy EL+ we can support efficient classification over fuzzy
inclusion axioms. Such axioms can be proven very important is several Semantic Web related tasks
like in ontology matching (Ferrara et al., 2008), where algorithms establish fuzzy mappings between
ontologies like the following ones:

onto1: MobilePhone ®
0 7.

 onto1: CellularPhone

onto1: DarkGrey ®
0 85.

 onto2: Black

which (fuzzy) map concept MobilePhone from ontology onto1 and CellularPhone from ontology onto2
with a degree 0.7 since an automatic procedure is not possible to assess the semantic correspondence
of these two entities. A different problem also arises in the case that there is no actual one-to-one cor-
respondence between all the concepts of two ontologies. For example in the above case one ontology
defines the concept DarkGrey while the other concept. Still one might want to match these concepts to a
certain degree. Similar representation mechanisms have also been used in other contexts and frameworks
like for example searching in Semantic Portals (Holi & Hyvonen, 2006), where again fuzzy subsumption
was used to define fuzzy mappings between concepts.

The current Chapter has the following two major objectives. On the one hand we want to show that
it is possible to provide efficient querying services over fuzzy ontologies, even in the case of using very
expressive queries allowing for thresholds, weights or preferences. For our purposes we will use the f-
DL-Lite language (Pan et al., 2008; Straccia, 2006). On the other hand we also want to cover the second
most important inference problem of (fuzzy) ontologies, that of concept classification. Thus, we will
show that indeed there are classes of ontology languages for which such a problem can be decided in
an efficient way. In this case we will use the fuzzy EL+ (Stoilos et al., 2008) language. More precisely,
the Chapter focuses on the following major issues:

It overviews some recent work about providing scalable query answering with very expressive ex-•
tended conjunctive queries over lightweight ontologies created with the fuzzy DL-Lite language.
The framework is motivated by the field of fuzzy information retrieval (Cross, 1994) where weight-
ed Boolean queries (Waller & Kraft, 1979) have been proposed for retrieving fuzzy information
from fuzzy relational databases. Nevertheless, the presented approach is general enough to cover
most of the former popular approaches like the fuzzy implication-based approaches (Bookstein,
1980; Bordogna, 1996; Radecki, 1979; Yager, 1987) p-norm’s (Salton et al., 1983a), the geomet-
ric mean approach (Chen & Chen), weighted min queries (Sanchez, 1989) and fuzzy aggregation

133

Scalable Reasoning with Tractable Fuzzy Ontology Languages

type queries (Vojtas, 2001), as well as to extend them by supporting threshold queries which are
a natural extension of the entailment problem. Thus, the main strength of the general fuzzy query
language is the openness on the semantics.
In order to support queries of the above form in Semantic Web applications it presents a method to •
extend the SPARQL (a well known Semantic Web query language) syntax for the proposed query
languages in the framework. The extension uses specially formatted SPARQL comments, thus the
fuzzy queries are still valid SPARQL queries, and it does not affect current SPARQL tools and
implementations.
It presents the very first scalable query engine for • fuzzy ontologies, based on the ONTOSEARCH2
system7 (Pan et al., 2006b), which consists of, among others, a query engine for DL-Lite and one
for fuzzy DL-Lite. The ONTOSEARCH2 implementation of f-DL-Lite is known to be able to
handle millions of data and its performance has been tested against a benchmark, a fuzzy variant
of the Lehigh University Benchmark (LUBM) (Guo et al, 2005), called f-LUBM8, that has been
proposed in the literature (Pan et al., 2008).
It overviews the syntax and semantics of a fuzzy extension of the lightweight fuzzy ontology •
language f-EL+ (Stoilos et al., 2008). Additionally, it also overviews the reasoning algorithm
proposed for f-EL+ which is able to polynomialy classify a given fuzzy EL+ ontology which ad-
ditionally allows for fuzzy inclusion axioms (Straccia, 2005).
It not only presents a detailed reasoning algorithm for classifying fuzzy EL+ ontologies which •
allow for fuzzy inclusion axioms, but it also provides some necessary refinements for the basic al-
gorithm which are know from the classical EL+ language that greatly increase the performance.

The rest of the paper is organized as follows. First we introduce the reader to the necessary mathematical
background of the rest of the Chapter, by briefly introducing Description Logics and fuzzy Description
Logics. Then we present fuzzy-DL-Lite and a set of extended weighted query languages that have been
proposed in the literature for querying fuzzy-DL-Lite ontologies. We also show how querying can be
supported by the SPARQL language as well as a preliminary implementation of the idea. Subsequently,
we present a fuzzy extension of the EL+ language providing also a reasoning algorithm for supporting
classification over fuzzy EL+ ontologies. We also show how one can obtain a refined classification
algorithm which can be the base of an optimized procedure. Finally, we conclude the Chapter.

bACKgROUND

Description Logic Ontologies

Description Logics (DLs) (Baader et al., 2002) are a family of logic-based knowledge representation
formalisms designed to represent and reason about the knowledge of an application domain in a struc-
tured and well-understood way. They are based on a common family of languages, called description
languages, which provide a set of constructors to build concept and role descriptions. Such descriptions
can then be used to define axioms and assertions of DL knowledge bases and can be reasoned about with
respect to DL knowledge bases by DL systems. It is known that DLs consist of an expressive fragment
of First-Order Logic and more precisely a fragment that allows only for unary predicates (corresponding
to concepts), binary predicates (corresponding to roles), constants (called individuals), while addition-

134

Scalable Reasoning with Tractable Fuzzy Ontology Languages

ally also restricting the use of the connectives thus reducing their interaction and gaining in reasoning
efficiency and decidability. The most basic DL language is ALC which is the smallest propositionally
closed DL, allowing for negation (¬) conjunction (⊓), disjunction (⊔), existential quantification (∃) and
universal quantification (∀). Then ALC can be extended by adding more expressive means like for
example the ability to state that a role is transitive or that a role is a super-role of another role, inverse
roles, singleton concepts (called nominals) or by adding cardinality restrictions. Table 1 summarizes
the most important and common DL constructors. It presents their name, syntax and the naming scheme
that is followed in DLs in order to indicate the presence of such operators9. Using the expressivity of
these DL constructors one can represent the concept of humans who have exactly 3 children specifying
the concept

Human ⊓ ≥ 3hasChild ⊓ ≤ 3hasChild

where Human is a concept, and hasChild is a role, or the concept of faulty machines with the concept

Machine ⊓ ∃hasPart.MachinePart ⊓ ∀hasPartFaultyPart

or the concept of the days of week, writing

{Sunday} ⊔ {Monday} ⊔ … ⊔ {Saturday}

Table 1. Syntax, Semantics and naming of the most popular DL languages

DL Operator Syntax Semantics Language

top concept ⊤ ⊤I = DI

ALC

bottom concept ⊥ ⊥I = ∅

negation ¬C (¬C)I = DI \ CI

conjunction C ⊓D (C ⊓D)I = CI ∩ DI

disjunction C ⊔D (C ⊔D)I = CI ∪ DI

existential restriction ∃R.C { }(.) | . ,I I I IR C a b a b R b C∃ = ∈∆ ∃ 〈 〉 ∈ ∧ ∈

universal restriction ∀R.C { }(.) | . ,I I I IR C a b a b R b C∀ = ∈∆ ∀ 〈 〉 ∈ → ∈

transitive role axioms Trans(R) { }, , , ,I Ia b b c R a c R〈 〉 〈 〉 ⊆ → 〈 〉 ∈ ALC
R+ or S

Role inclusion axioms R ⊆ S , ,I Ia b R a b S〈 〉 ∈ → 〈 〉 ∈ H

nominals {a} { }a aI I={ } O

inverse roles R- , () ,I Ia b R b a R−〈 〉 ∈ → 〈 〉 ∈ I

at-least restrictions ≥ nR { }() | | ,I I InR a b a b R n≥ = ∈∆ 〈 〉 ∈ ≥
N

at-most restrictions ≤ nR { }() | | ,I I InR a b a b R n≥ = ∈∆ 〈 〉 ∈ ≤

135

Scalable Reasoning with Tractable Fuzzy Ontology Languages

where Sunday, Monday,…, Saturday are individuals. Such complex concepts are called concept descrip-
tions. Moreover, we can state that roles hasPart is transitive by the axiom, Trans(hasPart), that role
hasChild is a sub-role of role hasOffspring, by the axiom hasChild hasChild ⊑ hasOffspring, or that
role hasParent is the inverse of role hasChild, writing hasParent ⊑ hasChild-. We note here that the set
of transitive role and role inclusion axioms is usually referred to as RBox R.

Subsequently, one is able to use concept descriptions in order to define new concepts. This is done
with the aid of axioms. More formally we have: A SHOIN TBox denoted by T, is a finite set of concept
inclusion axioms, also called concept subsumptions of the form C ⊆ D, and concept equivalence axioms
of the form C º D where C,D are SHOIN-concepts. With concept one can give names to the created
concept descriptions. For example in the above case we could have the concept equivalence:

FaultyMachine º Machine ⊓ ∃hasPart.MachinePart ⊓ ∀hasPartFaultPart

Finally, DLs allow us to create individual axioms, which intuitively account for instance relations
between objects (pairs of objects) and concepts (roles). A SHOIN ABox A, is a finite set of assertions of
the form a: C, called concept assertions, of the form (a,b): R, called role assertions, or of the form a =
b or a ≠ b. Using such expressive means we can describe instance relation like for example that John is
a parent, by writing john: Parent or that he has Dora as a child, by (john, dora): hasChild.

A knowledge base ∑ is a triple of the form ∑ = 〈T,R,A〉, where T is a TBox, R an RBox and A an
ABox.

As a fragment of First-Order Logic Description Logics feature well-defined model theoretic seman-
tics which are defined with the aid of interpretations. An interpretation (written as I) is a pair of the
form á × ñDI I, where DI is a non-empty set of objects called the domain of interpretation while ×I is an
interpretation function which maps each individual a to an element aI ∈ DI each concept C to a subset
CI ⊆ DI and each role R to a binary relation RI ⊆ DI × DI. The interpretation function can be extended to
give semantics to concept and role description. Table 1 summarizes the semantics of DL constructors.
Furthermore, we say an interpretation I satisfies an axiom C ⊆ D if CI ⊆ DI, while it satisfies an axiom
C º D if CI = DI. I satisfies a TBox T if it satisfies every axiom in T. Then we say that I is a model of T.
Similarly an interpretation I satisfies an assertion a: C if aI: CI, an assertion (a,b): R if (aI,bI): RI, a = b
if aI = bI and a ≠ b if aI ≠ bI. I satisfies a knowledge base ∑ if it a model of T, R and A.

Besides their formality knowledge representation languages and DLs also provide a number of infer-
ence services, which can be issued over a created knowledge base. The aim of such services is to extract
new implied information out of the explicitly stated one. Every knowledge representation language
usually offers a different set of inference services. Next we present the most common set of services
offered by Description Logics:

• KB Satisfiability: A KB Σ is satisfiable if and only if (iff) there exists a model I of Σ. Similarly
we can define the notion of unsatisfiability.

• Concept Satisfiability: A concept C is satisfiable with respect to Σ if there exists a model I of Σ
such that (s.t.) CI ≠ ∅.

• Concept Subsumption: A concept C is subsumed by a concept D w.r.t. Σ if for every model I of
Σ it holds that CI ⊆ DI.

• ABox Consistency: An ABox A is consistent if there exists a model for A.

136

Scalable Reasoning with Tractable Fuzzy Ontology Languages

• Logical Entailment: Given a concept or role axiom, or an assertion ϕ, we say that Σ entails ϕ,
writing Σ |= ϕ if for every model I of Σ, I satisfies ϕ.

• Conjunctive query answering: A conjunctive query (CQ) q is of the form

q(X) ← ∃Y.conj(X,Y) (1)

where q(X) is called the head, conj(X,Y) is called the body, X is a vector of variables called distinguished
variables, Y are existentially quantified variables called the non-distinguished variables, and conj(X,Y)
is a conjunction of atoms of the form A(u), R(v1, v2), where A,R are respectively named classes and
named properties, v,v1,v2 are individuals in X and Y or individuals in Σ. Given an evaluation of variables
[X → S] (where S is a set of individuals), if every model I of Σ satisfies q[X→S], we say Σ entails q[X→S];
in this case, S is called a solution of q. A disjunctive query (DQ) is a set of conjunctive queries sharing
the same head.

Conjunctive query answering actually consists of a retrieval task. Informally, one can understand a
query as “give me all X such as the conjunction of atoms conj(X,Y) holds.” Then, S will contain the set
of all individuals that substituted in X will make the body true for some other individuals S′ substituted
for Y. As it is known it consists of a generalization of the entailment task.

Today, there have been developed several reasoning systems that realize most of the above inference
problems for SHOIN knowledge bases. The most important and popular ones are FaCT++1 and Pellet2
and RacerPro10. These tools have shown that although the worst case complexity of reasoning in DLs is
exponential they can scale quite good in relatively big knowledge bases in most practical applications.
Nevertheless, it is still unknown if they could scale up to the millions or even billion of (Semantic) Web
data. Furthermore, regarding conjunctive query answering it is still an open problem if an algorithm
for answering queries over SHOIN knowledge bases exists. Even if it does we already know that the
complexity of query answering for SHIN is already 2-E TXP IME -hard (Lutz, 2008).

It is well known that expressive Description Logics form the logical underpinnings of the OWL DL
ontology language (Horrocks & Patel-Schneider, 2004). OWL is the W3C standard for expressing on-
tologies in the Semantic Web and is actually an XML like rendering of the constructors of the SHOIN
language, while additionally adding several syntactic sugar constructors for assisting inexperienced
user of the Web create ontologies. For example, on the one hand it provides the owl:instersectionOf
constructor for specifying the conjunction of two concepts while on the other hand it also provides the
rdfs:domain constructor for defining the domain of a role (property) which semantically is a combina-
tion of the existential constructor and a concept inclusion. For more information about OWL the reader
is referred to (Bechhofer et al., 2004; Patel-Schneider et al., 2004) while for its correspondence with
expressive DLs to (Horrocks & Patel-Schneider, 2004).

Fuzzy Ontologies

Fuzzy Description Logics (Straccia, 2001) have been proposed as powerful knowledge representation
languages capable of capturing vague (fuzzy) knowledge that exists in many applications. The intuition
is to interpret (fuzzy) concepts and (roles) not as subsets of DI and DI × DI, respectively, but with the
aid of membership function (Zadeh, 1965) giving a fuzzy meaning. Syntactically, one should at least be
able to specify degrees of membership for instance relations. Thus, fuzzy DL extensions usually keep
the same syntax for concept and role axioms as their crisp (classical) counterpart, while they extend the

137

Scalable Reasoning with Tractable Fuzzy Ontology Languages

syntax of concept and role assertions with membership degrees creating fuzzy assertions (Hölldobler et
al., 2005; Tresp & Molitor 1998; Stoilos et al., 2007; Straccia, 2001). For example, one is able to state
that a specific grass is seeing to be green to a degree greater or equal than 0.7, writing (grass:Green) ≥
0.7. Hence, fuzziness is added at the instance level. Some notable exceptions found in the literature are
fuzzy subsumption axioms (Straccia, 2005) and fuzzy nominals (Bobillo et al., 2006) which also extend
the syntax of concept inclusion axioms and the. Fuzzy subsumption extends classical subsumption with
degrees of truth. More formally a fuzzy subsumption is a concept axiom of the form 〈C ⊆ D,n〉, where
n ∈ [0,1]. Note that we will not deal with fuzzy nominals in the current Chapter.

As with classical DLs fuzzy DLs have a formal semantics provided by fuzzy interpretation. Intuitiv-
elly, fuzzy interpretations map concepts to membership functions in order to provide a fuzzy meaning.
More formally a fuzzy interpretation consists of a pair ,I II = 〈∆ ⋅ 〉 where DI is as before, while I⋅ is a fuzzy
interpretation function, which maps:

an individual • a to an element a ∈ DI,
a concept name • A to a membership function : [0,1]I IA ∆ → , and
a role name • R to a membership function : [0,1]I I IR ∆ ×∆ → .

Using well known fuzzy set theoretic operations (Klir & Yuan, 1995), like t-norms (t), t-conorms
(u), fuzzy complements (c) and fuzzy implications (J), fuzzy interpretations can be extended to inter-
pret f-SHOIN-concepts. Table 2 summarizes the syntax and semantics of concept descriptions, concept
axioms, roles axioms and fuzzy assertions for the fuzzy DL f-SHOIN. In Table 2, a is an arbitrary
individual of DI.

Now we can proceed to define the inference services of fuzzy Description Logics.

• KB Satisfiability: An f-SHOIN knowledge base Σ is satisfiable (unsatisfiable) iff there exists
(does not exist) a fuzzy interpretation I which satisfies all axioms in Σ.

• Concept n-satisfiabilty: An f- SHOIN -concept C is n-satisfiable w.r.t. Σ iff there exists a model
I of Σ in which there exists some a ∈ DI such that CI (a) = n, and n ∈ (0,1].

• Concept Subsumption: An f-SHOIN-concept C is subsumed by D w.r.t. Σ iff in every model I of
Σ we have that , () ()I I Ia C a D a∀ ∈∆ ≤ .

• ABox Consistency: An f-SHOIN is consistent (inconsistent) w.r.t. a TBox T and an RBox R if
there exists (does not exist) a model I of T and R which satisfies every assertion in A.

• Entailment: Given a concept or role axiom or a fuzzy assertion Ψ, we say that Σ entails Ψ, writing
Σ|= Ψ iff every model I of Σ satisfies Ψ.

• Greater Lower Bound (glb): The greatest lower bound of an individual a to a concept C w.r.t. Σ
is defined as, { }glb(, ,) sup | | :C a n a C nΣ = Σ = ≥ with sup∅ = 0.

Similarly to OWL and DLs the fuzzy OWL (Stoilos et al., 2005a) proposal consists of an extension
of the OWL standard in order to represent fuzzy knowledge in the Semantic Web. As in the crisp case
the logical underpinnings of f-OWL is f-SHOIN, while fuzziness can be captured in the instance level
in the form of fuzzy instance relations called fuzzy facts. For example, one can have the following f-
OWL instance axiom:

138

Scalable Reasoning with Tractable Fuzzy Ontology Languages

<HotPlace rdf:about=”Athens” owlx:ineqType=”>=” owlx:degree=”0.85”>

<closeTo rdf:resource=”Larnaca” owlx:ineqType=”>=” owlx:degree=”0.75”/>

</HotPlace>

saying that Athens is a hot place to a degree at least 0.85, while it is close to Larnaca to a degree at least
equal to 0.75.

sCALAbLE QUERY ANsWERINg WITH FUZZY DL-LITE

In the current section we will review some recent developments on the f-DL-Lite language. More pre-
cisely we will present a framework of very expressive fuzzy conjunctive query languages over the fuzzy
DL-Lite language. We first introduce fuzzy DL-Lite as a restriction of f-SHOIN and we briefly sketch

Table 2. Semantic of fuzzy SHOIN -concept descriptions and axioms

Syntax Semantics

⊤ ⊤I (a) = 1
⊥ ⊥I (a) = 0

¬C () () (())I IC a c C a¬ =

C⊓D (C ⊓D) I I Ia t C a D a() ((), ())=

C⊔D (C ⊔D)
I I Ia u C a D a() ((), ())=

∃R.C { }. () sup ((,), ())I I I
bR C a t R a b C b∃ =

∀R.C { }. () inf ((,), ())I I I
bR C a R a b C b∀ = J

{a} { } ()a bI =1 if { }Ib a∈ , { } ()a bI = 0 otherwise

R- () (,) (,)R b a R a bI I- =

≥ nR { }
1

1, ,
() () sup ((,),)

n

p
I I

i i ji i jb b
pR a t t R a b t b b

= <
≥ = ≠



≤ nR { }
1 1

1

1, ,
() () sup ((,),)

n

p
I I

i i ji i jb b
pR a t R a b u b b

+

+

= <
≤ = =



J

Trans(R) { }(,) sup ((,), (,))I I I
cR a b t R a c R c b≥

R ⊆ S , . (,) (,)I I Ia b R a b S a b∀ ∈∆ ≤

C ⊆ D . () ()I I Ia C a D a∀ ∈∆ ≤

C º D . () ()I I Ia C a D a∀ ∈∆ =

(a:C) ≥ n CI(a) ≥ n
(a,b): R ≥ n RI(a,b) ≥ n

139

Scalable Reasoning with Tractable Fuzzy Ontology Languages

its query answering algorithm. Then we present the syntax and semantics of the expressive weighted
query languages. Subsequently, we show how such queries can be supported through SPARQL, a well
known query language that will consist of a W3C standard, and finally we present an implementation
of the aforementioned framework.

The Fuzzy DL-Lite Language

In order to gain in reasoning efficiency it is obvious that the DL-Lite language (and its fuzzy extension)
consists of a restriction of the classical DL constructors.

A DL-Lite ontology (O)11 is a set of axioms of the following forms12:

1. class inclusion axioms: B ⊆ C where B is called a basic concept defined as:

B:= A | ∃R | ∃R-

 and C is called a general concept and is defined as

C:= B | ¬B | C1 ⊓ C2

2. functional property axioms: Func(R), Func(R-), where R is a role, and
3. individual axioms: B(a) ≥ n,R(a,b) ≥ n where a and b are individuals.

Note that B(a) ≥ n is just another syntax for (a:B) ≥ n. As we can see in DL-Lite besides limiting the
number of the available DL constructors one additionally restricts the use of the allowed ones in con-
cept axioms. For example, negation is only allowed in the right-hand side of axioms and only in front
of basic concepts. Although DL-Lite is significantly restrictive, compared to OWL DL, it is known that
is expressive enough to represent most features of UML class diagrams. Furthermore, this restrictive-
ness is the reason that DL-Lite provides efficient query answering. More precisely, it is known (and we
will briefly sketch below) that after careful rewriting conjunctive query answering over DL-Lite can
be reduced to a set of SQL queries over a relational database system. Consequently, the complexity of
DL-Lite query answering is L SOG PACE w.r.t. data, which is obviously far more computationally easy
than that of SHIN.

Like in other fuzzy extensions to DLs, fuzzy DL-Lite (Straccia, 2006) (or f-DL-Lite for short), extends
DL-Lite with fuzzy assertions, as described in the previous section. The semantics of f-DL-Lite ontolo-
gies are again defined in terms of fuzzy interpretations. Since we have already presented the semantics
of most of the constructors used by f-DL-Lite we will not repeat them here. We only note that a fuzzy
interpretation I satisfies a functional property axiom of the form Func(R) if { }.# | (,) 0 1I Ia o R a o∀ ∈∆ > = .

Similarly to crisp DL lite, fuzzy-DL-Lite, provides means to specify role-typing and participation
constraints but interestingly it assigns fuzzy meaning on them. More precisely, a role-typing assertion
of the form 1R A∃ ⊆ (resp. 2R A−∃ ⊆) states that the first (resp. second) component of a relation R(a,b)
belongs to A1 (resp. A2) at-least to the membership degree that the relation holds, i.e. 1(,) ()I I I I IR a b A a≤
(resp. 2() (,) (,) ()I I I I I I I IR b a R a b A b− = ≤ .

Similar to the crisp algorithm, the algorithm for answering conjunctive queries over f-DL-Lite on-
tologies consists mainly of three steps (Calvanese, 2005; Calavanese et al., 2007; Straccia, 2006), which
can be briefly summarized as follows:

140

Scalable Reasoning with Tractable Fuzzy Ontology Languages

1. Normalization: During this step, axioms of the form B ⊆ C1 ∧ C2 are replaced by two axioms of
the form B ⊆ C1 and B ⊆ C2, while concept axioms are closed under subsumption (⊆) and under
the rule, if 1 2B B T⊆ ∈ and 3 2B B T⊆ ¬ ∈ , then 1 3{ }T B B∪ ⊆ ¬ . Moreover, the ABox is normalized by
adding fuzzy assertions ()R a n∃ ≥ and ()R b n−∃ ≥ for each R (a,b) ≥ n ∈ A (Calvanese et al., 2005;
Calavanese et al., 2007).

2. Query reformulation: In the second step the input query is reformulated by a process known as
perfect reformulation (Calvanese et al., 2005; Calavanese et al., 2007). The idea is to expand the
query according to the given concept axioms in order to obtain a set of queries which issued to the
ABox discarding the TBox will retrieve all the certain answers of the original query as if it was
issued over the overall knowledge base.

3. Query evaluation: Finally, the set of conjunctive queries is evaluated over the given ABox.

An important property of the (fuzzy) DL-Lite algorithm is that the ABox can be faithfully stored in a
data base. Hence, every step that involves assertions of the ABox, like consistency checking and query
evaluation can be performed by applying SQL queries to the data base.

Expressive Query Languages

How one can efficiently and effectively access fuzzy information has been a significant issue in the
fuzzy information retrieval community (Cross, 1994). The idea is that fuzziness allows for many new
capabilities for accessing information. More precisely, the fuzzy degrees can be used in order to provide
rankings of result sets. Furthermore, these degrees can be combined with degrees issued by the user
which intuitively represent their preferences about the elements of the query. For example, a user might
be more interested in retrieving objects that have a certain property than another, or although he/she
would prefer to see objects satisfying specific constraints he/she is also flexible if his/her criteria could
not be met to an absolute degree. Thus the results will be ranked according to fuzziness but also accord-
ing to user data. Consequently, approaches to weighted conjunctive queries (Waller & Kraft, 1979) have
been proposed and many proposals/strategies for combining the user specified degrees with the fuzzy
degrees have been developed (Bookstein, 1980; Bordogna, 1996; Chen & Chen; Radecki, 1979; Salton
et al., 1983a; Sanchez, 1989; Yager, 1987).

Pan et al. (2008) were inspired by weighted conjunctive query languages and the work in the field of
fuzzy information retrieval and extended the classical conjunctive query language of f-DL-Lite with two
very expressive query languages providing algorithms for evaluating such queries. On the one hand they
propose new query languages, which generalize the entailment problem, while on the other hand they
propose a general framework which encapsulates many of the query languages proposed in the literature
for fuzzy information retrieval. Implementation over f-DL-Lite shows that such expressive queries can
also be handled in a scalable and efficient way even in fuzzy ontology languages. In the following we
first introduce conjunctive threshold queries that were proposed in (Pan et al., 2008) and consist of a
totally new query language, while later on we introduce general fuzzy queries.

Threshold Queries: As it was noted in (Calvanese, 2005; Calavanese et al., 2007) in DL-Lite (and in
all DLs) the entailment problem is a special case of conjunctive query answering. Since fKD-DL-Lite allows
for fuzzy assertions, it would be reasonable that our query language was an extension of the entailment
of fuzzy assertions. This implies that the query language should allow users to write the conjunction of
fuzzy assertions. Working that way we can define conjunctive threshold queries (CTQ) which extend

141

Scalable Reasoning with Tractable Fuzzy Ontology Languages

the atoms A(u),R(v1,v2) in conjunctive queries of the form (1) to the following form 1 1 2 2() , (,)A u t R v v t≥ ≥ ,
where t1,t2 ∈ (0,1] represent thresholds. As it was proven these queries are very important since they
can be used in order to devise a reasoning algorithm for the fuzzy language fuzzy-CARIN (Mailis et
al., 2007).

Example. Using threshold queries we can ask a database of human models for all the models of that
are tall to a degree no less than 0.7 and light to a degree no less than 0.8 using the following conjunctive
threshold query:

() () 1 () 0.7 () 0.8q x Model x Tall x Light x← ≥ ∧ ≥ ∧ ≥

Obviously, CTQs are more flexible than queries of the form (1) since users are allowed to specify
for different thresholds to each atom of the query.

Formally, given an fKD-DL-Lite ontology O, a CTQ qT and an evaluation []X S , we say that O
entails qT (writing O|=qT) if every interpretation I of O satisfies the following condition: for every atom

1 1 2 2() , (,)A u t R u u t≥ ≥ of qT, we have [] 1 1 2 [] 2() , (,)I
X S X SA u t R u u t≥ ≥  . Then we say that S is a solution of

qT. From the above we note that the solution set of a CTQ is crisp. i.e. a tuple either belongs or not to it.
Disjunctive threshold queries (DTQs) are defined accordingly.

Generalized Fuzzy Queries: Since fKD-DL-Lite allows for fuzzy assertions it would be useful if
we could find a way to assess a membership degree of a tuple to the result set of a given query. As we
show this is not the case for CTQs where a tuple either belongs or not to the solution set. For that rea-
son we introduce general fuzzy conjunctive queries. Syntactically, a general fuzzy conjunctive queries
(GFCQ) extends the atoms A(u),R(v1,v2) of conjunctive queries of the form (1) with those of the form
A u k R v v k() : , (,) :1 1 2 2 , where t1,t2 ∈ (0,1] are degrees called weights.

This extension of conjunctive query languages was already proposed in (Waller & Kraft, 1979) for
fuzzy databases and fuzzy information retrieval. All the approaches that followed argued in favor for
specific semantics for such queries (Bookstein, 1980; Chen & Chen; Radecki, 1979; Salton et al., 1983a).
Differently, we will try to use generalized fuzzy operators in order to keep the choice of the semantics
open. Thus in our case, conjunction of atoms will be performed by a general function denoted by G as
well as the degree of each atom with the associated weight will be denoted by a function a. To simplify
the presentation we will represent query atoms of GFCQs with atom ui () . Given a fKD-DL-Lite ontology
O, a fuzzy interpretation I of O, a GFCQ qF and an evaluation []X S , the truth degree of qF in I for
the specific evaluation is given by:

1 [, ']
'

sup (, ())
I I

n I
i i i X S Y S

S
d G a k atom u=

⊆∆ × ×∆
=  



where for 1 ≤ I ≤ n, ki and atomi are as shown before, G is a function that evaluates conjunctions of atoms
and a is a function that evaluates the weight associated atoms. S:d is called a candidate solution of qF.
When d > 0, then S:d is called a solution of qF. Additionally, the semantic function must also satisfy the
following condition:

If atom ui
I

X S Y S()[, '] 

= 0 for every valuation S′ and 1 ≤ I ≤ n, then d = 0. (2)

142

Scalable Reasoning with Tractable Fuzzy Ontology Languages

General fuzzy disjunctive query (GFDQ) is defined as a set of GFCQs that share the same head.
As we noted above Pan et al. (2008) have left the evaluation of conjunctions and degree associated

weights open. Consequently, there are many different ways to provide semantics and meaning to our
queries. In what follows we will briefly overview several such important choices that have been exam-
ined in (Pan et al., 2008).

1. Fuzzy threshold queries: As we show the result set of CTQs is always a crisp set. This implies that
if we have a fuzzy assertion of the form (a:C) ≥ 0.18 and a CTQ of the form () () 0.2Tq x C x← ≥ then
a will not be included in the result set. On the other hand if we choose a t-norm (t) as a function
for G and an R-implication as a function for a then we obtain fuzzy threshold queries, in which
the truth degree of qF in I is given by the equation:

1 [, ']
'

sup (, ())
I I

n I
i i i X S Y S

S
d t J k atom u=

⊆∆ × ×∆
=  



Given some set S′, if for all atoms of the query we have [, ']()I
i X S Y S iatom u k→ ≥ , then d = 1. On the other

hand, if for some atom it was the case that [, ']()I
i X S Y S iatom u k→ < then the R-implication would gradually

filter (penalize) the membership degree of the solution to the result set according to weight ki.
As it was shown by Bordogna (1996) many of the proposed semantic functions found in the literature,

like those in (Bookstein, 1980; Buel & Kraft, 1981; Radecki, 1979), can be grouped under the general
framework of fuzzy threshold queries. Moreover, Pan et al. (2008) show that the (classical) conjunctive
query language used by Straccia (2006), is also a special case of fuzzy threshold queries if we set all
weights equal to 1.

2. Fuzzy aggregation queries: Another commonly used fuzzy operator in fuzzy set literature that
can be used as a semantic function for interpreting general fuzzy queries is that of fuzzy aggrega-
tion functions (Klir & Yuan, 1995). For example, if we use the weighted average we will get the
semantic function:

[, ']
1

'

1

(())
sup

I I

n
I

i i X S Y S
i

n
S

i
i

k atom u
d

k

=

⊆∆ × ×∆

=

×
=

∑

∑

 



Similarly to fuzzy threshold queries, Pan et al. (2008) show that many proposals for semantics of
weighted queries, like the ones of Salton et al. (1983a) and S.-J. Chen and S.-M. Chen (2000), are special
cases of the family of fuzzy aggregation queries.

3. Fuzzy weighted t-norms: If we use the weighted t-norm operators proposed and studied by Chortaras
et al. (2006) as functions for conjunctions and for associated weights, then the truth degree of qF
in I is given by:

{ }[, ']1'
sup min (, (, ()))

I I

n
I

i i X S Y SiS
d u k k t k atom u

=⊆∆ × ×∆
= −  



143

Scalable Reasoning with Tractable Fuzzy Ontology Languages

where k ki
n

i= =max 1 . For more information about these fuzzy operators the reader is referred to (Chor-
taras et al., 2006). Once more we can use this generalized class of query languages to show that several
approaches, like the one proposed by Yager (1987) and Sanchez (1989), fall into it

It is easily shown that the above fuzzy conjunctive query languages satisfy condition (2).
Table 3 depicts fuzzy assertions with the fuzzy concept Tall, while the second one with the fuzzy

relation hasFriend. Consider now the following GFCQ:

() () : 0.8 (,) : 0.6q x Tall x hasFriend x y← ∧

Table 4 summarizes the results of issuing such a query in the above fuzzy knowledge by using several
of the semantic functions introduced before.

From the above we see that different choices of semantic functions could lead to different ranking
results since the considered semantics are different. The first semantic function teats weight as thresh-
olds, penalizing the individuals that fail to satisfy them, while the second one aggregates all the degrees.
The choice of the semantic function is context dependent and as far as we know there are no criteria or
methodology found in the literature for choosing among them.

supporting Querying with sPARQL

After presenting the abstract syntax and semantics of our proposed languages, and important issue is to
how such queries can be represented using Semantic Web standards. In the following we show how to
extend the syntax of SPARQL (Prud’hommeaux & Seaborne, 2006), a well known Semantic Web query
language, for the proposed languages. We call our extension f-SPARQL. SPARQL is a query language
(candidate recommendation from the W3C Data Access Working Group13) for getting information from
RDF graphs. SPARQL allows for a query to constitute of triple patterns, conjunctions, disjunctions and
optional patterns. A SPARQL query is a quadruple Q = (V,P,DS,SM), where V is a result form, P is a
graph pattern, DS a data set and SM a set of solution modifiers. Among others, SPARQL allows for select
queries, formed in a SELECT-FROM-WHERE manner. The result form represents the set of variables
appearing in the SELECT, the dataset forms the FROM part, constituted by a set of IRIs of RDF docu-
ments, while the graph pattern forms the WHERE part which is constituted by a set of RDF triples.

In order to maintain backward compatibility with existing SPARQL tools, we propose to use spe-
cially formatted SPARQL comments to specify extra information needed in our proposed languages (see
Table 5). Firstly, one should declare the query type before a select query. For example, #TQ# declares
a threshold query, while #GFCQ:SEM=FUZZY THRESHOLD# declares a general fuzzy query, with
the fuzzy threshold semantic functions. Secondly, following each triple in the WHERE clause, one can

Table 3. Example Consider the following set of fuzzy assertions

Tall hasFriend

Individual Degree Individual Individual Degree

george 0.8 goerge mary 0.8

tom 0.79 tom mary 0.9

mary 0.75 mary tom 0.9

144

Scalable Reasoning with Tractable Fuzzy Ontology Languages

use #TH# (resp. #DG#) to specify a threshold in a threshold query (resp. a degree in a general fuzzy
query). For instance, the threshold query presented in a previous Example can be represented by the
following f-SPARQL query:

#TQ#

SELECT ?x WHERE {

?x rdf:type Model . #TH# 1.0

?x rdf:type Tall . #TH# 0.7

?x rdf:type Light . #TH# 0.8

}

In the case of general fuzzy queries, one must specify the semantic functions (i.e. a and G). Below
is an example fuzzy threshold query.

#GFCQ:SEM=FUZZYTHRESHOLD#

SELECT ?x WHERE {

?x rdf:type Model . #DG# 1.0

?x rdf:type Tall . #DG# 0.7

?x rdf:type Light . #DG# 0.8

}

Table 5 presents the f-SPARQL syntax. f-SPARQL extends two of SPARQL’s elements, namely
the “Query” and the “TriplesBlock” element. As illustrated above, each select query is extended with

Table 4.

Fuzzy Threshold Queries with the Lukasiewicz operators
t(a,b) = max(0,a+b−1)
J(a,b) = min(1,1−a + b)

Fuzzy Aggregation Queries using weighted average

x d x d

george 1 tom 0.837

tom 0.99 mary 0.81

mary 0.95 george 0.8

Table 5. Syntax of Fuzzy SPARQL

Query := Prologue (QueryType SelectQuery | ConstructQuery|
DescribeQuery | AskQuery)

QueryType ::= ‘#TQ# \n’ | ‘#GFCQ:SEM=’ FuzzySemantics ‘# \n’

FuzzySemantics ::= ‘AGGREGATION’ | ‘FUZZYTHRESHOLD’ |
‘FUZZYTHRESHOLD-1’ | ‘FUZZYWEIGHTEDNORMS’

TriplesBlock := TriplesSameSubject (‘.’ TripleWeight Degree TriplesBlock?)?

TripleWeight := ‘#TH#’ | ‘#DG#‘

Degree := real-number-between-0-and-1-upper-inclusive

145

Scalable Reasoning with Tractable Fuzzy Ontology Languages

the element QueryType. In particular, for general fuzzy queries, the declaration `#GFCQ:SEM=’ is fol-
lowed by the element FuzzySemantics, which is used to specify the semantic functions, such as the ones
we presented in the previous section. More precisely, we use the keywords `FUZZYTHRESHOLD’,
`FUZZYTHRESHOLD-1’, ̀ AGGREGATION’ and ̀ FUZZYWEIGHTEDNORMS’ to indicate the four
fuzzy general queries we introduced in Section 3.1.2. When one uses `FUZZYTHRESHOLD-1’, the
fuzzy threshold is set as 1, and the values specified by the #TH# comments are ignored. Finally, the
`”TriplesBlock” element is extended with the elements TripleWeight and Degree, which are used to as-
sociated a threshold or weight with each triple of the SPARQL query.

The ONTOsEARCH2 system

Our implementation is based on the ONTOSEARCH2 system (Pan et al., 2006b; Thomas et al., 2007),
which is an infrastructure for supporting ontology searching and query answering. The f-DL-Lite query
engine is implemented as an extension of the crisp DL-Lite query engine in ONTOSEARCH27 (Pan
& Thomas, 2007), so as to support threshold queries and general fuzzy queries. The core part of the
f-DL-Lite query engine includes implementations of algorithms that realize the expressive conjunctive
queries we have presented in the previous section over fuzzy DL-Lite (Pan et al., 2008). The system was
written in Java 5 and uses PostgreSQL 8.1 RDBMS for the repository storage. PostgreSQL was setup
with default installation, no additional configuration was performed.

Users of the f-DL-Lite query engine can submit f-DL-Lite ontologies via the Web interface of ON-
TOSEARCH2, and then submit f-SPARQL queries against their target ontologies. Figure 1 depicts the
web interface of ONTOSEARCH2.

The fuzzy query engine operates in two modes: TQ mode (for threshold queries) and GFCQ mode
(for general fuzzy queries). When users submit an f-SPARQL query, the fuzzy query engine parses it,
so as to determine the query type (whether the query is a threshold query or a general fuzzy query), as
well as the thresholds (for threshold queries) or degrees (for general fuzzy queries), depending on the
query types. The implementation over ONTOSEARCH2 has been evaluated against a fuzzy variant of
the Lehigh University Benchmark (Pan et al., 2008). In brief, the LUBM benchmark has been enriched
with two fuzzy concepts, that of a “Busy” and a “Famous” for which fuzzy assertions are created. The
system has been shown to be highly scalable, being able to answer threshold queries and general fuzzy
queries over about 7,000,000 individuals in a matter of a few seconds, comparable to the query answer-
ing time of classical DL-Lite.

Besides the DL-Lite and the f-DL-Lite query engine, the ONTOSEARCH2 system consists of other
components, such as the ontology search engine. According to this functionality the implementation has
been tested with a realistic Semantic Web scenario, which we briefly sketch below.

One of the major limitations of existing ontology search engines is that searching is only based on
keywords and metadata information of ontologies, rather than semantic entailments of ontologies (e.g.,
one wants to search for ontologies in which Bass Clarinet is a sub-class of Woodwind). On the other
hand, searching only based on semantic entailments might not be ideal either, as synonyms appearing
in the metadata could not be exploited.

By making use of the f-DL-Lite query engine, our ontology search engine supports keyword-plus-
entailment searches, such as searching for ontologies in which class X is a sub-class of class Y, and class
X is associated with the keywords “Bass” and “Clarinet”, while class Y is associated with the keyword
“Woodwind”. The search could be represented as the following threshold query:

146

Scalable Reasoning with Tractable Fuzzy Ontology Languages

#TQ#

SELECT ?x WHERE {

?x hasKeyword i-bass . #TH# 0.6

?x hasKeyword i-clarinet . #TH# 0.6

?x rdfs:subClassOf ?y .

?y hasKeyword i-woodwind . #TH# 0.7

}

where i-bass, i-clarinet and i-woodwind are representative individuals for keywords “Bass”, “Clarinet”
and “Woodwind”, resp. The thresholds 0.6 and 0.7 can be specified by users.

In order to support keyword-plus-entailment searches, our ontology search engine, for each indexed
ontology, stores its semantic approximation (in DL-Lite) (Pan & Thomas, 2007) and accompanies each
ontology in its repository with an f-DL-Lite meta-ontology, which (i) materialises all TBox reasoning based
on the semantic approximation and, most importantly, (ii) uses fuzzy assertions to represent associations
of each class (property) and keywords14 appearing in the metadata of the ontology, with some degrees.
Keywords appearing in the ontology metadata are associated with scores based on ranking factors15. We
use these scores to calculate the tf idf⋅ (Salton & McGill, 2983b) for each keyword, and normalise them
using a sigmoid function such as the one shown in the following to a degree between 0 and 1.

w n n()
.

=
+

-
-

2
1 2 1

1

Figure 1. The ONTOSEARCH2 Web Interface

147

Scalable Reasoning with Tractable Fuzzy Ontology Languages

Hence, the ontology search engine can use the f-DL-Lite query engine to query across all the meta-
ontologies in its repository, so as to support keyword-plus-entailment searches. Further discussions of
this use case go beyond the scope of this paper.

Concluding our presentation in expressive querying over f-DL-Lite ontologies, we would like to
point out that the respective querying framework is not specifically tailored for f-DL-Lite ontologies.
This framework has also been implemented in the FiRE5 fuzzy DL reasoner and queries are realized
through the Sesame RDF triple store16. More precisely, expressive reasoning is firstly applied in order
to extract new implied information from the facts and axioms, then the knowledge base is stored in a
proper form in Sesame and finally FiRE uses SPARQL queries to Sesame in order to implement expres-
sive weighted queries (Simou et al., 2008b). The respective implementation has been evaluated against
an industrial strength scenario about casting actors for TV spots and commercials and its performance
has been assessed.

sCALAbLE KNOWLEDgE CLAssIFICATION WITH FUZZY EL+

In the current section we will present a fuzzy extension of the EL+ language. EL+ (Baader et al.) is
another very famous tractable Description Logic that has been proposed in the literature. It actually
consists of one member of the EL family of languages consisting of EL, EL+ and EL++ (Baader et al.,
2005). The EL family has been developed by an effort to identify the fragment of Description Logics
that is usually used in creating medical ontologies, like the SNOMED17 (Systematized Nomenclature of
Medicine) and the Galen18 ontologies. It was only later proved that the used fragment enjoys polynomial
algorithms for concept classification. This was a very important feature since concept classification is
a very important (if not the most important) reasoning problem in medical applications, where the clas-
sification of medical terms within the ontologies is required, rather than performing retrieval tasks, as
is the case for DL-Lite. Thus, differently than DL-Lite, EL+ offers for more expressive means of repre-
senting knowledge (see next section), but still no more than is required to allow for polynomial concept
classification. Regarding, query answering it has been later shown that conjunctive query answering
over EL+ ontologies is undecidable (Rosati, 2007), which also justifies the fact that EL+ is not tailored
for query answering tasks.

In the following we present the fuzzy EL+ language. First we introduce the syntax and semantics,
while later we focus in providing an algorithm that computes the concept hierarchy of f-EL+ ontolo-
gies. The interesting feature is that the algorithm manages to classify f-EL+ ontologies that allow for
fuzzy subsumption. Finally, we present some refinements of the algorithm that can be the base for an
optimized implementation, as in the crisp case.

The Fuzzy EL+ Language

In this section we introduce a fuzzy extension to the EL+ DL. Our semantics will be tailored for the
operators of the Gödel logic we call our language fG − EL+.

As is the case with DL-Lite, the high efficiency of EL+ is attributed to the restriction of the avail-
able set of constructors. More precisely, fG − EL+ only allows for the top concept (⊤), for full existential
restrictions (∃R.C) and conjunction (C⊓D). We note that unlike DL-Lite the use of these constructors
in EL+ concept axioms is unrestricted. Furthermore, in comparison with DL-Lite, EL+ allows for full

148

Scalable Reasoning with Tractable Fuzzy Ontology Languages

existential quantification, thus significantly more complex concepts can be defiled. We clarify here that
since EL+ is more expressive w.r.t. what can be said about concepts, f-DL-Lite classification is also
tractable (polynomial), but due to the very restricted constructors, not of great interest.

An fG − EL+ ontology consists of a finite set of concept and role axioms. Differently, than f-DL-Lite
we allow for fuzzy general concept inclusions (f-GCIs) of the form 〈C ⊆ D,n〉, where n ∈ [0,1]. Intuitively,
these axioms say that the degree of subsethood of C to D is at-least equal to n. In contrast to what we
have seen until now EL+ allows for what is called complex role inclusion axioms (RIAs) of the form

1 nR R S⊆ , where  denotes the composition of two roles. Again, we note that EL+ allows for opera-
tors over roles, and more precisely for role composition which is a significant expressive constructor.
With RIAs one is able to state that a role R is transitive, by R R R⊆ or express right- and left-identity
rules, which are very important in medical application, by axioms of the form R S R⊆ .

The semantics of fG − EL+ are again provided by the aid of fuzzy interpretations. Again using fuzzy
set theoretic operators we are able to interpret complex fG − EL concepts. Table 6 summarizes the se-
mantics. Most of them have already been presented in previous sections. Nevertheless the semantics
of fuzzy inclusion axioms and complex role inclusion axioms are new. In Table 6 t denotes the sup-t
composition of two fuzzy roles (Klir & Yuan, 1995). Given an interpretation I we say that I is a model of
an fG − EL+ ontology if for each f-GCI and RIA, the conditions in this table are satisfied. For example,
a fuzzy interpretation I satisfies 〈C ⊆ D,n〉 if inf ((), ())I I

a C a D a n≥J , where J is a fuzzy implication.
The basic inference problem of fG − EL+ is fuzzy concept subsumption: A concept C is fuzzy

subsumed by a concept D to a degree n ∈ [0,1] w.r.t. an fG − EL+ ontology O, written ,OC D n〈 ⊆ 〉 if
inf ((), ())I I

a C a D a n≥J for every model I of O. Moreover we are also interested in the problem of clas-
sifying an fG − EL+ ontology which contains fuzzy-GCIs, i.e. compute all fuzzy subsumptions between
concepts of the ontology.

As we see, we interpret fuzzy GCIs with the aid of R-implications. This semantics is derived by
translating C ⊆ D into the First-Order formula ∀x.C(x) → D(x) and then interpreting → with an R-im-
plication and ∀ with inf (Straccia, 2005). Although fuzzy subsumption for fuzzy DLs was first proposed
by Straccia, several works in the fuzzy set literature regarding this issue already existed. The first idea
was presented by Bandler and Kohout (1980). Similarly to Straccia, Bandler and Kohout used fuzzy
implications to give semantics to fuzzy set inclusion. The first attempt to provide axioms that character-
ize the operators used to interpret fuzzy subsumption was presented by Sinha and Dougherty (1993).
Many of these axioms are satisfied by R-implications, but only the Lukasiewicz implication satisfies
all of them. A different set of axioms was proposed by Young (1996). Again R-implications are quite

Table 6. Semantics of f-EL+

Constructor DL Syntax Semantics

top concept ⊤ ⊤I(a) =1

conjunction C ⊓D (C ⊓ D a t C a D aI I I) () ((), ())=

existential restriction ∃R.C { }. () sup ((,), ())I I I
bR C a t R a b C b∃ =

Fuzzy GCIs 〈C ⊆ D,n〉 inf ((), ())I I
a C a D a n≥J

RIAs 1 nR R S⊆ 1 (,) (,)I t t I I
nR R a b S a b⊆ 

149

Scalable Reasoning with Tractable Fuzzy Ontology Languages

close to satisfying all proposed axioms. Thus, we see that each author provided different set of axioms
according to the specific problem they wanted to tackle. Sinha and Dougherty (1993) wanted to define
new mathematical morphology operators, while Young (1993) was studying fuzzy entropy. We conclude
that R-implications generally provide a good intuition for semantics of fuzzy subsumption.

The use of fuzzy inclusion axioms in fuzzy EL+ was motivated by the field of ontology matching
and ontology alignment. Ontology matching consists of the process of identifying semantic similarities
between heterogeneous ontologies. More precisely, an ontology alignment algorithm is never capable
of assessing the similarity of two entities with 100% confidence. What is more likely is to have degrees
of confidence for each mapping. For example, in a realistic ontology alignment example and for two
relatively simple ontologies, o1 and o2, about mobile phones an algorithm can produce the following
(fuzzy) mappings:

map(o1: MobileDevice, o2: ElectronicDevice, 0.7)	

map(o1: MobilePhone, o2: Phone, 0.6)	

map(o1: MobilePhone, o2: CablePhone, 0.4)	

map(o1: MobilePhone, o2: CellularPhone, 1.0)	

Ferrara et al. (2008) have already proposed the use of fuzzy inclusion axioms of fuzzy DLs in order
to provide formal semantics to such fuzzy mappings and interpret them. For example, the first mapping
could be represented by the following fuzzy inclusion axiom . Ferrara et al. (2008) then use the semantics
of such axioms together with standard fuzzy reasoning services in order to perform fuzzy validation, i.e. to
refine or remove a mapping according to whether it causes inconsistencies of the fuzzy knowledge base.
Although, they did not use fuzzy classification services, it is quite evident that if such services could be
supported then new (inferred) mappings between the two ontologies could be identified. Furthermore,
Holi & Hyvonen (2006) have also proposed the use of fuzzy inclusion axioms for representing fuzzy
mappings between search views in Semantic Portals. Again no reasoning over fuzzy subsumption was
performed. Consequently, from both applications we can note that the use of fuzzy inclusion axioms
with f-EL+ (that allows for efficient classification) is of great interest.

Classifying Knowledge with Fuzzy EL+

In the current section we will provide a detailed presentation of the algorithm for classifying fuzzy sub-
sumption in f-EL+ ontologies. As we will see in the following the algorithm for fG − EL+ is quite similar
to the algorithm for classical EL+ modulo the degrees of fuzzy-GCIs. This is to some extent expected
since on the one hand fuzzy logics are generalization of classical logics which is different compared to
uncertainty handling logics (probabilistic, possibilistic), thus at the extremes of 0 and 1 they provide
the same results. On the other hand EL+ is already a sub-boolean logic (it is not propositionally closed
under negation) so the logical differences with fG − EL+ cannot be revealed. Nevertheless, discover-
ing the degrees of membership in the inference rules (see Table 8) and generalizing the algorithm was
extremely difficult and involved deep investigation of the properties of fuzzy operators.

150

Scalable Reasoning with Tractable Fuzzy Ontology Languages

Before applying the polynomial algorithm for classification a fG − EL+ ontology needs to be normal-
ized (Baader et al.). Given an ontology O, we write CNO

U and CNO to denote the set of concept names
with and without the top concept (⊤), respectively. Then, an fG − EL+ ontology O is in normal form if

1. all fuzzy GCIs in O have one of the following forms, where U
i OA CN∈ and B ∈ CNO:

〈A1 ⊓…⊓ ⊆ B,n〉 Ak

〈A1 ⊆ ∃R.A2,n〉

〈∃R.A1 ⊆ B,n〉

2. all role inclusions are of the form R ⊆ S or 1 2R R S⊆ .

As shown in (Baader et al.) every EL+ ontology O can be turned into a normalized one O′ by exhaus-
tively applying proper normalization rules, which introduce new concept and role names in the ontology.
The complete set of normalization rules for fG − EL is described in Table 7.where , , , ,U

O iC D CN C C D∉ are
arbitrary concepts, ,U

OB CN P∈ denotes a new role and A denotes a new concept name.
Lemma. An fG − EL ontology O is satisfiable iff the normalized one O′ is satisfiable.
Theorem. Subsumption w.r.t. fG − EL ontologies can be reduced in linear time to subsumption w.r.t.

normalized ontologies in fG − EL.
In the following we assume that an input ontology O is in normal form.
Let O be an fG − EL ontology in normal form. Our subsumption algorithm for normalized fG − EL

ontologies can be restricted to subsumption checking between concept names. More precisely, ,OC D n〈 ⊆ 〉
iff ' ,OA B n〈 ⊆ 〉, where { }' , , ,O O A C n D B n= ∪ 〈 ⊆ 〉 〈 ⊆ 〉 and A, B are new concept names.

Let RNO be the set of all role names occurring in O. The algorithm computes:

A mapping • S assigning to each concept name of CNO a subset S(A) of [0,1]U
OCN × , and

A mapping • r assigning to each role name R of RNO a ternary relation r(R) which is a subset of
[0,1]U U

O OCN CN× × .

Table 7. Normalization rules for fG − EL

NF1 1 nR R S⊆ → 1 1 ,n nR R P P R S− ⊆ ⊆ 

NF2
1C〈 ⊓…⊓ C ⊓…⊓ ,kC D n⊆ 〉 → ,C A n〈 ⊆ 〉, 1C〈 ⊓…⊓ A ⊓…⊓ ,kC D n⊆ 〉

NF3 . ,R C D n〈∃ ⊆ 〉 → ,C A n〈 ⊆ 〉, . ,R A D n〈∃ ⊆ 〉

NF4 ,C D n〈 ⊆ 〉 → ,C A n〈 ⊆ 〉, ,A D n〈 ⊆ 〉

NF5 . ,B R C n〈 ⊆ ∃ 〉 → . ,B R A n〈 ⊆ ∃ 〉, ,A C n〈 ⊆ 〉

NF6 B C〈 ⊆ ⊓ ,D n〉 → ,B C n〈 ⊆ 〉, ,B D n〈 ⊆ 〉

151

Scalable Reasoning with Tractable Fuzzy Ontology Languages

As we can see, due to the presence of fuzzy subsumptions we have extended the mappings S(A), r(R)
to range over subsets of [0,1]U

OCN × and [0,1]U U
O OCN CN× × , respectively. As with crisp EL+ intuitively,

these mappings make implicit fuzzy subsumption relationships explicit in the sense that

• , ()B n S A〈 〉 ∈ implies ,A B n〈 ⊆ 〉 and
• , , ()A B n r R〈 〉 ∈ implies . ,A R B n〈 ⊆ ∃ 〉.

The mappings are initialized as follows:

• S(A) = {〈A,1〉, 〈⊤,1〉}, for each A ∈ CNO
• r(R) = ∅, for each R ∈ RNO

Then, the sets S(A) and r(R) are extended by applying the completion rules shown in Table 8 until
no more rules are applied.

Theorem. The algorithm runs in polynomial time and it is sound and complete, i.e. after it terminates
on input O, we have for all , U

OA B CN∈ , n ∈ (0,1], ,OA B n〈 ⊆ 〉 iff , ' ()B n S A〈 〉 ∈ , for some n′ ∈ (0,1], with
n′ ≥ n.

A Refined and Optimised Algorithm

As it was pointed in (Baader et al.) although EL+ is a tractable DL, in practice the above algorithm might
fail to provide truly tractable, scalable and efficient reasoning. This is due to the fact that the application
of rules is performed using a naïve brute-force search. This effect is remedied by proposing a refined
algorithm which is shown to provide truly scalable practical reasoning. The algorithm is realized by
introducing a set of queues, one for each concept name, which intuitively guide the application of the
expansion rules. In the following we sketch the necessary modifications to the EL+ refined algorithm
in order to also provide optimisations for the fG − EL algorithm. Our entries of the queues are of the
form:

B1,…,Bm → 〈B′, n′〉 and 〈∃R.B, n〉

Table 8. Completion rules for fG − EL+

Rule Description

R1 If 1 1, (), , , ()l lA n S X A n S X〈 〉 ∈ 〈 〉 ∈ , 1A〈 ⊓…⊓ ,lA B k O⊆ 〉∈ and , ()B m S X〈 〉 ∉ , where
m n n kl= min(, , ,)1  then () : () { , }S X S X B m= ∪ 〈 〉 where m n n kl= min(, , ,)1 

R2 If , ()A n S X〈 〉 ∈ , . ,A R B k O〈 ⊆ ∃ 〉 ∈ and , , ()X B m r R〈 〉 ∉ , where m n k= min(,) then
() : () { , , }r R r R X B m= ∪ 〈 〉 , where m n k= min(,)

R3 If 1, , ()X Y n r R〈 〉 ∈ , 2, ()A n S Y〈 〉 ∈ , 3. . ,R A B n O〈∃ ⊆ 〉∈ and , ()B m S X〈 〉 ∉ , where
m n n n= min(, ,)1 2 3 then () : () { , }S X S X B m= ∪ 〈 〉 , where m n n n= min(, ,)1 2 3

R4 If , , ()X Y n r R〈 〉 ∈ , R S O⊆ ∈ , and , , ()X Y n r S〈 〉 ∉ then () : () { , , }r S r S X Y n= ∪ 〈 〉

R5 If 1, , ()X Y n r R〈 〉 ∈ , 2, , ()Y Z n r S〈 〉 ∈ , R S F O⊆ ∈ and , , ()X Z m r F〈 〉 ∈/ , where m n n= min(,)1 2
then () : () { , , }r F r F X Z m= ∪ 〈 〉 where m n n= min(,)1 2

152

Scalable Reasoning with Tractable Fuzzy Ontology Languages

with B1,…,Bm and B′ concept names, R role name, m ≥ 0 and n′ ∈ (0,1]. For m =0 we simply write 〈B′,
n′〉. Intuitively,

an entry • B1,…,Bm → 〈B′, n′〉 ∈ queue(A) means that 〈B′, k〉, with k = min(n′, n1,…,nm) has to be
added in S(A) if S(A) already contains information for B1,…,Bm, i.e. entries 〈B1,n1〉,…,〈Bm,nm〉,
and

• 〈∃R.B, n〉 ∈ queue(A) means that 〈A,B,n〉 has to be added to r(R).

Similarly to the optimised algorithm of EL+ we use the mapping Ô from concepts to sets of queue
entries as follows:

For each concept name U
OA CN∈ , Â is the minimal set of queue entries such that:

if • 〈A1 ⊓…⊓ Am ⊆ B,n〉 ∈ O and A = Ai, then

1 1 1
ˆ, , , , , , ()i i mA A A A B n O A− + → 〈 〉 ∈  and

if • 〈A ⊆ ∃R.B,n〉 ∈ O, then ˆ. , ()R B n O A〈∃ 〉 ∈ .

Similarly, for each concept ∃R.A, ˆ (.)O R A∃ is the minimal set of queue entries such that, if ∃R.A ⊆ B
∈ O, then ˆ, (.)B n O R A .

Using the above changes the refined algorithm of EL+ can be changed accordingly in order to also
take into account fuzziness in subsumption axioms and provide an algorithm for processing the queue
entries.

Theorem. The refined algorithm runs in polynomial time and it is sound and complete, i.e. after it
terminates on input O, we have for all , U

OA B CN∈ , n ∈ (0,1] that ,OA B n〈 ⊆ 〉 iff , ' ()B n S A〈 〉 ∈ , for some
degree n′ ∈ (0,1], with n′ ≥ n.

DIsCUssION AND FUTURE WORK

How to apply Description Logic based ontologies in the Web has been a pressing issue for the Semantic
Web community (Mika, 2005). On the one hand (Semantic) Web applications would require ontologies to
be able to handle hundreds of thousands of data in reasonable amount of time in order to deliver services
to end users, while on the other hand they should be able to deal with fuzzy and imprecise data which
emerge from automated procedures or are inseparable part of every-day, common, human reasoning.
Our current Chapter tries to provide the state-of-the-art of works tackling such a problem. On the one
hand we want to show that handling fuzziness in Semantic Web applications is feasible and we have
presented a number of fuzzy extensions of popular ontology languages. Nevertheless, our main aim is
to show that handling vagueness although it adds more expressivity over the crisp (classical) approaches
can still be done very efficiently and in a way that can scale up to millions of data. Hence, for a certain
class of fuzzy ontology languages fuzziness and scalability are not antagonistic concepts.

The contribution of the Chapter is divided in two major parts.

153

Scalable Reasoning with Tractable Fuzzy Ontology Languages

On the first part we present a fuzzy extension of the • DL-Lite language that has been proposed in
the literature (Straccia, 2006). The DL-Lite language is particularly interesting since it can pro-
vide efficient query answering services and can scale over millions of data. The power of DL-Lite
lies in the fact that its constructors have been carefully selected such that after careful rewrit-
ing queries over DL-Lite ontologies can be reformulated and issued over a relational database.
Thus one can exploit the vast amount of research and optimizations that have been developed in
this field for many years. After reviewing its syntax and semantics we take the fuzzy-DL-Lite
proposal one step further and present a proposal for performing very expressive weighted/fuzzy
conjunctive queries over fuzzy-DL-Lite ontologies (Pan et al, 2008). Many of these languages
have been proposed many years ago in the field of fuzzy information retrieval and querying over
fuzzy databases (Cross, 1994). Taking these approaches even further we have shown that these
can be represented under a general framework and the semantic possibilities are merely endless
adding more, like conjunctive threshold queries which have been proven very important (Mailis
et al., 2007). Overall, we have shown that evaluating very expressive extended queries over fuzzy
ontologies are not antagonistic concepts and can be done in a very efficient and scalable way for
the fuzzy-DL-Lite language.
On the second part of the Chapter we have focused on the second most important inference service •
of (fuzzy) ontology languages, that of concept (class) classification (i.e. computing the implied
concept hierarchy). To this extend we focused on the EL+ language, which is known to be able to
solve such a problem in a very efficient way (Baader et al). Consequently, we present the fuzzy
EL+ language (Stoilos et al., 2008). Besides the syntax and semantics we also focus in providing
a classification algorithm for fuzzy EL+ ontologies in order to realize such a problem in the fuzzy
case. The interesting part in this approach is that fuzzy EL+ ontologies are extended to allow
for fuzzy subsumption, that is important in several Semantic Web tasks like ontology matching
(Ferrara et al., 2008) and semantic portals (Holi & Hyvonen, 2006). Furthermore, we have pre-
sented the refinements/optimizations that have been proposed for the classification of the fuzzy
EL+ algorithm (Stoilos et al., 2008) and can be the base for an efficient implementation. Hence,
again in this case we have shown that there exist fuzzy ontology languages which can support
concept classification over fuzzy subsumption in a scalable manner.

In conclusion we have shown that scalability and reasoning over fuzzy ontologies are two concepts
that can indeed live together. Both of the aforementioned fuzzy ontology languages provide ways to solve
efficiently the two most important inference problems of ontology languages and Description Logics,
namely, query answering and entailment and classification.

The main aspect of future work is to investigate how the aforementioned languages and algorithms
can be extended in order to support in a scalable and efficient way more expressive ontology languages.
Regarding fuzzy-DL-Lite, scalable querying services for more expressive fuzzy ontology languages, such
as fuzzy-OWL (Stoilos et al., 2005a), can be performed along the lines of semantic approximation (Pan
& Thomas, 2007), which is a technique to reduce query answering over OWL DL ontologies to query
answering over DL-Lite. Regarding fuzzy EL+ an obvious way would be to extend the algorithm for
supporting classification over fuzzy EL++, which is a fuzzy extension of the well known extension of
EL+, EL++ (Baader et al., 2005). Although such a fuzzy extension exists in the literature (Mailis et al.,
2008) it is well known that the reasoning algorithm of (fuzzy) EL++ does not usually scale in practical

154

Scalable Reasoning with Tractable Fuzzy Ontology Languages

settings due to the lack of refinements (Baader et al.). Investigating such refinements is still an open
problem even for the classical EL++ language.

REFERENCEs

Baader, B., McGuiness, D. L., Nardi, D., & Patel-Schneider, P. (Eds.). (2002). Description logic hand-
book: Theory, implementation and applications. Cambridge, UK: Cambridge University Press.

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 05).

Baader, F., Lutz, C., & Suntisrivaraporn, B. (in press). Is tractable reasoning in extensions of the descrip-
tion logic EL useful in practice? Journal of Logic, Language and Information, Special Issue on Method
for Modality (M4M).

Bandler, W., & Kohout, L. (1980). Fuzzy power sets and fuzzy implication operators. Fuzzy Sets and
Systems, 4, 13–30. doi:10.1016/0165-0114(80)90060-3

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P. F., &
Stein, L. A. (2004). OWL Web ontology language reference. W3C Recommendation.

Bobillo, F., Delgado, M., & Gomez-Romero, J. (2006). A crisp representation for fuzzy SHOIN with
fuzzy nominals and general concept inclusions. In Proc. of the 2nd International Workshop on Uncer-
tainty Reasoning for the Semantic Web (URSW 06).

Bookstein, A. (1980). Fuzzy requests: An approach to weighted Boolean searches. Journal of the Ameri-
cal Society for Information Science, 31, 240–247. doi:10.1002/asi.4630310403

Bordogna, G., Bosc, P., & Pasi, G. (1996). Fuzzy inclusion in database and information retrieval query
interpretation. In Proceedings of the 1996 ACM symposium on Applied Computing (pp. 547-551).

Buell, D. A., & Kraft, D. H. (1981). Threshold values and Boolean retrieval systems. Journal of Infor-
mation Processing and Management, 17, 127–136. doi:10.1016/S0306-4573(81)80004-0

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2005). DL-Lite: Tractable
description logics for ontologies. In Proc. of the AAAI.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable reasoning and
efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning,
39(3), 385–429. doi:10.1007/s10817-007-9078-x

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., & Rosati, R. (1998). Description logic
framework for information integration. In Proc. of the 6th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’98).

Chen, S. J., & Chen, S. M. (2000). A new method for fuzzy information retrieval based on geometric-
mean averaging operators. In Proceedings of the Workshop on Artificial Intelligence, 2000.

155

Scalable Reasoning with Tractable Fuzzy Ontology Languages

Chortaras, A., Stamou, G., & Stafylopatis, A. (2006). Adaptation of weighted fuzzy programs. In Proc.
of the International Conference on Artificial Neural Networks (ICANN 2006) (pp. 45-54).

Cross, V. (1994). Fuzzy information retrieval. Journal of Intelligent Information Systems, 3, 29–56.
doi:10.1007/BF01014019

Dameron, O., Gibaud, B., & Musen, M. (2004). Using semantic dependencies for consistency manage-
ment of an ontology of brain-cortex anatomy. In Proceedings of the First International Workshop on
Formal Biomedical Knowledge Representation KRMED04 (pp. 30-38).

Ferrara, A., Lorusso, D., Stamou, G., Stoilos, G., Tzouvaras, V., & Venetis, T. (2008). Resolution of
conflicts among ontology mappings: A fuzzy approach. In Proceedings of the International Workshop
on Ontology Matching (OM2008), Karlsruhe.

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base systems. Journal
of Web Semantics, 3(2), 158–182. doi:10.1016/j.websem.2005.06.005

Holi, M., & Hyvonen, E. (2006). Fuzzy view-based semantic search. In Proceedings of the Asian Se-
mantic Web Conference.

Hölldobler, S., Nga, N. H., & Khang, T. D. (2005). The fuzzy description logic ALCFLH. In Proceedings
of the International workshop on Description Logics.

Horrocks, I., & Patel-Schneider, P. (2004). Reducing OWL entailment to description logic satisfiability.
Journal of Web Semantics, 345–357. doi:10.1016/j.websem.2004.06.003

Kang, D., Xu, B., Lu, J., & Li, Y. (2006). Reasoning for fuzzy description logic with comparison ex-
pressions. In Proceedings of the International Workshop on Description Logics (DL 06), Lake District,
UK.

Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Upper Saddle River,
NJ: Prentice-Hall.

Li, Y., Xu, B., Lu, J., & Kang, D. (2006). Discrete tableau algorithms for FSHI. In Proceedings of the
International Workshop on Description Logics (DL 2006), Lake District, UK.

Lu, J., Kang, D., Zhang, Y., Li, Y., & Zhou, B. (2008). A family of fuzzy description logics with com-
parison expressions. In Proceedings of the Third International Conference, Rough Sets and Knowledge
Technology (RSKT 08).

Lutz, C. (2008). Two upper bounds for conjunctive query answering in SHIQ. In Proceedings of the 21st
International Workshop on Description Logics (DL 2009).

Mailis, T., Stoilos, G., Simou, N., & Stamou, G. (2008). Tractable reasoning based on the fuzzy-EL++
algorithm. In Proc. of the 4th International Workshop on Uncertainty Reasoning for the Semantic Web
(URSW 08).

Mailis, T., Stoilos, G., & Stamou, G. (2007). Expressive reasoning with horn rules and fuzzy descrip-
tion logics. In Proceedings of the first international conference on web reasoning and rule systems
(RR-07).

156

Scalable Reasoning with Tractable Fuzzy Ontology Languages

Mika, P. (2005). Ontologies are us: A unified model of social networks and semantics. In Proceedings
of the 4th International Semantic Web Conference (ISWC 2005).

Neumann, B., & Möller, R. (2006). On scene interpretation with description logics. In H.I. Christensen
& H.-H. Nagel (Eds.), Cognitive vision systems: Sampling the spectrum of approaches (pp. 247-278).
Berlin, Germany: Springer.

Pan, J. Z., Stamou, G., Stoilos, G., & Thomas, E. (2008). Scalable querying services over fuzzy ontolo-
gies. In Proceedings of the International World Wide Web Conference (WWW 2008), Beijing.

Pan, J. Z., Stoilos, G., Stamou, G., Tzouvaras, V., & Horrocks, I. (2006a). f-SWRL: A fuzzy extension
of SWRL. Journal on Data Semantics, 4090, 28–46. doi:10.1007/11803034_2

Pan, J. Z., & Thomas, E. (2007) Approximating OWL-DL ontologies. In Proc. of the 22nd National
Conference on Artificial Intelligence (AAAI-07).

Pan, J. Z., Thomas, E., & Sleeman, D. (2006b). ONTOSEARCH2: Searching and querying Web ontolo-
gies. In Proc. of WWW/Internet (pp. 211-218).

Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (2004). OWL Web ontology language semantics and
abstract syntax. W3C Recommendation.

Prud’hommeaux, E., & Seaborne, A. (2006). SPARQL query language for RDF (W3C Working Draft).
Retrieved from http://www.w3.org/TR/rdf-sparql-query/

Radecki, T. (1979). Fuzzy set theoretical approach to document retrieval. Journal of Information Pro-
cessing and Management, 15, 235–245. doi:10.1016/0306-4573(79)90030-X

Rosati, R. (2007). On conjunctive query answering in EL. In Proceedings of the 2007 International
Workshop on Description Logic (DL 2007).

Salton, G., Fox, E. A., & Wu, H. (1983a). Extended Boolean information retrieval. Journal of Com-
munications of ACM, 26, 1022–1036. doi:10.1145/182.358466

Salton, G., & McGill, M. J. (1983b). Introduction to modern information retrieval. New York: McGraw-
Hill.

Sanchez, E. (1989). Importance in knowledge systems. Information Systems, 14(6), 455–464.
doi:10.1016/0306-4379(89)90013-6

Simou, N., Athanasiadis, Th., Stoilos, G., & Kollias, S. (2008a). image indexing and retrieval using
expressive fuzzy description logics. Signal . Image and Video Processing, 2, 321–335. doi:10.1007/
s11760-008-0084-1

Simou, N., Stoilos, G., Tzouvaras, V., Stamou, G., & Kollias, S. (2008b). Storing and querying fuzzy
knowledge in the Semantic Web. In Proceedings of the 7th International Workshop on Uncertainty
Reasoning For the Semantic Web, Karlsruhe, Germany.

Sinha, D., & Dougherty, E. R. (1993). Fuzzification of set inclusion: Theory and applications. Fuzzy
Sets and Systems, 55, 15–42. doi:10.1016/0165-0114(93)90299-W

157

Scalable Reasoning with Tractable Fuzzy Ontology Languages

Stoilos, G., Simou, N., Stamou, G., & Kollias, S. (2006). Uncertainty and the Semantic Web. IEEE
Intelligent Systems, 21(5), 84–87. doi:10.1109/MIS.2006.105

Stoilos, G., Stamou, G., & Pan, J. Z. (2008). Classifying fuzzy subsumption in Fuzzy-EL+. In Proceed-
ings of the 21st International Workshop on Description Logics (DL 08), Dresden, Germany.

Stoilos, G., Stamou, G., Pan, J. Z., Tzouvaras, V., & Horrocks, I. (2007). Reasoning with very expressive
fuzzy description logics. Journal of Artificial Intelligence Research, 30(5), 273–320.

Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J. Z., & Horrocks, I. (2005a). Fuzzy OWL: Uncertainty and the
Semantic Web. In Proceedings of the International Workshop on OWL: Experiences and Directions.

Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J. Z., & Horrocks, I. (2005b). The fuzzy description logic
f-SHIN. In Proc. of the International Workshop on Uncertainty Reasoning for the Semantic Web (pp.
67-76).

Stoilos, G., Straccia, U., Stamou, G., & Pan, J. Z. (2006). General concept inclusions in fuzzy descrip-
tion logics. In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 06), Riva
del Garda, Italy.

Straccia, U. (2001). Reasoning within fuzzy description logics. Journal of Artificial Intelligence Re-
search, 14, 137–166.

Straccia, U. (2005). Towards a fuzzy description logic for the Semantic Web. In Proceedings of the 2nd
European Semantic Web Conference.

Straccia, U. (2006). Answering vague queries in fuzzy DL-Lite. In Proceedings of the 11th International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU-06) (pp. 2238-2245).

Straccia, U. (2008), fuzzyDL: An expressive fuzzy description logic reasoner. In Proceedings of the
International Conference on Fuzzy Systems (Fuzz-IEEE 08).

Thomas, E., Pan, J. Z., & Sleeman, D. (2007). ONTOSEARCH2: Searching ontologies semantically. In
Proceedings of OWL Experience Workshop.

Tresp, C., & Molitor, R. (1998). A description logic for vague knowledge. In Proc of the 13th European
Conf. on Artificial Intelligence (ECAI-98).

Vojtas, P. (2001). Fuzzy logic programming. Fuzzy Sets and Systems, 124, 361–370. doi:10.1016/S0165-
0114(01)00106-3

Waller, W. G., & Kraft, D. H. (1979). A mathematical model of a weighted Boolean retrieval system. Jour-
nal of Information Processing and Management, 15, 247–260. doi:10.1016/0306-4573(79)90031-1

Wang, H., Ma, Z. M., Yan, L., & Cheng, J. (2008). A fuzzy description logic with fuzzy data type group.
In Proceedings of the International Fuzz-IEEE Conference, Hong Kong.

Wang, H., Ma, Z. M., Yan, L., & Zhang, G. (2006). A fuzzy extension of ALC with fuzzy modifiers. In
Proceedings of the Knowledge-Based Intelligent Information and Engineering Systems.

158

Scalable Reasoning with Tractable Fuzzy Ontology Languages

Yager, R. R. (1987). A note on weighted queries in information retrieval systems. Journal of the Ameri-
cal Society for Information Science, 38, 23–24. doi:10.1002/(SICI)1097-4571(198701)38:1<23::AID-
ASI4>3.0.CO;2-3

Young, V. R. (1996). Fuzzy subsethood. Fuzzy Sets and Systems, 77, 371–384. doi:10.1016/0165-
0114(95)00045-3

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. doi:10.1016/S0019-9958(65)90241-
X

ENDNOTEs

1 http://owl.man.ac.uk/factplusplus/
2 http://pellet.owldl.com/
3 http://www.w3.org/TR/owl2-profiles/
4 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
5 http://www.image.ece.ntua.gr/~nsimou
6 http://gaia.isti.cnr.it/~straccia
7 http://www.ontosearch.org/
8 http://www.csd.abdn.ac.uk/~sttaylor/f-LUBM.zip
9 The “semantics” column will be discussed later.
10 http://www.racer-systems.com/
11 The term ontology is just another name for the term knowledge base. In the following we will use

both.
12 DL-Lite actually consists of a family of languages, like DL-LiteR, DL-LiteF and DL-LiteA (Calvanes

et al., 2007). Here we will present DL-LiteR and will refer to it as DL-Lite.
13 http://www.w3.org/2001/sw/DataAccess/
14 As mentioned above, keywords are represented by representative individuals.
15 http://www.seomoz.org/article/search-ranking-factors
16 http://www.openrdf.org/
17 http://www.ihtsdo.org/snomed-ct/
18 http://www.opengalen.org/

159

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

A Random Set and Prototype
Theory Model of Linguistic

Query Evaluation
Jonathan Lawry

University of Bristol, UK

Yongchuan Tang
Zhejiang University, PR China

INTRODUCTION

The term computing with words was introduced by Zadeh (Zadeh 1996), (Zadeh 2002) to refer to com-
putation involving natural language expression and queries. Such an approach allows for a high-level
and intuitive representation of information which is vital for the development of transparent human-
understandable decision making software tools. Zadeh proposed a methodology for computing with
words incorporating fuzzy set theory and fuzzy quantifiers. Label semantics (Lawry 2004), (Lawry 2006)
is an alternative framework for linguistic modeling based on random set theory and where emphasis is
given to decisions concerning the appropriateness of labels to describe a particular instance or object.
Recent work has demonstrated a clear and natural link between label semantics and the prototype theory
of concepts. In this paper we will propose a new methodology for evaluating queries about a database
which involve both linguistic expressions and generalized (linguistic) quantifiers. This approach will
be based on the combination of prototype theory and random set theory underlying the interpretation of

AbsTRACT

This chapter proposes a new interpretation of quantified linguistic queries based on a combination of
random set theory and prototype theory and which is consistent with the label semantics framework. In
this approach concepts are defined by random set neighbourhoods of a set of prototypes and quantifiers
are similarly defined by random set constraints on ratios or absolute values. The authors then propose
a computationally feasible method for evaluating quantified statement describing the elements of a
database.

DOI: 10.4018/978-1-60566-858-1.ch006

160

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

label semantics proposed in (Lawry & Tang 2008), (Lawry & Tang 2009). Furthermore, we will show
that, given certain assumptions, the evaluation of appropriateness measures for quantified statements is
computationally tractable. This suggests that the proposed approach has practical potential as a means
of linguistic query evaluation in information retrieval.

An outline of the paper is as follows: An introduction to label semantics is given, with a brief discus-
sion of the underlying philosophy together with basic definitions including appropriateness measures
and mass functions. In the next section we describe the prototype theory of label semantics whereby a
label L is deemed appropriate to describe an instance x, provided x is sufficiently close to the prototypes
of L. In this interpretation linguistic descriptions are represented by random set neighborhoods of a set
of prototypes. Following this we then propose a random set, prototype theory interpretation of quanti-
fied linguistic expressions and define measures of the appropriateness of such expressions to describe a
given set of data elements. We show that such measures can be evaluated using a simple computational
procedure. Finally, we present conclusions and indicate possible directions for future research.

LAbEL sEMANTICs

In contrast to fuzzy set theory, label semantics encodes the meaning of linguistic labels according to how
they are used by a population of communicating agents to convey information. From this perspective,
the focus is on the decision making process an intelligent agent must go through in order to identify
which labels or expressions can actually be used to describe an object or value. In other words, in order
to make an assertion describing an object in terms of some set of linguistic labels, an agent must first
identify which of these labels are appropriate or assertible in this context. Given the way that individuals
learn language through an ongoing process of interaction with the other communicating agents and with
the environment, then we can expect there to be considerable uncertainty associated with any decisions
of this kind. Furthermore, there is a subtle assumption central to the label semantic model, that such
decisions regarding appropriateness or assertibility are meaningful. For instance, the fuzzy logic view is
that vague descriptions like ‘John is tall’ are generally only partially true and hence it is not meaningful
to consider which of a set of given labels can truthfully be used to described John’s height. However,
we contest that the efficacy of natural language as a means of conveying information between members
of a population lies in shared conventions governing the appropriate use of words which are, at least
loosely, adhere to by individuals within the population.

It cannot be denied that in their use of linguistic labels human’s posses a mechanism for deciding
whether or not to make assertions (e.g. ‘John is tall’) or to agree to a classification (e.g. ‘Yes, that is
a tree’). Further, although the concepts concerned are vague this underlying decision process is fun-
damentally crisp (bivalent). For instance, you are either willing to assert that ‘x is a tree’ given your
current knowledge, or you are not. In other words, either tree is an appropriate label to describe x or it
is not. As humans we are continually faced with making such crisp decisions regarding vague concepts
as part of our every day use of language. Of course, we may be uncertain about labels and even express
these doubts (e.g. ‘I’m not sure whether you would call that a tree or a bush, or both’) but the underly-
ing decision is crisp.

Given this decision problem, we suggest that it is useful for agents to adopt what might be called an
epistemic stance as follows:

161

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

Each individual agent in the population assumes the existence of a set of labeling conventions, valid
across the whole population, governing what linguistic labels and expression can be appropriately used
to describe particular instances.

Of course, such linguistic conventions do not need to be imposed by some outside authority, but
instead would emerge as a result of interactions between agents each adopting the epistemic stance.
Hence, label semantics does not attempt to link label symbols to fuzzy set concept definitions but rather
to quantify an agent’s subjective belief that a label L is appropriate to describe an object x and hence
whether or not it is reasonable to assert that ‘x is L’. Further discussion of the epistemic stance and the
philosophical underpinnings of label semantics can be found in (Lawry 2008).

Label semantics proposes two fundamental and inter-related measures of the appropriateness of labels
as descriptions of an object or value. Given a finite set of labels LA, a set of compound expressions LE
can be generated through recursive application of logical connectives. The labels Li ∈ LA are intended
to represent words such as adjectives and nouns which describe the underlying universe Ω. In other
words, Li corresponds to a description label for which the expression ‘x is Li’ is meaningful for any ele-
ment x ∈ Ω. The measure of appropriateness of an expression θ ∈ LE as a description of the element
x is denoted by μθ (x) and quantifies the agent’s subjective belief that θ can be used to describe x based
on his/her partial knowledge of the current labeling conventions of the population. From an alternative
perspective, when faced with an example to describe, an agent may consider each label in LA and attempt
to identify the subset of labels which are appropriate to use. Let this set be denoted by Dx. In the face of
their uncertainty regarding labeling conventions the agent will also be uncertain as to the composition
of Dx, and in label semantics this is quantified by a mass function mx : 2

LA → [0,1] on subsets of labels.
The relationship between these two measures is described below.

Definition 1. Label Expressions.

Given a finite set of labels LA the corresponding set of label expressions LE is defined recursively
as follows:

If • L ∈ LA then L ∈ LE
If • q f, Î LE then Ø Ù Ú Îq q f q f, , LE

The mass function mx on sets of labels then quantifies the agent’s belief that any particular subset of
labels contains all and only the labels with which it is appropriate to describe x.

Definition 2. Mass Function on Labels.

" Îx W a mass function on labels is a function m
x

LA: [,]2 0 1® such that m F
x

F LA

() =
Í
å 1 and

where for F LAÍ , mx(F) is the belief that Dx = F.
The appropriateness measure,mq x() , and the mass function mx are then related to each other on the

basis that asserting ‘x is θ’ provides direct constraints on Dx. For example, asserting ‘x is L L
1 2
Ù ’, for

labels L1, L2 ∈ LA is taken as conveying t:he information that both L1 and L2 are appropriate to describe
x, so that L L D

x1 2
,{ } Í . Similarly, ‘x is ØL ’ implies that L is not appropriate to describe x, so that

162

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

L D
x

Ï . In general, we can recursively define a mapping l : LE
LA

® 22 from expression to sets of
subsets of labels, such that the assertion ‘x is θ’ directly implies the constraint Dx ∈ λ(θ) where λ(θ) is
dependent on the logical structure of θ.

Definition 3. λ-mapping.

l : LE
LA

® 22 is defined recursively as follows: " Îq f, LE

• " ÎL LA
i

l L F LA L F
i i() = Í Î{ }:

• l q f l q l fÙ() = ()Ç ()
• l q f l q l fÚ() = ()È ()
• l q l qØ() = ()c

Based on the λ-mapping we then define the appropriateness measure μθ (x) as the sum of mx over
those sets of labels in λ(θ).

Definition 4. Appropriateness Measure.

The appropriateness measure defined by the mass function mx is a function m : ,LA´ ® é
ëê

ù
ûúW 0 1

satisfying:

" Î " Îq LE x, W mq
l q

x m F
x

F

() = ()
Î ()
å

and where μθ (x) is used as shorthand for μ(θ, x).
Note that in label semantics there is no requirement for the mass associated with the empty set to be

zero. Instead, mx(∅) quantifies the agent’s belief that none of the labels are appropriate to describe x.
We might observe that this phenomenon occurs frequently in natural language, especially when label-
ing perceptions generated along some continuum. For example, we occasionally encounter colours for
which none of our available colour descriptors seem appropriate. Hence, mx(∅) is an indicator of the
describability of x in terms of the labels in LA.

A PROTOTYPE THEORY INTERPRETATION OF LAbEL sEMANTICs

Prototype theory was proposed by Rosch (Rosch 1973) as a means of defining concepts in terms of
similarity to prototypical cases. A prototype theory interpretation of label semantics has been proposed
(Lawry & Tang 2008), (Lawry & Tang 2009) in which the basic labels LA correspond to natural catego-
ries each with an associated set of prototypes. A label L is then deemed to be an appropriate description
of an element x ∈ Ω provided x is sufficiently similar to the prototypes for L. The requirement of being
‘sufficiently similar’ is clearly imprecise and is modeled here by introducing an uncertain threshold
on distance from prototypes. In keeping with the epistemic stance this uncertainty is assumed to be

163

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

probabilistic in nature. In other words, an agent believes that there is some optimal threshold of this
kind according to which he or she is best able to abide by the conventions of language when judging
the appropriateness of labels. However, the agent is uncertain as to exactly what this threshold should
be and instead defines a probability distribution on potential threshold values.

A distance function d is defined on Ω such that d : ,W2 0® ¥é
ëê) and satisfies d(x,x) = 0 and d(x,y) =

d(y,x) for all elements x,y ∈ Ω. This function is then extended to sets of elements such that for S T, ÍW ,
d S T d x y x S y T, inf , : ,() = () Î Î{ } . For each label Li ∈ LA let there be a set P

i
ÍW corresponding

to prototypical elements for which Li is certainly an appropriate description. Within this framework Li
is deemed to be appropriate to describe x ∈ Ω provided x is sufficiently close or similar to a prototypi-
cal element in Pi. This is formalized by the requirement that x is within a maximal distance threshold ε
of Pi i.e. Li is appropriate to describe x if d x P

i
,() £ e where e ³ 0 . From this perspective an agent’s

uncertainty regarding the appropriateness of a label to describe a value x is characterized by his or her
uncertainty regarding the distance threshold ε. Here we assume that ε is a random variable and that
the uncertainty is represented by a probability density function δ for ε defined on [0,∞). Within this
interpretation a natural definition of the complete description of an element Dx and the associated mass
function mx can be given as follows:

Definition 5. Prototype Interpretations of Dx and mx.

For e Î ¥é
ëê)0, , x ∈ Ω let D L LA d x P

x i i
e e= Î () £{ }: , and m F D F

x x() = ={ }()d e e: (see
figure 1)

Appropriateness measures can then be evaluated according to definition 4. Alternatively we can de-
fine a random set neighborhood for each expression θ ∈ LE corresponding to those element of Ω which
can be appropriately described as θ, and then define μθ (x) as the single point coverage function of this
random set as follows:

Figure 1. with prototypes P1,…,P7. Dx
e as ε varies is defined as follows: For ε1, ε2 and ε3 shown in the

diagram we have that D
x

e1 = Æ , D L L
x

e2
1 2

= { }, and D L L L L
x

e3

1 2 3 4
= { }, , ,

164

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

Definition 6. Random Set Neighborhood of an Expression.

For θ ∈ LE and e Î ¥é
ëê)0, N q

e ÍW is defined recursively as follows: " Îq f, LE , " Î ¥é
ëê)e 0,

• " ÎL LA
i

,N x d x P
L ii

e e= Î () £{ }W : , (figure 2)
• N N Nq f

e
q
e

f
e

Ù = Ç

• N N Nq f
e

q
e

f
e

Ú = È

• N N
c

Ø = ()q
e

q
e

Theorem 1. Random Neighborhood Representation Theorem (Lawry & Tang 2009).

" Îq LE , x , :x x N 1

Clearly D
x
e and N q

e are both random sets (i.e. set valued variables), the former taking sets of labels
as values and the latter taking subsets of N q

e as values. Theorem 1 shows that appropriateness measures
can be interpreted as single point coverage functions of the random set N q

e . This links label semantics
with the random set interpretation of fuzzy sets proposed by Goodman and Nguyen (Goodman 1982),
(Goodman & Nguyen 1985) and (Nguyen 1984) in which membership functions are interpreted as single
point coverage functions.

QUANTIFIED sTATEMENTs AND QUERY EvALUATION

The use of quantifiers significantly enhances the expressive power of natural language allowing for the
representation of statements identifying general facts and rules. Linguistic statements can include a wide
variety of quantifiers, in fact many more that standard universal and existential quantifiers of classical

Figure 2. Random set neighborhood NLi

e as ε varies: N N N
L L Li i i

e e e1 2 3Í Í

165

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

logic. Furthermore, general quantifiers can apply to imprecise expressions and can also be themselves
imprecisely defined. For example, statements such as most men are tall, and about 30% blonde men are
tall, involve imprecise quantifiers most and about 30% as well as imprecise labels tall and blonde. The
idea of introducing general quantifiers into formal languages as a means of enhancing their knowledge
representation capabilities dates back to Barwise and Cooper (Barwise & Cooper 1981). Following
Zadeh’s original proposal (Zadeh 1983), fuzzy logic has been widely applied to model vague quanti-
fiers such as most, few many etc. See (Liu & Kerre 1998) for an overview of different fuzzy logic based
interpretations of quantifiers. Indeed, information processing involving fuzzy quantified expressions is
central to Zadeh’s original formulation of computing with words (Zadeh 1996). However, the methods
outlined in (Liu & Kerre 1998) do not tend to be based on a clear operational interpretation of fuzzy sets,
but rather take membership values as primitives. This makes it difficult to assess the validity of defini-
tions from a semantic perspective. Dubois and Prade (Dubois & Prade 1997) identify three potential
semantics for fuzzy sets as being likelihood, similarity and random sets. In the following we propose a
concrete model of quantified linguistic queries motivated by and based on a combination of the similar-
ity and the random set view. This provides a clear interpretation of such queries from the perspective of
the epistemic stance as discussed in a previous section.

Information retrieval and database querying are significant application areas for linguistic quanti-
fiers (see for example (Bosc, Lietard & Pivert 1995) and (Losada et. al. 2004)). A formal framework for
representing quantified linguistic statements can allow us to define measures of the applicability of such
statements to a particular database. This can in turn allow users the flexibility to formulate and evaluate
intuitive natural language queries. In recent work Diaz-Hermida etal (Diaz-Hermida et. al. 2005) have
proposed a probabilistic approach to fuzzy quantifiers. In this section we propose a new model of lin-
guistic quantified expressions based on the prototype theory interpretation of label semantics described
in previously. In particular, we introduce measures of the appropriateness of quantified linguistic state-
ment for describing a data set where both quantifiers and basic labels are defined in terms of random
set neighborhoods.

Suppose we are given a database DB ÍW corresponding to a finite sample of elements from Ω.
For S ÍW let S S DB

DB
= Ç denote the number of elements from DB contained in S. As in earlier

sections we assume that the elements of Ω are described in terms of a set of labels LA and where for
each label Li ∈ Ω there are a set of prototypical cases Pi. We now consider the application of classical
universal and existential quantifiers to expressions in LE. For θ ∈ LE consider the statement ‘All ele-
ments of DB are θ’. Given the random neighborhood representation of the meaning of θ, according to
which θ identifies the set N q

e ÍW (definition 6), then a natural interpretation of this quantified statement
would be that every element in DB is contained in N q

e i.e. DB NÍ q
e . Hence, the appropriateness of a

universally quantified statement of this kind would depend on the probability of the similarity threshold
ε being such that DB NÍ q

e . Similarly, we propose to interpret existentially quantified statements of the
form ‘Some element of DB are θ’ as meaning that DB NÇ ¹ Æq

e .

Definition 7. Classical Quantifiers.

