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Foreword

Scalability is one of the main problems practitioners have to cope with when grasping a real-world
application in data management or information analysis. The size of databases and data warehouses,
associated with incompleteness of information and missing values has been a major difficulty from the
early beginning of their studies. Modern digital devices, Internet possibilities, and distributed networks
are among the most powerful means of storing, retrieving, and sharing information. The amounts of
documents and data available for the users are continuously increasing, whatever their nature may be:
text, video, music, images, multimedia, Web. The ways to access these documents and data are also di-
verse: exchanges within communities, social networks and peer to peer communications have increased
the complexity of transfers from data repositories to users.

To increase the efficiency of existing algorithms is a necessity. Dimension reduction or dynamic treat-
ment of data avoiding their storage is for instance a solution to large scale learning systems. Moreover,
alternative approaches to classic information retrieval, knowledge discovery and data analysis need to be
created, in order to cope with the complexity of the problem to solve, due to the size, the heterogeneity,
the incompleteness of data and their access paths. Thinking differently is also a necessity since classic
statistics or machine learning methods have their limits. System science provides interesting paradigms
for the handling of complex systems, always taking the user into account, in a holistic involvement of
all components of the system. Active learning involving the user is for example a solution to the dif-
ficulty of using supervised learning in huge training sets. Another lesson from systems science is the
exploitation of synergies between components of the system, and this capacity is well understood in the
complementarity between medias, for instance between text and image.

Fuzzy knowledge representation and logic are among the efficient tools for the management of complex
systems, since they bring solutions to the incompleteness, inaccuracy and uncertainty, inherent to large
scale and heterogeneous information reservoirs, taking into account synthetic descriptions of isolated
elements and reducing individual treatments. Providing an interface between numerical data represen-
tations by computers and symbolic representations well understood by humans, fuzzy logic fills in the
gap between technological needs and usability requirements. Concepts such as fuzzy categories, fuzzy
quantifiers, fuzzy prototypes, fuzzy aggregation methods, fuzzy learning algorithms, fuzzy databases,
and fuzzy graphs have proved their utility in the construction of scalable algorithms.

The present book is certainly of particular interest for the diversity of addressed topics, covering a
large spectrumin scalability management. Anne Laurentand Marie-Jeanne Lesot are experts in theoretical
and methodological study of fuzzy techniques, and they have moreover coped with various real world
large-scale problems. The group of experts they have gathered to prepare this volume is unquestionably
qualified to provide solutions to researchers and practitioners in search of efficient algorithms and models
for complex and large dataset management and analysis.
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Scalability is understood in this book from several points of view. The first one is the size of avail-
able data implying difficulties in their tractability, with regard to memory size or computation time. This
aspect is strongly related to the complexity of involved algorithms.

The second point of view regards the form of the algorithm results and the capability of human us-
ers to understand and grasp these results, through summaries and visualization solutions. This aspect is
more related to a cognitive framework.

The scalability of knowledge representation is at the crossroads of these points of view, dealing with
ontologies or formal languages, as well as a variety of concepts in a fuzzy setting.

The classic scalability problem in hardware is another point of view, revisited here in the light of
modern electronic solutions and fuzzy computation.

This book deals with all these aspects under a fuzzy logic based perspective. Asample of applications
is also presented as a showcase, pointing out the efficiency of fuzzy approaches to the construction of
scalable algorithms. Potential applications of such approaches go far beyond the domains tackled here
and this book opens the door to a vast spectrum of forthcoming works.

Bernadette Bouchon-Meunier
LIP6 / UPMC / CNRS, France

Bernadette Bouchon-Meunier is the head of the department of Databases and Machine Learning in the Computer Science
Laboratory of the University Paris 6 (LIP6). Graduate from the Ecole Normale Superieure at Cachan, she received the degrees
of B.S. in Mathematics and Computer Science, Ph.D. in Applied Mathematics and D. Sc. in Computer Science from the Univer-
sity of Pierre and Marie Curie. Editor-in-Chief of the International Journal of Uncertainty, Fuzziness and Knowledge-based
Systems, she is a co-founder and co-executive director of the International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-based Systems (IPMU) held every other year since 1986. She is an IEEE senior member
and chair of the IEEE French Chapter on Computational Intelligence.. Her present research interests include approximate
and similarity-based reasoning, as well as the application of fuzzy logic and machine learning techniques to decision-making,
data mining, risk forecasting, information retrieval and user modeling.
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Preface

The fuzzy logic and the fuzzy set theory have been proposed by Lotfi Zadeh in 1965, and largely de-
veloped since, in various directions, including reasoning, control, data representation and data mining.
They now provide numerous tools to handle data in a very relevant and comprehensive way, in particular
offering theoretically well founded means to deal with uncertainty and imprecision. Furthermore, they
constitute an interface between numerical and linguistic representations, increasing the interpretability
of the developed tools and making it possible to compute with words, using the expression proposed by
L. Zadeh in 1996.

Despite these advantages, fuzzy approaches often suffer from the opinion that they cannot address
huge amounts of data and are inappropriate because of scalability difficulties: a high computational
complexity or high memory requirements are feared, that might hinder their applications to very large
datasets, as occur more and more frequently nowadays. Now this is not the case, as many applications,
including industrial success stories, have shown that fuzziness and scalability are not antagonistic con-
cepts. This book aims at highlighting the relevance of fuzzy methods for huge datasets, considering both
the theoretical and practical points of view and bringing together contributions from various fields.

This book gathers up-to-date methods and algorithms that tackle this problem, showing that fuzzy
logic is a very powerful way to provide users with relevant results within reasonable time and memory.
The chapters cover a wide range of research areas where very large databases are involved, considering
among others issues related to data representation and structuring, in particular in data warehouses, as
well as the related querying problems, and the extraction of relevant and characterizing information
from large datasets, to summarize them in a flexible, robust and interpretable way that takes into account
uncertainty and imprecision. The book also includes success stories based on fuzzy logic that address
real world challenges to handle huge amounts of data for practical tasks. The databases considered in the
various chapters take different forms, including data warehouses, data cubes, tabular or relational data,
and different application types, among which multimedia, medical, bioinformatics, financial, Semantic
Web or data stream contexts.

The book aims at providing researchers, master students, engineers and practitioners the state-of-the-
art tools to address the new challenges of current applications that must now both remain scalable and
provide user-friendly and actionable results. The readers will get a panorama of the existing methods,
algorithms and applications devoted to scalability and fuzziness. They will find the necessary material
concerning implementation issues and solutions, algorithms, evaluation, case studies and real applica-
tions. Besides, being the very first reference gathering scalable fuzzy methods from various fields, this
book contributes to bridging the gap between research communities (e.g., databases, machine learning)
that are not always enough combined and mixed.
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The book is organized in four complementary sections: after two introductory chapters that provide
general overviews on fuzziness and scalability from two different points of view, the second section,
entitled “Databases and Queries,” is devoted to methods that consider data structuring as the core of the
approach and propose either flexible representations, through the incorporation of fuzzy components in
the data, or flexible queries that make interactions of the user with the database easy and intuitive thanks
to linguistic formulations. The third section, called “Summarization,” tackles the complexity of huge
datasets through the extraction of relevant and characteristic information that provide summaries of the
whole data. In this context, fuzzy approaches offer a linguistic interface to increase the interpretability of
the results, flexibility and tools to handle imprecision and uncertainty. Lastly, the fourth section, entitled
“Real-World Challenges,” presents success stories involving fuzzy approaches, considering various do-
mains such as stream, multimedia and biological data. In the following, we detail each section in turn.

The first two chapters of the book introduce general overviews, respectively from the hardware point
of view, and from a machine learning perspective.

The chapter “Electronic Hardware for Fuzzy Computation,” by Koldo Basterretxeaand Inés del Campo,
presents a comprehensive synthesis of the state of the art and the progress in the electronic hardware
design for the fuzzy computation field over the past two decades, in particular for the implementation
of fuzzy inference systems. The authors show how fuzzy hardware has evolved, from general purpose
processors (GPPs) to high performance reconfigurable computing (HPRC), as well as the development of
the hardware/software codesign methodology. They discuss their relationships with the scalability issue,
and the new trends and challenges to be faced. The last part of the chapter, dedicated to the architectures
proposed to speed up fuzzy data mining processing specifically, constitutes a promising research direc-
tion for the development and improvement of implementation of fuzzy data mining algorithms.

Chapter 2, entitled “Scaling Fuzzy Models” by Lawrence O. Hall, Dmitry B. Goldgof, Juana Canul-
Reich, Prodip Hore, Weijian Cheng and Larry Shoemaker, considers the scalability issue from the machine
learning and data mining point of view, to extract knowledge from huge amounts of data, studying in
turn both supervised and unsupervised learning. It focuses on ensemble based approaches that basically
consist in learning classifiers on subsets of data, to reduce the amount of data that must be fit in com-
puter memory at any time. This approach is also used in Chapter 15 in the case of fuzzy random forests
to handle large multimedia datasets. In the unsupervised learning case, the authors concentrate on data
streams that are more and more common nowadays and can lead to very large datasets to be handled
incrementally. They offer an overview of existing algorithms to deal with such data and propose an on-
line variant of the classic fuzzy c-means. Their experimental results, performed on datasets containing
up to 5 millions magnetic resonance images, illustrate the possibility to apply fuzzy approaches to data
mining from huge datasets.

The chapters of the second section, Chapters 3 to 7, address the topic of databases and queries coupled
with fuzzy methods: they consider the scalability issue from the point of view of data structuring and
organization, as well as for the querying step. Chapters 3, 4 and 5 mainly focus on the data storing is-
sue, respectively considering data warehouses adapted to fuzzy set representation (chapter 3), fuzzy
data cubes following the OLAP model (Chapter 4) and fuzzy description logic to both represent and
exploit imprecise data in a logical reasoning framework (Chapter 5). Chapters 6 and 7 concentrate on
queries, considering two different types: chapter 6 considers linguistic data queries and more specifically
quantified linguistic queries, proposing a framework to model and answer them. Chapter 7 focuses on
the results provided by queries submitted to search engines and tackles the problem of managing them
through a flexible exploratory language.
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More precisely, Chapter 3, entitled “Using Fuzzy Song Sets in Music Warehouses” by Francois Deliege
and Torben Bach Pedersen, considers data warehouses used to manage large collections of music data,
in the purpose of designing music recommendation systems. The authors introduce a fuzzy representa-
tion through the concept of fuzzy songs and study several solutions for storing and managing fuzzy sets
in general, considering three options, namely tables, arrays and compressed bitmaps. They construct
theoretical estimates for the cost of each solution that are also studied experimentally and compared for
various data collection sizes. Furthermore, they discuss the definition of an algebra to query the built data
cubes and examine the operators both from a theoretical and practical point of view. Thus this chapter
provides both an insight on theoretical works on scalability issues for storing and managing fuzzy sets,
and an example of a real world challenge.

In the same framework of data warehouses and OLAP systems, the chapter “Mining Association
Rules from Fuzzy DataCubes,” by Nicolas Marin, Carlos Molina, Daniel Sdnchez and M. Amparo Vila,
investigates the particular topic of on-line analytical mining (OLAM) which aims at coupling data mining
and OLAP, bridging the gap between sections Il and Il of the book. The authors consider association
rules which are one of the most used data mining techniques to extract summarized knowledge from
data, focusing on the particular framework of data cubes for which they must be further studied. The
authors propose methods to support imprecision which results from the multiple data sources handled
in such applications and constitutes a challenge when designing association rule mining algorithms. The
chapter studies the influence of the fuzzy logic use for different size problems, both in terms of the cube
density (hnumber of records) and topology (number of dimensions), comparing the results with a crisp
approach. Experiments are performed on medical, financial and census data.

In Chapter 5, entitled “Scalable Reasoning with Tractable Fuzzy Ontology Languages,” Giorgos Stoilos,
Jeff Z. Pan, and Giorgos Stamou consider another data model that is in particular adapted to databases in
the form of ontology, namely the fuzzy description logic format. The latter offers the possibility to both
model and reason with imprecise knowledge in a formal framework that provides expressive means to
represent and query information. It is of particular use to handle fuzziness in Semantic Web applications
whose high current development makes such works crucial. The authors show that the increased expres-
sivity does not come at the expense of efficiency and that there exist methods capable of scaling up to
millions of data. More precisely, the authors study the scalability of the two main inference services in
this enriched data description language, which are query answering and classification (i.e., computation
of the implied concept hierarchy). To that aim, they consider two languages: on one hand, they show
how Fuzzy DL-Lite provides scalable algorithms for expressive queries over fuzzy ontologies; on the
other hand, they show how Fuzzy EL+ leads to very efficient algorithms for classification and extend
it to allow for fuzzy subsumption.

Focusing on the issue of query formulation, in particular for expressive queries, Chapter 6, entitled
“A Random Set and Prototype Theory Model of Linguistic Query Evaluation” by Jonathan Lawry and
Yongchuan Tang, deals with linguistic data queries, that belongs to the computing with words domain
introduced by Zadeh in 1996. More precisely the authors consider quantified data queries, for which a
new interpretation based on a combination of the random set theory and prototype theory is proposed:
concepts are defined as random set neighborhood of a set of prototypes, which means that a linguistic
label is deemed appropriate to describe an instance if the latter is sufficiently close to the prototypes of the
label. Quantifiers are then defined as random set constraints on ratios or absolute values. These notions
are then combined to a methodology to evaluate the quality of quantified statements about instances, so
as to answer quantified linguistic queries.
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The chapter “A Flexible Language for Exploring Clustered Search Results,” by Gloria Bordogna,
Alessandro Campi, Stefania Ronchi and Giuseppe Psaila, considers specific types of queries, namely
those submitted to search engines: they tackle the more and more crucial problem of managing the results
from search engines that can be very large, and automatically extracting hidden relations from them.
Assuming that the set of documents retrieved by a search engine is given in the form of a set of clusters,
the authors propose a flexible exploratory language for manipulating the groups of clustered documents
returned by several engines. To that aim, they define various operators among which refinement, union,
coalescing and reclustering and propose several ranking criteria and functions based on the fuzzy set
theory. This makes it possible to preserve the interpretability of the retrieved results despite the large
amount of answers obtained for the query.

The chapters in the next section, Chapters 8 to 13, consider a different approach on the problem of
scalability and fuzziness and address the topic of exploiting fuzzy tools to summarize huge amounts of
datato extract from them relevant information that captures their main characteristics. Several approaches
can be distinguished, referring to different types of data mining tools, as detailed below. Chapter 8 con-
siders linguistic summaries, and uses fuzzy logic to model the linguistic information, Chapter 9 proposes
an aggregation operator relevant to summarize statistics in particular. Chapters 10 and 11 consider the
association rules to summarize data. Chapters 12 and 13 belong to the fuzzy clustering framework. It
must be underlined that Chapter 4 also considers association rules, in the case where data are stored in
a structure as fuzzy cubes.

More precisely, Chapter 8, entitled “Linguistic Data Summarization: A High Scalability through
the Use of Natural Language?” by Janusz Kacprzyk and Stawomir Zadrozny, studies user-friendly
data summaries through the use of natural language, and a fuzzy logic based model. The focus is laid
on the interpretability of the summaries, defining scalability as the capability of algorithms to preserve
understandable and intuitive results even when the dataset sizes increase, at a more perceptual or cogni-
tive level than the usual “technical scalability.” The authors offer a general discussion of the scalability
notion and show how linguistic summaries answer its perceptual definition, detailing their automatic
extraction from very large databases.

The summarization process is also the topic of Chapter 9, “Human Focused Summarizing Statistics
Using OWA Operators” by Ronald R. Yager, that provides a description of the order weighted averaging
operator (OWA). This operator generates summarizing statistics over large datasets. The author details
its flexibility derived from weight generating functions as well as methods to adapt them to the data
analysts, based on graphical and linguistic specifications.

Another common way to summarize datasets consists in extracting association rules that underline
frequent and regular relations in the data. Chapter 10, entitled “(Approximate) Frequent Item Set Mining
Made Simple with a Split and Merge Algorithm” by Christian Borgelt and Xiaomeng Wang, considers
this framework and focuses on its computationally most complex part, namely the problem of mining
frequent itemsets. In order to improve its scalability, the authors propose efficient data structures and
processing schemes, using a split and merge technique, that can be applied even if all data cannot be
loaded into the main memory. Approximation is introduced by considering that missing items can be
inserted into transactions with a user-specified penalty. The authors study the behavior of the proposed
algorithm and compare it to some well-known itemsets mining algorithms, providing a comprehensive
overview of methods.

The chapter “Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases,” by
Trevor Martin and Yun Shen, also considers the domain of association rules learning when huge amounts
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of data are to be handled, focusing on the case where the data are grouped into hierarchically organized
categories. The aim is then to extract rules to describe relations between these categories; fuzziness allows
avoiding the difficulties raised when crisp separations must be defined. They propose a new definition
of fuzzy confidence to be consistent with the framework addressed in the chapter.

Chapter 12, entitled “Fuzzy Cluster Analysis of Larger Data Sets” by Roland Winkler, Frank Klawonn,
Frank Hoppner and Rudolf Kruse, explores another method for data summarization, namely fuzzy clus-
tering. The authors propose to combine two approaches to decrease the computation time and improve
the scalability of the classic fuzzy c-means algorithm, based on a theoretical analysis of the reasons
for the high complexity, both for time and memory, and on an efficient data structure. Indeed the high
computational cost of the fuzzy c-means is basically due to the fact that all data belong to all clusters:
the membership degrees can be very low, but do not equal 0, which also implies that all data have an
influence on all clusters. The authors combine a modification of the fuzzifier function to avoid this effect
with a suitable data organization exploiting a neighborhood representation of the data to significantly
speed up the algorithm. The efficiency of the proposed method is illustrated through experiments.

Chapter 13, entitled “Fuzzy Clustering with Repulsive Prototypes” by Frank Rehm, Roland Winkler
and Rudolf Kruse, also considers fuzzy clustering, focusing on the selection of the appropriate number
of clusters: the latter is classically determined in a procedure that consists in testing several values and
choosing the optimal one according to a validation criterion. This process can be very time consuming,
the authors propose to address this problem as an integrated part of the clustering process, by making the
algorithm insensitive to too high values for this parameter. To that aim, they modify the update equations
for the cluster centers, to impose a repulsive effect between centers, rejecting the unnecessary ones to
locations where they do not disturb the result. Both the classic fuzzy c-means and its Gustafson-Kessel
variant are considered.

The last section of the book, Chapters 14 to 16, is dedicated to real world challenges that consider
the scalability of fuzzy methods from a practical point of view, showing success stories in different do-
mains and using different techniques, both for supervised and unsupervised data mining issues. Chapter
14 considers massive stream data describing car warranty data. Chapter 15 addresses the indexation of
huge amounts of multimedia data using random forest trees, following the same approach as the one
presented in Chapter 2. Chapter 16 belongs to the bioinformatics domain that is among the domains
that currently give rise to the largest datasets to handle, it more precisely focuses on micro-array data.
Chapter 3 that describes a data warehouse used to manage large collections of music data also belongs
to this real world challenges section.

Chapter 14, entitled “Early Warning from Car Warranty Data using a Fuzzy Logic Technique” by
Mark Last, Yael Mendelson, Sugato Chakrabarty and Karishma Batra, addresses the problem of detecting
as early as possible problems on cars by managing data stored in a warranty database which contains
customer claims recording information on dealer location, car model, car manufacturing and selling dates,
claim date, mileage to date, complaint code, labor code, and so on. Warranty databases constitute massive
stream data that are updated with thousands of new claims on a daily basis. This chapter introduces an
original approach to mine these data streams by proposing a fuzzy method for the automatic detection
of evolving maintenance problems. For this purpose, the authors propose to study frequency histograms
using a method based on a cognitive model of human perception instead of crisp statistical models. The
obtained results reveal significant emerging and decreasing trends in the car warranty data.

The problem of video mining is tackled in Chapter 15, entitled “High Scale Fuzzy Video Mining” by
Christophe Marsala and Marcin Detyniecki, where the authors propose to use forests of fuzzy decision
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trees to perform automatic indexing of huge volumes of video shots. The main purpose of the chapter is
to detect high-level semantic concepts such as “indoor,” “map,” or “military staff” that can then be used
for any query and treatment on videos. This data mining problem requires addressing large, unbalanced
and multiclass datasets and takes place in the highly competitive context of the TRECVid challenge or-
ganized by NIST. The authors report the success of the fuzzy ensemble learning approach they propose,
that proves to be both tractable and of high quality. They also underline the robustness advantage of the
fuzzy framework that improves the results as compared to other data mining tools.

