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Preface

The reasons for writing this book are twofold: (1) I want to write a book
that summarizes the different approaches to robust control design; and (2)
I need a textbook that covers the topics of modern control theory, suitable
for a second control course for senior undergraduate students and first year
graduate students.
There are several books published on robust control. Most focus on a

particular approach. These books are most suitable for researchers special-
ized in the particular area and techniques. I often have trouble under-
standing the theoretical underpinnings of these books. From my contacts
with control engineers in the automotive industry who try to solve very
practical problems, I learned that they too have trouble understanding these
books. Furthermore, engineers will not be able to determine which approach
could be the best for the problems at hand before they fully understand the
numerous methods available to them. That means that they need to read
several highly theoretical books, which is a daunting task, even for people
like me who have worked in the control field for more than twenty years.
Assuming that an engineer indeed reads books on different approaches to
robust control, it is still not easy to compare different perspectives, especially
from a practical point of view. Therefore, I feel that a book that describes
the major approaches to robust control in the simplest terms possible, spells
out pros and cons of different approaches, and illustrates their applications
to practical problems will be an excellent book for control engineers to read.
The main body of this book, starting at Chapter 5, is devoted to this task.
This book offers three main approaches to robust control. The first one

concerns an optimal control approach. It translates a robust control problem
into an optimal control problem and then solves this problem to obtain
a solution to the robust control problem. The second approach is that of
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Kharitonov. It checks the robust stability of a linear time invariant system
by considering its characteristic polynomial. The uncertainty of the system is
parameterized in the form of the characteristic equation. The third approach
is referred to as the H�/H2. Its task is to find a controller that minimizes
the H�/H2 norm of the controlled system so that the range of tolerable
uncertainty can be maximized. We show that the optimal control approach
is inherently suitable for control synthesis while the Kharitonov approach
is inherently suitable for control analysis.
Chapters 2–4 deal with basic modern control theory using the state space

model. This part of the book is motivated by another observation: I have
been searching for a suitable textbook for a second course on control for
many years. Such a course should cover most important topics in modern
control theory and is offered to senior undergraduate students and first
year graduate students. I have tried different textbooks (and there are many
of them), but none fit my needs. These textbooks are usually bulky and
expensive. They cover too many topics and are impossible to finish in
one semester. On the other hand, many books do not cover topics that I feel
are most essential, such as the Kalman filter. Therefore, I wrote the first five
chapters of this book with the intent of addressing the needs of such courses.
This book is aimed at students and readers who want to get sufficient

background on control theory, especially robust control theory, in order
to use it in practical applications. The presentation on modern control
theory in Chapters 2–4 is short, but covers all the important results needed
for applications of the theory. Proofs are provided for most of the results
presented in this book. For example, the results on the Kalman filter are
proved without requiring the knowledge on stochastic processes. Some
details are omitted if they are tedious and not insightful. Many examples
are given in this book to illustrate results and applications.
This book emphasizes control design and its applications. We want to

develop control theory that is not only elegant, but also useful. In fact, useful-
ness shall be the sole criterion for judginganapproach.To illustrate theuseful-
nessof theoptimalcontrolapproachtorobustcontroldesign,weprovide three
detailed applications to vibration systems, robot manipulators, and V/STOL
aircraft. They are presented in Chapters 9, 10, and 11, respectively.
I would like to thank the editor and the publisher for their constant

encouragement. I would also like to thank my co-workers, colleagues, and
students for their invaluable contributions to the content of this book.
A special thank you goes to my PhD advisor, Professor W. Murray

Wonham of University of Toronto. Professor Wonham not only taught me
control theory, but he taught me how to do research and how to become a
good researcher.

Feng Lin
Troy

December 2006



Notation

A∧B A and B
A∨B A or B
¬A not A
A⇒ B A implies B (A⇒ B means ¬A∨B),
A⇔ B A if and only if B (A⇔ B means A⇒ B and B⇒ A),
�∀x�P�x� for all x�P�x� is true
�∃x�P�x� there exists an x�P�x� is true
x ∈X x belongs to X
x 	X x does not belong to X
X∪Y union of X and Y
X∩Y intersection of X and Y
X ⊆ Y X is a subset of Y
X ⊂ Y X is a proper subset of Y
x ∈ Rn x are the n-dimensional state variables of a system
�A� determinant of A
adj�A� adjoint of A
trace�A� trace of A
rank�A� rank of A
AT transpose of A
Ā conjugate of A
A−1 inverse of A
��A� set of eigenvalues of A
��A� spectrum radius of A, ��A�=max ���A��

��A� largest singular value of A, ��A�=max
√
��ATA�

��A� smallest singular value of A, ��A�=min
√
��ATA�

B+ pseudo-inverse of B



xiv NOTATION

�x�y� inner product of x and y
�x� norm of x

�x�p p-norm for vector x, �x�p = �
n∑

i=1
�xi�

p�1/p

�A�p induced p-norm for matrix A, �A�p = sup
x �=0

�Ax�p
�x�p

�A�F Frobenius norm for matrix A, �A�F =
√
trace�ATA�

E�	
 mean or expectation of 	



1
Introduction

This book is about robust control design. To truly understand robust control
design, we first need to understand basic concepts of systems and control.
We will introduce systems and control theory in this chapter. We will also
give an overview of the book.

1.1 SYSTEMS AND CONTROL

A Google search in August 2006 found more than 5 billion entries for the
word ‘system’. So what is a system? There are many definitions, depending
on the areas of application or interest. For example, according to The
Free Dictionary by Farlax (http://www.thefreedictionary.com/system), a
system is:

1. A group of interacting, interrelated, or interdependent elements
forming a complex whole.

2. A functionally related group of elements, especially:

(a) the human body regarded as a functional physiological unit.
(b) an organism as a whole, especially with regard to its vital processes

or functions.
(c) a group of physiologically or anatomically complementary organs

or parts: the nervous system; the skeletal system.

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd



2 INTRODUCTION

(d) a group of interacting mechanical or electrical components.
(e) a network of structures and channels, as for communication,

travel, or distribution.
(f) a network of related computer software, hardware, and data trans-

mission devices.

3. An organized set of interrelated ideas or principles.
4. A social, economic, or political organizational form.
5. A naturally occurring group of objects or phenomena: the solar

system.
6. A set of objects or phenomena grouped together for classification or

analysis.
7. A condition of harmonious, orderly interaction.
8. An organized and coordinated method; a procedure.
9. The prevailing social order; the establishment.

All the above definitions are appropriate for some applications. However,
in this book, we define a system as an assemblage of objects, real or abstract,
that has some inputs and some outputs (Figure 1.1).
There are many examples of systems: an automobile whose input is the

position of the gas pedal and whose output is the speed, a bank account
whose input is the fund deposited and whose output is the interest generated,
a traffic light whose input is the command indicated by green, yellow, or
red lights and whose output is the traffic flow, and a dryer whose input is
different dry circles and whose output is dry cloth.
To better understand systems, we shall classify them into different types.

We will not classify systems according to their physical appearance, but
rather according to their mathematical properties. Mathematically, we can
view a system as a mapping S � U → Y from its input u to its output y= S�u�.

The first classification is whether a system is linear or nonlinear. A system
is linear if its input–output relation is linear; that is, for all inputs u1 and u2

y1 = S�u1�∧y2 = S�u2�⇒ �1y1+�2y2 = S��1u1+�2u2� (1.1)

where �1 and �2 are any constants, ∧ means ‘and’, and ⇒ means ‘implies’.
Equation (1.1) says that if y1 is the output when the input is u1 and y2 is the
output when the input is u2, then �1y1+�2y2 is the output when the input
is �1u1+�2u2. If there exist some inputs u1 and u2 such that Equation (1.1)
is not satisfied, then the system is nonlinear.

u
System

y

Figure 1.1 A system with input u and output y.
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Let us consider the system of a bank account. If the interest rate is
fixed at 3%, then the system is linear because the interest generated by the
account is proportional to the balance of the account: $100 will generate
$3, $1000 000 will generate $30 000, etc. However, in order to attract large
deposits, a bank may use progressive interest rates. For example, the first
$10 000 of the balance earns an interest rate of 2% and the rest earns
an interest rate of 4%. The account of this type is nonlinear because the
interest generated by the account is not proportional to the balance of the
account: $100 will generate $2 and $1000000 will generate $10000×
0�02+990000×0�04= $39800.
The second classification of systems is whether a system is time-invariant

or time-varying. A system is time-invariant if its input–output relation does
not change over time; that is, for any input u applied at different times,

y�t�= S�u�t��⇒ y�t+T�= S�u�t+T�� (1.2)

where T is any constant time delay. If there exist some input u and some
constant T such that Equation (1.2) is not satisfied, then the system is
time-varying.
Consider again the system of a bank account. The system is time-invariant

if the interest rate does not change over time. It is time-varying if the interest
rate changes over time, which is most common in our daily experience.
The third classification of systems is whether a system has single input

and single output (SISO) or multiple inputs and multiple outputs (MIMO).
This classification requires no further explanation.
The last classification of systems is whether a system is a continuous-time

or a discrete-time system. A system is a continuous-time system if its input
and output are functions of a continuous time variable. All physical systems
are continuous-time systems. However, nowadays, many physical systems
are controlled by computers rather than by analogue devices. For computer
control, input and output signals must be sampled. After a continuous-time
signal x�t� is sampled, it becomes a discrete-time signal x�tk�, where tk is
the kth sampling time. In this book, we will study only continuous-time
systems.
Our goal is to control a system to achieve some objectives. Generally

speaking, the control objectives can be classified to ensure either stability
or optimality, or both of a system. Stability means that the system will not
‘blow up’; that is, the output of the system will not become unbounded as
long as its input is bounded. This is a basic requirement of most systems
that we encounter. Optimality means that the system performance will
be optimal in some sense. For example, we may want an automobile to
consume the least fuel; or we may want a bank account to generate most
interest. In this book, we will discuss stability in Chapter 3 and optimality
in Chapter 4.
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To achieve stability or optimality, some control needs to be used. Gener-
ally speaking, two types of control can be used: (1) feedback or closed-loop
control; and (2) open-loop control.
In feedback control, the controller knows the output of the system and

uses this information in its control. A feedback control system is shown
in Figure 1.2. Most control systems we see in our daily life are feedback
control systems. For example, most control systems in an automobile, such
as engine control, throttle control, cruise control, and power train control
are feedback controls. So are temperature controls in modern houses or
controls in ovens and refrigerators.
In open-loop control, the controller does not know the output of the

system, as shown in Figure 1.3. Open-loop control is used if it is hard or
meaningless to measure the output. There are not many, but some exam-
ples of open-loop control in existence. Most traffic controls are open-loop
control because the controllers do not know the traffic flow that is being
controlled. In most cases, washers and dryers are open-loop controlled,
because it is hard to measure the cleanness or dryness of cloth.
Needless to say, feedback control has many advantages over open-loop

control. Many unstable systems can be stabilized by feedback controls
but cannot be stabilized by open-loop control. Feedback can often handle
disturbance much better than open-loop control. Optimization can also be
achieved using feedback. Since open-loop control is relatively easy to design
and less frequently used in practice, almost all controls addressed in the
control theory are feedback control. Most methods developed in control
theory are for feedback control. This is also true in this book. We will
investigate feedback control systems in this book.
To control a system, we first need to obtain a mathematical model of

the system. In the development of the control theory, two main modelling
frameworks have been proposed. One uses transfer functions and the other

u
System

y
Controller

Figure 1.2 A feedback control system.

u
System

y
Controller

Figure 1.3 An open-loop control system.
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uses state space representations. The methods developed using transfer func-
tions are sometimes called ‘classical control’. The methods developed using
state space representations are sometimes called ‘modern control’. In this
book, we will mainly use state space representations to model systems.
Our focus is on robust control design. Robust control is related to

modelling and model uncertainties. No matter how hard we try, no model
is completely accurate. Every model has errors or uncertainties. If a control
will work under uncertainties, we say that the control is robust. Robust
control design tries to design a control that has good tolerance to modelling
errors. There are several approaches available for robust control and robust
control design. In this book, we will present two popular approaches: the
parametric approach and the H�/H2 approach. More importantly, we will
present a new approach to robust control design. This new approach is
‘indirect’ in the following sense: it translates a robust control problem into
an optimal control problem. Since we know how to solve a large class
of optimal control problems, this optimal control approach allows us to
solve some robust control problems that cannot be easily solved otherwise.
Furthermore, this approach is easy to understand and easy to apply to
practical problems.
To build the foundation for the optimal control approach, we will first

present the fundamentals of control theory, stability theory, and optimal
control.

1.2 MODERN CONTROL THEORY

We will start this book with a comprehensive review of modern control
theory in Chapter 2. We will use general state space models to describe
systems:

ẋ = f�x�u� t�

y = g�x�u� t�

where f � Rn×Rm×R→ Rn and g � Rn×Rm×R→ Rp are nonlinear func-
tions. ẋ = f�x�u� t� are state equations and y = g�x�u� t� are output equa-
tions. Derivation of these equations is illustrated in Appendix A, where we
model various electrical, mechanical and other practical systems.
Chapter 2 will focus on a linear time-invariant system of the form

ẋ = Ax+Bu

y = Cx+Du
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We will study its responses and their properties. We will also study its
transfer function. We note that for a given system, its state space represen-
tation or realization is not unique. Different representations are related by
some similarity transformations. Some representations are more useful in
control, including the Jordan canonical form, controllable canonical form,
and observable canonical form.
Controllable and observable canonical forms are related to two impor-

tant properties of systems: controllability and observability. Intuitively, a
system is called controllable if all its states can be controlled in the sense
that they can be driven to anywhere using some input, and a system is
called observable if all its states can be observed in the sense that their
values can be determined from the output. For linear time-invariant systems,
these two properties can be easily checked by checking the ranks of some
controllability or observability matrices.
The importance of controllability is due to the fact that if a system is

controllable, then we can move or place its poles or eigenvalues in arbitrary
places in the complex plane by using state feedback. We show how this
can be done in three steps. First, we show how to design a state feedback
for a system in controllable canonical form. We then show how to do this
for general single-input systems. Finally, we show how to design a state
feedback for a multi-input system.
Using state feedback requires that all state variables are available for

control. This in turn requires that there are sensors to measure all state vari-
ables. This requirement is sometimes impractical and most times too expen-
sive to satisfy. Furthermore, this requirement is also unnecessary because
even if the state variables are not directly measurable, they can be estimated
from the output of the system, if the system is observable. Such estimation
is achieved by an observer. An observer is a linear time-invariant system
whose inputs are the input and output of the system to be observed, and
whose output is the estimate of the state variables. The performance of the
observer is determined by its poles, which can be placed arbitrarily if the
system is observable. The nice thing about feedback control is that the use
of the observer does not change the poles determined by the state feedback.
This separation principle allows us to design state feedback and an observer
separately.

1.3 STABILITY

In Chapter 3, we will review the basic theory of stability. Intuitively, stability
means that, without inputs, a system’s response will converge to some
equilibrium. Consider a general nonlinear system

ẋ = A�x�
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where x ∈ Rn are the state variables and A � Rn → Rn is a (nonlinear)
function. Assume A�0� = 0, the equilibrium point x0 = 0 is asymptotically
stable if there exists a neighbourhood of x0 = 0 such that if the system starts
in the neighbourhood then its trajectory converges to the equilibrium point
x0 = 0 as t →�.
Determining stability of a system is not easy if the system is nonlinear.

One approach often used is the Lyapunov approach, which can be explained
as follows: given a system, let us define some suitable ‘energy’ function of
the system. This function must have the property that it is zero at the origin
and positive elsewhere. Assume further that the system dynamics are such
that the energy of the system is monotonically decreasing with time and
hence eventually reduces to zero. Then the trajectories of the system have
no other place to go but the origin. Therefore, the system is asymptotically
stable. This generalized energy function is called a Lyapunov function. The
Lyapunov approach will be used in deriving the results on our optimal
control approach to robust control design.
On the other hand, for a linear time-invariant system

ẋ = Ax

its stability is determined by its characteristic polynomial

��s�= �sI−A� = ans
n+an−1s

n−1+…+a1s+a0

and its corresponding roots, which are eigenvalues or poles. A linear time-
invariant system is asymptotically stable if and only if all the roots of its
characteristic polynomial are in the open left half of the s-plane.
If the numerical values of matrix A are known, then we can always find

the numerical values of its eigenvalues and hence determine the stability of
the system. However, if symbolic values are used or, for any other reasons,
we do not want to calculate the eigenvalues explicitly, then two other
criterions can be used to determine the stability of a system.
The Routh–Hurwitz criterion is a method to determine the locations of

roots of a polynomial ��s� = ans
n +an−1s

n−1 +…+a1s+a0 with constant
real coefficients with respect to the left half of the s-plane without actually
solving for the roots. It involves first constructing a Routh table and then
checking the number of sign changes of the elements of the first column of
the table, which is equal to the number of roots outside the open left half
of the complex plane.
The second criterion is the Nyquist criterion. Unlike the Routh–Hurwitz

criterion, the Nyquist criterion is a frequency domain method based on the
frequency response of a linear time-invariant system. To use the Nyquist
criterion to check the stability of a system with the characteristic equation
given by 1+G�s�H�s� = 0, we first construct a Nyquist plot of G�s�H�s�.
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For the system to be stable, the Nyquist plot of G�s�H�s� must encircle the
�−1� j0� point as many times as the number of poles of G�s�H�s� that are in
the right half of the s-plane.
Chapter 3 also discusses two other properties of a linear time-invariant

system: stabilizability and detectability. A system is stabilizable if all
unstable eigenvalues are controllable. Obviously, stabilizability is weaker
than controllability. It is the weakest condition that allows us to stabi-
lize a system using feedback. Dually, a system is detectable if all unstable
eigenvalues are observable.

1.4 OPTIMAL CONTROL

After we stabilize a system, the next thing we want to do is to optimize the
system performance. Optimal control will be discussed in Chapter 3. This
topic is not only important in its own right, but also serves as the basis of
our optimal control approach to robust control design.
We formulate an optimal control problem for a general nonlinear system

ẋ = f�x�u�

so as to minimize the following cost functional

J�x� t�=
∫ tf

t
L�x�u�d	

where t is the current time, tf is the terminating time, x= x�t� is the current
state, and L�x�u� characterizes the cost objective.
We will derive the solution to the optimal control problem from the

principle of optimality, which states that if a control is optimal from some
initial state, then it must satisfy the following property: after any initial
period, the control for the remaining period must also be optimal with
regard to the state resulting from the control of the initial period. Applying
the principle of optimality to the optimal control problem, we can derive the
Hamilton–Jacobi–Bellman equation that must be satisfied by any solution
to the optimal control problem.
It is not always easy to solve the Hamilton–Jacobi–Bellman equation,

especially for nonlinear systems. However, if the system is linear and the
cost function is quadratic with infinite horizon; that is

ẋ = Ax+Bu

J�x� t�=
∫ �

t
�xTQx+uTRu�d	
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then the Hamilton–Jacobi–Bellman equation is reduced to the following
algebraic Riccati equation

SA+ATS+Q−SBR−1BTS = 0

Solving the above equation for S, we can obtain the solution to the
optimal control problem as

u∗ =−R−1BTSx

The above optimal control problem is also called a linear quadratic regu-
lator (LQR) problem.
The problem dual to the optimal control problem is to design an optimal

observer, more commonly known as the Kalman or Kalman–Bucy filter.
Deriving results on the Kalman filter often requires knowledge and back-
ground on stochastic processes. However, we will provide a new method
to derive the Kalman filter in Chapter 4 without using results on stochastic
processes.

1.5 OPTIMAL CONTROL APPROACH

The main focus of this book is of course on the optimal control approach to
robust control design. We will discuss this approach starting in Chapter 5,
where we present the optimal control approach for linear systems. The
system to be controlled is described by

ẋ = A�p�x+Bu

where p represents uncertainty. The goal is to design a state feedback to
stabilize the system for all possible p within given bounds. The solution to
this robust problem depends on whether the uncertainty satisfies a matching
condition, which requires that the uncertainty is within the range of B.
If the uncertainty satisfies the matching condition, then the solution to the

robust control problem always exists and can be obtained easily by solving
an LQR problem. The LQR problem is obtained by including the bounds
on the uncertainty in the cost functional. The proof that the solution to
the LQR problem is a solution to the robust control problem is based on
the properties of the optimal control, as described by the Hamilton–Jacobi–
Bellman equation. Furthermore, if the matching condition is satisfied, we
can also solve a robust pole placement problem by placing the poles of the
controlled system to the left of −
, where 
 is some arbitrary positive real
number, as long as the uncertainty is within the bounds.
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If the uncertainty does not satisfy the matching condition, then the
problem is much more complex. We first need to decompose the uncertainty
into the matched part and the unmatched part. We will use an augmented
control to deal with the unmatched uncertainty. Robust control may or may
not be possible, depending on whether a sufficient condition is satisfied.
This conclusion is in sync with the results obtained by other researchers in
the field.
Chapter 5 also discusses how to handle uncertainty in the input matrix;

that is, the uncertain system has the form

ẋ = A�p�x+BD�p�u

Method for this case is similar but the derivation is more complex.
The optimal control approach to nonlinear systems will be presented in

Chapter 6. The idea is similar to the idea for linear systems: we will trans-
late a robust control problem into an optimal control problem. However,
because the system is nonlinear, it is more difficult to solve the optimal
control problem. Hence, some numerical solutions or other methods may
need to be used, although this is outside the scope of this book.
As in the case for linear systems, the procedure for systems satisfying

the matching condition is quite different from the procedure for systems
not satisfying the matching condition. For systems satisfying the matching
condition, the solution to the optimal control problem is guaranteed to
be a solution to the robust control problem. Therefore, as long as we can
find an analytic or numerical solution to the optimal control problem, we
have a solution to the robust control problem. For systems not satisfying
the matching condition, the solution to the optimal control problem is a
solution to the robust control problem only if a certain sufficient condition is
satisfied. If the unmatched part of the uncertainty is too large, the sufficient
condition is unlikely to be satisfied. Again, this is not surprising in view of
results obtained by other researchers.

1.6 KHARITONOV APPROACH

A book on robust control design would not be complete without presenting
the parametric approach, sometimes called the Kharitonov approach. The
Kharitonov approach is an excellent method for robust analysis of control
systems. To some degree, it can also be used for robust control design. We
will discuss the Kharitonov approach in Chapter 7.
The Kharitonov approach considers a system with the following charac-

teristic polynomial

��s�p�= p0+p1s+…+pn−1s
n−1+pns

n
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where pi ∈ �p−
i � p

+
i �� i= 0�1� 
 
 
 �n are coefficients whose values are uncer-

tain, but we know their lower and upper bounds. The Kharitonov theorem
states that the stability of the following four polynomials is necessary and
sufficient for the stability of all polynomials with the uncertainty within the
bounds:

K1�s�= p−
0 +p−

1 s+p+
2 s

2+p+
3 s

3+p−
4 s

4+p−
5 s

5+· · ·

K2�s�= p−
0 +p+

1 s+p+
2 s

2+p−
3 s

3+p−
4 s

4+p+
5 s

5+· · ·

K3�s�= p+
0 +p−

1 s+p−
2 s

2+p+
3 s

3+p+
4 s

4+p−
5 s

5+· · ·

K4�s�= p+
0 +p+

1 s+p−
2 s

2+p−
3 s

3+p+
4 s

4+p+
5 s

5+· · ·

To prove the Kharitonov theorem, we need a few preliminary results.
These preliminary results will also be proven in Chapter 7.
To compare the optimal control approach with the Kharitonov approach,

we note that the optimal control approach is inherently a design tool, in the
sense that it will design a controller that can robustly stabilize the system;
while the Kharitonov approach is inherently an analysis tool, in the sense
that, given a (closed-loop) system, it will analyse and verify if the system is
robustly stable.

1.7 H� AND H2 CONTROL

It is not easy to summarize the H�/H2 control in one chapter, but that
is what we will do in Chapter 8. We will start with the introduction of
function spaces. In particular, H� denotes the Banach space of all complex
valued functions F � C → C that are analytic and bounded in the open right
half of the complex plane and are bounded on the imaginary axis jR with
its H� norm defined as

∥∥F
∥∥
� = sup

�∈R
�F �j���

H2 denotes the Hilbert space of all complex valued functions F � C →C that
are analytic and bounded in the open right half of the complex plane and
the following integral is bounded

∫ �

−�
F �j��F �j��d� <�

The H2 norm can then be defined as

∥∥F
∥∥
2
=

√
1

2�

∫ �

−�
F �j��F �j��d�
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We will show how to calculate the H� and H2 norms.
To discuss robustness under uncertainty, we will separate the uncertainty

from the nominal system and put the uncertainty in the feedback loop. We
will prove a small-gain theorem which states intuitively that the perturbed
closed-loop system is stable if theH� norm of the loop is less than one. From
the small-gain theorem, we can determine the bounds on the uncertainty
that guarantee the stability of the perturbed system.
We will then show that H2/H� control synthesis boils down to designing

a controller for the nominal system such that its H�/H2 norm is minimized.
Note that the H2/H� approach is very different from the optimal control
approach. In the optimal control approach, we start with the bounds on
uncertainties. We then design a controller based on these bounds. As the
result, if the controller exists, then it is guaranteed to robustly stabilize
the perturbed system. On the other hand, in the H2/H� approach, the
bounds on uncertainties are not given in advance. The synthesis will try to
achieve the largest tolerance range for the uncertainty. However, there is no
guarantee that the range is large enough to cover all possible uncertainties.
In other words, the H2/H�approach cannot guarantee the robustness of
the resulting controller. The approach will do its best to make the resulting
controller robust. Whether this best is good enough depends on the nature
of the uncertainty.

1.8 APPLICATIONS

We will present three practical applications of the optimal control approach
to robust control design. These applications will be presented in Chapters 9,
10, and 11.
The first application is robust active damping for stability enhancement

of vibration systems. Many practical systems such as buildings, flexible
structures, and vehicles, exhibit vibration. How to reduce (damp) vibration
is an important control problem. We will be interested in active damping
that uses external force to actively control the system to reduce the vibration.
The system will be modelled as

M0ẍ+A0x = B0u+C0f0�x� ẋ�

where M0 is the mass matrix, A0 is the stiffness matrix, and f0�x� ẋ� is the
uncertainty. We will introduce a special inner product and the associated
energy norm. The solution to the robust damping problem will be obtained
by translating it into an optimal control problem. The control law will be
obtained by solving an LQR problem.
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The second application is robust control of robot manipulators. The
dynamics of a robot manipulator is modelled as

M�q�q̈+V�q� q̇�+U�q̇�+W�q�= 	

where q is the generalized coordinate vector, 	 is the generalized force
vector, M�q� is the inertia matrix, V�q� q̇� is the Coriolis/centripetal vector,
W�q� is the gravity vector, and U�q̇� is the friction vector. Based on this
model, we will formulate the robust control problem when the load and
other parameters are uncertain. The resulting robust control problem satis-
fies the matching condition. However, there is also uncertainty in the input
matrix. We will use the method in Chapter 5 to solve the robust control
problem.We will apply the control law obtained to a two-joint SCARA-type
robot and simulate the controlled system.
The third and last application is the hovering control of a vertical/short

takeoff and landing (V/STOL) aircraft. The aircraft state is simply the
positions, x̃� ỹ of the aircraft centre of mass, the roll angle � of the aircraft,
and the corresponding velocities ˙̃x� ˙̃y� �̇. The control inputs Ut�Um are,
respectively, the thrust (directed out the bottom of the aircraft) and the
rolling moment about the aircraft centre of mass. The dynamics of the
aircraft can be written as

m ¨̃x =−Ut sin�+�0Um cos�

m ¨̃y = Ut cos�+�0Um sin�−mg

J �̈ = Um

where �0 > 0 is a coefficient describing the coupling between the rolling
moment and the lateral force on the aircraft. We will design a robust control
to take care of the coupling between the rolling moment and the lateral
force on the aircraft. We will solve a nonlinear optimal control problem
analytically to obtain a nonlinear robust control law.

1.9 USE OF THIS BOOK

By selecting different chapters, this book can be used in the following three
courses.
Chapters 1–5 and Appendix A can be used for an undergraduate/graduate

course on modern control theory. These parts cover the following topics:

1. Modelling and responses of systems (Appendix A and Chapter 2).
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2. Properties of linear time-invariant systems (Chapters 2 and 3),
including controllability, observability, stability, stabilizability, and
detectability.

3. Control synthesis for linear time-invariant systems (Chapter 2): pole
placement and observer design.

4. Introduction to optimal control and the Kalman filter (Chapter 4).
5. Introduction to robust control design (Chapter 5).

Chapters 5–8 can be used for a graduate level course on robust control
design. Such a course will cover the following topics:

1. Optimal control approach to robust control design for linear systems
(Chapter 5).

2. Optimal control approach to robust control design for nonlinear
systems (Chapter 6).

3. Robust control of parametric systems using the Kharitonov theorem
(Chapter 7)

4. H� and H2 robust control design (Chapter 8).

Finally, Chapters 5–6 and Chapters 9–11 can be used for an application-
orientated course on robust control design using the optimal control
approach, which covers the following topics:

1. Optimal control approach to robust control design for linear systems
(Chapter 5).

2. Optimal control approach to robust control design for nonlinear
systems (Chapter 6).

3. Robust active damping for vibration systems (Chapter 9).
4. Robust control of robot manipulators (Chapter 10).
5. Hovering control of (V/STOL) aircraft (Chapter 11).



2
Fundamentals of Control

Theory

In this chapter we discuss the fundamentals of control theory. We investigate
control for both linear and nonlinear systems, however we focus on linear
systems. Systems will be modelled in state space representation with state
variables, input variables, and output variables. Given inputs and initial
conditions of a linear system, its responses in terms of states and outputs
can be determined and investigated. We also discuss similarity transfor-
mations and show how to convert a system into its Jordan canonical
form by means of similarity transformations. We then study controllability
and observability of linear systems. If a system is controllable, then we
can assign its poles to arbitrary locations using state feedback control.
When state variables are not available directly for control, an observer
must be built to estimate the state variables from the input and output
variables of the system. Such an observer may not always exist. A neces-
sary and sufficient condition for the existence of the observer is observ-
ability. Assuming a system is observable, we can build either a full-order
observer or a reduced-order observer. A full-order observer has the same
order as the system while a reduced-order observer has an order less than
the order of the system. Either a full-order observer or a reduced-order
observer can be used in a feedback loop to form a closed-loop control
system.

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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2.1 STATE SPACE MODEL

In classical control theory, a transfer function is used to describe the input
and output relation of a system and hence serves as a model of the system.
Such a transfer function model is most suitable for linear time-invariant
systems with a single input and a single output. If the system to be controlled
is nonlinear, or time-varying, or has multiple inputs or outputs, then it will
be difficult, if not impossible, to model it by a transfer function. Therefore,
for nonlinear, time-varying, or multi-input–multi-output systems, we often
need to use state space representation to model the systems.
The state variables of a system are defined as a minimum set of variables

such that the knowledge of these variables at any time t0, plus the infor-
mation on the input subsequently applied, is sufficient to determine the
state variables of the system at any time t > t0. For example, in mechanical
systems, state variables are usually the positions and velocities of objects. If
a system has n state variables, we say that the order of the system is n. We
often use an n-dimensional vector x to denote the state variables: x ∈ Rn.
We use u ∈ Rm to denote the m-dimensional input variables and y ∈ Rp to
denote p-dimensional output variables. A state space model of a system can
then be written as

ẋ = f�x�u� t�

y = g�x�u� t�

where f � Rn×Rm×R→ Rn and g � Rn×Rm×R→ Rp are nonlinear func-
tions. ẋ = f�x�u� t� is a set of n first-order differential equations. We call
ẋ = f�x�u� t� the state equations and y = g�x�u� t� the output equation.
If a system is time-invariant, then the time t will not appear explicitly

in functions f and g. In other words, the state space representation can be
written as

ẋ = f�x�u�

y = g�x�u�

If a system is also linear, then the functions f and g are linear functions.
Hence the state space representation can be written as

ẋ = Ax+Bu

y = Cx+Du

where A, B, C, D are matrices of appropriate dimensions. Since A, B, C, D
are constants, the system is time-invariant. We sometimes denote this linear
time-invariant system by

(
A B
C D

)
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Most practical systems are nonlinear. However, many nonlinear systems
can be approximated by linear systems using linearization methods.
For obvious reasons, theory of control of linear systems is much better
developed than that of control of nonlinear systems. Chapters 6 and 11
of this book deal with nonlinear systems, while the rest of the book deals
with linear systems.

2.2 RESPONSES OF LINEAR SYSTEMS

To determine the response or output of a linear system for given initial
conditions and/or inputs, we need to solve the state equation. Let us first
consider the response due to the initial condition: given a system

ẋ = Ax (2.1)

with the initial condition at t0 as x�t0�= x0, what is the response x�t� at t?
To derive this response, we need to use the matrix exponential defined as

eAt = I+ �At�+
1

2!
�At�2+

1

3!
�At�3+· · · ·+

1

n!
�At�n+· · · (2.2)

The matrix exponential has the following properties.

Properties of the matrix exponential

1.
d

dt
eAt = AeAt = eAtA

2. eA0 = I
3. �eAt�−1 = e−At

Proof

1�
d

dt
eAt =

d

dt
�I+At+

1

2!
A2t2+· · · ·+

1

�n−1�!
An−1tn−1+· · · �

= A+A2t+
1

2!
A3t2+· · · ·+

1

�n−1�!
Antn−1+· · ·

= A�I+At+
1

2!
A2t2+· · · ·+

1

�n−1�!
An−1tn−1+· · · �= AeAt

= �I+At+
1

2!
A2t2+· · · ·+

1

�n−1�!
An−1tn−1+· · · �A= eAtA
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2. eA0 = I+ �A0�+
1

2!
�A0�2+

1

3!
�A0�3+· · · ·+

1

n!
�A0�n+· · · = I

3. I = eA0 = eAt−At = eAte−At

Q.E.D.

Based on the matrix exponential, the response of system (2.1) can be
written as

x�t�= eA�t−t0�x0 (2.3)

This is because x�t�= eA�t−t0�x0 satisfies the state equation:

ẋ�t�=
d

dt
eA�t−t0�x0 = AeA�t−t0�x0 = Ax�t�

It also satisfies the initial condition:

x�t0�= eA�t0−t0�x0 = e0x0 = x0

Let us now consider the response due to both the initial condition and
the input. For the system given by

ẋ = Ax+Bu

with the initial condition x�t0�= x0 and the input u�t�� t≥ t0, the response is

x�t�= eA�t−t0�x0+
∫ t

t0

eA�t−��Bu���d� (2.4)

This can be shown as follows. First x�t� = eA�t−t0�x0 +
∫ t

t0
eA�t−��Bu���d�

satisfies the state equation.

ẋ�t�= AeA�t−t0�x0+eA�t−t�Bu�t�+
∫ t

t0

AeA�t−��Bu���d�

= A�eA�t−t0�x0+
∫ t

t0

eA�t−��Bu���d��+Bu�t�

= Ax�t�+Bu�t�

Second

x�t�= eA�t−t0�x0+
∫ t

t0

eA�t−��Bu���d�

satisfies the initial condition.

x�t0�= eA�t0−t0�x0+
∫ t0

t0

eA�t0−��Bu���d� = x0
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To calculate the response of Equations (2.3) or (2.4), we need to compute
the matrix exponential eAt. Doing this by using the definition (2.2) will not
be practical. We need to find some effective ways to compute eAt. One such
way is to use the Laplace transform. It is not difficult to see that the Laplace
transform of eAt, denoted by L�eAt	, is

L�eAt	= �sI−A�−1

Hence, eAt is the inverse Laplace transform of �Is−A�−1.

eAt = L−1��sI−A�−1	

Let us show the computation in the following example.

Example 2.1

Let

A=

[
1 0
0 2

]

then

sI−A=

[
s 0
0 s

]
−

[
1 0
0 2

]
=

[
s−1 0
0 s−2

]

�sI−A�−1 =

[
s−1 0
0 s−2

]−1

=

⎡
⎢⎣

1

s−1
0

0
1

s−2

⎤
⎥⎦

The inverse Laplace Transform can be calculated as

eAt = L−1��sI−A�−1	=

[
et 0
0 e2t

]

Let us consider another example.

Example 2.2

Let

A=

[
0 1
−2 −3

]
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then

sI−A=

[
s 0
0 s

]
−

[
0 1
−2 −3

]
=

[
s −1
2 s+3

]

Since
∣∣∣∣
s −1
2 s+3

∣∣∣∣= s�s+3�+2= s2+3s+2= �s+1��s+2�

�sI−A�−1 =

[
s −1
2 s+3

]−1

=
1

�s+1��s+2�

[
s+3 1
−2 s

]

=

⎡
⎢⎣

2

s+1
+

−1

s+2

1

s+1
+

−1

s+2
−2

s+1
+

2

s+2

−1

s+1
+

2

s+2

⎤
⎥⎦ �

Taking the inverse Laplace transform, we have

eAt = L
−1��sI−A�−1	=

[
2e−t −e−2t e−t −e−2t

−2e−t +2e−2t −e−t +2e−2t

]

From the solution to the state equation

x�t�= eA�t−t0�x0+
∫ t

t0

eA�t−��Bu���d�

we can calculate the output response of the system as follows.

y�t�= Cx�t�+Du�t�= CeA�t−t0�x0+
∫ t

t0

eA�t−��Bu���d�+Du�t�

In the response y�t�, the part CeA�t−t0�x0 is due to the initial condition
and is called the zero-input response (the response when the input is zero) ,
while the part

∫ t

t0
eA�t−��Bu���d�+Du�t� is due to the input and is called the

zero-state response (the response when the initial state is zero).

Example 2.3

Let us calculate the response of the following system with the initial condi-

tion x�0�=

[
1
−1

]
and the input u�t�= 1.

ẋ =

[
0 1

−2 −3

]
x+

[
0
1

]
u

y =
[
1 1

]
x
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From Example 2.2

eAt =

[
2e−t −e−2t e−t −e−2t

−2e−t +2e−2t −e−t +2e−2t

]

Hence

x�t�=eA�t�x0+
∫ t

0
eA�t−��Bu���d�

=eA�t�x0+
∫ t

0
eA
Bd


=

[
2e−t −e−2t e−t −e−2t

−2e−t +2e−2t −e−t +2e−2t

][
1
−1

]

+
∫ t

0

[
2e−
−e−2
 e−
−e−2


−2e−
+2e−2
 −e−
+2e−2


][
0
1

]
d


=

[
e−t

−e−t

]
+
∫ t

0

[
e−
−e−2


−e−
+2e−2


]
d


=

[
e−t

−e−t

]
+

[
−e−
+

1

2
e−2


e−
−e−2


]∣∣∣∣∣

t

0

=

[
e−t

−e−t

]
+

[
−e−t +

1

2
e−2t

e−t −e−2t

]
−

[
−
1

2
0

]

=

[ 1

2
+

1

2
e−2t

−e−2t

]

The output response is

y =
[
1 2

]
[ 1

2
+

1

2
e−2t

−e−2t

]
=

1

2
−

1

2
e−2t

Another way to find the response of a linear time-invariant system is to
first find its transfer function (matrix). To do this, we take the Laplace
transform of

ẋ = Ax+Bu

y = Cx+Du

assuming zero initial conditions.

sX�s�= AX�s�+BU�s�
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⇒ �sI−A�X�s�= BU�s�

⇒X�s�= �sI−A�−1BU�s�

and

Y�s�= CX�s�+DU�s�

= C�sI−A�−1BU�s�+DU�s�

= �C�sI−A�−1B+D�U�s�

Therefore, the transfer function is given by

G�s�= C�sI−A�−1B+D

= C
Adj�sI−A�

�sI−A�
B+D

where Adj�sI−A� is the adjoint of sI−A. From the above expression, it is
clear that all poles ofG�s� are eigenvalues of A. However, an eigenvalue of A
may not be a pole ofG�s� because cancellation with the numerate may occur.

Example 2.4

For

ẋ =

[
0 1

−2 −3

]
x+

[
1
1

]
u

y =
[
1 0

]
x

its transfer function is

G�s�= C�sI−A�−1B+D

=
[
1 0

][ s −1
2 s+3

]−1 [
1
1

]

=
1

�s+1��s+2�

[
1 0

][s+3 1
−2 s

][
1
1

]

=
1

�s+1��s+2�

[
s+3 1

][1
1

]

=
s+4

�s+1��s+2�
�
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For linear time-invariant systems, eA�t−t′ � plays the role of a state transition
matrix, denoted by ��t� t′�. By this we mean that if at time t′ the state of the
system is x�t′�, then without inputs, the state at time t is x�t� = eA�t−t′ �x�t′�.
In general x�t�=��t� t′�x�t′�.
If a system is linear, but time-varying; that is,

ẋ = A�t�x

where A�t� is a function of time, then it is more difficult to find its state
transition matrix as shown in the following example.

Example 2.5

Consider a linear time-varying system
[
ẋ1

ẋ2

]
=

[
t 0
0 1

][
x1

x2

]

We can rewrite the state equation as ẋ1 = tx1 and ẋ2 = x2. We know the
solution to ẋ2 = x2: x2�t� = et−t′x2�t

′�. To solve ẋ1 = tx1, we separate the
variables:

ẋ1 = tx1

⇒
dx1

dt
= tx1

⇒
dx1

x1

= tdt

⇒ lnx1�
x1�t�

x1�t
′ � =

1

2
t2
∣∣∣∣
t

t′

⇒ lnx1�t�− lnx1�t
′�=

1

2
t2−

1

2
t′2

⇒ ln
x1�t�

x1�t
′�
=

1

2
t2−

1

2
t′2

⇒
x1�t�

x1�t
′�
= e

1
2 t

2− 1
2 t

′2

⇒ x1�t�= e
1
2 t

2− 1
2 t

′2

x1�t
′�

Combine two equations:

[
x1�t�
x1�t�

]
=

[
e

1
2 t

2− 1
2 t

′2
0

0 et−t′

][
x1�t

′�
x1�t

′�

]
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In other words, the state transition matrix is given by

��t� t′�=

[
e

1
2 t

2− 1
2 t

′2
0

0 et−t′

]

We may not always be able to find the analytical expression of the state
transition matrix of a system. If we do, then we can write the response of
a linear time-varying system

ẋ = A�t�x+B�t�u

as follows:

x�t�=��t� t0�x0+
∫ t

t0

��t� ��B���u���d�

Example 2.6

For the following linear time-varying system

[
ẋ1

ẋ2

]
=

[
t 0
0 1

][
x1

x2

]
+

[
1
1

]
u

the response when the initial condition is

x�0�=

[
1
−1

]

and the input is u�t�= 1 can be computed as

x�t�=��t� t0�x0+
∫ t

0
��t� ��B���u���d�

=��t�0�x�0�+
∫ t

0
��t� ��B���u���d�

=

[
e

1
2 t

2
0

0 et

][
1

−1

]
+
∫ t

0

[
e

1
2 t

2− 1
2 �

2
0

0 et−� ′

][
1
1

]
d�

=

[
e

1
2 t

2

−et

]
+
∫ t

0

[
e

1
2 t

2− 1
2 �

2

et−� ′

]
d�

Since the above integral does not have an analytic solution, it can only
be solved numerically. We can use various computer programs, such as
MATLAB to ‘simulate’ the response of such a system.
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2.3 SIMILARITY TRANSFORMATION

In a state space model of a system, the inputs and outputs are given and
cannot be changed. However, the states are intermediate variables and they
are not unique, but can be changed without affecting the input–output rela-
tion of the system. In other words, a transfer function may have many state
space representations or realizations using different state variables. We will
develop a systematic way to change state variables (or sometimes referred
to as coordinate change). This is achieved by similarity transformation.
Consider a system given by

ẋ = Ax+Bu

y = Cx+Du

We would like to change the state variables from x to z. We assume z has
the same dimension as x; and x and z are linearly related: x = Tz, where
T is an n×n transformation matrix. In order for this transformation to be
one-to-one, T needs to be invertible, that is, z = T −1x. Let us derive the
state equation and output equation with state variables z.

ż= T −1ẋ

= T −1�Ax+Bu�

= T −1�ATz+Bu�

= T −1ATz+T −1Bu

y = Cx+Du

= CTz+Du

If we denote Ã= T −1AT� B̃= T −1B� C̃ = CT� D̃=D, then the state equa-
tion and output equation can be written as

ż= Ãz+ B̃u

y = C̃z+ D̃u

Obviously, the old model
(
A B
C D

)

and the new model
(
Ã B̃

C̃ D̃

)
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are related. First, they have the same characteristic polynomial and hence
the same eigenvalues:

�sI− Ã� = �sI−T −1AT �

= �sT −1T −T −1AT �

= �T −1�sI−A�T �

= �T −1��sI−A��T �

= �T −1�T ��sI−A��

= �T −1T ��sI−A��

= ��sI−A��

Second, both systems have the same transfer function and hence the same
input–output relation:

G̃�s�= C̃�sI− Ã�−1B̃+ D̃

= CT�sI−T −1AT�−1T −1B+D

= CT�T −1�sI−A�T�−1T −1B+D

= CTT −1�sI−A�−1TT −1B+D

= C�sI−A�−1B+D

=G�s�

The above result also shows that state space representation (also called
realization) of a system is not unique. Among these representations, some
canonical forms are of particular interest. They are the Jordan canonical
form, controllable canonical form, and observable canonical form. We
discuss the Jordan canonical form first. The controllable canonical form and
observable canonical form will be discussed when we discuss controllability
and observability.
There are three types of Jordan canonical form: one for systems with

distinct and real eigenvalues, one for systems with repeated and real eigen-
values, and one for systems with complex eigenvalues.
If matrix A has distinct and real eigenvalues 
1 
2 � � � 
n, then we can

find a transformation matrix T such that

Ã= T −1AT =

⎡
⎢⎢⎣


1 0 � � � 0
0 
2 � � � 0
� � �
0 0 � � � 
n

⎤
⎥⎥⎦
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In fact, T is the matrix consisting of n eigenvectors

T =
[
v1 v2 � � � vn

]

where the column vector vi� i= 1�2� � � � �n is the eigenvector corresponding
to the eigenvalue 
i satisfying

Avi = 
ivi (2.5)

It is proved in linear algebra that vi are independent of each other if 
i

are distinct. Hence, the inverse of T exists. Denote

T −1 =

⎡
⎢⎢⎣

w1

w2

� � �
wn

⎤
⎥⎥⎦

where wi� i= 1�2� � � � �n is a row vector. Since

T −1T =

⎡
⎢⎢⎣

w1

w2

� � �
wn

⎤
⎥⎥⎦
[
v1 v2 � � � vn

]

=

⎡
⎢⎢⎣

w1v1 w1v2 � � � w1vn

w2v1 w2v2 � � � w2vn

� � �
wnv1 wnv2 � � � wnvn

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 � � � 0
0 1 � � � 0
� � �
0 0 � � � 1

⎤
⎥⎥⎦

we have

wivj =

{
1 if i= j

0 otherwise
(2.6)

Therefore, by Equations (2.5) and (2.6),

Ã= T −1AT

=

⎡
⎢⎢⎣

w1

w2

� � �
wn

⎤
⎥⎥⎦A

[
v1 v2 � � � vn

]
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=

⎡
⎢⎢⎣

w1

w2

� � �
wn

⎤
⎥⎥⎦
[
Av1 Av2 � � � Avn

]

=

⎡
⎢⎢⎣

w1

w2

� � �
wn

⎤
⎥⎥⎦
[

1v1 
2v2 � � � 
nvn

]

=

⎡
⎢⎢⎣

w1
1v1 w1
2v2 � � � w1
nvn

w2
1v1 w2
2v2 � � � w2
nvn

� � �
wn
1v1 wn
2v2 � � � wn
nvn

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣


1 0 � � � 0
0 
2 � � � 0
� � �
0 0 � � � 
n

⎤
⎥⎥⎦

The reasons that we are interested in the Jordan canonical form are:
(1) all state variables are ‘decoupled’ in the sense that one does not depend
on another; (2) it is straightforward to find the eigenvalues of the system,
and hence the stability of the system (see Chapter 3).

Example 2.7

Consider the following system
⎡
⎣

̇
�̇

i̇

⎤
⎦=

⎡
⎣
0 1 0
0 0 4�438
0 −12 −24

⎤
⎦
⎡
⎣


�
i

⎤
⎦+

⎡
⎣

0 0
0 −7�396
20 0

⎤
⎦
[
v
T

]


 =
[
1 0 0

]
⎡
⎣


�
i

⎤
⎦

This is a model of a DC motor, where the states 
� �� i are the angle
position, angle velocity, and current, respectively; the inputs v and T are
the voltage and torque, respectively; and the output is the angle position.
Let us use similarity transformation to transform the system into Jordan

canonical form. We can use MATLAB to find the eigenvalues and eigen-
vectors of A, and the transformation matrix T . The results are shown in
Figure 2.1, which shows that the MATLAB command to find eigenvalues
and eigenvectors is ‘eig(.)’. In the figure, T is the transition matrix, invT is
the inverse of T , and J is the Jordan canonical form.
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Using Toolbox Path Cache. type “help toolbox_path_cache” for mode info.

To get started, select “MATLAB HELP” from the help menu.

>>A=[0 1 0; 0 0 4.438; 0 -12 -24]

A=

0 1.0000 0

0 0 4.4380

0 -12.0000 -24.0000

>> [T, J]= eig(A)

T=

1.0000 -0.3329 0.0094

0 0.8236 -0.2019

0 -0.4591 0.9794

J=

0 0 0

0 -2.4740 0

0 -21.5260

>>invT=inv(T)

invT=

1.0000 0.4507 0.0833

0 1.3718 0.2828

0 0.6431 1.1537

Figure 2.1 MATLAB results of Example 2.1

The new state space representation in Jordan canonical form is given by

Ã= T −1AT =

⎡
⎣
0 0 0
0 −2�4740 0
0 0 −21�5260

⎤
⎦

B̃ = T −1B =

⎡
⎣
1�6667 −3�3330
5�6565 −10�1459
23�0734 −4�7566

⎤
⎦

C̃ = CT =
[
1 −0�3329 0�0094

]

D̃ =D = 0

Next, consider the case that matrix A has repeated and real eigenvalues.
Without loss of generality, assume that 
1 is the eigenvalues repeated k
times. It is known in linear algebra that if rank�
1I −A� = l, then there
are n− l independent eigenvectors corresponding to 
1. If n− l = k, then
there are k independent eigenvectors corresponding to 
1 and the procedure
described above can be applied; that is,

T =
[
v1 v2 � � � vn

]
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where v1 � � � vk are independent eigenvectors corresponding to 
1. The
Jordan canonical form is given by

Ã= T −1AT =

⎡
⎢⎢⎣


1 0 � � � 0
0 
2 � � � 0
� � �
0 0 � � � 
n

⎤
⎥⎥⎦

where 
1 = 
2 = � � � = 
k.
It is quite possible that n− l < k. If so, then we cannot find k independent

eigenvectors corresponding to 
1. What we need to do is to find some
generalized eigenvectors to construct the Jordan canonical form. Let v0 be
an eigenvector of 
1. Its generalized eigenvectors can be obtained by solving

�A−
1I�v
1 = v0

�A−
1I�v
2 = v1

� � �

�A−
1I�v
i+1 = vi

Solutions can be found by continuing the chain as long as necessary.
Using the generalized eigenvectors to form the transform matrix

T =
[
v0 v1 � � � vn

]

we can get the Jordan canonical form. It is no longer diagonal; it has some
terms of value 1 above the diagonal.

Ã= T −1AT =

⎡
⎢⎢⎣


1 1 � � � 0
0 
1 � � � 0
� � �
0 0 � � � 
n

⎤
⎥⎥⎦

Example 2.8

Consider the following system (which is the linearized model of an inverted
pendulum)

ẋ =

⎡
⎢⎢⎣

0 1 0 0
0 0 −9�8 0
0 0 0 1
0 0 19�6 1

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0
1
0
−1

⎤
⎥⎥⎦u

y =

[
1 0 0 0
0 0 1 0

]
x
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The matrix A has four eigenvalues: 
1 = 0�
2 = 0�
3 = 4�4272� 
4 =
−4�4272� 
1 = 
2 = 0 are repeated eigenvalues. Since rank�
1I −A� = 3,
there is only one independent eigenvector corresponding to 
1�= 
2�. Using
MATLAB, we can calculate three independent eigenvectors as

v0 = v1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ v3 =

⎡
⎢⎢⎣

−0�0985
−0�4362
0�1971
0�8724

⎤
⎥⎥⎦ v4 =

⎡
⎢⎢⎣

0�0985
−0�4362
−0�1971
0�8724

⎤
⎥⎥⎦

We need to find one generalized eigenvector by solving �A−
1I �v
1 = v0�

⎡
⎢⎢⎣

0 1 0 0
0 0 −9�8 0
0 0 0 1
0 0 19�6 1

⎤
⎥⎥⎦v1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ⇒ v1 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦

The resulting transform matrix is

T =
[
v0 v1 v3 v4

]
=

⎡
⎢⎢⎣

1 0 −0�0985 0�0985
0 1 −0�4362 −0�4362
0 0 0�1971 −0�1971
0 0 0�8724 0�8724

⎤
⎥⎥⎦

The new state space representation in Jordan canonical form is given by

Ã= T −1AT =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 4�4272 0
0 0 0 −4�4272

⎤
⎥⎥⎦

B̃ = T −1B =

⎡
⎢⎢⎣

0
0�5

−0�5731
−0�5731

⎤
⎥⎥⎦

C̃ = CT =

[
1 0 −0�0985 0�0985
0 0 0�1971 −0�1971

]

D̃ =D =

[
0
0

]

Finally, consider the case that matrix A has complex eigenvalues. Obvi-
ously, we cannot transform a system into a system with complex numbers
because they are not ‘real’ and cannot be implemented practically. So,
we need to modify the method. Without loss of generality, assume that
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1 = �+ j� is the complex eigenvalue and 
2 = �− j� is its complex conju-
gate. Since A is a real matrix, its eigenvalues must appear as a pair of
complex conjugates. The corresponding eigenvectors must also appear as
complex conjugates: v1 = p+ jq�v2 = p− jq. Using the transform matrix

T =
[
p q v3 � � � vn

]

we have the following Jordan canonical form

Ã= T −1AT =

⎡
⎢⎢⎢⎢⎣

� � 0 � � � 0
−� � 0 � � � 0
0 0 
3 � � � 0
� � � � � �
0 0 0 � � � 
n

⎤
⎥⎥⎥⎥⎦

Example 2.9

Consider the following system

ẋ =

⎡
⎣

1 −1 2
−2 5 4
−4 −5 8

⎤
⎦x+

⎡
⎣

1
−1
2

⎤
⎦u

y =
[
1 0 1

]
x

The eigenvalues of A are 
1 = 5�8468+ j4�2243� 
2 = 5�8468− j4�2243,
and 
3 = 2�3063. The corresponding eigenvectors are

v1 =

⎡
⎣
−0�2207+ j0�0714
−0�1513+ j0�5861

−0�7614

⎤
⎦ v2 =

⎡
⎣
−0�2207− j0�0714
−0�1513− j0�5861

−0�7614

⎤
⎦

v3 =

⎡
⎣
−0�8567
0�1118
−0�5036

⎤
⎦

Hence, the transform matrix is

T =

⎡
⎣
−0�2207 0�0714 −0�8567
−0�1513 0�5861 0�1118
−0�7614 0 −0�5036

⎤
⎦

The Jordan canonical form is given by

Ã= T −1AT =

⎡
⎣

5�8468 4�2243 0
−4�2243 5�8468 0

0 0 2�306

⎤
⎦
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B̃ = T −1B =

⎡
⎣
−2�0963
−2�0943
−0�8019

⎤
⎦

C̃ = CT =
[
−0�9821 0�0714 −1�3603

]

D̃ =D = 0

2.4 CONTROLLABILITY AND OBSERVABILITY

Before we discuss controllability and observability of linear systems, let us
first illustrate the idea using the following example.

Example 2.10

Suppose we have the following system

ẋ =

⎡
⎢⎢⎣

2 3 2 1
−2 −3 0 0
−2 −2 −4 0
−2 −2 −2 −5

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

1
−2
2
−1

⎤
⎥⎥⎦u

y =
[
7 6 4 2

]
x

Its transfer function is given by

H�s�= C�sI−A�−1B+D =
s3+9s2+26s+24

s4+10s3+35s2+50s+24
=

1

s+1

Clearly, the state equation of the system is of fourth order, but the transfer
function is first order because of pole-zero cancellation. To understand
why this happens, let us perform the following similarity transformation to
transform the system into its Jordan canonical form: z= T −1x with

T =

⎡
⎢⎢⎣

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦

For the new state variable z, the state and output equations are

ż=

⎡
⎢⎢⎣

−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4

⎤
⎥⎥⎦z+

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦u

y =
[
1 1 0 0

]
z
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y

Figure 2.2 State diagram of the system in Example 2.10.

The diagram of this system is shown in Figure 2.2. Only states z1 and z3
can be controlled by the input u and only states z1 and z2 can be observed
from output y.
Intuitively, a system is called controllable if all its states can be controlled

in the sense that they can be driven to anywhere using some input, and a
system is called observable if all its states can be observed in the sense that
their values can be determined from the output. As we will see, controlla-
bility and observability are very important in control design. Controllability
ensures that we can move the eigenvalues or poles of a system to any
desirable locations to achieve stability or optimality by state feedback.
Observability ensures that we can estimate or reconstruct the state vari-
ables from the output and hence make state feedback feasible. For the
convenience of presentation, we first discuss observability.

Observability

A linear time-invariant system

ẋ = Ax+Bu

y = Cx+Du
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is observable if the initial state x�0�= x0 can be uniquely deduced from the
knowledge of the input u�t� and output y�t� over the interval t ∈ �0��	 for
some � > 0.

Remarks

1. In the above definition of observability, the initial state x�0� = x0 is
arbitrary: we can find x0 no matter where the system starts.

2. If x�0�= x0 can be deduced, then we can calculate the state response
at any time by

x�t�= eAtx0+
∫ t

0
eA�t−��Bu��� d�

3. Since in the output response

y�t�= CeAtx0+
∫ t

0
eA�t−��Bu��� d�+Du�t�

the zero-state response
∫ t

0
eA�t−��Bu��� d�+Du�t� is known for a given

input, and is independent of the initial condition x0; observability
is determined by the zero-input response y�t� = CeAtx0 and hence
determined by the matrix pair �A�C�.

From now on, in view of Remark 3 above, when we discuss observ-
ability, we mean the observability of �A�C�. We say that a state x0 	= 0 is
unobservable if the zero-input response with x�0�= x0 is zero for all t ≥ 0:
y�t�= CeAtx0 = 0.

Theorem 2.1

A linear time-invariant system �A�C� is observable if and only if it has no
unobservable state.

Proof

(ONLY IF) If there exists x0 	= 0 such that y�t� = CeAtx0 = 0 for all t ≥ 0,
then we can find two states x1 and x2 = x1+x0 such that x2 	= x1, but their
zero-input responses are the same: let y1�t� = CeAtx1 be the response to x1

and y2�t�= CeAtx2 be the response to x2. Clearly

y2�t�= CeAtx2 = CeAt�x1+x0�= CeAtx1+CeAtx0 = CeAtx1 = y1�t�
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Therefore, no matter what we do, we cannot distinguish x1 from x2. In

other words, the system �A�C� is not observable.

(IF) If there exists no x0 	= 0 such that y�t� = CeAtx0 = 0 for all t ≥ 0,

then

�∀x0 	= 0��∃t ≥ 0�y�t�= CeAtx0 	= 0

⇒ �∀x0 	= 0��∃t ≥ 0��CeAtx0�
T�CeAtx0� > 0

⇒ �∀x0 	= 0��∃� > 0�
∫ �

0
�CeAtx0�

T�CeAtx0�dt > 0

⇒ �∀x0 	= 0��∃� > 0�xT
0

(∫ �

0
�CeAt�T�CeAt�dt

)
x0 > 0

In other words, there exists � > 0 such that the matrix

M��� =
∫ �

0
�CeAt�T�CeAt�dt is positive definite. In particular, M���−1

exists. Using this result, we can deduce x0 from y�t� = CeAtx0 as

follows.

y�t�= CeAtx0

⇒ �CeAt�Ty�t�= �CeAt�TCeAtx0

⇒
∫ �

0
�CeAt�Ty�t�dt =

∫ �

0
�CeAt�TCeAtx0dt

⇒
∫ �

0
�CeAt�Ty�t�dt =

(∫ �

0
�CeAt�TCeAtdt

)
x0

⇒
∫ �

0
�CeAt�Ty�t�dt =M���x0

⇒ x0 =M���−1
∫ �

0
�CeAt�Ty�t�dt

Hence, the system �A�C� is observable.

Q.E.D

By Theorem 2.1, checking observability is equivalent to checking

if there exists an unobservable state x0 	= 0. However checking

this condition is still not trivial by its definition. Fortunately,

the problem can be further reduced as stated in the following

theorem.
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Theorem 2.2

x0 	= 0 is an unobservable state if and only if
⎡
⎢⎢⎢⎢⎣

C
CA
CA2

� � �
CAn−1

⎤
⎥⎥⎥⎥⎦
x0 = 0

Proof

(ONLY IF) If x0 	= 0 is an unobservable state, then for all t ≥ 0, y�t� =
CeAtx0 is zero and all the derivatives of y�t� are also zero; that is, y�t�= 0,
y1�t�= 0� � � � , yn−1�t�= 0.

y�t�= CeAtx0 = 0⇒ y�0�= Cx0 = 0

y1�t�= CAeAtx0 = 0⇒ y1�0�= CAx0 = 0

y2�t�= CA2eAtx0 = 0⇒ y2�0�= CA2x0 = 0

� � �

yn−1�t�= CAn−1eAtx0 = 0⇒ yn−1�0�= CAn−1x0 = 0

Therefore,
⎡
⎢⎢⎢⎢⎣

C
CA
CA2

� � �
CAn−1

⎤
⎥⎥⎥⎥⎦
x0 = 0

(IF) Let us first recall the Caylay–Hamilton theorem: for any matrix A,
let ��s� be its characteristic polynomial

��s�= �sI−A� = sn+an−1s
n−1+· · ·+a1s+a0

Then

��A�= An+an−1A
n−1+· · ·+a1A+a0I = 0

This implies that for all k≥ 0,Ak can be expressed as a linear combination
of I, A, A2� � � � �An−1. For example

An =−�an−1A
n−1+· · ·+a1A+a0I�
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An+1 =−A�an−1A
n−1+· · ·+a1A+a0I�

=−an−1A
n− �an−2A

n−1+· · ·+a1A
2+a0A�

= an−1�an−1A
n−1+· · ·+a1A+a0I�− �an−2A

n−1+· · ·+a1A
2+a0A�

= �a2
n−1−an−2�A

n−1+· · ·+ �a1−a0�A+a0I

Since

eAt = I+ �At�+
1

2!
�At�2+

1

3!
�At�3+· · · ·+

1

n!
�At�n+· · ·

is a linear combination of Ak, k ≥ 0, it can also be expressed as a linear
combination of I, A, A2� � � � �An−1

eAt = �0�t�I+�1�t�A+�2�t�A
2+· · · ·+�n−1�t�A

n−1

Now, if
⎡
⎢⎢⎢⎢⎣

C
CA
CA2

� � �
CAn−1

⎤
⎥⎥⎥⎥⎦
x0 = 0

then for all t ≥ 0

y�t�= CeAtx0

= C��0�t�I+�1�t�A+�2�t�A
2+· · · ·+�n−1�t�A

n−1�x0

= �0�t�Cx0+�1�t�CAx0+�2�t�CA
2x0+· · · ·+�n−1�t�x0A

n−1x0

= 0

Hence, x0 	= 0 is an unobservable state.
Q.E.D.