For • θ ∈ LE let "()
DB

q denote the statement ‘All elements of DB are θ’. The appropriateness of
this statement to describe DB is given by: m d e

q q
e

"() () = Í{ }()DB DB N:

166

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

For • θ ∈ LE let $()
DB

q denote the statement ‘Some elements of DB are θ’. The appropriateness of
this statement to describe DB is given by: m d e

q q
e

$() () = Ç ¹ Æ{ }()DB DB N:

We now introduce quantifiers describing the proportion of a database which can be described by
a given expression θ e.g. at least 50% of the men in DB are tall. In fact, this paper focuses entirely on
proportional quantifiers and their generalizations and does not consider absolute quantifiers e.g. less
than 10 men in DB are tall. Random set definitions of absolute quantifiers can be given but these lie
beyond the scope of the current study.

Definition 8. Proportional Quantifiers.

For α • ∈ [0,1], θ ∈ LE let (α)DBθ denote the statement ‘The proportion DB which are θ is (exactly)
α’. The appropriateness of this expression to describe DB is given by:

m d e a
a q

q
e

() () = =
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
DB

N

DB
DB:

For • a Î é
ëê

ù
ûú0 1, , θ ∈ LE let ³()a q

DB
 denote the statement ‘The proportion DB which are θ is at

least α’. The appropriateness of this expression to describe DB is given by:

m d e a
a q

q
e

³() () = ³
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷
DB

N

DB
DB:

÷÷

For • I Í é
ëê

ù
ûú0 1, , θ ∈ LE let I

DB
() q denote the statement ‘The proportion DB which are θ is in I’.

The appropriateness of this expression to describe DB is given by:

m d e
q

q
e

I
DBDB

N

DB
I() () = Î

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
:

Relative quantifiers describe the proportion of the database which given it is describable using one
expression is also describable by a second expression e.g. At least 80% of Swedes in DB are tall.

Definition 9. Relative Quantifiers.

For • q f, Î LE , let "() ()
DB

f q denote the statement ‘All elements in DB describable as θ,
are also describable as ϕ’ The appropriateness of this expression to describe DB is given by:
m d e

f q q f
e

q
e

"()() Ù() = ={ }()DB N N:

167

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

For • q f, Î LE , let $() ()
DB

f q denote the statement ‘Some elements in DB describable as θ,
are also describable as ϕ’ The appropriateness of this expression to describe DB is given by:

m d e
f q q f

e
$()() Ù() = ¹ Æ{ }()DB N:

For • a Î é
ëê

ù
ûú0 1, , q f, Î LE , let a f q() ()

DB
 denote the statement ‘The proportion of elements in

DB describable as θ, which are also describable as ϕ is exactly α’. The appropriateness of this
expression to describe DB is given by:

m d e a
a f q

q f
e

q
e()()
Ù() = =

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö
DB

N

N
DB

DB

:

øø

÷÷÷÷÷÷÷

For • a Î é
ëê

ù
ûú0 1, , q f, Î LE , let ³() ()a f q

DB
 denote the statement ‘The proportion of elements

in DB describable as θ, which are also describable as ϕ is at least α’. The appropriateness of this
expression to describe DB is given by:

m d e a
a f q

q f
e

q
e³()()
Ù() = ³

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç
DB

N

N
DB

DB

:

öö

ø

÷÷÷÷÷÷÷

For • I Í é
ëê

ù
ûú0 1, , q f, Î LE , let I

DB
() ()f q denote the statement ‘The proportion of elements in DB

describable as θ, which are also describable as ϕ is in I’. The appropriateness of this expression to
describe DB is given by:

m d e
f q

q f
e

q
eI

DB

DB

DB
N

N
I()()

Ù() = Î
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö
:

øø

÷÷÷÷÷÷÷

The following theorem shows that, using the combined random set and prototype theory approach,
certain natural properties of quantifiers are preserved from classical logic.

Theorem 2.

1. If |=θ (i.e. θ is a tautology in Boolean logic) then m
q"() () =DB 1

2. If |= ¬θ (i.e. θ is a contradiction in Boolean logic) m
q$() () =DB 0

3. For all q Î LE m
q q"()() () =DB 1

4. For all q Î LE m
q q$() Ø() () =DB 0

5. If θ |= ϕ then " Î é
ëê

ù
ûúa 0 1, m m

a q a f³()() ³()()() £ ()DB DB

168

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

Proof.

From (Lawry & Tang 2008) and (Lawry & Tang 2009) we have that:

1. If |=θ then ∀ε ≥ 0 N q
e = W and hence DB NÍ q

e

2. If If |= ¬θ then ∀ε ≥ 0 N q
e = Æ and hence N DBq

e Ç = Æ

3. " Î " ³q eLE, 0 N Nq q
e

q
e

Ù =

4. " Î " ³q eLE, 0 N q q
e
ÙØ = Æ

In the following definition we introduce linguistic quantifiers in the form of labels describing propor-
tion of the database e.g. about 50% of men in DB are tall or Most Swedes in DB are tall.

Definition 10. Linguistic Quantifiers.

Let LR = {R1,…,Rm} be a set of labels for proportions from the universe [0,1], where label Ri has
prototypes PRi. Let d′: [0,1]2 → [0,1] be a distance function defined on [0,1] and let ε′ be the threshold
random variable for d′ with density δ′.

Let • R
i DB

() q denote the statement ‘Ri of DB are θ’ or more precisely ‘the proportion of DB which
is θ can be described as Ri’. The appropriateness of this expression to describe DB is given by

m d d e e
q

q
e

e
R

DB
R

i i
DB

N

DB
N()

¢() = ´ ¢ ¢() Î
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççç , :ççççç

ö

ø

÷÷÷÷÷÷÷
= ¢ ¢() Î

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

ò ¢d e d e
q
e

e

0

1

:
N

DB
NDB

Ri

ææ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
¢de

Let • R
i DB

() ()f q denote the statement ‘Ri of DB which are θ are also ϕ’. The appropriateness of
this expression to describe DB is given by

m d e d e
f q

q f
e

q
e

e
R

DB

DB

R
i i

DB
N

N
N()()

Ù ¢() = ¢ ¢() Î
ì
í
ïïï

î
ïïï

ü
ý
ïïïò

0

1

:

þþ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
¢de

Note that definition 10 makes an assumption of independence between the threshold variables ε and
ε′. This would see justifiable here, since we would expect labeling decisions concerning individual ele-
ments of DB and overall proportions to be taken independently.

When evaluating statements involving proportional quantifiers it is necessary only to consider the
relevant proportion values within the range of the quantifier, defined as follows:

169

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

Definition 11. Relevant Proportions.

• PP
N

DBq

q
e

e= ³
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

: 0

• PP
N

Nf q

q f
e

q
e

e()
Ù= ³

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

: 0

Theorem 3.

For I ÍW and q f, Î LE

• m m
q b q

b q

I
PP I

DB DB() ()
Î Ç

() = ()å

• m m
f q b f q

b
f q

I
PP I

DB DB()() ()()
Î Ç

() = ()
()

å

Proof

• m d e
q

q
e

I
DBDB

N

DB
I() () = Î

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
: == =

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
= ()d e b m

q
e

b q
:

N

DB
DBDB (()

Î ÇÎ Ç
åå

bb qq PP IPP I

Similarly replacing • PPθ with PP
f q() □

Theorem 4.

For R LR
i
Î and θ ∈ LE, let PP

tq b b= { }1
, , ordered such that ¢ () £ ¢()+d PR d PR

j i j i
b b, ,

1

then

m d e e d e e d e
qR

y

y

t
y

y

t
i

t

t

DB a d a d a() -() = ¢ ¢() ¢ + + ¢ ¢() ¢ + ¢ ¢(ò ò
-

1 1

1

2

1

)) ¢ò
yt

d
1

e

where a DB
j

i

j

i

= ()()
=
å m

b q
1

 and y d PR
j j i
= ¢()b ,

Proof.

Since Ri is a basic label we have that:

170

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

N PP

d PR

d PR d PR

R

i

i i

i

¢ Ç =

Æ ¢ < ¢()
{ } ¢ Î ¢ () ¢ ()é

ëê)
e

q

e b

b e b b

: ,

: , , ,
1

1 1 2

bb b e b b

b b e b

1 2 2 3

1

, : , , ,

, , : ,

{ } ¢ Î ¢ () ¢ ()é
ëê)

{ } ¢ Î ¢

d PR d PR

d PR

i i

t t





ii()é
ëê

ù
ûú

ì

í

ïïïïïïïïï

î

ïïïïïïïïï
,1

Hence by theorem 3 we have that

d e

e

q
e

e:

:

N

DB
NDB

Ri
Î

ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççççççç

ö

ø

÷÷÷÷÷÷÷
=

¢ <

¢

0 ¢¢ ()
() ¢ Î ¢ () ¢ ()é

ëê)()

()

d PR

DB d PR d PR

DB

i

i i

b

m e b b

m
b q

b q

1

1 2
1

1

,

: , , ,

(()+ () ¢ Î ¢ () ¢ ()é
ëê)

()

()

()
=

m e b b

m

b q

b q

2
2 3

1

DB d PR d PR

DB

i i

i

t

i

: , , ,



åå ¢ Î ¢()é
ëê

ù
ûú

ì

í

ïïïïïïïïïï

î

ïïïïïïïïïï

=

¢ <

: , ,

:

:

e b

e

d PR

y

a

t i
1

0
1

1
¢¢ Î é

ëê)
¢ Î é

ëê)

¢ Î é
ëê

ù
ûú

ì

í

ïïïïïïïï

î

ïï

e

e

e

y y

a y y

a y
t t

1 2

2 2 3

1

,

: ,

: ,

ïïïïïïï

Therefore

m d e d e
q

q
e

e
R

DB
R

i i
DB

N

DB
N()

¢() = ¢ ¢() Î
ì
í
ïïï

î
ïïï

ü
ý
ïïï

þ
ïïï

æ

è

ççò
0

1

:çççççç

ö

ø

÷÷÷÷÷÷÷
¢

= ¢ ¢() ¢ + + ¢ ¢() ¢ò ò-

-

d

a d a d
y

y

t
y

y

t

t

e

d e e d e e
1 1

1

2

1

 ++ ¢ ¢() ¢òa d
t

yt

d e e
1

Corollary 1.

If m
qRi

DB() () = 1 then m
b q1

1() () =DB where b b b q1
= ¢() Î{ }arg min , :d PR PP

i

Proof.

By theorem 4 we have that:

171

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

m d e e d e e d e
qR

y

y

t
y

y

t
i

t

t

DB a d a d a() -() = ¢ ¢() ¢ + + ¢ ¢() ¢ + ¢ ¢(ò ò
-

1 1

1

2

1

)) ¢

£ ¢ ¢() ¢ + + ¢ ¢() ¢ + ¢ ¢() ¢ =

ò

ò ò ò
-

y

y

y

y

y

y

t

t

t

t

d

d d d

1

1

1

2

1

e

d e e d e e d e e

¢¢ ¢() ¢ £ò d e e
y

d
1

1

1

and hence
1

1

1
y

d

Also

1

1

1

1 1
, , 1

R i
y

d PR d as required. □

The following theorem show that an imprecisely quantified expression (Ri)θ is certainly appropriate
to describe DB exactly when an associated (simpler) expression (I)θ is certainly appropriate, where I is
the set of proportions in PPθ which can certainly be described by Ri.

Theorem 5.

 1
iR

DB iff 1
I

DB where : 1
iR

I PP

Proof.

Clearly, if I ≠ ∅ then I = {β1,…,βk} where arg max , :
k i

d PR I . In this case, 1
iR k

implies that
 1

, , 1
k

k i
y

d PR d which implies that

0

0
ky

d
. Hence,

 1

1

1k

i

k

y

k tR
y y

DB a d a d

 Suppose 1
iR

DB then I ≠ ∅ since if I = ∅ then 1
1

iR which is a contradiction by
corollary 1. Hence,

1

1

1

1
k

k

y

k t
y y

a d a d

Also, since
1

1
iR k then

 1

0
k

k

y

y

d and hence ak = 1 since otherwise
 1

1
i

k

R
y

DB d . Hence

1

1
j

k

kI
j

DB DB a

as required.
 Suppose 1

I
DB then clearly I ≠ ∅. Hence, ak = 1 and since aj ≥ ak for j ≥ k then aj = 1 for

j ≥ k. Therefore,

172

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

 1

1
ii

k

R kR
y

DB d

as required.

Example 1.

Let Ω = [0,10], d(x,y) = ||x − y|| and
 1 : 0,1

0 : 1
. Let high ∈ LA be a label describing elements

of Ω such that Phigh = [7,8].
Now consider the queries (∀)DB high and (∃)DB high for the following database:

DB={0.1795, 1.051, 1.075, 7.367, 7.5, 7.57, 7.66, 7.86, 8.06, 8.61}

Now 7 , 8
high

N so that
high

DB N iff 7 − ε ≤ 0.1795 iff ε ≥ 6.8205. Therefore,

6.8205

0
high

DB d .

Also, 7.367, 7.5, 7.56, 7.66, 7.86
high

DB P and hence
high

N DB for all ε ≥ 0.

Therefore,

0

1
high

DB d .

Let most ∈ LR where Pmost = [0.6,0.8]. Also let d′(x,y) = ||x − y|| and
 10 : 0, 0.1

0 : 0.1
. (see figure

3)
Now consider the query (most)DB high

Figure 3. Appropriateness measures for high together with DB (top) and most (bottom) together with
PPmost as defined in example 1

173

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

Now
 5 6 7 8 9

, , , , ,1
10 10 10 10 10high

PP and d′(1,Pmost) = 0.2, 9
, 0.1

10 most
d P ,

 8
, 0

10 most
d P ,

 7
, 0

10 most
d P ,

 6
, 0

10 most
d P , 5

, 0.1
10 most

d P . Hence, we let

1

8
10

,

2

7
10

,

3

6
10

,

4

9
10

,

5

5
10

,
6

1 and

y1 = 0, y2 = 0, y3 = 0, y4 = 0.1, y5 = 0.1, y6 = 0.2

Therefore, from theorem 4

 0.1 0.2 1

3 4 5 3
0 0.1 0.2

most high
DB a d a d a d a

where 3 8 7 6
10 10 10

high high high
a DB DB DB

Now

8
10

high DB
N

DB
 if 7 − ε ≤ 1.075 and 7 − ε > 1.051 if 5.925 ≤ ε < 5.949. Hence,

 5.949

8
5.92510

0
most

DB d

7
10

high DB
N

DB
 if 8 + ε ≥ 8.61 if ε ≥ 0.61. Hence,

 1

7
0.61 0.6110

0.39
most

DB d d

6
10

high DB
N

DB
 if 8 + ε ≥ 8.06 and 8 + ε > 8.61 if 0.06 ≤ ε < 0.61. Hence

 0.61 0.61

6
0.06 0.0610

0.55
most

DB d d . Hence

3

0.55 0.39 0.94
most high

DB a

Let the label very low be defined by the prototypes Pvery low = [0,1]. Consider the query (≥0.5)DB (very
low|¬high) (i.e. At least 50% of the not high elements in DB are very low). Now

0,1

very low
N and

0,7 8 ,10
high

N and for 3

0,1
very low high very low high

N N N . Therefore,

0,1

0, 7 8 ,10

very low high DB DB

high DB DB DB

N

N so that

174

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

0.25 : 0.051

0.5 : 0.051 0.06

0.4 : 0.06 0.075

0.75 : 0.075 0.61

0.6 : 0.61

very low high DB

high DB

N

N

From this we have that
0.25, 0.4, 0.5, 0.6, 0.75

very low high
PP and from theorem 3 it follows that:

0.5 0.5 0.6 0.75 very low high very low high very low high very low high
DB DB DB DB

where

0.06

0.5
0.051

0.009
very low high

DB d
,

1

0.6
0.61

0.39
very low high

DB d
 and

0.61

0.75
0.075

0.535
very low high

DB d

Hence,
0.5

0.009 0.39 0.535 0.934
very low high

DB

Versions of theorems 4 and 5 can be proved for the case of relative quantifiers by replacing Pθ with
P(ϕ|θ). Hence we also have the following results:

Theorem 6.

For Ri ∈ LR and ϕ, θ ∈ LE, let P(ϕ|θ) = {β1,…, βt} ordered such that 1
, ,

j i j i
d PR d PR then

2

1 1

1

1 1

t

i

t t

y y

t tR
y y y

DB a d a d a d

where
1

i

j

j
i

a DB and ,
j j i

y d PR

Theorem 7.

1
iR

DB iff 1
I

DB where : 1
iR

I PP

A sCALEAbLE ALgORITHM FOR EvALUATINg sIMPLE LINgUIsTIC QUERIEs

In this section we propose an algorithm for evaluating linguistic queries on a database which only involve
basic labels. By considering the computational complexity of this algorithm we show that, for simple
linguistic queries of this kind, the approach is scaleable to databases with a large number of elements.

175

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

Consider a basic label Li ∈ LA with prototypes Pi. Also consider a database DB of N elements ordered
such that ,

: 1, ,
i j

DB x j N where , , 1
, ,

i j i i j i
d x P d x P . In this case, denoting , ,

,
i j i i j

d x P d , we
clearly have that:

,1

,1 ,1 ,2

,1 , , , 1

,1 , ,

:

:

, , :

, , :

i

i

i i i

L
i i j i j i j

i i N i N

d

x d d

N
x x d d

x x d









From this the set of relevant proportions for Li in DB (definition 11) is then given directly by:

, , 1
:

iL i j i j

j
PP d d

N

Now consider the computational complexity of this algorithm to determine the relevant propor-
tions

iL
PP . Initially, the elements of DB must be sorted on the basis of their distance from Pi. Using the

quicksort algorithm this has average computational cost O(N log (N)). Determining
iL

PP then requires
only N checks for di,j ≤ di,j+1 with cost O(N). Hence, the overall computational cost of determining

iL
PP

is log logO N N N O N N .
Given

iL
PP we know from an earlier section that the evaluation of quantified queries is straightfor-

ward. For example, for
iL

j
PP

N
 we have that:

, 1

,

i j

i
i j

d

j
L

dN

DB d

Now assuming that, for a well behaved density function δ, integrals of the above form can be ef-
fectively evaluated in one computational step then for any 0,1I the computational cost of evaluating

iI L
DB is at worst O(N). To see this, recall from theorem 3 that:

i i
Li

I L L
PP I

DB DB

The cost of this calculation is then bounded by
iL

PP N .
To evaluate linguistically quantified theory of the form

j iR L
DB , we see from theorem 4 that this

only requires us to evaluate
i

j
L

N

DB for each
iL

j
PP

N
 with the additional computational cost of sorting

the elements of
iL

PP relative to their distance from PRj (the prototypes of Rj). Again by using quicksort
the average computational cost of this operation is O(N log N).

We now consider the evaluation of relative quantifier queries involving basic labels. Let Lr ∈ LA be
a second label with prototypes Pr. As before order the elements of the database in terms of their distance
from Pr so that ,

: 1, ,
r k

DB x k N where , , , 1 , 1
, ,

r k r k r r k r r k
d d x P d x P d . In this case:

176

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

,1 , ,1 ,
, , , ,

i rL L i i j r r k
N x x x x  if , , , 1 , 1

max , min ,
i j r k i j r k

d d d d

Hence,

,

, , 1 , , 1 , , , 1 , 1
: , ,min , max ,

i r

j k

i j i j r k r k i j r k i j r kL L

b
PP d d d d d d d d

k

where
, ,1 , ,1 , 1

, , , ,
j k i i j r r k

b x x x x 

From this we see that the computational cost of determining
i rL L

PP is as follows: The elements DB
must be sorted twice, once with respect to distance from Pi and once with respect to distance from Pr.
Using quicksort the combined cost of this repeated operation is still O(N log (N)). bj,k must then be calcu-
lated and distances compared for each pair j,k with cost O(N2). Consequently the overall computational
cost of calculating

i rL L
PP is O(N2).

Given
i rL L

PP the appropriateness of a simple query such as (I)(Li|Lj) is then determined by:

, 1 , 1

,
, ,

min ,

max ,, :

i j r k

i r
j k

i j r k

d d

I L L
b d dj k I
k

DB d

This requires at most a further 2

i rL L
PP N calculations and consequently the entire cost of evaluat-

ing such queries from DB, including determining
i rL L

PP , is O(N2).

CONCLUsION

In this paper we have introduced a new model of linguistic quantified statements based on a combina-
tion of random set theory and prototype theory. The theory is a generalization of Lawry’s label semantic
framework. We have shown that the proposed model is computationally feasible and hence potentially
has practical applications in information retrieval.

Overall the proposed model makes a number of simplification assumptions. For instance, we have
only investigated a limited range of quantifiers essentially based on proportions. In future work a
thorough study of a wide range of quantifiers should be carried out. Furthermore, we have assumed
that the appropriateness of labels to describe an example in the database is always judged on the basis
of the same shared characteristics. In other words, there is one single distance function for comparing
elements to prototypes for every single label. In many cases the applicability of different labels may be
judged on the basis of different distance functions defined on different sets of attributes. Future work
will investigate extending the proposed methods to the multi-criterion case and consider the impact of
this generalization on computational costs.

177

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

ACKNOWLEDgMENT

Yongchuan Tang is funded by the National Natural Science Foundation of China (NSFC) under Grant
60604034, the joint funding of NSFC and MSRA under Grant 60776798, and the Science and Technol-
ogy Program of Zhejiang Province under Grant 2007C223061

REFERENCEs

Barwise, J., & Cooper, R. (1981). Generalized quantifiers in natural language. Linguistics and Philoso-
phy, 4(2), 159–219. doi:10.1007/BF00350139

Bosc, P., Lietard, L., & Pivert, O. (1995). Quantified statements and database fuzzy querying. In P. Bosc
& J. Kacprzyk (Eds.), Fuzziness in database management systems, studies in fuzziness (pp. 275-308).
Heidelberg, Germany: Physica-Verlag.

Diaz-Hermida, F., Losada, D. E., Bugarin, A., & Barro, S. (2005). A probabilistic quantifier fuzzifica-
tion mechanism: The model and its evaluation for information retrieval. IEEE transactions on Fuzzy
Systems, 13(5), 688–700. doi:10.1109/TFUZZ.2005.856557

Dubois, D., & Prade, H. (1997). The three semantics of fuzzy sets. Fuzzy Sets and Systems, 90, 141–150.
doi:10.1016/S0165-0114(97)00080-8

Goodman, I. R. (1982). Fuzzy sets as equivalence classes of random sets. In R. Yager (Ed.), Fuzzy set
and possibility theory (pp. 327-342). New York: Pergamon.

Goodman, I. R., & Nguyen, H. T. (1985). Uncertainty models for knowledge based systems: A unified
approach to the measurement of uncertainty. New York: Elsevier.

Lawry, J. (2004). A framework for linguistic modelling. Artificial Intelligence, 155, 1–39. doi:10.1016/j.
artint.2003.10.001

Lawry, J. (2006). Modelling and reasoning with vague concepts. Berlin, Germany: Springer.

Lawry, J. (2008). Appropriateness measures: An uncertainty model for vague concepts. Synthese, 161(2),
255–269. doi:10.1007/s11229-007-9158-9

Lawry, J., & Tang, Y. (2008). Relating prototype theory and label semantics. In D. Dubois, M. A. Lubiano,
H. Prade, M. A. Gil, P. Grzegorzweski, & O. Hryniewicz (Eds.), Soft methods for handling variability
and imprecision (pp. 35-42). Berlin, Germany: Springer.

Lawry, J., & Tang, Y. (2009). Uncertainty modelling for vague concepts: A prototype theory approach.
Submitted.

Liu, Y., & Kerre, E. E. (1998). An overview of fuzzy quantifiers. (I). Interpretations. Fuzzy Sets and
Systems, 95, 1–21. doi:10.1016/S0165-0114(97)00254-6

178

A Random Set and Prototype Theory Model of Linguistic Query Evaluation

Losada, D. E., Diaz-Hermida, R., Bugarin, A., & Barro, S. (2004). Experiments on using fuzzy quanti-
fied sentences in adhoc retrieval. In Proceedings ACM Symposium on Applied Computing (pp. 1059-
1066).

Nguyen, H. T. (1984). On modelling of linguistic information using random sets. Information Science,
34, 265–274. doi:10.1016/0020-0255(84)90052-5

Rosch, E. (1973). Natural categories. Cognitive Psychology, 4, 328–350. doi:10.1016/0010-0285(73)90017-
0

Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Natural Lan-
guages . Computers & Mathematics with Applications (Oxford, England), 8, 149–184. doi:10.1016/0898-
1221(83)90013-5

Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE transactions on Fuzzy Systems, 4,
103–111. doi:10.1109/91.493904

Zadeh, L. A. (2002). From computing with numbers to computing with words – from manipulation of
measurements to manipulation of perceptions. Int. J. Appl. Math. Comput. Sci., 12(3), 307–324.

ENDNOTE

1 Here we also use δ to denote the probability measure generated by the density δ i.e. for ,I o

I

I d

179

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

A Flexible Language
for Exploring Clustered

Search Results
Gloria Bordogna
CNR IDPA, Italy

Alessandro Campi
Politecnico di Milano, Italy

Stefania Ronchi
Politecnico di Milano, Italy

Giuseppe Psaila
Università di Bergamo, Italy

AbsTRACT

In this chapter the authors consider the problem of defining a flexible approach for exploring huge amounts
of results retrieved by several Internet search services (like search engines). The goal is to offer users
a way to discover relevant hidden relationships between documents. The proposal is motivated by the
observation that visualization paradigms, based on either the ranked list or clustered results, do not allow
users to fully appreciate and understand the retrieved contents. In the case of long ranked lists, the user
generally analyzes only the first few pages. On the other side, in the case the documents are clustered,
to understand their contents the user does not have other means that looking at the cluster labels. When
the same query is submitted to distinct search services, they may produce partially overlapped clustered
results, where clusters identified by distinct labels collect some common documents. Moreover, clusters
with similar labels, but containing distinct documents, may be produced as well. In such a situation, it
may be useful to compare, combine and rank the cluster contents, to filter out relevant documents. In
this chapter the authors present a novel manipulation language, in which several operators (inspired
by relational algebra) and distinct ranking methods can be exploited to analyze the clusters’ contents.
New clusters can be generated and ranked based on distinct criteria, by combining (i.e., overlapping,
refining and intersecting) clusters in a set oriented fashion. Specifically, the chapter is focused on the
ranking methods defined for each operator of the language.

DOI: 10.4018/978-1-60566-858-1.ch007

180

A Flexible Language for Exploring Clustered Search Results

INTRODUCTION

Retrieving useful and relevant information over the Internet is not an easy task by using current search
engines. Too often, the relevant documents are merged and hidden in the long ranked list of retrieved docu-
ments. The list can span over hundreds of web pages, each one containing just few retrieved items.

To discover the relevant documents, users have to browse the titles of the documents, but generally
only the first two or three web pages are analyzed, while the content of the successive ones is missed.
Thus, if users do not find what they are looking for in the first pages, they reformulate a new query try-
ing to capture what they are looking for in the top ranked items.

Some users turned to using meta-search engines, such as mamma, dogpile, Metacrawler etc., in an
attempt to optimize their search effort. The assumption is that, if one regards a search engine as an expert
in finding information, by using several experts together one should achieve better results. However this
is not generally true, since meta-search engines fuse the individual ranked lists of documents retrieved
by each underlying system by applying rigid and static fusion functions, applying criteria that are not
transparent to the user. The side effect of list merging is to augment the number of retrieved documents,
leaving the user skeptics as far as the actual correspondence of the ranking to her/his relevance judg-
ments is concerned. Furthermore, the retrieved documents besides the first page will be hardly analyzed
by users; thus, this makes much of the meta search engine’s effort useless.

To overcome this problem, some search services such as vivisimo, Snaket, Ask.com, MS AdCenter
Labs Search Result Clustering etc., have shifted from the usual ranked list to the clustered results para-
digm. This consists in organizing the documents retrieved by a query into containers (i.e., clusters),
possibly semantically homogeneous with respect to their contents, and in presenting them labeled, so
as to synthesize their main content focus (Osinski, 2003).

Clustering is often proposed as a viable way of narrowing a search into a more specific query, like
in Ask.com (Chen &Dumais, 2000; Zamir & Etzioni, 1999; Coates et al., 2001).

On the other side, one problem users encounter with such clustered results, is the inability of fully
understanding and appreciating the contents of the clusters. This is mainly due to the short and some-
times bad quality of the labels of the clusters, which generally consist of a few terms, or individual short
phrases, which are automatically extracted from the documents of the cluster based on statistics and
co-occurrence analysis. Often, several clusters have similar labels that differ just for a single term. To
effectively explore the cluster contents, users have no other means than clicking on the cluster labels
and browsing the clusters themselves.

This problem is much more apparent when submitting the same request to distinct search engines,
each one producing a group of clustered results reflecting distinct criteria. For example, the Gigabits
search engine clusters retrieved documents by their freshness dating (Last Day, Last Week, Last Month,
Last Year, etc.), the vivisimo search service presents clustered documents. In such a situation, one may
want to explore if a given cluster contains documents that are fresh or not; this necessity may occur quite
frequently in analyzing news streams (RSS) to find out the frequency of a given news story reported by
media as a function of time.

When the groups of clusters are generated by distinct search services, users may be faced with distinct
clusters, possibly with the same labels. In this situation, it becomes necessary to explore the relation-
ships between the contents of these clusters to identify common and distinct documents, and re-rank the
contents of the clusters based on distinct criteria. This may require the application of several manipula-
tion operations, such as the intersection and join of clusters, as well as their union and re-clustering,

181

A Flexible Language for Exploring Clustered Search Results

and so on; the different ranking options for these operations are an important feature, to re-rank the
content of clusters, and the clusters themselves, so as to make new documents and clusters emerge in top
positions, depending on distinct criteria. But, currently, there is no means to carry out this exploratory
activity. This exploratory activity can be useful also in the case in which one formulates distinct queries
(expressing the same information needs) to the same search engine and wants to explore the contents
of the retrieved ranked lists.

These considerations motivate our proposal of defining and implementing an interaction framework
based on a flexible exploratory language for carrying out manipulation operations of groups of clustered
results, retrieved by one or several search services (basically search engines) over the internet, correlated
with several ranking functions that can be explicitly specified by users.

It is an exploratory language, since the richness of operators and ranking functions makes it possible
to either reveal common and implicit contents of the clusters, and implicit relationships between clusters,
such as similarity and inclusion (i.e., similar, more specific or more general contents).

The language is also flexible, since it allows the application of several ranking criteria to re-organize
the documents inside each cluster, and the clusters inside each group of retrieved clusters, reflecting
a distinct semantics, such as content relevance, exhaustiveness of retrieval, novelty of the new cluster
with respect to the original ones. For example, one can apply a ranking that favors the exhaustivity
of the clusters’ contents, i.e., the number of documents they group. Another choice could be to rank
first the clusters obtained by a join of two original clusters, which have a high degree of correlation;
conversely, one could rank first the clusters exhibiting a greater degree of novelty with respect to the
common contents of the original clusters. The application of different ranking functions when applying
a combination operation between clusters allows one to highlight different elements in the top position
in a controlled manner, reflecting different properties of the clusters.

The formalization of ranking criteria is consistent with the basic operations of intersection and union
of fuzzy sets, since we regard each cluster as a fuzzy set of documents, and each group, as a fuzzy set
of clusters (Zadeh, 1965).

Since manipulation operations may require the reuse of intermediate results several times, we have
conceived the storing of the intermediate results into a database as an essential phase for successive
manipulation. Furthermore, the local manipulation of results avoids useless network and search services
overloading; in fact, in current practice, several modified queries are submitted to the search engines,
trying to capture relevant documents in the first positions of the ranked list, documents that were already
retrieved by the previous queries, although hidden to the user since they did not occurred in the first
positions.

In our view, the usual ranked list, produced by search engines is regarded as a group consisting of a
single cluster that has the query itself as label. Thus, our language can be used to compare the results of
any search service producing ranked lists too.

While, in (Bordogna, Campi, Psaila, & Ronchi, 2008a) we first proposed the data model and the op-
erators of the language, in this chapter we recall the language and focus on the semantics of the distinct
ranking methods.

In the next paragraph the background literature related to the proposal is reviewed. Further, a use
case is introduced to exemplify the usefulness of the language. The successive paragraph defines the
language, in terms of basic operations, group operators, ranking methods, and group functions, and we
report about the experimental evaluation about scalability of the algorithms. Finally, the conclusions
summarize the main achievements.

182

A Flexible Language for Exploring Clustered Search Results

bACKgROUND OF THE PROPOsED LANgUAgE

In this paragraph, we review works that are somehow related to our proposal, although they have been
conceived either with a different purpose than the analysis of web documents retrieved by search services,
or with distinct functionalities. In fact, to the best of our knowledge, there is not a language similar to
our proposal.

In conceiving our approach we started from the consideration that “many IR problems are, by nature,
ranking problems”. This is the starting point also of the approaches known as “to learn how to rank docu-
ments” presented within the ACM SIGIR 2008 Workshop “Learning to rank for information retrieval”
(Li, Liu, Zhai, 2008), that propose to use learning methods to adapt the ranking of retrieved results in
order to enhance effectiveness of IR.

Our proposal also shares the idea of the works presented within the ACM SIGIR 2008 Workshop
“Aggregated search” (Lalmas, Murdock, 2008) that pursue the task of searching and assembling informa-
tion from a variety of sources, placing it in a single interface to improve the effectiveness of retrieval. In
(White et al., 2008) they propose a metasearch framework directing the search to the engine that yields
the best results for the current query.

Our solution however is different, since it does not exploit the strict ranking of documents, but it
exploits the application of clustering techniques to group documents that are homogeneous as far as
their contents are concerned, and furthermore we propose the use of a manipulation language of group
of clusters, to re-rank the documents within the clusters based on personal preferences of the user.

A motivation of the utility of our proposal can be found in (Leouski & Croft, 1996). In this pioneer
work, the authors advocate the need of tools for giving the user more immediate control over the clus-
ters of retrieved web documents; such tools should serve as means for exploring the similarity among
documents and clusters. They also consider giving the user some means to correct, or even completely
change, the classification structure. To support the manipulation of clusters, they suggest the develop-
ment of graphic user interfaces.

Indeed, the literature on visual paradigms for the presentation of textual search results is too extensive
to review; for a survey, the reader can see (Card, Mackinlay, & Shneiderman, 1999; Staley, & Twidale,
2000). One goal of these approaches is to perform some kind of text mining based on conceptual maps
visualization (Chung, Chen, Nunamaker, 2003; Kampanya, Shen, Kim, North, & Fox, 2004).

Nevertheless, our proposal is different, since we do not exploit a graphical representation of rela-
tionships between documents at this level, but we provide a language for flexibly exploring the hidden
relationships. The work presenting the NIRVE prototype (Sebrechts, Cugini, Laskowski, Vasilakis, &
Miller, 1999) evaluates and compares several graphical interfaces for showing the retrieved results of
NIST’s PRISE search engine. In the conclusions, it states that ”a good visualization of search results
depends on a good structure and what often happens is that developers perform a deeper analysis of
results in order to generate that structure”.

In this respect, we envisage that our proposed language could be employed for the purpose of ex-
ploring and finding a good structure of results that can then be presented by taking advantages of the
proposed graphic visualization techniques.

Personalization is a distinctive characteristic of our approach, since the manipulation of the clustered
documents, possibly retrieved by multiple search services, is demanded to the user, who can perform
distinct kinds of combinations by means of the operators of the language. In this sense, we can regard
the application of the operators on the retrieved results as a kind of a personal information filter defined

183

A Flexible Language for Exploring Clustered Search Results

by the user or, in other words, the manipulation language can be seeing as a means to define personal-
ized information filters (Agichtein, Brill, Dumais, 2006).

An approach that shares some similarity of intent to our proposal is the Scatter/Gather algorithm
(Hearst & Pederson, 1996), in that it allows doing dynamic clustering and refinement of search results.
Its distinctive feature is the way it allows clusters to be selected, recombined (gathered) and re-clustered
(scattered) by the user. However, the user has to decide which clusters have a relevant theme based solely
on keywords and titles. No functionality is available to detect the degree of sharing between clusters.
Furthermore, since new clusters are generated based on re-clustering, the generation criteria remain
implicit and unknown to the user. On the contrary, in our approach, the user is perfectly aware of the
criteria that generated the new clusters, since they depend on the applied group operator and the speci-
fied ranking method. Moreover, the intersection and union operations between cluster representatives
generate the label of the resulting cluster through the processing of its items (titles and snippets), so as
to reveal and synthesize its hidden semantics. In facts, the label conveys new information previously
not known on the common contents of the documents in the cluster.

We can also find some similarity of our approach with respect to clustering ensemble techniques,
that have been defined to compare either the results obtained by the application of distinct clustering
algorithms on the same set of items, or to compare distinct partitions of the same set of items obtained
based on distinct views (representations) of the items (Punch, Jain, & Topchy, 2005; Strehl & Ghosh,
2002; Pagani, Bordogna, & Valle, 2007). The main goal of these techniques is to achieve a robust and
consensual clustering of the items. Robust clustering is achieved by combining data partitions (form-
ing a clustering ensemble) produced by multiple clustering. The approaches are defined within an
information-theoretical framework; in fact, mutual information is the underlying concept used in the
definition of quantitative measures of agreement or consistency between data partitions. The group
intersection operator of our language takes inspiration from these ideas, since its goal is, given two dis-
tinct partitions (i.e., groups of clusters), to identify the common partitions, i.e., those sharing the same
sets of documents. If we iteratively apply the intersection operator to a set of groups, we thus find the
consensual partitions among these groups. As far as the join operator is concerned, it can be regarded as
the generation of a new partition (group) containing only the unions of the original clusters that have a
non-empty intersection. Its meaning is that of expanding the result of the intersection operator between
groups, so as to consider indirect correlations among the items of the original clusters.

As a means for exploring the set of retrieved documents, also the ranking methods have a central role:
they allow rearranging the ordering of clusters within groups by highlighting either some inner property
of the clusters themselves, e.g., their exhaustivity in terms of cluster cardinality, or their reliability/qual-
ity in satisfying the search needs of the user, or even their degree of novelty or specificity. To define the
ranking methods, we based on the literature regarding information retrieval with query weights, and
flexible querying in fuzzy databases (Buell, & Kraft, 1981; Bosc & Prade, 1997; Galindo, 2008). The
relative importance semantics for query term weights in extended Boolean information retrieval is here
revisited for specifying the relative importance of clusters for computing weighted rankings (Bookstein,
1980; Yager, 1987).

184

A Flexible Language for Exploring Clustered Search Results

PRACTICAL UTILITY OF THE ExPLORATORY
LANgUAgE: A UsE CAsE ExAMPLE

In order to give a practical idea of the kind of exploratory tasks that can be performed by means of the
proposed language, in this paragraph we introduce a use case.

Let us suppose we want to go on a tour in Napa Valley; to plan the trip, we need to collect information
concerning wineries, sites to visit, close cities to reach, e.g., by car, as well as hotels and restaurants. The
search services provide a large set of documents concerning Napa Valley, so it becomes a hard task to
find, among them, the most relevant ones for our goal. Consequently, it can be convenient to semantically
characterize them, by organizing them in groups of semantically homogeneous documents (clusters), and
then to perform a kind of exploratory task, in which we try to combine the results of queries submitted
to search services, in order to filter out useful documents. This novel practice can be carried out locally,
thus minimizing the need of new remote searches, as it generally happens with current search services.
The results obtained by analyzing and combining previously submitted queries could also inspire new
and more focused queries.

Hereafter, we start a use case example that we will use throughout the chapter to clarify our approach
and to explain the proposed language.

Example 1: To start our search of information to organize the tour to Napa Valley, we submit the
query “Napa Valley” to the search services Google, Yahoo! and MSN Live Search.

To have a rapid glance at the main topics retrieved, the documents returned by each service are clus-
tered. This is done on the basis of the documents’ snippets (brief piece of content) shown in the results
pages. The labels of the obtained clusters are represented in Figure 1.

On the basis of these results, it could be interesting to apply some manipulations on the groups, in
order to filter out in the top positions results that are most relevant to the user’s needs. For example, it
may be interesting to keep, in the groups, only the most relevant clusters concerning some particular
contents (identified through the clusters’ label): this way we reduce the whole set of documents to only
those that are deemed relevant, and that really cover the desired aspects, thus saving time for their inspec-
tion. To this aim one can use the cluster selection operation of the proposed manipulation language,
to select only desired clusters in a group.

Figure 1. Clusters examples. The first rows report the group’s identifiers, the search service name and
the query text that is the group label; the other rows report a cluster identifier within the group, and
the label of the cluster.

185

A Flexible Language for Exploring Clustered Search Results

Alternatively, it may be interesting to obtain new groups in which clusters are composed of the most
authoritative and reliable documents concerning a specific desired topics only, such as Hotel or Hotel
and Travel Guide that are deemed relevant by all the search services. In this case we can assume that
documents recommended by all the search services are the most reliable and authoritative ones; thus we
want to obtain highly specific clusters containing documents recommended by all the search services. To
this aim one can use the group intersection operator of the proposed language that allows maintaining
only the documents that are contained within all the groups.

Another possibility could be to have an overview of the main general topics represented by a combina-
tion of the retrieved clusters. To this end one can specify the group union operator to generate a single
group by uniting two groups, and then the group coalescing operator to fuse all the clusters within a
group into a single labeled cluster, expressing by its label the main retrieved contents.

Another case is when we want to generate clusters by the union of clusters that have some correlated
contents. The group join operator can perform this task.

A final example could be to obtain new groups from the results of previous searches, in such a way
specific topics, hidden within the retrieved documents, are identified. This can be performed by filtering
sets of already retrieved documents, based on a more specific request, through the group refinement
operator.

We may also be interested in re-ordering the new clusters in the resulting group, based on some
property of clusters and documents, that may differ from the default one, i.e., the initial ranking provided
by the search service that first retrieved the document.

For example, one could be interested in performing a survey on a topic and be interested in achiev-
ing exhaustive results: in this case, he/she could prefer to rank first the relevant clusters with greatest
cardinality. To this aim one can apply the group union operator with the cardinality rank method.

An alternative could be to perform an exploratory analysis of the main general topics dealt with in
the whole set of retrieved documents: in this case, one could prefer to rank first the clusters with great-
est novelty with respect to the clusters from which they originated. To this aim one can apply the group
join operator with the expansion rank method. Conversely, one could be interested in exploring the
most exhaustive results retrieved by a previous search on specific topics; in this case, one could prefer
to rank first the clusters obtained by joining original clusters with greatest correlation. This is achieved
by applying the group join operator with the correlation rank method.

THE FLExIbLE ExPLORATORY LANgUAgE

In this paragraph we introduce the ingredients of the proposed language. First we define the data model,
then we introduce the basic operations between clusters derived from fuzzy set operations of union,
intersection and complement; finally we define the main group operators of the language by discussing,
for each of them, an application in the context of the use case. Along with the group operators, we also
define their ranking methods by discussing their semantics.

We recall that the proposed language offers a means that users, performing web searches by pos-
sibly multiple search services, can exploit to filter relevant documents already retrieved, but hidden to
them within the huge amount of retrieved results. The specification of the operators of the language for
manipulating groups of clustered documents can serve to distinct purposes, as it will be discussed along
with the introduction of the operators. It is worth pointing out that the applicability of the operators

186

A Flexible Language for Exploring Clustered Search Results

of the language can be far more general than the combination of clustered results obtained by distinct
search services. One could apply the operators also to explore the results retrieved by distinct queries
submitted to the same search engine. In fact it is not necessary that the results are clustered, they can be
organized as the usual ranked list retrieved by search engines, since the operators regard the ranked list
as a group, containing one single cluster labeled by the terms of the query that retrieved the list.

The Data Model

Consider a query q submitted to a search engine; the query result is a ranked list of documents, that we
call ranked items.

Definition 1: Ranked Item

A ranked item r represents a document retrieved by a web search. It is defined as a tuple:

r:(uri, title, snippet, irank)

where: uri is the Uniform Resource Identifier of the ranked web document; title is the document title
and snippet is an excerpt of the document, made by a set of sentences that may contain the keywords
of the query; irank is a score (in the range [0,1]) that expresses the estimated relevance of the retrieved
document with respect to the query. Distinct items in distinct results lists may represent the same docu-
ment. In facts, we assume that a document is uniquely identified by its uri (Coates et al., 2001) (near
duplicates are not detected), while it may have distinct snippets and irank when retrieved by different
search services. We assume that irank is a function of the position of the item in the query result list.

Definition 2: Cluster

A cluster representative c is a set of ranked items, having itself a rank. It is defined as a tuple:

c:(label, crank, items)

where: label is a set of terms that semantically synthesizes the cluster’s content; crank is a score (in
the range [0,1]) depending on the ranks of the items belonging to the cluster; items is the set of ranked
items constituting the cluster.

With |c| we denote the cardinality of the cluster representative, that is defined as |c|≡|c.items|. A
cluster label c.label is generally automatically generated by a function SynthLabel(c.items). Function
SynthLabel (R) generates a representative label from the set of ranked items R (or ranked clusters C
in the case of a group), by extracting the most meaningful non-stopwords terms from within titles and
snippets associated with items in R. The significance of a term is determined based on the occurrences
of the terms. The labeling algorithm is described in subparagraph “Labeling Algorithm” .

The default value of crank of a cluster is defined as its natural rank (see Definition 7). When a
cluster belongs to a group generated by one operator of the language, its crank can assume a different
semantics corresponding to the ranking method that the operator supports, and that has been applied to
produce the cluster.

187

A Flexible Language for Exploring Clustered Search Results

For the sake of simplicity, in the remainder of the chapter, we use the term cluster to intend cluster
representative.

Definition 3: Group

A group g is a not empty and ordered set of clusters. It is the main element of the data model and it is
defined as a pair:

g: (l; <c1; … ; cn>)

in which l is the label of the group, automatically generated by function SynthLabel, and with <c1; … ;
cn> we denote the list of clusters. A special kind of group is the empty group, that is defined as g0:= (l;
∅). This group can be explicitly generated by the user through the function EmptyGroup (see Defini-
tion 26).

A group g can contain a single cluster. Observe that a particular kind of cluster is the one that repre-
sents the ranked list obtained as the result of a query q; in this case, c:label= q.

The procedure that generates a group is initially activated by a search operator, named CQuery, that
allows users to query a search service (e.g., Google, Yahoo!, MSN Search) and to cluster the results. We
assume that a search service retrieves a maximum of N documents: in particular, in the case of Yahoo!
Search API, N is upper limited to 100, while in the case of MSN Live Search API, N is upper limited to
50.

On this basis, for each retrieved document, the operator builds an item r, whose irank value depends
on the position of the document in the result list: r.irank=(N−Pos(d)+1)/N, where Pos(d) is the position
of the document in the query result list. In this way, a document in the first positions has a rank r.irank
very close to 1.

The ranked list obtained as a result by the search operator, is then clustered by applying the Lingo
algorithm (Osinsli, 2003). Lingo is used to perform a flat crisp clustering of the query results on the
basis of their snippets and titles. Once clusters are obtained, they are labeled. Finally also the groups
are labeled to synthesize the most central contents retrieved by all their clusters. The labeling algorithm
is hereafter described.

Labeling Algorithm

When a new cluster or a new group is generated, it is fundamental to be able to synthesize its main
contents through a label. To this end, we designed and implemented a labeling algorithm that exploits
the representation of documents in a vector space. The label of both a cluster and a group is built by
function SynthLabel starting from the documents within. This guarantees that the associative property
of the operators of the language generating groups and clusters is satisfied. In particular, the labeling
algorithm performs the following steps.

Extraction of the • M most frequent terms from title and snippet of each document (M is an empiri-
cal value chosen to minimize the selection of terms with a low frequency, e.g., equal to one); filter-
ing of terms that appeared in at least more than one document, and creation of the base of terms.
In particular, title and snippet for documents are tokenized, deprived of stop-words and finally

188

A Flexible Language for Exploring Clustered Search Results

stemmed. Then, from the totality of the resulting terms, the first N terms with greatest frequency
are extracted. The set of all extracted terms, excluding duplicates and those appearing in several
documents, originates the complete base of terms where the vectors are represented.
Definition of the documents vectors with respect to the base of terms. Each vector is defined by • n
components, where n is the term space size. The value of each vector component is the number of
occurrences of the corresponding term within the title plus snippet.
Identification of the • centroid vector of the cluster, also called the average vector of the set of docu-
ments. The centroid vector, defined as the average of all the vectors of the documents belonging to
the cluster or group, identifies the typical concepts of the cluster (or group); for this reason, it can
be used as a prototype vector to identify a meaningful label.
Identification of the vector associated with the document (or a cluster) closest to the centroid vec-•
tor, using the cosine similarity measure.

For each document (cluster) vector, the value of cosine similarity with respect to the centroid vector
is evaluated. The vector obtaining the greatest value of similarity will be the candidate for the definition
of the label. In fact, the label is defined as the corresponding document title (resp. cluster label).

basic Operations

In order to define the operators and the functions that constitute the proposed language, it is necessary
to define some basic operations on sets of ranked items and on cluster labels.

The basic operations that we are going to define work on two input sets of ranked items R1 and R2
and generate a new set of ranked items R’.

Definition 4: Ranked Intersection

The operation RIntersect, denoted as ∩R, performs the intersection of two sets of ranked items. R’ con-
tains all ranked items r’ such that there are two ranked items r1∈ R1 and r2∈ R2 which refer to the same
uri. The irank of r’ is defined as the minimum irank value of r1 and r2.

Formally: r’ ∈ R’, if and only if there exists r1∈ R1 and r2∈ R2 such that:

r’.uri = r1.uri = r2.uri then

r’.title = Comb(r1.title, r2.title, r1.irank, r2.irank, ∩R);

r’.snippet = Comb(r1.snippet, r2.snippet, r1.irank, r2.irank, ∩R);

r’.irank = min(r1.irank, r2.irank).

r’.irank is the common level of relevance of both the retrieved items in the web searches from which R1
and R2 are obtained. This choice is in accordance with the interpretation of the sets of ranked items R1
and R2 as fuzzy sets of items, in which the irank of an item is its membership degree. The intersection of
two fuzzy sets generates a fuzzy set in which the membership degree of an item is the minimum of the
original membership degrees r1.irank and r2.irank (Dubois and Prade, 1988). In the case of ∩R, function

189

A Flexible Language for Exploring Clustered Search Results

Comb selects between the two input strings, the one with lowest irank value.

Definition 5: Ranked Union

The operation RUnion, denoted as ∪R, performs the union of two sets of ranked items. R’ contains all
ranked items r’ such that there is a ranked item r1 ∈ R1 (resp. r2 ∈ R2) such that r1 (resp. r2) refers to the
same uri.

Formally: r’ ∈ R’, if and only if one of the two following situations occurs.

1) If there exists r1∈ R1 (respectively exists r2∈ R2) with r’.uri = r1.uri (r’.uri = r2.uri), and there not
exists r2∈ R2 (respectively there not exists r1∈ R1) with r’.uri = r2.uri (r’.uri = r1.uri), then r’ = r1
(r’ =r2 in the dual case).

2) If there exist r1∈ R1 and r2∈ R2 such that: r’.uri = r1.uri = r2.uri then

r’.title = Comb(r1.title, r2.title, r1.irank, r2.irank, ∪ R);

r’.snippet = Comb(r1.snippet, r2.snippet, r1.irank, r2.irank, ∪ R);

r’.irank = max(r1.irank, r2.irank).

Differently from the case of ∩R, the irank of a ranked item r’ in the result of ∪R is the maximum of
irank values of items r1 ∈ R1 1 and r2 ∈ R2, because it represents the best level of relevance obtained
by the retrieved items in both the web searches. This is also consistent with the definition of union of
fuzzy sets by interpreting the irank as the membership degree (Dubois and Prade, 1988). Consistently
with this fuzzy set interpretation, in this case function Comb selects between the two input strings, the
one with greatest irank value.

Notice that it may occur that several ranked items get the same irank value in the generated cluster.
This is not regarded as a problem since this situation indicates that the corresponding items belong to
the cluster with the same degree.

Properties. The associative, commutative, monotonicity and idempotency properties hold for ranked
intersection and ranked union, since they are the intersection and union operations between fuzzy sets
based on the min and the max.

The cluster label is generated by function SynthLabel(c.items) described above.

group Operators

In this paragraph, we define the algebra for groups of clusters by defining the group operators.
The first operation that a user may wish to perform is to search information by submitting a query

to one or more search engines. To this end the following operator is provided.

Definition 6: CQuery

The CQuery operator allows to submit a query to a given search service and cluster the results. It is
responsible for the start up of the process supported by the proposed language. It is defined as

190

A Flexible Language for Exploring Clustered Search Results

CQuery: G × S × {0,1}→G CQuery(g, s, b) →g’

where G is the set of groups, S is the set of names of available services, s is the service that evaluates the
query q=g.l, b is a Boolean value, while g’ is the resulting group of clusters whose label g’.l=g.l.

When the user wants to submit a query to a service for the first time (when no groups are available),
the input group is an empty group generated by the function EmptyGroup (see paragraph “Functions
on Groups”).

In order to allow the user to submit a query to a search service without clustering the ranked list of
documents, she/he can specify the value b=0 in input. In this case the resulting group g contains one
single cluster, i.e., the trivial cluster that contains an item for each document retrieved by the search
service. When b=1 the results are clustered and labeled by function SynthLabel.

Definition 7: Natural Rank

Each set of items R (and consequently, each cluster c) has a Natural Rank (denoted as NRank(R)) that
is the average of ranks of items in the set. Formally

NRank(R) =(∑r∈R r.irank)/∣R∣

If we refer to a cluster c, the natural rank of c, that we denote simply by NRank(c), is the natural rank
of its items (i.e., NRank(c.items)).

Figure 2. Clusters selection

Figure 3. Expanded clusters. Each cluster is expanded with the items in it; for each item, we report its
uri, its rank r and (posQ: n) that is its position in the original ranked list retrieved by the query through
the search service in the corresponding column.

191

A Flexible Language for Exploring Clustered Search Results

This ranking method is the default one, that reflects the ordering of the items retrieved by the search
services belonging to the cluster.

Example 2: let us observe the labels of the clusters in Figure 1, and let us assume that we want to plan
a tour. We can easily identify which of them are most closely related to our needs for planning a tour. To
this aim, we may want to select a subset of clusters. Therefore we introduce the following operator.

Definition 8: Cluster Selection

The Cluster Selection operator σ allows selecting the clusters in a group.
It is defined as:

σ (g,P)→g’

where g is the group whose clusters must be selected, and P is a predicate on positions of clusters in the
group, or on cluster labels; the selected clusters maintain the original order.

Returning to Example 2 and assuming that we are planning a wine-tour, the clusters about gastronomy,
wine and touristic topics are the most interesting ones. The reduced set of clusters on which we focus is
depicted in Figure 2. In Figure 3 we show the selected clusters with their contents.

On the other side, one may wish to cancel some retrieved clusters about uninteresting topics. To this
end we introduce the following operator.

Definition 9: Cluster Deletion

The Cluster Deletion operator defined as:

δ (g,P)→g’

deletes clusters in a group g that satisfy predicate P. (thus, g’ contains all clusters in g that do not satisfy
P).

Since a group is an ordered list of clusters, one may desire to see the clusters in it ordered with respect
to their crank, or may desire to change the default ordering by specifying preferences for a different
ranking method. To this aim we provide the following operator.

Definition 10: Group Sorting

Since a group is an ordered list of clusters, group sorting operators must be provided. Shortly, operator
S(g;L) → g’ sorts clusters in g based on the ordered list of positions L; operator Ŝ(g) → g’ sorts clusters
in g with respect to their crank in decreasing order.

The list of simple operators might be longer; however, they are not essential in this chapter, and for
the sake of space we do not further discuss this topic.

Example 3: let us suppose that we want to filter out the most reliable documents within the clusters
in Figure 3, we could identify the common documents retrieved by all the three search engines. To this
aim we introduce the following operator.

192

A Flexible Language for Exploring Clustered Search Results

Definition 11: Group Intersection

The first complex operator we introduce is the Group Intersection. Intuitively, it is a quite straightforward
wish of users to intersect clusters in two groups, to find more specific clusters. The assumption is that
the more search services retrieve a document, the more the document content is worth analyzing.

The Group Intersection operator ∩ is defined as:

∩:G×G×T∩→G ∩(g1, g2, t)→g’

where g1 and g2 are the groups of clusters to intersect, g’ is the resulting group, t is the ranking method
adopted to evaluate the crank of clusters in g’.

t∈T∩={Natural,WNatural, Cardinality,Weighted }.

For each pair of clusters c1 ∈ g1, c2 ∈ g2, such that their intersection is not empty (i.e., ∣c1..items∩R
c2..items)|≠0), there is a cluster c’∈g’. c’ is defined as follows:

c’.items= c1..items∩R c2..items,

c’.label=SynthLabel(c’.items).

If t is Natural, the crank value is obtained as:

c’crank=NRank(c’.items).

If t is WNatural, the crank value is obtained as:

c’crank=WNRank(c’.items, c1.crank, c2crank, g1, g2).

If t is Cardinality, the crank value of each resulting cluster is defined as: c’crank=CardRank(c’,g’).
If t is Weighted, the crank value is obtained as:

c’.crank=WminRank(c1.items, c1.crank, c2.items, c2crank, c’.items).

g’.l=SynthLabel(C) with C the set of ranked clusters in g’.

The operator provides four distinct methods to compute the ranking of resulting clusters, each one
reflecting a distinct semantics.

If t is Natural, the crank value of a cluster is obtained by computing its Natural Rank as defined in
Definition 7. In this way, the relevance of a cluster is defined by the average of the ranks of the items
common to both intersected clusters. Thus, this ranking criterion reflects the relevance judgments of the
search services that first retrieved the items, and is independent of the properties of the original clusters
to which they belong. Instead, if t is WNatural, the crank value of each resulting cluster is obtained by
means of function WNRank, defined by the following definition.

193

A Flexible Language for Exploring Clustered Search Results

Definition 12: Weighted Natural Rank

Each set of items R (and consequently, each cluster c) has a Weighted Natural Rank (denoted as WNRank(R,
C1, C2, g1, g2)) that is the weighted average of ranks of items in the cluster, with weights C1 and C2 of
the original clusters. Formally:

WNrank(R, C1, C2, g1, g2) = C1*C2 NRank(R)/(MaxRank(g1) * MaxRank(g2))

where function MaxRank is defined as MaxRank(g) = max {c.crank | c∈g}
This ranking method reflects the ordering of the items retrieved by the search services belonging to

the cluster by also taking into account the relevance, i.e., quality or reliability, of the cluster determined
by a previous search.

Instead, if t is Cardinality, the crank value of each resulting cluster is obtained by means of function
CardRank, defined by the following definition.

Definition 13: Cardinality Rank

Given the group g’ obtained by intersecting two groups, the Cardinality Rank of each cluster c’ is the
ratio between the cardinality of c’ and the maximum cardinality of the clusters in g’:

CardRank(c’,g’)=|c’.items|/maxc∈g’|c|.

The cardinality rank determines the relevance of clusters, locally within the group: the largest clus-
ter has crank equals to 1, while the others have a smaller value: it determines the rank of the cluster in
the group based on its cardinality, i.e., the number of items it contains. This can be useful when one is
interested in analyzing first big sets of documents about a relevant topic, giving higher importance to
clusters that are larger than the others in the same group. The semantics of this ranking criterion is to
favor, in the first positions of the generated group, the most exhaustive clusters, i.e., the most populous
ones, which are likely to bear much information. This ranking can be useful in the case of a surveyor,
who wants to retrieve as much as possible information on the interesting contents, and that is, at the
same time, recommended by all the search services, i.e., anything that is worth analyzing. The focus of
the use of the group intersection operator with the cardinality rank option is to perform a quality survey
on a topic.

Finally, if t is Weighted, the crank value is obtained by means of function WMinRank, defined in the
following definition.

Definition 14: Weighted Minimum Rank

Given a set of items R’, obtained combining sets R1 and R2 of ranked items belonging to clusters with
crank C1 and C2 respectively, its Weighted Minimum Rank (denoted as WMinRank) is the average of the
iranks of items in R’, weighted with respect to the crank of C1 and C2. Formally:

194

A Flexible Language for Exploring Clustered Search Results

WMinRank(R1,C1,R2,C2, R’)=
min(max((), .),max((), .))

'
'

1 1
1 1 2 2

- -
Îå C r irank C r irank

R
r R

Where r1 ∈R1 and r2 ∈R2 are the original items describing the same document represented by r’ with
r’.uri= r1.uri=r2.uri). We assume r1.rank=0 (r2.rank=0) if there is not an item r1∈R1 (r2∈R2) with r’.uri
= r1.uri (r’.uri= r2.uri).

By choosing this ranking method, one is willing to apply a weighted ranking method that reflects a
twofold criteria: it determines the rank not only based on the natural ranks of items, but also on the basis
of the cranks C1 and C2 of the incoming clusters. This way, one wants to take into account the search
engines votes of the items, and at the same time wants to weight these contributions with respect to the
relevance of the original clusters to which they belong. This means that one is willing to consider, as
indications of relevance of the cluster contents (that can be interpreted as either reliability or quality),
the ranking C1 and C2 determined by the application of the combination operations that produced the
clusters c1 and c2. The final rank reflects the semantics of the intersection between fuzzy sets of items r
with membership degrees r.irank having distinct priorities (C1 and C2) (Yager, 1987)

In fact, the reader can notice that the irank value of the two input items is weighted with the one
complement of the crank value of the cluster. Consequently, the irank of items in the cluster with great-
est priority, i.e., with greatest ranked cluster (cluster in the top position of the group) are more likely
to contribute to the weighted rank of the intersection. This definition is in accordance with the goal of
being cautious in determining the rank of an item common to the original clusters since we favor the
minimum irank of the most relevant, i.e., reliable or authoritative, cluster.

Properties. The associative property holds for the Group Intersection Operator, provided that the
same ranking method is chosen for all the occurrences of the group intersection operator in the expres-
sion. The commutative property holds as well, since, it holds for ranked intersection.

Returning to the example 3, in order to filter out the most reliable documents by all the three search
engines in Figure 3 we apply the operators reported in the headings of groups depicted in Figure 4. Con-
sider groups g4 and g5: first of all, we intersect g1 and g2, obtaining group g4; then, we further intersect
g4 with g3, obtaining group g5. The obtained clusters in g5 are the intersection of c1=Wine Wineries and
c4 =Travel Guide from g1, of c1 =Wine Tasting and Wineries and c3=Plan your Travel Vacation from g2,
of c1 =Wine Wineries and c4 =Napa Valley Hotel from g3. Since the intersection is an associative opera-
tion, we can write the expression to obtain g5 in a different way. This is done to obtain groups g6 and
g7, depicted in Figure 4. Looking at groups g5 and g7, the reader can see that they are identical, apart
for the expressions that generated them. For this reason, cluster cl.1 in g5 and cluster cl.1 in g7 have the
same label label5,1.

After having generated several groups of results, one may desire to explore their implicit correla-
tions, and unify those clusters that share some common documents in order to reduce the redundancy
of having the same documents in distinct clusters, and at the same time to eliminate the clusters that
do not share anything with other clusters, i.e., that are uncorrelated. To this aim the following operator
can be applied.

Definition 15: Group Join

The second complex operator we introduce is the Group Join operator.

195

A Flexible Language for Exploring Clustered Search Results

The Group Join operator  is defined as:

 



: ()G G T G g g t g´ ´ ® ®
1 2
, , '

	

where g1 and g2 are the groups of clusters to join, g’ is the resulting group. t is the ranking method adopted
to evaluate the crank of clusters in g’.

t∈T = {Νatural, WNatural, Cardinality, Weighted, Correlation, Expansion, Weighted-Correla-
tion, Weighted-Expansion}.	

For each pair of clusters c1 ∈g1, c2 ∈g2, such that their intersection is not empty (i.e., |c1.items ∩R
c2.items)|≠0), there is a cluster c’∈g’ defined as follows:

c’.items = c1.items ∪R c2.items,	

c’.label=SynthLabel(c’.items).	

If t is Natural, WNatural or Weighted, or Correlation, or Expansion, or Weighted-Correlation, or
Weighted-Expansion, c’.crank is respectively obtained as:

c’.crank=NRank(c’.items),	

c’.crank=WNRank(c’.itemsm c1.crank c2.crank, g1, g2),	

c’.crank= WMaxRank(c1.items, c1.crank, c2.items, c2.crank, c’.items)	

c’.crank = CRank(c1.items, c2.items)	

c’.crank = ERank(c1.items, c2.items)	

Figure 4. Group Intersection. In the expressions, t denotes a generic ranking method

196

A Flexible Language for Exploring Clustered Search Results

c’.crank = WCRank(c1.items, c1.crank, c2.items, c2.crank)

c’.crank = WERank(c1.items, c1.crank, c2.items, c2.crank)

Finally, g’.l = SynthLabel(C) with C set of ranked clusters in g’.
The Group Join operator can be used to explicit indirect correlations between the topics represented

by the clusters in the two groups. The basic idea underlying its definition is that if two clusters overlap,
i.e., have some common items, it means that the contents of these items are related with both topics rep-
resented by the clusters. This may hint the existence of an implicit relationship between the two topics.
By assuming that topics can be organized into a hierarchy, by grouping the two overlapping clusters into
a single one, we may reveal the more general topic representing the whole content of the new cluster,
which subsumes, as most specific topics, those of the original clusters.

As for group intersection, the natural rank is the basic rank value of a cluster. An alternative is to
compute the rank in a weighted way; in this case we define the WmaxRank criterion, since we want to
give more chance in determining the final rank to the items belonging to the highest weighted cluster.

Definition 16: Weighted Maximum Rank

Given a cluster c’, obtained by combining clusters c1 and c2, its Weighted Maximum Rank is defined
as

WMaxRank(R1,C1,R2,C2, R’)=

max(* . , * .)

max(,)

'

'

C r irank C r irank

C C

R

r R
1 1 2 2

1 2
Îå

æ

è
çççç

ö

ø
÷÷÷÷÷

where r1∈ R1 and r2∈ R2 are ranked items of clusters c1.and c2, respectively.
By choosing this ranking method one is willing to apply a weighted ranking method that reflects a

twofold criteria: it determines the rank not only based on the natural ranks of items, but also on the basis
of the ranks C1 and C2 of the incoming clusters, i.e, their assumed reliability or quality. This way, one
wants to take into account the search engines votes of the items, and at the same time wants to weight
these contributions with respect to the relevance C1 and C2, of the original clusters to which they belong.
The final rank reflects the semantics of the union of fuzzy sets of items r with membership degrees
r.irank, having distinct priorities (C1 and C2) (Bookstein, 1980). In fact, the reader can notice that the
irank value of the two input items is weighted with the crank value of the cluster. Consequently, the
irank of items in the cluster with greatest priority, i.e., with greatest ranked cluster (cluster in the top
position of the group) are more likely to contribute to the weighted rank of the union. This definition
is in accordance with the goal of being optimistic in determining the rank of an item belonging at least
to one of the original clusters, since we favor the maximum irank of the most relevant (i.e., reliable or
authoritative) cluster.

A third alternative to compute the ranking of clusters after a join is the Correlation Rank, that esti-
mates the degree of correlation of the two incoming clusters.

197

A Flexible Language for Exploring Clustered Search Results

Definition 17: Correlation Rank

Given two sets of ranked items R1 and R2 of clusters c1 and c2, their Correlation Rank (shortly, CRank)
is the overlapping value between R1 and R2. Formally, we define the CRank as the fuzzy Jaccard coef-
ficient (Dubois & Prade, 1982) between two clusters c1 and c2, regarded as fuzzy sets of items, with
irank their membership values:

CRank(R1, R2)=
R R

R R

r irank r irankR

R

r r I r uri r uri1 2

1 2

1 2

1 2 1 2
Ç

È
= Î =

å min(. , .)

m
, , . .

aax(. , .)
,

r irank r irank
r r U

1 2

1 2Î
å

where I= R1∩
RR2 and U= R1∪

RR2, r1∈ R1 and r2∈ R2; the items r1∈ R1 and r2∈ R2 belonging to I with
r1.uri= r2.uri describe the same document; we assume r1.irank =0 (r2.irank = 0) if there is not an item
r1∈ R1 (r2∈ R2). Note that the membership degree, i.e., irank, of an item r belonging to the intersection
R1∩

RR2 is computed as the minimum between the irank values of the document and the two clusters of
belonging, respectively, while that of the union R1∪

RR2 is the maximum.
This ranking method computes a degree of overlapping of the clusters c1 and c2, that is interpreted as

a correlation measure of the contents of the two clusters. The properties of this measure allow deriving
some interesting properties of the relationships between the two clusters and the generated cluster:

the greater is the membership value • irank of an item to a cluster, the more is the contribution of
the item to determine the degree of overlapping.
since the overlapping measure is symmetric, it establishes a bi-directional relationships between •
the topics of the clusters;

• CRank assumes the maximum value of one only when R1 and R2 contain exactly the same items,
with the same irank values; this allows to state than when CRank(R1,R2)=1 the two clusters c1 and
c2 deal with the same topic;

• CRank assumes the minimum value of zero only when R1 and R2 do not share any items; in this
case when CRank(R1,R2)=0 the two clusters c1 and c2 deal with distinct topics;
finally, the more the clusters are overlapped, the more they share some contents, i.e., the more re-•
lated they are. If CRank(R1,R2)>0.5 it means that they share more with respect to what they do not
share, and vice versa. We can assume that the topics of the two clusters c1 and c2 are strictly related
if their CRank(R1,R2) > 0.5, while they are weakly related when 0<CRank(R1,R2)≤0.5. In the case
in which CRank(R1,R2)>0.5, by joining the two clusters c1 and c2 to generate a cluster c’ we can
guess that two specific and related topics are subsumed into a more general topic, that is still spe-
cific. In particular, the degree of specificity of the topic of c’ is likely to increase with the increase
of CRank(R1,R2) to one. In this case, we can expect that the shared items of c1 and c2 will preva-
lently determine the label of the generated cluster c’. Thus the generated label should not convey
much novelty with respect to the labels of c1 and c2. On the other side, when 0<CRank(R1,R2)≤0.5,
by joining the two clusters c1 and c2 we generate a cluster c’ representing a very broad topic, since
in this case the not shared items prevail over the shared ones. In this case, we can expect that the
label of c’ is more heavily determined by the non-common items; consequently, the new label
should convey much novelty with respect to the original labels of c1 and c2.

198

A Flexible Language for Exploring Clustered Search Results

A fourth alternative to compute the ranking of a cluster after a join, is the Expansion Rank.

Definition 18: Expansion Rank

Given two sets of ranked items R1 and R2, their Expansion Rank (shortly, ERank) is the complementary
value of their CRank. Formally:

ERank(R1, R2)= 1 1
1 2

1 2

1 2

1 2 1 2-
Ç

È
= - Î =R R

R R

r irank r irankR

R

r r I r uri r u

min(. , .)
, , . . rri

r r U

r irank r irank

å

å
Î

max(. , .)
,

1 2

1 2

By specifying this ranking option, one wants to favor, in the top positions, the generated clusters c’
that convey much novelty with respect to the original weakly related clusters c1 and c2. The lesser the
two topics (represented by the original clusters) are related, the greater the novelty of joined cluster. This
hints to the fact that the cluster with high novelty rank can represent a very general topic.

Another alternative to compute the ranking of clusters after a join is to weight the correlation rank.

Definition 19: Weighted Correlation Rank

Given two sets of ranked items R1 and R2, their Weighted-Correlation Rank (shortly, WCRank) is defined
as the weighted CRank of the two fuzzy sets R1 and R2.

Formally:

WCRank R C R C

C r irank C r irank
r uri r

(, , ,)

min(* . , * .)
. .

1 1 2 2

1 1 2 2

1 2= = uuri r r I

r r U

C r irank C r irank
, ,

,

max(* . , * .)
1 2

1 2

1 1 2 2

Î

Î

å

å
=

where I= R1 ∩
R R2 and U= R1 ∪

R R2, r1∈R1, r2∈R2 and C1 and C2 are the crank of the clusters c1 and c2,
respectively; the items r1∈R1 and r2∈R2 belonging to I with r1.uri= r2.uri describe the same document;
we assume r1.irank =0 (r2.irank = 0) if there is not an item r1∈R1 (r2∈R2).

With this ranking criterion, we want to penalize more heavily the contributions of the items belonging
to the least relevant clusters. The idea is that the relevance of clusters, intended as either reliability or
quality, is propagated to their items when computing their overlapping degree. The crank of the clus-
ters are used to decrease the membership degrees of the items so that the lower the crank the greater
the reduction that is applied to the membership value of the item. This way, the overlapping degree is
more heavily determined by the items belonging to the most relevant clusters. By applying this ranking
method, one expects to rank, in top positions, clusters c’ derived by the joining of relevant and highly
correlated original clusters c1and c2.

Finally, it is possible to choose the Weighted Expansion Rank.

199

A Flexible Language for Exploring Clustered Search Results

Definition 20: Weighted Expansion Rank

Given two sets of ranked items R1 and R2, their Weighted Expansion Rank (shortly WERank) is the
complement of the weighted correlation rank.

WERank R C R C

C r irank C r irank

(, , ,)

min(() * . ,() * .)

1 1 2 2

1 1 2 2

1

1 1

= -

- -
rr uri r uri r r I

C r irank C r irank
1 2 1 2

1 1
1 1 2 2

. . , ,

max(() * . ,() * .
= Î
å

- -))
,r r U1 2Î
å

Its semantics is that of the expansion rank in which we take into account that the contributions of the
items (i.e., their ranking values) to the overlapping degree is modified by the relevance of the cluster they
come from. By applying this ranking method, one expects to rank, in top positions, clusters c’ obtained
by joining relevant and weakly correlated clusters c1and c2. In this case, the contributions of the items to
the overlapping degree are more penalized if they belong to the most relevant clusters. Thus, the most
relevant clusters contribute more heavily to determine the novelty WErank of the generated cluster.

Properties. The associative property holds for the Group Join Operator, provided that the same
ranking method is chosen for all the occurrences of the group join operator in the expression. The com-
mutative property holds as well, since, it holds for ranked union.

Example 4: The application of the group join operator to our running example is shown in Figure 5.
The unified clusters that group documents common to the original clusters are about both topics (such
as Wine Wineries and Wine Tasting and Wineries), and at the same time, include also not common docu-
ments, which are apparently unrelated. This is the case of clusters Plan your Travel vacation and Wine
Wineries which both contain some documents, such as Featured Wineries in Napa Valley - Plan your
Wine Tasting Room Tour. By joining these two clusters together, we generate a more populous cluster in
which information about wineries and travel vacations are included. At this point, we could also sort the
resulting clusters with respect to the degree of correlation (i.e., overlapping) between the two original
clusters, to identify the most correlated topics. In this example, in the same result cluster there are docu-

Figure 5. Group Join. In the expressions, t denotes a generic ranking method

200

A Flexible Language for Exploring Clustered Search Results

ments both concerning only Wineries or only Travel Vacation, and containing both. We can so expand
the intersection between the two original clusters with documents correlated with them.

Observing the various ranks reported in Figure 5 for clusters, it is possible to see that different rank-
ing methods give a different relevance to clusters.

For example, in group g8, the weighted rank is similar for both the clusters, but the correlation rank
is quite different: in fact, cluster cl.1 has CRank=0.333, while cluster cl.2 has CRank=0.143; this means
that clusters joined together to obtain cl.2 were less correlated than the ones joined to form cl.1. This
result is coherent with the expansion rank: ERank=0.857 for cluster cl.2, that is much higher than the
expansion rank for cluster cl.1.

If we observe the basic weighted rank (WMaxRank), it is evident that its values are coherent with
respect to the correlation rank; however, the distance between the two values is much smaller than the
distance between the values of the correlation rank; this is due to the fact that the crank values of original
clusters influence the final rank.

Finally, we can notice that sorting clusters in g8 based on cardinality ranking and (weighted) expan-
sion ranking, results in clusters sorted in a different order than the one depicted in the figure.

Now, let us consider the need to refine the clusters in a group on the basis of the clusters belonging
to another reference group. This my be useful in the case in which one has retrieved information about
a topic and wants to refine this, on the basis of the results retrieved with respect to another topic. For
example, one has retrieved the keynote comments on Napa Valley Wineries and wants to refine the results
of Napa Valley Restaurants. To this aim one can use the following operator.

Definition 21: Group Refinement

The Group Refinement operator  is defined as:

 



: (, ,) 'G G T G g g t g´ ´ ® ®
1 2

where g1 is the group to refine on the basis of g2, g’ is the resulting group. t is the ranking method adopted
to evaluate the crank of clusters in g’.

t TÎ =


{ Natural, WNatural, Cardinality, Refinement}

The use of this operator is to refine the clusters in a group, based on clusters in another group.
For each cluster ck ∈g1, for each cluster ci∈g2, I c items c items

i k
R

i= Ç. . .
If at least one Ii ≠∅, there is a cluster c’∈g’ defined as follows:

c items
i G

R I
i

' .
,

=
=

È
1

c’.label=SynthLabel(c’.items), where G = |g2|.

While the group join operator generates a cluster representing a more general topic than the topics
in both the original clusters, the refinement operator can be regarded as generating clusters specializing

201

A Flexible Language for Exploring Clustered Search Results

the topics of the clusters in the first group on the basis of the topics of any cluster in the second group.
The idea underlying this operator is that we want to collect, in a unique cluster, the items that belong to
both a cluster ck ∈g1 and any of the clusters in the second group g2. This way, by eliminating some items
from ck we generate a cluster representing a more specific topic with respect to ck, but not necessarily
more specific with respect to the clusters of the second group. The clusters of the second group act then
as a filter on the contents of each cluster in the first group.

If t is Natural or WNatural the crank value is obtained by applying Definitions 7 and 8:
If t is Cardinality, the crank value of each resulting cluster (called Cardinality Rank). is defined as

in Definition 13.

Definition 22: Refinement Rank

If t is Refinement, the crank value of a cluster c’, generated from a cluster ck ∈ g1 (called Refinement
Ranking) and the clusters in the second group g2 is obtained as:

c crank
c items

c items
k

' .
' .

.
=

.

This is indeed an inclusion degree of the cluster ck in the resulting cluster c’, i.e., in any of the clusters
of g2. and it expresses how much original contents of ck is kept in the refinement based on g2.

When using this ranking method, one is willing to favor, in top positions, the clusters c’ generated by
a cluster ck of g1 that has maintained in c’ as much as possible all its original items. This ranking method
satisfies some interesting properties:

When c’.crank=1 it means that the whole content of ck is kept in the resulting cluster c’.
When c’.crank=0 it means that the result is empty, then no item of ck is contained in any cluster of

g2 . Intermediate values of c’.crank mean that only some items of ck are present in c’. Notice that the
contrary is not generally true since this measure is not symmetric.

Example 5: Suppose that, by analyzing the results in Figure 5, we discover that no cluster has been
retrieved concerning restaurants (i.e., with the word Restaurant in the label). We could take a remedy by
submitting the new query “Napa Valley Restaurants” to Yahoo!; the resulting clusters shown in Figure 6
(strongly focused on restaurants) are used to filter out sub-clusters of documents concerning restaurants
from within clusters in the previous lists (we refine clusters in the first list).

During a search session in which the user has submitted several queries to the search services and has
applied several operators to manipulate the retrieved results, one may have generated too many groups
and too many clusters, and may wish to reduce their number. To this aim the following two operators
can be applied.

Definition 23: Group Union

The group union operator c1∪ c2 = c’ generates c’ in such a way it contains all clusters in c1 and all
clusters in c2. This operator can be useful during long interactive search and processing sessions, when
too many groups have been generated. It makes it possible to collect together two or more groups in a
single group.

202

A Flexible Language for Exploring Clustered Search Results

Definition 24: Group Coalescing

The group coalescing operator ⊕(c)=c’ generates c’ in such a way that c’ contains only one cluster,
obtained by applying the ranked union operation to all clusters in c.

This operator may be necessary in long interactive processing sessions, when too many clusters have
been generated in a group. It makes it possible to fuse all clusters in a group into one global cluster.

After complex transformations, it might be necessary to reapply the clustering method to a group. In
fact, re-clustering documents in a group may let new and unexpected semantic information emerge.

Definition 25: Reclustering

The Reclustering Operator Cluster(c)=c’ performs the ranked union of all clusters in c, and generates c’
in such a way that it contains all the clusters obtained by clustering all ranked documents.

Closure Property of Group Operators: The data model and the group operators were designed in such
a way the Closure Property holds: operators are defined on groups and generate groups.

Functions on groups

The group operators so far described allows to conduct a powerful exploratory activity: by combining
groups, the user can discover useful information and may be inspired for new searches; the results of
these new searches might be combined with previously computed groups, and so on. The distinct rank-
ing methods let users re-arrange the contents of the groups so as to make more evident some properties
of the clusters that can be of interest for a search.

However, being an exploratory activity, it might be useful to evaluate the results of group operations
without actually building and storing a new group. If the user were provided with functions that returns
a quantitative summary of what would be obtained by applying an operator on already computed groups,
the user could decide whether to actually apply a group operator to obtain a new group.

For this reason, the proposed language provides some useful evaluation functions that we introduce
in this sub-paragraph.

Figure 6. Group Refinement. In the expression labeling the group on the right, t denotes a generic rank-
ing method

203

A Flexible Language for Exploring Clustered Search Results

Definition 26: EmptyGroup Function

The first function that we need to define is the EmptyGroup function, that makes it possible to generate
an empty group with a desired label l. It is defined as:

EmptyGroup(l)→g0 where g0=(l,∅)

This function is necessary to generate the input group for the CQuery operator when the user wants
to submit a query for the first time. This allows to archive the closure of the whole set of group opera-
tors.

Definition 27: Selection Function

Selection function, se , evaluates the effect of a cluster selection. It is defined as:

se
,(g,P)→(nc,mincard,maxcard, mincrank,maxcrank)

where g is the group to which to apply the selection, and P is the selection predicate. The function pro-
duces a 5-tuple with the following fields: nc is the number of clusters that would be selected, mincard
and maxcard are, respectively, the minimum and maximum cardinality of clusters that would be selected,
while mincrank and maxcrank are, respectively, their minimum and maximum crank values.

Definition 28: Intersection, Join and Refinement functions

Three functions are defined, corresponding to the main group operators: ∩ε evaluates intersection, e
evaluates join, e evaluates refinement.

∩ε (g1, g2, t) → (nc,mincard,maxcard, mincrank,maxcrank)

e (g1, g2, t) → (nc,mincard,maxcard, mincrank,maxcrank)

e (g1, g2, t) → (nc,mincard,maxcard, mincrank,maxcrank)

where g1 and g2 are the groups of clusters to intersect (resp. join or refine). t is the ranking method adopted
to evaluate the crank of clusters that would be produced: for ∩ε it is chosen among the methods Natural,
WNatural, Weighted and Cardinality; for e , it is chosen among the methods Natural, WNatural,
Weighted, Correlation, Expansion, Weighted-Correlation, Weighted-Expansion and Cardinality; for e ,
it is chosen among the methods Natural, WNatural, Refinement and Cardinality.

As for selection evaluation, the functions produces a 5-tuple with the previously defined fields.
Example 6: An example of application of these functions could be proposed on each of the operators

previously described. For the group intersection, for example, whose results are represented in Figure

204

A Flexible Language for Exploring Clustered Search Results

4, we may want to know if it is convenient (in terms of obtained results) to execute the operation g4:
g1∩g2. To this aim, we can compute ∩ε(g1, g2,t) that will return, as a result,

(nc=2, mincard=1, maxcard=2, mincrank=0.8723, maxcrank=0.9771)=(2,1,2,0.8723,0.9771)

On the basis of this information, the user can see that only two clusters are retrieved containing a total
of three documents with high minimum and maximum rank (in the range [0,1]). Thus it can be worth
executing the intersection operator.

sCALAbILITY IssUEs

In this paragraph we analyze the complexity of the operators of the proposed language and run some
experiments in which we apply the operators to combine groups containing increasing number of clusters
so as to evaluate the efficiency of the approach.

Computational Complexity

The operators previously defined are applied to pairs of groups and are executed in several subsequent
steps. Thus, in order to study the computational complexity of the operators, it is necessary to study the
computational complexity of the basic steps.

First of all, let us consider the ranked intersection and ranked union of two clusters c1 and c2. These
operations can be implemented in a very efficient way. In fact, if we maintain the list of documents in a
cluster ordered by document uri, ranked intersection and ranked union can be implemented on the basis
of a merge operation, whose complexity is O(∣c1∣+∣c2∣).

Let us consider now operators such as group intersections, group join and group refinement. These
are binary operators that explore combinations of each cluster in the first operand with each cluster in
the second operand. Thus, if with N1 and N2 we denote the number of clusters in the first and second
group operand, respectively, the complexity of such operators is O(N1 ⋅ N2).

Consequently, if we denote with c the maximum cardinality of clusters and with N=max(N1, N2) the
maximum number of clusters in the input groups, the final complexity of the main algorithm (intersec-
tion, join, refinement) is O(c ⋅ N2).

Another step is the labeling algorithm applied to generate the clusters’ and the groups’ labels. We
recall that the cluster labels are generated based on the snippets and the titles of their ranked items, i.e.,
short pieces of text, while the labels of the groups are generated from the analysis of the cluster labels.
If we indicate by c the number of the items (i.e, either the number of ranked items in a cluster, or the
number of clusters in a group), and with k the maximum number of the single terms either within the
snippets plus titles, or within the cluster labels, the complexity of this labeling algorithm is determined
by the following steps.

First we need to rank, in decreasing frequency, the c⋅k terms to select the m most frequent ones. This
is performed in O(c⋅ k log (c⋅ k)). Then, the vector base of the m dimensional space is built in which the
ranked items (clusters) vectors are mapped: this has a complexity O(c⋅m log (c⋅m)). Finally, the centroid
vector is computed in O(c⋅m), and the title (or label) of closest element is chosen with a complexity
O(c).

205

A Flexible Language for Exploring Clustered Search Results

The reader can assume that the labeling task is computationally expensive. Nevertheless this phase is
not critical, as each element contains a limited number of words, since we consider titles and snippets,
not the entire documents. Further the labeling is performed only for the generated clusters that do not
grow quadratically. Consequently, as the reader can see in the experiments reported hereafter, the critical
phase is the execution of the main algorithm (intersection, join).

Experiments

In order to evaluate the scalability of our proposal, we conducted a set of experiments. The experiments
were performed on a PC powered by an Intel Pentium 4 641 3.2 GHZ processor, equipped with 1 GByte
RAM (of type DDR2 PC2-4200 SYNCH DRAM NON-ECC), a 256 GByte Hard Disk (Serial ATA II).
The installed operating system is Linux Fedora 6 Core Distribution (kernel version 2.6.20-1.2952.fc6).
Java classes were compiled with JDK version 1.6.0 03. Classes were executed using the Java Runtime
Environment JRE1.6.0 03.

We ran separately experiments on the intersection and join operators. We considered two sets of
source groups, reported in Figure 7 and Figure 10. The first set is obtained by performing the following
queries: “London” to Google, “London” to Yahoo, “New York” to Goggle, “New York” to Yahoo, “Los
Angeles” to Yahoo. For each query, the first 100 ranked items are considered, and the clustering algorithm
is applied. Finally, five groups are obtained: group g1 contains clusters resulting from the first query;
group g3 unites clusters obtained by the first and the second query; group g5 unites clusters obtained by
the first, the second and the third query; group g7 unites clusters obtained by all queries except the last
one; group g9 unites all clusters obtained by all the queries.

The groups reported in Figure 10 are obtained in the same way: groups g2, g4,g6, g8 and g10 unites the
clusters obtained by queries “London Hotels” to Google, “London Hotels” to Yahoo, “New York Hotels”
to Google, “New York Hotels” to Yahoo and “Los Angeles Hotels” to Yahoo.

Figure 8 reports the results of the first set of experiments. Each group reported in Figure 7 was in-
tersected with itself. This way, it is possible to obtain a large number of clusters in the resulting groups.
The table reports the execution times for the five experiments. In particular, we separately consider the
Data Loading time, the time needed by the main algorithm (in this case, the intersection algorithm), the
time needed for labelling the group (that analyzes all documents in the resulting clusters), the time for
sorting the group and finally the time needed to write the resulting XML document that describes the

Figure 7. First set of input groups for operators. With (query, engine) we denote that the specified query
is submitted to the specified engine, taking the first 100 documents. Groups from g3 to g9 are obtained
by uniting the clusters obtained for each single query.

206

A Flexible Language for Exploring Clustered Search Results

resulting group. Figure 9 shows a chart with the overall execution time, the Data Loading time, the Main
Algorithm time and the Group Labelling time (the other items are negligible, in comparison).

Notice that, while the data loading time grows linearly, the other components of the implementation
behaves in a quadratic way, thus meeting the considerations about complexity previously reported.

The reader can also observe that the overall execution time in the last case is still limited to one
minute and a half, even though the large number of resulting clusters.

In the second sets of experiments performed on the intersection operator, groups g1 were intersected
with group g2, group g3 with group g4, group g5 with group g6, group g7 with group g8 and group g9 with
group g10. For each pair, groups are rather heterogeneous, so that the number of intersecting clusters
is small, as the reader can see in Figure 10. Similarly to the previous experiment, Figure 12 shows the
chart of the execution times reported in Figure 11.

The reader can see the behavior of the algorithm is still quadratic.
However, we must point out that the number of clusters actually intersecting, and thus generating

a new cluster, are far less than the potential number indicated on the x-axis: in the case indicated by
500x500 documents on the x-axis which are grouped in 112 x 98 clusters, only 101 clusters are generated,
and in the case of 400x400 documents partitioned into 89 x 76 clusters only 95 clusters are generated

Figure 8. First experiments of application of the group intersection operator. Execution times are in
milliseconds

Figure 9. Chart of the experiments reported in Figure 8 of application of the group intersection. Execu-
tion times are in milliseconds

207

A Flexible Language for Exploring Clustered Search Results

Figure 11. Second experiments on application of the group intersection operator. Execution times are
in milliseconds

Figure 10. Second set of input groups. With the pair (query, engine) we denote that the specified query is
submitted to the specified engine, taking the first 100 documents. Groups from g43 to g10 are obtained
by uniting the clusters obtained for each single query.

Figure 12. Chart of the experiments of application of the group intersection operator reported in Figure
11. Execution times are in milliseconds

208

A Flexible Language for Exploring Clustered Search Results

containing only a subset of the items in the original clusters. So, we can observe that the efforts needed
to manage the generated clusters is not very significant, since the steps Group Labeling, Group Sorting
and Writing XML File are applied only to the actual generated clusters containing few ranked items. To
conclude, most of the effort of the algorithm implementing the group intersection operator is due to the
need of checking each cluster in the first operand with each cluster in the second, to determine if they
intersect, and this heavily affects the execution times.

We repeated the same experiments by applying the join operator to the same sets of source groups.
Recall from the definition of the operators that the group join operator produces the same number of
clusters than the group intersection; however, the resulting clusters are larger, since they contain all the
documents in both the intersecting source clusters. Consequently, this set of experiments is useful to
understand the impact of data structures necessary to manage the resulting clusters before writing the
final XML document to disk.

The reader can easily see from Figure 13, Figure 14, Figure 15, Figure 16 that the behavior of the
operator is still quadratic. However, the time needed to manage the data structure is significant: in the
case denoted 500x500, the join algorithm needed 192167msec, while the intersection algorithm needed
38527msec; the consequence is that the main algorithm dominates the execution times, and in charts

Figure 13. First experiments of application of the join operator. Execution times are in milliseconds

Figure 14. Chart of the experiments of application of the join operator reported in Figure 13. Execution
times are in milliseconds

209

A Flexible Language for Exploring Clustered Search Results

reported in Figure 14 and Figure 16 the dashed line corresponding to the main algorithm is substantially
overlapped with the thick line corresponding to the overall process.

CONCLUsION

In this chapter, we addressed the problem of defining a language for manipulating huge amounts of re-
sults provided by search services over the Internet. The work is motivated by the need to better exploit,
in an integrated way, the results obtained by different search services like, e.g., web search engines, that
generally produced long ranked lists. The large number of documents retrieved by such services con-
stitute a serious obstacle for users, that are not able to extract a semantic summarization of the results.
The language can be useful also to explore the results obtained by submitting distinct queries to the
same search service, to filter out redundant documents, to reveal implicit correlations, and to overview
the main retrieved contents.

The proposed language provides operators to manipulate, in a complex and controlled way, groups
of ranked clusters of retrieved documents.

Further, each operator can be specified with distinct ranking methods to favor, in top positions,
clusters having distinct properties. The richness of the proposed language allows users to integrate the

Figure 15.Second experiments of application of the join operator. Execution times are in milliseconds

Figure 16. Chart of the experiments of application of the join operator reported in Figure 15. Execution
times are in milliseconds

210

A Flexible Language for Exploring Clustered Search Results

results of different search services in several ways, then revealing more general or more specific topics
than those carried by the single documents.

We have developed a software prototype, named Matrioshka, that supports the proposed language.
Based on a Service Oriented Architecture, it provides a web service interface, that can be exploited to
develop multi-channel applications (http://matrioshka.unibg.it) (Bordogna, Campi, Psaila, & Ronchi,
2008b)

The Matrioshka system is based on a client-server architecture. It is constituted by three main parts:
the Client Side Components handle the user interaction; the Server Side Component interfaces the
search engines and executes the clustering operations; finally, the Communication Layer dispatches the
messages between client and server.

Along with the core capabilities of Matrioshka, we have also developed a comprehensive infrastruc-
ture with the twofold purpose of supporting the user in editing queries, executing them and analyzing
the results, so that the process can be fully tracked.

Consequently, Matrioshka is an interaction framework, in which the client provides a query editor
for the user, the server either executes the queries and builds the groups containing clusters, or executes
the operations on previously generated groups.