Chapter 16, entitled “Fuzzy Clustering of Large Relational Bioinformatics Datasets™ by Mihail Popescu
considers a practical problem of fuzzy clustering with very large relational datasets, in the framework of
bioinformatics to extract information from micro-array data. It describes the whole process of how such
problems can be addressed, presenting the theoretical machine learning methods to be used as well as
the practical processing system. The considered three-step approach consists in subsampling the data,
clustering the sample data and then extending the results to the whole dataset. The practical system
describes the methods applied to select the appropriate method parameters, including the fuzzifier and
the number of clusters, determined using a cluster validity index. It also describes the adjustments that
appear to be necessary to handle the real dataset, in particular regarding the sampling step. The experi-
ments are performed with real data containing around 37,000 gene sequences.

The book thus gathers contributions from various research domains that address the combined issue
of fuzziness and scalability from different perspectives, including both theoretical and experimental
points of view, considering different definitions of scalability and different topics related to the fuzzy
logic and fuzzy set theory use. The variety of these points of view is one of the key features of this book,
making it a precious guide for researchers, students and practitioners.

Anne Laurent and Marie-Jeanne Lesot
Editors



XXi

Acknowledgment

The editorswould like to express their gratitude to all authors, for their precious and high quality contribu-
tions that made this first book on scalability and fuzziness possible. We are honored that the authors, key
researchers fromvarious research communities that address this issue, accepted to participate to this book,
offering a survey on this topic covering a wide range of perspectives on scalability and fuzziness.

The editors’ gratitude also goes to Bernadette Bouchon-Meunier who accepted to write the foreword
of this book, sharing her expertise, in-depth knowledge and hindsight on all aspects of the fuzzy logic
domain in the introduction to this book.

The editors would also like to warmly thank the reviewers whose valuable comments helped to im-
prove the quality of the book: Sadok Ben Yahia, Sandra Bringay, Guillaume Cleuziou, Thanh Ha Dang,
Federico Del Razo Lopez, Nicolas Labroche, Dominique Laurent, Cécile Low Kam, Christophe Marsala,
Jordi Nin Guerrero, Yoann Pitarch, Marc Plantevit, Pascal Poncelet, Julien Rabatel, Chedy Raissi, Liva
Ralaivola, Maria Rifqi, Mathieu Roche, Fatiha Sais, Paola Salle, Maguelonne Teisseire.

Finally the editors would like to acknowledge the 1GI Global publishing company for having accepted
to publish this book on Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and
Design. Special thanks go to Joel Gamon who followed the whole process from the first call for chapters
to the publication and whose help was so precious.

Anne Laurent and Marie-Jeanne Lesot
Editors



Section 1

Introductory Chapters



Chapter 1

Electronic Hardware for
Fuzzy Computation

Koldo Basterretxea
Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Spain

Inés del Campo
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ABSTRACT

This chapter describes two decades of evolution of electronic hardware for fuzzy computing, and dis-
cusses the new trends and challenges that are currently being faced in this field. Firstly the authors
analyze the main design approaches performed since first fuzzy chip designs were published and until
the consolidation of reconfigurable hardware: the digital approach and the analog approach. Secondly,
the evolution of fuzzy hardware based on reconfigurable devices, from traditional field programmable
gate arrays to complex system-on-programmable chip solutions, is described and its relationship with
the scalability issue is explained. The reconfigurable approach is completed by analyzing a cutting
edge design methodology known as dynamic partial reconfiguration and by reviewing some evolvable
fuzzy hardware designs. Lastly, regarding fuzzy data-mining processing, the main proposals to speed
up data-mining workloads are presented: multiprocessor architectures, reconfigurable hardware, and
high performance reconfigurable computing.

INTRODUCTION

Electronic hardware development for fuzzy inference-based computing systems (fuzzy hardware) has
been an active research area almost since the first papers on successful fuzzy logic applications, mainly
fuzzy controllers, were published in the early eighties. Although historically, due to the greater flexibility
and compatibility, as well as the advantages and easiness of using high level languages, the majority of
fuzzy inference system (FIS) implementations have been software developments to be run on general
purpose processors (GPP), only concurrent computation architectures with specific processing units
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can take greatest advantage of fuzzy computation schemes. The development of fuzzy hardware has
been mainly motivated by real-time operation demands, or by low power and/or small area occupation
requirements. In this sense, the first fuzzy hardware researchers basically tried to design fuzzy chips
capable of processing fuzzy control laws in a more efficient manner in terms of processing speed, oc-
cupied area and consumed power. But not only is computing efficiency a concern for fuzzy hardware
designers; system programmability, compatibility of input/output signals and scalability at various levels
(word-length, partition of the input and output domains, number of rules, or overall throughput gain)
are also important features to be considered.

Design of fuzzy hardware is strongly conditioned by the target application it is addressed to. In
consequence, many different application-specific designs have been reported, each of them showing
characteristic features, strengths and weaknesses. The choice of the development platform and imple-
mentation technology is closely linked with this issue, and may itself bias the obtainable final features.
Despite this, implementation of a general purpose fuzzy ASIC (Application Specific Integrated Circuit)
suitable for any fuzzy rule-based application has been somehow sought but never achieved by fuzzy
hardware designers, both in academic and in commercial contexts. It has been the arrival of high capac-
ity reconfigurable hardware and the drastic changes in the design processes of complex digital systems
associated with this technology that has finally made obsolete the general purpose fuzzy hardware
objective. Last generation reconfigurable hardware platforms allow the implementation of optimized
complex hardware/software codesigned adaptive and on-the-fly reconfigurable systems for application
specific computation. The combination of reconfigurable hardware with the use of standardized hardware
description languages (HDL) has entailed the transference of the task of achieving desirable features
such as flexibility, scalability, reusability, etc from the hardware itself to the description or modeling of
this hardware.

Fuzzy data management and analysis methods do not rest normally on a rule-based inference scheme,
so the development of hardware for fuzzy data-mining has usually little to do with what is referred to as
“fuzzy hardware”. Infact, fuzzy data-mining algorithms have been traditionally implemented by software
applications running on GPPs, since there were not usually tight requirements for computation time,
occupied silicon area or consumed power. On the contrary, flexibility, scalability and good interaction
with data base storage systems were the only concerns. Nonetheless, nowadays, due to the increasing
complexity of data-mining algorithms and the growing amount of data to be processed by them, some-
times with time constraints, more attention is being paid to the hardware acceleration of this kind of
application. This field can be considered, together with scientific computation, a natural target for high
performance computing (HPC). Consequently, specific hardware development for parallel processing
or coprocessing of data-mining algorithms has been gaining relevance in recent years.

The chapter is organized as follows: Section 2 introduces the main hardware implementation variants
performed since first fuzzy hardware chips were published and until the consolidation of reconfigu-
rable hardware for complex digital system implementation. First of all, the distinctive characteristics of
fuzzy inference-based computation that pushed researchers to find specifically designed hardware are
described. Secondly we summarize the general pros and cons of the two main design approaches used
for fuzzy hardware realizations, the digital approach and the analog approach; the performance indexes
used for fuzzy hardware characterization are also briefly discussed. The bulk of the section follows by
analyzing the different solutions proposed by hardware designers both for digital and analog approaches
in a taxonomical way, giving examples of the most representative publications in the area. In Section 3
the evolution of fuzzy hardware implementations based on reconfigurable hardware and its relationship
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with the scalability issue are explained. A short description of the FPGA (Field Programmable Gate Ar-
ray) technology and the repercussions of the development of hardware description languages are given,
and the fruitful synergism between FISs and FPGAs are enumerated. The section continues with the
description of the hardware/software codesign methodology and its contribution to the fuzzy hardware
design, and introduces the associated concept of System on Programmable Chip (SoPC), giving examples
of reported designs in this area. The Section is completed by analyzing the cutting edge design meth-
odology known as Dynamic Partial Reconfiguration and by reviewing some evolvable fuzzy hardware
designs, and is closed by highlighting the new trends and challenges to be faced by the reconfigurable
hardware technology. Lastly, Section 4 is devoted to the hardware implementation proposals for fuzzy
data-mining processing, as it presents very distinct characteristics and requirements compared to fuzzy
rule-based inference systems. Section 5 concludes this chapter summing up the described main concepts
and giving some concluding remarks.

HARDWARE IMPLEMENTATION OF FUZZY INFERENCE SYSTEMS

As mentioned in the introduction, design and implementation of a FIS strongly depends on the require-
ments of the target application. When the hardware implementation of a FIS is considered, this is due to
the special requirements of computation time, occupied area and/or power consumption that the application
to be performed may demand. Each application field of FISs has its own characteristics which condition
the system design: process control, industrial automation, embedded control, signal processing, pattern
recognition, or data analysis and decision making —when making use of fuzzy rule-based schemes— all
share a common computational scheme but all show specific processing and interfacing requirement,. In
order to understand the reasons that have pushed researchers to investigate new hardware architectures
for fuzzy systems, it is worth to briefly analyzing the specificities of fuzzy computation.

Distinctive Characteristics of Fuzzy Computation

There are three main aspects of fuzzy computation that have motivated the design of ad-hoc hardware
to overcome the limits imposed by the processing on general purpose processors: parallelism, use of
specific non-standard operators, and the intensive computation of non-linear functions.

Parallelism: The typical three processing stages of a fuzzy inference, that is, fuzzification, inference,
and defuzzification, are performed sequentially (see Figure 1). However, at each stage internal operations
can be carried out in parallel. At the fuzzification stage parallelism is possible because several member-
ship degrees at a time must be computed for an input value, and there may be more than one input. At
the inference stage the computation of the degrees of truth of several rules are performed in parallel,
since more than one rule may be activated at the same time. Finally, to compute the output value, which
is usually crisp, the partial conclusions of the rules must be obtained from the consequents, and these
values are combined to obtain the final general conclusion and the defuzzified value. GPPs are sequential
machines, so all these operations are performed serially. It is obvious that the more input variables in the
input domain and the more rules defined in the inference engine, the more time-consuming is a fuzzy
inference in a sequential processor and the more worthwhile it is to parallelize it.

Specific non-standard operators: Fuzzy computing requires intensively performing some basic
operations that cannot be efficiently executed by GPPs. Maximum and minimum operations and de-
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Figure 1. Basic computational scheme of a fuzzy rule-based system
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fuzzification functions, for instance, are very time-consuming on GPPs. While some software solutions
have been proposed by adding new instructions implemented as microprograms to the microproces-
sors, implementation of dedicated fuzzy functional blocks is the most efficient solution regarding the
computation time.

Computation of non-linear functions: Any fuzzy computing system is based on fuzzy logic theory,
and the core concept of this logic is the concept of membership degree to a given set. To represent the
membership degrees, fuzzy logic uses membership functions (MF), which are, in the most general case,
monotone smooth non-linear functions such as sigmoidal functions, Gaussians, generalized bells and
so on. The computation of such functions is very demanding for any processor and hence this has been
one of the most analyzed aspects of fuzzy hardware design. In fact, to overcome this problem, many
fuzzy hardware designs rested on simple triangular or trapezoidal membership function representations.
This is a valid approach, as it is demonstrated that FISs keep their universal approximation property
even when simple piecewise-linear (PWL) MFs are used (Castro, 1996), but this is a property based on
an existence theorem that does not consider quantitative implications. For a given number of MFs and
rules, the system’s plasticity —capability of representing information— is degraded when using simple
PWL MFs, so simpler MFs imply a more complex rule base (Basterretxea et al., 2007).

Hardware implementations must always be oriented to achieve maximum simplicity. There are of
course some “tricks” that hardware designers have developed to adapt the computation of fuzzy algorithms
to the characteristics of hardware technologies. Hardware engineers have often modified mathematical
operations or other computational features to produce more hardware-friendly algorithms. Sometimes
this means reducing the accuracy, in the sense that produced processing does not replicate exactly the
underlying mathematical functions. This is the case of the diverse circuits designed for approximating the
non-linear functions used to represent MFs, or the reduction of quantization levels when memory-based
solutions are implemented. At other times accuracy is not affected but some limitations are imposed
on the system, such as the allowed maximum overlapping degree of MFs or their configurability, for
instance. Sometimes however, a closer and more detailed study of how an electronic circuit processes
data can lead to discovering regularities that can be exploited, or ways to avoid useless or repetitive
calculations, with no impact on computational accuracy or system flexibility. One example of this is
the use of register files to store truth tables obtained from the computation of the degree of truth of
an antecedent, since the same antecedent is usually repeated in several rules (Ascia & Catania, 1998).
Another common example is a technique consisting in the implementation of “active rule detectors”,
that is, for each input, detecting which rules will be activated and which rules will produce no output
(not active), so only those rules with a positive degree of truth in their antecedents are processed (see
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Hamzeh et al., 2009 and references herein). Sometimes the search for hardware-friendly algorithms
has pushed researchers to work on the mathematical basis of fuzzy logic, hence inducing the definition
of new operators such as the operators used for piecewise-linear or -multilinear (PWM) fuzzy systems
(Rovatti & Borgatti, 1997; Sasaki & Ueno, 1994), as well as parameterized defuzzification methods
such as the height method, weighted fuzzy mean, Yager's method, etc. (Baturone et al, 2000). In the
next subsection we examine some of these design strategies, described by fuzzy hardware researchers
in papers and books, the most significant of which are referenced in the text.

Hardware Design Strategies and Implementation Technologies

Traditionally there have been two main approaches to the implementation of FISs: using GPP based
machines and the development of dedicated hardware. Obviously, using pure software solutions run-
ning on GPPs —microprocessors, microcontrollers or digital signal processors— is the least expensive
and more flexible procedure, but generally it is the slowest one. On the contrary, the development of
ad-hoc hardware for high performance fuzzy processing implemented in ASIC technology requires a
longer design time and much more effort, in order to culminate in a faster system, although very often
with poor generality. Halfway approaches are also possible though. One option is to customize GPPs by
introducing fuzzy dedicated instructions, which sometimes is referred to as software expansion. Another
option consists in splitting fuzzy operations from the CPU instruction-set and developing an external
fuzzy coprocessor to execute those operations faster, which is called hardware expansion. The main
problem in using fuzzy coprocessors is that the 1/0 signal transmission between the processor and the
coprocessor is usually a bottleneck that impedes fast operation. This section is devoted to describing the
most representative design solutions for dedicated fuzzy hardware reported in the last two decades, leav-
ing the GPP-based approaches and the direct memory mapping-based implementations aside. However,
each reported hardware design is unique, generally differing the ones from the others in various aspects,
so it is not possible to make a complete catalogue of developed fuzzy processors over the years. Yet there
are some common characteristics of different reported solutions that can be, and will be, emphasized
and that allow us to make a somewhat taxonomical description of fuzzy hardware design.

The first fuzzy processing device was implemented in 1985 by Togai and Watanabe (1986), from the
AT&T Bell laboratories. It was a digital VLSI chip with one input and one output capable of executing
250,000 FRPS (Fuzzy Rules Per Second) with no defuzzification. Previously Yamakawa had built the
first analog fuzzy circuits based on bipolar transistors, but it was not until 1988 that he reported the first
analog fuzzy controller chip (Yamakawa, 1988). The controller was implemented in bipolar technology
and was capable of evaluating 1 Mega FIPS (Fuzzy Inference Per Second) including defuzzification, or
10 MFIPS without it. These two works represent, respectively, the beginning of the race to produce the
fastest, smallest and/or the least power-consuming fuzzy chip in the two main design methodologies.
These are directly linked to implementation technology: the analog hardware and the digital hardware.
Both approaches have their own pros and cons, which are summed up below.

Digital FIS Hardware vs. Analog FIS Hardware
When facing the designing of fuzzy hardware, both in the analog and the digital approaches, some

designers have developed very specific dedicated architectures with the aim of achieving the higher
processing speed together with an efficient use of silicon for a given application. Other designers have
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tried to make more flexible, general purpose fuzzy chips. The more dedicated circuits implement quite
simple computation algorithms on simple architectures. The more general application targeted circuits
include programmability options by implementing different MF shape and/or inference method selec-
tion capabilities, various defuzzification methods and also scalability features to some extent (bit level
scalability, MF level scalability, selectable number of rules etc.). In any case, the selection of the digital
or the analog approach itself may bias the achievable features. The main characteristics of both ap-
proaches are:

Digital Hardware

. Use of well known and well characterized target technology.

. Structured and systematic design process and availability of EDA (Electronic Design Automation)
tools to obtain reliable and lower cost integrated circuits.

. Connectivity to other digital processing conventional units.

. More flexible devices with easy programmability and external parameter selection.

«  Adjustable accuracy and resolution.

. High area occupation. This is due to the big quantity of transistors required to implement fuzzy
operators (max, min, etc.), the coded representation of the membership functions by bit sequenc-
es, and the probable need of A/D (Analog to Digital) and D/A (Digital to Analog) converters to
transform the input and output signals.

Analog Hardware

. Better speed/area ratio.

. No need for A/D and D/A interfaces (controllers).

. Lower power dissipation.

»  Analog design is a costly long-cycle, generally manual process, although some automated design
tools have been developed (Lemaitre et al., 1993; Manaresi et al., 1996).

. Lower precision due to noise and temperature drifts.

. Lower flexibility.

Characterization of Fuzzy Hardware Performance

When referring to the performance of fuzzy hardware implementations we have used the term speed,
but we have not defined exactly what the term speed means in this context. We have even used the more
specific terms FIPS and FRPS, as the majority of authors do, in order to characterize their designs.
However, different authors may use different performance indexes, and sometimes these indexes can
be misleading when employed to compare the performance of systems with different architectures and
functionalities. The most used performance indexes in the related literature are:

. Maximum clock frequency (digital and mixed signal designs).
. Number of fuzzy logic inferences per second (FLIPS) or fuzzy inferences per second (FIPS),
where the concept fuzzy inference is fuzzy itself or ill-defined.
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. Number of fuzzy rules per second (FRPS).
. Number of basic fuzzy operations per second.

None of these terms is a reliable measure of the real system performance, especially in the digital
approach, as far as other factors such as the parallelism, the on-chip fuzzification or defuzification opera-
tions and others may be involved. In (Patyra et al., 1996) a more realistic speed measure is proposed to
characterize any fuzzy hardware design. This index is the input/output delay time of the system —which
is often used in analog designs—, defined as the total delay time from the moment of providing the input
variable to the FIS device until the generation of a crisp action at the output®. But in order to make a
performance comparison of different designs, more performance indexes have to be added to the bare
processing speed. The author proposes the following set of index parameters:

. Number of inputs.

. Number of outputs.

. Number of linguistic rules in the knowledge base.

. Number of MFs in the input universe of discourse.

. Number of MFs in the output universe of discourse.

. Number of binary vectors characterizing the membership function (resolution of the input uni-
verse of discourse for digital designs).

. Number of bits in a single binary vector (resolution of the membership degree for digital
designs).

. Input-to-output time delay.

Thisset of parameters, which was defined to make a comparative study of the state-of-the-art dedicated
digital fuzzy logic controllers at the time of publication, summarizes perfectly the main architectural
characteristics to be considered in the design of a fuzzy chip. To complete the picture, dissipated power
should be also considered.

Digital Implementations

The first digital hardware realizations, such as the above mentioned pioneering work of Togai and
Watanabe, used parallel rule processing architectures by providing a data path for each rule (Figure 2).
This configuration allows fast operation but is very area consuming and imposes a maximum number
of rules, so its scalability, in this sense, is limited. The provided fuzzy inference method was the max-
min inference rule, so circuits for maximum and minimum operators were implemented. Max and min
operations were performed serially to save silicon area, since the max-min operator structure had to
be replicated for each rule. Membership functions were implemented by storing the function values in
memory look-up tables. By using memories any membership function shape can be stored, but occupied
memory grows exponentially with the resolution, and hence memories are only used with low resolu-
tions. Obviously, decreasing the resolution in the discretization of the input values and the membership
degrees negatively affects the system performance (del Campo & Tarela, 1999; del Campo et al. 2001).
Moreover, in a parallel processing architecture the memory size required to store the MFs is proportional
to the number of rules, so severe limitations were imposed on the processing engine.
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Figure 2. Pure parallel implementation scheme of a three-input-one-output FIS with n rules (min-max
operation blocks replicate the graphically depicted input processing). MFs are linked to the rules and
stored individually for parallel processing.
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To overcome the above described limitations, many designers have implemented sequential rule
processing architectures. Serialized architectures are more flexible but do not exploit all the parallelism
of fuzzy systems and, since the number of clock-cycles required for processing the rules is proportional
to the number of the latter, they are generally slower. The rule base is stored symbolically in a memory,
and the generation of the membership functions is performed by circuitry that is shared by all the rules,

Figure 3. Serialized implementation scheme of a three-input-one-output FIS with single data-path for
all rules (min-max operation blocks replicate the graphically depicted input processing). Rules are
stored in memory using labels of antecedent and consequent MFs, and only one rule can be addressed
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that is, there is a fuzzy partition of the universes of discourse for each input variable (Figure 3). For
sequential fuzzy processors, memory size is still a problem for systems with a high input dimensionality
(many input variables), as memory size grows exponentially with the dimensionality of the input domain.
There have been proposed some alternative memory organization proposals that optimize memory us-
age and achieve a linear proportionality between memory size and input dimensionality (Eichfeld et al.,
1992; Eichfeld et al., 1995; Hollstein et al., 1996), although these optimized organizations apply severe
restrictions to the allowed MF overlapping degree.

