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Preface

The Grid computing paradigm has evolved tremendously since the beginning
of this millennium. It enables a flexible, secure and coordinated resource shar-
ing among dynamic collections of individuals and institutions. The evolution
has occured in various sectors – different Grid infrastructures such as com-
putational Grid, data Grid and knowledge Grid are available to fulfill the
diverse requirements of scientific communities. Today various application de-
velopment and execution environments are present to create new Grid-enabled
applications and to execute them onto the Grid. During this timeframe, the
major focus of the research community remained on the development of an
effective Grid middleware that could lead to a robust operating and man-
agement system. The middleware provides services for security, scheduling,
information dissemination and resource provisioning.

Despite all these efforts, resource allocation remained a challenge for build-
ing an effective Grid resource management, as Grid applications are con-
tinuously evolving over time. In the Grid, resource management intends to
make high-performance computational resources available on-demand to any-
one from anywhere at anytime without undermining the resource autonomy.
This is still an art due to non-dedicated heterogeneous resources distributed
under multiple trust domains spanning across the Internet under the dynamic
Grid environments.

In this monograph, we address the challenges of providing an effective
Grid resource management by applying various techniques such as automatic
brokerage, dynamic allocation, on-demand resource synthesis, advance reser-
vation and capacity planning. In contrast to the conventional computing en-
vironments, applying these techniques in the Grid is all but straightforward.
Nevertheless, in the Grid, application of such techniques is of paramount im-
portance for resource management with effective provisioning, better utiliza-
tion and an optimal allocation.

First of all, we identify the requirement of automatic resource brokerage
in the Grid. The development of the Grid with diversified applications com-
peting for scarce resources accentuates the need for an automatic resource
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brokerage – this is required to enable the Grid to shield its middleware com-
plexities and to lead toward an invisible, intuitive, and robust runtime en-
vironment. Conventional research in the area of Grid resource management
mainly focuses on job scheduling with manual or semi-manual resource alloca-
tion where resources must be prepared in advance with required applications
and system software. This results in non-portable applications hard-coded to
a specific Grid environment. Furthermore, it undermines the possible avail-
ability of a wide range of logical resources such as software services and tools,
thus restricting Grid users to a limited set of physical resources. However, the
importance of logical resources is accentuating with the evolution of Grid ap-
plications. Some advanced Grid programming environments allow application
developers to specify Grid application components at a higher level of ab-
straction, which then require a dynamic mapping between high-level resource
descriptions and actual deployments.

Advance reservation has been largely ignored in the Grid. A Grid ap-
plication is mostly distributed in nature and runs in a workflow paradigm
where dynamic mappings of application components may require advance al-
location of resources so that resources could be available as the workflow
execution progresses. Advance reservation improves behavioral predictability
and on-demand provisioning QoS. A service-level agreement is required to
ensure terms and conditions to be agreed upon during negotiation. In the
Grid, advance reservation of resources is a challenging task due to the dy-
namic behavior of the Grid, multi-constrained contending applications, un-
der utilization concerns, and lack of support for agreement enforcement. The
under-utilization of resources is a major issue with advance reservation. For a
workflow application, resources must be available even under the worst possi-
ble conditions for a successful execution. As a result, resource allocation time
has to be much longer than average execution time, resulting in computing
power wastage.

Nowadays a huge collections of logical resources such as software services
and tools are independently and freely available in the Grid, distributed among
different physical resources. In order to utilize these logical resources a man-
ual composition is required to build a Grid-enabled application. The man-
ual composition is not only a time-consuming process but it also requires a
domain-specific knowledge. Thus, a large collection of logical resources are left
unused.

This monograph renders boundaries of Grid resource management, identi-
fies research challenges, proposes new solutions and introduces new techniques
with implementations in the form of a Grid resource management system
called GridARM. GridARM is part of Askalon—a Grid application develop-
ment and execution environment. The system is designed and developed as
a scalable distributed resource manager that delivers resources on-demand,
works for resource providers, and optimizes resource utilization with better
load distribution and capacity-planning strategies. Optimal load distribution
among resources is done according to their proportional share in the Grid.
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Novel techniques are introduced for on-demand provisioning, advance reser-
vation, and capacity planning. On-demand provisioning becomes possible with
automatic deployment, resource synthesis, and advance reservation. In con-
trast to existing resource managers, GridARM covers logical resources as
well by enabling advanced Grid programming environments to specify appli-
cation components at higher level of abstractions and mapping them to ac-
tual deployments dynamically. Henceforth, it simplifies abstract descriptions
and separates them from concrete deployments. We further exploit Semantic
Web technologies for the Grid to specify explicit definitions and unambiguous
machine-interpretable resource descriptions for intelligent resource matching
and automatic resource synthesis capabilities.

We introduce a smart negotiation protocol to make optimal resource allo-
cation for a better resource utilization. Advance reservation is supported with
a practical solution for agreement enforcement. In order to address under-
utilization concerns, we introduce capacity planning with multi-constrained
optimized resource allocations. We model resource allocation as an on-line
strip packing problem and introduce a new mechanism that optimizes resource
utilization and other QoS parameters while generating contention-free solu-
tions.

Furthermore, this monograph introduces a new mechanism for automatic
synthesis of logical resources by applying ontology rules. The synthesis pro-
cess generates new compound resources that can be provisioned as new or
alternative options for negotiation and advance reservation. This is a major
advantage compared to other approaches that only focus on resource match-
ing. The newly generated compound activities provide aggregated capabilities
that otherwise may not be possible; this leads toward an automatic genera-
tion of complex workflow applications. In addition, we introduce semantics in
capacity planning for improving optimization in resource allocation.

The newly introduced techniques and proposed solutions are already in-
tegrated in Askalon Grid runtime environment and deployed in the Austrian
Grid. The book also demonstrates the effectiveness of the system through
well-performed experiments.

June 2009 Mumtaz Siddiqui
Thomas Fahringer
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1

Introduction

A world-wide communication system was developed in the early 1970s to
make electronic messaging possible among scientists for the sharing of their
research findings with each other. However, the communication protocols were
complex and their applications were non-intuitive. Later in the early 1990s,
world wide web was created to share not only information but (raw-)data as
well in an intuitive way of publishing and sharing instead of messaging. The
invention of world wide web has ubiquitized the Internet and enabled scientists
to access (raw-)data published by fellow scientists for their own analysis. As
a next step, an environment was required to process the huge amounts of
data using computers in an efficient way; an environment, in which users and
scientists could have communicated and shared not only information and data
but resources as well, such as computers and scientific instruments.

In the last decade, a major step has been taken towards building an eco-
nomical computing infrastructure composed of commodity computers and net-
work components. As a consequence an effective and efficient utilization of
widely distributed resources to fulfill the needs of a range of applications [144]
is established. The low-cost computing resources for instantaneous sharing and
processing of ideas, knowledge, and skills has made the collaborative work dra-
matically possible that paved a path towards rapid evolution of distributed
computing. As soon as computers are interconnected and communicating, we
have a distributed system; this raised issues in designing, building and de-
ploying distributed computer systems which have been explored over many
years [144].

Distributed computing is a way of scaling computation so that different
parts of a program can run simultaneously on multiple computers intercon-
nected over the Internet. The idea is further evolved to harness computing
power of ’idle computers’ available across the world under different admin-
istrative domains. This is to eliminate the requirements of having expensive
dedicated resources and to get aggregated power of inexpensive resources that
collectively turnover the power of expensive supercomputers.

M. Siddiqui and T. Fahringer: Grid Resource Management, LNCS 5951, pp. 3–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



4 1 Introduction

The idea of CPU cycle scavenging evolved in the early history of dis-
tributed computing, however it has been popularized with the introduction
of volunteer computing. Volunteer computing became widely known in 1999
through SETI@home [127] that harnesses the free computing cycles of idle per-
sonal computers interconnected and distributed all over the world. Distributed
computing evolved in the same timeframe to target not only personal com-
puters but all kind of heterogeneous computing resources distributed under
multiple trust domains. This is referred to as meta-computing or the Grid.

The term Grid was coined in the early 1990s as a metaphor for introducing
computing capability as a utility and making it as easy to access as an electric
power Grid. Analogous to power Grid the computing Grid is perceived as
a Grid of distributed computers that provides a transparent and pervasive
computing infrastructure in which computing capability is delivered over the
Internet and can be used as a utility.

Ian Foster, Carl Kesselman and Steve Tuecke, the so-called fathers of the
Grid [22, 3], lead the efforts to provide management of computing resources
for CPU cycle scavenging, distributed security, data transfer, monitoring, and
provision of a Grid-enabled service development environment [76, 10]. In the
beginning of 2004, developments were made towards latest standardization in
the Grid for management of resources and configurations and mechanisms
like negotiation, notification, event propagation, and information aggrega-
tion [191]. The standardization efforts are taking place under the umbrella
of the Global Grid Forum (GGF) [81] that is transformed into the Open Grid
Forum (OGF) [129]. The evolution of the Grid forum indicates the importance
of the Grid, requirements for standardization, and above all the interest of the
international research community and the industry for a reliable, robust and
pervasive Grid infrastructure.

The Grid enables flexible, secure, coordinated resource sharing among dy-
namic collections of individuals, institutions, and resources [144, 74]. It is a
distributed computational environment that is composed of non-dedicated di-
verse resources spanning the entire Internet under multiple trust domains.
It intends to make high performance computational resources available on-
demand to anyone from anywhere at anytime.

An effective Resource Management is required for the provisioning and
sharing of resources without undermining the autonomy of their environments
and independence of geographical locations. In contrast to the resource man-
agement in conventional systems, the resource management in the Grid has to
balance global resource sharing with local autonomy by dealing with issues of
heterogeneity of resources and multiple administrative domains. This empha-
sizes the importance of information aspects, essential for resource description,
discovery, selection and brokerage.

Apart from matchmaking of physical resources, Grid resource manage-
ment has to deal also with on-demand provisioning of logical resources, such
as software components. On-demand provisioning of resources needs to ad-
dress issues of resource matching and selection, automatic deployment, and
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capacity planning. Existing resource managers concentrate mostly on physical
resources. However, some advanced Grid programming environments allow ap-
plication developers to specify Grid application components at a higher level
of abstraction which then require an effective mapping between high level de-
scription and concrete deployments. For this purpose, a mechanism is required
that can be used to enable and build Grid applications. Resource allocation
with advance reservation is an important aspect that plays a key role in en-
abling the Grid resource management to deliver resources on-demand with a
significantly improved quality-of-service (QoS).

Recently, Grid researchers have begun to take a step further, from infor-
mation to knowledge [144]. To strengthen this vision, we introduce semantics
in the Grid using state-of-the-art Semantic Web technologies. It simplifies
descriptions and representations of both physical and logical resources. Se-
mantics gives the Grid resources clear and machine interpretable meanings
so that they can be registered and discovered unambiguously and as a result
become available on-demand. This is a step towards enablement of potential
applications for the Grid and shielding the Grid middleware complexities and
low-level details from the Grid users and application developers.

1.1 Motivation

To benefit from the Grid, an application needs to be compute and/or data-
intensive, and should be decomposable into smaller problems. The distin-
guishing aspect of the Grid is provisioning of an abstraction layer over re-
sources that allows homogeneous access to and better usability of heteroge-
neous distributed resources. Access is provided through uniform operating
and management system. Computational performance is gained at the cost of
increased latency due to the additional abstraction layer. The uniform inter-
facing mechanism provided by the abstraction layer refers to as virtualization
and the logical grouping and sharing arrangement in the Grid is referred to
as Virtual Organization (VO) [74]. Based on such realizations the Grid can
be described as:

a virtualized distributed computing infrastructure in which the com-
puting power is transparently delivered on-demand using open stan-
dards in a coordinated and shared way by aggregating capabilities of
low-cost off-the-shelf heterogeneous computing devices dispersed un-
der multiple trust domains.

However, the Grid has a long way to go in order to qualify as a virtualized
single computer delivering computing power as a utility. Transparency and
pervasiveness is possible only by providing a virtualized, uniform and transient
access to the heterogeneous resources, whereas intuitive usability of the Grid
is possible only through effective resource management.
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The main focus of our research described in this book is the Grid resource
management enabled to deliver resources on-demand and to ensure and main-
tain a certain level of service quality. Both physical resources such as com-
puters and logical resources such as software components are covered. In this
book, we investigate techniques and strategies for automatic resource discov-
ery and selection, automatic deployment of legacy scientific applications, and
Grid capacity planning and management. We try to answer which techniques
and strategies are better and how the provisioning quality of service can be
improved. While investigating on-demand provisioning and capacity planning
for the Grid, we also identify how existing Grid and Web technologies can be
exploited for the enforcement of agreements, improvement in resource utiliza-
tion, and betterment in on-demand resource provisioning. One of the main
goals was to develop a smart and robust resource management for the Grid
that delivers Grid resources on-demand with improved quality of service, bet-
ter capacity planning, and the Grid enablement for potential applications.

Some of the challenges and motivations that have been driving the research
about resource management in the Grid are given below. These challenges are
addressed with innovations in our research work.

1.1.1 Collaboration Instead of Isolation

Many scientific and engineering problems today require widely dispersed re-
sources to be operated and uniformly accessed as systems. Networking, dis-
tributed computing, and parallel computational research have matured to
make it possible for distributed systems to support high-performance appli-
cations. However, resources are dispersed, connectivity among them is fluc-
tuating, and dedicated access is impossible. This adds a real challenge to
virtualized access that is important for the manageability of resources in a
Grid.

Widely distributed resources in the Grid are heterogeneous, shared, and
federated. Therefore it is important to address issues such as connectivity, per-
formance, interoperability and manageability of these resources. A uniform,
location independent, and transient access to these resources is the vision of
the Grid. Resources like scientific instruments that facilitate the solution of
large-scale, complex, multi-institutional, and multi-disciplinary data and com-
putational problems must be accessible through problem solving environments
that are appropriate for the target user community.