ACKNOWLEDgMENT

This work was supported in part by the EU, within the 7FP project, under grant agreement 216483
“PrimeLife”.

REFERENCEs

Agichtein, E., Brill, E., & Dumais, S. (2006). Improving Web search ranking by incorporating user
behavior information. In Proceeding of the 29th Annual International ACM Conference on Research
and Development in Information Retrieval (SIGIR ‘06), Seattle, Washington, USA (pp. 19-26). New
York: ACM.

Bookstein, A. (1980). Fuzzy requests: An approach to weighted Boolean searches. Journal of the
American Society for Information Science American Society for Information Science, 31(4), 240–247.
doi:10.1002/asi.4630310403

Bordogna, G., Campi, A., Psaila, G., & Ronchi, S. (2008a). A language for manipulating groups of clus-
tered Web documents results. In Proceeding of the 17th ACM Conference on Information and Knowledge
Mining (CIKM08), Napa Valley, CA, USA,(pp. 23-32).

Bordogna, G., Campi, A., Psaila, G., & Ronchi, S. (2008b). An interaction framework for mobile Web
search. In Proceedings of the sixth International Conference on Advances in Mobile Computing and
Multimedia (MoMM08), Lintz, Austria (pp. 183-191).

Bosc, P., & Prade, H. (1997). An introduction to the fuzzy set and possibility theory-based treatment
of flexible queries and uncertain or imprecise databases. In A. Motro & P. Smets (Eds.), Uncertainty
management in information systems (pp. 285-324). Amsterdam: Kluwer Academic Publishers.

211

A Flexible Language for Exploring Clustered Search Results

Buell, D., & Kraft, D. H. (1981). A model for a weighted retrieval system. Journal of the American
Society for Information Science American Society for Information Science, 32, 211–216. doi:10.1002/
asi.4630320307

Card, S. K., Mackinlay, J. D., & Shneiderman, B. (2000). Readings in information visualization: Using
vision to think. San Francisco, CA: Morgan Kaufmann Publishers Inc.

Chen, H., & Dumais, S. (2009). Bringing order to the Web: Automatically categorizing search results.
In Proceedings of the SIGCHI Conference on Human factors in computing systems (pp. 145-152).

Chung, W., Chen, H., & Nunamaker, J. J. (2003). Business intelligence explorer: A knowledge map
framework for discovering business intelligence on the Web. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences (pp. 10-18).

Coates, T., Connolly, D., Dack, D., Daigle, L., Denenberg, R., Durst, M., et al. (2001). URIs, URLs, and
URNs: Clarifications and recommendations, 1.0 (Tech. Rep. WWW Consortium, URI Planning Interest
Group). Retrieved from http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/

Dubois, D., & Prade, H. (1982). A unifying view of comparison indices a fuzzy set-theoretic framework.
In R. R. Yager (Ed.), Recent development in fuzzy set and possibility theory (pp. 3-13). New York: Per-
gamon Press.

Dubois, D., & Prade, H. (1988). Possibility theory: An approach to computerized processing of uncer-
tainty. New York: Plenum Press.

Fred, A. L. N., & Jain, A. K. (2003). Robust data clustering. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR ’03) (pp. 2-128).

Galindo, J. (Ed.). (2008). Handbook of research on fuzzy information processing in databases. Hershey,
PA: Information Science Reference.

Hearst, M. A., & Pederson, J. O. (1996). Re-examining the cluster hypothesis: Scatter/gather on retrieval
results. In Proceedings of the 19th Annual International ACM SIGIR Conference (pp. 76-84).

Kampanya, N., Shen, R., Kim, S., North, C., & Fox, E. A. (2004). Citiviz: A visual user interface to the
citidel system. In Research and advanced technology for digital libraries (LNCS 3232, pp. 122-133).
Berlin, Germany: Springer.

Lalmas, M., & Murdock, V. (2008). Workshop on aggregated search. In Proceedings of theACM SIGIR
2008. Retrieved from http://www.yr-bcn.es/sigir08

Leouski, A. V., & Croft, W. B. (1996). An evaluation of techniques for clustering search results (Tech.
Rep. IR-76). Department of Computer Science, University of Massachusetts at Amherst.

Li, H., Liu, T. Y., & Zhai, C. X. (2008). Workshop on learning to rank for information retrieval. In
Proceedings of the Annual International ACM Conference on Research and Development in Informa-
tion Retrieval (SIGIR2008). Retrieved from http://research.microsoft.com/en-us/um/beijing/events/
LR4IR-2008/

212

A Flexible Language for Exploring Clustered Search Results

Osinski, S. (2003). An algorithm for clustering of Web search results. Unpublished master’s thesis,
Department of Computing Science, Poznan’ University of Technology. Retrieved from http://project.
carrot2.org/publications/osinski-2003-lingo.pdf

Pagani, M., Bordogna, G., & Valle, M. (2007). G. Mining multidimensional data using clustering tech-
niques. In . Proceedings of the DEXA Workshop, FLEXDBIST-07, 382–386.

Punch, W., Jain, A. K., & Topchy, A. (2005). Clustering ensembles: Models of consensus and weak
partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1866–1881.
doi:10.1109/TPAMI.2005.237

Sebrechts, M. M., Cugini, J. V., Laskowski, S. J., Vasilakis, J., & Miller, M. S. (1999). Visualization
of search results: A comparative evaluation of text, 2D, and 3D interfaces. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in information retrieval
(pp. 3-10).

Staley, E., & Twidale, M. (2000). Graphical interfaces to support information search (Tech. Rep.).
Graduate School of Library and Information Science, University of Illinois. Retrieved from http://people.
lis.uiuc.edu/~twidale/irinterfaces/bib-main.html

Strehl, A., & Ghosh, J. (2002). Cluster ensembles – a knowledge reuse framework for combining parti-
tionings. Journal of Machine Learning Research, 3, 583–617. doi:10.1162/153244303321897735

White, R. W., Richardson, M., Bilenko, M., & Heath, A. P. (2008). Enhancing Web search by promoting
multiple search engine use. In Proceedings of the 31st Annual international ACM Conference on Research
and Development in information Retrieval (SIGIR ‘08), Singapore (pp. 43-50). New York: ACM.

Yager, R. R. (1987). A note on weighted queries in information retrieval systems. Journal of the American
Society for Information Science American Society for Information Science, 38(1), 23–24. doi:10.1002/
(SICI)1097-4571(198701)38:1<23::AID-ASI4>3.0.CO;2-3

Zadeh, L. (1965). Fuzzy sets. Information and control, 8, 338-353.

Zamir, O., & Etzioni, O. (1999). Grouper: A dynamic clustering interface to Web search results. In
Proceedings of the 8th International World Wide Web Conference (pp. 1361-1374).

Section 3
Summarization

214

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

Linguistic Data Summarization:
A High Scalability through the

Use of Natural Language?

Janusz Kacprzyk
Polish Academy of Sciences, Poland

Sławomir Zadrożny
Polish Academy of Sciences, Poland

INTRODUCTION

The purpose of this paper is to present a novel, different argument for the usefulness and power of lin-
guistic data(base) summarization the essence of which was proposed by Yager (1982), and an extended,
implementable version was shown by Kacprzyk & Yager (2001) and Kacprzyk, Yager & Zadrożny
(2000).

We consider our further developments of the basic solutions presented in those papers which are
relevant for our discussion, notably:

AbsTRACT

The authors discuss aspects related to the scalability of data mining tools meant in a different way
than whether a data mining tool retains its intended functionality as the problem size increases. They
introduce a new concept of a cognitive (perceptual) scalability meant as whether as the problem size
increases the method remains fully functional in the sense of being able to provide intuitively appealing
and comprehensible results to the human user. The authors argue that the use of natural language in the
linguistic data summaries provides a high cognitive (perceptional) scalability because natural language
is the only fully natural means of human communication and provides a common language for individu-
als and groups of different backgrounds, skills, knowledge. They show that the use of Zadeh’s protoform
as general representations of linguistic data summaries, proposed by Kacprzyk and Zadrożny (2002;
2005a; 2005b), amplify this advantage leading to an ultimate cognitive (perceptual) scalability.

DOI: 10.4018/978-1-60566-858-1.ch008

215

Linguistic Data Summarization

a close relation between the • linguistic data summarization and fuzzy database querying, to be more
specific using fuzzy queries with linguistic quantifiers proposed by us (Kacprzyk & Ziółkowski,
1986) and in a much more extended form in (Kacprzyk, Zadrożny & Ziółkowski, 1989), and even
more so in FQUERY for Access (Kacprzyk & Zadrożny, 2001b),
our general approach to • linguistic data summarization viewed as an interactive process in which
fuzzy querying makes possible the articulation of the user’s intentions, interests and information
needs proposed by Kacprzyk & Zadrożny (1998; 2001a), and
our formulation of • linguistic data summarization in terms not only of the calculus of linguisti-
cally quantified proposition but in terms of Zadeh’s protoforms (cf. (Kacprzyk & Zadrożny, 2002;
2005a; 2005b)) which can provide an extraordinary transparency, versatility and generality.

Our purpose in this paper will not be, however, a traditional exposition of the essence of those ideas
which have been presented in our papers as referred to above, and which have proved to be very effec-
tive and efficient. We will discuss these tools and techniques from the perspective of this volume, that
is, from the perspective of scalability of data mining (knowledge discovery) tools and techniques. In
the case of linguistic data(base) summarization this will have a couple of aspects exemplified by both
more technical computation time and memory related aspects of the scalability of databases and que-
rying, and more conceptual aspects of what might be called a cognitive or perceptional scalability of
tools from the point of view of human facilities and capabilities. Ultimately, we will argue that linguistic
data summarization may be viewed from some points of view, notably with respect to the cognitive
and perceptual scalability, as an ultimately scalable (in the cognitive or perceptual sense) tool for data
mining and knowledge discovery.

bACKgROUND

The first question we should ask is: What is actually meant by scalability, in particular in the context
of broadly perceived information technology? Usually, scalability is meant in two basic ways. First, it
is understood as the ability of a computer application or system (i.e. hardware and/or software) to con-
tinue to function when the size of the problem in question (e.g. the size of a computer network, number
of clients, size of data sets, etc.) changes, usually grows up. In our context of a broadly perceived data
analysis, in this paper the scalability will be meant in the upward sense. Second, in a modern view,
scalability is meant as the ability of a computer application and/or system not only to function as the
size of the problem and/or context increases (or decreases but this case will not be considered) but to
even take advantage of that increase in size and volume, for instance to provide more adequate results
because of a larger basic data set, or an ability to more adequately grasp the very essence of a larger data
set. Needless to say that scalability is a desirable property of any application or system, and virtually all
nontrivial applications and systems are designed and implemented with scalability in mind.

As one can expect, though scalability is easily intuitively comprehensible, it is difficult to define,
and may mean different things to different people, in particular when they come from different areas.
What is relevant to us, a scalable online transaction processing system or database management system
is the one that can be upgraded to process more transactions by adding new processors, devices and
storage, and which can be upgraded easily and transparently. This is one of the reasons that we concern
the scalability in the sense of what happens when the size and volume of data increase.

216

Linguistic Data Summarization

Scalability is a multidimensional concept. For instance, people often confuse performance and scal-
ability. As pointed out by Haines (2006): “The terms “performance” and “scalability” are commonly
used interchangeably but the two are distinct: performance measures the speed with which a single
request can be executed, while scalability measures the ability of a request to maintain its performance
under increasing size and volume. For example, the performance of a request may be said to generate
a valid response within three seconds, but the scalability of the request concerns the ability to maintain
that three-second response time as the user load increases” (p. 224). This distinction has a great impact
for our discussion, and will be dealt with later.

Viewed simplistically, scalability is about “doing more of something” like responding to more user
requests, executing more work or handling more data. Traditionally, this is done by either increasing
the sheer computing power and/or data handling power exemplified by using parallel computation, grid
computing, etc.

In this context a popular belief is that databases do not scale up well, i.e. that it is difficult to keep
growing the size of a database, or too hard to handle the load of an increasing number of concurrent users.
In other words, it is often believed that systems that are database centric are fundamentally incapable of
efficiently coping with the (growing) demands of high performance distributed computing. This may be
true to some extent even in view of a growing storage capacity at a diminishing cost, parallelization of
processing, new software developments, etc. One can easily reach limits of the same inherent nature as
those characteristic for even the best, most advances and densely packed traditional silicon integrated
circuits: sooner or later, a new type of processors (biological?) will be needed.

This example of an unavoidable necessity of a technological change in processors can be rephrased
in the context of the scaling up of database centric systems and applications which is what our work is
concerned with.

Now, let us present the basic context we will be operating in, and issues related to scalability. We
are concerned with data summarization which is one of basic capabilities of any “intelligent” system,
and since for the human being the only fully natural means of communication is natural language, a
linguistic summarization would be very desirable, exemplified by, for a data set on employees, a state-
ment (linguistic summary) “almost all young and well qualified employees are well paid”.

Unfortunately, data summarization is still in general unsolved a problem. Very many techniques are
available but they are not “intelligent enough”, and not human-consistent, partly due to a limited use of
natural language (cf. Lesh & Mitzenmacher, 2004).

We deal with a conceptually simple approach to the linguistic database summaries introduced by Yager
(1982; 1991; 1996), and then considerably advanced by Kacprzyk (2000), Kacprzyk & Yager (2001),
and Kacprzyk, Yager & Zadrożny (2000; 2001), Zadrożny and Kacprzyk (1999), and implemented in
Kacprzyk and Zadrożny (2000a-d; 2001a-e; 2002; 2003; 2005b). In this approach linguistic data sum-
maries are derived as linguistically quantified propositions as, e.g., “most of the employees are young
and well paid”, with a degree of truth (validity), possibly extended with other measures.

For an effective and efficient derivation of linguistic summaries, we employ Kacprzyk and Zadrożny’s
(1998; 2000a-d; 2001a) interactive approach to linguistic summaries in which the determination of a
class of summaries of interest is done via Kacprzyk and Zadrożny’s (1994; 1995a-b; 2001b) FQUERY
for Access, a fuzzy querying add-in to Microsoft Access, extended to the querying over the Internet in
Kacprzyk and Zadrożny (2000b). Since a fully automatic generation of linguistic summaries is not feasible
at present, mainly because it is difficult if not impossible at all to automatically reveal the user’s real

217

Linguistic Data Summarization

intentions, interests and information needs, an interaction with the user is assumed for the determination
of a class of summaries of interest, and this is done via the above fuzzy querying add-in.

Extending Kacprzyk & Zadrożny (2002; 2005a; 2005b), we show that by relating various types
of linguistic summaries to fuzzy queries, with various known and sought elements, we can arrive at a
hierarchy of prototypical forms, or – in Zadeh’s (2002) terminology – protoforms, of linguistic data
summaries. This seems to be a very powerful conceptual idea because it provides a simple structural
expression, with a comprehensible semantics, of even the most complicated linguistic summaries.

Notice that, first, through the use of natural language to present (verbalize) the very essence and
contents of data with respect to an aspect in question we certainly attain a high, maybe even the best
scalability. First, natural language can express that information in a fully comprehensible way no mat-
ter how large the data set is. Second, such simple linguistically quantified propositions with which
data summaries are equated may semantically be adequate as representations of data sets of any size as
they represent some highly abstracted linguistic statements, of a simple syntax and of what might be
described as a “commonsense based” semantics. Third, protoforms of linguistic summaries provide a
uniform, easily comprehensible form of linguistic summaries for any size of data sets, and virtually all
intentions and information needs of the user. Finally, natural language summaries are comprehensible
to individuals, small and larger groups, people from different backgrounds, people coming from various
geographic locations, sexes, age groups, etc. Clearly, an obvious condition of an agreed upon semantics
of language used should be assumed but this is a prerequisite of any human communication, and any
implementation of a computer system to be employed by various human users.

A natural question is: what is the relation of the approach and view presented in this paper to the
problem of natural language generation (NLG), and in particular to the scalability of natural language
generation. We will not deal in more detail with these important issues. For an analysis of relations
between the linguistic data summaries used in this paper, and in all our previous works, and some ex-
tension of the template based approach to natural language generation we refer the reader to Kacprzyk
& Zadrożny (2009). Moreover, for very interesting remarks and their justification that natural language
generation itself can be viewed as a very effective and efficient, yet conceptually simple and natural,
and extremely human consistent way to improve the scalability of a dialog system, we refer the reader
to Reiter (1995).

For more detail on the issue of scalable natural language generation we refer the reader to, for in-
stance, Klarner (2004). Basically, in those works scalability of the natural language generation is also
considered in the context of dialog systems, i.e. slightly more general than in our context of just the
linguistic summarization of numerical sets of data, but concerns many aspects that are relevant for us
too. Basically, scalability for (spoken) dialog systems is meant as the ability to:

enlarge the domain content by modifying and extending its thematic orientation,•
refine the domain language to extend the linguistic coverage and expressibility of the domain,•
change the application domain which usually concerns the two above ones and can lead to com-•
pletely new requirements for a dialog system and its parts,
change the discourse domain which may alter the discourse type within the same domain.•

As it can clearly be seen there are strong, intrinsic relations between our concept of a linguistic data
summary, and its protoform based representation, and various concepts of scalability both in a general

218

Linguistic Data Summarization

context of systems and applications in information technology, database related technology, and – finally
– natural language generation (NLG).

It should be noted that our approach to scalability is different than that of most researchers who prac-
tically equate the property of scalability with whether, and how well, a given approach, tool, technique,
… can retain its functionality, effectiveness and efficiency when the size of the problem is growing,
i.e. in our case the size of a data set is growing. This is upward scalability. Sometimes very relevant is
downward scalability when the size of the problem is diminishing. A trivial example is that (many if not
all) statistical methods are not downward scalable in this sense because they do not work properly for
small problems (samples). The downward scalability is in general difficult to deal with.

Most works on the (upward) scalability concern the efficiency of search for a solution, here for a best
linguistic summary, which may be called a technical scalability. In this work we are basically concerned
with a much more general and foundational type of scalability, which might be called a conceptual or
perceptional scalability which has to do with a fundamental question: will our tools remain conceptually
or perceptually appropriate (human consistent) when our problem will greatly increase? We will advo-
cate that due to the use of natural language we obtain an ultimate conceptual or perceptional scalability
because a natural language statement will always be comprehensible to the human being(s) no matter
what size of the data set it is meant to represent. We will also give some remarks on technical scalability
by, first, reviewing some approaches that make possible the generation of linguistic summaries for large
data sets. We will not, however, mention our approach based on a relation between the generation of
linguistic data summaries and association rules which was originally proposed by Kacprzyk & Zadrożny
(2001d; 2003). This approach shows a different perspective and its role in the context of scalability, both
technical and cognitive (perceptual), of linguistic data summaries needs a different exposition which
will be presented in a next paper.

We will present now in more detail an implementation of our interactive approach to the derivation
of linguistic summaries, and while discussing particular elements we will indicate relations to those
scalability issues and aspects mentioned above. We hope that this will provide another justification to
the power of both linguistic data summaries in the simple sense assumed here, and the power of Zadeh’s
protoforms, and maybe even – more generally – the power of Zadeh’s computing with words and per-
ceptions paradigm (cf. Zadeh & Kacprzyk, 1999). All this will be presented in a novel, not yet explored
perspective of a conceptual (perceptional) scalability.

LINgUIsTIC DATA(bAsE) sUMMARIEs

Data summarization is one of basic capabilities now needed by any “intelligent” system that is meant to
operate in real life situations. Basically, due to the availability of relatively cheap and efficient hardware
and software tools, we usually face an abundance of data that is beyond human cognitive, perceptional
and comprehension skills.

Since for the human being the only fully natural means of communication is natural language, a
linguistic (say, by a sentence or a small number of sentences in a natural language) summarization of a
set of data would be very desirable and human consistent. For instance, having a data set on employees,
a statement (linguistic summary) like “almost all younger and well qualified employees are well paid”
would be useful and human consistent in many cases.

219

Linguistic Data Summarization

Unfortunately, data summarization is still in general unsolved a problem in spite of vast research ef-
forts. Very many techniques are available but they are not “intelligent enough”, and not human consistent,
partly due to a little use of natural language. This concerns, e.g., summarizing statistics, exemplified by
the average, median, minimum, maximum, α-percentile, etc. which – in spite of recent efforts to soften
them – are still far from being able to reflect a real human perception of their essence.

Linguistic Data summarization: The basic Case

In this paper we will use a simple yet effective and efficient approach to the linguistic summarization of
data sets (databases) proposed by Yager (1982), and then presented in a more advanced, and implement-
able form by Kacprzyk & Yager (2001), and Kacprzyk, Yager & Zadrożny (2000). This will provide a
point of departure for our further analysis of more complicated and realistic summaries.

In Yager’s (1982) approach, we have (we use here the author’s terminology):

• V is a quality (attribute) of interest, e.g. salary in a database of workers,
• Y y y

n
= { }1

, , is a set of objects (records) that manifest quality V, e.g. the set of workers; hence
V(yi) are values of quality V for object yi ∈ Y;

• D = {V(y1),…,V(yn)} is a set of data (the “database” on question)

A linguisticsummary of a data set consists of:

a summarizer • S (e.g. young),
a quantity in agreement • Q (e.g. most),
truth • T - e.g. 0.7,

as, e.g., “T(most of employees are young)=0.7”. The truth T may be meant in a more general sense, e.g.
as validity or, even more generally, as some quality or goodness of a linguistic summary.

Basically, given a set of data D, we can hypothetize any appropriate summarizer S and any quantity
in agreement Q, and the assumed measure of truth will indicate the truth of the statement that Q data
items satisfy the statement (summarizer) S.

Notice that we consider here some specific, basic form of a linguistic summary. We do not consider
other forms of summaries exemplified by “over 70% of employees are under 35 years of age” that may
be viewed to provide similar information as “most of employees are young” because the latter are clearly
outside of the class of linguistic summaries considered. Notice also that we discuss here the linguistic
summarization of sets of numeric values only. One can clearly imagine the linguistic summarization of
symbolic attributes but this relevant problem is outside of the scope of this paper. We do not consider
here the linguistic summarization of textual information.

We should also note that we do not consider in this paper some other approaches to the linguistic
summarization of databases (data sets) that are based on a different philosophy, exemplified by works by
Bosc et al. (2002), Dubois & Prade (1992), Raschia & Mouaddib (2002) or Rasmussen & Yager (1996;
1997a; 1997b; 1999). Basically, one can very briefly summarize the approaches employed as follows.
First, Bosc et al. (1992) use a gradual rule view of linguistic summaries, which has been proposed by
Dubois & Prade (1992) and use linguistic quantifiers as tools for the aggregation. Rasmussen & Yager

220

Linguistic Data Summarization

(1999) consider both the traditional Yager summaries and a type of Dubois & Prade’s gradual rules
showing that they can be obtained (or, more precisely, verified) via some extension of SQL. Raschia
& Mouaddib (2002) propose, and develop in a series of papers, a different approach based on hierar-
chical summaries, their tree representations, and relations to OLAP based techniques. Summaries are
here meant as aggregated (“generalized”) tuples which cover parts of the database at different levels of
abstraction.

We will not consider some other related techniques exemplified by the mining of fuzzy association
rules (cf. (Chen, Liu & Li, 2001; Chen & Wei, 2002; Chen, Wei & Kerre; 2000; Hu, Chen & Tzeng, 2002;
Lee & Lee-Kwang, 1997)), even in the context of linguistic summaries (cf. (Kacprzyk and Zadrożny,
2001d; 2003)). These approaches reflect a different perspective and, as already mentioned, will be a
subject of a next paper which will consider scalability of linguistic data summaries in a comprehensive
way, as a confluence of the technical and conceptual (perceptional) scalability.

First, we should consider the forms of the particular elements of a linguistic summary in our sense.
Since we use natural language throughout our analysis, as it is the only fully natural and human consis-
tent means of communication for the humans, we assume the summarizer S to be a linguistic expression
semantically represented by a fuzzy set like, for instance “young” would be represented as a fuzzy set
in the universe of discourse as, e.g., {1, 2, ..., 90}, i.e. containing possible values of the human age, and
“young” could be given as, e.g., a fuzzy set with a non-increasing membership function in that universe
such that, in a simple case of a piecewise linear membership function, the age up to 35 years is for sure
“young”, i.e. the grade of membership is equal to 1, the age over 50 years is for sure “not young”, i.e.
the grade of membership is equal to 0, and for the ages between 35 and 50 years the grades of member-
ship are between 1 and 0, the higher the age the lower its corresponding grade of membership. A simple
one-attribute-related summarizer exemplified by “young” can clearly be extended to some confluence
of attribute values as, e.g., “young and well paid”.

Clearly, in the context of linguistic summarization of data, the most interesting are more sophisticated,
human-consistent summarizers (concepts) as, e.g.:

productive workers,•
stimulating work environment,•
difficult orders, etc.•

whose definition involves complicated combinations of attributes, e.g.: a hierarchy (not all attributes
are of the same importance), the attribute values are ANDed and/or ORed, k out of n, most, etc. of them
should be accounted for, etc. The definition, processing and generation of such non-trivial summarizers
needs some specific tools and techniques to be discussed later.

The quantity in agreement, Q, is an indication of the extent to which the data satisfy the summary.
Once again, a precise indication is not human consistent, and a linguistic term represented by a fuzzy
set is employed. Basically, two types of such a linguistic quantity in agreement can be used:

absolute as, e.g., “about 5”, “more or less 100”, “several”, and•
relative as, e.g., “a few”, “more or less a half”, “most”, almost all”etc.•

Notice that the above linguistic expressions are the so-called fuzzy linguistic quantifiers (cf. Zadeh,
1983) that can be handled by fuzzy logic.

221

Linguistic Data Summarization

Similarly as for the fuzzy summarizer, the form (basically, the definition of a fuzzy linguistic quanti-
fier) of a fuzzy quantity in agreement is also subjective, and can be either predefined or elicited from
the user.

The calculation of the truth (or, more generally, validity) of the linguistic summary considered above
is equivalent to the calculation of the truth value (from the unit interval) of a linguistically quantified
statement (e.g., “most of the employees are young”). This can be calculated by using two most relevant
techniques: Zadeh’s (1983) calculus of linguistically quantified statements (cf. (Zadeh & Kacprzyk,
1999) or Yager’s (1988) OWA operators (cf. (Yager & Kacprzyk, 1997)). Since these calculi are well
known and are widely used in many works involving linguistic quantifier based aggregation of partial
scores, we will discuss them only briefly in what follows and will refer the reader to, for instance, Za-
deh’s (1983; 1985) or Yager’s (1988) source papers for more details.

A linguistically quantified proposition, exemplified by “most experts are convinced”, is written as
" ' "Qy Fs are where Q is a linguistic quantifier (e.g., most), Y y= { } is a set of objects (e.g., experts),
and F is a property (e.g., convinced). Importance B may be added yielding " ' "QBy s F are , e.g., “most
(Q) of the important (B) experts (y’s) are convinced (F)”. The problem is to find truth(are Qy s F') or
truth(are QBy s F') , respectively, knowing truth(y is F y Y), " Î which is done here using Zadeh’s
(1983; 1985) fuzzy logic based calculus of linguistically quantified propositions.

Property F and importance B are fuzzy sets in Y, and a (proportional, nondecreasing) linguistic
quantifier Q is assumed to be a fuzzy set in [0,1] as, e.g.

m
Q

x

x

x x

x

()

.

. . .

.

=
³

- < <
£

ì

í

ïïïï

î
ïïïï

1 0 8

2 0 6 0 3 0 8

0 0 3

for

for

for
 (1)

Then, due to Zadeh (1983)

truth are (') [()]Qy s F y
Q n F ii

n
=

=åm m1
1 (2)

truth are (') [(() ()) / ()]QBy s F y y y
Q B i F i B ii

n

i

n
= Ù

== ååm m m m
11 (3)

These formulas are clearly based on the non-fuzzy cardinalities of the respective fuzzy sets, the so-
called Σ-Counts (cf. Zadeh, 1983).

An OWA operator (Yager, 1988; Yager & Kacprzyk, 1997) of dimension p is a mapping F p: [,] [,]0 1 0 1®
if associated with F is a weighting vector W w w

p
T= [, ,]

1
 , w w w

i p
Î + + =[,], ,0 1 1

1
 and

F x x w b w b W B
p p p

T(, ,)
1 1 1
 = + = (4)

where bi is the i-th largest element among x x
p1

, , , B b b
p

= [, ,]
1
 .

The OWA weights may be found from the membership function of Q due to (cf. Yager, 1988):

222

Linguistic Data Summarization

w
i i p

i
Q Q

Q

=
- - =

=

ì
í
ïï

î
ïï

m m
m

() () , ,

()

1 1

0 0

for i

for i



 (5)

The OWA operators can model a wide array of aggregation operators (including linguistic quantifiers),
from w w

p1 1
0= = =- and w

p
= 1 which corresponds to “all”, to w

1
1= and w w

p2
0= = =

which corresponds to ” at least one”, through all intermediate situations, and that is why they are widely
employed.

An important case is when with the OWA operator importance qualification of the particular pieces of
data is associated. Suppose that with the data A a a

p
= [, ,]

1
 , a vector of importances V v v

p
= [, ,]

1
 ,

such that v
i
Î [,]0 1 is the importance of a i p

i
, , ,= 1 , v v

p1
1+ = , is associated. Then, for an

ordered weighted averaging operator with importance qualification based on a linguistic quantifier Q,
denoted OWAQ, Yager (1988) proposed that, first, some redefinition of the OWA’s weights wi

' s into
w

i
' s is performed, and (4) becomes

F x x w b w b W B
I p p p

T(, ,)
1 1 1
 = + = (6)

where

w
u

u

u

j Q

k
k

j

k
k

p Q

k
k

j

=

æ

è

ççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷

-=

=

=

-

å

å

å
m m1

1

1

1

uu
k

k

p

=
å

æ

è

ççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷
1 (7)

where u
k

 is the importance of bk, i.e. the k-largest element of A.

some Other validity Measures of Linguistic summaries

The basic validity criterion, i.e. the truth of a linguistically quantified statement given by (2) and (3),
is certainly the most natural and important but it does not grasp all aspects of a linguistic summary. We
will present here some other quality (validity) criteria, notably those proposed by Kacprzyk & Yager
(2001), and Kacprzyk, Yager & Zadrożny (2000).

First, Yager (1982) proposed a measure of informativeness whose essence is: suppose that we have
a data set, whose elements are from a space X. One can view the data set itself as its own most informa-
tive description, and any other summary implies a loss of information, and therefore informativeness
comes into play

The degree of truth is unfortunately not a good measure of informativeness (cf. Yager, 1982; 1991).
Let the summary be characterized by the triple (S, Q, T), and let a related summary be characterized by
the triple (Sc, Qc, T) such that Sc is the negation of S, i.e. μS

c(.) = 1 - μS(.), and similarly μQ
c(.) = 1 - μQ(.).

Then, Yager (1982; 1991) proposed the following measure of informativeness of a summary

223

Linguistic Data Summarization

I T SP Q SP S T Sp Q Sp Sc c= × × Ú - ×[() ()] [() () ()]1 (8)

where SP(Q) is the specificity of Q given as

SP Q
Q

d() = ò
1

0

1

card a
a

 (9)

where Qα is the α-cut of Q and card(.) is the “cardinality” (in fact, the area) of the respective set; and
similarly for Qc, S, Sc. Notice that in (8) we also have the specificity of S/Sc, SP(S/Sc), which is meant
similarly.

The rationale behind this measure of informativeness differs from that of, e.g., Chen, Liu & Li (2001).
Unfortunately, this measure of informativeness is by no means a definite solution. First, let us briefly
mention George and Srikanth’s (1996a; 1996b) proposal. Suppose that a linguistic summary of interest
involves more than 1 attribute (e.g., “age”, “salary” and “seniority” in the case of employees). Basically,
for the same set of data, two summaries are generated:

a constraint descriptor which is the most specific description (summary) that fits the largest num-•
ber of tuples in the relation (database) involving the attributes in question,
a constituent descriptor which is the description (summary) that fits the largest subset of tuples with •
the condition that each tuple attribute value takes on at least a threshold value of membership.

George and Srikanth (1996a; 1996b) use these two summaries to derive a fitness function (goodness of
a summary) that is later used for deriving a solution (a best summary) via a genetic algorithm they employ.
This fitness function represents a compromise between the most specific summary (corresponding to the
constraint descriptor) and the most general summary (corresponding to the constituent descriptor).

Then, some additional measures have been developed by Kacprzyk & Yager (2001) and Kacprzyk,
Yager & Zadrożny (2000). Let us briefly repeat some basic notation. We have a data set (database) D
that concerns some objects (e.g. employees) Y = {y1, ..., yn} described by some attribute V (e.g. age)
taking on values in a set X = {x1, x2, ...} exemplified by {20, 21, ..., 100} or even {very young, young,
..., old, very old} though this case will not be considered here. Let di=V(yi) denote the value of attribute
V for object yi. Therefore, the data set to be summarized is given as a table

D = [d1,...,dn]=[V(y1), V(y2), ..., V(yn)] (10)

In a more realistic case the data set is described by more than one attribute. Let V={V1, V2,..., Vm} be
a set of such attributes taking values in Xi, i = 1, ..., m; Vj(yi) denotes the value of attribute Vj for object
yi, and attribute Vj takes on its values from a set Xj.

The data set to be summarized is therefore:

D = {[V1(y1), V2(y1),..., Vm(y1)], [V1(y2), V2(y2),..., Vm(y2)], ..., [V1(yn), V2(yn),..., Vm(yn)]} (11)

In case of multiple (m) attributes the description (summarizer) S is assumed as a family of fuzzy sets
S={S1, S2,,... Sm} where Si ∈ S is a fuzzy set in Xi, i=1,...,m. Then, μS(yi), i = 1,2,…, n, may be defined

224

Linguistic Data Summarization

as:

μS(yi) = minj∈{1,2,...,m}[μSj (Vj(yi))] (12)

and

r
y

n

S i
i

n

= =
å m ()

1

 (13)

and T=μQ(r).
So, having S, we can calculate the truth value T of a summary for any quantity in agreement. To find

a best (optimal) summary, we should calculate T for each possible summarizer, and for each record in
the database in question which may be computationally prohibitive for virtually all non-trivial databases
and number of attributes. Therefore, from the point of view of scalability, this suggests that the process
of finding an optimal linguistic summary is not technically scalable.

A natural line of reasoning would be to either limit the number of attributes of interest or to limit
the class of possible summaries by setting a more specific description (e.g. very young, young and well
paid, etc. employees). This will limit the search space, and may help attain an acceptable technical scal-
ability.

We will deal now with the second option. The user can limit the scope of a linguistic summary to, for
instance, those for which the “age” takes on the value “young” only, i.e. to fix the summarizer related to
that attribute. This would correspond to the searching of the database using the query wg equated with the
fuzzy set in Xg corresponding to “young” related to attribute Vg (i.e. age), i.e. characterized by m

wg
(.) .

In such a case, μS(yi) given by (12) becomes

μS(yi) = minj∈{1,2,...,m}[μSj (Vj(yi)) Ù m
wg

 (Vg(yi)], i=1, ..., n (14)

where “Ù” is the minimum (or, more generally, a t-norm), and then

r
y

V y

S i
i

n

w g i
i

n

g

= =

=

å

å

m

m

()

(())

1

1 (15)

and T=μQ(r). This is clearly related to how Zadeh’s calculus of linguistically quantified propositions
works.

Now, we will briefly mention the 5 quality measures of linguistic database summaries, in particular four
additional ones as introduced in Kacprzyk & Yager (2001), and Kacprzyk, Yager & Zadrożny (2000):

a truth value [which basically corresponds to the degree of truth of a linguistically quantified •
proposition representing the summary given by, say, (2) or (3)],

225

Linguistic Data Summarization

a degree of imprecision,•
a degree of covering,•
a degree of appropriateness,•
a length of a summary.•

For notational simplicity later on, let us rewrite (12) and (1) as:

μS(di) = minj∈{1,2,...,m}[(μSj (Vj(yi))], i=1, ..., n (16)

and

r
V y V y

V y

S g i w g i
i

n

w g i
i

n

g

g

=
Ù

=

=

å

å

[(()) (())]

(())

m m

m

1

1 (17)

where, clearly, (16) and (17) are equivalent to (12) and (15) though rewritten in the form more suitable
for our present discussion.

The degree of truth, T1, is the basic validity criterion introduced in the source Yager’s (1982) work
and commonly employed. It is clearly equal to

T1 = μQ(r) (18)

which results directly from Zadeh’s (1983; 1985) calculus of linguistically quantified propositions.
The degree of imprecision is an obvious and important validity criterion. Basically, a very imprecise

linguistic summary (e.g. on almost all winter days the temperature is rather cold) has a very high degree
of truth yet it is not useful.

Suppose that description (summarizer) S is given as a family of fuzzy sets S={S1, S2, ... Sm}. For a
fuzzy set Sj, j=1, ..., m, we can define its degree of fuzziness as, e.g.:

in(Sj)=
card { : ()>0 }

card

x X x

X

j S

j

j
Î ¼

 (19)

where card denotes the cardinality of the corresponding (nonfuzzy) set and the domains Xj are all as-
sumed to be finite (what is reasonable from the practical point of view). That is, the “flatter” the fuzzy
set Sj the higher the value of in(Sj).

The degree of imprecision, T2, of the summary – or, in fact, of S – is then defined as:

T2 =1-
j m

jm S
=
Õ
1,...,

in() (20)

226

Linguistic Data Summarization

Notice that the degree of imprecision T2 depends on the form of the summary only and not on the
database, that is its calculation does not require the searching of the database (all its records) which is
very important.

The degree of covering, T3, is defined as

T3=
t

h

i
i

n

i
i

n
=

=

å

å
1

1

 (21)

where:

t
y V y

i

S i w g ig=
>ì

í
ïïï

î
ïïï

1 0if and (())>0

0 otherwise

m m()

h
V y

i

w g ig=
ì
í
ïïï

î
ïïï

1 if (())>0

0 otherwise

m

and the denominator of (21) is assumed to be different from 0 - otherwise T3 is defined to be equal 0.
The degree of covering says how many objects in the data set corresponding to the query wg are

“covered” by the particular summary. Its interpretation is simple as, e.g., if it is equal to 0.15, then this
means that 15% of the objects are consistent with the summary in question. The value of this degree
depends clearly on the contents of the database.

The degree of appropriateness is probably the most relevant measure. Suppose that the summary
containing the description (fuzzy sets) S = (S1,S2,..., Sm) is partitioned into m partial summaries each of
which encompasses the particular attributes V1,V2,..., Vm, such that each partial summary corresponds to
one fuzzy set only, then if we denote:

Sj(yi)= μSj (Vj(yi)) (23)

then

r
h

nj

i
i

n

= =
å

1 , j = 1, ..., n

where, h
S y

i
j i=

ì
í
ïï

î
ïï

1 if ()>0

0 otherwise
, and the degree of appropriateness, T4, is defined as:

T4=abs()
,...,j m

j
r T

=
Õ -
1

3 (24)

227

Linguistic Data Summarization

The degree of appropriateness means that, for a database concerning the employees, if – for instance
– 50% of them are less than 25 years old and 50% are highly qualified, then we may expect that 25% of
the employees would be less than 25 years old and highly qualified; this would correspond to a typical,
fully expected situation. However, if the degree of appropriateness is, e.g., 0.39 (i.e. 39% are less than
25 years old and highly qualified), then the summary found reflects an interesting, not fully expected
relation in our data. This degree describes therefore how characteristic for the particular database the
summary found is. T4 is very important because a trivial summary like, for instance, “100% of employees
is of some age” has truth equal 1 but its degree of appropriateness is clearly equal 0.

The length of a summary is relevant because a long summary is not easily comprehensible by the
human user. This length, T5, may be defined in various ways, and the below form has proven to be use-
ful:

T5=2 (0.5cardS) (25)

Now, the (total) degree of validity, T, of a particular linguistic summary is defined as the weighted
average of the above 5 degrees of validity, i.e.:

T= T(T1, T2, T3, T4, T5; w1, w2, w3, w4, w5) =∑i=1,2, ..., 5wiTi (26)

and the problem is to find an optimal summary, S* ∈ {S}, such that

S* = arg maxS ∑i=1,2,...,5wiT (27)

where: w1,...,w5 are weights assigned to the particular degrees of validity, with values from the unit
interval, the higher, the more important such that ∑i=1,2,...,5wi =1.

The definition of weights, w1,...,w5, is a problem in itself, and will not be dealt with in more detail.
The weights can be predefined or elicited from the user.

As we have already mentioned, the linguistic summarization meant in terms of (27) is clearly not
technically scalable, even if some more sophisticated search techniques are used which limit the size of
the problem as exemplified by George & Srikanth’s (1996a; 1996b) use of a genetic algorithm. How-
ever, let us notice that the situation is completely different when cognitive (perceptional) scalability is
accounted for. It is clear that the very concept of linguistic data summary as presented above is what
might be said totally cognitively (perceptionally) scalable because it is comprehensible to a human be-
ing, either an individual or a group of individuals, no matter what size of the data set is, and also to a
large extent independently of the background, sex, age, etc. of the individuals. This is a direct result of,
on the one hand, the use of natural language, which is the only fully natural means of articulation and
communication of a human being, and – on the other hand – of a simple and intuitively appealing form
of a linguistic summary which basically says what most of the data exhibit, i.e. what usually happens
(holds). This is in fact what is looked for and found by all data analysis tools and techniques.

PRACTICAL DETERMINATION OF LINgUIsTIC DATA sUMMARIEs

One can clearly notice that a fully automatic determination of a best linguistic summary, i.e. the solu-
tion of (26) may be infeasible in practice due to a high number of possible summaries. In (Kacprzyk &

228

Linguistic Data Summarization

Zadrożny, 1998; 2001a) an interactive approach was proposed with a user assistance in the definition of
summarizers, by the indication of attributes and their combinations of interest. This proceeds via a user
interface of a fuzzy querying add-on. Basically, the queries (referring to summarizers) allowed are:

• simple as, e.g., “salary is high”
• compound as, e.g., “salary is low AND age is old”
• compound (with quantifier), as, e.g., “most of {salary is high, age is young, ..., training is well

above average}.

We will also use ”natural” linguistic terms, i.e. (7±2!) exemplified by: very low, low, medium, high,
very high, and also “comprehensible” fuzzy linguistic quantifiers as: most, almost all, ..., etc.

In (Kacprzyk &Zadrożny, 1994; 1995a; 1995b; 2001b), a conventional DBMS is used, and a fuzzy
querying tool is developed to allow for queries with fuzzy (linguistic) elements of the “simple”, “com-
pound” and “compound with quantifier” types. This fuzzy querying system (add in) has been developed
for Microsoft Access® but its concept is clearly applicable to any DBMS. The main problems to be
solved are here: (1) how to extend the syntax and semantics of the query, and (2) how to provide an easy
way of eliciting and manipulating those terms by the user.

We will now briefly describe the very essence of FQUERY for Access, emphasizing those aspects
which are relevant for the purposes of this paper. One should notice that we will use here terms, exem-
plified by “attributes”, “fields”, etc. as used in our source papers on FQUERY for Access, which should
help the interested readers follow more specialized discussions concerning FUERY for Access given in
these papers. These insignificant terminological differences should not lead to any confusion or misun-
derstanding. It should be noted that a slightly different approach to the use of linguistic quantifiers in
fuzzy queries has been proposed – cf. Bosc, Lietard & Pivert (1995) – but it will not be used here.

FQUERY for Access is embedded in the native Access’s environment as an add-in. All the code and
data is put into a database file, a library, installed by the user. Definitions of attributes, fuzzy values
etc. are maintained in a dictionary (a set of regular tables), and a mechanism for putting them into the
Query-By-Example (QBE) sheet (grid) is provided. Linguistic terms are represented within a query as
parameters, and a query transformation is performed to provide for their proper interpretation during
the query execution.

FQUERY for Access is an add-in that makes it possible to use fuzzy terms in queries. Briefly speak-
ing, the following types of fuzzy terms are available:

fuzzy values, exemplified by • low in “profitability is low”,
fuzzy relations, exemplified by • much greater than in “income is much greater than spending”,
and
linguistic quantifiers, exemplified by • most in “most conditions have to be met”.

The elements of the first two types are elementary building blocks of fuzzy queries in FQUERY for
Access. They are meaningful in the context of numerical fields only. There are also other fuzzy constructs
allowed which may be used with scalar fields.

If a field is to be used in a query in connection with a fuzzy value, it has to be defined as an attribute.
The definition of an attribute consists of two numbers: the attribute’s values lower (LL) and upper (UL)
limit. They set the interval which the field’s values are assumed to belong to, according to the user. This

229

Linguistic Data Summarization

interval depends on the meaning of the given field. For example, for age (of a person), the reasonable
interval would be, e.g., [18,65], in a particular context, i.e. for a specific group. Such a concept of an
attribute makes it possible to universally define fuzzy values.

Fuzzy values are defined as fuzzy sets on [-10, +10]. Then, the matching degree md(⋅,⋅) of a simple
condition referring to attribute AT and fuzzy value FV against a record R is calculated by:

md((()AT=FV,R)= R(AT)
FV

m t

where: R(AT) is the value of attribute AT in record R, m
FV

 is the membership function of fuzzy value
FV, τ: [LLAT,ULAT]→[-10,10] is the mapping from the interval defining AT onto [-10,10] so that we may
use the same fuzzy values for different fields. A meaningful interpretation is secured by τ which makes
it possible to treat all fields domains as ranging over the unified interval [-10,10]. For simplicity, it is
assumed that the membership functions of fuzzy values are trapezoidal.

Linguistic quantifiers provide for a flexible aggregation of simple conditions. In FQUERY for Access
the fuzzy linguistic quantifiers are defined in Zadeh’s (1983; 1985) sense, as fuzzy set on [0, 10] interval
instead of the original [0, 1] – cf. most given as (1). They may be interpreted either using original Zadeh’s
(1983) approach or via the OWA operators (cf. (Yager, 1988) or (Yager & Kacprzyk, 1997)); Zadeh’s
interpretation will be considered in what follows. The membership functions of fuzzy linguistic quanti-
fiers are assumed piece-wise linear, hence two numbers from [0,10] are needed. Again, a mapping from
[0, N], where N is the number of conditions aggregated, to [0,10] is employed to calculate the matching
degree of a query. More precisely, the matching degree, md(⋅,⋅), for the query “Q of N conditions are
satisfied” for record R is equal to

md Q md
i

(, [(())]condition ,R)= condition ,R
i Q i

m t å

and we can also assign different importance degrees for particular conditions. Then, the aggregation
formula is equivalent to (3). The importance is identified with a fuzzy set on [0,1], and then treated as
property B in (3).

Before a fuzzy term may be used in a query, it has to be defined using the toolbar provided by FQUERY
for Access and stored internally. This feature, i.e. maintenance of dictionaries of fuzzy terms defined by
users, strongly supports our approach to data summarization discussed in this paper. In fact, the package
comes with a set of predefined fuzzy terms but the user may enrich the dictionary too.

When the user initiates the execution of a query it is automatically transformed by appropriate
FQUERY for Access’s routines and then run as a native query of Access. The transformation consists
primarily in the replacement of parameters referring to fuzzy terms by calls to functions implemented by
the package which secure a proper interpretation of these fuzzy terms. Then, the query is run by Access
as usually. Details can be found in Kacprzyk & Zadrożny (1994 – 1995b).

It is obvious that fuzzy queries directly correspond to summarizers in linguistic summaries. Thus, the
derivation of a linguistic summary may proceed in an interactive (user assisted) way as follows:

the user formulates a set of linguistic summaries of interest (relevance) using the • fuzzy querying
add in,

230

Linguistic Data Summarization

the system retrieves records from the database and calculates the validity of each summary ad-•
opted, and
a best (most appropriate) linguistic summary is chosen.•

The use of fuzzy querying is very relevant because we can restate the summarization in the fuzzy
querying context. First, (2) may be interpreted as:

“Most records match query S” (28)

where S replaces F in (2) since we refer here directly to the concept of a summarizer (of course, S is in
fact the whole condition, e.g., price = high, while F is just the fuzzy value, i.e. high in this condition;
this should not lead to confusion).

Similarly, (3) may be interpreted as:

“Most records meeting conditions B match query S” (29)

Thus, (29) says something only about a subset of records specified by (28). In database terminology,
B corresponds to a filter and (29) claims that most records passing through B match query S. Moreover,
since the filter may be fuzzy, a record may pass through it to a degree from [0,1].

And, again, one can argue for a very high conceptual (perceptional) scalability of linguistic data
summaries because their determination boils down to a well known process of database querying which
virtually all users of computer systems, even novice users, are accustomed to.

Looking at the form of (28) and (29), which specify the user’s interest and intent as to linguistic data
summaries put in the context of database querying, it was proposed by Kacprzyk & Zadrożny (2002;
2005b) that the concept of a protoform in the sense of Zadeh (2002; 2006) is highly relevant. A proto-
form is defined as an abstract prototype, that is, in our context, for the query (summary) given by (28)
and (29) as follows, respectively:

“Most R’s are S” (30)

and

“Most BR’s are S” (31)

where R means “records”, B is a filter, and S is a query.
Since protoforms can obviously form a hierarchy, we can define higher level (more abstract) proto-

forms, for instance replacing most by a generic linguistic quantifier Q, we obtain, respectively:

“QR’s are S” (32)

and

“QBR’s are S” (33)

231

Linguistic Data Summarization

Obviously, the more abstract protoforms correspond to cases in which we assume less about sum-
maries sought. There are two limit cases, where we: (1) assume totally abstract protoform or (2) assume
all elements of a protoform are given as specific linguistic terms. In case 1 data summarization will be
extremely time consuming, as the search space may be enormous, but may produce interesting, unex-
pected views on data. In case 2 the user has to guess a good candidate formula for summarization but
the evaluation is fairly simple, just equivalent to the answering of a (fuzzy) query. Thus, the second case
refers to the summarization known as ad hoc queries.

Then, going further along this line, we can show in Table 1 a classification of linguistic summaries
into 5 basic types corresponding to protoforms of a more and more abstracted form.where Sstructure denotes
that attributes and their connection in a summary are known, while Svalue denotes a summarizer sought.

Type 1 may be easily produced by a simple extension of fuzzy querying as in Kacprzyk & Zadrożny’s
(2001b) FQUERY for Access. Basically, the user has to construct a query – a candidate summary, and
it has to be determined what is the fraction of rows matching this query and what linguistic quantifier
best denotes this fraction. A Type 2 summary is a straightforward extension of Type 1 by adding a fuzzy
filter. Type 3 summaries require much more effort. Their primary goal is to determine typical (excep-
tional) values of an attribute. So, query S consists of only one simple condition built of the attribute
whose typical (exceptional) value is sought, the “=” relational operator and a placeholder for the value
sought. For example, using the following summary in the context of personal data: Q = “most” and S =
“age=?” (here “?” denotes a placeholder mentioned above) we look for a typical value of age. A Type 4
summary may produce typical (exceptional) values for some, possibly fuzzy, subset of rows. From the
computational point of view Type 5 summaries represent the most general form considered here: fuzzy
rules describing dependencies between specific values of particular attributes. Here the use of B is es-
sential, while previously it was optional. The summaries of Type 1 and 3 have been implemented as an
extension to Kacprzyk & Zadrożny’s (1994; 1995a-b; 2001b) FQUERY for Access. Two approaches to
Type 5 summaries have been proposed. Firstly, a subset of such summaries may be produced by exploiting
similarities with the association rules concept (Agrawal & Srikant, 1994) and employing their efficient
algorithms. Second, genetic algorithm may be employed to search the summaries’ space as initiated by
George & Srikanth (1996a; 1996b). We will not consider these issues because they refer more to techni-
cal scalability and are dealt with in a different perspective than the one assumed in this paper.

Clearly, the protoforms are a powerful conceptual tool because we can formulate many different types
of linguistic summaries in a uniform way, and devise a uniform and universal way to handle different
linguistic summaries. Therefore, Kacprzyk & Zadrożny (2002; 2005) have certainly confirmed frequent
claims by Zadeh and other researchers that protoforms are powerful indeed.

Notice, that all our previous statements about a very high conceptual (perceptional) scalability of
linguistic data summaries in the form considered here are valid to an even higher extent when protoforms

Table 1. Classification of linguistic summaries

Type Given Sought Remarks

1 S Q Simple summaries through ad-hoc queries

2 S B Q Conditional summaries through ad-hoc queries

3 Q Sstructure Svalue Simple value oriented summaries

4 Q Sstructure B Svalue Conditional value oriented summaries

5 Nothing S B Q General fuzy rules

232

Linguistic Data Summarization

are involved. Namely, the simplicity and intuitive appeal of the protoforms used in the context of linguistic
data summaries make them applicable to data sets of any size. Even if the size of a data set increases, the
very essence of a particular protoform just catches the contents of the data set in a user comprehensible
form. And, by imposing a general template on the form of a summary, a protoform would presumably
make the transition to the analysis of data sets of a larger size much smoother because no new general
pattern of expected results would be necessary. That is why one can argue that our approach of using
linguistic data summaries for data mining (knowledge discovery) can be viewed as a significant step
towards the ultimate scalability of data mining (knowledge discovery) tools and techniques in all cases
when the human user plays a significant role.

sOME FUTURE REsEARCH DIRECTIONs

Among many possible future works related to the concept of a cognitive (perceptional) scalability of data
mining tools and techniques via linguistic data summaries, the following ones seem important and viable.
First, the issue of a “comprehensive” scalability of linguistic data summaries can be considered in the
sense that both the traditionally meant scalability (i.e. the retaining of functionality as the problem size,
for instance the size of a database, increases) and the cognitive (perceptional) scalability proposed are
combined. This has to do with many aspects including the development of more effective and efficient
fuzzy querying tools, and of generation methods of linguistic data summaries, for instance using some
more advanced evolutionary tools than in George & Srikanth (1996b).

An interesting future research direction would be to extend the arguments of this paper to cover an-
other relevant approach to linguistic data summaries, namely through the use of gradual rules introduced
by Dubois & Prade (1992). Similarly, an interesting issue would be to analyze yet another, different
approach to linguistic summarization by Raschia & Mouaddib (2002), maybe even more so by consid-
ering their later papers in which a relation to OLAP has been indicated. The use of another approach to
the introduction of quantified statements into fuzzy queries due to Bosc, Lietard and Pivert (1995) and
their later works can be interesting.

Finally, one can also consider in the perspective of cognitive (perceptional) scalability the use of
various protoforms extending our works Kacprzyk & Zadrożny (2005a; 2005b), in which an approach
has also been proposed relating the generation of linguistic data summaries to some ways of generat-
ing some fuzzy association rules so that quite effective and efficient (though maybe not fully scalable)
algorithms for association rule mining can be employed.

CONCLUDINg REMARKs

We have discussed some aspects related to a crucial issue of scalability of data mining (knowledge dis-
covery) tools and techniques by considering some special modern approach in that area, the so called
linguistic data summaries.

We have argued first that the scalability should be meant in a more sophisticated way than just in
terms of whether a particular tool and/or technique can retain its intended functionality, effectiveness
and efficiency as the size of the problem (here the size and volume of data) increases.

233

Linguistic Data Summarization

We have introduced a new concept of a cognitive (perceptional) scalability whose essence is whether
as the size of the problem increases a particular method will be fully functional, effective and efficient,
but in the sense of being able to provide intuitively appealing and comprehensible results. We have ar-
gued that the use of natural language in the linguistic summaries provides a high cognitive (perceptual)
scalability because natural language is the only fully natural means of articulation and communication
of a human being, and also the use of natural language provides a common language for both the indi-
viduals and groups of different background, technical skills, knowledge, etc. No other communication
means, as numbers or graphics, exhibit this property to the same extent.

Then, going even further in this direction, we have shown that Zadeh’s protoform as general repre-
sentations of linguistic data summaries, as proposed by Kacprzyk and Zadrożny (2002; 2005a; 2005b)
amplify even more this advantage leading to what might be called an ultimate cognitive (perceptual)
scalability.

REFERENCEs

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In J. B. Bocca, M.
Jarke, & C. Zaniolo (Eds.), Proceedings of the 20th International Conference on Very Large Databases,
Santiago de Chile, Chile (pp. 487-499). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Bosc, P., Dubois, D., Pivert, O., Prade, H., & de Calmes, M. (2002). Fuzzy summarization of data using
fuzzy cardinalities. In Proceedings of the 9th International Conference Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems (IPMU 2002), Annecy, France (pp. 1553-1559).

Bosc, P., Lietard, L., & Pivert, O. (1995). Quantified statements and database fuzzy querying. In P. Bosc
& J. Kacprzyk (Eds.), Fuzziness in database management systems (pp. 275-308). Heidelberg, Germany:
Physica-Verlag.

Chen, G., Liu, D., & Li, J. (2001). Influence and conditional influence – new interestingness measures
in association rule mining. In Proceedings of the IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE’2001), Vancouver, Canada (pp. 1440-1443).

Chen, G., & Wei, Q. (2002). Fuzzy association rules and the extended mining algorithm. Information
Sciences, 147, 201–228. doi:10.1016/S0020-0255(02)00264-5

Chen, G., Wei, Q., & Kerre, E. E. (2000). Fuzzy data mining: Discovery of fuzzy generalized associa-
tion rules. In G. Bordogna & G. Pasi (Eds.), Recent research issues on fuzzy databases (pp. 45-66). New
York: Springer-Verlag.

Dubois, D., & Prade, H. (1992). Gradual rules in approximate reasoning. Information Sciences, 61,
103–122. doi:10.1016/0020-0255(92)90035-7

George, R., & Srikanth, R. (1996a). A soft computing approach to intensional answering in databases.
Information Sciences, 92, 313–328. doi:10.1016/0020-0255(96)00049-7

George, R., & Srikanth, R. (1996b). Data summarization using genetic algorithms and fuzzy logic. In
F. Herrera & J.L. Verdegay (Eds.), Genetic algorithms and soft computing (pp. 599-611). Heidelberg,
Germany: Physica-Verlag.

234

Linguistic Data Summarization

Haines, S. (2006). Pro Java EE 5 performance management and optimization. Berkeley, CA: Apress.

Hu, Y.-Ch., Chen, R.-Sh., & Tzeng, G.-H. (2002). Mining fuzzy association rules for classification
problems. Computers & Industrial Engineering, 43, 735–750. doi:10.1016/S0360-8352(02)00136-5

Kacprzyk, J. (2000). Intelligent data analysis via linguistic data summaries: A fuzzy logic approach. In
R. Decker & W. Gaul (Eds.), Classification and information processing at the turn of the millennium
(pp. 153-161). New York: Springer-Verlag.

Kacprzyk, J., & Yager, R. R. (2001). Linguistic summaries of data using fuzzy logic. International
Journal of General Systems, 30, 133–154. doi:10.1080/03081070108960702

Kacprzyk, J., Yager, R. R., & Zadrożny, S. (2000). A fuzzy logic based approach to linguistic summaries
of databases. International Journal of Applied Mathematics and Computer Science, 10, 813–834.

Kacprzyk, J., Yager, R. R., & Zadrożny, S. (2001). Fuzzy linguistic summaries of databases for an ef-
ficient business data analysis and decision support. In W. Abramowicz & J. Żurada (Eds.), Knowledge
discovery for business information systems (pp. 129-152). Boston: Kluwer.

Kacprzyk, J., & Zadrożny, S. (1994). Fuzzy querying for Microsoft Access. In Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE’94) vol. 1, Orlando, USA (pp. 167-171).

Kacprzyk, J., & Zadrożny, S. (1995a). Fuzzy queries in Microsoft Access v. 2. In Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE’95), Workshop on Fuzzy Database Systems
and Information Retrieval, Yokohama, Japan (pp. 61-66).

Kacprzyk, J., & Zadrożny, S. (1995b). FQUERY for Access: Fuzzy querying for a Windows-based
DBMS. In P. Bosc & J. Kacprzyk (Eds.), Fuzziness in database management systems (pp. 415-433).
Heidelberg, Germany: Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (1998). Data mining via linguistic summaries of data: An interactive ap-
proach. In T. Yamakawa & G. Matsumoto (Eds.), Methodologies for the Conception, Design and Ap-
plication of Soft Computing - Proceedings of IIZUKA’98, Iizuka, Japan (pp. 668-671).

Kacprzyk, J., & Zadrożny, S. (2000a). On combining intelligent querying and data mining using fuzzy
logic concepts. In G. Bordogna & G. Pasi (Eds.), Recent research issues on the management of fuzziness
in databases (pp. 67-81). New York: Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (2000b). Data mining via fuzzy querying over the Internet. In O. Pons,
M.A. Vila, & J. Kacprzyk (Eds.), Knowledge management in fuzzy databases (pp. 211-233). New York:
Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (2000c). On a fuzzy querying and data mining interface. Kybernetika, 36,
657–670.

Kacprzyk, J., & Zadrożny, S. (2000d). Computing with words: Towards a new generation of linguistic
querying and summarization of databases. In P. Sinčak & J. Vaščak (Eds.), Quo vadis computational
intelligence? (pp. 144-175). New York: Springer-Verlag.

235

Linguistic Data Summarization

Kacprzyk, J., & Zadrożny, S. (2001a). Data mining via linguistic summaries of databases: An interactive
approach. In L. Ding (Ed.), A new paradigm of knowledge engineering by soft computing (pp. 325-345).
Singapore: World Scientific.

Kacprzyk, J., & Zadrożny, S. (2001b). Computing with words in intelligent database querying: Standalone
and Internet-based applications. Information Sciences, 34, 71–109. doi:10.1016/S0020-0255(01)00093-
7

Kacprzyk, J., & Zadrożny, S. (2001c). On linguistic approaches in flexible querying and mining of asso-
ciation rules. In H.L. Larsen, J. Kacprzyk, S. Zadrożny, T. Andreasen, & H. Christiansen (Eds.), Flexible
query answering systems. Recent advances (pp. 475-484). New York: Springer-Verlag.

Kacprzyk, J., & Zadrożny, S. (2001d). Fuzzy linguistic summaries via association rules. In A. Kandel,
M. Last, & H. Bunke (Eds.), Data mining and computational intelligence (pp. 115-139). New York:
Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (2001e). Using fuzzy querying over the Internet to browse through informa-
tion resources. In B. Reusch & K.-H. Temme (Eds.), Computational intelligence in theory and practice
(pp. 235-262). New York: Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (2002). Protoforms of linguistic data summaries: Towards more general
natural-language-based data mining tools. In A. Abraham, J. Ruiz del Solar, & M. Koeppen (Eds.), Soft
computing systems (pp. 417-425). Amsterdam: IOS Press.

Kacprzyk, J., & Zadrożny, S. (2003). Linguistic summarization of data sets using association rules. In
Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’03), St. Louis, USA
(pp. 702-707).

Kacprzyk, J., & Zadrożny, S. (2005a). Protoforms of linguistic database summaries as a tool for human-
consistent data mining. In Proceedings of the 14th Annual IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2005) (pp. 591-596). Reno, NV, USA: IEEE.

Kacprzyk, J., & Zadrożny, S. (2005b). Linguistic database summaries and their protoforms: Towards
natural language based knowledge discovery tools. Information Sciences, 173, 281–304. doi:10.1016/j.
ins.2005.03.002

Kacprzyk, J., & Zadrożny, S. (2009). Protoforms of linguistic database summaries as a human consistent
tool for using natural language in data mining. International Journal of Software Science and Compu-
tational Intelligence, 1, 100–111.

Kacprzyk, J., Zadrożny, S., & Ziółkowski, A. (1989). FQUERY III+: a ‘human-consistent’ database
querying system based on fuzzy logic with linguistic quantifiers. Information Systems, 14, 443–453.
doi:10.1016/0306-4379(89)90012-4

Kacprzyk, J., & Ziółkowski, A. (1986). Database queries with fuzzy linguistic quantifiers. IEEE Trans-
actions on Systems . Man and Cybernetics SMC, 16, 474–479. doi:10.1109/TSMC.1986.4308982

Klarner, M. (2004). Hyperbug - a scalable natural language generation approach. In R. Portzel (Ed.),
Proceedings of the 2nd International Workshop on Scalable Natural Language Understanding (ScaNa-
Lu-2004) (pp. 65-71). Boston, MA, USA: Association for Computational Linguistics.

236

Linguistic Data Summarization

Lee, J.-H., & Lee-Kwang, H. (1997). An extension of association rules using fuzzy sets. In Proceedings
of the 7th IFSA World Congress, Prague, Czech Republic (pp. 399-402).

Lesh, N., & Mitzenmacher, M. (2004). Interactive data summarization: An example application. In Pro-
ceedings of the Working Conference on Advanced Visual Interfaces (AVI ‘04), Gallipoli, Italy (pp.183-
187). New York: ACM.

Raschia, G., & Mouaddib, N. (2002). SAINTETIQ: A fuzzy set-based approach to database summariza-
tion. Fuzzy Sets and Systems, 129, 137–162. doi:10.1016/S0165-0114(01)00197-X

Rasmussen, D., & Yager, R. R. (1999). Finding fuzzy and gradual functional dependencies with sum-
marySQL. Fuzzy Sets and Systems, 106, 131–142. doi:10.1016/S0165-0114(97)00268-6

Reiter, E. (1995). Building natural language generation systems. In A. Cawsey (Ed.), Proceedings of the
AI and Patient Education Workshop. Glasgow, UK: University of Glasgow.

Yager, R. R. (1982). A new approach to the summarization of data. Information Sciences, 28, 69–86.
doi:10.1016/0020-0255(82)90033-0

Yager, R. R. (1988). On ordered weighted averaging operators in multicriteria decision making. IEEE
Transactions on Systems, Man, and Cybernetics, SMC–18, 183–190. doi:10.1109/21.87068

Yager, R. R. (1991). On linguistic summaries of data. In G. Piatetsky-Shapiro, & W.J. Frawley (Eds.),
Knowledge discovery in databases (pp. 347-363). Menlo Park: AAAI Press/The MIT Press.

Yager, R. R. (1996). Database discovery using fuzzy sets. International Journal of Intelligent Systems,
11, 691–712. doi:10.1002/(SICI)1098-111X(199609)11:9<691::AID-INT7>3.0.CO;2-F

Yager, R. R., & Kacprzyk, J. (1997). The ordered weighted averaging operators: Theory and applica-
tions. Boston: Kluwer.

Zadeh, L., & Kacprzyk, J. (Eds.). (1999). Computing with words in information/intelligent systems, 1.
Foundations, 2. Applications. New York: Physica-Verlag.

Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers &
Mathematics with Applications (Oxford, England), 9, 149–184. doi:10.1016/0898-1221(83)90013-5

Zadeh, L. A. (1985). Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning
with dispositions. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15, 754–763.

Zadeh, L. A. (2002). A prototype-centered approach to adding deduction capabilities to search engines
– the concept of a protoform. In Proceedings of the BISC Seminar, 2002. Berkeley: University of Cali-
fornia.

Zadeh, L. A. (2006). From search engines to question answering systems - the problems of world knowl-
edge relevance deduction and precisiation. In E. Sanchez (Ed.), Fuzzy logic and the Semantic Web (pp.
163-210). Amsterdam: Elsevier.

Zadrożny, S., & Kacprzyk, J. (1999). On database summarization using a fuzzy querying interface. In
Proceedings of the IFSA’99 World Congress, Taipei, Taiwan R.O.C. (pp. 39-43).

237

Linguistic Data Summarization

ADDITIONAL READINg

Anwar, T. M., Beck, H. W., & Navathe, S. B. (1992). Knowledge mining by imprecise querying: A clas-
sification based system. In Proceedings of the International Conference on Data Engineering, Tampa,
USA (pp. 622-630).

Bosc, P., & Kacprzyk, J. (Eds.). (1995). Fuzziness in database management systems. Heidelberg, Ger-
many: Physica-Verlag.

Bosc, P., & Pivert, O. (1992). Fuzzy querying in conventional databases. In L.A. Zadeh & J. Kacprzyk
(Eds.), Fuzzy logic for the management of uncertainty (pp. 645-671). New York: Wiley.

Kacprzyk, J., Pasi, G., Vojtaš, P., & Zadrożny, S. (2000). Fuzzy querying: issues and perspective. Ky-
bernetika, 36, 605–616.

Kacprzyk, J., & Zadrożny, S. (1999). The paradigm of computing with words in intelligent database
querying. In L.A. Zadeh & J. Kacprzyk (Eds.), Computing with words in information/intelligent systems.
Part 2. Foundations (pp. 382-398). New York: Springer-Verlag.

Petry, F. E. (1996). Fuzzy databases: Principles and applications. Boston: Kluwer.

Rasmussen, D., & Yager, R. R. (1996). Using SummarySQL as a tool for finding fuzzy and gradual
functional dependencies. In Proceedings of the 6th International Conference Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU’96), Granada, Spain (pp. 275-280).

Rasmussen, D., & Yager, R. R. (1997a). Fuzzy query language for hypothesis evaluation. In T. Andrea-
sen, H. Christiansen, & H. L. Larsen (Eds.), Flexible query answering systems (pp. 23-43). Boston:
Kluwer.

Rasmussen, D., & Yager, R. R. (1997b). A fuzzy SQL summary language for data discovery. In D.
Dubois, H. Prade, & R.R. Yager (Eds.), Fuzzy information engineering: A guided tour of applications
(pp. 253-264). New York: Wiley.

Rasmussen, D., & Yager, R. R. (1999). Finding fuzzy and gradual functional dependencies with Sum-
marySQL. Fuzzy Sets and Systems, 106, 131–142. doi:10.1016/S0165-0114(97)00268-6

Yager, R. R., & Kacprzyk, J. (1999). Linguistic data summaries: A perspective. In Proceedings of the
IFSA’99 Congress, Taipei, Taiwan R.O.C. (pp. 44-48).

Zadeh, L. A., & Kacprzyk, J. (Eds.). (1992). Fuzzy logic for the management of uncertainty. New York:
Wiley.

Zadrożny, S., Kacprzyk, J., & Gola, M. (2005). Towards human friendly data mining: Linguistic data
summaries and their protoforms. In Proceedings of the Artificial Neural Networks: Formal Models and
their Applications – ICANN 2005 (LNCS 3697, pp. 697-702). Berlin, Germany: Springer.

238

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

Human Focused Summarizing
Statistics Using OWA Operators

Ronald R. Yager
Iona College, USA

INTRODUCTION

While many applications make use of the Ordered Weighted Averaging (OWA) operator (Yager, 1988)
one under-explored application has been in summarizing data sets. We note that formally the OWA op-
erator can be used to model different types of summarizing statistics depending on the choice of OWA
weighting vector. Summarizing statistics are of particular importance in the field of data management
and analysis and data mining (Tan, Steinbach & Kumar, 2006; Bouchon-Meunier, Rifqi & Lesot, 2008).
Among the most well known summarizing statistics are the average, median and mode. While these have
been extremely useful they don’t completely enable the kinds of sophisticated analysis desired by modern

AbsTRACT

The ordered weighted averaging (OWA) operator is introduced and the author discusses how it can
provide a basis for generating summarizing statistics over large data sets. The author further notes
how different forms of OWA operators, and hence different summarizing statistics, can be induced us-
ing weight-generating functions. The author shows how these weight-generating functions can provide
a vehicle with which a data analyst can express desired summarizing statistics. Modern data analysis
requires the use of more human focused summarizing statistics then those classically used. The author’s
goal here is to develop to ideas to enable a human focused approach to summarizing statistics. Using
these ideas we can envision a computer aided construction of the weight generating functions based
upon a combination of graphical and linguistic specifications provided by a data analyst describing his
desired summarization.

DOI: 10.4018/978-1-60566-858-1.ch009

239

Human Focused Summarizing Statistics Using OWA Operators

data analysts. Intelligent data analysis requires the use of concepts appropriate for understanding by hu-
man cognition, which are often expressed in linguistic terms. With the availability of modern computing
technology allowing rapid processing of vast amounts of data the only thing keeping us from providing
this capability, is the availability of computable representations of human focused cognitive concepts.
In this work we take a step in this direction. Our human focused approach to developing summarizing
statistics makes use of two fundamental developments in computational intelligence. The first is ability
to specify different OWA weighting vectors in terms of functions called weight-generating functions.
The second is the ability to represent, with the aid of fuzzy sets, many linguistic and cognitive concepts
in terms of functions. Here then a data analyst can input a function corresponding to some cognitive
concept to induce the type of summary statistic they are interested in. Using these ideas we can envision
a computer aided construction of the weight generating functions based upon a combination of graphical
and linguistic specifications provided by a data analyst. The important point here is that now we have
the framework to begin to develop a tools allowing both natural language and graphical input for aiding
a data analyst in describing to the machine the types of intelligent summaries that may be desired.

Aspects and concerns with issues related to scalability are implicit in the approach discussed here.
The use of summarization provides an important historically well established means of addressing large
amounts of data by reducing it to a small number of characterizing statistics that can easily be com-
prehended by human decision makers and analysts (Stigler, 2002). Here we advance this approach by
introducing methods for user-customizable summarizing statistics. In addition, the formal computational
methodology used, based on the OWA operator, is computational inexpensive in terms of time as it only
involves ordering and linear aggregation.

From a more general perspective, concerns about scalability can, in addition to being related to man-
aging large amounts of data, can also be concerned with issues involving the description and modeling
of complex concepts. By using linguistic terms and simple graphical constructs in coordination with
the OWA operator we are providing a simple scalable methodology for modeling complex cognitive
concepts. It is here that the work presented here is suggesting a new direction, cognitive scalability. An
important benefit of the human use of categorization and concept formation in language is to provide a
means to simplify the complex environment in which they must function. The approach presented here
can be seen as part an agenda of bringing this scalability implicit in language to computational machines.
It is a kind of computing with words.

OWA OPERATORs

The Ordered Weighted Averaging (OWA) operator of dimension n is a mapping F:Rn → R such that

F(a1, ..., an) = w b
j j

j

n

=
å

1

 where bj is the jthlargest of the ai. The wj are weights such that wj ∈ [0, 1] and

w
j

j

n

=
å =

1

1 . An alternative representation of the OWA operator can be had by letting dj be the jthsmallest

of the arguments, dj = bn+1-j. Using this we get F(a1, ..., an) = w b
j j

j

n

=
å

1

 = w d
n j j

j

n

+ -
=
å 1

1

.Letting vj = wn+1-j we

can express F(a1, ..., an) =
j

n

=
å

1

vj dj. Here vj is the weight associated with jth smallest of the arguments.

We shall find it intuitively more satisfying to use this representation of the OWA operator. Collectively

240

Human Focused Summarizing Statistics Using OWA Operators

we can represent the vj by an n-dimension vector V called the weighting vector. In this vector the weights
associated with the smaller arguments are at the top. A further notational convenience can be had if we
let D be the n–dimensional vector whose components are the dj, we call D the ordered argument vector.
Using this we get F(a1, ..., an) = VTD.

If index is a mapping such that index(j) is the index of the jth smallest of the arguments then dj =
aindex(j), using this we get F(a1, ..., an) = ∑j vj aindex(j).

The OWA operator is characterized by its weighting vector V. By selecting different V we obtain
different types of aggregations. Yager (1996) suggested an approach for obtaining the weights using a
functional characterization. Let f: [0, 1] → [0, 1] satisfy: 1. f(0) = 0, 2. f(1) = 1 and 3. f(x) ≥ f(y) if x >
y. Using this function we specify the weights for j = 1 to n as

vj = f(j
n

) - f(j
n
-1).

We call f the weight-generating function (wg function).
Using the weight generating function to generate the weights has a number of useful features. One

property is that we can use a weight generating function to specify weights in a consistent manner for
aggregations of different cardinalities. Secondly, particularly in the case of large n, a functional speci-
fication is often simpler than direct specification of the weights. Thirdly the use of a visual (graphical)
characterization of the weight generating function can be helpful in understanding the performance
and properties of the resulting aggregations. Another benefit is the availability of parameterization. We
can easily modify the performance of the aggregation by changing the parameters in the function. For
example the function f(x) = xr provides a valid weight generator function for all r ∈ [0, ∞]. However
vastly different performances are obtained as we modify r.

Another important benefit is the possibility of associating the function f with some linguistic or
cognitive concept. This feature is based upon the ability of fuzzy subsets to provide a representation
of cognitive and linguistic concepts using membership grades in the unit interval (Zadeh, 1983). Here
then one can linguistically specify some aggregation imperative, which can then be modeled as a fuzzy
subset. This fuzzy subset can be used to denote a related weight generating function f.

We now provide some definitions and properties associated with these wg functions. First we can
express the OWA aggregation directly in terms of the wg function

F(a1, ..., an) =
j

n

=
å

1

(f(j
n

) - f(j
n
-1)) dj = dn +

j

n

=

-

å
1

1

f(j
n

)(dj - dj-1) = dn -
j

n

=

-

å
1

1

f(j
n

)(dj+1 - dj).

If f1 and f2 are two wg functions we denote f1 ≤ f2 if f1(x) ≤ f2(x) for all x and we say f2 is more rapid.
From the above we observe the more rapid the weight generating function the smaller the aggregation,
if f2 ≥ f1 then for all arguments f2(a1, ..., an) ≤ f1(a1, ..., an).

We now introduce some characterizing features associated with a wg function. Consider the three
weighting vectors shown below:

241

Human Focused Summarizing Statistics Using OWA Operators

V1 =

0 8

0 2

0

0

0

.

.

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

V2 =

0

0

0

0 2

0 8

.

.

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

V3 =

0

1 3

1 3

1 3

0

/

/

/

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

These are clearly distinguished from each other by the fact that the first gives preference to the lower
values in the aggregation, the second gives preference to the higher values and the third makes no distinc-
tion in this respect, it is neutral or unbiased. In the following we introduce a measure that characterizes
a weight generating function with respect to this feature. If f is a weight generating function we define

Bias(f) = 1 - f x dx()
0

1

ò . We note that 0 ≤ Bias(f) ≤ 1 and if f1 ≤ f2 then Bias(f2) ≤ Bias(f1). This character-
izes any OWA aggregation based on the wg functions bias with respect to giving more weight to larger
or smaller argument values. In particular those f’s with lower values of bias below 0.5, have a tendency
to give more weight to the smaller arguments in the aggregation while those with higher values of Bias
given preference to the bigger values in the aggregation. An f with Bias(f) = 0.5 is neutral or unbiased

in its preference, it give equal consideration to high and low values. We note that f x dx()
0

1

ò is the area
under the curve f(x) thus Bias(f) = 1 - Area(f).

Consider now the two weighting vectors: I. v1 = v2 = v3 = v4 = v5 = 0.2 II. v1 = v2 = v4 = v5 = 0 and v3
= 1. While they are both unbiased with respect to their handling large and small values they are clearly
different in terms of their distribution of the weights. In the first case all arguments are treated the same
while in the second case we only use one argument to determine the aggregated value. Yager (1988)
suggested an entropy-like measure to capture this feature. If V is an n-dimensional weighting vector

with components vj then Disp(V) = - v v
j j

j

n

ln é
ëê

ù
ûú

=
å

1

 is called the disparity of V. The characterization a

wg function f with respect to its disparity is Disp(f) = df
dx

df
dx

dx
0

1

ò
é

ë
ê
ê

ù

û
ú
úln . We call Disp(f) the disparity of

f. For the types of wg functions of interest here we have Disp(f) ≥ 0.
The smaller Disp(f) the more uniformly the weights are distributed. The case when Disp(f) = 0 cor-

responds to the case where all weights are the same. As Disp(f) gets larger, the less this equality in the
weights. In the most disparate case, when all the weight is focused on one data element, we get Disp(f)
= ∝.

MODELINg bAsIC sTATIsTICs WITH OWA OPERATORs

Here we begin to consider the role of OWA operators in providing summarizing statistics. We shall let
A = <a1, ..., an> and refer to this as our data set. Formally A is a bag (Yager, 1986). We recall a bag is
a collection of elements, which like a set is indifferent to the ordering of its members but unlike a set
allows duplication. We shall let F(A) indicate the OWA aggregation of the elements in the data set A,
F(A) = VTD = ∑j vj dj where dj = aindex(j). By appropriately selecting the weighting vector V be can provide
many different summarizing statistics.

242

Human Focused Summarizing Statistics Using OWA Operators

If V is selected such that vj = 1/n for all n then F(a1, ..., an) = 1/n ∑j aj, this is the average. The median
can also be modeled. If n is odd we let vq = 1, where q = (n+1)/2 and vj = 0 for all other j. If n is even
we let vq = 0.5 and vq+1 = 0.5 where q = n/2.

If V is such that v1 = 1 and vj = 0 for all j ≠ 1 then VTD = Minj[aj], thus we get the minimal element
in the data set. We shall denote this vector as V∧. If V is such that vn = 1 and vj = 0 for all j ≠ n then VTD
= Maxj[aj], we get the maximal value in the data set. We shall denote this vector as V∨. More generally
we can consider the kth representative value. If V is such that vk = 1 and vj = 0 for all j ≠ k and then VTD
= aindex(k) it selects the kth smallest element in the data set.

A large body of established and as well as new summarizing statistics can be obtained if we begin to
consider the use of weight generating (wg) functions of the type discussed earlier. We recall with a wg

function f we have vj = f(j
n

) - f(j
n
-1). The average is obtained when f(x) = x. The Min is obtained if f

is f∧ where f∧(0) = 0 and f∧(x) = 1 for all x ≠ 0. Thus using f∧ we get V∧. The Max summarizing statistics
is obtained if f is f∨ where f∨(x) = 0 for x ≠ 1 and f∨(1) = 1. Using f∨ we get V∨. For any wg function
f∨(x) ≤ f(x) ≤ f∧(x) for all x,. This implies that for any data set A and any weight generating function f
we have F∧(A) ≤ F(A) ≤ F∨(A) where F is the OWA aggregation generated by f. This of supports the
property that Min(A) ≤ F(A) ≤ Max(A).

An often-used summarizing statistic is the α percentile. We recall that if A is our data set the αth per-
centile is an element contained in A such that approximately α % of the elements in A are less then it and
(100 - α) % are more then it. This statistic can easily be modeled with the OWA operator. Consider the
function shown in figure 1 where f(x) = 0 if x < α and f(x) = 1 if x ≥ α. For this function we get that vq
= 1, for q such that (q-1)/n ≤ α ≤ q/n and vj = 0 for all other j. If we let q = Int(nα), the integer portion of
nα.we get F(A) = dq = aindex(q). It evaluates to the qth smallest element in A. In particular α portion of the
arguments are smaller than aindex(q) and (1–α) portion are bigger. Thus we see that this weight generating
function provides the α percentile element of the data set. We note that the median is a special case of the
preceding where α = 0.5. The 25% percentile occurs when α = 0.25 and 75% requires α = 0.75. We also
note that Max and Min are also special cases of this class. For the Max, α = 1 and for the Min, α = 0.

For this class Bias(f) = α. This class of summarizers is the most disparate, it only users one element
in the aggregation, hence Disp(f) = ∝

The mean where all weights are 1/n is obtained using the wg function f(x) = x. For this function

the Bias(f) = 1 - x dx
0

1

ò = 0.5, it is unbiased with respect to high and low values. In addition we have

Figure 1. Percentile function

243

Human Focused Summarizing Statistics Using OWA Operators

Disp(f) = 0. This is consistent with the fact that the smallest disparity occurs when we equally allocate
the weights among all the data set elements.

We have shown that the mean, median, the Max, and Min and all percentile summarizing statistics
can be expressed using this OWA formulation. Let us now look beyond these classical summarizing
statistics and try to provide some new ones to aid in obtaining more intuitive summaries.

A CLAss OF LINEAR sTATIsTICs

Consider the summarizing statistic associated with the function shown in figure 2. For this function we

have f(x) = 0 for x ≤ ρ, f(x) = x p
p

-
-1 2

 for ρ < x < 1 -ρ and f(x) = 1 for x ≥ ρ.

This can be seen as a summarizing statistic that discounts the upper and lower ρ portion of the data
set. It can be seen as a kind of outlier discounting aggregation. If n is the cardinality of our data set and

nρ is an integer then: vj = 0 for j = 1 to nρ, vj =
1 1

1 2n p()-
 for j = nρ + 1 to n - nρ and vj = 0 for j = n - nρ

+ 1 to n. This gives us F(A) = 1 1
1 2 1

1

n p
d

j
j np

n p

()

()

- = +

-

å
If np is not an integer we get a slight modification. In the following we let Int(nρ) denote the integer

portion of nρ. If nρ ≠ Int(nρ) and Δ = nρ - Int(nρ) then we get

vj = 0 for j = 1 to Int(nρ)

vj = 1 1
1 2n p()-

 (1 - Δ) for j = Int(nρ) + 1

vj = 1 1
1 2n p()-

 for j = Int(nρ)+ 2 to n - Int(nρ) - 1

vj =
1 1

1 2n p()-
 (1 - Δ) for j = n - Int(nρ) - 1

Figure 2. Discounting type weight function

244

Human Focused Summarizing Statistics Using OWA Operators

vj = 0 for j = n - Int(nρ) + 1 to n

We see that only a slight modification has occurred in two weights. In the following we shall assume,
unless it hides a substantial issue, that we always have an integer when we perform operations like nρ.
In real application with large data a small change in ρ can always assure this.

Essentially here the data in the middle are averaged using weights 1/n * Slope where 1/(1-2ρ) is the
Slope. For this wg function Bias(f) = 0.5 for all ρ. This is a neutral type aggregation with respect to its
bias. It can also be shown that Disp(f) = -ln[1 - 2ρ]. We see the disparity is dependent upon ρ, as ρ de-
creases the disparity decreases. As ρ increases the disparity increases because more elements are being
eliminated from the summarization process and more of the weight is being focused on the remaining
elements. We note that since 1/(1-2ρ) is the slope we have Disp(f) = - ln(1 - 2ρ) = ln(Slope), it is the
log of the slope.

While the preceding statistic can be viewed as an outlier discounting type of statistic we note that
as ρ increases and approaches its largest allowable value, ρ = 0.5 we obtain the median statistic. Thus
we see that this provides a family of unbiased statistics running between the simple average and the
median. The difference being the number of data elements discounted. The median discounts all except
the middle one. It is the most disparate member of this family. We see that for median with ρ = 0.5 we
have Disp(f) = ∞ .

Essentially with this wg function, assuming nρ is an integer, we average the middle elements with

weight 1
n

 * 1
1 2- p

 where 1
1 2- p

 is the slope. We can express this as

Midρ(A) = 1 1
1 2n p()-

 d
j

j np

n p

= +

-

å
1

1()

If ρ = 0 we get the mean and if ρ = 0.5 we get the median
In figure 3 we show a slightly more general class of weight generating functions.

Here f(x) = 0 for 0 ≤ x ≤ a, f(x) = x a
b a
-
-

 for a ≤ x ≤ b and f(x) = 1 for x ≥ b. This wg function generates

an unbalanced discounting. Assuming integers for na and nb we get: vj = 0 for j = 1 to na, vj = 1
n

 1
b a-

for j = na + 1 to nb and vj = 0 for j = nb + 1 to n. In this case our statistic is F(A) = 1
n

1

1b a
d

j
j na

nb

- = +
å .

Figure 3. Unbalanced Discounting

245

Human Focused Summarizing Statistics Using OWA Operators

Here Bias(f) = 1
2

 (b + a) and Disp(f) = -ln(b - a). Again we see Disp(f) = ln(Slope). The steeper the slope

the more the disparity. We note that if we define Sum(i, k) = d
j

j

k

=
å

1

 then we see this statistic is F(A) =
1
1 1()k - +

 Sum(i, k). It is a linear statistic.

Let us look at some specific examples of summarizing statistics of the class corresponding to those
in figure 3. We call these linear type summaries. Consider the summary based upon the weight generat-
ing function shown in figure 4 where a = 0 and b = ρ. This corresponds to a summary which takes the

average of lowest ρ % of data values. Here vj = 1
np

 for j = 1 to nρ and vj = 0 for all others. This has a

bias of 1
2

 ρ and disparity of -ln(ρ).

A closely related summarizing statistic is captured using the wg function shown in figure 5. This
has a = 1 - ρ and b = 1. This can be seen as corresponding to a statistic that takes the average of the ρ
percent of the largest data values. Here our weight is vj = 1/(nρ) for the bigger values and zero for the
others. It has a bias of 1 - 0.5 ρ, the complement of the preceding wg function. Its disparity is the same
as the preceding -ln(ρ).

An interesting example of summarizing statistic is shown in figure 6. Here we are discounting the
upper ρ portion in calculating the average. This can have particular usefulness in situations in which we

Figure 4. Lower ρ percent

Figure 5. Upper ρ percent

246

Human Focused Summarizing Statistics Using OWA Operators

are trying to obtain the average of some non-negative quantity such as salary or gross income. In these
situations it is often the case, especially in financial type data, that there exists a small portion of people
whose incomes are so astronomical that including them in a summary calculation greatly distorts the
statistic. The use of a statistic such as that shown in Figure 6 provides for a discounting of these outli-
ers. For example, if the government is interested in summarizing the effects of some policy on salary or
income it may find this a useful statistic.

A gENERAL OWA APPROACH TO sUMMARIZINg sTATIsTICs

More generally we can use the connection between a wg function and the resulting summarizing statistic
to allow a user to express there desired statistic in terms of a function f. We note that visual or graphical
descriptions are particularly appropriate here. In support of this type of approach let us describe some
features of the wg function and relate them to the properties of the resulting summarizing statistic. As
we have indicated a wg function must be a mapping from the unit interval into the unit interval. It must
be monotonic and satisfy f(0) = 0 and f(1) = 1. Figure 7 generically represents such a function.

A correspondence holds between the abscissa, x axis, and the ordered position of the data. In particular
low x’s correspond to the smaller data values in the data set and higher x’s correspond to the bigger data
values in the data set. The form of f for the low values of x describe how we are going to handle the
smaller data set values while the form of f for high values of x describe how we handle the larger data

Figure 6. Discounting top ρ portion

Figure 7. Generic Weight generating function

247

Human Focused Summarizing Statistics Using OWA Operators

values. More specifically the change in ordinate values, the derivative of f(x), tells us how we allocate
the weight. Thus if [x1, x2] is a range on the x scale the difference f(x2) – f(x1) indicates what portion of
the total weight of one will be assigned to the data set elements falling between the nx1 and nx2 smallest.

If x1 n = k1 and x2 n = k2 then v
j

j k

k

=
å

1

2

 = f(x2) - f(x1). In particular we see that flat sections of f correspond

to ranges of data elements contributing little to summary, while steep portions of f correspond to ranges
getting much of the weight.

Using figure 8 as an illustration we see that much of the weight would be allocated to data elements
dj where j lies between nα1 and nα2. Since f(x) is relatively flat in the range for x = 0 to α1 little of the
weights would be assigned to the data elements dj where j lies between 1 and nα1 and similarly the flat-
ness of f(x) in the interval of α2 to 1 would result in little of the weight being assigned to the dj when j
is in the range nα2 to n.

Using these ideas we can envision a computer aided construction of the weight generating function
based upon a combination of graphical and linguistic specifications provided by a data analyst. Here
then an analyst can input the specifications of a wg function which can induce the type of summary
they are interested in. Once having obtained a formulation for f we use these to obtain the weights. The
important point here being that we now have the understanding to begin to develop a graphical language
for aiding a data analyst in describing to the machine various sophisticated types of summaries that may
be desired

Actually once having formulated f it may be more useful to try to best match this f with a wg func-
tion from a set of available well defined functional forms. This makes it easily to actually generate the
weights. Following we shall describe some useful classes of nonlinear wg functions.

Consider the class of functions f(x) = xr for r ∈ [0, ∞]. This has three special cases: when r → 0 we
get f(x) → f∧(x) the Min statistic, when r = 1 we get that f(x) = x the average and when r → ∞ we get
f(x) → f∨(x) the Max statistic. The essential feature of this class of wg functions is that for r < 1 we al-
locate more of the weights to the smaller valued data elements while for r > 1, we allocate more of the
weights to the larger valued elements in the data set. As r goes to its extremes of 0 and ∞ the allocation
becomes more disparate ending in the Min when r = 0 and the Max when r → ∝.

For this class of wg functions vj = ()
j
n

r - ()
j
n

r-1 =
j j

n

r r

r

- -()1
. The Bias of this wg function is

Bias(f) = r/(r + 1) and Disp(f) = log(r) + r
r
-1 .

Figure 8. Illustrative weight generating function

248

Human Focused Summarizing Statistics Using OWA Operators

This class of wg functions can be further generalized if we consider the wg functions defined by: f(x)

= 0 for 0 ≤ x ≤ a, f(x) = (x a
b a
-
-

)r for a ≤ x ≤ b and f(x) = 1 for b ≤ x ≤ 1 Here we have three parameters:

a, b, and r. When r = 1 we get the a linear form f(x) = x a
b a
-
-

. When r → 0 we get the a percentile, f(x)

= 0 for x < a and f(x) = 1 for x ≥ a while for r → ∞ we get the b percentile, f(x) = 0 for x < b and f(x)
= 1 for x ≥ b.

WEIgHTED sUMMARIZINg sTATIsTICs

In (Yager, 1998) we discussed importance weighted OWA aggregations denoted WOWA aggregation.
Here we shall consider their use in the construction of weighted summarizing statistics. Let A = (a1,
..., an) be a data set and let ui ≥ 0 be the importance associated with the data point ai. Let f be a weight
generating function guiding the aggregation. Again we let index(i) be the index of the ith smallest data

value. We denote T(j) = u
index i

i

j

()
=
å

1

, the sum of the importances of the j smallest data points. We denote

T = T(n), it is the sum of all the importance weights. By default we let T(0) = 0. We now let zj = f(T j
T
())

- f(T j
T

()-1) and define the WOWA aggregation as

Ff((ui, ai)) = z a
j index j

j

n

()
=
å

1

.