Input Stage: Pure memory approach to the MF representation is very flexible, but is very memory
demanding too. An alternative approach that saves memory resources consists in storing only some
values that define the shape, usually piecewise-linear, of the MFs. These values may represent both the
breakpoints and the slopes of the interpolating linear functions. The operations required to calculate
a membership degree are usually a search of the domain segment the input value belongs to, and the
computation of the linear function defined for each domain segment. The amount of linear functions
needed to describe a MF is limited, and the more complex shape is wanted the more memory must be
used to store the function parameters. There are very simple designs restricted to represent elementary
A, S or Z shapes (Ascia et al., 1997), and other more developed implementations capable of representing
more complex PWL functions (Eichfield, 1996; Halgamuge, 1994; Hollstein et al., 1996). The allowed
overlapping between MFs is also a concern, but in any case, the required memory is much lower than
for a look-up-table approach.

The drawback is the need for additional though quite simple, membership function circuits (MFC)
to compute the membership degrees. The use of pure MFCs (circuits that directly compute the MF
through an algorithm) to process the membership degrees in digital implementations, unlike in the
analog approach, is quite rare. These circuits approximate, with adjustable accuracy and full program-
mability, continuous nonlinear functions like Gaussians, sigmoidals or generalized bells that boost the
knowledge representation capability of the FISs with almost no memory cost (Basterretxea et al., 2002;
Basterretxea et al., 2006).

Rule processing: Acommon strategy that improves the performance of serial processing architectures
consists in evaluating only the active rules, that is, the rules with non-zero output. The active rules are
detected after calculating the membership degrees of the antecedents or by comparing the input values
with the supports of the MFs. When a non-zero fuzzified data is detected, the number of active MFs and
their degrees of membership are saved. Then, an associative memory in which the rule antecedents ad-
dress their consequents is accessed to retrieve the consequents of active rules. Any rule that shares a MF
that is not activated by a system input will have a null output, so there is no need for it to be processed
and computation time is saved. The active rule selection operation is critical for the active rule driven
processors and different implementations have been reported. Some of them perform the detection of
active rules in parallel with fuzzification (Weiwei et al., 2004), saving clock-cycles and reducing latency,
but are static non-adaptable selectors for predefined MFs. In the majority of designs, hence, the selection
begins late after fuzzification, as explained above (D’Amore et al., 2001; Tkeda et al., 1992; Watanabe et
al., 1990). In (Ascia & Catania, 2000), an active rule selector that uses two fuzzification units to operate
in parallel is described, obtaining a process two times faster than for simple selectors. Another limitation
imposed by these designs is a severe restriction in MF overlapping, usually allowing the overlapping
of just two MFs. Moreover, these selectors are not scalable in terms of the number of inputs, MFs or
bit-width. Recently, some more sophisticated algorithms have been proposed to obtain fully scalable,
faster and overlapping restriction-free active rule detectors (Hamez et al., 2008).
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Asan increase in the dimensionality of the input space causes an exponential growth in the complexity
of the system when using grid partitions -this problem is known as the curse of dimensionality-, some
designers have searched for alternative architectures in order to tackle this problem. This is the case of
the above mentioned PWL and PWM fuzzy systems (Rovatti, 1998). In piecewise linear and multilinear
systems the inference procedure is reformulated to have a complexity O(n.log n), being n the number
of input variables. The underlying idea is a sort of active rule processing scheme applied to a restricted
fuzzy modeling. Imposed restrictions are as follows: the MFs are triangular shaped, they are normalized,
and they overlap in pairs. These constraints guarantee that, given an input vector, only two antecedents
per input dimension provide non-zero activation values, so a corresponding “active cell” is defined in
the input domain partition. Once this active cell is identified and its corresponding parameters loaded,
a single inference kernel processes the output (del Campo et al., 2008; Rovatti et al., 1998;). Of course,
this improvement in performance means storing many intermediate pre-computed results, so memory
requirements are notably increased. Similar architectures are proposed in (Baturone et al., 1998; Vidal-
Verdu et al., 1998) for mixed analog/digital fuzzy chips.

Output Stage: The last of the processing units in a FIS, that is, the defuzzification stage, is of main
importance, as it is one of the most time-consuming operations. Generally speaking, defuzzification
requires multipliers, adders, substracters, accumulators and a divider. There are many defuzzification
methods proposed. The most common defuzzification method for hardware implementations is the
Center-of-Area, but it is not very hardware-friendly itself —although not so time consuming as the more
extended centroid of area—, so several alternatives to optimize the hardware have been proposed, usually
with the aim of avoiding the multipliers (Watanabe et al., 1990) or the divider (Ruiz et al., 1995). In any
case, defuzzification operations are not easily subject to rigorous mathematical analysis, so alternative
non Mamdani-like fuzzy inference systems that do not employ fuzzy consequences, such us the very
popular Sugeno-type fuzzy inference systems, have been widely used both in software and hardware
implementations.

With the aim of simplifying the implementation of fuzzy operators and reduce occupied area, some
researchers have worked on alternative representations of digital numbers that allow their serial pro-
cessing. These are the so-called pulse-based techniques, including stochastic computation, pulse-width
modulation and bit-serial arithmetic. In these alternative approaches, numbers are represented as streams
of individual bits and system precision is controlled in time rather than in area. With the present gigahertz
clock rates, it is possible to compute numbers serially with highly pipelined architectures and achieve
good throughput while hardware complexity is dramatically reduced for high accuracy number repre-
sentations —see (Dick et al., 2008) and references herein—. Depending on the representation, arithmetic
operations like multiplication, probabilistic sums, and probabilistic negation in the stochastic repre-
sentation, or maximum, minimum, and difference in pulse-width modulation are performed by simple
two-input one-output logic gates. Bit-serial arithmetic operators are also much simpler than parallel-bit
implementations. The major drawback of these approaches is the high clock frequencies required, only
achievable by state of the art devices that may imply higher power consumption.

Analog Implementations
Inspite of their design complexity and lower accuracy, analog realizations have sometimes been preferred

for their high speed, low area, and low power consumption, mainly for highly parallel and high input/
output dimensionality. Input-output delay times reported for various analog designs are as low as tenths
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Figure 4. Current-mode analog fuzzy circuitexamples: (a) transconductance membership function circuit,
(b) max operator (concept diagram), (c) min operator (concept diagram). Analog circuits use much less
transistors than their digital counterparts: an 8 bit resolution MF occupies 256 bytes of memory, and
around 430 transistors are needed to implement an 8 bit MAX/MIN CMOS digital circuit.

of microseconds (D’Amore et al., 2001; Peters et al., 1995), or even less —63 ns in (Amirkhanzdeh et
al., 2005)-. As they process the fuzzy rules in parallel, time response does not depend on the complexity
of the inference engine. When input signals are taken from sensors and output signals excite actuators,
using fuzzy analog chips avoids the use of A/D and D/A converters, since the majority of sensors and
actuators cope with analog signals. On the other hand, compared to the digital approach, analog designs
are less efficient with regard to rearrangement and programmability, and show relatively low accuracy,
although analog designers sometimes claim that this is not a severe limitation in view of the typical
demands of fuzzy control applications.

The first analog fuzzy chips were designed by Yamakawa (1988) in bipolar technology. Analog
design is much more “artistic” than digital design since it is less hierarchical and structured, and the
same specifications can be reached in many different ways. Consequently, it is more difficult to make a
taxonomical description of analog fuzzy chips, which are almost exclusively fuzzy controllers. In any
case, in the continuous-time analog design framework, two main design styles can be distinguished:
current-mode circuits and voltage-mode circuits. There are also some designs with transconductance
blocks, which work with voltages as inputs and currents as outputs. Current-mode circuits appear to
be the best suited option since basic fuzzy operations can be implemented with very few transistors.
Adding and subtracting operations are simple wire connections, and multiple input maximum and mini-
mum operators are also very simple circuits (Baturone et al., 1994; Lemaitre et al., 1994), as depicted
in Figure 4. Another advantage of current-mode circuits is that they are capable of operating with very
low voltage supplies. However, current-mode MFCs use current mirrors to replicate their outputs, as
their fan-out is 1. From the technological point of view, most current-mode designs use MOS (Metal
Oxide Semiconductor) transistors.

\/oltage-mode circuits interface much better than current-mode circuits do with the majority of sensors
and transductors, which usually have voltage-mode output signals. Another advantage is that the input
and output signals of the circuits can drive various inputs at the same time with no need of additional
circuitry. Voltage-mode fuzzy chips usually use transconductance-mode MFCs based on differential-
pairs of transistors operating in weak inversion (Dick et al., 2008) or in strong inversion (Baturone et
al. 1994 ; Guo et al., 1996; Landlot, 1996; Lemaitre et al., 1994; Ota & Wilamowski, 1996; Peters et
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al., 1995; Rojas et al., 1996; Ruiz et al., 1995;.Vidal-Verdi & Rodriguez-Vazquez, 1995) to produce
smooth non-linear MFs, although there are some pure voltage mode designs, such as those circuits of
Yamakawa (1993) implemented in bipolar technology. Some researchers have exploited the subthreshold
operation mode of MOS transistors with floating gates to obtain very low consuming building blocks
with the ability to store information in the MOSFET (MOS Field Effect Transistor) gates (Marshall &
Collins, 1997). Voltage-mode designs are usually implemented with single ended amplifiers, resistors
and capacitors (RC-Active), or with differential amplifiers and capacitors (MOSFET-C). Transconduc-
tance designs use OTAs (Operational Transconductance Amplifiers) and capacitors as basic building
blocs. The OTA-based design is more structured, but it occupies more silicon area (Indue et al., 1991;
Tsukano & Inoue, 1995).

An alternative to continuous-time analog design is the use of switched circuits or discrete-time cir-
cuits. The aim of switched circuits is to obtain a superior precision and better programmability compared
to the classical analog designs, but maintaining a high processing speed with less area occupation and
power consumption than a digital counterpart. Switched design is based on the use of a clock-signal
to control the operation of switches, so the behavior of the circuit is controlled by the clock-period. A
drawback of switched design is that basic operations are not implemented at transistor level, but with
operational amplifiers or comparators, so the occupied silicon area is bigger. There are two main discrete-
time analog design techniques: switched capacitors (SC), which are voltage-mode and switched current
(SI), which are current-mode. Some discrete-time analog FIS implementations were published in the
nineties (Huertas et al., 1993; Fattaruso et al., 1994; Cilingiroglu et al., 1997). Going further, hybrid
analog/digital implementations such as those described in (Amirkhanzdeh et al., 2005; Baturone et al.,
1997, Bouras et al., 1998; Miki & Yamakawa, 1995; Yosefi et al., 2007) have been presented as a good
alternative to pure analog circuits, combining the strengths of both analog and digital approaches. In
these designs, analog circuitry is used to perform a highly parallel fuzzy inference engine with low area,
high speed and low power consumption, and digital circuitry is used to provide high programmability
and long term storage for the system parameters.

SCALABILITY AND NEW TRENDS IN FUZZY HARDWARE

As is clear from the preceding section, a great research effort was dedicated in the decade of the 1980s
and early 1990s to the design and implementation of fuzzy hardware. Many of those works were de-
veloped by means of ASIC technology with the aim of achieving high performance requirements for
real-time applications. As exposed above, this technology is suitable to fit the specificities of fuzzy
computation, but it suffers from several drawbacks such as low flexibility, long development cycles,
and a complex design methodology that results in expensive solutions that rapidly become obsolete.
However, the present situation of fuzzy hardware design is other than it was ten to fifteen years ago, as
is the design of any other complex digital system. Nowadays flexible solutions for high-performance
fuzzy computation may be easily developed and updated by means of user-friendly CAD (Computer
Aided Design) tools. This is a consequence of the development of new hardware platforms and new
design paradigms that have broaden the implementation choices by giving new freedom degrees and
new tools to the design process.

With regard to the platforms, the use of reconfigurable hardware —mainly FPGAs— and the integra-
tion of whole digital systems —processors, dedicated circuits, memory and other peripherals—on a single

12



Electronic Hardware for Fuzzy Computation

chip (System on Chip or SoC) has narrowed the gap between general purpose hardware and dedicated
hardware approaches, and between software and hardware. General-purpose fuzzy hardware imple-
mentations are rarely published nowadays, and there are no reports of new commercial fuzzy chips.
Instead, ad-hoc solutions targeted to specific applications are designed and implemented on configurable
hardware platforms. If the target application or its requirements change, the system is redesigned and
rapidly implemented by reconfiguring the hardware. In this sense, the present availability of synthesiz-
ers based on standard HDLs enhance desired properties of hardware architectures such us modularity,
reusability and scalability.

The scalability of a fuzzy system is closely related to the technology of reconfigurable hardware; it
measures the ability of the system to improve its performance after adding hardware, proportionally to
the new resources. This property is closely linked to the fraction of parallelism allowed by the algorithms
and the availability of resources in the target platform. Concerning fuzzy computation, a scalable fuzzy
system is efficient and practical when applied to complex situations such as multidimensional problems
with a large number of membership functions and a large rule base. A useful tool in designing for scal-
ability is the well known Amdahl’s Law (Amdahl, 1967) which gives a measure of the speedup that can
be achieved by exploiting parallel processing. It states that the maximum speedup that can be achieved
by adding new functional modules to the parallelizable fraction of an algorithm is limited by the frac-
tion of the calculation that is sequential. For instance, the inference algorithm in a FIS allows a certain
degree of parallelism but it necessarily involves a fraction of serial computation (the same states for
defuzzification algorithms). In summary, hardware designers have to carefully analyze the performance
and scalability issues before making decisions about the system architecture. Finally, note that the scal-
ability property, applied to electronic systems, is sometimes used to quantify specific requirements for
a particular dimension such as load, precision, etc.

Reconfigurable Hardware

With the aim of better understanding the state-of-the-art in reconfigurable hardware for fuzzy computa-
tion, let us briefly introduce some background concepts concerning FPGA technology. An FPGA is a
semiconductor device which can be configured by the user, after the chip is manufactured, to implement
virtually any digital function as long as its available resources are adequate.

Figure 5 illustrates the general structure of a typical static random access memory (SRAM)-based
FPGA. Most FPGAs consist of a matrix of configurable logic blocks (LBs), a configurable routing
structure, and 1/0 blocks that drive the 1/0 pads of the chip. A circuit is implemented in the FPGA by
programming each LB to implement a small part of the logic and by programming the routing structure
to make the necessary connections between LBs, while the 1/0O blocks are programmed to operate as
either input pads or output pads. The programming information is a string of ‘0’ and ‘1’ (bitstream)
generated after automatic mapping of the design onto the FPGA. This information, commonly referred
to as configware, is stored in SRAM cells during the configuration process of the device (the configura-
tion memory is not shown in Figure 5). The actual circuit is easily updated by reconfiguring the device
with a new bitstream.

The whole development cycle of FPGA solutions is supported by user-friendly CAD tools, developed
by the vendors or third party companies, which dramatically reduce the development time. The inherent
reconfigurability of FPGAs, without additional costs, eases system prototyping and architecture update.
Although FPGAs cannot match ASICs in performance, the former delivers a better performance/cost
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Figure 5. Structure of a typical SRAM-based FPGA
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ratio than the latter whenever the parallelism can be exploited. Undoubtedly FPGAs outperform ASICs
in terms of the flexibility (in a broad sense) and development time.

Reconfigurable Fuzzy Processing

Since first fuzzy chips based on FPGASs were reported in the literature in the early 1990s (Manzoul &
Jayabharathi, 1994; Hossain & Manzoul, 1993), both the capacity and the performance of FPGA devices
have been greatly improved due to the rapid evolution of microelectronic technology over the past years.
Those preliminary works were devoted to the development of small scale fuzzy controllers, with no strict
requirements in performance or in power dissipation. Most of them used simplified approaches, mainly
look-up tables, to implement either the whole system or the most time-consuming operations (Hung &
Zajak, 1995; Manzoul & Jayabharathi, 1994: Manzoul & Jayabharathi, 1995). To overcome the capacity
limitations imposed by early FPGA technology, some researchers proposed the partition of the system
functionality into multiple programmable devices —e.g. FPGAs and EPROM s (Erasable Programmable
Read Only Memory)— (Hollstein et al., 1996; Hung & Zajak, 1995). In addition, FPGAs were also used
at that time with prototyping purposes, as a previous step to the fabrication of ASIC fuzzy chips with
better performance (Hossain & Manzoul, 1993).

Beside the technological evolution, FPGA design tools and methodologies have also evolved from
a design flow based on schematics to a more flexible design flow centered on HDLs. Standard HDLSs,
namely VHDL and Verilog, are nowadays the most widely used mean to describe, simulate and syn-
thesize digital circuits. With the integration of HDLs into the design flow, the reconfigurable approach
has gained in flexibility, portability and scalability; HDL allows the designer to define generic and
parameterizable architectures which can be easily resized and resynthetized. Therefore, the scalability
problem associated with FPGA solutions has to do more with system modeling —i.e. HDL model- than
with electronic design. Towards the middle of the 90s, some researchers began to exploit the benefits of
HDL specifications to develop fuzzy hardware. Some of them went a step further by developing CAD
tools, mainly based on VHDL, for rapid prototyping of fuzzy hardware (Hollstein et al., 1996; Kim,
2000). The ultimate goal of these tools is to fulfill the requirements of a wide range of applications in
terms of fuzzy model type —fuzzy operators, inference mechanism, fuzzification and defuzzification
strategies—, complexity —number of 1/O variables and size of the rule base—, and performance.
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However, despite the methodological advances introduced by HDLs in the past decade, large fuzzy
systems still exceeded the size of a single device so they had to be split into several FPGAs. In this
situation, another way to tackle the problem of capacity limitation was proposed: the global run-time
reconfiguration method where the computation of the fuzzy system is divided into several temporally
independent tasks (Kim, 2000). Each task is configured onto a single FPGA, one task at a time, while
a memory board is used for storing the intermediate results between consecutive configurations. This
work can be seen as the first precedent in the field of fuzzy computation of the method nowadays known
as partial run-time reconfiguration method.

In the framework of present FPGA technology, previous drawbacks have been largely overcome and
current technology provides a realistic approach to the development of hardware for high-performance
fuzzy computation. Let us outline some significant examples. For instance, fuzzy logic has been suc-
cessfully applied to controlling the behavior of mobile robots. In (Li et al., 2003) the authors present an
FPGA-based car-like mobile robot which uses fuzzy rules to model the experience of a skilled driver to
perform the parking task. Two FISs were implemented on a single FPGA of the Altera’s FLEX family,
one to control the steering angle and the other to control the speed of the car. Fuzzy hardware based
on FPGAs has also been used in the field of image processing. In (Louverdis & Andreadis, 2003) the
authors propose a fuzzy processor suitable for morphological color image processing. The processor
is capable of performing the basic morphological operations of standard and soft erosion/dilation for
color images with 24-bit resolution. The prototype (54 rules) was implemented on a FLEX10K device
of Altera and provided a performance of 601 KiloFLIPS with a typical clock frequency of 65 MHz. A
survey of FPGA-based intelligent controllers for modern industrial systems can be found in (Monmasson
& Cirstea, 2007). This review includes the implementation of a fuzzy controller for a synchronous stand-
alone generator. The proposed design aims to improve the efficiency of diesel-engine-driven generators
by allowing optimum speed operation. The fuzzy controller was modeled and simulated using VHDL
and the prototype was synthesized and implemented into a low-cost Xilinx XC4010 FPGA. This solu-
tion greatly improved the control performance while keeping a high level of flexibility. Finally, another
perspective of the suitability of FPGA to develop fuzzy computation is provided in (Chowdhury et al.,
2008). This work presents the development of a smart processing FIS for clinical diagnostic applications
in rural areas of Third World countries. The authors point out that FPGA technology is very useful in
these countries due to low investment, portability, short design cycle and the scope of reprogrammabil-
ity for improvement without any additional cost. The whole system has been realized on an Altera’s
Cyclone Il chip which can be interfaced with a wireless transceiver and other telecommunication media
for telediagnostic applications.

The Synergism between FISs and FPGAs

Summing up, in addition to the well known advantages of FPGAs, there are several specific advantages
of reconfigurable hardware technology that make it specially suited to implementing real-time scalable
fuzzy algorithms:

. Some FPGA families (e.g. Xilinx’s Virtex family) incorporate internal RAM blocks to the generic

structure depicted in Figure 5. These memory blocks are very useful for implementing large fuzzy
systems because of the huge amount of information involved in the definition of membership
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functions and rules that demands large on-chip memory resources. Distributed RAM blocks are
also useful for mapping memory-based approximations.