1.1.2 Discovery and Selection

In dynamic environments such as the Grid, where resources may join and
leave at any time, discovery and selection plays a key role in an effective
Grid-level resource management. In the currently available Grid operating
environments [10, 70, 68], resources are published in a hierarchical information
systems where published information are propagated from resources to an
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index service [39]. The index service is an aggregator and hub of the collected
information and thus becomes a bottleneck. Such a discovery system should
be reliable and fault-tolerant.

Once resources have been discovered, the resource that fits best to the user
goal has to be selected. It is important to make resources available on-demand
no matter where they reside or who owns them. It is also very crucial that
while making a resource selection for a resource requester, the utility of one
stake holder should not be compromised at the cost of other stake holder.
That means, the load distribution should not become unfair just to satisfy a
certain user, or resource utilization should not be maximized at the cost of
user goals.

Currently, resource selection is manual or semi-manual in the Grid. For the
evolving Grid infrastructure in which number of resources is increasing along
with number of competing applications, provision of an automatic resource
selection and brokerage is required.

1.1.3 Lifecycle Management

The Grid can also be visioned as a pool of idle resources. These resources
can be re-purposed by re-configuring their environments. Automatic lifecy-
cle management can play a significant role in re-purposing these resources
on-demand. This mechanism not only improves resource utilization but also
enables a resource manager to generate more options to offer on request.

However, lifecycle management of Grid resources is hard as resources are
distributed under different administrative domains, their availability is unpre-
dictable, and the resource requesters and providers have conflicting goals and
policies. In such an environment, dealing with lifecycle management is a real
challenge.

The modernization and virtualization of resources are a few encourag-
ing and motivating factors. Physical resources possess great potential to be
managed throughout their lifespan using virtualization technologies. Similarly,
lifecycle management of logical resources is also possible by considering auto-
matic deployment, undeployment, exposure and/or shielding from Grid users.

1.1.4 On-Demand Provisioning

On-demand provisioning has been gaining momentum in various fields in-
cluding resource management for the Grid. Gaining control over the lifecycle
management of underlying resources can help to handle dynamic environment
resulting in improved delivering of resources on-demand.

The Grid environment is dynamic in which resources join and leave the
Grid and prediction about their behavior is very hard. However, by applying
sophisticated monitoring and prediction means it might be possible to foresee
the expected demand and to supply the underlying resources. For instance, it
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is more likely that during peak times less resources become available. Simi-
larly, during weekends and holidays more resources become available than an
average. In contrast, during the working hours, demand increases than supply.

In the light of this dynamic scenario, enabling on-demand delivery of re-
sources at runtime is more economical, efficient, and transparent than hard-
coding a set of resources statically for an application before runtime.

1.1.5 Role of Planning

On-demand provisioning of resources can be counter productive without
proper capacity planning and management. As mentioned earlier, it is possi-
ble to deliver resources on-demand. One simple form of planning could be to
allocate resources with low utilization to Grid applications.

However, resources are scarce and applications compete for these resources.
In this context, planning becomes a forward looking process that can be
achieved with proper capacity planning of Grid resources expected to be avail-
able sometime in the future. This problem has similarities to the yield man-
agement [123] that is offered, for example, in airline and hotel reservation
systems. In the yield management, resource leasing/selling is planned well in
time so that as a result utilization of available resources is optimized and
profit is maximized, and resource capacity does not wasted with passage of
time.

Similarly, resource allocation needs to be planned in such a way that re-
source utilization is optimized by allocating either under-utilized resources
or by making allocation in future when resources are expected to be avail-
able. This approach improves provisioning quality by offering later delivery of
resources instead of not delivering at all.

1.1.6 Service-Level Agreement

Looking towards the future is important for planning, however, protecting re-
sources for potential applications and clients, complements the capacity plan-
ning in the Grid. It is important to protect a resource offered in future. This
emphasizes the need for service-level agreement (SLA).

However, in the dynamic Grid environment, an agreement enforcement
is a real challenge. It is very hard for the resource management system to
make a promise that an unpredictable resource will be available in future.
To overcome this problem, a solution is required that works in dynamic and
heterogeneous environments. This book addresses this challenge along with
capacity planning.

An important aspect is fairness in resource allocation. Protecting an ap-
propriate share for a class of users, so that other users could not consume
the entire capacity available in the Grid, could lead towards fair distribution.
This kind of protection is possible with planning using allocation with advance
reservation.
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1.1.7 Optimized Resource Allocation

Allocation of scarce resources to contending applications is an NP-complete
problem [152, 38] and legacy heuristics are not sufficient to provide an efficient
and optimal solution because of the dynamic nature of the Grid. Resource
allocation with advance reservation may result in under-utilization of resource
capabilities. In order to overcome this concern, allocation needs to be made
with optimization by using appropriate capacity planning strategies.

Capacity planning and advance reservation is therefore of paramount im-
portance for the Grid in order to agree on negotiated SLAs. Proper planning
ensures a stable and powerful Grid that can grow to meet future needs and
preserve client-centric SLAs while optimizing often contradicting requesters
and providers goals. Optimization of QoS parameters is an increasingly im-
portant approach to manage Grid resource capacity as the sophisticated and
distributed applications are evolved.

Since a resource manager works for resource providers, it is important
for a resource manager to protect resource provider’s interests while fulfilling
requirements of clients. That means new algorithms are required to make
optimal resource allocations without compromising client goals while dealing
with the dynamic nature of the Grid environment.

1.1.8 Synthesis and Aggregation

On-demand synthesis of application components can be used in automatic
workflow composition and in improving quality of the resource provisioning.
However, synthesis of activities has been largely ignored due to the limited
expressiveness of the representation of resource capabilities and the lack of
adapted resource management means to take advantage of such resource syn-
thesis. The synthesis of resources combines multiple primitive resources to
form new compound resources.

The synthesized resources can be provisioned as new or alternative options
for negotiation as well as advance reservation. Furthermore, the new synthe-
sized resources can provide aggregated capabilities that otherwise may not be
possible, leading towards an automatic generation of large-scale application
workflows as a virtually single compound activity. This is a major advantage
compared to existing approaches that only focus on resource matching and
brokerage.

1.1.9 Grid Enablement

To treat Grid resources as commodities, an application should be Grid-enabled
so that it can exploit the environment of the Grid in order to get benefit
from it.

An application refers to as Grid-enabled if it is ubiquitous, resource aware,
and adaptive: the ubiquity enables an application to interface to the system at
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any point and leverage whatever is available at that point in time, the resource
awareness enables an application to be capable of managing heterogeneity of
available resources, and finally, the adaptability enables an applications to
tailor its behavior dynamically so that it gets maximum performance benefits
from services and resources at hand [95].

However, enabling the legacy scientific applications for the Grid is very
hard since it requires re-implementation of applications according to the Grid
environment. Re-implementation requires vigorous testing and quality assur-
ance. On the other hand, a fully Grid enabled application cannot be executed
in a non-Grid environment without modification.

1.1.10 Portability

Grid applications are portable if they can be mapped dynamically to the
Grid environment unless the architecture of the target machine is inconsistent
with the application’s supported architecture. Dynamic mapping is possible
by separating abstract or functional description of application components
from concrete deployment descriptions and then providing a mechanism to
map abstract descriptions to concrete deployments.

However, clear separation between abstractions and concrete deployment
representations is not an easy task especially for legacy applications. Legacy
applications are unobtrusively defined in a way that their abstract descriptions
or interface definitions are not well defined.

1.1.11 Semantics in the Grid

Semantic technologies like ontologies provide vocabularies with explicitly de-
fined, unambiguously understandable and automatically machine-interpret-
able meanings that enable automatic resource brokerage. As a resource de-
scription model, it is proposed to replace the classic attribute-based symmet-
ric resource description model with an extensible ontology-based asymmetric
model. The proposed model provides foundation to a flexible and extensible
discovery and resource matching mechanism.

Different types of resources can provide similar capabilities but with vary-
ing degrees of QoS. This highlights that resource capabilities are required to be
presented in such a way that consumers can easily discover resources match-
ing their requirements, by following some sophisticated patterns of resource
discovery, matching, and negotiation.

A powerful discovery mechanism can be built based on expressive descrip-
tion mechanisms. This means, it is necessary to explicitly, precisely, and unam-
biguously describe Grid resources and specify various constraints over resource
descriptions. The description should be automatically interpretable and un-
derstandable by machines. Major contributions of semantics in the Grid are
possible in the area of on-demand provisioning, optimized resource allocation
and synthesis of resources leading towards introduction of new capabilities.
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1.2 Research Goals

Under the motivations outlined in the previous section, in this book we address
the mentioned problems and provide a novel resource management system
called GridARM [153, 154] that is developed as part of the Askalon Grid
application development and execution environment [63, 62].

Our goal is to explore theoretical and practical aspects of resource manage-
ment for the Grid in order to provide automatic resource matching and selec-
tion, automatic deployment of logical resources i.e. applications and software
components, advance reservation and co-allocation, capacity management and
planning for resources currently available and expected to be available in fu-
ture. Additional goals include adaptation of state-of-the-art Grid and Web
technologies and the proposed service-oriented architecture, introduction of
semantics in the Grid, and last but not least to take a step towards shielding
the Grid complexities and enabling it for potential applications. The major
goals of this book are described as follows:

1.2.1 Automatic Resource Brokerage

We propose an automatic resource selection and brokerage mechanism as a
part of the resource manager. The main task of the resource manager is to
optimize resource allocations for all contending applications. Most of the cur-
rently available Grid operating environments [10, 70, 68] provide tools and
services to support resource brokerage. Nevertheless, resource brokerage in
existing systems is manual. The Grid environment is getting more and more
mature and its applications contending for scarce resources are evolving. This
highlights the need for a mechanism for automatic resource brokerage that
does resource matching with user goals while distributing resources in a fair
and optimal manner. This book intends to provide a resource manager that
is capable to do automatic resource brokerage by allocating resources based
on some criteria such as fairness or optimization without undermining inter-
ests of requesters/providers. Some of the important features of the proposed
resource brokerage are:

• the resource management system is to be distributed in a service-
oriented fashion and multiple instances of the resource manager coor-
dinate with each other in order to share their underlying resources in a
superpeer model [169]-based distributed infrastructure;

• the resources, matching the user requirements, should be automatically
selectable and a candidate set needs to be generated in an order according
to a user-defined candidate selection criteria;

• the final selection should be made in accordance with a fairness policy;
resources need to be allocated according to the proportional share
of resources in the Grid;
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• the resource manager can be customizable in order to set up a dedicated
experimental environment and a coarse-grained access control policy for
underlying resources.

1.2.2 Dynamic Registration and Automatic Deployment

A key concerns of resource management is to implement an effective Grid
middleware that shields application developers from low level details. Exist-
ing resource managers concentrate mostly on physical resources. However,
some advanced Grid programming environments allow application developers
to specify Grid application components at high level of abstraction which then
requires an effective mapping between high level application descriptions and
actual deployed software components. In this book we introduce a framework
that provides dynamic registration, automatic deployment and on-demand
provision of application components that can be used to build Grid applica-
tions. This framework is called GLARE and is implemented as an extension
of GridARM. Here are the main features of GLARE which

• separates and simplifies abstract and concrete descriptions and repre-
sentations of resources so that they can be advertised and located un-
ambiguously to be delivered on-demand;

• provides automatic deployment of applications on the selected node
(Definition 11), the deployment procedure can be provided as part of the
abstract descriptions of application components by the providers, and ex-
ecuted on the target node by GLARE ;

• un-deploys automatically once applications are no longer required;
• enables registration and un-registration of deployed applications in

order to expose or hide them to the Grid users.

1.2.3 Advance Reservation and Co-allocation

Advance reservation plays a significant role in providing a smart and robust
resource management for the Grid in order to have a better control over Grid
resources for capacity planning, fair load distribution, and optimal resource
utilization.

In this book we propose a mechanism for advance reservation of Grid
resources with better planning for resource allocation and a practical solution
for enforcement of agreements. The distributed resource allocation system
enables a client to negotiate for required resources in order to reach on a better
compromise between application requirements and resource capabilities. This
mechanism contributes not only for better planning but also for improvement
in predictability. A set of features of distributed advance reservation system
has been identified to be implemented as part of the GridARM which
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• introduces different algorithms to perform advance reservation by different
types of allocation strategies including fairshare and optimization
in resource utilization;

• introduces a 3-layered negotiation protocol between resource requesters
and providers in order to reach and seal an agreement;

• introduces a practical solution for the agreement enforcement based
on the off-the-shelf Grid technologies;

• introduces the idea of open reservations in order to deal with the dy-
namic behavior of the Grid. An open reservation is a promise by the system
that a resource will be available at sometime in the future but the resource
binding is deferred to be decided later at runtime. This scenario represents
a priority provision; the next available resource that fulfills user goals is
allocated at runtime;

• demonstrates the effectiveness of advance reservation for planning and
predictability.

1.2.4 Capacity Management and Planning

In this book we introduce a new mechanism for capacity management and
planning that exploits advance reservation of Grid resources. In the Grid,
capacity planning and management has been ignored due to the dynamic
Grid behavior, multi-constrained contending applications, lack of support for
advance reservation and its associated challenges like under utilization and
agreement enforcement concerns.

These issues force a Grid resource manager to allocate resources at run-
time with reduced quality of service (QoS). The proposed Grid capacity plan-
ning and management is performed with the help of advance reservation and
multi-constrained allocation optimization. It models resource alloca-
tion as an on-line strip packing problem and introduces a new mechanism
that optimizes resource utilization and other QoS parameters while generating
contention-free solutions. Our proposed solution

• provides a forward looking process in which allocations are made along
a planning horizon;

• exploits advance reservation for optimized resource allocation with
service-level agreement (SLA);

• provides a mechanism to plugin different allocation offer generation
algorithms;

• provides a set of offer generation algorithms that can be used according to
the policy of resource providers;

• generates multiple options to be offered to the client. The options are gen-
erated as alternative offers based on multi-constrained optimization
of resource utilization;

• generates allocation offers in such a way that resource capacity is optimally
utilized and capacity wastage is minimized.
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1.2.5 Semantics in the Grid

We introduce an ontology-based resource description, discovery and selection
mechanism. For the resource description model the book proposes to replace
the classic attribute-based symmetric resource description model with an ex-
tensible ontology-based asymmetric model. This model provides foundation
to a flexible and extensible discovery and correlation mechanism.