We can use an alternative notation. Let u
u

Tj

j= and Sj =
T

T
j =

1

11T
u u

index i index i
i

j

i

j

() ()
=

=-
åå . Using

this we have zj = f(Sj) - f(Sj - 1).
In the case where f(x) = x we have f(Sj) = Sj and zj = Sj - Sj-1 = â index(j) thus Ff(ui, ai) =

u a u a
index j index j i i

i

n

j

n

() ()=
-=
åå

11

. This is the ordinary weighted average.

Interesting uses of this WOWA aggregation can be made in data analysis. Assume we have a collec-
tion of data about a group of people containing their salary and age. Assume we want to calculate the
average salary of the young people. Here we can define the concept young as a fuzzy subset, young. We
can then calculate for each person the degree to which they are young and use these as our importance
in the WOWA summarization. Thus if (agei, salaryi) is the information available about the ith person then

ui = young(agei), the membership grade of agei in young. We then can use u salary
i i

i

n

=
å

1

 to give us the
average salary of the young people.

A more sophisticated statistic associated with this data set is the following. Assume we want to calculate
“the average salary of the ρ portion of the young people with the lowest salary”. To obtain this we use the

wg function f shown in figure 4. Here f(x) = 1
r

 x for 0 ≤ x ≤ ρ and f(x) = 1 for x > ρ. Our weights for the

WOWA aggregation are obtained from ẑj = f(Sj) - f(Sj-1). Without loss of generality we assume there is a

q such that Sq = u
index x

i

q

()
=
å

1

 = ρ hence 1
r

 Sq = 1. In this case aindex(i) for i = 1 to q constitute the smallest

249

Human Focused Summarizing Statistics Using OWA Operators

data points with ρ portion of the importance weight. Here we get zj =
1
r

 û
index j()

 for j = 1 to q and zj =

0 for j > q. Using this we get the desired summary as Ff((ui, ai)) = z a u a
i index j

j

n

index j index j
j

q

() () ()
=

= =
å å1

1 1r
.

In the preceding we have considered the situation in which the weights are obtained as a result of
the satisfaction of some condition by the object. Thus the WOWA provided some kind of conditioned
aggregation. We have looked at the asituation in which the property on which we are conditioning is
different from the actual value being aggregated. Some interesting statistics can be obtained if we allow
the weight to be related to the value being aggregated. Let us look at some of these.

Assume we have a data set A = {a1, ..., an}of salaries. Assume we desire to calculate the average of
the salaries over the value b. In this case we can assign weights such that ui = 0 if ai ≤ b and ui = 1 if ai
> b and then use a WOWA aggregation. If we want to calculate the average of the salaries greater than
50% of the maximum we let a* = Maxj[aj] and then define uj = 0 if aj ≤ 0.5 a* and uj = 1 if aj > 0.5 a*.

Another example is to obtain the average salary of the people with high salaries. Here we would
define a fuzzy subset H corresponding to the concept high salary and the let ui be the membership de-
gree of ai in H, ui = H(ai). Furthermore we note the concept “high salary” can be absolute or relative.
That is, H can be defined based upon some independent idea of what we mean by high salary or it can
be dependent upon the set A.

MODELINg THE MODE

We recall the mode corresponds to the value with the most replications in a data set. Here we provide a
OWA representation of the mode as well as some generalizations of it. In order to capture the mode we
must describe the Induced OWA (IOWA) operator (Yager & Filev, 1999) and the concept of similar-
ity. We note the power average introduced in Yager (2001) provides a data aggregation that manifests
features of average and the mode.

The IOWA operator is an extension of the OWA that operates on pairs. Assume (ai, hi) are a collec-
tion of n data point and let V be an n-dimensional OWA vector, vj ∈ [0, 1] and ∑j vj = 1. Let h–index
be an index function such that h–index(j) is the index of the jth smallest of the hi. We now define the h
Induced OWA aggregation as I–F((ai, hi)) = ∑j v ah–index(j). Thus in the OWA operator while we aggrega-
tor the ai we order them by their h value. In the light of this for the pair (ai, hi) we call ai the argument
or data variable and hi the order inducing value.

We define similarity as a function that takes any pair of data points into the unit interval, Sim(ai,
aj) ∈ [0, 1]. The larger Sim(ai, aj) the more similar the data points. While the definition of similarity is
generally context dependent we require some properties on Sim. First it must be commutative Sim(ai,
aj) = Sim(aj, ai). Secondly it must be reflexive Sim(ai, aj) = 1 if ai = aj. However, we don’t require that
ai = aj for Sim(ai, aj) = 1, two elements can be maximally similar even if they are not equal. We also
require that if a1 > a2 > a3 then Sim(a1, a2) ≥ Sim(a1, a3), this is a kind of transitivity. There is an inverse
relationship between similarity and the distance metric, Dist(a, b) = a-b. In particular the preceding is
equivalent to requiring if Dist(a, b) ≥ Dist(a, c) then Sim(a, c) ≥ Sim(a, b). However we are not neces-
sarily requiring Dist(a, b) ≥ Dist(c, d) ⇒ Sim(a, b) ≤ Sim(c, d). The lack of this condition allows us, for
some purposes, to consider salaries of $10 million or $10.5 million to be more similar then salaries of
$10,000 and $100,000.

250

Human Focused Summarizing Statistics Using OWA Operators

We now introduce some prototypical similarity relations. A prototypical binary similarity relation
is defined by Sim(a, b) = 1 if a-b ≤ Δ and Sim(a, b) = 0 if a-b > Δ. We note that when Δ = 0 we get S(a,
b) = 1 if a = b and S(a, b) = 0 if a ≠ b, we denote this relation, as SIM*. SIM* is the most strict in the
sense that if Sim is any similarity relation then Sim(x, y) ≥ SIM*(x, y). Another useful similarity rela-

tion is Sim(a, b) = e
a b

-
-()2

2m . Here μ is a parameter such that the larger μ the more generous the similarity
measure. In the special case when our data points are restricted to the unit interval we can use Sim(a,
b) = 1 - a-b.

We shall now introduce a new class of summarizing statistics based upon the idea of similarity and
the IOWA aggregation operator. Assume we have a data set A= {a1, ..., an} and let Sim be a similarity

relation on A. Let S(ai) = Sim a a
i j

j

n

(,)
=
å

1

 be the total of the similarities for data point ai. We call this the
similarity score of ai.

To obtain our new class of summarizing statistics we use the collection of pairs (ai, hi) where ai is a
data point and hi = S(ai) is its similarity score. Consider the IOWA aggregation F((ai, hi)) where ai is the
argument value and hi is the order inducing value and V is an OWA weighting vector. In this case F((ai,

hi)) = v a
j s index j

j

n

-
=
å ()

1

 where s-index(j) is the index of the data point with the jth smallest similarity. So

here we are ordering the data by their similarity score and then combining the data values using the
vector V. Here F((ai, hi)) is going to be our summarizing statistic.

Let us now look at some special cases of this aggregation and see what kinds of summarizing statis-
tics we get. We note that in formulating this summarizing statistic we have two degrees of freedom, the
weighting vector V and the similarity measure. By appropriately selecting these we can get different
summarizing statistics.

Initially we use the strict binary measure, SIM*. In this case we shall denote the similarity score as of

ai as S*. Choosing V such that vn = 1 and vj = 0 for all j ≠ n we get â = v a
j s index j

j

n

* ()-
=
å

1

 = a
S index n* ()-

. Here

we get the data point with the largest similarity score. However since we are using SIM* this is the data
value which has the most number of replications, it is the mode. Thus using this choice of Sim and V
we have obtained a representation of the mode.

Let us now take advantage of the generality of this formulation and consider another example of
weighting vector V. Consider the vector V where v1 = 1 and vj = 0 for j ≠ n. In this case â = a

S index* ()- 1
.

Here we get the data point with the smallest similarity score. From our definition of SIM* we see that
a

S index* ()- 1
 is the data value having the least number of replications. Thus whereas the mode, a

S index n* ()-
,

can be seen being a kind of most typical value, this new statistic, a
S index* ()- 1

, can be seen as a most atypi-
cal or unusual value in the data set.

We have seen that by selecting V we are able to get significant extreme elements from the data set.
By selecting V using f∧ gives us the most typical element in the set while selecting V using f∨ gives us
the most atypical element in the data set. We note that in the case of the ordinary OWA aggregation,
where we are just aggregating the data points without the order inducing variable, using the weighting
vectors generated from f∧ and f∨ also gives us extreme elements from the data set; however, the diversity
is based of the value, we get the largest and smallest valued elements in the data set. Here our diversity
is with respect to being the most typical and least typical. Thus we see that the use of similarity along

251

Human Focused Summarizing Statistics Using OWA Operators

with the IOWA aggregation can provide us with tools which can help us understand a data set along
another dimension.

We can consider the use of other weight vectors or wg functions f with the similarity induc-
ing ordering. If we use f(x) = x we get V such that vj = 1/n. In this case our statistic is F((ai, hi)) =

v a
n

a
j s index j

j

n

i
i

n

* ()-
= =
å å=

1 1

1 , the ordinary average.

Consider now using the wg function f shown in figure 9 in the aggregation F((ai, hi)). For small ρ we
can be seen to be removing the ρn most atypical values from the aggregation. So here we are taking an
average that eliminates the atypical values. This can be seen as eliminating “outliers”, where the idea of
outlier is not based on the value but is based on the number of replications. The less they’re replicated
the more they are outliers or atypical. On the other hand if ρ is big, close to one, then we see that we
essentially obtain an average of the most typical values in the data set.

Consider the wg function shown in figure 4 in the aggregation F((ai, hi)). Here, for small ρ, we are
taking an average of the atypical values. On the other hand as ρ increases we are taking an average which
eliminates the most typical elements. This may be an interesting statistic.

Consider now using the wg function shown in figure 1 in the aggregation This generates a statistic,
normally a hard one, which calculates the data point for which α portion of the data points are less typi-
cal, more unique, while 1 - α portion of the data have values that are more typical . For α = 0.5 we find
the data value that lies in the middle with respect to its typicality –atypicality.

Figure 9. ρ Elimination

Figure 10. Histogram of Data Set

252

Human Focused Summarizing Statistics Using OWA Operators

An understanding of the approaches developed and the role of the wg function f can be had if we
consider the histogram representation of a data set depicted in figure 10. In this figure the abscissa axis
corresponds to the data point values and the ordinate axis corresponds to the count of points having
that value. In our original OWA method, F((ai)), we take an aggregation of the data values in which the
OWA weights are determined by the wg f(x) so that the form of f(x) in the low range of x determines the
weights for the smaller data values and the form of f(x) in the high range of x determines the weights
for the bigger data values. In the case where we use the similarity and the induced OWA, F((ai, hi)),
while we are still taking aggregation of the data values the role of the wg function is different. Here the
OWA weights are determined by the wg f(x) so that the form of f(x) in the low range of x determines the
weights for the data values with the smaller count and the form of f(x) in the high range of x determines
the weights for the data values with the larger counts. With this understanding we can construct the wg
function to generate desired summarizing statistics. In addition we note that the importance weight ui
associated with a data point can be seen as affecting the count. Instead of counting a data value as one
we count it by its importance weight.

CONCLUsION

In the preceding we have investigated the use of the OWA operator as a basis for providing summarizing
statistics. We showed the centrality of the weight generating function in inducing the various statistics
and begun to get an understanding of the relationship between the wg functions and the resulting statistic.
We envision the use of fuzzy methods to enrich the capability of this approach. Specifically we see fuzzy
logic as providing a bridge for translating linguistically expressed requirements for data summarizing
into mathematical functional forms which can then be used as weight generating functions. We feel this
work is an early step to the development of tools enabling the kind of man-machine cooperation enabling
the human focused summarizing statistics.

REFERENCEs

Bouchon-Meunier, B., Rifqi, M., & Lesot, M. J. (2008). Similarities in fuzzy data mining: From a cog-
nitive view to real -world applications. In J. M. Zurada, G. G. Yen, & J. Wang (Eds.), Computational
intelligence: Research frontiers (pp. 349-367). Berlin, Germany: Springer.

Stigler, S. M. (2002). Statistics on the table: The history of statistical concepts and methods. Boston:
Harvard University Press.

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Boston: Addison Wesley.

Yager, R. R. (1986). On the theory of bags. International Journal of General Systems, 13, 23–37.
doi:10.1080/03081078608934952

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision
making. IEEE Transactions on Systems, Man, and Cybernetics, 18, 183–190. doi:10.1109/21.87068

253

Human Focused Summarizing Statistics Using OWA Operators

Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. International Journal of Intel-
ligent Systems, 11, 49–73. doi:10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z

Yager, R. R. (1998). Including importances in OWA aggregations using fuzzy systems modeling. IEEE
transactions on Fuzzy Systems, 6, 286–294. doi:10.1109/91.669028

Yager, R. R. (2001). The power average operator. IEEE Transactions on Systems . Man and Cybernetics
Part A, 31, 722–730.

Yager, R. R., & Filev, D. P. (1999). Induced ordered weighted averaging operators. IEEE Transactions
on Systems, Man, and Cybernetics, 29, 141–150. doi:10.1109/3477.752789

Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers &
Mathematics with Applications (Oxford, England), 9, 149–184. doi:10.1016/0898-1221(83)90013-5

254

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

(Approximate) Frequent Item
Set Mining Made Simple with
a Split and Merge Algorithm

Christian Borgelt
European Center for Soft Computing, Spain

Xiaomeng Wang
Otto-von-Guericke University of Magdeburg, Germany

INTRODUCTION

It may not even be an exaggeration to say that the tasks of frequent item set mining and association rule
induction started the popular research area of data mining. At least, however, these tasks have a strong
and long-standing tradition in data mining and knowledge discovery in databases and account for a huge
number of publications in data mining conferences and journals. The enormous research efforts devoted
to these tasks have led to a variety of sophisticated and efficient algorithms to find frequent item sets.
Among the best-known are Apriori (Agrawal and Srikant 1994, Agrawal et al. 1996), Eclat (Zaki et al.
1997) and FP-growth (Han et al. 2000).

AbsTRACT

In this chapter the authors introduce SaM, a split and merge algorithm for frequent item set mining. Its
core advantages are its extremely simple data structure and processing scheme, which not only make
it very easy to implement, but also fairly easy to execute on external storage, thus rendering it a highly
useful method if the data to mine cannot be loaded into main memory. Furthermore, the authors present
extensions of this algorithm, which allow for approximate or “fuzzy” frequent item set mining in the
sense that missing items can be inserted into transactions with a user-specified penalty. Finally, they
present experiments comparing their new method with classical frequent item set mining algorithms (like
Apriori, Eclat and FP-growth) and with the approximate frequent item set mining version of RElim (an
algorithm the authors proposed in an earlier paper and improved in the meantime).

DOI: 10.4018/978-1-60566-858-1.ch010

255

(Approximate) Frequent Item Set Mining Made Simple

Nevertheless, there is still room for improvement: while Eclat, which is the simplest of the men-
tioned algorithms, can be fairly slow on some data sets (compared to other algorithms), FP-growth,
which is usually the fastest algorithm, employs a sophisticated data structure and requires to load the
transaction data to mine into main memory. Hence a simpler processing scheme, which still maintains
efficiency, is desirable. Other lines of improvement include filtering the found frequent item sets and
association rules (see, for example, [Webb and Zhang 2005, Webb 2007]), identifying temporal changes
in discovered patterns (see, for example, [Böttcher et al. 2005, Böttcher et al. 2007]), and discovering
fault-tolerant or approximate frequent item sets (see, for example, [Cheng et al. 2001, Pei et al. 2001,
Wang et al. 2005]).

In this paper we introduce SaM, a split and merge algorithm for frequent item set mining. Its core
advantages are its extremely simple data structure and processing scheme, which not only make it very
easy to implement, but also fairly easy to execute on external storage, thus rendering it a highly useful
method if the data to mine cannot be loaded into main memory. Furthermore, we present extensions of
this algorithm, which allow for approximate or ”fuzzy” frequent item set mining in the sense that miss-
ing items can be inserted into transactions with a user-specified penalty. We developed this algorithm
as a simplification of the (already very simple) RElim algorithm (Borgelt 2005b), which we improved
in the meantime.

The rest of this paper is structured as follows: first we briefly review the fundamentals of frequent
item set mining, and especially the basic divide-and-conquer scheme underlying many frequent item set
mining algorithms. Secondly, we present our SaM (Split and Merge) algorithm for exact frequent item
set mining and compare it experimentally to classic frequent item set mining algorithms like Apriori,
Eclat, and FP-growth, but also our own RElim algorithm (Borgelt 2005b). In the next step we review
approximate or “fuzzy” frequent item set mining in the sense that missing items can be inserted into
transactions with a user-specified penalty. Based on this review we present two extensions of our SaM
algorithm that allow to perform such approximate frequent item set mining with unlimited and limited
item insertions, respectively. These extensions are then experimentally compared to the corresponding
extensions of the RElim algorithm (Wang et al 2005). Finally, we draw conclusions from our discussion
and experiments.

FREQUENT ITEM sET MININg

Frequent item set mining is a data analysis method that was originally developed for market basket
analysis. It aims at finding regularities in the shopping behavior of the customers of supermarkets, mail-
order companies and online shops. In particular, it tries to identify sets of products that are frequently
bought together. Once identified, such sets of associated products may be exploited to optimize the
organization of the products on the shelves of a supermarket or on the pages of a mail-order catalog or
web shop, may be used to suggest other products a customer could be interested in, or may give hints
which products may conveniently be bundled.

Formally, the task of frequent item set mining can be described as follows: we are given a set B of
items, called the item base, and a database T of transactions. Each item represents a product, and the
item base represents the set of all products offered by a store. The term item set refers to any subset of
the item base B. Each transaction is an item set and represents a set of products that has been bought by
an actual customer. Since two or even more customers may have bought the exact same set of products,

256

(Approximate) Frequent Item Set Mining Made Simple

the total of all transactions must be represented as a vector, a bag or a multiset1, since in a simple set
each transaction could occur at most once. Note that the item base B is usually not given explicitly, but
only implicitly as the union of all transactions.

The support sT(I) of an item set I Í B is the number of transactions in the database T it is contained
in. Given a user-specified minimum support smin Î IN (an integer number), an item set I is called fre-
quent in T iff sT(I) ≥ smin. The goal of frequent item set mining is to identify all item sets I Í B that
are frequent in a given transaction database T. Note that the task of frequent item set mining may also
be defined with a relative minimum support (a number in the real interval [0,1]), which is the fraction
of transactions in T that must contain an item set I in order to make I frequent. However, this alternative
definition is obviously equivalent.

A standard approach to find all frequent item sets w.r.t. a given database T and support threshold
smin, which is adopted by basically all frequent item set mining algorithms (except those of the Apriori
family), is a depth-first search in the subset lattice of the item base B. Viewed properly, this approach
can be interpreted as a simple divide-and-conquer scheme. For some chosen item i, the problem to find
all frequent item sets is split into two subproblems: (1) find all frequent item sets containing the item
i and (2) find all frequent item sets not containing the item i. Each subproblem is then further divided
based on another item j: find all frequent item sets containing (1.1) both items i and j, (1.2) item i, but
not j, (2.1) item j, but not i, (2.2) neither item i nor j etc. In this way all possible item sets are eventually
considered.

All subproblems that occur in this divide-and-conquer recursion can be defined by a conditional
transaction database and a prefix. The prefix is a set of items that has to be added to all frequent item sets
that are discovered in the conditional database. Formally, all subproblems are tuples S = (C, P), where C
is a conditional database and P Í B is a prefix. The initial problem, with which the recursion is started,
is S = (T, Ø), where T is the given transaction database to mine and the prefix is empty. A subproblem
S0 = (C0, P0) is processed as follows: Choose an item i Î B0, where B0 is the set of items occurring in
C0. This choice is arbitrary, but usually follows some predefined order of the items. If s i s

C0
()

min
³ , then

report the item set P0 È {i} as frequent with the support s i
C0

() , and form the subproblem S1 = (C1, P1)
with P1 = P0 È {i}. The conditional database C1 comprises all transactions in C0 that contain the item
i, but with the item i removed. This also implies that transactions that contain no other item than i are
entirely removed: no empty transactions are ever kept. If C1 is not empty, S1 is processed recursively. In
any case (that is, regardless of whether s i s

C0
()

min
³ or not), form the subproblem S2 = (C2, P2), where

P2 = P0 and the conditional database C2 comprises all transactions in C0 (including those that do not
contain the item i), but again with the item i removed. If C2 is not empty, S2 is processed recursively.

Eclat, FP-growth, RElim and several other frequent item set mining algorithms all follow this basic
recursive processing scheme. They differ mainly in how they represent the conditional transaction da-
tabases and thus in how they do the support counting. There are basically two fundamental approaches,
namely horizontal and vertical representations. In a horizontal representation, the database is stored as
a list (or array) of transactions, each of which is a list (or array) of the items contained in it. In a vertical
representation, a database is represented by first referring with a list (or array) to the different items.
For each item a list of transaction identifiers is stored, which indicate the transactions that contain the
item.

However, this distinction is not pure, since there are many algorithms that use a combination of the
two forms of representing a database. For example, while Eclat uses a purely vertical representation,

257

(Approximate) Frequent Item Set Mining Made Simple

FP-growth combines in its FP-tree structure a vertical representation (links between branches) and a
(compressed) horizontal representation (prefix tree of transactions). RElim uses basically a horizontal
representation, but groups transactions w.r.t. their leading item, which is, at least partially, a vertical
representation. The SaM algorithm presented below is, to the best of our knowledge, the first frequent
item set mining algorithm that is based on the general processing scheme outlined above and uses a
purely horizontal representation.2

The basic processing scheme can easily be improved with so-called perfect extension pruning, which
relies on the following idea: given an item set I, an item i Ï I is called a perfect extension of I if I and
I È {i} have the same support, that is, if i is contained in all transactions containing I. Perfect exten-
sions have the following properties: (1) if the item i is a perfect extension of an item set I, then it is also
a perfect extension of any item set I Í J as long as i Ï J and (2) if I is a frequent item set and K is the
set of all perfect extensions of I, then all sets I È J with J Î 2K (where 2K denotes the power set of K)
are also frequent and have the same support as I.

These properties can be exploited by collecting in the recursion not only prefix items, but also, in a
third element of a subproblem description, perfect extension items. Once identified, perfect extension
items are no longer processed in the recursion, but are only used to generate all supersets of the prefix that
have the same support. Depending on the data set, this can lead to a considerable acceleration. It should
be clear that this optimization can, in principle, be applied in all frequent item set mining algorithms.3

A sIMPLE sPLIT AND MERgE ALgORITHM

The SaM (Split and Merge) algorithm presented in this paper can be seen as a simplification of the
already fairly simple RElim (Recursive Elimination) algorithm, which we proposed in (Borgelt 2005b)
and extended to approximate or “fuzzy” frequent item set mining in (Wang et al. 2005). While RElim
represents a (conditional) database by storing one transaction list for each item, the split and merge
algorithm presented here uses only a single transaction list, stored as an array. This array is processed
with a simple split and merge scheme, which computes a conditional database, processes this conditional
database recursively, and eliminates the split item from the original (conditional) database.

SaM preprocesses a given transaction database in a way that is very similar to the preprocessing used
by many other frequent item set mining algorithms. The steps are illustrated in Figure 1 for a simple
example transaction database. Step 1 shows the transaction database in its original form. In step 2 the
frequencies of individual items are determined from this input in order to be able to discard infrequent
items immediately. If we assume a minimum support of three transactions for our example, there are
no infrequent items, so all items are kept. In step 3 the (frequent) items in each transaction are sorted
according to their frequency in the transaction database, since it is well known that processing the items
in the order of increasing frequency usually leads to the shortest execution times. In step 4 the transac-
tions are sorted lexicographically into descending order, with item comparisons again being decided by
the item frequencies, although here the item with the higher frequency precedes the item with the lower
frequency. (This order, which may appear strange at first sight, is chosen to take care of the fact that in
a lexicographic order a word is preceded by any of its prefixes.) In step 5 the data structure on which
SaM operates is built by combining equal transactions and setting up an array, in which each element
consists of two fields: an occurrence counter and a pointer to the sorted transaction. This data structure
is then processed recursively to find the frequent item sets.

258

(Approximate) Frequent Item Set Mining Made Simple

The basic operations of the recursive processing, which follows the general depth-first/divide-
and-conquer scheme reviewed above, are illustrated in Figure 2. In the split step (see the left part of
Figure 2) the given array is split w.r.t. the leading item of the first transaction (item e in our example):
all array elements referring to transactions starting with this item are transferred to a new array. In this
process the pointer (in)to the transaction is advanced by one item, so that the common leading item is
“removed” from all transactions. Obviously, this new array represents the conditional database of the
first subproblem (see the description of the general depth-first/ divide-and-conquer scheme), which is
then processed recursively to find all frequent items sets containing the split item (provided this item is
frequent – otherwise the recursion is skipped as it cannot yield any frequent item sets).

The conditional database for frequent item sets not containing this item (needed for the second sub-
problem – see the description of the general depth-first/divide-and-conquer scheme) is obtained with
a simple merge step (see the right part of Figure 2). The created new array and the rest of the original
array (which refers to all transactions starting with a different item) are combined with a procedure that
is almost identical to one phase of the well-known mergesort algorithm. Since both arrays are obviously
lexicographically sorted, one merging traversal suffices to create a lexicographically sorted merged array.

Figure 1. The example database: original form (1), item frequencies (2), transactions with sorted items
(3), lexicographically sorted transactions (4), and the used data structure (5)

Figure 2. The basic operations of the SaM algorithm: split (left) and merge (right)

259

(Approximate) Frequent Item Set Mining Made Simple

The only difference to a mergesort phase is that equal transactions (or transaction suffixes) are combined.
That is, there is always just one instance of each transaction (suffix), while its number of occurrences
is kept in the occurrence counter. In our example this results in the merged array having two elements
less than the input arrays together: the transaction (suffixes) c b d and b d, which occur in both arrays,
are combined and their occurrence counters are increased to 2.

Note that in both the split and the merge step only the array elements (that is, the occurrence counter
and the (advanced) transaction pointer) are copied to a new array. There is no need to copy the transac-
tions themselves (that is, the item arrays), since no changes are ever made to them. (In the split step the
leading item is not actually removed, but only skipped by advancing the pointer (in)to the transaction.)
Hence it suffices to have one global copy of all transactions, which is merely referred to in different
ways from different arrays used in the processing.

Note also that the merge result may be created in the array that represented the original (conditional)
database, since its front elements have been cleared in the split step. In addition, the array for the split
database can be reused after the recursion for the split w.r.t. the next item. As a consequence, each recur-
sion step, which expands the prefix of the conditional database, only needs to allocate one new array,
with a size that is limited to the size of the input array of that recursion step. This makes the algorithm
not only simple in structure, but also very efficient in terms of memory consumption.

Finally, note that the fact that only a simple array is used as the underlying data structure, the algo-
rithm can fairly easily be implemented to work on external storage or a (relational) database system.
There is, in principle, no need to load the transactions into main memory and even the array may easily
be stored as a simple (relational) table. The split operation can then be implemented as an SQL select
statement. The merge operation is very similar to a join, even though it may require a more sophisticated
comparison of transactions (depending on how the transactions are actually stored).

Pseudo-code of the recursive procedure is shown in Figure 3. As can be seen, a single page of code is
sufficient to describe the whole recursion in detail. The actual C code we developed is even shorter than
this pseudo-code, despite the fact that the C code contains additional functionality (like, for example,
perfect extension pruning – see the general description of frequent pattern mining), because certain
operations needed in this algorithm can be written very concisely in C (especially when using pointer
arithmetic to process arrays).

ExACT FREQUENT ITEM sET MININg ExPERIMENTs

In order to evaluate the proposed SaM algorithm, we ran it against our own implementations of Apriori
(Borgelt 2003), Eclat (Borgelt 2003), FP-growth (Borgelt 2005a), and RElim (Borgelt 2005b), all of
which rely on the same code to read the transaction database and to report found frequent item sets.
Of course, using our own implementations has the disadvantage that not all of these implementations
reach the speed of the fastest known implementations.4 However, it has the important advantage that
any differences in execution time can only be attributed to differences in the actual processing scheme,
as all other parts of the programs are identical (loading transactions, reporting item sets). Therefore we
believe that the measured execution times are still reasonably expressive and allow us to compare the
different approaches in a reliable manner.

We ran experiments on five data sets, which were also used in (Borgelt 2003, Borgelt 2005a, Borgelt
2005b). As they exhibit different characteristics, the advantages and disadvantages of the different

260

(Approximate) Frequent Item Set Mining Made Simple

algorithms can be observed well. These data sets are: census (a data set derived from an extract of the
US census bureau data of 1994, which was preprocessed by discretizing numeric attributes), chess (a
data set listing chess end game positions for king vs. king and rook), mushroom (a data set describing
poisonous and edible mushrooms by different attributes), BMS-Webview-1 (a web click stream from
a leg-care company that no longer exists, which has been used in the KDD cup 2000 [Kohavi et al.
2000]), and T10I4D100K (an artificial data set generated with IBM’s well-known data generator). The
first three data sets are available from the UCI machine learning repository (Blake and Merz 1998).
The shell script used to discretize the numeric attributes of the census data set can be found at the URL
mentioned below.

Figure 3. Pseudo-code of the SaM algorithm. The actual C code is even shorter than this description,
despite the fact that it contains additional functionality (like perfect extension pruning), because certain
operations that are needed in this algorithm can be written very concisely in C (using pointer arithmetic
to process arrays).

261

(Approximate) Frequent Item Set Mining Made Simple

The first three data sets can be characterized as “dense”, meaning that on average a rather high frac-
tion of all items is present in each transaction (the average transaction length divided by the number of
different items is 0.1, 0.5, and 0.2, respectively, for these data sets), while the last two are rather “sparse”
(the average transaction length divided by the number of different items is 0.01 and 0.005, respectively,
for these data sets).5

For the experiments we used an Intel Core 2 Quad Q9300 machine with 3 GB of main memory running
openSuSE Linux 11.0 (32 bit) and gcc version 4.3.1. The results for these data sets are shown in Figure
4. Each diagram in this figure refers to one data set and shows the decimal logarithm of the execution
time in seconds (excluding the time to load the transaction database) over the minimum support (stated
as the number of transactions that must contain an item set in order to render it frequent).

These results show a fairly clear picture: SaM performs extremely well on dense data sets. It is the
fastest algorithm for the census data set and (though only by a very small margin) on the chess data set.
On the mushroom data set it performs on par with FP-growth and Relim, while it is faster than Eclat
and Apriori. On “sparse” data sets, however, SaM struggles. On the artificial data set T10I4D100K it
performs particularly badly and catches up with the performance of other algorithms only at the lowest
support levels.6 On BMS-Webview-1 it performs somewhat better, but again reaches the performance
of other algorithms only for fairly low support values.

Given SaM’s processing scheme, the cause of this behavior is easily found: it is clearly the merge
operation. Such a merge operation is most efficient if the two lists to merge do not differ too much in
length. Because of this, the recursive procedure of the mergesort algorithm splits its input into two lists
of roughly equal length. If, to consider an extreme case, it would always merge single elements with
the (recursively sorted) rest of the list, its time complexity would deteriorate from O(n log n) to O(n2).
The same applies to SaM: in a dense data set it is more likely that the two transaction lists do not differ
too much in length, while in a sparse data set it can rather be expected that the list containing the split
item will be rather short compared to the rest. As a consequence, SaM performs well on dense data sets,
but poorly on sparse ones.

The main reason for the merge operation is to keep the list sorted, so that (1) all transactions with
the same leading item are grouped together and (2) equal transactions (or transaction suffixes) can be
combined, thus reducing the number of objects to process. The obvious alternative to achieve (1), namely
to set up a separate list for each item, is employed by the RElim algorithm, which, as these experiments
show, performs considerably better on sparse data sets. On T10I4D100K it even outperforms all other
algorithms by a clear margin if the list for the next item to be processed is not sorted in order to combine
duplicate entries (grey curve in Figure 4). The reason is that the sorting, which in RElim only serves the
purpose to eliminate possible duplicates, causes higher costs than the gains resulting from having fewer
transactions to process. On all other data sets sorting the list (and thus removing duplicates) speeds up
the processing, thus providing another piece of evidence why SaM performs badly on T10I4100K.

These insights lead, of course, to several ideas how SaM could be improved. However, we do not
explore these possibilities in this paper, but leave them for future work.

APPROxIMATE FREQUENT ITEM sET MININg

In many applications of frequent item set mining the considered transactions do not contain all items that
are actually present. However, all of the algorithms mentioned so far seek to discover frequent item sets
based on exact matching and thus are not equipped to meet the needs arising in these applications.

262

(Approximate) Frequent Item Set Mining Made Simple

An example is the analysis of alarm sequences in telecommunication networks. A core task of analyz-
ing alarm sequences is to find collections of alarms occurring frequently together – so-called episodes.
In (Mannila et al. 1997) a time window was introduced that moves along the alarm sequence to build a
sequence of partially overlapping windows. Each window captures a specific slice of the alarm sequence.
In this way the problem of finding frequent episodes is transformed into the problem of finding frequent
item sets in a database of transactions, where each alarm can be treated as an item, the alarms in a time
window as a transaction, and the support of an episode is the number of windows in which the episode
occurred. Unfortunately, alarms often get delayed, lost, or repeated due to noise, transmission errors,
failing links etc. If alarms do not get through or are delayed, they can be missing from the transaction
(time window) its associated items (alarms) occur in. If we required exact containment of an item set
in this case, the support of some item sets, which could be frequent if the items did not get lost, may be
smaller than the user-specified minimum. This leads to a possible loss of potentially interesting frequent
item sets and to possibly distorted support values.

To cope with such missing information, we introduce the notion of an approximate or “fuzzy” frequent
item set. In contrast to research on fuzzy association rules (see, for example, [Kuok et al. 1998]), where
a fuzzy approach is used to handle quantitative items, we use the term “fuzzy” to refer to an item set that

Figure 4. Experimental results on five different data sets. Each diagram shows the minimum support (as
the minimum number of transactions that contain an item set) on the horizontal axis and the decimal
logarithm of the execution time in seconds on the vertical axis. The data sets underlying the diagrams
on the left are rather dense; those underlying the diagrams on the right are rather sparse.

263

(Approximate) Frequent Item Set Mining Made Simple

may not be found exactly in all supporting transactions, but only approximately. Related work in this
direction includes (Cheng et al. 2001, Pei et al. 2001), where Apriori-like algorithms were introduced
and mining with approximate matching was performed by counting the number of different items in
the two item sets to be compared. In this paper, however, we adopt a more general scheme, based on an
approximate matching approach, which exhibits a much higher flexibility. Our approach employs two
core ingredients: edit costs and transaction weights (Wang et al. 2005).

Edit costs: The distance between two item sets can conveniently be defined as the costs of the cheap-
est sequence of edit operations needed to transform one item set into the other (Moen 2000).

Here we consider only insertions, since they are very easy to implement with our algorithm.7 With
the help of an “insertion cost” or “insertion penalty” a flexible and general framework for modeling
approximate matching between two item sets can be established. The interpretation of such costs or
penalties depends, of course, on the application. In addition, different items can be associated with dif-
ferent insertion costs. For example, in telecommunication networks different alarms can have a different
probability of getting lost: usually alarms originating in lower levels of the module hierarchy get lost
more easily than alarms originating in higher levels. Therefore the former can be associated with lower
insertion costs than the latter. The insertion of a certain item may also be completely inhibited by as-
signing a very high insertion cost.

Transaction weights: Each transaction t in the original database T is associated with a weight w(t).
The initial weight of each transaction is 1. When inserting an item i into a transaction t, its weight is
“penalized” with a cost c(i) associated with the item. Formally, this can be described by a combination
function: the new weight of the transaction t after inserting an item i Ï t is w{i} = f(w(t), c(i)) where f is
a function that combines the weight w(t) before editing and the insertion cost c(i). There is, of course, a
wide variety of possible combination functions. For example, any t-norm may be used. For simplicity, we
use multiplication here, that is, w{i} = w(t) c(i), but this is a more or less arbitrary choice. Note, however,
that with this choice lower values of c(i) mean higher costs as they penalize the weight more, but it has
the advantage that it is easily extended to an insertion of multiple items: w t w t c i

i i kk

m

m{ ,..., }
() () ()

1 1
= ×

=Õ .
It should be clear that it is wØ(t) = 1 due to the initial weighting w(t) = 1.

How many insertions into a transaction are allowed may be limited by a user-specified lower bound
wmin for the transaction weight. If the weight of a transaction falls below this threshold, it is not con-
sidered in further mining steps and thus no further items may be inserted into it. Of course, this weight
may also be set to zero (unlimited insertions). As a consequence, the fuzzy support of an item set I w.r.t.
a transaction database T can be defined as s w t w w t

T I tt T I t
()

min
(()) ()fuzzy = ³ ×-Î -å t , where τ(φ) is a

kind of “truth function”, which is 1 if φ is true and 0 otherwise.
Note that SaM is particularly well suited to handle this scheme of item insertions, because it relies on

a horizontal transaction representation, which makes it very simple to incorporate transaction weights
into the mining process. With other algorithms (with the exception of RElim, which also uses a basi-
cally horizontal representation), more effort is usually needed in order to extend them to approximate
frequent item set mining.

For the implementation of the approximate frequent item set mining scheme outlined above, it is
important to distinguish between unlimited item insertions (that is, wmin = 0) and limited item insertions
(that is, wmin > 0). The reason is that with wmin = 0 a transaction always contributes to the support of
any item set (because, in principle, all items of the item set could be inserted), while with wmin > 0 a

264

(Approximate) Frequent Item Set Mining Made Simple

transaction only contributes to those item sets which it can be made to contain by inserting items without
reducing the transaction weight below the threshold wmin .

As a consequence it is possible to combine equal transactions (or transaction suffixes) without restric-
tion if wmin = 0: if we have two equal transactions (or transactions suffixes) t1 and t2 with weights w1
and w2, respectively, we can combine t1 and t2 into one transaction (suffix) t with weight w1 + w2 even
if w1 ≠ w2. If another item i needs to be inserted into t1 and t2 in order to make them contain a given
item set I, the distributive law (that is, the fact that w1 c(i) + w2 c(i) = (w1 + w2) c(i)) ensures that we
still compute the correct support for the item set I in this case.

If, however, we have wmin > 0 and, say, w1 > w2, then using (w1 + w2) c(i) as the support contrib-
uted by the combined transaction t to the support of the item set I may be wrong, since it may be that w1
c(i) > wmin, but w2 c(i) < wmin. In this case the support contributed by the two transactions t1 and t2
would rather be w1 c(i). Effectively, transaction t2 does not contribute, since its weight would fall below
the minimum transaction weight threshold by inserting the item i. Hence, under these circumstances,
we can combine equal transactions (or transaction suffixes) only if they have the same weight (that is,
only if w1 = w2).

UNLIMITED ITEM INsERTIONs

If unlimited item insertions are possible (wmin = 0), only a minor change has to be made to the data
structure: instead of an integer occurrence counter for the transactions (or transaction suffixes), we need
a real-valued transaction weight. In the processing, the split step stays the same (see Figure 5 on the left).
However, now it only yields an intermediate database, into which all transactions (or transaction suffixes)
have been transferred that actually contain the split item under consideration (item e in the example).

In order to build the full conditional database, we have to add those transactions that do not contain
the split item, but can be made to contain it by inserting it. This is achieved in the merge step, in which
two parallel merge operations are carried out now (see Figure 5 on the right). The first part (shown in
black) is the merge that yields (as in the basic algorithm) the conditional database for frequent item sets
not containing the split item. The second part (shown in blue) adds those transactions that do not contain
the split item, weighted down with the insertion penalty, to the intermediate database created in the split
step. Of course, this second part of the merge operation is only carried out, if c(i) > 0, where i is the split
item, because otherwise no support would be contributed by the transactions not containing the item i
and hence it would not be necessary to add them. In such a case the result of the split step would already
yield the conditional database for frequent item sets containing the split item.

Note that in both parts of the merge operation equal transactions (or transaction suffixes) can be com-
bined regardless of their weight. As a consequence we have in Figure 5 entries like for the transaction
(suffix) c b d, with a weight of 1.2, which stands for one occurrence with weight 1 and one occurrence
with weight 0.2 (due to the penalty factor 0.2, needed to account for the insertion of item e). As an ad-
ditional illustration, Figure 6 shows the split and merge operations for the second recursion level (which
work on the conditional database for the prefix e constructed on the first level).

265

(Approximate) Frequent Item Set Mining Made Simple

LIMITED ITEM INsERTIONs

If item insertions are limited by a threshold for the transaction weight (wmin > 0), we have to represent
the transaction weight explicitly and keep it separate from the number of occurrences of the transac-
tion. Therefore the data structure must be extended to comprise, per transaction (suffix), (1) a pointer
to the item array, (2) an integer occurrence counter, and (3) a real-valued transaction weight. The last
field will be subject to a thresholding operation by wmin and no transactions with this field lower than
wmin will ever be kept. In addition, there may now be array elements that refer to the same transaction
(suffix) – that is, the same list of items – and which differ only in the transaction weight (and maybe, of
course, at the same time in the occurrence counter).

Figure 5. The extended operations: unlimited item insertions, first recursion level

Figure 6. The extended operations: unlimited item insertions, second recursion level

266

(Approximate) Frequent Item Set Mining Made Simple

The processing scheme is illustrated in Figure 7 with the same example as before. The split step is
still essentially the same and only the merge step is modified. The difference consists, as already pointed
out, in the fact that equal transactions (or transaction suffixes) can no longer be combined if they differ in
weight. As a consequence, there are now, in the result of the second part of the merge operation (shown
in blue) two array elements for c b d and two for b d, which carry a different weight (one has a weight
of 1, the other a weight of 0.2). As already explained above, this is necessary, because two transactions
with different weight may reach, due to item insertions, the transaction weight threshold at different
times and thus cannot be combined.

Of course, it rarely happens on the first level of the recursion that transactions are discarded due to
the weight threshold. This can only occur on the first level, if the insertion penalty factor of the split item
is already smaller than the transaction weight threshold, which is equivalent to inhibiting insertions of
the split item altogether. Therefore, in order to illustrate this aspect of the processing scheme, Figure 8
shows the operations on the second recursion level, where the conditional database with prefix e (that is,
for frequent item sets containing item e) is processed. Here the second part of the merge process actually
discards transactions if we set a transaction weight limit of 0.1: all transactions, which need two items
(namely both e and a) to be inserted, are not copied.

APPROxIMATE FREQUENT ITEM sET MININg ExPERIMENTs

Since we want to present several diagrams per data set in order to illustrate the influence of the different
parameters (insertion penalty factor, number of items with a non-vanishing penalty factor, threshold for
the transaction weight), we limit our report to the results on two of the five data sets used for the exact
mining experiments. We chose census and BMS-Webview-1, one dense and one sparse data set, since
SaM and RElim (the two algorithms of which we have implementations that can find approximate fre-

Figure 7. The extended operations: limited item insertions, first recursion level

267

(Approximate) Frequent Item Set Mining Made Simple

quent item sets) exhibit a significantly different behavior on dense and sparse data sets (as can already
be seen from the exact mining results).

The results are shown in Figure 9 for the census data set and in Figure 10 for the BMS-Webview-1
data set. In both figures the diagrams on the left show the decimal logarithm of the number of found
frequent item sets, while the diagrams on the right show the decimal logarithm of the execution times (in
seconds) for our implementations of SaM and RElim. The different parameters we tested in our experi-
ments are: insertion penalty factors of 1/8 = 0.125, 1/16 = 0.0625, and 1/32 = 0.03125, non-vanishing
insertion penalty factors for 10, 20, and 40 items, and transaction weight thresholds that allowed for 1,
2 or an unlimited number of item insertions.8

As can be seen from the diagrams on the left of each figure, the two data sets react very differently
to the possibility of inserting items into transactions. While the number of found frequent item sets rises
steeply with all parameters for the census data set, it rises only very moderately for the BMS-Webview-1
data set, with the factor even leveling off for lower support values. As it seems, this effect is due, to a
large degree, to the sparseness of the BMS-Webview-1 data set (this needs closer examination, though,
and provides a direction for future work).

As could be expected from the results of the basic algorithms on the five data sets used for the exact
mining experiments, SaM fares better on the dense data set (census), beating RElim by basically the
same margin (factor) in all parameter settings, while SaM is clearly outperformed by RElim on the sparse
data set (BMS-Webview-1), even though the two algorithms were on par without item insertion. On both
data sets, the number of insertions that are allowed has, not surprisingly, the strongest influence: with
two insertions about an order of magnitude larger times result than with only one insertion. However,
the possibility to combine equal transactions with different weights still seems to keep the execution
times for unlimited insertions within limits.

The number of items with a non-vanishing penalty factor and the value of the penalty factor itself seem
to have a similar influence: doubling the number of items leads to roughly the same effect as keeping

Figure 8. The extended operations: limited item insertions, second recursion level

268

(Approximate) Frequent Item Set Mining Made Simple

the number the same and doubling the penalty factor. This is plausible, since there should not be much
difference in having the possibility to insert twice the number items or preserving twice the transaction
weight per item insertion. Note, however, that doubling the penalty factor from 1/32 to 1/16 has only a
comparatively small effect on the BMS-Webview-1 data set compared to doubling from 1/16 to 1/8. On
the census data set the effects are a bit more in line.

Figure 9. Experimental results on census data; left: frequent item sets, right: execution times

269

(Approximate) Frequent Item Set Mining Made Simple

Overall it should be noted that the execution times, though considerably increased over those obtained
without item insertions, still remain within acceptable limits. Even with 40 items having an insertion
penalty factor of 1/8 and unlimited insertions, few execution times exceed 180 seconds (log(180) ≈ 2.25).
In addition, we can observe the interesting effect on the BMS-Webview-1 data set that at the highest
parameter settings the execution times become almost independent of the minimum support threshold.

Figure 10. Experimental results on webview1; left: frequent item sets, right: execution times

270

(Approximate) Frequent Item Set Mining Made Simple

CONCLUsION

In this paper we presented a very simple split and merge algorithm for frequent item set mining, which,
due to the fact that it uses a purely horizontal transaction representation, lends itself well to an extension
to approximate or “fuzzy” frequent item set mining. In addition, it is a highly recommendable method if
the data to mine cannot be loaded into main memory and thus the data has to be processed on external
storage or in a (relational) database system. As our experimental results show, our SaM algorithm performs
excellently on dense data sets, but shows certain weaknesses on sparse data sets. This applies not only
for exact mining, but also for approximate frequent item set mining. However, our experiments provide
some evidence (to be substantiated on other data sets) that approximate frequent item set mining is much
more useful for dense data sets as more additional frequent item sets can be found on these. Hence SaM
performs better in the (likely) more relevant case. Most importantly, however, one should note that with
both SaM and RElim the execution times remain bearable (in the order of a few minutes).

sOFTWARE

An implementation of the • SaM algorithm in C can be found at: http://www.borgelt.net/sam.html
while an implementation of the • RElim algorithm in C is available at: http://www.borgelt.net/
relim.html
Implementations of other • frequent item set mining algorithms can be found at: http://www.borgelt.
net/fpm.html

REFERENCEs

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. (1996). Fast discovery of association
rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge
discovery and data mining (pp. 307-328). Cambridge, MA, USA: AAAI Press / MIT Press.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. of the 20th Int.
Conf. on Very Large Databases (VLDB 1994), Santiago de Chile (pp. 487-499). San Mateo, CA, USA:
Morgan Kaufmann.

Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Irvine, CA, USA:
Dept. of Information and Computer Science, University of California. Retrieved from http://www.ics.
uci.edu/~mlearn/MLRepository.html

Borgelt, C. (2003). Efficient implementations of apriori and eclat. In Proc. of the Workshop Frequent
Item Set Mining Implementations (FIMI 2003, Melbourne, FL, USA), CEUR Workshop Proceedings
90. Aachen, Germany: Sun SITE Central Europe / University of Aachen. Retrieved from http://www.
ceur-ws.org/Vol-90/

271

(Approximate) Frequent Item Set Mining Made Simple

Borgelt, C. (2005a). An implementation of the FP-growth algorithm. In Proc. of the Workshop Open
Software for Data Mining (OSDM’05 at KDD’05) Chicago, IL (pp. 1-5). New York, NY, USA: ACM
Press.

Borgelt, C. (2005b). Keeping things simple: Finding frequent item sets by recursive elimination. In Proc.
of the Workshop Open Software for Data Mining (OSDM’05 at KDD’05), Chicago, IL (pp. 66-70). New
York, NY, USA: ACM Press.

Böttcher, M., Spott, M., & Nauck, D. (2005). Detecting temporally redundant association rules. In Proc.
of the 4th Int. Conf. on Machine Learning and Applications (ICMLA 2005), Los Angeles, CA (pp. 397-
403). Piscataway, NJ, USA: IEEE Press.

Böttcher, M., Spott, M., & Nauck, D. (2007). Framework for discovering and analyzing changing cus-
tomer segments. In Advances in data mining - theoretical aspects and applications (LNCS 4597, pp.
255-268). Berlin, Germany: Springer.

Cheng, Y., Fayyad, U., & Bradley, P. S. (2001). Efficient discovery of error-tolerant frequent itemsets
in high dimensions. In Proc. of the 7th Int. Conf. on Knowledge Discovery and Data Mining (KDD’01),
San Francisco, CA (pp. 194-203). New York, NY, USA: ACM Press.

Han, J., Pei, H., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Proc. of
the Conf. on the Management of Data (SIGMOD’00), Dallas, TX (pp. 1-12). New York, NY, USA:
ACM Press.

Kohavi, R., Bradley, C. E., Frasca, B., Mason, L., & Zheng, Z. (2000). KDD-Cup 2000 organizers’ report:
Peeling the onion. SIGKDD Exploration, 2(2), 86–93. doi:10.1145/380995.381033

Kuok, C., Fu, A., & Wong, M. (1998). Mining fuzzy association rules in databases. [New York, NY,
USA: ACM Press.]. SIGMOD Record, 27(1), 41–46. doi:10.1145/273244.273257

Moen, P. (2000). Attribute, event sequence, and event type similarity notions for data mining. Unpub-
lished doctoral dissertation (Report A-2000-1), Helsinki, Finland: Department of Computer Science,
University of Helsinki.

Pei, J., Han, J., Mortazavi-Asl, B., & Zhu, H. (2000). Mining access patterns efficiently from Web logs.
In Proc. of the Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD’00), Kyoto, Japan
(pp. 396-407). New York, NY, USA: Springer.

Pei, J., Tung, A. K. H., & Han, J. (2001). Fault-tolerant frequent pattern mining: Problems and challenges.
In Proc. of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
(DMK’01), Santa Babara, CA (pp. 7-12). New York, NY, USA: ACM Press.

Rász, B. (2004). nonordfp: An FP-growth variation without rebuilding the FP-Tree. In Proc. of the
Workshop Frequent Item Set Mining Implementations (FIMI 2004), Brighton, UK, CEUR Workshop
Proceedings 126. Aachen, Germany: Sun SITE Central Europe / University of Aachen. Retrieved from
http://www.ceur-ws.org/Vol-126/

272

(Approximate) Frequent Item Set Mining Made Simple

Rász, B., Bodon, F., & Schmidt-Thieme, L. (2005). On benchmarking frequent itemset mining algo-
rithms. In Proc. of the Workshop Open Software for Data Mining (OSDM’05 at KDD’05), Chicago, IL
(pp. 36-45). New York, NY, USA: ACM Press.

Wang, X., Borgelt, C., & Kruse, R. (2005). Mining fuzzy frequent item sets. In Proc. of the 11th Int.
Fuzzy Systems Association World Congress (IFSA’05), Beijing, China (pp. 528-533). Beijing, China:
Tsinghua University Press.

Webb, G. I. (2007). Discovering significant patterns. Machine Learning, 68(1), 1–33. doi:10.1007/
s10994-007-5006-x

Webb, G. I., & Zhang, S. (2005). k-Optimal-rule-discovery. Data Mining and Knowledge Discovery,
10(1), 39–79. doi:10.1007/s10618-005-0255-4

Zaki, M., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast discovery of associa-
tion rules. In Proc. of the 3rd Int. Conf. on Knowledge Discovery and Data Mining (KDD’97), Newport
Beach, CA (pp. 283-296). Menlo Park, CA, USA: AAAI Press. Mannila, H., Toivonen, H., & Verkamo,
A.I. (1997). Discovery of frequent episodes in event sequences (Report C-1997-15). Helsinki, Finland:
Department of Computer Science, University of Helsinki.

ENDNOTEs

1 Alternatively, each transaction may be enhanced by a unique transaction identifier, and these en-
hanced transactions may then be combined in a simple set.

2 Note that Apriori, which also uses a purely horizontal representation, relies on a different process-
ing scheme, since it traverses the subset lattice level-wise rather than depth-first.

3 Note that exploiting perfect extensions in the search for frequent item sets and restricting this search
to so-called closed item sets are not equivalent, even though a closed item set can be defined as
an item set that does not possess any perfect extensions. The reason is that in the search, due to
the guidance by a global order of the items, not all possible extensions are considered and thus an
item set may be non-closed even though none of the considered extensions is perfect.

4 In particular, in [Rasz 2004] an FP-growth implementation was presented, which is highly optimized
to how modern processor access their main memory [Rasz et al. 2005].

5 Note that the density defined in this way is equivalent to the fraction of ones in a bit matrix repre-
sentation of the transaction database, which may be the more common form in which this measure
can be defined.

6 It should be noted, though, that SaM’s execution times on T10I4D100K are always around 5 sec-
onds on this data set and thus not unbearable.

7 Note that deletions are implicit in the mining process anyway (as we search for subsets of the
transactions). Only replacements are an additional case we do not consider here.

8 Since we used the same insertion penalty factor c(i) for all items having c(i) > 0, the transaction
weight threshold effectively limits the number of insertions regardless of which items are inserted.
Hence this description is more expressive than stating the actual values wmin used.

273

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

Fuzzy Association Rules
to Summarise Multiple

Taxonomies in Large Databases
Trevor Martin

University of Bristol, UK; Intelligent Systems Research Centre, BT Innovate, UK

Yun Shen
University of Bristol, UK

INTRODUCTION

A key feature of human intelligence is our ability to categorise and summarise large quantities of data,
whether this data arises from sensory input or from other sources. The ability to group multiple enti-
ties together into an (approximately) uniform whole allows us to efficiently represent a whole group
as a single concept, enabling us to reason, and to derive knowledge, about groups of entities. A simple
form of derived knowledge is association - essentially, that the extensions of two concepts overlap
significantly. One of the fundamental tenets underlying fuzzy set theory (Zadeh, 1965) is the idea that
humans work with groups of entities (or conceptual categories) that are loosely defined, able to admit
elements according to some scale of membership rather than according to an absolute yes/no test. This

AbsTRACT

When working with large datasets, a natural approach is to group similar items into categories (or
sets) and summarise the data in terms of such categories. Fuzzy set theory allows us to represent and
reason about sets of objects without providing crisp definitions for each group, an approach that often
reflects the human interpretation of categories. Given two or more hierarchical sets of categories, our
aim is to determine the correspondence between categories (e.g., approximate equivalence). Association
rules are a useful tool in knowledge discovery from databases but are normally defined in terms of crisp
rather than fuzzy categories. In this chapter, the authors describe a new method for calculating a fuzzy
confidence value for association rules between fuzzy categories, using a novel approach based on mass
assignment theory.

DOI: 10.4018/978-1-60566-858-1.ch011

274

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

is particularly true where the knowledge and/or reasoning uses natural language - humans can com-
municate quickly and efficiently with an informal shared understanding of the vocabulary. Although
different individuals may have slightly different interpretations of terms, meaning can still be conveyed
sufficiently accurately in almost all cases.

A further step in the idea of grouping entities together leads us to the notion of a taxonomy, i.e. a
hierarchical series of progressively more refined categories. This enables us to represent / reason about
problems at the appropriate level of granularity, and the use of taxonomic hierarchies to organise infor-
mation and sets of objects into manageable chunks (granules) is widespread. For example, taxonomies
serve as the main organisational principle for the grouping of species, for systems of government (na-
tional - regional - local), for corporate and command structures, for libraries, for document repositories
and very many other applications.

Granules were informally defined by (Zadeh, 1997) as a way of decomposing a whole into parts,
generally in a hierarchical way using fuzzy representations. Although in principle a taxonomic hierarchy
is crisply defined, in practice there is often a degree of arbitrariness in its definition. For example, we
might divide the countries of the world by continent at the top level of a taxonomic hierarchy. However,
continents do not have crisp definitions - Europe contains some definite members (e.g. France, Germany)
but at the Eastern and South-Eastern border, the question of which countries belong / do not belong is
less clear. Iceland is generally included in Europe despite being physically closer to Greenland (part of
North America). Thus although the word “Europe” denotes a set of countries (i.e. it is a granule) and can
be used as the basis for communication between humans, it does not have an unambiguous definition in
terms of the elements that belong to the set. Different “authorities” adopt different definitions - the set
of countries eligible to enter European football competitions differs from the set of countries eligible to
enter the Eurovision song contest, for example.

Of course, mathematical and some legal taxonomic structures can be very precisely defined - in plane
geometry, the class of polyhedra further subdivides into triangles, quadrilaterals, etc and triangles may
be subdivided into equilateral, isosceles etc. Such definitions admit no uncertainty. Most information
systems model the world in some way, and need to represent categories which correspond to the loosely
defined classes used by humans in natural language. For example, a company may wish to divide adults
into customers and non-customers, and then sub-divide these into high-value customers, dissatisfied
customers, potential customers, etc. Such categories are not necessarily distinct (i.e. they may be a
covering rather than a partition) but more importantly, membership in these categories is graded - cus-
tomer X may be highly dissatisfied and about to find a new supplier whilst customer Y is only mildly
dissatisfied. We argue that most hierarchical taxonomies involve graded or loosely defined categories,
but the nature of computerised information systems means that a more-or-less arbitrary decision has to
be made on borderline cases, giving the taxonomy the appearance of a crisp, well-defined hierarchy.
This may not be a problem as long as a rigorous and consistent criterion for membership is used (e.g. a
dissatisfied customer is defined as one who has made at least two calls complaining about service), but
the lack of subjectivity in a definition is rare. The use of graded membership (fuzziness) in categories
enhances their expressive power and usefulness.

There is rarely a unique way of splitting data into conceptual categories, and numerous methodologies
exist to aid with design of databases and similar information systems. Our previous work “Smart Queries
and Adaptive Data” (SQuAD) project is concerned with adding structure to data (i.e. moving up the meta-
data scale) and refining approximate knowledge (in the form of fuzzy association rules) from this data
(see (Martin et al., 2008b) (Martin & Azvine, 2003, 2005; Martin et al., 2007b)). The aim is to assist in

275

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

the creation of useful information from diverse sources of semi-structured data - allowing extraction and
integration from multiple sources of information and re-organisation based on an individual’s personal
categories. The final stage is to look for strong associations between different (fuzzy) categories. This
is the main point of the work reported here - given two different conceptual categorisation hierarchies,
how can we find correspondences (e.g. approximate equivalence) between classes?

Association rules (in their crisp form) are a well-established technique for knowledge discovery in
databases, enabling “interesting” relations to be discovered. There have been a number of proposals to
develop fuzzy association rules, that is to discover the degree of association between fuzzy categories.
Some of our recent work has used mass assignment theory (Baldwin, 1992; 1994; Baldwin et al., 1995)
to develop a novel approach able to find a point valued association strength between fuzzy categories
(Martin et al., 2007a) and an interval-valued version (Martin & Shen, 2008).

In common with other work on fuzzy association rules, this work assumes there is a crisp value for the
rule confidence. We note that much of the power of fuzzy approaches arises from the ability to produce
fuzzy results, i.e. to effectively postpone the decision on whether a given element “belongs” to a set or
not. For example, if a cooling fan is controlled by the control rules

if temperature is • a little high, increase fan speed slightly
if temperature is • a little low, decrease fan speed slightly

then a traditional approach requires us to specify precise limits for the intervals “a little high” and “a little
low”, and precise single values for a “slight” increase or decrease in speed. In contrast, a fuzzy control
approach allows us to return the fuzzy definitions and propagate them through the inference process, only
converting to a crisp value at the final stage when a decision must be made to change the fan speed. In
a similar vein, we argue that, in looking for association strengths between fuzzy categories, it is better
to propagate the fuzziness through the calculation and produce a fuzzy value rather than a single value
to represent the association strength. Our mantra is fuzzy in, fuzzy out.

In this paper we describe a new method for calculating a fuzzy confidence for association rules between
normal fuzzy categories (or granules), to be used in finding correspondences between fuzzy taxonomies.
We briefly summarise previous discussion of the semantics of fuzzy sets when used to describe granules,
and problems that arise from fuzzy association rule approaches based on crisp cardinalities of fuzzy sets.
Some difficulties with our previous interval-based confidence measure are also outlined.

The main contribution of this paper is a novel mass assignment-based method for calculating a fuzzy
confidence in associations between fuzzy categories. It relies on a new method of converting fuzzy rela-
tions to mass assignments and a definition of membership in the fuzzy confidence values related to the
movement of mass needed to produce that association confidence value, relative to the confidence value
derived from a least prejudiced mass assignment. We show that minimum and maximum values for the
confidence can be found quickly, and memberships calculated based on the corresponding mass assign-
ments. A “conceptual” algorithm is presented, although the actual implementation is considerably more
efficient. Finally, some results are presented showing that the algorithm can scale to large calculations
and comparing results to our previous implementation.

276

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

FUZZY sETs IN INFORMATION sYsTEMs

Many authors (e.g. (Bosc & Bouchon-Meunier, 1994)) have proposed the use of fuzzy sets to model
uncertain values in databases and other knowledge based applications. The standard interpretation of
a fuzzy set in this context is as a possibility distribution - that is to say it represents a single valued at-
tribute which is not known exactly. For example we might use the fuzzy set tall to represent the height
of a specific person or low to represent the value shown on a dice. The fuzzy sets tall and low admit a
range of values, to a greater or lesser degree; the actual value is taken from the range. Knowing that a
dice value val is even restricts the possible values to val=2 XOR val=4 XOR val=6 (where XOR is an
exclusive or). If a fuzzy set on the same universe is defined as low = {1/1, 2/1, 3/0.4} then knowing
the value val is low restricts the possible values to val=1 XOR val=2 XOR val=3 with corresponding
memberships.

The conjunctive interpretation of a fuzzy set occurs when the attribute can have multiple values.
For example, a person may be able to speak several languages; we could model this as a fuzzy set of
languages, where membership would depend on the degree of fluency. This is formally a relation rather
than a function on the underlying sets. Our position is to make a distinction between the conjunctive
interpretation - modelled by a monadic fuzzy relation – and the disjunctive interpretation – modelled
by a possibility distribution. To emphasise the distinction, we use the notation

F(a) = {x/μ(x) | x ∈ U}

to denote a single valued attribute F of some object a (i.e. a possibility distribution over a universe U)
and

R(a) = [x/χ(x) | x ∈ U]

to denote a multi-valued attribute (relation). Fuzzy categories (granules) represent the latter case, since
we have multiple values that satisfy the predicate to a greater or lesser degree.

ExTENDINg AssOCIATION RULEs TO FUZZY CATEgORIEs

In creating association rules within transaction databases (e.g. (Agrawal & Srikant, 1994), see also
(Dubois et al., 2006) for a clear overview), the standard approach is to consider a table in which columns
correspond to items and each row is a transaction. A column contains 1 if the item was bought, and 0
otherwise. The aim of association rule mining is to determine whether or not there are links between
two disjoint subsets of items – for example, do customers generally buy biscuits and cheese when beer,
lager and wine are bought? These disjoint subsets can represent categories, as described earlier.

Let I denote the set of items, so that any transaction can be represented as tr ⊆ I, and consider X, the
set of all transactions (strictly speaking, X is a multi-set but can be made into a set by adding a unique
identifier to each transaction). We must also specify two categories (or itemsets) s and t, which are non-
empty, non-overlapping subsets of I,

t ⊂ I

277

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

s ⊂ I	

s ∩ t = ∅	

and the sets of transactions containing s and t

S x x X s x

T x x X t x 	

An association rule is of the form s => t and is interpreted as stating that when the items in s appear
in a transaction, it is likely that the items in t will also appear i.e. it is not an implication in the formal
logical sense. A slight abuse of notation allows us to use S => T or s => t as the rule.

Most authors use two measures to assess the significance of association rules. The support of a rule s
=> t is the number (or relative number) of transactions in which both s and t appear, and the confidence
of the rule is an estimate (based on the samples) of the conditional probability of t being contained in a
transaction given that it contains s

Support(s,   t)=|S∩T|	 (1)

and

,
S T

Conf s t
S 	 (2)

Typically a threshold is chosen for the support, so that only frequently occurring sets of items s and
t are considered; a second threshold filters out rules of low confidence.

For example, consider a database of sales employees, salaries and sales figures. A mining task might
be to find out whether the good sales figures are achieved by the highly paid employees. Given the
database table in Figure 1, we can obtain rule confidences ranging from 1/3 up to 1 by different crisp
definitions of “good sales” and “high salary”, as shown on the right of Figure 1. Although this is a
contrived example, such sensitivity to the cut-off points adopted for crisp definitions is a good indication
that a fuzzy approach is more in line with human understanding of the categories.

Figure 1. A simple database of names (a, b, c, d), sales and salary figures (left) and (right) the confi-
dences for an association rule good sales => high salary arising from different crisp definitions of the
terms good sales and high salary.

278

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

Various approaches to fuzzifying association rules have been proposed e.g. (Bosc & Pivert, 2001;
Dubois et al., 2006; Kacprzyk & Zadrozny, 2003). The standard extension to the fuzzy case is to treat
the (multi-) sets S, T as fuzzy and find the intersection and cardinality using a t-norm and sigma-count
respectively.

,
S T

x X

S
x X

x
Conf S T

x
 (3)

In the example of Figure 1, a fuzzy approach would categorise employees according to whether their
salaries are high, (or medium or low) and also according to whether their sales figures are good, moder-
ate or poor. Taking a simple linear membership function from 0 to the maximum value in goodSales
and highSalary leads to

S = [a/1, b/0.8, c/0.5, d/0.2]

and

T = [a/1, b/0.4, c/0.8, d/0.7]

which gives a confidence of 0.84 for the association S=>T using eq. (3). NB this example is used
throughout the paper.

As pointed out by (Dubois et al., 2006), using min and the sigma count for cardinality can be unsat-
isfactory because it does not distinguish between several tuples with low memberships and few tuples
with high memberships - for example,

1

2

1

1

S x

T x

leads to Conf(S, T) = 0 but

1 2 3 1000

1 2 3 1000

1, 0.01, 0.01, , 0.01

0.01, 1, 0.01, , 0.01

S x x x x

T x x x x

leads to

1000 0.01
, 0.91

1 999 0.01
Conf S T

which is extremely high for two almost disjoint sets (this example originally appeared in (Martin-
Bautista et al., 2000)). Using a fuzzy cardinality (i.e. a fuzzy set over the possible cardinality values)
is also potentially problematic since the result is a possibility distribution over rational numbers, and

279

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

the extension principle (Zadeh, 1975) gives a wider bound than it should, due to neglect of interactions
between the numerator and denominator in this expression. For example, given

S = [x1/1, x2/0.8]

T = [x1/1, x2/0.4].

the fuzzy cardinalities are

|S ∩ T | = {1/1, 2/0.4},

|S | = {1/1, 2/0.8}

leading (by the extension principle) to a confidence of {0.5/0.8, 1/1, 2/0.4} which is clearly incorrect
as the confidence cannot be greater than 1. We conclude that neither the crisp nor the fuzzy cardinality
method is satisfactory. In addition to the problems outlined above, any attempt to derive a crisp associa-
tion confidence from fuzzy categories is hiding the uncertainty - as is well known from fuzzy control,
an output is generally at least as fuzzy as the inputs. Whilst it is possible to defuzzify to an approximate
crisp value, this should only be done when necessary.

A number of approaches to association rules have been proposed - for example (Delgado et al., 2003),
where the fuzzy association rule is interpreted as a quantified sentence. The confidence of the fuzzy
association rule S ⇒ T in the set of fuzzy transactions X is the evaluation of the quantified sentence
“Q of Xs are Xt ” where Q is a fuzzy quantifier and Xs (resp Xt) is the (fuzzy) subset of transactions
containing s (resp t)

Our previous work (Martin et al., 2008a; Martin & Shen, 2008) started from the fact that a relation
represents a conjunctive set of ordered n-tuples i.e. a conjunction of n ground clauses, and used mass
assignment theory (Baldwin et al 1995; Baldwin 1992; Baldwin 1994) as representation. For example,
if U is the set of dice values then we could define a (crisp) predicate differBy4or5 on U × U as the set
of pairs

[(1,6), (1,5), (2,6), (5,1), (6,1), (6, 2)]

This is a conjunctive set, in that each pair satisfies the predicate. In a similar way, a fuzzy relation
represents a set of n-tuples that satisfy a predicate to some degree. Thus differByLargeAmount could
be represented by

[(1,6)/1, (1,5)/0.6, (2,6)/0.6, (5,1)/0.6, (6,1)/1, (6,2)/0.6]

The interpretation is not that a single pair satisfies this predicate, but that one set of pairs satisfies it
(out of several possible sets of pairs). Thus we represent it as a mass assignment on possible relations:

280

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

1

2

1 1 2

(1, 6),(6,1)

(1, 6),(1, 5),(2, 6),(5,1),(6,1),(6,2)

: 0.4, , : 0.6

R

R

m R R R

This is equivalent to treating the fuzzy relation as a fuzzy set of crisp relations:

differ by large amount={R1/1,R2/0.6}

Similarly, a monadic fuzzy predicate largeValue defines a set of 1-tuples such as [6/1, 5/0.8, 4/0.3]
which is written as a fuzzy set of crisp relations:

large value={[6]/1,[6,5]/0.8,[6,5,4]/0.3}

and has the mass assignment

mlarge value={{[6]}:0.2,{[6],[6,5]}:0.5,{[6],[6,5,4]}:0.3}

Our subsequent studies show that this approach can sometimes overestimate the difference between
full and nearly-full membership, which can lead to unreasonably large intervals calculated for the con-
fidence of association rules. For example, under this interpretation, the monadic fuzzy relation S = [a/1
b/0.98]has the mass assignment

mS={{[a]}:0.02, {[a], [a,b]}:0.98}

The normal mass assignment interpretation allows us to redistribute the mass on {[a], [a,b]} to either
of the relations [a] or [a,b] which leads to the family of distributions:

S = [a]: 1-x, [a,b]: x where 0 ≤ x ≤ 0.98

This flexibility in re-assigning mass means that for a source relation S = [a/1 b/0.98] and a target
relation T = [a/1 b/0.98 c/0.02] we get an interval [0.51, 1] which is surprisingly wide considering the
two relations are so similar. We emphasise that this behaviour arises mostly in contrived cases and that
smaller intervals are calculated in the vast majority of “real” association rules that have been considered
in our experimental studies such as (Martin & Shen, 2008). Nevertheless, our opinion is that further
study is justified.

ALTERNATIvE INTERPRETATION OF RELATIONs As MAss AssIgNMENTs

This section outlines our new interpretation of fuzzy relations as mass assignments. As in previous work,
we assume that the fuzzy relations are normalised. The approach discussed above, which we will refer
to as an open world approach, treats partial membership of a tuple x in a relation R (i.e. 0 < χR(x) < 1) as
an upper bound for the mass that can be assigned to any set of tuples including x. This leads to a wide
range of mass distributions that can be derived from the fuzzy relation R.

281

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

In the open world approach, for any tuple x such that χR(x) < 1, the total mass that can be assigned
to relations containing x is given by

1, ,

0
R

t x xn
x t

m t x
 (4)

In the largeValue example above, consider the element x=5, which has χR(x) = 0.8; the relations
containing 5 are [5, 6] and [4, 5, 6] and we have

0 ≤ mlargeValue([5,6]) + mlargeValue([4,5,6]) ≤ 0.8

This gives a considerable degree of flexibility in assigning mass.
Our alternative interpretation - the closed world approach - regards partial membership of a tuple x

in a relation R (i.e. 0 < χR(x) < 1) as strictly equal to the total mass assigned to the sets of tuples which
include x, i.e.

1, ,
R

t x xn
x t

m t x
 (5)

This means there is no flexibility in the range of mass distributions that can be derived from the
fuzzy relation R. However, there is flexibility in the mass assignments when R is combined with an
assignment corresponding to another relation, for example in calculating association confidences as
described later.

Under this interpretation, the monadic fuzzy relation largeValue discussed above has

mlargeValue={[6]:0.2, [6, 5]:0.5, [6, 5, 4]:0.3}

and clearly

mlargeValue([5,6]) + mlargeValue([4,5,6]) = 0.8

CLOsED WORLD MAss-bAsED AssOCIATION RULEs

For a source category

1/ 1 2 2
(), / (),..., / ()

s s ss s
S x x x x x x x x x

and a target category

1/ 1 2 2
(), / (),..., / ()

T T TT T
T x x x x x x x x x

282

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

we can define the corresponding mass assignments as follows. Let the set of distinct memberships in
S be

()(1) (2), , ..., sn

S S S S
x x x

where

()(1) (2) ... sn

S S S
x x x

and nS ≤ |S|. Let

()i
i S S

S x x

Then the mass assignment corresponding to S is : () ,1
i s i s

S m S i n where

() (1)() k k
s k S S

m S x x (6)

and we define

() 0i
S s

x if i n

For example, the fuzzy category

S = [a/1, b/0.8, c/0.5, d/0.2]

has the corresponding mass assignment

: 0.2, , : 0.3, , , : 0.3, , , , : 0.2
S

M a a b a b c a b c d

We can calculate the confidence in the association between the categories S and T using mass assign-
ment theory. In general, this will be an interval as we are free to move mass (consistently) between the
cells corresponding to Si and T j for each i, j.

For two mass assignments

: , 1

: , 1
S i S i S

T j T j T

M S m S i n

M T m T j n

the composite mass assignment is

:
S T

M M M

X m X

283

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

where m is specified by the composite mass allocation function, subject to

1

1

T

S

n

ij S i
j
n

ij T j
i

m m S

m m T

This can be visualised using a mass tableau (see (Baldwin, 1992)) as shown in Figure 2. Each row
(column) represents a relation of the source (target) mass assignment,. The mass associated with a row
(column) can be distributed amongst the cells provided row and column constraints are satisfied. We
label the rows S1, S2, … SnS and columns T1, T2, … TnT , and assign mass mij to cell (i, j) subject to row
and column constraints. The confidence in the association rule is given by

,

1

,

1

1

S T

S T

S

ij i j
i j

n n

ij i
i j

ij i j
i j
n n

ij i
i j

n
i

i S
i

m S T
n

conf M
d

m S

where n m S T

d m S

S m (7)

Clearly n ≥ 0, d >0 and d is a constant for a given source relation S, irrespective of M. For example
consider the fuzzy categories

S = [a/1, b/0.8, c/0.5, d/0.2]

Figure 2. The mass tableau, showing intersections Si ∩ Tj and the least prejudiced mass distribution.
The corresponding point valued rule confidence is 1.86 / 2.5 = 0.744

284

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

and

T = [a/1, b/0.4, c/0.8, d/0.7]

Clearly the mass can be allocated in many ways, subject to row and column constraints. One notable
assignment is the least prejudiced distribution, obtained by taking the product of source and target masses
for each cell as shown in figure 2. This corresponds to the minimum entropy combination of the source
and target mass assignments. Different assignments lead to the minimum and maximum confidences.

In the next section, we analyse the effect of moving mass between cells on the confidence and show
how the maximum and minimum confidence values can be found quickly.

FAsT CALCULATION OF FUZZY CONFIDENCE INTERvAL

We take an arbitrary mass assignment M, and consider the change in confidence when we move mass
to create another assignment M*.

In order to conform to row and column constraints, the net transfer of mass within any row or column
is zero. Thus the simplest transfer of mass involves four cells, as shown in figure 3. We refer to this as
an elementary mass transfer, denoted

1 1 2 2
,(,), ,E x i j i j

and write

*
1 1 2 2

(,(,),())M M E x i j i j

where 1 1 2 2
, , , ,E x i j i j indicates that mass x is moved into cells (i1, j1) and (i2, j2) from cells (i1, j2)

and (i2, j1) and we assume i1 < i2 and j1 < j2
For example, consider the tableau shown in Figure 2. We can move a mass of 0.04 from the top right

hand corner to the top left; in order to satisfy row and column constraints, we must also move 0.04 from
the bottom left to bottom right, yielding the tableau shown in Figure 4.

Figure 3. An elementary mass transfer. If x > 0 then it is termed a positive elementary mass transfer; if
x < 0 it is termed a negative elementary mass transfer

285

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

Theorem 1.

Let Minit and Mfinal be different allocations of mass to cells in a tableau, both conforming to row and
column constraints. Then we can convert Minit to Mfinal by a finite sequence of p elementary mass transfers
E1+E2 + … +Ep.

Proof.

Define

final init

final init
ij ij ij

M M M

ie M M M

(where addition and subtraction are defined in the obvious way) and consider the sums of positive and
negative elements of ΔM

,
0

,
0

()

()

ij

ij

n

ij
i j

M

n

ij
i j

M

pos M M

neg M M

Clearly pos(ΔM) = neg(ΔM) and both are zero if the assignments Minit and Mfinal are the same.
If they are greater than zero, we construct an elementary mass transfer as follows:
Choose a positive element in ΔM, say at row r1 and column c1. Choose a negative element in the

same row (r1, c2) and a second negative element in the same column (r2, c1) where clearly r1≠r2 and
c1≠c2. Since rows and columns in ΔM sum to zero, these elements must exist. The elementary transfer
is E (x, (i1, j1), (i2, j2)) where

i1 = min(r1, r2) i2 = max(r1, r2) j1=min(c1, c2) j2 = max(c1, c2)

Figure 4. The mass tableau, from Figure 2 after an elementary mass transfer E(0.04, (1,1), (4,4))

286

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

The sign of x depends on the relative values of r1, r2, c1, c2 and the absolute value of x depends on
the value of ΔMr2 c2 (and the other affected elements of ΔM)

There are two possibilities for the value of ΔMr2 c2

(i) ΔMr2 c2 = 0. In this case, |x| is the smallest absolute value of ΔMr1 c1 , ΔMr1 c2 and ΔMr2 c1
(ii) ΔMr2 c2 ≠ 0. We choose |x| to be the smallest absolute value of ΔMr1 c1, ΔMr1 c2 , ΔMr2 c1 and ΔMr2 c2

x is positive if r1 < r2 and c1 < c2, or if r2 < r1 and c2 < c1 ; otherwise it is negative.

Writing

*
1 1 2 2

* *

(,(,), ,
final

M M E x i j i j

and M M M

it is clear that

*
1 1 2 2

*
1 1 1 1

*
1 2 1 2

*
2 1 2 1

*
2 2 2 2

,(,),(,)

i j i j

i j i j

i j i j

i j i j

M M E x i j i j

M M x

M M x

M M x

M M x

where at least one of *
1 1 1 2 2 1 2 2

, , ,
i j i j i j i j

M M M M is zero, and every other element of ΔM* is the
same as the corresponding element in ΔM.

Because x is chosen as the smallest absolute value, each of the four changed cells in ΔM* is either
zero or has the same sign as the corresponding cell in ΔM

If 2 2
0

r c
M , then *

2 2
0

r c
M and

*

*

2

2

pos M pos M x

neg M neg M x

If
2 2

0
r c

M , then *
2 2

0
r c

M and

*

*

pos M pos M x

neg M neg M x

Clearly in either case the sum of positive elements (equivalently, the sum of negative elements)
decreases after the elementary mass transfer. Furthermore, |x| is a combination (using addition and
subtraction only) of the values in the original ΔM, in which each value can be used at most once. Hence
after repeating this process a finite number of times, we will reach the situation in which

287

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

* *() () 0pos M neg M

and the sequence of elementary mass transfers will be those required to convert Minit into Mfinal

Example.

Consider converting the assignment (Table 1), into Table 2, the initial difference is

M

0.2

0.2

0

0

0

0

0

0

0

0

0.1

0.1

0.2

0.2

0.1

0.1

which has pos(ΔM) = 0.6 i.e. the total mass to be moved is 0.6
Choosing r1=1, c1=1, r2=2, c2=4 and x=0.2 yields the positive elementary mass transfer E(0.2,

(1,1), (2, 4)) so that

M1 = Minit + E(0.2, (1,1), (2, 4))

and M1 is given by Table 3.
A second (negative) elementary mass transfer E(-0.1, (3,3), (4, 4)) yields the desired result.

Mfinal = Minit + E(0.2, (1,1), (2, 4)) + E(-0.1, (3,3), (4,4))

The change in confidence arising from the elementary transfer

1 1 2 2
(,(,),(,))E x i j i j

Table 1.

Minit 0.2 0.1 0.3 0.4

0.2 0 0 0 0.2

0.3 0.2 0 0 0.1

0.3 0 0 0.3 0

0.2 0 0.1 0 0.1

Table 2.

Mfinal 0.2 0.1 0.3 0.4

0.2 0.2 0 0 0

0.3 0 0 0 0.3

0.3 0 0 0.2 0.1

0.2 0 0.1 0.1 0

288

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

is given by

*
1 1 2 2

1 1 1 2 2 1 2 2

(,),(,)

i j i j i j i j

conf i j i j conf M conf M

x S T S T S T S T

d (8)

since the denominator and other terms in the numerator are not changed. The denominator d is defined
in eq 7.

Theorem 2.

If x is positive in an elementary mass transfer, i.e. we move mass to the left within a higher row and
to the right within the lower row, then either the confidence increases or is left unchanged.

Proof.

Since i2 > i1 and j2 > j1 we have

2 1 2il i j j
S S andT T

The sets Si2 and Tj2 can be partitioned as follows

2 1 2 1

2 1 2 1

()
i i i i

j j j j

S S S S

T T T T

so that

2 1 1 1 2 1 1

1 2 1 1 1 2 1

2 2 1 1 1 2 1 2 1 1 2 1 2 1

()

()

() ()

i j i j i i j

i j i j i j j

i j i j i j j i i j i i j j

S T S T S S T

S T S T S T T

S T S T S T T S S T S S T T

and we can simplify eq (8) to

Table 3.

M1 0.2 0.1 0.3 0.4

0.2 0.2 0 0 0

0.3 0 0 0 0.3

0.3 0 0 0.3 0

0.2 0 0.1 0 0.1

289

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

2 1 2 1

1 2 2 2

() ()
((,),(,)) i i j j

x S S T T
conf i j i j

d

Clearly for positive x this is zero or positive, so the confidence will either increase or be un-
changed.

Corollary 2.1.

If x is negative (i.e. we move mass to the right within the higher row and to the left within the lower
row) then the confidence will either be unchanged or will decrease.

By Theorem 1, any compound transfer of mass may be re-written as a sequence of elementary mass
transfers. The effect of a compound mass transfer on the rule confidence is dependent on the sets involved
in the elementary mass transfers.

In Figure 5, the change in confidence is

2 1 2 1 3 2 3 2

1 2conf M conf E conf E

x S S T T x S S T T

d d

which can clearly be positive, negative or zero depending on the sets S1, S2, S3 and T1, T2, T3.
On the other hand, the compound transfer in Figure 6 has a change of confidence

3 1 3 1 3 2 3 2

3 2 2 1 2 1 3 2 2 1 2 1

1 2conf M conf E conf E

x S S T T x S S T T

d d

x S S T T S S T T S S T T

d

Figure 5. Combination of a positive and negative elementary mass transfer. Unless we know the sets Si
and Tj it is not possible to predict whether the overall result leads to an increase or decrease in confi-
dence

290

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

which is clearly always positive (for positive x).

Corollary 2.2.

From eq 8 and the example in Figure 6, we can see that that for any assignment, the maximum in-
crease in confidence will be obtained by moving as much mass as possible to the top left corner of the
tableau. The increase in confidence in this case is

1 1

, 1, 1 , ,
S Tn n

S T

x S S T T
conf E x n n

d

which is larger than any other increase obtained by an elementary mass transfer of x since the cardinality
of the intersection is the maximum possible in the tableau.

Theorem 3.

The mass assignment leading to maximum association confidence is

, , , 0, ,
i j i i j j j i

S T S S T T T S
M i j min m m max min m m (9)

Proof.

For an assignment that maximises rule confidence, it must be impossible to choose i1 < i2, j1< j2
such that there is a positive elementary mass transfer E(x, (i1, j1), (i2, j2), i.e. it must be impossible to
add mass x to (i1, j1) and (i2, j2) and subtract mass x from (i1, j2) and (i2, j1) whilst maintaining row
and column constraints.

This is guaranteed if it is impossible for any cell (i, j) in the maximum assignment to be at the top
left or bottom right corner of a positive elementary mass transfer – i.e.

EITHER (condition 1a) all cells to the right of (i, j) in row i (i.e. cells (i, j+1) to (i, nT)) contain zero
mass OR (condition 1b) all cells below (i, j) in column j (i.e. cells (i+1, j) to (nS, j)) contain zero
mass

Figure 6. Combination of a positive and negative elementary mass transfer which must lead to an in-
crease in confidence

291

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

AND
EITHER (condition 2a) all cells to the left of (i, j) in row i (i.e. cells (i, 1) to (i, j-1)) contain zero mass

OR (condition 2b) all cells above (i, j) in column j (i.e. cells (1, j) to (i-1, j)) contain zero mass.

Lemma 3.1.

Clearly if ()(,) i
s

M i j m then all mass available in the row is in cell (i, j) and there is no further mass
anywhere in row i, satisfying (1a) and (2a). Hence (i, j) cannot be the top left or bottom right corner of
a positive elementary mass transfer.

Lemma 3.2.

Similarly if ()(,) j
T

M i j m there is no further mass anywhere in column j, satisfying (1b) and (2b)
and (i, j) cannot be the top left or bottom right corner of a positive elementary mass transfer.

We proceed by strong induction. It is possible to index cells in the tableau such that the index for cell
(i, j) is larger than the indices of cells (i-1, j), (i-1, j-1) and (i, j-1). For example, one can start at the top
left corner and number cells sequentially across the first row, then across the second row etc as shown
in figure 7. Strong induction allows us to show that the mass in cell (i, j) leads to maximum confidence
assuming that the masses in all cells with lower index - specifically, cells in the blocks from (1, 1) to (i-1,
j-1), (1, 1) to (i, j-1) and (1, 1) to (i-1, j) - are allocated in a way that leads to maximum confidence.

Clearly for the first cell, (1, 1), equation 9 reduces to

Figure 7. One possible sequential numbering of the mass tableau such that the index for cell (i, j) is
larger than the indices of cells (i-1, j), (i-1, j-1) and (i, j-1)

Figure 8. Diagrammatic representation of case 1 – equal mass in rows above and columns to the left
of(i, j) is allocated to give maximum confidence

292

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

, ,
i j

S T
M i j min m m

and by lemma 3.1 or 3.2, this corresponds to the maximum assignment.
For an arbitrary cell (i, j), the sum of mass in the rows 1 to i-1 is given by

1
() ()

1

1
i

k i
s s

k

m x

and the sum of mass in the columns from 1 to j-1 is

1
() ()

1

1
j

k j
T T

k

m x

By the inductive hypothesis, the mass in cells (1, 1) to (i-1, j-1) is allocated in a way that leads to
maximum confidence, i.e.

11
() ()

1 1

, min 1 ,1
ji

i j
s T

p q

M p q x x

We must consider five possible cases, labelled 1, 2(i), 2(ii), 3(i), 3(ii) in Figures 9 and 10.

Case 1.

If

() ()1 1i j
s T

x x

then equation 9 reduces to

Figure 9. Diagrammatic representation of case 2 (i) – mass in rows above i and columns including and
to the left of j is allocated to give maximum confidence; no mass in column j is available for cell (i, j)

293

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

1 1
1,1 min ,

S T
M m m

and by lemma 3.1 or 3.2, this corresponds to the maximum assignment.

Case 2. If

() ()1 1i j
s T

x x

then all mass in columns 1 to j-1 will be allocated in cells (1, 1) to (i-1, j-1) and there will be no mass
in cells (i, 1) to (i, j-1), i.e. condition 2a is satisfied

By the inductive hypothesis, we assume that mass in cells (1, 1) to (i-1, j) is allocated in a way that
that leads to maximum confidence. The total mass in these cells is

() () ()min(1 , 1i j j
S T S

x m x

so that (case 2(i)) if

() () ()1 1i j j
S T T

x m x

then all mass in column j will be allocated in some or all of cells (1, j) to (1, j-1) and there will be no
mass in cell (i, j) or in any cell below it in column j, satisfying condition (1b). Since conditions (2a) and
(1b) are satisfied, this allocation leads to maximum confidence. Alternatively (case 2(ii)) if

() () ()1 1i j j
S T T

x m x

then mass will be allocated in all cells from (1, j) to (1, j-1) and there will be non-zero mass in cell (i,
j). Eq 9 reduces to

Figure 10. Diagrammatic representation of case 2 (ii) – mass in rows above i and columns including
and to the left of j is allocated to give maximum confidence; mass in column j is available for cell (i, j)
and possibly cells lower in the column.

294

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

() () () ()(,) min ,i j j i
S T T S

M i j m x x x

Clearly if

()(,) i
S

M i j m

then the allocation to cell (i, j) satisfies conditions (1a) and (2a) by lemma 3.1.Alternatively if

() () ()(,) (j j i
T T S

M i j m x x

then this completes the allocation of mass in column j and there will be no further mass in cells (i+1, j)
to (nS, j) satisfying condition (1b)

In a similar manner (case 3) if

() ()1 1i j
S T

x x

then all mass in rows 1 to i-1 will be allocated in cells (1, 1) to (i-1, j-1) and there will be no mass in
cells (1, j) to (i-1, j), i.e. condition 2b is satisfied. We must consider case 3(i)

() () ()1 1j i i
T S S

x m x

which satisfies condition 1a and case 3(ii)

() () ()1 1j i i
T S S

x m x

which also satisfies condition 1b
Hence, for all i and j, if the composite mass assignment obeys eq 9, it is impossible to increase rule

confidence by an elementary mass transfer involving cell (i, j).
NB eq 9 leads to a maximal assignment - there may be other assignments leading to the same con-

fidence, as illustrated by the example in figure 11 which shows the assignment using eq 9 leading to
maximum confidence 0.68, and a second assignment leading to the same confidence. In this case,

Figure 11. (i) left - assignment Mmax produced by eq 9, leading to the maximum confidence of 0.68 (ii)
on the right, a different assignment, M2, giving the same confidence

295

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

Mmax = M2 + E(0.1, (1,1), (2,2))

where the elementary mass transfer leads to no change in the confidence.

Theorem 4.

The allocation leading to minimum association confidence is

, , , 0, 1 , 1

, , 0, 1, 1

i j i j i i j i i j

S T S T S S T S S T

i j i j j i i j

S T S T T S S T

M i j min m m max min m m m m

min m m max min m m

 (10)

Proof.

Similar to the proof of theorem 3. For the induction, cells are indexed from the bottom left corner;
the total mass in rows i+1 to nS is given by

() () ()

1

Sn
k i i

S S S
k i

m x m

Membership Function for Fuzzy Confidence

We define the membership function in terms of the quantity of mass which must be moved (relative to
the least prejudiced distribution). This can be justified by reference to the Hartley measure or Shannon
entropy, and will be covered more fully in a future paper.

The least prejudiced distribution is our reference point, and the resultant confidence is taken to have
membership = 1. Any other assignment of mass requires one or more elementary mass transfers relative
to the LPD, and we are particularly interested in the mass assignments corresponding to minimum and
maximum confidence, MMIN and MMAX. We define a fuzzy interval C representing the confidence such
that

1
LPD

C

pos M M
conf M

N

where
Because the membership function varies linearly with the amount of mass moved, it is triangular and

can be calculated quickly by considering the end points. We note that it is possible for the membership
function to be discontinuous at one end (i.e. to drop abruptly to zero).

296

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

Algorithms and Complexity

We outline the conceptual algorithm needed to calculate the fuzzy intervals. Inputs are assumed to be in
the appropriate order as described in the section “Closed World Mass-based Association Rules”.

The algorithm calculates minimum, expected and maximum values of the cardinality of the intersec-
tion between two fuzzy categories using a mass assignment representation. It is thus also suitable for
calculating supports for association rules. The quantity can be calculated once and stored, so that a single
pass through a database is adequate - this is an important feature when treating very large relations.