By Theorems 2.1 and 2.2, we conclude

�A�C�is observable

⇔ �∀x0 	= 0�

⎡
⎢⎢⎣

C
CA
� � �

CAn−1

⎤
⎥⎥⎦x0 	= 0

⇔ rank

⎡
⎢⎢⎣

C
CA
� � �

CAn−1

⎤
⎥⎥⎦= n
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Let us define the observability matrix as

O=

⎡
⎢⎢⎣

C
CA
� � �

CAn−1

⎤
⎥⎥⎦

then we conclude that a system is observable if and only if its observability
matrix is of full rank.

�A�C� is observable ⇔ rank�O�= n

Example 2.11

Let us consider the system in Example 2.10:

ẋ =

⎡
⎢⎢⎣

2 3 2 1
−2 −3 0 0
−2 −2 −4 0
−2 −2 −2 −5

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

1
−2
2
−1

⎤
⎥⎥⎦u

y =
[
7 6 4 2

]
x

Its observability matrix is

O=

⎡
⎢⎢⎣

C
CA
CA2

CA3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

7 6 4 2
−10 −9 −6 −3
16 15 10 5
−28 −27 −18 −9

⎤
⎥⎥⎦

The rank of the observability matrix is 2. In Example 2.10, we know that
two states are observable. Since not all states are observable, the system is
not observable.

Example 2.12

Consider the DC motor of Example 2.7:
⎡
⎣

̇
�̇

i̇

⎤
⎦=

⎡
⎣

0 1 0
0 0 4�438
0 −12 −24

⎤
⎦
⎡
⎣


�
i

⎤
⎦+

⎡
⎣

0 0
0 −7�396
20 0

⎤
⎦
[
v
T

]

y =
[
1 0 0

]
⎡
⎣


�
i

⎤
⎦
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The observability matrix is

O=

⎡
⎣

C
CA
CA2

⎤
⎦=

⎡
⎣
1 0 0
0 1 0
0 0 4�4380

⎤
⎦

Clearly, rank�O� = 3 and the system is observable. Here we assume that

 is the output. If instead of 
, i is the output, then

C =
[
0 0 1

]

and

O=

⎡
⎣

C
CA
CA2

⎤
⎦=

⎡
⎣
0 0 1
0 −12 −24
0 288 522�7

⎤
⎦

Since rank�O�= 2, the system is not observable.

Example 2.13

Consider the inverted pendulum in Example 2.8:

ẋ =

⎡
⎢⎢⎣

0 1 0 0
0 0 −9�8 0
0 0 0 1
0 0 19�6 1

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0
1
0
−1

⎤
⎥⎥⎦u

y =
[
1 0 0 0

]
x

The observability matrix is

O=

⎡
⎢⎢⎣

C
CA
CA2

CA3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −9�8 0
0 0 0 −9�8

⎤
⎥⎥⎦

Clearly, rank�O�= 4 and the system is observable. If we change the output
to C =

[
0 0 1 0

]
, then

O=

⎡
⎢⎢⎣

C
CA
CA2

CA3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 19�6 1
0 0 19�6 20�6

⎤
⎥⎥⎦

Since rank�O�= 2, the system is not observable.
Let us now investigate controllability. As we will see, for linear time-

invariant systems, controllability is ‘dual’ to observability.
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Controllability

A linear time-invariant system

ẋ = Ax+Bu

y = Cx+Du

is controllable if for every state x1, and for every �> 0, there exists an input
function u�t�, t ∈ �0��	 such that under this input, the state of the system
moves from 0 at t = 0 to x1 at t = �.

Remarks

If a system is controllable, then for every � > 0, there exists an input
function u�t�, t ∈ �0��	 such that under this input, the state of the system
can move from any state x2 at t = 0 to any state x1 at t = �. Such u�t�,
t ∈ �0��	 can be found in the following way. Let u1�t�, t ∈ �0��	 be the
input that moves the state of the system from 0 at t = 0 to x1 at t = � and
u2�t�, t ∈ �0��	 be the input that moves the state of the system from 0 at
t = 0 to x2 at t = � (their existence is guaranteed by controllability). Then
by the linearity of the system, u�t�= u1�t�−u2�t�, t ∈ �0��	 moves the state
of the system from x2 at t = 0 to x1 at t = �.
To check controllability, let the system start at state x�0� = 0 and we

investigate its zero-state response at t = �

x���=
∫ �

0
eA��−��Bu���d� =

∫ �

0
eA�Bu��− ��d�

This response depends on matrices A and B, not on matrices C and D.
Therefore, when we discuss controllability, we discuss the controllability
of �A�B�. We say that a state x0 	= 0 is uncontrollable if the zero-state
response x��� is orthogonal to x0, that is, x

T
0x���= 0, for all �≥ 0 and for

all u�t�� t ∈ �0��	.

Theorem 2.3

A linear time-invariant system �A�B� is controllable if and only if it has no
uncontrollable state.
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Proof

(ONLY IF) If there exists x0 	= 0 such that for all � ≥ 0 and for all
u�t�� t ∈ �0��	, the zero-state response x��� is orthogonal to x0, then obvi-
ously no control or input can move the state of the system from 0 at t = 0
to x0 at t = �. Hence, the system �A�B� is not controllable.
(IF) If there exists no x0 	= 0 such that xT

0x���= 0, for all � ≥ 0 and for
all u�t�� t ∈ �0��	, then

N���=
∫ �

0
eA�B�eA�B�T d� > 0

Otherwise

�∃x0 	= 0�xT
0 �
∫ �

0
eA�B�eA�B�Td��x0 = 0

⇒ �∃x0 	= 0�
∫ �

0
xT
0 e

A�B�xT
0 e

A�B�Td� = 0

⇒ �∃x0 	= 0��∀� ∈ �0��	�xT
0 e

A�B = 0

⇒ �∃x0 	= 0�
∫ �

0
xT
0 e

A�Bu��− ��d� = 0

⇒ �∃x0 	= 0�xT
0

∫ �

0
eA�Bu��− ��d� = 0

⇒ �∃x0 	= 0�xT
0x���= 0

this is a contradiction.
Therefore, N���−1 exists. Now, for every state x1, and for every � > 0,

let the input function u�t�� t ∈ �0��	 to be such that

u��− ��= �eA�B�TN���−1x1

Under this input, the state of the system moves from 0 at t = 0 to x1 at
t = � because

x���=
∫ �

0
eA�Bu��− ��d�

=
∫ �

0
eA�B�eA�B�TN���−1x1d�

= �
∫ �

0
eA�B�eA�B�T d��N���−1x1

=N���N���−1x1

= x1
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Hence, the system �A�B� is controllable.
Q.E.D

By Theorem 2.3, checking controllability is equivalent to checking if there
exists an uncontrollable state x0 	= 0, which can be done by applying the
following theorem.

Theorem 2.4

x0 	= 0 is an uncontrollable state if and only if

xT
0

[
B AB A2B � � � An−1B

]
= 0

Proof

By the definition of uncontrollable state, x0 	= 0 is an uncontrollable state
if and only if xT

0x���= 0, for all �≥ 0 and for all u�t�� t ∈ �0��	.
Clearly, xT

0x���= xT
0

∫ �

0
eA�Bu��− ��d� =

∫ �

0
xT
0 e

A�Bu��− ��d� = 0, for all
�≥ 0 and for all u�t�� t ∈ �0��	 if and only if xT

0 e
A�B = 0, for all �≥ 0. By

Theorem 2.2

xT
0 e

A�B = 0

⇔BTeA
T�x0 = 0

⇔

⎡
⎢⎢⎢⎢⎣

BT

BTAT

BT�AT�2

� � �
BT�AT�n−1

⎤
⎥⎥⎥⎥⎦
x0 = 0

⇔xT
0

[
B AB A2B � � � An−1B

]
= 0

Q�E�D�

By Theorems 2.3 and 2.4, we conclude

�A�B� is controllable

⇔�∀x0 	= 0�xT
0

[
B AB A2B � � � An−1B

]
	= 0

⇔rank
[
B AB A2B � � � An−1B

]
= n

Let us define the controllability matrix as

C=
[
B AB A2B � � � An−1B

]



44 FUNDAMENTALS OF CONTROL THEORY

then we conclude that a system is controllable if and only if its controllability
matrix is of full rank.

�A�B� is controllable ⇔ rank�C�= n

We can see that the controllability and observability problems are dual.
In particular, we have the following duality

�A�B� is controllable ⇔ �AT �BT �is observable

Example 2.14

Consider the system in Example 2.10:

ẋ =

⎡
⎢⎢⎣

2 3 2 1
−2 −3 0 0
−2 −2 −4 0
−2 −2 −2 −5

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

1
−2
2
−1

⎤
⎥⎥⎦u

y =
[
7 6 4 2

]
x

Its controllability matrix is

C=
[
B AB A2B A3B

]
=

⎡
⎢⎢⎣

1 −1 1 −1
−2 4 −10 28
2 −6 18 −54
−1 3 −9 27

⎤
⎥⎥⎦

Since rank�C�= 2< 4, the system is not controllable. In fact, two states
are controllable and two states are not.

2.5 POLE PLACEMENT BY STATE FEEDBACK

As we will show in the next two chapters, stability and optimality of a
system are closely related to the location of poles or eigenvalues of the
system. If the poles are not in the desired locations, can we move and place
them in the right places? This is the problem to be solved by pole placement.
Pole placement can be achieved by feedback control. In this section, we
assume that all states are available for feedback control. Hence, we consider
only the state equation

ẋ = Ax+Bu
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The poles of this system are eigenvalues of A, denoted by 
�A�. We use
state feedback control u= Kx+v, where Kx is linear state feedback and v
is some external input. Under this feedback control, the controlled system
is given by

ẋ = �A+BK�x+Bv

The poles of the controlled system are 
�A+BK�. The question is whether
or not we can relocate the poles to arbitrary locations in the complex plane
as we desire. The answer is that this can be done if and only if �A�B�
is controllable. To see this, let us first consider single-input–single-output
systems with transfer function of the form.

G�s�=
b0+b1s+· · ·+bn−1s

n−1

a0+a1s+· · ·+an−1s
n−1+ sn

We can realize this system in state space representation in the following
form:

ẋ =

⎡
⎢⎢⎣

0 1 � � � 0
� � �
0 0 � � � 1

−a0 −a1 � � � −an−1

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0
� � �
0
1

⎤
⎥⎥⎦u (2.7)

y =
[
b0 b1 · · · bn−1

]
x

The above state space representation is called the controllable canonical
form. The characteristic equation of the system is

��s�= sn+an−1s
n−1+· · ·+a1s+a0

Our goal is to find a state feedback

u= Kx+v=
[
k0 k1 � � � kn−1

]
x+v

so that the poles of the controlled system is in the desired locations repre-
sented by the desired characteristic equation


��s�= sn+
an−1s
n−1+· · ·+
a1s+
a0

This can be achieved by letting the feedback matrix be

K =
[
k0 k1 � � � kn−1

]
=

[
a0−
a0 a1−
a1 � � � an−1−
an−1

]
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To prove this, let us substitute u=Kx+v into the state equation in (2.7),

ẋ =

⎡
⎢⎢⎣

0 1 � � � 0
� � �
0 0 � � � 1

−a0 −a1 � � � −an−1

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0
� � �
0
1

⎤
⎥⎥⎦ �

[
k0 k1 � � � kn−1

]
x+v�

=

⎡
⎢⎢⎣

0 1 � � � 0
� � �
0 0 � � � 1

−a0+k0 −a1+k1 � � � −an−1+kn−1

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0
� � �
0
1

⎤
⎥⎥⎦v

The characteristic equation of the above controlled system is

sn+ �an−1−kn−1�s
n−1+· · ·+ �a1−k1�s+ �a0−k0�

= sn+
an−1s
n−1+· · ·+
a1s+
a0

Therefore, if the system is represented in the controllable canonical form,
it is straightforward to design a state feedback to place its poles in arbitrary
locations in the complex plane to achieve stability or optimality. The next
question is whether a system can be represented in the controllable canon-
ical form. To answer this question, let us first verify that the controllable
canonical form is always controllable. For

A=

⎡
⎢⎢⎣

0 1 � � � 0
� � �
0 0 � � � 1

−a0 −a1 � � � −an−1

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

0
� � �
0
1

⎤
⎥⎥⎦

its controllability matrix is

C=

⎡
⎢⎢⎣

0 0 � � � 1
� � �
0 1 � � � ∗
1 −an−1 � � � ∗

⎤
⎥⎥⎦

Since the elements on the diagonal are 1 and all elements above the
diagonal are 0, the determinant of C is −1. It is independent of the elements
below the diagonal, which is denoted by ∗.

Secondly, we can show that any similarity transformation does not change
the controllability of a system. For Ã= T −1AT , B̃= T −1B, its controllability
matrix is

C̃=
[
B̃ ÃB̃ Ã2B̃ � � � Ãn−1B̃

]
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=
[
T −1B T −1ATT −1B �T −1AT�2T −1B � � � �T −1AT�n−1T −1B

]

=
[
T −1B T −1AB T −1A2B � � � T −1An−1B

]

= T −1
[
B AB A2B � � � An−1B

]

= T −1
C

Hence, rank�C̃� = rank�C�. In other words, �A�B� is controllable if and
only if �Ã� B̃� is controllable.
The above two results show that a system can be transformed into the

controllable canonical form to place its poles arbitrarily if and only if the
system is controllable.
If system �A�B� is controllable, then the matrix Tc that transforms �A�B�

into its controllable canonical form, denoted by �Ac�Bc�, can be found as
follows. C̃= T −1

c C implies Tc = C̃C
−1. Hence

Tc =
[
B AB A2B · · · An−1B

] [
Bc AcBc A2

cBc · · · An−1
c Bc

]−1

After the transformation, the system in the controllable canonical form
is given by

ż= Acz+Bcu

We can design the state feedback u = Kcz+v as discussed above. Since
x = Tcz, the state feedback for x is given by u= KcT

−1
c x+v= Kx+v.

Based on the above discussion, we derive the following procedure for
pole placement.

Procedure 1 (Pole placement of single-input systems)

Given: a controllable system �A�B� and a desired characteristic polynomial


��s�= sn+
an−1s
n−1+· · ·+
a1s+
a0

1. Find the characteristic polynomial of A

��s�= sn+an−1s
n−1+· · ·+a1s+a0

2. Write the controllable canonical form �Ac�Bc�
3. Find the transform matrix

Tc =
[
B AB A2B · · · An−1B

] [
Bc AcBc A2

cBc · · · An−1
c Bc

]−1
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4. Determine the feedback matrix for �Ac�Bc�

Kc =
[
a0−
a0 a1−
a1 � � � an−1−
an−1

]

5. Determine the feedback matrix for �A�B�

K = KcT
−1
c

6. The state feedback is given by u= Kx+v.

Example 2.15

Consider the inverted pendulum in Example 2.8:

ẋ =

⎡
⎢⎢⎣

0 1 0 0
0 0 −9�8 0
0 0 0 1
0 0 19�6 1

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0
1
0
−1

⎤
⎥⎥⎦u

We want to find a state feedback to place the poles at −5, −10, −2+ j2,
−2− j2. Let us first check if the system is controllable.

C=

⎡
⎢⎢⎣

0 1 0 9�8
1 0 9�8 0
0 −1 0 −19�6
−1 0 −19�6 0

⎤
⎥⎥⎦

Since rank�C� = 4, the system is controllable. The characteristic polyno-
mial of A is

��s�= s4−19�6s2

The controllable canonical form is

Ac =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 19�6 0

⎤
⎥⎥⎦ Bc =

⎡
⎢⎢⎣

0
� � �
0
1

⎤
⎥⎥⎦

The controllability matrix of �Ac�Bc� is

Cc =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 19�6
1 0 19�6 0

⎤
⎥⎥⎦
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The transform matrix is

Tc = CC
−1
c =

⎡
⎢⎢⎣

−9�8 0 1 0
0 −9�8 0 1
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦

The desirable characteristic equation is


��s�= �s+5��s+10��s+2+ j2��s+2− j2�

= s4+19s3+118s2+320s+400

The feedback matrix for �Ac�Bc� is

Kc =
[
0−400 0−320 −19�6−118 0−19

]

=
[
−400 −320 −137�6 −19

]

The feedback matrix for �A�B� is

K = KcT
−1
c =

[
40�8163 32�6531 178�4163 51�6531

]

Now we know how to place poles for single-input systems, let us consider
multi-input systems.
Before we discuss pole placement for multi-input systems, we first note

that for single-input systems, the feedback matrix K is unique, because K is
a 1×n row vector with n elements to be determined for n poles to be placed.
However, for multi-input systems, this is no longer the case. If u ∈ Rm has
m dimensions, then K is a m×n matrix with m×n elements. There are
more elements than n poles so the choice of elements is not unique.
To overcome this difficulty, we need to restrict the solution and ‘convert’

a multi-input system into a single-input system. Write

BK =

⎡
⎣
b11 � � � b1m
� � �
bn1 � � � bnm

⎤
⎦
⎡
⎣
k11 � � � k1n
� � �
km1 � � � kmn

⎤
⎦=

⎡
⎣
b11 � � � b1m
� � �
bn1 � � � bnm

⎤
⎦
⎡
⎣

r1
� � �
rm

⎤
⎦

[
k1 � � � kn

]

Define a new B matrix as


B =

⎡
⎣
b11 � � � b1m
� � �
bn1 � � � bnm

⎤
⎦
⎡
⎣

r1
� � �
rm

⎤
⎦
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Then 
B is a n×1 column vector. �A�
B� is a single-input system. If we
can find a feedback matrix

[
k1 � � � kn

]
to place the poles in the desired

locations, then

K =

⎡
⎣

r1
� � �
rm

⎤
⎦[

k1 � � � kn
]

is the feedback matrix for �A�B�. This is because

A+BK =A+

⎡
⎣
b11 � � � b1m
� � �
bn1 � � � bnm

⎤
⎦
⎡
⎣

r1
� � �
rm

⎤
⎦[

k1 � � � kn
]
=A+
B

[
k1 � � � kn

]

Hence, if we pick some suitable
⎡
⎣

r1
� � �
rm

⎤
⎦

then we can convert a multi-input system into a single-input system. So what
⎡
⎣

r1
� � �
rm

⎤
⎦

shall we pick? The criterion for picking
⎡
⎣

r1
� � �
rm

⎤
⎦

is such that �A�
B� is controllable as long as �A�B� is controllable.
In summary, we have the following procedure for pole placement of

multi-input systems.

Procedure 2 (Pole placement of multi-input systems)

Given: a controllable system �A�B� and a desired characteristic polynomial


��s�= sn+an−1s
n−1+…+
a1s+
a0

1. Randomly pick
⎡
⎣

r1
� � �
rm

⎤
⎦
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2. Check if �A�B� is controllable. If yes, continue, otherwise, go back to
Step 1.

3. Determine the feedback matrix
[
k1 � � � kn

]
for �A�B�.

4. Determine the feedback matrix for �A�B�

K =

⎡
⎣
r1
· · ·
rm

⎤
⎦[

k1 � � � kn
]

Example 2.16

Consider the following multi-input system

ẋ =

⎡
⎣
0 1 0
0 0 0
0 0 2

⎤
⎦x+

⎡
⎣

0 0
1 0
0 1

⎤
⎦u

We want to find a state feedback to place the poles at −5, −10, −20.
Let us first check if the system is controllable.

C=

⎡
⎣
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 2 0 4

⎤
⎦

Since rank�C�= 3, the system is controllable. Let us pick

[
r1
r2

]
=

[
−2
3

]

The converted system is

A=

⎡
⎣
0 1 0
0 0 0
0 0 2

⎤
⎦ B =

⎡
⎣

0
−2
3

⎤
⎦

which is controllable. The characteristic polynomial of A is

��s�= s3−2s2

The controllable canonical form is

Ac =

⎡
⎣
0 1 0
0 0 1
0 0 2

⎤
⎦ Bc =

⎡
⎣
0
0
1

⎤
⎦
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The controllability matrix of �Ac�Bc� is

Cc =

⎡
⎣
0 0 1
0 1 2
1 2 4

⎤
⎦

The transform matrix is

Tc =
[
B AB A2B

]
C

−1
c =

⎡
⎣
4 −2 0
0 4 0
0 0 3

⎤
⎦

The desirable characteristic equation is

��s�= �s+5��s+10��s+20�= s3+35s2+350s+1000

The feedback matrix for �Ac�Bc� is

Kc =
[
−1000 −350 −37

]

The feedback matrix for �A�B� is

K =

[
r1
r2

]
KcT

−1
c =

[
500 425 308
−750 −637�5 −462

]

2.6 POLE PLACEMENT USING OBSERVER

If a system is controllable, then state feedback can be used to place poles to
arbitrary locations in the complex plane to achieve stability and optimality.
However, in practice, not all states can be directly measured. Therefore,
in most applications, it is not possible to use state feedback directly. What
we can do is to estimate the state variables and to use feedback based on
estimates of states. In this section, we present the following results. (1) We
can estimate the state of a system if and only if the system is observable.
(2) If the system is observable, we can construct an observer to estimate
the state. (3) Pole placement for state feedback and observer design can be
done separately.
Let us first consider a naïve approach to state estimation. Suppose that

a system �A�B� is driven by an input u. We cannot measure its state x. To
estimate x, we can build a duplicate system (say, in a computer) and let it
be driven by the same input, as shown in Figure 2.3.
In the figure, x indicates the actual states and x̂ the estimates. To see

how good the estimates are, let us investigate the estimation error x̃= x− x̂,
which satisfies the following differential equation.

˙̃x = ẋ− ˙̂x = Ax+Bu− �Ax̂+Bu�= Ax−Ax̂ = Ax̃
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u

x

(A,B)

(A,B)
x̂

Figure 2.3 A naïve approach to state estimation.

Clearly, the dynamics of x̃ is determined by the eigenvalues of A, which
may not be satisfactory. One way to get a better estimation is to find the
error of estimation and feed it back to improve the estimation. However, we
cannot measure x̃ directly, but we can measure Cx̃=Cx−Cx̂= y−Cx̂. So,
let us use this feedback and construct an ‘observer’, as shown in Figure 2.4.
The dynamics of the observer in Figure 2.4 is given by

˙̂x = Ax̂+Bu−G�y− ŷ�

= Ax̂+Bu−G�y−Cx̂�

= �A+GC�x̂+Bu−Gy

where G is the observer matrix to feedback the error. Now, the estimation
error x̃ satisfies the following differential equation.

˙̃x = ẋ− ˙̂x

= Ax+Bu− ��A+GC�x̂+Bu−Gy�

= Ax− �A+GC�x̂+Gy

= Ax− �A+GC�x̂+GCx

+

–

y

u

x

(A,B) 

(A,B)
x̂

C

ŷ
C

G

Figure 2.4 State estimation using an observer.
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= �A+GC�x− �A+GC�x̂

= �A+GC�̃x

The dynamics of x̃ is determined by the eigenvalues of A+GC. Since the
observer matrix G can be selected in the design process, we can place the
poles of the observer in the right locations to meet the desired performance
requirements. The pole placement problem for the observer can be solved
as a ‘dual’ of the pole placement problem for the state feedback. Note that
a matrix and its transpose have the same eigenvalues


�A+GC�= 
�AT+CTGT�

Hence, if we view �AT�CT� as �A�B� andGT as K, then the pole placement
problem for the observer is transferred to the pole placement problem for
the state feedback. By duality and our previous results

The poles A–GC of can be arbitrarily assigned

⇔�AT �CT � is controllable

⇔�A�C�is observable�

Procedure 3 (Full-order observer design)

Given: an observable system �A�C� and a desired characteristic polynomial
of the observer ��s�= sn+
an−1s

n−1+…+
a1s+
a0

1. Solve pole placement problem for state feedback of the dual system
�AT�CT� to obtain K.

2. Let the observer matrix G= KT.
3. Construct the observer ˙̂x = �A+GC�x̂+Bu−Gy.

Example 2.17

Consider the following system

ẋ =

⎡
⎣
−2 0 0
0 0 −2
0 0 −1

⎤
⎦x+

⎡
⎣

2
0
−1

⎤
⎦u

y =
[
2 1 1

]
x
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We want to design an observer with poles at −20, −10+ j10, −10− j10.
Let us first check if the system is observable.

O=

⎡
⎣

2 1 1
−4 0 −3
8 0 3

⎤
⎦

Since rank�O�= 3, the system is observable. The dual system is controllable
and is given by

AT =

⎡
⎣
−2 0 0
0 0 0
0 −2 −1

⎤
⎦ CT =

⎡
⎣
2
1
1

⎤
⎦

The characteristic polynomial of AT is

��s�= s3+3s2+2s

The controllable canonical form is

Ac =

⎡
⎣
0 1 0
0 0 1
0 −2 −3

⎤
⎦ Bc =

⎡
⎣
0
0
1

⎤
⎦

The controllability matrix of �Ac�Bc� is

Cc =

⎡
⎣

0 0 1
0 1 −3
1 −3 7

⎤
⎦

The transform matrix is

Tc =O
T
C

−1
c =

⎡
⎣

0 2 2
2 3 1
−4 0 1

⎤
⎦

The desirable characteristic equation is

��s�= �s+20��s+10+ j10��s+10− j10�= s3+40s2+600s+4000

The feedback matrix for �Ac�Bc� is

Kc =
[
−4000 −598 −37

]

The feedback matrix for �AT�CT� is

K = KcT
−1
c =

[
−738 292�7 1146�3

]
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The observer matrix is

G= KT =

⎡
⎣

−738
292�7
1146�3

⎤
⎦

The observer is

˙̂x = �A+GC�x̂+Bu−Gy

=

⎡
⎣

−1478 −738 −738
585�4 292�7 290�7
2292�6 1146�3 1145�3

⎤
⎦ x̂+

⎡
⎣

2
0
−1

⎤
⎦u−

⎡
⎣

−738
292�7
1146�3

⎤
⎦y

Example 2.18

Consider the following multi-output system

ẋ =

⎡
⎣
0 0 0
1 0 0
0 0 2

⎤
⎦x+

⎡
⎣

0
1
1

⎤
⎦u

y =

[
0 1 0
0 0 1

]
x

We want to design an observer with poles at −5, −10, −20. The pole
placement for state feedback of the dual system

AT =

⎡
⎣
0 1 0
0 0 0
0 0 2

⎤
⎦ CT =

⎡
⎣
0 0
1 0
0 1

⎤
⎦

was solved in Example 2.16. The feedback matrix is

K =

[
500 425 308
−750 −637�5 −462

]

By the duality, the observer matrix is

G= KT =

⎡
⎣
500 −750
425 −637�5
308 −462

⎤
⎦

The observer is

˙̂x = �A+GC�x̂+Bu−Gy

=

⎡
⎣
0 500 −750
1 425 −637�5
0 308 −460

⎤
⎦ x̂+

⎡
⎣
0
1
1

⎤
⎦u−

⎡
⎣
500 −750
425 −637�5
308 −462

⎤
⎦y
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For an observer, its inputs are u and y, and its output is x̂. The purpose
of introducing the observer is to use its output to do state feedback. This is
illustrated in Figure 2.5.
The overall closed-loop system is described by the following equations

ẋ = Ax+Bu

y = Cx (2.8)

˙̂x = �A+GC�x̂+Bu−Gy

u= Kx̂+v

Since feedback control is based on the state estimates x̂, not on the states
themselves, we would like to know if the poles of the above system are the
same as the poles of the system using direct state feedback:

ẋ = Ax+Bu

u= Kx+v
(2.9)

To find poles of the system in (2.8), let us rewrite the state equations in
terms of x and x̃ = x− x̂ as follows.

ẋ = Ax+Bu

= Ax+B�Kx̂+v�

= Ax+BK�x− x̃�+Bv

= �A+BK�x−BKx̃+Bv

˙̃x = ẋ− ˙̂x

= Ax+Bu− ��A+GC�x̂+Bu−Gy�

= Ax+Gy− �A+GC�x̂

= Ax+GCx− �A+GC�x̂

+

+

u
System 

x̂

K

y

Observer 

v

Figure 2.5 Feedback control using an observer.
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= �A+GC��x− x̂�

= �A+GC�̃x

Putting them in the matrix form, we have

[
ẋ
˙̃x

]
=

[
A+BK −BK

0 A+GC

][
x
x̃

]
+

[
B
0

]
v

Since




([
A+BK −BK

0 A+GC

])
= 
�A+BK�∪
�A+GC�

the poles of the closed-loop system (2.8) consist of poles of system (2.9)
and poles of the observer. In other words, the use of the observer does not
change the poles determined by the state feedback. This separation principle
allows us to design state feedback and observer separately.

Example 2.19

For the following system

ẋ =

⎡
⎣

0 1 0
0 0 1
−2 3 5

⎤
⎦x+

⎡
⎣
0
0
1

⎤
⎦u

y =
[
1 0 0

]
x

we would like to design an observer-based feedback control such that: (1)
the closed-loop system has poles at −5, −1+ j, −1− j; and (2) the observer
has poles at −20, −10+ j10, −10− j10.
Since the system is in the controllable canonical form, finding K is

straightforward. The characteristic equation of A is

��s�= s3−5s2−3s+2

The desired characteristic equation is


��s�= �s+5��s+1+ j��s+1− j�= s3+7s2+12s+10

The feedback matrix is

K =
[
2−10 −3−12 −5−7

]
=

[
−8−15−12

]
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Determining G is more involved. Since we have performed the procedure
twice in Examples 2.17 and 2.18, we will leave it to the reader. We only
provide the result here:

G=

⎡
⎣

−45
−828
−8273

⎤
⎦

Finally, the overall closed-loop system is given by

ẋ =

⎡
⎣

0 1 0
0 0 1
−2 3 5

⎤
⎦x+

⎡
⎣
0
0
1

⎤
⎦u

y =
[
1 0 0

]
x�

˙̂x =

⎡
⎣

−45 1 0
−828 0 1
−8275 3 3

⎤
⎦ x̂+

⎡
⎣
0
0
1

⎤
⎦u−

⎡
⎣

−45
−828
−8273

⎤
⎦y

u=
[
−8 −15 −12

]
x̂+v

In the above example, the observer estimates three states: x1, x2, x3.
However, x1 can be measured directly because y = x1. There is no reason
to estimate x1. So let us design a reduced-order observer which estimates
only states that cannot be directly measured. Divide states x into those that
can be directly measured, denoted by xm and those that cannot, denoted by
xu. Assume

[
ẋm

ẋu

]
=

[
Amm Amu

Aum Auu

][
xm

xu

]
+

[
Bm

Bu

]
u

y =
[
I 0

][xm

xu

]
= xm

If the state-space representation is not in the above form, we can use a
similarity transformation to transform it into the above form. Rewrite the
state equation as

ẋu = Auuxu+Aumxm+Buu

ẋm−Ammxm−Bmu= Amuxu

(2.10)

Define


B
u= Aumxm+Buu


y = ẋm−Ammxm−Bmu
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Then Equation (2.10) becomes

ẋu = Auuxu+
B 
u


y = Amuxu

We can design an observer for the above system using the approach
described earlier.

˙̂xu = �Auu+GuAmu�x̂u+
B 
u−Gu
y

Substitute 
B 
u and
y:

˙̂xu = �Auu+GuAmu�x̂u+Aumxm+Buu−Gu�ẋm−Ammxm−Bmu�

= �Auu+GuAmu�x̂u+Aumxm+Buu−Guẋm+GuAmmxm+GuBmu

To remove the derivative in the right-hand side of the above equation,
define

w = x̂u+Guxm

In terms of state variable w, the reduced-order observer equation is

ẇ = �Auu+GuAmu�x̂u+Aumxm+Buu+GuAmmxm+GuBmu

= �Auu+GuAmu��w−Guxm�+Aumxm+Buu+GuAmmxm+GuBmu

= �Auu+GuAmu�w− �Auu+GuAmu�Guxm+Aumxm+Buu+GuAmmxm+GuBmu

= �Auu+GuAmu�w+ �Aum+GuAmm−AuuGu−GuAmuGu�xm+ �Bu+GuBm�u

= �Auu+GuAmu�w+ �Aum+GuAmm−AuuGu−GuAmuGu�y+ �Bu+GuBm�u

The state feedback can be derived as

u=
[
Km Ku

][xm

x̂u

]
+Bv

= Kmxm+Kux̂u+Bv

= Kmxm+Ku�w−Guxm�+Bv

= �Km−KuGu�xm+Kuw+Bv

= �Km−KuGu�y+Kuw+Bv

The procedure to design a reduced-order observer can be summarized as
follows.
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Procedure 4 (Reduced-order observer design)

Given: an observable system
([

Amm Amu

Aum Auu

]
�
[
I 0

])

and a desired characteristic polynomial of the observer
��s�= sq+
aq−1s
q−1+

· · ·+
a1s+
a0, where q is the dimension of Auu.

1. For �Auu�Amu�, determine the observer matrix Gu using Procedure 3.
2. Construct the reduced-order observer

ẇ =�Auu+GuAmu�w+ �Aum+GuAmm−AuuGu−GuAmuGu�y

+ �Bu+GuBm�u

3. Use the state feedback

u= �Km−KuGu�y+Kuw+Bv

Example 2.20

For

ẋ =

⎡
⎣

1 −1 0
1 0 1
−2 2 0

⎤
⎦x+

⎡
⎣
−1
0
1

⎤
⎦u

y =
[
1 0 0

]
x

we would like to design a reduced-order observer with poles at −1 and −2.
Clearly, x1 can be directly measured but x2 and x3 cannot. Hence

Auu =

[
0 1
2 0

]
� Amu =

[
−1 0

]

We can design a Gu such that Auu +GuAmu has eigenvalues at −1 and
−2. Such a Gu is given by

Gu =

[
3
4

]

The reduced-order observer is

ẇ = �Auu+GuAmu�w+ �Aum+GuAmm−AuuGu−GuAmuGu�y+ �Bu+GuBm�u

=

[
−3 1
−2 0

]
w+

[
9
8

]
ym+

[
−3
−3

]
u
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Example 2.21

Let us consider the following system

ẋ =

⎡
⎣

2 −1 1
1 1 2
−2 0 −2

⎤
⎦x+

⎡
⎣
−2
0
1

⎤
⎦u

y =
[
1 1 1

]
x

We would like to design: (1) a state feedback that places the poles at −7,
−1+ j2 and −1− j2; and (2) a reduced-order observer with poles at −20
and −30.
For the state feedback, the feedback matrix that places the poles at −7,

−1+ j2 and −1− j2 is given by (details will be left to the reader)

K =
[
−10 −55 −30

]

For the observer, since C 	=
[
1 0 0

]
, we first need to apply the following

similarity transformation to the system.

T =

⎡
⎣
1 −1 −1
0 1 0
0 0 1

⎤
⎦

After the transformation, the new system is

ż=

⎡
⎣

1 −1 0
1 0 1
−2 2 0

⎤
⎦z+

⎡
⎣
−1
0
1

⎤
⎦u

y =
[
1 0 0

]
z

This is the same system as in Example 2.20. Using the same approach,
we have

Gu =

[
50
602

]

The reduced-order observer is

ẇ = �Auu+GuAmu�w+ �Aum+GuAmm−AuuGu−GuAmuGu�y+ �Bu+GuBm�u

=

[
−50 1
−600 0

]
w+

[
1949
30600

]
y+

[
−50
−601

]
u
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The state feedback is

u= Kx+v

= KTz+v

= KT

[
zm
ẑu

]
+v

= KT

[
zm

w−Guzm

]
+v

= KT

[
I 0

−Gu I

][
zm
w

]
+v

= KT

[
I 0

−Gu I

][
y
w

]
+v

=
[
14280 −45 −20

]
⎡
⎣

y
w1

w2

⎤
⎦+v

2.7 NOTES AND REFERENCES

In this chapter, we have summarized the fundamentals of modern control
theory using state space models. The theory was developed in the 1960s and
forms the foundation of many later developments, including robust control
theory. We have provided the proofs of all major results and illustrated
them as series of examples. Understanding these fundamental results will be
sufficient to follow the rest of this book. However, if the reader would like
to know more about the modern control theory, there are many reference
books available. In particular, we recommend the books by Antsaklis and
Michel [7], Belanger [26], Chui and Chen [44], and Rugh [140].

2.8 PROBLEMS

2.1 Calculate eAt for

(a)

A=

[
0 1
−1 −2

]
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(b)

A=

⎡
⎣
−5 0 0
0 0 1
0 −1 −2

⎤
⎦

(c)

A=

⎡
⎢⎢⎣

−2 0 0 0
7 3 0 0
0 0 −6 9
0 0 0 4

⎤
⎥⎥⎦

2.2 Find the response of the system

ẋ =

⎡
⎣
−1 0 0
1 −2 5
0 0 −4

⎤
⎦x+

⎡
⎣
0
0
1

⎤
⎦u

y =
[
1 1 0

]
x

when the initial condition is

x�0�=

⎡
⎣
−10
15
30

⎤
⎦

and the input is the unit step function.
2.3 Use MATLAB SIMULINK to build a simulator for

ẋ =

⎡
⎢⎢⎢⎢⎣

−8 7 0 −3 −5
0 −4 0 6 8
−3 7 −3 −6 5
0 0 0 −5 0
0 0 0 10 −1

⎤
⎥⎥⎥⎥⎦
x+

⎡
⎢⎢⎢⎢⎣

1
0
−3
6
2

⎤
⎥⎥⎥⎥⎦
u

y =
[
2 −4 0 0 9

]
x

Run the system with different initial conditions and inputs (suggest
using step, sinusoidal, and random inputs).

2.4 Consider the system given by

ẋ =

⎡
⎣
−1 0 1
1 −2 0
0 0 −3

⎤
⎦x+

⎡
⎣
0
0
1

⎤
⎦u

y =
[
1 1 0

]
x

Obtain the transfer function of the systems.
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2.5 Find similarity transformations to transform the following systems
into their Jordan canonical forms.

(a)

ẋ =

⎡
⎣
−1 0 4
−9 −5 −5
0 0 −3

⎤
⎦x+

⎡
⎣
−3
0
1

⎤
⎦u

y =
[
1 2 0

]
x

(b)

ẋ =

⎡
⎢⎢⎣

−9 4 7 −5
6 −2 −7 9
−5 0 −9 5
0 −7 9 4

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

−4
0
−7
3

⎤
⎥⎥⎦u

y =
[
−8 6 2 0

]
x

(c)

ẋ =

⎡
⎢⎢⎢⎢⎣

0 −5 −2 −6 0
3 6 −2 8 0
0 0 −9 3 6
−3 −5 0 0 1
0 1 −9 0 7

⎤
⎥⎥⎥⎥⎦
x+

⎡
⎢⎢⎢⎢⎣

−2
4
9
0
−4

⎤
⎥⎥⎥⎥⎦
u

y =
[
0 1 0 0 0

]
x

2.6 Assume that matrix A has two complex eigenvalues 
1 = �+ j� and

2 =�− j�. The other eigenvalues 
3� � � � �
3 are distinct and real. Let
the corresponding eigenvectors be v1 = p+ jq�v2 = p− jq�v3� � � � � vn.
Prove that using the transform matrix

T =
[
p q v3 � � � vn

]

the corresponding Jordan canonical form is given by

Ã= T −1AT =

⎡
⎢⎢⎢⎢⎣

� � 0 � � � 0
−� � 0 � � � 0
0 0 
3 � � � 0
� � � � � �
0 0 0 � � � 
n

⎤
⎥⎥⎥⎥⎦
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2.7 Prove that the transfer function of

ẋ =

⎡
⎢⎢⎣

0 1 � � � 0
� � �
0 0 � � � 1

−a0 −a1 � � � −an−1

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0
� � �
0
1

⎤
⎥⎥⎦u

y =
[
b0 b1 � � � bn−1

]
x

is given by

G�s�=
b0+b1s+· · ·+bn−1s

n−1

a0+a1s+· · ·+an−1s
n−1+ sn

2.8 Let us consider the following system

ẋ =

⎡
⎣

2 −1 1
1 1 2
−2 0 −2

⎤
⎦x+

⎡
⎣
−2
0
1

⎤
⎦u

y =
[
1 1 1

]
x

Check controllability of the system and, if possible, design a state
feedback that places the poles at −7, −1+ j2 and −1− j2.

2.9 Design a state feedback that places the poles at −15, −10, −2+ j2
and −2− j2 for the following system

ẋ =

⎡
⎢⎢⎣

−9 4 4 −5
6 −2 −7 9
−5 0 −9 5
0 −7 0 4

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

1
0
−2
3

⎤
⎥⎥⎦u

y =
[
1 0 2 0

]
x

2.10 Using SIMULINK to simulate the closed-loop system obtained in
Problem 2.9.

2.11 Consider the following system

ẋ =

[
a1 a2

a3 a4

]
x+

[
b1
b2

]
u

(a) Derive conditions (on ai and bj) such that the system is control-
lable.

(b) Assume that the system is controllable, design a state feedback
that places the poles at −p1 and −p2.
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2.12 Suppose an open-loop system is given by

ẋ�t�=

[
0 1
0 2

]
x�t�+

[
1
1

]
u�t�

y�t�=
[
0 1

]
x�t�

(a) Is the above system controllable? Is it observable?
(b) Suppose the feedback u�t� = −Kx�t�+ v�t� is applied, where v�t�

is the external input for the closed-loop system with K =
[
k1 k2

]
.

For what values of k1� k2 , is the closed-loop system controllable?
For what values of k1� k2 , is the closed-loop system observable?

2.13 For the following system, design a full-order observer with the desired
poles at −8 and −9.

ẋ =

[
0 10
1 0

]
x+

[
0
1

]
u

y =
[
0 1

]
x

2.14 For the following system

ẋ =

⎡
⎣

0 1 0
0 0 1
−2 3 5

⎤
⎦x+

⎡
⎣
0
0
1

⎤
⎦u

y =
[
1 0 0

]
x

design a full-order observer with poles at −5, −1+ j, −1− j.
2.15 For the following system

ẋ =

⎡
⎣
−1 −5 4
−9 6 −5
0 0 −3

⎤
⎦x+

⎡
⎣
−3
0
1

⎤
⎦u

y =
[
1 2 0

]
x

design a full-order observer that has poles at −20, −10+ j10,
−10− j10.

2.16 Consider the following system

ẋ =

⎡
⎣
0 1 0
0 0 1
1 −1 2

⎤
⎦x+

⎡
⎣
0
0
1

⎤
⎦u

y =
[
1 0 0

]
x
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(a) Find the feedback to place poles at −4, −1+ j1, and −1− j1.
(b) Design a full-order order observer with poles at −10, −15, and

−20.
(c) Write equations for the closed-loop system with observer and

feedback.

2.17 Use SIMULINK to simulate the closed-loop system obtained in
Problem 2.16.

2.18 For the following system, design a reduced-order observer to place
the poles at −15 and −10. Write the observer equation.

ẋ =

⎡
⎣
−2 0 0
0 0 −2
0 0 −1

⎤
⎦x+

⎡
⎣
0
0
1

⎤
⎦u

y =
[
1 0 0

]
x

2.19 For the following system, design a reduced-order observer to place
the poles at −5 and −10. Write the observer equation.

ẋ =

⎡
⎣
−2 4 0
−1 0 −2
0 0 −1

⎤
⎦x+

⎡
⎣
0
1
1

⎤
⎦u

y =
[
1 1 0

]
x

2.20 For the system in Problem 2.16, design a reduced-order order
observer with poles at −10 and −15.

2.21 Repeat Problem 2.17 using the reduced-order observer of
Problem 2.20. Compare the result with that of Problem 2.17.



3
Stability Theory

System performance to be achieved by control can be characterized either
as stability or optimality. In this chapter, we discuss stability, while opti-
mality will be covered in Chapter 4. Intuitively, stability means that, in the
absence of inputs, a system’s response will converge to some equilibrium.
Stability is an essential requirement for any practical system. Unfortunately,
some systems are unstable to begin with. A most notorious example is
the economical system. Hence, the first objective of control is to bring a
system into stability. We start with a general nonlinear system and define
its stability. We present the Lyapunov stability theorem which will be used
extensively in this book to prove stability. We then focus on linear systems,
whose stability is determined by the locations of their poles. We discuss
several stability criteria for checking stability. We also study stabilizability
and detectability, which are weaker versions of controllability and observ-
ability discussed in Chapter 2.

3.1 STABILITY AND LYAPUNOV THEOREM

Consider a general nonlinear system

ẋ = A�x� (3.1)

where x ∈ Rn are the state variables and A � Rn → Rn is a (nonlinear)
function. We assume that A is such that the system (3.1) has a unique

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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solution x�t� over �0��� for all initial conditions x�0� and that the solu-
tion depends continuously on x�0�. In general, this will be assumed for all
systems discussed in this book.
A vector x0 ∈ Rn is an equilibrium point of the system (3.1) if

A�x0�= 0

Without loss of generality, we can assume that x0 = 0 is an equilibrium
point of the system (3.1); that is, A�0� = 0. Otherwise we can perform a
simple state transformation z= x−x0 to obtain a new state equation

ż= Ã�z�= A�z+x0�

where z0 = 0 is an equilibrium point �Ã�0�=A�x0�= 0�. Clearly, the solution
of the differential equation (3.1) shows that if x�0� = 0, then x�t� = 0, for
all t > 0. However, this solution may or may not be stable.

Stability

The equilibrium point x0 = 0 of the system (3.1) is stable if for all � > 0,
there exists a ���� > 0 such that

�x�0��< ���� ⇒�x�t��< � ∀t ≥ 0

In other words, the equilibrium point x0 = 0 is stable if arbitrarily small
perturbations of the initial state x�0� from the equilibrium point result in
arbitrarily small perturbation of the corresponding state trajectory x�t�.

Asymptotic Stability

The equilibrium point x0 = 0 of the system (3.1) is asymptotically stable if
it is stable and there exists some c > 0 such that if �x�0��< c, then

x�t�→ 0 as t →�

In other words, the equilibrium point x0 = 0 is asymptotically stable if
there exists a neighbourhood of x0 = 0 such that if the system starts in the
neighbourhood then its trajectory converges to the equilibrium point x0 = 0
as t →�.
The equilibrium point x0 = 0 of the system (3.1) is globally asymptotically

stable if c > 0 can be arbitrarily large; that is, all trajectories converge to
the equilibrium point x0 = 0:

x�t�→ 0 as t →�
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Determining stability of a system may not be an easy task if the system
is nonlinear. One approach often used to determine stability is that of
Lyapunov. Intuitively, the Lyapunov stability theorem can be explained as
follows. Given a system with an equilibrium point x0 = 0, let us define
some suitable ‘energy’ function of the system. This function must have the
property that it is zero at the origin (the equilibrium point x0 = 0) and
positive elsewhere. Assume further that the system dynamics are such that
the energy of the system is monotonically decreasing with time and hence
eventually reduces to zero. Then the trajectories of the system have no other
places to go but the origin. Therefore, the system is asymptotically stable.
This generalized energy function is called a Lyapunov function. If there
exists a Lyapunov function, then we can prove the asymptotic stability
using the following Lyapunov stability theorem.

Theorem 3.1

The equilibrium point x0 = 0 of system (3.1) is asymptotically stable if there
exists a Lyapunov function V � Rn → R such that

V�x� > 0� x 	= 0

V�x�= 0� x = 0

V̇ �x� < 0� x 	= 0

V̇ �x�= 0� x = 0

is true in a neighbourhood of x0 = 0� N = 	x � �x�< c
 for some c > 0.

Proof

The precise mathematical proof is cumbersome and uninspiring. So we will
provide the following intuitive proof by contradiction. If the equilibrium
point x0 = 0 of the system (3.1) is not asymptotically stable; that is, x�t�→ 0
as t →� is not true even if �x�0��< c for some c > 0, then V̇ �x� <−� for
some � > 0. Since

V�x�t��= V�x�0��+
∫ t

0
V̇ �x� d� = V�x�0��+

∫ t

0
−�d� = V�x�0��−�t

for a sufficiently large t, V�x�t�� < 0. This contradicts the assumption
V�x�t��≥ 0.

Q.E.D.



72 STABILITY THEORY

The key to proving stability of a system using the Lyapunov stability
theorem is to construct a Lyapunov function. This construction must be
done in a case-by-case basis. There is no general method for the construc-
tion. The following example illustrates the application of the Lyapunov
stability theorem.

Example 3.1

Let us consider the following system:

ẋ1 = x2−3x1

ẋ2 =−x3
2−2x1

To prove it is asymptotically stable, let us consider the following
Lyapunov function:

V�x�= 2x2
1+x2

2

Clearly

V�x� > 0 x 	= 0
V�x�= 0 x = 0

On the other hand

V̇ �x�= 4x1ẋ1+2x2ẋ2

= 4x1�x2−3x1�+2x2�−x3
2−2x1�

= 4x1x2−12x2
1−2x4

2−4x1x2

=−12x2
1−2x4

2

Therefore

V̇ �x� < 0 x 	= 0

V̇ �x�= 0 x = 0

Hence, we conclude that the system is asymptotically stable.

Example 3.2

Consider the following system:

ẋ1 = x1�x
2
1+x2

2−1�−x2

ẋ2 = x1+x2�x
2
1+x2

2−1�
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Let us try the following Lyapunov function:

V�x�= x2
1+x2

2

Clearly

V�x� > 0 x 	= 0

V�x�= 0 x = 0

Furthermore

V̇ �x�= 2x1ẋ1+2x2ẋ2

= 2x1�x1�x
2
1+x2

2−1�−x2�+2x2�x1+x2�x
2
1+x2

2−1��

= 2x2
1�x

2
1+x2

2−1�−2x1x2+2x2x1+2x2
2�x

2
1+x2

2−1�

= 2�x2
1+x2

2��x
2
1+x2

2−1�

In the neighbourhood of N = 	x � �x�< 1
,

V̇ �x� < 0 x 	= 0

V̇ �x�= 0 x = 0

Hence, we conclude that the system is asymptotically stable. Note that the
system is not globally asymptotically stable. To prove globally asymptotic
stability, an additional condition must be satisfied, as to be discussed in
Chapter 6.

3.2 LINEAR SYSTEMS

Although the Lyapunov approach is a nice way to check stability of a system,
it is not always feasible, because it is often difficult, if not impossible, to
construct a Lyapunov function. If no Lyapunov function can be found, then
nothing can be said about the stability of a system. For nonlinear systems,
this is essentially the case: there is no general criterion to check the stability
of a nonlinear system.
However, for a linear time-invariant system

ẋ = Ax

we can do more. In fact there are several criteria available to check the
stability of a linear time-invariant system. For a linear time-invariant system,
its stability is determined by its characteristic polynomial


�s�= ans
n+an−1s

n−1+· · ·+a1s+a0
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and its corresponding roots, which are eigenvalues or poles. If a root is real,
that is, �= �, then its corresponding zero-input response is

x�t�= ce�t

where c is some constant. Clearly, x�t� = ce�t → 0 as t → � if and only
if � < 0. If a root is complex; that is, � = � + j�, then its corresponding
zero-input response is

x�t�= ce�t sin��t+��

where c and � are constants. Clearly, x�t�= ce�t sin��t+��→ 0 as t→� if
and only if � < 0. In both cases, the roots must be in the open left half of
the s-plane.

Theorem 3.2

A linear time-invariant system

ẋ = Ax

is asymptotically stable if and only if all the roots of its characteristic
polynomial are in the open left half of the s-plane.

Proof

Assume that a linear time-invariant system has 2m complex roots of the
form �i + j�i and n− 2m real roots of the form �j . Then the zero-input
response can be written as

x�t�=
m∑
i=1

cie
�it sin��it+�i�+

n−2m∑
j=1

cje
�j t

From the above discussion, it is clear that x�t�→ 0 as t →� if and only
if for all �i+ j�i, �i < 0 and for all �j , �j < 0.

Q.E.D.

Let us define the stable and unstable regions of the s-plane as shown
in Figure 3.1, then for a system to be stable, all the roots of its char-
acteristic polynomial (that is, its eigenvalues or poles) must be in the
stable region.
For linear systems, asymptotical stability and globally asymptotic stability

are equivalent. A system is asymptotically stable if and only if it is globally
asymptotically stable.
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0

s-plane

Re(s)

Im(s)

Stable

Region

Unstable

Region

Figure 3.1 Stable and unstable regions in the s-plane.

3.3 ROUTH–HURWITZ CRITERION

The Routh–Hurwitz criterion is a method to determine the locations of
roots of a polynomial with constant real coefficients with respect to the
left half of the s-plane without actually solving for the roots. It is used to
check the stability of linear time-invariant systems. Since it does not actually
try to find the numerical solutions of the roots, it can handle symbolic
polynomials. This is very useful in control synthesis.
Before we present the Routh–Hurwitz criterion, let us first prove a neces-

sary condition for a polynomial


�s�= ans
n+an−1s

n−1+· · ·+a1s+a0

to have all its roots in the open left half of the complex plane.

Lemma 3.1

If a polynomial 
�s� = ans
n + an−1s

n−1 + · · · + a1s+ a0 has all its roots in
the open left half of the complex plane, then all its coefficients ai, i =
0�1�2� � � � �n must have the same sign.

Proof

The result is obvious for first-order �n = 1� polynomials �
�s� = a1s+ a0�
and second-order �n= 2� polynomials �
�s�= a2s

2+a1s+a0�.
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For high-order �n > 2� polynomials, 
�s� can always be decomposed into
a product of first-order polynomials and second-order polynomials. Hence,
the result follows.

Q.E.D.

The condition of Lemma 3.1 is necessary but not sufficient. For example,
the polynomial


�s�= 6s3+2s2+4s+5

has all its coefficients positive, but its roots are −0�8006, 0�2337+ j0�9931,
and 0�2337− j0�9931.
To find a necessary and sufficient condition for a polynomial to have all its

roots in the open left half of the complex plane, we construct the following
Routh table. The first two rows of the Routh table are the coefficients of
the polynomial

an an−2 an−4 an−6 � � �
an−1 an−3 an−5 an−7 � � �

The third row is calculated based on the first two rows as follows.

an an−2 an−4 an−6 � � �
an−1 an−3 an−5 an−7 � � �

an−1an−2−anan−3

an−1

an−1an−4−anan−5

an−1

an−1an−6−anan−7

an−1

an−1an−8−anan−9

an−1

� � �

In general, the next row is calculated based on the previous two rows
using the same rule. If there is no element left to be calculated, we fill the
table with zeros. This process will continue until we have all n+1 rows.
For example for a sixth-order polynomial


�s�= a6s
6+a5s

5+a4s
4+a3s

3+a2s
2+a1s+a0

its Routh table is given below.

s6 a6 a4 a2 a0

s5 a5 a3 a1 0

s4
a5a4−a6a3

a5

= �
a5a2−a6a1

a5

= �
a5a0−a60

a5

= a0 0

s3
�a3−a5�

�
= �

�a1−a5a0

�
= � 0 0

s2
��−��

�
= �

�a0−�0

�
= a0 0 0

s1
��−�a0

�
= 
 0 0 0

s0

a0−�0



= a0 0 0 0
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The locations of the roots of the polynomial with respect to the imaginary
axis can then be determined by the first column of the Routh table as
follows.

Routh–Hurwitz Criterion

The roots of the polynomial 
�s�= ans
n+an−1s

n−1+· · ·+a1s+a0 are all in
the open left half of the complex plane if and only if all the elements of the
first column of the Routh table are of the same sign. If there are changes
of signs of the elements of the first column of the Routh table, then the
number of sign changes is equal to the number of roots outside the open
left half of the complex plane.
Since we usually assume that the first coefficient is positive, an > 0, all the

elements of the first column of the Routh table must be positive to ensure
that the system with characteristic polynomial 
�s�= ans

n+an−1s
n−1+· · ·+

a1s+a0 is stable. If the system is not stable, then the number of unstable
roots is equal to the number of sign changes in the first column.
The proof of the Routh–Hurwitz criterion involves first constructing the

following n×n Hurwitz matrix
⎡
⎢⎢⎢⎢⎢⎢⎣

an−1 an 0 0 � � � 0
an−3 an−2 an−1 an � � � 0
an−5 an−4 an−3 an−2 � � � 0
� � � � � � � � � � � � � � � � � �
0 0 0 0 � � � a2

0 0 0 0 � � � a0

⎤
⎥⎥⎥⎥⎥⎥⎦

For example, for n= 3 and 4, the Hurwitz matrices are

⎡
⎣
a2 a3 0
a0 a1 a2

0 0 a0

⎤
⎦ and

⎡
⎢⎢⎣

a3 a4 0 0
a1 a2 a3 a4

0 a0 a1 a2

0 0 0 a0

⎤
⎥⎥⎦

respectively. From the Hurwitz matrix, we can find its principal determi-
nants, called the Hurwitz determinants, as follows.

D1 = an−1

D2 =

∣∣∣∣
an−1 an

an−3 an−2

∣∣∣∣

D3 =

∣∣∣∣∣∣

an−1 an 0
an−3 an−2 an−1

an−5 an−4 an−3

∣∣∣∣∣∣
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� � �

Dn =

∣∣∣∣∣∣∣∣∣∣∣

an−1 an 0 0 � � � 0
an−3 an−2 an−1 an � � � 0
an−5 an−4 an−3 an−2 � � � 0
� � � � � � � � � � � � � � � � � �
0 0 0 0 � � � a2

0 0 0 0 � � a0

∣∣∣∣∣∣∣∣∣∣∣

Hurwitz showed that the roots of the polynomial 
�s� are all in the open
left half of the complex plane if and only if all the Hurwitz determinants are
positive. Routh then showed that this is equivalent to the Routh–Hurwitz
criterion.

Example 3.3

For the polynomial


�s�= s4+6s3+13s2+12s+4

we construct its Routh table as follows.

s4 1 13 4
s3 6 12 0

s2
6×13−1×12

6
= 11

6×4−1×0

6
= 4 0

s1
11×12−6×4

11
= 9�8182 0 0

s0
9�8182×4−11×0

9�8182
= 4 0 0

Since all the elements of the first column are positive, all the roots are all in
the open left half of the complex plane. Indeed, we have 
�s�= �s+1�2�s+2�2.
The corresponding system is (globally asymptotically) stable.

Example 3.4

Consider the polynomial


�s�= s3−4s2+ s+6
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Its Routh table is

s3 1 1
s2 −4 6

s1
−4×1−1×6

−4
= 2�5 0

s0
2�5×6− �−4�×0

2�5
= 6 0

There are two sign changes in the elements of the first column: s3 ↔ s2

and s2 ↔ s1. Therefore, there are two roots outside the open left half of the
complex plane. Indeed, we have 
�s�= �s+1��s−2��s−3�.

Example 3.5

For the polynomial


�s�= 2s4+ s3+3s2+5s+10

we construct its Routh table as follows.

s4 2 3 10
s3 1 5 0

s2
1×3−2×5

1
=−7

1×10−2×0

1
= 10 0

s1
−7×5−1×10

−7
= 6�4286 0 0

s0
6�4286×10− �−7�×0

6�4286
= 10 0 0

There are two sign changes in the elements of the first column: s3 ↔ s2

and s2 ↔ s1. Therefore, there are two roots outside the open left half of the
complex plane.

Example 3.6

Consider a general third-order polynomial


�s�= a3s
3+a2s

2+a1s+a0

Its Routh table is

s3 a3 a1

s2 a2 a0

s1
a2×a1−a3×a0

a2

0

s0 a0 0
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Without loss of generality, assume a3 > 0. A necessary and sufficient
condition for all three roots to be in the open left half of the complex
plane is

a3 > 0∧a2 > 0∧
a2×a1−a3×a0

a2

> 0∧a0 > 0

⇔ a3 > 0∧a2 > 0∧ �a2×a1−a3×a0� > 0∧a0 > 0

⇔ a3 > 0∧a2 > 0∧a1 > 0∧a0 > 0∧ �a2×a1−a3×a0� > 0

Therefore, for a general third-order system to be stable, all the coefficients
must be positive and a2×a1−a3×a0 > 0.
For first- and second-order systems, necessary and sufficient conditions

for stability are also obvious and they can be summarized in Table 3.1.
The Routh table can be used for most systems. However, there are some

special cases where the Routh table needs to be modified.
The first special case is when the first element, but not all the elements,

of a row in the Routh table is zero. In this case, we will have diffi-
culty in constructing the next row, because we cannot divide a number
by zero. In this case, what we need to do is to replace the zero by a
small number �.

Example 3.7

Consider the following polynomial


�s�= s3−3s+2

If we try to construct the Routh table, we will get

s3 1 −3
s2 0 2

s1
0× �−3�−1×2

0
=?

s0

Table 3.1 Necessary and sufficient conditions for stability of 1st, 2nd, and
3rd order systems.

System Characteristic polynomial Stability condition

1st order a1s+a0 a1 > 0∧a0 > 0
2nd order a2s

2+a1s+a0 a2 > 0∧a1 > 0∧a0 > 0
3rd order a3s

3+a2s
2+a1s+a0 a3 > 0∧a2 > 0∧a1 > 0∧a0 > 0

∧�a2×a1−a3×a0� > 0
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So, let us replace the first zero in the second row by �. We assume that
� is positive: � > 0.

s3 1 −3
s2 � > 0 2

s1
�× �−3�−1×2

�
≈

−2

�
< 0 0

s0 2 0

There are two sign changes in the elements of the first column: s2 ↔ s1

and s1 ↔ s0. Therefore, there are two roots outside the open left half of
the complex plane. Indeed, 
�s�= �s−1�2�s+2�. Note that the assumption
� > 0 is made without loss of generality. If we assume � < 0, then

s3 1 −3
s2 � < 0 2

s1
�× �−3�−1×2

�
≈

−2

�
> 0 0

s0 2 0

Still, there are two sign changes in the elements of the first column: s3 ↔ s2

and s2 ↔ s1.
The second special case is when all the elements of a row in the Routh

table are zero. In this case, we need to go back to the previous row, find
the auxiliary polynomial, take its derivative, and then put the coefficients
of the derivative in place of the row of zeros.

Example 3.8

Consider the following polynomial


�s�= s4+ s3−3s2− s+2

If we try to construct the Routh table, we will have

s4 1 −3 2
s3 1 −1 0

s2
1× �−3�−1× �−1�

1
=−2

1×2−1×0

1
= 2 0

s1
−2× �−1�−1×2

−2
= 0 0 0

s0

Since the elements of the row of s1 are all zeros, we go back to the row
of s2 and find the corresponding auxiliary polynomial

��s�=−2s2+2
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The derivative of ��s�=−2s2+2 is

d��s�

ds
=−4s

Using its coefficients for the row of s1, we continue the construction of
the Routh table as follows.

s4 1 −3 2
s3 1 −1 0

s2
1× �−3�−1× �−1�

1
=−2

1×2−1×0

1
= 2 0

s1 −4 0 0
s0 2 0 0

There are two sign changes in the elements of the first column: s3 ↔ s2

and s1 ↔ s0. Therefore, there are two roots outside the open left half of the
complex plane. Indeed, 
�s�= �s−1�2�s+2��s+1�.

With the wide availability of computer programs such as MATLAB, it
is straightforward to calculate the roots of polynomials of numerical coef-
ficients. Therefore, in all the numerical examples presented above, we can
bypass the Routh–Hurwitz criterion and find the stability of systems directly
by solving the roots numerically. In other words, the Routh–Hurwitz crite-
rion is not so useful in stability analysis of these systems. However, the
Routh–Hurwitz criterion is still very useful in control synthesis, as illus-
trated in the following example.