Furthermore, this book exploits semantics in the Grid and introduces auto-
matic synthesis of resources and software components in the Grid by applying
ontology rules. Rule-based synthesis combines multiple primitive resources to
form new compound resources. The main goals of the book in the context of
semantics are the following:

• asymmetric resource description with ontologies so that resource re-
questers and providers don’t have to agree on certain terms and their
agreed upon values;

• subsumption-based resource selection that allows to propose alternative
options if exact match does not exist;

• synthesis generates multiple resources that can be provisioned as new
or alternative options; the newly generated synthesized resources provide
aggregated capabilities that otherwise may not be possible;

• synthesis enables automatic workflow generation.

1.2.6 Standard Adaptation

GridARM follows the paradigm of service-oriented architecture (SOA) in
which services are loosely coupled and coordinate with each other [74, 76].
Following the SOA vision, the Open Grid Forum is actively working on the
standardization of various aspect of the Grid. GridARM intends to adapt
proposed standards in the area of:

• Grid Resource Allocation Agreement Protocol (GRAAP) that proposes
WS-Agreement specification [87], we use this proposed standard for nego-
tiation and agreement management;

• Job Specification Description Language (JSDL) [100] that supports a rich
set of constructs for constraints specification. We use JSDL to specify
multiple constraints;

• Configuration Description, Deployment, and Lifecycle Management (CD-
DLM) [31] is a standard for the management, deployment, and configura-
tion of Grid resources. We propose to use CDDLM in configuration and
lifecycle management of resources.

Last but not least, this book is a step towards an invisible Grid. A smart re-
source management enables Grid middleware infrastructure to deliver seam-
less resource management capabilities by shielding the Grid users and the
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application developers from low level details and the middleware complexi-
ties. The Grid has been visioned as a virtualized single computer system, and
one of the goals of resource management for this virtualized computers is to
make it work as if the entire Grid is a single computer that transparently
delivers computing capabilities to its clients. Following are the main features
that contributed towards invisible Grid:

• automatic resource brokerage that performs resource matching with
users requirements;

• Grid-independent abstract description of resources that are mapped to
concrete deployments dynamically at runtime, thus hides low-level details
and complexities of the Grid middleware.

We address the major challenges described in Section 1.1 in a systematic way
in order to achieve the goals described in Section 1.2. This book is organized
in five parts as described in the following sub-section.

1.3 Organization

This book is subdivided in five parts and appendices, each part consists of
two chapters with the exception of the last part that concludes the book with
a single chapter.

1.3.1 Part 1: Overview

The first part provides an overview of the book that includes introduction (this
chapter) and model (next chapter). Chapter 2 describes model of the Grid,
its components, characteristics, middleware by covering both Grid operating
and runtime environments. Furthermore, it describes resource management
model by defining various concepts and terminologies used in the following
chapters. This chapter also gives overview of a Grid operating environment
called Globus Toolkit [10], a Grid runtime environment called Askalon [61],
Semantic Grid, and various manageability models.

1.3.2 Part 2: Brokerage

This part of the book covers resource brokerage. Chapter 3 describes Gri-
dARM architecture in general and discovery, selection, and brokerage of phys-
ical resources in particular. It describes in detail, resource discovery and selec-
tion mechanisms, candidate set generation, and a mechanism for proportional
share-based optimal load distribution. The chapter also proposes a super-
peer model-based distributed decentralized infrastructure. Finally, this chap-
ter demonstrates and analyzes results.
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Chapter 4 covers resource brokerage of logical resources i.e. applications
and application components. It introduces a Grid-level application registra-
tion, deployment, and provisioning framework in which application compo-
nents can be registered dynamically, deployed automatically, and provisioned
on-demand. The chapter also demonstrates effectiveness of our approach with
experiments.

1.3.3 Part 3: Planning

Part three covers allocation and capacity planning in the Grid. Chapter 5 cov-
ers resource allocation with negotiation-based advance reservation and a prac-
tical solution for agreement enforcement. It defines various concepts related to
allocation, advance reservation, and agreement that are used for negotiation
and contract representations.

Chapter 6 describes capacity planning and management for optimization
of multi-constrained allocations. It proposes a 3-layer negotiation protocol
and a new algorithm for allocation offer generation that generates multiple
allocation offers in order to improve resource utilization. Finally, the chapter
demonstrates effectiveness of the capacity planning approach with experi-
ments.

1.3.4 Part 4: Semantics

Chapter 7 gives an overview of the semantic Grid technologies and proposes
an ontology-based semantics description and matching mechanism for Grid re-
sources. It proposes Grid resource ontologies in the form of ontological classes
and concepts for describing resources so that they can be unambiguously in-
terpreted and automatically understood by the management and brokerage
system.

Chapter 8 introduces a mechanism for automatic synthesis of resources by
applying ontology rules. In particular, it covers application components. Rule-
based synthesis combines multiple primitive resources to form new compound
resources. The newly generated compound resources provide aggregated ca-
pabilities that otherwise may not be possible. The chapter also demonstrates
advantages of semantic-based automatic synthesis of Grid activities.

1.3.5 Part 5: Conclusion

The final part concludes the book by highlighting contributions and future
research foci.

1.3.6 Appendices

Appendix A gives a table of all notations and mathematical symbols we have
used in this book.
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Model

This chapter provides an overview of the Grid, its components and discourses
with special focus on resource management. It defines important aspects and
the technological and architectural advances that have led to the evolution of
the Grid thereby setting the foundation for this book.

2.1 The Grid

Initially, the Grid computing infrastructure was visioned as a metacomputer
formed by connecting supercomputers that could be remotely controlled and
managed. Nevertheless, the idea evolved to cover not only supercomputers
but almost all kind of computing devices ranging from commodity computers
to scientific instruments.

In the context of distributed computing, the term ’Grid’ was coined in the
early 1990s as a metaphor for introducing computing as a utility and mak-
ing it as easy to access as an electric power Grid. Analogous to power Grid
the computing Grid is perceived as a Grid of distributed computing power
generators i.e. computers. The Grid is a transparent and pervasive comput-
ing infrastructure in which computing power can be used as a utility that is
to be delivered on the Internet. It enables resource sharing and coordinated
problem-solving across computers and humans in a distributed and heteroge-
neous environment [144].

Today there are many definitions that define the Grid from different per-
spectives [75, 47, 72, 95], for instance as a conceptual framework like the
World Wide Web (WWW), as an utility infrastructure like power grid, or
as a single virtual computer. In general the idea behind the Grid is to solve
challenging problems by using low-cost off-the-shelf computing devices. The
solutions to these problems is otherwise considered very hard and expensive if
not impossible. In this perspective, the Grid is an emerging computing model
that enables virtualization, sharing and transparent provisioning of heteroge-
neous resources distributed across multiple administrative domains using open

M. Siddiqui and T. Fahringer: Grid Resource Management, LNCS 5951, pp. 17–44, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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standards to model a virtual computer architecture. It distributes computing
power across a networked infrastructure to offer a better quality of service
(QoS).

The Grid is a virtualized distributed computing infrastructure in
which computing power is transparently delivered on-demand using
open standards in a coordinated and shared way by aggregating ca-
pabilities of low-cost off-the-shelf heterogeneous computing devices
dispersed across multiple trust domains. Formally, the Grid G is an
aggregation of heterogeneous resources and consists of a set of nodes
such that G =

∑n
i=1 gi|n ∈ N. Each node gi ∈ G is a computer as

described in Section 2.2.3 that is logically connected with other geo-
graphically dispersed nodes ∈ G and they may join or leave G at any
time.

A major discourse of the Grid is to harness unused power of idle computers
in the Internet for solving problems too intensive for any stand-alone ma-
chine. The unused computing power is wasted otherwise. A practical way to
use this computing power is to perform computations on idle computers by
remote program execution. However, this is very hard to achieve as these idle
computers can be widely distributed across the globe while being managed
by different individuals or organizations, that is, they are under multiple ad-
ministrative domains. Another issue deals with the problem that computers
perform actual computations that might not be entirely trustworthy. Thus
the model of the system must introduce measures to prevent malfunctions or
malicious participants from producing false, misleading, or erroneous results,
and from using the system as an attack vector.

On of the initial works in the dimension of harnessing unused idle cycles
is the SETI (Search for Extraterrestrial Intelligence)@Home [127] project, in
which personal computers distributed across the world donate unused pro-
cessing cycles to help finding signs of extraterrestrial life by analyzing signals
coming from outer space. The project relies on individual volunteers to al-
low the project to harness the unused processing power of the volunteer’s
computer. This method saves both money and resources for the project.

Since computers are distributed without any central control, it is hard to
guarantee that the state of the computers will not change. It might be possible
that some computers leave whereas others join the Grid. The impact of trust
and availability on performance and development difficulty can influence the
selection of a specific computer.

2.1.1 Characteristics

Computers distributed across multiple administrative domains are usually
heterogeneous with different operating systems, hardware architectures and
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several languages. This underlines the need for standardization and virtualiza-
tion. A generalized Grid can be defined in terms of four characterizing aspects
that are heterogeneity, adaptability, scalability and autonomy [144, 26].

• Heterogeneity: The Grid is a collection of heterogeneous resources with
heterogeneous architectures, platforms, operating environments and other
technological aspects.

• Adaptability: The Grid environment is dynamic by nature. Resources
join and leave the Grid at any time without intimation. In such an en-
vironment, the probability of resource failures is high and the operating
environment (middleware) has to deal with such situations.

• Scalability: Since resources join and leave the Grid, it grows and shrinks
and may consists of upto millions of resources. Further, Grid applications
are also increasing in number and diversity. This emphasize the require-
ment of highly scalable middleware and Grid-enabled applications.

• Autonomy: The second prominent characteristic of the Grid is that the
underlying resources are autonomous and they are administered under
different trust domains. It is required that the autonomy of the resources
is not compromised while being used in the Grid environment.

2.1.2 Layers

The major components of the Grid as depicted in Figure 2.1 are infrastructure
fabric, middleware, and applications.

• Infrastructure Fabric: The underlying physical resources distributed
across the globe and connected through high-speed Internet form the base
of the Grid. These resources include but are not limited to computers, clus-
ters, storage and network devices and scientific instruments. The front-end
resources, which are directly accessible, are equipped with low-level mid-
dleware-aware local resource managers such as SGE (Sun Grid Engine),
PBS (Portable batch System) and LSF (Load Sharing Facility) etc.

• Middleware: The middleware is the brain of the Grid and offers impor-
tant generic services required for a functional Grid. Various middlewares
have been developed to allow the scientific and commercial community to
harness the computing power and form a Grid [10, 68, 91, 96, 27, 61]. The
middleware can be categorized in Grid operating environment and Grid
runtime environment.
Core Middleware: The core middleware, also called Grid operating en-
vironment constitutes lower part of the middleware. It provides a funda-
mental framework for interaction with physical infrastructure fabric. This
includes security infrastructure, data transferring facility, local execution
management etc. This layer does not see structure of a complete Grid
application but only it components without their relation to the full ap-
plication.
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The Grid

Middleware

Application Layer

Core Middleware

User-level Middleware

Infrastructure Fabric Physical resources distributed across the globe.
Computers, Storage Devices, interconnects etc.

Local Resurce Management,
Basic Services like security, 
data management etc.  

OGSA-compliant services, brokerage,
meta-scheduling, Grid-level resource 
management etc.(Example: Askalon runtime Environment)

(Example: Globus Toolkit)

Problem Solving Environments e.g. CACTUS, 
Domain Specific Applications  etc.

Fig. 2.1. The Grid Layers.

Examples of such kind of low-level middleware includes Globus [10],
gLite [68], Unicore [70] etc.
User-level Middleware: The user-level middleware, also called Grid
runtime environment , constitutes the upper part of the middleware and
provides high-level OGSA-compliant services for the Grid applications.
They include job scheduling, job enactment, monitoring, meta-scheduling,
resource management etc. In contrast to the operating environment, it usu-
ally is aware of an entire Grid application (e.g. workflows). It understands
all components of a workflow and their inter-dependencies.
Examples include Askalon [61], GridBus [27], myGrid [96], Pegasus [58],
P-Grade [131], Kepler [4], ICENI [112] etc. The focus of this book is the
resource management in Askalon (see Section 2.4) Grid runtime environ-
ment.
Introduction of layered middleware is intended to shield low-level Grid
complexities from its clients. The type of the middleware contribute in
defining architectures of the Grid.

• Applications: The Grid applications constitute the high-level layer of
the Grid and are developed with or without the Grid in mind. The Grid-
enabled applications are those which may exploit the Grid to its full poten-
tial. For instance, Cactus 1 is a Grid-enabled open-source application that

1 http://cactuscode.org
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provides a problem solving environment designed for scientists and en-
gineers. Its modular structure easily enables parallel computation across
different resources in the Grid. Montage [28] is used to generate com-
plex astronomy workflows. LIGO Data Grid [6] makes use of workflow
technologies for gravitational wave data analysis. The workflows for e-
science [62] includes several interesting examples: workflows in Pulsar As-
tronomy operate on the output of the signal of a radio telescope to detect
the characteristic signals of pulsars. These signals are much weaker and
computation-intensive distributed algorithms are applied using the Grid to
extensify these signals. SCEC CyberShake Workflows is used in automat-
ing probabilistic seismic hazard analysis calculations. The biomedical in-
formatics research network works for the telescience project and ecological
niche modeling using Kepler [4] examines the details of a specific analysis
within Kepler to illustrate the challenges, workflow solutions, and future
needs of biodiversity analysis. Applications developed for clusters or sup-
percomputers can be ported to the Grid.