Functions mmax and mmin return the values specified by eqs 10 and 9 respectively, and intCard
returns the cardinality of the intersection

Calculation of fuzzy confidence interval

Inputs: MS[1.....NS], MT[1.....NT] source, target mass assignments

S[1 … NS], T[1 … NT], source, target level sets

LS[1 … NS], LT[1 … NT], sets of distinct memberships in source, target

Output: a triangular fuzzy number < v1/m1, v2/m2, v3/m3>

lpdConf = 0 // stores the point value association confidence

minConf = 0 // stores the minimum value of association confidence

maxConf=0 // stores the maximum value of association confidence

minDiff = 0 // stores pos (Mmin - Mlpd)maxDiff = 0 //

stores pos (Mmax - Mlpd)

FOR (i = 1 to NS)

 FOR (j = 1 to NT)

 lpdConf = lpdConf + MS[i] * MS[j] * intCard(S[i], T[j]

 minConf = minConf + mmin(MS[i], LS[i], MT[j], LT[j])* intCard(S[i], T[j]

 maxConf = maxConf + mmax(MS[i], LS[i], MT[j], LT[j])* intCard(S[i], T[j]

 IF mmin(MS[i], LS[i], MT[j], LT[j]) > MS[i] * MS[j]

 THEN minDiff = minDiff + mmin(MS[i], LS[i], MT[j], LT[j]) - MS[i] * MS[j]

 ENDIF

 IF mmax(MS[i], LS[i], MT[j], LT[j]) > MS[i] * MS[j]

 THEN maxDiff = maxDiff + mmax(MS[i], LS[i], MT[j], LT[j]) - MS[i] * MS[j]

 ENDIF

 ENDFOR

ENDFOR

IF maxDiff > minDiff

THEN norm = 1-maxDiff

ELSE norm = 1-minDiff

ENDIF

RETURN (< minConf/(1-minDiff/norm), lpdConf / 1, maxConf/(1-maxDiff/norm) >)

Note that by making use of the nested structure of the sets, it is not necessary to calculate the intersec-
tion at every step as is suggested by the algorithm above. Furthermore, the algorithm can be re-written so
that there is a single iteration over elements of the intersection, instead of two iterations over source and

297

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

target sets. This leads to an overall complexity of O((n+m) log (n+m)). Further details of the algorithm
and the more efficient implementation will be discussed in a future paper.

Experiments

The algorithm has been implemented in Java and its performance has been investigated using a macbook
pro running JDK 6 and Mac OS X 10.5.5. The precise timings are not important, but are intended to
give an idea of the scaling behaviour.

The first experiment takes source and target sets defined over a universe of N elements and compares
the execution time (y axis) as N increases (x axis) to the theoretically predicted behaviour. As shown by
Figure 12, good agreement is obtained, with a constant execution overhead.

The second experiment shows that the fuzzy interval calculation is well-behaved in cases where our
earlier algorithm gave very wide intervals.

Taking S = [x1/1, x2/0.9, x3/0.9, … xN/0.9] and T= [x1/0.9, x2/1, x3/0.9, … xN/0.9], where all interme-
diate elements also have membership 0.9, and varying N leads to the results shown in Figure 13. Clearly
the method returns reasonable results in these cases - note that the point value is very close to the lower
limit of the confidence, so that the triangular membership function is truncated at its lower limit.

Figure 12. Scaling behaviour of the algorithm, showing how execution time (y axis) increases as the
size of the universe(x axis) increases. The lower line shows theoretical behaviour, the upper line is the
actual behaviour. Log scales are used.

298

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

Finally, we have applied the algorithm to calculation of associations in integrated taxonomic data-
bases of terrorist incidents, as described in (Martin and Shen, 2008). This work integrated data from
several sources, and recategorised it according to various taxonomic views. For example, where data is
categorised according to country, we might prefer to look at fuzzy regions such as the “Middle East” or
“in/near Iraq”. Another fuzzy taxonomic view uses fuzzy categories based on the casualty levels, clas-
sified here as low, medium, high, very-high.

Various associations can be extracted by consideration of fuzzy categories in different taxonomies.
Although the vast majority of results from that study led to reasonable intervals, there were a few cases
in which intervals were quite large. As can be seen from Figure 14, much smaller intervals were obtained
under the closed world method. In these plots (and those shown in Figure 13), the interval for closed
world rules indicates the extremes of the fuzzy association confidence, with a symmetric triangular
membership function (possibly truncated on one side). The interval for open world calculations is a
standard interval, i.e. has membership 1 throughout its range.

sUMMARY

Starting from the premise that fuzzy results should not be prematurely converted into crisp values, we
have developed a method which returns a fuzzy confidence for the association between two fuzzy sets,

Figure 13. Confidence intervals and point values for nearly identical source and target sets

299

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

interpreted conjunctively. To our knowledge, this is the only method that generates a fuzzy confidence
value for association rules. The method was developed in the context of hierarchical analysis but is
suitable to calculate the fuzzy association between any pair of fuzzy sets.

It has been implemented using an algorithm having logarithmic complexity in the number of elements
in the fuzzy sets, and experiments show that the implementation scales as expected. In particular, it is
practical for use on very large fuzzy sets and relations.

ACKNOWLEDgMENT

This work was partly funded by BT and the Defence Technology Centre for Data and Information Fu-
sion.

Figure 14. Confidence intervals and point values for associations between the fuzzy categories in/near
Iraq and Low casualty levels (top) and Medium casualty levels (bottom). The fuzzy confidence (closed
world plots, right hand side) gives a much tighter interval than the open world calculations (left hand
side).

300

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

REFERENCEs

Agrawal, R., & Srikant, R. (1994, Sep). Fast algorithms for mining association rules in large databases.
Paper presented at the 20th Int Conf on Very Large Databases, Santiago.

Baldwin, J. F. (1992). The management of fuzzy and probabilistic uncertainties for knowledge based
systems. In S. A. Shapiro (Ed.), Encyclopedia of AI (2nd ed., pp. 528-537). New York: John Wiley.

Baldwin, J. F. (1994). Mass assignments and fuzzy sets for fuzzy databases. In M. Fedrizzi, J. Kacprzyk,
& R. R. Yager (Eds.), Advances in the shafer dempster theory of evidence. New York: John Wiley.

Baldwin, J. F., Martin, T. P., & Pilsworth, B. W. (1995). Fril - fuzzy and evidential reasoning in AI. UK:
Research Studies Press.

Bosc, P., & Bouchon-Meunier, B. (1994). Databases and fuzziness - introduction. International Journal
of Intelligent Systems, 9(5), 419. doi:10.1002/int.4550090502

Bosc, P., & Pivert, O. (2001, Jul). On some fuzzy extensions of association rules. Paper presented at the
IFSA world congress, Vancouver, Canada.

Delgado, M., Marin, N., Sanchez, D., & Vila, M. A. (2003). Fuzzy association rules: General model and
applications. IEEE transactions on Fuzzy Systems, 11(2), 214–225. doi:10.1109/TFUZZ.2003.809896

Dubois, D., Hullermeier, E., & Prade, H. (2006). A systematic approach to the assessment of fuzzy associa-
tion rules. Data Mining and Knowledge Discovery, 13(2), 167–192. doi:10.1007/s10618-005-0032-4

Kacprzyk, J., & Zadrozny, S. (2003). Linguistic summarization of data sets using association rules.
Paper presented at the 2003 Fuzzy systems; Exploring new frontiers, St Louis, MO.

Martin, T. P., & Azvine, B. (2003). Acquisition of soft taxonomies for intelligent personal hierarchies
and the soft Semantic Web. BT Technology Journal, 21(4), 113–122. doi:10.1023/A:1027391706414

Martin, T. P., & Azvine, B. (2005). Soft integration of information with semantic gaps. In E. Sanchez
(Ed.), Fuzzy logic and the Semantic Web. Amsterdam: Elsevier.

Martin, T. P., Azvine, B., & Shen, Y. (2007a). Finding soft relations in granular information hierar-
chies. Paper presented at the 2007 IEEE International Conference on Granular Computing Fremont,
CA, USA.

Martin, T. P., Azvine, B., & Shen, Y. (2007b). Intelligent hierarchy mapping: A soft computing approach.
In Information technology and intelligent computing.

Martin, T. P., Azvine, B., & Shen, Y. (2008a). Granular association rules for multiple taxonomies: A
mass assignment approach to. In M. Nickles (Ed.), Uncertain reasoning in the Semantic Web. Berlin,
Germany: Springer.

Martin, T. P., & Shen, Y. (2008). Track - time-varying relations in approximately categorised knowledge.
International Journal of Computational Intelligence Research, 4, 300–313.

301

Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases

Martin, T. P., Shen, Y., & Azvine, B. (2008b). Incremental evolution of fuzzy grammar fragments to
enhance instance matching and text mining. IEEE transactions on Fuzzy Systems, 16, 1425–1438.
doi:10.1109/TFUZZ.2008.925920

Martin-Bautista, M. J., Vila, M. A., Larsen, H. L., & Sanchez, D. (2000). Measuring effectiveness in
fuzzy information retrieval. Paper presented at the Flexible Query Answering Systems (FQAS).

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. doi:10.1016/S0019-9958(65)90241-
X

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning
(part 1). Information Sciences, 8, 199–249. doi:10.1016/0020-0255(75)90036-5

Zadeh, L. A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reason-
ing and fuzzy logic. Fuzzy Sets and Systems, 90(2), 111–127. doi:10.1016/S0165-0114(97)00077-8

302

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

Fuzzy Cluster Analysis
of Larger Data Sets

Roland Winkler
German Aerospace Center Braunschweig, Germany

Frank Klawonn
University of Applied Sciences Braunschweig/Wolfenbüttel, Germany

Frank Höppner
University of Applied Sciences Braunschweig/Wolfenbüttel, Germany

Rudolf Kruse
Otto-von-Guericke University Magdeburg, Germany

INTRODUCTION

Scalability refers to different facets of an algorithm. For data analyzing tools, there are two main interests:
first, runtime or storage scalability and second, result quality scalability. Scalability in result quality is
of interest i.e. for an algorithm that analyses continuous systems that need to be discretised. Another

AbsTRACT

The application of fuzzy cluster analysis to larger data sets can cause runtime and memory overflow
problems. While deterministic or hard clustering assigns a data object to a unique cluster, fuzzy clus-
tering distributes the membership of a data object over different clusters. In standard fuzzy clustering,
membership degrees will (almost) never become zero, so that all data objects are assigned to − even
with very small membership degrees − all clusters. As a consequence, this does not only demand higher
computational and memory power, it also leads to the undesired effect that all data objects will always
influence all clusters, no matter how far away they are from a cluster. New approaches, modifying the
idea of the fuzzifier, have been developed to avoid the problem of nonzero membership degrees for all
data and clusters. In this chapter, these ideas will be combined with concepts of speeding up fuzzy clus-
tering by a suitable data organization, so that fuzzy clustering can be applied more efficiently to larger
data sets.

DOI: 10.4018/978-1-60566-858-1.ch012

303

Fuzzy Cluster Analysis of Larger Data Sets

example would be an iterative algorithm to find an approximate solution because the addressed problem
is too complex to solve it correctly. Runtime and storage scalability in contrast is an expression for the
use of resources (like computation time and local memory) necessary to perform the algorithm. Often it is
possible to increase the speed of an algorithm using more storage space and vice versa. If both resources
are limited and crucial to an application, a trade-off between both is not sufficient.

As for prototype-based clustering, the above mentioned scalability in accuracy of the result depends
on the definition of the term ‘cluster’. In this paper, a cluster is defined as a group of data objects in a
continuous feature space. The data objects of one group are supposed to be as similar as possible and the
data objects of different groups should be as different as possible. If this holds, a group of data objects
is called a cluster. The standard Fuzzy c-Means algorithm (FcM) (Bezdek, 1981) may fail to meet these
requirements if there are groups of data objects in close proximity, that differ in the density of their data
objects. This lack of quality is a result of the fact that the Fuzzy c-Means algorithm tends to calculate
a partition of data objects with equal number of data points. The reason for this is that each data point
influences all prototypes. Dense groups of data points attract all prototypes, regardless whether there
is a prototype in the centre of this dense cluster or not. Klawonn and Höppner (2003a) showed that
this effect occurs due to the calculation of fuzzy membership values. An alternative fuzzifier function
which explicitly allows membership values of 0 or 1 provides an update scheme which localizes the
influence of prototypes and provides a better way of expressing the original idea of clusters. This idea
is presented in Section 4.

The two above mentioned modifications to improve the quality of the clustering result and speeding
up the calculation process lead to an interesting combination. Since an alternative fuzzifier function
includes areas where the membership value of all data objects is 0 for a prototype, neighbourhood infor-
mation can be used to save computation time. The combination of these two ideas will be presented in
this chapter. The first section contains a short introduction to the well known Fuzzy c-Means algorithm,
mainly to clarify the notation and to found a good basis for the following sections. Section 4 is dedi-
cated to the changed fuzzifier function and in Section 5, the hierarchical data structure that contains the
neighbourhood information is presented. In Section 6, this information is used to calculate membership
values for sets of data objects. We finish the chapter with some experimental results and close it with
the conclusions in Section 8.

RELATED WORK

This work is related to two major fields of fuzzy clustering. In the first field, the concern is to increase
the clustering quality or to adapt FcM to a specific problem because FcM does not generate the desired
results. The first approach by Ruspini (1969) of Fuzzy c-Means only considered a fuzzifier value of 2.
This approach was extended by Dunn (1973) to an adjustable value which influences the softness of the
fuzzy approach. Later, several approaches were made to change the behaviour of FcM by changing the
fuzzifier function i.e. (Klawonn & Höppner, 2003a; Klawonn & Höppner, 2003b).

The second large field this work is related to is the concern how to apply an FcM algorithm on very
large data sets especially if only limited calculation resources are available. In the past, this was a much
more important issue than it is today. For this work, we consider that the data set can be loaded fully
into the local memory of the computer which provides random access to the data. Our main concern
will be to adapt FcM in a way that reduces the runtime of the algorithm.

304

Fuzzy Cluster Analysis of Larger Data Sets

Since Fuzzy c-Means is an iterative algorithm, there are in principle three ways to reduce the runtime
complexity: a reduction of the data set size via sampling (Cheng, Goldgof & Hall, 1995; Hathaway &
Bezdek, 2006; Eschrich, Ke, Hall & Goldgof, 2003; Shankar & Pal, 1994) a reduction of the number
of iteration steps (Hershfinkel & Dinstein, 1996), and a faster calculation for each single step (Cannon,
Dave & Bezdek, 1986). Höppner (2002) presented a way of reducing the complexity of one iteration
step for large sets of data objects by calculating the membership value for sets of data objects that are
close together. This is based on a data structure which contains neighbourhood information which we
will present in Section 5. A similar approaches are presented by in (Pelleg & Moore, 1999) and (Smellie,
2004) for Hard c-Means. A more geometric approach is used in (Elkan, 2003) also for Hard c-Means.
These three approaches benefit directly from the fact, that only the closest prototype to a data object
needs to be considered for the clustering process. In a sense, we do something similar in our approach,
the difference is, that we consider a set of closest prototypes.

FUZZY C-MEANs ALgORITHM (FCM)

FcM is an algorithm to cluster data sets in a real feature space. The goal is, to find (fuzzy) clusters. In
this section, a brief mathematical description of FcM is presented.

Definition 1 (Fuzzy Set). Let M be a set and m : [0,1]M ® be a continuous function, then μ is called
fuzzy set on M and for x ∈ M is μ(x) referred as the membership degree of x to μ.

Definition 2 (Data). A normed vector space (,)V × is called feature space and a finite, non-empty
set X x x V

n
= { , , }

1
 Ì is called data set in V with n n³ Î1, N data objects. A subset W XÌ is

called a cloud of data objects, if all objects in W are considered to belong together.
It is not really necessary that X is a set i.e. that X consists of n different data objects. In our notation,

we will always use X is an indexed set and we allow objects with different indices to be equal.
Definition 3 (Fuzzy Cluster). Let V be a vector space and X VÌ a data set in V with n data objects.

A fuzzy set m : [0,1]X ® is called fuzzy cluster, if μ is defined by an algorithm. A finite, not empty set
of fuzzy clusters

1
= { , , : [0,1]}

c
X is called fuzzy partition of X, iff for j = 1,…,n holds:

1 = ().
=1i

c

i j
xåm

The difference between a cloud and a cluster is the entity which defines it. A cloud is specified by a
human while a cluster is defined by an algorithm. While it is relatively easy for a human to find clouds
in data sets with up to 3 dimensions, it is almost impossible for higher dimensions because it is harder
to visualize. For a computer, the dimension is less important and it can in principle process data of
arbitrary dimension. When designing clustering algorithms, the goal is to achieve a match between the
clusters derived by the algorithm and the clouds defined by a human. The point here is that the shape of
clouds that ought to be found by the algorithm influences the type of algorithm that needs to be used.
FcM belongs to the family of prototype based clustering algorithms. That means clouds have a convex
form and can be represented by a vector that is called prototype.

Definition 4 (Prototype). Let V be a vector space and X VÌ be a data set and m : [0,1]X ® be a
fuzzy cluster. A vector p ∈ V is called prototype of μ, if p captures the main characteristics of μ.

305

Fuzzy Cluster Analysis of Larger Data Sets

For FcM, clouds are considered to be shaped like hyper spheres with the highest density in the middle
of a cloud and hence the clusters are defined accordingly: the prototype of a cluster is the centre of the
hyper sphere. In the Fuzzy c-Means algorithm itself, the prototypes are used to calculate the fuzzy sets
of data objects. The goal of Fuzzy c-Means is to find a fuzzy partition of a data set X into c fuzzy clusters
so that the prototypes represent the data objects as well as possible.

Definition 5 (Fuzzy c-Means Clustering (FcM)). Let (,)V × be a normed vector space,
X x x V

n
= { , , }

1
 Ì a data set, 1

= { , , }
c

 a fuzzy partitioning with the corresponding proto-
types P p p V

c
= { , , }

1
 Ì and the membership matrix U c nÎ ´[0,1] : u x

ij i j
= ()m i c= 1.. , j n= 1.. .

Let w Î R , w > 1 be the fuzzifier, L = { , , }
1

l l

n
Ì R some variables. Finally, let d p x

ij i j
= - ,

i c= 1.. , j n= 1.. denote the distance of prototype i to data object j.
The objective functionJ(X,U,P) is to be minimized under the constraint

i

c

ij
u

=1
= 1å , j = 1..n which

is expressed with a Lagrange extension l U(,)L of J:

L X U P u d u
ij ij

j

n

i

c

j ij
i

c

j

(, , ,)L = + -
æ

è
çççç

ö

ø
÷÷÷÷÷== ==

åå åw l2

11 11

1
nn

å (1)

A Fuzzy c-Means clustering is the fuzzy partition Γ in a (local) minimum of U and P.
If a (local) minimum in U and P is reached, the partial derivatives in all variables of U and P van-

ish. This leads to an iterative update scheme for the objective function J which is based on the idea of
gradient descent. We assume in this paper, that the Euclidean distance is used for the function d. All
algorithms will be applicable as well for a different (global) distance function. Let t Î N be a counter
for the iteration step, then the variables are updated as follows:

u
d

u
ij
t ij

t

kj
t

k

c

+
-

-

=

=

å
1

2
1

2
1

1

()

()

w

w

 (2)

p

u x

u
i
t

ij
t

j
j

n

ij
t

j

n

+ =

=

=
×å

å
1 1

1

()

()

w

w

 (3)

This update scheme is not applicable if one data object is identical to at least one prototype. In the
unlikely event that such a situation occurs, the update for uij is changed to:

u I
i I

else
ij
t

j
j+

Î
ì

í

ïïïï

î
ïïïï

1 =

1
| |

,

0 ,

306

Fuzzy Cluster Analysis of Larger Data Sets

with I k x p
j j k
= { : = }Î N . For the sake of simplicity, it is assumed that such a situation does not

appear.
The iteration process is started by some sort of initialization for the prototypes, which can be done

by using a random process or a more sophisticated method. The iteration is stopped when the sequence
of membership values converges, i.e. U Ut t

M

+ -1 < e for some ε > 0 and ×
M

 is the maximum norm
for matrices. For further information on the family of fuzzy clustering algorithms we refer the reader to
(Bezdek, Keller, Krishnapuram & Pal, 1999; Höppner, Klawonn, Kruse & Runkler, 1999).

ALTERNATIvE FUZZIFIER FUNCTION

The idea of using fuzzy clustering instead of crisp clustering is that it might not be possible to clearly
decide whether a data object belongs to just one cluster. For data objects that have no clear nearest pro-
totype, a degree of membership is very useful to express that the clustering algorithm is unsure to which
prototype the data object belongs. Consider the classical example in Figure 1. In a crisp clustering i.e.
Hard c-Means, the data object y would be assigned uniquely to one of the two clusters. Fuzzy c-Means
solves that problem by assigning a data object only to a specific degree to a cluster, so that y would be
assigned by around 0.5 to both clusters.

As plausible as the concept of a fuzzy cluster is for data objects that can not be assigned uniquely, as
implausible it is for data objects that are very close to one prototype. Assuming that no data object matches
exactly a prototype, all data objects belong to some degree to every cluster. Consider for example data
object x in Figure 1, no matter how close it is to the left prototype, it will always have a strictly larger
than 0 membership value to the right prototype. In other words, all data objects influence all prototypes,
so that all prototypes are drawn slightly to the centre of gravity of all data objects, which is not very
plausible. The effect increases with the number of dimensions of the data set.

Figure 1. Example of a data set with 2 clusters. The Prototypes are represented as filled circles

307

Fuzzy Cluster Analysis of Larger Data Sets

Hard c-Means clustering is plausible for data objects that are very near to exactly one prototype and
FcM is plausible for data objects that are between at least two prototypes. The question is, why is FcM
not plausible for data objects that are very near exactly one prototype?

Understanding the Fuzzifier

Klawonn and Höppner (2003a) answered the above formulated question by examining a different objec-
tive function which depends on a continuous, strictly increasing function h : [0,1] [0,1]® with h(0) =
0 and h(1) = 1 instead of simply a fuzzifier value:

J
h

i

c

j

n

ij ij
X U P h u d(, ,) = ()

=1 =1

2åå

Hard clustering can now be expressed by defining h as identity or FcM by using an exponential func-
tion h u u() = w , w > 1 . Consider the special case of two clusters like in Figure 1. Jh must be minimized
for every data object and for xj in particular, so that the term

J x u h u d h u d

h u d h u d
min j j j j j j

j j j j

(,) = () ()

= () (1)
1 1 1

2
2 2

2

1 1
2

1 2
2

+

+ -

must be a minimum. A necessary condition for a minimum is that the derivative of ¶
¶u

J
u j

min
1

 is zero:

0 = () (1)

= () () ,
1 1

2
1 2

2

1 1
2

2 2
2

¢ - ¢ -
¢ - ¢

h u d h u d

h u d h u d
j j j j

j j j j

with h′ is the derivation of h. That leads to

¢

¢

h u

h u

d

d
j

j

j

j

()

()
= .1

2

2
2

1
2

 (4)

This means, the ratio of the (transformed) membership value gradients must correspond to the ra-
tio of the squared distances. In the case of h u u() = w , the derivative of h vanishes if the membership
value is zero umin = 0: h′(0) = 0. On the other hand, the derivative for umax = 1 is always larger than zero:
¢ × -h (1) = 1 = > 01w ww . Because the ratio of Equation (4) still holds, there are no corresponding dis-

tances that could cause a crisp membership assignment for the FcM algorithm. For this reason, every
data object influences all prototypes as long as it is not identical to one of the prototypes.

Crisp c-Means has a different problem, in this case h is the identity: h(u) = u which leads to a deriva-
tive of h′(u) = 1, ∀u. This is not applicable on the update scheme of FcM, since Equation (4) only holds,
if the distances are equal. So the update function cannot be applied in the above specified way. Still the

308

Fuzzy Cluster Analysis of Larger Data Sets

goal is to minimize J and since only membership values of 0 and 1 are allowed, the membership corre-
sponding to the closest prototype is set to 1 and 0 otherwise. Obviously, there are no fuzzy membership
values, even if the data objects have almost identical distance to all prototypes.

To solve both problems, the fuzzifier function h must be chosen in a way that h′(0) > 0 and ¢ ¢h u h u() < ()
1 2

for all 0 < 1

1 2
£ £u u . The function family of h u u u() = (1)2a a+ - , α ∈ [0.1] satisfies this property.

The lower bound of the ratio of the membership value gradients is

¢
¢

-
+ -

-
+

h
h

(0)
(1)

=
1

2 (1)
=

1
1

.
a

a a
a
a

This means, that the ratio of squared distances must exceed this value or the membership values are
set to their limits of 0 or 1 respectively. So this fuzzifier function behaves like Hard c-Means if the ratio

of squared distances is below 1
1
-
+
a
a

 and like FcM with a changed fuzzifier function otherwise. Because

this is a very intuitive property, h is parameterized by using b a
a

=
1
1
-
+

 from which follows:

a
b
b
b
b

b
b

=
1
1

() =
1
1

2
1

.2

-
+
-
+

+
+

h u u u

Fuzzy Clustering with Polynomial Fuzzifier Function

Based on the idea above, the update process for fuzzy clustering must be adapted.
Definition 6 (FcM with Polynomial Fuzzifier Function). Let (,)V × be a normed vector space,

X x x V
n

= { , , }
1
 Ì a data set, 1

= { , , }
c

 a fuzzy partitioning with the corresponding proto-
types P p p V

c
= { , , }

1
 Ì and the membership matrix U c nÎ ´[0,1] : u x

ij i j
= ()m i = 1..c, j = 1..n.

Let h : [0,1] [0,1]® with h u u u() =
1
1

2
1

2-
+

+
+

b
b

b
b

, b Î [0,1] be the polynomial fuzzifier function,

L = { , , }
1

l l

n
Ì R some variables and d p x

ij i j
= - , i = 1..c, j = 1..n denotes the distance of pro-

totype i to data object j.

The objective function Jh(X,U,P) is to be minimized under the constraint
i

c

ij
u

=1
= 1å , j = 1..n which

is expressed by a Lagrange extension l U(,)L of Jh:

L(, , ,) = () 1
=1 =1

2

=1 =1

X U P h u d u
i

c

j

n

ij ij
j

n

j
i

c

ij
L åå å å+ -

æ

è
çççç

ö

ø
÷l ÷÷÷÷

-
+

+
+

æ

è
çççç

ö

ø
÷÷÷÷åå=

1
1

2
1=1 =1

2 2

= (, ,

i

c

j

n

ij ij ij

h
X U

u u d
b
b

b
b

J PP)
  

++ -
æ

è
çççç

ö

ø
÷÷÷÷å å

j

n

j
i

c

ij

l U

u
=1 =1

= (,)

1l

L
  

 (5)

309

Fuzzy Cluster Analysis of Larger Data Sets

As before, for all valid solutions, the Lagrange extension l U(,)L is equal to zero. As for FcM, L is
w.r.t. uij and pi are computed to obtain the update formula:

¶
¶

-
+

+
+

æ

è
çççç

ö

ø
÷÷÷÷

-

Þ
-

+

L
u

u d

u

ij
ij ij j

ij

= 2
1
1

2
1

=0

=
1

1

(1

2
!b

b
b
b

l

b

b))

2 2

l
bj

ij
d

-
æ

è

ççççç

ö

ø

÷÷÷÷÷÷
 (6)

The parameter λj can be calculated, by using the constraint, 1 =
=1i

c

ij
uå . Mathematically, the

Lagrange extension transfers the optimization problem into a higher dimensional space and restricts it
there to a hyper plane of valid solutions. Additionally, if Equation (6) is used without taking into ac-
count that uij

Î [0,1], it will produce membership values that are not restricted to [0,1]. Because the
sum of all membership values is fixed at 1, it is enough to ensure that no membership value is strictly
less than zero. In other words, the membership values that are strictly less than zero are set to zero and
the remaining membership values are reweighted to gain a sum of membership values of 1. Suppose it
is known for which membership values Equation (6) gives values greater than zero and that the number
of this membership values is ĉ :

1 = =
1

1

(1)

2=1 0 =1 0
2

k u
kj

c

kj
k u

kj

c
j

kj

u
d³ ³

å å -

+
-

æ

è

ççççç

ö

ø

÷÷÷÷÷b

b l
b
÷÷

Þ
+ -

+
³

å
l

b

b
j

k u
kj

c

kj

c

d

=
2(1 (1))

(1)
1

=1 0
2

ˆ

which leads to the final equation for uij:

u
c

d

d

ij

k
u
kj

c
ij

kj

=
1

1
1 (1)

=1
0

2

2

-
+ -

-

æ

è

ççççççççççççççççç

ö

ø³

å
b

b
b

ˆ

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷ (7)

At the first glance, this seems to be circular reasoning. And indeed, it is necessary to know for which
prototypes the membership value is larger than zero to calculate the membership values. But there is a
possibility to solve this problem using the result in Lemma 7 and a sequence of tests.

Lemma 7 (Monotonicity of Membership Values). Let the V, X, P, U, Λ, h, β and dij like in Defini-
tion 6, then for each data object xj, j = 1..n and pair of prototypes pi and pk, 1 ,£ £i k c , it holds:

310

Fuzzy Cluster Analysis of Larger Data Sets

0 ¹ ³ Þ £u u d d
ij kj ij kj (8)

d d u u
ij kj ij kj
£ Þ ³ (9)

Proof. Because the membership values of the data objects do not depend on each other, it is enough to
consider just one data object xj. Also consider for a moment that the membership values are not restricted
to the interval [0,1]. Then Equation (6) holds for all prototypes. Since λj and β are constants, it is easy
to see that the membership values are monotonous in the distance values. Because of the restriction to
the [0,1]-interval, all prototypes with potential membership values less than 0 are excluded from the
calculation process and their membership value is set to 0. That means, the clustering process is done
with less prototypes than it would be possible. But because their membership value is set to 0, they
have no influence on the value of the objective function J. Due to the monotonicity of Equation (6), that
means that prototypes with a membership value larger than 0 are closer to xj than all others. The same
holds for a membership value of 1: If there is a prototype to which xj has a membership of 1, all other
membership values are 0, hence they are further away.

For the first statement, there are two cases:

If • uij > ukj = 0: Then pk is excluded from the calculation and since pi is not excluded, it follows dij
< dkj.
If • 1 0> ³ >u u

ij kj
: In this case, (6) holds for both values and due to its monotony, it follows dij

≤ dkj.

The second statement holds, independently of the excluding process. If pi is excluded, so is pk and
both membership values are set to 0. If only pk is excluded, uij > ukj by construction. And if none of them
is excluded, Equation (6) holds for both prototypes.

From this lemma, it can be concluded that if Equation (6) for a prototype holds, then it holds for all
prototypes that are closer to the data object. Even more importantly, it means: if there is one prototype
for which (6) does not hold, then for all prototypes further away, it does not hold either.

To break the circular reasoning in Equation (7), it is necessary to know the set of prototypes that are
involved in the calculation of the membership value. With Lemma 7, it is already known that the set of
prototypes can be split into two subsets, according to their distance to xj, hence the first step is, to sort
the prototypes w.r.t. the distance to the considered data object. The second step is to find that prototype
for which Equation (7) still holds, but no prototype further away can be added to the selection. Let ϕ be
a permutation of (1…c) so that d d

i j c jf f() ()
£ £ holds. Due to Lemma 7 all membership values to the

prototypes p p
cf f(1) (1)

, ,

ˆ- with d d
i j c jf f() ()

<
ˆ are greater than 0. Hence, it is sufficient to test whether

u
c jf()ˆ

 is greater than 0:

311

Fuzzy Cluster Analysis of Larger Data Sets

0
1

1
1 (1)

=1

()
2

()
2

£
-

+ -
-

æ

è

çççççççççççççç

ö

ø

÷÷

å
b

b
b

f

f







c

d

dk

c
c j

k j

÷÷÷÷÷÷÷÷÷÷÷÷÷÷

Û £ + -

Û

å
k

c
c j

k j

c j
k

c

d

d
c

d

=1

()
2

()
2

()
2

=1

1
1











f

f

f

b
--

å
æ

è

ççççç

ö

ø

÷÷÷÷÷÷
- £ -

1

()
2

1 1
2

d
c

k jf
b



The test can be done by successively increasing c until the test fails. Let ĉ be the highest index for
which the test was successful. Note that ĉ has to be calculated for each data object individually, hence
it might be helpful to consider ĉ as indexed variable ĉ

j
. Furthermore, it needs to be recalculated in each

iteration, so that an iteration variable t Î N is useful:

ˆ maxc c c c
d

d
c

j
t

k

c
c j

t

k j
t

= ,
()

()

1
1

=1

()
2

()
2

  



Î £ £ + -
ì
í
ïïï

î
åN f

f
bïïïï

ü
ý
ïïï

þ
ïïï

for j = 1..n.
Finally, Equation (7) is slightly modified and extended by an iteration variable t Î N :

u

c

d

d

ij
t

j
t

k

c
j
t

ij
t

k j
t

+ -

+ -
-

æ

è

ççççççç

å
1

=1

2

()
2

=
1

1

1 (1)

()

()

b

b
b

f

ˆ

ˆ
ççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

£

ì

í

ïïïïïï
iff

otherwise

f()

0

i c
j
tˆ

ïïïïï

î

ïïïïïïïïïï (10)

The update function for the prototypes does not change much to the one in FcM:

p

h u x

h u
i
t j

n

ij
t

j

j

n

ij
t

+
å

å

×
1 =1

=1

=

()

()
 (11)

Figure 2 illustrates the effect of the polynomial fuzzifier function. As it can be seen, the clusters are
detected very well and data objects very close to a prototype are assigned with membership degree of 1.
Data objects with no clear nearest prototype are clustered softly. It is worth to point out, that the proto-

312

Fuzzy Cluster Analysis of Larger Data Sets

type positions are almost identical to the ones from FcM on the left hand side picture. The polynomial
fuzzifier function can be of great use if there are different dense clusters or clusters of different number
of data objects. For more detailed analyses of clustering with polynomial fuzzifier function, see for
example (Borgelt, 2005; Klawonn & Höppner, 2003a).

NEIgHbOURHOOD REPREsENTATION OF DATA

The approach of Höppner (2002) reveals that it is not necessary to calculate the membership value for
each pair of data object and prototype separately, because the membership values of close data objects
might not differ significantly.

Consider the example from the beginning, Figure 1 with normal FcM again. The data objects near
the left prototype do not have significant influence on the position of the right prototype. In fact, their
exact position is not of much interest for calculating their membership value to the right prototype. FcM
is an iterative algorithm, which means, it has a termination test. This test might be U Ut t

M

+ -1 < e
for some ε > 0 and ×

M
 the maximum norm for matrices as described in Section 3. The value of the

maximum norm U U u ut t

M
i c j n ij

t
ij
t+ +- -1

=1.. , =1..
1= (| |)max is the largest difference of all membership

values between two iteration steps. Since the algorithm terminates if the largest difference in member-
ship values is below ε, no difference in membership values smaller than ε is of interest to the calculation
process of FcM. Using this tolerance, it is possible to consider groups of close data objects as if they all
are located at the same position.

Again, consider example 1. The circle around x denotes the space in which x can be moved so that the
difference in membership values to the right prototype is below ε. This means, all data objects within the
circle can be considered to be located at position of x and for none would be the difference in member-
ship values towards the right prototype above ε. This gives a basic idea, how to save computation time

Figure 2. The same data set, clustered with FcM (left) and with polynomial fuzzifier function (right). The
‘tails’ of the prototypes represent the path they took during the clustering process and the large enclosed
areas on the right hand side are the convex hulls of all data objects with a membership value of 1. The
fuzzifier on the left hand side is w = 2 and the β-parameter on the right hand side is β = 0.5.

313

Fuzzy Cluster Analysis of Larger Data Sets

here. But to use this property effectively, the data objects have to be stored in a way that neighbourhood
information is available. The data structure is organized as a tree and constructed before starting the
clustering process.

Definition 8 (Neighbourhood Tree). Let V be a normed vector space, X VÌ be a data set and
d : R R+ +® a function with δ(r) < r, r > 0. Let T be a tree and N x X r= (, ,)Î Î +C R a node with
C is the set of child nodes. T is called neighbourhood tree, if it holds:

• succ N B x
r

() ()Ì
For all child nodes • N x r

1 1 1 1
= (, ,)C CÎ holds: r r

1
()£ d

For all pairs • N x r N x r
1 1 1 1 2 2 2 2
= (, ,), = (, ,)C C CÎ , N1 ≠ N2 holds: x x r

1 2
> ()- d

with succ N x succ N
N

() = { } ()È ¢
¢ÎC

 is the set of all successor elements and B x V
r
() Ì is the hyper

sphere around x with radius r. The neighbourhood tree T of a data set X is the tree that is associated
with the root node N x X r

root root max
= (, ,)Î C so that succ(Nroot) = X, x a random element in X and

r y x y X x
max

= : { }max \- Î{ } .
A node N = (x,C,r) can be seen as a representative of its successor elements succ(N). In this matter,

a child node N1 = (x1, C1, d1) of N represents a subset of the data objects succ N succ N() ()
1

Ì which are
located in the corresponding hyper sphere succ N B x

r
() ()

1
1

1
Ì . Each data object y succ N xÎ () { }\ is

associated to exactly one of its child nodes. If y is located in the overlap of the hyper spheres of at least
two child nodes N N

1 2
, Î C : y B x B x

r r
Î Ç

1
1

2
2

() () , there is no clear regulation to which child node y
belongs. It is possible to apply an ordering over the child nodes to associate y to the first child node in
this ordering, but this is a rather arbitrary regulation. Instead, the neighbourhood tree is extended so that
y is associated with the closest child node which leads to the definition of a strict neighbourhood tree:

Definition 9 (Strict Neighbourhood Tree). Let V, X, δ and T be like in Definition 8 above. T is
called strict, if one more restriction is applied on the child nodes of N = (x,C,r):

for all pairs • N x r N x r
1 1 1 1 2 2 2 2
= (, ,), = (, ,)C C CÎ holds:

" Î - £ -y succ N y x y x
1 1 1 1 1 2

() :

A strict neighbourhood tree guarantees that a data object belongs to that child, which is closest to
it. In the unlikely event that a data object has exactly the same distance to several child nodes, the data
object is associated due to an arbitrary ordering on the child nodes. The following algorithm constructs
a strict neighbourhood tree from a set of data objects X and the contraction function δ.

Algorithm 10 (Construct a Strict Neighbourhood Tree).

 INPUT: Data set X, function d : R R+ +®

 OUTPUT: A strict neighbourhood tree T x X r
max

= (, ,)Î C

1. x randomElement X¬ (), Y X x¬ \ { }

314

Fuzzy Cluster Analysis of Larger Data Sets

2. N x y x y Y
root

¬ Æ - Î(, , { : })max

3. insert N Y
root

(,)

4. end.

5. function insert N x r Y(= (, = ,),)C Æ

6. Z ¬ Æ, Ŷ ¬ Æ, i ¬ 1

7. for y YÎ do

8. if $ ¢ Æ ¢ Î Î ¢
¢(, ,) : ()x r y B x

r
C do

9. ˆ ˆY Y y¬ È { }

10. else

11. C y r
i
¬ Æ(, , ())d , C C¬ È { }C

i

12. Z
i
¬ Æ, Z Z¬ È { }Z

i

13. i i¬ + 1

14. end if

15. end for y

16. for ˆ ˆy YÎ do

17. k x y x r
best

k
k k k

¬ - Æ Î
£ £1 | |

{ : (, ,) }
C

Cmin ˆ

18. Z Z y
k
best

k
best

¬ È { }̂

19. end for ŷ

20. for k ¬ 1 to | |C do

21. (, ,) = (, , { : })x r N x z x z Z
k k k k k k
Æ ¬ Æ - Îmax

22. if | |> 0Z
k

 do insert N Z
k k

(,) end if

23. end for k

24. end function

The algorithm constructs a strict neighbourhood tree. A random element is selected to generate the
root node while the tree is build recursively using the function insert. The first step generates a covering
for all the represented data objects, Lines 7 until 15. The set Ŷ XÌ contains the data objects that are
not used as centres for the child nodes. The covering is generated by testing for each data object x ∈ X,
if it can be associated to an already existing child node and if not, a new child node is generated. Due to
simplicity, it is assumed that the data is indexed to avoid problems with the definition of mathematical
sets. The remaining data objects in Ŷ that are not used for child construction are subdivided into the
sets Z Z

1 | |
, , C according to their closest child node, Line 16 until 19. The recursion is done for each

child node if at least one additional data object is associated to it (Line 22).
It is desired to not have only few child node’s per node, the function δ must be chosen accordingly,

315

Fuzzy Cluster Analysis of Larger Data Sets

for example d() = (
(()

1 ()
)r r

dim V
dim V

×
+

. A nodes maximal number of child nodes is a constant K which

depends on the dimensions of the underlying vector space V and the function δ. Due to the strict property
of the neighbourhood tree, it is likely that a nodes centre object is located in the middle of its represented
data objects. Furthermore, because of the shrinking of the distances in Line 21, it is likely that a node
has more than one child node, if it represents at least three data objects (The data object contained in
the node it self and two more). However, the tree is not constructed to be balanced. It is possible, that
the data set is corrupted in a way, that the algorithm would produce a list-like tree. But such situation
is more of academic nature because the data set would not be considered for clustering. So in future, it
is assumed that the data set is not corrupted in such matter, hence the depth of the tree is logarithmic in
the number of data objects. In Figure 3, 4 levels of a strict neighbourhood tree are shown.

If the data set is not corrupted, the runtime complexity of the algorithm is in O(nlog(n)). All data
objects, associated to a node N = (x,C,r) are contained in the hyper sphere Br(x). In this hyper sphere, fit
at most K Î N hyper spheres of radius δ(r), so that no centre of one hyper sphere is contained in any
other. Therefore, the computation time of the loops starting in Lines 7 and 16 have both a complexity of
O(K ∙ succ(N)). The set of all represented data objects of the nodes in one level of the tree, at most the
full set of data objects, hence one level of the tree is constructed in O(2 ∙ K ∙ n). The height of the tree is
logarithmic in the number of data objects, so that the construction complexity is in O(2 ∙ K ∙ n). During
the construction process, it is also possible to store the number of successors |succ(N)| of a node N. This

Figure 3. These four figures represent 4 succeeding levels in a strict neighbourhood tree. The cross
symbols represent the centre of gravity of the corresponding data objects

316

Fuzzy Cluster Analysis of Larger Data Sets

is important for applying the clustering algorithm later. The storage complexity for the neighbourhood
tree and its construction is in O(n) because each node stores one data object.

FUZZY CLUsTERINg UsINg NEIgHbOURHOOD INFORMATION

The motivation of constructing the neighbourhood tree is that it is not necessary to calculate the exact
membership value for each data object, if the difference between the estimated and the real member-
ship value is below the termination threshold " £ £ £ £ - +1 ,1 :| |<1i c j n u u

ij
t

ij
t e of the clustering

algorithm. Furthermore, due to the polynomial fuzzifier function, introduced in Section 4 there might be
vast areas in which the membership values of data objects to one prototype might be 1 or 0. Obviously,
the membership values for these data objects need not be calculated for each data object individually.

Membership value Interval

Suppose it is desired to calculate the membership value of data object xj to the prototype pi. Given a node
N = (xj,C,r) in the neighbourhood tree guarantees that all data objects succ(N) are in a hyper sphere Br(xj).
So the location of the data objects do not vary more than a distance r to the data object xj. Therefore, the
distances of the data objects y ∈ succ(N) to a prototype pi must be in the interval

[,] = [{0, },] .d d p x r p x r
ij ij i j i j
- + - - - +max

Consider the hypothetical case that the distance of the data object xk∈ succ(N) (k ≠ j) to the prototype
pi is reduced, but the distance to all other prototypes is constant, then due to Lemma 7 the membership
value uik is higher than uij. Again from Lemma 7 follows that if xk is closer to prototype pl (l ≠ i), but
keeps all other distances fixed, the membership value ukj is lower than uij. So the minimal hypothetical
membership value of a data object xk∈ succ(N) towards prototype pi would be, if xk reduces its distance
to all prototypes but pi by r and increases its distance to pi by r. Since the norm × is symmetric, it does
not matter if a data object changes its location or the prototype. According to Equation (10), not the
actual position of the prototypes is relevant for calculating the membership value, only its distances
to the data object is important. So instead of considering the data object move inside the hyper sphere
Br(xj), consider the prototypes change their distance to xj. Based on this idea, the following theorem is
formulated:

Theorem 11 (Membership Interval). Let V be a normed vector space, X x x V
n

= { , , }
1
 Ì a data

set, P p p V
c

= { , , }
1
 Ì a set of prototypes, xj ∈ X and pi ∈ P and r Î R , r > 0.

" Î Î é
ëê

ù
ûú

- +x B x u I I I
k r j ik i i i

() : = ,

with

317

Fuzzy Cluster Analysis of Larger Data Sets

I

c

d

d

i

i

l

i
l i

c
i

ij

i
l j

-

-

- ¹

- +

-
-

-

+ -

+

æ

è

å
=

1
1

1 (1)

1
()

()=1

()

2

()

2

b
b

f
f

ˆ
ˆ

çççççççççççççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

£-, ()f
i i

i ĉ--

ì

í

ïïïïïïïïïïïï

î

ïïïïïïïïïïïï0 , otherwise

I

c

d

d

i

i

l

i
l i

c
i

ij

i
l j

+

+

+ ¹

+ -

+
+

-

+ -

+

æ

è

å
=

1
1

1 (1)

1
()

()=1

()

2

()

2

b
b

f
f

ˆ
ˆ

çççççççççççççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

£+, ()f
i i

i ĉ++

ì

í

ïïïïïïïïïïïï

î

ïïïïïïïïïïïï0 , otherwise

with d p x r
ij i j
- - -= {0, }max and d p x r

ij i j
+ - += are the minimal (maximal) hypothetical dis-

tances of the data object xj in the hyper sphere Br(xj) to the prototype pi. ĉi
- and ĉ

i
+ denotes the number of

relevant prototypes and fi
- (fi

+) denote a new ordering of prototypes w.r.t. to the changed distances.
Before proving the statement, please note that the formula for the interval borders is slightly changed

to Equation (10). This derives from the fact that the sum in the denominator of the fraction in (10) con-

tains the term
d

d
ij

l jf()

 with i = ϕ(l). With changed distances, this would result in
d

d
ij

ij

+

-
 (or

d

d
ij

ij

-

+
) which is

not plausible because the distance of the data object xj to the prototype pi cannot increase and decrease at
the same time. Therefore, this term is excluded from the sum. This change makes it possible to separate
the distance change of pi to the other prototypes p lf() , f()l i¹ , l c= 1ˆ.

The distance of pi is changed contrary to the other prototype distances. Therefore, position of pi might
change in the distance ordering of prototypes. The new ordering must be calculated individually for both
interval borders of each prototype. Let fi

+ be the permutation for the upper bound of the membership
interval of pi and fi

- the permutation for the lower bound respectively. Due to the changed distances, it
is possible that the number of relevant prototypes changes ˆ ˆc c

i
± ¹ . So this number has to be recalculated

for each interval as well.
Proof. From Lemma 7, we know, that the membership values change monotonously. In case the

number of relevant prototypes ˆ ˆc c
i i
± = does not change, the result follows directly from Lemma 7. Not

clear is, what happens if ˆ ˆc c
i
± ¹ . So the proof shows, that the membership value of xj towards pi does

not change, if an other prototype pl is added to the set of relevant prototypes exactly at a distance, where
Equation (10) produces a membership value of zero ulj = 0. So in other words, the membership values

318

Fuzzy Cluster Analysis of Larger Data Sets

change continuously in the distances towards the prototypes even if the number of relevant prototypes
changes. With this result and the monotony from Lemma 7, the above theorem is proven.

Without loss of generality, suppose the prototypes are sorted according to their distance, so we do not
need to consider the permutation. To introduce an additional prototype p

ĉ+1
 to Equation (7) such that its

membership value is zero u
c j(1)

= 0
ˆ+ , its distance d

c j(1)ˆ+ must follow the following condition:

0 = =
1

1
1 ((1) 1)

(1)

=1

1
(1)
2

2

u
c

d

d

c j

k

c
c j

kj

ˆ
ˆ

ˆ

ˆ
+ +

+
-

+ + -
-

æ

è

ççççç

å
b

b
bççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

Û
+ -

+

+
å

d
c

d

c j

k

c

kj

(1)
2

1
2

=
1 (1)

1ˆ ˆ

ˆ b

b

If Equation (7) is now evaluated for uij adding the additional prototype from the previous calcula-
tion, we obtain:

u
c

d

d

d

d

ij

k

c
ij

kj

ij

c j

=
1

1
1 (1 1)

=1

2

2

2

(1)
2

-
+ + -

+

-

æ

è

ççççççç

å
+

b
b

b
ˆ

ˆ

ˆ

ççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

-
+

+å
å

=
1

1
1

=1

2

2

=1

b
b

b

ˆ

ˆ

ˆ

c

d

d

d

k

c
ij

kj

k

c
ijj

kj
d

c

2

2

1 (1)+ -

-

æ

è

ççççççççççççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

ˆ b

b
÷÷÷÷÷÷÷÷÷÷

-
+ -

-

æ

è

ççççççççççççç

ö

ø

÷

å
=

1
1

1 (1)

=1

2

2

b
b

b
ˆ

ˆ

c

d

dk

c
ij

kj

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

This means, the membership value uij does not change by introducing the additional prototype. Now
it is possible to consider (7) as a continuous function in the distance variables, even if the number of
involved prototypes ĉ changes. The only condition up to this point is, that the ordering of the prototypes
stays the same.

319

Fuzzy Cluster Analysis of Larger Data Sets

Therefore it follows with Lemma 7, Equation (7) is a continuous, decreasing function in distances
dlj with l ≠ i and increasing in dij. If there is a xk ∈ X with u I u u

ik i ij ij
Ï - += [,] , there are two cases left

to consider:

•	 u u
ik ij

< - . Since (7) is continuous and monotonous, it means that d d
ik ij

> + and/or $ ¹ -l i d d
lk ij

: < .

•	 u u
ik ij

> + . With the same argument, it follows that d d
ik ij

< - and/or $ ¹ +l i d d
lk ij

: > .

In both cases, x B x
k d i
Ï () . That means, when ever x B x

k d j
Î () , u I

ik i
Î .

Consider a node of the neighbourhood tree: N = (xi,C,r) let its membership interval with distance r be
I u u

i ij ij
Ì - +[,]e e , then all successors succ(N) can be treated exactly like xj hence, their membership

value towards prototype pi does not need to be calculated individually.
Note that the membership value interval is a very pessimistic estimation, since it is assumed that

the distances to all prototypes become worst case. In practise, such situation nearly never occurs and
in most cases, the real range of membership values is far smaller than the calculated interval. A much
better estimation for the membership interval would arise from the following formula:

u
c

y p

y p

ij
y B

d
x
j

y

k

c
y

i

k

-

Î -

+ -

-

-

-

æ

è

ççççççç

å

=
1

1

1 (1)

()

=1

2

2

inf
ˆ

ˆb

b
bççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

æ

è

ççççççççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷ 	

To give a general case solution for this problem is not trivial and might be even impossible. This
question is subject to further research.

Alternative Fuzzy c-Means

In this subsection, we introduce the Fuzzy-c Means algorithm using a polynomial fuzzifier and the strict
neighbourhood tree. There are two versions for this algorithm, one with more memory consumption
and the other which uses a different termination rule. At first, the version which uses more memory is
presented, because it needs one less user defined parameter and is more consistent with the motivation
of using neighbourhood information. The other version of the algorithm is presented in the next subsec-
tion.

Algorithm 12 (Modified FcM). INPUT: Data set X, function d : R R+ +® , number of prototypes
c, termination threshold ε > 0, a parameter β ∈ [0,1]

 OUTPUT: A fuzzy partition U

320

Fuzzy Cluster Analysis of Larger Data Sets

1. N neighbourhoodTree X
root

¬ (,)d

2. P initialize p p
c

¬ ({ , , })
1


3. U
c n

¬ [0]
(,)

, ¢ ¬U
c n

[1]
(,)

4. while $ £ £ £ £ -1 ,1 :| ' |>i c j n u u
ij ij

e do

5. U U¬ ¢

6. ¢ ¬ ¢ ¬ ¢ ¬P p p
c

{ 0, , 0}
1



7. T t t
c

¬ ¬ ¬{ 0, , 0}
1

 , Z z z
c

¬ ¬- ¬-{ 1, , 1}
1



8. update N Z
root

(,)

9. for i = 1 to c do p
p

ti
i

i

¬ ¢ end for

10. end while

11. end.

12.

13. function update N x r Z
j

(= (, ,),)C

14. D x p x p
j j c

¬ - -{ , , }
1

2 2


15. f ¬ prototypePermutation x D
j

(,)

16. ĉ validPrototypes x D
j

¬ (, ,)f

17. for i ¬ 1 to c do

18. if z
i
 < 0 do

19. ¢ ¬u membershipValue x D i c
ij j

(, , , , ,)ˆ f b

20. (,) (, , , , ,)u u membershipInterval x r D i
j

- + ¬ f b

21. if u u
ij

+ - ¢ < e and ¢ - -u u
ij

< e do

22. z u
i ij
¬ ¢

23. end if

24. else

25. ¢ ¬u z
ij i

26. end if

27. ¢ ¬ ¢ + ¢ ×p p h u x
i i ij j

()

28. t t h u
i i ij
¬ + ¢()

29. end for i

30. for ¢ ÎN C do update N copy Z(, ())¢ end for

31. end function update

The first part is quite self explaining. The variables P′ and T represent global variables (they are also
valid in the function update) that are used to calculate the new prototype positions. The recursive update

321

Fuzzy Cluster Analysis of Larger Data Sets

function is evoked as long as at least one membership value changes more than ε. The update function
itself is a little more complicated. Basically, it traverses the neighbourhood tree in depth first ordering by
recursively evoking itself. The parameters in Z contains the information whether a set of data objects need
further calculation and if not, the membership value is stored in Z for the corresponding prototype.

In Line 14, the distances from xj to all prototypes are stored in D because these values are used quite
often(complexity O(c)). In the next step, the prototypes are sorted according to their distance (complexity
O(c ∙ log(c))). In Line 16, the number of prototypes with larger than 0 membership function is calculated
(complexity: O(c)). Then, for each prototype, the new membership value is calculated. In case zi < 0, it
means the membership interval was not narrow enough, which means the membership value for xj must

be calculated. This is done in Line 19 with O(1) complexity because
k

c

k j
d=1

()
2

1ˆå
f

 can be calculated once

before the loop is started. Calculating the membership interval however (Line 20), has a complexity
of O(c), since ĉ

i
± and the above mentioned sum has to be recalculated with the changed distances for

each prototype individually. If the resulting membership interval is narrow enough, all subsequent data
objects are associated with the same membership value for prototype pi. This information is stored in ri
for use in the next recursions.

In Line 27, the factors for the new prototype position are calculated. Finally, the recursion is per-
formed in Line 30 for all child nodes of N with a copy of the values of Z because they might be changed
differently in the subsequent branches of the neighbourhood tree. So the overall runtime complexity for
one iteration step is in

O c c log c c((())2+ × +
calculation for one node

  

   

× + × Ìn c n O
n nodes termination test

) (cc n2) .×

This implementation of the modified FcM is exactly the implementation of the mathematical defini-
tion. Unfortunately, it is not feasible for really many data objects, since the membership matrix U has to
be stored. This is necessary because the very essence of the algorithm is the use of ε for optimizations.
Hence the storage complexity of the algorithm is in O(n ∙ c) which might be too much in storage criti-
cal applications.

For means of termination, it is not necessary to store the membership matrix. It would be equally ac-
curate, to test the convergence of FcM using the distance, prototypes move between two iteration steps. It
is easy to show that the convergence in membership values is equivalent to the convergence in prototype
position. However, if there is a threshold defined for convergence in prototype positions, it is not trivial
to calculate a corresponding threshold for convergence in membership values. In a too harsh estimation,
the membership interval that is used to optimize the clustering process would become extremely small.
Therefore, these two parameters must be chosen separately by the user. The membership value interval
can be based on an accuracy parameter εm while the convergence test is done with the threshold εp.

With using a convergence in prototype positions, it is possible to cease storing the membership
matrix during the calculation process. This gives room for even more optimization because it would
not be necessary to traverse the entire neighbourhood tree. However, a few technical modifications to
the neighbourhood tree are required. It is necessary to store the number of successors s | succ(N) | of a

node N and the centre of gravity of all succeeding data objects: n =
1

()s
y

y succ NÎå . Both can be easily

calculated during the construction process of the neighbourhood tree, so that a node is expanded to

322

Fuzzy Cluster Analysis of Larger Data Sets

N x r s
j

= (, , , ,) .C n

Algorithm 13 (2. Modified FcM). INPUT: Data set X, function d : R R+ +® , number of prototypes
c, termination threshold εp > 0, membership value calculation accuracy εm > 0, a parameter β ∈ [0,1].

 OUTPUT: The set of Prototypes P

1. N extNeighbourhoodTree X
root

¬ (,)d

2. P p p
c

¬ ¬ ¬{ 0, , 0}
1



3. ¢ ¬ ¢ ¢P initialize p p
c

({ , , })
1


4. while $ £ £ - ¢1 :| |>i c p p
i i p

e do

5. for i = 1 to c do p p
i i
¬ ¢ end for

6. ¢ ¬ ¢ ¬ ¢ ¬P p p
c

{ 0, , 0}
1



7. T t t
c

¬ ¬ ¬{ 0, , 0}
1

 , Z c¬ {1, , }

8. update N Z
root

2(,)

9. for i = 1 to c do p
p

ti
i

i

¢
¢¬ end for

10. end while

11. end.

12.

13. function update N x r s Z
j

2(= (, , , ,),)C n

14. D x p x p
j j c

¬ - -{ , , }
1

2 2


15. f ¬ prototypePermutation D()

16. ĉ validPrototypes x D
j

¬ (, ,)f

17. for i RÎ do

18. (,) (, , , , ,)u u membershipInterval r D i- + ¬ n f b

19. ifu u
m

+ -- < e do

20. u membershipValue D i c¬ (, , , , ,)n f bˆ

21. Z Z i¬ \ { }

22. ¢ ¬ ¢ + × ×p p s h u
i i

() n

23. t t s
i i
¬ +

24. else

25. u membershipValue x D i c
j

¬ (, , , , ,)ˆ f b

26. ¢ ¬ ¢ + ×p p h u x
i i j

()

27. t t h u
i i
¬ + ()

323

Fuzzy Cluster Analysis of Larger Data Sets

28.	 		 end if

29.	 	 end for i

30.	 	 if | |> 0Z do

31.	 		 for ¢ ÎN C do update N copy Z2(, ())¢ end for

32.	 	 end if

33.	 end function update2

This second algorithm has several advantages over the first version. The storage complexity is in
O(c + n) rather than O(c ∙ n). Also the calculation can be simplified by using the centre of gravity of a
node’s successors. This was not possible in the first version, because all membership values had to be
computed to fill the matrix at all positions, so that the traversing of the neighbourhood tree had to be
carried out completely.

In detail, the variables P′ and T have the same meaning as in Algorithm 12, they are used to calculate
the new locations of the prototypes. The variable Z holds now the indices of the prototypes for which
a membership value needs to be calculated. However, the main difference to the first version of this
algorithm is in Line 4 where the iteration process is stopped when the difference in prototype position
converges. All changes in update2 are a possible due to this change. The function update2 differs mainly
in its behaviour to previously calculated membership values. In its first version, the entire neighbour-
hood tree is traversed. In this version, only for a subset of all prototypes, the calculation is performed
which is defined by Z in Line 17. So, if the membership value for the prototype i is not already known,
it is calculated in Lines 17 until 29.

If the calculated membership value interval is narrow enough, the change in location of prototype i is
calculated using the with s times the centre of gravity of the subtree and i is removed from Z to prevent
any further calculation in the subtree. For all prototypes the membership interval is not narrow enough,
the calculation is done solely for xj. The recursion in Line 31 is done only if there are prototype indices
left in Z.

The drawback of the optimized Algorithm 13 is that the usage of the neighbourhood tree loses its
justification provided by the termination threshold. On the other hand, this gives the user the advantage
to manage calculation precision and termination threshold independently. Consider the example pre-
sented in Figure 4. The same data set is clustered with 4 different algorithms. The upper two examples
are the FcM algorithm with the normal fuzzifier function, once in standard form (left) and once using
neighbourhood information (right). For the other two examples, the polynomial fuzzifier function was
used, again once in normal form (left) and once using neighbourhood information (right). As it can be
seen, the clustering result is almost not influenced by using neighbourhood information. The tails of the
prototypes show that even the clustering process is almost identical (the difference is not visible in the
pictures, but the paths differ slightly due to the approximation of using neighbourhood information.)
even if the membership interval of εm = 0.1 is rather large compared to the calculation accuracy.

324

Fuzzy Cluster Analysis of Larger Data Sets

Experimental Results

The four algorithms standard FcM, FcM using Neighbourhood Information(NFcM), FcM with Polyno-
mial Fuzzifier Function(PFcM) and FcM with Polynomial Fuzzifier Function and using Neighbourhood
Information(NPFcM), compared in this section, differ in their property of scaling. Runtime tests for
these algorithms regarding the number of data objects and the number of prototypes are presented. The
values of the parameter β, had no, or only very little influence on the runtime of PFcM and NPFcM.

Figure 4. The same data set, clustered with FcM (upper left), FcM using neighbourhood information
(upper right), FcM with Polynomial fuzzifier function (lower left) and FcM with polynomial fuzzifier
function and using neighbourhood information (lower right). In the two right hand side examples, the
maximal membership interval length was set to εm = 0.1, in the two above examples, the fuzzifier value
is set to ω = 2 and in the two lower examples, the fuzziness parameter was set to β = 0.3.

325

Fuzzy Cluster Analysis of Larger Data Sets

In all cases, the tests are performed using 2, 5 and 10 dimensional artificial data. It was not focused on
the algorithm convergence properties because the convergence of the algorithms using neighbourhood
information does not differ distinctly from those without. The average Euclidean distance (in one experi-
ment) in prototype positions is almost always below 0.001. Still, it is useful to compare FcM with and
without polynomial fuzzifier functions.

Two different artificially created test environments are used, a hypercube with an edge length of
1, filled with uniformly distributed data objects (Figure 5) and randomly placed cluster centres with
normally distributed data objects (Figure 5 right). In the second case, there are always as many clusters
in the data set as there are prototypes, the number of data objects in the data set is not affected by the
number of prototypes. In each test, the algorithms perform 100 iterations, which is usually enough for
convergence.

Since NFcM is already well discussed in (Höppner, 2002), we do not discuss runtime differences
due to the fuzzifier, a constant value of w = 2 is used in all cases. This value was chosen, because the
polynomial fuzzifier function of PNcM and NPFcM is a Linear combination of crisp clustering and
fuzzy clustering with a fuzzifier of w = 2 . Our tests have shown that even a relatively large maximal
membership value interval of εm = 0.1 is usable for NFcM and NPFcM. The parameter β was set to 0.5.
The data set and initialization of the prototypes were identical for all clustering algorithms. The genera-
tion of the data, the calculation of the neighbourhood tree as well as the initialization of the prototypes
was not taken into account.

In Figures 6 and 7, we present our test results. Always on the left hand side, we present the results
of the test environment with uniformly distributed data objects while on the right side the environment
with Gaussian clusters is shown. The discussion regarding the algorithms properties is done below.

Figure 5. Two examples for the test data sets: uniform distributed data (left) and Gaussian distributed
data objects in randomly positioned clusters

326

Fuzzy Cluster Analysis of Larger Data Sets

Figure 6. Runtime experiments for2, 5 and 10 dimensions with variations in the number of data objects
(x-axis, in 1000 data objects). The remaining parameters are: 5 prototypes, ω = 2, β = 0.5, maximal
membership interval length 0.1, 100 iterations, and no termination due to converging prototype posi-
tions.

Figure 7. Runtime experiments for2, 5 and 10 dimensions with variations in the number of prototypes (x-
axis). The remaining parameters are: 50000 data objects, ω = 2, β = 0.5, maximal membership interval
length 0.1, 100 iterations, and no termination due to converging prototype positions.

327

Fuzzy Cluster Analysis of Larger Data Sets

standard FcM

Not surprisingly, standard FcM has Linear complexity in the number of data objects, number of proto-
types and number of dimensions in all examples. The shape of data sets does not affect the runtime of
the algorithm.

FcM using Neighbourhood Information

The behaviour of NFcM is quite interesting and shows the potential of the optimization process and
some problems in FcM with high dimensional data (> 5 dimensions). The potential is well visible in
the 2-dimensional data sets. If the data reaches a certain density, the runtime of this algorithm does not
increase because only groups of data objects are used for calculation. This effect is well visible in Figures
6, graph ‘NFcM 2D’. Even though, the algorithm is linear in the number of prototypes, a higher number
of prototypes lead to smaller sets of data objects during the calculation (Figure 7).

In higher dimensions, the density of the data object decreases considerably in Figure 6 left, graphs
NFcM 5D and 10D, if the data objects are uniformly distributed. The result is a huge increase of the
runtime pruning of the neighbourhood tree works not as good as in 2D. In case of several Gaussian dis-
tributed clusters (Figure 6 right), the density of the data objects is still high enough for the pruning due
to neighbourhood information. As it is said before, higher dimensional data leads to a reduced density
and more prototypes leads to smaller sets of data objects during the calculation process. In combination,
the both effects cause a huge increase in runtime which is even worse than standard Fuzzy c-Means
because the membership interval still has to be calculated for every data object (Figure 7 left), graphs
NFcM 5D and 10D.

Very surprisingly is the runtime graph in Figure 7 right for NFcM 10D. The source for this effect is
that FcM does not work for higher dimensions. In Figure 8, a 2D projection of a 10 dimensional data

Figure 8. NFcM clustering result from a 10 dimensional data set, projected on 2 dimensions

328

Fuzzy Cluster Analysis of Larger Data Sets

set is shown. All prototypes go to the centre of gravity of the complete data set, hence the membership
values of all data objects are almost identical for all prototypes. This leads to huge sets of data objects
that can be treated identical, hence the optimization is very effective. Unfortunately, the clustering result
is completely useless.

It is also worth mentioning again that the difference of the clustering result compared to standard
FcM is almost identical. In data sets with maximal 5 dimensions or in data sets where the majority of the
data objects is located in high density areas, this algorithm is almost independent to the number of data
objects. Hence it is highly scalable in data size if the prototypes are well separated from each other.

FcM with Polynomial Fuzzifier Function

The runtime of this algorithm is no surprise, since it works basically the same way as standard FcM. The
higher runtime is a result of the increased calculation complexity of the membership value. The proto-
types have to be sorted and a subset has to be calculated for each data object. Therefore, the algorithm
has a runtime complexity of O(c ∙ log(c)) for each data object. This makes it even less scalable in the
number of prototypes than FcM.

Also for this algorithm, the clustering result in higher dimensions is questionable at best. But in
contrast to Fuzzy c-Means, it is not completely useless. Figure 9 shows a 2-dimensional projection of
the same 10 dimensional data set as in Figure 8, but this time clustered with PFcM.

FcM with Polynomial Fuzzifier Function and using Neighbourhood Information

Finally, this algorithm is a combination of the last two, it uses neighbourhood information as NFcM and
has a fuzzifier function like PFcM. This combination has several advantages and some disadvantages.

Figure 9. PFcM clustering result from a 10 dimensional data set, projected on 2 dimensions

329

Fuzzy Cluster Analysis of Larger Data Sets

Due to the polynomial fuzzifier function, data objects in the surrounding area of a prototype have a
membership value of 1. Hence the membership value to all other prototypes is 0 which leads to very
large sets of data object with a membership interval of 0 length. This can speed up the calculation process
considerably in comparison to the other algorithms. The drawback, however, is that the prototypes have
to be sorted for the membership value interval of each prototype. Because only one prototype is changed
every time, this sorting process has a complexity of O(c). But this must be done for each prototype,
hence the calculation complexity for each data object is in O(c2).

The algorithm has the same problems with low density data sets as NFcM and which are enforced by
the much higher runtime complexity. In data sets with well separated high density areas, the algorithm
is faster, compared to PFcM. This contrast is well visible in Figure 7. In the low density case of uniform
distributed data, the algorithm is much slower than all others. Only in the 2 dimensional case, the density
is high enough so that the neighbourhood information can reduce the runtime complexity considerably.
Like NFcM, NPFcM is highly scalable in data object size if the density areas are well separated and
found by prototypes. That this is not always the case is shown in Figure 7 right. For each combination of
parameter, only one runtime test is performed. Depending on the initialization, the algorithm separates
the data well or less well which has a high impact on the runtime. If there are no high density areas, the
algorithm has a very bad runtime performance, as can be seen in Figure 6 left and Figure 7 left.

The polynomial fuzzifier function prevents that the clustering result in higher dimensions is com-
pletely useless which makes it possible that the algorithm can use neighbourhood information which
makes it faster than PFcM.

CONCLUsION

We presented and compared four prototype based algorithms and tested them on two families of arti-
ficial data sets. We showed that using sets of data object that are located close to each other can make
FcM almost independent of the number of data objects and we have shown that a polynomial fuzzifier
function can be used to make a FcM-based algorithm more useful for high dimensional data sets. The
combination of both approaches can be fast, but its performance degrades rapidly if the data set is un-
suited for clustering, that is, it has no dense areas. Approaches that analyse the clustering tendency of a
dataset beforehand may be applied to circumvent such situations.

ACKNOWLEDgMENT

This work was done at the DLR in Braunschweig in cooperation with the University of Applied Sci-
ences Braunschweig/Wolfenbüttel and the Otto-von-Guericke University of Magdeburg, Germany. We
want to thank especially the kind reviewer who helped to increase the quality of this work with a lot of
constructive comments.

330

Fuzzy Cluster Analysis of Larger Data Sets

REFERENCEs

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Norwell, MA, USA:
Kluwer Academic Publishers.

Bezdek, J. C., Keller, J. M., Krishnapuram, R., & Pal, N. R. (1999). Fuzzy models and algorithms for
pattern recognition and image processing. Boston, USA: Kluwer Academic Publishers.

Borgel, C. (2005). Prototype-based classification and clustering (Habilitationsschrift). Unpublished
habilitation, Otto-von-Guericke-University of Magdeburg, Germany.

Cannon, R. L., Dave, J. V., & Bezdek, J. C. (1986). Efficient implementation of the fuzzy c-means
clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(2), 248–255.
doi:10.1109/TPAMI.1986.4767778

Cheng, T. W., Goldgof, D. B., & Hall, L. O. (1995). Fast clustering with application to fuzzy rule gen-
eration. In Proceedings of the 4th IEEE International Conference on Fuzzy Systems, Yokohama, Japan
(pp 2289-2295). Piscataway, NJ: IEEE Press.

Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-
separated clusters. Journal of Cybernetics, (3), 32-57.

Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Proceedings of the Int. Conf.
Machine Learning (pp. 147-153).

Enrique, H. R. (1969). A new approach to clustering. Information and Control, 15(1), 22–32. doi:10.1016/
S0019-9958(69)90591-9

Eschrich, S., Ke, J., Hall, L. O., & Goldgof, D. B. (2003). Fast accurate fuzzy clustering through data
reduction. IEEE transactions on Fuzzy Systems, 11(2), 262–270. doi:10.1109/TFUZZ.2003.809902

Hathaway, R. J., & Bezdek, J. C. (2006). Extending fuzzy and probabilistic clustering to very large data
sets. Computational Statistics & Data Analysis, 51(1), 215–234. doi:10.1016/j.csda.2006.02.008

Hershfinkel, D., & Dinstein, I. (1996). Accelerated fuzzy c-means clustering algorithm. In Proceedings
SPIE Applications of Fuzzy Logic Technology III (pp. 41-52).

Höppner, F. (2002). Speeding up fuzzy c-means: Using a hierarchical data organisation to control the
precision of membership calculation. Fuzzy Sets and Systems, 128(3), 365–376. doi:10.1016/S0165-
0114(01)00204-4

Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy cluster analysis. Chichester, England:
John Wiley & Sons.

Klawonn, F., & Höppner, F. (2003a). What is fuzzy about fuzzy clustering? Understanding and improv-
ing the concept of the fuzzifier. In Advances in intelligent data analysis (LNCS 2779, pp. 254-264).
Berlin, Germany: Springer.

Klawonn, F., & Höppner, F. (2003b). An alternative approach to the fuzzifier in fuzzy clustering to obtain
better clustering. In Proceedings of the EUSFLAT Conf. (pp. 730-734).

331

Fuzzy Cluster Analysis of Larger Data Sets

Pelleg, D., & Moore, A. (1999). Accelerating exact k-means algorithms with geometric reasoning. In
KDD ‘99: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, New York, USA (pp. 277-281).

Shankar, B. U., & Pal, N. R. (1994). FFCM: An effective approach for large data sets. In Proceedings
of the 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing, Iizuka, Japan
(pp. 331-332).

Smellie, A. (2004). Accelerated k-means clustering in metric spaces. Journal of Chemical Information
and Modeling, 44(6), 1929–1935. doi:10.1021/ci0499222

332

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

Fuzzy Clustering with
Repulsive Prototypes

Frank Rehm
German Aerospace Center, Germany

Roland Winkler
German Aerospace Center, Germany

Rudolf Kruse
Otto-von-Guericke University Magdeburg, Germany

INTRODUCTION

Clustering has become a very popular technique to discover interesting patterns in complex data. Due
to its clear output, results are easily interpretable by all audience. It is thus not surprising that clustering
is applied in various domains, e.g. the analysis of gene expression data, customer behavior, air traffic
management and many more (Raytchev and Murase, 2001, Frigui and Krishnapuram, 1999; Ressom
et al., 2003; Rehm and Klawonn, 2005). The purpose of clustering is to divide a dataset into differ-
ent groups or clusters such that elements of the same cluster are as similar as possible and elements
of different clusters are as dissimilar as possible (Duda and Hart, 1973; Bezdek, 1981). It is generally
applied to data where no class labels are assigned to the single entities. In fact, the intention of using
clustering is to gain this class information as a result of the clustering process. It is therefore known as
unsupervised classification.

AbsTRACT

A well known issue with prototype-based clustering is the user’s obligation to know the right number
of clusters in a dataset in advance or to determine it as a part of the data analysis process. There are
different approaches to cope with this non-trivial problem. This chapter follows the approach to address
this problem as an integrated part of the clustering process. An extension to repulsive fuzzy c-means
clustering is proposed equipping non-Euclidean prototypes with repulsive properties. Experimental
results are presented that demonstrate the feasibility of the authors’ technique.

DOI: 10.4018/978-1-60566-858-1.ch013

333

Fuzzy Clustering with Repulsive Prototypes

Most clustering algorithms can be categorized into hierarchical clustering and partitional clustering.
Hierarchical clustering groups data over a variety of scales by constructing a cluster tree. This tree rep-
resents a multilevel hierarchy, where clusters at one level are joined as clusters at the next level (Duda
and Hart, 1973). This allows to decide the scale of clustering that is most appropriate for the respective
application. Hierarchical clustering either builds a hierarchy of clusters bottom-up (agglomerative),
starting with each sample as a cluster and forming a sequence by successively merging clusters, or splits
clusters top-down (divisive), starting with all samples in on cluster and successively separating the data
and forming a sequence of partitions (Duda and Hart, 1973). Partitional clustering attempts to directly
decompose the dataset into a set of disjoint clusters that ideally comply with the natural grouping pres-
ent in the data.

Prototype-based clustering algorithms represent the most popular class of partitional clustering
techniques. The nature of prototype-based clustering is that, as a result, some representatives, the
so-called prototypes, typify a subset of data objects by its position in the center of the respective data
cluster. Typically, the number of data clusters is not known in advance but must be specified when ap-
plying prototype-based clustering algorithms. In fact, the determination of the exact number of clusters
is a difficult problem. Most clustering algorithms can partition a dataset into any specified number of
clusters even if the data contain no cluster structure (Jain and Moreau, 1987). Numerous cluster valid-
ity measures, procedures for determining the number of clusters, have been proposed. Global cluster
validity measures mostly utilize a kind of square error criterion and condense the clustering result to a
scalar value after the clustering process which is associated with a huge loss of information. Local clus-
ter validity measures try to estimate the optimal number of clusters as an integrated part the clustering
process. These techniques mostly over specify the number of clusters for the initial partition and the final
one has the optimal number of clusters (Timm et al., 2001; Krishnapuram and Freg, 1992; Xiong et al.,
2004). Another approach to assess cluster validity is to visualize the resulting cluster partition and inspect
it visually (Hathaway and Bezdek, 2003; Hathaway et al., 2006; Havens et al., 2008; Klawonn et al.,
2003; Rehm et al., 2006). Mostly, several runs with various parameter sets must be performed in order
to find a suitable solution. Besides that, initialization may have a considerable impact on the clustering
result. Unfortunately, no holistic solution for these problems can be provided until now. However, if
certain knowledge about the data is available, e.g. what will be the approximate size of the clusters and
how far are they separated, clustering algorithms can use these information to reduce user load doing
expert working, e.g. in finding parameters, and finally improve clustering results.

Prototype-based clustering techniques can be distinguished into hard (crisp) clustering and soft
(fuzzy) clustering. Hard clustering techniques assign each element to exactly one cluster. Since most
of these algorithms are highly sensitive to noise they are favorably applied on data where clusters are
well separated. Experiments have demonstrated that fuzzy clustering is more robust against outliers or
noise. Apart from this, a major advantage of fuzzy clustering over crisp clustering is the ability to express
ambiguity in the assignment of objects to clusters (Klawonn, 2004; Klawonn, 2006).

Moreover, fuzzy clustering can be subclassified into probabilistic clustering and possibilistic cluster-
ing. Probabilistic approaches generate partitions, where the total membership degree that is equal for
each data object, is assigned to all clusters gradually. Possibilistic algorithms assign data objects to the
clusters independently, i.e. the membership value of a data object represents the typicality of the point
in the cluster or the possibility of the data object belonging to the cluster (Krishnapuram and Keller,
1993; Lesot and Kruse, 2006; Pal et al., 2005).

334

Fuzzy Clustering with Repulsive Prototypes

Noise clustering is another approach that can handle the problem of noise or outliers. The idea of
noise clustering is based on the introduction of a virtual cluster that is supposed to contain all outliers.
Feature vectors that are about a certain noise distance or further away from any regular cluster get high
membership degrees to this noise cluster. The regular prototypes can thus better match the regular clusters
(Dave, 1991; Dave and Krishnapuram, 1997; Wu and Zhou, 2006).

Repulsive clustering makes use of additional knowledge about the expected cluster structure (Win-
kler et al., 2009; Cheng and Wang, 2003; Timm et al., 2001). A recent approach allows to widely over-
specify the number of clusters for a given dataset (Winkler et al., 2009). A repulsive component that is
associated to each prototype assures that data clusters will be represented by one single prototype only.
Redundant prototypes will be pushed away to where they have no or only little impact on regular pro-
totypes. Finally they can be detected and eliminated, such that only meaningful prototypes remain. In
this paper we propose an extension to repulsive clustering, equipping non-Euclidean fuzzy prototypes,
as they are used with Gustafson-Kessel and alike fuzzy clustering algorithms, with repulsive properties
(Gustafson and Kessel, 1979).

The rest of the paper is organized as follows. The next section gives a brief overview of related work.
Then we describe fuzzy clustering and repulsive clustering followed by an introduction of a new exten-
sion that provides non-Euclidean distance measures to repulsive clustering. Results on demonstrative
examples will be provided before we finally conclude with the last section.

bACKgROUND

(Timm et al., 2001) proposed an approach that combines the partitioning property of probabilistic
clustering with the robust noise insensibility of possibilistic clustering (Wachs et al., 2006; Qin and
Suganthan, 2004). A modification of the objective function that integrates both, the probabilistic ap-
proach and the possibilistic approach, and the introduction of a repulsion term provide prototypes with
repulsive characteristics.

(Cheng and Wang, 2003) introduced a repulsive clustering algorithm that makes no use of proto-
types. Instead, the idea of this approach is that pairs of data objects repulse each other if their distance
exceeds a predefined threshold. Pairs of data objects that are closer to each other than this distance
attract each other. This rule is iterated with an appropriate learning rate avoiding widely jumping data
points. The algorithm converges after some iterations resulting in a layout that accentuates the inherent
cluster structure.

Clustering with attraction and repulsion (CAR) is an algorithm described in (Raytchev and Murase,
2001). Two types of opposing forces, attraction and repulsion, operate across in order to autonomously
organize a dataset. This technique has been successfully applied in the field of image analysis coping
with the problem of unknown number of clusters and clusters that differ in shape and size.

FUZZY CLUsTERINg

Cluster analysis divides data into groups (clusters) such that similar data objects belong to the same
cluster and dissimilar data objects to different clusters. The resulting data partition improves data under-

335

Fuzzy Clustering with Repulsive Prototypes

standing and reveals internal data structures. Partitional clustering algorithms provide representatives
(prototypes) that indicate the center of each cluster.

Fuzzy c-Means Clustering

Fuzzy clustering algorithms aim at minimizing an objective function that describes the sum of weighted
distances dij between c prototype vectors vi and n feature vectors xj of the feature space Rp :

J u d
i

c

j

n

ij
m

ij
= () .

=1 =1
åå

 (1)

With the fuzzifier m Î ¥(1,] one can determine how much the clusters overlap. While high values
for m lead to widely overlapping clustering solutions, small values, m tending to 1, lead to rather crisp
partitions. In order to avoid the trivial solution assigning no data to any cluster by setting all uij to zero
and avoiding empty clusters, the following constraints are required:

u i c j n
ij
Î £ £ £ £[0,1] 1 , 1 (2)

i

c

ij
u j n

=1

= 1 1å £ £
 (3)

0 < < 1 .
=1j

n

ij
u n i cå £ £

 (4)

When the squared Euclidian norm

d d v x x v x v
ij i j j i

T
j i

= (,) = () ()2 - - (5)

is used as distance measure for distances between prototype vectors vi and feature vectors xj, the fuzzy
clustering algorithm is called fuzzy c-means algorithm (FCM). With the Euclidian distance measure
FCM searches equally sized (hyper)-spherical clusters.

The minimization of the function (1) represents a nonlinear optimization problem that is usually
solved by means of Lagrange multipliers, applying an alternating optimization scheme (Bezdek, 1980).
This optimization scheme considers alternatingly one of the parameter sets, either the prototypes

v

u x

u
i

j

n

ij
m

j

j

n

ij
m

=

()

()

=1

=1

å

å (6)

336

Fuzzy Clustering with Repulsive Prototypes

or the membership degrees

u

d

d

ij

k

c
ij

kj

m

=
1

=1

1
1

å
æ

è

ççççç

ö

ø

÷÷÷÷÷

-

 (7)

as fixed, while the other parameter set is optimized according to equations (6) and (7), respectively, until
the algorithm finally converges.

There are some reasons why FCM should be run several times. First of all, no guarantee can be given
that the optimal solution can be found, since the alternating optimization scheme can lead to a local opti-
mum. Initialization of the prototypes may impact the final result. Secondly, the exact number of clusters
is not known in advance in most use cases. In order to determine this parameter, a series of runs with
different number of prototypes need to be conducted. Cluster validity measures may give hints towards
the right solution (Bezdek and Pal, 1998; Davies and Bouldin, 1979; Dunn, 1974; Höppner et al., 1999;
Wu and Yang, 2005). Repulsive clustering provides an alternative approach to obtain an estimate of the
number of clusters as an integral part of the clustering process.

Repulsive Fuzzy-c Means Clustering

Repulsive clustering is an extension to conventional clustering (Winkler et al., 2009). It makes use of
additional knowledge about the expected cluster structure and allows to widely overestimate the number
of clusters for a given dataset. A repulsive component that is associated to each prototype assures that
data clusters, for which the assumptions are correct, will be represented by one single prototype only.
Redundant prototypes will be pushed away to where they have no, or only little, impact on regular pro-
totypes. Finally they can be detected and eliminated such that only meaningful prototypes remain.

Equipping FCM-prototypes with repulsive characteristics can be done by a simple modification of
the update equation (6) for the prototypes:

v

u x

u
i
t j

n

ij

m

j

j

n

ij

m

A

() =1

=1

=
å

å

() ×

()
+ ×

  

w
kk i

i
t

k
t

i
t

k
t

B

v v

v v¹

- -

- -å
-

-

(1) (1)

(1) (1)

  

  

×
+()

×
å

å
j

n

kj

j

n

ij kj

C

i

u

u u

v=1

=1

(f ((1) (1))t
k
t

D

v- --

æ

è

ççççççççççç
  

ççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷ (8)

Term A is the same as for conventional FCM-clustering. The repulsion of prototypes is calculated
pairwise for each pair of prototypes based on the relative position of the prototypes (term B), the differ-
ent weight of the prototypes (term C) and the distance between the respective prototypes (term D). The
parameter t is introduced to distinguish prototypes of succeeding iterations. Thus, the positions of the
prototypes of the preceding iteration (t − 1) are employed to compute the prototypes of the tth iteration.
Parameter w handles the balance between the attracting force of the data and the repulsion between
prototypes. If the dataset is standardized, w can be set to 1. Term B is a unified vector describing the

337

Fuzzy Clustering with Repulsive Prototypes

direction of the repulsion that exerts prototype vk towards vi. Term C assures that prototypes representing
more data repulse prototypes representing less data with greater force. This is important since otherwise
two prototypes could push each other out of a cluster without leaving one inside. The amount of data that
is represented by one prototype can be expressed by the sum of membership degrees to the respective pro-
totype. Finally, term D takes the distance between prototypes into account. The repulsion should decrease
with increasing distance between two prototypes. Any monotonously falling and contiunous function
f : [0,1]R ® can be used. The following logistic function has proven to work well in practice:

f
s

() =
1

1 ()
x

ea x+ - (9)

with

a =
(
1

1)
.

ln
a
g s

-

- (10)

The parameter a describes the gradient of φ at the point σ. Figure 1 shows the repulsion funtion φ
for different parameter sets. In this example α and σ are fixed while γ varies. The value σ is the distance
at which the function φ has the value 0.5, thus, where the strength of repulsion is halve. γ denotes the
distance at which the repulsion has almost no effect. Mathematically, almost no effect is described by
α that should be chosen out of the interval (0,0.5). Usually α is set to 0.05, restricting the repulsion to
only 0.05 times its maximal strength.

After running repulsive clustering with an overestimated number of prototypes, a simple test
T : {1, 0}B ® can be used to determine whether a prototype is inside a data cluster or not

T v
u u

i j

n

ij min() =
1 , >

0 , .
=1
å

ì

í

ïïïï

î
ïïïï otherwise

T is 1 if the sum of membership degrees for the respective prototype exceeds a user-defined mini-
mum umin that usually depends on the number of data objects. Finally, the position of all positively tested
prototypes can be used to initialize another prototype-based clustering algorithm, e.g. FCM.

Repulsive clustering has been successfully applied in practical applications where mainly spherical
clusters can be found (Winkler et al., 2009). Due to the underlying FCM-model that focuses on that
kind of data, repulsive clustering cannot be applied to data sets comprising ellipsoidal clusters without a
suitable adaptation of the repulsion process. Since ellipsoidal clusters may overlap and thus prototypes
of ellipsoidal clusters can be arbitrary close without representing identical data, the repulsion process
need to be redesigned accordingly. After a brief revision of Gustafson-Kessel clustering, a modification
of FCM that allows to find ellipsoidal clusters, we will address the problem of cluster repulsion in the
Gustafson-Kessel clustering environment.

338

Fuzzy Clustering with Repulsive Prototypes

gustafson-Kessel Clustering

Modifications of the fuzzy c-means algorithm by means of the distance measure allow the algorithm to
adapt to different cluster shapes. A common representative applying such a modification is the algorithm
of Gustafson-Kessel (GK) (Gustafson and Kessel, 1979).

Whereas FCM makes the implicit hypothesis that clusters are spherical, GK associates each prototype
with a fuzzy covariance matrix and thus removes this constraint. This enables GK to find ellipsoidal
clusters of arbitrary orientations. The fuzzy covariance matrix is defined as the fuzzy equivalent of the
classic covariance:

C

u

u x v x v
i

j

n

ij
m j

n

ij
m

j i j i
T=

1
()()

=1

=1å
å - -

 (11)

Instead of using the Euclidean distance measure, the Mahalanobis distance is applied (Mahalanobis,
1936):

d d v x C x v C x v
ij i j i

p
j i

T
i j i

= (,) = () () ().2
1

1det - --
 (12)

Avoiding J in equation (1) to get minimal, by simply making Ci less positive definite, Ci is constrained
to the determinant |Ci|, limiting GK to find ellipsoidal clusters of approximately the same size only.

Figure 1. The repulsion function ϕ for different parameter sets

339

Fuzzy Clustering with Repulsive Prototypes

REPULsIvE gUsTAFsON-KEssEL CLUsTERINg

Since GK-prototypes may represent ellipsoidal cluster of different directions it may occur - quite contrary
to fuzzy c-means prototypes - that some prototypes have very close (or even equal) positions while rep-
resenting completely different data clusters. Therefore, using the pairwise prototype distance, see term
D in equation (8), as the driving parameter to control the repulsion process does not lead to the desired
result. It is neither feasible to simply use the Mahalanobis distance in term D in equation (8) since the
covariance matrices are derived from the relation of the prototype to the respective data cluster and do
not correlate to the prototype’s position to other prototypes (see Figure 2).

The above discussion explains that repulsion of prototypes GK-prototypes is fairly different to
the repulsion of FCM-prototypes. The inverse case - namely the merging of compatible clusters - has
been solved successfully already. Compatible Cluster Merging (CCM) was proposed as a kind of local
clustering validity measure for 2D and 3D-datasets (Krishnapuram and Freg, 1992). CCM explores the
feature space with an overspecified number of GK-prototypes and tries to merge prototypes that seem
to represent the same data cluster. The merging process is controlled by means of a compatibility rela-
tion that indicates the compatibility of two prototypes if they have the same main orientation, they are
adjacent to each other and if there is no gap between.

A similar compatibility relation can be used to repulse two prototypes vi and vk that represent one
cluster redundantly:

v v e e
i k i

T
k= Û × ³ g

1 (13)

Ù
+

+
×

-

-
³

()
2

e e

e e

v v

v v
i k

T

i k

i k

i k

g
 (14)

Figure 2. Algorithm 1. Repulsive GK-Clustering

340

Fuzzy Clustering with Repulsive Prototypes

Ù - £ +()v v
i k i k

g l l
3

.
 (15)

ei and ek are the eigenvectors that are associated with the largest eigenvalues λi and λk of the respec-
tive matrices Ci and Ck. The scalar product in equation (13) is near 1 if the clusters are parallel and 0
for orthogonal clusters. The desired degree of parallelism for compatible clusters can be controlled by
means of γ1. Equation (14) is fulfilled for λ2 near 1 if two prototypes are adjacent along their principle
eigenvectors. This guarantees that prototypes that represent orthogonally translated clusters will not be
repulsed. Finally, equation (15) takes the extent of influence of the two prototypes in form of the eigen-
vectors into account. Prototypes that overlap according to this criteria should be repulsed.

It is not advisable to activate the repulsion process only if the above similarity relation indicates the
compatibility of two prototypes. This would lead to abrupt changes in the membership degrees and the
prototype positions from one iteration to another and could prevent the algorithms’ convergence. Instead,
the degree of compatibility should be considered continuously and can be used to weight the repulsion
intensity. This can be expressed by the product of the parallelism and the orthogonal translation of two
prototypes. The distance between prototypes needs not to be considered explicitly since the repulsion
function, equation (9), makes use of this information already. The weighting parameter w

ik
= [0,1]Î R

for the repulsion of GK-prototypes

w e e
e e

e e

v v

v v n
u

ik i
T

k
i k

T

i k

i k

i k j

n

kj
=

() 1

=1

× ×
+

+
×

-

-
× å

d

 (16)

tends 1, allowing the repulsion to be maximal, if two prototypes vi and vk represent parts of the same data
cluster. If w is near 0 the repulsion has no effect and conventional GK-clustering is done. By means of
d Î +R one can tune the repulsion process. Small δ = [0,1] favor conventional repulsion disregarding
the prototype influence direction. Larger δ > 1 require the prototypes to have very similar influence
directions in order to activate the repulsion.

So far, the repulsion function takes only relative differences in prototype weight into account. In
unfavorable circumstances this can lead to the setting that a weak prototype, a prototype that represents
only few data, repulses another weak prototype disproportionally far away. The sum of the membership
degrees divided by the number of data, so to speak the absolute weight of prototype vk, addresses that
issue assuring weak prototypes not repulse others significantly.

For repulsive GK-clustering we can adopt update equation (8) by slight changes

v

u x

u
i
t j

n

ij

m

j

j

n

ij

m

A

() =1

=1

=
å

å

() ×

()
+ ×

  

w
kk i

ik
i
t

k
t

i
t

k
t

B

w
v v

v v¹

- -

- -å ×
-

-

(1) (1)

(1) (1)

  

×
+()

æ

è

ççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷

å

å
j

n

kj

j

n

ij kj

u

u u

=1

=1 ÷÷

× -- -

b

f

C

i
t

k
t

D

v v

  

 

()(1) (1)

 

æ

è

çççççççççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

.

 (17)

341

Fuzzy Clustering with Repulsive Prototypes

Besides parameter w, that allows weighting of the repulsion, exponent b Î +R can be used to accen-
tuate the different weight of two competing prototypes. A prototype cannot be pushed out of a cluster by
one prototype that represents less data. However, larger β > 1 ensure that a prototype will not be pushed
out of a cluster by numerous weaker prototypes.

In the standard GK clustering numerical problems occur frequently when the number of data samples
in some clusters is small or when the data within a cluster are nearly linearly correlated. In such a case
the respective covariance matrix becomes singular and cannot be inverted. The improvements that have
been proposed in this regard in (Babuka et al., 2002) have been applied to repulsive GK clustering to
avoid these problems.

Conventional fuzzy clustering mainly scales in the number of data objects, the dimensionality of
the feature space and the number of prototypes. However, scalability can be interpreted in many ways.
As this term it is typically used describe the ability of an algorithm to handle growing amounts of work
in a graceful manner it also concerns the means of generality. For a specific problem, it is feasible to
design a narrow algorithm. On the other hand, an abstract problem requires a general algorithm. In the
case of fuzzy c-means (or related algorithms), the parameter c describes the number of clusters that are
expected in a dataset. If this information is not available, the problem becomes more general. If then
information about the separation of clusters is available, it can be used to specify the problem statement
accordingly. Due to its integrated mechanism to cope with an unknown number of clusters repulsive
clustering provides scalability to conventional clustering.