Example 3.9

Consider the feedback control system in Figure 3.2. K is the controller gain
that can be adjusted. We want to determine the range of K such that the
closed-loop system is stable. We first find the characteristic equation from
the transfer function of the closed-loop system:

Y�s�

U�s�
=

400000K

s�s2+1040s+48500�

1+
400000K

s�s2+1040s+48500�

=
400000K

s3+1040s2+48500s+400000K

The characteristic equation of the closed-loop system is


�s�= s3+1040s2+48500s+400000K

Clearly, we cannot determine the stability of the system by using
MATLAB to find the roots of the characteristic equation. Here we must use
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+

–

u
400000

s(s2 + 1040s + 48500)
K

y

Figure 3.2 Determine stable K using the Routh–Hurwitz criterion.

the Routh–Hurwitz criterion. From Table 3.1, we know that this third-order
system is stable if and only if

a3 > 0∧a2 > 0∧a1 > 0∧a0 > 0

∧ �a2×a1−a3×a0� > 0

In other words

400000K> 0∧ �1040×48500−400000K� > 0

⇔ K> 0∧K<
1040×48500

400000
= 126�1

Intuitively, the reason for K >0 is that if K is negative, then the system
will have a positive feedback. As we know, positive feedback usually
leads to instability. The reason for requiring K < 126�1 is that if K is
too large, then the system will have very large gain, which also leads to
instability.
The Routh–Hurwitz criterion is used to determine the pole locations with

respect to the imaginary axis. But sometimes, we would like to know the
pole locations with respect to a line parallel to the imaginary axis. For
example, for robustness, we may want all the poles to be located at the
left of −a, for some a > 0. We cannot apply the Routh–Hurwitz criterion
directly to check if the poles are at the left of −a, but we can do a variable
change and then apply the Routh–Hurwitz criterion. Figure 3.3 illustrates
this variable change from s to s′. The imaginary axis of the s′-plane is at
−a. The relationship between s and s′ is given by s = s′ −a. Furthermore,
for any roots �i

Re��i� <−a⇔ �i is in the open left half of the s′-plane.

Hence, we can apply the Routh–Hurwitz criterion in the s′-plane.
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0

s-plane 

Re(s)

Im(s)

s′-plane 

– a

s = s′ – a

Figure 3.3 Locate poles at the left of −a using the Routh–Hurwitz criterion.

Example 3.10

For the feedback control system in Figure 3.4, we need to determine the
range of K such that the real parts of the poles of the closed-loop system
are less than −2. The transfer function of the closed-loop system is

Y�s�

U�s�
=

�s2+13s+14�K

s3+6s2+14s+16

1+
�s2+13s+14�K

s3+6s2+14s+16

=
�s2+13s+14�K

s3+6s2+14s+16+ �s2+13s+14�K

The characteristic equation of the closed-loop system is


�s�= s3+6s2+14s+16+ �s2+13s+14�K

Substitute s by s′−2, we have


�s′�= �s′−2�3+6�s′−2�2+14�s′−2�+16+ ��s′−2�2+13�s′−2�+14�K

= s′3+3Ks′2+ �K+2�s′+4

+

–

u
3s2 + 13s + 14

s3 + 6s2 + 14s + 16
K

y

Figure 3.4 Use K to move the poles.
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From Table 3.1, we know that all poles are in the open left half of the
s′-plane if and only if

3K> 0∧K+2> 0∧3K�K+2�−4> 0

⇔3K> 0∧K+2> 0∧3K2+6K−4> 0

⇔K> 0∧K>−2∧ �K <−2�5275∨K> 0�5275�

⇔K> 0∧ �K <−2�5275∨K> 0�5275�

⇔�K > 0∧K<−2�5275�∨ �K > 0∧K> 0�5275�

⇔K> 0�5275

3.4 NYQUIST CRITERION

The Nyquist criterion is another way to check the stability of a linear time-
invariant system by determining the locations of roots of its characteristic
polynomial with respect to the imaginary axis. Unlike the Routh–Hurwitz
criterion, the Nyquist criterion is a frequency domain method based on the
frequency response of a linear time-invariant system.
The Nyquist criterion is based on a fundamental theorem of complex

analysis, Cauchy’s argument principle. To present Cauchy’s argument prin-
ciple, let us consider a complex function F � C → C; that is, F maps a point
s in the s-plane to a point F �s� in the F �s�-plane, as shown in Figure 3.5. As
the point moves, F will map closed path �s in the s-plane to a closed path
�F �s� in the F �s�-plane.

Ωs ΩF(s)

0

s-plane 

Re(s)

Im(s)

0

F(s)-plane 

Re(F(s))

Im(F(s))

x

F(s)

Figure 3.5 Mapping from the s-plane to the F �s�-plane.
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Assume that the function F has only finite poles and zeros. Assume that
�s is an arbitrary closed path in the s-plane that does not go through any
poles or zeros of F . Cauchy’s argument principle says that the corresponding
closed path �F �s� in the F �s�-plane shall encircle the origin as many times as
the difference between the number of zeros and the number of poles that
are encircled by �s in the s-plane. In other words

N = Z−P

where N is the number of the encirclements of the origin by the closed path
�F �s� in the F �s�-plane; Z is the number of zeros of F �s� encircled by the
closed path �s in the s-plane; and P is the number of poles of F �s� encircled
by the closed path �s in the s-plane.
We would like to apply Cauchy’s argument principle to investigate the

stability of the closed-loop system in Figure 3.6.
We know that the characteristic equation of the closed-loop system is

given by

1+G�s�H�s�= 0

The necessary and sufficient condition for the system to be stable is that
1+G�s�H�s� has no zeros in the right half of the s-plane. To use Cauchy’s
argument principle, let us construct a closed path �s in the s-plane as
illustrated in Figure 3.7. �s is a right half circle whose centre is at the origin
and radius is R. Obviously if R→�, �s will encircle the entire right half
of the s-plane. We call �s the Nyquist path. The corresponding closed path
in the 1+G�s�H�s�-plane (or the G�s�H�s�-plane) is called the Nyquist plot
and is shown in Figure 3.8. The difference between the 1+G�s�H�s�-plane
and the G�s�H�s�-plane is only a simple horizontal shift: the origin in the
1+G�s�H�s�-plane is the (−1, j0) point in the G�s�H�s�-plane.

To check the stability of the closed-loop system, we apply Cauchy’s
argument principle to F �s�= 1+G�s�H�s�; that is

N = Z−P

+

–

u

G (s)

y

H(s)

Figure 3.6 Check closed-loop stability using the Nyquist criterion.
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0

s-plane

Re(s)

Im(s)

R

ω = ∞

ω = 0

ω = − ∞

Figure 3.7 Closed path to encircle the right half of the s-plane.

0

1+G (s)H(s)-plane

Re

Im 

0

G (s)H(s)-plane

Re

Im 

–1ω = 0

ω → ∞

Figure 3.8 Nyquist Plot in 1+G�s�H�s�-plane and G�s�H�s�-plane.

where N is the number of encirclements of the origin by the Nyquist plot in
the 1+G�s�H�s�-plane, Z is the number of zeros of 1+G�s�H�s� encircled by
the Nyquist path in the s-plane, and P is the number of poles of 1+G�s�H�s�
encircled by the Nyquist path in the s-plane.
For the closed-loop system with the characteristic equation

1+G�s�H�s�= 0 to be stable, Z, the number of zeros encircled by the
Nyquist path in the s-plane, must be zero. Z = 0 implies N =−P ; that is,
the number of the encirclements of the origin by the Nyquist plot in the
1+G�s�H�s�-plane must equal the number of poles 1+G�s�H�s� encircled by
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the Nyquist path in the s-plane. The minus sign in the equation N = −P
means the encirclements of the origin by the Nyquist plot must be made
counter-clockwise. Since

The number of encirclements of the origin
by the Nyquist plot in the 1+G�s�H�s�-plane

= The number of encirclements of the�−1� j0� point
by the Nyquist plot in the G�s�H�s�-plane

and

The number of poles of 1+G�s�H�s�
encircled by the Nyquist path in the s-plane

= The number of poles of 1+G�s�H�s�
in the right half of the s-plane

= The number of poles of G�s�H�s�
in the right half of the s-plane

we obtain the following criterion.

Nyquist Criterion

For the closed-loop system with the characteristic equation 1+G�s�H�s�= 0
to be stable, the Nyquist plot of G�s�H�s� must encircle the (−1, j0) point
as many times as the number of poles of G�s�H�s� that are in the right half
of the s-plane. The encirclements, if any, must be made counter-clockwise.
In many applications, G�s�H�s� has no zeros or poles in the right half of

the s-plane or on the imaginary axis, excluding the origin. Such a system is
called a minimum-phase system.

Nyquist Criterion for Minimum-Phase Systems

For a minimum-phase system with the characteristic equation 1+G�s�H�s�=
0 to be stable, the Nyquist plot of G�s�H�s� must not encircle the (−1, j0)
point.
To use the Nyquist criterion, we need to draw the Nyquist plot of

G�s�H�s�. Note that the Nyquist plot is symmetric with respect to the real
axis: the plot from � = 0 to � = −� is the complex conjugate of the plot
from � = 0 to � =�. Therefore, we only need to draw the Nyquist plot
from �= 0 to �=�.
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Example 3.11

Consider the system

G�s�H�s�=
K�s+20�

�s+10��s−10�

where K > 0 is the feedback gain to be determined. G�s�H�s� has one pole
in the right half of the s-plane, � = 10. So, by the Nyquist criterion, for
the closed-loop system to be stable, the Nyquist plot must encircle the (−1,
j0) point once. Let us sketch the Nyquist plot by first considering the two
limits �→ 0 and �→−� of G�j��H�j��. For �→ 0

G�j��H�j��=
K�j�+20�

�j�+10��j�−10�
→

K×20

10× �−10�
=−

K

5

For �→−�

G�j��H�j��=
K�j�+20�

�j�+10��j�−10�
≈

K× j�

�j��2
=

K

j�
=−

jK

�
→−j0

Let us also estimate the phase of G�j��H�j��

∠G�j��H�j��= ∠�j�+20�−∠�j�+10�−∠�j�−10�

≈ �0� ∼ 90��− �0� ∼ 90��− �90� ∼ 180��

≈−90� ∼−180�

Therefore, the Nyquist plot is in the third quadrant; starting at−K/5, and
approaching the origin from the −j direction. It is sketched in Figure 3.9.

0

G (s)H(s)-plane 

Re

Im 

– K / 5

–1
ω = 0 ω = ∞

Figure 3.9 The Nyquist plot for the system in Example 3.11.
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For the system to be stable, the Nyquist plot must encircle the (−1, j0)
point once. Hence, we must have

−
K

5
<−1⇔ K> 5

Example 3.12

For

G�s�H�s�=
K

s�s+a�

where K > 0 and a > 0, we want to determine its stability. The system
is a minimum-phase system. We sketch the Nyquist plot of G�j��H�j�� as
follows. For �→ 0

G�j��H�j��=
K

j��j�+a�
≈

K

j�×a
=−

jK

a�
→−j�

For �→−�

G�j��H�j��=
K

j��j�+a�
≈

K

�j��2
=−

K

�2
→−0

Also

∠G�j��H�j��=−∠j�−∠�j�+a�

≈−90�− �0� ∼ 90��

≈−90� ∼−180�

Therefore, the Nyquist plot is in the third quadrant; it approaches the
origin from the −1 direction and approaches � from the −j direction. It is
sketched in Figure 3.10.
For this minimum-phase system to be stable, its Nyquist plot must not

encircle the (−1, j0) point. From Figure 3.8, we know that this is the case
as long as K> 0 and a > 0.

Example 3.13

Consider the system

G�s�H�s�=
K

s�s+1��s+2�
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0

G (s)H(s)-plane 

Re

Im 

–1
ω = ∞

ω = 0

Figure 3.10 The Nyquist plot for the system in Example 3.12.

where K> 0. We want to determine the range of K to ensure stability. We
sketch the Nyquist plot of G�j��H�j�� as follows. For �→ 0

G�j��H�j��=
K

j��j�+1��j�+2�
≈

K

j�×2
=−

jK

2�
→−j�

For �→−�

G�j��H�j��=
K

j��j�+1��j�+2�
≈

K

�j��3
=

jK

�3
→ j0

Also

∠G�j��H�j��=−∠j�−∠�j�+1�−∠�j�+1�

≈−90�− �0� ∼ 90��− �0� ∼ 90��

≈−90� ∼−270�

Therefore, the Nyquist plot is in the second and third quadrants; it
approaches the origin from the j direction and approaches � from the −j
direction. It is sketched in Figure 3.11.
The system is a minimum-phase system. For stability, its Nyquist plot

must not encircle the (−1, j0) point. For small K, the plot will not encircle
the (−1, j0) point as shown in Figure 3.9. However, if we increase K, then
the plot will enlarge and eventually encircle the (−1, j0) point. To find
when this will happen, we need to calculate the intersection A of the plot
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0

G (s)H(s)-plane 

Re

Im 

–1

A

ω = ∞

ω = 0

Figure 3.11 The Nyquist plot for the system in Example 3.13.

and the real axis. At the intersection, G�j��H�j�� is real. So we can calculate
the corresponding frequency �c as follows.

G�j�c�H�j�c�=
K

j�c�j�c+1��j�c+2�

=
K

j�c�j�c+1��j�c+2�

=
K

j�c�2−�2
c �−3�2

c

Clearly, G�j��H�j�� = real implies �c�2 − �2
c � = 0. Therefore, the

frequency at which the Nyquist plot intersects the real axis is given by
�c =

√
2.

�c is called the crossover frequency. The intersection is

A=G�j�c�H�j�c���c=
√
2 =

K

j�c�2−�2
c �−3�2

c

∣∣∣∣
�c=

√
2

= K

−3×2
=−K

6

For the Nyquist plot not encircling the (−1, j0) point, it is required that

A>−1⇔−K

6
>−1⇔ K< 6

Both Routh–Hurwitz and Nyquist criteria can be used to check the
stability of a linear system. The Routh–Hurwitz criterion is often used in
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time-domain analysis and synthesis of control systems, while the Nyquist
criterion is often used in frequency-domain analysis and synthesis. However,
these topics are outside the scope of this book.

3.5 STABILIZABILITY AND DETECTABILITY

Stabilizability is related to both stability and controllability. From
Chapter 2, we know that if a system is controllable, then we can use a state
feedback to move its poles or eigenvalues to any locations in the s-plane.
Therefore, we can always use state feedback to stabilize a controllable
system: we just need to move the eigenvalues to the open left half of the
s-plane. However, if the system is not controllable, then we may not be able
to stabilize a system using state feedback. Let us consider two situations
illustrated in Figure 3.12. In the figure, we use× to denote the eigenvalues
and

to denote that the eigenvalue can be moved by state feedback. Both systems
in (a) and (b) are not controllable, because both have two eigenvalues that
can be moved and three eigenvalues that cannot. However, the system in
(a) is very different from the system in (b) from the control point of view.
For the system in (a), although eigenvalues �3 and �4 are unstable, they
can be moved to the stable region by state feedback. So, the fact that they
are unstable is not a big deal. However, for the system in (a), the unstable
eigenvalues �3 and �4 will have a big problem because they cannot be

0

s-plane

Re

Im 

x

x ← λ1 

x ← λ2

x ← λ3

x ← λ4

0

s-plane

Re

Im 

x

x ← λ1

x ← λ2 

x ← λ3

x ← λ4 

Figure 3.12 (a) All unstable poles can be moved; (b) not all unstable poles can be
moved.
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moved. We say that an eigenvalue �i is not controllable if it cannot be
moved by state feedback.
Formally, �i ∈ ��A� is unstable if Re��i�≥ 0. �i ∈ ��A� is not controllable

if �∀K��i ∈ ��A+BK�.

Stabilizability

A linear time-invariant system

ẋ= Ax+Bu
y = Cx+Du

is stabilizable if all unstable eigenvalues are controllable.
The following two sufficient conditions can be easily obtained from the

definition of stabilizability:

1. If a system is stable, then it is stabilizable.
2. If a system is controllable, then it is stabilizable.

Necessary and sufficient conditions for checking stabilizability are more
complex, we need first to find all the eigenvalues of the system and then to
determine if these eigenvalues are controllable or not.

Theorem 3.3

An eigenvalue �i ∈ ��A� = ��AT � of a linear time-invariant system �A�B� is
controllable if and only if its corresponding eigenvector vi of A

T satisfies
the condition vT

i B 	= 0.

Proof

We prove only for the case when all eigenvalues �1 �2 � � � �n of A are real
and distinct. In this case, we know that there exist a transformation matrix
T such that

Ã= T −1AT =

⎡
⎢⎢⎣

�1 0 � � � 0
0 �2 � � � 0
� � �
0 0 � � � �n

⎤
⎥⎥⎦

and

B̃ = T −1B
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On the other hand, from the discussion in Chapter 2, we know that for

V =
[
v1 v2 � � � vn

]

we have

V −1ATV =

⎡
⎢⎢⎣

�1 0 � � � 0
0 �2 � � � 0
� � �
0 0 � � � �n

⎤
⎥⎥⎦

Take the transpose

V TAV T−1

=

⎡
⎢⎢⎣

�1 0 � � � 0
0 �2 � � � 0
� � �
0 0 � � � �n

⎤
⎥⎥⎦= Ã

Hence, we can let T = V T−1
or T −1 = V T. Now

B̃ = T −1B =

⎡
⎢⎢⎣

vT
1

vT
2

� � �
vT
n

⎤
⎥⎥⎦B =

⎡
⎢⎢⎣

vT
1B

vT
2B
� � �
vT
nB

⎤
⎥⎥⎦ �

Since Ã is in the Jordan canonical form, it is clear that �i is controllable
if and only if vT

i B 	= 0.
Q.E.D.

Checking stabilizability is more complex than checking controllability.
Since controllability implies stabilizability, we can first check controllability.
If the system is controllable, then we know it is stabilizable. If it is not, then
we can check stabilizability as illustrated in the following example.

Example 3.14

Consider the following system

ẋ =

⎡
⎢⎢⎣

−10 −9 −6 −3
22 21 16 8
−14 −14 −12 −4
−2 −2 −2 −5

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

1
−2
2
−1

⎤
⎥⎥⎦u

y =
[
7 6 4 2

]
x
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The eigenvalues of AT (or A) are �1 =−1, �2 = 2, �3 =−3, and �4 =−4.
The corresponding eigenvectors of AT are

v1 =

⎡
⎢⎢⎣

−0�7303
−0�5477
−0�3651
−0�1826

⎤
⎥⎥⎦ v2 =

⎡
⎢⎢⎣

0�6255
0�6255
0�4170
0�2085

⎤
⎥⎥⎦ v3 =

⎡
⎢⎢⎣

−0�5547
−0�5547
−0�5547
−0�2774

⎤
⎥⎥⎦ v4 =

⎡
⎢⎢⎣

0�5000
0�5000
0�5000
0�5000

⎤
⎥⎥⎦

For the system to be stabilizable, the unstable eigenvalue �2 = 2 must be
controllable; that is, vT

2B 	= 0. However

vT
2B =

[
0�6255 0�6255 0�4170 0�2085

]
⎡
⎢⎢⎣

1
−2
2
−1

⎤
⎥⎥⎦= 0

Hence, the system is not stabilizable.
Detectability is dual to stabilizability. For detectability, we consider

observability of an eigenvalue �i ∈ ��A�. Formally, �i is not observable if
�∀G��i ∈ ��A+GC�.

Detectability

A linear time-invariant system

ẋ = Ax+Bu

y = Cx+Du

is detectable if all unstable eigenvalues are observable.
Dual to Theorem 3.3, we have the following theorem.

Theorem 3.4

An eigenvalue �i ∈ ��A� of a linear time-invariant system �A�C� is observable
if and only if its corresponding eigenvector vi of A satisfies the condition
Cvi 	= 0.

Proof

We prove only for the case when all eigenvalues �1 �2 � � � �n of A are
real and distinct. In this case, we know that the transformation matrix

T =
[
v1 v2 � � � vn

]



STABILIZABILITY AND DETECTABILITY 97

can transform �A�C� into its Jordan canonical form

Ã= T −1AT =

⎡
⎢⎢⎣

�1 0 � � � 0
0 �2 � � � 0
� � �
0 0 � � � �n

⎤
⎥⎥⎦

Since

C̃ = CT = C
[
v1 v2 � � � vn

]
=

[
Cv1 Cv2 � � � Cvn

]

it is clear that �i is observable if and only if Cvi 	= 0.
Q.E.D.

Checking detectability requires checking if all unstable eigenvalues are
observable.

Example 3.15

Consider the system

ẋ =

⎡
⎢⎢⎣

−10 −9 −6 −3
22 21 16 8
−14 −14 −12 −4
−2 −2 −2 −5

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

1
−2
2
−1

⎤
⎥⎥⎦u

y =
[
7 6 4 2

]
x

We know that eigenvalues of A are �1 = −1, �2 = 2, �3 = −3, and
�4 =−4. The eigenvector of A corresponding to �2 = 2 is

v2 =

⎡
⎢⎢⎣

0�4082
−0�8165
0�4082
0

⎤
⎥⎥⎦

Since

Cv2 =
[
7 6 4 2

]
⎡
⎢⎢⎣

0�4082
−0�8165
0�4082
0

⎤
⎥⎥⎦=−0�4082 	= 0

the system is detectable.
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3.6 NOTES AND REFERENCES

In this chapter, we have discussed the issues related to stability of systems.
We have defined stability and presented various criteria for checking
stability. For nonlinear systems, the most common tool for checking stability
is the Lyapunov stability theorem. This theorem is standard and can be
found in many books. Here we mention the books by Vidyasagar [174]
and by Antsaklis and Michel [7]. For linear systems, two main criteria for
checking stability are the Routh–Hurwitz criterion and the Nyquist crite-
rion. Again, many books present these two criteria, for example, the books
by Kuo and Golnaraghi [92] and by Antsaklis and Michel [7]. We have
also discussed stabilizability and detectability; they are properties weaker
than controllability and observability. References of these properties can be
found in books by Antsaklis and Michel [7], Belanger [26], Chui and Chen
[44], and Rugh [140].

3.7 PROBLEMS

3.1 Consider the following nonlinear system

ẋ1 = x2

ẋ2 =−x1−x2
1x2

(a) Find the equilibrium of the system.
(b) Determine the stability of the system using the Lyapunov method if

possible.

3.2 A nonlinear system is described by

ẋ1 = x2−x1�x
2
1+x2

2�

ẋ2 =−x1−x2�x
2
1+x2

2�

(a) Find the equilibrium of the system.
(b) Determine the stability of the system using the Lyapunov method if

possible.

3.3 Consider the following linear time-invariant system

ẋ =

⎡
⎣
−1 7 8
0 −5 0
0 3 −2

⎤
⎦x

Prove that the system is stable by finding a Lyapunov function.
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3.4 Check stability of the systems with the following characteristic equation
using the Routh–Hurwitz criterion. If it is unstable, find how many
unstable roots.

(a) 4s5+6s4+ s3+7s2+2s+9= 0
(b) 4s4+7s2+2s+5= 0
(c) s7+2s5+5s3+2s = 0

3.5 Consider two closed-loop systems whose loop transfer functions
G�s�H�s� are given by

s+1

s�s+10��s+15�
and

s+5

�s+2�2�s+3�2

Determine the stability of the systems using the Routh–Hurwitz
criterion.

3.6 The closed-loop systems have the characteristic equations given below.
Determine the ranges of K where the systems are stable using Routh–
Hurwitz criterion.

(a) 1+
K�s+30�

s�s+10��s+15�
= 0

(b) 1+
K

s�s+10��s2+10s+50�
= 0

(c) 1+
K�s+12�

s�s+10��s2+10s+50�
= 0

3.7 For systems with the following characteristic equation, use the Routh–
Hurwitz criterion to determine if all the poles of the systems are at the
left of −3.

(a) s4+4s3+7s2+2s+5= 0
(b) s5+7s4+2s3+ s2+ s+9= 0
(c) s4+8s3+4s2+2s+9= 0

3.8 Sketch the Nyquist plot for

G�s�H�s�=
K�s+2�

�s+10��s−5�

(a) Determine the range of K such that the closed-loop system is stable
using the Nyquist criterion.

(b) Check the result of (a) using the Routh–Hurwitz criterion.
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3.9 Sketch the Nyquist plot for

G�s�H�s�=
K

s�s+10��s+15�

(a) Determine the range of K such that the closed-loop system is stable
using the Nyquist criterion.

(b) Check the result of (a) using the Routh–Hurwitz criterion.

3.10 Answer ‘true’ or ‘false’. Explain your answers.

(a) If a system is controllable, then it is stabilizable.
(b) If a system is stable, then it is controllable.
(c) If a system is stable, then it is detectable.
(d) If a system is observable, then it is stable.

3.11 Check if the following systems are controllable. If not, find their uncon-
trollable modes and determine if the systems are stabilizable.

(a)

ẋ =

⎡
⎣
−2 0 0
0 1 0
0 3 −1

⎤
⎦x+

⎡
⎣

0
2
−1

⎤
⎦u

(b)

ẋ =

⎡
⎣
−2 −7 4
8 1 −3
0 0 3

⎤
⎦x+

⎡
⎣

2
−3
0

⎤
⎦u



4
Optimal Control and Optimal

Observers

In this chapter, we discuss how to design an optimal control and how
to design an optimal observer. We derive the results of optimal control
from a basic idea called the principle of optimality. We apply the prin-
ciple of optimality to general nonlinear systems and obtain the Hamilton–
Jacobi–Bellman equation for solving an optimal control problem. The
Hamilton–Jacobi–Bellman equation will be used in Chapters 5 and 6 to
prove robust stability of controlled systems. The Hamilton–Jacobi–Bellman
equation can also be used to derive the Riccati equation for solving a linear
quadratic regulator problem. Unlike the Hamilton–Jacobi–Bellman equa-
tion, the Riccati equation can always be solved if the system is stabilizable.
Hence, the solution to the linear quadratic regulator problem exists as long
as the system is stabilizable. The optimal observation problem is dual to the
linear quadratic regulator problem. An optimal observer is often called the
Kalman or Kalman–Bucy filter. Deriving results for the Kalman filter often
requires knowledge of stochastic processes; to avoid this, a new method to
derive the Kalman filter will be presented in this chapter.

4.1 OPTIMAL CONTROL PROBLEM

We first consider optimal control problems for general nonlinear time-
invariant systems of the form

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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ẋ = f�x�u�

where x ∈ Rn and u ∈ Rm are the state variables and control inputs, respec-
tively, and f��� �� is a nonlinear function that satisfies the usual condition for
the existence of the solution to the differential equation.
Our goal is to find a control that minimizes the following cost functional

J�x� t�=
∫ tf

t
L�x�u�d�

where t is the current time, tf is the terminating time, x= x�t� is the current
state, and L�x�u� characterizes the cost objective.
The above cost functional is very general and can cover a large class of

practical problems in everyday control applications. Let us look at some
examples.

Minimal Tracking Error Problem

If our objective is to drive the state variable of the system to a desired value
xd, then we can take L�x�u� to be of the form L�x�u�= �x−xd�, L�x�u�=
�x− xd�

T�x− xd�, or L�x�u� = �x− xd�
TQ�x− xd�, where Q = QT ≥ 0 is a

symmetric, positive semidefinite matrix describing the relative weights of
state variables in x.
There are many such problems in practice. For example, in cruise control

of an automobile, the goal is usually to keep the speed of the automobile
at a constant, say 70 miles per hour.

Minimal Energy Problem

If our objective is to use minimal energy to control the system, then we can
take L�x�u� to be L�x�u�= �u�, L�x�u�= uTu, or L�x�u�= uTRu for some
symmetric, positive definite matrix R=RT > 0. This is because the input is
usually related to the energy consumed by the system. So minimizing energy
used requires minimizing the input.
For example, in a resistive circuit, if the input is a voltage source, then the

power consumed by the circuit is proportional to the square of the voltage.

Combined Minimization Problem

We can also combine the above two objectives of minimizing tracking error
and energy by letting, for example, L�x�u� = �x− xd�

TQ�x− xd�+uTRu.
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Here Q and R are the relative weights on state and control. If we want to
accomplish very precise tracking, then we choose matrix Q to have large
values: if we want to save energy, we choose matrix R to have large values.

Example 4.1

Figure 4.1 shows an inverted pendulum mounted on a cart. In the figure, M
is the mass of the cart; m is the mass of the pendulum; L is the length of the
pendulum; y is the displacement of the cart, � is the angle of the pendulum;
and u is the force acting on the cart, which is the input to the system.
We assume that the mass of the pendulum is concentrated at the end of

the pendulum. We also do not consider friction. Under these assumptions,
we can derive the equations describing the dynamics of the system as follows
(see Appendix A).

ÿ =
u+mL�̇2 sin�−mg sin� cos�

M+m sin2 �

�̈ =
−u cos�−mL�̇2 sin� cos�+ �M+m�g sin�

L�M+m sin2 ��

From the above equations, we can derive the state equations of the system.
Let us define the state variables as: x1 = y, x2 = ẏ, x3 = �, and x4 = �̇. The
state equations are

L

M

Frictionless Surface

u

d

m

θ

Figure 4.1 An inverted pendulum.
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ẋ1 = x2

ẋ2 =
u+mLx2

4 sinx3−mg sinx3 cosx3

M+m sin2 x3

ẋ3 = x4

ẋ4 =
−u cosx3−mLx2

4 sinx3 cosx3+ �M+m�g sinx3

L�M+m sin2 x3�

If our goal is to find a control that keeps � as close to 0 as possible with
minimal energy, then we can take the cost functional as

J�x� t�=
∫ tf

t
�qx2

3+ ru2�d�

where q and r are the relative weights on state and control. If we really
want � close to 0, then we can pick a large q. On the other hand, if we really
want to save energy, we can pick a large r. Obviously, the corresponding
Q and R are

Q=

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 q 0
0 0 0 0

⎤

⎥

⎥

⎦

R= r

An optimal control problem for a nonlinear system is often difficult to
solve. Therefore, we often need to restrict ourselves to a special class of
problems. In particular, as we will show, the following problem can always
be solved.

Linear Quadratic Regulator (LQR) Problem

If the system is linear time-invariant

ẋ = Ax+Bu

with desired state value xd = 0, and the cost function is quadratic

J�x� t�=
∫ tf

t
�xTQx+uTRu�d�

then, the optimal control problem is called a linear quadratic regu-
lator (LQR) problem. Let us discuss how to solve the general
nonlinear optimal control problem as well as how to solve the LQR
problem.
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4.2 PRINCIPLE OF OPTIMALITY

One way to solve an optimal control problem is to apply Bellman’s principle
of optimality. Let us illustrate this principle using Figure 4.2. The figure
shows a trajectory of a second-order system. The trajectory starts in state
x0 at time t0. It is driven by input u�t�� t ∈ �t0� tf 	. It ends in state xf at time
tf . Denote this trajectory by 
�x0� t0�u�t0� tf 	�. Let xm be the state reached
by the trajectory at some time tm ∈ �t0� tf 	.
If 
∗�x0� t0�u

∗�t0� tf 	� is the optimal trajectory from x0� t0 under the
optimal control u∗�t0� tf 	, then the remaining trajectory 
∗�xm� tm�u

∗�tm� tf 	�
must be the optimal trajectory from xm� tm. The optimal control is
u∗�tm� tf 	, which is identical to the optimal control u∗�t0� tf 	 over the
remaining time interval �tm� tf 	. The reason is obvious. If u∗�tm� tf 	 is not
the optimal control and 
∗�xm� tm�u

∗�tm� tf 	� is not the optimal trajec-
tory from xm� tm, then there must exist a different control u′�tm� tf 	
and the corresponding trajectory 
′�xm� tm�u

′�tm� tf 	� that are optimal
and hence better than u∗�tm� tf 	. Let u′′�t0� tf 	 be a control that is iden-
tical to u∗�t0� tf 	 over the time interval �t0� tm	, but identical to u′�tm� tf 	
over the time interval �tm� tf 	. Then the new control u′′�t0� tf 	 over the
time interval �t0� tf 	 and the corresponding trajectory is better than the
optimal control u∗�t0� tf 	 and the corresponding trajectory, which is a
contradiction.

xf , tf

xm, tm

0

x2

x2

η'(xm, tm, u'[tm, tf 
])

η*(xm, tm, u*[tm, tf 
])

η*(x0, t0, u*[t0, tf 
])

x0, t0

Figure 4.2 Principle of optimality.
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Principle of Optimality

If a control is optimal from some initial state, then it must satisfy the
following property: after any initial period, the control for the remaining
period must also be optimal with regard to the state resulting from the
control of the initial period.
The following example illustrates the application of the principle of

optimality.

Example 4.2

Figure 4.3 shows a map of various cities and the cost of travel among these
cities. We would like to find optimal (that is, least expensive) paths from
City A to City B. The control here is interpreted as the decision on which
city to go next.
If we enumerate all possible paths, there are a total of 34 paths from

City A to City B. The number of paths will increase exponentially as the
number of cities increases. Obviously, it is not wise to solve this problem
by an exhaustive search.
To avoid an exhaustive search, we apply the principle of optimality as

follows. Starting from the destination City B, we calculate backwards the
minimal cost to reach the destination City B from each city. This is done
recursively. The initial condition is shown in Figure 4.4, where the minimal
cost to reach the destination City B from City B is obviously equal to zero.

13

12

10

19

12

10
9

12

14 

11

6

7

20

19

9

8

15 

7

13

11 

7

16
9

11

9

8

B

A 

Figure 4.3 Circles represent cities and edges represent costs to travel from one city
to another.
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Figure 4.4 Initial condition of applying the principle of optimality.
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Figure 4.5 Step 1 of applying the principle of optimality.

In the next step, we calculate the minimal costs of three cities that can
reach the destination City B directly. The results are obvious and shown in
Figure 4.5.
In Step 2, the minimal costs of two more cities are calculated as shown in

Figure 4.6. The first city has three paths leaving the city, all going to cities
whose minimal costs have been calculated previously. The cost to travel
along the first path is 8+11= 19. The cost to travel along the second path
is 15. The cost to travel along the third path is 9+7 = 16. The minimum
of �19�15�16� is 15, which is recorded. Similarly, the minimal cost of the
second city is also 15�=7+8�.
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Figure 4.6 Step 2 of applying the principle of optimality.
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Figure 4.7 Step 3 of applying the principle of optimality.

In Step 3, the minimal costs of three more cities are calculated. The first is
24, which is obtained by minimizing �19+11= 30�9+15= 24�. The second
is 22, which is obtained by minimizing �7+15 = 22�20+15 = 35�. The
third is 20, which is obtained by minimizing �11+9 = 20�13+15 = 28�.
The results are shown in Figure 4.7. The next two steps of calculation are
shown in Figures 4.8 and 4.9 respectively.
Therefore, the minimal cost to travel from City A to the destination City B

is 41. From the minimal costs calculated, we can also find the corresponding
optimal paths. For example, the optimal path from City A to City B is
shown in Figure 4.10. Note that we have used the principle of optimality
in the above procedure. An optimal control has the property that no matter
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Figure 4.8 Step 4 of applying the principle of optimality.
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Figure 4.9 Step 5 of applying the principle of optimality.

what the previous controls have been, the remaining control must constitute
an optimal control with regard to the state resulting from the previous
controls. For example, since path A→C→D→ B is the optimal path from
A to B, path C→D→ B is therefore the optimal path from C to B, by the
principle of optimality. This is the reason that we can calculate minimal
costs recursively.
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Figure 4.10 The optimal path.

4.3 HAMILTON–JACOBI–BELLMAN EQUATION

Let us now apply the principle of optimality to the optimal control of
nonlinear systems. To this end, let us consider the current time t and a
future time t+
t closed to t and the control during the interval �t� t+
t�.
Clearly the cost J�x� t� can be written as

J�x� t�=
∫ tf

t
L�x�u�d� =

∫ t+
t

t
L�x�u�d�+

∫ tf

t+
t
L�x�u�d�

=
∫ t+
t

t
L�x�u�d�+ J�x+
x� t+
t��

where x+
x is the state at t+
t and 
x can be approximated as 
x =
f�x�u�
t. Let ∗ to denote the minimal cost under optimal control, then by
the principle of optimality,

J ∗�x� t�=minu���∈Rm� t≤�<t+
t

{

∫ t+
t

t
L�x�u�d�+ J ∗�x+
x� t+
t�

}

In the above equation,
∫ t+
t

t
L�x�u�d� can be approximated as L�x�u�
t

and J ∗�x+
x� t+
t� can be approximated by its Taylor expansion:

J ∗�x+
x� t+
t�= J ∗�x� t�+

(

�J ∗

�x

)T


x+
�J ∗

�t

t

Therefore

J ∗�x� t�=minu���∈Rm� t≤�<t+
t

{

L�x�u�
t+ J ∗�x� t�+

(

�J ∗

�x

)T


x+
�J ∗

�t

t

}
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Since J ∗�x� t� and ��J ∗/�t�
t are independent of u��� ∈ Rm� t ≤ � < t+
t,
the above equation can be written as

J ∗�x� t�= J ∗�x� t�+
�J ∗

�t

t+minu���∈Rm� t≤�<t+
t

{
L�x�u�
t+

(

�J ∗

�x

)T


x

}

or

−
�J ∗

�t

t =minu���∈Rm� t≤�<t+
t

{

L�x�u�
t+

(

�J ∗

�x

)T


x

}

−
�J ∗

�t
=minu���∈Rm� t≤�<t+
t

{

L�x�u�+

(

�J ∗

�x

)T 
x


t

}

Let 
t → 0, then

x


t
→ ẋ = f�x�u�. Therefore, we obtain the following

Hamilton–Jacobi–Bellman equation:

−
�J ∗

�t
=minu�t�∈Rm

{

L�x�u�+

(

�J ∗

�x

)T

f�x�u�

}

In this book, we consider mainly time-invariant systems with an infinite
horizon (tf =	�. For such systems, J ∗�x� t� is independent of t. Hence, the
Hamilton–Jacobi–Bellman equation reduces to

minu�t�∈Rm

{

L�x�u�+

(

�J ∗

�x

)T

f�x�u�

}

= 0

Example 4.3

Consider the following nonlinear system

ẋ1 =−2x1+x2
2u

ẋ2 = 2x3
1−x2+2u

The cost functional is given by

J =
∫ tf

t

(

x4
1+2x2

2+u2
)

d�

The Hamilton–Jacobi–Bellman equation is then given below:

−
�J ∗

�t
=minu

{

x4
1+2x2

2+u2+
�J ∗

�x1

(

−2x1+x2
2u

)

+
�J ∗

�x2

(

2x3
1−x2+2u

)

}

For general nonlinear systems, it is not always easy to solve the Hamilton–
Jacobi–Bellman equations.
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4.4 LINEAR QUADRATIC REGULATOR PROBLEM

Let us now consider the LQR problem: for a linear time-invariant system

ẋ = Ax+Bu

find an optimal control that minimizes the quadratic cost function

J�x� t�=
∫ tf

t
�xTQx+uTRu�d�

where Q = QT ≥ 0 is a symmetric and positive semi-definite matrix and
R= RT > 0 is a symmetric and positive definite matrix.
To find the solution to the LQR problem, we assume the minimal cost

to be quadratic:

J ∗�x� t�= xTS�t�x

where S�t�= S�t�T ≥ 0 is a symmetric and positive semidefinite matrix func-
tion of t. By the Hamilton–Jacobi–Bellman equation, the optimal control
u∗ satisfies

−
�J ∗

�t
=minu�t�∈Rm

{
L�x�u�+

(

�J ∗

�x

)T

f�x�u�

}

or

−xT Ṡ�t�x =minu�t�∈Rm

{

xTQx+uTRu+2xTS�t��Ax+Bu�
}

To calculate minu�t�∈Rm

{

xTQx+uTRu+2xTS�t��Ax+Bu�
}

, we set the
derivative of xTQx+uTRu+2xTS�t��Ax+Bu� with respect to u to be zero:

2Ru∗+2BTS�t�x = 0

Therefore, the optimal control is given by

u∗ =−R−1BTS�t�x

Furthermore, minu�t�∈Rm

{

xTQx+uTRu+2xTS�t��Ax+Bu�
}

can be calcu-
lated as

minu�t�∈Rm�xTQx+uTRu+2xTS�t��Ax+Bu��

= xTQx+u∗TRu∗+2xTS�t��Ax+Bu∗�

= xTQx+ �−R−1BTS�t�x�TR
(

−R−1BTS�t�x
)

+2xTS�t��Ax+B�−R−1BTS�t�x��
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= xTQx+xTS�t�BR−1BTS�t�x+2xTS�t�Ax−2xTS�t�BR−1BTS�t�x

= xTQx−xTS�t�BR−1BTS�t�x+2xTS�t�Ax

= xTQx−xTS�t�BR−1BTS�t�x+xTS�t�Ax+xTATS�t�x

= xT�Q−S�t�BR−1BTS�t�+S�t�A+ATS�t��x

By the Hamilton–Jacobi–Bellman equation

−xTṠ�t�x = xT�Q−S�t�BR−1BTS�t�+S�t�A+ATS�t��x

In other words, S�t� satisfies

Ṡ�t�=−�S�t�A+ATS�t�+Q−S�t�BR−1BTS�t��

The above equation is called the Riccati equation. The Riccati equation
is much simpler than the Hamilton–Jacobi–Bellman equation. Let us show
the above result by an example.

Example 4.4

Consider the following second-order system

ẋ =

[
0 1
2 3

]
x+

[
−1
1

]
u

The cost functional is given by

J �x� t�=
∫ tf

t
�xT

[
1 1
1 2

]
x+3u2�d�

To derive the Riccati equation, we denote

S�t�=

[
S1�t� S2�t�
S2�t� S3�t�

]

then the Riccati equation is as follows.

[
Ṡ1�t� Ṡ2�t�

Ṡ2�t� Ṡ3�t�

]
=−

[
S1�t� S2�t�
S2�t� S3�t�

][
0 1
2 3

]
−

[
0 2
1 3

][
S1�t� S2�t�
S2�t� S3�t�

]
−

[
1 1
1 2

]

+

[
S1�t� S2�t�
S2�t� S3�t�

][
−1
1

]
1

3

[
−1 1

][S1�t� S2�t�
S2�t� S3�t�

]
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However, solving the Riccati equation is still not easy. We can further
simplify the Riccati equation if we consider the LQR problem where the
horizon is infinite; that is

J�x�=
∫ 	

0
�xTQx+uTRu�d�

When this is the case, S�t� = S is a constant matrix. Therefore, Ṡ�t� = 0
and the above Riccati equation reduces to the following algebraic Riccati
equation.

SA+ATS+Q−SBR−1BTS = 0

Finally, some conditions must be satisfied in order for the optimal control
to exist. For the LQR problem with an infinite horizon, the system must be
stabilizable. Because otherwise, x�t�� 0 and hence

∫ 	

0
�xTQx+uTRu�d� →	

that is, the optimal control does not exist. The following theorem summa-
rizes our results.

Theorem 4.1

For the LQR problem with

ẋ = Ax+Bu

J�x�=
∫ 	

0
�xTQx+uTRu�d�

if Q≥ 0, R> 0, and �A�B� is stabilizable, then the solution to the problem
exists and is given by

u∗ =−R−1BTSx

where S is the unique positive, definite solution to the following algebraic
Riccati equation.

SA+ATS+Q−SBR−1BT S = 0
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Example 4.5

Consider the following second-order system

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u

We would like to find an optimal control that minimizes the following
cost functional

J�x�=
∫ 	

0
�x2

1+�u2�d�

where � > 0 is a parameter. Therefore, we have

Q=
[
1 0
0 0

]

R= �

We denote

S =
[
S1 S2
S2 S3

]

then the algebraic Riccati equation becomes

[
S1 S2
S2 S3

][
0 1
0 0

]
+
[
0 0
1 0

][
S1 S2
S2 S3

]
+
[
1 0
0 0

]
−
[
S1 S2
S2 S3

][
0
1

]
�−1

[
0 1

]

[
S1 S2
S2 S3

]
=

[
0 0
0 0

]

This leads to the following three equations:

�−S2
2 = 0

�S1−S2S3 = 0

2�S2−S2
3 = 0

The only positive, definite solution of S is given by

S1 = 2
1
2 �

1
4

S2 = �
1
2

S3 = 2
1
2 �

3
4
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or

S =

[
2

1
2 �

1
4 �

1
2

�
1
2 2

1
2 �

3
4

]
�

The corresponding optimal control is

u∗ =−�−1
[
0 1

]
[
2

1
2 �

1
4 �

1
2

�
1
2 2

1
2 �

3
4

]
x =−

[
�− 1

2 2
1
2 �− 1

4

]
x

Example 4.6

Consider the following LQR problem

ẋ =

⎡

⎢

⎢

⎣

1 0 −5 3
2 −4 0 0
0 3 −7 0
−6 9 0 −2

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

1
−4
3
−2

⎤

⎥

⎥

⎦

u

J�x�=
∫ 	

0
�xT

⎡

⎢

⎢

⎣

9 0 2 0
0 6 −1 0
2 −1 7 −3
0 0 −3 4

⎤

⎥

⎥

⎦

x+uTu�d�

Using MATLAB, we can calculate the solution to the LQR problem using
the command ‘lqr’, as illustrated in Figure 4.11. The solution to the Riccati
equation

SA+ATS+Q−SBR−1BTS = 0

is given by

S =

⎡

⎢

⎢

⎣

3�8655 0�1559 −1�2756 0�9400
0�1559 0�5306 0�0715 0�0831
−1�2756 0�0715 0�9702 −0�5679
0�9400 0�0831 −0�5679 0�7431

⎤

⎥

⎥

⎦

The state feedback control is

u∗ =−R−1BTSx =
[

2�4647 1�9183 −2�4847 2�5822
]

x

In the standard LQR problem, the goal is to drive the state of a system
to zero. However, in some practical applications, the goal is to drive the
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A =
1 0 -5 3

2 -4 0 0

0 3 -7 0

-6 9 0 -2

B =

1

-4

3

-2

Q =
9 0 2 0

0 6 -1 0

2 -1 7 -3

0 0 -3 4

R =
1

>> [K, S] = 1qr (A, B, Q, R)

K =
-2.4647 -1.9183 2.4847 -2.5822

S =
3.8655 0.1559 -1.2756 0.9400

0.1559 0.5306 0.0715 0.0831

-1.2756 0.0715 0.9702 -0.5679

0.9400 0.0831 -0.5679 0.7431

Figure 4.11 MATLAB results of Example 4.6.

output of the system to some constant. For example, in an automotive cruise
control, the goal is to drive an automobile at a constant speed, say 70 miles
per hour. For such applications, we need to modify the LQR problem as
follows.
For a linear time-invariant system

ẋ = Ax+Bu

y = Cx+Du

the goal is to find an optimal control so that the output limt→	 y�t� = yd
for some desired output yd. To solve this problem, we first need to find
the corresponding desired state limt→	 x�t�= xd and input limt→	 u�t�= ud

that achieve yd. Obviously, xd, ud, and yd must satisfy the state and output
equations; that is
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ẋd = Axd+Bud

yd = Cxd+Dud

Since xd is a constant, ẋd = 0, we have

0= Axd+Bud

yd = Cxd+Dud

Given yd, we will solve the above equations for xd and ud. If there is no
solution for xd and ud, then the goal of limt→	 y�t� = yd is not achievable.
So, let us assume the solution exists; that is, the linear equation

[
A B
C D

][
xd

ud

]
=

[
0
yd

]

has a solution. For single-input–single-output system, xd and ud can be
solved as

[
xd

ud

]
=

[
A B
C D

]−1 [
0
yd

]

Next we define new variables as


x�t�= x�t�−xd


u�t�= u�t�−ud


y�t�= y�t�−yd

Derive the state and output equations for 
x, 
u, and 
y as follows.


ẋ = ẋ− ẋd = ẋ = Ax+Bu= A
x+B
u+Axd+Bud = A
x+B
u


y = y−yd = Cx+Du−Cxd−Dud = C
x+D
u

Therefore, the state and output equations for 
x, 
u, and 
y are given
by the same (A, B, C, D):


ẋ = A
x+B
u


y = C
x+D
u

We can find a control that minimizes the cost functional

J�
x� t�=
∫ tf

t
�
xTQ
x+
uTR
u�d�

After finding the optimal control 
u∗, we take u∗ = 
u∗+ud, which is
the optimal control of the original system.
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Example 4.7

Consider the following system modelling a DC motor with load torque = 0

⎡

⎣

�̇
�̇

i̇

⎤

⎦=

⎡

⎣

0 1 0
0 0 4�438
0 −12 −24

⎤

⎦

⎡

⎣

�
�
i

⎤

⎦+

⎡

⎣

0
0
20

⎤

⎦v

� =
[

1 0 0
]

⎡

⎣

�
�
i

⎤

⎦

where the states ���� i are the angle position, angle velocity, and current
respectively; the input v is the voltage applied. Our goal is to drive the
motor to �d = 10 while minimizing

J�x�=
∫ 	

0
�9��−�d�

2+v2�d�

We first find xd and ud as

⎡

⎢

⎢

⎣

�d
�d

id
vd

⎤

⎥

⎥

⎦

=
[

A B
C D

]−1

⎡

⎢

⎢

⎣

0
0
0
10

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 1 0 0
0 0 4�438 0
0 −12 −24 20
1 0 0 0

⎤

⎥

⎥

⎦

−1⎡

⎢

⎢

⎣

0
0
0
10

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

10
0
0
0

⎤

⎥

⎥

⎦

The modified LQR problem is

⎡

⎣


�̇

�̇


i̇

⎤

⎦=

⎡

⎣

0 1 0
0 0 4�438
0 −12 −24

⎤

⎦

⎡

⎣


�

�

i

⎤

⎦+

⎡

⎣

0
0
20

⎤

⎦
v

Q=

⎡

⎣

9 0 0
0 0 0
0 0 0

⎤

⎦

R= 1

Its solution is obtained using MATLAB as

S =

⎡

⎣

4�4387 0�9145 0�1500
0�9145 0�2550 0�0440
0�1500 0�0440 0�0076

⎤

⎦


v∗ =
[

−3�0000 −0�8796 −0�1529
]

⎡

⎣


�

�

i

⎤

⎦
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Hence, the optimal control of the original problem is

v∗ = 
v∗+vd

=
[
−3�0000 −0�8796 −0�1529

]
⎡

⎣


�

�

i

⎤

⎦

=
[

−3�0000 −0�8796 −0�1529
]

⎡

⎣

�−�d
�−�d

i− id

⎤

⎦

=
[

−3�0000 −0�8796 −0�1529
]

⎡

⎣

�
�
i

⎤

⎦

−
[

−3�0000 −0�8796 −0�1529
]

⎡

⎣

�d
�d

id

⎤

⎦

=
[

−3�0000 −0�8796 −0�1529
]

⎡

⎣

�
�
i

⎤

⎦

−
[

−3�0000 −0�8796 −0�1529
]

⎡

⎣

10
0
0

⎤

⎦

= 30+
[

−3�0000 −0�8796 −0�1529
]

⎡

⎣

�
�
i

⎤

⎦

4.5 KALMAN FILTER

The problem dual to the optimal control design is the problem of optimal
observer design. An optimal observer is often called the Kalman or Kalman–
Bucy filter. To present the results on the Kalman filter, let us first consider
a linear time-invariant system

ẋ = Ax+Bu

y = Cx+Du

Let us assume that there is some noise in the system, both in the state
equation and in the output equation:
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ẋ = Ax+Bu+�

y = Cx+Du+�

where � is the plant noise and � is the measurement noise.
We assume that � is an uncorrelated, zero-mean, and Gaussian white-

noise random vector:

E���t�	= 0

E���t�����T 	=���t− ��
(4.1)

where E denotes the expectation,� is a n×nmatrix describing the ‘strength’
of the noise and � is the Dirac delta function. Similarly, � is an uncorrelated,
zero-mean, and Gaussian white-noise random vector:

E���t�	= 0

E���t�����T 	= ���t− ��
(4.2)

where � is an m×m matrix. We further assume that � and � are uncorre-
lated; that is

E���t�����T	= 0 (4.3)

The above assumptions on stochastic features of the noise are all reason-
able from a practical point of view.
Because of the noise, the state estimates given by an observer as described

in Chapter 2 are no longer accurate. What an optimal observer can
do is to minimize the expected estimation error, knowing the stochastic
features of the noises. To this end, let us assume that an observer has the
form

˙̂x = Ax̂+Bu−G�y− ŷ�

The estimation error x̃= x− x̂ satisfies the following differential equation:

˙̃x = ẋ− ˙̂x

= Ax+Bu+�−Ax̂−Bu+G�y− ŷ�

= Ax+�−Ax̂+G�Cx+Du+�−Cx̂−Du�

= Ax+�−Ax̂+GCx+G�−GCx̂�

= �A+GC�x− �A+GC�x̂+�+G�

= �A+GC�̃x+�+G�
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From Equation (2.4), the solution of x̃ when t0 = 0 is

x̃�t�= e�A+GC�tx̃�0�+
∫ t

0
e�A+GC��t−�������+G�����d�

The first term e�A+GC�tx̃�0� depends on the initial state estimates and is not
stochastic. We also know that if A+GC is stable, then e�A+GC�tx̃�0� → 0.
Hence, to minimize the expected estimation error, we need to minimize the
error due to the second term, denoted by

e�t�=
∫ t

0
e�A+GC��t−�������+G�����d�

Let us change the variable from � to �= t− �

e�t�=
∫ t

0
e�A+GC��t−�������+G����� d�

=
∫ t

0
e�A+GC�����t−��+G��t−��� d�

The expected estimation error due to the second term is

E�e�t�e�t�T	

= E

[∫ t

0
e�A+GC�����t−��+G��t−���d��

∫ t

0
e�A+GC�����t−��

+G��t−��� d��T
]

= E

[∫ t

0

∫ t

0
e�A+GC�����t−��+G��t−������t−��+G��t−���T

×e�A+GC�T� d�d�

]

=
∫ t

0

∫ t

0
e�A+GC��E

[
���t−��+G��t−������t−��+G��t−���T

]

×e�A+GC�T� d�d�

Let us calculate the expectation value of E inside the integral.

E
[
���t−��+G��t−������t−��+G��t−���T

]

=E
[
��t−����t−��T

]
+E

[
G��t−����t−��TGT

]

+E
[
��t−����t−��TGT

]
+E

[
G��t−����t−��T

]
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By Equations (4.1–4.3)

E
[
���t−��+G��t−������t−��+G��t−���T

]

=����−��+G�GT���−��

= �� +G�GT����−��

Hence

E�e�t�e�t�T	

=
∫ t

0

∫ t

0
e�A+GC���� +G�GT����−��e�A+GC�T�d�d�

=
∫ t

0

∫ t

0
e�A+GC���� +G�GT�e�A+GC�T����−��d�d�

=
∫ t

0
e�A+GC���� +G�GT�e�A+GC�T�d�

Our problem is to select G to minimize

∫ t

0
e�A+GC���� +G�GT�e�A+GC�T� d�

Or in the case of infinite horizon

∫ 	

0
e�A+GC���� +G�GT�e�A+GC�T� d� (4.4)

It is difficult to solve this problem directly. So we will convert this problem
to a problem we know how to solve. Let us use feedback control u = Kx
in the LQR problem

ẋ = Ax+Bu

J�x�=
∫ t

0
�xTQx+uTRu�d�

The closed-loop system is described by

ẋ = Ax+Bu= Ax+BKx = �A+BK�x

Its response at time � is

x���= e�A+BK��x�0�
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The cost can be calculated as

J�x�=
∫ t

0
�xTQx+ �Kx�TRKx� d�

=
∫ t

0
xT�Q+KTRK�xd�

=
∫ t

0
�e�A+BK��x�0��T�Q+KTRK�e�A+BK��x�0�d�

= x�0�T�
∫ t

0
e�A+BK�T� �Q+KTRK�e�A+BK�� d��x�0�

Minimizing J�x� is equivalent to minimizing

∫ t

0
e�A+BK�T � �Q+KTRK�e�A+BK�� d�

or in the case of an infinite horizon,

∫ 	

0
e�A+BK�T� �Q+KTRK�e�A+BK�� d� (4.5)

From Theorem 4.1, the minimum is achieved if

K =−R−1BTS�

where S is the unique positive definite solution to the following algebraic
Riccati equation

SA+ATS+Q−SBR−1BTS = 0

Compare Equations (4.4) and (4.5); we see the following duality.

A+BK ↔AT+CTGT

Q+KTRK↔ � +G�GT

A ↔ AT

B ↔ CT

K ↔ GT

Q ↔ �
R ↔ �

From the above duality, we can obtain the following theorem.
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Theorem 4.2

For a linear time-invariant system

ẋ = Ax+Bu+�

y = Cx+Du+�

with noise satisfying Equations (4.1)–(4.3), if (A, C) is detectable, then the
optimal observer or Kalman filter is given by

˙̂x = Ax̂+Bu−G�y− ŷ�

where G = −��−1CU�T = −UCT�−1 and U is the unique positive, definite
solution to the following algebraic Riccati equation:

UAT+AU +� −UCT�−1CU = 0

Example 4.8

Consider the following linear time-invariant system

ẋ =

⎡

⎣

−2 0 0
0 0 −2
0 0 −1

⎤

⎦x+

⎡

⎣

2
0
−1

⎤

⎦u+�

y =
[

2 1 1
]

x+�

where the noises � and � satisfy Equations (4.1)–(4.3) with

� =

⎡

⎣

4 6 2
6 9 3
2 3 1

⎤

⎦

� = 1

To find the Kalman filter, we solve the Riccati equation

UAT +AU +� −UCT �−1CU = 0

to obtain

U =

⎡

⎣

0�3768 0�6203 0�2049
0�6203 1�1616 0�3526
0�2049 0�3526 0�1150

⎤

⎦
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Hence

G=−UCT�−1 =−

⎡

⎣

1�5788
2�7549
0�8774

⎤

⎦

The Kalman filter is given by

˙̂x = Ax̂+Bu−G�y− ŷ�=

⎡

⎣

−2 0 0
0 0 −2
0 0 −1

⎤

⎦ x̂+

⎡

⎣

2
0
−1

⎤

⎦u+

⎡

⎣

1�5788
2�7549
0�8774

⎤

⎦ �y− ŷ�

Example 4.9

Consider the linear time-invariant system

ẋ =

⎡

⎢

⎢

⎣

7 0 0 −2
0 3 0 −5
−1 9 0 0
3 0 0 −5

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

2 0
3 0
0 0
0 −5

⎤

⎥

⎥

⎦

u+�

y =

[

1 0 −1 2
0 −3 0 0

]

x+�

where the noises � and � satisfy Equations (4.1)–(4.3) with

� =

⎡

⎢

⎢

⎣

9 −3 2 0
−3 4 8 0
2 8 7 1
0 0 1 5

⎤

⎥

⎥

⎦

� =

[

2 4
4 9

]

Using MATLAB command �G�U	= lqr�A′�C ′���� �, we obtain

U =

⎡

⎢

⎢

⎣

11�1565 3�5347 15�8112 2�7756
3�5347 5�5952 12�3399 0�6219
15�8112 12�3399 38�7903 4�8480
2�7756 0�6219 4�8480 1�2995

⎤

⎥

⎥

⎦

G=−

⎡

⎢

⎢

⎣

25�2423 −12�3970
−0�4550 −1�6629
14�2654 −10�4535
6�1011 −2�9189

⎤

⎥

⎥

⎦
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The Kalman filter is given by

˙̂x =

⎡

⎢

⎢

⎣

7 0 0 −2
0 3 0 −5
−1 9 0 0
3 0 0 −5

⎤

⎥

⎥

⎦

x̂+

⎡

⎢

⎢

⎣

2 0
3 0
0 0
0 −5

⎤

⎥

⎥

⎦

u+

⎡

⎢

⎢

⎣

25�2423 −12�3970
−0�4550 −1�6629
14�2654 −10�4535
6�1011 −2�9189

⎤

⎥

⎥

⎦

�y− ŷ�

4.6 NOTES AND REFERENCES

In this chapter, we have discussed the problems of optimal control and
optimal observer, also called the Kalman filter. We have defined the
optimal control problem for general nonlinear systems. We have derived
the Hamilton–Jacobi–Bellman equation from the principle of optimality.
For the linear quadratic regulator problem, the Hamilton–Jacobi–Bellman
equation is reduced to the Riccati equation or the algebraic Riccati equa-
tion, which can be solved easily. We have also studied the problem of
designing the Kalman filter, which is dual to the linear quadratic regulator
problem. The optimal control problem and the linear quadratic regulator
problem have been discussed in many books, including those by Bryson
and Ho [29], Chui and Chen [44], Lewis and Syrmos [101], and Sage and
White [141]. Discussions on the Kalman filter can be found without proof,
for example, in Belanger [26]. Our proof, however, does not exist in any of
the references.

4.7 PROBLEMS

4.1 The costs to travel from one place to another are indicated in
Figure 4.12.

(a) Calculate the optimal cost from A to B.
(b) Indicate the optimal path.

4.2 Consider the following system

ẋ1 =−2x1+x3
2

ẋ2 = x1−3x2+u

We want to find a control that minimizes

J =

tf
∫

t

�x2
1+2u2�dt
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Figure 4.12 Figure of Problem 4.1.

Write the Hamilton–Jacobi–Bellman equation.
4.3 For the following nonlinear system

ẋ1 =−4x1+x3
2+x2x3

ẋ2 = x1−3x2−x3
3+5u

ẋ3 =−5x1+x4
2+x2

3−4u

with the cost functional

J =

tf∫

t

�x2
1+2x2

2+9x2
3+2u2�dt

write the Hamilton–Jacobi–Bellman equation.
4.4 Consider the following system

ẋ =

[
0 1
0 2

]
x+

[
0
1

]
u

with the cost functional

J =

	∫

0

�xT

[
1 0
0 0

]
x+4u2�dt
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(a) Write the corresponding algebraic Riccati equation.
(b) Solve the algebraic Riccati equation.
(c) Find the optimal control.

4.5 Consider the following system

ẋ =

⎡

⎢

⎢

⎣

4 −2 0 9
3 7 0 −8
−1 0 3 0
0 4 −7 1

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

0 2
−6 0
0 0
1 −9

⎤

⎥

⎥

⎦

u

with the cost functional

J =

	
∫

0

�xT

⎡

⎢

⎢

⎣

2 3 0 0
3 5 0 0
0 0 9 −2
0 0 −2 1

⎤

⎥

⎥

⎦

x+uT

[

4 2
2 6

]

u�dt

(a) Write the algebraic Riccati equation.
(b) Solve the algebraic Riccati equation using MATLAB.
(c) Find the optimal control.

4.5 Using SIMULINK to simulate the closed-loop system obtained in
Problem 4.4.

4.6 For the system

ẋ =
[

0 1
0 0

]

x+
[

0
1

]

u

find a state feedback to minimize

J =
	
∫

0

�xT

[

1 b
b a

]

x+4u2�dt

4.7 Design an optimal control for the system defined by

ẋ =
[

0 1
0 0

]

x+
[

0
1

]

u

such that the following cost functional is minimized

J = 1

2

∫ 	

0
�xT

[

1 0
0 �

]

x+u2�dt
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4.8 For the following LQR problem, write the Riccati equation and the
corresponding feedback. Under what condition (on �), does the optimal
control exist?

ẋ =

[
1 −3
0 2

]
x+

[
2
�

]
u

J =
1

2

∫ 	

0
�xTx+uTRu�d�

4.9 Design an optimal observer for the system

ẋ = ax+u+�

y = x+�

(a) Express the observer gain in terms of a and correlations � and � .
Note that � ≥ 0, � > 0, and a may be positive or negative.

(b) Calculate the transfer function X̂�s�/Y�s�.

4.10 Consider the following linear time-invariant system

ẋ =

[
2 −4
1 −3

]
x+

[
1
−3

]
u+�

y =
[
1 3

]
x+�

where the noise terms � and � satisfy Equations (4.1)–(4.3) with

� =

[
3 2
2 7

]

� = 17

(a) Write the corresponding algebraic Riccati equation.
(b) Solve the algebraic Riccati equation.
(c) Write the equations for the Kalman filter.