. The availability of a dense and flexible interconnection architecture (i.e. configurable routing in
Figure 5) fits the requirements of high performance FISs. Most fuzzy models can be viewed as a
layered structure, similar to an artificial neural network, where each layer consists of several par-
allel processing units densely connected with the neighboring layers. The interconnection scheme
of such systems requires high flexibility in the segmentation of the routing paths to avoid addi-
tional propagation delays.

. Modern FPGA families include higher level functionalities, such as multipliers or generic DSP
(Digital Signal Processing) blocks, embedded into the silicon. These resources are very useful
for implementing both the inference engine (e.g. Sugeno type fuzzy inferences) and the defuzzi-
fication stage because they are faster and occupy less area compared to if building them from
primitives.

. The capacity of FPGAs has increased according to Moore’s Law since the first families appeared
on the market, so, even very large fuzzy systems (e.g. data mining applications) may soon be
implemented on a single FPGA, provided that the architecture is scalable enough.

*  Rapid prototyping on FPGAs is a useful feature in developing for scalability. Reconfigurable de-
vices and tools allow the designer to develop fuzzy systems with different sizes and compare the
achieved performance in order to experimentally verify the scalability of the architecture.

In what follows we will continue to uncover potential advantages of FPGAs for fuzzy computation,
especially those concerning the latest advances in reconfigurable technologies.

Hardware/Software Codesign

In the last decade new design methodologies and tools have emerged to deal with the challenges of new
electronic platforms. In this sense, hardware/software (HW/SW) codesign (De Micheli, 1997; Wolf,
2003) has been proposed as an optimal solution for many systems where a trade-off between versatil-
ity and performance is required. This approach proposes the partition of the computation algorithms
into HW and SW blocks by searching for the partition that optimizes the performance parameters of
the whole system. A recent work in the field of fuzzy computation (Cabrera et al., 2004) concludes that
HW/SW solutions, with an adequate partition, can often outperform classical solutions, based either
on HW or SW, for designing high-speed and low-consumption fuzzy control systems. In this work the
authors implement the inference mechanism and a simplified defuzzification method in the hardware
partition whereas the remaining tasks (initialization, 1/0 processing, etc) are implemented in software.
On the basis of this partition of tasks, the authors present two HW/SW prototypes: i) a medium complex-
ity FPGA interfaced with an external microcontroller, and ii) a single Xilinx’s Spartan2 FPGA with an
embedded microcontroller core. The main advantage of the second approach, where all the parts of the
fuzzy system are integrated in a single chip, is the direct interfacing of HW and SW modules with the
consequent savings in 1/0 delays and hardware resources.

Meanwhile, a milestone in the evolution of reconfigurable hardware has been to combine the logic
blocks and interconnects of traditional FPGASs (logic fabric) with embedded microprocessors and related
peripherals to form a system-on-a-programmable chip (SoPC). Some examples are the Excalibur family
of Altera (Altera Corp., 2002) which incorporated an ARM processor core, and the Virtex-1l Pro, Vir-
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tex-4, and Virtex-5 families manufactured by Xilinx, which include one or more PowerPCs embedded
within the logic blocks (Xilinx Inc., 2008a). A similar approach, but less efficient in terms of area and
performance, consists in using soft-processor cores instead of hard-cores that are implemented within
the FPGA logic; two widely used soft-cores are the Xilinx’s MicroBlaze (Xilinx Inc., 2008b) and the
Altera’s NIOS processors (Altera corp., 2008). These new features of reconfigurable hardware have
been exploited to develop a new enhanced generation of fuzzy systems.

The analysis of the above mentioned works shows that to obtain efficient HW/SW architectures the
regular and recurrent computations have to be implemented in the hardware partition and the irregular
or less frequent computations are better suited to a software development (see Figure 6). For example,
the implementation of a PWL fuzzy controller using a SoPC of the Altera’s Excalibur family has been
reported in (Echevarriaetal., 2005). The system is a three-input single-output PID (Proportional-Integral-
Derivative) fuzzy controller with a cellular architecture. The main processing blocks of the proposed
architecture are ahyperplane generator and a preprocessing module. On the one hand, since the hyperplane
generator is a typical sum of products, it has been efficiently implemented in the hardware partition.
On the other hand, the preprocessing module, which involves a sorting algorithm, has been developed
by simple software procedures. The ARM processor operates up to 200 MHz and the hyperplane unit
performs the evaluation of the output in only two clock cycles with a maximum frequency of 84 MHz.
Another approach to SoPC-based fuzzy computation can be found in (Sanchez-Solano et al., 2007) where
acomplete design methodology and tool chain is presented. The proposed design flow combines standard
FPGAimplementation tools with a specific environment (Xfuzzy) for the development of fuzzy controllers
as IP (Intellectual Property) modules. The design flow has been used to develop a fuzzy controller, on
a Xilinx’s Spartan device, for solving the navigation tasks of an autonomous vehicle. 60% of the FPGA
resources are dedicated to implementing the MicroBlaze soft core and its associated components, and
the remaining 40% corresponds to the fuzzy inference IP core. Both the processor and the fuzzy core
operate with a 50 MHz clock; the fuzzy core completes one inference in 16 clock cycles.

However, the impact of using configurable hardware and HW/SW codesign techniques is greater
when hybrid systems, based on the synergism of fuzzy logic and other computational intelligence tech-

Figure 6. HW/SW co-design for fuzzy computation: a SoPC-based solution
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niques (mainly neural networks), are considered. Hybrid neuro-fuzzy systems combine typical fuzzy
systems with the learning algorithms of neural networks. The latter are used to adapt parameters of the
fuzzy system as membership functions or rules. A few years ago, Reyneri (2003) performed an in-depth
analysis of the implementation issues of neuro-fuzzy hardware. This work points out the limitations,
advantages and drawbacks of different implementation techniques and draws attention to HW/SW code-
sign as the most promising research area concerning the implementation of neuro-fuzzy systems, since
it allows the fast design of complex systems with the highest performance/cost ratio. Recently, several
publications account for HW/SW solutions for neuro-fuzzy computation (del Campo et al., 2008, Kung
& Tsai, 2007; Reyneri & Renga, 2004).

In (del Campo et al., 2008) an efficient HW/SW implementation of an adaptive neuro-fuzzy system
based on a SoPC is presented. The Excalibur device family, which embeds an ARM processor core, has
been used to prototype a neuro-fuzzy architecture. The microprocessor performs the learning algorithm
(gradient-descent method plus least-square estimator) and the 1/0 data processing, while a Sugeno-type
inference algorithm is implemented in the FPGA logic fabric. The main motivation to develop a hetero-
geneous HW/SW solution is the nature of neuro-fuzzy algorithms: the embedded processor provides
flexibility and high precision to implement the learning algorithms, while the logic fabric allows the
development of parallel hardware for high-speed fuzzy inferences. Along the same line is the adaptive
fuzzy controller for speed control of a permanent magnet synchronous motor drive developed in (Kung
& Tsai, 2007). The authors argued that the modules requiring fast processing but simple computation
are suitable to be implemented by hardware, whereas control algorithms with heavy computation can
be realized by software. They selected a device of the Altera’s Cyclone family and a soft processor core,
the NIOS 11 IP core, to develop the prototype.

Another recent proposal in HW/SW fuzzy computation is the context switchable fuzzy inference
chip (Qao et al., 2006). The authors have developed a reconfigurable fuzzy inference chip (RFIC) on a
Virtex I FPGAwhich allows for online changes in the rules. The RFIC uses a formatted memory map to
encode the fuzzy relational knowledge and the inference model. Any change in the rules (context switch)
is achieved via a loadable register, so there is no need to reconfigure the FPGA. A remarkable feature
of this work is the suitability of the RFIC to develop evolvable fuzzy hardware. The block architecture
suggested by the authors consists of the RFIC as fuzzy processing unit and an evolution module that
generates the new context. The evolution module (i.e. genetic algorithms) can be developed by using a
processor core. If the architecture is developed as a SoPC, it supports intrinsic hardware evolution (real
hardware is used during the evolutionary process). The potentiality of this trend will be analyzed later
after introducing partial reconfiguration techniques.

Although HW/SW solutions enhance reconfigurable hardware, there are also a few drawbacks that
have to be considered. The main drawback is the bottleneck of the HW/SW interface. The communication
overload between the microprocessor and the HW block can reduce the whole system performance. To
avoid this problem, the transfer rate of data and parameters has to be high enough to take advantage of
the parallelism of hardware. The limited bandwidth of the HW/SW interface is also an important obstacle
in designing for scalability, no matter what the scalability of the hardware or the software may be. In
this sense, a different kind of architecture known as network-on-chip (NOC) has been proposed recently
to deal with the communication problem in an efficient way. NOCs feature a router-based network for
on-chip communication among different cores (i.e. processor cores, memories and specific IP cores).
This emerging paradigm, as yet unexploited in the field of fuzzy computation, is suitable for the design
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of reconfigurable fuzzy systems with a high level of parallelism, better performance and enhanced scal-
ability in comparison with a conventional bus-based architecture.

Dynamic Partial Reconfiguration

Dynamic partial reconfiguration is a new design methodology for reconfigurable hardware that consists
in the ability to reconfigure selected parts of an FPGA anytime after its initial configuration while the
device is still active (run-time reconfiguration). Potential advantages of partial reconfiguration for fuzzy
hardware are multiple: self-reconfiguration, adaptability, scalability, reduction of power dissipation, and
reduction of device size, among others.

The most popular partially reconfigurable architecture is the Virtex Il series of Xilinx. These SRAM-
based FPGAs have a fine-grained architecture, similar to that depicted in Figure 5, but improved with the
addition of RAM blocks and hardware multipliers. Parts of the hardware on the reconfigurable device can
be changed at run-time by reprogramming only selected SRAM cells of the configuration memory, while
all other parts stay unaffected and operative. The device has different internal and external reconfigura-
tion interfaces of which the internal configuration access port (ICAP) is of particular interest because it
is accessible from the components within the FPGA (see Figure 6). Thus, a processor core embedded in
the FPGA can be used to control the internal configuration port during run-time. Since the system itself
decides to load new configuration data and initiates the reconfiguration task, this reconfiguration style
is known as self-reconfiguration. The above ideas have inspired the development of new approaches for
fuzzy computation, the evolution of reconfigurable hardware being the most innovative.

The configuration bitstream of a FPGA determines the function implemented by each logic block and
each interconnection switch (see Figure 6). Adaptation of the circuit functionality is achieved by modifi-
cations in the bitstream, in the same way that evolution of living beings is accomplished by modification
in the DNA strings. In this sense, there is an analogy between the bitstream in a FPGA and the genetic
sequence in living beings that has pushed researchers to apply the principles of artificial evolution to
reconfigurable hardware design. Concerning FPGA, evolvable fuzzy hardware uses genetic algorithms
for searching for a bitstream (i.e. genome) that configures the device with a circuit that satisfies the
design specification. Upegui (2005) proposes three methodologies for evolving hardware by means of
dynamic partial reconfiguration of the Virtex Il family. Each methodology is related to a different level
of abstraction and granularity in the elementary components used to evolve the circuit: modular evolu-
tion, node evolution, and bitstream evolution.

Node evolution methodology has beenapplied to evolve fuzzy computation hardware inthe pioneering
work by Mermoud et al. (2005). They use the difference-based reconfiguration flow (Eto, 2007) where
the designer is able to change the configuration of FPGA components such as LUTs (Look-Up Tables),
multiplexers, RAM blocks or /O resources. After the modifications have been performed, a partial bit-
stream can be generated including only the differences between the initial and modified bitstream. Since
only a limited number of bits are changed, the reconfiguration time is considerably reduced if compared
with the reconfiguration of a full bitstream. In this application, system evolution implies the modifica-
tion of LUT functions. The proposed implementation co-evolves two species (i.e. MFs and rules) in a
4-input single-output FIS with 3 triangular MFs per input and a total of 20 rules. The genome describing
the FIS consists of two individuals; the first one encodes the vertices of the triangular antecedents while
the second one encodes the connections between the antecedents and the rules, the fuzzy operators and
the consequents. The genome encoding is a key feature of the scalability of the system; it can be easily
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extended to increase the number of inputs and/or rules of the FIS. The main drawback of this solution is
that each partial bitstream has to be generated externally by the FPGA vendor tool. However, to overcome
this limitation, the authors are refining the implementation in order to allow on-chip evolution (Upegui,
2006). Performing on-chip evolution on FPGAs is a promising trend for fuzzy computation and adapt-
able systems, however, there is still much research effort to be done in this area.

HARDWARE FOR FUZZY DATA-MINING

Fuzzy data-mining techniques such as fuzzy clustering or fuzzy decision-tree algorithms are not fuzzy
rule-based processing schemes. In fact these algorithms are used to find structure in raw data, so very
often are useful for generating fuzzy rules not from expert knowledge but from non-directly interpretable
data sets. Hence, hardware design for fuzzy data-mining algorithm processing, except for the possible
need of input fuzzification or the use of common fuzzy operators such us max or min, has little to do
with the systems previously analyzed in this chapter. In any case, data-mining algorithms have been
traditionally implemented by software applications running on GPPs, since flexibility, scalability and
good interface with data-bases is more important for these systems than computation time, area or power
consumption. However, due to the increasing amount of data to be processed by data-mining algorithms
and the more and more frequent high speed processing specifications, the hardware development for
parallel processing or coprocessing of data-mining algorithms is gaining relevance. A few papers and
reports on hardware design and implementations for fuzzy data-mining algorithms speed up have seen
the light in the last few years, mainly related to fuzzy clustering algorithms. Let us review some of them
in this section.

Multiprocessor architectures: One of the characteristics of data-mining algorithms to be exploited
for process acceleration is their intrinsic parallelism, so the first steps to speed up data-mining applica-
tions have been oriented to algorithm parallelization. The main data-mining algorithms, fuzzy set theory-
based ones included, have been investigated with the aim of speeding up their processing: association
rule-based (Agrawal & Shafer, 1996; Shen et al., 1999), decision trees (Kubota et al., 2000) and fuzzy
decision trees (Kim et al., 1999), clustering (Boutsinas & Gnardellis, 2002), and fuzzy clustering (Mode-
nesi et al., 2007; Rahimi et al., 2004). The hardware implementation of the parallelized algorithms has
been performed in various manners using conventional processors, such as by using distributed memory
(Modenesi et al., 2007; Xu et al., 2003) or shared memory multiprocessor architectures (Jin et al., 2005;
Modenesi et al., 2007; Syeda et al., 2002;), or in grid environments (Cannataro et al., 2004). All of them
report good scalability figures.

Regarding fuzzy data-mining algorithms, in (Modenesi et al., 2007) for instance, a fuzzy C-means-
based parallel cluster analysis is performed in two multiprocessor architectures: a PC cluster and a
multiprocessor machine. Unlike in previous published parallel implementations, where only strategies
to distribute the iterative process to find cluster centers are considered, this work describes how to
parallelize the entire cluster analysis, including the determination of cluster centers and the optimal
number of clusters by computing a cluster validity index. This is an iterative process where the cluster-
ing algorithm is computed for a range of number of clusters and the performance index is computed for
every partition generated. When all partitions have been computed, the partition corresponding to the
maximum performance index is chosen. The algorithm begins by splitting the data equally among the
available processors. Each processor computes de geometrical center of its local data and communicates
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this center to a master processor, which sets the initial centers and broadcasts them so that all proces-
sors have the same centers values at the beginning of the fuzzy C-means clustering algorithm. After
convergence is achieved in a processor, a distance factor needed to calculate the global validity index
is computed in its local data and this value is sent to the master, where the validity index is calculated
and stored. If the range of number of clusters is covered, the algorithm stops, otherwise returns to the
set of initial centers performed by the master processor. This whole procedure is repeated as many times
as the desired range of number of clusters to obtain the partition with the best performance index. The
authors conclude that the bigger the datasets are, the more variables implied and the more number of
clusters to be generated, the higher the speeding up of the algorithm in multiprocessor computation is,
that is, it behaves in a scalable manner.

The same research team has investigated a multiprocessor based parallelization of fuzzy rule based
classifiers by deriving a fuzzy rule based classifier for each input variable to aggregate the partial con-
clusions into a global one (Evsukoff et al., 2005). In this case, a single variable classifier is assigned to
a different processor in a parallel architecture, and partial conclusions are synchronized and processed
by a master processor. This approach is applied to a very large database and results are compared with
a parallel neural network architecture.

Reconfigurable hardware: In recent years some efforts have been focused on designing ad-hoc
hardware accelerators to speed up data-mining workloads. As clustering algorithms are, to some ex-
tent, data streaming applications, experimentation on their implementation on data streaming targeted
off-the-shelf hardware can be found, as in (Harris, 2005), where a fuzzy C-means adaptive algorithm
is programmed on a commercial graphic processing unit. With the maturing of FPGA technology, re-
searchers working on intensive data-mining applications immediately became aware of the benefits of
exploiting the fine-grain parallelism and scalability easiness of reconfigurable logic devices as hardware
coprocessors: exploring the properties of a FPGA coprocessor system in the domain of query process-
ing for computation-intensive data mining applications (Leung et al., 1999), implementing clustering
algorithms on reconfigurable fabrics (Baker & Prasanna, 2005; Estlick et al., 2001), improving the data
transfers for large data sets (Zhang et al., 2004) or developing text mining IP-cores for FPGAs (Free-
man & Jayasooriya, 2006) . In (Choundary et al., 2007), for instance, the authors describe a generic
data-mining system architecture that can be customized for specific applications. This is achieved by
implementing kernels with very time-consuming data-mining specific calculations on reconfigurable
hardware (FPGAS). Once the critical kernels of various data-mining algorithms are identified, specific
hardware can be implemented to process them in a processor/coprocessor architecture. Since kernels
remain the same for a given application, the required logic can be loaded before the process begins by
programming the FPGA. In the case study performed by these researchers, the fuzzy C-means is one of
the analyzed algorithms. The kernels identified as critical for this algorithm are the clustering process,
the distance calculation and the fuzzy sum. Ad-hoc hardware logic for these kernels is designed and pro-
grammed in a FPGA. The system has been tested with datasets of various sizes, and it has been observed
that the bigger the dataset the bigger the improvement in the speed up. The authors report overall speed
ups from 11x to 80x in the fuzzy C-means algorithm. Besides this, the experimental results strongly
suggest that the designed system is scalable.

High performance reconfigurable computing: A relatively new and very promising research field
on high performance computing that can be naturally targeted to intensive and/or real-time data-mining
applications is the one known as high performance reconfigurable computing (HPRC). HPRC combines
parallel processing theory and techniques used in high end supercomputers and computer clusters with
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state-of-the-art hardware acceleration devices, such as the most advanced FPGASs. These systems are
able to exploit coarse-grained functional parallelism as well as the fine-grain parallelism intrinsic to the
FPGA internal architectures (Buell et al., 2007). Nearly all major high performance computing vendors
such as SRC Computers (SRC-7family), Cray (XR1) or Silicon Graphics (RASC Technology) now have
HPRC highly scalable product lines, reflecting a clear belief in the huge potential of reconfigurable
computing. The first parallel-computing architectures including FPGAs were not designed to be scalable,
but recent HPRC computers use stackable crossbar switches connected to parallel buses that allow for
implementing different, highly scalable topologies. Commercial firms such as Nallatech, for instance,
have introduced a family of scalable cluster optimized FPGA HPRC products to either upgrade exist-
ing HPC cluster environments or to build new clusters with off-the-shelf FPGA computing technology
(Cantle, 2006).

Some vendors like Exegy have developed specific data mining targeted systems by combining
software with reconfigurable hardware to produce applications that perform at hardware processing
speeds, while retaining the flexibility of software (Dutcher, 2006). Exegy claims its systems have vir-
tually zero latency and near linear throughput gains by adding appliances (linear scalability). For the
highest performance systems, where 1/0 band and FPGA interface latency requirements are higher than
standard parallel buses (PCIx) can offer, specific solutions for data /O management are implemented.
Some examples are Silicon Graphics” RASC blade technology and NUMAIInk® interconnect with its
Scalable System Port solution, SRC’s Hi-Bar Switch for its SRC-7 family, and Cray’s SeaStar2+ for its
XR1 Reconfigurable Processing Blade. HPRC provides performance increases that are often of orders
of magnitude compared to scalar microprocessors-only-based solutions. In addition, power consumption
per gigaflop (floating-point operation per second) is dramatically reduced, form factors are diminished,
and the overall price/performance ratio is notably lower. All these promising features make us think
HPRC will soon be a preferred option for cutting edge fuzzy (and non-fuzzy) data-mining algorithm
processing of large data-bases.