2.1.3 Architectures

The Grid has been developed with different perspectives, including Compu-
tational Grid, Data Grid, and Knowledge Grid. We define it as follows:

Definition 1. A Computational Grid Gc ⊆ G is a form of the Grid in which
each node gi ∈ Gc provides computational capabilities. It was originally de-
fined as a hardware and software infrastructure that provides dependable, con-
sistent, pervasive, and inexpensive access to high-end computational capabili-
ties [72]. Over time, the Grid concept has been refined and better formulated,
e.g., as a persistent infrastructure that supports computation-intensive and
data-intensive collaborative activities that spawn across multiple Virtual Or-
ganizations (VO) [136].

The underlying infrastructure for a computational Grid is the Internet that is
a worldwide network of computer-networks. The publicly accessible intercon-
nected computers in the Internet transmit data by packet switching using the
standard Internet Protocol (IP). Millions of smaller public/private networks
are participating in the Internet, which together provide various kinds of infor-
mation and services, such as electronic mail, file transfer, and the interlinked
Web pages and other documents of the World Wide Web (WWW).

An important class of data is the raw and meta data that is generated and
gathered by the scientific instruments and experimentation, business, games
and e-learning applications, and monitoring infrastructures. This kind of raw
and/or meta data is processed by a data-centric Grid called the Data Grid .
Along with business applications and distributed games, scientific applica-
tions, such as Montage [28], Wien2k [21], CERN’s HEP applications [135] and
Invmod [138] use and produce a huge amount of data (terabytes or petabytes)
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distributed across laboratories. The size and collections of data is growing
rapidly that requires a distributed infrastructure that is scalable and better
organize and process huge amounts of distributed data. Hence the need of the
data Grid.

Definition 2. A Data Grid Gd ⊆ G is a form of the Grid in which each node
gi ∈ Gd (See Section 2.2.3) possesses data processing and/or storage capa-
bilities and optionally with computational capabilities. It deals with controlled
sharing and management of huge amounts of data distributed across organi-
zations and databases. It provides an intensive computation and analysis of
shared data. The Data Grid is mostly integrated with the Computational Grid
(Definition 1) that process the data.

Several projects have been started to build large scale Data Grid. These
projects include Southern California Earthquake Center (SCEC) [120], Bio-
medical Informatics Research Network (BIRN) [20], Real-time Observatories,
and Applications, and Data management Network (ROADNet) [141]. SDSC
Storage Resource Broker [165] provides an operating environment for the Data
Grid. The Linked Environments for Atmospheric Discovery (LEAD) [104] pro-
vides forecast models and analysis and visualization tools for interactively and
dynamically explore the meteorological data. It provides a convenient access
point for all the necessary resources including the high-performance comput-
ing systems.

In many scientific and commercial applications, it is necessary to perform
the analysis of huge data sets, maintained over geographically distributed
nodes ∈ Gd, by using the computational power of distributed computers ∈ Gc.
Discovering required information, useful patterns, models and trends in large
volumes of data employs a variety of software systems and tools (Section 2.2).
This is collectively called data mining or knowledge discovery 2.

Data mining has been investigated in the domain of parallel and dis-
tributed knowledge discovery. The Grid may play a significant role in pro-
viding an effective computational support for data mining applications. The
Grid built for this purpose is referred as Knowledge Grid .

The Knowledge Grid Gk has been evolved from both Computational Grid
Gc and Data Grid Gd. It introduces a set of new services to employ a
distributed knowledge discovery on globally connected computers [29]. The
Knowledge Grid enables the collaboration of scientists for mining of data
stored in different research centers as well as analysts that must use a knowl-
edge management system operating on several data warehouses located in
different autonomous establishments [30].

Definition 3. A knowledge Grid Gk ⊆ Gd is a special form of Data Grid in
which volumes of data clustered around data-centric resources ∈ Gd is anno-
tated, discovered, and provisioned semantically and data sets are analyzed to
find specific patterns or models by exploiting computational resources ∈ Gc.
2 Grid Computing Lab: http://grid.deis.unical.it/kgrid
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Examples of Knowledge Grids include Adaptive Services Grid (ASG) [2],
KWfGrid [5], OntoGrid [7] and IntelliGrid [193].

2.2 Resources and Applications

The Grid consists of a set of heterogeneous resources R.

Definition 4. A Grid resource r ∈ R is an entity associated with a node
g ∈ G that contributes or facilitates to contribute some capability to the Grid
and is logically available and accessible through a reference ref(r). A reference
ref(r) of a resource r ∈ R is referred to as a unique address in the Internet
that can be used to access the resource r remotely. Examples of references
include, IP address, domain name, URL (Universal Resource Locator) and
URI (Universal Resource Identifier).

The capability is the ability of a resource r ∈ R to perform some (use-
ful) actions. Generally, a capability is the synthesis of expertise and capac-
ity, where expertise represents qualitative properties such as the functional-
ity, manageability etc. and capacity represents quantitative properties such as
number of total processors, available memory etc.

There are different kinds of resources but at the higher level they are catego-
rized as logical and physical resources. Logical resources include software com-
ponents, configurations, policy files, workflow applications along with basic
building blocks of a workflow i.e. workflow tasks or activities (Section 2.2.1).
The set of Grid resources R includes a set of physical resources PR and a set
of logical resources LR, that is R = LR ∪ PR.

Definition 5. A physical resource pr ∈ PR ⊆ R is a hardware device op-
erating directly or indirectly at the network-layer and may be enabled with
the Grid operating environment (Section 2.3). The network-layer is the third-
lowest layer of the OSI Reference Model.

A set of physical resources PR include computers, interconnects, storage el-
ements, scientific instruments etc. A computational Grid Gc is often centered
around computers with high performing computational capabilities, such as
cluster of computers, parallel computers, high-end PCs etc. These resources
are considered as main sources of computing power associated with the Grid.
A physical resource pr ∈ PR is normally accessible with the help of a resource
reference ref(pr).

An Infrastructure Fabric is a collection of physical (hardware) resources
PR. Each resource pr ∈ PR is logically connected with other resources ∈ PR
mostly through high performance interconnects. Enabled with a Grid operat-
ing environment the resources ∈ PR dynamically join the Grid G, contribute
their capabilities to the Grid and may leave afterward.
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A Grid Application is a software that is Grid-enabled and may exploit its
potential. An application is said to be Grid-enabled when it can be executed
by a Grid. Fully exploiting the grid, however, means taking advantage of the
virtualized grid infrastructure to accelerate processing time or to increase
collaboration [102].

A set of logical resources LR ⊆ R mostly consists of software components
which include legacy software programs, libraries, software components, ser-
vices (e.g. Web services), workflow applications etc. Similar to physical re-
sources, logical resource are also accessible through an addressing mechanism,
for instance as Web service is accessed through Universal Resource Identifier
(URI).

An application is referred to as a collection of software components called
activities.

2.2.1 Activities

A set A ⊂ LR ⊂ R includes a collection of activities available on the Grid.
An Activity a ∈ A is a high level abstraction that refers to a single self-
contained computational task that corresponds to an execution unit, initiated
for instance by an executable program or a service deployed on a Grid node
∈ G.

Definition 6. An Activity a ∈ A is an abstraction of a logical Grid resource
that contributes some capability to the Grid. This capability is utilized or ac-
cessed directly or indirectly through well defined interfaces. It can be modelled
as a = {Ia,Oa} where Ia ⊂ I is a set of input arguments and Oa ⊂ O is a
set of output arguments that belongs to the activity a.

An argument arg ∈ {I ∪ O} is referred to as a logical entity that is
to be passed to an activity as an input or generated by an activity as
an output. It may be an integer, double, file, uri etc.

Activities ∈ A are organized in abstract and concrete descriptions [158] (Chap-
ter 4). Abstraction of a resource contributes towards virtualization whereas
concretization is used to access the resources. The term virtualization refers
to the abstraction of computer resources. It is a technique of hiding the non-
standard characteristics of a resource from the standard way in which other
resources or end users interact with those resources. This includes making a
single physical resource appear to work as multiple logical resources or it can
include making multiple physical resources appear as a single logical resource.
According to this, the Grid is also visioned as a single virtual computer made
out of multiple physical and logical resources.

An activity is further described in terms of an activity type and an activity
deployment. In the Grid G, there is a set of activity types E and a set of activity
deployments D such that for each activity ai ∈ A there is an activity type
ati ∈ E , and for every activity there can be multiple activity deployments.
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Definition 7. An activity type ati ∈ E is referred to as a description of
semantics or functional behavior of an activity ai ∈ A that may be used to
look-up a set of activity deployments. For every activity type ati ∈ E there
is a set Di = {adi,1, ..., adi,ni} of activity deployments that implements the
functionality described by activity type ati, where ni may be different for
different activity types ∈ E.

Definition 8. An activity deployment adi ∈ D is a realization of an activity
ai ∈ A that implements the capability described by activity type ati ∈ E. An
activity deployment is referred to as an executable program or a service and
provides accessibility information such as a reference (address) ref(ai) of the
activity ai.

Following the vision of virtualization, a resource that delivers some capability
directly to the Grid user is virtualized as a service using some open source
virtualization technology. A service is a resource that is referred as a self-
contained autonomous entity that delivers a discrete capability with a well-
defined interface. According to OASIS:

A service is a mechanism to enable access to one or more capabili-
ties, where the access is provided using a prescribed interface and is
exercised consistent with constraints and policies as specified by the
service description [125].

In the context of the Grid, a service is a form of an activity deployment that
can be defined as:

Definition 9. A service s ∈ D is an activity deployment whose described
capability is made accessible through a standard set of interfaces and is exer-
cised consistent with terms and conditions defined by the service s. It provides
observable set of behaviors accessible via prescribed interfaces.

2.2.2 Workflows

A workflow W is a well-defined and possibly repeatable pattern or system-
atic organization of activities designed to achieve a certain transformation of
data [136]. A single workflow W can be defined in term of three basic compo-
nents: a set of inputs denoted by Iw ∈ I, a set of outputs denoted by Ow ∈ O,
and a set of activities denoted by Aw ∈ A.

Definition 10. A workflow (application) is modelled as W = (Iw,Ow,Aw,V)
The activities ∈ Aw are executed in a well defined order. The simplest work-
flow is one with Aw = � (empty set) that is, W = (Iw,Ow,�,�). This
represents a workflow (itself) as a single activity.

The activities in a workflow are interlinked as a graph with V edges (de-
pendencies).

Let succ(a) denotes the set of successors of an activity a ∈ Aw:
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as ∈ succ(a) ⇐⇒ ∃ (a, as) ∈ V .

Similarly, let pred(a) denote the set of predecessors of an activity a ∈ Aw:

ap ∈ pred(a) ⇐⇒ ∃ (ap, a) ∈ V .

If pred(a) = � then a is a start activity: a ∈ Aw
start. Similarly, if succ(a) = �

then a is an end activity: a ∈ Aw
end. Additionally, the set of predecessors and

successors of rank p of an activity a are referred as:

predp(a) = pred(. . . pred(a)),

with p recursive invocations of pred. Similarly:

succp(a) = succ(. . . succ(a))

with p recursive invocations of succ. Two activities a1 and a2 are independent
iff � p such that a1 ∈ predp(a2) ∨ a1 ∈ succp(a2) [136].

Let Ia denote the set of input arguments and Oa denote the set of output
arguments of an activity a ∈ Aw:

Ia ⊆ Iw ⇐⇒ pred(a) = �

Similarly:
Oa ⊆ Ow ⇐⇒ succ(a) = �

2.2.3 Grid Node

A Grid node (a.k.a. Grid Site) is a combination of both physical and logical
resources. It is a ’farm’ of resources (computers, processors, services, appli-
cations) that is accessible through a unique address. The more prominent
resources belonging to a node gi ∈ G are a set of processors Pi ∈ P and a set
of activities Ai ∈ A. where P is a set of all processors in the Grid G, that is
P =

∑
gi∈G Pi. A minimum operating environment (middleware) is required

for its computing power to be advertised and utilized. Formally, a Grid node
can be defined as:

Definition 11. A Grid node (site) gi ∈ G is a combination of physical re-
sources PRi ⊂ PR and logical resources LRi ⊂ LR, that is, gi ≡ Rgi

=
PRi + LRi. The resources ∈ Rgi

share same local security, interconnects,
and resource management policies. Each resource r ∈ Rgi

is managed under
a single hosting environment accessible directly or indirectly through a unique
reference ref(gi). In a hosting environment resources are administrated un-
der a single trust domain and they are advertised and utilized through a single
access point called the front-end resource (Gatekeeper) ∈ PRgi

of the node
gi. Reducing to processors and activities, g ≡ Rgi

= Pi ∪ Ai.

Note that the work presented in this book uses terms like node g ∈ G, activity
a ∈ A, activity type at, activity deployment ad, and workflow W . These terms
are referred to as defined in this chapter unless stated otherwise.
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2.3 Grid Operating Environment

The low-level middleware of the Grid constitutes the Grid operating envi-
ronment. It refers to the security infrastructure, local resource management
and provisioning, data access and movement, instrumentation and monitoring,
policy and access control, accounting, and other services required for proper
functioning of the Grid. Besides these services a gluing mechanism that binds
these services together is also part of the Grid middleware [76]. Currently
several middleware infrastructures have been developed such as Globus [10],
gLite [68], Unicore [70] etc. However, Globus Toolkit is most widely used as it
provides not only a basic set of services but a framework for developing new
high-level Grid-enabled services as well.

2.3.1 Open Grid Services Architecture

Open Grid Forum [129] (OGF) is a standardization body for the Grid mid-
dleware and high-level services and their interaction mechanisms. The funda-
mental work is the formalization of Open Grid Service Architecture (OGSA)
a.k.a. anatomy of the Grid [71]. OGSA defines a service-oriented architecture
for the Grid that formalizes interaction and computation mechanism assuring
interoperability on heterogeneous systems so that different types of resources
can communicate and share capabilities.

OGSA realizes the middleware in terms of services, the interfaces
these services expose, the individual and collective state of resources
belonging to these services, and the interaction between these services
within a service-oriented architecture (SOA) [71].