4.11 Consider the following linear time-invariant system

ẋ =

⎡

⎢

⎢

⎣

0 4 8 0
9 −2 5 0
5 0 1 −7
4 −9 0 3

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

4
−8
−1
3

⎤

⎥

⎥

⎦

u+�

y =
[

7 3 −8 2−
]

x+�
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where the noise terms � and � satisfy Equations (4.1–4.3) with

� =

⎡

⎢

⎢

⎣

7 1 0 2
1 9 3 0
0 3 6 1
2 0 1 8

⎤

⎥

⎥

⎦

� = 8

(a) Write the corresponding algebraic Riccati equation.
(b) Solve the algebraic Riccati equation using MATLAB.
(c) Write the equations for the Kalman filter.





5
Robust Control of Linear

Systems

Although our optimal control approach to robust control problems can be
used for both linear and nonlinear systems, we will start with linear systems
in this chapter. There are two reasons for this. First, it is conceptually easier
to present our approach of translating a robust control problem into an
optimal control problem in linear systems. Second, for linear systems, the
resulting optimal control problem is a linear quadratic regulator (LQR)
problem, whose solution can be easily obtained.
We first consider the case that there is no uncertainty in B and the

matching condition is satisfied. We show that not only robust stabilization,
but also robust pole assignment to any arbitrary left half plane can be
achieved in this case by solving the corresponding optimal control problem
which reduces to an LQR problem.
We then relax the matching condition and assume arbitrary uncertainty

in A. In this case, we decompose the uncertainty into a matched compo-
nent and an unmatched component. An augmented control is introduced
for the unmatched uncertainty. This augmented control will be discarded
in the control implementation. Because of the unmatched uncertainty, a
computable condition on the upper bound of the augmented control (and
hence on the unmatched uncertainty) needs to be satisfied in order to
guarantee the robust stability. This condition, however, is only sufficient
and depends on three design parameters that can be chosen by designers.
Interestingly, this sufficient condition will always be violated if we require,

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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instead of stabilization, pole placement to a remote left half plane with a
sufficient distance from the imaginary axis.
We also extend the results to allow uncertainty in the input matrix B.

In this case, we need to select a lower bound on the uncertainty in B, and
design the robust control based on the lower bound.

5.1 INTRODUCTION

In this chapter, we discuss robust control of linear time-invariant systems
of the form

ẋ = Ax+Bu

where x ∈Rn and u ∈Rm are state variables and control inputs respectively.
Matrices A and B have uncertainties. The following example shows various
types of uncertainties in A and B.

Example 5.1

Consider the circuit in Figure 5.1 with one voltage source, two inductors
and three resistors.
Applying Kirchhoff’s voltage law to the two meshes, we have

vin = R1i1+L1

di1
dt

+R2�i1− i2�

R2�i1− i2�= L2

di2
dt

+R3i2

R1

R2 R3

i1

–

+

i2

vin

L1 L2

Figure 5.1 Circuit diagram of the system to illustrate various types of uncertainty.
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Defining state variables to be i1 and i2, we obtain the following state
equations:

[
i̇1
i̇2

]
=

[
−�R1+R2�/L1 R2/L1

R2/L2 −�R2+R3�/L2

][
i1
i2

]
+

[
1/L1

0

]
vin

If R1 is uncertain, then the difference of A between the actual value R1

and the nominal value R1o, called the uncertainty in A, can be expressed as

A�R1�−A�R1o�

=

[
−�R1+R2�/L1 R2/L1

R2/L2 −�R2+R3�/L2

]
−

[
−�R1o+R2�/L1 R2/L1

R2/L2 −�R2+R3�/L2

]

=

[
−�R1/L1 0

0 0

]
=

[
1/L1

0

][
−�R1 0

]

where �R1 = R1−R1o is the deviation of R1 from its nominal value. Note
that for R1, the uncertainty is in the range of B (that is, the uncertainty can
be written in the form B��R1� for some ��R1��. When this is the case, we
say that the matching condition is satisfied.
If R2 is uncertain, then the uncertainty in A is

A�R2�−A�R2o�

=

[
−�R1+R2�/L1 R2/L1

R2/L2 −�R2+R3�/L2

]
−

[
−�R1+R2o�/L1 R2o/L1

R2o/L2 −�R2o+R3�/L2

]

=

[
−�R2/L1 �R2/L1

�R2/L2 −�R2/L2

]

where �R2 = R2 −R2o. Note that for R2, the uncertainty is not in the
range of B, that is, the matching condition is not satisfied. In fact, we
can decompose the above uncertainty into a matched component and an
unmatched component as follows.

A�R2�−A�R2o�

=

[
−�R2/L1 �R2/L1

�R2/L1 −�R2/L1

]

=

[
−�R2/L1 �R2/L1

0 01

]
+

[
01 0

�R2/L1 −�R2/L1

]

where
[
−�R2/L1 �R2/L1

0 01

]
=

[
1/L1

0

][
−�R2 �R2

]
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is the matched component and

[
01 0

�R2/L1 −�R2/L1

]

is the unmatched component.
If R3 is uncertain, then the uncertainty in A is

A�R3�−A�R3o�

=

[
−�R1+R2�/L1 R2/L1

R2/L2 −�R2+R3�/L2

]
−

[
−�R1+R2�/L1 R2/L1

R2/L2 −�R2+R3o�/L2

]

=

[
01 0
01 −�R3/L2

]

where �R3 = R3 − R3o. Note that for R3, the uncertainty is totally
unmatched; that is, the matched component is 0.
If L1 is uncertain, then there are uncertainties in both A and B. The

uncertainty in B is

B�L1�−B�L1o�=

[
1/L1

0

]
−

[
1/L1o

0

]
=

[
�L1

0

]

where �L1 = 1/L1−1/L1o. The uncertainty in A is

A�L1�−A�L1o�

=

[
−�R1+R2�/L1 R2/L1

R2/L2 −�R2+R3�/L2

]
−

[
−�R1+R2�/L1o R2/L1o

R2/L2 −�R2+R3�/L2

]

=

[
−�R1+R2��L1 R2�L1

0 0

]

=

[
1/L1

0

][
−�R1+R2�L1�L1 R2L1�L1

]

Note that for L1, the uncertainty in A is in the range of B (matched
uncertainty).
If L2 is uncertain, then the uncertainty in A is

A�L2�−A�L2o�

=

[
−�R1+R2�/L1 R2/L1

R2/L2 −�R2+R3�/L2

]
−

[
−�R1+R2�/L1 R2/L1

R2/L2o −�R2+R3�/L2o

]

=

[
0 0

R2�L2 −�R2+R3��L2

]
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where �L2 = 1/L2−1/L2o. Note that for L2, the uncertainty in A is totally
unmatched.
With this example in mind, let us first consider systems satisfying the

matching condition.

5.2 MATCHED UNCERTAINTY

The system to be controlled is described by

ẋ = A�p�x+Bu

where p ∈ P is an uncertain parameter vector. We first study the case
where the matching condition is satisfied; that is, the uncertainty is in
the range of B. In other words, the uncertainty in A can be written as
A�p�−A�po� = B��p� for some ��p�, where po ∈ P is the nominal value of
p. Since we will translate a robust control problem into an optimal control
problem, we would like to guarantee that the solution to the optimal control
problem exists. For the above linear time-invariant system, the optimal
control problem is actually a linear quadratic regulator (LQR) problem. As
we discussed in Chapter 4, the solution to an LQR problem exists if the
system is stabilizable. Therefore, we make the following assumptions.

Assumption 5.1

There exists a nominal value po ∈ P such that �A�po��B� is stabilizable.

Assumption 5.2

For any p ∈ P , there exists a m×n matrix ��p� such that

A�p�−A�po�= B��p� (5.1)

and ��p� is bounded.
It is not difficult to show that under Assumption 5.1, �A�p��B� is stabi-

lizable for all p ∈ P . Under Assumption 5.2, the system dynamics can be
rewritten as

ẋ = A�po�x+Bu+B��p�x

Our first goal is to solve the following robust control problem of stabilizing
the system under uncertainty.
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Robust Control Problem 5.1

Find a feedback control law u= Kx such that the closed-loop system

ẋ = A�po�x+Bu+B��p�x = A�po�x+BKx+B��p�x

is asymptotically stable for all p ∈ P .
We will not attempt to solve the above robust control problem directly

as its solution may not be straightforward. Our approach is to solve it indi-
rectly by translating it into an optimal control problem. Since we consider
linear systems here, the optimal control problem becomes an LQR problem.

LQR Problem 5.2

For the nominal system

ẋ = A�po�x+Bu

find a feedback control law u= Kx that minimizes the cost functional
∫ �

0
�xTFx+xTx+uTu�dt

where F is an upper bound on the uncertainty ��p�T��p�; that is, for all
p ∈ P ,

��p�T��p�≤ F (5.2)

The existence of this upper bound is guaranteed by Assumption 5.2 on
the boundedness of ��p�. Any F such that Equation (5.2) is satisfied can be
used in the LQR problem.
To solve the LQR problem, we first solve the algebraic Riccati equation

(note that R= R−1 = I)

A�po�
TS+SA�po�+ F + I−SBBTS = 0

for S. Then the solution to the LQR problem is given by u=−BTSx.
The following theorem shows that we can solve the robust control

problem by solving the LQR problem.

Theorem 5.1

Robust Control Problem 5.1 is solvable under Assumptions 5.1 and 5.2.
Furthermore, the solution to LQR Problem 5.2 is a solution to Robust
Control Problem 5.1.
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Proof

Since �A�po��B� is stabilizable and F ≥ 0, by Theorem 2.2, the solution to
LQR Problem 5.2 exists. Let the solution be u = Kx. We would like to
prove that it is also a solution to Robust Control Problem 5.1; that is

ẋ = A�po�x+BKx+B��p�x (5.3)

is asymptotically stable for all p ∈ P .
To prove this, we define

V�xo�=minu∈Rm

∫ �

0
�xTFx+xTx+uTu�dt

to be the minimum cost of the optimal control of the nominal system
from some initial state xo. We would like to show that V�x� is a Lyapunov
function for system (5.3). By definition, V�x� must satisfy the Hamilton–
Jacobi–Bellman equation

minu�t�∈Rm�L�x�u�+

(
�J ∗

�x

)T

f�x�u�	= 0

which reduces to

minu∈Rm �xTFx+xTx+uTu+V T
x �A�po�x+Bu��= 0

where Vx = ��V/�x�. Since u = Kx is the optimal control, it must make:
(1) the above minimum zero; and (2) the derivative of xTFx+xTx+uTu+
V T
x �A�po�x+Bu� (with respect to u) zero.

xTFx+xTx+xTKTKx+V T
x �A�po�x+BKx�= 0 (5.4)

2xTKT+V T
x B = 0 (5.5)

With the aid of the above two equations, we can show that V�x� is a
Lyapunov function for System (5.3). Clearly,

V�x� > 0 x �= 0

V�x�= 0 x = 0

To show V̇ �x� < 0 for all x �= 0, we first use Equation (5.3)

V̇ �x�= V T
x ẋ

= V T
x �A�po�x+BKx+B��p�x�

= V T
x �A�po�x+BKx�+V T

x B��p�x
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By Equation (5.4)

V T
x �A�po�x+BKx�=−�xTFx+xTx+xTKTKx�

By Equation (5.5)

V T
x B��p�x =−2xTKT��p�x

Hence

V̇ �x�=−xTFx−xTx−xTKTKx−2xTKT��p�x

=−xTFx−xTx−xTKTKx−2xTKT��p�x−xT��p�T��p�x

+xT��p�T��p�x

=−xTFx+xT��p�T��p�x−xTx−xTKTKx−2xTKT��p�x

−xT��p�T��p�x

=−xT�F −��p�T��p��x−xTx−xT�K+��p��T�K+��p��x

≤−xTx

In other words

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0

Therefore, by the Lyapunov Stability Theorem , System (5.3) is stable for
all p ∈ P . In other words, u= Kx is a solution to Robust Control Problem
5.1.

Q.E.D.

Example 5.2

Consider the following second-order system

[
ẋ1

ẋ2

]
=

[
0 1

1+p p

][
x1

x2

]
+

[
0
1

]
u

where p ∈ 
−10� 1� is the uncertainty. We would like to design a robust
control u=Kx so that the closed-loop system is stable for all p ∈ 
−10� 1�.
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To translate this problem into an LQR problem, let us pick po = 0 and
check the controllability of �A�po��B�. The controllability matrix of �A�po��B�
is

C=
[
B A�po�B

]
=

[
0 1
1 0

]

Since C is of full rank, the nominal system is controllable. Because the
state equation can be written as

[
ẋ1

ẋ2

]
=

[
0 1
1 0

][
x1

x2

]
+

[
0
1

]
u+

[
0
1

][
p p

][x1

x2

]

the matching condition is satisfied with ��p�=
[
p p

]
�

Let us calculate F as follows.

��p�T��p�=

[
p
p

][
p p

]
=

[
p2 p2

p2 p2

]
≤

[
100 100
100 100

]
= F

Therefore, the corresponding LQR problem is as follows. For the nominal
system

[
ẋ1

ẋ2

]
=

[
0 1
1 0

][
x1

x2

]
+

[
0
1

]
u

find a feedback control law u= Kx that minimizes the cost functional

∫ �

0
�xTFx+xTx+uTu�dt =

∫ �

0
�xT�F + I�x+uTu�dt

In other words, for the LQR problem

Q= F + I =

[
101 100
100 101

]

R= I = 1

We can use MATLAB to solve this LQR problem. From the MATLAB
results, the solution to the algebraic Riccati equation

SA+ATS+Q−SBR−1BTS = 0

is given by

S =

[
12�0995 11�0995
11�0995 11�0995

]
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Table 5.1 Eigenvalues for different values of p.

p �1 �2

1 −9�0995 −1�0000
0 −10�0995 −1�0000
−1 −11�0995 −1�0000
−5 −15�0995 −1�0000
−10 −20�0995 −1�0000

The corresponding control u=−R−1BTSx is

u=
[
−11�0995 −11�0995

]
x

Note that the MATLAB uses the convention u=−Kx.
To verify the results, we check the eigenvalues of the controlled system

[
ẋ1

ẋ2

]
=

[
0 1

1+p p

][
x1

x2

]
+

[
0
1

]
u

for different p. For p= 1� 0�−1�−5�−10, the corresponding eigenvalues

1 
2 are listed in Table 5.1. From the table, we can see that the controlled
system is indeed robustly stable.
So far, our goal has been to stabilize the system. However, in some

cases, we need not only to stabilize the system, but also to ensure some
stability margin. This problem can be studied as follows. If we strengthen
our assumption and require that �A�po��B� be controllable, then we can not
only stabilize the system, but also place the poles to the left of −�, where
� is some arbitrary positive real number. In other words, we will solve the
following robust pole placement problem.

Robust Pole Placement Problem 5.3

For an arbitrary positive real number �, find a feedback control law u=Kx
such that the closed-loop system

ẋ = A�po�x+Bu+B��p�x = A�po�x+BKx+B��p�x

has all its poles on the left of −� for all p ∈ P .
This problem can be solved by solving the following LQR problem.
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LQR Problem 5.4

For the auxiliary system

ẋ = A�po�x+�x+Bu

find a feedback control law u= Kx that minimizes the cost functional
∫ �

0
�xTFx+xTx+uTu�dt

where F is an upper bound on the uncertainty ��p�T��p� as defined in
Equation (5.2).
The following theorem shows that the result obtained by translating the

robust control problem into the LQR problem is indeed correct.

Theorem 5.2

Under the assumption that �A�po��B� is controllable, Robust Pole Placement
Problem 5.3 is solvable. Furthermore, the solution to LQR Problem 5.4 is
a solution to Robust Pole Placement Problem 5.3.

Proof

Since �A�po��B� and hence �A�po�+�I�B� is controllable (for all positive real
�) and F ≥ 0, by Theorem 2.2, the solution to LQR Problem 5.4 exists. By
Theorem 5.1, its solution u= Kx has the following property: The system

ẋ = A�po�x+�x+BKx+B��p�x

is asymptotically stable for all p ∈ P ; that is

�∀p ∈ P��∀s�Re�s�≥ 0�	sI−A�po�−�I−BK−B��p�	 �= 0

⇒�∀p ∈ P��∀s�Re�s�≥ 0�	�s−��I−A�po�−BK−B��p�	 �= 0

Let s′ = s−�, then Re�s�=Re�s′+��=Re�s′�+� ≥ 0⇔Re�s′�≥−�. There-
fore

�∀p ∈ P��∀s′�Re�s′�≥−��	s′I−A�po�−BK−B��p�	 �= 0

which implies that u = Kx is a solution to Robust Pole Placement
Problem 5.3.

Q.E.D.
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Example 5.3

Consider the system discussed in Example 5.2:
[
ẋ1

ẋ2

]
=

[
0 1

1+p p

][
x1

x2

]
+

[
0
1

]
u

where p ∈
[
−10� 1

]
is the uncertainty. We would like to design a robust

control u=Kx so that the closed-loop system has all its poles on the left of
−8 for all p ∈ 
−10� 1�.
We pick po = 0 and we can check that �A�po��B� is controllable.
The corresponding LQR problem is as follows: for the nominal system

[
ẋ1

ẋ2

]
=

[
0 1
1 0

][
x1

x2

]
+8

[
x1

x2

]
+

[
0
1

]
u=

[
8 1
1 8

][
x1

x2

]
+

[
0
1

]
u

find a feedback control law u= Kx that minimizes the cost functional
∫ �

0
�xTFx+xTx+uTu�dt =

∫ �

0
�xT�F + I�x+uTu�dt

where F =

[
100 100
100 100

]
is calculated in Example 5.1. In other words

Q= F + I =

[
101 100
100 101

]
R= 1

Solving the LQR problem using MATLAB, we obtained

u=
[
−323�5 −36�5

]
x

To verify the results, we check the eigenvalues of the controlled system
[
ẋ1

ẋ2

]
=

[
0 1

1+p p

][
x1

x2

]
+

[
0
1

]
u

for different p. For p= 1� 0�−1�−5�−10, the corresponding eigenvalues

1 
2 are listed in Table 5.2.
Indeed, all the poles are at the left of −8, that is, the control u = Kx

solves the robust pole placement problem.

Table 5.2 Eigenvalues for different values of p.

p �1 �2

1 −17�7474+2�5501j −17�7474−2�5501j
0 −21�4863 −15�0086
−1 −24�0378 −13�4571
−5 −30�8952 −10�5997
−10 −37�6684 −8�8285
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5.3 UNMATCHED UNCERTAINTY

We now relax the matching condition (5.1) in Assumption 5.2 of
Section 5.2. Consider the following system

ẋ = A�p�x+Bu

The assumptions that we make are as follows.

Assumption 5.3

There exists a nominal value po ∈ P of p such that �A�po��B� is stabilizable.

Assumption 5.4

A�p� is bounded.
Our goal is to solve the following robust control problem of stabilizing

the system under uncertainty.

Robust Control Problem 5.5

Find a feedback control law u= Kx such that the closed-loop system

ẋ = A�p�x+Bu= A�p�x+BKx

is asymptotically stable for all p ∈ P .
In order to solve this robust control problem, we first decompose the

uncertainty A�p�−A�po� into the sum of a matched component and an
unmatched component. This can be done by using pseudo-inverse B+ of B.
If B is a tall matrix of full rank, then B+ = �BTB�−1BT. Let

A�p�−A�po�= BB+�A�p�−A�po��+ �I−BB+��A�p�−A�po��

Then BB+�A�p�−A�po�� is the matched component and �I −BB+��A�p�−
A�po�� is the unmatched component. Note that if the matching condition is
satisfied, then the unmatched part �I −BB+��A�p�−A�po�� = 0. Let ��p� =
B+�A�p�−A�po��, then

A�p�−A�po�= B��p�
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as in Section 5.2. Define F and H as the following upper bounds on the
uncertainty: for all p ∈ P

�A�p�−A�po��
TB+T

B+�A�p�−A�po��≤ F (5.6)

�−2�A�p�−A�po��
T�A�p�−A�po��≤H (5.7)

where �≥ 0 is a design parameter whose usefulness will be discussed shortly.
Note that F defined in Equation (5.6) is same as F defined in Equation (5.2).
As in Section 5.2, our approach is to solve the above Robust Control

Problem 5.5 indirectly by translating it into the following LQR problem.

LQR Problem 5.6

For the auxiliary system

ẋ = A�po�x+Bu+��I−BB+�v

find a feedback control law u = Kx, v = Lx that minimizes the cost func-
tional

∫ �

0
�xT�F +�2H+�2I�x+uTu+�2vTv�dt

where �≥ 0, �≥ 0 and �≥ 0 are design parameters.
In this LQR problem, v is an augmented control that is used to deal with

the unmatched uncertainty.
Note that if the matching condition is satisfied, then we can take the

design parameters to be �= 0, �= 0, �= 1. In this case, LQR Problem 5.6
reduces to LQR Problem 5.2. The design parameters will be selected so that
a sufficient condition in the following theorem is satisfied.
The solution to the LQR problem is given by

[
u
v

]
=−R̃−1B̃TSx

where S is the unique positive definite solution to the following algebraic
Riccati equation.

SÃ+ ÃTS+ Q̃−SB̃R̃−1B̃TS = 0

In our case

Ã= A�po�� B̃ =
[
B ��I−BB+�

]

Q̃= F +�2H+�2I� R̃=

[
I 0
0 �2I

]
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Since

B̃R̃−1B̃T =
[
B ��I−BB+�

][I 0
0 �−2I

][
BT

��I−BB+�

]
= BBT+�2�−2�I−BB+�2

the Riccati equation becomes

SA�po�+A�po�
T S+ F +�2H+�2I−S�BBT +�2�−2�I−BB+�2�S = 0

The control is given by

[
u
v

]
=

[
−BTS

−��2�I−BB+�S

]
x =

[
K
L

]
x

The following theorem states the relation between Robust Control
Problem 5.5 and LQR Problem 5.6.

Theorem 5.3

If one can choose �, � and � such that the solution to LQR Problem 5.6,
u= Kx, v= Lx, satisfies

�2I−2�2LTL > 0

then u= Kx is a solution to Robust Control Problem 5.5.

Proof

Since �A�po��B� is stabilizable and F ≥ 0H ≥ 0, by Theorem 2.2, the solu-
tion to LQR Problem 5.6 exists. Denote the solution by u= Kx� v= Lx . We
would like to prove that it is also a solution to Robust Control Problem 5.5;
that is,

ẋ = A�p�x+BKx (5.8)

is asymptotically stable for all p ∈ P .
To prove this, we define

V�xo�=minu∈Rm

∫ �

0
�xT�F +�2H+�2I�x+uTu+�2vTv�dt

to be the minimum cost of the optimal control of the auxiliary system
from some initial state xo. We would like to show that V�x� is a Lyapunov
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function for system (5.8). By definition, V�x� must satisfy the Hamilton–
Jacobi–Bellman equation, which reduces to

minu�v�x
T�F +�2H+�2I�x+uTu+�2vTv+V T

x �A�po�x+Bu+��I−BB+�v��= 0�

Since u= Kx, v= Lx are the optimal controls, they must satisfy

xT�F +�2H+�2I�x+xTKTKx+�2xTLTLx (5.9)

+V T
x �A�po�x+BKx+��I−BB+�Lx�= 0

2xTKT+V T
x B = 0 (5.10)

2�2xTLT+V T
x ��I−BB+�= 0 (5.11)

With the aid of the above three equations, we can show that V�x� is a
Lyapunov function for System (5.8). Clearly

V�x� > 0 x �= 0

V�x�= 0 x = 0

To show V̇ �x� < 0 for all x �= 0, we first use Equation (5.8)

V̇ �x�=V T
x ẋ

=V T
x �A�p�x+BKx�

=V T
x �A�po�x+BKx+��I−BB+�Lx�+V T

x �A�p�−A�po��x

−V T
x ��I−BB+�Lx

=V T
x �A�po�x+BKx+��I−BB+�Lx�+V T

x BB
+�A�p�−A�po��x

+V T
x �I−BB+��A�p�−A�po��x−V T

x ��I−BB+�Lx

By Equation (5.9),

V T
x �A�po�x+BKx+��I−BB+�Lx�

=−xT�F +�2H+�2I�x−xTKTKx−�2xTLTLx

By Equation (5.10)

V T
x BB

+�A�p�−A�po��x =−2xTKTB+�A�p�−A�po��x

By Equation (5.11)

V T
x ��I−BB+�Lx =−2�2xTLTLx

V T
x �I−BB+��A�p�−A�po��x =−2�−1�2xTLT�A�p�−A�po��x
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Therefore

V̇ �x�=V T
x �A�po�x+BKx+��I−BB+�Lx�+V T

x BB
+�A�p�−A�po��x

+V T
x �I−BB+��A�p�−A�po��x−V T

x ��I−BB+�Lx

=−xT�F +�2H+�2I�x−xTKTKx−�2xTLTLx−2xTKTB+

�A�p�−A�po��x

−2�−1�2xTLT�A�p�−A�po��x+2�2xTLTLx

By Equation (5.6)

−xTKTKx−2xTKTB+�A�p�−A�po��x

=−xT�K−B+�A�p�−A�po���
T�K−B+�A�p�−A�po���x

+xT�B+�A�p�−A�po���
T�B+�A�p�−A�po���x

≤xT�B+�A�p�−A�po���
T�B+�A�p�−A�po���x

≤xTFx

By Equation (5.7)

−2�−1�2xTLT�A�p�−A�po��x

≤�2xTLTLx+�2�−2xT�A�p�−A�po��
T�A�p�−A�po��x

≤�2xTLTLx+�2xTHx

Hence

V̇ �x�=−xT�F +�2H+�2I�x−xTKTKx−�2xTLTLx

−2xTKTB+�A�p�−A�po��x

−2�−1�2xTLT�A�p�−A�po��x+2�2xTLTLx

≤−xT�F +�2H+�2I�x−�2xTLTLx+xTFx

+�2xTLTLx+�2xTHx+2�2xTLTLx

=−xT��2I−2�2LTL�x

If the sufficient condition �2I−2�2LTL > 0 is satisfied, then

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0
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Therefore, by the Lyapunov Stability Theorem, System (5.3) is stable
for all p ∈ P . In other words, u = Kx is a solution to Robust Control
Problem 5.5.

Q.E.D.

Example 5.4

Consider the following second-order system

[
ẋ1

ẋ2

]
=

[
p 1+p
1 0

][
x1

x2

]
+

[
0
1

]
u

where p ∈ 
−2� 2 � is the uncertainty. We would like to design a robust
control u= Kx so that the closed-loop system is stable for all p ∈ 
−2� 2�.
To translate this problem into a LQR problem, let us pick po = 0 and

check the controllability of �A�po��B�. The controllability matrix of �A�po��B�
is

C=
[
B A�po�B

]
=

[
0 1
1 0

]

Since C is of full rank, �A�po��B� is controllable.
For this system, the matching condition is not satisfied. Let us decompose

the uncertainty into the matched component and unmatched component as
follows.

A�p�−A�po�=

[
p 1+p
1 0

]
−

[
0 1
1 0

]
=

[
p p
0 0

]

B+ = �BTB�−1BT =

([
0 1

][0
1

])−1 [
0 1

]
=

[
0 1

]

The matched component is

BB+�A�p�−A�po��=

[
0
1

][
0 1

][p p
0 0

]
=

[
0 0
0 1

][
p p
0 0

]
=

[
0 0
0 0

]

In other words, all uncertainty is unmatched. The unmatched component
is

�I−BB+��A�p�−A�po��=

[
1 0
0 0

][
p p
0 0

]
=

[
p p
0 0

]

To define the corresponding LQR problem, we need to select the design
parameters ��� and �. How to select these parameters is still an open
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problem. We select � = 0�05�� = 1 and � = 10 based on our experience
with these types of systems. The matrices F and H can be found as

�A�p�−A�po��
TB+T

B+�A�p�−A�po��

=

[
p 0
p 0

][
0
1

][
0 1

][p p
0 0

]
=

[
0 0
0 0

]
= F

�−2�A�p�−A�po��
T�A�p�−A�po��

= 400

[
p 0
p 0

][
p p
0 0

]
=

[
400p2 400p2

400p2 400p2

]
≤

[
1600 1600
1600 1600

]
=H

Therefore, the LQR problem is as follows. For the auxiliary system
[
ẋ1

ẋ2

]
=

[
0 1
1 0

][
x1

x2

]
+

[
0
1

]
u+

[
0�05 0
0 0

]
v

find a feedback control law u = Kx�v = Lx that minimizes the cost
functional

∫ �

0
�xT

([
0 0
0 0

]
+

[
1600 1600
1600 1600

]
+

[
100 0
0 100

])
x+uTu+vTv�dt

Combining the inputs u and v, we obtain the following matrices:

Ã=

[
0 1
1 0

]
B̃ =

[
0 0�05 0
1 0 0

]

Q̃=

[
1700 1600
1600 1700

]
R̃=

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

Solving the above LQR problem using MATLAB, we obtain
⎡
⎣

u
v1

v2

⎤
⎦=

⎡
⎣
−41�7185 −42�1792
−6�5577 −2�0859

0 0

⎤
⎦
[
x1

x2

]

In other words,

u=Kx =
[
−41�7185 −42�1792

]
x

v=Lx =

[
−6�5577 −2�0859

0 0

]
x

For u= Kx to be the solution to the robust control problem, we need to
check the sufficient condition �2I−2�2LTL > 0. Clearly

�2I−2�2LTL= 100×

[
1 0
0 1

]
−2×

[
−6�5577 0
−2�0859 0

][
−6�5577 −2�0859

0 0

]

=

[
56�9969 −13�6788
−13�6788 95�6489

]
> 0
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Table 5.3 Eigenvalues for different values of p.

p �1 �2

−2 −1�0109 −43�1683
−1 −1�0000 −42�1792
0 −0�9885 −41�1907
1 −0�9765 −40�2027
2 −0�9638 −39�2154

Therefore, u=Kx is the solution to the robust control problem. To verify
the results, we check the eigenvalues of the controlled system

[
ẋ1

ẋ2

]
=

[
p 1+p
1 0

][
x1

x2

]
+

[
0
1

]
u

for different p. For p=−2�−1�0�1�2, the corresponding eigenvalues 
1 
2

are listed in Table 5.3. Clearly, the results show that the controlled system
is robust.
One interesting question is whether the result on the robust pole place-

ment similar to Theorem 5.2 will hold for unmatched uncertainty. That is,
if the matching condition is not satisfied, is it still possible to place all the
poles to the left of −� for any positive real �, under the assumption of
controllability of �A�po��B�?

Our intuition seems to indicate that this is not possible. However, we
cannot prove this intuitive conjecture and it remains an open problem. One
reason for our conjecture arises if we consider the following LQR problem.
For the auxiliary system

ẋ = A�po�x+�x+Bu+��I−BB+�v

find a feedback control law u= Kx� v = Lx that minimizes the cost func-
tional

∫ �

0
�xT�F +�2H+�2I�x+uTu+�2vTv�dt

where � ≥ 0, � ≥ 0 and � ≥ 0 are design parameters and F and H are
given in Equations (5.6) and (5.7). We can then show that the condition
�2I−2�2LTL > 0 will be violated for a sufficiently large �.

Theorem 5.4

Let u= Kx, v= Lx be the solution to the LQR problem. If the matching
condition is not satisfied, then for any choice of �, � and �
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�2I−2�2LTL < 0

for a sufficiently large �.

Proof

The solution to the LQR problem is given by

[
u
v

]
=−R̃−1B̃TSx

where S is the unique positive definite solution to the following algebraic
Riccati equation.

SÃ+ ÃT S+ Q̃−SB̃R̃−1B̃TS = 0

where

Ã= A�po�+�I� B̃ =
[
B ��I−BB+�

]

Q̃= F +�2H+�2I� R̃=

[
I 0
0 �2I

]

Since

B̃R̃−1B̃T =
[
B ��I−BB+�

][ I 0
0 �−2I

][
BT

��I−BB+�

]
= BBT+�2�−2�I−BB+�2

the Riccati equation becomes

S�A�po�+�I�+ �A�po�
T+�I�S+ F +�2H+�2I

−S�BBT+�2�−2�I−BB+�2�S = 0�

Therefore, for a sufficiently large �, the solution to the Riccati equation
approaches

S → 2��BBT+�2�−2�I−BB+�2�−1

The corresponding control

[
u
v

]
=−R̃−1B̃T Sx→−

[
I 0
0 �−2I

][
BT

��I−BB+�

]
2��BBT+�2�−2�I−BB+�2�−1x

=

[
−2�BT�BBT+�2�−2�I−BB+�2�−1

−2���−2�I−BB+��BBT+�2�−2�I−BB+�2�−1

]
x
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That is, L→−2���−2�I−BB+��BBT+�2�−2�I−BB+�2�−1. Therefore, for
a sufficiently large �

�2I−2�2LTL < 0

no matter how we choose �, � and �.
Q.E.D.

This theorem is, however, not a proof of our conjecture, because the
condition �2I−2�2LTL > 0 is sufficient, but not necessary.

5.4 UNCERTAINTY IN THE INPUT MATRIX

We now allow uncertainty in the input matrix. We consider three cases.

Case 1

Input uncertainty enters the system via B and uncertainty in A�p� satisfies
the matching condition. In other words, we consider the following system

ẋ = A�p�x+BD�p�u

where D�p� is an m×m matrix representing the uncertainty in the input
matrix. We first make the following assumptions.

Assumption 5.5

There exists a nominal value po ∈ P of p such that �A�po��B� is stabilizable.

Assumption 5.6

There exists a constant matrix D such that for all p ∈ P

0<D ≤D�p�
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Assumption 5.7

For any p ∈ P , there exists a m×n matrix ��p� such that

A�p�−A�po�= BD��p�

and ��p� is bounded.
Under these assumptions, the system dynamics can be rewritten as

ẋ = A�po�x+BD�u+E�p�u�+BD��p�x

where E�p�=D−1D�p�− I ≥ 0
Our goal is to solve the following robust control problem of stabilizing

the system under uncertainty.

Robust Control Problem 5.7

Find a feedback control law u= Kx such that the closed-loop system

ẋ= A�po�x+BD�u+E�p�u�+BD��p�x

= A�po�x+BD�Kx+E�p�Kx�+BD��p�x

is asymptotically stable for all p ∈ P .
We would like to translate the above problem into the following LQR

Problem.

LQR Problem 5.8

For the auxiliary system

ẋ = A�po�x+BDu

find a feedback control law u= Kx that minimizes the cost functional

∫ �

0
�xTFx+xTx+uTu�dt

where F is an upper bound on the uncertainty ��p�T��p�, that is, for all
p ∈ P

��p�T��p�≤ F
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To solve the LQR problem, we first solve the algebraic Riccati equation
(note that R= R−1 = I)

A�po�
TS+SA�po�+ F + I−SBDDTBTS = 0

for S. The solution to the LQR problem is then given by u=−DTBTSx.
The following theorem shows that we can solve the robust control

problem by solving the LQR problem.

Theorem 5.5

Robust Control Problem 5.7 is solvable. Furthermore, the solution to LQR
Problem 5.8 is a solution to Robust Control Problem 5.7.

Proof

Since �A�po��B� is stabilizable and F ≥ 0, by Theorem 2.2, the solution to
LQR Problem 5.8 exists. Let the solution be u = Kx. We would like to
prove that it is also a solution to the robust control problem; that is

ẋ = A�po�x+BDKx+BDE�p�Kx+BD��p�x (5.12)

is asymptotically stable for all p ∈ P .
To prove this, we define

V�xo�=minu∈Rm

∫ �

0
�xTFx+xTx+uTu�dt

to be the minimum cost of the optimal control of the auxiliary system
from some initial state xo. We would like to show that V�x� is a Lyapunov
function for system (5.12). By definition, V�x� must satisfy the Hamilton–
Jacobi–Bellman equation, which reduces to

minu∈Rm �xTFx+xTx+uTu+V T
x �A�po�x+BDu��= 0

Since u = Kx is the optimal control, it must satisfy the following two
equations.

xTFx+xTx+xTKTKx+V T
x �A�po�x+BDKx�= 0 (5.13)

2xTKT+V T
x BD = 0 (5.14)
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With the aid of the above two equations, we can show that V�x� is a
Lyapunov function for System (5.12). Clearly

V�x� > 0 x �= 0

V�x�= 0 x = 0

To show V̇ �x� < 0 for all x �= 0, we first use Equation (5.12)

V̇ �x�= V T
x ẋ

= V T
x �A�po�x+BDKx+BDE�p�Kx+BD��p�x�

= V T
x �A�po�x+BDKx�+V T

x BD�E�p�K+��p��x�

By Equation (5.13)

V T
x �A�po�x+BDKx�=−�xTFx+xTx+xTKTKx��

By Equation (5.14)

V T
x BD�E�p�K+��p��x =−2xTKTE�p�Kx−2xTKT��p�x

Hence

V̇ �x�=−xTFx−xTx−xTKTKx−2xTKT��p�x−2xTKTE�p�Kx

=−xTFx−xTx−xTKTKx−2xTKT��p�x−xT��p�T��p�x

+xT��p�T��p�x−2xTKTE�p�Kx

=−xTFx+xT��p�T��p�x−xTx−xTKTKx−2xTKT��p�x

−xT��p�T��p�x−2xTKTE�p�Kx

=−xT�F +��p�T��p��x−xTx−xT�K+��p��T�K+��p��x

−2xTKTE�p�Kx

≤−xTx

In other words

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0

Therefore, by the Lyapunov stability theorem , System (5.12) is stable
for all p ∈ P . In other words, u = Kx is a solution to Robust Control
Problem 5.7.

Q.E.D.
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Example 5.5

Consider the following second-order system
[
ẋ1

ẋ2

]
=

[
0 1

1+p p

][
x1

x2

]
+

[
0
q

]
u

where p ∈ 
−10� 1 � and q ∈ 
1� 10 � are the uncertainties. We would like
to design a robust control u = Kx so that the closed-loop system is stable
for all p ∈ 
−10� 1 � and q ∈ 
1� 10 �. Let us pick po = 0.

Since q> 1> 0, we can take B=

[
0
1

]
andD= 1. Then the LQR problem is

the same as the LQR problem in Example 5.2; that is, for the nominal system
[
ẋ1

ẋ2

]
=

[
0 1
1 0

][
x1

x2

]
+

[
0
1

]
u

find a feedback control law u= Kx that minimizes the cost functional
∫ �

0
�xTFx+xTx+uTu�dt =

∫ �

0
�xT�F + I�x+uTu�dt

In other words,

Q= F + I =

[
101 100
100 101

]

R= I = 1

The solution is

u=
[
−11�0995 −11�0995

]
x

To verify the results, we check the eigenvalues of the controlled system
[
ẋ1

ẋ2

]
=

[
0 1

1+p p

][
x1

x2

]
+

[
0
q

]
u

for different p and q as shown in Table 5.4. Clearly, the results show that
the controlled system is robust.

Case 2

Input uncertainty enters the system via B and uncertainty in A�p� does not
satisfy the matching condition. That is, we consider the following system

ẋ = A�p�x+BD�p�u

We relax the previous assumptions and assume the following.
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Table 5.4 Eigenvalues for different values of
p and q.

p q �1 �2

−10 1 −1�0000 −20�0995
−10 5 −1�0000 −64�4975
−10 10 −1�0000 −119�9950
1 1 −1�0000 −9�0995
1 5 −1�0000 −53�4975
1 10 −1�0000 −108�9950

Assumption 5.8

There exists a nominal value po ∈ P of p such that �A�po��B� is stabilizable.

Assumption 5.9

There exists a constant matrix D such that for all p ∈ P

0<D ≤D�p�

Assumption 5.10

A�p� is bounded.
Under these assumptions, the system dynamics can be rewritten as

ẋ = A�p�x+BD�u+E�p�u�

where E�p�=D−1D�p�− I ≥ 0.
Our goal is to solve the following robust control problem of stabilizing

the system under uncertainty.

Robust Control Problem 5.9

Find a feedback control law u= Kx such that the closed-loop system

ẋ = A�p�x+BD�u+E�p�u�= A�p�x+BD�Kx+E�p�Kx�

is asymptotically stable for all p ∈ P .



160 ROBUST CONTROL OF LINEAR SYSTEMS

In order to solve this robust control problem, we first decompose the
uncertainty A�p�−A�po� into the sum of a matched component and an
unmatched component by projecting it into the range of BD; that is

A�p�−A�po�= �BD��BD�+�A�p�−A�po��+ �I− �BD��BD�+��A�p�−A�po��

Define H as in Equation (5.7) and G as follows: for all p ∈ P

�A�p�−A�po��
T�BD�+

T

�BD�+�A�p�−A�po��≤G (5.15)

We would like to translate the above problem into the following LQR
Problem.

LQR Problem 5.10

For the auxiliary system

ẋ = A�po�x+BDu+��I− �BD��BD�+�v

find a feedback control law u = Kx, v = Lx that minimizes the cost func-
tional

∫ �

0
�xT�G+�2H+�2I�x+uTu+�2vTv�dt

where �≥ 0, �≥ 0 and �≥ 0 are design parameters.
The solution to the LQR problem is given by

[
u
v

]
=−R̃−1B̃T Sx

where S is the unique positive definite solution to the following algebraic
Riccati equation.

SÃ+ ÃTS+ Q̃−SB̃R̃−1B̃TS = 0

where

Ã= A�po� B̃ =
[
BD ��I− �BD��BD�+�

]

Q̃=G+�2H+�2I R̃=

[
I 0
0 �2I

]
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Since

B̃R̃−1B̃T =
[
BD ��I− �BD��BD�+�

][ I 0
0 �−2I

][
�BD�T

��I− �BD��BD�+�

]

= �BD��BD�T+�2�−2�I− �BD��BD�+�2

the Riccati equation becomes

SA�po�+A�po�
TS+G+�2H+�2I−S��BD��BD�T

+�2�−2�I− �BD��BD�+�2�S = 0

The control is given by

[
u
v

]
=

[
−�BD�TS

−��−2�I− �BD��BD�+�S

]
x =

[
K
L

]
x

The following theorem states the relationship between Robust Control
Problem 5.9 and LQR Problem 5.10.

Theorem 5.6

If one can choose �, � and � such that the solution to LQR Problem 5.10
u= Kx, v= Lx satisfies

�2I−2�2LTL > 0

then u= Kx is a solution to Robust Control Problem 5.9.

Proof

Since �A�po��B� is stabilizable and G≥ 0 H ≥ 0, by Theorem 2.2, the solu-
tion to LQR Problem 5.10 exists. Denote the solution by u= Kx� v= Lx .
We would like to prove that it is also a solution to the robust control
problem; that is

ẋ = A�p�x+BD�Kx+E�p�Kx� (5.16)

is asymptotically stable for all p ∈ P .
To prove this, we define

V�xo�=minu∈Rm

∫ �

0
�xT�G+�2H+�2I�x+uTu+�2vTv�dt
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to be the minimum cost of the optimal control of the auxiliary system
from some initial state xo. We would like to show that V�x� is a Lyapunov
function for system (5.16). By definition, V�x� must satisfy the Hamilton–
Jacobi–Bellman equation, which reduces to

minu�v�x
T�G+�2H+�2I�x+uTu+�2vTv+V T

x �A�po�x

+BDu+��I− �BD��BD�+�v��= 0

Since u= Kx, v= Lx are the optimal controls, they must satisfy

xT�G+�2H+�2I�x+xTKTKx+�2xTLTLx

+V T
x �A�po�x+BDKx+��I− �BD��BD�+�Lx�= 0

(5.17)

2xTKT+V T
x BD = 0 (5.18)

2�2xTLT+V T
x ��I− �BD��BD�+�= 0 (5.19)

With the aid of the above three equations, we can show that V�x� is a
Lyapunov function for System (5.16). Clearly

V�x� > 0 x �= 0

V�x�= 0 x = 0

To show V̇ �x� < 0 for all x �= 0, we first use Equation (5.16)

V̇ �x�= V T
x ẋ

=V T
x �A�p�x+BD�Kx+E�p�Kx��

=V T
x �A�po�x+BDKx+��I− �BD��BD�+�Lx�

+V T
x �A�p�−A�po��x−V T

x ��I− �BD��BD�+�Lx+V T
x BDE�p�Kx

=V T
x �A�po�x+BDKx+��I− �BD��BD�+�Lx�+V T

x �BD��BD�+

�A�p�−A�po��x+V T
x �I− �BD��BD�+��A�p�−A�po��x−V T

x �

�I− �BD��BD�+�Lx+V T
x BDE�p�Kx

By Equation (5.17)

V T
x �A�po�x+BDKx+��I− �BD��BD�+�Lx�

=−xT�G+�2H+�2I�x−xTKTKx−�2xTLTLx

By Equation (5.18)

V T
x �BD��BD�+�A�p�−A�po��x =−2xTKT�BD�+�A�p�−A�po��x

V T
x �BD�E�p�Kx =−2xTKTE�p�Kx
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By Equation (5.19)

V T
x ��I− �BD��BD�+�Lx =−2�2xTLTLx

V T
x �I− �BD��BD�+��A�p�−A�po��x =−2�−1�2xTLT�A�p�−A�po��x

Therefore

V̇ �x�=V T
x �A�po�x+BDKx+��I− �BD��BD�+�Lx�+V T

x �BD��BD�+

�A�p�−A�po��x

+V T
x �I− �BD��BD�+��A�p�−A�po��x−V T

x ��I− �BD��BD�+�Lx

+V T
x BDE�p�Kx

=−xT�G+�2H+�2I�x−xTKTKx−�2xTLTLx−2xTKT�BD�+

�A�p�−A�po��x

−2�−1�2xTLT�A�p�−A�po��x+2�2xTLTLx−2xTKTE�p�Kx

By Equation (5.15)

−xTKTKx−2xTKT�BD�+�A�p�−A�po��x

=−xT�K− �BD�+�A�p�−A�po���
T�K− �BD�+�A�p�−A�po���x

+xT��BD�+�A�p�−A�po���
T��BD�+�A�p�−A�po���x

≤xT�A�p�−A�po��
T�BD�+

T

�BD�+�A�p�−A�po��x

≤xTGx

By Equation (5.7)

−2�−1�2xTLT�A�p�−A�po��x

≤ �2xTLTLx+�2�−2xT�A�p�−A�po��
T�A�p�−A�po��x

≤ �2xTLTLx+�2xTHx

Hence

V̇ �x�=−xT�G+�2H+�2I�x−xTKTKx−�2xTLTLx−2xTKT�BD�+

�A�p�−A�po��x

−2�−1�2xTLT�A�p�−A�po��x+2�2xTLTLx−2xTKTE�p�Kx

≤−xT�G+�2H+�2I�x−�2xTLTLx+xTGx
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+�2xTLTLx+�2xTHx+2�2xTLTLx−2xTKTE�p�Kx

=−xT��2I−2�2LTL�x−2xTKTE�p�Kx

≤−xT��2I−2�2LTL�x

If the sufficient condition �2I−2�2LTL > 0 is satisfied, then

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0

Therefore, by the Lyapunov stability theorem, System (5.16) is stable

for all p ∈ P . In other words, u = Kx is a solution to Robust Control

Problem 5.9.

Q.E.D.

Example 5.6

Consider the following second-order system

[
ẋ1

ẋ2

]
=

[
p 1+p
1 0

][
x1

x2

]
+

[
0
q

]
u

where p ∈ 
−2� 2 � and q ∈ 
1� 10 � are the uncertainties. We would like
to design a robust control u = Kx so that the closed-loop system is stable
for all p ∈ 
−2� 2 � and q ∈ 
1� 10 �.
To translate this problem into a LQR problem, let us pick po = 0 and

check the controllability of �A�po��B�. As shown in Example 5.3, �A�po��B�
is controllable.
Since q > 1> 0, we can take

B =

[
0
1

]

and D = 1. Then the LQR problem is the same as the LQR problem in
Example 5.5. That is, for the auxiliary system
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[
ẋ1

ẋ2

]
=

[
0 1
1 0

][
x1

x2

]
+

[
0
1

]
u+

[
0�05 0
0 0

]
v

find a feedback control law u = Kx, v = Lx that minimizes the cost func-
tional

∫ �

0
�xT

([
0 0
0 0

]
+

[
1600 1600
1600 1600

]
+

[
100 0
0 100

])
x+uTu+vTv�dt

The solution is given by

u= Kx =
[
−41�7185 −42�1792

]
x

v= Lx =

[
−6�5577 −2�0859

0 0

]
x

For u= Kx to be the solution to the robust control problem, we need to
check the sufficient condition �2I−2�2LTL > 0. Clearly

�2I−2�2LTL= 100

[
1 0
0 1

]
−2

[
−6�5577 0
−2�0859 0

][
−6�5577 −2�0859

0 0

]

=

[
56�9969 −13�6788
−13�6788 95�6489

]
> 0

Therefore, u= Kx is the solution to the robust control problem.
To verify the results, we check the eigenvalues of the controlled system

[
ẋ1

ẋ2

]
=

[
p 1+p
1 0

][
x1

x2

]
+

[
0
q

]
u

for different p and q as shown in Table 5.5. Clearly, the results show that
the controlled system is robust.

Table 5.5 Eigenvalues for different values of
p and q.

p q �1 �2

−2 1 −1�0109 −43�1683
−2 10 −1�0109 −422�7811
0 1 −0�9885 −41�1907
0 10 −0�9890 −420�8030
2 1 −0�9638 −39�2154
2 10 −0�9669 −418�8251



166 ROBUST CONTROL OF LINEAR SYSTEMS

Case 3

Input uncertainty does not enter the system via B. So far, we have assumed
that the input uncertainty D�p� enters the system via the input matrix B.
Now we will consider a more general case of the following system

ẋ = Ax+Bu+D�p�u

To focus on the problem, we assume that there is no uncertainty in A
and B matrices. We also make the following assumptions.

Assumption 5.11

�A�B� is stabilizable.

Assumption 5.12

D�p� is bounded.
Our goal is to solve the following robust control problem of stabilizing

the system under uncertainty.

Robust Control Problem 5.11

Find a feedback control law u= Kx such that the closed-loop system

ẋ = Ax+Bu+D�p�u= Ax+BKx+D�p�Kx

is asymptotically stable for all p ∈ P .
We would like to translate the above problem into the following LQR

Problem.

LQR Problem 5.12

For the auxiliary system

ẋ = Ax+Bu+��I−BB+�v

find a feedback control law u = Kx, v = Lx that minimizes the cost func-
tional

∫ �

0
�xT�M+�2N +�2I�x+uTu+�2vTv�dt�



UNCERTAINTY IN THE INPUT MATRIX 167

where �≥ 0, �≥ 0 and �≥ 0 are design parameters, and M ≥ 0 and N ≥ 0
are design parameter matrices.
The solution to LQR problem is given by first solving the Riccati equation

SA+ATS+M+�2N +�2I−S�BBT+�2�−2�I−BB+�2�S = 0

and then obtaining the control as

[
u
v

]
=

[
−BT S

−��2�I−BB+�S

]
x =

[
K
L

]
x

The following theorem states the relationship between Robust Control
Problem 5.11 and LQR Problem 5.12.

Theorem 5.7

If one can choose �, �, �, M, and N such that the solution to LQR
Problem 5.12 u= Kx, v= Lx satisfies

�2I−2�2LTL > 0

M−KTD�p�TB+T

B+D�p�K ≥ 0

N −�−2KTD�p�TD�p�K ≥ 0

(5.20)

then u= Kx is a solution to Robust Control Problem 5.11.

Proof

Since �A�B� is stabilizable and M ≥ KTD�p�TB+T
B+D�p�K > 0 and N ≥

�−2KTD�p�TD�p�K > 0, by Theorem 2.2, the solution to LQR Problem 5.12
exists. Denote the solution by u=Kx, v= Lx. We would like to prove that
it is also a solution to the robust control problem; that is

ẋ = Ax+BKx+D�p�Kx (5.21)

is asymptotically stable for all p ∈ P .
To prove this, we define

V�xo�=minu�v

∫ �

0
�xT�M+�2N +�2I�x+uTu+�2vTv�dt

to be the minimum cost of the optimal control of the auxiliary system
from some initial state xo. We would like to show that V�x� is a Lyapunov
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function for system (5.21). By definition, V�x� must satisfy the Hamilton–
Jacobi–Bellman equation, which reduces to

minu�v�x
T�M+�2N +�2I�x+uTu+�2vTv

+V T
x �Ax+Bu+��I−BB+�v��= 0

Since u= Kx, v= Lx are the optimal controls, they must satisfy

xT�M+�2N +�2I�x+xTKTKx+�2xTLTLx (5.22)

+V T
x �Ax+BKx+��I−BB+�Lx�= 0

2xTKT+V T
x B = 0 (5.23)

2�2xTLT+V T
x ��I−BB+�= 0 (5.24)

With the aid of the above three equations, we can show that V�x� is a
Lyapunov function for System (5.21). Clearly

V�x� > 0 x �= 0

V�x�= 0� x = 0

To show V̇ �x� < 0 for all x �= 0, we use Equations (5.21)–(5.24).

V̇ �x�=V T
x ẋ

=V T
x �Ax+BKx+D�p�Kx�

=V T
x �Ax+BKx+��I−BB+�Lx�+V T

x D�p�Kx−V T
x ��I−BB+�Lx

=V T
x �Ax+BKx+��I−BB+�Lx�+V T

x BB
+D�p�Kx

+V T
x �I−BB+�D�p�Kx−V T

x ��I−BB+�Lx

=−xTM−�2xTN −�2xTx−xTKTKx−�2xTLTLx

−2xTKTB+D�p�Kx−2�−1�2xTLTD�p�Kx−2�2xTLTLx

By Equation (5.20)

−xTKTKx−2xTKTB+D�p�Kx

≤ xTKTD�p�TB+T

B+D�p�Kx

≤ xTMx

−2�−1�2xTLTD�p�Kx

≤ �2xTLTLx+�2�−2xTKTD�p�TD�p�Kx

≤ �2xTLTLx+�2xTNx
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Hence

V̇ �x�=−xTM−�2xTNx−�2xTx−xTKTKx−�2xTLTLx

−2xTKTB+D�p�Kx−2�−1�2xTLTD�p�Kx−2�2xTLTLx

≤−xTM−�2xTNx−�2xTx−�2xTLTLx−2�2xTLTLx

+�2xTLTLx+�2xTNx+xTMx

=−xT��2I−2�2LTL�x

In other words

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0

Therefore, by the Lyapunov stability theorem , System (5.21) is stable
for all p ∈ P . In other words, u = Kx is a solution to Robust Control
Problem 5.11.

Q.E.D.

5.5 NOTES AND REFERENCES

In this chapter, we have discussed the robust control design for linear
systems. We first considered the case when the matching condition is satis-
fied. For the matched uncertainty, the robust control always exists as long as
the system is stabilizable. The stabilizability condition is necessary because
otherwise no control will exist. If we strengthen the condition from stabi-
lizability to controllability, then we can not only make the system stable,
but also place the poles to the left of any non-negative real number, which
will strengthen the stability. For both cases, the solutions are obtained by
solving some LQR problems.
The robust control problem is much more difficult if the matching condi-

tion is not satisfied. In fact, not too many results exist in the literature
for unmatched uncertainties. We have partially solved the robust control
problem for unmatched uncertainties in this chapter. Our approach is
unconventional because we introduced an artificial control to handle the
unmatched uncertainties. This control is used in solving the optimal control
problem, but discarded in the robust control problem. When a sufficient
condition is satisfied, the solution to the optimal control problem is a solu-
tion to the robust control problem.
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The results in this chapter were first presented in references
[104, 105, 107, 108]. The other works on related problems can be found in
[17, 18, 33, 34, 49, 62, 99, 121, 124–126, 128].

5.6 PROBLEMS

5.1 Let us consider the following system

ẋ =

[
1 5
−p 1+p

]
x+

[
0
1

]
u

where p ∈ 
−8� 2� is the uncertainty with po = −1. Find a robust
feedback control by solving the corresponding LQR problem.

5.2 Prove that if �A�po��B� is controllable, then �A�p��B� is controllable,
where A�p�= A�po�+B��p� for any matrix ��p�.

5.3 Consider the following robust control problem. For the system

ẋ =

⎡
⎣
−3 −1 0
0 0 p
2 1+p −1

⎤
⎦x+

⎡
⎣
0 0
1 0
0 1

⎤
⎦u

design a state feedback to stabilize the system for all p ∈ 
−1�3� with
po = 1.

(a) Translate the robust control problem into an optimal control
problem.

(b) Write the corresponding Riccati equation.
(c) Solve the problem using MATLAB.

5.4 For the system

[
ẋ1

ẋ2

]
=

[
p 1

1+p 2

] [
x1

x2

]
+

[
1
1

]
u

where p ∈ 
−10� 1 � is the uncertainty, design a robust control u=Kx
so that the closed-loop system has all its poles on the left of −5 for all
p ∈ 
−10� 1 �.

5.5 For the system in Problem 5.3, we would like to design a robust control
u = Kx so that the closed-loop system has all its poles on the left of
−12 for all p ∈ 
−1� 3�.

5.6 Prove that if �A�B� is controllable and D is an invertible matrix, then
�A�BD� is also controllable.
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5.7 Consider the following system

[
ẋ1

ẋ2

]
=

[
p 1+p
1 −2

][
x1

x2

]
+

[
0
2

]
u

where p ∈ 
−1� 2 � is the uncertainty. Design a robust control u= Kx
so that the closed-loop system is stable for all p ∈ 
−1� 2 �.

5.8 For the following system

ẋ =

[
0 2

2+p p

]
x+

[
0�5
0

]
�1+q�u

where p ∈ 
−1� 2� and q ∈ 
0� 4�, design a state feedback to stabilize
the system for all uncertainties p and q. (Hint: start with a = 0�04,
�= 20, �= 1.)

5.9 Consider the following system

ẋ =

⎡
⎣

1 1+p 0
0 0 1−2p

2−p −3 −8+p

⎤
⎦x+

⎡
⎣
0 0
1 0
0 1

⎤
⎦ �1+q�u

where p ∈ 
−1� 2� and q ∈ 
0� 4�. The robust control problem is to
design a state feedback to stabilize the system for all uncertainties p
and q. Take po = 1 and a= �= �= 1.

(a) Translate the robust control problem into an optimal control
problem.

(b) Write the corresponding Riccati equation.

5.10 In Robust Control Problem 5.5, assume that the system satisfies the
matching condition. Show that by properly selecting the parameters �,
�, �, LQR Problem 5.6 reduces to LQR Problem 5.2. Prove that the
sufficient condition �2I−2�2LTL > 0 is satisfied.





6
Robust Control of Nonlinear

Systems

In this chapter, we turn to nonlinear systems. It is well known that
robust control design is more complex for nonlinear systems. In fact many
approaches to robust control problems are applicable only to linear systems.
However this is not the case for our optimal control approach. Concep-
tually, our approach applies equally to linear and nonlinear systems. The
complexity is in terms of efficient computation. For linear systems, the
optimal control problem becomes an LQR problem, whose solution always
exists and can be easily obtained by solving an algebraic Riccati equation.
However, for nonlinear systems, we may not be able to easily compute the
solution to the optimal control problem as analytical solutions may not be
available, forcing us to use numerical solutions.
We develop the theory for nonlinear systems in a manner similar to the

theory for linear systems. We first study the case of matched uncertainty.
We show that as long as the solution to the corresponding optimal control
problem exists, it is a solution to the robust control problem. We then
consider unmatched uncertainty. Again, we decompose the uncertainty into
matched and unmatched components and introduce an augmented control
for the unmatched uncertainty. A computable sufficient condition is also
derived to ensure that the solution to the corresponding optimal control
problem is a solution to the robust control problem. Finally, how to handle
uncertainty in the input matrix will be discussed.

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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6.1 INTRODUCTION

In this chapter, we consider nonlinear systems of the form

ẋ = A�x�+B�x�u

where A�x�, B�x� are nonlinear (matrix) functions of x : A � Rn → Rn and
B � Rm → Rn. Note that we assume that the control u enters the system
linearly. This assumption is satisfied in most practical examples we inves-
tigated. Possible ways to relax this assumption is an open problem. Let us
first look at the following example.

Example 6.1

Consider the mechanical system in Figure 6.1. y1, y2 are the displacements
of masses M1, M2. The input to the system is the force f . K represents a
spring and D1, D2, D3 represent frictions. The force due to the spring is
linear with respect to the corresponding displacement; that is, K �y1−y2�.
The forces due to the frictions are nonlinear functions of the displacements
and velocities; they are denoted by D1�y1� ẏ1�, D2�y2� ẏ2�, D3�y1−y2� ẏ1− ẏ2�,
respectively.
The free body diagrams of two masses are shown in Figure 6.2. We

consider only the forces in the horizontal direction. Applying Newton’s
second law, we obtain

M1ÿ1 = f −K�y1−y2�−D3�y1−y2� ẏ1− ẏ2�−D1�y1� ẏ1�

M2ÿ2 = K�y1−y2�+D3�y1−y2� ẏ1− ẏ2�−D2�y1� ẏ1�

From the above dynamic equations, we can obtain the state equations as
follows. Define state variables as x1 = y1, x2 = ẏ1, x3 = y2, x4 = ẏ2, we
have

D3

D1D2

M2 M1

y2 y1

K

f

Figure 6.1 A mechanical system to illustrate various types of uncertainties.
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M2
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f

K ( y1 − y2) K ( y1 
−

 
y2)

D2 ( y2, y2)
D3 ( y1 − y2, y1 − y2)
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y2, y1 

−
 
y2)

D1( y1, y1)

Figure 6.2 Free body diagrams of the mechanical system in Figure 6.1.

⎡

⎢

⎢

⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

x2

�Kx3−Kx1−D3�x1−x3�x2−x4�−D1�x1�x2��/M1

x4

�Kx1−Kx3+D3�x1−x3�x2−x4�−D2�x3�x4��/M2

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0
1/M1

0
0

⎤

⎥

⎥

⎦

f

If D1�x1�x2� is uncertain, then the difference of A between the actual
value D1�x1�x2� and the nominal value D1o�x1�x2� can be expressed as

A�D1�x1�x2��−A�D1o�x1�x2��

=

⎡

⎢

⎢

⎣

0
−�D1�x1�x2�−D1o�x1�x2��/M1

0
0

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0
1/M1

0
0

⎤

⎥

⎥

⎦

�−�D1�x1�x2��

where �D1�x1�x2� = D1�x1�x2�−D1o�x1�x2� is the deviation of D1�x1�x2�
from its nominal value. Note that for D1�x1�x2�, the uncertainty is in the
range of B, that is, the matching condition is satisfied.
If D2�x3�x4� is uncertain, then the uncertainty in A is

A�D2�x3�x4��−A�D2o�x3�x4��=

⎡

⎢

⎢

⎣

0
0
0

−�D2�x3�x4�−D2o�x3�x4��/M2

⎤

⎥

⎥

⎦

In this case, the matching condition is not satisfied.

We will discuss both matched uncertainty and unmatched uncertainty.
Similar to linear systems, the conditions for existence of robust control for
systems with unmatched uncertainty are more difficult to meet. Therefore,
let us first consider matched uncertainty.
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6.2 MATCHED UNCERTAINTY

Consider the following nonlinear system

ẋ = A�x�+B�x�u+B�x�f�x�

where B�x�f�x� models the uncertainty in the system dynamics. Since the
uncertainty is in the range of B�x�, the matching condition is satisfied.
We make the following assumptions:

Assumption 6.1

A�0� = 0 and f�0� = 0 so that x = 0 is an equilibrium (it will be the only
equilibrium if the robust control problem is solvable).

Assumption 6.2

The uncertainty f�x� is bounded; that is, there exists a nonnegative function
fmax�x� such that

�f�x�� ≤ fmax�x� (6.1)

Our goal is to solve the following robust control problem of stabilizing
the system under uncertainty.