CONCLUDING REMARKS

In this chapter we have seen that electronic hardware design for fuzzy computing has been a very ac-
tive research field during the last twenty years, beginning early after the first successful applications of
fuzzy inference systems were published. Specificity of fuzzy processing computational characteristics
combined with high speed, small area, and/or low power requirements have pushed designers to inves-
tigate into new hardware implementations to obtain high performance fuzzy ASICs targeted to specific
applications, which generally have been fuzzy controllers. Both the digital approach and the analog ap-
proach have been followed in the design process, producing fuzzy chips with distinctive performance
characteristics, strengths and weaknesses. However, in the last decade the number of reported works
on FIS analog implementations has suffered a progressive decay that clearly shows a loss of interest
in this technology for applications in this area. This tendency is closely related to the never ending and
comparatively much faster advances in digital technologies, and more precisely, to the rapid develop-
ment of digital reconfigurable devices and the associated drastic changes in design and implementation
methodologies.

The consolidation of reconfigurable hardware, particularly FPGA technology, together with the stan-
dard use of hardware description languages for digital system modeling have revolutionized the field

22



Electronic Hardware for Fuzzy Computation

of digital system design in many areas, particularly in fuzzy hardware design. New design methodolo-
gies such as the hardware/software codesign, and bioinspired techniques such as the genetic algorithms
have produced novel and more efficient and flexible hardware designs and have broadened the research
perspectives in this field:

. HW/SW co-design techniques, applied to the development of SoPCs, make it possible to imple-
ment a complete fuzzy inference system, including system peripherals, on a single chip with the
consequent savings in size, cost and power consumption.

. Several present applications of fuzzy computation require enhanced capabilities to deal with com-
plex problems. This feature involves the hybridization of the fuzzy algorithm with other tech-
niques poorly suited for hardware implementation. Thus, the heterogeneity (HW/SW) of SoPCs is
tailored to the computational demands of hybrid fuzzy systems.

. Current design methodologies for FPGAs promote the use of soft IP cores (i.e. netlist or HDL) as
building blocks for complex hardware design. The availability of reliable and previously tested IP
cores addresses the needs for rapid prototyping, design reuse and scalability.

. Partial hardware reconfiguration is emerging as a promising solution to enhance digital fuzzy
hardware with the capability of self-adaptation. Although this technology is not yet mature, it is
expected that over the next few years FPGA manufacturers improve design tools to fully support
dynamic partial reconfiguration.

Hardware design for fuzzy data-mining, which traditionally has been implemented on general purpose
machines, has become the object of investigation in the last few years as a consequence of the huge
amount of data to be processed and the more frequent requirements for high speed applications. On the
one hand, various hardware coprocessors for speeding up data-mining algorithms have been recently
published. On the other hand, recent advances in high performance reconfigurable computing foretell
a very promising outlook for low cost, high performance, linearly scalable data-mining processing
environments. Nevertheless, there are still some challenges for HPRC applications that must be faced:
double-precision floating-point performance, memory bandwidth and ease of use of development tools
for HPC programmers not familiarized with electronic engineering computing EDA tools are some of
these.
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ENDNOTE

! In pipelined designs attention must be paid, of course, to possible variations in the system through-
put when new inputs are introduced to the system.
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ABSTRACT

This chapter examines how to scale algorithms which learn fuzzy models from the increasing amounts
of labeled or unlabeled data that are becoming available. Large data repositories are increasingly
available, such as records of network transmissions, customer transactions, medical data, and so on.
A question arises about how to utilize the data effectively for both supervised and unsupervised fuzzy
learning. This chapter will focus on ensemble approaches to learning fuzzy models for large data sets
which may be labeled or unlabeled. Further, the authors examine ways of scaling fuzzy clustering to
extremely large data sets. Examples from existing data repositories, some quite large, will be given to
show the approaches discussed here are effective.

INTRODUCTION

Scaling fuzzy learning systems can be a challenge, because the search space for fuzzy models is larger
than that of crisp models. Here, we are concerned with scaling fuzzy systems as the size of the data grows.
There are now many collections of data that are terabytes in size and we are moving towards petabyte
collections such as a digital Sloan sky survey (Giannella et al., 2006, Gray and Szalay, 2004).
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If learning fuzzy models requires more computation time than learning crisp models and it is astruggle
to enable crisp learning models to scale, can we scale fuzzy models of learning? The good news is that
scalability is certainly possible as the number of examples grow large or very large. We do not examine
the issues with large numbers of features which are a significant problem, for at least supervised fuzzy
learning.

Methods for scaling supervised fuzzy learning methods and unsupervised fuzzy learning methods
(though only clustering algorithms) will be discussed. An obvious approach is to subsample the data
such that each subset is a size that is amenable for learning, but captures the information inherent in the
full data set. It is a good approach, but one that has pitfalls in knowing when to stop adding data to the
training set (Domingos and Hulten, 2000). Some good papers in the area of subsampling are (Provost
and Kolluri, 1999,Wang et al., 2008, Provost et al., 1999, Pavlov et al., 2000). Decomposition of the
data is the other major approach one can envision. It is this approach, leading to an ensemble or group
of models that is the focus of this chapter.

For labeled data which enables supervised learning, We will show that an ensemble approach can
be used to increase the accuracy of the fuzzy classifier. This is a necessary condition to working with
disjoint subsets to enable the construction of fuzzy classifiers on very large data sets. However, we will
focus on relatively small data sets where the goal is to increase accuracy, not to scale. The same ap-
proach using disjoint subsets will allow for scalable fuzzy classifiers to be developed. For unsupervised
learning, examples will be given which show that the clustering approaches presented here produce data
partitions which are comparable to those obtainable when clustering all of the data.

Ensembles

An ensemble, for our purposes, is made up of a set of models. The models may be created through super-
vised or unsupervised learning. The models in the ensemble need to be diverse. The idea of diversity is that
they make different types of errors and in the aggregate errors are corrected (Banfield et al., 2005).

The models may be created from different underlying learning algorithms. However, the most com-
mon way to create an ensemble is to use different data sets and the same underlying learning algorithm.
A common approach is to use bootstrap aggregation or bagging (Breiman, 1996), which is selection
with replacement to create different training data sets. This has the effect of weighting the data, as some
of it is left out (0 weight) and some of it is duplicated (doubled, tripled or more in weight). On average
about 63% of the training data will be in a given bag which is the same size as the training data. The
assumption that the training and test data are independently identically distributed is implicit in bagging.
The use of bagging to create an ensemble typically improves the classification accuracy (Banfield, et
al., 2007, Dietterich, 2000).

Boosting is another popular algorithm for creating ensembles of classifiers (Freund and Schapire,
1996). It focusses on misclassified examples by giving them a higher weight. For our purposes, it is a
sequential algorithm (you do not know what is incorrect until the next model/classifier in the ensemble
is built). There have been efforts to make it scalable (Chawla, 2004), but they have not been applied to
fuzzy classification approaches.

As fuzzy learning algorithms typically scale poorly with the number of training examples, methods
that allow for minimal training data set sizes, but produce accuracy comparable to all the data are desir-
able. Recent work has shown that an ensemble can be created from disjoint training data sets or data sets
that have no overlap and obtain accuracy on unseen test data that is equivalent (or sometimes better) than
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training on all of the data (Chawla, et.al. 2001). For large data sets, this means you can build classifiers
in parallel on subsets of the training data to get the same accuracy as training with all of the data. Now,
you can train on data that would not fit in main memory, for example.

Scaling Supervised Fuzzy Learning

There are a number of ways to scale learning. Subsampling the data for a smaller training set is an impor-
tant approach. As the number of fuzzy rules grow with the number of features, effective feature selection
can be a big help. Other approaches are to optimize the learning algorithm or develop algorithms which
scale better, at perhaps the cost of some precision.

In this section, we focus on one particular approach using ensembles. Essentially, this is the subsam-
pling approach with a twist that all of the training examples are used by the union of classifiers in the
ensemble. Each learning algorithm will get a unique set of training examples. It is certainly also feasible
to give them overlapping sets, but for true scalability to very large or extreme data unique or disjoint
sets are likely the best. You will overall use less data with the disjoint data sets, which may be important
when the size of the data is very large. A disjoint data set can be given to each learning algorithm for
building a classifier which will almost certainly result in a diverse set of classifiers.

In order to be confident that the combination of classifiers built on disjoint data sets will result in
accuracy comparable to building a single classifier on all the data, it is useful to look at experiments
with smaller data sets. We will present experiments using 20 smaller data sets and bagging to show that
bagging can improve the accuracy of fuzzy classifiers. Where bagging works, one can expect that classi-
fiers built from disjoint data subsets of reasonable size can be combined to produce accuracy comparable
to learning on all the data (Shoemaker et al., 2008). So, our experiments here show that bagging can be
applied to increase the accuracy of fuzzy classifiers.

The classifiers in the ensemble do not need to be of the same type. However, the most typical con-
figuration is to use classifiers that are all of the same type. We will illustrate the idea of an ensemble of
classifiers by using the ANFIS (Adaptive Neuro-Fuzzy Inference Systems) fuzzy neural network (fl-
toolbox, 2006) learning algorithm to generate classifiers. It is widely available as part of the MATLAB
Fuzzy Logic Toolbox.

An adaptive network can be considered as a superset of feed-forward neural networks with supervised
learning. ANFIS is a type of Neuro-fuzzy network which has the fuzzy rules embedded within the neural
network. Figure 1 shows the structure of an adaptive network. Node functions are represented by squares
if they have parameters, which make them adaptive, and by circles if they do not have parameters. The
links have no associated weights and they only represent direction flow. For further details on ANFIS,
see (Jyh and Roger, 1993).

The ensemble building approach here is simple. It is a modification of bagging (bootstrap aggrega-
tion) (Breiman, 1996) in which training sets are selected from the overall data by selecting data, with
replacement, until a bag of the chosen size (usually 100%) is created. This essentially re-weights the
examples in the training set for each classifier.

For scalability, one would simply divide the data into n disjoint subsets of tractable size. Learn n
classifiers using ANFIS. Then, given a test example you will get n fuzzy predictions. These need to
be combined. They can be combined by using a majority vote (e.g. harden each decision and take the
class that most often has the highest fuzzy membership). Perhaps a better combination is to add up all
the fuzzy memberships and average them. Then take the higher average membership. The reader can
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Figure 1. Structure of an adaptive network

certainly think of other possible, combination methods which may be better, but we will present the
above two.

The approach of building n classifiers trained on disjoint subsets of data and then combining them
has been shown to provide accuracies comparable to those obtained using all the data (Shoemaker et al.,
2008). The advantages are that each classifier can be trained in parallel on tractable size data sets. This
can enable learning from data which cannot be fit in computer memory or that will require calculation
time that is not feasible for the problem. It allows for using more data in the training process (all of it for
example) than you could if you subsample to enable timely learning. Experimental evidence has shown
that this approach is successful with decision trees and neural networks as the underlying base classifiers.
As long as the classifiers make different errors (have a diversity of responses) and have “reasonable”
accuracy, one can expect that any underlying learning algorithm can be exploited to produce the classi-
fiers (Kuncheva, 2004). If fuzzy classifiers which make different errors, but generally have comparable
accuracy, can be constructed an ensemble approach may work for them.

There has not been very much work on ensembles of fuzzy classifiers and no work that we are aware
of on scaling fuzzy classifiers for really large data sets. A clear reason for this is the fact that fuzzy
classifiers have been found most useful for their explanation capabilities. That is, they are very good at
producing understandable sets of rules (Klawonn et al., 1996). If you have very large data sets where
you get lots of fuzzy rules and even worse have to combine them, you will lose the understandability.
Then the question becomes did you get a fast, accurate overall classifier. People have either not obtained
more accuracy through ensembles of fuzzy classifiers or not tried this approach to get higher accuracy.
Perhaps because of the loss of interpretability.

In the following subsection, we will show up some results from bagging ANFIS classifiers. The posi-
tive aspect of the results is that you can get a statistically significant increase in accuracy on a number
of data sets using bagging and a fuzzy learning approach. Of course, an interpretable set of rules no
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Table 1. The 20 data sets used.
and classes are shown

The number of attributes used, the total attributes, number of instances

Data Set Attributes used Total Attributes # Instances # Classes
balance_scale 4 4 625 3
breast 6 9 699 2
cmce 6 9 1473 3
dermatology 6 34 366 6
glass 6 9 214 7
haberman 3 3 306 2
heart-statlog 6 13 270 2
lonosphere 6 34 351 2
iris 4 4 150 3
monks1 6 6 432 2
monks2 6 6 432 2
newthyroid 5 5 215 3
page-blocks 6 10 5473 5
phoneme 5 5 5404 2
pima (5) 5 8 768 2
satimage_test (6) 6 36 2000 6
Tae 5 5 151 3
vehicle (6) 6 18 846 4
wine (6) 6 13 178 3
yeast (4) 4 8 1484 10

longer exists. The results also suggest that scalability using disjoint training data sets without a loss in
accuracy is attainable.

Experiments and Results

The ANFIS classifier was tested on twenty data sets, both without bagging and with 2 types of vote
counting for the bagged ensemble (Canul-Reich et al., 2007). Each bag of training data was of the same
size as the original training data, often called bagging at 100%. So, each of training data sets consisted
of examples chosen at random with replacement from the original data. The data sets were all public
domain mostly from the UCI repository (UClrepository, 2006). ANFIS results are typically poor for
datasets with more than six features due to the size of the fuzzy search space. In the data mining tool,
Weka (Weka, 2006), the gain ratio feature selector was used to choose the best 6 features for data sets
with more than six features. Table 1 shows the characteristics of the data sets used.

Each experiment on a data set begins with a stratified separation of the data into approximately 2/3
of the examples for training, and the remaining examples (approximately 1/3) for testing. The strati-
fication process is intended to preserve the class distribution present in the original data set for both
training and testing sets. Then for each of 100 bags, the bag of data was created by randomly drawing
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with replacement from the stratified training set until the number of examples in the bag equals the
stratified training set size. This bag probably will have numerous instances of examples that are in the
bag more than once. Conversely, some of the examples in the stratified set will not be drawn and put
into the bag. These out-of-bag examples are used for the checking or validation set. The checking set is
used by ANFIS to prevent overfitting the training data, especially if the data has noise or if the number
of training epochs is large.

In order to evaluate both methods of bagging with a single classifier that does not use bagging, one
instance of each unique example in the stratified training set was used to create the training data set.
This can also be viewed as simply removing all duplicates or multiple instances of examples from the
bag. This method uses the same checking set used for the bagging trials, which should provide a fair
comparison of bagging vs. no bagging.

ANFIS was run using the data in the newly formed training set (either a bag or that bag with du-
plicates removed) as an input to train the FIS (Fuzzy Inference System). A separate checking FIS is
generated that captures the parameters of the training FIS in the epoch of minimum error, which results
in a more accurate model. When the training process is complete, the checking FIS is used to classify
the unseen test data.

The above process was repeated in each experiment for the number of bags we chose to use for
experiments, which was 100. Each new bagged and non bagged classifier was formed from the same
stratified training set that was selected from the entire data set before the first bag was formed.

When all 100 classifiers have been created, two different types of ensemble voting were performed
on the outputs generated by the checking FIS for test examples. In the first type of voting, the predictions
for each test example consisted of the defuzzified outputs from the checking FIS. These real numbers
are rounded to crisp values (whole numbers) and any resulting value that is invalid or out-of-range is
changed to the closest valid class value. Then the 100 crisp votes are counted and the predicted class
for the example is the one with the majority of votes. In the case of ties, the class with the lower number
wins.

Here, we note that just one output is used to discriminate among classes. In the other type of ensemble
voting, the 100 defuzzified votes are simply added. Then the mean or average value is determined.
This value is then rounded to a valid, crisp class value and is designated as the class predicted by the
ensemble. For example, consider the case of 3 classifiers predicting 0.4, 1 and 0.4 respectively for a
sample (prediction < 0.5 means class 1 and prediction > 0.5 means class 2). Under the majority-of-votes
criteria, these individual predictions are clearly 1, 2, 1, resulting in a majority of votes for class 1. Under
the mean-of-defuzzified-votes criteria, the mean of the three original predictions is calculated, that is
0.6, resulting in a combined prediction for class 2 for the sample.

The process described above was performed 25 times and average accuracies are reported.

Analysis of Results

In Table 2 the average test accuracies are shown for 25 test runs using the ANFIS checking FIS for 10
epochs. A visual representation of these results is shown in Figure 2.

Figure 2 shows higher accuracy was achieved with the defuzzified ensemble voting method on
fifteen out of twenty test data. The worst accuracy consistently came from the majority vote bagging
ensemble method.

36



Scaling Fuzzy Models

In Table 3 the average test accuracies are shown for 25 test runs using the ANFIS checking FIS for
20 epochs.

Table 3 and Figure 3 indicate that higher accuracy was achieved on the glass and yeast data sets with
bagging using the defuzzified mean.

Figure 4 shows a head-to-head comparison of 10 vs. 20 epochs for test accuracies using defuzzified
voting of predictions from the checking FIS generated using bags of data. The accuracy with 20 epochs
was greater than or equal to that of 10 epochs, except for the iris and newthyroid datasets.

The significance of the accuracy difference between bagging and a single classifier was evaluated
using the Friedman-Holm Test, which was discussed in (Demsar, 2006). The procedure allows the com-
parison of two or more classifiers over multiple data sets and determines whether there is a statistically
significant difference in the accuracies. It uses the ranks of the classifier on each data set, ranging from
1-3 here. Ties of 1, for example, are each given 1.5, and smaller is better.

Briefly, the Friedmantestis a “non-parametric equivalent of the repeated-measuresANOVA” (Demsatr,
2006). ANOVA is a statistical method for testing differences between the performances of classifiers
measured on the same test environment with the null-hypothesis being that there is no differences be-
tween them. When the null-hypothesis is rejected, a post-hoc test follows. Holm’s procedure was applied
in our work. It consists of sequentially testing ordered hypotheses starting from the most significant p

Table 2. Average test accuracies in % for 25 runs using checking FIS for 10 epochs with standard devia-
tions in (). A bold value indicates the highest accuracy for that data set

Data set No bags Bags majority vote Bags mean defuzzified
Balance_scale 71.229 (2.34) 69.627 (2.75) 71.522 (2.14)
breast 92.769 (0.90) 81.236 (2.48) 93.579 (1.25)
cmc 31.801 (1.68) 28.318(1.91) 31.479 (1.92)
dermatology 51.825 (1.07) 50.426 (3.05) 52.262 (1.07)
glass 48.602 (3.98) 41.556 (4.05) 48.167 (6.93)
haberman 73.739 (1.19) 72.078 (3.18) 73.882 (1.81)
heart-statlog 74.189 (2.73) 70.133 (3.28) 75.467 (4.09)
ionosphere 85.733 (1.59) 70.598 (2.0) 87.111 (2.18)
iris 95.642 (2.26) 92.960 (3.01) 96.080 (3.13)
monks1 69.271 (2.68) 56.889 (2.15) 74.083 (3.13)
monks2 76.247 (2.47) 54.806 (3.27) 78.722 (3.47)
newthyroid 86.863 (1.63) 79.944 (4.11) 88.000 (1.92)
page-blocks 86.992 (0.78) 82.692 (0.96) 87.163 (0.88)
phoneme 79.603 (0.77) 78.735 (0.77) 79.847 (0.86)
pima 74.484 (1.7) 71.125 (1.6) 75.484 (1.87)
satimage-test 61.110 (1.02) 56.102 (1.02) 61.985 (1.48)
tae 46.013 (4.31) 41.961 (5.0) 44.863 (5.56)
vehicle 47.869 (1.70) 53.475 (2.45) 49.418 (2.44)
wine 81.667 (2.63) 51.667 (5.09) 90.200 (4.01)
yeast 32.693 (1.65) 36.065 (2.08) 32.630 (1.94)
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Figure 2. Average test accuracies for 25 runs using checking FIS for 10 epochs
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value, if its corresponding hypothesis is rejected the procedure goes on with the next p value, which is
tested and so forth until a null hypothesis that cannot be rejected is found.

The Friedman-Holm test results show that using ANFIS, the bagging approach with the membership
function based combination method was statistically significantly better than a single classifier, at the
95% threshold.

SCALING UNSUPERVISED FUZZY LEARNING

Clustering streaming data presents the problem of not having all the data available at one time. Further,
the total size of the data may be larger than will fit in the available memory of a typical computer. If
the data is very large, it is a challenge to apply fuzzy clustering algorithms to get a partition in a timely
manner. In this section, we present an online fuzzy clustering algorithm (OFCM) (Hore et al., 2008)
which can be used to cluster streaming data, as well as very large data sets which might be treated as
streaming data. OFCM can provide partitions equivalent to fuzzy ¢ means (FCM). It processes the data
as each independent chunk of data arrives. That is, the algorithm can perform well even if the data is
evolving over time. Results on several large volumes of magnetic resonance images show that the new
algorithm produces partitions which are very close to what you could get if you clustered all the data at
one time. That shows that this algorithm is an accurate approach for online clustering.