The OGSA services framework is shown in Figure 2.2 (source OGF-OGSA [71])
in which services are built on Web service standards, with semantics, additions,
extensions and modifications that are relevant to the Grid. OGSA introduces
the following:

• Security Infrastructure is required for controlled access to services through
robust security protocols and according to provided security policies. It in-
cludes an authentication mechanisms that establishes the identity of indi-
viduals and services, an authorization mechanism that accommodates var-
ious access control models, a credential and policy delegation that supports
inter-services and inter-domain interactions, and mechanisms for ensuring
the integrity of resources;

• Resource Management and Provisioning deals with resource management
and virtualization, application deployment and configuration, optimized
allocation and provisioning;

• Execution Management introduces a set of services that are required for
workflow planning, application scheduling and mapping, execution control
and monitoring;
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Fig. 2.2. Open Grid Services Architecture.

• Data Management introduces services required for storage management,
replica management and data transportation;

• The virtualized resources (services) may participate in a virtual collection
called Virtual Domain or Virtual Organization (VO). This shares a set of
collective capabilities and manageability framework;

A Virtual Organization (VO) is a conceptual group of individu-
als, services and/or institutions in which a well defined defined and
highly controlled sharing of capabilities takes place. The sharing is
clearly and carefully defined, just what is shared, who is allowed to
share, and the conditions under which sharing occurs [74].

• Infrastructure Fabric is a physical environment that may include well-
known physical resources and interconnects such as computing hardware
and networks, and physical equipment such as scientific instruments.

Currently available OGSA-compliant Grid middleware implementations are
for instance the Globus Toolkit (Section 2.3.3) and Askalon (See Section 2.4),
built on top of Web Services standards such as WSRF, Web Services Descrip-
tion Language (WSDL) and Simple Object Access Protocol (SOAP).

2.3.2 WS-Resource Framework

the Web Service Resource Framework (WSRF) [191, 94] is a standard set of
specifications for web services defined and approved by OASIS [125].
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A web service is stateless : that means it retains no data between invoca-
tions or it cannot access data that is not part of the invocation messages. This
limits the possibilities that can be done with web services in a generalized way.
Nevertheless, the statefulness plays an important role in service-orientation. A
conventional service implements a series of operations such that the result of
one operation depends on a prior operation and/or prepares for a subsequent
operation.

WSRF defines a standard mechanism for adding state in a web service
in order to make it a stateful service. A service that acts upon stateful re-
sources provides access to, or manipulates a set of logical stateful resources
(documents) based on messages it sends and receives. WSRF provides a set
of operations that web services may implement to become stateful, A web
service client communicates with the service which allows data to be stored
and retrieved. Clients includes the identifier of the specific resource (state
or document) as part of service invocations request, encapsulated within the
WS-Addressing [184] endpoint reference. The encapsulated address may be a
simple URI address or a complex XML document that helps to identify or
even fully describe the specific resource. Such a kind of web services is called
WS-Resource [94] and the address of WS-Resource is referred as Endpoint
Reference.

Alongside the notion of an explicit endpoint reference of a resource, a
standardized set of web service operations to get/set resource properties and
register/notify for any change in the state properties.

Definition 12. WS-Resource wr ∈ A is a stateful web service that implements
a standard set of operations to access and/or manipulate its state in a service-
oriented fashion (Section 2.3.1). A special implied resource pattern [94] is used
to describe a specific kind of relationship between a Web service and one or
more stateful resources. WS-Addressing [184] standardizes the relationship
with an endpoint reference construct.

2.3.3 Globus Toolkit

The Globus Toolkit 4 (GT4) is a WSRF-compliant low-level Grid middleware
that provides Grid operating environment in a service-oriented fashion. It is
considered the first reference implementation of service oriented architecture
proposed for the Grid in the OGSA. It provides a set of fundamental compo-
nents that can be used either independently or in a combination to develop
new Grid-enabled applications [10].

As shown in Figure 2.3, the toolkit includes a set of services for Grid
security infrastructure (GSI) [78], information, data management, execution
management, and libraries for common runtime. It supports virtualization, as
its core services, interfaces and protocols allow users to access remote resources
as if they were local while simultaneously preserving resource integrity and
autonomy.



30 2 Model

Delegation
Service

CAS

WS
Authentication
Authorization

Pre-WS Authz

Credential
Management

Security

Reliable File
Transfer (RFT)

GridFTP

Replica Location
Service (RLS)

Data
management

Community
Scheduler
Framework

WS-GRAM

Pre-WS
GRAM

Execution
Management

WS-MDS

MDS2

Information
Service

Python
WS Core

C WS Core

Java WS Core

C Common
Libraries

XIO

Common
Runtime

Environment

WSRF
WS-Components

Non-WS
Components

Fig. 2.3. Globus Toolkit 4 services.

The common runtime components provide GT4 Web services with a set of
libraries and tools that allows these services to be platform independent, to
build on various abstraction layers and to leverage functionality lower in the
Web services stack. Execution management is done through a set of service
components collectively referred to as the Grid Resource Allocation and Man-
agement (GRAM) [41]. The latest version of globus toolkit (GT4) [76] consists
of three sets of components:

1. The basic infrastructure services that includes execution management
(GRAM) [41], data access and movement (GridFTP and RTF) [9], Replica
Management (RLS), discovery and monitory (WS-MDS), and credential
management (MyProxy [124], CAS i.e. a Community Authorization Ser-
vice, Delegation Service) etc.

2. An extended version of open source Web Service container implemented
in C, Java and Python as reference implementation of hosting environ-
ments supporting open source Web Service (WS) technologies includ-
ing WS Resource Framework (WSRF) [191], WS-Notification and WS-
Security. These container provides basic set of infrastructure services and
implementation that are required for building new high-level Grid-enabled
applications and services for runtime environment.

3. A set of client libraries implemented in C, Java and Python. These li-
braries are used to access core and user developed services and compo-
nents.

The toolkit includes two types of service implementations: the pre-WS com-
ponents offer capabilities with a non-standard proprietary interfaces, whereas
WS components use standardized technologies and interfaces (i.e. WSRF).
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Execution Management

The Execution Management (GRAM) [41, 76] simplifies the use of remote sys-
tems by providing a single standard interface for requesting and using remote
system resources for the execution of jobs. The most common use of GRAM is
remote job submission and control. It comes with both WS and pre-WS favors.
The WS-GRAM is a Web Services Resource Framework (WSRF) [191]-based
GRAM implementation along with some additional features: it works with
GT4 authorization framework and can be configured to work with a chained
authorization by configuring multiple policy decision points (PDPs). It works
as entry point and gatekeeper to a Grid node (site) abstracting out the un-
derlying functionality of off-the-shelf local resource managers (LRM) such as
Sun Grid Engine (SGE) [168] and Load Sharing Facility (LSF) [132] etc. It
provides a common Web service interface for initiating, monitoring, and man-
aging execution of arbitrary computations on a Grid node.

Each execution by the GRAM is managed as a newly spawned limited-time
service for monitory and controlling its execution. WS-GRAM works with an
authorization framework that is customizable.

Information Services

The Monitoring and Discovery Service (MDS) [39] is a distributed service
that works in a hierarchical fashion. MDS2 (pre-WS part of GT4) is based
on LDAP (Lightweight Directory Access Protocol) information model [103]
whereas MDS4 (WS-MDS: WS part of GT4) works based on WSRF-based
GT4 resource aggregation framework [76]. WSRF provides a mechanism for
notification and associating properties with resources as their state in XML
format. Services can be enabled with state and notification mechanisms and
can register with their containers for sharing their state to other services.
Container then can register in other containers thus forming a hierarchical
structure. The information model used by the both version of MDS (WS and
Pre-WS) largely use Grid resource information model described by GLUE
schema [85].

Grid Security Infrastructure

In accordance with OGSA (Section 2.3.1), the Globus Toolkit provides a Grid
Security Infrastructure (GSI) [78] that has been accepted as the de-facto stan-
dard by the Grid community for authentication and secure communication
across the applications and the services over the Internet. It works with Pub-
lic Key Cryptography that is based on public/private key pair and used as
fundamental technology for encrypting and decrypting messages. GSI uses
X.509 Certificates for representing the identity of each client (Grid user) that
is required for authentication. Mutual Authentication ensures that the two
parties involved in communication trust each other certificate authorities.
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It provides a Single Sign-On mechanism that restricts the user authenti-
cation to one single password specification during a working session. This is
done with a proxy (a short-term credential) that is created as a new key pair
digitally signed by the user’s (semi-permanent) certificate. The proxy tem-
porarily represents the user Grid identity. This allows the true private key of
the user be decrypted for a minimum amount of time, until the signed proxy is
generated. Furthermore, a delegation of proxy allows remote services to act on
behalf of the client through the creation of remote proxies that impersonate
the user.

The GSI cryptography can be applied at two levels in the Grid: network
layer and message layer. Security at the message layer is more powerful than
the security at the network layer due to the data encryption at a higher level
of abstraction.

2.4 Askalon: A Grid Runtime Environment

The high-level middleware i.e. the Grid runtime environment provides services
on top of Grid operating environment such as workflow planning, scheduling,
resource selection and mapping, application deployment, capacity planning,
workflow enactment, monitoring and performance analysis etc. Examples in-
clude Askalon [61] a Grid application development and execution environ-
ment, ICENI [116], Pegasus [58], GridBus [27], P-Grade [131], Triana [174],
Taverna [171], and Kepler [4].

Most existing Grid application development environments provide the ap-
plication developer with a nontransparent Grid. Commonly, application de-
velopers are explicitly involved in tedious tasks such as selecting activities
deployed on specific nodes, mapping applications onto the Grid, or selecting
appropriate computers for their applications. Moreover, many programming
interfaces are either implementation-technology-specific (e.g., based on Web
services [14]) or force the application developer to program at a low-level
middleware abstraction (e.g., start task, transfer data [112]). While a variety
of graphical workflow composition tools are currently being proposed, none
of them is based on standard modeling techniques such as Unified Modeling
Language (UML).

Askalon is a high-level middleware for Grid application development and
execution (Figure 2.4) [62, 63]. Its ultimate goal is to provide an invisible
Grid to the application developers. In Askalon, the user composes Grid work-
flow applications graphically using a UML-based workflow composition and
modeling service. Additionally, the user can programmatically describe work-
flows using the XML-based Abstract Grid Workflow Language (AGWL) [64],
designed at a high level of abstraction that does not comprise any Grid tech-
nology details. The AGWL representation of a workflow is then given to the
Askalon WSRF-based middleware services (runtime system) for scheduling
and reliable execution on Grid infrastructures.
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Askalon provides a variety of services that support the composition and exe-
cution of scientific workflows on the Grid.

2.4.1 Workflow Composition

Askalon offers two interfaces for generating large-scale scientific workflows in
a compact and intuitive form. Firstly, it offers to the end user the privilege of
composing workflows through a graphical modeling tool based on the UML
standard that combines Activity Diagram modeling elements in a hierarchical
fashion. Secondly, it offers an XML-based workflow language called Abstract
Grid Workflow Language (AGWL) that enables the composition of workflow
applications from activities interconnected through control-flow and data-flow
dependencies. The control-flow constructs include sequences, directed acyclic
graphs (DAG), for, forEach, while and do-while loops, and if and switch
constructs, as well as more advanced constructs such as parallel activities,
parallelFor and parallelForEach loops, and collection iterators [139]. In
contrast to most existing work, AGWL is not bound to any implementation
technology such as Web services.
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2.4.2 Resource Management

Resource Management (called GridARM ) [154, 158, 156], the topic of this
book, is an integral part of Askalon. It renders the boundaries of Grid re-
source management and provides resource discovery, selection and provision-
ing, negotiation-based advanced reservation, and capacity planning for opti-
mized resource allocation. Furthermore, GridARM is extended to cover logi-
cal resources (activities) and provides a dynamic registration and automatic
deployment framework for activities [158]. This extension is referred to as
GLARE (Chapter 4).

In combination with the AGWL, GridARM shields Grid users from the
low-level middleware complexities. The main client of the GridARM is the
Askalon Scheduler.

2.4.3 Workflow Scheduling

The Scheduler [187, 62] service prepares a workflow for execution on the Grid.
It processes the workflow specification described in AGWL, converts it to an
executable form, and maps it to available Grid resources. It is a best-effort
Grid workflow scheduler, adapted to apply different algorithms which can be
used by the service as interchangeable plug-ins.

The scheduling process consists of three main phases: refinement, mapping,
and rescheduling upon important events triggered by the event generator com-
ponent part of the Askalon (See Figure 2.4).

The refinement process resolves all ambiguities and refines sophisticated
workflow graphs into simple DAGs on which existing graph-scheduling algo-
rithms can be applied.

The mapping of a refined workflow onto the Grid is done based on a modu-
lar architecture, where different DAG-based scheduling heuristics can be used
interchangeably. Currently it incorporates three scheduling algorithms: Het-
erogeneous Earliest Finish Time (HEFT), a genetic algorithm, and a myopic
just-in-time algorithm [187].

After the initial scheduling, the workflow execution is started based on
the current mapping until the execution finishes or any interrupting event
occurs. The event generator module uses the Monitoring Service to watch
the workflow execution and detect whether any of the initial assumptions,
also called execution contracts, have been violated. The execution contracts
that we currently monitor include structural assumptions made by the work-
flow converter, external load on processors, processors no longer available,
congested interconnection networks, or new Grid node available. In case of a
contract violation, the Scheduler sends a rescheduling event to the Enactor
(Section 2.4.4), which generates and returns a new workflow based on the
current execution status (by excluding the completed activities and including
the ones that need to be re-executed) [187].
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Scheduling Function

Precisely, the scheduling function determines effective mappings (schedule)
of workflows onto the Grid G using graph-based heuristics and optimization
algorithms that benefit from performance prediction and resource manager
services. More specifically, it assigns different activities in a workflow to dif-
ferent activity deployments .

Definition 13. Given a workflow W = {Iw,Ow,Aw,V} consisting of n ac-
tivities ai ∈ Aw, 1 ≤ i ≤ n, a schedule is defined by the scheduling function
schedw : Aw �→ D where schedw assigns to each activity ai ∈ Aw an activity
deployment adi ∈ Di. The schedw is a total function.