Robust Control Problem 6.1

Find a feedback control law u= uo�x� such that the closed-loop system

ẋ = A�x�+B�x�uo�x�+B�x�f�x�

is globally asymptotically stable for all uncertainties f�x� satisfying �f�x�� ≤
fmax�x�.
We will solve the above robust control problem indirectly by translating

it into an optimal control problem.

Optimal Control Problem 6.2

For the nominal system

ẋ = A�x�+B�x�u
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find a feedback control law u = uo�x� that minimizes the following cost
functional

∫ �

0
�fmax�x�

2+xTx+uTu�dt

The relation between the robust control problem and the optimal control
problem is shown in the following theorem.

Theorem 6.1

If the solution to Optimal Control Problem 6.2 exists, then it is a solution
to Robust Control Problem 6.1.

Proof

Let u = uo�x� be the solution to Optimal Control Problem 6.2. We would
like to show that

ẋ = A�x�+B�x�uo�x�+B�x�f�x� (6.2)

is globally asymptotically stable for all uncertainties f�x�, satisfying �f�x�� ≤
fmax�x�.
To this end, we define

V�xo�=minu∈Rm

∫ �

0
�fmax�x�

2+xTx+uTu�dt

to be the minimum cost of the optimal control of the nominal system
from some initial state xo. We would like to show that V�x� is a Lyapunov
function for system (6.2). By definition, V�x� must satisfy the Hamilton–
Jacobi–Bellman equation, which reduces to

minu∈Rm �fmax�x�
2+xTx+uTu+V T

x �A�x�+B�x�u��= 0

Since u= uo�x� is the optimal control, it must satisfy the above equation;
that is

fmax�x�
2+xTx+uo�x�

Tuo�x�+V T
x �A�x�+B�x�uo�x��= 0 (6.3)

2uo�x�
T+V T

x B�x�= 0 (6.4)
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Using the above two equations, we can show that V�x� is a Lyapunov
function for System (6.2). Clearly

V�x� > 0 x �= 0

V�x�= 0 x = 0

To show V̇ �x� < 0 for all x �= 0, we use Equations (6.2)–(6.4)

V̇ �x�= V T
x ẋ

= V T
x �A�x�+B�x�uo�x�+B�x�f�x��

= V T
x �A�x�+B�x�uo�x��+V T

x B�x�f�x�

=−fmax�x�
2−xTx−uo�x�

Tuo�x�+V T
x B�x�f�x�

=−fmax�x�
2−xTx−uo�x�

Tuo�x�−2uo�x�
Tf�x�

=−fmax�x�
2+ f�x�Tf�x�−xTx−uo�x�

Tuo�x�−2uo�x�
Tf�x�− f�x�Tf�x�

=−fmax�x�
2+ f�x�Tf�x�−xTx− �uo�x�+ f�x��T�uo�x�+ f�x��

≤−fmax�x�
2+ f�x�Tf�x�−xTx

By Equation (6.1), f�x�T f�x�≤ fmax�x�
2. Hence

V̇ �x�≤−xTx

In other words

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0

Thus, the conditions of the Lyapunov stability theorem are satisfied.
Consequently, there exists a neighborhood of 0� N = �x � �x�< c� for some
c > 0 such that if x�t� enters N , then

x�t�→ 0 as t →�

But x�t� cannot remain forever outside N . Otherwise,

�x�t�� ≥ c

for all t> and

V�x�t��−V�x�0��=
∫ t

0
V̇ �x�	��d	
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≤
∫ t

0
�−xTx�d	

≤−
∫ t

0
c2d	

≤−c2t

Let t →�, we have

V�x�t��≤ V�x�0��− c2t →−�

which contradicts the fact that V�x�t�� > 0 for all x�t�. Therefore

x�t�→ 0 as t →�

no matter where the trajectory begins. That is, system (6.2) is glob-
ally asymptotically stable for all admissible uncertainties. In other words,
u= uo�x� is a solution to Robust Control Problem 6.1.

Q.E.D.

Example 6.2

Let us consider the following nonlinear system

ẋ1 = x2

ẋ2 = p1x1 cos�p2
√
x2�+u

where p1 ∈ 
−0�2� 2� and p2 ∈ 
−10� 100� . The robust control problem is
to find a control u= uo�x� so that the closed-loop system is stable for all p1
and p2.

To translate the robust control problem into an optimal control problem,
we first rewrite the state equation as

[

ẋ1

ẋ2

]

=
[

0 1
0 0

][

x1

x2

]

+
[

0
1

]

u+
[

0
1

]

p1x1 cos�p2
√
x2�

The uncertainty f�x�= p1x1 cos�p2
√
x2� is bounded as follows.

�f�x�� = 
p1x1 cos�p2
√
x2�
 ≤ 2
x1
 = fmax�x�

Therefore, the optimal control problem is given as follows. For the
nominal system

[

ẋ1

ẋ2

]

=
[

0 1
0 0

][

x1

x2

]

+
[

0
1

]

u
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find a feedback control law u = uo�x� that minimizes the following cost
functional

∫ �

0
�fmax�x�

2+xTx+uTu�dt =
∫ �

0
�5x2

1+x2
2+u2�dt

This is an LQR problem with

A=

[

0 1
0 0

]

B =

[

0
1

]

Q=

[

5 0
0 1

]

R= 1

The solution to the LQR problem is given by

u=
[

−2�2361 −2�3393
]

x

To test the robustness of the control, we use MATLAB to perform simu-
lations of the closed-loop system under control with the initial conditions
x1�0�= 10 and x2�0�=−10. We consider the following four cases.

Case A: p1 =−0�2 p2 =−10
Case B: p1 =−0�2 p2 = 100
Case C: p1 = 2 p2 =−10
Case D: p1 = 2 p2 = 100

The simulation results are shown in Figures 6.3–6.6. (Trajectory starting
at 10 is for x1.) Although the responses are different for these four cases,
the difference is relatively small.

6.3 UNMATCHED UNCERTAINTY

Now we assume that uncertainty is not in the range of B�x�. Consider the
following nonlinear system

ẋ = A�x�+B�x�u+C�x�f�x�

where f�x�models the uncertainty in the system dynamics and C�x� can be
any matrix. For example, if C�x� = I, then C�x�f�x� = f�x�. The reason for
introducing C�x� is to make the definition of uncertainty f�x� more flexible.
We make the following assumptions:

Assumption 6.3

A�0�= 0 and f�0�= 0 so that x = 0 is an equilibrium.
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Figure 6.3 MATLAB simulation of the controlled system for Case A.
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Figure 6.4 MATLAB simulation of the controlled system for Case B.
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Figure 6.5 MATLAB simulation of the controlled system for Case C.
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Figure 6.6 MATLAB simulation of the controlled system for Case D.
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Assumption 6.4

The uncertainty f�x� is bounded.
We would like to solve the following robust control problem.

Robust Control Problem 6.3

Find a feedback control law u= uo�x� such that the closed-loop system

ẋ = A�x�+B�x�uo�x�+C�x�f�x�

is globally asymptotically stable for all uncertainties f�x�.
We will solve the above robust control problem indirectly by translating

it into an optimal control problem.

Optimal Control Problem 6.4

For the auxiliary system

ẋ = A�x�+B�x�u+
�I−B�x�B�x�+�C�x�v

find a feedback control law (uo�x�, vo�x�) that minimizes the following cost
functional

∫ �

0
�fmax�x�

2+�2gmax�x�
2+�2�x�2+�u�2+�2�v�2�dt�

where 
≥ 0, �≥ 0 and �≥ 0 are design parameters. fmax�x�, gmax�x� are
nonnegative functions such that

�B�x�+C�x�f�x�� ≤ fmax�x� (6.5)

�
−1f�x�� ≤ gmax�x� (6.6)

The relation between the robust control problem and the optimal control
problem is shown in the following theorem.

Theorem 6.2

If one can choose 
, � and � such that the solution to Optimal Control
Problem 6.4, denoted by (uo�x�, vo�x�), exists and the following condition
is satisfied
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2�2�vo�x��
2 ≤ �′2�x�2 ∀x ∈ Rn

for some �′ such that 
�′
 < 
�
, then uo�x�, the u-component of the
solution to Optimal Control Problem 6.4, is a solution to Robust Control
Problem 6.3.

Proof

Let uo�x�, vo�x� be the solution to Optimal Control Problem 6.4. We would
like to show that

ẋ = A�x�+B�x�uo�x�+C�x�f�x� (6.7)

is globally asymptotically stable for all uncertainties f�x�.
To prove this, we define

V�xo�=minu�v

∫ �

0
�fmax�x�

2+�2gmax�x�
2+�2�x�2+�u�2+�2�v�2�dt

to be the minimum cost of the optimal control of the auxiliary system
from some initial state xo. We would like to show that V�x� is a Lyapunov
function for system (6.7). By definition, V�x� must satisfy the Hamilton–
Jacobi–Bellman equation, which reduces to

minu�v�fmax�x�
2+�2gmax�x�

2+�2�x�2+�u�2+�2�v�2

+V T
x �A�x�+B�x�u+
�I−B�x�B�x�+�C�x�v��= 0

Since uo�x�, vo�x� is the optimal control, it must satisfy the above equa-
tion; that is

fmax�x�
2+�2gmax�x�

2+�2�x�2+�uo�x��2+�2�vo�x��2 (6.8)

+V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��= 0

2uo�x�
T+V T

x B�x�= 0 (6.9)

2�2vo�x�
T+V T

x 
�I−B�x�B�x�+�C�x�= 0 (6.10)

With the aid of the above equations, we can show that V�x� is a Lyapunov
function for System (6.7). Clearly

V�x� > 0 x �= 0

V�x�= 0 x = 0



UNMATCHED UNCERTAINTY 185

To show V̇ �x� < 0 for all x �= 0, we use Equations (6.7–6.10)

V̇ �x�=V T
x ẋ

=V T
x �A�x�+B�x�uo�x�+C�x�f�x��

=V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��

−V T
x 
�I−B�x�B�x�+�C�x�vo�x�+V T

x C�x�f�x�

=V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��

−V T
x 
�I−B�x�B�x�+�C�x�vo�x�+V T

x B�x�B�x�
+C�x�f�x�

+V T
x �I−B�x�B�x�+�C�x�f�x�

=− fmax�x�
2−�2gmax�x�

2−�2�x�2−�uo�x��2−�2�vo�x��2

+2�2vo�x�
Tvo�x�−2uo�x�

TB�x�+C�x�f�x�−2
−1�2vo�x�
Tf�x�

=− fmax�x�
2−�2gmax�x�

2−�2�x�2−�uo�x��2+�2�vo�x��2

−2uo�x�
TB�x�+C�x�f�x�−2
−1�2vo�x�

Tf�x�

On the other hand

−�uo�x��2−2uo�x�
TB�x�+C�x�f�x�≤ �B�x�+C�x�f�x��2 ≤ fmax�x�

2

−2
−1�2vo�x�
Tf�x�≤ �2�vo�x��2+�2�
−1f�x��2

≤ �2�vo�x��2+�2gmax�x�
2

Therefore, if the condition 2�2�vo�x��2 ≤ �′2�x�2, ∀x ∈ Rn is satisfied

V̇ �x�≤−�2�x�2+2�2�vo�x��2

= 2�2�vo�x��2−�′2�x�2− ��2−�′2��x�2

≤−��2−�′2��x�2

In other words,

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0

Thus, the conditions of The Lyapunov stability theorem are satisfied.
Consequently, there exists a neighbourhood of 0� N = �x � �x�< c� for
some c > 0 such that if x�t� enters N , then

x�t�→ 0 as t →�
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But x�t� cannot remain forever outside N . Otherwise

�x�t�� ≥ c

for all t> 0, which implies

V�x�t��−V�x�0��=
∫ t

0
V̇ �x�	��d	

≤
∫ t

0
−��2−�′2��x�2d	

≤−
∫ t

0
��2−�′2�c2d	

≤−��2−�′2�c2t

Let t →�, we have

V�x�t��≤ V�x�0��− ��2−�′2�c2t →−�

which contradicts the fact that V�x�t�� > 0 for all x�t�. Therefore

x�t�→ 0 as t →�

no matter where the trajectory begins. This proves that uo�x� is a solution
to Robust Control Problem 6.3.

Q.E.D.

Example 6.3

Let us consider the following nonlinear system

ẋ1 = x2+p1x1 cos

(

1

x2+p2

)

+p3x2 sin�p4x1x2�

ẋ2 = u

where p1 ∈ 
−0�2� 0�2 �, p2 ∈ 
−10� 100 �, p3 ∈ 
0� 0�2 � and p4 ∈ 
−100� 0 �.
The robust control problem is to find a control u= uo�x� so that the closed-
loop system is stable for all possible uncertainties.
To translate the robust control problem into an optimal control problem,

we first rewrite the state equation as

[

ẋ1

ẋ2

]

=
[

0 1
0 0

][

x1

x2

]

+
[

0
1

]

u+
[

1
0

]

f�x�
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where

f�x�= p1x1 cos

(

1

x2+p2

)

+p3x2 sin�p4x1x2�

is the uncertainty. Let us take a = 0�2, � = 1, and � = 1. (This choice is
obtained by trial and error.) fmax�x� and gmax�x� can then be calculated as
follows.

�B�x�+C�x�f�x�� = �
[

0 1
]

[

1
0

]

f�x�� = 0= fmax�x�

�
−1f�x�� = �5�p1x1 cos

(

1

x2+p2

)

+p3x2 sin�p4x1x2��� ≤ 
x1+x2
 = gmax�x�

Therefore

fmax�x�
2+�2gmax�x�

2+�2�x�2+�u�2+�2�v�2

= �x1+x2�
2+ �x2

1+x2
2�+u2+v2

Hence, the corresponding optimal control problem is as follows. For the
auxiliary system

[

ẋ1

ẋ2

]

=
[

0 1
0 0

][

x1

x2

]

+
[

0
1

]

u+
[

0�2
0

]

v

find a feedback control law (uo�x�, vo�x�) that minimizes the following
cost functional

∫ �

0
�2x2

1+2x2
2+2x1x2+u2+v2�dt

This is an LQR problem with

A=
[

0 1
0 0

]

B =
[

0 0�2
1 0

]

Q=
[

2 1
1 2

]

R=
[

1 0
0 1

]

The solution to the LQR problem is given by

uo =
[

−1�3549 −2�1532
]

x

vo =
[

−0�4054 −0�2710
]

x
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Let us check if the sufficient condition

2�2�vo�x��
2 ≤ �2�x�2 ∀x ∈ Rn

is satisfied. Clearly

�2�x�2−2�2�vo�x��2

= �x�2−2�vo�x��2

= x2
1+x2

2−2�−0�4054x1−0�2710x2�
2

= xT

[

0�6713 −0�2197
−0�2197 0�8531

]

x

≥ 0

Therefore

uo =
[

−1�3549 −2�1532
]

x

is a solution to the robust control problem.
To test the robustness of the control, we use MATLAB to perform simu-

lations of the closed-loop system under control with the initial conditions
x1�0�= 100 and x2�0�=−50. We consider the following four cases.

Case A: p1 =−0�2 p2 =−10 p3 = 0 p4 =−100
Case B: p1 = 0�2 p2 = 100 p3 = 0�2 p4 = 0
Case C: p1 = 0 p2 = 0 p3 = 0 p4 = 0
Case D: p1 =−0�2 p2 = 100 p3 =−0�2 p4 =−100

The simulation results are shown in Figures 6.7–6.10, respectively.
(Trajectory starting at 100 is for x1.) Results for Cases A, C, and D are
similar. The closed-loop systems are all rather stable. However, the settling
time for Case B is different from the settling times for other cases. We
believe that this is because p1 for Case B is significantly different from those
for other cases.

6.4 UNCERTAINTY IN THE INPUT MATRIX

We now allow uncertainty in the input matrix. We consider three cases: (1)
input uncertainty enters the system via B�x� and uncertainty in A�x� satisfies
the matching condition; (2) input uncertainty enters the system via B�x�
and uncertainty in A�x� does not satisfy the matching condition; (3) input
uncertainty does not enter the system via B�x�.
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Figure 6.7 MATLAB simulation of the controlled system for Case A.
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Figure 6.8 MATLAB simulation of the controlled system for Case B.
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Figure 6.9 MATLAB simulation of the controlled system for Case C.
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Figure 6.10 MATLAB simulation of the controlled system for Case D.
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Case 1

We consider the following system

ẋ = A�x�+B�x��u+h�x�u�+B�x�f�x�

where h�x� is an m×m matrix representing the uncertainty in the input
matrix. For Case 1, we make the following assumptions.

Assumption 6.5

A�0�= 0 and f�0�= 0 so that x = 0 is an equilibrium.

Assumption 6.6

The uncertainty f�x� is bounded; that is, there exists a nonnegative function
fmax�x� such that

�f�x�� ≤ fmax�x�

Assumption 6.7

h�x� is a positive semi-definite matrix

h�x�≥ 0

We would like to solve the following robust control problem of stabilizing
the above nonlinear system under uncertainty.

Robust Control Problem 6.5

Find a feedback control law u= uo�x� such that the closed-loop system

ẋ = A�x�+B�x��uo�x�+h�x�uo�x��+B�x�f�x�

is globally asymptotically stable for all uncertainties f�x�, h�x� satisfying
Assumptions 6.6 and 6.7.
We will solve the above robust control problem indirectly by translating

it into an optimal control problem.
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Optimal Control Problem 6.6

For the nominal system

ẋ = A�x�+B�x�u

find a feedback control law u = uo�x� that minimizes the following cost
functional

∫ �

0
�fmax�x�

2+xTx+uTu�dt

We can solve the robust control problem by solving the optimal control
problem as shown in the following theorem.

Theorem 6.3

If the solution to Optimal Control Problem 6.6 exists, then it is a solution
to Robust Control Problem 6.5.

Proof

Let u = uo�x� be the solution to Optimal Control Problem 6.6. We would
like to show that

ẋ = A�x�+B�x��uo�x�+h�x�uo�x��+B�x�f�x� (6.11)

is globally asymptotically stable for all uncertainties f�x�, h�x� satisfying
Assumptions 6.6 and 6.7.
To this end, we define

V�xo�=minu∈Rm

∫ �

0
�fmax�x�

2+xTx+uTu�dt

to be the minimum cost of the optimal control of the nominal system
from some initial state xo. We would like to show that V�x� is a Lyapunov
function for system (6.11). By definition, V�x� must satisfy the Hamilton–
Jacobi–Bellman equation, which reduces to

minu∈Rm �fmax�x�
2+xTx+uTu+V T

x �A�x�+B�x�u��= 0

where Vx = �V /�x. Since u= uo�x� is the optimal control, it must satisfy the
above equation; that is

fmax�x�
2+xTx+uo�x�

Tuo�x�+V T
x �A�x�+B�x�uo�x��= 0

2uo�x�
T+V T

x B�x�= 0
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Using the above two equations, we can show that V�x� is a Lyapunov
function for System (6.11). Clearly

V�x� > 0 x �= 0

V�x�= 0 x = 0

To show V̇ �x� < 0 for all x �= 0, we have

V̇ �x�= V T
x ẋ

= V T
x �A�x�+B�x��uo�x�+h�x�uo�x��+B�x�f�x��

= V T
x �A�x�+B�x�uo�x��+V T

x B�x�f�x�+V T
x B�x�h�x�uo�x�

=−fmax�x�
2−xTx−uo�x�

Tuo�x�+V T
x B�x�f�x�+V T

x B�x�h�x�uo�x�

=−fmax�x�
2−xTx−uo�x�

Tuo�x�−2uo�x�
Tf�x�−2uo�x�

Th�x�uo�x�

≤−fmax�x�
2−xTx−uo�x�

Tuo�x�−2uo�x�
Tf�x�

=−fmax�x�
2+ f�x�Tf�x�−xTx−uo�x�

Tuo�x�−2uo�x�
Tf�x�− f�x�Tf�x�

=−fmax�x�
2+ f�x�Tf�x�−xTx− �uo�x�+ f�x��T�uo�x�+ f�x��

≤−fmax�x�
2+ f�x�Tf�x�−xTx

Since f�x�T f�x�≤ fmax�x�
2

V̇ �x�≤−xTx

In other words

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0

Thus, the conditions of The Lyapunov stability theorem are satisfied.
Consequently, there exists a neighbourhood of 0, N = �x � �x�< c� for some
c > 0 such that if x�t� enters N , then

x�t�→ 0 as t →�

But x�t� cannot remain forever outside N . Otherwise

�x�t�� ≥ c
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for all t> 0, which implies

V�x�t��−V�x�0��=
∫ t

0
V̇ �x�	��d	

≤
∫ t

0
�−xTx�d	

≤−
∫ t

0
c2d	

≤−c2t

Let t →�, we have

V�x�t��≤ V�x�0��− c2t →−�

which contradicts the fact that V�x�t�� > 0 for all x�t�. Therefore

x�t�→ 0 as t →�

no matter where the trajectory begins. That is, the system (6.11) is glob-
ally asymptotically stable for all admissible uncertainties. In other words,
u= uo�x� is a solution to Robust Control Problem 6.5.

Q.E.D.

Example 6.4

Let us consider the following nonlinear system

ẋ1 = x2

ẋ2 = p1x1 cos�
√
x2�+ �1+p2x

2
2�u

where p1 ∈ 
−0�2� 2� and p2 ∈ 
0�1� 1� . The robust control problem is to
find a control u = uo�x� so that the closed-loop system is stable for all p1
and p2.

To translate the robust control problem into an optimal control problem,
we first rewrite the state equation as

[

ẋ1

ẋ2

]

=
[

0 1
0 0

][

x1

x2

]

+
[

0
1

]

�1+p2x
2
2�u+

[

0
1

]

p1x1 cos�
√
x2�
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The uncertainty h�x� = p2x
2
2 ≥ 0 and f�x� = p1x1 cos�

√
x2� is bounded as

follows.

�f�x�� = 
p1x1 cos�
√
x2�
 ≤ 2
x1
 = fmax�x�

Therefore, the optimal control problem is given as follows. For the
nominal system

[

ẋ1

ẋ2

]

=
[

0 1
0 0

][

x1

x2

]

+
[

0
1

]

u�

find a feedback control law u = uo�x� that minimizes the following cost
functional

∫ �

0
�fmax�x�

2+xTx+uTu�dt =
∫ �

0
�4x2

1+x2
2+u2�dt�

This is an LQR problem with

A=
[

0 1
0 0

]

B =
[

0
1

]

Q=
[

5 0
0 1

]

R= 1

The solution to the LQR problem is given by

u=
[

−2�2361 −2�3393
]

x

To test the robustness of the control, we use MATLAB to perform simu-
lations of the closed-loop system under control with the initial conditions
x1�0�= 10 and x2�0�=−20. We consider the following four cases.

Case A: p1 =−0�2 p2 = 0�1
Case B: p1 =−0�2 p2 = 1
Case C: p1 = 2 p2 = 0�1
Case D: p1 = 2 p2 = 1

The simulation results are shown in Figures 6.11–6.14, respectively.
(Trajectory starting at 10 is for x1.) We can see that the response in Case
C is a little slower than the other cases, but the difference is small.

Case 2

We consider the following system

ẋ = A�x�+B�x��u+h�x�u�+C�x�f�x��
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Figure 6.11 MATLAB simulation of the controlled system for Case A.
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Figure 6.12 MATLAB simulation of the controlled system for Case B.
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Figure 6.13 MATLAB simulation of the controlled system for Case C.
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Figure 6.14 MATLAB simulation of the controlled system for Case D.
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where h�x� is an m×m matrix representing the uncertainty in the input
matrix and the uncertainty f�x� does not satisfy the matching condition.
Hence we make the following assumptions.

Assumption 6.8

A�0�= 0 and f�0�= 0 so that x = 0 is an equilibrium.

Assumption 6.9

The uncertainty f�x� is bounded.

Assumption 6.10

h�x� is a positive semi-definite matrix: h�x�≥ 0�
Wewould like to solve the following robust control problem of stabilizing

the above nonlinear system under uncertainty.

Robust Control Problem 6.7

Find a feedback control law u= uo�x� such that the closed-loop system

ẋ = A�x�+B�x��uo�x�+h�x�uo�x��+C�x�f�x�

is globally asymptotically stable for all uncertainties f�x�, h�x� satisfying
Assumptions 6.9 and 6.10.
We will solve the above robust control problem indirectly by translating

it into an optimal control problem.

Optimal Control Problem 6.8

For the auxiliary system

ẋ = A�x�+B�x�u+
�I−B�x�B�x�+�C�x�v

find a feedback control law (uo�x�, vo�x�) that minimizes the following cost
functional

∫ �

0
�fmax�x�

2+�2gmax�x�
2+�2�x�2+�u�2+�2�v�2�dt
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where 
 ≥ 0, � ≥ 0, and � ≥ 0 are design parameters. fmax�x�, gmax�x� are
nonnegative functions such that

�B�x�+C�x�f�x�� ≤ fmax�x�

�
−1f�x�� ≤ gmax�x�

We can solve the robust control problem by solving the optimal control
problem as shown in the following theorem.

Theorem 6.4

If one can choose 
, � and � such that the solution to Optimal Control
Problem 6.8, denoted by (uo�x�, vo�x�), exists and the following condition
is satisfied

2�2�vo�x��2 ≤ �′2�x�2 ∀x ∈ Rn

for some �′ such that 
�′
 < 
�
, then uo�x�, the u-component of the solu-
tion to Optimal Control Problem 6.8, is a solution to Robust Control
Problem 6.7.

Proof

Let uo�x�, vo�x� be the solution to Optimal Control Problem 6.8. We would
like to show that

ẋ = A�x�+B�x��uo�x�+h�x�uo�x��+C�x�f�x� (6.12)

is globally asymptotically stable for all uncertainties f�x�.
To prove this, we define

V�xo�=minu�v

∫ �

0
�fmax�x�

2+�2gmax�x�
2+�2�x�2+�u�2+�2�v�2�dt

to be the minimum cost of the optimal control of the auxiliary system
from some initial state xo. We would like to show that V�x� is a Lyapunov
function for system (6.12). Since V�x� is the minimal cost, it must satisfy
the Hamilton–Jacobi–Bellman equation, which reduces to

minu�v�fmax�x�
2+�2gmax�x�

2+�2�x�2+�u�2+�2�v�2

+V T
x �A�x�+B�x�u+
�I−B�x�B�x�+�C�x�v��= 0
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Since uo�x�, vo�x� is the optimal control, the following must be satisfied:

fmax�x�
2+�2gmax�x�

2+�2�x�2+�uo�x��
2+�2�vo�x��

2

+V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��= 0

2uo�x�
T+V T

x B�x�= 0

2�2vo�x�
T+V T

x 
�I−B�x�B�x�+�C�x�= 0

From the above equations, we can show that V�x� is a Lyapunov function
for System (6.12). Clearly

V�x� > 0 x �= 0

V�x�= 0 x = 0

On the other hand, we have

V̇ �x�=V T
x ẋ

=V T
x �A�x�+B�x��uo�x�+h�x�uo�x��+C�x�f�x��

=V T
x �A�x�+B�x�uo�x��+C�x�f�x��+V T

x B�x�h�x�uo�x�

=V T
x �A�x�+B�x�uo�x��+C�x�f�x��−2uo�x�

Th�x�uo�x�

≤V T
x �A�x�+B�x�uo�x��+C�x�f�x��

=V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��

−V T
x 
�I−B�x�B�x�+�C�x�vo�x�+V T

x C�x�f�x�

=V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��

+V T
x B�x�B�x�+C�x�f�x�

−V T
x 
�I−B�x�B�x�+�C�x�vo�x�+V T

x �I−B�x�B�x�+�C�x�f�x�

=− fmax�x�
2−�2gmax�x�

2−�2 �x�2−�uo�x��2−�2�vo�x��2

+2�2vo�x�
Tvo�x�−2uo�x�

TB�x�+C�x�f�x�−2
−1�2vo�x�
TC�x�f�x�

=− fmax�x�
2−�2gmax�x�

2−�2 �x�2−�uo�x��2+�2 �vo�x��2

−2uo�x�
TB�x�+C�x�f�x�−2
−1�2vo�x�

TC�x�f�x��

But

−�uo�x��2−2uo�x�
TB�x�+C�x�f�x�≤ �B�x�+C�x�f�x��2 ≤ fmax�x�

2

−2
−1�2vo�x�
Tf�x�≤ �2�vo�x��2+�2�
−1f�x��2

≤ �2�vo�x��2+�2gmax�x�
2
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Therefore, by the condition 2�2�vo�x��
2 ≤ �′2�x�2, ∀x ∈ Rn,

V̇ �x�≤−�2�x�2+2�2�vo�x��2

= 2�2�vo�x��2−�′2�x�2− ��2−�′2��x�2

≤−��2−�′2��x�2

In other words,

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0

Thus, the conditions of the Lyapunov stability theorem are satisfied.
Consequently, there exists a neighbourhood of 0, N = �x � �x�< c� for some
c > 0 such that if x�t� enters N , then

x�t�→ 0 as t →�

But x�t� cannot remain forever outside N . Otherwise

�x�t�� ≥ c

for all t> 0, which implies

V�x�t��−V�x�0��=
∫ t

0
V̇ �x�	��d	

≤
∫ t

0
−��2−�′2��x�2d	

≤−
∫ t

0
��2−�′2�c2d	

≤−��2−�′2�c2t

Let t →�, we have

V�x�t��≤ V�x�0��− ��2−�′2�c2t →−�

which contradicts the fact that V�x�t�� > 0 for all x�t�. Therefore

x�t�→ 0 as t →�

no matter where the trajectory begins. This proves that uo�x� is a solution
to Robust Control Problem 6.7.

Q.E.D.
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Example 6.5

Let us consider the following nonlinear system

ẋ1 = x2+p1x1 cos�1/x2�+p3x2 sin�p4x1x2�

ẋ2 = �1+p2x
2
2�u

where p1 ∈ 
−0�2� 0�2� , p2 ∈ 
0�2� 3� , p3 ∈ 
0� 0�2� and p4 ∈ 
−100� 0� . The
robust control problem is to find a control u= uo�x� so that the closed-loop
system is stable for all possible uncertainties.
To translate the robust control problem into an optimal control problem,

we first rewrite the state equation as
[

ẋ1

ẋ2

]

=

[

0 1
0 0

][

x1

x2

]

+

[

0
1

]

�1+p2x
2
2�u+

[

1
0

]

f�x�

where f�x�= p1x1 cos�1/x2�+p3x2 sin�p4x1x2� is the uncertainty. Let us take
a = 0�2, � = 1, and � = 1. Then fmax�x� and gmax�x� can be calculated as
follows.

�B�x�+C�x�f�x�� = �
[

0 1
]

[

1
0

]

f�x�� = 0= fmax�x�

�
−1f�x�� = �5�p1x1 cos�1/x2�+p3x2 sin�p4x1x2��� ≤ 
x1+x2
 = gmax�x�

Therefore,

fmax�x�
2+�2gmax�x�

2+�2�x�2+�u�2+�2�v�2

= �x1+x2�
2+ �x2

1+x2
2�+u2+v2�

Hence, the corresponding optimal control problem is as follows. For the
auxiliary system

[

ẋ1

ẋ2

]

=
[

0 1
0 0

][

x1

x2

]

+
[

0
1

]

u+
[

0�2
0

]

v

find a feedback control law (uo�x�, vo�x�) that minimizes the following cost
functional

∫ �

0
�2x2

1+2x2
2+2x1x2+u2+v2�dt

This is an LQR problem with

A=
[

0 1
0 0

]

B =
[

0 0�2
1 0

]

Q=
[

2 1
1 2

]

R=
[

1 0
0 1

]
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The solution to the LQR problem is given by

uo =
[

−1�3549 −2�1532
]

x

vo =
[

−0�4054 −0�2710
]

x

Let us check if the sufficient condition

2�2�vo�x��
2 ≤ �2�x�2 ∀x ∈ Rn

is satisfied. Clearly

�2�x�2−2�2�vo�x��2

= �x�2−2�vo�x��2

= x2
1+x2

2−2�−0�4054x1−0�2710x2�
2

= xT

[

0�6713 −0�2197
−0�2197 0�8531

]

x

≥ 0

Therefore

uo =
[

−1�3549 −2�1532
]

x

is a solution to the robust control problem.
To test the robustness of the control, we use MATLAB to perform simu-

lations of the closed-loop system under control with the initial conditions
x1�0�= 10 and x2�0�= 10. We consider the following four cases.

Case A: p1 =−0�2 p2 = 0�2 p3 = 0 p4 =−100
Case B: P1 = 0�2 p2 = 0�2 p3 = 0�2 p4 = 0
Case C: p1 = 0 p2 = 3 p3 = 0 p4 = 0
Case D: p1 =−0�2 p2 = 3 p3 =−0�2 p4 =−100

The simulation results are shown in Figures 6.15–6.18, respectively. From
the results we can see that the performance depends more on p2. However,
they are robust for all the parameters.

Case 3

We no longer assume that the input uncertainty enters the system via the
input matrix B�x�; that is, we consider the following system

ẋ = A�x�+B�x�u+C�x�D�x�u�

where D�x� is the (only) uncertainty. We make the following assumptions.
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Figure 6.15 MATLAB simulation of the controlled system for Case A.

10

15

5

0

–5

–10
0 1 2 3 4 5 6

Figure 6.16 MATLAB simulation of the controlled system for Case B.
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Figure 6.17 MATLAB simulation of the controlled system for Case C.
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Figure 6.18 MATLAB simulation of the controlled system for Case D.
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Assumption 6.11

A�0�= 0 so that x = 0 is an equilibrium.

Assumption 6.12

The uncertainty D�x� is bounded: �D�x�� ≤Dmax�x� for some Dmax�x�.
We would like to solve the following robust control problem of stabilizing

the above nonlinear system under uncertainty.

Robust Control Problem 6.9

Find a feedback control law u= uo�x� such that the closed-loop system

ẋ = A�x�+B�x�uo�x�+C�x�D�x�uo�x�

is globally asymptotically stable for all uncertaintiesD�x� satisfying �D�x��≤
Dmax�x�.
Since u will be a function of x, u = uo�x�, we can view f�x� = D�x�uo�x�

as the uncertainty and guess its bound:

�B�x�+C�x�D�x�uo�x�� ≤ fmax�x�

�
−1D�x�uo�x�� ≤ gmax�x�

We can then solve the above robust control problem indirectly by trans-
lating it into an optimal control problem.

Optimal Control Problem 6.10

For the auxiliary system

ẋ = A�x�+B�x�u+
�I−B�x�B�x�+�C�x�v

find a feedback control law (uo�x�, vo�x�) that minimizes the following cost
functional

∫ �

0
�fmax�x�

2+�2gmax�x�
2+�2�x�2+�u�2+�2�v�2�dt
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where 
≥ 0, �≥ 0, and �≥ 0 are design parameters and fmax�x�� gmax�x�
are design functions.
The solution to the optimal control problem is a solution to the robust

control problem if certain conditions are satisfied as shown in the following
theorem.

Theorem 6.5

If one can choose design parameters 
, �, �, and functions fmax�x�� gmax�x�
such that the solution to Optimal Control Problem 6.10, denoted by (uo�x�,
vo�x�), exists and the following conditions are satisfied

�B�x�+C�x�D�x�uo�x�� ≤ fmax�x�

�
−1D�x�uo�x�� ≤ gmax�x�

2�2�vo�x��2 ≤ �′2�x�2� ∀x ∈ Rn

for some �′ such that 
�′
 < 
�
, then uo�x�, the u-component of the solu-
tion to Optimal Control Problem 6.10, is a solution to Robust Control
Problem 6.9.

Proof

Let uo�x�, vo�x� be the solution to Optimal Control Problem 6.10. We would
like to show that

ẋ = A�x�+B�x��uo�x�+h�x�uo�x��+C�x�D�x�uo�x� (6.13)

is globally asymptotically stable for all uncertainties D�x�.
To prove this, we define

V�xo�=minu�v

∫ �

0
�fmax�x�

2+�2gmax�x�
2+�2�x�2+�u�2+�2�v�2�dt

to be the minimum cost of the optimal control of the auxiliary system
from some initial state xo. We would like to show that V�x� is a Lyapunov
function for system (6.13). Since V�x� is the minimal cost, it must satisfy
the Hamilton–Jacobi–Bellman equation, which reduces to

minu�v�fmax�x�
2+�2gmax�x�

2+�2�x�2+�u�2+�2�v�2

+V T
x �A�x�+B�x�u+
�I−B�x�B�x�+�C�x�v��= 0
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Since uo�x�, vo�x� is the optimal control, the following must be satisfied:

fmax�x�
2+�2gmax�x�

2+�2�x�2+�uo�x��
2+�2�vo�x��

2

+V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��= 0

2uo�x�
T+V T

x B�x�= 0

2�2vo�x�
T+V T

x 
�I−B�x�B�x�+�C�x�= 0

From the above equations, we can show that V�x� is a Lyapunov function
for System (6.13). Clearly

V�x� > 0 x �= 0

V�x�= 0 x = 0

On the other hand, we have

V̇ �x�=V T
x ẋ

=V T
x �A�x�+B�x��uo�x�+h�x�uo�x��+C�x�D�x�uo�x��

=V T
x �A�x�+B�x�uo�x��+C�x�D�x�uo�x��+V T

x B�x�h�x�uo�x�

=V T
x �A�x�+B�x�uo�x��+C�x�D�x�uo�x��−2uo�x�

Th�x�uo�x�

≤V T
x �A�x�+B�x�uo�x��+C�x�D�x�uo�x��

=V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��

−V T
x 
�I−B�x�B�x�+�C�x�vo�x�+V T

x C�x�D�x�uo�x�

=V T
x �A�x�+B�x�uo�x�+
�I−B�x�B�x�+�C�x�vo�x��

+V T
x B�x�B�x�

+C�x�D�x�uo�x�

−V T
x 
�I−B�x�B�x�+�C�x�vo�x�+V T

x �I−B�x�B�x�+�C�x�D�x�uo�x�

=− fmax�x�
2−�2gmax�x�

2−�2�x�2−�uo�x��2−�2�vo�x��2

+2�2vo�x�
Tvo�x�−2uo�x�

TB�x�+C�x�D�x�uo�x�

−2
−1�2vo�x�
TC�x�D�x�uo�x�

=− fmax�x�
2−�2gmax�x�

2−�2�x�2−�uo�x��2+�2�vo�x��2

−2uo�x�
TB�x�+C�x�D�x�uo�x�−2
−1�2vo�x�

TC�x�D�x�uo�x��

By conditions �B�x�+C�x�D�x�uo�x�� ≤ fmax�x� and �
−1D�x�uo�x�� ≤
gmax�x�

−�uo�x��2−2uo�x�
TB�x�+C�x�D�x�uo�x�
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≤ �B�x�+C�x�D�x�uo�x��2

≤ fmax�x�
2

−2
−1�2vo�x�
TD�x�uo�x�

≤ �2�vo�x��2+�2�
−1D�x�uo�x��2

≤ �2�vo�x��2+�2gmax�x�
2

Furthermore, by condition 2�2�vo�x��2 ≤ �′2�x�2� ∀x ∈ Rn

V̇ �x�≤−�2�x�2+2�2�vo�x��2

= 2�2�vo�x��2−�′2�x�2− ��2−�′2��x�2

≤−��2−�′2��x�2

In other words

V̇ �x� < 0 x �= 0

V̇ �x�= 0 x = 0�

Thus, the conditions of The Lyapunov stability theorem are satisfied.
Consequently, there exists a neighbourhood of 0, N = �x � �x�< c� for some
c > 0 such that if x�t� enters N , then

x�t�→ 0 as t →�

But x�t� cannot remain forever outside N . Otherwise

�x�t�� ≥ c

for all t>0, which implies

V�x�t��−V�x�0��=
∫ t

0
V̇ �x�	��d	

≤
∫ t

0
−��2−�′2��x�2d	

≤−
∫ t

0
��2−�′2�c2d	

≤−��2−�′2�c2t

Let t →�, we have

V�x�t��≤ V�x�0��− ��2−�′2�c2t →−�
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which contradicts the fact that V�x�t�� > 0 for all x�t�. Therefore

x�t�→ 0 as t →�

no matter where the trajectory begins. This proves that uo�x� is a solution
to Robust Control Problem 6.9.

Q.E.D.

6.5 NOTES AND REFERENCES

This chapter deals with nonlinear systems. Although the idea is concep-
tually similar to that used in linear systems, the proofs of the results for
nonlinear systems are much more complex. Furthermore, the computations
of solutions are much more difficult. We have provided some examples to
illustrate how to solve the optimal control problems, but there are many
systems for which we do not know how to obtain solutions.
We first considered nonlinear systems satisfying the matching condition.

Unlike linear systems, where the solution to robust control problems always
exists, the solution for nonlinear systems may not exist if the corresponding
optimal control problem cannot be solved. This is unfortunate, but it is
the nature of nonlinear systems. This result was first published in reference
[105].
We then investigated nonlinear systems with unmatched uncertainty.

Here we require not only that the solution to the optimal control problem
must exist, but also that the solution needs to satisfy an additional condition.
Although this restricts our approach further, we do not consider the results
as inadequate, because many other approaches cannot deal with unmatched
uncertainties at all. Our result was published in reference [108]; other results
on robust control of nonlinear systems can be found in [42, 77, 134]
We have also discussed robust control problems for systems with uncer-

tainty in the input matrix. This introduces additional difficulty to the
problem. Nevertheless, our approach provides a unique way to handle this
most difficult robust control problem.

6.6 PROBLEMS

6.1 Consider the following nonlinear system

ẋ =−x2 cos�2x�+ �x2+4�u+2p1x sin�x+p2�

where p1 ∈ 
−1�1�� p2 ∈ 
10�100� are the uncertainties. Find a feed-
back control law u = uo�x�, if possible, such that the closed-loop
system is globally asymptotically stable for all uncertainties.
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6.2 For the following system

ẋ1 = u+p1x1 sin�x1�−p2x2 sin�x2�

ẋ2 = x1

where p1 ∈ 
−1�1�� p2 ∈ 
0�3�, design a feedback control u = uo�x�
so that the closed-loop system is globally asymptotically stable for all
uncertainties.

6.3 Consider the following nonlinear system

ẋ1 = x1+x2

ẋ2 = p1x1 cos

(

p2

√

x1+x2
2

)

+u

where p1 ∈ 
−1�1�� p2 ∈ 
10�100� are the uncertainties. Find a feed-
back control law u = uo�x�, if possible, such that the closed-loop
system is globally asymptotically stable for all uncertainties.

6.4 For the following system

ẋ1 = u+p1x2 sin�x1+p2�

ẋ2 = x3

x3 = u+p3x1 cos�x
2
2�

where p1 ∈ 
−0�1�1�� p2 ∈ 
−50�70�� p3 ∈ 
0�3�, design a feedback
control u= uo�x� so that the closed-loop system is globally asymptot-
ically stable for all uncertainties.

6.5 Use MATLAB to simulate the closed-loop system obtained in Problem
6.4.

6.6 Let us consider the following nonlinear system

ẋ1 =−x1+3x2+p1x1 cos�x2+p2�+p3x2 sin�p4x1x2�

ẋ2 = u

where p1 ∈ 
−0�2� 0�2�� p2 ∈ 
−10� 20�� p3 ∈ 
0� 0�2� and p4 ∈

−20� 0�. Find a robust control u = uo�x� so that the closed-loop
system is stable for all possible uncertainties.

6.7 Use MATLAB to simulate the closed-loop system obtained in Problem
6.6.

6.8 Consider the following nonlinear system

ẋ1 = x2

ẋ2 =−2x1+p1x1 cos�3x2�+ �1+p2x
2
2�u
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where p1 ∈ 
−0�7� 2� and p2 ∈ 
0�1� 5�. Find a robust control
u= uo�x� so that the closed-loop system is stable for all possible uncer-
tainties.

6.9 Use MATLAB to simulate the closed-loop system obtained in Problem
6.8.

6.10 Let us consider the following nonlinear system

ẋ1 =−3x1+x2+p1x1 cos�x1x2�+p3x2 sin�p4x1�

ẋ2 = 2x1+ �1+p2x
2
2�u

where p1 ∈ 
−0�2� 0�2�� p2 ∈ 
0�2� 3�� p3 ∈ 
0� 0�2� and p4 ∈

−100� 0�. The robust control problem is to find a control u= uo�x�
so that the closed-loop system is stable for all possible uncertainties.

6.11 Use MATLAB to simulate the closed-loop system obtained in Problem
6.10.



7
Kharitonov Approach

In Chapters 5 and 6, we presented an optimal control approach to robust
control. We will show three applications of this approach in Chapters 9,
10 and 11. In this chapter and the next one, we will discuss two other
main approaches to robust control that have been studied extensively in the
literature. They are parametric approach, sometimes called the Kharitonov
approach and the H�/H2 approach.

This method was originated in the seminal paper [89] published by
Kharitonov in 1978, which shows how to check the stability of a set of
polynomials with uncertain parameters. Since then the initial results have
been extended in several directions. We will focus on the main results of
the Kharitonov approach, provide a complete proof, apply it to feedback
control, and compare it with the optimal control approach discussed earlier.

7.1 INTRODUCTION

As the name implies, parametric approach studies the robust stability of a
system when its parameters are uncertain. In other words, we would like to
check if a system is stable when its parameters are uncertain and vary over
an interval. Two questions are of importance in this regard: (1) given a set
of intervals where parameters very, can we check if the system is stable for
all possible parameters?; (2) if so, how many values of the parameters do
we need to check?

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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For example, consider a system with the following characteristic polyno-
mial

��s�p�= p0+p1s+p2s
2+p3s

3

where pi ∈ �p−
i � p

+
i �, i= 0�1�2�3 are coefficients whose values are uncertain,

but we know their lower and upper bounds. To check if the system is stable
for all possible parameters, a naïve approach is to check a set of polynomials

� = 	p0+p1s+p2s
2+p3s

3 
 pi ∈ �p−
i � p

+
i �� i= 0�1�2�3�

Since this set is infinite, it is not possible to check its elements one by one.
In fact, we really do not need to do so. By the Routh–Hurwitz criterion, we
know that a third-order system is stable if and only if the coefficients of its
characteristic polynomial satisfy the following condition:

p0 > 0� p1 > 0� p2 > 0� p3 > 0� p1p2 > p0p3

Hence, the entire set of polynomials � is stable if and only if

p−
0 > 0� p−

1 > 0� p−
2 > 0� p−

3 > 0� p−
1 p

−
2 > p+

0 p
+
3

In other words, to check if all polynomials in � are stable we only need
to check if the following two polynomials are stable:

�1 = p−
0 +p−

1 s+p−
2 s

2+p−
3 s

3

�2 = p+
0 +p−

1 s+p−
2 s

2+p+
3 s

3

From this example, we see that in order to determine the stability of an
infinite set �, only some finite numbers of polynomials need to be checked.
In the example, only two polynomials need to be checked, but this is a
simple case. In general, we want to know how many polynomials need to
be checked. Also, in this example, the two polynomials to be checked corre-
spond to two corners of the polytope representing the region of possible
parameter values in the parameter space. In general, do we always check the
corners? How many corners do we need to check? Note that the number of
corners increases exponentially as the number of parameters increases. The
Kharitonov theorem answers the above question elegantly: no matter how
many parameters are involved, we only need to check four specific corners.

7.2 PRELIMINARY THEOREMS

In this section, we will discuss two preliminary results that will be used to
prove the main results of the Kharitonov approach. These two preliminary
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results are the Boundary Crossing theorem and Interlacing theorem. We
will first present the Boundary Crossing theorem. Let

��s�p�= a0�p�+a1�p�s+· · ·+an−1�p�s
n−1+ sn

be a family of polynomials, where the coefficients ai�p�� i= 0�1� 
 
 
 �n−1,
are continuous functions of uncertain parameter p over a fixed interval
p ∈ P = �p−� p+�.
Assume that the complex plane C is divided into three disjoint parts:

C = S∪ �S∪U

where S is an open set which is interpreted as the ‘stable region’, �S is
the boundary of S, and U is the complement of S ∪ �S which is also an
open set and is interpreted as the ‘unstable region’. For linear time-invariant
systems with continuous time, S is the open left half of the s-plane, �S is
the imaginary axis, and U is open right-half of the s-plane as shown in
Figure 7.1.
We now present the following Boundary Crossing theorem.

Theorem 7.1

If ��s�p−� has all its roots in S and ��s�p+� has at least one root in U , then
there exists at least one p ∈ �p−� p+� such that ��s�p� has all its roots in S∪�S
and at least one root in �S. Similarly, if ��s�p+� has all its roots in S and
��s�p−� has at least one root in U , then there exists at least one p ∈ �p−� p+�
such that ��s�p� has all its roots in S∪ �S and at least one root in �S.

0

s-plane 

Re (s)

Im(s) 

S U

∂S

Figure 7.1 Stable and unstable regions in the s-plane.
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Proof

The result follows from the assumption that ai�p�� i = 0�1� 
 
 
 �n−1, are
continuous functions of p and the fact that roots of a polynomial are
continuous functions of its coefficients.

Q.E.D.

Example 7.1

Let us consider the following polynomial:

��s�p�= �40−p2�+ �1+p�s+ �9+3p�s2+ s3

where p ∈ �p−� p+� = �1�2�. Let S be the open left half of the s-plane. For
p= p− = 1,

��s�p−�= 39+2s+12s2+ s3

has the roots at −12�1011�0�0505+ j1�7945�0�0505− j1�7945 (which
corresponds to an unstable system). For p= p+ = 2

��s�p−�= 36+3s+15s2+ s3

has the roots at −14�9603�−0�0198+ j1�5511j�−0�0198− j1�5511 (which
corresponds to a stable system).
By the Boundary Crossing theorem, there exists at least one p ∈ �p−� p+�

such that ��s�p� has all its roots in the closed left half of the s-plane and at
least one root on the imaginary axis. Indeed, we can find p= 1�6623 such
that

��s�p�= 37.2368+2.6623s+13.9869s2+ s3

and ��s�p� has roots at −13�9869� j1�6316�−j1�6316.
The Boundary Crossing theorem is used to prove the Interlacing theorem

that we now present. Given a polynomial

��s�= a0+a1s+· · ·+an−1s
n−1+ans

n

we define its even and odd parts as follows. If the order of the polynomial
n= 2m is even, then the even part is

�e�s�= a0+a2s
2+· · ·+an−2s

n−2+ans
n
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and the odd part without s is

�o�s�= a1+a3s
2+· · ·+an−3s

n−4+an−1s
n−2

On the other hand, if the order of the polynomial n= 2m+1 is odd, then
the even part is

�e�s�= a0+a2s
2+· · ·+an−3s

n−3+an−1s
n−1

and the odd part without s is

�o�s�= a1+a3s
2+· · ·+an−2s

n−3+ans
n−1

The intuition behind the definitions of �e�s� and �o�s� can be seen as
follows.
Let s = j�, then

��j��= a0+a1�j��+a2�j��
2+· · ·+an−1�j��

n−1+an�j��
n

The real part of ��j�� can be expressed as follows. For n= 2m

Re���j���= a0+a2�j��
2+· · ·+an−2�j��

n−2+an�j��
n

For n= 2m+1

Re���j���= a0+a2�j��
2+· · ·+an−3�j��

n−3+an−1�j��
n−1

In both cases,

Re���j���= �e�j��

Similarly, the imaginary part of ��j�� can be expressed as follows. For
n= 2m

jIm���j���= j��a1+a3�j��
2+· · ·+an−3�j��

n−4+an−1�j��
n−2�

For n= 2m+1

jIm���j���= j��a1+a3�j��
2+· · ·+an−2�j��

n−3+an�j��
n−1�

In both cases,

jIm���j���= j��o�j��

or

Im���j���= ��o�j��

Therefore, �e�s� and �o�s� are related to the real and imaginary parts
of ��j��. We say that ��s� = a0 + a1s+ · · · + an−1s

n−1 + ans
n satisfies the

interlacing property if
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1. an and an−1 have the same sign
2. all roots of �e�j�� and �o�j�� are real and distinct
3. if n = 2m is even, then �e�j�� has m positive roots �e

1 < �e
2 < · · · <

�e
m, �

o�j�� has m−1 positive roots �o
1 < �o

2 < · · · < �o
m−1, and they

must interlace in the following manner: 0 < �e
1 < �o

1 < �e
2 < · · · <

�o
m−1 < �e

m

4. if n= 2m+1 is odd, then �e�j�� has m positive roots �e
1 <�e

2 < · · ·<
�e

m��
o�j�� has m positive roots �o

1 < �o
2 < · · · < �o

m, and they must
interlace in the following manner: 0 < �e

1 < �o
1 < �e

2 < · · · < �o
m−1 <

�e
m <�o

m

The conditions for the interlacing property can be illustrated in
Figures 7.2 and 7.3. Figure 7.2 shows the ��j�� curve in the ��j��-plane
when � goes from 0 to +�. The curve intersects with the imaginary axis
and the real axis at � = �1, �2, �3, 
 
 
 , etc. Figure 7.3 shows the curves
of �e�j�� and �o�j�� as � goes from 0 to +�. Two curves interlace.
The following Interlacing theorem relates the interlacing property with

stability.

Theorem 7.2

A polynomial ��s� = a0+a1s+· · ·+an−1s
n−1+ans

n has all its roots in the
open left half of the complex plane if and only if it satisfies the interlacing
property.

0 Re(ϕ ( j ω))

Im(ϕ (  j ω))

ϕ ( jω )-plane 

ω 4ω = 0ω 2ω 6

ω 3

ω 1

ω 5

Figure 7.2 The ��j�� curve when � goes from 0 to +�.
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0
ωω5ω4ω3ω2ω1

ϕ 
e( j ω)

ϕ 
ο( j ω)

Figure 7.3 Interlacing of �e�j�� and �o�j��.

Before proving Theorem 7.2, let us first recall (Lemma 3.1) that if a
polynomial ��s�= a0+a1s+· · ·+an−1s

n−1+ans
n has all its roots in the open

left half of the complex plane, then all its coefficients ai, i= 0�1�2� 
 
 
 �n
must have the same sign.
For convenience, we shall assume, without loss of generality, that all

coefficients ai, i = 0�1�2� · · · �n satisfy ai ≥ 0. (Actually, if a polynomial
��s�= a0+a1s+· · ·+an−1s

n−1+ans
n has all its roots in the open left half of

the complex plane, then all its coefficients must be nonzero: ai �= 0.)
Let us now consider ��j��. When � changes from −� to +�

along the imaginary axis, the phase of ��j��, denoted by ∠��j��, also
changes. The amount of change can be determined using the following
lemma.

Lemma 7.1

For a polynomial ��s� = a0+a1s+· · ·+an−1s
n−1+ans

n having all its roots
in the open left half of the complex plane, the phase of ��j�� is a continuous
and strictly increasing function of� on �−��+��. Furthermore, the amount
of phase change in ∠��j�� from −� to +� is given by

∠��+j��−∠��−j��= n�

or the amount of phase change in ∠��j�� from 0 to +� is given by

∠��+j��−∠��j0�=
n�

2
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Proof

Denote the roots of ��s� by r1� r2� 
 
 
 � rn, where

ri = ci+ jdi with ci < 0 for i= 1�2� 
 
 
 �n

Write the polynomial ��s� as

��s�= an�s− r1��s− r2�
 
 
 �s− rn�

Here an > 0. The phase of ��s� is then given by

∠��j��= ∠�j�− r1�+∠�j�− r2�+· · ·+∠�j�− rn�

Since ci < 0, none of the roots are in the imaginary axis and all the
roots are in the open left half of the complex plane. Therefore, for all i =
1�2� 
 
 
 �n�∠�j�−ri�=∠�j�−ci− jdi� is a continuous and strictly increasing
function of � on �−��+��.
For � < di, ∠�j� − ci − jdi� is negative. In particular, when � =

−��∠�−j�− ci − jdi� = −�/2. For � > di�∠�j�− ci − jdi� is positive. In
particular, when � = +�, ∠�+j�− ci− jdi� = �/2. Hence, the amount of
phase change in ∠�j�− ci− jdi� from −� to +� is given by

∠�+j�− ci− jdi�−∠�−j�− ci− jdi�=
�

2
− �−

�

2
�= �

The total amount of phase change in ∠��j�� from −� to +� is

∠��+j��−∠��−j��=
n
∑

i=1

�∠�+j�− ci− jdi�−∠�−j�− ci− jdi��= n�

Since the roots of ��s� are symmetric with respect to the real axis, it is
not difficult to see that the amount of phase change in ∠��j�� from −� to
0 is the same as that from 0 to +�. In other words

∠��+j��−∠��j0�=
n�

2
Q.E.D.

Let us now study the trajectory of ��j�� when � varies from −� to +�.
The trajectory is symmetric with respect to the real axis because ��−j��
and ��j�� are complex conjugates. Hence, we only need to consider the
trajectory of ��j�� when � varies from 0 to +�. Since ��j�� = a0 > 0, the
trajectory starts at the positive real axis. Since ∠��j�� is a strictly increasing
function of �, the trajectory of ��j�� circles around the origin counter-
clockwise. It will cross the imaginary axis and the real axis alternately. Let
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�1��2��3� 
 
 
 , with �1 < �2 < �3 < 
 
 
 , be the frequencies at which the
trajectory of ��j�� crosses the imaginary axis and the real axis. Clearly,
�1��3� 
 
 
 are the frequencies at which the trajectory crosses the imaginary
axis. In other words

Re���j�i��= �e�j�i�= 0� i= 1�3� 
 
 


Similarly, �2��4� 
 
 
 are the frequencies at which the trajectory crosses the
real axis:

Im���j�j ��= �j�
o�j�j �= 0� j = 2�4� 
 
 


If n= 2m is even, then the amount of phase change in ∠��j�� from 0 to
+� is ∠��+j��−∠��j0� = n�/2 =m�. Therefore, the trajectory of ��j��
will cross the imaginary axis m times corresponding to the m positive root
of �e�j��: �e

1 <�e
2 < · · ·<�e

m. By the definition of �1��2��3� 
 
 
 , it is clear
that �1 =�e

1��3 =�e
2� 
 
 
 �2m−1 =�e

m. Similarly, the trajectory of ��j�� will
cross the real axis m−1 times corresponding to the m−1 positive root of
�o�j��: �o

1 <�o
2 < · · ·<�o

m−1. In other words, �2 =�o
1��4 =�o

2� 
 
 
 �2m−2 =

�o
m−1.
If n = 2m+1 is odd, then the amount of phase change in ∠��j�� from

0 to +� is ∠��+j��−∠��j0� = n�/2 = m�+�/2. Therefore, the trajec-
tory of ��j�� will cross the imaginary axis m times, corresponding to the
m positive roots of �e�j��: �e

1 < �e
2 < · · · < �e

m. We have �1 = �e
1��3 =

�e
2� 
 
 
 �2m−1 = �e

m. Also, the trajectory of ��j�� will cross the real axis m
times, corresponding to the m positive root of �o�j��: �o

1 < �o
2 < · · · < �o

m

and �2 = �o
1��4 = �o

2� 
 
 
 �2m = �o
m.

Lemma 7.2

For a polynomial ��s� = a0+a1s+· · ·+an−1s
n−1+ans

n having all its roots
in the open left half of the complex plane, roots of �e�j�� and �o�j�� satisfy
the following properties. If n= 2m is even, then 0< �e

1 < �o
1 < �e

2 < · · ·<
�o

m−1 < �e
m. If n = 2m+1 is odd, then 0 < �e

1 < �o
1 < �e

2 < · · · < �o
m−1 <

�e
m <�o

m

Proof

Based on the above discussion, if n= 2m is even, then

0<�1 <�2 <�3 < · · ·<�2m−1 ⇒ 0<�e
1 <�o

1 <�e
2 < · · ·<�o

m−1 <�e
m
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If n= 2m+1 is odd, then

0<�1 <�2 <�3 < · · ·<�2m ⇒ 0<�e
1 <�o

1 <�e
2 < · · ·<�o

m−1

<�e
m <�o

m

Q.E.D.

With the above preparation, we can now prove Theorem 7.2.

Proof of Theorem 7.2

(ONLY IF) We first prove the only if part of Theorem 7.2. We assume that
��s�= a0+a1s+· · ·+an−1s

n−1+ans
n has all its roots in the open left half of

the complex plane and we show that ��s� satisfies the interlacing property
as follows.

1. an and an−1 have the same sign; this is by Lemma 3.1
2. all roots of �e�j�� and �o�j�� are real and distinct; this is because the

roots correspond to the frequencies at which the trajectory of ��j��
crosses the imaginary axis and the real axis

3. if n= 2m is even, then �e�j�� has m positive roots �e
1 <�e

2 < · · ·<�e
m,

�o�j�� has m−1 positive roots �o
1 < �o

2 < · · · < �o
m−1, and they must

interlace in the following manner: 0 < �e
1 < �o

1 < �e
2 < · · · < �o

m−1 <
�e

m; this is by Lemma 7.2
4. if n= 2m+1 is odd, then �e�j�� has m positive roots �e

1 <�e
2 < · · ·<

�e
m, �

o�j�� has m positive roots �o
1 < �o

2 < · · · < �o
m, and they must

interlace in the following manner: 0 < �e
1 < �o

1 < �e
2 < · · · < �o

m−1 <
�e

m <�o
m; this is by Lemma 7.2

(IF) We now prove the ‘if’ part of Theorem 7.2. We assume that ��s�
satisfies the interlacing property, we want to show that ��s� has all its roots
in the open left half of the complex plane.
Let us consider the case when n= 2m is even. The other case of n= 2m+1

is similar.
Without loss of generality, let us assume that both an and an−1 are posi-

tive. Since �e�j�� has m positive roots �e
1 <�e

2 < · · ·<�e
m, we can write

�e�j��= a2m��
2−�e2

1 ���
2−�e2

2 � 
 
 
 ��
2−�e2

m �

Similarly

�o�j��= a2m−1��
2−�o2

1 ���2−�o2

2 �
 
 
 ��2−�o
m−1

2�
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Now, let

��s�= b0+b1s+· · ·+bn−1s
n−1+bns

n

be a polynomial with all its roots in the open left half of the complex plane.
By the proof of the only if part, ��s� satisfies the interlacing property. Let
�′e

1 <�′e
2 < · · ·<�′e

m be the positive roots of �e�j�� and �′o
1 <�′o

2 < · · ·<�′o
m−1

be the positive roots of �o�j��. Then we can write

�e�j��= b2m��
2−�′e2

1 ���2−�′e2

2 � 
 
 
 ��2−�′e2

m �

�o�j��= b2m−1��
2−�′o2

1 ���2−�′o2

2 � 
 
 
 ��2−�′o2

m−1�

By the definitions of �e�j��, �o�j��, �e�j��, and �o�j��, we have

��j��= �e�j��+ j��o�j��

��j��= �e�j��+ j��o�j��

Let us define the following polynomial with a parameter � ∈ �0�1�:

��j����=��a2m+ �1−��b2m���
2− ���e2

1 + �1−���′e2

1 ��

×· · ·× ��2− ���e2

m + �1−���′e2

m ��

+ j���a2m−1+ �1−��b2m−1���
2− ���o2

1 + �1−���′o2

1 ��

×· · ·× ��2− ���o
m−1

2+ �1−���′o
m−1

2
��

Clearly, if �= 0, then ��s�0�= ��s�, and if �= 1, then ��s�1�= ��s�.
Polynomial ��s� has all its roots in the open left half of the complex plane.

We prove that ��s� also has all its roots in the open left half of the complex
plane by contradiction. Suppose ��s� also has at least one root outside the
open left half of the complex plane, then by Theorem 7.1, there exists at
least one � ∈ �0�1� such that ��s��� has all its roots in the closed left half
of the complex plane and at least one root on the imaginary axis. Denote
the root on the imaginary axis by s = j�o, that is, ��j�o���= 0. Since both
the real part and the imaginary part of ��j�o��� must be zero, there must
exist i ∈ 	1�2� 
 
 
 �m� and j ∈ 	1�2� 
 
 
 �m−1� such that the following two
conditions are both satisfied.