Clustering streaming data has become an important issue due to the increasing availability of large
amounts of data collected over time. Due to the reducing costs of recording data, the sources of stream-
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Table 3. Average test accuracies in % for 25 runs using checking FIS for 20 epochs with standard devia-

tions in (). A bold value indicates the highest accuracy for that data set

Data set No bags Bags majority vote Bags mean defuzzified
balance_scale 72.484 (2.23) 72.057 (2.41) 72.632 (2.40)
breast 92.764 (0.91) 81.270 (2.47) 93.614 (1.23)
cme 32.006 (1.65) 28.554 (1.85) 31.796 (1.89)
dermatology 52.139 (0.98) 50.787 (2.98) 52.361 (1.12)
glass 42.284 (2.55) 40.444 (4.00) 50.833 (5.95)
haberman 73.736 (1.21) 72.078 (3.02) 74.000 (1.72)
heart-statlog 74.801 (2.6) 68.178 (3.11) 78.044 (3.74)
ionosphere 86.007 (1.51) 71.179 (2.13) 87.282 (2.21)
iris 95.365 (1.97) 91.040 (3.75) 95.920 (2.2)
monks1 71.224 (1.80) 56.694 (2.57) 75.556 (2.57)
monks2 82.601 (2.99) 62.083 (2.75) 84.806 (4.23)
newthyroid 86.279 (2.32) 80.278 (5.26) 87.333 (3.24)
page-blocks 88.140 (0.75) 82.323 (0.90) 88.743 (0.83)
phoneme 80.096 (0.75) 79.119 (0.87) 80.391 (0.82)
pima 74.516 (1.69) 71.125 (1.59) 75.500 (1.84)
satimage-test 61.403 (1.02) 56.492 (1.01) 62.309 (1.4)
tae 46.049 (4.31) 41.961 (5.0) 45.098 (5.55)
vehicle 48.326 (1.72) 53.887 (2.42) 49.773 (2.38)
wine 82.099 (2.45) 52.933 (5.68) 90.267 (4.58)
yeast 34.386 (1.64) 34,537 (1.83) 35.515 (2.58)

ing data are growing rapidly. Features of streaming data are that it arrives at different times and the
size of the streaming data can be so enormous that we cannot store all of it. Instead, we must process
the data as it arrives, or in chunks, and delete it to free memory for incoming data. In many cases, the
streaming data cannot be revisited due to its evolving nature (Aggarwal et al., 2003, Aggarwal et al.,
2004, Yang, 2003, Cao et al., 2006, Nasraoui et al., 2003, Hore et al., 2007a). That is, random access is
impossible. To find meaningful clusters under these constraints, a number of clustering algorithms based
on the single pass approach (O’Callaghan et al., 2002, Guha et al., 2003, Hore et al., 2007b) have been
proposed. The single pass approach can work well for scaling classical clustering algorithms, but may
not fit for clustering streaming data (Aggarwal et al., 2003). The reason is that streaming data might
evolve over time and a single pass view of the entire stream tends to make algorithms insensitive to an
evolving distribution (Aggarwal et al., 2003, Hore et al., 2007b).

A good streaming algorithm should not only extract meaningful information from the entire data
set, but also respond to dynamic changes. As stated in (Aggarwal et al., 2003), a streaming clustering
algorithm should be able to produce a good quality partition even if data is evolving considerably over
time. Streaming methodology may also be used for scaling purposes when clustering very large stored
data sets. One advantage of streaming algorithms over many single pass and other scalable algorithms
(Farnstrom et al., 2000, Pal and Bezdek, 2002, Hathaway and Bezdek, 2006, Hore et al., 2007a) is that
they don’t require random access to data and process data in whatever order it may arrive.
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Figure 3. Average test accuracies for 25 runs using checking FIS for 20 epochs
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Short Review of Algorithms for Clustering Streaming Data Sets

Recently a number of algorithms have been proposed for clustering streaming data sets (Aggarwal et
al., 2003, Aggarwal et al., 2004, Yang, 2003, Cao et al., 2006, Nasraoui et al., 2003, O’Callaghan et
al., 2002, Hore et al., 2007a, Dai et al., 2004, Beringer and Hullermeier, 2006). Most of them address
the crisp case, clustering streaming data by using either hard ¢ means or its variants or other crisp algo-
rithms. In (O’Callaghan et al., 2002) a streaming algorithm was proposed using a k-Median algorithm
called LOCALSEARCH. They showed that their LOCALSEARCH algorithm was better in quality but
computationally expensive compared to hard-c-means. They viewed the streaming data as arriving in
chunks and then, after clustering, memory was purged by representing the clustering solution by weighted
centroids. Then they applied the LOCALSEARCH algorithm to the weighted centroids obtained from
chunks to obtain weighted centroids of the entire stream seen so far. They showed that their algorithm
outperformed BIRCH (Zhang et al., 1996) in terms of quality measured in sum of squared distance.
This method of freeing the memory is similar to the method of creating a discard set in the single pass
hard ¢ means algorithm (Farnstrom et al., 2000). OFCM summarizes clustering results in a similar way
(Hore et al., 2008). The difference between (O’Callaghan et al., 2002, Farnstrom et al., 2000) and our
approach is in the fact that in fuzzy clustering an example may not completely belong to a particular
cluster. Our method of summarizing clustering results involves a fuzzy membership matrix and fuzzy
centroids, which do not exist for the crisp cases. So in (O’Callaghan et al., 2002), clustering streaming
data was approached using a single pass view of the data.
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Figure 4. Average test accuracies for 25 runs using 100 bags, and defuzzified checking FIS outputs for
10 and 20 epochs
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In (Aggarwal et al., 2003), it was pointed out that a streaming algorithm may not be viewed as single
pass clustering problem because they are generally blind to evolving distributions and a single pass
algorithm over an entire stream will be dominated by outdated history. They proposed a framework for
analysis of clusters over different time frames. They stored summary statistics describing the streaming
data periodically using micro-clusters which was the online component of their algorithm, and later
analyzed these summary statistics of clusters, known as the offline components, over a user provided
time horizon. They showed the superiority of their algorithm compared to (O’Callaghan et al., 2002) on
data with an evolving distribution.

In (Hore et al., 2007b), a streaming FCM (SFCM) algorithm was proposed. When the first chunk of
data arrives, the algorithm will cluster the chunk of data into c cluster centroids using FCM. Memory
is freed by summarizing cluster centroids into ¢ weighted points using the fuzzy matrix obtained dur-
ing the clustering. When a second or later chunk of data comes, it will be clustered with the weighted
points of previous clustered chunks. How many chunks of history to use for clustering with a new
chunk is predefined by the users. The first chunk’s cluster centroids are initialized randomly while the
other chunks’ are initialized as the last chunk’s cluster centroids. Their experiments showed this method
could provide results comparable with FCM only in the case the amount of clustering history to use is
selected properly.

In (Hore et al., 2007a), a single pass FCM (SPFCM) method was proposed. They separated the large
data into several partial data accesses (PDA). The first PDA was clustered into ¢ cluster centroids. Then
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the data in memory was condensed into ¢ weighted points. Those weighted points will be clustered
with new points in the next PDA. In their experiments, the method provided excellent partitions, almost
the same as FCM’s. There was a significant speedup compared with FCM. However, single pass FCM
requires randomly reordering the entire data to avoid unpredictable results. So, its performance drops
when processing data in the order it arrives.

In (Cao et al., 2006) a density based streaming algorithm DenStream was proposed. The design
philosophy of the DenStream algorithm was similar to (Aggarwal et al., 2003) as they too had an online
component for summarizing cluster information and then an offline component later to combine clus-
ters. They used the density based DBSCAN algorithm (Ester et al., 1996) in their work. Using a density
based clustering algorithm they were able to discover arbitrary shape clusters and show the robustness
of their algorithm towards noise. However, density based algorithms are different from fuzzy clustering
algorithms as they try to optimize a different objective function. In (Cho et al., 2006) a framework for
efficiently archiving high volumes of streaming data was proposed, which reduces disk access for storing
and retrieving data. They grouped incoming data into clusters and stored them instead of raw data.

Many other relevant single pass or scalable algorithms include using hard ¢ means, EM (Jain and
Dubes, 1988), Hierarchical Clustering and their variants (Aggarwal et al., 2004, Zhang et al., 1996,
Bradley et al., 1998, Gupta and Grossman, 2004, Neal and Hinton, 1998, Karkkainen and Franti, 2007).
A streaming algorithm using artificial immune system (AIS) models was also proposed in (Nasraoui
et al., 2003). As stated before the fuzzy ¢ means algorithm optimizes a different objective function and
also the single pass approach may not be suitable for clustering an evolving stream.

Non-incremental algorithms for speeding up fuzzy ¢ means or hard ¢ means (Pal and Bezdek,
2002,

Hathaway and Bezdek, 2006, Zhang et al., 1996, S.Eschrich et al., 2003, Cheng et al., 1998, Guha
et al., 1998) are not generally applicable to clustering streaming data sets because they assume all the
data can be loaded into memory. In (J. Lazaro and Cuadrado, 2003) a modified FCM was proposed to
simplify hardware implementation and obtain parallelism for real time video processing, but it is very
application specific and not applicable for data streams. In (Liu and Meng, 2004) a data driven fuzzy
clustering method based on the Maximum Entropy Principle was proposed for a real time robot-tracking
application. It is application specific and does not have the same objective function as FCM.

Thus some work has been done for hard-c-means and fuzzy-c-means clustering applied to streaming
data and large data. However, as stated in (Hathaway and Bezdek, 2006), the crisp clustering methods
may not be easily generalized to their fuzzy counterparts. The fuzzy methods we examined above have
constraints including having to select a properly predefined history and an inability to handle evolving
streams.

Online Fuzzy C Means

Due to the constraints of limited memory and computation time, a streaming algorithm may be able to
load only a relatively small amount of the data at a time depending upon the speed of the stream and
hardware capability. As in (O’Callaghan et al., 2002), we assume the data is both arriving and processed
in chunks, that is, n, data points arrive at time t,n,att, and so on.

We cluster data in each chunk by fuzzy ¢ means (FCM), and we have to decide the number of clus-
ters ¢ for each chunk. In the worst case, all data in a given chunk might come from one class only and
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in the best case data might come from all n classes. If we set the number of clusters to be always ¢
(highest resolution under the assumption we know the upper bound on the number of clusters), there
are 2 cases:

Case A: If less than c classes arrive in a chunk, then we are overclustering. Overclustering may
not cause any information loss. Information loss is only certain to occur when we undercluster.
Case B: If exactly c classes come in a chunk, then we are partitioning the data correctly, that is,
neither overclustering nor underclustering.

In both cases, setting the number of clusters to be equal to ¢, the maximum number of classes in
the data set, will likely not cause any information loss. So we set the number of clusters to be c in each
chunk.

Data in each chunk is clustered by FCM. The objective function (/, ) minimized by FCM is defined
as follows:

T O V) =32 >0 UiD, (w,0)

1)
U and V can be calculated as:
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where U, : is the membership value of the £ example, z, , in the i" cluster, v : is the i" cluster

centroid, n: is the number of examples, c: is the number of clusters, D_ (%%) = ka — viHQ : is the
distance metric. We have used the Euclidean distance.

After data in one chunk is clustered by FCM, memory is freed by condensing the clustering solution
in the memory into ¢ weighted examples. The ¢ weighted examples are represented by the c cluster cen-
troids obtained after clustering. Their weights are calculated using the membership matrix as follows:

_ ™ ;
w, = Z],:lui].,l <i1<e¢ @)
n, is the number of examples in memory.

The weighted centroids of each final partition are saved with weights as calculated above. The

weighted centroids of all chunks form an ensemble of weighted clustering solutions. The ensemble is
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then merged into ¢ final clusters. The merging operation is done by clustering all the weighted centroids
in the ensemble using their weights. Weighted FCM (WFCM) is used for this purpose:

We modified the objective function of FCM (similar to [Karkkainen and Franti, 2007]) to take into
effect the weighted examples.

Assuming there are n_ weighted examples in total, the cluster centroids for WFCM are calculated
as:

n
C

LN ' ‘
V=2 1<i<e 1 €X.

n.
Zj;le (uij )m

x]/ may be an original example or a weighted centroid and X is the union of the original examples
and all weighted examples (centroids). The w, are calculated from equation (4) for any added centroids
and are 1 for the original examples. The weights of the n_ weighted examples are calculated from con-
densation/summarization of clustering at previous time instants.

The membership matrix is calculated as follows:
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Itshould be noted that the modification of the objective function does not change the convergence prop-
erty of FCM because a weighted example can be thought of as many identical singleton examples.

To speed up clustering, we initialize the clustering process for each chunk with the final centroids
obtained from clustering the previous chunk. This knowledge propagation allows for faster convergence,
provided the distribution does not change rapidly, which might often be the case.

The size of the ensemble of weighted centroids is not likely to be large because it consists of only
weighted centroids. If in any case it becomes large, similar to (O’Callaghan et al., 2002) the weighted
centroids from the ensemble can be incrementally loaded and reclustered into ¢ weighted centroids. This
will decrease the ensemble size, which can be finally merged into c partitions in memory.

Data Sets for Experiments

Nine real data sets were used, including Iris, KDD98, Plankton and 6 magnetic resonance image data
sets (MRI-4, MRI-5, MRI-6, MRI-7, MRI-8, and MRI-9). Below we list details of those data sets. Note
that value of m used in FCM was m=1.2 for the KDD98 data set and m=2 for the other 8 data sets.
The Iris plant data set consists of 150 examples each with 4 numeric attributes (Merz and Murphy,
n.d.) and 3 classes of 50 examples each. One class is linearly separable from the other two. We clustered
this data set into 3 clusters. KDD98 is the data set used in the 1998 KDD contest (kddcup08, 1998). This
data set is about people who gave a charitable donation in response to direct mailing request. It was used

44



Scaling Fuzzy Models

Table 4. Summary of data sets. The number of attributes used, number of instances and classes are
shown

Data Set Attributes used # Instances # Classes

Iris 4 150 3
KDD98 56 95412 10
Plankton 26 419358 12
MRI-4 3 3621971 3
MRI-5 3 1248595 3
MRI-6 3 4948180 3
MRI-7 3 4031593 3
MRI-8 3 1236969 3
MRI-9 3 1504594 3

in (Farnstrom et al., 2000), and has been pre-processed in the same way. After processing the original
data, it has 95412 examples and 56 features. As done in (Farnstrom et al., 2000), we clustered this data
into 10 clusters. The code for preprocessing is available at http://www-cse.ucsd.edu/users/elkan/skm.
html. The Plankton data set (Luo, et al. 2005) consists of 419358 samples of plankton images from the
underwater SIPPER camera which records 8 gray levels. There are 26 features extracted. The samples
were taken from the twelve most commonly encountered classes of plankton during acquisition in the
Gulf of Mexico. The class sizes range from about 11,337 to 74,053 examples. We clustered this data set
into 12 clusters. Table 4 summarizes all the data sets.

With the MRI data set, we fetched data for the experiments along the axial plane, from the bottom of
the brain (neck) to the top of the skull. The distribution of tissues in the human brain naturally evolves
as we go up or down along the axial plane, and there also will be different amounts of tissues at different
locations. So we believe MRI images provide good data sets to study our streaming algorithm in a real
life scenario. Specific details include (1) The MRI-4 data set was created by concatenating 96 slices of
MR images, T1 weighted, of size 512X512 from a single human brain. The magnetic field strength was
1.5 Tesla. After air and skull were removed using the brain extraction tool (BET2) (Jenkinson et al.,
2005), there were 3,621,971 examples. The code for the BET?2 is available at http://www.fmrib.ox.ac.
uk/analysis/research/bet/. We clustered this data set into 3 clusters. (2) The MRI-5 data set was created
by concatenating 144 slices of MR images, T1 weighted, of size 256X256 from a single human brain.
The magnetic field strength was 3 Tesla. After air and skull were removed using the brain extraction
tool (BET2) (Jenkinson et al., 2005), there were 1,248,595 examples. Intensity homogeneity on this data
set was corrected using an implementation of the bias correction algorithm from (Cohen et al., 2000).
We clustered this data set into 3 clusters. (3) The MRI-6 data set was created by concatenating 96 slices
of MR images, T1 weighted, of size 512X512 from a single human brain. The magnetic field strength
was 1.5 Tesla. After air and skull were removed using the brain extraction tool, BET2 (Jenkinson et al.,
2005), there were 4,948,180 examples. We clustered this data set into 3 clusters. (4) The MRI-7 data
set was created by concatenating 96 slices of MR images, T1 weighted, of size 512X512 from a single
human brain. The magnetic field strength was 1.5 Tesla. After air and skull were removed using the
brain extraction tool, BET2, there were 4,031,593 examples. We clustered this data set into 3 clusters.
(5) The MRI-8 data set was created by concatenating 144 slices of MR images, T1 weighted, of size
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256X256 from a single human brain. The magnetic field strength was 3 Tesla. After air and skull were
removed using the brain extraction tool, BET2, there were 1,236,969 examples. Intensity homogeneity
on this data set was corrected using an implementation of the bias correction algorithm in (Cohen et al.,
2000). We clustered this data set into 3 clusters. (6) The MRI-9 data set was created by concatenating
144 slices of MR images, T1 weighted, of size 256X256 from a single human brain. The magnetic field
strength was 3 Tesla. After air and skull were removed using the brain extraction tool, BET2, there were
1,504,594 examples. Intensity homogeneity on this data set was also corrected. We clustered this data
set into 3 clusters.

Experimental Setup and Results

In (Hathaway and Bezdek, 2006) a reformulated optimization criteria 2 (mathematically equivalent
to J inequation (1)) was given as:

k=1 \ i=1

n c 1 (1_m>
E, (V) - Z [ZDHY (xk,’ Ui)(l_m)]
®)

The new formulation has the advantage that it does not require the U matrix and can be directly
computed from the final cluster centroids. For large data sets, where the whole data set cannot be loaded
into memory, R can be computed by incrementally loading examples from the disk.

For KDD98, Plankton and the 6 MRI data sets, 5% of the data was loaded in each chunk. For the Iris
data set, we fetched 25 examples in each chunk. So, it required 6 time instants to fetch the full data set.
We will compare the performance of streaming FCM (Hore et al., 2007b) and OFCM under this setting.
We also compared the results of the single pass FCM (SPFCM) algorithm on these data with the same
chunk size as used for SFCM and OFCM experiments. Results of experiments on the single pass algo-
rithm (SPFCM) running with and without scrambling (randomly reordered) the data is also reported.

The results of OFCM and SPFCM were compared with the clustering quality obtained at the end of
the stream for the SFCM algorithm. The difference in quality is computed according to:

DQ = [%] 100
! (6)

m, isthe mean R value for experiments with FCM and m, isthe mean R value for experiments
with OFCM, SPFCM and SFCM.

That is, the difference in R value expressed in percentage, of the OFCM, SPFCM, and SFCM
algorithms from the quality obtained by clustering all the data at once using FCM.

All results are an average of 32 random experiments, each starting with a random initialization at
the beginning of the stream. On each data set all algorithms had the same random initializations. Table
5 shows the performance of the SFCM, OFCM, and SPFCM algorithms compared to clustering the
entire stream at once.
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Table 5. Difference in Quality (in percentage) of the SFCM, OFCM, and SPFCM algorithms compared to
clustering all the stream at once with FCM. SPFCM”” means clustering without scrambling the data

HIS1 HIS2 HIS3 HIS4 HIS5 SPFCM” SPFCM OFCM

(%) (%) (%) (%) (%) (%) (%) (%)
MRI-4 0.7082 1.0378 6.654 12.9819 17.6392 8.8818 0.0026 0.17447
MRI-5 2.4084 3.8948 11.1541 18.0348 23.1885 10.4976 0.0011 0.17691
MRI-6 6.7014 4.2827 10.2577 15.7393 19.5325 8.2708 0.0009 1.1098
MRI-7 1.2444 22.0437 69.0189 109.1186 141.9229 84.72 0.0065 0.439
MRI-8 0.584 15.7915 41,5251 63.6055 82.3348 47.623 0.0027 0.2398
MRI-9 0.5464 13.0416 35.9483 53.7082 67.0518 40.582 0.0141 0.2995
Iris 5.2772 2.3517 90.083 91.2483 91.565 79.6733 0.1117 0.21661
KDD -0.0567 -0.0585 0.0169 0.0127 0.0098 -0.1315 -0.0324 -0.07934
Plan-
Kton 14.2393 11.7439 10.1547 8.7612 8.6569 4.02337 0.0046 2.95274

In the table, HISn means SFCM using a history of n chunks. For the single pass experiments, in the
table SPFCM denotes clustering was done on the randomly reordered data set, while SFCM” means data
was clustered the way it comes: the way SFCM and OFCM algorithms fetches data.