2.4.4 Workflow Enactment

The Enactor (Execution Engine) targets reliable and fault-tolerant execution
of workflows through techniques such as checkpointing, migration, restart,
retry, and replication. It is responsible for controlling the execution of a work-
flow application based on the Grid mapping decided by the scheduler. The
main tasks performed by the enactor are to coordinate the workflow execution
according to the control-flow constructs and to effectively resolve the data-flow
dependencies specified by the application developer in AGWL [52, 62].

2.4.5 Performance Prediction and Analysis

Performance Analysis [121, 137] supports automatic instrumentation and bot-
tleneck detection (e.g., excessive synchronization, communication, load imbal-
ance, inefficiency, or nonscalability) within Grid workflow executions. Further-
more, Askalon analysis comprises service-level negotiation and agreement on
a variety of nonfunctional parameters.

A Performance Prediction [118] service estimates execution times of work-
flow activities through a training phase and statistical methods using the
Performance Analysis service.

2.5 Semantic Grid

One of the key challenges in today’s Grids is the need to deal with knowledge
and data resources that are distributed, heterogeneous, and dynamic, and an
effective elicitation of implicit knowledge in the system. In such systems, a
complete global understanding is impossible to achieve. It is therefore needed
to go beyond centralized knowledge elicitation and develop an effective, open
standard, and distributed solutions.

The Semantic Grid aims to overcome this problem by adding meaning
to the Grid in general and the underlying resources in particular. In this
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way, the Semantic Grid not only provides a general semantic-based compu-
tational network infrastructure, but a rich, seamless collection of intelligent,
knowledge-based services for enabling the management and sharing of complex
resources and reasoning mechanisms. In the Semantic Grid, knowledge and
semantics are deployed explicitly for Grid applications and for the develop-
ment of innovative Grid infrastructures [43, 46, 36]. This knowledge-oriented
semantics-based approach to the Grid goes hand-in-hand with the exploitation
of techniques and methodologies from intelligent software agents and web ser-
vices representing various components of the virtual organizations and often
interacting in a P2P way.

The Semantic Grid Gs ⊆ G is an extension of the current Grid in
which information and services are given well-defined meaning through
machine-processable descriptions which maximize the potential for
sharing and reuse. It is believed that this approach is essential to
achieve the full richness of the Grid vision, with a high degree of easy-
to-use and seamless automation enabling flexible collaborations and
computations on a global scale [88].

One way of achieving human understandable and machine processable seman-
tic descriptions of concepts is possible through the use of ontologies.

2.5.1 Ontology

An ontology is a specification of a conceptualization that provides vocabularies
with explicitly defined and machine understandable meanings.

An Ontology represents an explicit conceptual model with formal
logic-based semantics. Its descriptions may be queried with abstract
goals, may foresight required capabilities, or may be checked to avoid
inconsistency in the declarations. Rules-based management of Grid
middleware builds a rigorous approach towards giving the declarative
descriptions of components and services a well-defined meaning by
specifying ontological foundations and by showing how such founda-
tions may be realized in practice [90].

An ontology model also refers to as T-Box. An information base developed by
using an ontology model is also referred to as knowledge-base or A-Box.

2.5.2 Web Ontology Language

The Web Ontology Language (OWL) [146] is a formal standard language for
representing ontologies in the Semantic Web. In OWL, an ontology is a set
of definitions of classes and properties and the constraints to be employed
on them. The OWL has three variants: OWL-Lite, OWL-DL, and OWL-full,
each with different levels of expressiveness.
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In order to provide a powerful expressiveness and fact stating ability, the
OWL inherits features from RDF [34] and RDF Schema [42] and extends them
by providing new and powerful constructs. It can declare and organize classes
in a subsumption hierarchy, and the classes can be expressed as a logical
combination of other classes. The properties in OWL can also be organized in
a sub-property hierarchy. The OWL also provides different kinds of restrictions
on classes and properties, which are considered as specialized concepts. The
concepts (classes and properties) are represented as fully-qualified names with
URIs.

In the domain of the Semantic Web, ontologies play an important role in
automating processes to access semantics information. They provide struc-
tured and extensible vocabularies that demonstrate the relationships between
different terms allowing intelligent agents to flexibly and unambiguously in-
terpret their meanings. In the Description Logics, the fundamental reasoning
of concept expression is subsumption [109] which checks whether or not a
concept is-a subset (or superset) of an other concept.

2.5.3 Ontology Query Language

Simple Protocol and RDF Query Language (SPARQL) [182] is a candidate
recommendation as an RDF query language by the RDF Data Access Work-
ing Group (DAWG) of the World Wide Web Consortium [164]. A query in
SPARQL may consists of triple patterns, conjunctions, disjunctions, and op-
tional patterns. Variables are outlined through the ”?” prefix. The query pro-
cessor searches for all hits that match the patterns defined as RDF-triples.
SPARQL is property-orientation, that means that concepts matches can be
conducted solely through class-attributes or properties. Since OWL can be
represented in RDF format therefore SPARQL can be used for querying OWL
model as well. OWL-QL [66] is a formal language and protocol for a query-
answering dialog between intelligent agents using knowledge represented by
the OWL Knowledge Base. It precisely specifies the semantic relationships
among a query, a query answer, and the knowledge base used to produce the
answer. An OWL-QL query can specify which of the URIs referred to in the
query pattern are to be interpreted as variables. Variables come in three forms:
must-bind, may-bind, and don’t-bind. Answers are required to provide bindings
for all the must-bind variables, may provide bindings for any of the may-bind
variables, and are not to provide bindings for any of the don’t-bind variable.
OWL-QL uses the standard notion of logical entailment: query answers can
be seen as logically entailed sentences (OWL facts and Axioms) of the queried
knowledge base.

2.6 Resource Management

Conventionally, resource management is a way of delivering available resources
when they are needed in an effective and efficient way. In Askalon Grid run-
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time environment, resource management (a.k.a GridARM ) covers on-demand
provisioning, optimized resource allocation, negotiation-based advance reser-
vation and capacity planning. The main client of the GridARM is the sched-
uler as explained in Section 2.4.3

The provisioning is referred to as delivering a set available resources Ra ⊆
R to a client c ∈ C. Available resources Ra ⊂ R are discovered, selected
according to the request q ∈ Q made by a client c ∈ C and finally the selected
resources Rs ⊆ Ra are offered to the same client c.

Definition 14. A client c ∈ C|C = {c1, ..., cm},m ∈ N is a Grid user or
a software component that requests for a resource r ∈ R for allocation and
utilizes its capability for a certain time. Alternatively, a client is also referred
to as resource consumer or resource requester. . Each client ci ∈ C joins the
Grid with a resource request qi ∈ Q.

Definition 15. A resource request qi ∈ Q|Q = {q1, ..., qm},m ∈ N is a query
made by a client ci ∈ C for allocation of a set of resources. It consists of a
set of resource constraints (terms and conditions) Ti ⊆ T that needs to be
matched with offered capabilities of available resources Ra ⊆ R. The matched
resources are selected and offered to the client. For each request qi ∈ Q there
is a set Ti = {ti1, ..., tini} of constraints that is part of the qi, where ni may
be different for different qi ∈ Q.

Definition 16. A resource constraint t ∈ T defines boundary values of a re-
source capability that is requested by a client or offered by a resource provider.
For instance, in case of totalCPUs, maximum value, minimum value, exact
value, degree of importance etc. defines a constraint over totalCPUs.

In terms of resources, Grid nodes ∈ G, physical constituents especially CPUs
or processors, and logical constituents especially activity deployments are re-
ferred to as provisionable, allocatable or consumeable resources. Abstract de-
scription of resources such as activity types and abstract workflows are used
by a client c ∈ C to look up consumeable resources. A Grid user who provides
a consumable resource is referred to as resource provider(or simply provider).

Beside provisioning, an important aspect of resource management is to
maintain capabilities of the underlying resources. The principle is to invest in
resources as stored capabilities, then unleash the capabilities as demanded.
This is also referred to as resource leveling [195]. However, resource level-
ing does not fit in resource provisioning scenario defined by this book as in
on-demand provisioning the resource leveling may reduce utility. An other
dimension of resource management is to allocate available resources in a com-
bination so that the combination provides either aggregated capability or a
new capability all together. Broadly, a resource manager is responsible to
maintain the natural integrity of the Grid. OGF [129] defines management,
resource management, and resource manager as:
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Management is the process of monitoring an entity, controlling it,
maintaining it in its environment, and responding appropriately to
any changes of internal or external conditions.
Resource management is a generic term for several forms of manage-
ment as they are applied to resources.
A resource manager is a manager that implements one or more re-
source management functions.

Based on this explanation, resource management for the Grid can be defined
as:

Definition 17. Resource management describes the process of allocating re-
sources ∈ G on-demand in an effective and efficient way while optimizing
resource utilization and maintaining resource capabilities without undermin-
ing the natural integrity of the Grid G and utility of the underlying resources
∈ G. The process of resource management works as an intermediary between
resources and their clients, and thus it is also referred to as resource broker-
age.

The utilization is referred to as the proportion of the resource capability (See
Definition 4) which is used by the client c ∈ C. Lower utilization represents
inactivity of a resource. Maintaining capabilities referred to as advertising
available capabilities and representing exact state of resources R so that they
can be selected correctly for clients ∈ C. The integrity referred to as the
resource autonomy and (usage) policies associated with the resource.

Definition 18. The utility is a degree of felicity, contentment or preference
that is measured relative to ideal value. Given this degree, one may explain
capability in terms of attempts to increase one’s utility. The utility is measured
by a utility function. A utility function µ : G → R ranks each resource ri ∈ G.
If µ(ri) ≥ µ(rj) then the client ∈ C prefers ri to rj. Also, a utility function
µ : G → R rationalizes a preference relation � on G such that:

∀ri, rj ∈ G|i �= j, µ(ri) ≤ µ(rj) ⇐⇒ ri � rj .

Example 1 (Utility).
Suppose a client discovers a set G = {�, g1, g2, g3, g4, g5} of nodes in the Grid
as candidates for its application, where each candidate possesses a number
of CPUs and the architecture ∈ {32b, 64b, 128b} as: g1 = {2cpu, 32b}, g2 =
{1cpu, 64b}, g3 = {2cpu, 64b}, g4 = {3cpu, 32b}, and g5 = {1cpu, 128b} with
its utility functions as µ(�) = 0, µ(g1) = 1, µ(g2) = 2, µ(g3) = 4, µ(g4) = 2
and µ(g5) = 3. Then the client will prefer a candidate with 64b architecture
and 1cpu (i.e. g2) to a candidate with 32b architecture and 2cpu (i.e. g1), but
will prefer a candidate with 64b architecture and 2cpu (i.e. g3) to a candidate
with 128b architecture and 1cpu (i.e. g5).

Here the use of multiple utility functions for each pair is for exemplar
purpose. In practice, a single utility function is used for different combinations
of available options.
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2.6.1 Provisioning

Resource provisioning in the Grid consists of two complement processes: re-
source discovery and resource selection. Finding resources capable of doing
something useful in the Grid is referred to as resource discovery whereas
matching or correlating discovered resources to the requirements of a client
so that they can be offered is called resource selection [153].

Definition 19. The process of offering allocations of discovered and selected
resources to the client is referred to as resource provisioning or simply provi-
sioning.

Example 2 (Provisioning).
Consider an example Grid G with nodes g1 − g5 discovered from different
information services as shown in Example 1. If a client requests a node with
64b or higher architecture, then the filtered candidate set will be {g2, g3, g5}.
If the client has no further constraints then according to the utility function
(Definition 18) node g3 will be selected as a best candidate among the avail-
able options and thus will be offered for allocation to the client for a certain
timeframe.

2.6.2 Allocation Negotiation

A process of assigning available resources to contending clients. The substance
of this process is called allocation. It can be defined as:

Definition 20. An allocation alloc ∈ L|L = Pi ×Ai is an assignment of a
proportion of the capability (Pi × Ai) of a node gi ∈ G to a resource request
q ∈ Q made by a client c ∈ C through an allocation function alloc : G ×Q �→
L, such that alloc(gi, q) = alloc ≡ (p, a)|p ∈ Pi, a ∈ Ai, where request
constraints ∈ q are matched to the offered constraints ∈ gi.

The allocation process has two parts: Firstly, a basic decision is made in
which suitable resources are assigned to the clients. Secondly, a contingency
mechanisms is prepared. A priority ranking of resources can be made based
on a selection criterion, for instance the µ(g) of a resource g ∈ R.

An advance reservation is a special form of allocation or a priority pro-
visioning in which a resource allocation is made sometime in future and en-
sured later on that allocated resource remains available during the agreed
upon timeframe.

Definition 21. An advanced reservation is an allocation ∈ L in which a pos-
sibly limited or restricted delegation of a particular resource capability is made
available sometime in future to a client c ∈ C on a request q ∈ Q through a
negotiation process [156]. An advance reservation is defined by an allocation
function allocad : G×Q �→ L|P×A×T , T is a 3rd dimension that represents
a time horizon.
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The process of negotiation is an interaction of Grid resource management with
its clients to influence for better resource utilization. This interaction includes
the process of resolving contentions among competing applications, agreeing
upon or bargaining for individual or aggregated capabilities with better service
quality provided by resources. Thus, negotiation can be considered as a process
that generates multiple options for the same task.

Definition 22. Negotiation is a process in which alternative allocation offers
Lo
q ⊆ L are generated for a resource request q ∈ Q by a client c ∈ C. The

client may opt for an offer alloc ∈ Lo
q if alloc(q, r) = alloc∧µ(r) = � (�

means maximum).

Negotiation also involves multiple interactions, nevertheless, in the Grid, mul-
tiple interactions is a time consuming process that can be reduced by generat-
ing smart options as alternative allocation offers. Therefore, the focus of this
book is the alternative offer generation rather than multiple interactions as
part of negotiation process.

Negotiation for resource allocation in the Grid refers to how the parties
(requester and provider) negotiate, the context of the negotiations, the parties
to the negotiations, the relationships among these parties, the communication
between these parties, the tactics used by the parties to agree upon certain
terms and conditions, and the sequence and stages in which all of them reel off.