Figure 3. Clustering of the Gustafson cross using ten prototypes. Two prototypes represent the overlap-
ping clusters. The remaining prototypes are intentionally repulsed

342

Fuzzy Clustering with Repulsive Prototypes

ExPERIMENTAL REsULTs

Figure 3 and Figure 4 show some experimental results on artificial data. The first figure shows two
overlapping clusters similar to the Gustafson cross (Gustafson and Kessel, 1979). By means of this data
one can exemplarily demonstrate the particular characteristic of the GK-algorithm. Due to its capability
to locally estimate the covariance matrix for each cluster, prototypes can be arbitrarily close, as long
as they represent different data. Thus, it is very important that this property will be preserved for the
repulsive GK model, too. As Figure 3 shows, also repulsive GK locates both clusters correctly. Equa-
tion (16) prevents the mutual repulsion of the two prototypes. The redundant prototypes, however, are
repulsed intentionally such that the data is partitioned in a proper style. Figure 4 depicts an artificial
dataset comprising four ellipsoidal clusters. As for the first example, ten prototypes were used to explore
the feature space. While four prototypes find the center of gravity of the regular data clusters correctly,
the remaining six prototypes are repulsed from the data.

These two examples demonstrate the principle of repulsive GK-clustering. Although, the final par-
titioning result of repulsive GK remains stable across the iterations, it may occur that the prototypes
slightly move due to oppositional attraction and repulsion by data and other prototypes, respectively.
The discontinue in change of the membership degrees may serve as a feasible termination criterion for
the repulsive clustering algorithm instead of the prototypes position.

Figure 4. Artificial data set showing four ellipsoidal clusters. Each of the clusters is represented by one
prototype. The remaining prototypes are intentionally repulsed

343

Fuzzy Clustering with Repulsive Prototypes

CONCLUsION

In this paper we have presented a practical extension to repulsive clustering. The proposed technique
allows to equip GK-prototypes with repulsive properties. The repulsion process is balanced as a func-
tion of prototype weight, pair-wise prototype distance and cluster orientation. Due to its relatedness to
compatible cluster merging and due to the known constraints of GK, the application of repulsive GK
is limited to low-dimensional datasets in this stage. However, results on demonstrative examples are
promising and encourage further research on this topic.

REFERENCEs

Babuka, R., van der Veen, P., & Kaymak, U. (2002). Improved covariance estimation for Gustafson-
Kessel clustering. In Proceedings of the FUZZ-IEEE Conference on Fuzzy Systems, Honolulu, HI, USA
(pp. 1081-1085).

Bezdek, J. C. (1980). A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2, 1–8. doi:10.1109/TPAMI.1980.4766964

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms (2nd ed.). New York:
Plenum Press.

Bezdek, J. C., & Pal, N. (1998). Some new indexes of cluster validity. IEEE Transactions on Systems,
Man, and Cybernetics, 28(3), 301–315. doi:10.1109/3477.678624

Cheng, C.-S., & Wang, S.-S. (2003). A repulsive clustering algorithm for gene expression data. In Pro-
ceedings of the IEEE International Symposium on Bioinformatic and Bioengineering (pp. 407-412).

Dave, R. (1991). Characterization and detection of noise in clustering. Pattern Recognition Letters,
12(11), 657–664. doi:10.1016/0167-8655(91)90002-4

Dave, R., & Krishnapuram, R. (1997). Robust clustering methods: A unified view. IEEE transactions
on Fuzzy Systems, 5(2), 270–293. doi:10.1109/91.580801

Davies, D., & Bouldin, D. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1(2), 224–227. doi:10.1109/TPAMI.1979.4766909

Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New York: John Wiley.

Dunn, J. (1974). Well-separated clusters and optimal fuzzy partitions. Cybernetics and Systems, 4(1),
95–104. doi:10.1080/01969727408546059

Frigui, H., & Krishnapuram, R. (1999). A robust competitive clustering algorithm with applications in
computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 450–465.
doi:10.1109/34.765656

Gustafson, D., & Kessel, W. (1979). Fuzzy clustering with a fuzzy covariance matrix. In Proceedings
of the IEEE Conference on Decision and Control, San Diego, CA (pp. 761-766).

344

Fuzzy Clustering with Repulsive Prototypes

Hathaway, R. J., & Bezdek, J. C. (2003). Visual cluster validity for prototype generator clustering models.
Pattern Recognition Letters, 24(9–10), 1563–1569. doi:10.1016/S0167-8655(02)00395-1

Hathaway, R. J., Bezdek, J. C., & Huband, J. M. (2006). Scalable visual assessment of cluster tendency
for large data sets. Pattern Recognition, 39(7), 1315–1324. doi:10.1016/j.patcog.2006.02.011

Havens, T., Bezdek, J., Keller, J., & Popescu, M. (2008). Dunn’s cluster validity index as a contrast
measure of vat images. In Proceedings of the 19th International Conference on Pattern Recognition
(ICPR) (pp. 1-4).

Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. A. (1999). Fuzzy cluster analysis. Chichester, UK:
John Wiley & Sons.

Jain, A. K., & Moreau, J. V. (1987). Bootstrap technique in cluster analysis. Pattern Recognition, 20(5),
547–568. doi:10.1016/0031-3203(87)90081-1

Klawonn, F. (2004). Fuzzy clustering: insights and a new approach. Mathware & soft computing, 11(2-
3).

Klawonn, F. (2006). Understanding and controlling the membership degrees in fuzzy clustering. In From
data and information analysis to knowledge engineering (pp. 446-453).

Klawonn, F., Chekhtman, V., & Janz, E. (2003). Visual inspection of fuzzy clustering results. In J. Ben-
itez, O. Cordon, F. Hoffmann, & R. Roy (Eds.), Advances in soft computing - engineering, design and
manufacturing (pp. 65-76). London: Springer.

Krishnapuram, R., & Freg, C.-P. (1992). Fitting an unknown number of lines and planes to image
data through compatible cluster merging. Pattern Recognition, 25(4), 385–400. doi:10.1016/0031-
3203(92)90087-Y

Krishnapuram, R., & Keller, J. (1993). A possibilistic approach to clustering. IEEE transactions on Fuzzy
Systems, 1(2), 98–110. doi:10.1109/91.227387

Lesot, M.-J., & Kruse, R. (2006). Data summarisation by typicality-based clustering for vectorial and non
vectorial data. In Proceedings of the IEEE International Conference on Fuzzy Systems (pp. 547-554).

Mahalanobis, P. (1936). On the generalized distance in statistics. In Proceedings of the National Institute
of Science of India (pp. 49-55).

Pal, N., Pal, K., Keller, J., & Bezdek, J. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE
transactions on Fuzzy Systems, 13(4), 517–530. doi:10.1109/TFUZZ.2004.840099

Qin, A., & Suganthan, P. (2004). Robust growing neural gas algorithm with application in cluster analysis.
Neural Networks, 17(8-9), 1135–1148. doi:10.1016/S0893-6080(04)00166-2

Raytchev, B., & Murase, H. (2001). Unsupervised face recognition from image sequences based on
clustering with attraction and repulsion. In Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2001), Vol. 2 (pp. II–25-II–30).

Rehm, F., & Klawonn, F. (2005). Learning methods for air traffic management. In L. Godo (Ed.), Sym-
bolic and quantitative approaches to reasoning with uncertainty. Berlin, Germany: Springer.

345

Fuzzy Clustering with Repulsive Prototypes

Rehm, F., Klawonn, F., & Kruse, R. (2006). Visualization of single clusters. In L. Rutkowski, R. Tade-
usiewicz, L. Zadeh, & J. Zurada (Eds.), Proceedings of the Artificial Intelligence and Soft Computing
- ICAISC 2006. Berlin, Germany: Springer.

Ressom, H. W., Wang, D., & Natarajan, P. (2003). Adaptive double self-organizing maps for clustering
gene expression profiles. Neural Networks, 16(5-6), 633–640. doi:10.1016/S0893-6080(03)00102-3

Timm, H., Borgelt, C., Döring, C., & Kruse, R. (2001). Fuzzy cluster analysis with cluster repulsion. In
Proceedings of the European Symposium on Intelligent Technologies, Hybrid Systems and their imple-
mentation on Smart Adaptive Systems.

Wachs, J., Shapira, O., & Stern, H. (2006). A method to enhance the possibilistic c-means with repulsion
algorithm based on cluster validity index. In A. Abraham, B. D. Baets, M. Köppen, & B. Nickolay (Eds.),
Applied soft computing technologies: The challenge of complexity. Berlin, Germany: Springer.

Winkler, R., Rehm, F., & Kruse, R. (2009). Clustering with repulsive prototypes. In Studies in classifica-
tion, data analysis, and knowledge organization. Berlin, Germany: Springer.

Wu, K., & Yang, M. (2005). A cluster validity index for fuzzy clustering. Pattern Recognition Letters,
26, 1275–1291. doi:10.1016/j.patrec.2004.11.022

Wu, X.-H., & Zhou, J.-J. (2006). Noise clustering using a new distance. In Proceedings of the 2nd In-
ternational Conference on Information and Communication Technologies (ICTTA) (pp. 1938-1943).

Xiong, X., Chan, K. L., & Tan, K. L. (2004). Similarity-driven cluster merging method for unsupervised
fuzzy clustering. In Proceedings of the 20th conference on uncertainty in artificial intelligence (pp.
611-618). AUAI Press.

Section 4
Real-World Challenges

347

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

Early Warning from Car
Warranty Data using a
Fuzzy Logic Technique

Mark Last
Ben-Gurion University of the Negev, Israel

Yael Mendelson
Formerly of Ben-Gurion University of the Negev, Israel

Sugato Chakrabarty
India Science Lab, GM Technical Center, India

Karishma Batra
Formerly of India Science Lab, GM Technical Center, India

Introduction

Car manufacturers are responsible for the vehicle maintenance during the entire warranty period. Con-
sequently, the warranty data is being continuously reported by the manufacturer dealers to a central

Abstract

Car manufacturers are interested to detect evolving problems in a car fleet as early as possible so
they can take preventive actions and deal with the problems before they become widespread. The vast
amount of warranty claims recorded by the car dealers makes the manual process of analyzing this
data hardly feasible. This chapter describes a fuzzy-based methodology for automated detection of
evolving maintenance problems in massive streams of car warranty data. The empirical distributions
of time-to-failure and mileage-to-failure are monitored over time using the advanced, fuzzy approach
to comparison of frequency distributions. The authors’ fuzzy-based early warning tool builds upon an
automated interpretation of the differences between consecutive histogram plots using a cognitive model
of human perception rather than “crisp” statistical models. They demonstrate the effectiveness and the
efficiency of the proposed tool on warranty data that is very similar to the actual data gathered from a
database within General Motors.

DOI: 10.4018/978-1-60566-858-1.ch014

348

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

database. The warranty database is expected to include the following information for each customer
complaint: dealer location, car model, car manufacturing and selling dates, claim date, mileage to date,
complaint code, labor code, etc. The taxonomy of labor codes is usually available in a hierarchical form
corresponding to car systems and sub-systems.

The central warranty database can be used to continuously monitor the empirical distributions of time
and mileage to failure for various problem types in each new car model. In this chapter, the empirical
distributions in consecutive time windows are compared to each other using the advanced, fuzzy ap-
proach to comparison of frequency distributions (Last & Kandel, 2002a, 2002b) developed within the
framework of automated perceptions (Last and Kandel, 1999). This novel monitoring method provides
an automated interpretation of the differences between histogram plots using a cognitive model of human
perception rather than rigid statistical models. It is able to discover a positive or a negative shift in the
histogram of the target distribution, based upon the apparent shift in the central tendency, the sample size,
and the available domain knowledge. The proposed fuzzy-based method is implemented by the Early
Warning Tool, which issues a warning about a negative shift whenever the values of the new histogram
are shifted to the left more than a pre-defined Alarm Threshold and a positive shift whenever the values
of the new histogram are shifted to the right more than the same threshold. A car manufacturer would
be particularly interested in timely discovery of negative shifts, which indicate an increase in the prob-
ability of a certain problem type after a lower mileage or a shorter amount of time elapsed since the car
left the factory or since the previous visit to the dealer. Identifying the most common labor codes (“root
causes”) associated with negative and positive shifts is another important objective. Fuzzy shifts across
multiple consecutive periods can be aggregated to compute a long-term trend of the warranty data. The
proposed Early Warning Tool has also to be highly scalable in the size of the warranty database that is
updated with thousands of new warranty claims on a daily basis.

This chapter is organized as follows. The next section provides the necessary background on emerg-
ing issues analysis in a car fleet. Then we proceed with describing the steps needed for selecting and
preparing the warranty data for the early warning purposes. Fuzzy shift and fuzzy trend calculation
along with the root cause analysis are presented next. The proposed fuzzy-based methodology is then
demonstrated on warranty data that is very similar to the actual data gathered from a database within a
major car manufacturer (General Motors). Finally we outline the future research directions and provide
some concluding remarks.

bACKgROUND

Tracking of warranty trend of a particular product based on the claim distribution over time is an impor-
tant problem of any company and industry. Most companies maintain warranty databases for purposes of
financial reporting and warranty expense forecasting. Such warranty field data is largely extensive and
messy, and hence special tools and algorithms are needed to extract useful information. In some cases,
there are attempts to extract engineering information from such databases. Another important applica-
tion is to use warranty data to detect potentially serious field reliability problems known as emerging
issues, as early as possible. With detection of sudden emerging issues it is also important to track the
other trends such as “bygone problem” (the failure rate has decreased back to normal), “emerging issue
under control” and “emerging issue came gradually over a passage of time”. This is because after some
action was taken by the manufacturing process or a precautionary measure taken by dealers through
service enhancement it is important to study the behavior of the trends i.e. after process rectification

349

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

whether the previous emerging issues trends for a group of failure components now changed to the
“under control” or “bygone” trends.

In describing the use of warranty data a number of papers and books have been written. Blischke
and Murthy (1994, 1996) covered a wide range of topics related to warranty issues. General reviews of
statistical methods for warranty data were provided by Robinson and McDonald (1991), Lawless and
Kalbfleisch (1992), and Lawless (1998). Specific technical methods for dealing with problems arising in
field and warranty data (reporting delays, censoring, truncation, and sparsity) were provided, for example
by Suzuki (2001a, b), Kalbfleisch and Lawless (1988), Lawless, Hu, and Cao (1995), Hu, Lawless and
Suzuki (1998), Karim, Yamamoto, and Suzuki (2001 a) and Wang and Suzuki (2001 a, b). Kalbfleisch,
Lawless and Robinson (1991) described prediction methods. Karim, Yamamoto and Suzuki (2001b)
provided methods for detecting a change point from marginal count warranty data that arise when one
cannot identify the date of manufacture of units that are serviced under warranty. A generalization of
the Shewhart process monitoring scheme for early detection of reliability problems was provided by
Wu and Meeker (2002).

Quite a few statistical algorithms are currently being used for early detection of potential problems.
However, there are many limitations associated with these methods. Parametric assumptions significantly
contribute in giving incorrect results as the actual field data rarely follows any of the rigid statistical
models. Also, the control limits used as thresholds in the control chart technique are static as they are
based on the previously collected data. Moreover, missing data between the time points is linearly inter-
polated which may cause overestimation and underestimation problems. Another important point to be
noted is that most of these methods take into account only the number of claims related to a particular
failure component. It is to be noted that the number of claims may not be a good indicator for tracking
a true warranty trend, since the number of claims is affected primarily by the number of sold vehicles,
whereas we are interested in the distribution of time and mileage between failures per vehicle, disregard-
ing the total number of new vehicles on the road. In addition to this, the estimation procedures heavily
depend on the sample size. If the sample size is low the statistical estimations are considered unreliable
disregarding any available expert knowledge. In general, most of the statistical algorithms are complex
in nature and not easily comprehensible. As shown in Last & Kandel (2002a), the fuzzy methods of data
analysis are more intuitive and their settings can be modified to represent the user prior knowledge.

Detection of emerging trends is important in many different areas beyond product maintenance. Thus,
Koenigstein et al. (2008) investigate the popularity of new artists according to their local popularity as
reflected in a file sharing network. Their detection algorithm is able to identify emerging artists based
on specific patterns of weekly popularity increase, with a 15-30% prediction success. They predict the
artist success probability using the Kullback-Leibler Divergence for the difference between the actual
geographical distributions of the weekly downloads and the uniform distribution.

Similar problems of tracking trends and frequency distributions over time arise in mining large amounts
of sensor data (Cohen et al, 2008). Sensor networks provide a new source of massive, continuous streams
of information that can be used by automated systems like temperature monitoring, precision agriculture,
and urban traffic control. One of the main difficulties in mining non-stationary continuous data streams
is to cope with the changing data concept. The fundamental processes generating most real-time data
streams may change over years, months and even seconds, at times drastically. This change, also known
as concept drift, causes the data-mining model generated from past data, to become less accurate in the
classification of new data. According to Zeira et al. (2004), possible causes for significant changes in the
performance of a data-mining classification model include changes in the distributions of one or several
predictive features as well as a change in the distribution of the target (predicted) attribute.

350

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

FUZZY-bAsED MONITORINg OF WARRANTY DATA

This section describes the warranty data monitoring with the Early Warning Tool built upon an auto-
mated interpretation of differences between consecutive histograms. The trend detection and tracking
process includes the following stages: data selection and preparation, computing fuzzy shifts between
distributions, exploring the root causes of significant shifts, and fuzzy trend detection. Each stage is
covered in a separate sub-section.

Data selection and Preparation

The tool Main Screen displays the filtering criteria that can be used for selecting the analyzed data:

• Vehicle selection:
Make (e.g., Buick or Chevy) ◦
Line Series (e.g., Impala) ◦
Platform (e.g., engine used by several line series). ◦

• Period selection (given as a range of dates):
Model Build Dates: only cars manufactured between these dates will be included in the ◦
analysis.
Delivery Dates: only cars delivered between these dates will be included in the analysis. ◦
Claim Dates: the ◦ histograms will be based only on claims submitted between these dates.
This defines the monitoring period (one month, two months, one year, etc.).

• Months in Service (MIS): car age (in months) calculated as the difference between the Claim
Date and the Delivery Date (given as a range of values)

• Geographical region (e.g., Midwest)
• Labor code: the histograms can be based on a single labor code, a list of labor codes, a single Bill

of Materials category, a single Vehicle Subsystem category or just all claims satisfying the other
selection criteria. We assume here that each labor code is a part of a pre-defined taxonomy, where
it is associated with a specific BOM code and its respective Vehicle Subsystem code. For example,
the “Replace Battery” Labor Code belongs to the “Battery” BOM Category, which is part of the
Electrical Subsystem.

• Histogram Selection. The user can choose one of the following variables for creating the
histograms:
 ◦ TTF (Time to Failure): the software will build histograms for the Time to Failure elapsed

since the previous claim having any labor code. If there is no previous claim for a car, the
Time to Failure will be calculated since the Delivery Date.

 ◦ TTF same Vehicle Subsystem: the software will build histograms for Time to Failure elapsed
since the previous claim having the same Vehicle Subsystem or since the Delivery Date (if
there is no previous claim).

 ◦ MTF (Mileage to Failure): the software will build histograms for Mileage to Failure elapsed
since the previous claim of any labor code or for the total car mileage (if this is the first
claim).

 ◦ MTF same Vehicle Subsystem: the software will build histograms for Mileage to Failure
elapsed since the previous claim having the same Vehicle Subsystem or for the total car mile-
age (if this is the first claim).

351

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

 ◦ Max TTF/MTF: the software will ignore claims with Time to Failure or Mileage to Failure
higher than this threshold (empty: no threshold).

• Time Unit. The monitoring period is divided into time units and the histograms of consecutive
time units within the monitoring period are compared to each other in order to compute fuzzy
shifts and trends. The available time units include one week (7 days), two weeks (15 days), and
one month (30 days). For example, dividing the monitoring period between May 1 and June 30
into 15-day time units will result in four histograms for the following sub-periods: May 1 – May
15, May 16 – May 31, June 1 – June 15, and June 16 – June 30.

• Claim Selection. The following types of claims can be selected for monitoring:
 ◦ First Claims: the histograms will be based on the first vehicle claims only. This implies that

all TTF / MTF values will be calculated since the Delivery Date.
 ◦ Others: the histograms will be based on non-first warranty claims only. This implies that all

TTF / MTF values will be calculated since the date of the previous claim, which does not
need to be in the selected monitoring period.

 ◦ Both: the histograms will be based on all claims. TTF / MTF values will be calculated since
the Delivery Date for the first claims or since the date of the previous claim for all other
claims.

The Main Screen is also used for choosing the number and the boundaries of bins in the histograms
constructed for every time unit. The histogram bins can be defined either manually or automatically. In
case of manual selection, the user should specify the upper boundary of each bin except for the last one,
for which the upper boundary is equal to the maximum value in the monitoring period. The software
verifies that the upper boundary of each bin is higher than the boundary of the previous one.

In case of automatic bin selection, the user enters the total number of bins, whereas their boundaries
are determined using equal-frequency discretization over all claims selected during the monitoring period.
The bin boundaries are found by a single scan of selected claims sorted in the ascending order of their
TTF / MTF values. The target number of claims in each bin is calculated as the ratio between the total
number of selected claims and the user-specified number of bins. The upper boundary index of each bin,
except for the last one, is set to this target number plus the upper boundary index of the previous bin. In
case of a tie (several claims sharing the same value across the calculated boundary), the upper bound-
ary index is changed to the index of a threshold value closest to the calculated boundary in terms of the
number of claims. Finding the best number of bins automatically is a subject of our future research.

Computing Fuzzy shifts between Distributions

The Cognitive Process of Shift Detection

The simplest way to detect positive and negative shifts between empirical distributions is by visually
comparing the distribution histograms. Three simulated examples of histograms representing mileage-
to-failure distributions in a pair of consecutive bi-weekly time units are given in Figure 1, Figure 2, and
Figure 3. The original mileage-to-failure values have been discretized to 10 bins of equal frequency over
the entire monitoring period. The curves in the figures show the proportions (relative frequencies) of
claims in each bin out of the total number of claims in the corresponding time unit. A human observer
can easily distinguish between the following cases represented by these three figures:

352

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

• Negative (“emerging”) shift between distributions (Figure 1).
Most proportions in the first six bins are ◦ bigger in the second time unit (T4) than in the first
one (T3). On the other hand, all proportions of T3 are bigger than the proportions of T4 in
last four bins.

• Positive (“decreasing”) shift between distributions (Figure 2).
Most proportions in the first four bins are ◦ smaller in the second time unit (T6) than in the
first time unit (T5). On the other hand, all proportions of T6 are bigger than or equal to the
proportions of T5 in the last six bins

• No shift between distributions (Figure 3).
No clear shift between the distributions in time units T6 and T7 can be detected. The two ◦
curves cross each other at least five times.

The cognitive process of comparing two different histograms, shown on the same chart, can be sum-
marized as follows (based on Last & Kandel, 2002a):

Step 1 – If in most bins there is no significant difference between the proportions, conclude that there
is no change in the central tendency of parameter values (see an example in Figure 3). Otherwise, go
to Step 2.

Step 2 – Find an imaginary point between the bins, such that before that “threshold” point, most
proportions of one distribution are significantly higher (lower) than the proportions of the other one and
vice versa. In Figure 1, we can locate such a point between bins 6 and 7. The claims in the first time unit
(T3) have mostly lower frequencies in the bins 1-6 than in the bins 7-10. The opposite is true about the
values of the second time unit (T4). The resulting picture is that the first distribution (T3) is shifted to
the right vs. the second distribution (T4).

Step 3 – Make the final conclusion about a positive or a negative shift in the target distribution,
based upon the apparent shift in the histogram, the sample size, and some tuning parameters that are
explained below.

This cognitive process is not based on any statistical assumptions about the behavior of the underlying
distributions. In fact, it is hard to identify any standard distribution representing the mileage histograms

Figure 1. Distribution Histograms: Time Unit T3 vs. Time Unit T4

353

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

in Figures 2-4. Still, the human perception can be very efficient when dealing with the uncertainty of
visual representations. The human observations tend to bear some amount of vagueness and are much
easier to be described by words (e.g., “most”, “significantly”, etc.), than by some crisp mathematical
terms. Thus, the shift detection can be seen as a particular case of Approximate (or Fuzzy) Reasoning
(see Kandel et al., 1996). Consequently, the Fuzzy Set theory can be used to model the shift detection
process.

The histogram construction procedure involves two computationally intensive parts: computing time-
to-failure (TTF) or mileage-to-failure (MTF) values for each warranty claim and sorting the selected
claims in the ascending order of these values. The TTF/MTF calculation requires finding the previous
claim for each claim. Thus, its run time complexity is O (n2), where n is the number of recorded claims.
The computational complexity of sorting n values representing TTF/MTF of n claims is not worse than
O (n2) (e.g., using the QuickSort algorithm). Once the histograms are built, the complexity of the fuzzy
shift computation does not depend on the number of underlying claims. Thus, we can say that the pro-
posed approach is relatively scalable, since it is only quadratic in the number of claims.

Figure 2. Distribution Histograms: Time Unit T5 vs. Time Unit T6

Figure 3. Distribution Histograms: Time Unit T6 vs. Time Unit T7

354

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

Pairwise Comparison of Histogram Bins

Based on (Last & Kandel, 2002a), we assume here that the linguistic variable proportion change (de-
noted by d) can take the following two linguistic values: bigger and smaller, each being a fuzzy set. The
membership function μB associated with the fuzzy set bigger should have the following properties:

Being close to zero, when • d is close to –1.
Being low for • d = 0.
Being close to • 1, when d is close to 1.

Similarly, the membership function μS (smaller) should satisfy the following:

Being close to 1, when d is close to –1.•
Being low for d = 0.•
Being close to 0, when d is close to 1.•

In our model, the following membership functions are used for μS and μB:

m a b
b aS d S

d
e

d [,]
S

() , ,
()

=
+

Î - ³
+

1

1
1 1 , 0 (1)

m a b
b aB d B

d
e

d [,]
B

() , ,
()

=
+

Î - ³
- -

1

1
1 1 , 0 (2)

where:

Figure 4. Example of a Decreasing Shift

355

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

d is the difference between measured proportions (relative frequencies) of the same bin in com-•
pared distributions;

• αS, αB are the scale factors, which determine the scale of the membership functions. More specifi-
cally, these parameters determine the point of these functions intersection with the Y-axis, or the
degrees of bigger and smaller for d = 0. Last and Kandel (2002a) have proposed the guidelines for
choosing αS and αB based on the concept of a Type-2 Fuzzy Logic System (Karnik et al., 1999) and
the user prior knowledge about emerging or decreasing trends in the data.

• β is the shape factor, which can change the shape of the membership function from a constant
value of 0.5 (β = 0) to a step function, which takes the value of 1.0 for nearly any |d| > 0 (β→∞).
We associate β with the sample size used for building the histograms. The expression for calculat-
ing β is:

β = γ n min (3)

where nmin is the minimum number of examples in one of the two compared histograms and γ is a linear
coefficient expressing the user confidence in a sample of a given size.

Detecting Emerging and Decreasing Shifts between Histograms

After calculating the membership grades of each proportion change in the “smaller” and the “bigger”
fuzzy sets, we can evaluate the fuzzyshift between the compared distributions.

According to the above definition of the threshold point, the number of candidate thresholds is D - 1,
where D is the number of bins in the histogram of the attribute in question. Each candidate threshold T
∈ D separates between the bins i = 1,…, T and i= T+1,…, D. We calculate the net shift for a candidate
threshold T by the following expression:

NS T d d d d
S

i

T

i B i B
i T

D

i S i
() [() ()] [() ()]= - + -

= = +
å åm m m m

1 1 (4)

where di is the proportion change for the bin i.
Both sum terms of the above expression should be positive if there is a positive shift in the distribu-

tion and negative in the opposite case. When there is no shift, both terms will be close to zero.
The automated process of detecting emerging and decreasing shifts during the monitored period

includes the following steps:

Step 1: Build Mileage-to-Failure or Time-to-Failure histograms for all time units in the monitored pe-
riod (e.g., build 12 monthly histograms for a one-year period). As indicated above, the histogram
bins can be selected either manually or automatically

Step 2: For each pair of consecutive time units, Do:
Step 2.1: Use Eq. (4) to calculate the fuzzy shift between distributions NS (T) with respect to each inter-

val bin T = 1, …, D-1 and find the minimal and the maximal values of the net shift.
Step 2.2: Find the threshold T* providing the maximal absolute value of the net shift:

356

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

T* = arg maxT |NS (T)| (5)

Step 2.3: Normalize the net shift NS (T*) w. r. t. the number of histogram bins D:

NS Norm = NS (T*) / D (6)

Step 3: During the monitored period, find the pairs of consecutive time units having absolute fuzzy
shifts, which exceed a pre-defined Alarm Threshold. Flag those time unit pairs and notify the user
of a positive (decreasing) or a negative (emerging) shift, according to the sign of NS Norm.

The selection of the threshold for the maximal absolute value of the net shift depends on the amount
of early warnings expected from the algorithmic tool. In the extreme case of Alarm Threshold = 0, all
positive and negative shifts will be presented to the user.

Exploring the Root Causes of significant shifts

Emerging and decreasing shifts between mileage and time to failure distributions, which are computed
using the procedure described above, represent the overall behavior of all claims recorded during each
time unit. However, many high positive and low negative shifts in mileage to failure histograms are
caused by specific failure types, which tend to occur at lower or higher mileage, respectively. In case
of time to failure histograms, certain failures may occur later, if the shift is positive, or earlier, if the
shift is negative. Identifying the most frequent failures associated with a positive and, more importantly,
with a negative shift is a primary interest of a car manufacturer, since they may lead to the root causes
of those shifts. The proposed process of root cause exploration implemented by the Early Warning Tool
includes the following steps:

Step 1 - In case of a positive shift, find the intervals (bins) with the highest fuzzy grade of probability
decrease (representing failures that became less frequent). In case of the negative shift, find the intervals
with the highest fuzzy grade of probability increase (representing failures that became more frequent).
In both cases, the corresponding time or mileage threshold T* can be found automatically using Eq. (5).
Thus, Figure 4 shows that in the case of a positive shift between months 1 and 2, the interval with the
highest fuzzy grade of probability decrease (above 0.9) represents mileage to failure of 8,500 and less.
Respectively, Figure 5 shows that in the case of a negative shift between months 8 and 9, the interval
with the highest fuzzy grade of probability increase (above 0.9) represents mileage to failure of 13,500
and less.

Step 2 - Retrieve all claims from the time units with the flagged absolute shifts w.r.t. the previous
time unit such that the claim mileage or time to failure belongs to the bins with the highest fuzzy grade
of probability change identified in the previous step.

Step 3 - Find the most frequent labor codes in the claims retrieved in the previous step and present
them to the user. The number of the most frequent labor codes to be presented to the user is one of the
configurable parameters in the Early Warning Tool. The analysis of these codes can reveal the most
common causes for the flagged probability shifts (positive and negative) during the monitored period.
For example, if there is a positive or negative trend persistent over multiple time units, a set of the most
frequent labor codes recurring in nearly every fuzzy shift may indicate a common root cause of the
overall trend.

357

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

FROM FUZZY sHIFTs TO FUZZY TRENDs

Shifts between mileage and time to failure distributions may persist over multiple time units. Such shifts
are particularly important to detect, since they may represent long-term trends in the car maintenance
data. Figure 6 shows example of an apparently emerging trend across four consecutive time units in a
given monitoring period. Here we can see a continuous increase in the probability of the three lowest bins
(1 - 3) and a continuous decrease in the probability of the next five bins (4 – 8). Thus, we can suspect
that the overall trend of this distribution is “emerging”, which means that in each time unit more cars
have failures earlier than in the preceding time unit. To quantify a long-term trend in a given distribution,
we suggest computing the average fuzzy shift during the entire monitored period, which starts with time
unit t1 and ends at time unit t2, using the following expression:

Trend t t

NS t

t t

Norm
t t

t t

(;)

()

1 2

1

2 1

1

2

=
-

= +

=

å

 (7)

Where NSNorm (t) is the normalized net shift between the time units t and t-1 computed using Equation
(6). In case of Figure 6, t2 = 4, t1 = 1, and, consequently, the overall trend is calculated as an average
of three fuzzy shifts. In addition to strong trends, Equation (7) is also able to identify weak trends that
persist over most time units of the monitored period.

CAsE sTUDY

Our simulated case study is based on claims submitted during a monitored period partitioned into four
time units of equal duration. This could be a four-month period partitioned into four one-month units

Figure 5. Example of an Emerging Shift

358

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

or a two-month period partitioned into four units of 15 days each. We assume that the original mileage-
to-failure values of each claim have been discretized to eight bins of equal frequency over the entire
monitored period. The four histograms representing the mileage-to-failure distributions in each time
unit are superimposed and shown in Figure 6 and the actual histogram proportions are given in Table
1. The number of claims in each 15-day time unit has been 637, 386, 429, and 288, respectively. Thus,
about 3,027,600 (the square of the total number of claims) join operations are needed to compute the
mileage-to-failure value of each claim. On a standard desktop computer (such as Pentium 4 with 3GHz
CPU and 1GB of RAM), this does not take more than a few seconds of the CPU time using the MS-
AccessTM software.

As indicated above, the membership functions used for μS (“smaller”) and μB (“bigger”) are affected
by the scale factors αS and αB, respectively. In Figure 7, we analyze the effect of αB on the corresponding
membership function μB applied to the differences between the first and the second time unit proportions.
When the value of αB is increased from 0 to 0.1, its impact decreases dramatically and the μB membership
function becomes very close to zero even for relatively large absolute differences of 0.03 and higher
(bins 1 and 8). If the user is not interested to miss even minor proportion differences of 0.02, he can

Figure 6. Example of an Emerging Trend

Table 1. Case Study - Histogram Proportions

Bin T1 T2 T3 T4

1 0.099 0.135 0.147 0.156

2 0.075 0.111 0.159 0.174

3 0.110 0.127 0.145 0.188

4 0.138 0.122 0.114 0.115

5 0.141 0.119 0.105 0.101

6 0.133 0.114 0.112 0.111

7 0.118 0.117 0.093 0.087

8 0.185 0.155 0.126 0.069

359

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

keep both scale factors equal to zero. Otherwise, the scale factors can be increased beyond 0.1 causing
all differences between the periods T1 and T2 to be completely ignored.

The effect of the shape factor γ on the μB (“bigger”) membership function is analyzed in Figure 8 for
αB = 0. Given a fixed amount of observations (claims) in each histogram, increasing the shape factor
magnifies the “bigger” grades of positive differences and shrinks the “bigger” grades of negative differ-
ences. This means that the user is more confident about both positive and negative differences between
bin proportions. The same effect will be observed if we increase the amount of observations without
changing the value of γ. In the case of comparison between time units T1 and T2, the minimum number
of observations (386) produces relatively high values of μB even for γ = 0.1.

As indicated by Last & Kandel (2002a), both scale factors αS and αB can be modified to represent
the user prior knowledge about the difference between bin proportions. The three possible cases of that
prior knowledge are:

The distributions are nearly the same (no significant difference between proportions is expected). •
In that case, both scale factors should have positive and equal values (e.g., 0.20).
The distributions are different (high absolute differences between proportions are expected). This •
implies that one of the factors should be negative and the other one – positive or vice versa (e.g.,
αB = -0.20, αS = 0.20 or αB = 0.20, αS = -0.20).
No prior knowledge on the distributions is available. Then we can use α• S = αB= 0.

The last case of no prior knowledge is represented by the leftmost point on Figure 9, where αS = αB
= 0 produces a negative shift of -0.637 between the time units T1 and T2. Once we increase the values
of both scale factors (assuming that no shift is expected), the absolute fuzzy shift decreases rapidly to
0.124 for αS = αB = 0.05 and to 0.003 for αS = αB = 0.10.

Figure 10 represents the second case, where we do expect a shift between proportions. Here we set
the value of αB to -0.2 and vary αS between 0 and 0.20. Consequently, the absolute fuzzy shift goes up

Figure 7. Case Study - The effect of the scale factor

360

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

from 0.452 to 0.750 starting with αS = 0.10. This value is higher than the absolute shift of 0.637 based
on no prior knowledge at all.

Table 2 shows the number of discovered significant shifts during the monitored period as a function
of the scale and shape parameters. We use here the alarm threshold of 0.5, i.e., only positive shifts above
0.5 and negative shifts below -0.5 are counted. The table confirms our earlier expectation that more
shifts are considered significant when the scale parameter values are higher and different in their sign
from each other. Also, an increase in the shape parameter value causes more shifts to become significant.
However, for relatively large (0.05 and higher) and identical values of the scale parameters, no shifts
are considered significant, since as indicated above, these parameter values express our disbelief in any
difference between the distributions.

Figure 8. Case Study - The effect of the shape factor

Figure 9. Normalized Net Shift as a function of αS = αB

361

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

The average trend over the entire monitored period (T1 – T4) exhibits a similar behavior as a function
of the scale factors. When the values of both factors are equal and positive, the average trend goes down
-0.510 to 0.0 as we increase αS and αB from 0 to 0.15. Keeping αB at the level of -0.2 while increasing
αS from 0 to 0.15 results in an increase of the average trend up to 0.750.

Due to the confidentiality of the actual claims data, we cannot provide here any identifying information
about the most frequent labor codes found as potential root causes in similar case studies. Still, without
revealing any sensitive information, we can refer to a specific case of two-month data, which included
a large cluster of labor codes. The data was partitioned into four 15-day time units and the fuzzy shifts
between consecutive units were computed using αS = αB = 0 and γ = 0.2. The shift was found positive
between T1 and T2 and negative between T2 and T3 and between T3 and T4. The root cause analysis
has revealed a single labor code responsible for more than 20% of all claims causing the positive shift
in the second time unit. Interestingly enough, the same labor code caused more than 25% of all claims
between the next two time units, where a negative shift was observed. The same negative trend contin-
ued into the fourth time unit resulting in an increase of the frequency of the same labor code (from 26%
to 36%) along with 28% of additional claims, where similar labor codes have been involved. Thus, a
timely fuzzy-based analysis of car warranty data would produce an early warning of an emerging trend
in certain failure types apparently resulting from the same root cause.

Figure 10. Normalized Net Shift as a function of αS (αB = -0.2)

Table 2. Case Study - Number of Discovered Shifts

αS 0.01 0.01 0.05 -0.05 0.1 -0.1

αB 0.01 -0.01 0.05 0.05 0.1 0.1

γ = 0.1 0 0 0 2 0 3

γ = 0.2 2 1 0 3 0 3

γ = 0.5 2 3 0 3 0 3

362

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

FUTURE REsEARCH DIRECTIONs

Fuzzy-based analysis of warranty data for various manufacturing industries can be extended in many
directions. One important issue is finding the optimal number of histogram bins as a function of the
number of claims in each time unit and in the entire monitored period. Currently, we assume that the
user finds this number manually and then applies equal-frequency discretization to the data. Completely
automating the entire discretization process should provide a significant benefit to the system users.

Automatic determination of the algorithm settings (namely, the values of the shape and the scale
factors) is another important research question. In a future extension of the algorithm, the best settings
will be selected based on the algorithm ability to predict future shifts and long-term trends as well as its
potential contribution to the root cause analysis.

We also intend to compare the fuzzy algorithm performance to some basic statistical techniques for
time-series analysis and trend detection.

CONCLUsION

In this chapter, we have presented a novel, fuzzy-based method for automated detection of evolving
maintenance problems in massive streams of warranty data. The method provides an automated com-
parison of frequency histograms, based on a cognitive model of human perception rather than “crisp”
statistical models. The method has been implemented in the Early Warning Tool, which has been ap-
plied to empirical distributions of time-to-failure and mileage-to-failure of warranty claims of a major
car manufacturer (GM). The results have revealed significant emerging and decreasing trends in the car
warranty data. Important clues for the root causes of the discovered trends have also been provided. The
method can be further enhanced in several directions.

ACKNOWLEDgMENT

This work was supported in part by the General Motors Research & Development – India Science
Lab.

REFERENCEs

Blischke, W. R., & Murthy, D. N. P. (1994). Warranty cost analysis. New York: Marcel Dekker.

Blischke, W. R., & Murthy, D. N. P. (1996). Product warranty handbook. New York. Marcel Dekker.

Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., & Kipersztok, O. (2008). Real-time data mining
of non-stationary data streams from sensor networks. Information Fusion, 9(3), 344–353. doi:10.1016/j.
inffus.2005.05.005

Hu, X. J., Lawless, J. F., & Suzuki, K. (1998). Nonparametric estimation of a lifetime distribution when
censoring times are missing. Technometrics, 40, 3–13. doi:10.2307/1271388

363

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

Kalbfleisch, J. D., & Lawless, J. F. (1988). Estimation of reliability in field-performance studies. Tech-
nometrics, 30, 365–388. doi:10.2307/1269797

Kalbfleisch, J. D., Lawless, J. F., & Robinson, J. A. (1991). Methods for the analysis and prediction of
warranty claims. Tecnometrics, 33, 273–285. doi:10.2307/1268780

Kandel, A., Pacheco, R., Martins, A., & Khator, S. (1996). The foundations of rule-based computations
in fuzzy models. In W. Pedrycz (Ed.), Fuzzy modelling, paradigms and practice (pp. 231-263). Boston:
Kluwer.

Karim, M. R., Yamamoto, W., & Suzuki, K. (2001a). Statistical analysis of marginal count failure data.
Lifetime Data Analysis, 7, 173–186. doi:10.1023/A:1011300907152

Karim, M. R., Yamamoto, W., & Suzuki, K. (2001b). Change-point detection from marginal count failure
data. Journal of the Japanese Society for Quality Control, 31, 318–338.

Karnik, N. N., Mendel, J. M., & Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE transactions on
Fuzzy Systems, 7(6), 643–658. doi:10.1109/91.811231

Koenigstein, N., Shavitt, Y., & Tankel, T. (2008). Spotting out emerging artists using geo-aware analysis
of P2P query strings. In Proceeding of the 14th ACM SIGKDD international Conference on Knowledge
Discovery and Data Mining. KDD ‘08 (pp. 937-945). New York: ACM.

Last, M., & Kandel, A. (1999). Automated perceptions in data mining. In 1999 IEEE International Fuzzy
Systems Conference Proceedings (Part I, pp. 19-197).

Last, M., & Kandel, A. (2002a). Perception-based analysis of engineering experiments in semi-
conductor industry. International Journal of Image and Graphics, 2(1), 107–126. doi:10.1142/
S0219467802000512

Last, M., & Kandel, A. (2002b). Fuzzy comparison of frequency distributions. In P. Grzegorzewski et
al. (Eds.), Soft methods in probability, statistics, and data analysis (pp. 219-227). Heidelberg, Germany:
Physica-Verlag.

Lawless, F. (1998). Statistical analysis of product warranty data. International Statistical Review, 66,
227–240.

Lawless, J. F., Hu, J., & Cao, J. (1995). Methods for the estimation of failure distributions and rates from
automobile warranty data. Lifetime Data Analysis, 1, 227–240. doi:10.1007/BF00985758

Lawless, J. F., & Kalbfleisch, J. D. (1992). Some issues in the collection and analysis of field reliability
data. In J.P. Klein & P.K.Goel (Eds.), Survival analysis: State of the art (pp. 141-152). Amesterdam:
Kluwer.

Robinson, J. A., & McDonald, G. C. (1991). Issues related to field relibility and warranty data. In G.E.
Liepins & V.R.R. Uppuluri (Eds.), Data quality control: Theory and pragmatics (pp. 69-89). New York:
Marcel Dekker.

Suzuki, K. (1985a). Estimation of lifetime parameters from incomplete field data. Technometrics, 27,
263–272. doi:10.2307/1269707

364

Early Warning from Car Warranty Data using a Fuzzy Logic Technique

Suzuki, K. (1985b). Nonparametric estimation of lifetime distributions from a record of failures and
follow-ups. Journal of the American Statistical Association, 80, 68–72. doi:10.2307/2288041

Wang, L., & Suzuki, K. (2001a). Nonparametrc estimation of lifetime distribution from warranty data
without monthly unit sales information. The Journal of Reliability Engineering Association Japan, 23,
14–154.

Wang, L., & Suzuki, K. (2001b). Lifetime estimation on warranty data without date-of-sale information-
case where usage time distributions are unknown. Journal of the Japanese Society for Quality Control,
31, 148–167.

Wu, H., & Meeker, W. Q. (2002). Early detection of reliability problems using information from war-
ranty databases. Technometrics, 44, 120–133. doi:10.1198/004017002317375073

Zeira, G., Maimon, O., Last, M., & Rokach, L. (2004). Change detection in classification models induced
from time series data. In M. Last, A. Kandel, & H. Bunke (Eds.), Data mining in time series databases
(pp. 101-125). Singapore: World Scientific.

365

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

High Scale Fuzzy Video Mining
Christophe Marsala

Université Pierre et Marie Curie Paris6, France

Marcin Detyniecki
Université Pierre et Marie Curie Paris6, France

INTRODUCTION

Nowadays, the amount of recorded video is continually increasing leading to a growing need to find a
way to handle it automatically. One of the main issues is to be able to index these data with high-level
semantic concepts (or features) such as “indoor/outdoor”, “people”, “maps”, “military staff”, etc.

Video indexing aims at analyzing a video, to find its seminal content, and to associate concepts to
any of its part. Today effective video indexing is done manually, by a human operator, who associates
concepts to parts of a video. However, due to the growth of recorded video, the introduction of automatic
approaches, as data-mining-based ones, is a promising perspective.

Video mining is typically an inductive machine learning approach. It has as starting point a set of
correctly labeled examples used to train or to build a model. Later, the model is used to perform an au-
tomatic classification of any of the forthcoming examples, even if they have not been met before. Video
mining is becoming a very active domain today and several conferences take into account this domain
in their topics (for instance, the workshop on Video Mining of last IEEE International Conference on

AbsTRACT

In this chapter, the authors focus on the use of forests of fuzzy decision trees (FFDT) in a video mining
application. They discuss how to learn from a high scale video data sets and how to use the trained FFDTs
to detect concepts in a high number of video shots. Moreover, the authors study the effect of the size of
the forest on the performance; and of the use of fuzzy logic during the classification process. The experi-
ments are performed on a well-know non-video dataset and on a real TV quality video benchmark.

DOI: 10.4018/978-1-60566-858-1.ch015

366

High Scale Fuzzy Video Mining

Data Mining, or ACM Multimedia conferences, etc.). Some works related to video mining can be cited:
(Pan, J.-Y., & Faloutsos, C., 2002), (Rosenfeld, A. et al.; 2003), (Zhu, X., et al. 2005), the proceedings
of the TRECVid challenge organized by the US institute NIST.

Inductive machine learning is a well-known research topic with a large set of methods, one of the
most commonly used approaches being the decision tree approach (DT). However, robustness and
threshold problems appear when considering classical DTs to handle numerical or imprecisely defined
data. The introduction of fuzzy set theory, that leads to the construction of fuzzy decision trees (FDT)
able to smooth out these negative effects.

In the 2005 TRECVID competition, we studied the use of Fuzzy Decision Trees for this kind of ap-
plications (Marsala, C., & Detyniecki, M., 2005). The approach, based on single FDTs (one per concept),
provided as result a set of classification rules, which were in the one hand, human understandable, thus
allowing further human development; but in the other hand, this first series of tests enables us to discover
that, when addressing large, unbalanced, multiclass datasets, a single classifier is not sufficient for direct
automatic exploitation. Thus, based on these observations, in (Marsala, C., & Detyniecki, M., 2006)
forests of FDT were introduced to cover better the whole input space. The use of forests of decision trees
is well-known in classical machine learning, see for instance (Breiman, L., 2001). In fuzzy machine
learning, forests of fuzzy decision trees have been introduced some years ago and are becoming more
popular nowadays (Bonissone, P.P. et al., 2008), (Crockett, K., et al. (2001), (Janikow, C. Z., & Faifer,
M., 2000), (Marsala, C., & Bouchon-Meunier, B., 1997). These approaches differ by the way the FDT
are multiplied to grow the forest.

In this chapter, we show that this kind of approach is very useful for high scale challenge. First, we
present how the video is pre-processed in order to obtain a set of descriptors to feed a video mining
algorithm. Afterwards, we explain how Forest of Fuzzy Decision Trees are built and consecutively used
to detect concepts in video shots.

In the experimental part of the chapter, we first study on a well-studied dataset both the influence of
the size of the forest (in terms of number of trees), and the influence of using the FDTs in a fuzzy manner
or not. Afterward, the proposed approach is confronted to a real world video dataset. The performance
of FFDTs with respect to other approaches is explored. And the observations obtained on the previous
dataset are confronted.

FROM vIDEO TO TRAININg sETs

From a video, a sequence of steps, such as the extraction of basic descriptors is necessary to feed the
video mining algorithm.

First of all, the video is automatically segmented into temporal shots. Here, a shot is a sequence of the
video with a more or less constant content. The content of a shot is considered to have the same “mean-
ing”. Generally, all the frames that compose a shot are very similar visually and differ only slightly. A
shot can be very short (less than 1 second), for instance in action sequences of a video, or it can be very
long, for instance if the sequence in the video shows only a still host talking to the camera. A shot can
be associated with a set of representative images, called frames. The number of frames can vary from
at least 1 to more than 10 frames, depending on the complexity of its contents.

Secondly, two kinds of descriptors are extracted from each frame: Visual Information Descriptors
and Video Information Descriptors. Moreover, frames from the video training set are also associated
with a set of Class Label obtained through a manual indexation of the videos.

367

High Scale Fuzzy Video Mining

visual Information Descriptors

The Visual Information Descriptors are obtained directly and exclusively from the frames. In order to
obtain spatial-related information, each frame is segmented into five overlapping regions (see Figure
1).

Each of them corresponds to a spatial part of the frame: top, bottom, left, right, and middle. The five
regions have not the same size to reflect the importance of the contained information based on its posi-
tion. Moreover, regions overlap in order to introduce a dependency between them.

For each region the associated histogram in Hue-Saturation-Value (HSV) space is computed. The
number of bins of the histogram follows the importance of the region by being valued in a more or less
precise way: 6x3x3 or 8x3x3.

At the end of these steps, a set of Visual Information Descriptors characterizing each frame is provided.
This set is composed of values ranging from 0 to 1. Each value represents the frequency of a color in
the HSV space for the corresponding region it is associated with.

For instance, if the number of bins in the HSV space is 8x3x3 for the “Center” region, and if the
number of bins is 6x3x3 for the four other regions, the Visual Information Descriptors of a frame is
composed of 288 numerical values from [0,1].

The main interest in choosing overlapping regions in the frame is to create a link between the regions.
This link is defined by the fact that their HSV histograms are valued on a same subset of pixels. The aim
here is to alleviate a drawback of the attribute oriented inductive learning where attributes are usually
considered as independent. Thus, creating a link between them will enable the learning model to take
into account information about the color in the frame as a whole.

Here, the use of fuzzy histograms (histograms defined by means of a fuzzy definition of colors) can
be a very interesting improvement of our approach and deserves further research.

Figure 1. Spatial segmentation of a frame

368

High Scale Fuzzy Video Mining

Temporal Information Descriptors

The Temporal Information Descriptors are information related to the position of the frames, and of the
shots, in the video. For every shot, we extract:

the temporal position (time code of the beginning) of the shot and of the frame itself,•
the duration of the shot containing the frame and the duration of the original shot if the shot results •
from a merging of smaller shots.

At the end of this step, the Temporal Information Descriptors, a second set of numerical values that
characterize a shot and its frames is obtained.

Class Label

The Class Label is the result of a human indexation of the video. It corresponds to the correct high-level
concept(s) (features) to be detected on a given shot.

A concept is associated to each frame of the video through a human indexation process. Thus, the
shots are described by the concepts appearing in at least one of its frames. Furthermore, a frame can be
associated with more than one class descriptor.

building a Training set

In order to use the Fuzzy Decision Trees (FDT) learning method, we must have a training set in which
there are cases with the concept to be recognized and examples that do not possess that concept. More-
over, the decision tree construction methods are based on the hypothesis that the value for the class is
equally distributed. Thus, we have to balance the number of frames of each class by (randomly) select-
ing a subset of the whole development dataset. Each of such a subset must contain an equal number of
cases in each class.

LEARNINg AND DETECTINg HIgH LEvEL CONCEPTs

In the particular context of large datasets, as for instance for video indexing, we can focus our attention
on the elements (here shots) that are classified with a high degree of confidence. In fact, it may be suf-
ficient and more interesting to have some good examples rather than an average classification overall.
Thus, often in video indexing the classified shots are ranked based on the credibility on the fact that the
shot contains the concepts or not.

FFDT can be easily used to provide a ranking of shots for a given concept. First, a classification of
frames is done by means of each tree of the FFDT. Secondly, an aggregation of the results leads to the
classification of the shot. Finally, the shots are ranked based on the aggregated value, which corresponds
to credibility that the concepts appear in it.

First of all, we briefly recall how the training enables us to obtain a classifier (FFDT) that will be
used later to classify and rank the test frames. For more technical details on this method, please refer to
(Marsala, C., & Detyniecki, M., 2006).

369

High Scale Fuzzy Video Mining

Fuzzy Decision Trees

Inductive learning raises from the particular to the general. A tree is built, from the root to the leaves,
by successively partitioning the training set into subsets. Each partition is done by means of a test on
an attribute and leads to the definition of a node of the tree (for more details, please, refer to Marsala,
C., & Bouchon-Meunier, B., 1999).

When mining numerical data, with a Fuzzy Decision Tree, a definition of fuzzy values of attributes is
necessary. In the case of high scale mining, an automatic method is necessary. We build a fuzzy partition
on the set of values of the numerical descriptors.

Finally, in order to address high scale datasets, the FDT has to be built efficiently and the use of the
Salammbô software has been introduced in this step. This software has been introduced in (Marsala,
C., & Bouchon-Meunier, B., 1999). It enables the construction and the use of fuzzy decision trees. A
lot of parameters can be set (measure of discrimination, family of t-norms, parameters to build fuzzy
partitions, etc.) in this software to build the FDT. Moreover, it has been written in C that enables it to
handle very efficiently training sets with a very high number of examples.

Classifying Frames with a Fuzzy Decision Tree

The process of a frame classification (i.e. detecting whether a concept is present), using a single Fuzzy
Decision Tree is straightforward (Marsala, C., & Detyniecki, M., 2005). From each image-frame low-
level features (in the same description space as for the training) are extracted. Based on this description,
starting from the top of the tree, decisions are successively performed. The decisions can be made either
in a classical or in a fuzzy manner as it is explained in the following.

When doing it classically, the decision is to follow one and only one of the branches. Technically the
decision is done using the 0.5 alpha-cut degree of the fuzzy values. At the end, when a leaf is reached,
the FDT outputs a single class with a full membership, either “has the class” or “has not the class”, for
each tested example.

When doing it in a fuzzy manner, if the decision is not crisp, for instance if the case to classify is
close to the boundaries of the decision frontier, several branches can be followed. At the end the FDT’s
output is a degree of membership (ranging from 0 to 1) of the example observing the class. In order
to compute these degrees, the trees are considered as a set of rules. All possible top-to-leaf paths are
considered as a disjunctive set of rules and each individual path is considered as a conjunction of deci-
sions. Based on this logical representation, the final degree can be computed using standard fuzzy logic
operators. In this chapter, we consider Zadeh’s family (maximum and minimum) and the Lukasiewicz
one (bounded sum and its dual)1.

These two families of t-norms have been chosen because their behavior is very different. However,
any other family of t-norms could be used in this process and it deserves further research. For more details
on the use of FDTs in fuzzy manner please refer to (Marsala, C., & Bouchon-Meunier, B., 1999).

Forests of Fuzzy Decision Trees

One way to address high scale datasets is to reduce the size of the problem. We propose to create, by
sampling the large dataset, several smaller ones. Then we train one classifier on each of the size reduced

370

High Scale Fuzzy Video Mining

sets. As a result we obtain a set of classifiers, which decisions have to be combined at the decision stage.
An ensemble of decision tree classifiers is a so-called forest of decision trees.

This approach produces global classifiers that are not only robust, but having their score more reli-
able. Moreover, this technique allows to address another problem often observed in high scale-datasets:
the balance of positive versus negative examples. In fact, even there is a lot of positive examples, the
number of negative (or not labeled) examples is quickly overwhelming. If we sample several times
asymmetrically, so that we obtain balanced smaller training sets, we not only solve the balance problem,
but we also cover better the larger negative examples space.

A question remains the number of decision trees of need. Later in this chapter we study the influence,
in terms of performance (error rate), of the number of Decision Trees used in a forest.

In the particular case of video mining, we construct a forest of FDTs for each high-level concept to
be detected. A FFDT is composed of n Fuzzy Decision Trees. Each FDT Fi of the forest is constructed
based on the training set Ti, each training set Ti being a balanced random sample of the whole training
set, as described previously.

Classifying Frames with a Forest of Decision Trees

The classification using a forest of n FDTs, is reduced to an aggregation problem. In fact, for a single
concept, the classification of a frame k is carried out in two steps:

1. Classification of the frame by means of the n FDTs of the forest: each frame k is classified by means
of each FDT Fi in order to obtain a degree di(k) ∈ [0, 1] of having the concept. Thus, n degrees
di(k), i=1…n are obtained, from the forest, for each k.

2. Aggregation of the di(k) (i=1…n) degrees, into a single value d(k), which corresponds to the degree
in which the forest believes that the keyframe k contains the concept.

Two kinds of aggregating methods to compute the degree d(k) were tested:

1. Simple vote: This basic aggregation corresponds to the sum of all the degrees:

d k d k
i

i

n

() ()=
=
å

1

2. Weighted vote: Aggregation can also be weighted by taking into account the training accuracy of
the FDT. Thus, the sum of the degrees becomes

d k w d k
i i

i

n

() ()=
=
å

1

where wi, from [0, 1] corresponds to the accuracy of the corresponding FDT Fi valued on the training
set.

Other aggregating methods could be used here and the choice of a convenient operator deserves
further research. Moreover, a more complex aggregator could be used here in this step. For instance, a

371

High Scale Fuzzy Video Mining

model could be tuned on the training data and a machine learning tool could be very useful to improve
this aggregation.

Detecting a Concept in a shot

The degrees of all the frames d(k) of one shot are aggregated to obtain a global degree D(S). Since it is
sufficient that at least one frame in the shot presents the concept to be able to state that the shot contains
the concept, the degree D(S) for the shot S containing the concept is obtained as

D S d k
k S

() max ()=
Î{ }

Here, the choice of another aggregating operator (as the sum for instance) could also be done and it
deserves further research in order to study whether it could improve the approach.

So, after this aggregation, for every shot, a degree is obtained. The higher D(S) is, the higher it is
believed that the shot S contains the corresponding concept.

NUMbER OF DECIsION TREEs FOR HIgH sCALE MININg

As stated before, in order to cover high scale datasets it is suitable to sample the problem into several
reduced sets of data and go from fuzzy decision trees (FDT) to forests of FDTs.

What is not clear is what is the precise effect, in terms of performance, on the number of trees that
are used. The performance is measured by the error rate (i.e. the ratio of wrong classifications to the
total number of classification evaluated). Thus, the error rate ranges from 0 (“no wrong classification”)
to 1 (“no correct classification”).

Waveform Datasets

In order to avoid any particularities of a video data set, we study the influences of the size of the forest
and of the choice of the aggregation operators on the well-known Waveform dataset (Breiman, L. et al.,
1984), from the UCI repository (Asuncion, A., & Newman, D., 2007). This dataset is often used in the
machine learning community and a lot of algorithms have been evaluated on it. For instance, in (Brei-
man, L., 2001) or in (Geurts, P., et al. 2006), some results with this dataset can be found for algorithms
combining decision trees (Adaboost, Random Forests, ...).

The Waveform dataset has the following interesting properties. There are 3 (symbolic) classes to
recognize, and 21 real-valued attributes. Data can be noised (as in real-world problems). The dataset is
composed of a total of 5000 instances and the proportion of positive and negative examples is balanced.
This dataset comes from an artificial problem where three different triangular functions (named either 1,
2, or 3) are defined by means of 21 real-valued attributes. For more detail on this dataset, please, refer
to (Breiman, L. et al., 1984).

372

High Scale Fuzzy Video Mining

Experiments

In order to correctly measure the error rate, the dataset is decomposed into two subsets: the training set
composed of 3500 examples, and the test set composed of 1500 examples.

Using the training set Forest of FDTs of different sizes (ranging from 1 to 500 FDTs) are built using
a similar protocol as the one used for the video indexing application:

• step 1: a class c is chosen from the set of classes
• step 2: the training set is sampled by taking all the examples associated with the class c, and a

random sample of examples of the other classes (i.e. negative examples). The idea here is to build
a set of examples where there is the same number of examples of the class c, than examples of
another class.

• step 3: from this sampling, a FDT is constructed using the Salammbô software (Marsala, C., &
Bouchon-Meunier, B., 1999).

This process is repeated for each of the three classes in order to obtain three FDT, each one enabling
the classification of an example with regards to a given class.

In the evaluation step, for each class, each example from the test set was classified by each of the
FDTs. The classification was repeated three times, each time using the decision in a different manner:
classical, fuzzy using the Zadeh operators and fuzzy using the Lukasiewicz ones. The individual tree
classification degrees were then aggregated using a simple vote approach, to determine the final class
of the example.

Figure 2. Influence of the size of the forest on the error rate

373

High Scale Fuzzy Video Mining

In Figure 2, we present the variation of the error rate when classifying the test set for various sizes
of FFDT (in terms of number of trees). We notice that no matter how we use the FDTs (i.e. classically
or fuzzy) the error rate decreases with the size of the forest.

Moreover, we notice that the error rate has great variations for small sized forests and stabilizes for
larger ones. There seems to be a boundary error rate of around 0.15 (15% examples are badly classified).
These results confirm the intuition: the more the number of trees is the lower the error rate. However,
we remark that there is a limit to this approach. In fact, after a certain number of trees the results do not
improve and we can even notice a slight worsening. It is also remarkable that a relatively small number
of trees (for this problem around 100) is needed to get the limit performance.

Now, when comparing the classical use of the FDTs (curve labeled “classical) with the fuzzy-logic-
based use of the same FDTs (curves labeled Zadeh and Lukasiewicz), it becomes clear that the use of the
fuzzy set theory reduces the error rate for this problem, and this no matter the size of the forest. When
comparing the fuzzy approaches we notice slight advantage for Zadeh’s logic.

The complexity and runtime of the whole process is relatively low. In fact, the total runtime of all
the experiment described here, composed of the construction of 500 FDT, the classification of the test
set by each of these FDT and with each of the presented operators (Classic, Zadeh, and Lukasiewicz), is
around 7350 seconds on a multiprocessor computer (10 core 2.93 Ghz, 64 Gb RAM, with GNU/Linux
2.6). This can be explained by the fact that the construction of a FDT was optimized in previous works
and here the construction of the Forest of FDTs is just related to the number of trees built and, thus, is
relatively low (taking into account the small number of trees needed to obtain a small error rate).

High scale Mining on Tv video Data

In order to compare our approach to others high scale approaches in a real-world framework, we partici-
pated to the high-level feature extraction task, at the TRECVid 2007 Challenge (Over, P., et al., 2007).
Here, we only report the results obtained with our submission (Marsala, C., et al., 2007), the interested
reader could refer to the proceedings of the TRECVid 2007 Challenge to have a good overview of the
results of the whole participating teams.

The video corpus was composed of 109 videos (around 30 minutes length each) and 18142 refer-
ence shots (shots were provided by (Petersohn, C., 2004)). The challenge addressed 39 concepts: sports
(1), weather (3), office (5), meeting (6), desert (10), mountain (12), waterscape-waterfront (17), police
security (23), military staff (24), animal (26), computer TV screen (27), US flag (28), airplane (29), car
(30), truck (32), boat or ship (33), walking or running (34), people marching (35), explosion fire (36),
maps (38), and charts (39).

The evaluation process was independently conducted by the NIST institute. Since TRECVid is in-
formation retrieval oriented, and given the size of the test set, each participating team had to propose,
for each high-level concept, a ranking of at most 2000 video shots from the test set, that contain each
of the concepts.

Due to the high size of the test corpus, it is impossible to manually annotate all examples for each
concept. Thus, the TRECVid evaluators propose to evaluate a sample of the selected (by the submissions)
shots and based on that infer the average precision. Thus, official metric (NIST, 2006) used to evaluate
the runs was the Inferred Average Precision. Evaluating methods by means of an inferred value is a
well-known approach whenever the size of the corpus is too large to be fully handled.

374

High Scale Fuzzy Video Mining

TRECvid Experiments

Several kinds and sizes of forests were studied (and submitted). Here, we focus on two sizes of forests
(25 FDTs and 35 FDTs) and on the use of fuzzy logic in the classification step (classical use versus Zadeh
and Lukasiewicz uses). More precisely, four approaches are compared: results obtained by means of a
forest of 25 FDTs used classically (“F25_Classic”), results of a forest of 25 FDTs used with the Zadeh’s
t-norms (“F25_Zadeh”), results of a forest of 35 FDTs used with the Zadeh’s t-norms (“F35_Zadeh”),
and the median of the results for all the participating teams (to TRECVID 2007).

In Figure 3, variations of the Inferred Average Precision (Inf. AP.) are presented. The average preci-
sion combines the ideas behind both precision and recall by considering the precision at different depths
of a list. It gives a paramount importance to the first shots returned, but also considers the total number
of correct shots returned. It can be observed that the FFDT performance highly depends on the kind
of concepts to be recognize. It is greatly linked to the low level descriptors used to represent the shots.
Some concepts are simple to learn (not only for the FFDTs): waterscape-waterfront (17), animal (26),
computer TV screen (27), US flag (28), airplane (29), car (30), boat or ship (33). However, concepts,
such as weather (3), desert (10), US flag (28), people marching (35), need better (specialized) descrip-
tors in order to allow the FFDT to perform better.

In average the FFDTs ranked among the first half of all the approaches that participated to the chal-
lenge. When compared to the median FFDTs perform for some concepts and less good for other and
this independently of its “difficulty” to be learned. FFDTs outperform for the complex concepts: police
security (23), military personnel (24), explosion fire (36); and for the simpler ones: TV screen (27),
airplane (29).

As shown on the Waveform dataset, the increase of number of trees in the forest improves the results.
Here the Inf. AP. (Inferred Average Precision) of forests of 35 fuzzy trees outperforms forests of 25
fuzzy trees, for almost all concepts.

Figure 3. Global Inf. Avg. Precision

375

High Scale Fuzzy Video Mining

In Figure 4, Figure 5, and Figure 6, the number of correct classified shots (hits), for each concept, is
presented when considering the first 100, 1000 and 2000 shots of the list, respectively. By considering
the hits we do not take into account the order of the results. These 3 values, for each concept, are part
of the evaluation metrics available at the TRECVid Challenge.

When considering the number of hits in 100, 1000 and 2000 first shots for the FFDTs compared to
the median (seen here as a reference point), we observe that the FFDT performs relatively better when
considering most of the list. We claim that the main reason lies in the fact that the FFDT is a classi-

Figure 4. Good Hits in the 100 firsts

Figure 5. Good Hits in the 1000 firsts

376

High Scale Fuzzy Video Mining

fication tool and not a ranking tool. In fact, the DTs optimize the decision boundary and the distance
of the example to the boundary. If, during the learning stage, a shot is naturally put far away from the
decision boundary (i.e. it is very easy to classify) then it will have a little influence on the selection of
the boundary.

Based on the previous observation and in order to compare the different approaches it is better to
choose the full returned list. On Figure 6, we observe that the use of the full power of the fuzzy set
theory is always better than a classic-approach based. Moreover, we see again that the “F35_Zadeh”
FFDT performs better than “F25_Zadeh” which highlights the importance of the size of the forest in this
application too. Thus, confirming the results observed on the Waveform dataset. If we now focus our
attention on the number of hits at 100 (Figure 4) and we compare the use of Fuzzy Logic (“F25_Zadeh”)
to the classical use (“F25_Classic”), it appears that in several times the latter outperforms the former.
In other words, fuzzy logic is good for classification but it aggravates the ranking. This behavior can be
explained by the fact that the use of degrees of truth on the one hand scrambles the strong decision (good
for the top of the list), however, on the other hand it improves the overall decision (i.e. classification).

CONCLUsION

In this chapter, we presented the use of forests of fuzzy decision trees (FFDTs) for the high scale video
mining problem. We showed that FFDTs can be considered as an interesting application of the fuzzy set
theory to handle such a challenge.

In fact, we believe that, one effective way of addressing high scale data problems, with Fuzzy Deci-
sion Trees, is by splitting the problem by repeatedly sub-sampling the learning space and then for each
sample train a classifier, leading to a Forest of Fuzzy Decision Trees.

Based on the carried out experiments performed on the well-studied Waveform data set and on the
TRECVId real video data challenge, we advocate that a good heuristic leading to better results is to have

Figure 6. Good Hits in the 2000 firsts

377

High Scale Fuzzy Video Mining

as many FDT as possible. Moreover, we observed that the fuzzy of FFDTs outperforms the classical
approach in a high scale classification problem.

The results on real world data (TV quality videos) from the TRECVid challenge highlight that this
approach is already competitive with respect to others’. We show that FFDTs are good at detecting high-
level concepts in shots (classification), but do not optimize the rank of the results.

In this real-world application that took place in a highly competitive context (the TRECVid Challenge
that involved not only academic teams but also industrial teams) the tools from the fuzzy set theory have
been proven to be a very sizeable and tractable approach. Moreover, the robustness of these tools when
handling real-world measures enables the improvement of a classical data mining tools to construct fuzzy
decision trees and build forests that benefit from the fuzzy degrees offer as output of the trees.

Several future works should be done in order to improve and to study better the proposed approach.
For instance, the study of other kinds of descriptors to encode the video shots will be conducted in order
to improve the results for other kinds of high-level concepts. Fuzzy descriptors could be introduced here
(for instance, to build histograms defined on fuzzy colors, to define the boundaries of a shot, or to handle
better the temporal measures related to the video) to take into account better this real-world data.

Moreover, several parameters that are used during the construction of the fuzzy decision trees, and
the ones that are used to set the size of the forest deserve a deeper study. The study and the choice of
the aggregation operators involved in various step of the use of the FFDT will also be studied deeper
in order to be optimized for a given domain of application. The influence of the number of the FDTs to
build a forest deserves also a deeper study that could brought out a better understanding of how to set a
convenient size for such an ensemble of classifier.

REFERENCEs

Asuncion, A., & Newman, D. (2007). UCI machine learning repository – University of California,
Irvine, School of Information and Computer Sciences. Retrieved from http://www.ics.uci.edu/~mlearn/
MLRepository.html

Bonissone, P. P., Cadenas, J. M., Garrido, M. C., & Diaz-Valladares, R. A. (2008). A fuzzy random
forest: Fundamental for design and construction. In Proceedings of the 12th International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’08),
Malaga, Spain (pp. 1231-1238).

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. New
York: Chapman and Hall.

Crockett, K., Bandar, Z., & McLean, D. (2001). Growing a fuzzy decision forest. In Proceedings of the
10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia (pp. 614-617).

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1),
3–42. doi:10.1007/s10994-006-6226-1

Janikow, C. Z., & Faifer, M. (2000). Fuzzy decision forest. In Proceedings of the 19th International
Conference of the North American Fuzzy Information Processing Society (NAFIPS’00) (pp. 218-221).

378

High Scale Fuzzy Video Mining

Marsala, C., & Bouchon-Meunier, B. (1997). Forest of fuzzy decision trees. In M. Mares, R. Mesiar,
V. Novak, J. Ramik, & A. Stupnanova (Eds.), Proceedings of the Seventh International Fuzzy Systems
Association World Congress, volume 1, Prague, Czech Republic (pp. 369-374).

Marsala, C., & Bouchon-Meunier, B. (1999). An adaptable system to construct fuzzy decision trees. In
Proc. of the NAFIPS’99 (North American Fuzzy Information Processing Society), New York, USA (pp.
223-227).

Marsala, C., & Detyniecki, M. (2005). University of Paris 6 at TRECVID 2005: High-level feature
extraction. In TREC Video Retrieval Evaluation Online Proceedings. Retrieved from http://www-nlpir.
nist.gov/projects/tvpubs/tv.pubs.org.html

Marsala, C., & Detyniecki, M. (2006). University of Paris 6 at TRECVID 2006: Forests of fuzzy deci-
sion trees for high-level feature extraction. In TREC Video Retrieval Evaluation Online Proceedings.
Retrieved from http://wwwnlpir.nist.gov/projects/tvpubs/tv.pubs.org.html

Marsala, C., Detyniecki, M., Usunier, N., & Amini, M.-R. (2007). High-level feature detection with
forests of fuzzy decision trees combined with the rankboost algorithm. In TREC Video Retrieval Evalu-
ation Online Proceedings. Retrieved from http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html

NIST. (2006). Guidelines for the TRECVID 2006 evaluation, National Institute of Standards and Tech-
nology. Retrieved from http://www-nlpir.nist.gov/projects/tv2006/tv2006.html

Over, P., Kraaij, W., & Smeaton, A. F. (2007). Guidelines for the TRECVID 2007 evaluation. National
Institute of Standards and Technology. Retrieved from http://www-nlpir.nist.gov/projects/tv2007/tv2007.
html

Pan, J.-Y., & Faloutsos, C. (2002). VideoCube: A novel tool for video mining and classification. In
Proceedings of the International Conference on Asian Digital Libraries (LNCS 2555, pp. 194-205).
Berlin, Germany: Springer.

Petersohn, C. (2004). Fraunhofer HHI at TRECVID 2004: Shot boundary detection system.(Tech. Rep.).
In TREC Video Retrieval Evaluation Online Proceedings, TRECVID. Retrieved from http://www-nlpir.
nist.gov/projects/tvpubs/tvpapers04/fraunhofer.pdf

Rosenfeld, C., Doerman, D., & DeMenthon, D. (2003). Video mining. Amsterdam: Kluwer Academic
Publishers.

Zhu, X., Wu, X., Elmagarmid, A. K., Feng, Z., & Wu, L. (2005). Video data mining: Semantic index-
ing and event detection form the association perspective. IEEE Transactions on Knowledge and Data
Engineering, 17(5), 665–677. doi:10.1109/TKDE.2005.83

ENDNOTE

1 We recall briefly that, given two values x and y from [0,1], the aggregation by means of the Lukasie-
wicz t-norm is valued as T(x,y)= max(x+y-1,0) and the aggregation by means of the Lukasiewicz
t-conorm is valued as ⊥(x,y)=min(x+y,1).

379

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

Fuzzy Clustering
of Large Relational

Bioinformatics Datasets
Mihail Popescu

University of Missouri, USA

INTRODUCTION

Bioinformatics is, arguably, the application domain where large relational datasets are most abundant.
There are two main reasons for this abundance. First, numerous genome projects completed in the last 10
years have generated a large amount of sequence data. For example, the RefSeq database (http://www.
ncbi.nlm.nih.gov/RefSeq/) contains, as of September, 2008, about 5,400 genomes with a total of about
5.6 million identified protein sequences. At the same time, the total number of sequences deposited in
another sequence database GenBank, http://www.ncbi.nlm.nih.gov/Genbank (Pruitt, Tatusova & Maglott,
2007), is close to 85 million. The difference between the numbers of sequences in the two databases
is represented, in part, by sequences with unknown function. Even for the case of the human genome,
only about 21,000 genes have been annotated from an estimated total of 30,000. Second, functional
annotation is a tedious process that is mainly accomplished by comparing the sequence of an unknown
protein to the sequence of a protein with known functions. The sequence comparison is often performed

AbsTRACT

In this chapter the author presents a fuzzy clustering methodology that can be employed for large
relational datasets. Relational data is an N×N matrix that consists of pair-wise dissimilarities among
N objects. Large relational datasets are encountered in many domains such as psychology or medical
informatics, but they are abundant in bioinformatics where gene products are compared to each other
based on various characteristics such as DNA or amino acid sequence. The fuzzy clustering methodol-
ogy is exemplified on a set of about 30,000 human gene products.

DOI: 10.4018/978-1-60566-858-1.ch016

380

Fuzzy Clustering of Large Relational Bioinformatics Datasets

with BLAST (Altshul et al., 1990), one of the most used tool in bioinformatics. When performed on an
entire genome, this method produces large matrices (relational data) of gene sequence similarity values.
There are other applications beside sequence comparison where large relational datasets are generated,
such as gene comparison based on Gene Ontology annotations or microarray expression (Havens et al.
2008), and document comparison based on Medical Subject Headings (MeSH) annotations.

Clustering plays an important role in genome annotation process. In the first phase of the process,
after the hypothetical gene boundaries are determined, the gene products are annotated based on their
sequence similarity to gene products in related species that are well studied. Next, all the gene prod-
ucts in a given genome are clustered based on their sequence similarity in order to find proteins with
similar functions (Enright, Van Dongen & Ouzounis, 2002). Most of the time, gene products with high
sequence similarity have similar functions. However, there are gene products with similar functions
with less than 30% sequence similarity. The well characterized proteins from the same cluster can
then be used to determine the functions of the unknown members of the group, a strategy often called
“guilt by association”. The most used annotation type is based on Gene Ontology terms. For example,
if an annotated gene A clusters together with an annotated gene B due to a high sequence similarity
(e.g. computed with BLAST) or due to a high similarity of their expression profiles (computed based
on microarray data), we have reason to believe that B shares all/some of the annotations (functions)
of A. The most popular clustering algorithms for relational datasets in bioinformatics are hierarchical
clustering and Markov clustering (Enright, Van Dongen & Ouzounis, 2002). A scalable version of the
hierarchical clustering algorithm, CURE, has been proposed (Guha et al., 1998), but we are not aware
of its application to bioinformatics. An implementation of Markov clustering, TRIBE-MCL, has report-
edly grouped about 80,000 sequences in 8,000 clusters in approximately 5 minutes on a Sun Ultra 10
workstation. However, both previous clustering approaches are crisp, that is, they assign each sequence
to a unique cluster. Because many proteins have multiple sequence domains that correspond to various
functions, it is more natural to allow each sequence to belong to multiple clusters (Xu et al., 2008). By
employing fuzzy clustering, an unknown gene product can be assigned to more than one group, receiving
in this fashion putative annotations from multiple gene families (Popescu et al., 2004). For example, if
the unknown gene B has a 0.5 membership in A’s cluster and, at the same time, has a 0.5 membership
in another cluster where gene C is representative, then we have 50% confidence that B shares both A’s
and C’s annotations. More applications of the fuzzy clustering in bioinformatics, such as gene product
summarization and microarray processing, are presented in (Xu et al., 2008).

A relational fuzzy clustering algorithm for very large databases, eNERF, has been recently introduced
by Bezdek et al. (Bezdek et al., 2006, Wang et al., 2008). However, eNERF was not applied to any large
bioinformatics data sets. In this paper we intend to employ eNERF to fuzzy cluster the human genome
sequences available in the RefSeq database. We will concentrate on the process of assigning fuzzy
memberships to gene products and not on the annotation process itself. For a review of the automatic
gene annotation methods we refer the reader to (Ouzounis and Karp, 2002) and (Stothard and Wishart,
2006). We will analyze eNERF behavior both in scalability (speed and memory requirements) and cluster
coherence. We will also describe eCCV, an extension of the CCV cluster validation algorithm described
in (Popescu et al., 2008).

The organization of this chapter is as follows: in the first section we describe eNERF, in the second
one we present eCCV, in the third section we describe the RefSeq human gene product dataset, in the
next one we show the results obtained on RefSeq data using the presented methodology, and in the last
section we summarize our experiments.

381

Fuzzy Clustering of Large Relational Bioinformatics Datasets

ExTENDED NON-EUCLIDEAN RELATIONAL FUZZY C-MEANs (ENERF)

The meaning of the term “large datasets” is elusive due to its relation to available computing resources,
such as processor speed and memory. Two decades ago, a 500 KB dataset was considered large; now the
processing limit is in the gigabyte range. Specifically, for relational algorithms that deal with distances
between objects, the main limitation is the amount of computer memory available. For example, a PC
with 2GB of memory can directly handle a square distance matrix between about 16,000 objects, number
that can go up to ~45,000 if the internal memory increases to 16 GB. For comparison, as of February
2008, GenBank (Benson et al., 2008) contains about 82 million sequences from about 260,000 different
organisms. Even employing various strategies to increase storage, such as sparse matrices and parallel
processing, a gap of several orders of magnitude still exists between the number of the possible objects
(sequences) to compare and the storage capability. This gap needs to be bridged by using modified
algorithms able to integrate information obtained from various parts of the data.

Aside of the internal memory availability problem, there are other difficulties in handling large re-
lational datasets that new algorithms have to address, such as processing speed and numerical stability.
One possible approach to modifying existent algorithms for handling large relational datasets can be
summarized as sample-process-extend (SPE); that is, the regular algorithm application is preceded by a
sampling scheme and followed by an extension procedure. Among the clustering algorithms developed
based on the SPE framework, we mention bigVAT (Huband et al., 2005), sVAT (Hathaway et al., 2006),
geFFCM (Bezdek et al, 2006a) and eNERF (Bezdek et al., 2006, Wang et al., 2008). In what follows,
we discuss eNERF in more detail.

Relational clustering can be defined as a method for assigning C labels to a set of N objects O = {o1,
..., oN} using the dissimilarity between them. Based on the type of labeling, we distinguish two classes
of relational clustering algorithms: hard and fuzzy (or soft). Hard clustering algorithms are those in
which an object can have only one label at a time, or, in other words, any given object belongs to only
one group. On the other hand, fuzzy relational clustering algorithms may label an object with multiple
labels, i.e., they allow the object memberships in multiple groups. The outcome of the hard labeling may
be represented as a list L, L = {li, ...,lN}, where lj ∈ [1,C] is the label assigned to object oj. However, this
type of representation does not easily extend to the fuzzy clustering case. To allow for the extension, we
represent the outcome of the hard clustering as a C × N matrix, U, called membership matrix, in which
the lj

th element of jth column is 1 if object oj belongs to cluster lj and all the other elements of the column
are 0. We can easily see that, by using the membership matrix, we are able to represent multiple cluster
membership degrees by assigning numbers in the [0,1] interval to other elements from the jth column.

eNERF is a relational clustering algorithm that compute fuzzy memberships, U={uij} i∈[1,C],j∈[1,N],
U∈MfCN, in C clusters for a set of N objects O={o1, ..., oN}, given the dissimilarity matrix between the
objects DN={dij}i,j∈[1,N]. The elements of the membership matrix U, uij, are subjected to two conditions:
1) the sum of the memberships of any object j∈[1,N] in all clusters has to sum to 1, and 2) any cluster
i∈[1,C] has to have some objects assigned to it. Formally, we can define the set of fuzzy partition ma-
trices of size C×N, MfCN, as:

M U u u j N u i
fCN C N ij ij

i

C

ij
= { Î é

ëê
ù
ûú = " Î é

ëê
ù
ûú > " Î´

=
å0 1 1 1 0 1

1

, , , . ; , ,,C
j

N
é
ëê

ù
ûú
ü
ý
ïï

þïï=
å

1 (1)

382

Fuzzy Clustering of Large Relational Bioinformatics Datasets

The fuzzy memberships U={uij} i∈[1,C],j∈[1,N] can be “hardened” by setting ukj=1 for k=argmax(uij) i∈[1,C],
for any j=[1,N], and uij=0 for any i=[1,C], i≠k. That is, object j is assigned to only one cluster, cluster k,
for which its membership is maximum. Algorithms such as hierarchical clustering and Markov cluster-
ing produce hard partitions of the data.

Example 1. Consider N=3 gene products o1, o2 and o3. Gene products o1 and o3 have known Gene
Ontology annotations, GOi, i.e. o1={GO1} and o3={GO2}, while o2 is an unknown gene product. The
question that we try to answer is: what are the functions of o2? To find its function, we will need to an-
notate o2 with Gene Ontology terms. All three gene products have known (amino acid) sequences. Using
a sequence comparison algorithm, such as BLAST or Smith-Waterman (Smith and Waterman, 1981),
we obtain a dissimilarity matrix D3 that may look like:

D
3

0 0 4 0 9

0 4 0 0 6

0 9 0 6 0

=

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

. .

. .

. .

Assume that, based on their dissimilarity matrix D3, the three gene products are grouped in two clusters
using a fuzzy clustering procedure (such as NERFCM, presented later in this chapter). The outcome of
the clustering is a fuzzy partition Uf23 of the kind given by (1) that may look like:

U
f 23

0 9 0 6 0 1

0 1 0 4 0 9
=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

. . .

. . .
.

In the above fuzzy membership matrix, o2 belongs with degree 0.6 to cluster 1 and with degree 0.4 to
cluster 2. The fuzzy membership matrix formalism allows us to describe gene product o2 as a member,
in some degree, of both cluster 1 and cluster 2. As a consequence, based on the “guilt by association”
conjecture, we can infer both a GO1 and a GO2 functionality for o2 with confidences of 0.6 and 0.4,
respectively. A “hardened” version of Uf23, Uh23, is given below:

U
h23

1 1 0

0 0 1
=

é

ë

ê
ê
ê

ù

û

ú
ú
ú ,

where, o2 was assigned to the group in which it had the maximum membership (i.e. group 1, therefore
u21=1 and u22=0). Since o2 has been irrevocably assigned to cluster 1, any information about its GO2
function is lost.

The eNERF algorithm requires that the elements of the dissimilarity matrix between N objects (also
called relational matrix) D d i j N

N ij
= { Î é

ëê
ù
ûú}, ,1 satisfy the following conditions:

1. dii=0, for all i∈ [1,N],
2. djk≥0, for all j,k∈ [1,N],
3. djk=dkj, for all j,k∈ [1,N].

383

Fuzzy Clustering of Large Relational Bioinformatics Datasets

If the dissimilarity matrix DN was obtained by computing the distances between the objects represented
in some feature space FS ⊂ Rp, then DN is called Euclidean. In general, if DN was obtained by employing
a dissimilarity measure between objects, such as computing the sequence dissimilarity using BLAST
(Altschul et al., 1990), it might not be Euclidean. In the mean time, if DN is large, hence not loadable in
the computer memory, we cannot apply regular fuzzy relational algorithms such as NERFCM (Hathaway
& Bezdek, 1994). The eNERF algorithm was designed to handle large, non-Euclidean, relational data.
The eNERF algorithm has three steps:

• sampling: the size of the dissimilarity matrix, DN, is reduced in order to allow loading into mem-
ory and/or for speed-up of the clustering procedure. The size reduction is achieved by choosing
only n objects of the total of N, n<<N, for further processing. The n sampled objects have to rep-
resent all the clusters present in the data and, most importantly, to allow the dissimilarity matrix
Dn to be loaded in the memory. The sampling algorithm is discussed in more detail in the next
subsection;

• clustering: given the dissimilarity matrix and the number of clusters, the fuzzy memberships of
the n sampled objects in the C clusters, Un={uij} i∈[1,C],j∈[1,n], are computed. In this step, the regular
non-Euclidean relational fuzzy c-means algorithm, NERFCM (Hathaway & Bezdek, 1994), is
used. We briefly describe NERFCM in a following subsection;

• extension: given Un and DN, the fuzzy memberships UN for all N objects are computed. The exten-
sion procedure is discussed later in this section.

sampling scheme

Two sampling schemes for relational data were tried in conjunction with eNERF: progressive sampling
(Bezdek et al., 2006) and selective sampling (Wang et al., 2008). Both sampling schemes rely on select-
ing a set of h “distinguished features” from the set O of N objects, that is, a set of h<<N objects that
are as far (dissimilar) from each other as possible. We note that the term “features” is a reminiscence of
the fact that the sampling scheme for relational data was adapted from a similar scheme for object data.
As a consequence, each row in the dissimilarity matrix DN is considered an object that has as features
the dissimilarities to all the other N-1 objects. In fact, the “distinguished features” (DF) algorithm is a
feature selection algorithm that chooses the best features for sampling purposes (Bezdek et al., 2006).
Although the choice of good objects as DFs will lead to a good partition (clustering) of O, the choice
of DFs is not directly controlled by the clustering algorithm. The distinguished feature (DF) algorithm
has the following four steps:

Step 1. Load in memory the dissimilarity matrix DH for H candidate objects, where H is dictated by
the available memory and n<<H<N. DH is of size H×H.

Step 2. Choose the first row as the first distinguished feature (DF), m1=1. Initialize a search ar-
ray, δ1, that will store the distances from the current distinguished feature to all the other H objects,
d d1 1 1= { Î é

ëê
ù
ûú}k

k H, , , which in this case is the first row of DH.
Step 3. Compute the ith DF, with index mi, as the object that is farthest away from the (i-1)th DF. The

index of the farthest object, mi ∈[1,H], is given by the index of the maximum element of the δi-1 array.
Note that each distinguished feature is an array of length H, which is in fact the mi

th row of DH.
Step 4. Recompute the search array δi by taking the minimum element-wise between δi-1 and the mi

th
row of matrix DH, that is, the kth element of the new search array is given by dk

j =min{ dk
j

mik
d-1, };

384

Fuzzy Clustering of Large Relational Bioinformatics Datasets

Step 3 and 4 are repeated h-1 times.
We point out that the “distinguished features” chosen in step 3 of the above DF algorithm must come

from the candidate rows still available after previous choices were made. For this purpose, a row avail-
ability list has to be maintained - a fact that, for simplicity, we omitted from the algorithm description.
A summary of the distinguished features (DF) algorithm is given in Figure 1.

The number and the identity of candidate objects loaded in memory, H, depend on the available
memory. The H objects are usually chosen by random sampling of the N objects to be clustered. How-
ever, even if we can fit into memory the dissimilarity matrix for H objects, its processing might still be
prohibitive time-wise. For this reason, we would like to further choose n samples from the H available
to apply the regular clustering on. In the progressive sampling scheme, the first n rows of the matrix DH
are loaded. Additional rows are added until the distribution of the dissimilarities for each distinguished
feature approximates the distribution of the entire related row from DH. Specific details about the pro-
gressive sampling procedure can be found in (Bezdek et al., 2006). It was found (Wang et al., 2008), that
the progressive scheme is very conservative, often resulting in sample size n close to 50% of H, which
still represent an intractable number in some cases. For this reason, in this work we used the selective
sampling (SS) scheme described in (Wang et al., 2008).

In the selective sampling scheme, the final n objects are chosen by random sampling of the nearest
neighbors of the DFs previously found. The main steps of the SS algorithm are:

Step 1: Load the dissimilarity matrix DH for H objects chosen by random sampling of the unload-
able DN;

Step 2: Select h rows {m1, ..., mh} from DH as distinguished features using the DF algorithm given
above. It is recommended (Bezdek et al., 2006) that h is chosen greater than the expected number of
clusters, C. Intuitively, if h is too low, it might, indirectly, cause some clusters to be underrepresented
mainly when n<<N. If h is too high, i.e. h ≅ n, it will increase the time necessary to complete the nearest
neighbor search (next step). However, since we have the dissimilarities between objects already com-
puted, the increase in computational time is small for an H of about 20,000 which is the limit imposed
by the available memory in a 2009 desktop computer.

Figure 1. DF Algorithm

385

Fuzzy Clustering of Large Relational Bioinformatics Datasets

Step 3: For each DF, mj, j∈[1,h] find the set of rows Cj closest to it (i.e. its nearest neighbors). We
note that, the neighborhood operations are performed in RH, i.e. with distinguished features of length H.
In (Wang et al., 2008) it is suggested that the DF be vectors in RN, that is, the neighborhood operations
be performed on the rows of the unloadable matrix DN. While this strategy is possible, it increases the
computational complexity of the algorithm, since the search procedure has to be conducted in blocks.
In the example presented in this chapter, we did not deal with this problem since we were able to load
the entire DN matrix into memory, in other words, for us H ≡ N.

Step 4: From each set of rows Cj, j∈[1,h], choose at random nj samples where nj is given by the
lower bound of n|Cj|/H and |.| is the number of rows from Cj. We note that, since we rounded off nj, we
might end up with slightly less samples than n. This might be corrected by taking nh=n-(n1+...+nh-1). A
summary of the SS algorithm is given in Figure 2.

NERFCM Clustering

NERFCM (Hathaway & Bezdek, 1994) is a clustering algorithm for relational data that assigns C la-
bels to the n sampled objects by computing a fuzzy partition matrix U∈MfCn (Eq. 1). Similarly to FCM
(Bezdek, 1981), NERCM is an iterative algorithm (alternative optimization) that has three main steps.
In the first step, an initial guess, U0, for the fuzzy partition matrix U={uij}i∈[1,C],j∈[1,n], is used to compute
C cluster centers, vi, as

V u u u u
i il

m

i

m

in

m

ij

m

j

n

= () () ()æ
è
çç

ö
ø
÷÷÷ ()

=
å, , ...,

2
1

, i∈[1,C]. (2)

where m∈(1,∞) is a parameter (“fuzzifier”) usually chosen to be m=2. A choice of m toward 1 results
in harder (less fuzzy) partitions. The initial guess U0 can be obtained by random initialization with

Figure 2. SS Algorithm

386

Fuzzy Clustering of Large Relational Bioinformatics Datasets

numbers in [0,1] followed by column normalization. We point out that, unlike FCM that defines the
cluster centers as a weighted average of the object vectors by their cluster memberships, NERFCM
uses only the cluster memberships for this task. For this reason, the cluster centers in NERFCM are
merely normalized memberships of objects in clusters, and they could be seen as a mixture of objects.
For example, given the membership matrix Uf23 from Example 1 and using Eq.(2), we get v1=(0.56 0.38
0.06). This cluster center may be interpreted as a virtual object that is 56% similar to o1, 38% similar to
o2 and 6% similar to o3.