In Table 5, we see SPFCM, as expected, provides unpredictable clustering quality when it processes
data as it comes. When the same data sets were scrambled, it always produced excellent quality. For
processing data in a typical stream setting (processed as it comes), either SFCM (with appropriate his-
tory) or OFCM can be used. The results in Table 3 show that OFCM is always superior to SFCM in
producing a clustering solution as good as clustering the full stream at once. OFCM always obtained
good quality partitions; even for the Iris experiment the quality difference is only 0.21661%. Generally,
usage of history greater than or equal to 2 resulted in poor partitions, at least in the context of produc-
ing clustering quality (at the end of stream) as good as clustering the entire data stream at once. On the
KDDO98 data set, any amount of history usage gives good quality; however, with HIS1 and HIS2 average
quality was even better than the average quality of FCM. OFCM varied from FCM by 1% for MRI-6
and 2.9% for Plankton. There are still small variations on large data sets. The quality of OFCM always
was better than SFCM in producing a partition as good as clustering the full data set. Thus, OFCM can
be thought of as a generalized single pass FCM algorithm that like streaming algorithms can process
data as it comes, while at the end of the stream it can produce clustering quality as good as clustering
the entire data stream.

Summary

In this chapter, we have focused on ways of dividing data to enable fuzzy learning systems both super-
vised and unsupervised to scale. The approaches focused upon do not throw away any of the data, but
instead they use disjoint subsets of the data to build individual classifiers or data partitions.

We have briefly discussed other approaches, based on subsampling, to building scalable fuzzy learn-
ing systems. The issues with subsampling are in selecting the right subsample or right set of examples
which enable learning a good model. Typical approaches stop too early when they use things like the
chi-squared test. Subsampling is an area deserving of further research.
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For supervised learning to show the possibilities of ensembles, we have compared ANFIS with and
without bagging to classify twenty data sets. Results were computed two different ways:

a) Ensemble class votes for each example from the defuzzified output of the FIS for each bag were
individually converted to crisp class values. Then, the predicted class for each test instance was
found using a majority vote of these crisp values.

b)  The mean of the sum of the defuzzified FIS outputs for each bag was converted to a crisp class
prediction for the ensemble.

c) Feature reduction was done via the gain ratio feature selector in Weka for all data sets with more
than 6 features. Other sets of features chosen differently would result in different accuracies, but
similar conclusions.

The mean defuzzified output gave the most accurate results. It is advisable not to make crisp the
defuzzified outputs of each FIS before these values are combined in a vote. Otherwise, the benefit of
the fuzzy membership functions is lost and lower accuracies result.

The Freidman/Holm test for determining significance of differences in accuracies for our classifier
methods was performed, resulting in the conclusion bagging is statistically better than a single classifier
at the 95% level.

It is interesting that fuzzy models have enough variability to benefit from an ensemble formulation.
This suggests that ensembles of fuzzy classifiers where each is built on a disjoint subset of data can be
used to generate an accurate scalable fuzzy classifier.

For unsupervised learning, we have shown that tractable size data subsets, or chunks of the stream,
can be clustered in the usual way. You get an ensemble of data partitions which must then be combined.
One way to combine them is to simply cluster weighted class centers, centroids, of the data in each
partition. Using online fuzzy clustering, the centroids of the individual data partitions are given weights
based on the membership of the examples assigned to the clusters they represent. The centroids then
form weighted examples which can be clustered to obtain the centroids of final data partition. Any future
data can be assigned to the nearest cluster. If one needs to assign all of the data to the final clustered
centroids, this can be done by sending the clustered centroids to processors where the data resides and
to determine their class.

The online fuzzy clustering process results in cluster centers that are very similar to those obtained
by clustering all of the data using fuzzy c-means. So, in cases where you could not possibly cluster all
the data at once due to its size one may expect that the partition will be similar to a venerable, well-
known clustering algorithm. Hence, there is evidence that scaling fuzzy clustering algorithms can be
effective.

This chapter has outlined methods of using ensembles to enable fuzzy learning systems to scale
whether the data is labeled or unlabeled. In the case of labeled data there will be many fuzzy rules (for
instance) reducing the interpretability of the system. For clustering, there should be no loss in interpret-
ability. The ensemble approaches outlined here are viable ways of scaling fuzzy learning systems.
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ABSTRACT

The emergence of music recommendation systems calls for the development of new data management
technologies able to query vast music collections. In this chapter, the authors present a music warehouse
prototype able to perform efficient nearest neighbor searches in an arbitrary song similarity space.
Using fuzzy songs sets, the music warehouse offers a practical solution to three concrete musical data
management scenarios: user musical preferences, user feedback, and song similarities. The authors
investigate three practical approaches to tackle the storage issues of fuzzy song sets: tables, arrays,
and compressed bitmaps. They confront theoretical estimates with practical implementation results and
prove that, from a storage point of view, arrays and compressed bitmaps are both effective data struc-
ture solutions. With respect to speed, the authors show that operations on compressed bitmap offer a
significant grain in performances for fuzzy song sets comprising a large number of songs. Finally, the
authors argue that the presented results are not limited to music recommendations system but can be
applied to other domains.

INTRODUCTION

Automatic music recommendation systems have recently gained tremendous popularity. To provide per-
tinent recommendations, music recommendation systems use fuzzy set theory (Zadeh, 1965) to combine
user profiles, music features, and user feedback information. However, at the current growing speed,
the database element of any recommendation system will soon become a bottleneck. Hence, appropri-
ate musical data management tools, able to manipulate fuzzy sets and scale to large music collection
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and growing user communities, are needed. Music Warehouses (MWS5) are dedicated data warehouses
optimized for the storage and analysis of music content.

The contributions of this chapter are fourfold. First, based on a previous case study (Deliége &
Pedersen, 2006), we propose three generic usage scenarios illustrating the current demands in musical
data management. To answer these demands, we define fuzzy song sets and develop a query algebra for
them. Second, to demonstrate the usefulness of fuzzy song sets, a prototypical MW composed of two
multidimensional cubes is presented. Fuzzy song sets prove to be an adequate data representation to
manipulate musical information. Third, we discuss three solutions for storing fuzzy song sets and fuzzy
sets in general. We construct theoretical estimates for each storage solution. A practical implementa-
tion shows that the storage overhead represents a major part of the storage consumption and that two
solutions are viable for large music collections. Fourth, we benchmark and compare the performance
of the main operators previously presented for various sizes of both data structures. Experiments are
conducted on a real music collection.

This chapter demonstrates how fuzzy set theory can be used in the context of music recommenda-
tion systems. All results presented in this chapter can be directly applied to standard fuzzy sets; the
presented storage solutions remain generic and can thus be applied to a vast range of domains besides
music recommendation and user preferences.

The remainder of this chapter is organized as follows. After presenting the related work on fuzzy
sets for the management of musical data, we present three information scenarios that are commonly
treated by music recommendation systems. We proceed by defining fuzzy song sets and an algebra.
Two prototypical multidimensional cubes are presented; they illustrate the use of the algebra through
query examples. Storage solutions are then discussed and precise storage estimates are proposed and
experimentally validated. Next, a comparison of the performance of the fuzzy song set operators on
the bitmap and array representations is conducted. Finally, we conclude and describe promising future
research directions.

RELATED WORK

Research on music recommendation systems has received a lot of attention lately. Current trends on
playlist generation are focused on how to improve recommendations based on user-specific constrains.
For example, a playlist generator that learns music preferences by taking user feedback into account
was presented by Pauws & Eggen (2001). Other new interesting approaches concentrate on aggregating
different music features; for instance, Bosteels & Keere (2007) study the use of generalized conjunctions
and disjunctions of fuzzy sets theory for combining audio similarity measures. However, fewer research-
ers have addressed the scalability issues raised by these methods in terms of storage and performance
(Aucouturier & Pachet, 2002; Pampalk, 2005). This chapter focuses specifically on the storage and
performance issues and proposes to manipulate a large collection of musical data where song similari-
ties, user preferences and user feedbacks are represented with fuzzy sets.

A traditional database approach is to use a relational model such as the one proposed by Rubenstein
that extends the entity-relationship data model to implement the notion of hierarchical ordering, com-
monly found in musical data (Rubenstein, 1987). A multimedia data model, following the layered model
paradigm that consists of a data definition layer, a data manipulation layer, a data presentation layer, and
a control layer, is presented by Wynblatt & Schloss (1995), but no query language is proposed. None
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of those models adopts a multidimensional approach by representing data in cubes, a very convenient
structure for performing on-the-fly analysis of large volumes of data that has already proved its strengths
in data warehouses (Pedersen & Jensen, 2001). Finally, a music data model, its algebra and a query
language are presented by Wang, Li, & Shi (2004). The data model is able to structure both the musical
content and the metadata but does not address performance optimization issues. In particular, it does
not provide an adequate framework to perform similarity based search. Jensen et al. address this issue
and offer a multi-dimensional model that supports dimension hierarchies (Jensen, Mungure, Pedersen,
& Sgrensen, 2007). We extend that multidimensional model by integrating fuzzy sets and addressing
additional usage scenarios. Furthermore, this implementation proves to be able to handle a much larger
music collection of a realistic size in the context of an MW.

The use of bitmaps in multidimensional databases is frequent. Different compression schemes exist
to reduce the storage consumption of bitmaps. The Word Align Hybrid (Wu, Otoo, & Shoshani, 2006),
WAMH, and the Byte-aligned Bitmap Compression (Antoshenkov, 1994), BBC, are two very common
compression algorithms. BBC offers a very good compression ratio and performs bitwise logical opera-
tions efficiently. WAH performs bitwise operations much faster than BBC but consumes more storage
space. We propose a modified version of WAH compression technique to represent fuzzy sets. We show
how fuzzy set operators can be adapted to directly manipulate the compressed representations in order
to preserve the performance.

Significant efforts have been made in representing imprecise information in database models (Codd,
1979). Relational models and object oriented database models have already been extended to handle
imprecision utilizing the fuzzy set theory (Prade & Testemale, 1984; Bordogna, Lucarella, & Pasi, 1994).
This chapter proposes pragmatic solutions to store and manipulate fuzzy sets within multidimensional
data cubes. It significantly extends our previous work (Deliege & Pedersen, 2007) in several ways: im-
proving the WAH compression algorithm, revising size estimates, and implementing and benchmarking
the operators. While our focus is on musical data, we believe our approach can easily be generalized to
the similarity matrices extensively used in fuzzy databases, e.g., to perform fuzzy joins.

QUERY SCENARIO

The data obtained from a music recommendations system has to be organized to answer specific queries.
Examples of such query scenarios are presented below.

User Feedback

The user’s opinion about the system’s previous recommendations is a valuable piece of information for
improving the future suggestion, e.g., by reinforcement learning. For each song played, the user can
grade if the suggestion was wise based on the criteria provided, referred to as the query context. The
query context can be the artist similarity, the genre similarity, the beat similarity, or any other similar-
ity measure available to the system to perform a selection. The grading reflects if a proposed song was
relevant in the given query context. For example, it is possible to retrieve the list of songs Mary liked
when she asked for a list of rock songs or the ten songs she liked the most when she asked for similar
songs to a song made by “U2”.
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Typically, the data obtained should contain:

. the profile of a registered user in the system;

. the query context provided by the user; and

«  the list of songs and marks so that for each song proposed, the user can grade how much he liked
a particular song being part of the proposition.

Grades are given on a per song basis, they reflect if the user believes the song deserves its place
among the suggested list of songs: strongly disagrees, neutral, likes, and loves. While the grade must not
be a numerical value, we assume that a mapping function to the interval [0,1] exists so that when a user
believes a song definitely deserves its place in the list, a high value in the interval should be given.

User Musical Profile

Regardless of any given query context, some songs should never be proposed to Mary as she simply
can’t stand them or, on the contrary, some songs should be proposed more often as they are marked as
Mary’s favorites. Therefore, recommendation systems often offer to their users the possibility to rate
any song on a fan-scale ranging from “I love it” to “I hate it” depending if they like the song or not.
Such information is useful for building network based on users having similar musical taste. The data-
base backend of the recommendation system should be able to find users similar to Mary based on his
favorite and loathed songs.
The User Musical Preferences contains two different pieces of information:

. a reference to a user registered; and
« alist of songs associated with their respective grades on the fan-scale.

As above, we assume the mapping to the interval [0,1] so that if Mary hates a song, a low score
is assigned; and if she loves it, a value close to 1 should be used. So, musical profiles can be used to
modify the frequency a given song appears as a recommendation and build recommendation based on
profile similarities.

Songs Similarities

Finally, music recommendation system should be able to compare songs. For each pair of songs, the
system is able to provide a similarity value with respect to a given aspect of the song such as the release
year, the genre, the theme, the lyrics, or the tempo. The similarity values should indicate if two songs
are “very different”, “different”, “somewhat similar”, or “very similar” from the perspective of any
given aspect of the song. For example, the song “We will rock you” by Queen is “very different” from
the song “Twinkle, twinkle little star” with respect to their genre similarity aspect.

To compare songs, three pieces of information are necessary:

. a pair of compared songs;

. a similarity function that maps to a pair of songs to a similarity value; and
. a similarity value reflecting how similar the two songs are.
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Again, we assume that the similarity values can be mapped to the interval [0,1] so that if two songs
are very different, a value close to 0 should be used, and if they are very similar, a value close to 1
should be used instead.

The scenario is very generic; very few assumptions are made about the properties of the functions
used to compute the similarity values. In particular, the similarity functions do not have to fulfill the
mathematical properties of a metric: the non-negativity, the identity of indiscernibles, the triangular
inequality, and the symmetry properties. They do not have to be defined over the whole domain of song
pairs. This allows similarities to be based on a wide diversity of song attributes.

AN ALGEBRA FOR FUZZY SONG SETS

In this section, we introduce fuzzy song sets as well as operators and functions to manipulate them.
Let X be the set of all songs. Then, a fuzzy song set, A, is a fuzzy set defined over X such that:

A:{MA(ac>/x: z e X, ,uA(x)e[O,l]}

and is defined as a set of pairs s, (:c) / z, where x is a song, 1, (m) referred to as the membership
degree of x, is a real number belonging to [0,1], and / denotes the association of the two values as com-
monly expressed in the fuzzy logic literature (Galindo, Piattini, & Urrutia, 2005). When x,(x) = 0, song
x does not belong to A, and when x,(x) = 1, x completely belongs to A.

Operators

The following operators are classically used in order to manipulate song sets.

Equality

Let A and B be two fuzzy song sets. A is equal to B iff for all song the membership degree of a song in
A is equal to the membership degree of the same song in B.

A=B & VrelX, uA(x): MB(x)

Subset

Let A and B be two fuzzy song sets. A is included in B iff for all song, the membership degree a song in
A is lower than the membership degree of the same song in B.

A QB@VIEX,MA(x)SuB(x)

Note that the empty fuzzy song set defined with the null membership function, i.e., Vz € X,u(z) =0,
is a subset of all fuzzy sets.
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Union

Let A and B be two fuzzy song sets over X. The union of A and B is a fuzzy song set with, for each song,
a membership degree equal to the maximum membership degree associated to that song in A and B.

ADB:{,uAmB (:Jc)/x}

(1) = w1, (). 1,0

Intersection

Let A and B be two fuzzy sets over X. The intersection of A and B is a fuzzy song set with, for each song,
a membership degree equal to the minimum membership degree associated to that song in A and B.

AﬂB:{,uAm (a:)/:z:}

) = i, o) 0,0

Negation

Let A be a fuzzy set over X. The negation of A is a fuzzy song set with the membership degree of each
song equal to its symmetric value on the interval [0,1].

—A={1-p, ()}

Reduction

Let A be a fuzzy set over X.The reduction of A is a subset of A such that membership degrees smaller
than a are set to 0.

Reduce(a, A) = {p,, (v) / x}

_ @) i (@) 2a
Hao 0 if p,(r) <a

The reduction operator changes the membership degree of songs below a given threshold to 0. It allows
the construction of more complex operators that allow the reducing the membership degree granularity
over ranges of membership degrees.

59



Using Fuzzy Song Sets in Music Warehouses

Top

Let Abe a fuzzy set over X. The Top, subset of A is a fuzzy song with the membership degree of all ele-
ments not having the k highest membership degree set to 0 and the membership degree of the k highest
elements of A set to their respective membership degree in A.

Top, <a,A) = {,uAk(x)/az | Vo2, € X,1<i<j, p, (ml) > ,uA(a:j)}

(@) if i<k
ok 0 otherwise

Note that the Top, subset of A is not unique, e.g., when all elements have an identical membership
degree. The Top, operator returns a fuzzy song set with all membership degrees set to zero except for
k elements with the highest membership degrees that remain unchanged. Top, is a cornerstone for the
development of complex operators based on relative ordering of the membership degrees. Note also
that Top, (A) can not be defined as the subset of A having all its elements having a membership greater
or equal to the one not included since Top, (A) contains all the elements of A.

Average
LetA,,...,A beifuzzy song sets. The average of A ,...,A is a fuzzy song set that assigns to each song

a membership degree equal to the arithmetic mean of the membership degrees of that song in the given
sets.

AUgAT,“,Aj = {'L‘Al,.“,Ai (x) / =}

Y @

i, (o)

The average operator in fuzzy sets is the pendant of the common average operator and is very useful
to aggregate data, a common operation in data warehousing in order to gain some overview over large
datasets.

Functions

The following functions are defined on song sets. They extract information from the song sets to real
values or crisp sets.
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Support

The support of A is the crisp subset of X that includes all the elements having a non-zero membership
degree in A.

Support (A) ={reX:p, (x) > 0}

Cardinality

The cardinality of A is the sum of the membership degrees of all its elements.

# A= 1, (2)

zeX

Distance

The Minkowski distance of order p > 1 € R between two song sets is defined as follows.

SRS

d (AB)=

;‘MA () = ny (l‘)]]

The 1-norm distance is the Manhattan distance, the 2-norm distance is the Euclidean distance, and
the co-norm is the Chebyshev distance.

THE MUSIC WAREHOUSE CUBES

This section presents two data cubes built to serve queries introduced in the scenarios. In data warehouses,
data are logically organized in cubes. A cube is a generalization of a flat two-dimensional spreadsheets
to multiple dimensions. While spreadsheets have rows and columns that are combined to form cells,
cubes have dimensions that are combined to form facts. Each fact has numeric measures attached to it.
To capture the context of a fact, dimensions are organized into hierarchies. Hierarchies define group-
ings and aggregation functions to be performed, e.g., a counter or an average. The two cubes presented
below show how fuzzy song sets can be integrated into a multi-dimensional model and how they can
be queried.

The Song Similarity Cube
The Song Similarity cube captures similarity between songs with respect to selected similarity func-

tions. The cube is composed of two dimensions: a song dimension and similarity dimension; they are
represented in Figure 1. The song dimension captures all the details about a song, including editorial
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Figure 1. Dimensions composing the Song Similarity Cube

Song dimension Similarity dimension

All songs
All similarity functions

Publication decade Genre

Adst Abum Publsher Beat |  Similarity function group
Publication year Subgenre

Similarity function ID

Song ID

information such as the artist name, the publication year or any acoustic information such as the beat
of the song or its genre. For each of these attributes, similarity functions can be created, e.g., an artist
similarity function that gathers information from external web sites and social networks, or a similarity
function that compares the genre wherein songs have been classified, aware that some genres are more
similar than others, or the timbre comparison that uses low-level extracted information to provide a full
comparison matrix.

Each dimension has a hierarchy, which defines how the data can be aggregated to provide differ-
ent degrees of granularity, e.g., the similarity of songs between sub-genres and the similarity of songs
between coarsely defined genres. Similarity function of coarser granularity can also span over differ-
ent attributes, e.g., to provide some average similarity values out of attributes obtained using different
extraction algorithms.

At its most detailed level, the cube is organized based on a star schema, using three tables: the song
dimension table, the similarity function table and the closest songs fact table. The closest songs fact
tables is composed of three attributes: a reference to a song (referred to as the seed song), a reference to
a similarity function, and a fuzzy song set. The notion of similarity between a song and the seed song is
represented by the fuzzy song set membership degree. The closest songs take a high membership degree
while the farthest songs have a low membership degree.

Data of the Song Similarity are shown in Tables 1, 2, and 3.

Typical queries involve the intersection, union, and reduction operators. The queries can be performed
on the song seeds using pieces of information such as the artist or the creation year. Closest Songs Cube
usage examples are presented below. The example assumes the creation of a new SQL data type, called
FZSET, using object-relational extensibility functionality like found in PostgreSQL. For example, the
closest songs attribute in the fact table is of type FZSET. The FZSET implementation details will be
discussed further.

Example 1:

“What are the songs that have a similar beat to the song “One” by U2?”