�2
o = ��e2

i + �1−���′e2

i and �2
o = ��o2

j + �1−���′o2

j

But this is impossible because by the interlacing property, we have either:
(1) �e

i <�o
j and �′e

i <�′o
j , or (2) �

e
i >�o

j and �′e
i >�′o

j . In the first case, we
conclude

��e2

i + �1−���′e2

i < ��o2

j + �1−���′o2

j
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In the second case, we have

��e2

i + �1−���′e2

i > ��o2

j + �1−���′o2

j

Therefore, in either case, we cannot have both �2
o = ��e2

i + �1−���′e2

i and
�2

o = ��o2

j + �1−���′o2

j satisfied.
Q.E.D.

Example 7.2

Let us consider the following polynomial

��s�= 1+2s+4s2+2s3+ s4

Its even and odd parts can be obtained respectively as

�e�s�= 1+4s2+ s4

�o�s�= 2+2s2

The roots of �e�j�� = 1−4�2+�4 are −1�9319�−0�5176, 0.5176, and
1.9319. Therefore, �e

1 = 0�5176 and �e
2 = 1�9319.

The roots of �o�j��= 2−2�2 are −1 and 1. Therefore, �o
1 = 1. Clearly,

the interlacing condition is satisfied. In particular, 0<�e
1 <�o

1 <�e
2.

Let us now check the roots of ��s� = 1+ 2s + 4s2 + 2s3 + s4, which
are −0�7429+ j1�5291�−0�7429− j1�5291�−0�2571+ j0�5291�−0�2571
−j0�5291 They are all in the open left half of the complex plane.

Example 7.3

Let us consider the polynomial

��s�=11�1216+19�1866s+95�7330s2+67�3653s3+66�0427s4+42�2195s5

Its even and odd parts are as follows.

�e�s�= 11�1216+95�7330s2+66�0427s4

�o�s�= 19�1866+67�3653s2+42�2195s4

The roots of �e�j��= 11�1216−95�7330�2+66�0427�4 are

−1�1499�−0�3569�0�3569�1�1499
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that is, �e
1 = 0�3569 and �e

2 = 1�1499.
The roots of �o�s�= 19�1866+67�3653s2+42�2195s4 are

−1�1066�−0�6092�0�6092�1�1066

that is, �o
1 = 0�6092 and �o

2 = 1�1066. Because 0 < �e
1 < �o

1 < �e
2 < �o

2

is not true, the interlacing condition is not satisfied. The roots of ��s� =
11�1216+19�1866s+95�7330s2+67�3653s3+66�0427s4+42�2195s5 can
be calculated as follows.

−1�4518�0�0182+ j1�1391�0�0182− j1�1391�

−0�0744+ j0�3664�−0�0744− j0�3664

Clearly, two of the roots are not in the open left half of the complex
plane.
In the rest of the chapter,we say that a polynomial is stable if all its roots are

in the open left half of the complex plane.Wewill consider stability of a set of
polynomials. Using the previous notation, we can write a polynomial as

��s�= �e�s�+ s�o�s�

We present the following two theorems from the Interlacing theorem,
which will be used to prove the Kharitonov theorem.

Theorem 7.3

Consider two stable polynomials of the same degree. They have the same
even part, but different odd parts.

�1�s�= �e�s�+ s�o
1�s�

�2�s�= �e�s�+ s�o
2�s�

Assume the odd parts satisfy

�o
1�j��≤ �o

2�j�� for all � ∈ �0���

Then for any polynomial ��s�= �e�s�+ s�o�s� satisfying

�o
1�j��≤ �o�j��≤ �o

2�j�� for all � ∈ �0���

��s� is stable.
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Proof

Since �1�s� and �2�s� are stable, they satisfy the interlacing property. To
prove ��s� is stable, we show that ��s� satisfies the interlacing property as
follows. Denote

�o�s�= a1+a3s
2+· · ·+an−2s

n−3+ans
n−1

�o
1�s�= a−

1 +a−
3 s

2+· · ·+a−
n−1s

n−3+a−
n s

n−1

�o
2�s�= a+

1 +a+
3 s

2+· · ·+a+
n−1s

n−3+a+
n s

n−1

The condition �o
1�j�� ≤ �o�j�� ≤ �o

2�j�� for all � ∈ �0��� implies the
following.

A. The coefficients a−
1 , a

+
1 , and a1 have the same sign, because otherwise

�o
1�j��≤ �o�j��≤ �o

2�j�� will be violated for �= 0. Let us assume they
are all positive.

B. The polynomials �1�s�, �2�s�, and ��s� have the same degree, because
otherwise �o

1�j��≤ �o�j��≤ �o
2�j�� will be violated for �=�.

C. Denote the positive real roots of �o�j��, �o
1�j��, and �o

2�j�� as
�1��2� 
 
 
 �k, �

−
1 ��

−
2 � 
 
 
 �

−
k , and �+

1 ��
+
2 � 
 
 
 �

+
k , respectively. Then

for all i= 1�2� 
 
 
 � k, the roots satisfy �−
i ≤ �i ≤ �+

i . This is because
the curve of �o�j�� vs � ∈ �0��� is bounded by the curves of �o

1�j��
and �o

2�j��.

From the above results, we can check the conditions for the interlacing
property.

1. an and an−1 have the same sign. This is because of condition A and
the assumption that �1�s� and �2�s� satisfy the interlacing property.

2. All roots of �e�j�� and �o�j�� are real and distinct. This is because of
conditions B and C and the assumption that �1�s� and �2�s� satisfy the
interlacing property.

3. If n= 2m is even, then �e�j�� hasm positive roots �e
1 <�e

2 < · · ·<�e
m,

�o�j�� has m−1 positive roots �o
1 < �o

2 < · · · < �o
m−1, and they must

interlace in the following manner: 0 < �e
1 < �o

1 < �e
2 < · · · < �o

m−1 <
�e

m. This is because of condition C and the assumption that �1�s� and
�2�s� satisfy the interlacing property.

4. If n= 2m+1 is odd, then �e�j�� has m positive roots �e
1 <�e

2 < · · ·<
�e

m, �
o�j�� has m positive roots �o

1 < �o
2 < · · · < �o

m, and they must
interlace in the following manner: 0 < �e

1 < �o
1 < �e

2 < · · · < �o
m−1 <

�e
m <�o

m. This is because of condition C and the assumption that �1�s�
and �2�s� satisfy the interlacing property.
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Finally, by the Interlacing theorem, polynomial ��s� is stable.
Q.E.D.

Theorem 7.4

Consider two stable polynomials of the same degree. They have the same
odd parts, but different even parts.

�1�s�= �e
1�s�+ s�o�s�

�2�s�= �e
2�s�+ s�o�s�

Assume the even parts satisfy

�e
1�j��≤ �e

2�j�� for all � ∈ �0���

Then for any polynomial ��s�= �e�s�+ s�o�s� satisfying

�e
1�j��≤ �e�j��≤ �e

2�j�� for all� ∈ �0���

��s� is stable.

Proof

The proof is similar to that of Theorem 7.3.
Q.E.D.

The Theorems proven in this section will be used in the next section to
prove our main results of this chapter.

7.3 KHARITONOV THEOREM

In this section, we consider the key question of this chapter. Given a set
of polynomials, how to determine if all these polynomials are stable? We
call such a problem a robust stability problem. Clearly, we cannot check all
polynomials because the set is often infinite. So we need to find a smart way
to check only a finite number of polynomials to determine the stability of an
infinite set. This goal is obviously not always achievable. The Kharitonov
result shows that for a set of ‘interval’ polynomials, the robust stability
problem can be solved by checking only four polynomials. Let us now see
how this is done. Given a set of polynomials

��s�p�= p0+p1 s+· · ·+pn−1s
n−1+pns

n
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where pi ∈ �p−
i � p

+
i �, i = 0�1� 
 
 
 �n−1�n are coefficients whose values are

uncertain. We would like to know if all the polynomials in the set are stable,
that is, if the set is robustly stable. In other words, let

p= �p0 
 
 
 pn �

be the vector of uncertain coefficients, and

P = �p−
0 � p

+
0 �×· · ·× �p−

n � p
+
n �

be the set of possible values of p.
Define the set of admissible polynomials as

��s�p�= 	��s� p� 
 p ∈ P�

Obviously, this set is infinite. To check if, for all ��s�p� ∈ ��s�p����s� p�
is stable, we will check the following four Kharitonov polynomials.

K1�s�= p−
0 +p−

1 s+p+
2 s

2+p+
3 s

3+p−
4 s

4+p−
5 s

5+· · ·

K2�s�= p−
0 +p+

1 s+p+
2 s

2+p−
3 s

3+p−
4 s

4+p+
5 s

5+· · ·

K3�s�= p+
0 +p−

1 s+p−
2 s

2+p+
3 s

3+p+
4 s

4+p−
5 s

5+· · ·

K4�s�= p+
0 +p+

1 s+p−
2 s

2+p−
3 s

3+p+
4 s

4+p+
5 s

5+· · ·

The Kharitonov theorem states that the stability of the above four poly-
nomials is necessary and sufficient for the stability of all polynomials in the
infinite set of ��s�p�. This result is rather surprising because, intuitively, we
expect that we need to check at least the set of all the extreme polynomials,
which consists of 2n+1 polynomials. But in fact, four are enough, as shown
in Figure 7.4. Let us state this result formally.

Theorem 7.5

The set of polynomials ��s�p� has the property that every polynomial in
the set is stable if and only if the four Kharitonov polynomials are stable.

Proof

For the set of polynomials

��s�p�= p0+p1s+· · ·+pn−1s
n−1+pns

n
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0

p0

p1

p2

K1 (s) K2 (s)

K3 (s) K4 (s)

Figure 7.4 Kharitonov polynomials in parameter space.

where pi ∈ �p−
i � p

+
i �, i = 0�1� 
 
 
 �n − 1�n, define the minimum and

maximum even parts as

�e
min�s�= p−

0 +p+
2 s

2+p−
4 s

4+p+
6 s

6+· · ·

�e
max�s�= p+

0 +p−
2 s

2+p+
4 s

4+p−
6 s

6+· · ·

and the minimum and maximum odd parts without s as

�o
min�s�= p−

1 +p+
3 s

2+p−
5 s

4+p+
7 s

6+· · ·

�o
max�s�= p+

1 +p−
3 s

2+p+
5 s

4+p−
7 s

6+· · ·

Any polynomial �e�s�+ s�o�s� ∈ ��s�p� is bounded by the minimum and
maximum parts as follows. For all � ∈ �0���

�e
min�j��≤ �e�j��≤ �e

max�j��

�o
min�j��≤ �o�j��≤ �o

max�j��

On the other hand, by the definitions of the Kharitonov polynomials, it
is clear that

K1�s�= �e
min�s�+ s�o

min�s�

K2�s�= �e
min�s�+ s�o

max�s�

K3�s�= �e
max�s�+ s�o

min�s�

K4�s�= �e
max�s�+ s�o

max�s��

With these notations, we can now prove Theorem 7.5.
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(ONLY IF) The proof is obvious because all Kharitonov polynomials
belong to ��s�p�.
(IF) Let us assume that four Kharitonov polynomials are stable. We want

to show that any ��s�= �e�s�+ s�o�s� ∈��s�p� is stable.
Since �o

min�j�� ≤ �o�j�� ≤ �o
max�j��, for all � ∈ �0���, by Theorem 7.3,

the condition that K1�s� = �e
min�s�+ s�o

min�s� and K2�s� = �e
min�s�+ s�o

max�s�
are stable implies that polynomial �e

min�s�+ s�o�s� is stable. Similarly, the
condition that K3�s� = �e

max�s�+ s�o
min�s� and K4�s� = �e

max�s�+ s�o
max�s� are

stable implies that �e
max�s�+ s�o�s� is stable.

We also have �e
min�j�� ≤ �e�j�� ≤ �e

max�j��, for all � ∈ �0���. Therefore,
by Theorem 7.4, the condition that �e

min�s�+ s�o�s� and �e
max�s�+ s�o�s� are

stable implies that ��s�= �e�s�+ s�o�s� is stable.
Q.E.D.

Let us now consider two examples of using the Kharitonov Theorem to
determine the robust stability of a set of polynomials.

Example 7.4

Let us consider the set of polynomials ��s�p�= 	��s� p� 
 p ∈ P�

��s� p�= p0+p1s+p2s
2+p3s

3+p4s
4+p5s

5+p6s
6

where p0 ∈ �1�3�� p1 ∈ �9�13�� p2 ∈ �2�4�� p3 ∈ �11�14�� p4 ∈ �10�12�� p5 ∈
�7�10�, and p6 ∈ �1�1�. To determine the robust stability of the set, let us
construct the four Kharitonov polynomials

K1�s�= 1+9s+4s2+14s3+10s4+7s5+ s6

K2�s�= 1+13s+4s2+11s3+10s4+10s5+ s6

K3�s�= 3+9s+2s2+14s3+12s4+7s5+ s6

K4�s�= 3+13s+2s2+11s3+12s4+10s5+ s6

We can check that these four polynomials are not stable. Therefore, the
set of polynomials is not robustly stable.

Example 7.5

Let us consider the set of fourth-degree polynomials

��s�p�= p0+p1s+p2s
2+p3s

3+p4s
4
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where p0 ∈ �93�98�� p1 ∈ �760�761�� p2 ∈ �727�733�� p3 ∈ �975�980�, and
p4 ∈ �501�508�. To determine the stability of the set, let us construct the
four Kharitonov polynomials

K1�s�= 93+760s+733s2+980s3+501s4

K2�s�= 93+761s+733s2+975s3+501s4

K3�s�= 98+760s+727s2+980s3+508s4

K4�s�= 98+761s+727s2+975s3+508s4

We can check that all these four polynomials are stable. Therefore, the
set of polynomials is robustly stable.

7.4 CONTROL DESIGN USING KHARITONOV
THEOREM

In this section, we discuss robust control design using the Kharitonov
theorem. As we have shown in the previous section, the Kharitonov theorem
is a very nice tool for robust stability analysis. However, it is not a conve-
nient tool for robust control design. The optimal control approach to the
robust control problem, as discussed in the previous two chapters, is inher-
ently a design tool in the sense that it will design a controller that can
robustly stabilize the system. The Kharitonov theorem is inherently an anal-
ysis tool in the sense that given a (closed-loop) system; it will analyse and
verify if the system is robustly stable. With this difference in mind, let us
discuss the best way to design a robust controller using the Kharitonov
theorem.
Suppose the system to be controlled is given by the transfer function

G�s�p�=
b0+b1s+· · ·+bn−1s

n−1

p0+p1s+· · ·+pn−1s
n−1+ sn

We can realize this system in state space representation in the following
controllable canonical form.

ẋ =

⎡

⎢

⎢

⎣

0 1 
 
 
 0

 
 

0 0 
 
 
 1

−p0 −p1 
 
 
 −pn−1

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

0

 
 

0
1

⎤

⎥

⎥

⎦

u

y =
[

b0 b1 · · · bn−1

]

x

The characteristic equation of the open-loop system is given by

��s�p�= p0+p1s+· · ·+pn−1s
n−1+ sn
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with pi ∈ �p−
i � p

+
i �� i= 0�1� 
 
 
 �n−1. If the open-loop system is not robustly

stable, then we want use state feedback

u=−Lx =−
[

l0 l1 
 
 
 ln−1

]

x

so that the closed-loop system is robustly stable for all p ∈ P . Clearly the
characteristic equation of the closed-loop system is given by

��s�p+ l�= �p0+ l0�+ �p1+ l1�s+· · ·+ �pn−1+ ln−1�s
n−1+ sn

The question is then whether ��s�p+ l� is stable for all p ∈ P . To check
this, we can calculate the four Kharitonov polynomials as follows

K1�s�= �l0+p−
0 �+ �l1+p−

1 �s+ �l2+p+
2 �s

2+ �l3+p+
3 �s

3+ �l4+p−
4 �s

4+· · ·

K1�s�= �l0+p−
0 �+ �l1+p+

1 �s+ �l2+p+
2 �s

2+ �l3+p−
3 �s

3+ �l4+p−
4 �s

4+· · ·

K1�s�= �l0+p+
0 �+ �l1+p−

1 �s+ �l2+p−
2 �s

2+ �l3+p+
3 �s

3+ �l4+p+
4 �s

4+· · ·

K1�s�= �l0+p+
0 �+ �l1+p+

1 �s+ �l2+p−
2 �s

2+ �l3+p−
3 �s

3+ �l4+p+
4 �s

4+· · ·

If we can find L =
[

l0 l1 
 
 
 ln−1

]

such that the above Kharitonov
polynomials are all stable, then by the Kharitonov Theorem, the closed-loop
system is robustly stable.
Such a feedback map L always exists. Essentially, we need to take a very

large L so that parameters p are relatively small and the uncertainty in p
does not matter as far as stability is concerned. A large L means using high
gain control which is undesirable in some applications. Therefore, ideally
we would like to have an L large enough to ensure robust stability, but not
too large. However, there is no simple and systematic way to design L just
large enough for robust stability. Some ad hoc method must be used and
the following example illustrates this.

Example 7.6

Let us consider an open-loop system with the following transfer function.

G�s�p�=
5

p0+p1s+p2s
2+p3s

3+p4s
4+p5s

5+ s6

where p0 ∈ �1�3�� p1 ∈ �9�13�� p2 ∈ �2�4�� p3 ∈ �11�14�� p4 ∈ �10�12�, and
p5 ∈ �7�10�. We can realize this system in the controllable canonical form:
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ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−p0 −p1 −p2 −p3 −p4 −p5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

u

y =
[

5 0 0 0 0 0
]

x

As shown in Example 7.4, the open-loop system is not robustly stable.
To find a feedback map L, let us suppose that we would like to place all
the poles of the closed-loop system to be near −100; that is,

�s+100�6 =1012+6×1010s+15×108s2+2×107s3+15×104s4+6

×102s5+ s6

So, let the feedback map be

L=
[

1012 6×1010 15×108 2×107 15×104 6×102
]

Then, using the feedback control u=−Lx, the characteristic equation of
the closed-loop system is given by

�1012+p0�+ �6×1010+p1�s+ �15×108+p2�s
2+ �2×107+p3�s

3

+ �15×104+p4�s
4+ �6×102+p5�s

5+ s6 = 0

Using the Kharitonov theorem, we can check that the closed-loop system
is indeed robustly stable.
The procedure in the above example is an ad hoc approach. A systematic

approach to robust design of feedback control using the Kharitonov theorem
is hard to obtain in general. However, the same problem can be solved
using the optimal control approach discussed earlier. Let us illustrate this
by considering the following general linear system

ẋ =

⎡

⎢

⎢

⎣

0 1 
 
 
 0

 
 

0 0 
 
 
 1

−p0 −p1 
 
 
 −pn−1

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

0

 
 

0
1

⎤

⎥

⎥

⎦

u

with parameter uncertainty described by pi ∈ �p−
i � p

+
i �, i = 0�1� 
 
 
 �n−1.

Let the nominal value of the parameters be �p−
0 p−

1 
 
 
 p−
n−1 �. (We can
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also take the nominal value to be �p+
0 p+

1 
 
 
 p+
n−1 � or any value in

between.) Then the nominal system is given by

ẋ =

⎡

⎢

⎢

⎣

0 1 
 
 
 0

 
 

0 0 
 
 
 1

−p−
0 −p−

1 
 
 
 −p−
n−1

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

0

 
 

0
1

⎤

⎥

⎥

⎦

u

= A0x+Bu

The uncertainty can be written as
⎡

⎢

⎢

⎢

⎣

0 1 
 
 
 0


 
 


0 0 
 
 
 1

−p0 −p1 
 
 
 −pn−1

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

0 1 
 
 
 0


 
 


0 0 
 
 
 1

−p−0 −p−1 
 
 
 −p−n−1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 0 
 
 
 0


 
 


0 0 
 
 
 0

p−0 −p0 p−1 −p1 
 
 
 p−n−1−pn−1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0


 
 


0

1

⎤

⎥

⎥

⎥

⎦

�p−0 −p0 p−1 −p1 
 
 
 p−n−1−pn−1 ��

Hence, the uncertainty satisfies the matching condition. The uncertainty
is given by

�= �p−
0 −p0 p−

1 −p1 
 
 
 p−
n−1 −pn−1 ��

which is bounded by

�T�≤

⎡

⎢

⎢

⎢

⎣

�p+
0 −p−

0 ��p
+
0 −p−

0 � �p+
0 −p−

0 ��p
+
1 −p−

1 � 
 
 
 �p+
0 −p−

0 ��p
+
n−1−p−

n−1�

�p+
1 −p−

1 ��p
+
0 −p−

0 � �p+
1 −p−

1 ��p
+
1 −p−

1 � 
 
 
 �p+
1 −p−

1 ��p
+
n−1−p−

n−1�


 
 


�p+
n−1−p−

n−1��p
+
0 −p−

0 � �p+
n−1−p−

n−1��p
+
1 −p−

1 � 
 
 
 �p+
n−1−p−

n−1��p
+
n−1−p−

n−1�

⎤

⎥

⎥

⎥

⎦

= F

Therefore, to design a robust feedback control, all we need is to solve the
following optimal control problem.
For the nominal system

ẋ = A0x+Bu

find a feedback control law u=−Lx that minimizes the cost functional
∫ �

0
�xTF x+xTx+uTu�dt

Let us use the same system as in Example 7.7 to illustrate the approach.
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Example 7.7

Let us consider the system

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−p0 −p1 −p2 −p3 −p4 −p5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

u

where p0 ∈ �1�3�� p1 ∈ �9�13�� p2 ∈ �2�4�� p3 ∈ �11�14�� p4 ∈ �10�12�, and
p5 ∈ �7�10�. To design a feedback control, we solve the following optimal
control problem. The nominal system is given by

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 −9 −2 −11 −10 −7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

u

The bound on the uncertainty can be found as

F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
4
2
3
2
3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

2 4 2 3 2 3
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 8 4 6 4 6
8 16 8 12 8 12
4 8 4 6 4 6
6 12 6 9 6 9
4 8 4 6 8 6
6 12 6 9 6 9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The cost functional is
∫ �

0
�xTF x+xTx+uTu�dt

This is a LQR problem with Q= F + I and R= 1. Using MATLAB, we
can find the following feedback map

L= �1�4495 5�7302 24�7358 23�3119 12�6652 2�1832�

With the feedback control u = −Lx, the characteristic equation of the
closed-loop system is given by

�1�4495+p0�+ �5�7302+p1�s+ �24�7358+p2�s
2+ �23�3119+p3�s

3

+ �12�6652+p4�s
4+ �2�1832+p5�s

5+ s6 = 0

This closed-loop system is robustly stable.
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7.5 NOTES AND REFERENCES

The Kharitonov Theorem is an important and elegant result. It gives a
surprisingly simple solution to a seeming complex problem. Its deriva-
tion is based on some elementary properties of the complex polyno-
mials. The Kharitonov approach is most suitable for analysis problems,
where we are given a system and need to check its robust stability with
respect to the parameter uncertainty. It is less suitable for design prob-
lems, where a feedback control must be designed. For design problems,
the optimal control approach becomes preferred. The material covered in
this chapter can be found in many papers and books, including references
[19, 55, 56, 63, 68, 78, 86, 89, 103, 114, 119, 120, 129, 142, 150, 168].

7.6 PROBLEMS

7.1 Consider the following polynomial:

��s�p�= �60+2p2�+ �10+2p�s+ �9−p�s2+ s3

where p ∈ �0�5�. Let S be the open left half of the s-plane. Find the
roots of ��s�p� for p= 0 and p= 5. States the result from the Boundary
Crossing theorem.

7.2 Consider a stable polynomial

��s�= a0+a1s+ · · · +an−1s
n−1+ans

n

Write it as ��s�= �e�s�+ s�o�s�, where

�e�s�= a0+a2s
2+ �a4s

4+a6s
6+· · · �

�o�s�= a1+a3s
2+a5s

4+a7s
6+· · ·

Prove the following polynomial is also stable.

�e�s�+
d�e�s�

ds
= a0+a2s

2+2a2s+ �a4s
4+4a4s

3+a6s
6+6a6s

5+· · ·

7.3 Assume that a polynomial

��s�= a0+a1s+· · ·+an−1s
n−1+ans

n

satisfies the following conditions: (1) an and an−1 have the opposite
signs; (2) all roots of �e�j�� and �o�j�� are real and distinct; (3) if n= 2m
is even, then �e�j�� has m positive roots �e

1 < �e
2 < · · · < �e

m, �
o�j��
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has m−1 positive roots �o
1 <�o

2 < · · ·<�o
m−1, and they must interlace

in the following manner: 0 < �e
1 < �o

1 < �e
2 < · · · < �o

m−1 < �e
m; (4) if

n= 2m+1 is odd, then �e�j�� has m positive roots �e
1 <�e

2 < · · ·<�e
m,

�o�j�� has m positive roots �o
1 <�o

2 < · · ·<�o
m, and they must interlace

in the following manner: 0 < �e
1 < �o

1 < �e
2 < · · · < �o

m−1 < �e
m < �o

m.
Prove that ��s� has all its roots in the open right half of the complex
plane.

7.4 Use the Interlacing theorem to check if the following polynomials are
stable.

(a) �1�s�= 4+2s+5s2+ s3+8s4+6s5+3s6+5s7+2s7

(b) �2�s�= 3+7s+2s2+4s3+ s4+5s5+9s6+8s7

(c) �3�s�= 6+8s+2s2+7s3+ s4+9s5+7s6

7.5 Determine if the following systems are robustly stable for all admissible
uncertainties using the Kharitonov theorem.

(a) ��s�p�= p0+p1s+p2s
2+p3s

3+p4s
4, where p0 ∈ �1�3�, p1 ∈ �7�13�,

p2 ∈ �2�5�, p3 ∈ �4�14�, and p4 ∈ �3�12�
(b) ��s�p� = p0+p1s+p2s

2+p3s
3+p4s

4+p5s
5, where p0 ∈ �1�5�, p1 ∈

�4�7�, p2 ∈ �3�8�, p3 ∈ �5�11�, p4 ∈ �80�12�, and p5 ∈ �7�12�
(c) ��s�p� = p0 + p1s + p2s

2 + p3s
3 + p4s

4 + p5s
5 + p6s

6, where p0 ∈
�720�725�, p1 ∈ �1448�1458�, p2 ∈ �1213�1227�, p3 ∈ �535�542�,
p4 ∈ �131�142�, p5 ∈ �17�19�, and p6 ∈ �1�1�

7.6 In the closed-loop system shown in Figure 7.5, the coefficients are
uncertain with the following bounds: a0 ∈ �1�3�, a1 ∈ �0�2�, a2 ∈ �−1�3�,
a3 ∈ �2�4�, b0 ∈ �4�8�, b1 ∈ �0�5�1�5�, b2 ∈ �1�4�, b3 ∈ �7�9�, and b4 ∈
�1�1�5�. Determine if the system is robustly stable for all admissible
uncertainties using the Kharitonov theorem.

7.7 A third-order system has the following characteristic equation

a0+a1s+a2s
2+a3s

3 = 0

The nominal values of the coefficients are : a0 = 3, a1 = 5, a2 = 7,
and a3 = 4. Find the largest equal intervals around the nominal values

+
– 

b0 + b1s + b2s2
 + b3s3

 + b4s4

a0 + a1s + a2s 

2
 + a3s 

3

 

Figure 7.5 Closed-loop system for Problem 7.6.
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in which the coefficients can vary while the system remains robustly
stable.

7.8 Given the set of polynomials

��s�p�= p0+p1s+· · ·+pn−1s
n−1+pns

n

where pi ∈ �p−
i � p

+
i �, i = 0�1� 
 
 
 �n − 1�n. Assume that the four

Kharitonov polynomials

K1�s�= p−
0 +p−

1 s+p+
2 s

2+p+
3 s

3+p−
4 s

4+p−
5 s

5+· · ·

K2�s�= p−
0 +p+

1 s+p+
2 s

2+p−
3 s

3+p−
4 s

4+p+
5 s

5+· · ·

K3�s�= p+
0 +p−

1 s+p−
2 s

2+p+
3 s

3+p+
4 s

4+p−
5 s

5+· · ·

K4�s�= p+
0 +p+

1 s+p−
2 s

2+p−
3 s

3+p+
4 s

4+p+
5 s

5+· · ·

all have the following property: Their roots are all in the open right
half of the complex plane. Prove that any polynomial in the set also
has its roots all in the open right half of the complex plane.

7.9 Consider an open loop system with the following transfer function

G�s�p�=
10

p0+p1s+p2s
2+p3s

3+p4s
4+ s5

where p0 ∈ �1�2�, p1 ∈ �7�9�, p2 ∈ �2�4�, p3 ∈ �6�8�, and p4 ∈ �4�7�.

(a) realize the transfer function using controllable canonical form;
(b) check the robust stability of the open-loop system using the

Kharitonov theorem;
(c) design a state feedback control that robustly stabilizes the closed-

loop system;
(d) translate the robust control problem into an optimal control

problem. Design a robust control by solving the optimal control
problem.

7.10 Use MATLAB to simulate the two closed-loop systems obtained in
Problem 7.9.



8
H� and H2 Control

In this chapter we discuss another approach to robust control: the H�/H2

approach. This approach uses the H�/H2 norm. We first present some
useful prerequisities pertaining to function spaces and their norms. We
follow this with pertinent calculation schemes for the H2 norm and the H�

norm. The goal of the H�/H2 approach is to minimize the H�/H2 norm of
a transfer function. We show how this can be achieved by synthesizing a
suitable controller.

8.1 INTRODUCTION

To motivate the H�/H2 approach to robust control, let us recall the control
problems discussed in Chapter 5. The system with uncertainty is modelled as

ẋ = A�po�x+Bu+B��p�x

where p ∈ P is an uncertain parameter vector and po ∈ P is a nominal value
of p. The uncertainty is described by ��p�. To solve the robust control
problem, we translate it into the following LQR problem: for the nominal
system

ẋ = A�po�x+Bu

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd



240 H� AND H2 CONTROL

find a feedback control law u= Kx that minimizes the cost functional

∫ �

0
�xTFx+xTx+uTu�dt

where F is an upper bound on the uncertainty ��p�T��p�; that is, ��p�T

��p�≤ F .
Let us now reformulate the optimal control problem as the following

equivalent problem. For a linear time-invariant system

ẋ = A�po�x+w+Bu

z=
[

�F + I�1/2

0

]

x+
[

0
I

]

u

y = x�

find a feedback control law u= Ky that minimizes

∫ �

0
g�t�2dt

where g�t� is the impulse response of the controlled system from input w to
output z.
We will show that

√

∫ �

0
g�t�2dt

is the H2 norm of the transfer function from w to z. In other words, the
LRQ problem can be viewed as the problem of minimizing the H2 norm.

8.2 FUNCTION SPACE

Let us start this section by recalling the definition of inner products. The
inner product of vectors

x =

⎡

⎣

x1

� � �
xn

⎤

⎦ and y =

⎡

⎣

y1
� � �
yn

⎤

⎦

in a Euclidean space Cn is defined as

�x�y� =�xTy =
∑n

i=1
�xiyi
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where �x denotes the conjugate of x. The concept of inner product can be
extended to infinite vector space V over Cnas follows. An inner product on
V is a complex valued function

��� �� � V ×V → C

satisfying the following conditions for all x�y� z ∈ V and 	�
 ∈ C

1. �x�	y+
z� = 	 �x�y�+
 �x�z� (linearity)
2. �x�y� = �y�x� (conjugate symmetry)
3. �x�x�> 0, if x 	= 0 (non-negativity)

Note that �x�x� is real because by symmetry condition (2): �x�x�= �x�x�.
Two vectors x�y in the inner product space V are orthogonal, denoted by
x⊥y, if �x�y� = 0.
A vector space V having an inner product is called an inner product

space. The inner product reduces the following norm

�x� =
√

�x�x�

The inner product space has the following properties.

1. ��x�y�� ≤ �x�×�y� (Cauchy–Schwarz inequality)
2. �x+y�2+�x−y�2 = 2�x�2+2�y�2 (parallelogram law)
3. �x+y�2 = �x�2+�y�2 if x⊥y

Recall that a metric space M is said to be complete (or Cauchy) if every
Cauchy sequence (sequence whose elements become close as the sequence
progresses) of points in M has a limit that is also in M. Intuitively, a
metric space M is complete if it does not have any holes. For instance, the
rational numbers are not complete, because, for example,

√
2 is ‘missing’

even though we can construct a Cauchy sequence of rational numbers that
converge to

√
2.

A Banach space is a complete vector space with a norm. A Hilbert space
is a complete inner product space with norm induced by its inner product.
Clearly, a Hilbert space is a Banach space, but a Banach space may not be
a Hilbert space.
With the above basic concepts and definitions, let us now discuss various

space of complex valued functions of time t.
Consider the set of all complex valued functions f over the interval �a� b�,

f � �a� b� → C, whose absolute value raised to the p-th power has a finite
Lebesgue integral; that is, the p-norm defined below exists.

�f �p =
(

∫ b

a
�f�t��pdt

)1/p

<�
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Clearly, this space is an infinite dimensional Banach space and is denoted
by Lp�a� b�. In particular, L��a� b� is the set of functions bounded almost
everywhere on �a� b�, whose norm is given by

�f �� = lim
p→�

�f �p = inf
B ≥ 0 � �f�t�� ≤ B for all most all t ∈ �a� b���

Also, for L2�a� b�, we can define the following inner product

�f� g� =
∫ b

a
f�t�g�t�dt

From the definition of the integral, it is obvious that the three require-
ments (linearity, conjugate symmetry, and nonnegativity) of an inner
product are satisfied.
Therefore, L2�a� b� is an infinite dimensional Hilbert space. We are often

interested in the Hilbert space L2�0���, which consists of a set of bounded
functions of time t. The norm of L2�0��� is given by

�f �2 =
√

∫ �

0
f�t�f�t�dt

Next consider complex valued functions of complex frequency s ∈C. Let
D ⊆ C be an open set and so ∈ D be a point in D. Let F � D → C be a
complex valued function defined on D. F is said to be analytic at so if it is
differentiable at so and some neighborhood of so. F is said to be analytic at
D if it is analytic in any point in D. Analytic functions have the following
properties.

1. If F is analytic at so, then its derivative of any order exists and is
continuous at so.

2. If F is analytic at so, then it has a power series representation at so.
3. If F has a power series representation at so, then it is analytic at so.

For example, any real stable transfer function is analytic in the right half
of the complex plane.
We use L��jR� to denote the Banach space of all complex valued functions

F � C → C that are bounded on the imaginary axis jR with its norm given
by

�F �� = sup
�∈R

�F �j��� (8.1)

We use H� to denote the subspace of L��jR� where functions F are
analytic and bounded in the open right half of the complex plane. For
functions in H�, it can be shown that

sup
Re�s�≥0

�F �s�� = sup
�∈R

�F �j��� = �F �� (8.2)
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We use L2�jR� to denote the Hilbert space of all complex valued functions
F � C → C such that the following integral is bounded

∫ �

−�
F �j��F �j��d�<� (8.3)

The inner product of L2�jR� is defined as follows. For F�G ∈ L2�jR�

�F�G� = 1

2�

∫ �

−�
F �j��G�j��d� (8.4)

Clearly the three requirements (linearity, conjugate symmetry, and
nonnegativity) of inner product are satisfied.
We useH2 to denote the subspace of L2�jR�where functions F are analytic

and bounded in the open right half of the complex plane. For a function
F ∈H2, its norm �F �2 can be written as

�F �22 =
1

2�

∫ �

−�
F �j��F �j��d�= sup

�>0

{
1

2�

∫ �

−�
F ��+ j��F ��+ j��d�

}
(8.5)

Let F be the Laplace transform of f : L �f�t�� = F �s�. Then we have the
following relationship between time-domain function space and frequency-
domain function space: f�t� ∈ L2�0���⇔ F �s� ∈H2.

In the above definitions of function spaces, we assume that functions are
scalar valued. We can extend these definitions to matrix valued functions
as follows.
For L��jR�, we substitute Equation (8.1) by

�F �� = sup
�∈R

��F �j���

where ��F �j��� =max

√
��F�j��

T
F�j��� is the largest singular value of F�j��

with ���� denoting the eigenvalues.
For H�, we substitute Equation (8.2) by

sup
Re�s�≥0

��F �s��= sup
�∈R

��F �j���= �F ��

For L2�jR�, we substitute Equation (8.3) by

∫ �

−�
trace�F �j��

T
F �j���d�<�

and substitute Equation (8.4) by

�F�G� = 1

2�

∫ �

−�
trace�F �j��

T
G�j���d�
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For H2, we substitute Equation (8.5) by

�F �22 =
1

2�

∫ �

−�
trace�F �j��

T
F �j���d�

= sup
�>0

{
1

2�

∫ �

−�
trace�F ��+ j��

T
F ��+ j���d�

}

8.3 COMPUTATION OF H2 AND H� NORMS

Let us first discuss how to compute the H2 norm. As defined in Section 8.2,
for a function G ∈H2, its H2 norm is given by

�G�2 =

√

1

2�

∫ �

−�
trace�G�j��

T
G�j���d� (8.6)

Let G�s� be the Laplace transform of g�t�; that is, L �g�t��=G�s�. Then H2

norm of G�s� can also be written as

�G�2 = �g�2 =

√

∫ �

−�
trace�g�t�

T
g�t��dt (8.7)

Since

trace�G�j��
T
G�j���= trace�G�j��G�j��

T
�

trace�g�t�
T
g�t��= trace�g�t�g�t�

T
�

Equations (8.6) and (8.7) can also be written as

�G�2 =

√

1

2�

∫ �

−�
trace�G�j��G�j��

T
�d�=

√

∫ �

−�
trace�g�t�g�t�

T
�dt

In control problems that we are interested in, G�s� is a strictly proper real
rational stable transfer function. We say that

ẋ = Ax+Bu

y = Cx+Du

is a realization of G�s� if G�s� = C�sI −A�−1B+D. We sometime denote a
realization of G�s� as

G�s�=

(

A B
C D

)



COMPUTATION OF H2 AND H� NORMS 245

To compute �G�2, we assume D = 0. Note that the inverse Laplace
transform g�t� of G�s�, which is also the impulse response, is given by

g�t�= L
−1 �G�s��= L

−1
[
C�sI−A�−1B

]
=

{
CeAtB t ≥ 0
0 t < 0

Therefore

�G�2 =

√

∫ �

−�
trace�g�t�

T
g�t��dt

=

√

∫ �

0
trace��CeAtB�TCeAtB�dt

=

√

trace�BT�
∫ �

0
eATtCTCeAtdt�B�

Define

S =
∫ �

0
eA

TtCTCeAtdt

which is called observability Gramian of �A�C�. Then

�G�2 =

√

trace�BTSB�

To compute S, let us proceed as follows. Define

S���=
∫ �

0
eA

TtCTCeAtdt

Clearly, S = lim�→� S���. On the other hand, let t = �− �, we have

S���=
∫ �

0
eA

TtCTCeAtdt

=
∫ 0

�
eA

T��−��CTCeA��−���−d��

=
∫ �

0
eA

T��−��CTCeA��−��d�

Therefore

dS���

d�
= d

d�

∫ �

0
eA

T��−��CTCeA��−��d�

= eA
T��−��CTCeA��−��

∣

∣

∣

�=�

+
∫ �

0
ATeA

T��−��CTCeA��−��d�+
∫ �

0
eA

T��−��CTCeA��−��Ad�

=CTC+ATS���+S���A
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As �→�
dS���

d�
→ dS

d�
= 0

Hence, S satisfies the equation

SA+ATS+CTC = 0 (8.8)

Comparing Equation (8.8) with the algebraic Riccati equation

SA+ATS+Q−SBR−1BTS = 0

we conclude that we can solve Equation (8.8) by solving the algebraic
Riccati equation with A, B = 0, Q= CTC, R= I.
Similarly, we can also compute �G�2 as follows

�G�2 =
√

∫ �

−�
trace�g�t�g�t�

T
�dt

=
√

∫ �

0
trace�CeAtB�CeAtB�T�dt

=
√

trace�C�
∫ �

0
eATtBBTeAtdt�CT�

Define

U =
∫ �

0
eA

TtBBTeAtdt

which is called controllability Gramian of �A�B�. U can be computed by
solving

AU +UAT+BBT = 0 (8.8)

After computing U , the H2 norm of G can be obtained as

�G�2 =
√

trace�CUCT�

Example 8.1

Consider the following system

ẋ =

⎡

⎣

0 1 0
0 0 1
−2 −5 −1

⎤

⎦x+

⎡

⎣

0
0
1

⎤

⎦u

y = x



COMPUTATION OF H2 AND H� NORMS 247

Its transfer function is given by

G�s�=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

s3+ s2+5s+2
s

s3+ s2+5s+2
s2

s3+ s2+5s+2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

To compute �G�2, let us first solve

SA+ATS+CTC = 0

The solution is

S =

⎡

⎣

2�4167 2�4167 0�2500
2�4167 5�7500 0�5833
0�2500 0�5833 1�0833

⎤

⎦

Hence

�G�2 =

√

trace�BTSB�= 1�0408

Next, we discuss how to compute the H� norm. Unfortunately, this is
much more difficult than computing the H2 norm. However, it is relatively
easy to check, for any � > 0, whether �G�� < � is true or not as shown in
the following theorem.

Theorem 8.1

Let G�s� = C�sI −A�−1B+D. Then �G�� < � for some � > 0 if and only
if ��D� < � and the following matrix has no eigenvalues on the imaginary
axis:

[

A+BV −1DTC BV −1BT

−CT �I+DV −1DT�C −�A+BV −1DTC�T

]

where V = �2I−DTD.

Proof

Define

U�s�= �2I−G�−s�TG�s�
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Then

�G�� < �

⇔ sup
�∈R

��G�j��� < �

⇔�∀� ∈ R���G�j��� < �

⇔�∀� ∈ R�max

√
��G�j��

T
G�j��� < �

⇔�∀� ∈ R�max��G�j��
T
G�j��� < �2

⇔�∀� ∈ R�max��G�−j��TG�j��� < �2

⇔�∀� ∈ R��2I−G�−j��TG�j�� > 0

⇔�∀� ∈ R�U�j�� > 0

⇔U�j�� > 0∧ �∀� ∈ R�U�j�� is nonsigular

⇔�2I−DTD> 0∧U�s� has no zeros on the imaginary axis

⇔��D� < �∧U�s�−1 has no poles on the imaginary axis

It can be shown that U�s�−1 has the following realization:

x =

[

A+BV −1DTC BV −1BT

−CT�I+DV −1DT�C −�A+BV −1DTC�T

]

x+

[

BV −1

−CTDV −1

]

u

y =
[

V −1DTC V −1BT
]

x+V −1u

Therefore, U�s�−1 has no poles on the imaginary axis if and only if the
following matrix has no eigenvalues on the imaginary axis:

[

A+BV −1DTC BV −1BT

−CT�I+DV −1DT�C −�A+BV −1DTC�T

]

Q.E.D.

Example 8.2

This example illustrates that

x =

[

A+BV −1DTC BV −1BT

−CT�I+DV −1DT�C −�A+BV −1DTC�T

]

x+

[

BV −1

−CTDV −1

]

u

y =
[

V −1DTC V −1BT
]

x+V −1u
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is a realization of U�s�−1. Let

A=

⎡

⎣

−1 0 0
0 −2 0
0 0 −3

⎤

⎦ B =

⎡

⎣

1
2
3

⎤

⎦

C =
[

−1 −2 −3
]

D = 1

Then

G�s�=
s3−8s2−37s−30

s3+6s2+11s+6

Let � = 10. Then

U�s�= �2I−G�−s�TG�s�

= 102−

(

−s3−8s2+37s−30

−s3+6s2−11s+6

)(

s3−8s2−37s−30

s3+6s2+11s+6

)

= 100−

(

s3+8s2−37s+30

s3−6s2+11s−6

)(

s3−8s2−37s−30

s3+6s2+11s+6

)

= 100−
s6−138s4+889s2−900

s6−14s4+49s2−36

=
99s6−1262s4+4011s2−2700

s6−14s4+49s2−36

On the other hand,

V = �2I−DTD = 100−1= 99

A+BV −1DTC =

⎡

⎣

−1�0101 −0�0202 −0�0303
−0�0202 −2�0404 −0�0606
−0�0303 −0�0606 −3�0909

⎤

⎦

BV −1BT =

⎡

⎣

0�0101 0�0202 0�0303
0�0202 0�0404 0�0606
0�0303 0�0606 0�0909

⎤

⎦

−CT�I+DV −1DT�C =

⎡

⎣

−1�0101 −2�0202 −3�0303
−2�0202 −4�0404 −6�0606
−3�0303 −6�0606 −9�0909

⎤

⎦

− �A+BV −1DTC�T =

⎡

⎣

1�0101 0�0202 0�0303
0�0202 2�0404 0�0606
0�0303 0�0606 3�0909

⎤

⎦

BV −1 =

⎡

⎣

0�0101
0�0202
0�0303

⎤

⎦
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−CTDV −1 =

⎡

⎣

0�0101
0�0202
0�0303

⎤

⎦

V −1DTC =
[

−0�0101 −0�0202 −0�0303
]

V −1BT =
[

0�0101 0�0202 0�0303
]

Using MATLAB, we can calculate the transfer function of

x =

[

A+BV −1DTC BV −1BT

−CT�I+DV −1DT�C −�A+BV −1DTC�T

]

x+

[

BV −1

−CTDV −1

]

u

y =
[

V −1DTC V −1BT
]

x+V −1u

as

��s�=
0�0101s6−0�1414s4+0�4949s2−0�3636

s6−12�7475s4+40�5152s2−27�2727

Clearly

��s�= U�s�−1

Since checking �G�� < � is much easier than calculating �G�� directly,
we can use the following algorithm of bisection to ‘calculate’ the H� norm
for a proper real rational transfer function matrix G�s�.

Algorithm 8.1

Input: a proper real rational transfer function matrix G�s� and a percentage
tolerance �;
Output: �G�� with error less than �;

Step 1. Find a realization of G�s�:

G�s�=

(

A B
C D

)

Step 2. Pick an upper bound � and a lower bound � such that � < �G�� <�
(for example, we can let � be zero and � be sufficiently large)

Step 3. If ��−��/� < 2�,

then let �G�� = ��−��/2 and stop

else let � = ��−��/2 and go to Step 4
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Step 4. Find all the eigenvalues of
[

A+BV −1DTC BV −1BT

−CT�I+DV −1DT�C −�A+BV −1DTC�T

]

Step 5. If there exists eigenvalues on the imaginary axis

then let � = �

else let � = �

Step 6. Go to Step 3

Example 8.3

Let us calculate the H� norm of

G�s�=
s3−8s2−37s−30

s3+6s2+11s+6

From Example 8.2, we know that G�s� has a realization:

A=

⎡

⎣

−1 0 0
0 −2 0
0 0 −3

⎤

⎦ B =

⎡

⎣

1
2
3

⎤

⎦

C =
[

−1 −2 −3
]

D = 1

Let � = 10 and � = 1. Then � = ��−��/2= 5�5�V = �2I−DTD= 29�25,
and

�=

[

A+BV −1DTC BV −1BT

−CT �I+DV −1DT�C −�A+BV −1DTC�T

]

has eigenvalues

����= 
−2�6443�−1�5428�−0�6231�2�6443�0�6231�1�5428�

Since no eigenvalue is on the imaginary axis, the new upper bound is
� = � = 5�5.
Next, let � = ��−��/2= 3�25. We find the following eigenvalues

����= 
j2�5268�−j2�5268�−2�4491�−1�1914�2�4491�1�1914�

Since there are two eigenvalues on the imaginary axis, the new lower
bound is � = � = 3�25. This process can continue until we find �G�� with
sufficient accuracy.
We can also use MATLAB to find the H2 norm and the H� norm using

the MATLAB commands ‘pss2sys’, ‘h2norm’, and ‘hinfnorm’ as shown in
the following example.
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Example 8.4

Let G�s� be the transfer function of

ẋ =

⎡

⎣

0 1 0
0 0 1
−2 −5 −1

⎤

⎦x+

⎡

⎣

0
0
1

⎤

⎦u

y = x

that is

G�s�=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

s3+ s2+5s+2
s

s3+ s2+5s+2
s2

s3+ s2+5s+2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Then using ‘h2norm’, we find �G�2 = 1�041. Using ‘hinfnorm’ with toler-
ance of 1%, we find �G�� is between 1.8984 and 1.9174.

8.4 ROBUST CONTROL PROBLEM AS H2 AND H�

CONTROL PROBLEM

To formulate and solve a robust control problem as an H2 or H� control
problem, let us first present a small-gain theorem.
Consider a system with uncertainty. Let us assume that we can separate

the uncertainty from the nominal system in a feedback loop, as shown in
Figure 8.1.
In Figure 8.1, G�s� is (the transfer function of) the nominal system; and

��s� is the uncertainty. v and z are the input and output of the overall
perturbed system. w is the input of the nominal system. The assumption
that the uncertainty can be separated from the nominal system as shown in
Figure 8.1 is not very restrictive, as illustrated by the following example.

+
+

w
G (s)

z

∆ (s)

v

Figure 8.1 Uncertainty and small-gain theorem.
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Example 8.5

Consider a system with the following general transfer function:

G�s�p�=
b0+b1s+ � � � +bn−1s

n−1

p0+p1s+ � � � +pn−1s
n−1+ sn

where the uncertainty is described by pi ∈ �p−
i � p

+
i �, i= 0�1� � � � �n−1. We

can find its controllable canonical realization as

ẋ =

⎡

⎢

⎣

0 1 � � � 0
� � �
0 0 � � � 1

−p0 −p1 � � � −pn−1

⎤

⎥

⎦
x+

⎡

⎢

⎢

⎣

0
� � �
0
1

⎤

⎥

⎥

⎦

v

z=
[

b0 b1 � � � bn−1

]

x

Denote po
i =

p−
i +p+

i

2
and pi = po

i +�pi with �pi ∈

[

−
p+
i −p−

i

2
�
p+
i −p−

i

2

]

,

i= 0�1� � � � �n−1. Then we can re-write the state equation as:

ẋ =

⎡

⎢

⎢

⎣

0 1 � � � 0
� � �
0 0 � � � 1

−po
0−�p0 −po

1−�p1 � � � −po
n−1−�pn−1

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

0
� � �
0
1

⎤

⎥

⎥

⎦

v

=

⎡

⎢

⎢

⎣

0 1 � � � 0
� � �
0 0 � � � 1

−po
0 −po

1 � � � −po
n−1

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

0
� � �
0
1

⎤

⎥

⎥

⎦

v+

⎡

⎢

⎢

⎣

0 0 � � � 0
� � �
0 0 � � � 0

−�p0 −�p1 � � � −�pn−1

⎤

⎥

⎥

⎦

x

Let

A=

⎡

⎢

⎢

⎣

0 1 � � � 0
� � �
0 0 � � � 1

−po
0 −po

1 � � � −po
n−1

⎤

⎥

⎥

⎦

B =

⎡

⎢

⎢

⎣

0
� � �
0
1

⎤

⎥

⎥

⎦

�=
[

−�p0 −�p1 � � � −�pn−1

]

Define e= � ·x. Then we have the following equations

ẋ = Ax+Bu+B� ·x = Ax+Bu+Be= Ax+B�u+e�

z= x

In other words, we can translate the system into the one in Figure 8.2.
So, let us now consider the system in Figure 8.1. The problem we want

to investigate is as follows. Assume that the nominal system G�s� is stable.
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+
+

e

(A, B)

z

∆

v w

Figure 8.2 Separation of uncertainty from the system.

How big can the uncertainty ��s� be, before the perturbed system becomes
unstable? In other words, what is the bound on the uncertainty ��s� that
guarantees the stability of the perturbed system? This question is partially
answered by the following small-gain theorem.

Theorem 8.2

Consider the system in Figure 8.1. Let G�s� be a proper real rational stable
transfer function. Assume that �G�� <� for some �> 0. Then the perturbed
(closed-loop) system is stable for all proper real rational stable transfer
functions ��s� such that ���� ≤ 1/�.

Proof

It is easy to check that in Figure 8.1, the transfer function from v to z is

M�s�= �I−G�s���s��−1G�s��

For the perturbed system to be stable, all the poles of M�s� must be in the
open left half plane. Since G�s� has all the poles in the open left half plane,
stability requires that �I−G�s���s��−1 has all the poles in the open left half
plane. Equivalently, this means that all the zeros of �I −G�s���s�� must be
in the open left half plane. In other words

inf
Re�s�≥0

��I−G�s���s�� 	= 0

Hence, to prove the theorem, we only need to prove the above condition
is true for all proper real rational stable transfer functions ��s� such that
���� ≤ 1/�. The proof is as follows.

�G�� < �∧���� < 1/�

⇒�G��� < 1

⇒ sup
Re�s�≥0

��G�s���s�� < 1
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⇒1− sup
Re�s�≥0

��G�s���s�� > 0

⇒ inf
Re�s�≥0

��I−G�s���s�� > 0

⇒ inf
Re�s�≥0

��I−G�s���s�� 	= 0

Q.E.D.

Let us now apply the small-gain theorem to the following example.

Example 8.6

Consider the following system:

ẋ =

⎡

⎣

0 1 0
0 0 1

−3+�1 −4+�2 −7+�3

⎤

⎦x+

⎡

⎣

0
0
1

⎤

⎦u

y = x

where �1, �2, and �3 are uncertainties. The system can be decomposed
as the nominal system �A�B� and the uncertainty � as in Figure 8.2. The
nominal system is stable. Let G�s� be the transfer function of the nominal
system

ẋ =

⎡

⎣

0 1 0
0 0 1
−3 −4 −7

⎤

⎦x+

⎡

⎣

0
0
1

⎤

⎦u

y = x

Then we can calculate the H� norm using MATLAB and obtain �G�� <
0�5522. Since the H� norm of ��s�=

[

�1 �2 �3

]

is ���� =
√

�2
1+�2

2+�2
3,

by Theorem 8.2, the perturbed system is stable for all uncertainties such that

���� =

√

�2
1+�2

2+�2
3 ≤ 1/0�5522= 1�811

or

�2
1+�2

2+�2
3 ≤ 3�2796 (8.9)

Note that this condition is actually very conservative. To see this, let us
write the characteristic equation of the perturbed system as

s3+ �7−�3�s
2+ �4−�2�s+ �3−�1�= 0
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By the Routh–Hurwitz criterion, we know that the perturbed system is
stable if and only if

7−�3 > 0∧4−�2 > 0∧3−�1 > 0∧ �7−�3��4−�2� > 3−�1 (8.10)

Condition (8.10) is much weaker than Condition (8.9). For example, if
�1 = 2�5, �2 = 3�5, and �3 = 5, then Condition (8.10) is satisfied, however

�2
1+�2

2+�2
3 = 43�5000

which is much greater than 3.2796.
So far, we have discussed analysis problems; that is, given a perturbed

system with bounds on the uncertainty, we can check if the condition in
Theorem 8.2 is satisfied. If the condition is satisfied, then the robust stability
is guaranteed; otherwise, the system may or may not be robustly stable. In
the next section, we will turn to synthesis problem; that is, how to design
a controller that will achieve robust stability for the largest bounds on the
uncertainty.

8.5 H2/H� CONTROL SYNTHESIS

BeforewediscussH2/H� control synthesis, letus firstmention that theH2/H�

approach is very different from the optimal approach discussed in Chap-
ters 5 and 6. In the optimal control approach, we start with the bounds on
uncertainties. We then design a controller based on these bounds. As the
result, if the controller exists, then it is guaranteed to robustly stabilize the
perturbed system. On the other hand, in theH2/H� approach, the bounds on
uncertainties are not given in advance. The synthesis will try to achieve the
largest tolerance rangeonuncertainty.However, there isnoguarantee that the
range is large enough to cover all possible uncertainties. In other words, the
H2/H� approach cannot guarantee the robustness of the resulting controller.
The approach will do its best to make the resulting controller robust.
Whether the best is good enough depends on the nature of the uncertainties.
To formulate the H2/H� approach, let us consider the setting in

Figure 8.1, but assume the G�s� can now be modified by introducing a
controller as shown in Figure 8.3. In Figure 8.3, F �s� is (the transfer func-
tion of) the plant; K�s� is (the transfer function of) the controller to be
designed; u is the input for control; and y is the output (measurement)
for control. Comparing Figure 8.3 with Figure 8.1, we see that nominal
system G�s� is now equivalent to the controlled system consisting of the
plant F �s� and the controller K�s�. The plant F �s� is given while the controller
K�s� is to be designed. Form the previous discussions, we know that in
order to maximize the tolerance range on uncertainty, we need to design
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Figure 8.3 H2/H� approach: introduction of a controller to minimize the H2/H�

norm.

a feasible controller that minimizes the norm of the transfer function from
w to z.
Formally, let us assume that the plant F �s� has the following realization

ẋ = Ax+B1w+B2u

z= C1x+D11w+D12u

y = C2x+D21w+D22u

Sometimes, we denote the above realization of F �s� as

F �s�=

⎛
⎝

A B1 B2

C1 D11 D12

C2 D21 D22

⎞
⎠=

[

F11�s� F12�s�
F21�s� F22�s�

]

where F11�s� = C1�sI −A�−1B1 +D11 is the transfer function from w to
z; F12�s� = C1�sI −A�−1B2 +D12 is the transfer function from u to z;
F21�s� = C2�sI −A�−1B1 +D21 is the transfer function from w to y; and
F22�s� = C2�sI −A�−1B2+D22 is the transfer function from u to y. Clearly,
F �s� is a proper real rational transfer function. The transfer function
G�s� of the controlled system with controller K�s� can be derived as
follows.

[

Z�s�
Y�s�

]

=

[

F11�s� F12�s�
F21�s� F22�s�

][

W�s�
U�s�

]

implies

Z�s�= F11�s�W�s�+ F12�s�U�s�

Y�s�= F21�s�W�s�+ F22�s�U�s��
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Since U�s�= K�s�Y�s�, we have

Y�s�= F21�s�W�s�+ F22�s�K�s�Y�s�

⇒�I− F22�s�K�s��Y�s�= F21�s�W�s�

⇒Y�s�= �I− F22�s�K�s��
−1F21�s�W�s�

⇒U�s�= K�s��I− F22�s�K�s��
−1F21�s�W�s�

Hence

Z�s�= F11�s�W�s�+ F12�s�U�s�

= F11�s�W�s�+ F12�s�K�s��I− F22�s�K�s��
−1F21�s�W�s�

= �F11�s�+ F12�s�K�s��I− F22�s�K�s��
−1F21�s��W�s�

That is, the transfer function from w to z is given by

G�s�= F11�s�+ F12�s�K�s��I− F22�s�K�s��
−1F21�s� (8.11)

One basic requirement on K�s� is that it must internally stabilize the
controlled system. This in turn requires that �A�B2� is stabilizable and
�A�C2� is detectable; that is, there exist L1, L2 such that A+B2L1 and
A+L2C2 are stable. Assuming this is true, we can characterize all stabilizing
controllers K�s� as shown in the following theorem.

Theorem 8.3

Let the plant

F �s�=

⎛
⎝
A B1 B2

C1 D11 D12

C2 D21 D22

⎞
⎠=

[

F11�s� F12�s�
F21�s� F22�s�

]

and L1, L2 be such that A+ B2L1 and A+ L2C2 are stable. Then all
controllers that internally stabilize the controlled system can be parameter-
ized as

K�s�=M11�s�+M12�s�Q�s��I−M22�s�Q�s��−1M21�s�

where Q�s� is any proper real rational transfer function such that Q�s� ∈H�

and Mij �s� is given by

[

M11�s� M12�s�
M21�s� M22�s�

]

=

⎛

⎝

A+B2L1+L2C2+L2D22L1 −L2 B2+L2D22

L1 0 I
−�C2+D22L1� I −D22

⎞

⎠
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Proof

We will only prove the special case when all A, B1, B2, C1, C2, D11, D12,
D21, D22 are scalars because it illustrates the idea and avoids tedious matrix
manipulations. In the scalar case

[

M11�s� M12�s�
M21�s� M22�s�

]

=

[

L1

−�C2+D22L1�

]

1

s− �A+B2L1+L2C2+L2D22L1�

[

−L2 B2+L2D22

]

+

[

0 1
1−D22

]

=
1

s− �A+B2L1+L2C2+L2D22L1�

[

−L1L2

�C2+D22L1�L2

L1�B2+L2D22�
−�C2+D22L1��B2+L2D22�

]

+

[

0 1
1 −D22

]

=
1

s−A−B2L1−L2C2−L2D22L1

[

−L1L2 s−A−L2C2

s−A−B2L1 −C2B2−D22�s−A�

]

Hence

I−M22�s�Q�s�=1−
−C2B2−D22�s−A�

s−A−B2L1−L2C2−L2D22L1

Q�s�

=
s−A−B2L1−L2C2−L2D22L1+ �C2B2+D22�s−A��Q�s�

s−A−B2L1−L2C2−L2D22L1

and

K�s�=M11�s�+M12�s�Q�s��I−M22�s�Q�s��−1M21�s�

=
−L1L2

s−A−B2L1−L2C2−L2D22L1

+
s−A−L2C2

s−A−B2L1−L2C2−L2D22L1

×Q�s��I−M22�s�Q�s��−1 s−A−B2L1

s−A−B2L1−L2C2−L2D22L1

=
−L1L2

s−A−B2L1−L2C2−L2D22L1

+
s−A−L2C2

s−A−B2L1−L2C2−L2D22L1

Q�s�

×
s−A−B2L1−L2C2−L2D22L1

s−A−B2L1−L2C2−L2D22L1+ �C2B2+D22�s−A��Q�s�

×
s−A−B2L1

s−A−B2L1−L2C2−L2D22L1
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=
−L1L2

s−A−B2L1−L2C2−L2D22L1

+
�s−A−L2C2�Q�s�

s−A−B2L1−L2C2−L2D22L1

×
s−A−B2L1

s−A−B2L1−L2C2−L2D22L1+ �C2B2+D22�s−A��Q�s�

=
−L1L2+ �s−A�Q�s�

s−A−B2L1−L2C2−L2D22L1+ �C2B2+D22�s−A��Q�s�

Let

K1�s�=−L1L2+ �s−A�Q�s�

K2�s�= s−A−B2L1−L2C2−L2D22L1+ �C2B2+D22�s−A��Q�s�

then we can write

K�s�=
K1�s�

K2�s�

By Equation (8.11), the controlled system is given by

G�s�= F11�s�+ F12�s�K�s��I− F22�s�K�s��
−1F21�s�

We can calculate G�s� as follows.