The second step consists in computing the dissimilarity vector di between the ith cluster center and
the n objects:

d v v v
i n i

t
i n i

tD D= -() . ()0 5 , i∈[1,C], (3)

where Dn is the dissimilarity matrix between the n sampled objects obtained in the previous section. Us-
ing again the distance matrix, D3, from Example 1 and the cluster center, v1, shown above, we compute
the dissimilarity vector of the first cluster center as to all objects as d1=(0.2 0.26 0.73)t-0.13=(0.07 0.13
0.6).

Lastly, an updated fuzzy membership matrix, U’=U
ij

 i∈[1,C],j∈[1,n], is computed as:

u

d

d
if d

ij

ij

kj

m

k

C

' =

æ

è

ççççç

ö

ø

÷÷÷÷÷

æ

è

çççççççç

ö

ø

÷÷÷÷÷÷÷÷÷

-

=
å

1
1

1
iij

ij
if d

>=

<

ì

í

ïïïïïï

î

ïïïïïï

e

e1
 (4)

where i∈[1,C] and j∈[1,n]. This equation is similar to the related one from FCM (Bezdek 1981). How-
ever, note that, since in Eq. (3) the dissimilarities are already squared, Eq. (4) does not have the usual
“2” in the 1/(m-1) power exponent. If dij is smaller than a small value ε, 0<ε<<1, uij is set to 1 and the
rest of the memberships in cluster i are set to 0.

If Dn is non-Euclidean, some of the computed dissimilarities from Eq. (3) may be negative at this
point and they can not be used as in Eq. (4). To address this problem, NERFCM uses a β-spread trans-
form (Hathaway & Bezdek, 1994) that increments, at each iteration, the non-diagonal elements of Dn
with a quantity Δβ, given by

b = - -max{ / || || }
,i j ij i j

d2 2v e
 (5)

where e
j

nR= Î(,..., , ...,)0 1 0 and ejj=1.
Accordingly, the dissimilarities are modified using:

d d v e
ij ij i
= + D()× -b / 2

2
, i∈[1,C], j∈[1,n]. (6)

The distances dij that are still negative after the above correction are set to 0. The summary of the
NERFCM is given in Figure 3.

387

Fuzzy Clustering of Large Relational Bioinformatics Datasets

Extension scheme

After the fuzzy memberships for the n sampled objects, UfCn, have been computed, an extension scheme
is necessary to obtain the memberships in the C clusters for the rest of the (N-n) objects that were not
part of the sample used in the clustering calculation. The initial extension scheme proposed in (Bezdek
et al., 2006), consists in adding the (N-n) objects one-by-one and iteratively computing UfCn+1 using
the Eqs. (2) through (6). Even by precomputing several variables, this method is extremely slow due
to its iterative nature (Wang et al., 2008). Instead, we propose a simpler method that computes the dis-
similarities in Eq. (3) between the (N-n) unsampled objects to the C cluster “centers” of dimension n,
{vi}, obtained in the previous step (see the output of the NERFCM algorithm above). More precisely,
Eq. (3) becomes:

d v v v
i N n i

t
i n i

tD D= -() . ()
,

0 5 , i∈[1,C], j∈[n+1,N], (7)

Because the new extension algorithm is not iterative, it is at least one order of magnitude faster
than the one proposed in (Bezdek et al., 2006). Moreover, although the previous extension algorithm
is potentially more precise than one proposed here, they give similar results on our BLAST dataset for
reasons that will become obvious in the next section. The proposed extension algorithm is summarized
in Figure 4.

Figure 3. NERFCM Algorithm

388

Fuzzy Clustering of Large Relational Bioinformatics Datasets

ExTENDED CORRELATION CLUsTER vALIDITY, ECCv

The Correlation Cluster Validity (CCV) (Popescu et al., 2008) is a validity measure for relational data
sets. Assume we want to estimate the number of clusters for N objects, given the dissimilairty matrix DN
between them, where N is very large. To reduce the computational time, we employ the same sampling
strategy as in eNERF. The resulting cluster validity is denoted as extended CCV (eCCV). eCCV con-
sists of two steps: first, apply the SS sampling algorithm to reduce DN to Dn (n<<N) and then estimate
the number of clusters in Dn using CCV. For a fixed value of C, let U be the final fuzzy partition matrix
obtained, say, by running NERFCM on Dn. The main idea of CCV is to define a reconstruction matrix
U* as:

U U U U Ut t* / (max{ })= -1 . (8)

The assumption used in CCV to find the estimated number of clusters, C, is that the best grouping
results in a maximum correlation between U* and Dn, that is,

C corr U D
k n

= { ()}arg max ,*
 (9)

where U
k
* denotes the reconstruction matrix generated by the k×n fuzzy membership matrix obtained

by grouping the n objects in k clusters. Here, the correlation between the two matrices will be computed
using the Pearson correlation. The summary of the eCCV algorithm is given in Figure 5.

REFsEQ gENE PRODUCT DATAsET

To test our clustering methodology, on September 12th 2008 we downloaded the RefSeq database (Pruit
et al., 2007) build 36.3 in fasta format. RefSeq is a non-redundant, curated, sequence database intended
to provide a solid foundation for genome annotation and gene characterization. The dataset consisted
of 37,742 sequences of which about 60% belonged to known genes. About 40% of the human genes are
either unknown or they have unknown function at this time.

Figure 4. Extension Algorithm

389

Fuzzy Clustering of Large Relational Bioinformatics Datasets

The gene product similarity was computed using BLAST with the “-p” option (protein against pro-
teins) and a cutoff E-score of 10. The similarity between gene products pi and pj, sij, was computed using
the truncated E-score (Enright, Van Dongen & Ouzounis, 2002) as

S

if E score

if E score

E score i j else
ij
=

- <
- >

- ()

ì

í

ïïïïï

î

0 0

1 100

100, /
ïïïïïï . (10)

We mention that the above E-score represents the confidence (so called, “p value”) of the sequence
similarity score, and not the score itself. For example, if two sequences, s1 and s2, have a BLAST score
of 385 with a p-value of 0.0001, then the E-score =-log10(0.0001)=4. In addition, the score of s1 vs. s2
may differ from the score of s2 vs. s1, resulting in a non-symmetrical similarity matrix. Consequently,
we set sij=sji=0.5(sij+sji). The resulting similarity matrix, S37000, had about 1.5 million non-zero elements,
that is, it was only 0.1% full (i.e., is a sparse matrix).

There are two characteristics of the RefSeq data set that represent a serious challenge for our clustering
strategy. First, it is estimated that there are about 9,300 gene product families in our dataset (Finn et al.,
2008). These families can be further grouped in 283 clans (groups of related families). The clan group-
ing was manually performed (Finn et al., 2008), so we consider it to be highly reliable. This information
might suggest a value for the number of clusters we should use in our eNERF algorithm. Second, the
distribution of the population in the above families is extremely unbalanced (Enright, Van Dongen &
Ouzounis, 2002). About 30% of the families have only one member, 3% have more than 50 members,
and only 0.3% have over 300 members. This distribution information suggests that the upper bound of
the number of families that we can detect using a 1:10 sampling ratio is around 300, a number that is
roughly equal to the number of clans. However, the family size distribution will seriously hinder any
sampling strategy. To address the above challenges we preceded our analysis by a preprocessing step,
described in the next section, aimed at removing the families with few members.

Figure 5. eCCV Algorithm

390

Fuzzy Clustering of Large Relational Bioinformatics Datasets

ENERF ExPERIMENTs ON THE REFsEQ DATAsET

Preprocessing of the Refseq Dataset

Because of its sparse nature, the entire S37000 matrix was easily loadable in memory (total size about
20 MB). However, when it was transformed into a dissimilarity matrix D37000=1-S37000 it required about
10 GB of data, memory still available on a high-end desktop system (Windows XP64 with 16 GB of
memory). After this transformation, the rows and the columns of the D37000 dissimilarity matrix were
rearranged using the Visual Assessment of Cluster Tendency (VAT) algorithm (Bezdek et al., 2002)
which is essentially a version of the minimum spanning tree algorithm. The result of the reordering was

Figure 7. The number of gene products with similarity greater than 0 for each reordered gene product
in the RefSeq dataset

Figure 6. The VAT-reordered distance matrix between the first 2000 gene products of the DV37000 matrix
(upper-left corner; black=0, white=1)

391

Fuzzy Clustering of Large Relational Bioinformatics Datasets

a distance matrix denoted DV37000. The intention of the reordering was to separate the large clusters from
the small clusters. The first 2000 reordered gene products from the upper-left corner of the DV37000 are
shown in Figure 6.

In Figure 7 we plotted, for each of the 37,742 reordered gene products, the total number of gene
products that were found to have some level of sequence similarity (as a result of Eq. (10)) to it.

If we assume that the family size is proportional to the number of non-zero similarities per gene
products, we can see in Figure 7 that VAT did a reasonable job in arranging the large families (over about
20 members-see the cutoff at index 15,000) at the beginning (left side in Figure 7) of the [1, 37742]
range. Consequently, we chose to continue our analysis using only the first 15,000 gene products (with
indices between 1 to 15,000), which means that we used only the 15,000×15,000 upper-left corner of
the rearranged matrix DV37000, or, equivalently, DV15000. The choice of further use only the gene products
(i.e. DV15000 matrix) that had more than about 20 neighbors, was made in order to ensure that a 1 in 5
sampling rate would not drastically change the cluster structure.

Choosing the Fuzzifier, m and the Number of samples, n

In order to choose the value of the fuzzifier m, we used the 360×360 upper-left corner of the DV37000,
denoted as DV360. Since the value of m depends on the characteristics of the data and not on its size, we
chose only a small portion of DV3700 to perform this experiment. By visual inspection we estimated that
there are 3 clusters in DV360: the first one with about 150 members and the other two with about 100
members each (see Figure 8).

The eNERF performance was estimated with a method similar to one used in Correlation Cluster
Validity (CCV) (Popescu et al., 2008) by computing the correlation between the reconstruction matrix
U* (see Eq. (8)) and distance matrix (DV360 in this case). In Figure 8.b we show the reconstruction ma-
trix U* obtained from the fuzzy membership matrix U computed using eNERF with m=1.2 and n=60

Figure 8. a). The DV360 distance matrix. We assumed that there are 3 clusters in DV360. b) The U * matrix
for m=1.2 and n=60. The Pearson correlation between a) and b) is 0.74

392

Fuzzy Clustering of Large Relational Bioinformatics Datasets

on the DV360 data. The resulting correlation between U* and DV360 is 0.74, which is a reasonably high
value. More correlation values for m={1.1, 1.2, 1.4, 1.6, 2} and n={60, 90, 120, 150, 180, 240, 360} are
shown in Figure 9. From this figure, we conclude that eNERF is relatively resilient to down-sampling
(i.e., choice of n), maintaining a relatively constant performance over sampling range from 1/1 to 1/6.
Also, the maximum performance was obtained for m=1.2. Consequently, we use m=1.2 in all the sub-
sequent experiments. Moreover, we will use a maximum down-sampling ratio of 1/5 throughout our
experiments.

In the previous experiments, we observed that increasing the dynamic range of our data set (from
[0,1]) might improve the clustering results. As explained in the previous section, our similarity score
came from taking the logarithm of the sequence similarity confidence. As a consequence, we investigated
the idea of using an exponential transformation to improve cluster separation. When the similarity SV360
data set was transformed to a dissimilarity using

DVL SV

360

110 1360= --() , (11)

we obtained a correlation value between eNERF(DVL360) and U* equal to 0.83, which represents an
increase of 10% versus the non-transformed version. For the experiments that follow we use the trans-
form shown in Eq. (11) and denoted by “L”.

eNERF size Limit

Application of eNERF on the DVL15000 distance matrix with m=1.2, n=3000 and C=300 did not result
in a correlation coefficient higher than 0.36. Comparing the two matrices, DVL15000 and resulting U*,
side by side (see Figure 10), we see that, except for the two big clusters around index 5000 and 14000

Figure 9. The variation of correlation index between U * and DV360 for various numbers of samples, n,
and fuzzifiers, m

393

Fuzzy Clustering of Large Relational Bioinformatics Datasets

respectively, no other gene product groups are visible in the U* matrix. Further reduction in n (increase
in sampling rate) decreases even further the correlation coefficient.

It seems that eNERF can not directly handle a 15000×15000 distance matrix. We suspect NERFCM
performance, the imprecision in the number of clusters, the initial guess of the membership matrix, and
the harsh nature of the data (as explained at the beginning of the results section) for this problem.

The question now is: what is the maximum size that can be handled by eNERF in these circum-
stances? To answer this question, we applied eNERF for various distance matrix sizes, Ns, selected from
the upper-left corner of DVL15000, which we denote as DVLNs. For each size Ns, the number of samples
was kept at n=Ns/5. The number of clusters was determined by visual inspection of the DVLNs matrix
(see Figure 11, row 2). The correlation results for various data sizes for both NERFCM and eNERF are
given in Figure 11 and Figure 12.

In Figure 12, we see that both NERFCM and eNERF performance drop at about Ns=1000. As a con-
sequence, we chose Ns=1000 as the largest data size that we directly run eNERF without a good estimate
of the initialization matrix. Also, this result made us belive that, in fact, NERFCM is the primary reason
for the eNERF failure (the nature of the data set being the second).

Since we are not able to process directly the entire set, DVL15000, we propose a piece-wise eNERF
initialization procedure that produces estimates for the number of clusters C and the membership matrix,
U0.

Piece-Wise Cluster Number and Membership Estimation Using eNERF

The DVL15000 dataset was divided in 15 non-overlapping blocks of size 1000×1000. The blocks were
chosen on the main diagonal where the majority of the non-zero similarities were arranged by VAT (see
Figure 12). For each block, b, we first estimate the number of clusters, Cb, b∈[1,15], using the eCCV
procedure previously described in this chapter (see Eq. (8) and (9)). Then, the eNERF algorithm is applied

Figure 10. a) The DVL15000 BLAST-derived distance matrix and b) the U * matrix obtained by applying
eNERF with m=1.2, n=3000 and C=300

394

Fuzzy Clustering of Large Relational Bioinformatics Datasets

with m=1.2, C=Cb and n=200. The resulting fuzzy membership matrices {Ub}b∈[1,15] are concatenated to

form the initialization matrix U0 of size C
b

b=
å ´

1

15

15000 (see Figure 13). In our case C
b

b

=
=
å 159

1

15

.

The reconstructed matrix U
0
* is shown in Figure 14.a. We see that U

0
* is closer to the data matrix

shown in Figure 10.a, although the correlation is still low at 0.38.

Analysis of the Fuzzy Memberships generated by eNERF on the Refseq Data

Lastly, after U0 and C are obtained, a last pass of eNERF was performed on the DVL15000 data with
n=3000, m=1.2 and a final fuzzy partition of the data, UN, was obtained. The resulting reconstructed

Figure 11. The correlation values for NERFCM and eNERF for various data sizes

Figure 12. Correlation values for NERFCM and eNERF for various data sizes, N

395

Fuzzy Clustering of Large Relational Bioinformatics Datasets

matrix, U
n
* , shown in Figure 14.b, has a correlation value of 0.6 for the original data matrix, DVL15000.

Although this value is lower than the “good” eNERF correlation values shown in Figure 12, it is 60%
higher than the correlation obtained without the piece-wise procedure.

The fuzzy partition UN can now be used to annotate or to summarize the RefSeq clusters using a
procedure similar to the method shown in (Popescu et al., 2004). However, here we performed a sim-
plified cluster analysis based on hardening the fuzzy partition matrix UN (as explained in Example 1).
After the hardening process, only about 25% (40) of the 159 clusters, more precisely { 3, 5, 8, 9, 10,
13, 14, 15, 16, 17, 18, 20, 21, 23, 28, 42, 46, 51, 52, 53, 54, 58, 64, 68, 73, 78, 83, 85, 94, 95, 98, 101,
103, 104, 116, 142, 144, 157, 158, 159}, were populated. One cluster had 11,314 members with max

Figure 13. The initialization membership matrix (159 ×15000) generated using the piece-wise proce-
dure

Figure 14. a) The reconstruction matrix, U
0
*], obtained using the piece-wise eNERF procedure; b) The

reconstruction matrix, U
n
* , obtained using eNERF with C=159 and U0 obtained using the piece-wise

procedure

396

Fuzzy Clustering of Large Relational Bioinformatics Datasets

membership of 1/159. About 0.2% (3910) of the UN fuzzy memberships were higher than 2/159, which
is not surprising if we remember that the original similarity matrix had only 0.1% non-zero elements.
The distance matrix for the 3704 gene products identified in the hardened clusters is shown in Figure
15. We see that the clustering procedure produced expected results by grouping gene products that had
strong BLAST similarity.

Each hardened cluster contained about 20% unknown proteins (denoted as “LOCxxxxxxx” in Figure
16). The properties of these unknown proteins can be inferred based on the Gene Ontology functions
of the known gene products using the computed fuzzy membership matrix as described in (Popescu et
al., 2004).

The first cluster in Figure 16 contains numerous members of the zinc finger family and forkhead box
family. These two families are both involved in transcription; the forkhead box members are transcrip-
tion factors and the zinc finger members are related to DNA binding. Similarly, the two families listed in
cluster no. 2, solute carrier and butyrophilin, have functions related to cellular membrane. In general, the
computed clusters contain members of multiple families, which is what we intended. Fuzzy clustering
is intended to group gene products with low degree of homology (sequence similarity under 40%) that
have a common functions. However, further, more detailed, biological analysis is necessary to determine
if the clustered gene products share protein domains (hence functions) (see an example of such analysis
in (Enright, Van Dongen & Ouzounis, 2002)) or if they were mistakenly clustered together.

CONCLUsION

We presented a relational fuzzy clustering algorithm for large datasets, eNERF, and a related cluster
validity measure, eCCV. The algorithm eNERF has been previously validated on large synthetic rela-

Figure 15. The distance matrix for the 3704 gene products assigned to clusters using the hardening
procedure (Example 1)

397

Fuzzy Clustering of Large Relational Bioinformatics Datasets

tional data sets obtained from a small number of balanced (the number of points in each cluster is about
equivalent) Gaussian clusters. Here we examined eNERF’s behavior on a large bioinformatics data set
of about 37,000 sequences. The initial results were unexpected, partially due to the characteristics of the
dataset (numerous, unbalanced clusters) and partially to reasons inherent to the eNERF algorithm, such
as initialization and number of clusters. We overcame the algorithm shortcomings with a piece-wise
procedure for finding a reasonable initialization for the fuzzy membership matrix, U0, and by estimating
the number of clusters with a cluster validity measure, eCCV. The clusters obtained after adapting the
eNERF algorithm to the characteristics of the RefSeq data set showed reasonable similarity and correla-
tion to the original distance matrix.

Our analysis raised several questions. Why is NERFCM failing for BLAST matrices larger than
1000×1000? Can NERFCM be defined on a similarity matrix instead of a dissimilarity one in order to
take advantage of the sparseness of the former? Can fuzzy memberships be used for functional annota-
tion of the 30% un-annotated human gene products? We hope to answer to all these questions in future
work!

REFERENCEs

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search
tool. Journal of Molecular Biology, 215(3), 403–410.

Figure 16. The gene products identified in the first 12 most populous clusters

398

Fuzzy Clustering of Large Relational Bioinformatics Datasets

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. (2008). GenBank. Nucleic
Acids Research, 36(Database Issue), D25–D30. doi:10.1093/nar/gkm929

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Ple-
num.

Bezdek, J. C., & Hathaway, R. J. (2002). VAT: A tool for visual assessment of (cluster) tendency. In
Proceedings of the International Joint Conference of Neural Networks (pp. 2225-2230). Piscataway,
NJ: IEEE Press.

Bezdek, J. C., & Hathaway, R. J. (2006a). Elastic control of subsample size in the geFFCM algorithm.
In Proceedings of 5th International Symposium on Intelligent Manufacturing Systems (pp. 9-18).

Bezdek, J. C., Hathaway, R. J., Huband, J. M., Leckie, C., & Kotagiri, R. (2006). Approximate cluster-
ing in very large relational data. International Journal of Intelligent Systems, 21, 817–841. doi:10.1002/
int.20162

Enright, A. J., Van Dongen, S., & Ouzounis, C. A. (2002). An efficient algorithm for the large-scale
detection of protein families. Nucleic Acids Research, 30(7), 1575–1584. doi:10.1093/nar/30.7.1575

Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, J. S., & Hotz, H. R. (2008). The Pfam protein
families database. Nucleic Acids Research, 36(Database Issue), D281–D288. doi:10.1093/nar/gkm960

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm for large databases.
In Proceedings of the ACM SIGMOD Int. Conf. on Management of Data (pp. 73-84).

Hathaway, R. J., & Bezdek, J. C. (1994). NERF c-means: Non-Euclidean relational fuzzy clustering.
Pattern Recognition, 27, 429–437. doi:10.1016/0031-3203(94)90119-8

Hathaway, R. J., Bezdek, J. C., & Huband, J. M. (2006). Scalable visual assessment of cluster tendency
for large data sets. Pattern Recognition, 39, 1315–1324. doi:10.1016/j.patcog.2006.02.011

Havens, T. C., Keller, J. M., Rehrig, E. M., Appel, H. M., Popescu, M., Schultz, J. C., & Bezdek, J. C.
(2008). Cluster analysis of bioinformatics data composed of microarray expression and gene ontology
annotations. In Proceedings of the Annual NAFIPS Conference, New York.

Huband, J. M., Bezdek, J. C., & Hathaway, R. J. (2005). bigVAT: Visual assessment of cluster tendency
for large data sets. Pattern Recognition, 38, 1875–1886. doi:10.1016/j.patcog.2005.03.018

Ouzunis, C.A., & Karp, P.D. (2002). The past, present and future of genome-wide re-annotation. Genome
Biology, 3(2), comment2001.1-2001.6.

Popescu, M., Bezdek, J. C., Keller, J. M., Havens, T. C., & Huband, J. M. (2008). A new cluster validity
measure for bioinformatics relational datasets. In Proceedings of the World Congress on Computational
Intelligence, WCCI2008, Hong Kong (pp. 726-731).

Popescu, M., Keller, J. M., Mitchell, J. A., & Bezdek, J. C. (2004). Functional summarization of gene
product clusters using gene ontology similarity measures. In M. Palaniswami, B. Krishnmachari, A.
Sowmya, & S. Challa (Eds.), Proc. of the 2004 ISSNIP (pp. 553-559). Piscataway, NJ: IEEE Press.

399

Fuzzy Clustering of Large Relational Bioinformatics Datasets

Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2007). NCBI reference sequence (RefSeq): A curated non-
redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 35(Database
issue), D61–D65. doi:10.1093/nar/gkl842

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of
Molecular Biology, 147, 195–197. doi:10.1016/0022-2836(81)90087-5

Stothard, P., & Wishart, D. S. (2006). Automated bacterial genome analysis and annotation. Current
Opinion in Microbiology, 9, 505–510. doi:10.1016/j.mib.2006.08.002

Wang, L., Bezdek, J. C., Leckie, C., & Kotagiri, R. (2008). Selective sampling for approximate cluster-
ing of very large data sets. International Journal of Intelligent Systems, 23(3), 313–331. doi:10.1002/
int.20268

Xu, D., Bondugula, R., Popescu, M., & Keller, J. (2008). Applications of fuzzy logic in bioinformatics.
London: Imperial College Press.

400

Compilation of References

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003).
A framework for clustering evolving data streams. In
VLDB ’2003: Proceedings of the 29th international
conference on Very large data bases (pp. 81-92). VLDB
Endowment.

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2004). A
framework for projected clustering of high dimensional
data streams. In VLDB ’04: Proceedings of the Thirtieth
international conference on Very large data bases (pp.
852-863). VLDB Endowment.

Agichtein, E., Brill, E., & Dumais, S. (2006). Improv-
ing Web search ranking by incorporating user behavior
information. In Proceeding of the 29th Annual Interna-
tional ACM Conference on Research and Development in
Information Retrieval (SIGIR ‘06), Seattle, Washington,
USA (pp. 19-26). New York: ACM.

Agrawal, R., & Shafer, J. C. (1996). Parallel mining of asso-
ciation rules. IEEE Transactions on Knowledge and Data
Engineering, 8(6), 962–969. doi:10.1109/69.553164

Agrawal, R., & Srikant, R. (1994). Fast algorithms for
mining association rules. In Proc. of the 20th Int. Conf.
on Very Large Databases (VLDB 1994), Santiago de
Chile (pp. 487-499). San Mateo, CA, USA: Morgan
Kaufmann.

Agrawal, R., Gupta, A., & Sarawagi, S. (1995). Modeling
multidimensional databases. Armonk, NY: IBM.

Agrawal, R., Imielinksi, T., & Swami, A. (1993). Min-
ing Association Rule Between Sets of Items in Large
Databases. In Proceedings of the 1993 ACM SIGMOD
international conference on Management of data (pp.
207-216). New York: ACM.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., &
Verkamo, A. (1996). Fast discovery of association rules.
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R.
Uthurusamy (Eds.), Advances in knowledge discovery
and data mining (pp. 307-328). Cambridge, MA, USA:
AAAI Press / MIT Press.

Alhajj, R., & Kaya, M. (2003). Integrating Fuzziness into
OLAP for Multidimensional Fuzzy Association Rules
Mining. In Proceedings of the Third IEEE International
Conference on Data Mining (p. 469). Washington, DC:
IEEE Computer Society.

Altera Corporation. (2002). Excalibur device overview
(ver 2.0, May 2002), data sheet. Retrieved December 1,
2008, from http://www.altera.com/literature/ds/ds_arm.
pdf

Altera Corporation. (2008). NIOS II processor reference
handbook (ver 8.1, Nov 2008). Retrieved December 1,
2008, from http://www.altera.com/literature/lit_nio2.
jsp

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., &
Lipman, D. J. (1990). Basic local alignment search tool.
Journal of Molecular Biology, 215(3), 403–410.

Amdahl, G. M. (1967). Validity of the single processor
approach to achieving large scale computing capabili-
ties. In Proceedings of the AFIPS spring joint computer
conference (Vol. 30, pp. 483-485).

Amirkhanzdeh, R., Khoei, A., & Hadidi, Kh. (2005). A
mixed-signal current-mode fuzzy logic controller. [AEÜ].
International Journal of Electronics and Communica-
tions, 59, 177–184. doi:10.1016/j.aeue.2004.11.019

 401

Compilation of References

An, A., & Cercone, N. (2004). An Empirical Study on
Rule Quality Measures. In Proceedings of the 7th Interna-
tional Workshop on New Directions in Rough Sets, Data
Mining, and Granular-Soft Computing (LNCS 1711, pp.
482-491). Berlin, Germany: Springer-Verlag.

Angryk, R. A., & Petry, F. E. (2005). Mining Multi-Level
Associations with Fuzzy Hierarchies. In Proceedings
of the 14th IEEE International Conference on Fuzzy
Systems, 2005, FUZZ ‘05 (pp. 785-790). Washington,
DC: IEEE.

Antoshenkov, G. (1994). U. S. Patent No. 5363098. Wash-
ington, DC: U.S. Patent and Trademark Office.

Anwar, T. M., Beck, H. W., & Navathe, S. B. (1992).
Knowledge mining by imprecise querying: A classifica-
tion based system. In Proceedings of the International
Conference on Data Engineering, Tampa, USA (pp.
622-630).

Ascia, G., & Catania, V. (1998). A parallel processor ar-
chitecture for real-time fuzzy applications. In A. Kandel,
& G. Langholz (Eds.), Fuzzy hardware architectures and
applications (pp. 182-196).

Ascia, G., & Catania, V. (2000). A pipeline parallel archi-
tecture for a fuzzy inference processor. In Proceedings
of the Ninth IEEE International Conference on Fuzzy
Systems (pp. 257-262).

Ascia, G., Catania, V., Ficili, G., Palazzo, S., & Panno, D.
(1997). A VLSI Fuzzy expert system for real-time traffic
control in ATM networks. IEEE transactions on Fuzzy
Systems, 5(1), 20–31. doi:10.1109/91.554444

Asuncion, A., & Newman, D. (2007). UCI machine learn-
ing repository – University of California, Irvine, School
of Information and Computer Sciences. Retrieved from
http://www.ics.uci.edu/~mlearn/MLRepository.html

Atzmueller, M., Baumeister, J., & Puppe, F. (2004).
Quality measures for semi-automatic learning of
Simple diagnostic rule bases. In Proceedings of the 15th
International Conference on Applications of Declara-
tive Programming and Knowledge Management (INAP
2004) (pp. 65-78).

Aucouturier, J.-J., & Pachet, F. (2002). Scaling up music
playlist generation. In Proceedings of the IEEE Interna-
tional Conference on Multimedia and Expo (ICME’02)
(pp. 105-108).

Baader, B., McGuiness, D. L., Nardi, D., & Patel-Sch-
neider, P. (Eds.). (2002). Description logic handbook:
Theory, implementation and applications. Cambridge,
UK: Cambridge University Press.

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the
EL envelope. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI 05).

Baader, F., Lutz, C., & Suntisrivaraporn, B. (in press).
Is tractable reasoning in extensions of the description
logic EL useful in practice? Journal of Logic, Language
and Information, Special Issue on Method for Modality
(M4M).

Babuka, R., van der Veen, P., & Kaymak, U. (2002).
Improved covariance estimation for Gustafson-Kessel
clustering. In Proceedings of the FUZZ-IEEE Conference
on Fuzzy Systems, Honolulu, HI, USA (pp. 1081-1085).

Baker, Z. K., & Prasanna, V. K. (2005). Efficient parallel
data mining with the apriori algorithm on FPGAs. In
Proceedings of the 13th IEEE Symposium on Field-Pro-
grammable Custom Computing Machines (pp. 3-15).

Baldwin, J. F. (1992). The management of fuzzy and
probabilistic uncertainties for knowledge based systems.
In S. A. Shapiro (Ed.), Encyclopedia of AI (2nd ed., pp.
528-537). New York: John Wiley.

Baldwin, J. F. (1994). Mass assignments and fuzzy sets
for fuzzy databases. In M. Fedrizzi, J. Kacprzyk, & R.
R. Yager (Eds.), Advances in the shafer dempster theory
of evidence. New York: John Wiley.

Baldwin, J. F., Martin, T. P., & Pilsworth, B. W. (1995).
Fril - fuzzy and evidential reasoning in AI. UK: Research
Studies Press.

Bandler, W., & Kohout, L. (1980). Fuzzy power sets and
fuzzy implication operators. Fuzzy Sets and Systems, 4,
13–30. doi:10.1016/0165-0114(80)90060-3

402

Compilation of References

Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer,
W. P. (2007). A comparison of decision tree ensemble cre-
ation techniques. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(1), 173–180. doi:10.1109/
TPAMI.2007.250609

Banfield, R., Hall, L., Bowyer, K., & Kegelmeyer, W.
(2005). Ensemble diversity measures and their application
to thinning. Information Fusion, 6, 49–62. doi:10.1016/j.
inffus.2004.04.005

Barwise, J., & Cooper, R. (1981). Generalized quantifiers
in natural language. Linguistics and Philosophy, 4(2),
159–219. doi:10.1007/BF00350139

Basterretxea, K., Tarela, J. M., & del Campo, I. (2002).
Digital design of sigmoid approximator for artificial
neural networks. Electronics Letters, 38(1), 35–37.
doi:10.1049/el:20020008

Basterretxea, K., Tarela, J. M., & del Campo, I. (2006).
Digital Gaussian membership function circuit for
neuro-fuzzy hardware. Electronics Letters, 42(1), 44–46.
doi:10.1049/el:20063712

Basterretxea, K., Tarela, J. M., del Campo, I., & Bosque,
G. (2007). An experimental study on non-linear func-
tion computation for neural/fuzzy hardware design.
IEEE Transactions on Neural Networks, 18(1), 266–283.
doi:10.1109/TNN.2006.884680

Baturone, I., Barriga, A., & Sánchez-Solano, S. (1994).
Current-mode multiple-input maximum circuit. Electron-
ics Letters, 30(9), 678–680. doi:10.1049/el:19940510

Baturone, I., Barriga, A., Sánchez-Solano, S., & Huer-
tas, J. L. (1998). Mixed-signal design of a fully parallel
fuzzy processor. Electronics Letters, 34(5), 437–438.
doi:10.1049/el:19980392

Baturone, I., Barriga, A., Sánchez-Solano, S., Jiménez-
Fernández, C. J., & López, D. R. (2000). Microelectronic
design of fuzzy-logic-based systems. Boca Raton, FL:
CRC Press LLC.

Baturone, I., Sánchez-Solano, S., Barriga, A., & Huertas,
J. L. (1997). Implementation of CMOS fuzzy controllers

as mixed-signal integrated circuits. IEEE transactions on
Fuzzy Systems, 5(1), 1–19. doi:10.1109/91.554443

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks,
I., McGuinness, D.L., Patel-Schneider, P. F., & Stein, L.
A. (2004). OWL Web ontology language reference. W3C
Recommendation.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Os-
tell, J., & Wheeler, D. (2008). GenBank. Nucleic Acids
Research, 36(Database Issue), D25–D30. doi:10.1093/
nar/gkm929

Beringer, J., & Hullermeier, E. (2006). Online clustering
of parallel data streams. Data & Knowledge Engineering,
58, 180–204. doi:10.1016/j.datak.2005.05.009

Bezdek, J. C. (1980). A convergence theorem for the
fuzzy isodata clustering algorithms. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2, 1–8.
doi:10.1109/TPAMI.1980.4766964

Bezdek, J. C. (1981). Pattern recognition with fuzzy ob-
jective function algorithms. Norwell, MA, USA: Kluwer
Academic Publishers.

Bezdek, J. C., & Hathaway, R. J. (2002). VAT: A tool for
visual assessment of (cluster) tendency. In Proceedings of
the International Joint Conference of Neural Networks
(pp. 2225-2230). Piscataway, NJ: IEEE Press.

Bezdek, J. C., & Hathaway, R. J. (2006). Elastic control
of subsample size in the geFFCM algorithm. In Pro-
ceedings of 5th International Symposium on Intelligent
Manufacturing Systems (pp. 9-18).

Bezdek, J. C., & Pal, N. (1998). Some new indexes of
cluster validity. IEEE Transactions on Systems, Man, and
Cybernetics, 28(3), 301–315. doi:10.1109/3477.678624

Bezdek, J. C., Hathaway, R. J., Huband, J. M., Leckie, C.,
& Kotagiri, R. (2006). Approximate clustering in very
large relational data. International Journal of Intelligent
Systems, 21, 817–841. doi:10.1002/int.20162

Bezdek, J. C., Keller, J. M., Krishnapuram, R., & Pal,
N. R. (1999). Fuzzy models and algorithms for pattern
recognition and image processing. Boston, USA: Kluwer
Academic Publishers.

 403

Compilation of References

Blake, C. L., & Merz, C. J. (1998). UCI repository of
machine learning databases. Irvine, CA, USA: Dept. of
Information and Computer Science, University of Cali-
fornia. Retrieved from http://www.ics.uci.edu/~mlearn/
MLRepository.html

Blischke, W. R., & Murthy, D. N. P. (1994). Warranty
cost analysis. New York: Marcel Dekker.

Blischke, W. R., & Murthy, D. N. P. (1996). Product
warranty handbook. New York. Marcel Dekker.

Bobillo, F., Delgado, M., & Gomez-Romero, J. (2006).
A crisp representation for fuzzy SHOIN with fuzzy
nominals and general concept inclusions. In Proc. of the
2nd International Workshop on Uncertainty Reasoning
for the Semantic Web (URSW 06).

Bonissone, P. P., Cadenas, J. M., Garrido, M. C., &
Diaz-Valladares, R. A. (2008). A fuzzy random forest:
Fundamental for design and construction. In Proceed-
ings of the 12th International Conference on Informa-
tion Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU’08), Malaga, Spain
(pp. 1231-1238).

Bookstein, A. (1980). Fuzzy requests: An approach to
weighted Boolean searches. Journal of the American
Society for Information Science American Society
for Information Science, 31(4), 240–247. doi:10.1002/
asi.4630310403

Bordogna, G., Bosc, P., & Pasi, G. (1996). Fuzzy inclusion
in database and information retrieval query interpretation.
In Proceedings of the 1996 ACM symposium on Applied
Computing (pp. 547-551).

Bordogna, G., Campi, A., Psaila, G., & Ronchi, S. (2008).
A language for manipulating groups of clustered Web
documents results. In Proceeding of the 17th ACM Confer-
ence on Information and Knowledge Mining (CIKM08),
Napa Valley, CA, USA,(pp. 23-32).

Bordogna, G., Campi, A., Psaila, G., & Ronchi, S. (2008).
An interaction framework for mobile Web search. In
Proceedings of the sixth International Conference
on Advances in Mobile Computing and Multimedia
(MoMM08), Lintz, Austria (pp. 183-191).

Bordogna, G., Lucarella, D., & Pasi, G. (1994). A fuzzy
object oriented data model. In Proceedings of the IEEE
Conference on Fuzzy Systems (pp. 313-318).

Borgel, C. (2005). Prototype-based classification and
clustering (Habilitationsschrift). Unpublished habili-
tation, Otto-von-Guericke-University of Magdeburg,
Germany.

Borgelt, C. (2003). Efficient implementations of apriori
and eclat. In Proc. of the Workshop Frequent Item Set
Mining Implementations (FIMI 2003, Melbourne, FL,
USA), CEUR Workshop Proceedings 90. Aachen, Ger-
many: Sun SITE Central Europe / University of Aachen.
Retrieved from http://www.ceur-ws.org/Vol-90/

Borgelt, C. (2005). An implementation of the FP-growth
algorithm. In Proc. of the Workshop Open Software for
Data Mining (OSDM’05 at KDD’05) Chicago, IL (pp.
1-5). New York, NY, USA: ACM Press.

Borgelt, C. (2005). Keeping things simple: Finding fre-
quent item sets by recursive elimination. In Proc. of the
Workshop Open Software for Data Mining (OSDM’05
at KDD’05), Chicago, IL (pp. 66-70). New York, NY,
USA: ACM Press.

Bosc, P., & Bouchon-Meunier, B. (1994). Databases and
fuzziness - introduction. International Journal of Intel-
ligent Systems, 9(5), 419. doi:10.1002/int.4550090502

Bosc, P., & Kacprzyk, J. (Eds.). (1995). Fuzziness in
database management systems. Heidelberg, Germany:
Physica-Verlag.

Bosc, P., & Pivert, O. (1992). Fuzzy querying in conven-
tional databases. In L.A. Zadeh & J. Kacprzyk (Eds.),
Fuzzy logic for the management of uncertainty (pp.
645-671). New York: Wiley.

Bosc, P., & Pivert, O. (2001, Jul). On some fuzzy exten-
sions of association rules. Paper presented at the IFSA
world congress, Vancouver, Canada.

Bosc, P., & Prade, H. (1997). An introduction to the
fuzzy set and possibility theory-based treatment of flex-
ible queries and uncertain or imprecise databases. In A.
Motro & P. Smets (Eds.), Uncertainty management in

404

Compilation of References

information systems (pp. 285-324). Amsterdam: Kluwer
Academic Publishers.

Bosc, P., Dubois, D., Pivert, O., Prade, H., & de Calmes,
M. (2002). Fuzzy summarization of data using fuzzy
cardinalities. In Proceedings of the 9th International
Conference Information Processing and Management
of Uncertainty in Knowledge-Based Systems (IPMU
2002), Annecy, France (pp. 1553-1559).

Bosc, P., Lietard, L., & Pivert, O. (1995). Quantified
statements and database fuzzy querying. In P. Bosc &
J. Kacprzyk (Eds.), Fuzziness in database management
systems, studies in fuzziness (pp. 275-308). Heidelberg,
Germany: Physica-Verlag.

Bosteels, K., & Kerre, E. E. (2007). Fuzzy audio similarity
measures based on spectrum histograms and fluctuation
patterns. In Proceedings of the International Conference
on Multimedia and Ubiquitous Engineering (MUE07)
(pp. 361-365).

Böttcher, M., Spott, M., & Nauck, D. (2005). Detecting
temporally redundant association rules. In Proc. of the
4th Int. Conf. on Machine Learning and Applications
(ICMLA 2005), Los Angeles, CA (pp. 397-403). Piscat-
away, NJ, USA: IEEE Press.

Böttcher, M., Spott, M., & Nauck, D. (2007). Framework
for discovering and analyzing changing customer seg-
ments. In Advances in data mining - theoretical aspects
and applications (LNCS 4597, pp. 255-268). Berlin,
Germany: Springer.

Bouchon-Meunier, B., Rifqi, M., & Lesot, M. J. (2008).
Similarities in fuzzy data mining: From a cognitive view
to real -world applications. In J. M. Zurada, G. G. Yen,
& J. Wang (Eds.), Computational intelligence: Research
frontiers (pp. 349-367). Berlin, Germany: Springer.

Bouras, S., Kotronakis, M., Suyama, K., & Tsividis, Y.
(1998). Mixed analog-digital fuzzy logic controller with
continuous-amplitude fuzzy inferences and defuzzifica-
tion. IEEE transactions on Fuzzy Systems, 6(2), 205–215.
doi:10.1109/91.669017

Boutsinas, B., & Gnardellis, T. (2002). On distributing
the clustering process. Pattern Recognition Letters, 23,
999–1008. doi:10.1016/S0167-8655(02)00031-4

Bradley, P. S., Fayyad, U., & Reina, C. (1998). Scaling
clustering algorithms to large databases. In Proceedings
of the International Conference on Knowledge Discovery
and Data Mining (pp. 9-15).

Brazdil, P., & Torgo, L. (1990). Knowledge adquisition
via knowledge integration. In B. Wielinga et al. (Eds.),
Current trends in knowledge acquisition. Amsterdam:
IOS Press.

Breiman, L. (1996). Bagging predictors. Machine Learn-
ing, 24, 123–140.

Breiman, L. (2001). Random forests. Machine Learning,
45, 5–32. doi:10.1023/A:1010933404324

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984). Classification and regression trees. New York:
Chapman and Hall.

Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997).
Dynamic itemset counting and implication rules for
market basket data. In Proceedings of the 1997 ACM
SIGMOD international conference on Management of
data (pp. 255-264). New York: ACM.

Bruha, I. (1996). Machine learning and statistics. John
Wiley & Sons Inc.

Buell, D. A., & Kraft, D. H. (1981). Threshold values
and Boolean retrieval systems. Journal of Information
Processing and Management, 17, 127–136. doi:10.1016/
S0306-4573(81)80004-0

Buell, D., & Kraft, D. H. (1981). A model for a weighted
retrieval system. Journal of the American Society for
Information Science American Society for Information
Science, 32, 211–216. doi:10.1002/asi.4630320307

Buell, D., El-Ghazawi, T., Gaj, K., & Kindratenko, V.
(2007). High-performance reconfigurable computing.
IEEE Computer, 23-27.

Cabibbo, L., & Torlone, R. (1997). Querying multidimen-
sional databases. In Proceedings of the 6th International
Workshop on Database Programming Languages (LNCS
1369, pp. 319-335). Berlin, Germany: Springer.

Cabibbo, L., & Torlone, R. (1998). A logical approach
to multidimensional databases. In Proceedings of the

 405

Compilation of References

Advances in Database Technologies – EDBT ’98 (LNCS
1377, pp. 183-197). Berlin, Germany: Springer-Verlag.

Cabrera, A., Sánchez-Solano, S., Brox, P., Barriga, A.,
& Senhadji, R. (2004). Hardware/software codesign of
configurable fuzzy control system. Applied Soft Comput-
ing, 4(3), 271–285. doi:10.1016/j.asoc.2004.03.006

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini,
M., & Rosati, R. (2005). DL-Lite: Tractable description
logics for ontologies. In Proc. of the AAAI.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini,
M., & Rosati, R. (2007). Tractable reasoning and efficient
query answering in description logics: The DL-Lite fam-
ily. Journal of Automated Reasoning, 39(3), 385–429.
doi:10.1007/s10817-007-9078-x

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi,
D., & Rosati, R. (1998). Description logic framework for
information integration. In Proc. of the 6th Int. Conf.
on the Principles of Knowledge Representation and
Reasoning (KR’98).

Cannataro, M., Congiusta, A., Pugliese, A., Talia, D.,
& Trunfio, P. (2004). Distributed data mining on grids:
Services, tools, and applications. IEEE Transactions
on Systems, Man and Cybernetics . Part B, 34(6),
2451–2465.

Cannon, R. L., Dave, J. V., & Bezdek, J. C. (1986). Ef-
ficient implementation of the fuzzy c-means clustering
algorithms. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8(2), 248–255. doi:10.1109/
TPAMI.1986.4767778

Cantle, A. (2006). Scalable cluster-based FPGA HPC
system solutions. Xcell Journal, (58), 35-37.

Canul-Reich, J., Shoemaker, L., & Hall, L. (2007). En-
sembles of fuzzy classifiers. In Proceedings of the IEEE
International Conference on Fuzzy Systems.

Cao, F., Ester, M., Qian, W., & Zhou, A. (2006). Density-
based clustering over an evolving data stream with noise.
In Proceedings of the 2006 SIAM Conference on Data
Mining (pp. 328-339).

Card, S. K., Mackinlay, J. D., & Shneiderman, B. (2000).
Readings in information visualization: Using vision to
think. San Francisco, CA: Morgan Kaufmann Publish-
ers Inc.

Castro, J. L. (1996). Fuzzy logic controllers are universal
approximators. IEEE Transactions on Systems, Man, and
Cybernetics, 25(4), 629–635. doi:10.1109/21.370193

Chan, C.-y., & Ioannidis, Y. E. (1998). Bitmap index design
and evaluation. In Proceedings of the ACM SIGMOD
1998 (pp. 355-366). New York: ACM Press.

Chawla, N. V., Hall, L. O., Bowyer, K. W., & Kegelmeyer,
W. P. (2004). Learning ensembles from bites: A scalable
and accurate approach. Journal of Machine Learning
Research, 5, 421–451.

Chawla, N., Moore, T. E., Bowyer, K. W., Hall, L. O., &
Kegelmeyer, W. P. (2001). Bagging is a small-data-set
phenomenon. In Proceedings of the International Con-
ference on Computer Vision and Pattern Recognition
(CVPR) (pp. 68-69).

Chen, G., & Wei, Q. (2002). Fuzzy association rules and
the extended mining algorithm. Information Sciences,
147, 201–228. doi:10.1016/S0020-0255(02)00264-5

Chen, G., Liu, D., & Li, J. (2001). Influence and conditional
influence – new interestingness measures in association
rule mining. In Proceedings of the IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE’2001), Van-
couver, Canada (pp. 1440-1443).

Chen, G., Wei, Q., & Kerre, E. E. (2000). Fuzzy data
mining: Discovery of fuzzy generalized association
rules. In G. Bordogna & G. Pasi (Eds.), Recent research
issues on fuzzy databases (pp. 45-66). New York:
Springer-Verlag.

Chen, H., & Dumais, S. (2009). Bringing order to the
Web: Automatically categorizing search results. In Pro-
ceedings of the SIGCHI Conference on Human factors
in computing systems (pp. 145-152).

Chen, S. J., & Chen, S. M. (2000). A new method for
fuzzy information retrieval based on geometric-mean

406

Compilation of References

averaging operators. In Proceedings of the Workshop
on Artificial Intelligence, 2000.

Cheng, C.-S., & Wang, S.-S. (2003). A repulsive cluster-
ing algorithm for gene expression data. In Proceedings
of the IEEE International Symposium on Bioinformatic
and Bioengineering (pp. 407-412).

Cheng, T. W., Goldgof, D. B., & Hall, L. O. (1995). Fast
clustering with application to fuzzy rule generation. In
Proceedings of the 4th IEEE International Conference
on Fuzzy Systems, Yokohama, Japan (pp 2289-2295).
Piscataway, NJ: IEEE Press.

Cheng, T. W., Goldgof, D. B., & Hall, L. O. (1998). Fast
fuzzy clustering. Fuzzy Sets and Systems, 93, 49–56.
doi:10.1016/S0165-0114(96)00232-1

Cheng, Y., Fayyad, U., & Bradley, P. S. (2001). Efficient
discovery of error-tolerant frequent itemsets in high
dimensions. In Proc. of the 7th Int. Conf. on Knowledge
Discovery and Data Mining (KDD’01), San Francisco,
CA (pp. 194-203). New York, NY, USA: ACM Press.

Cho, K., Jo, S., Jang, H., Kim, S. M., & Song, J. (2006).
DCF: An efficient data stream clustering framework for
streaming applications. In Database and expert systems
applications (pp. 114-122). Berlin, Germany; Springer.

Chortaras, A., Stamou, G., & Stafylopatis, A. (2006).
Adaptation of weighted fuzzy programs. In Proc. of the
International Conference on Artificial Neural Networks
(ICANN 2006) (pp. 45-54).

Choudhary, A., Narayanan, R., Özisikyilmaz, B., Memik,
G., Zambreno, J., & Pisharat, J. (2007). Optimizing data
mining workloads using hardware accelerators. In Proc.
of the 10th Workshop on Computer Architecture Evalua-
tion Using Commercial Workloads (CAECW).

Chowdhury, S. R., Chakrabarti, D., & Saha, H. (2008).
FPGA realization of a smart processing system for
clinical diagnostic applications using pipelined datapath
architectures. Microprocessors and Microsystems, 32(2),
107–120. doi:10.1016/j.micpro.2007.12.001

Chung, W., Chen, H., & Nunamaker, J. J. (2003). Busi-
ness intelligence explorer: A knowledge map framework

for discovering business intelligence on the Web. In
Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (pp. 10-18).

Çilingiroglu, U., Pamir, B., Günay, Z. S., & Dülger, F.
(1997). Sampled-analog implementation of application-
specific fuzzy controllers. IEEE transactions on Fuzzy
Systems, 5(3), 431–442. doi:10.1109/91.618278

Coates, T., Connolly, D., Dack, D., Daigle, L., Denenberg,
R., Durst, M., et al. (2001). URIs, URLs, and URNs:
Clarifications and recommendations, 1.0 (Tech. Rep.
WWW Consortium, URI Planning Interest Group).
Retrieved from http://www.w3.org/TR/2001/NOTE-uri-
clarification-20010921/

Codd, E. F. (1979). Extending the database relational model
to capture more meaning. ACM Transactions on Database
Systems, 4(4), 397–434. doi:10.1145/320107.320109

Cohen, L., Avrahami-Bakish, G., Last, M., Kandel,
A., & Kipersztok, O. (2008). Real-time data mining
of non-stationary data streams from sensor networks.
Information Fusion, 9(3), 344–353. doi:10.1016/j.inf-
fus.2005.05.005

Cohen, M., DuBois, R., & Zeineh, M. (2000). Rapid and
effective correction of RF inhomogeneity for high field
magnetic resonance imaging. Human Brain Mapping, 10,
204–211. doi:10.1002/1097-0193(200008)10:4<204::AID-
HBM60>3.0.CO;2-2

Council, O. (n.d.). The OLAP Council. Retrieved from
http://www.olapcouncil.org

Crockett, K., Bandar, Z., & McLean, D. (2001). Growing
a fuzzy decision forest. In Proceedings of the 10th IEEE
International Conference on Fuzzy Systems, Melbourne,
Australia (pp. 614-617).

Cross, V. (1994). Fuzzy information retrieval. Journal of
Intelligent Information Systems, 3, 29–56. doi:10.1007/
BF01014019

D’Amore, R., Saotome, O., & Kienitz, K. H. (2001). A
two-input, one-output bit-scalable architecture for fuzzy
processors. IEEE J. Design Test Computation, 18, 56–64.
doi:10.1109/54.936249

 407

Compilation of References

Dai, B.-R., Huang, J.-W., Yeh, M.-Y., & Chen, M.-S.
(2004). Clustering on demand for multiple data streams. In
Proceedings of the Fourth IEEE International Conference
on Data Mining, 2004. ICDM ’04 (pp. 367-370).

Dameron, O., Gibaud, B., & Musen, M. (2004). Using
semantic dependencies for consistency management of
an ontology of brain-cortex anatomy. In Proceedings of
the First International Workshop on Formal Biomedical
Knowledge Representation KRMED04 (pp. 30-38).

Datta, A., & Thomas, H. (1999). The cube data model:
A conceptual model and algebra for on-line analytical
processing in data warehouses. Decision Support Systems,
27, 289–301. doi:10.1016/S0167-9236(99)00052-4

Dave, R. (1991). Characterization and detection of noise in
clustering. Pattern Recognition Letters, 12(11), 657–664.
doi:10.1016/0167-8655(91)90002-4

Dave, R., & Krishnapuram, R. (1997). Robust clustering
methods: A unified view. IEEE transactions on Fuzzy
Systems, 5(2), 270–293. doi:10.1109/91.580801

Davies, D., & Bouldin, D. (1979). A cluster separa-
tion measure. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1(2), 224–227. doi:10.1109/
TPAMI.1979.4766909

De Micheli (Ed.). (1997). Special issue on hardware/
software codesign. Proceedings of the IEEE, 85(3).

Dean, P., & Famili, A. (1997). Comparative performance
of rule quality measures in an induction system. Applied
Intelligence, 7, 113–124. doi:10.1023/A:1008293727412

del Campo, I., & Tarela, J. M. (1999). Consequences
of the digitization on the performance of a fuzzy logic
controller. IEEE transactions on Fuzzy Systems, 7(1),
85–92. doi:10.1109/91.746317

del Campo, I., Echanobe, J., Bosque, G., & Tarela, J.
M. (2008). Efficient hardware/software implementation
of an adaptive neuro-fuzzy system. IEEE transac-
tions on Fuzzy Systems, 16(3), 761–778. doi:10.1109/
TFUZZ.2007.905918

del Campo, I., Tarela, J. M., & Basterretxea, K. (2001).
Quantisation errors in digital implementations of fuzzy

controllers. In R. S. H. Istepanian & J. F. Whidborne
(Eds.), Digital controller implementation and fragility.
A modern perspective (pp. 253-274). Berlin, Germany:
Springer.

Delgado, M., Marin, N., Sanchez, D., & Vila, M. A.
(2003). Fuzzy association rules: General model and ap-
plications. IEEE transactions on Fuzzy Systems, 11(2),
214–225. doi:10.1109/TFUZZ.2003.809896

Delgado, M., Martin-Bautista, M. J., Sanchez, D., & Vila,
M. A. (2003). On a characterization of fuzzy bags. In
Proceedings of the Fuzzy Sets and Systems – IFSA 2003
(LNCS 2715, pp. 119-126). Berlin, Germany: Springer.

Delgado, M., Sánchez, D., & Vila, M. (1999). Fuzzy
cardinality based evaluation of quantified sentences.
International Journal of Approximate Reasoning, 23(1),
23–66. doi:10.1016/S0888-613X(99)00031-6

Deliège, F., & Pedersen, T. B. (2006). Music warehouses:
Challenges for the next generation of music search en-
gines. In Proceedings of the International Workshop on
Learning the Semantics of Audio Signals (pp. 95-105).

Deliège, F., & Pedersen, T. B. (2007). Using fuzzy song
sets in music warehouses. In Proceedings of the Inter-
national Conference on Music Information Retrieval
(ISMIR’07) (pp. 21-26).

Demsar, J. (2006). Statistical comparisons of classifiers
over multiple data sets. Machine Learning, 7, 1–30.

Diaz-Hermida, F., Losada, D. E., Bugarin, A., & Barro,
S. (2005). A probabilistic quantifier fuzzification mecha-
nism: The model and its evaluation for information
retrieval. IEEE transactions on Fuzzy Systems, 13(5),
688–700. doi:10.1109/TFUZZ.2005.856557

Dick, S., Gaudet, V., & Bai, H. (2008). Bit-serial arithme-
tic: A novel approach to fuzzy hardware implementation.
In Proceedings of the Fuzzy Information Processing
Society, 2008. NAFIPS 2008. Annual Meeting of the
North American (pp. 1-6).

Dietterich, T. (2000). An experimental comparison of
three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. Machine
Learning, 40, 139–157. doi:10.1023/A:1007607513941

408

Compilation of References

Domingos, P., & Hulten, G. (2000). Mining high-speed
data streams. In Proceedings of the Sixth International
Conference on Knowledge Discovery and Data Mining
(pp. 71-80).

Dubois, D., & Prade, H. (1982). A unifying view of
comparison indices a fuzzy set-theoretic framework.
In R. R. Yager (Ed.), Recent development in fuzzy set
and possibility theory (pp. 3-13). New York: Pergamon
Press.

Dubois, D., & Prade, H. (1988). Possibility theory: An
approach to computerized processing of uncertainty.
New York: Plenum Press.

Dubois, D., & Prade, H. (1992). Gradual rules in ap-
proximate reasoning. Information Sciences, 61, 103–122.
doi:10.1016/0020-0255(92)90035-7

Dubois, D., & Prade, H. (1997). The three semantics
of fuzzy sets. Fuzzy Sets and Systems, 90, 141–150.
doi:10.1016/S0165-0114(97)00080-8

Dubois, D., Hullermeier, E., & Prade, H. (2006). A sys-
tematic approach to the assessment of fuzzy association
rules. Data Mining and Knowledge Discovery, 13(2),
167–192. doi:10.1007/s10618-005-0032-4

Duda, R., & Hart, P. (1973). Pattern classification and
scene analysis. New York: John Wiley.

Dunn, J. (1974). Well-separated clusters and optimal
fuzzy partitions. Cybernetics and Systems, 4(1), 95–104.
doi:10.1080/01969727408546059

Dunn, J.C. (1973). A fuzzy relative of the ISODATA
process and its use in detecting compact well-separated
clusters. Journal of Cybernetics, (3), 32-57.

Dutcher, B. (2006). Mining data without limits. Xcell
Journal, (57), 64-66.

Echevarría, P., Martínez, M. V., Echanobe, J., del
Campo, I., & Tarela, J. M. (2005). Design and HW/SW
implementation of a class of piecewise-linear fuzzy
system. In Proceedings of the XII Seminario Anual de
Automática, Electrónica Industrial e Instrumentación,
SAAEI 05 (pp. 360-364).

Eichfeld, H., Klimke, M., Menke, M., Nolles, J.,
& Künemund, T. (1995). A general-purpose fuzzy
inference processor. IEEE Micro, 15(3), 12–17.
doi:10.1109/40.387677

Eichfeld, H., Künemund, T., & Menke, M. (1996).
A 12b general-purpose fuzzy logic controller chip.
IEEE transactions on Fuzzy Systems, 4(4), 460–475.
doi:10.1109/91.544305

Eichfeld, H., Löhner, M., & Müller, M. (1992). Architec-
ture of a CMOS fuzzy logic controller with optimized
organisation and operator design. In Proceedings of the
First International Conference on Fuzzy Systems, FUZ-
IEEE (pp. 1317-1323). Washington, DC: IEEE Computer
Society Press.

Elkan, C. (2003). Using the triangle inequality to acceler-
ate k-means. In Proceedings of the Int. Conf. Machine
Learning (pp. 147-153).

Enright, A. J., Van Dongen, S., & Ouzounis, C. A.
(2002). An efficient algorithm for the large-scale detec-
tion of protein families. Nucleic Acids Research, 30(7),
1575–1584. doi:10.1093/nar/30.7.1575

Enrique, H. R. (1969). A new approach to clustering.
Information and Control, 15(1), 22–32. doi:10.1016/
S0019-9958(69)90591-9

Eschrich, S., Ke, J., Hall, L. O., & Goldgof, D. B. (2003).
Fast accurate fuzzy clustering through data reduction.
IEEE transactions on Fuzzy Systems, 11(2), 262–270.
doi:10.1109/TFUZZ.2003.809902

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of 2nd
International Conference on Knowledge Discovery and
Data Mining (KDD-96) (pp. 226-231).

Estlick, M., Leeser, M., Szymanski, J., & Theiler, J.
(2001). Algorithmic transformations in the implementa-
tion of k-means clustering on reconfigurable hardware.
In Proceedings of the Ninth Annual IEEE Symposium
on Field Programmable Custom Computing Machines
2001 (FCCM ‘01) (pp. 103-110).

 409

Compilation of References

Eto, E. (2007). Difference-based partial reconfiguration
(ver 2.0, 2007), application note: Virtex architectures.
Retrieved December 1, 2008, from http://www.xilinx.
com/support/documentation/application_notes/xapp290.
pdf

Evsukoff, A. G., Costa, M. C. A., & Ebecken, F. F. (2005).
Parallel implementation of a fuzzy rule based classifier.
In M. Daydé et al. (Eds.), Proceedings of the VECPAR
2004 (LNCS 3402, pp. 184-193). Berlin, Germany:
Springer-Verlag.

Famili, A. (1990). Integrating learning and decision-
making in intelligent manufacturing systems. Journal of
Intelligent & Robotic Systems, 3, 117–130. doi:10.1007/
BF00242160

Farnstrom, F., Lewis, J., & Elkan, C. (2000). Scalability
of clustering algorithms revisited. SIGKDD Explorations,
2, 51–57. doi:10.1145/360402.360419

Fattaruso, J. W., Mahant-Shetti, S. S., & Barton, J.
B. (1994). A fuzzy logic inference processor. IEEE
Journal of Solid-State Circuits, 29(4), 397–402.
doi:10.1109/4.280687

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthu-
rusamy, R. (1996). Advances in knowledge discovery and
data mining. AAAI/MIT Press.

Ferrara, A., Lorusso, D., Stamou, G., Stoilos, G., Tzou-
varas, V., & Venetis, T. (2008). Resolution of conflicts
among ontology mappings: A fuzzy approach. In Pro-
ceedings of the International Workshop on Ontology
Matching (OM2008), Karlsruhe.

Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut,
J. S., & Hotz, H. R. (2008). The Pfam protein families
database. Nucleic Acids Research, 36(Database Issue),
D281–D288. doi:10.1093/nar/gkm960

fltoolbox. (2006). The mathworks - fuzzy logic toolbox.
Retrieved from http://www.mathworks.ch/access/help-
desk r13/help/toolbox/fuzzy/fuzzy.html

Fred, A. L. N., & Jain, A. K. (2003). Robust data clus-
tering. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR ’03) (pp. 2-128).

Freeman, M., & Jayasooriya, T. (2006). Hardware support
for language aware information mining. In B. Gabrys,
R.J. Howlett, & L.C. Jain (Eds.), Proceedings of the
KES 2006, Part III (LNAI 4253, pp. 415-423). Berlin,
Germany: Springer-Verlag.

Freund, Y., & Schapire, R. (1996). Experiments with a new
boosting algorithm. In Proceedings of the International
Conference on Machine Learning (pp. 148-156).

Frigui, H., & Krishnapuram, R. (1999). A robust competi-
tive clustering algorithm with applications in computer vi-
sion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(5), 450–465. doi:10.1109/34.765656

Galindo, J. (Ed.). (2008). Handbook of research on fuzzy
information processing in databases. Hershey, PA: In-
formation Science Reference.

Galindo, J., Piattini, M., & Urrutia, A. (2005). Fuzzy da-
tabases: Modeling, Design and implementation. Hershey,
PA: IGI Publishing. Intelligent sound. (n.d.). Retrieved
from http://www.intelligentsound.org

George, R., & Srikanth, R. (1996). A soft comput-
ing approach to intensional answering in databases.
Information Sciences, 92, 313–328. doi:10.1016/0020-
0255(96)00049-7

George, R., & Srikanth, R. (1996). Data summarization
using genetic algorithms and fuzzy logic. In F. Her-
rera & J.L. Verdegay (Eds.), Genetic algorithms and
soft computing (pp. 599-611). Heidelberg, Germany:
Physica-Verlag.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely
randomized trees. Machine Learning, 63(1), 3–42.
doi:10.1007/s10994-006-6226-1

Giannella, C., Dutta, H., Borne, K. D., Wolff, R., & Kar-
gupta, H. (2006). Distributed data mining for astronomy
catalogs. In Proceedings of the 9th Workshop on Mining
Scientific and Engineering Datasets, Proceedings of the
SIAM International Conference on Data Mining.

Goodman, I. R. (1982). Fuzzy sets as equivalence classes
of random sets. In R. Yager (Ed.), Fuzzy set and possibility
theory (pp. 327-342). New York: Pergamon.

410

Compilation of References

Goodman, I. R., & Nguyen, H. T. (1985). Uncertainty
models for knowledge based systems: A unified ap-
proach to the measurement of uncertainty. New York:
Elsevier.

Gorry, G., & Morton, M. S. (1971). A framework for
management information systems. Sloan Management
Review, 13, 50–70.

Gray, J., & Szalay, A. (2004). Where the rubber meets
the sky: Bridging the gap between databases and sci-
ence (Tech. Rep. MSR-TR-2004-110). Redmond, WA:
Microsoft.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reich-
art, D., & Venkatrao, M. (1997). Data cube: A relational
aggregation operator generalizing group-by, cross-tab,
and sub-totals. Data Mining and Knowledge Discovery,
1, 29–53. doi:10.1023/A:1009726021843

Guha, S., Meyerson, A., Mishra, N., Motwani, R., &
O’Callaghan, L. (2003). Clustering data streams: Theory
and practice. Knowledge and Data Engineering . IEEE
Transactions on, 15(3), 515–528.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An
efficient clustering algorithm for large databases. In
Proceedings of ACM SIGMOD International Conference
on Management of Data (pp. 73-84).

Guo, S., Peters, L., & Surmann, H. (1996). Design
and application of an analog fuzzy logic controller.
IEEE transactions on Fuzzy Systems, 4(4), 429–438.
doi:10.1109/91.544303

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark
for OWL knowledge base systems. Journal of Web Seman-
tics, 3(2), 158–182. doi:10.1016/j.websem.2005.06.005

Gupta, C., & Grossman, R. (2004). GenIc: A single pass
generalized incremental algorithm for clustering. In
Proceedings of the Fourth SIAM International Confer-
ence on Data Mining (SDM) (pp. 22-24).

Gustafson, D., & Kessel, W. (1979). Fuzzy clustering
with a fuzzy covariance matrix. In Proceedings of the
IEEE Conference on Decision and Control, San Diego,
CA (pp. 761-766).

Haines, S. (2006). Pro Java EE 5 performance manage-
ment and optimization. Berkeley, CA: Apress.

Halgamuge, S. K., Hollstein, T., Kirschbaum, A., &
Glesner, M. (1994). Automatic generation of applica-
tion specific fuzzy controllers for rapid-prototyping. In
Proceedings of the IEEE International Conference on
Fuzzy Systems (pp. 1638-1641).

Hamzeh, M., Mahdiani, H. R., Saghafi, A., Fakhraie, S.
M., & Lucas, C. (2009). Computationally efficient ac-
tive rule detection method: Algorithm and architecture.
Fuzzy Sets and Systems, 160(4), 554–568. doi:10.1016/j.
fss.2008.05.009

Han, J. (1997). OLAP mining: Integration of OLAP with
data mining. In Proceedings of the 7th IFIP 2.6 Working
Conference on Database Semantics (pp. 1-11).

Han, J., & Fu, Y. (1999). Discovery of multiple-level
association rules from large databases. IEEE Transac-
tions on Knowledge and Data Engineering, 11, 798–805.
doi:10.1109/69.806937

Han, J., Cai, Y., & Cercone, N. (1993). Data-driven dis-
covery of quantitative rules in relational databases. IEEE
Transactions on Knowledge and Data Engineering, 5,
29–40. doi:10.1109/69.204089

Han, J., Pei, H., & Yin, Y. (2000). Mining frequent pat-
terns without candidate generation. In Proc. of the Conf.
on the Management of Data (SIGMOD’00), Dallas, TX
(pp. 1-12). New York, NY, USA: ACM Press.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent pat-
terns without candidate generation. In Proceedings of
the 2000 ACM SIGMOD international conference on
Management of data (pp. 1-12). New York: ACM.

Harris, C. (2005). Using programmable graphics
hardware to implement the fuzzy c-means algorithm.
Unpublished honors dissertation, The University of
Western Australia.

Hathaway, R. J., & Bezdek, J. C. (1994). NERF c-
means: Non-Euclidean relational fuzzy clustering.
Pattern Recognition, 27, 429–437. doi:10.1016/0031-
3203(94)90119-8

 411

Compilation of References

Hathaway, R. J., & Bezdek, J. C. (2003). Visual cluster va-
lidity for prototype generator clustering models. Pattern
Recognition Letters, 24(9–10), 1563–1569. doi:10.1016/
S0167-8655(02)00395-1

Hathaway, R. J., & Bezdek, J. C. (2006). Extending
fuzzy and probabilistic clustering to very large data
sets. Computational Statistics & Data Analysis, 51(1),
215–234. doi:10.1016/j.csda.2006.02.008

Hathaway, R. J., Bezdek, J. C., & Huband, J. M. (2006).
Scalable visual assessment of cluster tendency for
large data sets. Pattern Recognition, 39(7), 1315–1324.
doi:10.1016/j.patcog.2006.02.011

Havens, T. C., Keller, J. M., Rehrig, E. M., Appel, H. M.,
Popescu, M., Schultz, J. C., & Bezdek, J. C. (2008). Cluster
analysis of bioinformatics data composed of microarray
expression and gene ontology annotations. In Proceedings
of the Annual NAFIPS Conference, New York.

Havens, T., Bezdek, J., Keller, J., & Popescu, M. (2008).
Dunn’s cluster validity index as a contrast measure of vat
images. In Proceedings of the 19th International Confer-
ence on Pattern Recognition (ICPR) (pp. 1-4).

Hearst, M. A., & Pederson, J. O. (1996). Re-examining
the cluster hypothesis: Scatter/gather on retrieval results.
In Proceedings of the 19th Annual International ACM
SIGIR Conference (pp. 76-84).

Hershfinkel, D., & Dinstein, I. (1996). Accelerated fuzzy
c-means clustering algorithm. In Proceedings SPIE Ap-
plications of Fuzzy Logic Technology III (pp. 41-52).

Holi, M., & Hyvonen, E. (2006). Fuzzy view-based
semantic search. In Proceedings of the Asian Semantic
Web Conference.

Hölldobler, S., Nga, N. H., & Khang, T. D. (2005). The
fuzzy description logic ALCFLH. In Proceedings of the
International workshop on Description Logics.

Hollstein, T., Halgamuge, S. K., & Glesner, M. (1996).
Computer-aided design of fuzzy systems based on ge-
neric VHDL specifications. IEEE transactions on Fuzzy
Systems, 4(4), 403–417. doi:10.1109/91.544301

Höppner, F. (2002). Speeding up fuzzy c-means: Using a
hierarchical data organisation to control the precision of
membership calculation. Fuzzy Sets and Systems, 128(3),
365–376. doi:10.1016/S0165-0114(01)00204-4

Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. A.
(1999). Fuzzy cluster analysis. Chichester, UK: John
Wiley & Sons.

Hore, P., Hall, L. O., & Goldgof, D. B. (2007). A fuzzy
c means variant for clustering evolving data streams. In
Proceedings of the IEEE International Conference on Sys-
tems, Man and Cybernetics, Montreal (pp. 360-365).

Hore, P., Hall, L., & Goldgof, D. (2007). Creating stream-
ing iterative soft clustering algorithms. In Proceedings of
the Fuzzy Information Processing Society, 2007. NAFIPS
’07. Annual Meeting of the North American Fuzzy Infor-
mation Processing Society (pp. 484-488).

Hore, P., Hall, L., Goldgof, D., & Cheng, W. (2008).
Online fuzzy c means. In Proceedings of the Fuzzy
Information Processing Society, 2008. NAFIPS 2008.
Annual Meeting of the North American Fuzzy Informa-
tion Processing Society (pp. 1-5).

Horrocks, I., & Patel-Schneider, P. (2004). Reducing
OWL entailment to description logic satisfiability.
Journal of Web Semantics, 345–357. doi:10.1016/j.web-
sem.2004.06.003

Hossain, A., & Manzoul, M. A. (1993). Hardware
implementation of fuzzy replacement algorithm
for cache memories using field-programmable gate
arrays. Cybernetics and Systems, 24(2), 81–90.
doi:10.1080/01969729308961701

Hu, X. J., Lawless, J. F., & Suzuki, K. (1998). Non-
parametric estimation of a lifetime distribution when
censoring times are missing. Technometrics, 40, 3–13.
doi:10.2307/1271388

Hu, Y.-Ch., Chen, R.-Sh., & Tzeng, G.-H. (2002). Min-
ing fuzzy association rules for classification problems.
Computers & Industrial Engineering, 43, 735–750.
doi:10.1016/S0360-8352(02)00136-5

Huband, J. M., Bezdek, J. C., & Hathaway, R. J. (2005).
bigVAT: Visual assessment of cluster tendency for

412

Compilation of References

large data sets. Pattern Recognition, 38, 1875–1886.
doi:10.1016/j.patcog.2005.03.018

Huertas, J. L., Sánchez-Solano, S., Barriga, A., & Batur-
one, I. (1993). A fuzzy controller using switched-capacitor
techniques. In Proceedings of the IEEE International
Conference on Fuzzy Systems (pp. 516-529).

Hung, D. L., & Zajak, W. F. (1995). Design and Implemen-
tation of a hardware fuzzy inference system. Information
Sciences-Applications, 3(3), 193–207. doi:10.1016/1069-
0115(94)00042-Z

Ikeda, H., Kisu, N., Hiramoto, Y., & Nakamura, S.
(1992). A fuzzy inference coprocessor using a flexible
active-rule-driven architecture. In Proceedings of the
IEEE International. Conference on Fuzzy Systems (pp.
537-544).

Indue, T., Motomura, T., & Matsuo, R. (1991). New OTA-
based analog circuits for fuzzy membership functions
and maximum operations. IEIC Transactions on Com-
munication Electronics, 74(11), 3619–3621.

Jain, A. K., & Moreau, J. V. (1987). Bootstrap technique
in cluster analysis. Pattern Recognition, 20(5), 547–568.
doi:10.1016/0031-3203(87)90081-1

Jain, A., & Dubes, R. (1988). Algorithms for clustering
data. Englewood Cliffs, NJ: Prentice Hall.

Janikow, C. Z., & Faifer, M. (2000). Fuzzy decision for-
est. In Proceedings of the 19th International Conference
of the North American Fuzzy Information Processing
Society (NAFIPS’00) (pp. 218-221).

Jenkinson, M., Pechaud, M., & Smith, S. (2005). BET2:
MR-based estimation of brain, skull and scalp surfaces.
In Proceedings of the Eleventh Annual Meeting of the
Organization for Human Brain Mapping.

Jensen, C. A., Mungure, E. M., Pedersen, T. B., & Sø-
rensen, K. (2007). A data and query model for dynamic
playlist generation. In Proceeding of IEEE-MDDM (pp.
65-74).

Jensen, C., Kligys, A., Pedersen, T., & Timko, I. (2004).
Multimendional data modeling for location-based

services. The VLDB Journal, 13, 1–21. doi:10.1007/
s00778-003-0091-3

Jin, R., Yang, G., & Agrawal, G. (2005). Shared memory
parallelization of data mining algorithms: Techniques,
programming interface, and performance. IEEE Transac-
tions on Knowledge and Data Engineering, 17(1), 71–89.
doi:10.1109/TKDE.2005.18

Jyh, S., & Jang, R. (1993). Anfis: Adaptive-network-
based fuzzy inference system. IEEE Transactions
on Systems, Man, and Cybernetics, 23, 665–685.
doi:10.1109/21.256541

Kacprzyk, J. (2000). Intelligent data analysis via lin-
guistic data summaries: A fuzzy logic approach. In R.
Decker & W. Gaul (Eds.), Classification and information
processing at the turn of the millennium (pp. 153-161).
New York: Springer-Verlag.

Kacprzyk, J., & Yager, R. R. (2001). Linguistic summaries
of data using fuzzy logic. International Journal of General
Systems, 30, 133–154. doi:10.1080/03081070108960702

Kacprzyk, J., & Zadrożny, S. (1994). Fuzzy querying for
Microsoft Access. In Proceedings of the IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE’94)
vol. 1, Orlando, USA (pp. 167-171).

Kacprzyk, J., & Zadrożny, S. (1995). Fuzzy queries in
Microsoft Access v. 2. In Proceedings of the IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE’95),
Workshop on Fuzzy Database Systems and Information
Retrieval, Yokohama, Japan (pp. 61-66).

Kacprzyk, J., & Zadrożny, S. (1995). FQUERY for Ac-
cess: Fuzzy querying for a Windows-based DBMS. In
P. Bosc & J. Kacprzyk (Eds.), Fuzziness in database
management systems (pp. 415-433). Heidelberg, Ger-
many: Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (1998). Data mining via
linguistic summaries of data: An interactive approach.
In T. Yamakawa & G. Matsumoto (Eds.), Methodolo-
gies for the Conception, Design and Application of Soft
Computing - Proceedings of IIZUKA’98, Iizuka, Japan
(pp. 668-671).

 413

Compilation of References

Kacprzyk, J., & Zadrożny, S. (1999). The paradigm of
computing with words in intelligent database querying. In
L.A. Zadeh & J. Kacprzyk (Eds.), Computing with words
in information/intelligent systems. Part 2. Foundations
(pp. 382-398). New York: Springer-Verlag.

Kacprzyk, J., & Zadrożny, S. (2000). On combining
intelligent querying and data mining using fuzzy logic
concepts. In G. Bordogna & G. Pasi (Eds.), Recent re-
search issues on the management of fuzziness in databases
(pp. 67-81). New York: Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (2000). Data mining via
fuzzy querying over the Internet. In O. Pons, M.A. Vila,
& J. Kacprzyk (Eds.), Knowledge management in fuzzy
databases (pp. 211-233). New York: Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (2000). On a fuzzy querying
and data mining interface. Kybernetika, 36, 657–670.

Kacprzyk, J., & Zadrożny, S. (2000). Computing with
words: Towards a new generation of linguistic query-
ing and summarization of databases. In P. Sinčak & J.
Vaščak (Eds.), Quo vadis computational intelligence?
(pp. 144-175). New York: Springer-Verlag.

Kacprzyk, J., & Zadrożny, S. (2001). Data mining via
linguistic summaries of databases: An interactive ap-
proach. In L. Ding (Ed.), A new paradigm of knowledge
engineering by soft computing (pp. 325-345). Singapore:
World Scientific.

Kacprzyk, J., & Zadrożny, S. (2001). Computing with
words in intelligent database querying: Standalone and
Internet-based applications. Information Sciences, 34,
71–109. doi:10.1016/S0020-0255(01)00093-7

Kacprzyk, J., & Zadrożny, S. (2001). On linguistic
approaches in flexible querying and mining of associa-
tion rules. In H.L. Larsen, J. Kacprzyk, S. Zadrożny, T.
Andreasen, & H. Christiansen (Eds.), Flexible query
answering systems. Recent advances (pp. 475-484). New
York: Springer-Verlag.

Kacprzyk, J., & Zadrożny, S. (2001). Fuzzy linguistic
summaries via association rules. In A. Kandel, M. Last,
& H. Bunke (Eds.), Data mining and computational intel-
ligence (pp. 115-139). New York: Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (2001). Using fuzzy que-
rying over the Internet to browse through information
resources. In B. Reusch & K.-H. Temme (Eds.), Compu-
tational intelligence in theory and practice (pp. 235-262).
New York: Physica-Verlag.

Kacprzyk, J., & Zadrożny, S. (2002). Protoforms of lin-
guistic data summaries: Towards more general natural-
language-based data mining tools. In A. Abraham, J.
Ruiz del Solar, & M. Koeppen (Eds.), Soft computing
systems (pp. 417-425). Amsterdam: IOS Press.

Kacprzyk, J., & Zadrozny, S. (2003). Linguistic sum-
marization of data sets using association rules. Paper
presented at the 2003 Fuzzy systems; Exploring new
frontiers, St Louis, MO.

Kacprzyk, J., & Zadrożny, S. (2003). Linguistic summari-
zation of data sets using association rules. In Proceedings
of the IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE’03), St. Louis, USA (pp. 702-707).

Kacprzyk, J., & Zadrożny, S. (2005). Protoforms of lin-
guistic database summaries as a tool for human-consistent
data mining. In Proceedings of the 14th Annual IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE
2005) (pp. 591-596). Reno, NV, USA: IEEE.

Kacprzyk, J., & Zadrożny, S. (2005). Linguistic data-
base summaries and their protoforms: Towards natural
language based knowledge discovery tools. Information
Sciences, 173, 281–304. doi:10.1016/j.ins.2005.03.002

Kacprzyk, J., & Zadrożny, S. (2009). Protoforms of lin-
guistic database summaries as a human consistent tool
for using natural language in data mining. International
Journal of Software Science and Computational Intel-
ligence, 1, 100–111.

Kacprzyk, J., & Ziółkowski, A. (1986). Database queries
with fuzzy linguistic quantifiers. IEEE Transactions
on Systems . Man and Cybernetics SMC, 16, 474–479.
doi:10.1109/TSMC.1986.4308982

Kacprzyk, J., Pasi, G., Vojtaš, P., & Zadrożny, S. (2000).
Fuzzy querying: issues and perspective. Kybernetika,
36, 605–616.

414

Compilation of References

Kacprzyk, J., Yager, R. R., & Zadrożny, S. (2000). A
fuzzy logic based approach to linguistic summaries of
databases. International Journal of Applied Mathematics
and Computer Science, 10, 813–834.

Kacprzyk, J., Yager, R. R., & Zadrożny, S. (2001). Fuzzy
linguistic summaries of databases for an efficient business
data analysis and decision support. In W. Abramowicz
& J. Żurada (Eds.), Knowledge discovery for business
information systems (pp. 129-152). Boston: Kluwer.

Kacprzyk, J., Zadrożny, S., & Ziółkowski, A. (1989).
FQUERY III+: a ‘human-consistent’ database querying
system based on fuzzy logic with linguistic quantifiers.
Information Systems, 14, 443–453. doi:10.1016/0306-
4379(89)90012-4

Kalbfleisch, J. D., & Lawless, J. F. (1988). Estimation of
reliability in field-performance studies. Technometrics,
30, 365–388. doi:10.2307/1269797

Kalbfleisch, J. D., Lawless, J. F., & Robinson, J.
A. (1991). Methods for the analysis and prediction
of warranty claims. Tecnometrics, 33, 273–285.
doi:10.2307/1268780

Kamber, M., Han, J., & Chiang, J. (1997). Metarule-guided
mining of multi-dimensional association rules using data
cubes. In Proceedings of the KDD (pp. 207-210).

Kampanya, N., Shen, R., Kim, S., North, C., & Fox, E.
A. (2004). Citiviz: A visual user interface to the citidel
system. In Research and advanced technology for digital
libraries (LNCS 3232, pp. 122-133). Berlin, Germany:
Springer.

Kandel, A., Pacheco, R., Martins, A., & Khator, S. (1996).
The foundations of rule-based computations in fuzzy
models. In W. Pedrycz (Ed.), Fuzzy modelling, paradigms
and practice (pp. 231-263). Boston: Kluwer.

Kang, D., Xu, B., Lu, J., & Li, Y. (2006). Reasoning for
fuzzy description logic with comparison expressions. In
Proceedings of the International Workshop on Descrip-
tion Logics (DL 06), Lake District, UK.

Karim, M. R., Yamamoto, W., & Suzuki, K. (2001a). Statis-
tical analysis of marginal count failure data. Lifetime Data
Analysis, 7, 173–186. doi:10.1023/A:1011300907152

Karim, M. R., Yamamoto, W., & Suzuki, K. (2001b).
Change-point detection from marginal count failure
data. Journal of the Japanese Society for Quality Con-
trol, 31, 318–338.

Karkkainen, I., & Franti, P. (2007). Gradual model genera-
tor for singlepass clustering. Pattern Recognition, 40(3),
784–795. doi:10.1016/j.patcog.2006.06.023

Karnik, N. N., Mendel, J. M., & Liang, Q. (1999). Type-2
fuzzy logic systems. IEEE transactions on Fuzzy Systems,
7(6), 643–658. doi:10.1109/91.811231

Kaya, M., & Alhajj, R. (2005). Fuzzy OLAP association
rules mining-based modular reinforcement learning ap-
proach for multiagent systems. IEEE Transactions on
Systems, Man, and Cybernetics, 35, 326–338.

kddcup08. (1998). Kdd cup data. Retrieved from http://
kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

Kim, D. (2000). An implementation of fuzzy logic
controller on the reconfigurable FPGA system. IEEE
Transactions on Industrial Electronics, 47(3), 703–715.
doi:10.1109/41.847911

Kim, M. W., Lee, J. G., & Min, C. (1999). Efficient fuzzy
rule generation based on fuzzy decision tree for data
mining. In . Proceedings of the IEEE International Fuzzy
Systems Conference FUZZ-IEEE, 99, 1223–1228.

Kimball, R. (1996). The data warehouse toolkit. John
Wiley & Sons.

Klarner, M. (2004). Hyperbug - a scalable natural
language generation approach. In R. Portzel (Ed.), Pro-
ceedings of the 2nd International Workshop on Scalable
Natural Language Understanding (ScaNaLu-2004) (pp.
65-71). Boston, MA, USA: Association for Computational
Linguistics.

Klawonn, F. (2004). Fuzzy clustering: insights and a new
approach. Mathware & soft computing, 11(2-3).

Klawonn, F. (2006). Understanding and controlling the
membership degrees in fuzzy clustering. In From data
and information analysis to knowledge engineering
(pp. 446-453).

 415

Compilation of References

Klawonn, F., & Höppner, F. (2003). What is fuzzy about
fuzzy clustering? Understanding and improving the
concept of the fuzzifier. In Advances in intelligent data
analysis (LNCS 2779, pp. 254-264). Berlin, Germany:
Springer.

Klawonn, F., & Höppner, F. (2003). An alternative ap-
proach to the fuzzifier in fuzzy clustering to obtain
better clustering. In Proceedings of the EUSFLAT Conf.
(pp. 730-734).

Klawonn, F., Chekhtman, V., & Janz, E. (2003). Visual
inspection of fuzzy clustering results. In J. Benitez, O.
Cordon, F. Hoffmann, & R. Roy (Eds.), Advances in soft
computing - engineering, design and manufacturing (pp.
65-76). London: Springer.

Klawonn, F., Gebhardt, J., & Kruse, R. (1996). Foun-
dations of fuzzy systems. New York: John Wiley and
Sons.

Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy
logic: Theory and applications. Upper Saddle River,
NJ: Prentice-Hall.

Koenigstein, N., Shavitt, Y., & Tankel, T. (2008). Spot-
ting out emerging artists using geo-aware analysis
of P2P query strings. In Proceeding of the 14th ACM
SIGKDD international Conference on Knowledge Dis-
covery and Data Mining. KDD ‘08 (pp. 937-945). New
York: ACM.

Kohavi, R., Bradley, C. E., Frasca, B., Mason, L., &
Zheng, Z. (2000). KDD-Cup 2000 organizers’ report:
Peeling the onion. SIGKDD Exploration, 2(2), 86–93.
doi:10.1145/380995.381033

Krishnapuram, R., & Freg, C.-P. (1992). Fitting an un-
known number of lines and planes to image data through
compatible cluster merging. Pattern Recognition, 25(4),
385–400. doi:10.1016/0031-3203(92)90087-Y

Krishnapuram, R., & Keller, J. (1993). A possibilistic
approach to clustering. IEEE transactions on Fuzzy
Systems, 1(2), 98–110. doi:10.1109/91.227387

Kubota, K., Nakase, A., Sakai, H., & Oyanagi, S. (2000).
Parallelization of decision tree algorithm and its perfor-

mance evaluation. In Proceedings of the Fourth Interna-
tional Conference on High Performance Computing in
the Asia-Pacific Region, Vol. 2 (pp. 574-579).

Kuncheva, L. I. (2004). Combining pattern classi-
fiers: Methods and algorithms. New York; Wiley-
Interscience.

Kung, Y.-S., & Tsai, M.-H. (2007). FPGA-based speed
control IC for PMSM drive with adaptive fuzzy con-
trol. IEEE Transactions on Power Electronics, 22(6),
2476–2486. doi:10.1109/TPEL.2007.909185

Kuok, C., Fu, A., & Wong, M. (1998). Mining fuzzy
association rules in databases. [New York, NY,
USA: ACM Press.]. SIGMOD Record, 27(1), 41–46.
doi:10.1145/273244.273257

Lalmas, M., & Murdock, V. (2008). Workshop on ag-
gregated search. In Proceedings of theACM SIGIR 2008.
Retrieved from http://www.yr-bcn.es/sigir08

Landlot, O. (1996). Low power analog fuzzy rule imple-
mentation based on a linear MOS transistor network.
In Proceedings of the 5th International Conference
on Microelectronics for Neural Networks and Fuzzy
Systems (pp. 86-93).

Last, M., & Kandel, A. (1999). Automated perceptions in
data mining. In 1999 IEEE International Fuzzy Systems
Conference Proceedings (Part I, pp. 19-197).

Last, M., & Kandel, A. (2002). Perception-based analysis
of engineering experiments in semiconductor industry.
International Journal of Image and Graphics, 2(1),
107–126. doi:10.1142/S0219467802000512

Last, M., & Kandel, A. (2002). Fuzzy comparison of
frequency distributions. In P. Grzegorzewski et al. (Eds.),
Soft methods in probability, statistics, and data analysis
(pp. 219-227). Heidelberg, Germany: Physica-Verlag.

Laurent, A. (2002). Extraction de connaissances perti-
nentes à partir de baes de données multidimensionnelles.
Laboratoire d’Informatique de Paris 6.

Lawless, F. (1998). Statistical analysis of product warranty
data. International Statistical Review, 66, 227–240.

416

Compilation of References

Lawless, J. F., & Kalbfleisch, J. D. (1992). Some issues
in the collection and analysis of field reliability data. In
J.P. Klein & P.K.Goel (Eds.), Survival analysis: State of
the art (pp. 141-152). Amesterdam: Kluwer.

Lawless, J. F., Hu, J., & Cao, J. (1995). Methods for
the estimation of failure distributions and rates from
automobile warranty data. Lifetime Data Analysis, 1,
227–240. doi:10.1007/BF00985758

Lawry, J. (2004). A framework for linguistic model-
ling. Artificial Intelligence, 155, 1–39. doi:10.1016/j.
artint.2003.10.001

Lawry, J. (2006). Modelling and reasoning with vague
concepts. Berlin, Germany: Springer.

Lawry, J. (2008). Appropriateness measures: An un-
certainty model for vague concepts. Synthese, 161(2),
255–269. doi:10.1007/s11229-007-9158-9

Lawry, J., & Tang, Y. (2008). Relating prototype theory
and label semantics. In D. Dubois, M. A. Lubiano, H.
Prade, M. A. Gil, P. Grzegorzweski, & O. Hryniewicz
(Eds.), Soft methods for handling variability and impreci-
sion (pp. 35-42). Berlin, Germany: Springer.

Lawry, J., & Tang, Y. (2009). Uncertainty modelling
for vague concepts: A prototype theory approach.
Submitted.

Lazaro, J., Arias, J., Martin, J. L., & Cuadrado, C. (2003).
Modified fuzzy c-means clustering algorithm for real-
time applications. In Field-programmable logic and
applications (pp. 2778). Berlin, Germany: Springer.

Lee, D. h., & Kim, M. H. (1997). Database sumariza-
tion using fuzzy ISA hierarchies. IEEE Transactions on
Systems, Man, and Cybernetics. Part B, Cybernetics, 27,
68–78. doi:10.1109/3477.552184

Lee, J.-H., & Lee-Kwang, H. (1997). An extension of
association rules using fuzzy sets. In Proceedings of
the 7th IFSA World Congress, Prague, Czech Republic
(pp. 399-402).

Lehn-Schiøler, T., Arenas-García, J., Petersen, K. B.,
& Hansen, L. K. (2006). A genre classification plug-in

for data collection. In Proceedings of the International
Conference on Music Information Retrieval (ISMIR’06)
(pp. 320-321).

Lemaitre, L., Patyra, M. J., & Mlynek, D. (1993). Syn-
thesis and design automation of analog fuzzy logic
VLSI circuits. In Proceedings of the IEEE Symposium
on Multiple-Valued Logic (pp. 74-79).

Lemaitre, L., Patyra, M. J., & Mlynek, D. (1994). Analysis
and design of CMOS fuzzy logic controller in current
mode. IEEE Journal of Solid State Circuits, 29(3),
317–322. doi:10.1109/4.278355

Leouski, A. V., & Croft, W. B. (1996). An evaluation
of techniques for clustering search results (Tech. Rep.
IR-76). Department of Computer Science, University of
Massachusetts at Amherst.

Lesh, N., & Mitzenmacher, M. (2004). Interactive data
summarization: An example application. In Proceed-
ings of the Working Conference on Advanced Visual
Interfaces (AVI ‘04), Gallipoli, Italy (pp.183-187). New
York: ACM.

Lesot, M.-J., & Kruse, R. (2006). Data summarisation
by typicality-based clustering for vectorial and non
vectorial data. In Proceedings of the IEEE International
Conference on Fuzzy Systems (pp. 547-554).

Leung, K. T., Ercegovac, M., & Muntz, R. R. (1999).
Exploiting reconfigurable FPGA for parallel query pro-
cessing in computation intensive data mining applications
(UC MICRO Technical Report). University of California,
Los Angeles, Computer Science Department.

Li, C., & Wang, X. (1996). A data model for supporting
on-line analytical processing. In Proceedings of the fifth
international conference on Information and knowledge
management (pp. 81-88). New York: ACM.