SELECT SUPPORT(REDUCE(0.6, c.songs)

FROM closest_songs c

INNER JOIN songs as a USING (song_id)

INNER JOIN similarity_functions as b USING (c.sim_id)

WHERE a.title = “one” AND a.artist = “U2” and b.sim = “beat 1~
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Table 1. CubeSong dimension

song id title Artist album beat genre
1 One U2 Achtung Baby DATA DATA
2 One u2 Miss Sarajevo DATA DATA
3 Paint it black Rolling Stones Aftermath DATA DATA

Table 2. Similarity function dimension

Sim id Sim function Sim type
1 beat 1 beat
2 beat 2 beat
3 genre 1 genre

Table 3. Closest songs fact

song_id sim_id Closest_songs

1 1 {1.0/1;0.5/2;0.0/3 }
1 2 {1.0/1;0.7/2; 0.1/3 }
1 3 {0.9/1;0.4/2;0.1/3 }
2 1 {1.0/1;0.5/2; 0.4/3 }
2 1 {1.0/1;0.5/2; 0.3/3 }
3 1 {1.0/1;0.5/2;0.5/3 }

In a star schema, the fact table and the 2 dimensions tables are joined to form the cube. Retriev-
ing the similarities between a song and all the others simply requires selecting a song and a similarity
function from the dimension tables and retrieving the corresponding FZSET in the closest song table.
The support function transforms an FZSET data type into a regular SQL crisp set of elements having
non-zero membership degrees.

Example 2:

“Find the beat similarity between two songs; the first song is identified with the artist, album,
and title attributes from the song dimension, the second is identified using its unique key.”

SELECT MU(c.songs,el)

FROM closest_songs c

INNER JOIN songs as a USING (song_id)

INNER JOIN similarity_functions as b USING (sim_id)

WHERE a.artist = “U2” AND a.album=”Achtung Baby” AND a.title="0One” and b.sim = “beat 1~
GROUP BY a.album_id

The mu function returns the membership value associated to a given element. The similarity between
two songs can be obtained by retrieving the full fuzzy song set representing song similarities for the
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first song, and filtering out the results to only return the element matching the second song. However,
with such an operation being so common, optimization based on the physical storage structure of the
fuzzy song set can be performed, thus motivating the need for creating a specific element search func-
tion within a fuzzy song set.

Example 3:

“Retrieve the 100 songs having the most similar beat to the songs made by U2.”

SELECT SUPPORT(TOP(100, UNION(c.songs))

FROM closest_songs c

INNER JOIN songs as a USING (song_id)

INNER JOIN similarity_functions as b USING (sim_id)
WHERE a.artist = “U2” AND b.sim = “beat 1~

GROUP BY a.album_id

Aggregation functions allow multiple fuzzy song sets to be retrieved and combined. In Example 3,
multiple songs are matching the selection criteria in the song dimension, causing multiple fuzzy song
sets to be retrieved from the closest song table. The fuzzy song sets are then combined using the union
operator; finally the elements with the 100 highest membership degrees are returned.

Example 4:

“Return the similar songs to the given song across the different beat similarity functions avail-
able.”

SELECT SUPPORT(AVG(songs))

FROM closest_songs c

INNER JOIN songs as a USING (song_id)

INNER JOIN similarity_functions as b USING (sim_id)

WHERE a.title = “one” AND a.artist = “U2” and b.sim = “beat”
GROUP BY a.albumid, b.similarity_function_group

As in a spreadsheet, aggregation can be performed on both dimensions. Example 4 retrieves all the
versions of a song in the different albums of an artist and returns an average over similarity functions
of the same type, such as the beat, the genre, or the mood.

The User Feedback Cube

The User Feedback Cube collects relevance statistics about the songs proposed to users by the music
recommendation system. As illustrated by Figure 2, the User Feedback Cube is composed of two di-
mensions: the user dimension and the query dimension. For each user and query, the user feedback is
stored. The feedback given for a particular played song is stored as a membership degree representing
how relevant the proposed song is in the context of the query. A very low membership degree is given
when a user believes the song should not have been proposed. The Feedback and the Favorite Songs
attributes are both defined using the FZSET abstract data type. The user dimension is composed of a
hierarchy allowing users to be aggregated along the various attributes composing their profiles. One
of these attributes is a fuzzy song set representing the user’s favorite songs; it becomes thus simple to
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Figure 2. Dimensions composing the User Feedback Cube
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compare groups of users created based on the users’ musical tastes. The hierarchy on the query dimen-
sion permits to obtain overview along group of semantically close queries.

Example 5:

“What are the favorite songs three users have in common?”

SELECT SUPPORT(REDUCE(0.8, INTER(Favorite songs))
FROM users
WHERE user_id = 1 OR user_id = 2 OR user_id = 3;

Retrieving the songs three users like is an immediate query using the proposed algebra; only the user
dimensiontableisrequired. Here, the aggregation form of the intersection function allows straight-forward
selection of the intersection between three multiple sets. The Reduce operator selects only the songs
resulting from the intersection with a membership degree above 0.8. The support operator transform the
fuzzy song set object into a crisp set that can be manipulated with the regular SQL algebra.

Data from the User Feedback Cube are shown in Tables 4, 5, and 6.

Example 6:

“Who are the 100 users that have the most similar taste to John’s taste?”

SELECT b.user_id

FROM users as a, users as b

WHERE a.user_id = 1

ORDER BY distance(a.favorite_songs, b.favorite_songs) ASC
LIMIT 100;

Example 6 illustrates how, using a self-join, the user dimension can be used to find similarities be-
tween users based on their favorite songs.

Example 7:

“Per query type, what are the songs users born in the 80’s were usually happy to hear?”

SELECT SUPPORT(REDUCE(0.8, AVERAGE(uf.feedback)), q.query type

FROM user_feedbacks as uf
INNER JOIN users as u USING (user_id)
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Table 4. Users dimension

User id Name DOB Favorite songs

1 John 01 Jan 80 {1.0/1;0.5/2; 0.0/3 }
2 Nadia 02 Feb 70 {1.0/41;0.7/42; 0.1/43 }
3 Natalie 03 Mar 60 {0.9/11; 0.4/22; 0.1/33 }
4 Adam 04 Apr 83 {0.2/1;0.47/; 0.13/23 }

Table 5. Queries dimension

Query id Query Query type
1 Rock songs Genre

2 Pop songs Genre

3 Songs marked as favorite by users with similar music profiles Social

4 New song releases Editorial

Table 6. User feedbacks fact

User id Query id Feedback

1 1 {1.0/1;0.5/2; 0.0/3 }
1 2 {1.0/1;0.7/2; 0.1/3 }
3 1 £0.9/1 0.4/2;0.1/3 }

INNER JOIN queries as g USING (query_id)
WHERE “1 JAN 80> <= u.DOB AND u.DOB <= “31 DEC 89~
GROUP BY q.query_type;

Using the user dimension, only the users born in the 80°s are selected, and the average feedback per
query type is then calculated. Again, using the reduce and support operators, only the songs with a high
membership degree are output as crisp sets.

Example 8:

“What are the 100 songs that fans of ‘Elvis’ liked the most when they asked for Rock songs?”

SELECT SUPPORT(TOP 100(AVERAGE(uf.feedback)))

FROM user_feedbacks as uf

INNER JOIN queries as q USING (query_id)

WHERE u.user_id IN (

SELECT user

FROM songs

WHERE SUPPORT(TOP(10,favorite song)) = song_id AND artist = “Elvis”’
) AND g.-query = “Rock songs~”
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Example 8 performs an aggregation of the user feedback. The selection of the users for the aggrega-
tion is performed using the favorite songs in the user dimension. Thus, both fuzzy song sets in the user
dimension table and the fact table are used.

STORAGE OPTIONS

In this section, three different storage options for representing fuzzy song sets in the MW are presented:
tables, arrays, and bitmaps. A prototypical MW where song elements are uniquely identified using 32
bits is used to illustrate the discussion. The proposed MW can reach a size of over 4 billion songs and
at least 100 different membership degrees.

Table

The first solution is to represent the fuzzy song set attribute as a table with three columns: (seed song,
song, membership degree). Let s be the size of the seed song set, e the size of the song set, and m the size
of the set of all the values the membership degree can take. The size of the payload, i.e., the size of the
data when not considering the overhead due to the DBMS, denoted p, can be calculated as follows.

p = 5. e(log,s +log,e +log,m)

where log, s, log, e, and log, m are the minimum number of bits required to store respectively a seed
song, a song, and a membership degree.

The quadratic growth can be limited by admitting only k songs for each seed song to be physically
stored in the table and letting the remaining songs take a default membership degree. The selection of
which song should be represented is dependent on the application. Here, we assume that the elements
with the highest membership degree are interesting; this is performed using the Top, operator. The size
of the payload can then be estimated as follows.

p =s. k(log,s + log,e + log,m)

When 232 seed songs are present, the database reaches its maximum capacity. In such case, the size
of the payload, if only the 1000 elements with the highest membership degree are physically stored,
reaches 36 TB. On a data set composed of 10,000,000 seeds, the payload attains 84 GB.

Array
A second approach is to use one-dimensional arrays containing the songs and their associated member-
ship degrees for representing fuzzy song sets. The data is stored in a table with two columns: (seed song,

array). As with tables, only the k (<e) most similar songs should be physically stored. The size of the
payload grows as follows.
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p = s(log,s + k(log,e+ log,m))

When storing the 1000 closest songs of 2°2 song seeds, the size of the payload is reduced to 19 TB;
on a data set composed of 10,000,000 song seeds, the payload reaches a size of 44 GB However, since
the probability of having no songs for a particular membership degree is small, ordering the fuzzy song
set by membership degrees allows membership degrees to be stored using one bit relatively to each
other: a bit set means to move to the next lower membership degree, a bit unset means to keep the same
membership degree. In the unlikely case of a gap in the sequence of membership degrees, a dummy ele-
ment, referred to as the empty element, is used to jump to the next membership degree. For large gaps,
successive empty elements are used.

For example, the fuzzy song set {100 / 1234,100 / 2345,99 / 3456,97 / 4567,96 / 5678} is repre-
sented by the array [{1234,100}, {2345,100}, {3456,99}, {4567,97}, {5678,96} ] that is compressed as
[{1234,0], {2345,1}, {3456,1}, {0,1}, {4567,1}, {5678,0}], where only one bit is required to capture a
decrement of the membership degree, and 0 is the empty element.

The compression ratio, r, obtained is as follows.

k(log,e + log,m)
(k + m) (log,e +1)

In order to be efficient, i.e., r > 1, the number of empty elements, noted X, in the data set has to
remain limited.

log, m —1
log, e +1

<k

The compression ratio in the best (no empty element) and worst (m — 1 empty elements) case sce-
narios are:

,,,,+

_ log, m +log, e ok log, m +log, e
log,e+1 (k—l—m—l)(log26+1)

For high k values, the likelihood of using empty elements vanishes, therefore causing r- to asymp-
totically converge to r* as k increases. Figure 4 shows the compression ratio r* and r- for membership
degrees represented on 7 bits (128 different values), and fuzzy song set and song seeds represented using

Figure 3. organization of a compressed array

|seed elem || elem || elem || elem || elem || elem || elem || elem
elem || elem || gap || elem || elem || elem || elem || elem
elem || elem || elem || elem || gap || elem || elem || elem
elem || gap || elem elem! elem || elem || elem || elem
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Figure 4. best and worst compression ratio for the arrays
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32 bits. For k = 1000, the compression ratio ranges between 1.04 and 1.18. The full similarity matrix
represented with compressed arrays takes 17 TB.

Bitmap

A third option is to use bitmaps to represent fuzzy song sets. In a bitmap (Chan & loannidis, 1998),
each element is represented by a position in a sequence of bits. Typically, in a bitmap index, a bitmap
for each attribute value is created. The size of each bitmap is equal to the cardinality of the indexed ele-
ments. Fuzzy song sets can be constructed using the same structure. A fuzzy song set is composed of a
bitmap for each membership degree an element can have. As illustrated in Figure 5, each song element
is represented with a bit set in the bitmap corresponding to its membership degree.

A fuzzy song set where the membership degree has a cardinality of m is represented with m bitmaps
of song elements, where each bitmap has a size of e bits. Thus the size of a fuzzy song set using bitmaps
is as follows.

p = s(log, s +m e)

Figure 5. representation of a fuzzy song set with an array of bitmaps
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The bitmap size can be dramatically reduced using compression algorithms. The Word Aligned
Hybrid (WAH) bitmap compression method offers a good compression ratio on sparse bitmaps while
preserving query performances (Wu, Otoo, & Shoshani, 2006).

Briefly, in a WAH-compressed bitmap, the bitmap is divided in 32 bit long words. The first bit of
each word is used to mark if the word is a literal word or a fill word. If the first bit of a word starts with
a unset bit, the word is a literal word; the remaining bits are then used to store a classical 31 bit long
bitmap. A fill word starts with a set bit and indicates the presence of a run composed of homogeneous
31 bit long groups of set or unset bits; thus, fill words are of two kinds: 0-Fills or 1-Fills. The second
bit of a fill word is used to differentiate runs of unset bits from runs of set bits. The remaining 30 bits
are used to count the number of homogeneous 31 bit long groups the run contains.

Figure 6 shows an example of how the bitmap composed of 90, 3x1, 56*0, 691, 98+0, 3*1 and
6+0 can be compressed using WAH. First, the uncompressed bitmap is divided into groups of 31 bits.
If a group forms a literal word, an unset bit is prepended to it. Otherwise, the group is replaced by an
appropriate fill word and a counter of the number of identical consecutive groups following the current
group.

The WAH compression becomes effective when many consecutive zeros or ones can be represented
with fill words. In the worst bit distribution, i.e., a random bitmap, the WAH algorithm reduces the size
of the bitmap as follows.

) 25 o)

w —

Figure 6. The WAH bitmap compression

Uncompressed bitmap
00000000 01110000 00000000 00000000 00000000 00000000 00000000 00000000
gooo1111 111111111111 111111 1111111 11111111 11111111 1111111
11111111 10000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00011100 0000

Uncompressed bitmap organized in groups 031 bits:

'0000000001110000000000000000000' " 0000000000000000000000000000000
00000011111111111111111111111117 1111111111111111111111111111111
’1111111111111000000000000000000' " 0000000000000000000000000000000
70000000000000000000000000000000! " 000000000000000000111000000 |

Merging consecutive homogenou$1 bits groups

'0000000001110000000000000000000' x 1 ' 0000000000000000000000000000000 x 1
'0000001111111111111111111111111 x 1 1111111111111 111111 x 1
1111111111111000000000000000000' x 1 | 0000000000000000000000000000000 x 2
'000000000000000000111000000 'x1

WAH encoding in words of32 bits

Literal word Fill word, counter B DR
00000000001110000000000000000000! 100000000000000000000 0000000001
Literal word 1 - Fill word, counter = 1

00000001111111111111111111111111/ [ 11000000000000000000000000000001

Literal word 0 -Fill word, counter =2
01111111111111000000000000000000! 10000000000000000000000000000010
Literal word

0000000000000000000111000000 I
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where n is the size of the bitmap in bits, d is the bit density, i.e., the fraction of bits set, and w is the word
length, (32 bits in our example). Using the top, operator, the bit density is d = k/e. On a fuzzy song set
of 232 songs where only 1,000 songs are physically stored and n = 2%, d = 1,000 / 2%, the size of each
bitmap is 64,000 bits.

As previously illustrated by Figure 5, a bitmap is constructed for each of the membership degree a
song element can possibly take. The fuzzy song set is then represented using an array composed of 100
bitmaps, but this does not affect the size of the overall bitmap as the bit density of in each bitmap will
proportionally decrease, maintaining the bit density in the full bitmap unchanged.

k
p~s|log,s+ p  (e. my——, w
e.m

In an MW of 232 songs, where 1,000 song elements with the highest membership degree are physi-
cally stored, the size of the payload reaches 33 TB. On a data set composed of 10,000,000 song seeds,
the payload size is 76 GB.

Payload Estimate Comparison

Figure 7 shows the expected size for storing a Fuzzy Song Set Attribute (FSSA) for each of the 232 song
seeds and for different values of k. The linear growth of the WAH bitmap with the number of stored
elements is explained by considering k / n < 1 and applying a binomial decomposition. The payload
can then be approximated by p =~ 2kw.

_nuw [1_(1_d>2’w? _dmz]
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Figure 7. estimated payload storage requirements
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In arrays, the seed elements only have to be stored once per FZSET. Arrays take thus half the stor-
age requirements of tables. With arrays, however, the data need to be compressed and reorganized, thus
leading to an overall increase in complexity. The array compression scheme is focused on compressing
the membership degree. The compression occurs on the 7 bits used to represent the membership degree
but leave the 32 bits representing each element untouched; thus limiting the maximum compression
performance that can be achieved. Bitmaps, on the other hand, are focused in compressing the 32 bits
representing the elements; this is done by imposing a position to each song element. These important
structural differences will have an impact on the implementation of operators and functions.

Storage Estimates and Benchmark

This section describes the storage requirements for the implementation of the Song Similarity Cube fact
table. Therefore, some parts of the following are dependent on the DBMS chosen for implementing the
cube. We calculate some storage requirements estimates for each of data structure. As our estimates
match experimental results, we proceed on predicting the size of each storage option depending on the
number of fuzzy elements they contain.

The experience was conducted on PostgreSQL 8.3, well-known for its scalability. As already explained,
the songs can be uniquely identified using 32 bits and the membership degree of each song element has
a granularity of 100. The dataset used for the implementation consists of 150,834 songs, gathered from
the Intelligent Sound project. Song similarities are computed using a genre classifier collecting acoustic
features from a popular media player (Lehn-Schigler, Arenas-Garcia, Petersen, & Hansen, 2006)

The expected table overhead in PostgreSQL can be estimated by considering tuple overhead and page
overhead (PostgreSQL, 2008). In our configuration, pages have a fixed size of 8 KB. Since tuples are
not allowed to span over multiple pages, PostgreSQL uses secondary storage tables, referred to as The
Oversized-Attribute Storage Technique (TOAST) tables, to store large attributes. Using TOAST, large
field values are compressed and/or broken up into multiple physical rows. TOAST tables use the Lempel-
Ziv, briefly LZ, compression technique to reduce their size (Ziv & Lempel, 1977). The compression of
‘toasted’ attributes being optional, we will compare the different possible setups.

In a table, the number of rows is the product of the number of seeds and the number of elements per
seed: 150,834.1000 = 150,834,000 rows. Each page has a size of 8KB, with a header of 24 bytes, thus
leaving 8,168 bytes of free space. Each row has a payload of 4 + 4 + 4 + 1 = 17 bytes. Each tuple is
stored after a 20 bytes long header, and is aligned to start on the 32nd byte. Therefore, the size of each
row in the table is 31 + 17 bytes. Thus, each page can accommodate 185 rows, and 150,834,000 rows
will require 815,319 pages, thus taking a disk space of 815,319 * 8 KB = 6,369.67 MB. In our storage
experiment on the 150,834 songs, gathered from the iSound database, this is exactly the storage size
taken on disk; thus indicating that our estimate is precise.

For arrays, each element has to be aligned on 4 bytes, thus 8 bytes are necessary to store the element
and the membership degree. Additionally, 4 bytes are used to store the size of the array. Each array has
therefore a size of 4 + 4 + 1000 * 8 = 8008 bytes not allowing two tuples to fit on a single page. Therefore
150,834 pages of 8 KB are needed, causing the storage requirements to be 1,178 MB.

For bitmaps, in the worst case compression scenario, each of the 1,000 elements requires both a fill-
word and a literal word, e.g., when a O-fill word is required between each set bit. A word takes 4 bytes,
thus 8 bytes per elements and 8,000 bytes per bitmap. For each bitmap, an additional 4 bytes long integer
is required to keep track of the size of the data, thus adding 100 * 4 bytes. Thus a bitmap cannot fit on
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a page and has to be moved to an auxiliary toast table, where each bitmap is split into chunks of 2,000
bytes. In that case, 4 rows per bitmap attribute are required in the auxiliary table. Storage estimates
show that in the most pessimist case 1,472 MB are required to store the bitmaps. In the selected dataset,
183,184 pages are required to store the bitmaps. The total space taken by the WAH compressed bitmap
storage representation is therefore: 1,431 MB.

If the number of element increases, a similar storage technique using an auxiliary TOAST table is
required for the array data structure. As with bitmaps, data larger than 2,000 bytes is split into 2,000 bytes
chunks. Each array is therefore divided into 5 chunks, and 150,834+5 chunks are needed. For each data
chunk, a 31 bytes long header has to be added. Since 8,168 bytes of storage are available per page, only
4 chunks can be stored per page and 188,543 pages are needed. The total size of the array data structure
is 1,472 MB when stored using a TOAST table.

Further compression of TOAST data using standard LZ algorithm can be performed. The compres-
sion ratios are data depending.

Table 7 shows the storage requirements for the three storage options. In addition, the space required