[

F11�s� F12�s�
F21�s� F22�s�

]

=

[

C1

C2

]

1

s−A

[

B1 B2

]

+

[

D11 D12

D21 D22

]

=
1

s−A

[

C1B1 C1B2

C2B1 C2B2

]

+

[

D11 D12

D21 D22

]

=
1

s−A

[

C1B1+D11�s−A� C1B2+D12�s−A�
C2B1+D21�s−A� C2B2+D22�s−A�

]

Therefore

I− F22�s�K�s�=1−
C2B2+D22�s−A�

s−A
K�s�

=
s−A− �C2B2+D22�s−A��K�s�

s−A

=
�s−A�K2�s�− �C2B2+D22�s−A��K1�s�

�s−A�K2�s�

Since

�s−A�K2�s�− �C2B2+D22�s−A��K1�s�

=�s−A��s−A−B2L1−L2C2−L2D22L1+ �C2B2+D22�s−A��Q�s��
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− �C2B2+D22�s−A���−L1L2+ �s−A�Q�s��

=�s−A��s−A−B2L1−L2C2�+C2B2L1L2

=�s−A−L2C2��s−A−B2L1�

we have

K�s��I− F22�s�K�s��
−1 =

K1�s�

K2�s�
×

�s−A�K2�s�

�s−A−L2C2��s−A−B2L1�

=
�s−A�K1�s�

�s−A−L2C2��s−A−B2L1�

and

G�s�= F11�s�+ F12�s�K�s��I− F22�s�K�s��
−1F21�s�

=
C1B1+D11�s−A�

s−A
+

C1B2+D12�s−A�

s−A

×
�s−A�K1�s�

�s−A−L2C2��s−A−B2L1�
×

C2B1+D21�s−A�

s−A

=
C1B1+D11�s−A�

s−A
+

�C1B2+D12�s−A���C2B1+D21�s−A��K1�s�

�s−A��s−A−L2C2��s−A−B2L1�

=
C1B1+D11�s−A�

s−A

+
�C1B2+D12�s−A���C2B1+D21�s−A���−L1L2+ �s−A�Q�s��

�s−A��s−A−L2C2��s−A−B2L1�

=
C1B1+D11�s−A�

s−A
−

�C1B2+D12�s−A���C2B1+D21�s−A��L1L2

�s−A��s−A−L2C2��s−A−B2L1�

+
�C1B2+D12�s−A���C2B1+D21�s−A��

�s−A−L2C2��s−A−B2L1�
Q�s�

=
C1B1�s−A−L2C2��s−A−B2L1�− �C1B2+D12�s−A���C2B1+D21�s−A��L1L2

�s−A��s−A−L2C2��s−A−B2L1�

+D11+
�C1B2+D12�s−A���C2B1+D21�s−A��

�s−A−L2C2��s−A−B2L1�
Q�s�

=
�C1B1−D12D21L1L2��s−A�−C1B1�L2C2+B2L1�− �D12C2B1+D21C1B2�L1L2

�s−A−L2C2��s−A−B2L1�

+D11+
�C1B2+D12�s−A���C2B1+D21�s−A��

�s−A−L2C2��s−A−B2L1�
Q�s�

Since A+B2L1 and A+L2C2 are stable, by observing the eigenvalues of
G�s�, it is clear that G�s� is stable if and only if Q�s� is a proper real rational
transfer function such that Q�s� ∈H�.

Q.E.D.
Let us consider the following example.
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Example 8.7

Consider the system

F �s�=

⎛
⎝
A B1 B2

C1 D11 D12

C2 D21 D22

⎞
⎠

with

A=

⎡

⎣

−5 2 −4
0 −3 0
0 7 −1

⎤

⎦ B1 =

⎡

⎣

7
−3
1

⎤

⎦ B2 =

⎡

⎣

6
8
−5

⎤

⎦ C1 =
[

−2 9 4
]

C2 =
[

6 3 −1
]

D11 = 0,D12 = 1,D21 = 2, andD22 = 0. The elements of the transfer function
F �s� can be found as follows.

F11�s�=
−37s2−2509s−669

s3+9s2+23s+15

F12�s�=
s3+49s2+339s+1455

s3+9s2+23s+15

F21�s�=
2s3+50s2+113s+597

s3+9s2+23s+15

F22�s�=
65s2+488s−865

s3+9s2+23s+15

Since A is stable, we can take L1 = 0 and L2 = 0. Therefore, the matrix

[

M11�s� M12�s�
M21�s� M22�s�

]

=

⎛

⎝

A 0 B2

0 0 1
−C2 1 0

⎞

⎠

can be computed as follows.

M11�s�= 0

M12�s�= 1

M21�s�= 1

M22�s�=
−65s2−488s+865

s3+9s2+23s+15
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Hence, the controller can be written as

K�s�=M11�s�+M12�s�Q�s��I−M22�s�Q�s��−1M21�s�

= 0+Q�s��I−M22�s�Q�s��−1

=Q�s�

(

1−
−65s2−488s+865

s3+9s2+23s+15
Q�s�

)−1

=Q�s�

(

s3+9s2+23s+15+ �65s2+488s−865�Q�s�

s3+9s2+23s+15

)−1

=
�s3+9s2+23s+15�Q�s�

s3+9s2+23s+15+ �65s2+488s−865�Q�s�

To find the controlled system, let us first calculate

I− F22�s�K�s�

=1−
65s2+488s−865

s3+9s2+23s+15
×

�s3+9s2+23s+15�Q�s�

s3+9s2+23s+15+ �65s2+488s−865�Q�s�

=1−
�65s2+488s−865�Q�s�

s3+9s2+23s+15+ �65s2+488s−865�Q�s�

=
s3+9s2+23s+15

s3+9s2+23s+15+ �65s2+488s−865�Q�s�

and

K�s��I− F22�s�K�s��
−1

=
�s3+9s2+23s+15�Q�s�

s3+9s2+23s+15+ �65s2+488s−865�Q�s�

×
s3+9s2+23s+15+ �65s2+488s−865�Q�s�

s3+9s2+23s+15

=Q�s�

Therefore, the controlled system is given by

G�s�=F11�s�+ F12�s�K�s��I− F22�s�K�s��
−1F21�s�

=
−37s2−2509s−669

s3+9s2+23s+15
+

s3+49s2+339s+1455

s3+9s2+23s+15

×Q�s�
2s3+50s2+113s+597

s3+9s2+23s+15
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The above example shows that the transfer function of the controlled
systems can be written in a specific form. In general, using the controller

K�s�=M11�s�+M12�s�Q�s��I−M22�s�Q�s��−1M21�s�

The transfer function of the controlled system can be derived as follows.

Theorem 8.4

Let the controller be

K�s�=M11�s�+M12�s�Q�s��I−M22�s�Q�s��−1M21�s�

The controlled system has the following transfer function

G�s�=�11�s�+�12�s�Q�s��21�s��

where �ij �s� is given by

[

�11�s� �12�s�
�21�s� �22�s�

]

=

⎛

⎜

⎜

⎜

⎝

A+B2L1 −B2L1 B1 B2

0 A+L2C2 B1+L2D21 0

C1+D12L1 −D12L1 D11 D12

0 C2 D21 0

⎞

⎟

⎟

⎟

⎠

Proof

We will only prove the special case when all A, B1, B2, C1, C2, D11, D12,
D21, D22 are scalars. From the proof of Theorem 8.3, we have

G�s�=
�C1B1−D12D21L1L2��s−A�−C1B1�L2C2+B2L1�− �D12C2B1+D21C1B2�L1L2

�s−A−L2C2��s−A−B2L1�

+D11+
�C1B2+D12�s−A���C2B1+D21�s−A��

�s−A−L2C2��s−A−B2L1�
Q�s� (8.12)

On the other hand
[

�11�s� �12�s�
�21�s� �22�s�

]

=

[

C1+D12L1 −D12L1

0 C2

][

s−A−B2L1 B2L1

0 s−A−L2C2

]−1

×

[

B1 B2

B1+L2D21 0

]

+

[

D11 D12

D21 0

]
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=

[

C1+D12L1 −D12L1

0 C2

][

s−A−L2C2 −B2L1

0 s−A−B2L1

]

×
1

�s−A−L2C2��s−A−B2L1�

[

B1 B2

B1+L2D21 0

]

+

[

D11 D12

D21 0

]

=

[

�C1+D12L1��s−A−L2C2� −�C1+D12L1�B2L1−D12L1�s−A−B2L1�
0 C2�s−A−B2L1�

]

×
1

�s−A−L2C2��s−A−B2L1�

[

B1 B2

B1+L2D21 0

]

+

[

D11 D12

D21 0

]

=

[

�C1+D12L1��s−A−L2C2� −C1B2L1−D12L1�s−A�
0 C2�s−A−B2L1�

][

B1 B2

B1+L2D21 0

]

×
1

�s−A−L2C2��s−A−B2L1�
+

[

D11 D12

D21 0

]

=

[

�C1+D12L1��s−A−L2C2�B1− �C1B2L1+D12L1�s−A���B1+L2D21�

C2�s−A−B2L1��B1+L2D21�

�C1+D12L1��s−A−L2C2�B2

0

]

1

�s−A−L2C2��s−A−B2L1�
+

[

D11 D12

D21 0

]

Therefore

�11�s�

=
�C1+D12L1��s−A−L2C2�B1− �C1B2L1+D12L1�s−A���B1+L2D21�

�s−A−L2C2��s−A−B2L1�
+D11

=
�s−A��C1B1−D12L1L2D21�− �C1+D12L1�L2C2B1−C1B2L1�B1+L2D21�

�s−A−L2C2��s−A−B2L1�
+D11

=
�C1B1−D12D21L1L2��s−A�−C1B1�L2C2+B2L1�− �D12C2B1+D21C1B2�L1L2

�s−A−L2C2��s−A−B2L1�
+D11

Also

�12�s��21�s�

=

(

�C1+D12L1��s−A−L2C2�B2

�s−A−L2C2��s−A−B2L1�
+D12

)(

C2�s−A−B2L1��B1+L2D21�

�s−A−L2C2��s−A−B2L1�
+D21

)

=

(

�C1+D12L1�B2

s−A−B2L1

+D12

)(

C2�B1+L2D21�

s−A−L2C2

+D21

)

=
�C1+D12L1�B2+D12�s−A−B2L1�

s−A−B2L1

×
C2�B1+L2D21�+D21�s−A−L2C2�

s−A−L2C2

=
�C1B2+D12�s−A���C2B1+D21�s−A��

�s−A−L2C2��s−A−B2L1�
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Compare these expressions with Equation (8.12), clearly

G�s�=�11�s�+�12�s�Q�s��21�s�

Q.E.D.

With Theorems 8.3 and 8.4, we can now present the H2/H� approach.
We first consider H2 control. We make the following assumption on the
plant

F �s�=

⎛
⎝
A B1 B2

C1 D11 D12

C2 D21 D22

⎞
⎠=

[

F11�s� F12�s�
F21�s� F22�s�

]

(8.13)

Assumption 8.1

The plant has the following properties.

1. �A�B2� is stabilizable and �A�C2� is detectable.
2. D11 = 0� D22 = 0� DT

12D12 > 0� and D21D
T
21 > 0.

3. For all ��rank

([

A− j�I B2

C1 D12

])

= number of columns

rank

([

A− j�I B1

C2 D21

])

= number of rows

Under these assumptions, our goal is to solve the following H2 control
problem.

H2 Control Problem 8.1

For the plant given in Equation (8.13) satisfying Assumption 8.1, find a
controller with a proper real rational transfer function K�s� that internally
stabilizes the controlled system and minimizes the H2 norm �G�2 of the
transfer function G�s� from w to z.
We will call such a controller optimal H2 controller. To find the optimal

H2 controller, let us first solve the following two algebraic Riccati equations.

�A−B2�D
T
12D12�

−1DT
12C1�

TS1+S1�A−B2�D
T
12D12�

−1DT
12C1�

−S1B2�D
T
12D12�

−1BT
2 S1+CT

1 �I−D12�D
T
12D12�

−1DT
12�C1 = 0

(8.14)
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�A−B1D
T
21�D

T
21D21�

−1C2�S2+S2�A−B1D
T
21�D

T
21D21�

−1C2�
T

−S2C
T
2 �D

T
21D21�

−1C2S2+B1�I−DT
21�D

T
21D21�

−1D21�B
T
1 = 0

(8.15)

The optimal H2 controller is given in the following theorem.

Theorem 8.5

Let the plant be given in Equation (8.13) which satisfies Assumption 8.1.
Let S1, S2 be the solutions to the two algebraic Riccati Equations (8.14) and
(8.15) respectively. The optimal H2 controller for H2 Control Problem 8.1
is given by

K�s�=−L1�sI−A−B2L1−L2C2�
−1L2

where

L1 =−�DT
12D12�

−1�BT
2 S1+DT

12C1�

L2 =−�S2C
T
2 +B1D

T
21��D

T
21D21�

−1

Proof

Since �A�B2� is stabilizable and �A�C2� is detectable, the solutions to the two
algebraic Riccati Equations (8.14) and (8.15) exist and the corresponding
A+B2L1 and A+L2C2 are stable. By Theorem 8.3, all controllers that
internally stabilize the controlled system can be parameterized as

K�s�=M11�s�+M12�s�Q�s��I−M22�s�Q�s��−1M21�s�

where Q�s� is any proper real rational transfer function such that Q�s� ∈H�

and Mij �s� is given by

[

M11�s� M12�s�
M21�s� M22�s�

]

=

⎛

⎝

A+B2L1+L2C2 −L2 B2

L1 0 I
−C2 I 0

⎞

⎠

Furthermore, the transfer function of the controlled system is

G�s�=�11�s�+�12�s�Q�s��21�s�

where �ij �s� is given by

[

�11�s� �12�s�
�21�s� �22�s�

]

=

⎛

⎜

⎜

⎝

A+B2L1 −B2L1 B1 B2

0 A+L2C2 B1+L2D21 0
C1+D12L1 −D12L1 D11 D12

0 C2 D21 0

⎞

⎟

⎟

⎠
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Since the controller is obtained by solving algebraic Riccati equations
(8.14) and (8.15), it can be shown that �11 and �12Q�21 are orthogonal.
Hence

�G�2 = ��11�2+��12Q�21�2

Clearly, to minimize �G�2, we must select Q�s�= 0. Therefore

K�s�=M11�s�=−L1�sI−A−B2L1−L2C2�
−1L2

Q.E.D.

The following example illustrates the design of the optimal H2 controller.

Example 8.8

Consider the system in Example 8.7. Let us first check if Assumption 8.1 is
satisfied. Clearly

1. Since A is stable, �A�B2� is stabilizable and �A�C2� is detectable
2. D11 = 0� D22 = 0� DT

12D12 = 1> 0� and D21D
T
21 = 4> 0

3. For all �

rank

([

A− j�I B2

C1 D12

])

= rank

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

−5− j� 2 −4 6
0 −3− j� 0 8
0 7 −1− j� −5
−2 9 4 1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 4

rank

([

A− j�I B1

C2 D21

])

= rank

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

−5− j� 2 −4 7
0 −3− j� 0 −3
0 7 −1− j� 1
6 3 −1 1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 4

So Assumption 8.1 is satisfied. It is not difficult to see that since

CT
1 �I−D12�D

T
12D12�

−1DT
12�C1 = CT

1 �1−1�C1 = 0

and

B1�I−DT
21�D

T
21D21�D21�B

T
1 = B1�1−1�BT

1 = 0

the solutions to the algebraic Riccati equations

�A−B2�D
T
12D12�

−1DT
12C1�

TS1+S1�A−B2�D
T
12D12�

−1DT
12C1�

−S1B2�D
T
12D12�

−1BT
2 S1+CT

1 �I−D12�D
T
12D12�

−1DT
12�C1 = 0
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and

�A−B1D
T
21�D

T
21D21�

−1C2�S2+S2�A−B1D
T
21�D

T
21D21�

−1C2�
T

−S2C
T
2 �D

T
21D21�

−1C2S2+B1�I−DT
21�D

T
21D21�D21�B

T
1 = 0

are

S1 = 0

S2 = 0

Hence

L1 =−�DT
12D12�

−1�BT
2 S1+DT

12C1�=−�DT
12D12�

−1DT
12C1

=−C1 =
[
−2 −9 4

]

L2 =−�S2C
T
2 +B1D

T
21��D

T
21D21�

−1 =−B1D
T
21�D

T
21D21�

−1

=−B1/2=

⎡

⎣

−3�5
1�5
−0�5

⎤

⎦

The optimal H2 controller is then obtained as follows.

A+B2L1+L2C2 =

⎡

⎣

−5 2 −4
0 −3 0
0 7 −1

⎤

⎦+

⎡

⎣

6
8
−5

⎤

⎦

[

−2 −9 4
]

+

⎡

⎣

−3�5
1�5
−0�5

⎤

⎦

[

6 3 −1
]

=

⎡

⎣

−14 −62 −24�5
25 −70�5 −33�5
−13 50�5 19�5

⎤

⎦

K�s�=−L1�sI−A−B2L1−L2C2�
−1L2

=
[

−2 −9 4
]

⎡

⎣

s+14 62 24�5
−25 s+70�5 33�5
13 −50�5 s−19�5

⎤

⎦

−1⎡

⎣

−3�5
1�5
−0�5

⎤

⎦

=
18�5s2+125s+334�5

s3+65s2+2275s+9665

K�s� can be realized as

�̇=

⎡

⎣

−14 −62 −24�5
25 −70�5 −33�5
−13 50�5 19�5

⎤

⎦�+

⎡

⎣

−3�5
1�5
−0�5

⎤

⎦y

u=
[

−2 −9 4
]

�

MATLAB command ‘h2syn’ can also be used to synthesize an optimal
H2 controller as illustrated in the following example.
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Example 8.9

Consider the system

F �s�=

⎛
⎝
A B1 B2

C1 D11 D12

C2 D21 D22

⎞
⎠

where

A=

⎡

⎢

⎢

⎣

−5 2 −4 −7
0 −3 2 −6
0 7 −1 4
−2 3 5 8

⎤

⎥

⎥

⎦

B1 =

⎡

⎢

⎢

⎣

0 7
5 −3
0 1
−2 6

⎤

⎥

⎥

⎦

B2 =

⎡

⎢

⎢

⎣

6
8
−5
2

⎤

⎥

⎥

⎦

C1 =

[

−2 9 4 −1
3 0 −7 0

]

C2 =
[

6 3 −1 7
]

D11 =

[

0 0
0 0

]

D12 =

[

0
1

]

D21 =
[

1 0
]

and D22 = 0

We can check that Assumption 8.1 is satisfied. Using MATLAB command
‘h2syn’, we obtain the following optimal H2 controller

�̇=

⎡

⎢

⎢

⎣

−34387 −1864 385 −4576
−4550 −2478 516 −6067
−2661 −1199 5295 −2630
4556 2232 −816 5137

⎤

⎥

⎥

⎦

�+

⎡

⎢

⎢

⎣

583
773
434
−756

⎤

⎥

⎥

⎦

y

u=
[

108 −195 −324 −815
]

�

The above examples show how to solve the H2 control problem. Next,
we discuss an H� control problem. The H� control problem is similar, but
more complicated. We first make the following assumption on the plant
given in Equation (8.13).

Assumption 8.2

The plant given in Equation (8.13) has the following properties.

1. �A�B1� is controllable and �A�C1� is observable
2. �A�B2� is stabilizable and �A�C2� is detectable
3. D11 = 0� and D22 = 0

4. DT
12

[

C1 D12

]

=
[

0 I
]

5.

[

B1

D21

]

DT
21 =

[

0
I

]
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Actually, it is possible to relax the above assumption and still solve theH�

control problem. However, the solution will be more complex. Therefore,
in this book, we will present the solution to the H� control problem when
Assumption 8.2 is satisfied. Formally, the H� control problem is as follows.

H� Control Problem 8.2

For the plant given in Equation (8.13) satisfying Assumption 8.2 and for
a given �, find all controllers K�s�, if there are any, such that: (1) K�s�
internally stabilizes the controlled system; and (2) the transfer function G�s�
from w to z has the H� norm �G�� < �.
Note the difference between H2 Control Problem 8.1 and H� Control

Problem 8.2. The H2 control problem is to find a controller that minimizes
the H2 norm of G�s�. The H� control problem is to find controllers that
ensure that the H� norm of G�s� is less than a particular constant. The
reason for this difference is that, as shown in Section 8.3, while it is easy to
compute the H2 norm, it is much more difficult to compute the H� norm.

We will call a controller solvingH� Control Problem 8.2 aH� controller.
To find H� controllers, let us first solve the following two algebraic Riccati
equations.

ATS1+S1A+S1��
−2B1B

T
1 −B2B

T
2 �S1+CT

1 C1 = 0 (8.16)

AS1+S1A
T+S1��

−2CT
1C1−CT

2C2�S1+B1B
T
1 = 0 (8.17)

Theorem 8.6

Let the plant be given in Equation (8.13) which satisfies Assumption 8.2.
Let S1, S2 be the solutions to the two algebraic Riccati Equations (8.16)
and (8.17) respectively. There exists an H� controller such that �G�� < �
if and only if: (1) S1 > 0, S2 > 0; and (2) the spectrum radius of S1S2,
��S1S2�=max ���S1S2��< �2. If these two conditions are satisfied, then the
set of all H� controllers is given by

K�s�=M11�s�+M12�s�Q�s��I−M22�s�Q�s��−1M21�s�

whereQ�s� is any proper real rational transfer function such thatQ�s�∈H�,
�Q�� < � and Mij �s� is

[

M11�s� M12�s�
M21�s� M22�s�

]

=

⎛

⎝

A+�−2B1B
T
1 S1+B2L1+L2C2 −L2 �I−�−2S2S1�

−1B2

L1 0 I
−C2 I 0

⎞

⎠

with L1 =−BT
2 S1 and L2 =−�I−�−2S2S1�

−1S2C
T
2 .
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The proof of Theorem 8.6 is rather tedious and hence is omitted.
Using MATLAB command ‘hinfsyn’, we can synthesize an ‘optimal’ H�

controller that internally stabilizes the controlled system and ‘minimizes’
the H� norm �G�� of the transfer function G�s� from w to z. This is done
by using an algorithm of bisection similar to the one used in calculating the
H� norm. It can be used for systems not satisfying Assumption 8.2 as the
assumption is only sufficient, but not necessary.

Example 8.10

Consider the system in Example 8.7. Using MATLAB command ‘hinfsyn’
with � = 10000�� = 0, and tolerance of 1%, we obtain the following
‘optimal’ H� controller

�̇=

⎡

⎣

−14 −62 −24�5
25 −70�5 −33�5
−13 50�5 19�5

⎤

⎦�+

⎡

⎣

3�7596
−1�6113
0�5371

⎤

⎦y

u=
[

1�8619 −8�3785 −3�7238
]

�

Let us conclude this chapter by considering a more complex example of
a system with multiple inputs and multiple outputs.

Example 8.11

The system is given by

A=

⎡

⎢

⎢

⎢

⎢

⎣

−2�9252 −1�5104 0�4013 −4�8025 1�7004
3�5064 −3�3745 1�9835 −4�0158 −0�4383
2�1311 0�3975 −4�9795 −1�2584 3�3804
−4�1958 4�2333 3�3660 4�6748 3�2310
3�1870 −0�6288 3�8942 1�1959 0�4211

⎤

⎥

⎥

⎥

⎥

⎦

B1 =

⎡

⎢

⎢

⎢

⎢

⎣

−4�0761 0�4889
−2�0472 −3�4384
1�0224 4�2507
−3�1716 −2�9784
2�3317 −4�9155

⎤

⎥

⎥

⎥

⎥

⎦

� B2 =

⎡

⎢

⎢

⎢

⎢

⎣

1�8911 −0�2602
−0�9903 −4�8224
−1�2042 3�1995
4�0319 −4�4261
4�4335 −4�0987

⎤

⎥

⎥

⎥

⎥

⎦

C1 =

[

1�9665 −4�4242 2�2283 1�9572 1�2539
−3�5285 −4�3664 −4�6629 −2�7882 0�1329

]

C1 =

[

0�7571 3�9268 −2�0752 4�9402 4�7309
−2�1276 −4�0741 3�2190 −4�3218 4�2279

]
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D11 =

[

0 0
0 0

]

D12 =

[

1 0
0 2

]

D21 =

[

1 0
0 3

]

and D22 =

[

0 0
0 0

]

Using MATLAB, we obtain the ‘optimal’ H� controller as follows.

�̇=

⎡

⎢

⎢

⎢

⎢

⎣

13192 1162 6859 −8014 3137
15069 1283 7845 −9176 3577
−15053 −1342 −7808 9106 −3587
35705 3179 18529 −21621 8503
37162 3273 19304 −22548 8812

⎤

⎥

⎥

⎥

⎥

⎦

�+

⎡

⎢

⎢

⎢

⎢

⎣

1 −2
4 −4
4 0
−5 −1
3 −1

⎤

⎥

⎥

⎥

⎥

⎦

y

u=

[

4782 426 2483 −2899 1134
−3229 −283 −1676 1958 −767

]

��

8.6 NOTES AND REFERENCES

The H� control was first introduced by Zames [196]. Since then,
many papers and book have been published, including references
[15, 36, 50, 51, 54, 58–61, 67, 76, 87, 94, 153, 158, 200, 201]. Initially, the
H�/H2 approach is based in transfer function model. Results are obtained
using transfer functions in the frequency domain. Late, it was found the
H�/H2 approach can be effectively presented using the state space model
of systems. The state space model is what we use in this book because it is
simpler to use the state space model to handle with multivariable systems
with multiple inputs and multiple outputs. It also makes the presentation
uniform since all other chapters use the state space model.

8.7 PROBLEMS

8.1 For the following systems, calculate their H2 norms.

(a)

ẋ =

⎡

⎣

0 1 0
0 0 1
−3 −7 −1

⎤

⎦x+

⎡

⎣

7 0
0 −4
1 0

⎤

⎦u

y =

[

0 −3 6
7 −1 0

]

x
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(b)

ẋ =

⎡

⎢

⎢

⎣

−2 0 2 −3
5 −1 5 −6
0 0 −7 3
0 0 0 −4

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

0
4
−4
2

⎤

⎥

⎥

⎦

u

y =
[

−9 0 4 −2
]

x

(c)

ẋ =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0
0 0 1 0 0
−4 −7 −1 0 0
3 −6 9 −5 0
7 2 −5 1 −6

⎤

⎥

⎥

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎢

⎢

⎣

0
0
6
2
−4

⎤

⎥

⎥

⎥

⎥

⎦

u

y =
[

2 −8 −6 1 3
]

x

8.2 Given a function f�t� ∈ L2�0���, its Laplace transform is denoted by
F �s�= L�f�t��. Prove

1

2�

∫ �

−�
�F�j���2d�=

∫ �

−�
�f�t��2dt

8.3 For systems with the following transfer functions, calculate the H2

norms.

(a) G�s�=
−3s2+2s−6

s3+7s2+4s+5

(b) G�s�=
3s3+3s2−5s−9

s4+3s3+2s2+4s+7

(c) G�s�=
−6s5+3s4−4s3+3s2−5s−9

s6+3s5+5s4+9s3+2s2+4s+7

8.4 For the following systems, calculate their H� norms.

(a)

ẋ =

⎡

⎣

0 1 0
0 0 1
−3 −7 −1

⎤

⎦x+

⎡

⎣

7 0
0 −4
1 0

⎤

⎦u

y =

[

0 −3 6
7 −1 0

]

x+

[

0 1
2 0

]
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(b)

ẋ =

⎡

⎢

⎢

⎣

−2 0 2 −3
5 −1 5 −6
0 0 −7 3
0 0 0 −4

⎤

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎣

0
4
−4
2

⎤

⎥

⎥

⎦

u

y =
[

−9 0 4 −2
]

x

(c)

ẋ =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0
0 0 1 0 0
−4 −7 −1 0 0
3 −6 9 −5 0
7 2 −5 1 −6

⎤

⎥

⎥

⎥

⎥

⎦

x+

⎡

⎢

⎢

⎢

⎢

⎣

0
0
6
2
−4

⎤

⎥

⎥

⎥

⎥

⎦

u

y =
[

2 −8 −6 1 3
]

x−4

8.5 For the following general second-order system, calculate its H� and H2

norms.

G�s�=
�2

n

s2+2��ns+�2
n

8.6 For systems with the following transfer functions, calculate their H2

norms.

(a) G�s�=
2s3−3s2+2s−6

s3+7s2+4s+5

(b) G�s�=
3s3+3s2−5s−9

s4+3s3+2s2+4s+7

(c) G�s�=
3s6−6s5+3s4−4s3+3s2−5s−9

s6+3s5+5s4+9s3+2s2+4s+7

8.7 Consider the following stable system:

ẋ =

⎡

⎣

0 1 0
0 0 1

−6+�1 −9+�2 −3+�3

⎤

⎦x+

⎡

⎣

0
0
1

⎤

⎦u

y = x

where �1, �2, and �3 are uncertainties. Decompose the system as the
nominal system �A�B� and the uncertainty � as in Figure 8.2. Use
the small-gain theorem to find the bound on the uncertainty � that
guarantees the stability of the system.
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8.8 For the system

F �s�=

⎛
⎝
A B1 B2

C1 D11 D12

C2 D21 D22

⎞
⎠

with

A=

⎡

⎣

−5 −8 9
0 −2 0
0 5 −1

⎤

⎦ B1 =

⎡

⎣

6
−3
2

⎤

⎦ B2 =

⎡

⎣

−3
8
4

⎤

⎦

C1 =
[

−2 3 7
]

�C2 =
[

4 −3 −1
]

, D11 = 0, D12 = 5, D21 = 2, and
D22 = 0, find the elements of the transfer function F �s�. Also find all
controllers that internally stabilize the controlled system.

8.9 For the system in Problem 8.8, find the optimal H2 controller.
8.10 Simulate the controlled system obtained in Problem 8.9.
8.11 Consider the system

F �s�=

⎛

⎝

A B1 B2

C1 D11 D12

C2 D21 D22

⎞

⎠

where

A=

⎡

⎢

⎢

⎣

−3 0 −4 0
4 −5 2 6
−3 7 −2 4
0 3 5 7

⎤

⎥

⎥

⎦

B1 =

⎡

⎢

⎢

⎣

0 −1
−2 5
0 4
7 −3

⎤

⎥

⎥

⎦

B2 =

⎡

⎢

⎢

⎣

6
−3
7
2

⎤

⎥

⎥

⎦

C1 =

[

7 −6 4 −1
−3 0 5 0

]

C2 =
[

−1 3 8 7
]

D11 =

[

0 0
0 0

]

D12 =

[

0
1

]

D21 =
[

1 0
]

and D22 = 0

Find the H� controller.
8.12 Simulate the controlled system obtained in Problem 8.11.



9
Robust Active Damping

In this chapter,we present the first of three applications of the optimal control
approach developed in Chapters 5 and 6. We will design a robust active
damping control law for stability enhancement of vibration systems. Many
practical systems exhibit vibration: buildings, flexible structures, vehicles, etc.
How to control and reduce (damp) vibration is an important problem in terms
of safety, comfort, and durability. Vibration damping can be classified into
two types: passive and active. Passive damping tries to add some dampers to
the system,while active dampingwill use external force to actively control the
system to reduce the vibration.Wewill consider active damping.
To facilitate the discussion, we will introduce a special inner product

and the associated energy norm. The control law can then be obtained
by solving an LQR problem. Interestingly, the resulting control system is
no longer a ‘classical system’ in the sense that the stiffness and damping
matrices are no longer symmetric. We apply the results to active vehicle
suspension systems.

9.1 INTRODUCTION

Let us first consider the following example.

Example 9.1

Consider an active vehicle suspension system shown in Figure 9.1. In the
system, the mass M represents the body of the vehicle and m the unsprung

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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part of the vehicle including the tyres and axles. The connection between
the body and the unsprung part, or the suspension system, is modelled by
a spring K1 and a dashpot D. The spring K2 acts between the axle and the
road and models the stiffness of the tires. The active suspension is achieved
by applying a force u between M and m.
Assuming that gravity is balanced by the resting forces of the springs, we

can model the active suspension system as follows. Let x1, x2 be the resting
positions of masses M, m. The input to the system is the force u. The forces
due to the springs are linear with respect to the corresponding displace-
ment. The force of the dashpot is linear with respect to the corresponding
velocity.
The free body diagrams of two masses are shown in Figure 9.2. The

minus signs before some forces reflect the fact that the actual direction of a
force is opposite to the reference direction specified by the arrow. Applying
Newton’s second law, we obtain the following dynamic equations.

Mẍ1 = u−K1�x1−x2�−D�ẋ1− ẋ2�

D1

x2

x1

M

m

K1
u

Figure 9.1 An active vehicle suspension system.

M

m

u
−K1 (x1 − x2)

−K1(x1 − x2)

−D(x1 − x2)

u

−K2 x2

−D(x1 − x2)

Figure 9.2 Free body diagrams of the suspension system in Figure 9.1.
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mẍ2 =−u+K1�x1−x2�+D�ẋ1− ẋ2�−K2x2

The uncertainty of the system appears in the dashpot coefficient D as we
do not know its exact value, we assume that we know its bounds, that is,
D ∈ �Dmin�Dmax�.
In summary, we can write the dynamic equation of the system as follows.

[
M 0
0 m

][
ẍ1

ẍ1

]
+

[
K1 −K1

−K1 K1+K2

][
x1

x1

]
=

[
1

−1

]
u+

[
1

−1

]
D�ẋ1− ẋ2�

9.2 PROBLEM FORMULATION

To formulate the robust damping problem, let us consider the following
n-DOF (degree of freedom) linear vibration system with uncertainties.

Moẍ+Aox = Bou+Cofo�x� ẋ� (9.1)

where

x is the n-dimensional displacement vector

u is the m-dimensional control vector

Mo is the n×n mass matrix (symmetric and positive definite)

Ao is the n×n stiffness matrix (symmetric and positive definite)

Bo is a n×m matrix

Co is a n×p matrix

fo�x� ẋ� is the uncertainty

In the model, we have neglected internal damping for the sake of
simplicity, as it can be added without changing the problem significantly.
Our goal is to enhance the stability of the system under uncertainty. In

other words, we would like to design a feedback control to stabilize the
system under uncertainty. This is achieved by adding more damping to the
system.
In order to simplify the notation used in this chapter, we introduce the

following variables and matrices.

y =M1/2
o x

A=M−1/2
o AoM

−1/2
o
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B =M−1/2
o Bo

C =M−1/2
o Co

f�y� ẏ�= fo�M
−1/2
o y�M−1/2

o ẏ�

Then equation (9.1) can be rewritten as

M1/2
o ẍ+M−1/2

o AoM
−1/2
o M1/2

o x =M−1/2
o Bou+M−1/2

o Cofo

�M−1/2
o M1/2

o x�M−1/2
o M1/2

o ẋ�

that is,

ÿ+Ay = Bu+Cf�y� ẏ�

Note that the uncertainty f�y� ẏ� depends on y and ẏ. If the uncertainty
satisfies the matching condition, then B = C. Otherwise, we have B �= C.
As in Chapters 5 and 6, if the matching condition is not satisfied, then the
problem becomes more complex. We will consider both cases.
We make the following assumptions.

Assumption 9.1

The uncertainty f�y� ẏ� is bounded, that is, there exists a non-negative func-
tion gmax�y� ẏ� such that

�f�y� ẏ�� ≤ gmax�y� ẏ�

Let us now formulate our robust active damping problem. We stack the
displacement and its velocity to obtain the following first-order model.

d

dt

[
y
ẏ

]
=
[

0 I
−A o

][
y
ẏ

]
+
[
0
B

]
u+

[
0
C

]
f�y� ẏ�= Ã

[
y
ẏ

]
+
[
0
B

]
u+

[
0
C

]
f�y� ẏ�

where

Ã=
[

0 I
−A 0

]

In order to formulate robust active damping problem in a rigorous
fashion, we introduce the following inner product ��� ��E and the associ-
ated energy norm for matrix A =M−1/2

o AoM
−1/2
o , which is symmetric and

describes the mass and stiffness in the system. Given two vectors

v=
[
v1

v2

]
∈ R2n� w =

[
w1

w2

]
∈ R2n
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we define the inner product on R2n by

�v�w�E = �Av1�w1�+�v2�w2�

Hence, the corresponding energy norm is given by

�v�2E = �
√
Av1�2+�v2�2�

Note that the kinetic energy of a system is given by

1

2
�ẏ� ẏ� = 1

2
�M1/2

o x�TM1/2
o ẋ = 1

2
xTMoẋ

Similarly, the potential energy is given by

1

2
�Ay�y� = 1

2
�M−1/2

o AoM
−1/2
o M1/2

o x�TM1/2
o x = 1

2
�M−1/2

o Aox�
TM1/2

o x = 1

2
xTAox

Therefore, the total energy at time t is given by

E�t�= 1

2

∥∥∥∥
[
y�t�
ẏ�t�

]∥∥∥∥
2

E

Under the inner product defined above, the adjoint operator Ã∗ of A∗ is
given by

Ã∗ =
[
0 −I
A 0

]

This is because

〈
Ã∗v�w

〉
E
=

〈[
−v2

Av1

]
�

[
w1

w2

]〉

E

= �−Av2�w1�+�Av1�w2�
= �Av1�w2�+�v2�−Aw1�

=
〈[

v1

v2

]
�

[
w2

−Aw1

]〉

E

=
〈
v� Ãw

〉
E

Note that Ã∗+ Ã= 0.
We can now state the robust active damping problem as follows.
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Robust Active Damping Problem 9.1

For the following system

d

dt

[
y
ẏ

]
=

[
0 I

−A 0

][
y
ẏ

]
+

[
0
B

]
u+

[
0
C

]
f�y� ẏ�

find a feedback control u= uo�y� ẏ� such that the energy of the closed-loop
system decays to zero, that is

E�t�=
1

2

∥∥∥∥
[
y�t�
ẏ�t�

]∥∥∥∥
2

E

→ 0 as t →�

for all uncertainties f�y� ẏ� satisfying �f�y� ẏ�� ≤ gmax�y� ẏ�.

9.3 ROBUST ACTIVE DAMPING DESIGN

We will design the robust active damping by translating the robust control
problem into an optimal control problem. In order to construct the
corresponding optimal control problem, we first perform the orthogonal
decomposition of the uncertainties as outlined in Chapter 5.

[
0
C

]
f�y� ẏ�=

[
0
B

][
0
B

]+ [
0
C

]
f�y� ẏ�+

([
I 0
0 I

]
−
[
0
B

][
0
B

]+
)[

0
C

]
f�y� ẏ�

It can be shown that pseudo-inverse

[
0
B

]+

satisfies the following property

[
0
B

]+

= �0 B+ �

Therefore, the orthogonal decomposition becomes
[
0
C

]
f�y� ẏ�=

[
0

BB+C

]
f�y� ẏ�+

[
0

�I−BB+�C

]
f�y� ẏ�

With the above decomposition of the uncertainties, the dynamic equation
of the optimal control problem is given by

d

dt

[
y
ẏ

]
=

[
0 I

−A o

][
y
ẏ

]
+
[
0
B

]
u+

[
0

�I−BB+�C

]
v
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Define

B̃ =

[
0 0
B �I−BB+�C

]
�

then the dynamic equation becomes

d

dt

[
y
ẏ

]
= Ã

[
y
ẏ

]
+ B̃

[
u
v

]

In order to reduce the optimal control problem to a LQR problem, we
assume that the uncertainties are bounded linear in the energy norm.

�f�y� ẏ��2 ≤ gmax�y� ẏ�
2 ≤

〈
H

[
y
ẏ

]
�

[
y
ẏ

]〉

E

∥∥∥∥
[
0
B

]+ [
0
C

]
f�y� ẏ�

∥∥∥∥
2

= �B+C f�y� ẏ��2 ≤ fmax�y� ẏ�
2 ≤

〈
G

[
y
ẏ

]
�

[
y
ẏ

]〉

E

whereG andH are some positive semi-definite matrices. The corresponding
LQR problem is as follows.

LQR Problem 9.2

For the following system

d

dt

[
y
ẏ

]
= Ã

[
y
ẏ

]
+ B̃

[
u
v

]

find a feedback control �uo�vo� that minimizes the cost functional

∫ �

0

(〈
P

[
y
ẏ

]
�

[
y
ẏ

]〉

E

+�u�2+�2�v�2
)
dt

where P = 	2I+G+�2H with design parameters 	 and � (in this chapter,
we assume that 
= 1).
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This LQR problem can be solved by solving the following Riccati type
equation.

SÃ+ Ã∗S+P −SB̃R−1B̃TS = 0 (9.2)

where

R=
[
I 0
0 �2I

]

The control is then given by
[
uo

vo

]
=−R−1B̃TS

[
y
ẏ

]
(9.3)

The difference between Equation (9.2) and a standard algebraic Riccati
equation is that we have A∗ here instead of AT. Note that in most computer
software, the routine for solving an algebraic Riccati equation is written
for standard finite dimensional inner product space in which �v�w� = vTw,
instead of �v�w�E. In standard finite dimensional inner product space, the
adjoint of a real matrix is the same as its transpose. However, with inner
product �v�w�E, the adjoint and transpose of a real matrix are different in
general, that is, Ã∗ =−Ã �= ÃT. Therefore, Equation (9.2) for our problem
must be transformed into an equivalent ‘standard version’, in order to
obtain a numerical solution of the LQR problem.
To this end, we introduce the following two matrices:

S̃ =
[
A 0
0 I

]
S P̃ =

[
A 0
0 I

]
P

We can show that S̃ and P̃ have the following property.

Proposition 9.1

Matrices S̃ and P̃ are symmetric, that is

S̃T = S̃ P̃T = P̃

Proof

From the definition, P is self-adjoint with respect to inner product ��� ��E,
that is, �Pv�w�E = �v�Pw�E. Let

P =
[
P11 P12
P21 P22

]
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then we have

�Pv�w�E =
〈[

P11 P12
P21 P22

][
v1

v2

]
�

[
w1

w2

]〉

E

=
〈[

P11v1+P12v2

P21v1+P22v2

]
�

[
w1

w2

]〉

E

= �A�P11v1+P12v2��w1�+�P21v1+P22v2�w2�

= vT
1P

T
11Aw1+vT

2P
T
12Aw1+vT

1P
T
21w2+vT

2P
T
22w2

and

�v�Pw�E =
〈[

v1

v2

]
�

[
P11 P12
P21 P22

][
w1

w2

]〉

E

=
〈[

v1

v2

]
�

[
P11w1+P12w2

P21w1+P22w2

]〉

E

= �Av1� P11w1+P12w2�+�v2� P21w1+P22w2�

= vT
1AP11w1+vT

2P21w1+vT
1AP12w2+vT

2P22w2

Therefore

PT
11A= AP11 PT

12A= P21 PT
21 = AP12 PT

22 = P22

This implies

P̃T =
[
P11 P12
P21 P22

]T [
A 0
0 I

]
=

[
PT
11A PT

21

PT
12A PT

22

]
=

[
AP11 AP12
P21 P22

]

=
[
A 0
0 I

][
P11 P12
P21 P22

]
= P̃

Similarly, we can prove that

S̃T = S̃

Q.E.D.

Using the result and left-multiplying

[
A 0
0 I

]

on both sides of Equation (9.2), we obtain

[
A 0
0 I

]
SÃ+

[
A 0
0 I

]
Ã∗S+

[
A 0
0 I

]
P −

[
A 0
0 I

]
SB̃R−1B̃TS = 0
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Since
[
A 0
0 I

]
Ã∗ =

[
A 0
0 I

][
0 −I
A 0

]
=

[
0 −A
A 0

]
=

[
0 −A
I 0

][
A 0
0 I

]

=ÃT

[
A 0
0 I

]

B̃T =
([

A 0
0 I

]
B̃

)T

= B̃T

[
A 0
0 I

]

we have
[
A 0
0 I

]
SÃ+ ÃT

[
A 0
0 I

]
S+

[
A 0
0 I

]
P −

[
A 0
0 I

]
SB̃R−1B̃T

[
A 0
0 I

]
S = 0

or

S̃Ã+ ÃTS̃+ P̃ − S̃B̃R−1B̃TS̃ = 0 (9.4)

This is a standard algebraic Riccati equation that can be solved using
MATLAB, for example. Let the solution be

S̃ =
[
S̃11 S̃12
S̃21 S̃22

]

Then the corresponding optimal control (9.3) can be written as

[
uo

vo

]
=−R−1B̃TS

[
y
ẏ

]
=−R−1B̃T

[
A 0
0 I

]
S

[
y
ẏ

]
=−R−1B̃TS̃

[
y
ẏ

]

or

[
uo

vo

]
=−

[
I 0
0 �2I

]−1 [
0 0
B �I−BB+�C

]T
[
S̃11 S̃12
S̃21 S̃22

][
y
ẏ

]

=−
[

BT

�−2CT �I−BB+�

]
� S̃21 S̃22 �

[
y
ẏ

]

The sufficient condition 	2I−2�2LTL> 0 of Theorem 5.3 then becomes

	2I−2�−2
[
S̃21 S̃22

]T
�I−BB+�CCT�I−BB+�

[
S̃21 S̃22

]
> 0

If this condition is satisfied, then the robust control is given by

uo=−BT
oM

−1/2
o �̃S21y+ S̃22ẏ�

=−BT
oM

−1/2
o �̃S21M

1/2
o x+ S̃22M

1/2
o ẋ�

(9.5)
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If the matching condition is satisfied, that is, Bo = Co, then

B̃ =

[
0
B

]

and we will take 	 = 1 and � = 0. In this case, the LQR problem is as
follows. For the following system

d

dt

[
y
ẏ

]
= Ã

[
y
ẏ

]
+ B̃u

find a feedback control u= uo�y� ẏ� that minimizes the cost functional

∫ �

0

(〈
�I+G�

[
y
ẏ

]
�

[
y
ẏ

]〉

E

+
∥∥u

∥∥2
)

dt

The solution to the above LQR problem always exists, and so is Robust
Active Damping Problem 9.1

9.4 ACTIVE VEHICLE SUSPENSION SYSTEM

Let us now apply the results to the active vehicle suspension system discussed
in Section 9.1. Its dynamics is given by

Mẍ1 = u−K1�x1−x2�−D�ẋ1− ẋ2�

mẍ2 =−u+K1�x1−x2�+D�ẋ1− ẋ2�−K2x2

where

M = 3000kg

m= 500kg

K1 = 3000N/m

K2 = 30000N/m

D ∈ �500�1000� N/ms−1 is the uncertainty

In other words

Mo =
[
3000 0
0 500

]

Ao =
[

3000 −3000
−3000 33000

]
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Bo =

[
1

−1

]

Co =Bo

fo�x� ẋ� =D�ẋ2− ẋ1�

Therefore

y =M1/2
o x =

[
54�77 0
0 22�36

]
x

A =M−1/2
o AoM

−1/2
o =

[
1 −2�45

−2�45 66

]

B =M−1/2
o Bo =

[
0�0183

−0�0447

]

C =B

f�y� ẏ�=fo�M
−1/2
o y�M−1/2

o ẏ�=D�0�0447ẏ2−0�0183ẏ1�

Since the matching condition is satisfied, we solve the LQR problem for

d

dt

[
y
ẏ

]
= Ã

[
y
ẏ

]
+ B̃u

with

Ã=

[
0 I

−A 0

]
=

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−1 2�45 0 0
2�45 −66 0 0

⎤
⎥⎥⎦

B̃ =

[
0
B

]
=

⎡
⎢⎢⎣

0
0

0�0183
−0�0447

⎤
⎥⎥⎦

The cost functional is
∫ �

0

(〈
�I+G�

[
y
ẏ

]
�

[
y
ẏ

]〉

E

+
∥∥u

∥∥2
)
dt

To find G=
[
G1 G3

G2 G4

]
, we note

∥∥B+Cf�y� ẏ�
∥∥2= ẏT

[
−0�0183
0�0447

]
D2

[
−0�0183 0�0447

]
ẏ

≤ ẏT
[

333 −816
−816 2000

]
ẏ



ACTIVE VEHICLE SUSPENSION SYSTEM 289

and
〈
G

[
y
ẏ

]
�

[
y
ẏ

]〉

E

=
[
yT ẏT

][GT
1A GT

3

GT
2A GT

4

][
y
ẏ

]

Hence, G1 =G2 =G3 = 0 and

G4 =

[
333 −816

−816 2000

]

Consequently

P = I+G=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 334 −816
0 0 −816 2001

⎤
⎥⎥⎦

P̃ =

[
A 0
0 I

]
P =

⎡
⎢⎢⎣

1 −2�45 0 0
−2�45 66 0 0

0 0 334 −817
0 0 −817 2001

⎤
⎥⎥⎦

Solving the algebraic Riccati Equation (9.4)

S̃Ã+ ÃTS̃+ P̃ − S̃B̃R−1B̃TS̃ = 0

with R= 1 using MATLAB, we obtain

S̃ =

⎡
⎢⎢⎣

1003�51 −2450�98 0�62 0�05
−2450�98 66035�77 −3�14 0�38

0�62 −3�14 1003�67 0�13
0�05 0�38 0�13 1000�49

⎤
⎥⎥⎦

The optimal control is given by Equation (9.5)

uo=−BT
oM

−1/2
o �̃S21M

1/2
o x+ S̃22M

1/2
o ẋ�

=−0�500x1+1�665x2−1003�344ẋ1+1000�442ẋ2

To test the robustness of the control thus obtained, we simulate the
actual responses of the system for different D. We use the following initial
conditions.

x1�0�= 0�1

x
2
�0�=−0�1

ẋ1�0�= 0

ẋ
2
�0�= 0
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For D = 500, x1, x2 are given in Figure 9.3 and ẋ1, ẋ2 are given in
Figure 9.4. (The slow dynamics occurs for x1.)
For D = 750, x1, x2 are given in Figure 9.5 and ẋ1, ẋ2 are given in

Figure 9.6.
For D = 1000, x1, x2 are given in Figure 9.7 and ẋ1, ẋ2 are given in

Figure 9.8.
From the figures, we can see that for the same control, the system

responses to different D are very similar.
In comparison, we also simulated the system without control (that is,

without active damping). The resulting x1, x2 are shown in Figure 9.9 and
ẋ1, ẋ2 are shown in Figure 9.10. Obviously, without active damping, the
car vibrates much more.

9.5 DISCUSSION

Consider the vibration system

ÿ+Ay = Bu+Cf�y� ẏ�

If the uncertainty is from actuators only, then the matching condition
will be satisfied. That is, C = BC ′ for some C ′. Therefore, the sufficient
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0.1
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Figure 9.3 Simulation of displacements for D = 500.
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Figure 9.4 Simulation of velocities for D = 500.
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Figure 9.5 Simulation of displacements for D = 750.
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Figure 9.6 Simulation of velocities for D = 750.
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Figure 9.7 Simulation of displacements for D = 1000.
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Figure 9.8 Simulation of velocities for D = 1000.
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Figure 9.9 Simulation of displacements without active damping.
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Figure 9.10 Simulation of velocities without active damping.

condition for robust control is automatically satisfied. In other words, the
robust active damping control always guarantees robust stability.
In the absence of uncertainty, that is f = 0, it is well known that a natural

choice is to use collocated actuators/sensors to construct the following rate
feedback through the so-called direct connection

u=−kBTẏ (9.6)

where k stands for the gain and the measurements are z= BTẏ.The resulting
closed-loop system is

ÿ+kBBTẏ+Ay = 0 (9.7)

Here, we point out that, the direct rate feedback (9.6) can also be derived
through our approach. In fact, by letting P = k2B̃B̃T� k > 0 Equation (9.2)
becomes

SÃ+ Ã∗S+k2B̃B̃T−SB̃R−1B̃TS = 0

It can be shown that S = kI is the solution to the above problem

SÃ+ Ã∗S+k2B̃B̃T−SB̃R−1B̃TS = kÃ+kÃ∗+k2B̃B̃T−k2B̃R−1B̃T
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Since Ã+ Ã∗ = 0 and R= I, we have

SÃ+ Ã∗S+k2B̃B̃T−SB̃R−1B̃TS = 0

By Equation (9.3), the corresponding control is

[
uo

vo

]
=−R−1B̃TS

[
y
ẏ

]
=−

[
0 0
B �I−BB+�C

]T [
y
ẏ

]
=−

[
BTẏ

CT �I−BB+�ẏ

]

which is the direct rate feedback.
In general, with the robust active damping control law given by Equa-

tion (9.5)

uo =−BT
oM

−1/2
o �̃S21M

1/2
o x+ S̃22M

1/2
o ẋ�

the closed-loop system becomes

Moẍ+Aox+BoB
T
oM

−1/2
o �̃S21M

1/2
o x+ S̃22M

1/2
o ẋ�= Cofo�x� ẋ�

or

Moẍ+�1ẋ+�2x = Cofo�x� ẋ�

where �1 = BoB
T
oM

−1/2
o S̃22M

1/2
o and �2 = Ao + BoB

T
oM

−1/2
o S̃21M

1/2
o . In

general, neither �1 nor �2 is symmetric. Thus, the closed-loop system is
no longer a ‘classical’ vibration system. As for a classical vibration system,
it is usually assumed that Mo is symmetric and positive-definite, and that
�1 and �2 are symmetric and positive semi-definite. These assumptions
have solid footing in the theory of Lagrangian dynamics. In the last several
decades, classical systems have constituted a subject of intense investigation
in vibration theory.

9.6 NOTES AND REFERENCES

We have discussed robust active damping of vibration systems. We first
formulated the active damping problem as a robust control problem. We
then introduced an inner product that corresponds to the energy stored in
the system, including both the kinetic energy and potential energy. This
norm allows us to solve the robust damping problem efficiently. The solu-
tion to the robust damping problem is obtained by translating it into an
optimal control problem. Since the inner product used here is different
from that used in Chapter 5, the method used here to solve the robust
damping problem is also different. We also applied the method to an active
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vehicle suspension system. The simulation results show some very nice
performance. Our initial work on robust active damping is published in
reference [109].
There are other approaches to the stability enhancement of vibration

systems. For example, in reference [11] a stochastic linear quadratic Guas-
sian (LQG)-based approach to the design of compensators for stability
enhancement applicable to flexible multibody systems with collocated rate
sensors/actuators was presented. Frequency-domain approaches to compen-
sator design for stability enhancement were also presented in references
[16, 47]. Our optimal control approach provides another avenue to stability
enhancement of vibration systems.
The use of modern control devices such as microprocessors can easily lead

to equations for which matrices no longer have any symmetry or definiteness
property. The asymmetry is sometimes addressed in the context of gyro-
scopic and follower forces. Linear systems governed by equations for which
matrices lack any specific symmetry or definiteness will be termed nonclas-
sical systems. These systems arise especially frequently in the emerging
area of microdynamics. Nonclassical systems will be encountered more
frequently in the future as microdevices need to be designed with higher
precision. In reference [31] a necessary and sufficient condition under which
nonclassical linear systems can be decoupled or become solvable was given.
It is also the first attempt at an organized investigation of nonclassical
systems. More details can be found in [31] and reference cited therein.



10
Robust Control of

Manipulators

In this chapter, we apply the optimal control approach to robust control
of robot manipulators. The manipulator control problem to be solved can
be described as follows. Suppose that a robot manipulator is been used
to move an unknown object. To control the manipulator, the following
uncertainties must be dealt with: (1) the weight of the object is unknown
because the object itself is not known beforehand; and (2) the friction and
other parameters in the manipulator dynamics may be uncertain because it
is difficult to model and measure them precisely. Our goal is to design a
robust control that can handle these uncertainties.
We can formulate this robust control problem in our framework. It turns

out that, for robot manipulators, the matching condition is satisfied, but
there is uncertainty in the input matrix. We will derive a general robust
control law using the optimal control approach and apply it to a two-joint
SCARA-type robot.

10.1 ROBOT DYNAMICS

A common way to derive robot dynamics is to use Lagrange’s equation of
motion, which relates generalized coordinates with generalized forces via
the kinetic and potential energies of a conservative system.

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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To present Lagrange’s equation, let us first recall that the kinetic energy
of a mass m moving with a linear velocity of v is given by

K =
1

2
mv2

Similarly, an object with moment of inertia J rotating at angular velocity
� is given by

K =
1

2
J�2

The potential energy of a mass m at a height h in a gravitational field is
given by

P =mgh

Lagrange’s equation can then be written as

d

dt

�L

�q̇
−

�L

�q
= � (10.1)

where

q is an n-dimensional vector of generalized coordinates qi

� is an n-dimensional vector of generalized forces �i
L= K−P

the difference between the kinetic and potential energies, is the Lagrangian.

Example 10.1

Let us consider a two-link planar revolution/prismatic (RP) robot arm
shown in Figure 10.1. For simplicity, we assume that the link masses are
concentrated at the centers of masses. The parameters associated with the
first link are

l1 the length of link 1
r1 the distance from joint 1 to the centre of mass
m1 the mass of link 1

The parameters associated with the second link are

l2 the length of link 2
r2 the distance from joint 2 to the centre of mass
m2 the mass of link 2
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m2

θ2

θ1
x

y

x1 x2 xL

y1

y2

yL

m1

mL

Figure 10.1 Two-link planar RP robot arm.

The robot will pick a load described by

mL the mass of the load

To describe the dynamics of the robot, we define the following generalized
coordinates and generalized forces.

�1 the angle of link 1 relative to the horizontal line
�2 the angle of link 2 relative to link 1
�1 the torque applied at joint 1
�2 the torque applied at joint 2

From Figure 10.1, it is easy to see that the x–y coordinates of masses m1,
m2, mL are given as follows.

x1 = r1 cos�1

x2 = l1 cos�1+ r2 cos��1+�2�

xL = l1 cos�1+ l2 cos��1+�2�

y1 = r1 sin�1

y2 = l1 sin�1+ r2 sin��1+�2�

yL = l1 sin�1+ l2 sin��1+�2�

Their derivatives are

ẋ1 =−r1�̇1 sin�1

ẋ2 =−l1�̇1 sin�1− r2��̇1+ �̇2� sin��1+�2�

ẋL =−l1�̇1 sin�1− l2��̇1+ �̇2� sin��1+�2�



300 ROBUST CONTROL OF MANIPULATORS

ẏ1 = r1�̇1 cos�1

ẏ2 = l1�̇1 cos�1+ r2��̇1+ �̇2� cos��1+�2�

ẏL = l1�̇1 cos�1+ l2��̇1+ �̇2� cos��1+�2�

Hence, the kinetic and potential energies of link 1 are

K1 =
1

2
m1v

2
1 =

1

2
m1�ẋ

2
1+ ẏ21�=

1

2
m1r

2
1 �̇

2
1

P1 =m1gh1 =m1gy1 =m1gr1 sin�1

The kinetic and potential energies of link 2 are

K2 =
1

2
m2v

2
2 =

1

2
m2�ẋ

2
2+ ẏ22�

=
1

2
m2��l1�̇1 sin�1+ r2��̇1+ �̇2� sin��1+�2��

2

+ �l1�̇1 cos�1+ r2��̇1+ �̇2� cos��1+�2��
2�

=
1

2
m2�l

2
1�̇

2
1 + r22 ��̇1+ �̇2�

2+2l1�̇1r2��̇1+ �̇2� cos�2�

P2 = m2gh2 =m2gy2 =m2g�l1 sin�1+ r2 sin��1+�2��

The kinetic and potential energies of load are

KL =
1

2
mLv

2
L =

1

2
m2�ẋ

2
L+ ẏ2L�

=
1

2
mL��l1�̇1 sin�1+ l2��̇1+ �̇2� sin��1+�2��

2

+ �l1�̇1 cos�1+ l2��̇1+ �̇2� cos��1+�2��
2�

=
1

2
mL�l

2
1�̇

2
1 + l22��̇1+ �̇2�

2+2l1�̇1l2��̇1+ �̇2� cos�2�

PL = mLghL =mLgyL =mLg�l1 sin�1+ l2 sin��1+�2��

Therefore, the Lagrangian for the entire arm is

L= K1+K2+KL−P1−P2−PL

=
1

2
m1r

2
1 �̇

2
1 +

1

2
m2�l

2
1�̇

2
1 + r22 ��̇1+ �̇2�

2+2l1�̇1r2��̇1+ �̇2� cos�2�

+
1

2
mL�l

2
1�̇

2
1 + l22��̇1+ �̇2�

2+2l1�̇1l2��̇1+ �̇2� cos�2�

−m1gr1 sin�1−m2g�l1 sin�1+ r2 sin��1+�2��

−mLg�l1 sin�1+ l2 sin��1+�2��
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To derive Lagrange’s equation, let us first calculate

�L

��̇1
= m1r

2
1 �̇1+m2�l

2
1�̇1+ r22 ��̇1+ �̇2�+ l1r2�2�̇1+ �̇2� cos�2�

+mL�l
2
1�̇1+ l22��̇1+ �̇2�+ l1l2�2�̇1+ �̇2� cos�2�

d

dt

�L

��̇1
= m1r

2
1 �̈1

+m2�l
2
1�̈1+ r22 ��̈1+ �̈2�+ l1r2�2�̈1+ �̈2� cos�2− l1r2�2�̇1+ �̇2��̇2 sin�2�

+mL�l
2
1�̈1+ l22��̈1+ �̈2�+ l1l2�2�̈1+ �̈2� cos�2− l1l2�2�̇1+ �̇2��̇2 sin�2�

�L

��1
=−m1gr1 cos�1−m2g�l1 cos�1+ r2 cos��1+�2��

−mLg�l1 cos�1+ l2 cos��1+�2��

�L

��̇2
= m2�r

2
2 ��̇1+ �̇2�+ l1r2�̇1 cos�2�+mL�l

2
2��̇1+ �̇2�+ l1l2�̇1 cos�2�

d

dt

�L

��̇2
= m2�r

2
2 ��̈1+ �̈2�+ l1r2�̈1 cos�2− l1r2�̇1�̇2 sin�2�

+mL�l
2
2��̈1+ �̈2�+ l1l2�̈1 cos�2− l1l2�̇1�̇2 sin�2�

�L

��2
=−m2l1�̇1r2��̇1+ �̇2� sin�2−mLl1�̇1l2��̇1+ �̇2� sin�2

−m2gr2 cos��1+�2�−mLgl2 cos��1+�2�

Lagrange’s Equation (10.1) now becomes

d

dt

�L

��̇1
−

�L

��1
= �1 ⇒

m1r
2
1 �̈1+m2�l

2
1�̈1+ r22 ��̈1+ �̈2�+ l1r2�2�̈1+ �̈2� cos�2− l1r2�2�̇1+ �̇2��̇2 sin�2�

+mL�l
2
1�̈1+ l22��̈1+ �̈2�+ l1l2�2�̈1+ �̈2� cos�2− l1l2�2�̇1+ �̇2��̇2 sin�2�

+m1gr1 cos�1+m2g�l1 cos�1+ r2 cos��1+�2��+mLg�l1 cos�1

+ l2 cos��1+�2��= �1

d

dt

�L

��̇2
−

�L

��2
= �2 ⇒

m2�r
2
2 ��̈1+ �̈2�+ l1r2�̈1 cos�2− l1r2�̇1�̇2 sin�2�+mL�l

2
2��̈1+ �̈2�+ l1l2�̈1 cos�2

− l1l2�̇1�̇2 sin�2�+m2l1�̇1r2��̇1+ �̇2� sin�2+mLl1�̇1l2��̇1+ �̇2� sin�2

+m2gr2 cos��1+�2�+mLgr2 cos��1+�2�= �2
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Or, in matrix form
[
m1r

2
1 +m2l

2
1+m2r

2
2 +2m2l1r2 cos�2+mLl

2
1+mLl

2
2+2mLl1l2 cos�2

m2r
2
2 +m2l1r2 cos�2+mLl

2
2+mLl1l2 cos�2

m2r
2
2 +m2l1r2 cos�2+mLr

2
2 +mLl1l2 cos�2

m2r
2
2 +mLl

2
2

][
�̈1
�̈2

]

+

[
−m2l1r2�2�̇1+ �̇2��̇2 sin�2−mLl1l2�2�̇1+ �̇2��̇2 sin�2

m2l1�̇
2
1r2 sin�2+mLl1�̇

2
1l2 sin�2

]

+

[
m1gr1 cos�1+m2g�l1 cos�1+ r2 cos��1+�2��+mLg�l1 cos�1

+l2 cos��1+�2��m2gr2 cos��1+�2�+mLgr2 cos��1+�2�

]
=

⎡

⎣

�1

�2

⎤

⎦

10.2 PROBLEM FORMULATION

As illustrated in Example 10.1, using Lagrange’s equation, we can derive
the dynamics of robot manipulator as

M�q�q̈+V�q� q̇�+U�q̇�+W�q�= �

where

q is the generalized coordinate vector
� is the generalized force vector
M�q� is the inertia matrix
V�q� q̇� is the Coriolis/centripetal vector
W�q� is the gravity vector
U�q̇� is the friction vector

For simplicity, we denote

N�q� q̇�= V�q� q̇�+U�q̇�+W�q�

There are uncertainties in M�q� and V�q� q̇� due to issues such as the
unknown load to be picked and unmodelled frictions. We assume the
following bounds on the uncertainties.