Li, H., Liu, T. Y., & Zhai, C. X. (2008). Workshop on
learning to rank for information retrieval. In Proceed-
ings of the Annual International ACM Conference on
Research and Development in Information Retrieval
(SIGIR2008). Retrieved from http://research.microsoft.
com/en-us/um/beijing/events/LR4IR-2008/

 417

Compilation of References

Li, T. H. S., Chang, S. J., & Chen, Y. X. (2003). Imple-
mentation of human-like driving skills by autonomous
fuzzy behavior control on an FPGA-based car-like mobile
robot. IEEE Transactions on Industrial Electronics, 50(5),
867–880. doi:10.1109/TIE.2003.817490

Li, Y., Xu, B., Lu, J., & Kang, D. (2006). Discrete tableau
algorithms for FSHI. In Proceedings of the International
Workshop on Description Logics (DL 2006), Lake Dis-
trict, UK.

Liu, P., & Meng, M.-H. (2004). Online data-driven fuzzy
clustering with applications to real-time robotic tracking.
IEEE transactions on Fuzzy Systems, 12(4), 516–523.
doi:10.1109/TFUZZ.2004.832521

Liu, Y., & Kerre, E. E. (1998). An overview of fuzzy
quantifiers. (I). Interpretations. Fuzzy Sets and Systems,
95, 1–21. doi:10.1016/S0165-0114(97)00254-6

Losada, D. E., Diaz-Hermida, R., Bugarin, A., & Barro, S.
(2004). Experiments on using fuzzy quantified sentences
in adhoc retrieval. In Proceedings ACM Symposium on
Applied Computing (pp. 1059-1066).

Louverdis, G., & Andreadis, I. (2003). Design and
implementation of a fuzzy hardware structure for mor-
phological color image processing. IEEE Transactions
on Circuits and Systems for Video Technology, 13(3),
277–288. doi:10.1109/TCSVT.2003.809830

Lu, J., Kang, D., Zhang, Y., Li, Y., & Zhou, B. (2008).
A family of fuzzy description logics with comparison
expressions. In Proceedings of the Third International
Conference, Rough Sets and Knowledge Technology
(RSKT 08).

Lui, C.-L., & Chung, F.-L. (2000). Discovery of general-
ized association rules with multiple minimum supports.
In Principles of data mining and knowledge discovery
(LNCS 1910, pp. 510-515). Berlin, Germany: Springer-
Verlag.

Luo, T., Kramer, K., Goldgof, D. B., Hall, L. O., Samson,
S., Remsen, A., & Hopkins, T. (2005). Active learning to
recognize multiple types of plankton. Journal of Machine
Learning Research, 6(Apr), 589–613.

Lutz, C. (2008). Two upper bounds for conjunctive query
answering in SHIQ. In Proceedings of the 21st Interna-
tional Workshop on Description Logics (DL 2009).

Mahalanobis, P. (1936). On the generalized distance in
statistics. In Proceedings of the National Institute of
Science of India (pp. 49-55).

Mailis, T., Stoilos, G., & Stamou, G. (2007). Expressive
reasoning with horn rules and fuzzy description logics.
In Proceedings of the first international conference on
web reasoning and rule systems (RR-07).

Mailis, T., Stoilos, G., Simou, N., & Stamou, G. (2008).
Tractable reasoning based on the fuzzy-EL++ algorithm.
In Proc. of the 4th International Workshop on Uncertainty
Reasoning for the Semantic Web (URSW 08).

Manaresi, N., Rovatti, R., Franchi, E., Guerrieri, R., &
Baccarani, G. (1996). A silicon compiler of analog fuzzy
controllers: From behavioral specifications to layout.
IEEE transactions on Fuzzy Systems, 4(4), 418–428.
doi:10.1109/91.544302

Manzoul, M. A., & Jayabharathi, D. (1994). CAD
tool for implementation of fuzzy controllers on
FPGAs. Cybernetics and Systems, 25(4), 599–609.
doi:10.1080/01969729408902344

Manzoul, M. A., & Jayabharathi, D. (1995). FPGA for
fuzzy controllers. IEEE Transactions on Systems, Man, and
Cybernetics, 25(1), 213–216. doi:10.1109/21.362948

Marsala, C., & Bouchon-Meunier, B. (1997). Forest of
fuzzy decision trees. In M. Mares, R. Mesiar, V. Novak,
J. Ramik, & A. Stupnanova (Eds.), Proceedings of the
Seventh International Fuzzy Systems Association World
Congress, volume 1, Prague, Czech Republic (pp. 369-
374).

Marsala, C., & Bouchon-Meunier, B. (1999). An adapt-
able system to construct fuzzy decision trees. In Proc.
of the NAFIPS’99 (North American Fuzzy Information
Processing Society), New York, USA (pp. 223-227).

Marsala, C., & Detyniecki, M. (2005). University of
Paris 6 at TRECVID 2005: High-level feature extraction.
In TREC Video Retrieval Evaluation Online Proceed-

418

Compilation of References

ings. Retrieved from http://www-nlpir.nist.gov/projects/
tvpubs/tv.pubs.org.html

Marsala, C., & Detyniecki, M. (2006). University of Paris
6 at TRECVID 2006: Forests of fuzzy decision trees for
high-level feature extraction. In TREC Video Retrieval
Evaluation Online Proceedings. Retrieved from http://
wwwnlpir.nist.gov/projects/tvpubs/tv.pubs.org.html

Marsala, C., Detyniecki, M., Usunier, N., & Amini,
M.-R. (2007). High-level feature detection with forests
of fuzzy decision trees combined with the rankboost
algorithm. In TREC Video Retrieval Evaluation Online
Proceedings. Retrieved from http://www-nlpir.nist.gov/
projects/tvpubs/tv.pubs.org.html

Marshall, G. F., & Collins, S. (1997). Fuzzy logic ar-
chitecture using subthreshold analogue floating-gate
devices. IEEE transactions on Fuzzy Systems, 5(1),
32–43. doi:10.1109/91.554445

Martin, T. P., & Azvine, B. (2003). Acquisition of soft
taxonomies for intelligent personal hierarchies and
the soft Semantic Web. BT Technology Journal, 21(4),
113–122. doi:10.1023/A:1027391706414

Martin, T. P., & Azvine, B. (2005). Soft integration of in-
formation with semantic gaps. In E. Sanchez (Ed.), Fuzzy
logic and the Semantic Web. Amsterdam: Elsevier.

Martin, T. P., & Shen, Y. (2008). Track - time-varying
relations in approximately categorised knowledge.
International Journal of Computational Intelligence
Research, 4, 300–313.

Martin, T. P., Azvine, B., & Shen, Y. (2007). Finding
soft relations in granular information hierarchies. Paper
presented at the 2007 IEEE International Conference on
Granular Computing Fremont, CA, USA.

Martin, T. P., Azvine, B., & Shen, Y. (2007). Intelligent
hierarchy mapping: A soft computing approach. In In-
formation technology and intelligent computing.

Martin, T. P., Azvine, B., & Shen, Y. (2008). Granular
association rules for multiple taxonomies: A mass assign-
ment approach to. In M. Nickles (Ed.), Uncertain reason-
ing in the Semantic Web. Berlin, Germany: Springer.

Martin, T. P., Shen, Y., & Azvine, B. (2008). Incremen-
tal evolution of fuzzy grammar fragments to enhance
instance matching and text mining. IEEE transac-
tions on Fuzzy Systems, 16, 1425–1438. doi:10.1109/
TFUZZ.2008.925920

Martin-Bautista, M. J., Vila, M. A., Larsen, H. L., &
Sanchez, D. (2000). Measuring effectiveness in fuzzy
information retrieval. Paper presented at the Flexible
Query Answering Systems (FQAS).

Mermoud, G., Upegui, A., Peña, C. A., & Sanchez, E.
(2005). A dynamically-reconfigurable FPGA platform for
evolving fuzzy systems. In Computational Intelligence
and Bioinspired Systems (LNCS 3512, pp. 572-581).
Berlin, Germany: Springer-Verlag.

Merz, C., & Murphy, P. (n.d.). UCI repository of machine
learning databases Univ. of CA., Dept. of CIS, Irvine,
CA. Retrieved from http://www.ics.uci.edu/˜ mlearn/
MLRepository.html

Michalski, R. (1990). Pattern recognition as rule-guided
inductive inference. IEEE Transactions on Patter
Analysis and Machine Learning, PAMI-2(4), 349–361.
doi:10.1109/TPAMI.1980.4767034

Mika, P. (2005). Ontologies are us: A unified model of
social networks and semantics. In Proceedings of the 4th
International Semantic Web Conference (ISWC 2005).

Miki, T., & Yamakawa, T. (1995). Fuzzy inference
on an analog fuzzy chip. IEEE Micro, 15(4), 8–18.
doi:10.1109/40.400638

Modenesi, M. V., Costa, M. C. A., Evsukoff, A. G., &
Ebecken, N. F. F. (2007). Parallel fuzzy c-means cluster
analysis. In Proceedings of the High performance com-
puting for computational science – VECPAR 2006 (pp.
52-65). Berlin, Germany: Springer.

Moen, P. (2000). Attribute, event sequence, and event
type similarity notions for data mining. Unpublished
doctoral dissertation (Report A-2000-1), Helsinki,
Finland: Department of Computer Science, University
of Helsinki.

 419

Compilation of References

Molina, C., Sánchez, D., Vila, M. A., & Rodríguez-Ariza,
L. (2006). A new fuzzy multidimensional model. IEEE
transactions on Fuzzy Systems, 14, 897–912. doi:10.1109/
TFUZZ.2006.879984

Monmasson, E., & Cirstea, M. N. (2007). FPGA design
methodology for industrial control systems – a review.
IEEE Transactions on Industrial Electronics, 54(4),
1824–1842. doi:10.1109/TIE.2007.898281

Muyeba, M. K., & Keane, J. A. (2000). Interestingness
in attribute-oriented induction (AOI): Multiple-level rule
generation. In Principles of data mining and knowledge
discovery (LNCS 1910, pp. 542-549). Berlin, Germany:
Springer-Verlag.

Nasraoui, O., Uribe, C., Coronel, C., & Gonzalez, F.
(2003). Tecno-streams: Tracking evolving clusters in
noisy data streams with a scalable immune system
learning model. In Proceedings of the Third IEEE In-
ternational Conference on Data Mining, 2003. ICDM
2003 (pp. 235-242).

Neal, R. M., & Hinton, G. E. (1998). A view of the em
algorithm that justifies incremental, sparse, and other vari-
ants. In Learning in Graphical Models (pp. 355-368).

Neumann, B., & Möller, R. (2006). On scene interpreta-
tion with description logics. In H.I. Christensen & H.-H.
Nagel (Eds.), Cognitive vision systems: Sampling the
spectrum of approaches (pp. 247-278). Berlin, Germany:
Springer.

Nguyen, H. T. (1984). On modelling of linguistic in-
formation using random sets. Information Science, 34,
265–274. doi:10.1016/0020-0255(84)90052-5

NIST. (2006). Guidelines for the TRECVID 2006
evaluation, National Institute of Standards and Technol-
ogy. Retrieved from http://www-nlpir.nist.gov/projects/
tv2006/tv2006.html

O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S.,
& Motwani, R. (2002). Streaming-data algorithms
for high-quality clustering. In Proceedings of the 18th
IEEE International Conference on Data Engineering
(pp. 685-694).

Osinski, S. (2003). An algorithm for clustering of Web
search results. Unpublished master’s thesis, Department
of Computing Science, Poznan’ University of Technology.
Retrieved from http://project.carrot2.org/publications/
osinski-2003-lingo.pdf

Ota, Y., & Wilamowski, M. (1996). CMOS implementa-
tion of a voltage-mode fuzzy min-max controller. Journal
of Circuits . Systems and Computers, 6(2), 171–184.

Ouzunis, C.A., & Karp, P.D. (2002). The past, present and
future of genome-wide re-annotation. Genome Biology,
3(2), comment2001.1-2001.6.

Over, P., Kraaij, W., & Smeaton, A. F. (2007). Guidelines
for the TRECVID 2007 evaluation. National Institute of
Standards and Technology. Retrieved from http://www-
nlpir.nist.gov/projects/tv2007/tv2007.html

Pagani, M., Bordogna, G., & Valle, M. (2007). G. Mining
multidimensional data using clustering techniques. In .
Proceedings of the DEXA Workshop, FLEXDBIST-07,
382–386.

Pal, N., & Bezdek, J. (2002). Complexity reduction for
“large image” processing. IEEE Transactions on Systems,
Man, and Cybernetics . Part B, 32(5), 598–611.

Pal, N., Pal, K., Keller, J., & Bezdek, J. (2005). A possi-
bilistic fuzzy c-means clustering algorithm. IEEE trans-
actions on Fuzzy Systems, 13(4), 517–530. doi:10.1109/
TFUZZ.2004.840099

Pampalk, E. (2005). Speeding up music similarity.
Report on the Music Information Retrieval Evaluation
EXchange (MIREX’05).

Pan, J. Z., & Thomas, E. (2007) Approximating OWL-DL
ontologies. In Proc. of the 22nd National Conference on
Artificial Intelligence (AAAI-07).

Pan, J. Z., Stamou, G., Stoilos, G., & Thomas, E. (2008).
Scalable querying services over fuzzy ontologies. In
Proceedings of the International World Wide Web Con-
ference (WWW 2008), Beijing.

Pan, J. Z., Stoilos, G., Stamou, G., Tzouvaras, V., &
Horrocks, I. (2006). f-SWRL: A fuzzy extension of

420

Compilation of References

SWRL. Journal on Data Semantics, 4090, 28–46.
doi:10.1007/11803034_2

Pan, J. Z., Thomas, E., & Sleeman, D. (2006). ON-
TOSEARCH2: Searching and querying Web ontologies.
In Proc. of WWW/Internet (pp. 211-218).

Pan, J.-Y., & Faloutsos, C. (2002). VideoCube: A novel
tool for video mining and classification. In Proceedings of
the International Conference on Asian Digital Libraries
(LNCS 2555, pp. 194-205). Berlin, Germany: Springer.

Park, J. S., Chen, M. S., & Yu, P. S. (1995). An effective hash
based algoritm for mining association rules. SIGMOD
Record, 24(2), 175–186. doi:10.1145/568271.223813

Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (2004).
OWL Web ontology language semantics and abstract
syntax. W3C Recommendation.

Patyra, M. J., Grantner, J. L., & Koster, K. (1996). Digi-
tal fuzzy logic controller: Design and implementation.
IEEE transactions on Fuzzy Systems, 4(4), 439–459.
doi:10.1109/91.544304

Pauws, S., & Eggen, B. (2001). PATS: Realization and
user evaluation of an automatic playlist generator. In
Proceedings of the International Conference on Music
Information Retrieval (ISMIR’02) (pp. 179-192).

Pavlov, D., Chudova, D., & Smyth, P. (2000). Towards
scalable support vector machines using squashing. In
Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining
(pp. 295-299).

Pedersen, T. B., & Jensen, C. (2001). Multidimensional
database technology. IEEE Computer, 34(12), 40–46.

Pedrycz, W. (2004). Associations and rules in data min-
ing: A link analysis. International Journal of Intelligent
Systems, 19, 653–670. doi:10.1002/int.20016

Pei, J., Han, J., Mortazavi-Asl, B., & Zhu, H. (2000). Min-
ing access patterns efficiently from Web logs. In Proc.
of the Pacific-Asia Conf. on Knowledge Discovery and
Data Mining (PAKDD’00), Kyoto, Japan (pp. 396-407).
New York, NY, USA: Springer.

Pei, J., Tung, A. K. H., & Han, J. (2001). Fault-tolerant
frequent pattern mining: Problems and challenges. In
Proc. of the ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery (DMK’01),
Santa Babara, CA (pp. 7-12). New York, NY, USA:
ACM Press.

Pelleg, D., & Moore, A. (1999). Accelerating exact k-
means algorithms with geometric reasoning. In KDD
‘99: Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining,
New York, USA (pp. 277-281).

Peters, L., Guo, S., & Camposano, R. (1995). A novel
analog fuzzy controller for intelligent sensors. Fuzzy
Sets and Systems, 70, 235–247. doi:10.1016/0165-
0114(94)00221-R

Petersohn, C. (2004). Fraunhofer HHI at TRECVID
2004: Shot boundary detection system.(Tech. Rep.). In
TREC Video Retrieval Evaluation Online Proceedings,
TRECVID. Retrieved from http://www-nlpir.nist.gov/
projects/tvpubs/tvpapers04/fraunhofer.pdf

Petry, F. E. (1996). Fuzzy databases: Principles and
applications. Boston: Kluwer.

Popescu, M., Bezdek, J. C., Keller, J. M., Havens, T. C.,
& Huband, J. M. (2008). A new cluster validity measure
for bioinformatics relational datasets. In Proceedings
of the World Congress on Computational Intelligence,
WCCI2008, Hong Kong (pp. 726-731).

Popescu, M., Keller, J. M., Mitchell, J. A., & Bezdek,
J. C. (2004). Functional summarization of gene product
clusters using gene ontology similarity measures. In
M. Palaniswami, B. Krishnmachari, A. Sowmya, & S.
Challa (Eds.), Proc. of the 2004 ISSNIP (pp. 553-559).
Piscataway, NJ: IEEE Press.

Postgre, S. Q. L. (2008). Postgresql manual. Retrieved
November 2008, from, http://www.postgresql.org/
docs/8.3/interactive/storage-toast.html

Prade, H., & Testemale, C. (1984). Generalizing database
relational algebra for the treatment of incomplete or uncer-
tain information and vague queries. Information Sciences,
34, 115–143. doi:10.1016/0020-0255(84)90020-3

 421

Compilation of References

Provost, F., & Kolluri, V. (1999). A survey of meth-
ods for scaling up inductive algorithms. Data
Mining and Knowledge Discovery, 3, 131–169.
doi:10.1023/A:1009876119989

Provost, F., Jensen, D., & Oates, T. (1999). Efficient
progressive sampling. In Proceedings of the Fifth Inter-
national Conference on Knowledge Discovery and Data
Mining (pp. 23-32). New York: ACM Press.

Prud’hommeaux, E., & Seaborne, A. (2006). SPARQL
query language for RDF (W3C Working Draft). Retrieved
from http://www.w3.org/TR/rdf-sparql-query/

Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2007). NCBI
reference sequence (RefSeq): A curated non-redundant
sequence database of genomes, transcripts and proteins.
Nucleic Acids Research, 35(Database issue), D61–D65.
doi:10.1093/nar/gkl842

Punch, W., Jain, A. K., & Topchy, A. (2005). Cluster-
ing ensembles: Models of consensus and weak parti-
tions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(12), 1866–1881. doi:10.1109/
TPAMI.2005.237

Qao, Q., Lim, M. H., Li, J. H., Ong, Y. S., & Ng, W.
L. (2006). A context switchable fuzzy inference chip.
IEEE transactions on Fuzzy Systems, 14(4), 552–567.
doi:10.1109/TFUZZ.2006.876735

Qin, A., & Suganthan, P. (2004). Robust growing neural
gas algorithm with application in cluster analysis. Neu-
ral Networks, 17(8-9), 1135–1148. doi:10.1016/S0893-
6080(04)00166-2

Radecki, T. (1979). Fuzzy set theoretical approach to
document retrieval. Journal of Information Process-
ing and Management, 15, 235–245. doi:10.1016/0306-
4573(79)90030-X

Rahimi, S., Zargham, M., Thakre, A., & Chhillar, D.
(2004). A parallel fuzzy c-means algorithm for im-
age segmentation. In Proceedings of the IEEE Annual
Meeting of the Fuzzy Information NAFIPS ‘04 (Vol. 1,
pp. 234-237).

Raschia, G., & Mouaddib, N. (2002). SAINTETIQ: A
fuzzy set-based approach to database summarization.
Fuzzy Sets and Systems, 129, 137–162. doi:10.1016/
S0165-0114(01)00197-X

Rasmussen, D., & Yager, R. R. (1996). Using Summa-
rySQL as a tool for finding fuzzy and gradual functional
dependencies. In Proceedings of the 6th International
Conference Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU’96),
Granada, Spain (pp. 275-280).

Rasmussen, D., & Yager, R. R. (1997). Fuzzy query
language for hypothesis evaluation. In T. Andreasen,
H. Christiansen, & H. L. Larsen (Eds.), Flexible query
answering systems (pp. 23-43). Boston: Kluwer.

Rasmussen, D., & Yager, R. R. (1997). A fuzzy SQL
summary language for data discovery. In D. Dubois,
H. Prade, & R.R. Yager (Eds.), Fuzzy information en-
gineering: A guided tour of applications (pp. 253-264).
New York: Wiley.

Rasmussen, D., & Yager, R. R. (1999). Finding fuzzy and
gradual functional dependencies with summarySQL.
Fuzzy Sets and Systems, 106, 131–142. doi:10.1016/
S0165-0114(97)00268-6

Rász, B. (2004). nonordfp: An FP-growth variation
without rebuilding the FP-Tree. In Proc. of the Work-
shop Frequent Item Set Mining Implementations (FIMI
2004), Brighton, UK, CEUR Workshop Proceedings
126. Aachen, Germany: Sun SITE Central Europe /
University of Aachen. Retrieved from http://www.ceur-
ws.org/Vol-126/

Rász, B., Bodon, F., & Schmidt-Thieme, L. (2005). On
benchmarking frequent itemset mining algorithms. In
Proc. of the Workshop Open Software for Data Mining
(OSDM’05 at KDD’05), Chicago, IL (pp. 36-45). New
York, NY, USA: ACM Press.

Raytchev, B., & Murase, H. (2001). Unsupervised face
recognition from image sequences based on clustering
with attraction and repulsion. In Proceedings of the
2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2001), Vol. 2
(pp. II–25-II–30).

422

Compilation of References

Rehm, F., & Klawonn, F. (2005). Learning methods for
air traffic management. In L. Godo (Ed.), Symbolic and
quantitative approaches to reasoning with uncertainty.
Berlin, Germany: Springer.

Rehm, F., Klawonn, F., & Kruse, R. (2006). Visualization
of single clusters. In L. Rutkowski, R. Tadeusiewicz, L.
Zadeh, & J. Zurada (Eds.), Proceedings of the Artificial
Intelligence and Soft Computing - ICAISC 2006. Berlin,
Germany: Springer.

Reiter, E. (1995). Building natural language generation
systems. In A. Cawsey (Ed.), Proceedings of the AI and
Patient Education Workshop. Glasgow, UK: University
of Glasgow.

Ressom, H. W., Wang, D., & Natarajan, P. (2003). Adap-
tive double self-organizing maps for clustering gene
expression profiles. Neural Networks, 16(5-6), 633–640.
doi:10.1016/S0893-6080(03)00102-3

Reyneri, L. M. (2003). Implementation issues of neuro-
fuzzy hardware: Going toward HW/SW codesign. IEEE
Transactions on Neural Networks, 14(1), 176–194.
doi:10.1109/TNN.2002.806955

Reyneri, L. M., & Renga, F. (2004). Speeding-up the de-
sign of HW/SW implementations of neuro-fuzzy systems
using the CodeSimulink environment. Applied Soft Com-
puting, 4(3), 227–240. doi:10.1016/j.asoc.2004.03.003

Robinson, J. A., & McDonald, G. C. (1991). Issues related
to field relibility and warranty data. In G.E. Liepins &
V.R.R. Uppuluri (Eds.), Data quality control: Theory and
pragmatics (pp. 69-89). New York: Marcel Dekker.

Rojas, I., Pelayo, F. J., Ortega, J., & Prieto, A. (1996).
A CMOS implementation of fuzzy controllers based on
adaptive membership function ranges. In Proceedings of
the Fifth International Conference on Microelectronics
for Neural Networks and Fuzzy Systems (pp. 317-321).
Washington, DC: IEEE Comp. Soc. Press.

Rosati, R. (2007). On conjunctive query answering in
EL. In Proceedings of the 2007 International Workshop
on Description Logic (DL 2007).

Rosch, E. (1973). Natural categories. Cognitive Psychol-
ogy, 4, 328–350. doi:10.1016/0010-0285(73)90017-0

Rosenfeld, C., Doerman, D., & DeMenthon, D. (2003).
Video mining. Amsterdam: Kluwer Academic Publish-
ers.

Rovatti, R. (1998). Fuzzy piecewise multilinear and
piecewise linear systems as universal approximators in
Sobolev norms. IEEE transactions on Fuzzy Systems,
6(2), 235–249. doi:10.1109/91.669022

Rovatti, R., & Borgatti, M. (1997). Maximum-throughput
implementation of piecewise-linear fuzzy systems. In
Proceedings of the Sixth IEEE International Conference
on Fuzzy Systems. Vol. 2 (pp. 767-772).

Rovatti, R., Ferrari, A., & Borgatti, M. (1998). Automatic
implementation of piecewise-linear fuzzy systems ad-
dressing memory-performance trade-off. In A. Kandel
& G. Langholz (Eds.), Fuzzy hardware (pp. 159-179).
Amsterdam: Kluwer Academic Publishers.

Rubenstein, W. B. (1987). A database design for musi-
cal information. In Proceedings of ACM SIGMOD (pp.
479-490).

Ruiz, A., Gutiérrez, J., & Felipe-Frenández, J. A. (1995).
A fuzzy controller with an optimized defuzzification
algorithm. IEEE Micro, 15(6), 76.40-76.49.

Salton, G., & McGill, M. J. (1983b). Introduction to mod-
ern information retrieval. New York: McGraw-Hill.

Salton, G., Fox, E. A., & Wu, H. (1983a). Extended Bool-
ean information retrieval. Journal of Communications of
ACM, 26, 1022–1036. doi:10.1145/182.358466

Sanchez, E. (1989). Importance in knowledge systems.
Information Systems, 14(6), 455–464. doi:10.1016/0306-
4379(89)90013-6

Sanchez-Solano, S., Cabrera, A. J., Baturone, I., Moreno-
Velo, F. J., & Brox, M. (2007). FPGA Implementation
of embedded fuzzy controllers for robotic applications.
IEEE Transactions on Industrial Electronics, 54(4),
1937–1945. doi:10.1109/TIE.2007.898292

Sasaki, M., & Ueno, F. (1994). A novel implementation
of fuzzy logic controller using new meet operation. In
Proceedings of the Third IEEE International Conference
on Fuzzy Systems (pp. 1676-1681).

 423

Compilation of References

Savasere, A., Omiecinski, E., & Navathe, S. (1995). An
efficient algorithm for mining association rules in large
databases. In Proceedings of the 21st International
Conference on Very Large Data Bases (pp. 432-444).
San Francisco: Morgan Kaufman.

Sebrechts, M. M., Cugini, J. V., Laskowski, S. J., Vasilakis,
J., & Miller, M. S. (1999). Visualization of search results:
A comparative evaluation of text, 2D, and 3D interfaces.
In Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in
information retrieval (pp. 3-10).

Shankar, B. U., & Pal, N. R. (1994). FFCM: An effective
approach for large data sets. In Proceedings of the 3rd
International Conference on Fuzzy Logic, Neural Nets
and Soft Computing, Iizuka, Japan (pp. 331-332).

Shen, L., & Shen, H. (1998). Mining flexible multiple-level
association rules in all concept hierarchies (extended ab-
stract). In Proceedings of the 9th International Conference
on Database and Expert Systems Applications (LNCS
1460, pp. 786-796). Berlin, Germany: Springer.

Shen, L., Shen, H., & Cheng, L. (1999). New algorithms for
efficient mining of association rules. Information Scienc-
es, 118, 251–268. doi:10.1016/S0020-0255(99)00035-3

Shoemaker, L., Banfield, R., Hall, L., Bowyer, K., &
Kegelmeyer, W. P. (2008). Using classifier ensembles
to label spatially disjoint data. Information Fusion, 9(1),
120–133. doi:10.1016/j.inffus.2007.08.001

Shortliffe, E., & Buchanan, B. (1975). A model of inexact
reasoning in medicine. Mathematical Biosciences, 23,
351–379. doi:10.1016/0025-5564(75)90047-4

Simou, N., Athanasiadis, Th., Stoilos, G., & Kollias, S.
(2008). image indexing and retrieval using expressive
fuzzy description logics. Signal . Image and Video Pro-
cessing, 2, 321–335. doi:10.1007/s11760-008-0084-1

Simou, N., Stoilos, G., Tzouvaras, V., Stamou, G., & Kol-
lias, S. (2008). Storing and querying fuzzy knowledge in
the Semantic Web. In Proceedings of the 7th International
Workshop on Uncertainty Reasoning For the Semantic
Web, Karlsruhe, Germany.

Sinha, D., & Dougherty, E. R. (1993). Fuzzification of set
inclusion: Theory and applications. Fuzzy Sets and Sys-
tems, 55, 15–42. doi:10.1016/0165-0114(93)90299-W

Smellie, A. (2004). Accelerated k-means clustering in
metric spaces. Journal of Chemical Information and
Modeling, 44(6), 1929–1935. doi:10.1021/ci0499222

Smith, T. F., & Waterman, M. S. (1981). Identification of
common molecular subsequences. Journal of Molecular
Biology, 147, 195–197. doi:10.1016/0022-2836(81)90087-
5

Srikant, R., & Agrawal, R. (1995). Mining generalized
association rules. (pp. 407-419). San Francisco: Morgan
Kaufmann Publishers Inc.

Staley, E., & Twidale, M. (2000). Graphical interfaces to
support information search (Tech. Rep.). Graduate School
of Library and Information Science, University of Illi-
nois. Retrieved from http://people.lis.uiuc.edu/~twidale/
irinterfaces/bib-main.html

Stigler, S. M. (2002). Statistics on the table: The history
of statistical concepts and methods. Boston: Harvard
University Press.

Stoilos, G., Simou, N., Stamou, G., & Kollias, S. (2006).
Uncertainty and the Semantic Web. IEEE Intelligent
Systems, 21(5), 84–87. doi:10.1109/MIS.2006.105

Stoilos, G., Stamou, G., & Pan, J. Z. (2008). Classifying
fuzzy subsumption in Fuzzy-EL+. In Proceedings of the
21st International Workshop on Description Logics (DL
08), Dresden, Germany.

Stoilos, G., Stamou, G., Pan, J. Z., Tzouvaras, V., &
Horrocks, I. (2007). Reasoning with very expressive
fuzzy description logics. Journal of Artificial Intelligence
Research, 30(5), 273–320.

Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J. Z., &
Horrocks, I. (2005). Fuzzy OWL: Uncertainty and the
Semantic Web. In Proceedings of the International
Workshop on OWL: Experiences and Directions.

Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J. Z., &
Horrocks, I. (2005). The fuzzy description logic f-SHIN.

424

Compilation of References

In Proc. of the International Workshop on Uncertainty
Reasoning for the Semantic Web (pp. 67-76).

Stoilos, G., Straccia, U., Stamou, G., & Pan, J. Z. (2006).
General concept inclusions in fuzzy description logics.
In Proceedings of the 17th European Conference on
Artificial Intelligence (ECAI 06), Riva del Garda, Italy.

Stothard, P., & Wishart, D. S. (2006). Automated bacterial
genome analysis and annotation. Current Opinion in Mi-
crobiology, 9, 505–510. doi:10.1016/j.mib.2006.08.002

Straccia, U. (2001). Reasoning within fuzzy description
logics. Journal of Artificial Intelligence Research, 14,
137–166.

Straccia, U. (2005). Towards a fuzzy description logic for
the Semantic Web. In Proceedings of the 2nd European
Semantic Web Conference.

Straccia, U. (2006). Answering vague queries in fuzzy
DL-Lite. In Proceedings of the 11th International Con-
ference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU-06)
(pp. 2238-2245).

Straccia, U. (2008), fuzzyDL: An expressive fuzzy de-
scription logic reasoner. In Proceedings of the Interna-
tional Conference on Fuzzy Systems (Fuzz-IEEE 08).

Strehl, A., & Ghosh, J. (2002). Cluster ensembles – a
knowledge reuse framework for combining partitionings.
Journal of Machine Learning Research, 3, 583–617.
doi:10.1162/153244303321897735

Suzuki, K. (1985). Estimation of lifetime parameters
from incomplete field data. Technometrics, 27, 263–272.
doi:10.2307/1269707

Suzuki, K. (1985). Nonparametric estimation of lifetime
distributions from a record of failures and follow-ups.
Journal of the American Statistical Association, 80,
68–72. doi:10.2307/2288041

Syeda, M., Zhang, Y.-Q., & Pan, Y. (2002). Parallel
granular neural networks for fast credit card fraud de-
tection. In Proceedings of the 2002 IEEE international
Conference on Fuzzy Systems (pp. 572-577).

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduc-
tion to data mining. Boston: Addison Wesley.

Tan, P.-N., & Kumar, V. (2000). Interestingness measures
for association patterns: A perspective. Future Genera-
tion Computer Systems, 13(2-3), 161–180.

Thomas, E., Pan, J. Z., & Sleeman, D. (2007). ON-
TOSEARCH2: Searching ontologies semantically. In
Proceedings of OWL Experience Workshop.

Timm, H., Borgelt, C., Döring, C., & Kruse, R. (2001).
Fuzzy cluster analysis with cluster repulsion. In Pro-
ceedings of the European Symposium on Intelligent
Technologies, Hybrid Systems and their implementation
on Smart Adaptive Systems.

Togai, M., & Watanabe, H. (1986). Expert system on a chip:
An engine for real-time approximate reasoning. IEEE
Expert, 1(3), 55–62. doi:10.1109/MEX.1986.4306980

Tresp, C., & Molitor, R. (1998). A description logic for
vague knowledge. In Proc of the 13th European Conf.
on Artificial Intelligence (ECAI-98).

Tsukano, K., & Inoue, T. (1995). Synthesis of operational
transconductance amplifier-based analog fuzzy func-
tional blocks and its application. IEEE transactions on
Fuzzy Systems, 3(1), 61–68. doi:10.1109/91.366571

UCIrepository. (2006). Uci machine learning reposi-
tory. Retrieved from http://www.ics.uci.edu/ mlearn/
MLRepository.html

Upegui, A. (2006). Dynamically reconfigurable bio-
inspired hardware. Unpublished doctoral dissertation,
École Polytechnique Fédérale de Lausanne, Switzer-
land.

Upegui, A., & Sanchez, E. (2005). Evolving hardware by
dynamically reconfiguring Xilinx FPGAs. In Evolvable
systems: From biology to hardware (LNCS 3637, pp.
56-65). Berlin, Germay: Springer-Verlag.

Vidal-Verdú, F., & Rodríguez-Vázquez, A. (1995). Using
building blocks to design analog-fuzzy controllers. IEEE
Micro, 15(4), 49–57. doi:10.1109/40.400633

 425

Compilation of References

Vidal-Verdú, F., Navas-González, R., & Rodríguez-
Vázquez, A. (1998). Multiplexing architecture for mixed-
signal CMOS fuzzy controller. Electronics Letters,
34(14), 1437–1438. doi:10.1049/el:19980968

Vojtas, P. (2001). Fuzzy logic programming. Fuzzy
Sets and Systems, 124, 361–370. doi:10.1016/S0165-
0114(01)00106-3

Wachs, J., Shapira, O., & Stern, H. (2006). A method to
enhance the possibilistic c-means with repulsion algo-
rithm based on cluster validity index. In A. Abraham, B.
D. Baets, M. Köppen, & B. Nickolay (Eds.), Applied soft
computing technologies: The challenge of complexity.
Berlin, Germany: Springer.

Waller, W. G., & Kraft, D. H. (1979). A mathematical
model of a weighted Boolean retrieval system. Journal of
Information Processing and Management, 15, 247–260.
doi:10.1016/0306-4573(79)90031-1

Wang, C., Li, J., & Shi, S. (2004). A music data model
and its application. In Proceedings of the International
Conference on Multimedia Modeling (MMM’04) (pp.
79-85).

Wang, H., Ma, Z. M., Yan, L., & Cheng, J. (2008). A
fuzzy description logic with fuzzy data type group. In
Proceedings of the International Fuzz-IEEE Conference,
Hong Kong.

Wang, H., Ma, Z. M., Yan, L., & Zhang, G. (2006). A
fuzzy extension of ALC with fuzzy modifiers. In Pro-
ceedings of the Knowledge-Based Intelligent Information
and Engineering Systems.

Wang, L., & Suzuki, K. (2001). Nonparametrc estima-
tion of lifetime distribution from warranty data without
monthly unit sales information. The Journal of Reliability
Engineering Association Japan, 23, 14–154.

Wang, L., & Suzuki, K. (2001). Lifetime estimation on
warranty data without date-of-sale information-case
where usage time distributions are unknown. Journal of
the Japanese Society for Quality Control, 31, 148–167.

Wang, L., Bezdek, J. C., Leckie, C., & Kotagiri, R.
(2008). Selective sampling for approximate clustering of

very large data sets. International Journal of Intelligent
Systems, 23(3), 313–331. doi:10.1002/int.20268

Wang, X., Borgelt, C., & Kruse, R. (2005). Mining
fuzzy frequent item sets. In Proc. of the 11th Int. Fuzzy
Systems Association World Congress (IFSA’05), Beijing,
China (pp. 528-533). Beijing, China: Tsinghua Univer-
sity Press.

Watanabe, H., Dettlof, W. D., & Yount, K. E. (1990). A
VLSI fuzzy logic controller with reconfigurable, cascad-
able architecture. IEEE Journal of Solid State Circuits,
25(2), 376–382. doi:10.1109/4.52159

Webb, G. I. (2007). Discovering significant patterns.
Machine Learning, 68(1), 1–33. doi:10.1007/s10994-
007-5006-x

Webb, G. I., & Zhang, S. (2005). k-Optimal-rule-dis-
covery. Data Mining and Knowledge Discovery, 10(1),
39–79. doi:10.1007/s10618-005-0255-4

Weiwei, J., Dongming, J., & Xun, Z. (2004). VLSI design
and implementation of a fuzzy logic controller for engine
idle speed. In Proceedings of the 7th International Confer-
ence on Solid-State and Integrated Circuits Technology
(pp. 2067-2070).

Weka. (2006). Weka 3 - data mining with open source
machine learning software in java. Retrieved from http://
www.cs.waikato.ac.nz/ml/weka/

White, R. W., Richardson, M., Bilenko, M., & Heath, A.
P. (2008). Enhancing Web search by promoting multiple
search engine use. In Proceedings of the 31st Annual
international ACM Conference on Research and Devel-
opment in information Retrieval (SIGIR ‘08), Singapore
(pp. 43-50). New York: ACM.

Winkler, R., Rehm, F., & Kruse, R. (2009). Clustering
with repulsive prototypes. In Studies in classification,
data analysis, and knowledge organization. Berlin,
Germany: Springer.

Wolf, W. (Ed.). (2003). A decade of hardware/soft-
ware codesign. Computer, 36(4), 38–43. doi:10.1109/
MC.2003.1193227

426

Compilation of References

Wu, H., & Meeker, W. Q. (2002). Early detec-
tion of reliability problems using information from
warranty databases. Technometrics, 44, 120–133.
doi:10.1198/004017002317375073

Wu, K., & Yang, M. (2005). A cluster validity index
for fuzzy clustering. Pattern Recognition Letters, 26,
1275–1291. doi:10.1016/j.patrec.2004.11.022

Wu, K., Otoo, E. J., & Shoshani, A. (2006). Opti-
mizing bitmap indices with efficient compression.
ACM Transactions on Database Systems, 31(1), 1–38.
doi:10.1145/1132863.1132864

Wu, X.-H., & Zhou, J.-J. (2006). Noise clustering using
a new distance. In Proceedings of the 2nd International
Conference on Information and Communication Tech-
nologies (ICTTA) (pp. 1938-1943).

Wynblatt, M. J., & Schloss, G. A. (1995). Control layer
primitives for the layered multimedia data model. In
Proceedings of the ACM International Conference on
Multimedia (pp. 167-177).

Xilinx Inc. (2008). Microblaze processor reference guide
(ver 9.0, 2008). Retrieved December 1, 2008, from http://
www.xilinx.com/support/documentation/sw_manuals/
mb_ref_guide.pdf

Xilinx Inc. (2008). Virtex-5 family overview (ver 4.4,
2008), data sheet. Retrieved December 1, 2008, from
http://www.xilinx.com/support/documentation/data_
sheets/ds100.pdf

Xiong, X., Chan, K. L., & Tan, K. L. (2004). Similarity-
driven cluster merging method for unsupervised fuzzy
clustering. In Proceedings of the 20th conference on
uncertainty in artificial intelligence (pp. 611-618). AUAI
Press.

Xu, B., Lu, J., Zhang, Y., Xu, L., Chen, H., & Yang, H.
(2003). Parallel algorithm for mining fuzzy association
rules. In Proceedings of the 2003 International Confer-
ence on Cyberworlds (pp. 288-293).

Xu, D., Bondugula, R., Popescu, M., & Keller, J. (2008).
Applications of fuzzy logic in bioinformatics. London:
Imperial College Press.

Yager, R. R. (1982). A new approach to the sum-
marization of data. Information Sciences, 28, 69–86.
doi:10.1016/0020-0255(82)90033-0

Yager, R. R. (1986). On the theory of bags. Inter-
national Journal of General Systems, 13, 23–37.
doi:10.1080/03081078608934952

Yager, R. R. (1987). A note on weighted queries in
information retrieval systems. Journal of the American
Society for Information Science American Society for In-
formation Science, 38(1), 23–24. doi:10.1002/(SICI)1097-
4571(198701)38:1<23::AID-ASI4>3.0.CO;2-3

Yager, R. R. (1988). On ordered weighted averaging ag-
gregation operators in multi-criteria decision making.
IEEE Transactions on Systems, Man, and Cybernetics,
18, 183–190. doi:10.1109/21.87068

Yager, R. R. (1991). On linguistic summaries of data. In
G. Piatetsky-Shapiro, & W.J. Frawley (Eds.), Knowledge
discovery in databases (pp. 347-363). Menlo Park: AAAI
Press/The MIT Press.

Yager, R. R. (1994). Aggregation operators and fuzzy
systems modeling. Fuzzy Sets and Systems, 67, 129–145.
doi:10.1016/0165-0114(94)90082-5

Yager, R. R. (1996). Database discovery using fuzzy sets.
International Journal of Intelligent Systems, 11, 691–712.
doi:10.1002/(SICI)1098-111X(199609)11:9<691::AID-
INT7>3.0.CO;2-F

Yager, R. R. (1996). Quantifier guided aggregation
using OWA operators. International Journal of Intel-
ligent Systems, 11, 49–73. doi:10.1002/(SICI)1098-
111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z

Yager, R. R. (1998). Including importances in OWA aggre-
gations using fuzzy systems modeling. IEEE transactions
on Fuzzy Systems, 6, 286–294. doi:10.1109/91.669028

Yager, R. R. (2001). The power average operator. IEEE
Transactions on Systems . Man and Cybernetics Part
A, 31, 722–730.

Yager, R. R., & Filev, D. P. (1999). Induced ordered
weighted averaging operators. IEEE Transactions

 427

Compilation of References

on Systems, Man, and Cybernetics, 29, 141–150.
doi:10.1109/3477.752789

Yager, R. R., & Kacprzyk, J. (1997). The ordered weighted
averaging operators: Theory and applications. Boston:
Kluwer.

Yager, R. R., & Kacprzyk, J. (1999). Linguistic data
summaries: A perspective. In Proceedings of the IFSA’99
Congress, Taipei, Taiwan R.O.C. (pp. 44-48).

Yamakawa, T. (1988). High-speed fuzzy controller hard-
ware system: The mega-FIPS machine. Information Sci-
ences, 45, 113–128. doi:10.1016/0020-0255(88)90036-9

Yamakawa, T. (1993). A fuzzy inference engine in non-
linear analog mode and its application to a fuzzy control.
IEEE Transactions on Neural Networks, 4(3), 496–522.
doi:10.1109/72.217192

Yang, J. (2003). Dynamic clustering of evolving streams
with a single pass. In Proceedings of the 19th International
Conference on Data Engineering, 2003 (pp. 695-697).

Yen, S.-J. (2000). Mining generalized multiple-level
association rules., In Principles of data mining and
knowledge discovery (LNCS 1910, pp. 679-684). Berlin,
Germany: Springer.

Yosefi, G., Khoei, A., & Hadidi, K. (2007). Design of
a new CMOS controllable mixed-signal current mode
fuzzy logic controller (FLC) chip. In Proceedings of the
IEEE International Conference on Electronics, Circuits
and Systems (pp. 951-954).

Young, V. R. (1996). Fuzzy subsethood. Fuzzy Sets and
Systems, 77, 371–384. doi:10.1016/0165-0114(95)00045-
3

Zadeh, L. A. (1965). Fuzzy sets as a basis for a theory
of possibility. Information and Control, 8, 338–353.
doi:10.1016/S0019-9958(65)90241-X

Zadeh, L. A. (1965). Fuzzy sets. Information and Control,
8, 338–353. doi:10.1016/S0019-9958(65)90241-X

Zadeh, L. A. (1975). The concept of a linguistic variable
and its application to approximate reasoning (part 1).

Information Sciences, 8, 199–249. doi:10.1016/0020-
0255(75)90036-5

Zadeh, L. A. (1983). A computational approach to fuzzy
quantifiers in natural languages. Computers & Mathemat-
ics with Applications (Oxford, England), 9, 149–184.
doi:10.1016/0898-1221(83)90013-5

Zadeh, L. A. (1985). Syllogistic reasoning in fuzzy
logic and its application to usuality and reasoning with
dispositions. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-15, 754–763.

Zadeh, L. A. (1996). Fuzzy logic = computing with
words. IEEE transactions on Fuzzy Systems, 4, 103–111.
doi:10.1109/91.493904

Zadeh, L. A. (1997). Toward a theory of fuzzy informa-
tion granulation and its centrality in human reasoning
and fuzzy logic. Fuzzy Sets and Systems, 90(2), 111–127.
doi:10.1016/S0165-0114(97)00077-8

Zadeh, L. A. (2002). A prototype-centered approach to
adding deduction capabilities to search engines – the
concept of a protoform. In Proceedings of the BISC
Seminar, 2002. Berkeley: University of California.

Zadeh, L. A. (2002). From computing with numbers to
computing with words – from manipulation of measure-
ments to manipulation of perceptions. Int. J. Appl. Math.
Comput. Sci., 12(3), 307–324.

Zadeh, L. A. (2006). From search engines to question
answering systems - the problems of world knowledge
relevance deduction and precisiation. In E. Sanchez
(Ed.), Fuzzy logic and the Semantic Web (pp. 163-210).
Amsterdam: Elsevier.

Zadeh, L. A., & Kacprzyk, J. (Eds.). (1992). Fuzzy logic
for the management of uncertainty. New York: Wiley.

Zadeh, L., & Kacprzyk, J. (Eds.). (1999). Computing with
words in information/intelligent systems, 1. Foundations,
2. Applications. New York: Physica-Verlag.

Zadrożny, S., & Kacprzyk, J. (1999). On database
summarization using a fuzzy querying interface. In
Proceedings of the IFSA’99 World Congress, Taipei,
Taiwan R.O.C. (pp. 39-43).

428

Compilation of References

Zadrożny, S., Kacprzyk, J., & Gola, M. (2005). Towards
human friendly data mining: Linguistic data summaries
and their protoforms. In Proceedings of the Artificial
Neural Networks: Formal Models and their Applica-
tions – ICANN 2005 (LNCS 3697, pp. 697-702). Berlin,
Germany: Springer.

Zaki, M., Parthasarathy, S., Ogihara, M., & Li, W. (1997).
New algorithms for fast discovery of association rules.
In Proc. of the 3rd Int. Conf. on Knowledge Discovery
and Data Mining (KDD’97), Newport Beach, CA (pp.
283-296). Menlo Park, CA, USA: AAAI Press. Mannila,
H., Toivonen, H., & Verkamo, A.I. (1997). Discovery of
frequent episodes in event sequences (Report C-1997-
15). Helsinki, Finland: Department of Computer Science,
University of Helsinki.

Zamir, O., & Etzioni, O. (1999). Grouper: A dynamic
clustering interface to Web search results. In Proceed-
ings of the 8th International World Wide Web Conference
(pp. 1361-1374).

Zeira, G., Maimon, O., Last, M., & Rokach, L. (2004).
Change detection in classification models induced from
time series data. In M. Last, A. Kandel, & H. Bunke
(Eds.), Data mining in time series databases (pp. 101-
125). Singapore: World Scientific.

Zhang, Q., Chamberlain, R. D., Indeck, R., West, B. M.,
& White, J. (2004). Massively parallel data mining using
reconfigurable hardware: Approximate string matching.
In Proceedings of the 18th Annual IEEE International
Parallel and Distributed Processing Symposium (IP-
DPS’04).

Zhang, T., Ramakrishnan, R., & Livny, M. (1996).
BIRCH: An efficient data clustering method for very
large databases. In Proc. of the ACM SIGMOD Int’l.
Conf. on Management of Data (pp. 103-114). New York:
ACM Press.

Zhu, H. (1998). On-line analytical mining of association
rules. Simon Fraser University.

Zhu, X., Wu, X., Elmagarmid, A. K., Feng, Z., & Wu,
L. (2005). Video data mining: Semantic indexing and
event detection form the association perspective. IEEE
Transactions on Knowledge and Data Engineering, 17(5),
665–677. doi:10.1109/TKDE.2005.83

Ziv, J., & Lempel, A. (1977). A universal algorithm
for sequential data compression. IEEE Transactions
on Information Theory, 23(3), 337–343. doi:10.1109/
TIT.1977.1055714

 429

About the Contributors

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Anne Laurent has been Assistant Professor at the LIRMM lab since September 2003. As a member
of the TATOO group, she works on data mining, OLAP Mining, sequential pattern mining, tree min-
ing, stream mining both for trends and exceptions detections and is particularly interested in the study
of the use of fuzzy logic to provide more valuable results, while remaining scalable. Anne Laurent has
numerous collaborations with companies, including small and big businesses. She serves as reviewer
in the main conferences and journals related to data mining and fuzzy logic.

Marie-Jeanne Lesot obtained her PhD from the University Pierre and Marie Curie in 2005 and
since 2006 she is an associate professor in the department of Computer Science of Paris 6 (LIP6) and
member of the MAchine Learning and Information REtrieval (MALIRE) department. Her research
interests include fuzzy machine learning, in particular fuzzy clustering, typicality and fuzzy prototypes,
and similarity measures.

* * *

Koldo Basterretxea was born in Bilbao, Basque Country, Spain, in 1970. In 1994 he received the
Licenciado degree in physics, with specialization in electronics and control, from the University of the
Basque Country (UPV/EHU). In 2002 he received the Ph.D. degree in physics from the same university.
He is currently a Senior Lecturer at the Department of Electronics and Telecommunications of the UPV/
EHU. He has tought at the Schools of Industrial Technical Engineering of Eibar (1995-1998), and Bilbao
(1998-2009), where he currently develops his teaching and research activities. His research interests
include neural/fuzzy hardware design, hardware/software codesign, implementation of high-speed and
real-time digital controllers on FPGAs , system on programmable chip (SoPC) implementations, and
soft computing techniques.

Karishma Batra received the B.Sc. Statistics degree from Lady Shri Ram College for Women (LSR),
University of Delhi, India, in 2005, and the M.Sc. Statistics degree from the University of Bangalore,
India, in 2007. She has worked as a Research Associate in India Science Lab, General Motors Research
and Development Centre for nearly two years. Her research interests include reliability analysis, non-
parametric statistics and data mining. Ms. Batra is the recipient of the Central College Gold Medal and
the Prof. R.R. Umarji Gold Medal from the University of Bangalore (2008), the GSK Scholar Award
from GlaxoSmithKline (2006 and 2007), and the Best Student in Statistics Award from LSR (2004 and
2005).

430

About the Contributors

Gloria Bordogna holds the position of senior researcher at the National Research Council Institute
for the Dynamics of Environmental Processes and of contract professor at the Faculty of Engineering
of Bergamo University, where she teaches IR and GIS. She received a laurea degree in Physics from the
University of Milano. Her research interests concern soft computing techniques in the area of informa-
tion retrieval, of flexible query languages and Geographic Information Systems. She was involved in
several European projects such as Ecourt, PENG and IDE-Univers, edited three volumes and a special
issue of JASIST in her research area, and participated in the program committee of several conferences
such as FUZZ-IEEE, ACM SIGIR, ECIR, FQAS, CIKM, IEEE-ACM WI/IAT, WWW.

Christian Borgelt received his diploma (M.Sc.) in computer science from the University of Braun-
schweig, Germany, in 1995. After spending a year at the Daimler-Benz Research Center Ulm, he became
a Ph.D. student at the University of Magdeburg, Germany, and received his Ph.D. in computer science
in 2000. He was awarded the Ph.D. Prize 2000 and the Research Prize 2002 of the faculty of computer
science of the University of Magdeburg, Germany. In 2006 he received the venia legendi for computer
science, again from the University of Magdeburg, Germany. Since April 2006 he is the principal researcher
of the Intelligent Data Analysis and Graphical Models Research Unit of the European Center for Soft
Computing, Mieres, Spain. His research interests include molecular and graph mining, (approximate)
frequent item set mining, graphical models for diagnosis and planning, learning graphical models from
data, prototypebased classification and clustering and many other intelligent data analysis methods.

 Alessandro Campi is a researcher at the Politecnico di Milano. His works exploit the possibility of
extending XQuery in several directions, more precisely, the possibility to add active rules, to execute
fuzzy queries, to mine data and to draw the query without writing directly XQuery. Other research
activities are related to investigating automatic construction and verification of data intensive Web site
and on methodologies and tools for e-learning. He taught Programming languages, Data Structures and
Algorithms, Database and Software Engineering at the Politecnico di Milano.

Inés del Campo was born in Buenos Aires, Argentina, in 1961. She received the Ph.D. degree in
physics from the University of the Basque Country (UPV/EHU), Spain, in 1993. Currently she is a Senior
Lecturer in the Electricity and Electronics Department of the Faculty of Sciences and Technology of the
UPV/EHU. Her research interests mainly concern artificial neural networks, fuzzy systems, and genetic
algorithms. She has an extensive experience in the design (methodologies and tools) of reconfigurable
hardware (mainly FPGAs and SoPCs), and hardware description languages (HDLs). Her experience
includes also hardware/software co-design techniques, finite wordlength analysis in digital systems,
and high-performance design for real-time application with emphasis on scalable architectures.

Juana Canul-Reich received the BA degree in administrative informatics from Autonomous Uni-
versity of Tabasco (UJAT) and received the MSc in computer science from Monterrey Tecnological
Institute (ITESM) and the MSc in computer engineering from University of South Florida (USF). She is
currently working on the PhD degree in computer science and engineering at USF. Her research interests
include, but are not limited to, support vector machines, feature selection and classification problems,
microarray data analysis, machine learning.

 431

About the Contributors

Sugato Chakrabarty got his B. Tech from the Indian Institute of Technology, Kharagpur, his M.S.
from the University of Delaware, Newark, Delaware and his Ph.D. from Texas A&M University, College
Station, Texas all in Computer Science. He has worked in AT&T Bell Labs, Digital and other companies
where he has gathered extensive industrial experience. Currently, he works in General Motors R&D,
India Science Lab, where he is a Staff Researcher. He is interested in the areas of Machine Learning,
Manufacturing Assembly Planning, Fuzzy Logic, Case Based Reasoning Text Analysis and Warranty
Analytics and has published papers in these areas. He also holds several patents in these areas. He is
also a reviewer in IEEE Transactions on Mobile Computing and the International Journal of Technol-
ogy Management.

Weijian Cheng is currently a Masters student in Computer Science in University of South Florida,
USA. He obtained his Bachelor of Science in Mathematics from Hefei University of Technology. China.
His research interest includes data mining, video processing and artificial intelligence. His previous
publications include fuzzy clustering system and automatic red tide detection by data mining methods.
He is working with College of Marine Science in University of South Florida to improve the remote
sensing based red tide detection methods through machine learning algorithms. He will be the Director
of Technology for an online marketing firm iBayBiz.com from August 2009.

François Deliège is currently a Ph.D. student in computer science at Aalborg University, Denmark.
He received his MS degree in computer engineering from the Université Libre de Bruxelles. In his
Ph.D. project, he has developed data warehouse concepts and technologies that facilitate the manage-
ment of vast amounts of musical audio features. During his master thesis, he developed a web service
infrastructure for a Massively Multplayer Online Game. His research interests include multidimensional
databases, data warehousing, data streams, and web services.

Marcin Detyniecki is a CNRS research scientist working at the Computer Science Laboratory (LIP6)
of the University Pierre and Marie Curie (UPMC) in Paris, France. He received, from that same uni-
versity, the Doctorate degree in Artificial Intelligence in 2000, and the Habilitation degree in 2006. His
research interests include theoretical foundations of mathematical data fusion and artificial intelligence,
and its application to multimedia retrieval and interaction. On these topics has edited three books and
authored more than fifty publications in peer reviewed conferences and journals. He co-organizes AMR,
the international annual workshop on Adaptive Multimedia Retrieval. He has been invited researcher at
the University of California at Berkeley, University of Florence and Carnegie Mellon University.

Dmitry B. Goldgof has received Ph.D. degree from the University of Illinois. He is currently a Pro-
fessor and Associate Chair of the Department of Computer Science and Engineering at the University of
South Florida. Professor Goldgof research interests include Image and Video Analysis, Pattern Recogni-
tion and Bioengineering. Dr. Goldgof has graduated 14 Ph.D., and has published over 65 journal and 145
conference papers, 16 books chapters and edited 4 books. Professor Goldgof is a Fellow of IEEE and
is an Associate Editor for IEEE Transactions on Systems, Man and Cybernetics and for International
Journal of Pattern Recognition and Artificial Intelligence.

Lawrence O. Hall is a Professor and the Chair of the Department of Computer Science and Engi-
neering at University of South Florida. He received his Ph.D. in Computer Science from the Florida

432

About the Contributors

State University in 1986. He is a fellow of the IEEE. His research interests lie in distributed machine
learning, extreme data mining, bioinformatics, pattern recognition and integrating AI into image
processing. The exploitation of imprecision with the use of fuzzy logic in pattern recognition, AI and
learning is a research theme. He has authored or co-authored over 65 publications in journals, as well
as many conference papers and book chapters.

Frank Höppner received his Diploma and PhD in computer science from the University of Braun-
schweig in 1996 and 2003, respectively. He is full professor in Business Information Systems at the
University of Applied Sciences Braunschweig/Wolfenbüttel in Wolfsburg (Germany). His main research
interests focus on knowledge discovery in databases, especially clustering and the analysis of temporal
and sequential data.

Prodip Hore received the B.Tech degree in Computer Science and Engineering from the Institute
of Engineering and Management (IEM), Calcutta, University of Kalyani, India, 2002, and the Masters
and Ph.D. degree in Computer Science from the University of South Florida, Tampa in 2004 and 2007
respectively. He is now working as a senior modeling scientist in Fair Isaac Corporation (also known
as FICO), San Diego. His research interests include machine learning, data mining, and application of
them to image processing. He has co-authored around 10 papers in reputed journals and conferences.
He has also filed one US patent in collaboration with Fair Isaac.

Janusz Kacprzyk is Professor of CS at the Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland. He is Member of the Polish Academy of Sciences and of Spanish Royal Academy of
Economic and Financial Sciences. He is Fellow of IEEE and of IFSA. He was a visiting professor in
the USA, Italy, China. His research includes: soft computing, fuzzy logic and computing with words,
in decisions and optimization, control, database querying, information retrieval. He is the author of
5 books, (co)editor of 30 volumes, (co)author of 300 papers. He is the editor in chief of 4 book series
at Springer, and of 2 journals. He received many awards, notably: 2005 IEEE CIS Pioneer Award in
Fuzzy Systems, The Sixth Kaufmann Prize and Gold Medal for pioneering works on soft computing in
economics. Currently he is President of IFSA and President of the Polish Society for Operational and
Systems Research.

Frank Klawonn received his M.Sc. and Ph.D. in mathematics and computer science from the Uni-
versity of Braunschweig in 1988 and 1992, respectively. He is now the head of the Lab for Data Analysis
and Pattern Recognition at the University of Applied Sciences in Wolfenbuettel (Germany). His main
research interests focus on techniques for intelligent data analysis, especially clustering and classifica-
tion. He is an area editor of the International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems and a member of the editorial boards of the International Journals of Information Technology
and Intelligent Computing, Fuzzy Sets and Systems, Data Mining, Modelling & Management, Hybrid
Information Technology, Knowledge Engineering & Soft Data Paradigms as well as Mathware & Soft
Computing.

Rudolf Kruse obtained his diploma (Mathematics) degree in 1979 from University of Braunsch-
weig, Germany, and a PhD in Mathematics in 1980 as well as the venia legendi in Mathematics in 1984
from the same university. Following a short stay at the Fraunhofer Gesellschaft, in 1986 he joined the

 433

About the Contributors

University of Braunschweig as a professor of computer science. Since 1996 he is a full professor at the
Faculty of Computer Science of the Otto-von-Guericke University in Magdeburg where he is leading the
computational intelligence research group. He has carried out research and projects in statistics, artificial
intelligence, expert systems, fuzzy control, fuzzy data analysis, computational intelligence, and data
mining. His research group is very successful in various industrial applications. He has coauthored 15
monographs, 15 edited books, as well as more than 330 refereed technical papers in various scientific
areas. He is associate editor of several scientific journals. He is a fellow of the International Fuzzy Sys-
tems Association (IFSA), fellow of the European Coordinating Committee for Artificial Intelligence
(ECCAI) and fellow of the Institute of Electrical and Electronics Engineers (IEEE).

Mark Last is currently an Associate Professor at the Department of Information Systems Engi-
neering, Ben-Gurion University of the Negev, Israel and the Head of the Data Mining and Software
Quality Engineering Group. Prior to that, he was a Visiting Assistant Professor at the Department of
Computer Science and Engineering, University of South Florida, USA (1999 – 2001). Mark obtained
his Ph.D. degree from Tel Aviv University, Israel in 2000. He has published over 130 papers and chap-
ters in scientific journals, books, and refereed conferences. He is a co-author of two monographs and
a co-editor of seven edited volumes. Prof. Last serves as an Associate Editor of IEEE Transactions on
Systems, Man, and Cybernetics (IEEE-SMC) and Pattern Analysis and Applications (PAA). His main
research interests are focused on data mining, fuzzy logic, cross-lingual text mining, software testing,
and security informatics.

Jonathan Lawry is Reader in Artificial Intelligence in the Department of Engineering Mathemat-
ics at the University of Bristol. He has a BSc. in mathematics from Plymouth Polytechnic and a PhD in
mathematics from the University of Manchester. His research interests are in random set approaches to
modelling vagueness and linguistic uncertainty in complex systems, and in particular the label semantic
framework. Dr Lawry has published over 90 refereed articles in the area of approximate reasoning as
well as four edited volumes and one book. He has received research funding from a number of bodies in-
cluding EPSRC, the Tyndall centre, the Nuffield foundation and the Royal Academy of Engineering.

Nicolás Marín is a tenured associated professor in the Department of Computer Science and
Artificial Intelligence at the University of Granada and a researcher in the Intelligent Databases
and Information Systems Research Group. His research interests include database design, data
mining, data warehousing, software modelling, and mathematical theory. He received his PhD
in computer science from the University of Granada. He is a member of the IEEE Computer Society.

Christophe Marsala is Associate Professor in Computer Science at Université Pierre et Marie Curie
- Paris (France). He obtained his PhD in Computer Science from Université Pierre et Marie Curie - Paris
(France) in 1998. His dissertation was concerned with Artificial Intelligence and in particular with Fuzzy
Decision Trees. His current research topics are concerned with data mining, and video mining.

Trevor Martin is Professor of Artificial Intelligence at the University of Bristol. Since 2001 he has
been funded by BT as a Senior Research Fellow, researching soft computing in intelligent information
management including areas such as the semantic web, soft concept hierarchies and user modelling.
He is a member of the editorial board of Fuzzy Sets and Systems, and has served on many conference

434

About the Contributors

programme and organising committees, including programme chair (2007) and technical co-chair 2010)
for the IEEE Fuzzy Systems Conference. He is a co-organiser of the URSW (Uncertain Reasoning for
the Semantic Web) series of workshops, and is active in a W3C group investigating the same topic as
well as chairing the IEEE Computational Intelligence Society’s Semantic Web Task Force. He
has published over 200 papers in refereed conferences, journals and books, and is a Chartered Engineer
and member of the BCS and IEEE.

Yael Mendelson is currently a B.Sc. student in Information Systems Engineering at Ben-Gurion
University of the Negev, Israel. Her main interest is in the data mining field. She has collaborated with
GM – India Science Lab.

Carlos Molina received his M.S. degree in Computer Science in 2002 and his Ph.D. in Computer
Science in 2005, both from the University of Granada. He is an assistant professor in the Department
of Computer Science of the University of Jaén since 2004. His current main research interests are in
the fields of Multidimensional Model, Data Mining and Soft Computing.

Jeff Z. Pan is a lecturer in Knowledge Technology in the Department of Computing Science in the
University of Aberdeen. He received his PhD degree in computer science from the University of Man-
chester for his research on Description Logic Reasoning Support for the Semantic Web. Back in 2002,
he was the first to propose a metamodeling architecture for Web ontologies languages RDF and OWL.
He was later invited to review the Semantic and Abstract Syntax of the OWL Web ontology language
by the W3C WebONT Working Group. His proposal on extending OWL with XML Schema datatypes
was published as a W3C Note; this proposal was later implemented in the OWL 1.1 submission. He has
published more than 50 paper, he has/had been involved in several European and national projects, such
as Knowledge Web (IST-2004-507842), Wonder Web (IST-2001-33052), AKT (GR/N15764/01) and IPAS
(TP/2/IC/6/I/10292), and in several W3C Standardisation activities.

Torben Bach Pedersen is a full professor of computer science at Aalborg University, Denmark.
He received the MS degree in computer science from Aarhus University, Denmark, and the Ph.D.
degree in computer science from Aalborg University. Before joining Aalborg University, he worked
in the software industry for more than six years. His research interest includes Multidimensional da-
tabases, OLAP, data warehousing, federated databases, data streams, and location-based services. He
has published more than 70 scientific papers on these issues in journals such as The VLDB Journal,
Information Systems, and IEEE Computer and in conferences such as VLDB, ICDE, SSDBM, SSTD,
IDEAS, ACM-GIS, ECIR, Hypertext, DOLAP, and DaWaK. He is a member of the editorial board of
the International Journal on Data Warehousing and Mining and has served on more than 40 program
committees including VLDB, ICDE, EDBT, SSDBM, and DaWaK. He is a member of the IEEE, the
IEEE Computer Society, and the ACM.

Mihail Popescu is an assistant professor in the Department of Health Management and Informat-
ics, School of Medicine at the University of Missouri (MU), Columbia. He also holds appointments in
the MU Informatics Institute and in the Department of Computer Science at MU. His current research
focus include medical decision making, fuzzy and ontological data mining algorithms and eldercare
technologies. Dr. Popescu is a senior IEEE member.

 435

About the Contributors

Giuseppe Psaila is assistant professor at the Faculty of Engineering at University of Bergamo. He
obtained the degree in Electronic Engineering from Politecnico di Milano, and the Ph.D. in Computer
Engineering from Politecnico di Torino. His research interests are in the field of databases, in particular
database models and languages, data mining, XML and workflow systems. He participated to several
European funded research projects in the database field, such as the IDEA Project (development of an
active, deductive and object oriented database system), Mietta (on Multilingual Information Extraction)
and cInq (consortium on knowledge discovery by Inductive Queries).

Frank Rehm received his diploma degree (in Computer Science) from University of Applied Sci-
ences Schmalkalden, Germany, in 2000 and M.Sc. and Ph.D. degrees (both in Computer Science) from
University of Magdeburg, Germany, in 2003 and 2007, respectively. Since 2003, he is working at the
German Aerospace Center as a Research Associate on the improvement of Air Traffic Management
using modern data mining techniques.

Stefania Ronchi graduated cum laude in Computer Science Engineering, curriculum Information
Systems, at the University of Bergamo in February 2008. She participated in the Italian regional research
project “Dote Ricercatore” for the development of research projects in the technical-scientific area. She
won a PhD grant in Information Engineering at the Department of Electronics and Information of Po-
litecnico di Milano, where she currently carries out her research activity in the database area, dealing
mainly with Web search, IR and Semantic Web. She authored two publications on her research topics
in the proceedings of international conferences.

Daniel Sánchez received the M.S. and Ph.D. degrees in computer science, both from the University
of Granada, Granada, Spain, in 1995 and 1999, respectively. Since 2001 he is Associate Professor in
the Department of Computer Science and Artificial Intelligence of the University of Granada. He has
participated and is currently a Member of the teams of several projects, and he has published more
than 50 papers in international journals and conferences. He is co-coordinator of the DAMI Working
group on Data Mining and Machine Learning of EUSFLAT (European Society for Fuzzy Logic and
Technology). His current main research interests are in the fields of Semantic Computing, Data Mining
& Knowledge Discovery, Approximate Reasoning and Fuzzy Set Theory, Soft Computing and Image
Processing, Text and Web Mining, and Information Retrieval.

Yun Shen received the B.Sc. degree in computer science from Sichuan University, Chengdu, China,
in 2000, and the Ph.D. degree in computer science from the University of Hull, Hull, U.K., in 2005. He
is a Research Associate at the Artificial Intelligence Group, Department of Engineering Mathematics,
University of Bristol, Bristol, U.K. His current research interests include intelligent text mining and
data analysis, social networking mining and smart behavioural targeting advertisement.

Larry Shoemaker received the BS and MS degrees in computer science from University of South
Florida in 2003 and 2005 respectively. His role as a graduate research assistant at University of South
Florida included membership in the Avatar project research team from 2004 to 2008. He is currently
pursuing the PhD degree in computer science and engineering at University of South Florida. His
research interests are in data mining, machine learning, and knowledge discovery. He is a member of
the IEEE.

436

About the Contributors

Giorgos Stamou is a lecturer at the National and Technical University of Athens. Prior to that he
was a research assistant professor at the Institute of Communication and Computer Systems, National
Technical University of Athens. He is currently leading the Knowledge Technologies and Multimedia
Annotation team of Image, Video and Multimedia Systems Laboratory. His research interest include
knowledge représentation and reasoning, multimedia content archiving and retrieval. He is member of
the RuleML Steering Committee, also co-chairing the Fuzzy RuleML Technical Group, W3C Advi-
sory Committee Representative of NTUA, member of the SWBPD Working Group and co-chair of the
Multimedia Task Force and member of the Steering Committee of the e-business forum on Emerging
Information Technologies and Cultural Heritage of the Greek Ministry of Culture.

Giorgos Stoilos is a Research Assistant at the Image, Video and Multimedia Lab of NTUA. In 2008
he obtained his PhD degree from the School of Electrical & Computer Engineering, in the National and
Technical University of Athens. His research interests include knowledge representation and reason-
ing, management of fuzzy knowledge and ontologies. He has designed several reasoning algorithms
for fuzzy extensions of the popular ontology language OWL (a W3C standard) and the forthcoming
OWL2 QL and OWL2 EL W3C standards. He has also worked in the area of semantic interoperability
where he has proposed a popular string matching method called I-Sub. He has also participated in
the W3C Rule Interchange Format (RIF) Working Group, the W3C OWL2 Working Group, the W3C
Uncertainty Reasoning for the WWW Incubator Group, and the Fuzzy RuleML Technical Group, and
in a number of EU funded projects, like X-Media (IP), K-Space (NoE), Knowledge Web (NoE) and
BOEMIE (STREP).

Yongchuan Tang was born in Hubei, China, on December 5, 1974. He received the M.Sc. degree in
applied mathematics and the Ph.D. degree from the Southwest Jiaotong University, China, in 2000 and
2003, respectively. He is currently an Associate Research Fellow with the College of Computer Science,
Zhejiang University, Hangzhou, China. His research interests are in the mathematical representation of
uncertainty, fuzzy computing, affective computing, and the study of uncertainty in complex systems.

M. Amparo Vila is full professor in the Department of Computer Science and Artificial Intelligence
at the University of Granada, where she leads the Intelligent Databases and Information Systems research
group. She holds a Ph.D. in Mathematics from the University of Granada. Her main research interests
are in the fields of database design, data mining, and mathematical theory.

Xiaomeng Wang received her Bachelor’s degree in Electronic Engineering from Hefei University
of Technology, China, and the degree of Diplom-Informatikerin (Master’s degree in Computer Science)
from the Otto-von-Guericke University of Magdeburg, Germany. Currently she is working at SAP AG,
Germany, alongside pursuing a Ph.D. at the Institute of Knowledge Processing and Language Engineer-
ing, Otto-von-Guericke University of Magdeburg, Germany.

Roland Winkler received his diploma degree in computer science from the University of Magdeburg
in 2008. Since then, he is a Ph.D. student at the German Aerospace Center in Braunschweig, Germany.
His scientific interests focus on the dimension problem of data analysis, especially in the domain of
clustering and classification. He is also interested in exploiting connections between robust statistics
and fuzzy clustering.

 437

About the Contributors

Ronald R. Yager, Director of the Machine Intelligence Institute and Professor of Information Sys-
tems at Iona College, has worked in the area of machine intelligence for over 25 years and published
over 500 papers. Is among the world’s top 1% most highly cited researchers. Recipient of the IEEE
Computational Intelligence Society Pioneer award in Fuzzy Systems. Fellow of the IEEE, the New York
Academy of Sciences and the Fuzzy Systems Association. Served at the National Science Foundation
as program director. Editor and chief of the International Journal of Intelligent Systems. Serves on the
editorial board of numerous technology journals.

Sławomir Zadrożny is Associate Professor (Ph.D. 1994, D.Sc. 2006) at the Systems Research
Institute, Polish Academy of Sciences. His current scientific interests include applications of fuzzy
logic in database management systems, data mining, information retrieval and decision support. He is
the author and co-author of ca. 100 journal and conference papers. He has been involved in the design
and implementation of several prototype software packages. He is also a teacher at the Warsaw School
of Information Technology in Warsaw, Poland, where his interests focus on information retrieval and
database management systems.

438

Index

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Symbols
“-p” option 389–399
β-spread transform 386–399

A
absolute fuzzy shifts 356–364
activation values 10
active cell 10
adaptive neuro-fuzzy inference system (AN-

FIS) 31, 33, 34, 35, 36, 37, 38, 48
aggregation operator 92, 94, 95, 117, 127
alarm sequences 262
alarm sequences in telecommunication net-

works 262
alarm threshold 348–364, 356–364, 360–364
Amdahl’s law 13
application specific integrated circuit (ASIC)

2, 5, 12, 14
approximate equivalence 273, 275
approximate frequent item set mining

254, 255, 263, 270
approximate (or fuzzy) reasoning 353–364
Apriori 254, 255, 256, 259, 261, 263, 272
artificial immune system (AIS) 42
association rule 86, 88, 99, 125
automated perceptions 348–364
automatic mapping 13
axial plane 45

B
basic descriptors 366–378
bigVAT 381–399, 398–399
bin boundaries 351–364
bin proportions 359–364

bioinformatics 379, 380, 397, 398, 399
bitmap 54, 55, 69, 70, 71, 72, 73, 74, 75,

76, 77, 78, 79, 81, 82
bitstream 13, 19, 20
bivalent 160
BLAST 380, 382, 383, 387, 389, 393, 396,

397
bottleneck 54
bygone problem 348–364
byte-aligned bitmap compression (BBC) 56

C
candidate solution 141
cardinality rank 185, 193, 201
centroids 40, 41, 43, 44, 46, 48
certainty factor 99, 104
classical machine learning 366–378
classification accuracy 32
Class Label 366–378, 368–378
clock cycle 8
cluster 302, 303, 304, 305, 306, 325, 330
cluster coherence 380–399
cluster deletion 191
clustering 332, 333, 334, 335, 336, 337,
 339, 340, 341, 342, 343, 344, 345
clustering algorithms

32, 38, 39, 42, 48, 49, 50, 51, 380–
399, 381–399, 383–399, 385–
399, 396–399, 398–399

clustering with attraction and repulsion (CAR)
334

cluster representative 186, 187
cluster selection 184, 191, 203
cluster selection operation 184
cluster tree 333

 439

Index

cognitive scalability 239
complexity guided association rule extraction

(COGARE) 85, 100, 102, 103, 108,
119, 125

computational accuracy 4
computational complexity 204
computer aided design (CAD) 12, 13, 14, 28
concept drift 349–364
concept satisfiability 135
concept subsumption 135, 148
conceptual categories 273, 274
concurrent computation 1
configware 13
conjunctive threshold queries 140, 153
contingency table 99, 100
correlation cluster validity (CCV) 380–

399, 388–399, 391–399
correlation rank

185, 196, 197, 198, 199, 200
CQuery 187, 189, 190, 203
crisp clustering 306, 325
crisp definitions 273, 274, 277
crisp hierarchy 90
crisp partitions 335
crisp value 275, 279
CURE 380, 398

D
data analysis method 255
data cube 56, 84, 85, 86, 88, 100, 102,
 110, 117, 119, 121, 125
data mining 214, 215, 232, 233, 234, 235,

237, 238, 252
data mining tools 214, 232, 235
data repositories 31
data sets 255, 257, 259, 260, 261, 262,
 266, 267, 268, 269, 270, 272
decision frontier 369–378
decision tree approach (DT) 366–378
defuzzification

3, 5, 6, 10, 13, 14, 16, 24, 29
description logic (DL) 130, 131, 133, 134,
 135, 136, 137, 139, 140, 148, 149
difference-based reconfiguration flow 19
disjoint data 33, 52
disjunctive query (DQ) 136

dissimilarity matrix 381–399, 382–399, 383–
399, 384–399, 386–399, 390–399

distance function 163, 168, 176
distinguished features 383–399, 384–

399, 385–399
divide-and-conquer 255, 256, 258
DL-Lite 130, 131, 132, 133, 138, 139,
 140, 141, 145, 146, 147, 148, 153,
 154, 157, 158
dynamic clustering 183, 212
dynamic partial reconfiguration 1, 19, 23

E
early warning tool 348–364, 350–364, 356–

364, 362–364
Eclat 254, 255, 256, 259, 261
eigenvalues 340
eigenvectors 340
electronic design automation (EDA) 6, 23
emerging issue under control 348–364
eNERF 380, 381, 382, 383, 388, 389, 390,

391, 392, 393, 394, 395, 396, 397
epistemic stance 160, 161, 162, 165
E-score 389–399
Euclidean distance 43, 61
expansion rank 185, 198, 199, 200
exponential regression 122
expression profiles 380

F
feature space 303, 304
field programmable gate array (FPGA) 3, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22,
 23, 25, 27, 28, 29
final user 99
flexible approach 179
flexible query 183, 214
forests of decision trees 366–378
forests of fuzzy decision trees (FFDT)

365–378, 366–378, 368–378, 370–
378, 373–378, 374–378, 375–
378, 376–378, 377–378

FP-growth 254, 255, 256, 257, 259, 261,
 271, 272
frequency distributions 347–364, 348–

364, 349–364, 363–364

440

Index

frequent item set mining 254, 255, 256, 257,
261, 263, 270

Friedman test 37
functional annotation 379, 397
fuzzification 3, 7, 9, 14, 20
fuzzified data 9
fuzzifier 324, 325, 328, 329, 330, 335,
 385–399, 391–399
fuzziness 274, 275, 300
fuzzy algorithms 4, 15, 18
fuzzy approaches 262, 275
fuzzy assertions 137, 139, 140, 141, 143,
 145, 146
fuzzy association rules 262, 271
fuzzy-based methodology 347, 348
fuzzy categories 273, 275, 279, 283, 296,
 298, 299
fuzzy chip 1, 5, 7, 28
fuzzy classifiers 32, 33, 34, 48, 49
fuzzy cluster 302, 304, 306
fuzzy clustering 20, 31, 38, 40, 42, 48, 50,

51, 302, 303, 306, 308, 325, 330,
 379, 380, 381, 382, 396, 398
fuzzy c-means 20, 21
fuzzy c-means algorithm (FCM)

335, 336, 337, 338, 339, 385–
399, 386–399

Fuzzy c-Means Clustering 305
fuzzy computation 2, 3, 12, 13, 15, 16, 17,

18, 19, 20, 23
fuzzy computing 1, 4, 22
fuzzy confidence 273, 275, 296, 298, 299
fuzzy confidence interval 296
fuzzy databases 183
fuzzy data-mining 1, 2, 3, 20, 23
fuzzy decision trees (FDT) 365, 366, 378, 36

8, 369, 370, 371, 372, 373, 377, 378
fuzzy definitions 275
fuzzy description logics 136, 155, 156, 157
Fuzzy DL-Lite 130, 139
Fuzzy EL+ 130, 147, 149
fuzzy extensions 130, 131, 139, 152
fuzzy facts 137
“fuzzy” frequent item set mining

254, 255, 257, 270
fuzzy hardware 1, 2, 3, 4, 5, 6, 7, 12, 13,

14, 18, 19, 23, 24, 25, 28, 29

fuzzy inference per second (FIPS) 5, 6, 30
fuzzy inference system (FIS) 1, 3, 5, 7, 8,

10, 12, 13, 15, 19, 20, 22, 36, 37,
 38, 39, 40, 41, 48
fuzzy instance relations 137
fuzzy interpretations 137, 139, 148
fuzzy joins 56
fuzzy learning systems 31, 47, 48
fuzzy logic 121, 125, 155, 160, 165, 214,
 365, 369, 374, 376
fuzzy machine learning 366–378
fuzzy membership 27, 33, 40, 48, 380,
 381, 382, 383, 387, 396, 397
fuzzy membership values 303, 308
fuzzy methods of data analysis 349–364
fuzzy models 16, 31, 32, 48
fuzzy ontologies

131, 132, 133, 136, 153, 156
fuzzy partition 369, 381, 385, 388, 394, 395
fuzzy partition matrix 385–399, 388–

399, 395–399
fuzzy predictions 33
fuzzy quantifiers 159, 165, 177, 178
fuzzy querying 215, 216, 217, 228, 229,
 230, 231, 232, 233, 234, 235, 236
fuzzy relational clustering algorithms 381–399
fuzzy representations 274
fuzzy results 275, 298
fuzzy rules per second (FRPS) 5, 6, 7
fuzzy sets 273, 275, 276, 278, 280, 298,
 299, 300
fuzzy set theory

54, 55, 56, 159, 160, 273, 366, 373,
376, 377

fuzzy shift 353–364, 355–364, 356–
364, 357–364, 359–364

fuzzy song set attribute (FSSA) 71
fuzzy song sets 54, 55, 58, 59, 60, 61, 64,

67, 69, 76, 77, 78, 80, 81
fuzzy systems 3, 5, 8, 10, 15, 16, 17, 18,
 19, 23, 26, 28, 29, 31, 51
fuzzy value 275

G
gain capital 116
geFFCM 381–399, 398–399

 441

Index

GenBank 379–399, 381–399, 398–399
gene characterization 388–399
gene ontology 380–399, 382–399, 396–399
gene ontology annotations 380, 382
gene products 379, 380, 382, 389, 390,
 391, 396, 397
gene product summarization 380
general fuzzy disjunctive query 142
generalized fuzzy queries

140, 141, 142, 144, 145
generalized rule set 106, 107
general purpose processors (GPP) 1, 5
gene sequence similarity values 380
genome annotation 380–399, 388–399
global cluster validity 333
graded membership 274
granularity 274
granules 274, 275, 276
group coalescing 185, 202
group intersection 183, 185, 193, 194, 196,

203, 206, 207, 208
group join 185, 199, 200, 204, 208
group refinement 185, 204
group union 185, 201
Gustafson-Kessel (GK)

338, 339, 340, 341, 342, 343

H
hard clustering algorithms 381–399
hard (crisp) clustering 333
hardened cluster 396–399
hardware description languages (HDL)

2, 14, 23
hardware multipliers 19
hierarchical clustering 333, 380, 382
high-level semantic concepts 365–378
high performance computing (HPC)

2, 22, 23, 25
high performance reconfigurable computing

(HPRC) 21, 22, 23
histogram bins 351–364, 355–364, 356–

364, 362–364
histograms 350–364, 351, 352, 353, 355, 356,

358, 362
homology 396–399
HSV histograms 367–378

Hue-Saturation-Value (HSV) 367–378
human focused cognitive concepts 239
human genome 379, 380
hybrid association 88

I
Inductive machine learning 366–378
inferred average precision 373, 374, 378
informatics 379
insertion costs 263
insertion penalty 254, 263, 264, 266, 267,
 269, 272
Intelligent data analysis 238, 239
inter-dimensional 88, 100, 104, 125
internal configuration access port (ICAP) 19
internal data 85
intersection algorithm 205, 208
intra-dimensional 88
item insertions 254, 255, 263, 264, 265,
 266, 267, 269
item set 254, 255, 256, 257, 261, 262,
 263, 264, 270, 272
iterative process 20

K
kinship relationship

90, 91, 94, 105, 110, 112, 116
Kullback-Leibler Divergence 349–364

L
label semantics 159, 160, 161, 162, 164,
 165, 177
labor codes 348, 350, 356, 361
large datasets 273
large relational datasets 379, 380, 381
learning algorithms 18, 32
linear growth 71
linguistic data summaries 214, 216, 217,
 218, 220, 227, 230, 231, 232, 233,
 234, 235
linguistic data summarization 215
linguistic quantifier 118, 165, 168
linguistic queries 159, 165, 174
linguistic values 354–364
linguistic variable 354–364

442

Index

LOCALSEARCH 40
loss capital 116

M
Manhattan distance 61
manipulation language 179, 182, 183, 184
market basket analysis 255
Markov clustering 380, 382
mass assignment theory 273, 275, 279, 282
MATLAB 33
maximum entropy principle 42
maximum simplicity 4
Medical Subject Headings (MeSH) annotations

380
membership degree 58, 59, 60, 61, 62, 64,

65, 66, 67, 68, 69, 71, 72, 76, 78,
 80, 139, 141, 142
membership function circuits (MFC) 9, 11
membership functions (MF) 4, 6, 9, 11
membership matrix 381, 382, 386, 388, 391,

393, 395, 396, 397, 399
membership value interval

319, 321, 323, 325, 329
memory overflow problems 302
mergesort algorithm 258, 261
metal oxide semiconductor (MOS) 11, 12, 27
meta-ontology 146
meta search 179, 180
microarray processing 380
mileage-to-failure (MTF) 353–364, 355–364
modularity 13
monotonicity 310
MOS field effect transistor (MOSFET) 12
multidimensional models 85, 86, 89
multidimensional space 93
music warehouse (MW) 55, 61

N
natural language 159, 160, 162, 164, 165, 1

77, 239
natural language generation 214
natural rank 186, 190, 196
negation 59, 134, 139, 149
negative shift 348, 352, 359, 361
neighbourhood information 303, 304, 313,
 319, 323, 324, 325, 327, 328, 329

neighbourhood tree 313, 314, 315, 316,
 319, 321, 323, 325, 327
NERFCM 379, 382, 386, 387, 388, 393,
 394, 397
net shift 355–364, 356–364, 357–364
network-on-chip (NOC) 18
neural networks 18, 24, 29, 33, 34
noise clustering 334
non-Euclidean fuzzy prototypes 334
non-Euclidean prototypes 332
non-incremental algorithms 42
non-vanishing penalty factor 266, 267

O
online analytical mining (OLAM) 84
online analytical processing (OLAP)

84, 85, 126, 127, 128
online fuzzy clustering algorithm (OFCM)

38, 40, 46, 47
ONTOSEARCH2

130, 133, 145, 146, 156, 157
operational transconductance amplifier (OTA)

12, 27
optimal threshold 163
ordered weighted averaging

238, 239, 252, 253
ordered weighted averaging (OWA) 238,
 239, 240, 241, 242, 243, 246, 248,
 249, 250, 252, 253
OWA operators 238, 241, 253

P
parallelism 3, 7, 8, 13, 14, 18, 19, 20,
 21, 22, 42
parallel processing 2, 7, 8, 13, 16, 20, 21
parameterization 240
partial data access (PDA) 41, 42
partitional clustering 333
penalty factor 264, 266, 267, 268, 269, 272
perfect extension 257, 259, 260
perfect extension pruning 257, 259, 260
perfect reformulation 140
performance index 20, 21
petabyte 31
piecewise-linear (PWL) 4, 9, 10, 17

 443

Index

polynomial fuzzifier function 308, 311, 312,
316, 323, 324, 325, 328, 329

positive shift 348–364, 355–364, 356–
364, 361–364

possibilistic clustering 333, 334
probability shifts 356–364
proportion change 354–364, 355–364
Protoform 214, 217, 230, 231, 232, 233,
 236
prototype-based clustering 332, 333, 337
pseudo C code 76, 78
p-value 389–399

Q
quadratic growth 67
quality measure 99, 100, 121
query algebra 54, 55
query dimension 64, 65

R
ranked item 186, 189
real world video dataset 366–378
reclustering 202
reconfigurable approach 1, 14
reconfigurable fuzzy inference chip (RFIC) 18
reconfigurable hardware 1, 2, 3, 12, 13,
 15, 16, 17, 18, 19, 21, 22, 26, 30
recursive processing 256, 258
refinement rank 201
RefSeq 379, 389, 390, 394, 395, 397, 399
RefSeq database 379, 380, 388
RefSeq human gene product dataset 380–399
reinforcement learning 56, 128
relational algebra 179
relational clustering 381–399
relational model 55, 81
RElim 254, 255, 256, 257, 259, 261, 263,

266, 267, 270
repulsive clustering

334, 336, 337, 341, 342, 343
repulsive properties 332, 334, 343
result quality scalability 302
reusability 2, 13
root cause exploration 356–364
RSS 180
rule generation 102, 128

S
SaM 254, 255, 257, 258, 259, 260, 261,
 263, 266, 267, 270, 272
sample-process-extend (SPE) 381–399
sampling schemes 383–399
sampling strategy 388–399, 389–399
scalability 1, 2, 3, 6, 7, 13, 14, 16, 18,
 19, 20, 21, 22, 23, 32, 33, 35, 214,

215, 216, 217, 218, 220, 224, 227,
 230, 231, 232, 233, 239, 302, 303,
 380
search engine 180, 181, 182, 186, 212
semantic function 141, 142, 143
semiconductor 13
sensor data 349–364
Shewhart process monitoring scheme 349–364
single pass algorithm (SPFCM) 41, 46, 47
“Smart Queries and Adaptive Data” (SQuAD)

274
soft (fuzzy) clustering 333
song similarity 61, 62, 72, 80
SPARQL 130, 133, 139, 143, 144, 145,
 147, 156
sparse 261, 262, 266, 267, 270
split and merge algorithm 254, 255, 257, 270
storage scalability 302, 303
subset 58, 59, 60, 61, 135, 150
summarizing statistics 238, 239, 241, 242,
 243, 245, 246, 248, 250, 252
sVAT 381–399
switched capacitors (SC) 12
switched current (SI) 12
system flexibility 4
system on programmable chip (SoPC)

3, 16, 17, 18

T
taxonomic hierarchies 274
taxonomies 274, 275, 298, 300
temporal shots 366–378
the oversized-attribute storage technique

(TOAST) 72, 73
time-to-failure (TTF) 353–364, 355–364
t-norms 369–378, 374–378
top-to-leaf paths 369–378

444

Index

transaction databases 276
TRIBE-MCL 380
TTF/MTF calculation 351–364, 353–364
Type-2 Fuzzy Logic System 355–364

U
User Feedback cube 64, 65, 80

V
validity measure 388–399, 396–399, 397–

399, 398–399
vehicle maintenance 347
Verilog 14
VHDL 14, 15, 26
video dataset 365, 366
video indexing 365, 368, 372, 378
video information descriptors 366–378
video mining 365, 366, 370, 376, 378
virtual cluster 334
visual assessment of cluster tendency (VAT)

390–399

visual information descriptors 366–378, 367–
378

W
warranty claim 353–364
warranty data 347, 348, 349, 350, 361,
 362, 363, 364
warranty databases 348–364, 364
Waveform dataset 371, 374, 376–378
weak prototypes 340
weighted Boolean queries 132
weighted conjunctive queries 140
weighted correlation rank 198, 199
weighted expansion rank 198, 199
weighted maximum rank 193, 196
weighted ranking method 194, 196
weight generating function 238, 239, 240,
 241, 242, 245, 247, 248, 252
weight threshold 264, 266, 272
word align hybrid (WAH) 56, 70, 71, 73,
 74, 75, 76, 78, 79, 80, 81

	Title

	List of Reviewers
	Table of Contents
	Detailed Table of Contents
	Foreword
	Preface
	Acknowledgment
	Electronic Hardware for
Fuzzy Computation
	Scaling Fuzzy Models
	Using Fuzzy Song Sets
in Music Warehouses
	Mining Association Rules
from Fuzzy DataCubes
	Scalable Reasoning
with Tractable Fuzzy
Ontology Languages
	A Random Set and Prototype
Theory Model of Linguistic
Query Evaluation
	A Flexible Language
for Exploring Clustered
Search Results
	Linguistic Data Summarization
	Human Focused Summarizing
Statistics Using OWA Operators
	(Approximate) Frequent Item
Set Mining Made Simple with
a Split and Merge Algorithm
	Fuzzy Association Rules
to Summarise Multiple
Taxonomies in Large Databases
	Fuzzy Cluster Analysis
of Larger Data Sets
	Fuzzy Clustering with
Repulsive Prototypes
	Early Warning from Car
Warranty Data using a
Fuzzy Logic Technique
	High Scale Fuzzy Video Mining
	Fuzzy Clustering
of Large Relational
Bioinformatics Datasets
	Compilation of References
	About the Contributors
	Index