The main negotiators in the Grid are resource management and scheduler.
Resource management system may use a variety of algorithms ranging from
a simple attentive allocation to a more complex capacity planning strategy
in order to improve utility µr of the resource r ∈ R. On the other hand, a
scheduler works for clients and uses various strategies to improve client or
application utility [188].

The substance of the negotiation is an allocation (or advance reservation)
that is represented in the form of an agreement. An agreement includes not
only time constraints but other quality of service parameters as well.

2.6.3 Capacity Planning

Resource management is visioned as a custodian of resources. It tries to opti-
mize resource utilization [156]. The process in which the resource utilization
can be improved by considering various constraints while allocating available
resources ∈ R among the interested parties is referred to as capacity man-
agement. Capacity management along a planning horizon, for instance the
time, is referred to as capacity planning [156]. It involves multi-constraint op-
timization. The constraints ∈ T include cost, processors, P , memory, start
time (startt), end time (endt), and duration (duration).

Capacity management is a strategic process that focuses on the
present, whereas capacity planning is a forward looking strategic activ-
ity of monitoring, understanding, and reacting to the clients’ behavior
in order to maximize the global utility [156].
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Definition 23. Capacity planning in the Grid is a forward looking strategic
process of making allocations ∈ L of available nodes ∈ G to the contending
applications in such a way that overall resource utility µ(G) ∈ R is maximized
without compromising over the requested terms and conditions (constraints).

2.6.4 Manageability Models

Manageability is an ability of a resource to be managed through well defined
interfaces and interaction patterns. Several manageability models have been
proposed for the Grid including: centralized, decentralized, and hierarchical.
Centralized management of resources is a traditional approach that does not
work with large-scale distributed resources. Instead, decentralized and hierar-
chical models are considered suitable for the Grid [26]. The modern approach
for addressing manageability challenges is a set of new decentralized manage-
ment models that have been studied for the resource management in the Grid.
These models include: peer-to-peer, service-orientation and superpeer.

Peer-to-Peer Model

In a Peer-to-Peer model (P2P) [130] an aggregation of equivalent resources
(called peers) dispersed across the Internet is formed in which peers share
part of their capabilities (e.g., processing power, storage capacity, network
link bandwidth etc.) directly with each other through diverse connectivity
between peers in a network without passing through intermediate entities.

Service2Service1

Service3

Messages

Service-OrientationPeer-to-Peer

Fig. 2.5. Peep-to-Peer and Service-Oriented Models.

In contract to client/server model where communication is usually to and from
a central server, in a peer-to-peer model only equal peers that simultaneously
function as both ’clients’ and ’servers’ to other nodes on the network. This is
depicted in Figure 2.5.

Service-Oriented Model

Service-oriented model relies on service-orientation as its fundamental design
principle in which the model uses loosely coupled services to support the
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requirements for the manageability of underlying resources. Service-oriented
architecture is getting increasingly popular because of its similarities with the
real world. In a community, people provide services to each other but without
having close bindings or dependencies to each other. Similarly, the service-
orientation in the Grid, resources are abstracted out as services and coordinate
with each other through messages without having any hard bindings. This is
depicted in Figure 2.5. If a resource is not available for a certain activity, the
client may refer to an alternative option.

A service-oriented model is a paradigm for organizing and utilizing
distributed capabilities that may be under the control of different
ownership domains. It provides a uniform means to offer, discover,
interact with and use capabilities to produce desired effects consistent
with measurable preconditions and expectations [125].

The strength of peer-to-peer architectures is the high-degree of scalability
and fault tolerance [136], whereas a service-oriented model is portable since
it relies on self contained loosely coupled services. Services can be maintained
and migrated independently without overall system downtime.

Superpeer Model

For the Grid resource management, this book introduces a new approach
that is a combination of both peer-to-peer and service-oriented models. In
this model, nodes ∈ G are organized in groups. As depicted in Figure 2.6,
within a group service-oriented interaction model is used whereas inter group
communication is provided by applying a peer-to-peer model. Each group
selects a representative node, and all selected representative nodes interact
with each other in a peer-to-peer fashion [158]. The groups are formed based
on resource capabilities rather than their geographical locations or similarities
with each other.

Service2

Service1

Service3

Messages

Service4

Service5

Service6

Messages

Superpeers

Superpeer Group Superpeer Group

Fig. 2.6. Superpeer model.
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A superpeer model is a distributed resource management infrastruc-
ture in which resources are organized in groups where each group
contains heterogeneous resources with diverse capabilities. Intra-group
interaction is provided in a service-oriented fashion whereas peer-to-
peer model is applied for inter-group interaction.

The superpeer model is described in more detail in Chapter 3.

2.7 Summary

This chapter presents a model of the Grid. It starts with general descrip-
tion and definition of the Grid, its characteristics, components and different
architectures. Then it gives a formal overview of infrastructure fabric and
applications along with definitions of Grid resources including the physical
and logical resource, Grid node, activity, and workflow. It describes the Grid
middleware by covering both Grid operating and runtime environments. A
general overview of OGSA (Open Grid Services Architecture) that is a ref-
erence service-oriented architecture for the Grid followed by WS Resource
Framework, Globus Toolkit, and the Askalon runtime environment is pre-
sented. Finally, a resource management model is presented that is topic of
this book. Various terms are defined and explained which are used in the
following chapters.

The next chapter starts with architecture of the resource management
(GridARM) and describes resource selection, on-demand provisioning and
load distribution problems to be handled by a resource manager.



3

Grid Resource Management and Brokerage
System

The emergence of the Grid and ever evolving applications competing for scarce
resources has accentuated the need for an adaptable, scalable and extensible re-
source selection and brokerage mechanism. This chapter presents the Askalon
resource management system called GridARM that delivers resources auto-
matically on-demand. It is designed and developed as a scalable and extensible
resource manager for the Grid. It works for resource providers and optimizes
Grid utility with fair load distribution among resources. It renders boundaries
of resource discovery, selection, brokerage, advance reservation, service-level
agreement and capacity planning. This chapter starts with a general overview
of the entire GridARM system architecture followed by a detailed description
of resource selection model and brokerage implementation. The main focus of
this chapter is brokerage of physical resources in the Grid.

3.1 Introduction

In conventional computing systems, an effective resource management is
rather straightforward since a resource manager has complete control over
the underlying resources. Nevertheless, in the Grid, the resource management
has to deal with heterogeneous, shared, and variant resources distributed un-
der multiple trust domains. A resource manager for the Grid has to:

• balance global resource sharing with their local autonomy
• address issues of multiple layers of schedulers
• work with contending system participants having inconsistent performance

goals and assorted local and global policies.

There is no central control over the heterogeneous resources distributed under
multiple administrative environments. Each resource may have multiple sched-
ulers and queuing systems mostly covered under the high-level Grid schedulers
or meta-schedulers. In case of scarce resources, concurrent users with similar
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requirements may have to compete for similar resources. These challenges em-
phasize a very important and crucial role of resource management in the Grid.

In the Grid computing literature, job scheduling is represented as a part
of the resource management [77, 149, 145, 150, 8, 44], therefore in most of
the existing Grid infrastructures job scheduling is integrated with resource
provisioning and the terms scheduling and resource management are used in-
terchangeably. Nevertheless, in advanced Grids which support enhanced qual-
ity of service (QoS) and where negotiation between resource requester and
provider is necessary, separation between scheduler and resource manager is
important because both have conflicting goals. This is the main driving force
of Askalon architecture. Furthermore, the Grid has been evolved enough that
job scheduling and resource management can be addressed separately in a
service-oriented fashion as defined by OGSA (Section 2.3.1). In the Askalon
Grid runtime environment (Section 2.4), the very two components i.e. schedul-
ing and management are developed not only as self-contained building blocks
but they also work for two classes of users having conflicting goals. As de-
picted in Figure 3.1, the scheduler works for clients (requesters/consumers,
see Definition 14), whereas the resource manager works for resource providers.
Both components negotiate with each other.

Resource
 manager Scheduler

AplicationAplication
Aplication

AplicationAplication
Aplication

Aplication
Aplication

Aplication

Negotiation

Providers Space

Requesters Space

Fig. 3.1. Grid Scheduler and Resource manager Negotiation.

The Resource discovery, selection and provisioning is referred to as resource
management and brokerage (Definition 17). It is an integral part of a Grid that
is manual or semi manual in existing systems such as [91, 119, 97]. However,
an automatic resource brokerage is very important for a scalable and adapt-
able Grid. The resource management must provide resource selection with au-
tomatic discovery of resource capabilities, automatic resource matching, and
capability and integrity checking based on various static and dynamic resource
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information advertised by providers and quality of service (QoS)-constraints
set by resource requesters i.e. clients (Definition 14).

This chapter presents an architectural overview of GridARM along with
the design and implementation of a scalable and extensible mechanism for
resource selection and brokerage in the Grid. The selection is done based on
client requirements or goals whereas extensibility is provided with a flexible
mechanism to plug-in new algorithms for resource selection and new drivers
for information discovery and retrieval from various Grid information services
(GIS) [39, 10]. A distributed infrastructure is provided that scales well with
an evolving Grid.

Definition 24. Scalability is a quality of service that indicates the ability of
a system to maintain its performance with increasing or decreasing number of
resources and clients. In the Grid, it is an ability to preserve processing speed
when both problem size and node size (machine size) increase.

The distributed infrastructure of GridARM has been designed and imple-
mented based on the superpeer model [169] with the support for self manage-
ment and fault tolerance (Section 3.4.2). The system remains available and
functional even if some of the resources (Grid nodes or services) stop working.

The automatic selection for the Grid is necessary not only because of its
usability, efficiency and low cost but also because domain-specific users neither
have enough time to make manual selections among various alternative options
nor they possess enough knowledge about quantity and quality of huge number
of resources. The Grid resources and contending applications are evolving so
rapidly that it is increasingly difficult to make an optimal selection manually.
Besides this, an automatic and scalable selection reduces involvement of node
administrators as well.

As stated earlier, the resource manager works as a resource broker there-
fore it is its responsibility to make a fairly optimal allocation (Definition 20)
of currently available resources to clients. It is necessary that available re-
sources are distributed among competing applications or clients according to
the proportional share (Section 3.3.4) of resources that are contributed to the
Grid. For instance, if a resource contributes more computing power in terms of
higher number of CPUs with better processor clock speed, then that resource
shares more and thus is a candidate for a relatively higher client proportion.
A proportional share-based resource allocation results in an optimal resource
utilization and the steadiness in the system.

Currently, there is no widely deployed single resource management for the
Grid that supports these functionalities all together. GridARM is developed
based on off-the-shelf technologies while being capable to adapt new emerging
technologies.
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3.2 Architectural Overview

This Section gives a general overview of GridARM . Physical resource man-
agement and brokerage is described in detail in the following sections, whereas
management of logical resources is covered in the following chapters.

GridARM is a WSRF (Section 2.3.2) compliant distributed service-ori-
ented management system for the Askalon Grid environment (Section 2.4).
As depicted in Figure 3.2, it consists of three loosely coupled distributed
components. These components are responsible for (physical) resource man-
agement or brokerage (Section 3.3), agreement management (Chapter 5), and
activity management (Chapter 4) respectively.

Node Manager
Brokerage

Resource Matching

Activity  Manager

Grid Activity
Registrat ion/Deployment

Allocation Manager

Agreement/Reservation
Capacity Planning

Grid
Resource Manager

WS Resource Framework

Fig. 3.2. GridARM System Architecture.

3.2.1 Resource Management

The resource manager is a main front-end service that is assisted by services
for node, activity and agreement management as illustrated in Figure 3.2. It
makes an efficient and smart use of other services, which can be registered
and managed dynamically. It also works as a Co-allocation manager that can
perform advance reservation of multiple resources on request. High level in-
terfaces are provided for resource discovery, selection, allocation and manage-
ment. Selection is performed by interacting with node manager that results in
a selection of a resource ensemble based on a resource request, whereas alloca-
tion is performed by interacting with allocation manager. The input provided
by a client (scheduler) is examined and an appropriate operation is invoked.

If a resource manager can not find suitable resources, it can interact re-
cursively to resource managers deployed in other part of the Grid in order to
retrieve required resources (Section 3.4.2).



3.3 System Model 51

3.2.2 Node Management

Node manager is a Grid service that assists the front-end Grid resource man-
ager for the discovery, selection, and allocation of physical resources, particu-
larly nodes (Definition 11), available in the Grid.

3.2.3 Activity Management

An activity management framework (a.k.a GLARE ) is provided as part of
GridARM for dynamic registration, automatic deployment and on-demand
provision of Grid activities.

In contrast to most of the existing Grid resource management systems
which focus on physical resources, GridARM covers logical resources i.e. ac-
tivities as well. It represents application components in terms of abstract or
semantic descriptions in the form of activity types and concrete descriptions
in the form of activity deployments. By separating activity types from de-
ployments, it shields the Grid details from end users (clients), and performs
automatic provisioning of deployed components by mapping activity types to
a set of activity deployments. For instance, this allows a user to specify a
workflow in terms of activity types, independent of the underlying hosting
platform, implementation details of the activities, and the state of the Grid.
GLARE is described in detail in Chapter 4.

3.2.4 Allocation Management

Allocation management improves on-demand provisioning of Grid resources
by providing optimal allocations with advance reservations and capacity plan-
ning. The GridARM allocator (allocation manager) introduces a flexible
mechanism to plugin new algorithms for allocation offer generation with a
fair load distribution or an optimal resource utilization [156] (Chapter 6).
In the allocation offer generation process, the allocator optimizes or fairly
distributes resource capacity without compromising over client requirements.
Free slots which are in accordance with the allocation policies are offered on
request. The advance reservation with allocation algorithms and a practical so-
lution for agreement enforcement is presented in Chapter 5 whereas optimized
resource utilization with capacity planning and management is discussed in
Chapter 6.

3.3 System Model

This section describes the GridARM model and internal components which
deal with automatic brokerage of Grid resources, particularly Grid nodes ∈ G
(Definition 11). GridARM consists of a discoverer, a candidate set generator
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Fig. 3.3. GridARM system architecture.