Assumption 10.1

There exist positive definite matrices Mo�q� and Mmin�q� such that

Mo�q�≥M�q�≥Mmin�q�
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Assumption 10.2

There exist a vector No�q� q̇� and a nonnegative function nmax�q� q̇� such that

∥

∥N�q� q̇�−No�q� q̇�
∥

∥≤ nmax�q� q̇�

Our robust control problem is to design a control law to control the robot
manipulator from some initial position to �q� q̇� = �0�0�. A more general
robust tracking problem can be studied if we introduce a desired trajectory.
To derive the state equation for the robust control problem, we define

the state variables in the usual manner

x1 = q

x2 = q̇

Define the control variable as

u=Mo�q�
−1��−No�q� q̇��

Then the dynamics of the robot manipulator become

ẋ1 = q̇ = x2

ẋ2 = q̈ =M�q�−1��−N�q� q̇��

=M�q�−1��−No�q� q̇��+M�q�−1�No�q� q̇�−N�q� q̇��

=M�q�−1Mo�q�M
−1
o �q���−No�q� q̇��+M�q�−1�No�q� q̇�−N�q� q̇��

=M�x1�
−1Mo�x1�u+M�x1�

−1�No�x1�x2�−N�x1�x2��

Let us define

h�x�=M�x1�
−1Mo�x1�− I

f�x�=M�x1�
−1�No�x1�x2�−N�x1�x2��

(10.2)

The state equation becomes

ẋ1 = x2

ẋ2 = �u−h�x�u�+ f�x�

which, in matrix form, reads as follows

ẋ = Ax+B�u+h�x�u�+Bf�x�
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where

x =

[

x1

x2

]

A=

[

0 I
0 0

]

B =

[

0
I

]

Therefore, our robust control problem can be stated as follows.

Robust Manipulator Control Problem 10.1

Find a feedback control law u= uo�x� such that the closed-loop system

ẋ = Ax+B�uo�x�+h�x�uo�x��+Bf�x�

is globally asymptotically stable for all uncertainties f�x�, h�x� satisfying
Assumptions 10.1 and 10.2.

10.3 ROBUST CONTROL DESIGN

Since the uncertainties h�x�, f�x� satisfy Assumptions 10.1 and 10.2, they
are bounded as follows.

h�x�= M�x1�
−1Mo�x1�− I ≥ 0

∥

∥f�x�
∥

∥=
∥

∥M�x1�
−1�No�x1�x2�−N�x1�x2��

∥

∥

≤
∥

∥M�x1�
∥

∥

−1∥
∥�No�x1�x2�−N�x1�x2��

∥

∥

≤
∥

∥Mmin�x1�
∥

∥

−1
nmax�x1�x2�

= fmax�x�

Using the results of Chapter 6, we can translate Robust Control Problem
10.1 into the following problem.

Optimal Control Problem 10.2

For the system

ẋ = Ax+Bu
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find a feedback control law u = uo�x� that minimizes the following cost
functional

∫ �

0
�fmax�x�

2+xTx+uTu�dt

Note that the matching condition holds for robot manipulators. By
Theorem 4.3, if the solution to the Optimal Control Problem 10.2 exists,
then it is a solution to the Robust Control Problem 10.1.
Although for the f�x� given in Equation (10.2),

∥

∥f�x�
∥

∥

2
may not be

quadratically bounded, in many cases, we can find the largest physically
feasible region of x and determine a quadratic bound for

∥

∥f�x�2
∥

∥. Assume
such a bound is given by

f�x�Tf�x�≤ xTFx

for some positive definite matrix F . Then Optimal Control Problem 10.2
becomes the following LQR problem.

LQR Problem 10.3

For the system

ẋ = Ax+Bu

find a feedback control law u= Kx that minimizes the cost functional
∫ �

0
�xTFx+xTx+uTu�dt

The solution can be obtained by first solving the algebraic Riccati equa-
tion (note that R= R−1 = I)

ATS+SA+ F + I−SBBTS = 0

The optimal control is then given by

u=−BTSx

Because of the special structure of A and B, the solution to the algebraic
Riccati equation exhibits a simple form. To see this, let

F =

[

F1 F2
F T
2 F3

]

S =

[

S1 S2
ST
2 S3

]
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Substitute A�B� F and S into the algebraic Riccati equation, we get

[

0 I
0 0

]T [
S1 S2
ST
2 S3

]

+

[

S1 S2
ST
2 S3

][

0 I
0 0

]

+

[

F1 F2
F T
2 F3

]

+

[

I 0
0 I

]

−

[

S1 S2
ST
2 S3

][

0
I

][

0
I

]T [
S1 S2
ST
2 S3

]

=

[

0 0
0 0

]

This implies

F1+ I−S2S
T
2 = 0

S1+ F2−S2S3 = 0

S2+ST
2 + F3+ I−S2

3 = 0

Therefore

S1 = �F1+ I�1/2�2�F1+ I�1/2+ F3+ I�1/2− F2

S2 = �F1+ I�1/2

S3 = �2�F1+ I�1/2+ F3+ I�1/2

The optimal control is

u=−BTSx =−

[

0
I

]T [
S1 S2
ST
2 S3

][

x1

x2

]

=−�F1+ I�1/2x1− �2�F1+ I�1/2+ F3+ I�1/2x2

10.4 SIMULATIONS

We now illustrate the performance of the control law by simulation of a
two-joint SCARA-type robot. The dynamics of the robot is similar to the
one we discussed in Section 10.2, except for the following. We no longer
assume that the link masses are concentrated at the centres of masses.
Hence, each link has a moment of inertia. We also assume that there are
frictions in the joints. The configuration of the robot manipulator is shown
in Figure 10.2.
We use the same notation as in Section 10.2 for the parameters and vari-

ables of the manipulator. However, we need to add the following notation.

J1 the moment of inertia of link 1 with respect to its center of mass
J2 the moment of inertia of link 2 with respect to its center of mass
b1�̇1 the friction at joint 1
b2�̇2 the friction at joint 2
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J2

J1

mL

Figure 10.2 Two-joint SCARA-type robot manipulator.

The following values are used in the simulation.

m1 = 13	86oz

m2 = 3	33oz

J1 = 62	39oz in2

J2 = 110	70oz in2

l1 = 8 in

l2 = 6 in

r1 = 4	12 in

r2 = 3	22 in

b1 = 20oz in s

b2 = 50oz in s

mL ∈ 
5�20�oz

We simulate the system with the goal of moving the manipulator from
any initial position to the upward position, that is, �1 = 90�, �2 = 0�. For
convenience, let us define

q =

[

q1

q2

]

=

[

90�−�1
�2

]

� � =

[

�1
�2

]

then the dynamic equation of the manipulator is given by
[

M11 M12

M21 M22

][

q̈1

q̈2

]

+

[

V1

V2

]

+

[

U1

U2

]

+

[

W1

W2

]

=

[

�1
�2

]

The elements in the above equation can be calculated as follows.

M11 = J1+ J2+m1r
2
1 +m2l

2
1+m2r

2
2 +2m2l1r2 cos�2+mLl

2
1+mLl

2
2

+2mLl1l2 cosq2
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= J1+ J2+m1r
2
1 +m2l

2
1+m2r

2
2 +2m2l1r2 cosq2+mLl

2
1+mLl

2
2

+2mLl1l2 cosq2

M12 = J2+m2r
2
2 +m2l1r2 cos�2+mLl

2
2+mLl1l2 cos�2

= J2+m2r
2
2 +m2l1r2 cosq2+mLl

2
2+mLl1l2 cosq2

M21 = J2+m2r
2
2 +m2l1r2 cos�2+mLl

2
2+mLl1l2 cos�2

= J2+m2r
2
2 +m2l1r2 cosq2+mLl

2
2+mLl1l2 cosq2

M22 = J2+m2r
2
2 +mLl

2
2

V1 =−m2l1r2�2�̇1+ �̇2��̇2 sin�2−mLl1l2�2�̇1+ �̇2��̇2 sin�2

=−m2l1r2�−2q̇1+ q̇2�q̇2 sinq2−mLl1l2�−2q̇+ q̇2�q̇2 sinq2

= �m2l1r2+mLl1l2��2q̇1− q̇2�q̇2 sinq2

V2 =m2l1�̇
2
1r2 sin�2+mLl1�̇

2
1l2 sin�2

=m2l1q̇
2
1r2 sinq2+mLl1q̇

2
1l2 sinq2

= �m2l1r2+mLl1l2�q̇
2
1 sinq2

U1 =b1�̇1 =−b1q̇1

U2 =b2�̇2 = b2q̇2

W1 = m1gr1 cos�1+m2g�l1 cos�1+ r2 cos��1+�2��+mLg�l1 cos�1

+ l2 cos��1+�2��

= m1gr1 sinq1+m2g�l1 sinq1+ r2 sin�q1+q2��+mLg�l1 sinq1

+ l2 sin�q1+q2��

= �m1gr1+m2gl1+mLgl1� sinq1+ �m2gr2+mLgl2� sin�q1+q2�

W2 = m2gr2 cos��1+�2�+mLgr2 cos��1+�2�

= m2gr2 sin�q1+q2�+mLgl2 sin�q1+q2�

= �m2gr2+mLgl2� sin�q1+q2�

Inserting the values of the parameters, we obtain

M11 = 562	0+171	6cosq2+100mL+96mL cosq2

M12 = 51	2+85	8cosq2+36mL+48mL cosq2
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M21 = 51	2+85	8cosq2+36mL+48mL cosq2

M22 = 51	2+36mL

V1 = �85	8+48mL��2q̇1− q̇2�q̇2 sinq2

V2 = �85	8+48mL�q̇
2
1 sinq2

U1 =−20q̇1

U2 = 50q̇2

W1 = �820	68+78	4mL� sinq1+ �105	1+58	8mL� sin�q1+q2�

W2 = �105	1+58	8mL� sin�q1+q2�

In terms of the above expressions, M�q� and N�q� q̇� can be expressed as

M�q�=

[

M11 M12

M21 M22

]

N�q� q̇�=

[

V1+U1+W1

V2+U2+W2

]

We can find the bounds on the matrices as follows.

Mo�q�=

[

2562	0+2091	6cosq2 771	2+1045	8cosq2

771	2+1045	8cosq2 771	2

]

≥M�q�=

[

M11 M12

M21 M22

]

≥Mmin�q�=

[

562	0+171	6cosq2 51	2+85	8cosq2

51	2+85	8cosq2 51	2

]

Hence

�Mmin�q�� =

∥

∥

∥

∥

[

562	0+171	6cosq2 51	2+85	8cosq2

51	2+85	8cosq2 51	2

]
∥

∥

∥

∥

≥

∥

∥

∥

∥

[

562	0 51	2
51	2 51	2

]
∥

∥

∥

∥

= 567	1

Let No�q� q̇� be the value of N�q� q̇� at mL = 0

No�q� q̇�=

⎡

⎣

85	8�2q̇1− q̇2�q̇2 sinq2−20q̇1+820	68sinq1

+105	1sin�q1+q2�
85	8q̇2

1 sinq2 + 50q̇2+105	1sin�q1+q2�

⎤

⎦
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Then

N�q� q̇�−No�q� q̇�

=

[

48mL�2q̇1− q̇2�q̇2 sinq2+78	4mL sinq1+58	8mL sin�q1+q2�
48mLq̇

2
1 sinq2+58	8mL sin�q1+q2�

]

We assume the speed of the rotation is limited by �q̇1�≤ 10 and �q̇2�≤ 10,
then

�N�q� q̇�−No�q� q̇��

=

∥

∥

∥

∥

[

48mL�2q̇1− q̇2�q̇2 sinq2+78	4mL sinq1+58	8mL sin�q1+q2�
48mLq̇

2
1 sinq2+58	8mL sin�q1+q2�

]
∥

∥

∥

∥

≤

∥

∥

∥

∥

mL

[

480�2q̇1− q̇2�+78	4q1+58	8�q1+q2�
480q̇1+58	8�q1+q2�

]
∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∥

20

[

136	9 58	8 960 −480
58	8 58	8 480 0

]

⎡

⎢

⎢

⎣

q1

q2

q̇1

q̇2

⎤

⎥

⎥

⎦

∥

∥

∥

∥

∥

∥

∥

= nmax�q� q̇�

Since
∥

∥Mmin�q�
∥

∥ ≥ 567	1 and
∥

∥f�q� q̇�
∥

∥

2
≤
∥

∥Mmin�q�
∥

∥

−2
nmax�q� q̇�

2 ≤ xTFx,
we can obtain F as follows.

F =

(

20

567	1

)2 [
136	9 58	8 960 −480
58	8 58	8 480 0

]T [
136	9 58	8 960 −480
58	8 58	8 480 0

]

=

⎡

⎢

⎢

⎣

27	6 14	3 198	6 −81	7
14	3 8	6 105	3 −35	1
198	6 105	3 1432	9 −573	2
−81	7 −35	1 −573	2 286	6

⎤

⎥

⎥

⎦

The control is given by

u=−�F1+ I�1/2q− �2�F1+ I�1/2+ F3+ I�1/2q̇

=−

[

4	9863 1	9331
1	9331 2	4214

]

q−

[

36	1281 −11	7310
−11	7310 12	4011

]

q̇

Hence

� = Mo�q�u+No�q� q̇�

=

[

2562	0+2091	6cosq2 771	2+1045	8cosq2

771	2+1045	8cosq2 771	2

]

u

+

[

85	8�2q̇1− q̇2�q̇2 sinq2−20q̇1+820	68sinq1+105	1sin�q1+q2�
85	8q̇2

1 sinq2+50q̇2+105	1sin�q1+q2�

]
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We will simulate the system

M�q�q̈+N�q� q̇�= �

under the above control; that is

q̈ =M�q�−1��−N�q� q̇��

=

[

M11 M12

M21 M22

]−1

��−N�q� q̇��

To test the robustness of the control thus obtained, we simulate the actual
responses of the system for different mL. In all simulations, we use the
following initial conditions.

q1 =
�

2
�= 90��

q2 =
�

2
�= 90��

q̇1 = 0

q̇2 = 0

For mL = 5 oz, the angle positions and angle velocities are shown in
Figures 10.3 and 10.4 respectively. For convenience, the angle positions are
plotted in degrees.
For mL = 10 oz, the angle positions and angle velocities are shown in

Figures 10.5 and 10.6, respectively.
For mL = 15 oz, the angle positions and angle velocities are shown in

Figures 10.7 and 10.8, respectively.
For mL = 20 oz, the angle positions and angle velocities are shown in

Figures 10.9 and 10.10, respectively.
From the figures, we can see that our control is very robust for different

values of the load mL. Also note that the assumption of �q̇1� ≤ 10 and
�q̇2� ≤ 10 is indeed satisfied.
The response (settling) times and the magnitudes of control inputs depend

on the relative weights of states and control inputs in the cost function.
Note that we can introduce a relative weight 
 in the cost functional

∫ �

0
�xTFx+xTx+
uTu�dt

without changing the robustness of the resulting control. By using a small
values of 
, we will achieve fast response times (at the expense of large
control inputs and large overshoots). Such performance considerations are
subjects of future research.
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Figure 10.3 Simulation of angle positions for mL = 5.
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Figure 10.4 Simulation of angle velocities for mL = 5.
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Figure 10.5 Simulation of angle positions for mL = 10.
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Figure 10.6 Simulation of angle velocities for mL = 10.
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Figure 10.7 Simulation of angle positions for mL = 15.
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Figure 10.9 Simulation of angle positions for mL = 20.
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10.5 NOTES AND REFERENCES

In this chapter, we have presented our second application of robust control
design. We have considered the robust control of robot manipulators. To
make this book self-contained, we derived the dynamics of robot manipu-
lators from the basic physical laws. We then formulated the robust control
problem in the framework discussed in Chapter 5. The resulting robust
control problem satisfies the matching condition. However, there is uncer-
tainty in the input matrix. We can use the method in Chapter 5 to solve the
robust control problem. To test the performance of the proposed approach,
we considered a two-joint SCARA-type robot, which has been used in many
other approaches as well. We simulated our control law on the two-joint
SCARA-type robot and the results are very nice. Our initial work on robot
manipulators was published in reference [106].
Robust control of robot manipulators has been studied extensively in the

literature. A survey on the subject can be found in reference [1]. Various
approaches [9, 95, 152, 154] can be classified into five categories: (1)
linear-multivariable approach; (2) passivity-based approach; (3) variable-
structure controllers; (4) robust saturation approach; and (5) robust adap-
tive approach. More recently, parametric uncertainties have been dealt with
[156] and the results are extended to include also nonparametric uncertain-
ties [111]. Obviously our approach is fundamentally different from all the
above approaches.



11
Aircraft Hovering Control

A vertical/short take-off and landing (V/STOL) aircraft, such as the Harrier
(YAV-8B) produced by McDonnell Douglas, is a highly manoeuvrable jet
aircraft. It can hover in close proximity to the ground to make lateral
motion. Control of such motion is highly complex and has been the subject
of many research papers.
We use the optimal control approach to design a robust control law for

the lateral motion control. The resulting control law has excellent perfor-
mance, as demonstrated by simulations.

11.1 MODELLING AND PROBLEM FORMULATION

The Harrier is powered by a single turbo-fan engine with four exhaust
nozzles which provide the gross thrust for the aircraft. These nozzles (two
on each side of the fuselage) are mechanically slaved and have to rotate
together. They can move from the aft position forward approximately 100�

to allow jet-borne flight and nozzle braking. Therefore, the Harrier has the
following two modes of operation, in addition to the transition between
the two modes.

1. Wing-borne forward flight as a fixed-wing jet aircraft. In this mode of
flight, the four exhaust nozzles are in the aft position. The control is

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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executed by the conventional aerodynamic control surfaces: aileron,
stabilator (stabilizer–elevator), and rudder for roll, pitch, and yaw
moments, respectively.

2. Jet-borne maneuvering (hovering). In this mode, the four exhaust
nozzles are in the forward position, allowing the thrust to be directed
vertically. In addition to the throttle and nozzle controls, the Harrier
also utilizes another set of controls, using reaction control valves to
provide moment generation. Reaction control valves (called puffers)
in the nose, tail, and wingtips use bleed air from the high-pressure
compressor of the engine to produce thrust at these points and there-
fore moments (and forces) at the aircraft centre of mass. Lateral
motion control is accomplished through roll attitude control (rolling
moment). It is this mode of flight that we concentrate on in this chapter.

Since we are interested in hovering control, we consider a prototype
planar vertical take off and landing (PVTOL) aircraft. This system is
the natural restriction of a V/STOL aircraft to jet-borne manoeuvre in a
vertical–lateral plane.
This prototype PVTOL aircraft, as shown in Figure 11.1, has a minimum

number of states and inputs, but retains many of the features that must
be considered when designing control laws for a real aircraft such as the
Harrier. The aircraft state is simply the positions, x̃, ỹ, of the aircraft centre
of mass, the roll angle, �, of the aircraft, and the corresponding velocities,
˙̃x, ˙̃y, �̇. The control inputs, Ut, Um, are, respectively, the thrust (directed out
the bottom of the aircraft) and the rolling moment about the aircraft centre
of mass. Note that, we have not followed the standard variable naming
conventions in aircraft dynamics. If desired, one could relabel the system
by changing x̃, ỹ and � to −Y , −Z and �, respectively.

x

y

mg

u
t

εu
m

φ

Figure 11.1 Prototype PVTOL aircraft.
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In the Harrier, the roll moment reaction jets in the wingtips create a
force that is not perpendicular to the x̃-body axis. Thus, the production
of a positive rolling moment (to the pilot’s left) will also produce a slight
acceleration of the aircraft to the right. As we will see, this phenomenon
makes the aircraft non-minimum phase. Let �o > 0 be the small coefficient
describing the coupling between the rolling moment and the lateral force
on the aircraft, that is, the lateral force can be written as �oUm. Note that
�o > 0 means that applying a (positive) moment to roll to the pilot’s left
produces an acceleration, �oUm, to the right.

In the model of the PVTOL aircraft, we neglect any flexure effect in the
aircraft wings or fuselage and consider the aircraft as a rigid body. From
Figure 11.1, we can derive the following dynamic equations of the PVTOL
aircraft

m ¨̃x =−Ut sin�+�oUm cos�

m ¨̃y = Ut cos�+�oUm sin�−mg

J �̈ = Um

where mg stands for the gravitational force exerted on the aircraft centre
of mass and J is the mass moment of inertia about the axis through the
aircraft centre of mass and along the fuselage.
For simplicity, we scale this model by dividing the first two equations by

mg, and the third equation by J , to obtain

d2

dt2

⎡

⎢

⎢

⎣

x̃

g

ỹ

g

⎤

⎥

⎥

⎦

=

[

− sin� cos�
cos� sin�

]

⎡

⎢

⎢

⎣

Ut

mg
�oJ

mg

Um

J

⎤

⎥

⎥

⎦

+

[

0
−1

]

d2�

dt2
=

Um

J

Next, let us define new variables

[

x
y

]

=

⎡

⎢

⎢

⎣

x̃

g
ỹ

g

⎤

⎥

⎥

⎦

[

ut

um

]

=

⎡

⎢

⎢

⎣

Ut

mg
Um

J

⎤

⎥

⎥

⎦
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In addition, from now on, we replace ��oJ/mg� by �. Then the rescaled
dynamics becomes

[

ẍ
ÿ

]

=

[

− sin� � cos�
cos� � sin�

][

ut

um

]

+

[

0
−1

]

(11.1)

�̈ = um

Obviously, at steady state, � = 0, ut = 1, i.e., the thrust should support
the aircraft weight to keep it steady.
Next, we analyse the internal stability of system (11.1) by looking at its

zero dynamics. The zero dynamics of a nonlinear system are the internal
dynamics of the system subject to the constraint that the outputs (and,
therefore, all derivatives of the outputs) are set to zero for all time. For our
PVTOL system, the outputs are the position of the aircraft centre of mass,
x and y. and the internal state is the rolling angle � and its derivative �̇.

In system (11.1), the matrix operating on the controls is nonsingular (its
determinant is �). Therefore, for � > 0, constraining the output x, y and
their derivatives to zero results in

[

− sin� � cos�
cos� � sin�

][

ut

um

]

+

[

0
−1

]

=

[

0
0

]

⇒

[

ut

um

]

=−

[

− sin� � cos�
cos� � sin�

]−1 [
0
−1

]

=

[

cos�
sin�/�

]

Therefore, the zero dynamics of system (11.1) is given by

�̈ = um =
sin�

�

This equation describes the dynamics of an undamped pendulum. It has
two sequences of equilibria. One sequence is unstable and the other is
stable, but not asymptotically stable. Nonlinear systems, such as that of
(11.1), with zero dynamics that are not asymptotically stable are called
non-minimum phase.
Based upon this fact, it can be shown that the tracking control designed

through exact input–output linearization of the PVTOL system (11.1) can
produce undesirable results (periodic rolling back and forth and unaccept-
able control law). The source of the problem lies in trying to control modes
of the system using inputs that are weakly ��� coupled rather than control-
ling the system in the way it was designed to be controlled.
For the PVTOL aircraft, we should control the linear acceleration by

vectoring the thrust vector (using the rolling moment, Um, to control this
vectoring) and adjusting thrust magnitude using the throttle �Ut�.

Hence, we formulate the robust control problem as follows:
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Robust Hovering Control Problem 11.1

For the system
[

ẍ
ÿ

]

=

[

− sin� � cos�
cos� � sin�

][

ut

um

]

+

[

0
−1

]

�̈ = um

find a feedback control law ut and um which can accomplish the jet-borne
lateral motion (hovering), say from x= 1 or −1 to x= 0. This control law
has to be robust with respect to the variation of the coupling parameter �.
From the practical point of view, any acceptable control design should

satisfy the following requirements.

Requirement 11.1

The PVTOL aircraft altitude y�t�, in the hovering mode, should have very
small deviation from the prespecified altitude, say y = 0. Vertical take-off
and landing aircraft are designed to be maneuvered in close proximity to
the ground. Therefore it is desirable to find a control law that provides
exact tracking of altitude, if possible.

Requirement 11.2

ut > 0, because Ut =mgut is the thrust directed out to the bottom of the
aircraft. Vectoring of the thrust is accomplished through the rolling moment
Um.

Requirement 11.3

��� << �/2 or 90�, because most V/STOL aircraft do not have a large
enough ‘thrust-to-weight ratio’ to maintain level flight with a large roll
angle �.

Requirement 11.4

Large control inputs are not acceptable because of the limitations on the
maximum thrust and rolling moment generated by bleed air from the high-
pressure compressor of the engine.
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Any control law which violates one of the above four requirements should
be rejected. In the next section, we will seek a robust control law which
satisfies the above requirements using the optimal control approach.

11.2 CONTROL DESIGN FOR JET-BORNE
HOVERING

As the first step towards the robust control design for jet-borne hovering
of the PVTOL aircraft, we make the following control substitution, which
is obviously one-to-one

[

ut

um

]

=

[

1−� tan�
0 1

][

1+u1

u2

]

Substituting the above into Equation (11.1), we have
[

ẍ
ÿ

]

=

[

− sin� � cos�
cos� � sin�

][

1 −� tan�
0 1

][

1+u1

u2

]

+

[

0
−1

]

=

[

− sin� �/ cos�
cos� 0

][

1+u1

u2

]

+

[

0
−1

]

(11.2)

=

[

− sin�
cos�−1

]

+

[

− sin� 0
cos� 0

][

u1

u2

]

+

[

�/ cos�
0

]

u2

and

�̈ = u2 (11.3)

The objective of making the above control substitution is of two-fold: (1)
to make the aircraft altitude y�t� independent of � and hence independent
of the lateral force generated by the rolling moment u2 (it is required that
the aircraft altitude y has very small deviation from the desired altitude –
through this substitution, y is no longer directly perturbed by �); (2) to
make the velocity vector ẋ, ẏ, �̇, acceleration vector ẍ, ÿ, �̈, and the new
control u1, u2 go to zero at steady state.
For convenience, we introduce the six-dimensional state vector

z=

[

z1
z2

]

where

z1 =

⎡

⎣

x
y
�

⎤

⎦ z2 =

⎡

⎣

ẋ
ẏ

�̇

⎤

⎦
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Furthermore, we define the following matrices

A���=

⎡

⎣

− sin�
cos�−1

0

⎤

⎦

B���=

⎡

⎣

− sin� 0
cos� 0
0 1

⎤

⎦

C���=

⎡

⎣

1/ cos�
0
0

⎤

⎦

Then Equations (11.2) and (11.3) can be written as

z̈1 = A���+B���

[

u1

u2

]

+C����u2

or, equivalently

[

ż1
ż2

]

=

[

z2
A���

]

+

[

0
B���

][

u1

u2

]

+

[

0
C���

]

�u2 (11.4)

We can now use the results of Chapter 6 to solve Robust Control
Problem 11.1. We view f�z�= �u2�z� as uncertainty and guess �f�z�� ≤ k�z�
for some k > 0 to be determined later. That is, we assume �f�z�� ≤ k�z� =
gmax�z� for some �gmax�z� (and we will check if this assumption is satisfied).
To obtain the corresponding optimal control problem, we define

Ã�z�=

[

z2
A���

]

B̃�z�=

[

0
B���

]

C̃�z�=

[

0
C���

]

Then, Equation (11.4) becomes

ż= Ã�z�+ B̃�z�u+ C̃�z�f�z� (11.5)

where

u=

[

u1

u2

]
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Since

B̃�z�TB̃�z�= B���TB���= I2×2

we immediately learn that

B̃�z�+ = �̃B�z�TB̃�z��−1B̃�z�T = B̃�z�T

B���+ = �B���TB����−1B���T = B���T

Therefore,

�I6×6− B̃�z�̃B�z�+�C̃�z�= �I6×6− B̃�z�̃B�z�T�C̃�z�

= �I6×6−

[

0
B���

]

�0 B���T 	�

[

0
C���

]

=

[

I3×3 0
0 I3×3−B���B���T

][

0
C���

]

=

[

0
�I3×3 −B���B���T�C���

]

with

�I3×3−B���B���T�C���=

⎡

⎣

cos�
sin�
0

⎤

⎦

Hence, the dynamics of the optimal control problem

ż= Ã�z�+ B̃�z�u+ �I6×6− B̃�z�̃B�z�+�C̃�z�v

becomes

[

ż1
ż2

]

=

[

z2
A���

]

+

[

0
B���

][

u1

u2

]

+

[

0
�I3×3−B���B���T �C���

]

v

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ
ẏ

�̇
− sin�
cos�−1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0

− sin� cos� 0
cos� sin� 0
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎣

u1

v
u2

⎤

⎦
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Define

T���=

⎡

⎣

− sin� cos� 0
cos� sin� 0
0 0 1

⎤

⎦

and rewrite the dynamics of the optimal control problem as

[

ż1
ż2

]

=

[

z2
A���

]

+

[

0
T���

]

⎡

⎣

u1

v
u2

⎤

⎦ 


To derive the cost function of the optimal control problem, we estimate
the following bound

�B̃�z�+C̃�z�f�z��≤ �B̃�z�T C̃�z��×�f�z��

= �B���TC����×�f�z��

= �

[

− sin� cos� 0
0 0 1

]

⎡

⎣

1/ cos�
0
0

⎤

⎦�×�f�z��

= �

[

− tan�
0

]

�×�f�z��

≤ k� tan��×�z�

By Requirement 11.3: ��� << �/2, we can find a �o, 0 < �o < �/2, such
that ���< �o. Therefore

�B̃�z�+C̃�z�f�z�� ≤ k� tan�o�×�z� = fmax�z�

So, let us solve the following optimal control problem.

Optimal Control Problem 11.2

For the following system

ż= Ã�z�+ B̃�z�u+ �I6×6− B̃�z�̃B�z�+�C̃�z�v (11.6)

or

[

ż1
ż2

]

=

[

z2
A���

]

+

[

0
T���

]

⎡

⎣

u1

v
u2

⎤

⎦
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find a feedback control u1�z�� v�z��u2�z� that minimizes the cost functional

∫ �

0
�fmax�z�

2+gmax�z�
2+�2�z�2+�u�2+�v�2� dt (11.7)

This optimal control problem is analogues to Problem 6.4 in Chapter 6
by letting 
= 1, �= 1. Again � is a design parameter whose value is to be
determined.
To check if the closed system with control uo�z�, vo�z�, given by the

solution to the above optimal control problem, is robustly stable, let V�zo�
be the minimum cost of the optimal control of the system from some initial
state zo. Let us see if V�z� is a Lyapunov function for system

ż= Ã�z�+ B̃�z�u+ C̃�z�f�z�

Clearly

V�z� > 0� z �= 0

V�z�= 0� z= 0

Since uo�z�, vo�z� is the solution to the optimal control problem with
system (11.6) and cost functional (11.7), the following Hamilton–Jacobi–
Bellman equation must be satisfied.

min
u�v

�fmax�z�
2+gmax�z�

2+�2�z�2+�u�2+�v�2

+V T
z �Ã�z�+ B̃�z�u+ �I− B̃�z�̃B�z��+�C̃�z�v��= 0

In other words, uo�z�, vo�z� must satisfy:

fmax�z�
2+gmax�z�

2+�2�z�2+�uo�
2+�vo�

2

+V T
z �Ã�z�+ B̃�z�uo+ �I− B̃�z�̃B�z��+�C̃�z�vo�= 0

2uo�z�
T+V T

z B̃�z�= 0

2vo�z�
T+V T

z �I− B̃�z�̃B�z��+�C̃�z�= 0

We now have

V̇ �z�=V T
z ż

=V T
z �Ã�z�+ B̃�z�uo+ C̃�z�f�z��

=V T
z �Ã�z�+ B̃�z�uo+ �I− B̃�z�̃B�z�+�C̃�z�vo�

+V T
z C̃�z�f�z�−V T

z �I− B̃�z�̃B�z�+�C̃�z�vo
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=V T
z �Ã�z�+ B̃�z�uo+ �I− B̃�z�̃B�z�+�C̃�z�vo�

+V T
z B̃�z�̃B�z�

+C̃�z�f�z�+V T
z �I− B̃�z�̃B�z�+�C̃�z�f�z�

−V T
z �I− B̃�z�̃B�z�+�C̃�z�vo

=− fmax�z�
2−gmax�z�

2−�2�z�2−�uo�
2−�vo�

2

−2uo�z�
TB̃�z�+C̃�z�f�z�−2vo�z�

Tf�z�+2vo�z�
Tvo

Also

−�uo�
2−2uo�z�

TB̃�z�+C̃�z�f�z�≤ �B̃�z�+C̃�z�f�z��2 ≤ fmax�z�
2

−2vo�z�
Tf�z�≤ �vo�

2+�f�z��2 ≤ �vo�
2+gmax�z�

2

Substituting into the previous equation, we obtain

V̇ �z�≤− fmax�z�
2−gmax�z�

2−�2�z�2−�vo�
2

+ fmax�z�
2+�vo�

2+gmax�z�
2+2�vo�

2

=−�2�z�2+2�vo�
2

Therefore, for V�z� to be a Lyapunov function for system (11.5), we need
to guarantee that

2�vo�
2 ≤ �2�z�2

Since we have assumed �f�z�� ≤ k�z�= gmax�z�, we also need to make sure
that the following inequality holds

��u2�z��
2 = �f�z��2 ≤ k2�z�2

Because Optimal Control Problem 11.2 is for a nonlinear system, we
cannot apply the standard solution to the LQR problem. However, with
some approximation, we can solve this nonlinear optimal control problem.
The solution is as follows.
First, there are three parameters to be determined: k, �o, �. The approach

we take is similar to that of Chapter 6. We first pick some values for k, �o,
�, find the solution, and then check if the sufficient conditions are satisfied.
So, let us first substitute fmax�z�, gmax�z� in the cost functional (11.7)

∫ �

0
�fmax�z�

2 +gmax�z�
2+�2�z�2+�u1�

2+�v�2+�u2�
2� dt

=
∫ �

0
�k2� tan�o�

2�z�2+k2�z�2+�2�z�2+�u1�
2+�v�2

+�u2�
2� dt
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=
∫ �

0
��k2� tan�o�

2+k2+�2��z�2+�u1�
2+�v�2+�u2�

2� dt

=
∫ �

0
�w2�z�2+�u1�

2+�v�2+�u2�
2� dt

where w2 = k2� tan�o�
2+k2+�2.

The optimal cost V�z� must satisfy the Hamilton–Jacobi–Bellman equa-
tion, which is given by

min
u1�v�u2

⎛

⎝w2�z�2+�u1�
2+�v�2+�u2�

2+V T
z

⎛

⎝

[

z2
A���

]

+

[

0
T���

]

⎡

⎣

u1

v
u2

⎤

⎦

⎞

⎠

⎞

⎠= 0

or

min
u1�v�u2

⎛

⎝w2�z�2+�

⎡

⎣

u1

v
u2

⎤

⎦�2+V T
z

⎛

⎝

[

z2
A���

]

+

[

0
T���

]

⎡

⎣

u1

v
u2

⎤

⎦

⎞

⎠

⎞

⎠= 0

In particular, if u1o, vo, u2o are optimal control, then

w2�z�2+�

⎡

⎣

u1o

vo

u2o

⎤

⎦�2+V T
z

⎛

⎝

[

z2
A���

]

+

[

0
T���

]

⎡

⎣

u1o

vo

u2o

⎤

⎦

⎞

⎠= 0 (11.8)

and

2

⎡

⎣

u1o

vo

u2o

⎤

⎦

T

+V T
z

[

0
T���

]

= 0 (11.9)

From the definition of T���, it is easy to show that its transpose and
inverse are equal to itself:

T���= T���T = T���−1 =

⎡

⎣

− sin� cos� 0
cos� sin� 0
0 0 1

⎤

⎦

Therefore, from Equation (11.9)

⎡

⎣

u1o

vo

u2o

⎤

⎦=−
1

2

[

0 T���
]

Vz
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Substituting this into Equation (11.8), we have,

w2��z1�
2+�z2�

2�−
1

4
V T
z

[

0
T���

]

[

0 T���
]

Vz+V T
z

[

z2
A���

]

= 0 (11.10)

Since we require that � vary in a small neighbourhood of 0, ���<< �/2,
we can linearize A��� around 0 as follows.

A���=

⎡

⎣

− sin�
cos�−1

0

⎤

⎦≈

⎡

⎣

−�
0
0

⎤

⎦=

⎡

⎣

0 0 −1
0 0 0
0 0 0

⎤

⎦

⎡

⎣

x
y
�

⎤

⎦= Aoz1

where

Ao =

⎡

⎣

0 0 −1
0 0 0
0 0 0

⎤

⎦

Also
[

0
T���

]

[

0 T���
]

=

[

0 0
0 I3×3

]

Hence, Equation (11.10) becomes

w2
[

z1 z2
]

[

z1
z2

]

−
1

4
V T
z

[

0 0
0 I3×3

]

Vz+V T
z

[

0 I3×3

Ao 0

][

z1
z2

]

= 0 (11.11)

In order to solve V from the above equation, we guess that V is quadratic:

V = zTSz

where S is some 6×6 positive definite (symmetric) matrix whose derivative is

Vz = 2Sz

Equation (11.11) can now be written as

w2zTz−zTS

[

0 0
0 I3×3

]

Sz+zTS

[

0 I3×3

Ao 0

]

z+zT
[

0 I3×3

Ao 0

]T

Sz= 0

Let Q=w2I6×6, we obtain the following ‘Riccati-type’ equation

S

[

0 I3×3

Ao 0

]

+

[

0 I3×3

Ao 0

]T

S+Q−S

[

0 0
0 I3×3

]

S = 0 (11.12)
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A positive definite solution of the above equation exists and is unique. In
terms of this S, the solution to the LQR problem is given by

⎡

⎣

u1o

vo

u2o

⎤

⎦=−
[

0 T���
]

Sz=−

⎡

⎣

0 0 0 − sin� cos� 0
0 0 0 cos� sin� 0
0 0 0 0 0 1

⎤

⎦Sz (11.13)

From the above equation it can be seen that while u1o, vo are nonlinear
functions of state z, u2o is indeed a linear function of z and hence is linear
bounded as we guessed when we write �f�z�� ≤ k�z� = gmax�z�.

If we take k= 3, �= 4
2426 and �o = 45�, then

w2 = k2� tan�o�
2+k2+�2 = 36

Using MATLAB, we can solve the Riccati Equation (11.12) which leds
to the following matrix

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

41
5670 0 −0
4356 6
0000 0 −0
0004
0 41
5692 0 0 6
0000 0

−0
4356 0 42
2129 −0
9996 0 6
0828
6
0000 0 −0
9996 6
9278 0 −0
0721

0 6
0000 0 0 6
9282 0
−0
0004 0 6
0828 −0
0721 0 6
9398

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The control is given by

u1o = �6
0000x−0
9996�� sin�−6
0000y cos�

+ �6
9278ẋ−0
0721�̇� sin�−6
9278ẏ cos�

u2o =0
0004x−6
0828�+0
0721ẋ−6
9398�̇

vo = − �6
0000x−0
9996�� cos�−6
0000y sin�

− �6
9278ẋ−0
0721�̇� cos�−6
9278ẏ sin�

Since all the coefficients in the above equation are less than �2/2 = 9,
clearly

2�vo�
2 ≤ �2�z�2

is satisfied. Similarly, ��u2�z��
2 ≤ k2�z�2 is satisfied for all ��� ≤ 1 (the

typical value of � is 0.01).

11.3 SIMULATION

To visualize the performance of the developed control law, we perform
some simulations of the controlled system. To do so, let us first derive
control in terms of Ut�Um.



SIMULATION 331

[

Ut

Um

]

=

[

mgut

Jum

]

=

[

mg�1+u1o−� tan�u2o�
Ju2o

]

=

[

mg�1+u1o�−�oJ tan�u2o�
Ju2o

]

The dynamics of the PVTOL aircraft is given by

m ¨̃x =−Ut sin�+�oUm cos�

m ¨̃y = Ut cos�+�oUm sin�−mg

J �̈ = Um

Since x = x̃/g� y = ỹ/g, the control in terms of x̃� ỹ is

u1o =�6
0000̃x/g−0
9996�� sin�−6
0000cos �̃y/g

+ �6
9278 ˙̃x/g−0
0721�̇� sin�−6
9278cos� ˙̃y/g

u2o =0
0004̃x/g−6
0828�+0
0721 ˙̃x/g−6
9398�̇

In the simulation we set up the values of parameters to be

m= 50000kg

J = 200000kg m2

To check the performance of the control above obtained, we simulate the
actual responses of the aircraft for different �o. In all simulation, we use
the following initial conditions.

x̃�0�= 1000m

ỹ�0�= 0m

��0�= 0�

˙̃x�0�= 0

˙̃y�0�= 0

�̇�0�= 0

For �o = 0
01, the X–Y positions of the aircraft are shown in Figure 11.2;
and the angle and thrust of the aircraft are shown in Figure 11.3.
For �o = 0
02, the X–Y positions of the aircraft are shown in Figure 11.4;

and the angle and thrust of the aircraft are shown in Figure 11.5.
For �o = 0
05, the X–Y positions of the aircraft are shown in Figure 11.6;

and the angle and thrust of the aircraft are shown in Figure 11.7.
For �o = 0
1, the X–Y positions of the aircraft are shown in Figure 11.8;

and the angle and thrust of the aircraft are shown in Figure 11.9.
From the figures, we can see that our control satisfies Requirements

11.1–11.4.



332 AIRCRAFT HOVERING CONTROL

0 50 100 150 200 250 300 350 400

1200

1000

800

600

400

200

0

x

time t (sec.)

time t (sec.)

aircraft position

0 50 100 150 200 250 300 350 400

8

6

4

2

0

–2

y

Figure 11.2 MATLAB simulation of X–Y positions for �o = 0
01.
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Figure 11.3 MATLAB simulation of angle and thrust for �o = 0
01.
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Figure 11.4 MATLAB simulation of X–Y positions for �o = 0
02.
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Figure 11.5 MATLAB simulation of angle and thrust for �o = 0
02.
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Figure 11.6 MATLAB simulation of X–Y positions for �o = 0
05.
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Figure 11.7 MATLAB simulation of angle and thrust for �o = 0
05.
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Figure 11.8 MATLAB simulation of X–Y positions for �o = 0
1.
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Figure 11.9 MATLAB simulation of angle and thrust for �o = 0
1.
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Requirement 11.1

The PVTOL aircraft altitude y�t�, in the hovering mode, should have very
small deviation from the pre-specified altitude, say y= 0. Indeed, y deviates
only 6m from 0, while x moves from 1000m to 0.

Requirement 11.2

Ut > 0. Indeed, Ut is always positive.

Requirement 11.3

���<< 90�. From the simulation � is less than 1�.

Requirement 11.4

Large control inputs are not acceptable. From the simulation, the maximum
Ut is about 135% of the thrust needed to support the aircraft. In other
words, only 35% more thrust is needed to do the manoeuvre.
The trajectories of the controlled system for different �o ∈ �0
01�0
1	 are

very similar, demonstrating the robustness of the control.
It should be pointed out that in this work, no effort has been made to

optimize the parameters involved, i.e., choosing the parameter values such
that the closed-loop system has the ‘best’ performance. In fact, the choice
� = 1 is by no means the best choice. We selected this specific numeric
value solely for the purpose of being able to solve the Hamilton–Jacobi–
Bellman equation explicitly. Intuitively, for better performance, a bigger �
is preferred, because a smaller weight on v in the cost function results in an
optimal control u1o, u2o, vo which heavily rely on vo, instead of on u1o, u2o.
However, v is the augmented control which is to be discarded in forming
the robust control. Therefore, a more realistic and better robust control
law can be obtained by setting a much large � in the cost function of the
corresponding optimal control problem.

11.4 NOTES AND REFERENCES

In this chapter, we have presented the last of three applications of our
optimal control approach to solve real robust control problems in practical
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systems: hovering control of V/STOL aircraft. We have derived the dynamic
equations for the V/STOL aircraft, simplified and converted the dynamic
equations to state equations. We have designed a robust control to take
care of the coupling between the rolling moment and the lateral force on
the aircraft. We managed to solve a nonlinear optimal control problem
analytically to obtain a nonlinear robust control law. Most other work on
hovering control of V/STOL aircraft uses linear control which is restrictive
and our solution is nonlinear and hence more general. We simulated the
closed-loop system using the nonlinear robust control law. We found that
the performance of the control law is excellent. Our initial work on V/STOL
aircraft can be found in reference [110].
The Harrier is a non-minimum phase system. Therefore the theory for

explicitly linearizing the input–output response of a nonlinear system using
state feedback [30, 79] will not produce a satisfactory control law as
indicated in reference [74]. In fact, one shortcoming of the exact input–
output linearization theory is the inability to deal with non-minimum phase
nonlinear system.
An approximate input–output linearization procedure, developed for

slightly non-minimum phase nonlinear systems was used in reference [74]
to design the hovering control. On the contrary, the method we proposed
does not require linearization.
Another approach to aircraft hovering control was proposed in reference

[138], which uses nonlinear regulator theory [80].





Appendix A: Mathematical

Modelling of Physical Systems

The key to a successful control design is to have a good mathematical model
of the system to be controlled. In this appendix, we will provide various
examples of mathematical models of physical systems.

Example A.1

Consider the circuit given in Figure A.1. The circuit consists of two resistors
R1 and R2; two inductors L1 and L2; one capacitor C and one voltage
source vin.
We want to derive its state equation. For circuits of this type, the state

variables are usually currents in inductors and voltages on capacitors. In
this example, the state variables are i1, i2, and vc.

Applying Kirchhoff’s voltage law to the first loop, we have

vin = R1i1+L1

di1
dt

+vc

Similarly, for the second loop,

vc = R2i2+L2

di2
dt

Robust Control Design: An Optimal Control Approach F. Lin

© 2007 John Wiley & Sons, Ltd
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1

A

+

_

+

_
2

i1 i2

vin vcC

R1 R2 L2L1

Figure A.1 Circuit diagram of Example A.1.

Applying Kirchhoff’s current law to node A, we have

i1 = i2+C
dvc

dt

From the above three equations (often called dynamic equations), we
derive the following state equations.

di1
dt

=
1

L1

�vin−vc−R1i1�

di2
dt

=
1

L2

�vc−R2i2�

dvc

dt
=

1

C
�i1− i2�

Or, in matrix form

⎡

⎣

i̇1
i̇2
v̇c

⎤

⎦=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
R1

L1

0 −
1

L1

0 −
R2

L2

1

L2

1
C

−
1

C
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎣

i1
i2
vc

⎤

⎦+

⎡

⎢

⎢

⎣

1

L1

0
0

⎤

⎥

⎥

⎦

vin

The output equation depends on what can be measured. If we can measure
the voltage vout over the resistor R2, then

vout =
[

0R2 0
]

⎡

⎣

i1
i2
vc

⎤

⎦

Let us take some realistic values for the circuit elements: R1 = 50�,
R2 = 10�, L1 = 0�001H, L2 = 0�002H, and C = 2�F= 2×10−6 F. Then

⎡

⎣

i̇1
i̇2
v̇c

⎤

⎦=

⎡

⎣

−50000 0 −1000
0 −5000 500

500000 −500000 0

⎤

⎦

⎡

⎣

i1
i2
vc

⎤

⎦+

⎡

⎣

1000
0
0

⎤

⎦vin

vout =
[

0 10 0
]

⎡

⎣

i1
i2
vc

⎤

⎦
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In other words

A=

⎡

⎣

−50000 0 −1000
0 −5000 500

500000 −500000 0

⎤

⎦ B =

⎡

⎣

1000
0
0

⎤

⎦

C =
[

0 10 0
]

D = 0

From �A�B�C�D�, we can obtain the transfer function as

G�s�= C�sI−A�−1B+D

This can be done using MATLAB command ‘ss2tf’. For the above
�A�B�C�D�, we have

G�s�=
2500 000 000 000

s3+55 000s2+1000 000 000s+15 000 000 000 000

Example A.2

Twomasses are hung from the ceiling by two strings, as shown in Figure A.2.
A string can be modelled as a combination of a spring and a dashpot
for friction. In the figure, y1, y2 are the displacements of masses M1, M2

from the resting position under gravity. The input to the system is the
force f . K1, K2 are two spring constants and D1, D2 represent frictions. By
Hook’s law, the forces due to the springs are linearly proportional to the
corresponding displacement; that is, they are K2y2, K1 �y1−y2� respectively.

y2

y1f

M2

M1

D2

D1

K2

K1

Figure A.2 The mechanical system of Example A.2.
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K2 
y2 D2 

y2

f

M1
M2

K1( y1 − y2) D1( y1 − y2)

K1( y1 − y2 ) D1( y1 − y2 )

Figure A.3 Free body diagrams of the mechanical system in Figure A.2.

The forces due to friction aremore complex anddependondisplacements and
velocities. As a first-order approximation, we assume that they are linearly
proportional to the velocities; that is, they areD2ẏ2,D1 �ẏ1− ẏ2� respectively.

The free body diagrams of two masses are shown in Figure A.3. We
assume that gravity has been balanced by the strings as y1, y2 are measured
from the resting position. So gravity does not show in the figure.
Applying Newton’s second law to M1, we obtain

M1ÿ1 = f −K1�y1−y2�−D1�ẏ1− ẏ2�

Applying Newton’s second law to M2, we have

M2ÿ2 = K1�y1−y2�+D1�ẏ1− ẏ2�−K2y2−D2ẏ2

To obtain the state equations from the above dynamic equations, we first
define state variables. For such mechanical systems, state variables are often
displacements and velocities. In this example, we define state variables as
x1 = y1, x2 = ẏ1, x3 = y2, x4 = ẏ2. This leads to the following state equations.

ẋ1 = ẏ1

= x2

ẋ2 = ÿ1

=
1

M1

�f −K1�y1−y2�−D1�ẏ1− ẏ2��

=
1

M1

�f −K1�x1−x3�−D1�x2−x4��

ẋ3 = ẏ2

= x4�

ẋ4 = ÿ2

=
1

M2

�K1�y1−y2�+D1�ẏ1− ẏ2�−K2y2−D2ẏ2�

=
1

M2

�K1�x1−x3�+D1�x2−x4�−K2x3−D2x4�
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Or, in matrix form, we have

⎡

⎢

⎢

⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 1 0 0
− K1

M1
−D1

M1

K1

M1

D1

M1

0 0 1 0
K1

M2

D1

M2
−K1+K2

M2
−D1+D2

M2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1

x2

x3

x4

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0
1
M1

0
0

⎤

⎥

⎥

⎦

f

Assume that we can measure y1, then the output equation is

y1 =
[

1 0 0 0
]

⎡

⎢

⎢

⎣

x1

x2

x3

x4

⎤

⎥

⎥

⎦

Example A.3

Consider a rotational system with a motor driving two parts as shown in
Figure A.4. The motor has inertia Jm and generates torque T . It drives two
partsat twoendvia twoflexible shafts,whichcanbemodelledas twotorsional
springs with torsional spring constants K1, K2 respectively. The two parts at
the two ends have inertias J1, J2 respectively.Denote the angular displacement
and angular velocity of themotor by �m,	m respectively; the angular displace-
ment and angular velocity of Part 1 by �1, 	1 respectively; and the angular
displacement and angular velocity of the Part 2 by �2,	2 respectively;

The free body diagrams of the three parts are shown in Figure A.5.
Applying Newton’s second law for rotational motion, we obtain

Motor
K2 K1

J2 J1

θm, ωm

Jm, T

θ2, ω2 θ1, ω1

Figure A.4 The rotational system of Example A.3.

MotorJ2 J1

Jm, T

K2(θm – θ2) K2(θm – θ2) K1(θm – θ1) K1(θm – θ1)

Figure A.5 Free body diagrams of the rotational system in Figure A.4.
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Jm�̈m = T −K1��m−�1�−K2��m−�2�

J1�̈1 = K1��m−�1�

J2�̈2 = K2��m−�2�

To obtain the state equations from the above dynamic equations, we
define six state variables: �m, 	m, �1, 	1, �2, and 	2. The state equations
are derived as follows.
For such mechanical systems, state variables are often displacements and

velocities. In this example, we define state variables as �m. This leads to the
following state equations.

�̇m = 	m

	̇m =
1

Jm
�T −K1��m−�1�−K2��m−�2��

�̇1 = 	1

	̇1 =
1

J1
�K1��m−�1��

�̇2 = 	2

	̇2 =
1

J2
�K2��m−�2��

In matrix form
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̇m
	̇m

�̇1
	̇1

�̇2
	̇2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
−K1+K2

Jm
0 K1

Jm
0 K2

Jm
0

0 0 0 1 0 0
K1

J1
0 −K1

J1
0 0 0

0 0 0 0 0 1
K2

J2
0 0 0 −K2

J2
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�m
	m

�1
	1

�2
	2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
1
Jm

0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

Assume that we can measure �1 and �2, then the output equation is

[

�1
�2

]

=

[

0 0 1 0 0 0
0 0 0 0 1 0

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�m
	m

�1
	1

�2
	2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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Example A.4

A DC motor consists of a permanent magnet and a rotor made of wires, as
shown schematically in Figure A.6.
In the figure, R and L are the resistance and inductance of the rotor

respectively. �m and 	m are the angular displacement and angular velocity
of the motor by respectively.
There are two inputs to the system. One is the input voltage vin and the

other is the load torque Tload, representing the load to be driven by the
motor.
When the input voltage vin is applied to the motor, a torque Tm is gener-

ated by the motor. Tm is proportional to the current i in the motor:

Tm = Ki (A.1)

where K is some constant. As the rotor starts moving, it generates a voltage
vback, called back or counter electromotive force (back emf for short), vback

is proportional to the velocity of the motor:

vback = K	m (A.2)

where K is the same constant as in Equation (A.1).
Hence, for the electrical part, we apply Kirchhoff’s voltage law to obtain

vin = Ri+L
di

dt
+vback (A.3)

For the mechanical part, we apply Newton’s second law to obtain

Jm�̈m = Tm−Tload−Dm	m (A.4)

where Jm is the inertia of the rotor and Dm is the friction coefficient.

Tload
Tm

L

Jm

θm ωm

+

_
+
_

R

i

vin

vback

Figure A.6 The DC Motor of Example A.5.
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Define state variables as i, �m, and 	m. We derive the following state
equations.

�̇m = 	m

	̇m =
1

Jm
�Tm−Tload−Dm	m�=

1

Jm
�Ki−Tload−Dm	m�

i̇=
1

L
�vin−Ri−vback�=

1

L
�vin−Ri−K	m��

In matrix form, we have

⎡

⎣

�̇m
	̇m

i̇

⎤

⎦=

⎡

⎣

0 1 0
0 −Dm/Jm K/Jm
0 −K/L −R/L

⎤

⎦

⎡

⎣

�m
	m

i

⎤

⎦+

⎡

⎣

0 0
0 −1/Jm

1/L 0

⎤

⎦

[

vin

Tload

]

With �m as the output, the output equation is

�m =
[

1 0 0
]

⎡

⎣

�m
	m

i

⎤

⎦

Example A.5

A water tank is shown in Figure A.7. There are two controls in the system:
we can control the inflow Fin and we can control the outflow Fout by control-
ling the valve u ∈ 
0�1�. Here u = 0 means the valve is closed; and u = 1
means the valve is completely open. The valve can be partially open when
u is between 0 and 1. Therefore, the inputs of the system are Fin and u.
The water tank has a uniform area of cross-section, denoted by S. The state
variable of the system is the water level x. To derive the state equation, we
note that,
Rate of change in the water volume = inflow − outflow.
Obviously

water volume= Sx

The outflow Fout depends on the water level and the control input u as
follows.

Fout = K
√
xu

where K is some constant.
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Fin

x

Fout

u

Figure A.7 The water tank of Example A.4.

Therefore

d

dt
Sx = Fin−K

√
xu

That is

ẋ =
1

S
�Fin−K

√
xu�

This is a nonlinear system and cannot be written in matrix form.

Example A.6

Figure A.8 shows an inverted pendulum mounted on a cart. In the figure,
M is the mass of the cart; m is the mass of the pendulum; L is the length
of the pendulum; y is the displacement of the cart, � is the angle of the
pendulum; and u is the force acting on the cart, which is the input to the
system.
We assume that the mass of the pendulum is concentrated at the end of

the pendulum. We also do not consider friction. Let us derive the model of
the system using Lagrange’s equation, which can then be written as

d

dt

�L

�q̇
−

�L

�q
= 
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L

M

Frictionless Surface 

u

y

m

θ

Figure A.8 The inverted pendulum of Example A.6.

where q is an n-dimensional vector of generalized coordinates qi, 
 is an
n-dimensional vector of generalized forces 
i, and L=K−P� the difference
between the kinetic and potential energies, is the Lagrangian.
In this system, there are two generalized coordinates: the displacement of

the cart y and the angle of the pendulum �.
Let us first find the generalized forces corresponding to the generalized

coordinates. The way to find the generalized force Fi corresponding to a
generalized coordinate qi is as follows. (1) Compute the work done by all
nonconservative forces when qi is changed to qi+dqi with all other gener-
alized coordinates held fixed. (2) Denote the work by dWi. (3) Calculate
the generalized force as Fi = dWi/dqi.
In our system, to calculate the generalized force F� corresponding to �,

let �→ �+d�. We have dW� = 0. Hence F� = 0. Similarly, to calculate the
generalized force Fy corresponding to y, let y→ y+dy. We have dWy = F dy.
Hence Fy = F .
The kinetic energy of the system is given by

K =
1

2
Mẏ2+

1

2
mż2

where ẏ is the velocity of the cart and ż is the velocity of the pendulum. The
velocity ż can be calculated by decomposing it in the horizontal direction

żh =
d

dt
�y+L sin��= ẏ+L�̇ cos�

and the vertical direction

żv =
d

dt
L cos� =−L�̇ sin�
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Since

ż2 = ż2h+ ż2v

= �ẏ+L�̇ cos��2+ �−L�̇ sin��2

= ẏ2+ �L�̇ cos��2+2ẏL�̇ cos�+ �L�̇ sin��2

= ẏ2+ �L�̇�2+2ẏL�̇ cos�

the kinetic energy of the system is

K =
1

2
Mẏ2+

1

2
m�ẏ2+ �L�̇�2+2ẏL�̇ cos��

The potential energy of the system is

P =mgL cos�

The Lagrangian

L= K−P =
1

2
Mẏ2+

1

2
m�ẏ2+ �L�̇�2+2ẏL�̇ cos��−mgL cos�

Calculate the derivatives as follows

�L

��̇
=mL2�̇+mẏL cos�

d

dt

�L

��̇
=mL2�̈+mÿL cos�−mẏ�̇L sin�

�L

��
=−mẏL�̇ sin�+mgL sin�

The first Lagrange equation is

d

dt

�L

��̇
−

�L

��
= F�

Or

mL2�̈+mÿL cos�−mẏ�̇L sin�+mẏL�̇ sin�−mgL sin� = 0

⇔mL2�̈+mÿL cos�−mgL sin� = 0

⇔ L�̈+ ÿ cos�−g sin� = 0 (A.5)
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Similarly

�L

�ẏ
=Mẏ+mẏ+mL�̇ cos�

d

dt

�L

�ẏ
=Mÿ+mÿ+mL�̈ cos�−mL�̇2 sin�

�L

�y
= 0

The second Lagrange equation is

d

dt

�L

�ẏ
−

�L

�y
= Fy

Or

Mÿ+mÿ+mL�̈ cos�−mL�̇2 sin� = F (A.6)

Solving Equations (A.5) and (A.6) for ÿ and �̈, we have

ÿ =
u+mL�̇2 sin�−mg sin� cos�

M+m sin2 �

�̈ =
−u cos�−mL�̇2 sin� cos�+ �M+m�g sin�

L�M+m sin2 ��

From the above equations, we can derive the state equations of the system.
Let us define the state variables as: x1 = y, x2 = ẏ, x3 = �, and x4 = �̇. The
state equations are

ẋ1 = x2

ẋ2 =
u+mLx2

4 sinx3−mg sinx3 cosx3

M+m sin2 x3

ẋ3 = x4

ẋ4 =
−u cosx3−mLx2

4 sinx3 cosx3+ �M+m�g sinx3

L�M+m sin2 x3�
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Active vehicle suspension, 277, 287
Algebraic Riccati equation, 114

Banach space, 241
Boundary Crossing theorem, 215

Cauchy’s argument principle, 85
Characteristic polynomial, 7
Control, 3

classical control, 5
closed-loop, 4
feedback, 4
modern control, 5
open-loop, 4
state feedback, 6

Controllability, 6
Controllability matrix, 6
Controllable canonical form, 6
Coordinate change, 25
Cost, 8, 102

DC motor, 28, 39, 119
Detectability, 8, 96

Eigenvalue, 6
Eigenvector, 27
Equilibrium, 6, 70

Full-order observer design, 54

Generalized coordinate, 13, 298
Generalized force, 13, 298

H�/H2 approach, 5, 239
H2 control problem, 266
H� control problem, 271
Hamilton-Jacobi-Bellman equation, 9,

111
Hilbert space, 241
Hovering control, 318
Hurwitz determinant, 77
Hurwitz matrix, 77

Inner product space, 241
Interlacing theorem, 216, 218
Inverted pendulum, 30, 40, 48, 103

Jordan canonical form, 6, 26

Kalman (Kalman-Bucy) filter, 9, 125
Kharitonov approach, 10, 213
Kharitonov polynomial, 228
Kharitonov theorem, 11, 227, 228
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Lagrange’s equation, 298
Linear quadratic regulator (LQR)

problem, 9, 104
Lyapunov function, 7
Lyapunov stability theorem, 71

Matched uncertainty, 9, 137, 176
Matching condition, 9, 137
Matrix exponential, 17
Minimum-phase system, 88

Nominal system, 12
Non-minimum phase system, 320
Norm, 11, 243, 244, 247,

250, 280
H2 norm, 11, 244
H� norm, 11, 243, 247, 250
energy norm, 280

Nyquist criterion, 7, 88
Nyquist path, 86
Nyquist plot, 7, 86

Observability, 6
Observability matrix, 6
Observable canonical form, 6
Observer, 53, 59

full-order observer, 53
reduced-order observer, 59

Optimal control, 8
approach, 9
problem, 101

Optimal observer, 125
see also Kalman filter

Parametric approach, 5, 10, 213
see also Kharitonov approach

Planar vertical takeoff and landing
(PVTOL) aircraft, 318

Pole, placement, 6
multi-input system, 50
single-input system, 47

Pole-zero cancellation, 33
Principle of optimality, 8, 106

Realization, 25, 26
Reduced-order observer design, 61
Robot manipulator, 13, 297, 302
Robust active damping problem, 262

Robust control
design, 5, 9, 231
problem, 138, 145, 155, 159, 166,

176, 183, 191, 198, 206
Robust hovering control problem, 321
Robust manipulator control problem,

304
Robust pole placement problem, 142
Robustness, 12
Routh table, 7, 76
Routh-Hurwitz criterion, 7, 77

SCARA-type robot, 13, 297
Separation principle, 6, 58
Similarity transformation, 6, 25
Small-gain theorem, 12, 254
Stability, 6, 70

asymptotically stable, 7, 70
globally asymptotically stable, 70
linear time-invariant systems, 74

Stabilizability, 8, 94
State transition matrix, 23
State-space representation, 5

output equation, 5, 16
state equation, 5, 16

System, 1
continuous-time, 3
discrete-time, 3
input, 2
linear, 2
multiple input and multiple output,

3
nonlinear, 2
output, 2
single input and single output, 3
time-invariant, 3
time-varying, 3

Transfer function, 4, 22

Uncertainty, 9, 137

Vertical/short takeoff and landing
(V/STOL) aircraft, 13, 317

Vibration system, 12, 297

Zero-input response, 20
Zero-state response, 20