(CSG), a synthesizer and a selector service, as depicted in Figure 3.3. The dis-
coverer collects and congregates resources from different information services,
CSG generates a set of candidates based on client requirements, the synthe-
sizer updates candidates (specifications) with required logical resources, and
the selector performs final selection of a best candidate. Following sub-sections
describe these components in detail.

3.3.1 Resource Discoverer

A discoverer interacts with different types of Grid Information Services (GIS),
for instance Globus monitoring and discovery service (MDS2 [39], and WS-
MDS [10]), and Network Weather Service (NWS) [190], and collects informa-
tion about available resources (nodes) in the Grid. Different information ser-
vices support different representations and look-up mechanisms, and a client
has to deal with them separately in a non-trivial time-consuming way. To
overcome this problem, a generalized interface is introduced for heterogeneous
information services with a specific driver (plug-in). The driver interacts with
the service through service-specific interfaces, collects resource information
in service-specific representation, and then transforms to a standard informa-
tion representation model, that is the GLUE schema [85]. A set of information
services IS is available in the Grid.

A client can make a query for resources based on both static and dynamic
attributes, for instance, total CPUs, operating system name/type are static
information whereas free CPUs, average load, available memory etc. represent
dynamic information that is updated and discovered at runtime. The set IT
contains all information types that may be associated with a node ∈ G to
describe its capabilities. There is a set IT i = {iti1, ..., itiki} of information
types that is provided by isi, where ki may be different for different isi.
An information type it ∈ IT is a class of information that covers related
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attributes. For instance, operating system ∈ IT covers os name, os type, os
version and os release attributes.

It is likely that different information services ∈ IS provide different kinds
of resource information. For instance, MDS provides static or semi-dynamic
information such as OS and Processor details whereas NWS provides more
dynamic information such as free CPUs, free memory etc. Once discovered,
all kind of information are consolidated (merged) in a resource description
and represented in a unique format.

Definition 25. The resource discovery is a process of finding information
types ∈ IT from different information services ∈ IS, consolidating infor-
mation in the form of resource descriptions and finally making resources
available for selections. Let lookup(isi) be a function that finds informa-
tion type IT i ∈ IT available from an information service isi ∈ IS such
that IT =

∑m
i=1 IT i ≡

∑m
i=1 lookup(isi), then the discovery function δ is

defined as δ : IT �→ G, that consolidates (merges) all looked up information
in resources ∈ G.

Algorithm 1 describes discovery algorithm along with steps taken for discover-
ing and consolidating resource descriptions. As depicted, the discoverer itera-
tively looks up resource descriptions with different information types from all
registered information services. Finally it consolidates all kind of information
∈ IT in the form of resource descriptions. Example 3 describes an example
for discovery function δ.

Algorithm 1 Resource discovery and description consolidation Algorithm.
discover: δ()
Input: IS // A set of Grid information services (configurations)
Output: G // A set of Grid nodes (descriptions) available in the Grid
G := {�}; // Initially empty set of nodes
for all gisi ∈ IS do

IT i := lookup(gisi); // discover resources Ggis from gis
Gi := consolidate(gisi); // Consolidate information and make Gi found in isi

for all g ∈ Gi do
if {g ∈ Gi} then
// g is already discovered and exists in G
δ
′
:= desc(Gi, g); // new information found from isi for g

δ
′′

:= desc(G,g); // Previously discovered information

g := consolidate(δ
′
, δ

′′
); // node with updated (merged) information

end if
G := G + {g}; // Add in G

end for
end for
cache(G); // Cache G for faster selection
return G;// Return discovered resources G
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Example 3 (Resource discovery and consolidatation).
Let two information services IS = {is1, is2}, as depicted in Figure 3.4, gives
different set of resources (nodes) as well as different types of information for
same nodes. is1 ∈ IS provides 3 nodes {B,C,D} ⊂ G with additional infor-
mation about CPUs ∈ IT whereas is2 ∈ IS provides 3 nodes {A,B,D} ⊂ G
with additional information about OS∈ IT . After discovery and consolidation
(δ), according to the Algorithm 1, a complete set of nodes G = {A,B,C,D}
as well as consolidated information, that is, information about CPUs and OS,
originally provided by different services, are made available as if they are from
the same service. ��
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Fig. 3.4. Resource discovery and consolidation.

Besides off-the-shelf information services, GridARM introduces a superpeer
model -based information service for resource discovery. The superpeer model
is described in Section 3.4.2.

Resource Caching

The discoverer keeps a cache of discovered resources and then periodically
refreshes the cache. Since a reasonable set of information (such as OS and
processor details) is static and there is no need to lookup again and again,
therefore the dynamic information such as free CPUs or available memory
is refreshed in the cache more frequently than the static information. This
improves response time and resource availability.

3.3.2 Candidate Set Generator

The candidate set generator (CSG) performs resource matching with client
requirements. The solicited resource descriptions, congregated by the discov-
erer from the underlying information services ∈ IS, are used. Once resources
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(nodes) ∈ G are discovered, the candidate set generator filters out resources
which do not match with client requirements, and generates a set of candi-
dates that is offered to the client. The user requirements are represented in
the form of a set of constraints ∈ T as part of the resource request q ∈ Q.

Definition 26. A candidate bi ∈ B|B ⊆ G is a node gi ∈ G (Definition 11)
that is available for allocation to a request qi ∈ Q with constraints (terms)
Ti ⊆ T such that all constraints ∈ Ti are fulfilled. For each request qi there is
a set Bi = {bi,1, ..., bi,ni} of candidates generated by CSG, where ni may be
different for different qi.

The candidates ∈ Bi are ordered and the ordering is performed based on a
specific selection criteria. A selection criteria is an expression that is provided
either by a client as part of its request, or system (GridARM ) as part of its
(default) configurations. For this purpose, a candidate selection language is
used. This language is proposed by the OGSA-Resource Selection Service
working group (RSS-wg) at Open Grid Forum [81]. According to the RSS
proposed schema, a client can specify an expression that is evaluated and
used by the CSG for sorting out candidates. The best candidate is always
available at top of the sorted list.

Example 4 (CSG Selection criteria (1 + freeCPUs× clockSpeed)).

1 <sum>
2 <constant>1</constant>
3 <product>
4 <se lect xpath=”candidate / i n f o /freeCPUs”/>
5 <se lect xpath=”candidate / p roc e s s o r / c lockSpeed”/>
6 </product>
7 </sum>

��

A sample candidate selection criteria could be expressed as shown in Exam-
ple 4. The expression shows that the generated set of candidates should be
sorted out according to the free CPUs and processor clock speed. Let tcpu(gi),
fcpu(gi) and clock(gi) be the functions that specifies total CPUs, free CPUs,
and clock speed of gi respectively, then a candidate bi is a best candidate if

(1 + fcpu(bi) × clock(bi) = �).

However, the selection criteria is configurable and a client can specify its own
expression for selection criteria or a provider can modify the default one.

Definition 27. A candidate set generation function ς : G �→ Bi is a partial
function that generates an ordered list of candidates Bi such that each b ∈ Bi

fulfills constraints Ti ⊆ T of a request qi ∈ Q and the first candidate is
the best candidate according to the selection criteria. Let rank(bi) define the
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candidate selection criteria of a candidate bi ∈ Bi then bi is a best candidate
if and only if rank(bi) is highest among all candidates ∈ Bi, that is

rank(bi) = � ⇐⇒ ∀bj∈Birank(bj) ≯ rank(bi), j �= i

Algorithm 2 gives the pseudo code of candidate set generation ς that is ex-
plained in Example 6.

Algorithm 2 The Candidate Set Generation Algorithm.
generateCandidateSet: ς()
Input: G, q // A set of Grid nodes G and a resource request q ∈ Q
Output: B // An ordered set of candidates B
B := {�}; // Initially empty set of candidates
T := set of constraints in request q

for all g ∈ G do
if ∀t∈T t matches to g then
// node g does qualify constraint T
B := B + {g}; // g is a candidate

end if
end for
B := concretize(B);// add activity deployments for requested activity type
B := sort(B); // sort according to the candidate selection criteria
return B;// Return generated candidate set B

Example 5 (Resource Request (rr)).

1 <ResurceRequest name=”r r”>
2 <CPUArchitecture>
3 <CPUArchitectureName>x86 64</CPUArchitectureName>
4 </CPUArchitecture>
5 <TotalCPUCount>
6 <LowerBound>1</LowerBound>
7 </TotalCPUCount>
8 <Processor>
9 <ClockSpeed>

10 <UpperBound>4.0 </UpperBound>
11 <LowerBound>2.0</LowerBound>
12 </ClockSpeed>
13 </Processor>
14 <OperatingSystem>
15 <OperatingSystemType>Linux</OperatingSystemType>
16 </OperatingSystem>
17 </ResurceRequest>

��
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Example 6 (Candidate set generation and selection).
In the Resource Request (Q = {rr}) listed in Example 5 in which a client
requests for node with x86 64 architecture, Linux operating system, at
least 1 CPU, and processor clock speed between 2.0 − 4.0GHz. Let G =
{A,B,C,D,E, F} be the currently discovered state of the Grid, as shown
in Table 3.1 then by applying Algorithm 2, that is ς(G, rr), the generated
candidate set Brr = {D,C, F}. The node D is the best candidate accord-
ing to the selection criteria (rank) given in Example 4 as rank(D) = 180 >
rank(C) ∧ rank(D) > rank(F ). The ranks are computed according to the
selection criteria given in Example 4. ��

Table 3.1. A sample Grid with a set of nodes and associated attributes.

Node A B C D E F

tcpu 32 132 8 64 128 12
fcpu 16 39 7 49 96 5
clock 3.9 1.4 3.0 2.8 3.2 2.0
ostype Linux Linux Linux Linux Solaris Linux
arch ia64 x86 64 x86 64 x86 64 x86 64 x86 64

rank - - 25 180 - 25

3.3.3 Resource Synthesizer

The synthesizer further filters-out generated candidates according to the re-
quested activity deployments (Definition 8) and adds details of the deployment
description in the filtered candidates. For instance, candidates set generated
by the candidate set generator (CSG) fulfills all constraints associated with
physical resources such as free CPUs, operating system, free memory, relia-
bility etc. whereas synthesizer checks with the help of GLARE (Chapter 4)
whether or not a client’s required activity ∈ A has activity deployments in-
stalled/deployed on the candidate node ∈ G and if deployed then consolidate
deployment descriptions with the candidate descriptions. The synthesize al-
gorithm is discussed in Chapter 4.

3.3.4 Resource Selector

The resource selector is the third component of GridARM that filters out the
generated set of candidates and makes an optimal selection. The resource se-
lection has two perspectives: a client’s perspective and a resource perspective.

Client Perspective

For the client’s perspective, the selection function ξ : Q �→ Bbest selects a
best candidate bi ∈ Bi for each request qi ∈ Q. Bbest is produced with a
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reduction operator Ψ such that Bbest = Ψ(B1, ...,Bm) = (b1, ..., bm), bi ∈
Bi,m ∈ N, where Bi is an ordered set of candidates for request qi and Ψ(Bi) =
bi|rank(bi) = �, that is, it gives highest ranked candidate.

Resource Perspective

With resource perspective, the resource selector filters out the generated set
of candidates according to their proportional shares. For this purpose, a util-
ity function (Definition 18) is introduced (Section 2.6) that is used to opti-
mize proportional share-based resource allocation. Since the generated set of
candidates Bi fulfills all constraints of the request qi, the selector may offer
additional benefits to the client by making a fair allocation. For instance, if
a client is offered a better clock speed or free CPUs than requested, then it
may get benefit of additional capacity as long as there is no further request
for the same resource by any other client.

The functions tcpu(gi), fcpu(gi) and clock(gi) can be used to drive total
CPUs, free CPUs, and processor clock speed respectively of a node gi. These
functions are used in selection function ξ to evaluate the proportional share
of a node that it offers to a client in addition to minimum requirements of the
client. The selection function ξ can be redefined as follows:

Definition 28. The resource selection is a process of allocating qualified can-
didates B to Q according to their proportional share. The selection function
ξ : S �→ Q assigns a selected candidate bi ∈ Bi to a request qi ∈ Q, where
S = Ψ(B1, ...,Bm) = (b1, ..., bm) such that, Ψ(Bi) = bi ⇐⇒ U(bi) = �.
Here Ψ is a set reduction operator whose domain is the set of all candidate
sets and codomain is a set of all selected candidates. It selects a candidate
bi ∈ Bi that has maximum utility, that means ∀b∈Biµ(b) ≯ µ(bi).

Proportional Share

As described in the previous section, the proportional selection is done based
on an objective function, that is to be maximized. Before proceeding to the
proper definition of the utility used as objective function in the resource selec-
tion context, first lets describe its defining attributes: node share, node power
and node offering.

The node share share(gi) is a relative measure of contribution (propor-
tional share) that a node gi ∈ G contributes to the total capacity of the Grid
in the form of tcpu(gi), that is

share(gi) =
tcpu(gi)∑
g∈G tcpu(g)

A node power power(gi) is a measure of the computing power of a node gi ∈ G
in the form of processor clock speed clock(gi) relative to the maximum clock
speed of any node ∈ G, that is
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power(gi) =
clock(gi)

max(
⋃

g∈G clock(g))

The node offering offering(gi) is a measure of the remaining, available or
free CPUs fcpu(gi) of a node that is currently being offered relative to the
total capacity tcpu(gi) of a node gi that is contributed in the Grid.

offering(gi) =
fcpu(gi)
tcpu(gi)

The values of of total CPUs (tcpu), free CPUs (fcpu), and clock speed (clock)
can be retrieved from a Grid information service ∈ IS.

Definition 29. The proportional share-based utility U as an objective func-
tion of resource selection problem is defined in terms of share(gi), power(gi)
and offering(gi) of a node gi ∈ G. Let

U
′
(gi) =

WNS × share(gi) +WNP × power(gi) +WNO × offering(gi)
3

(3.1)
then, the utility U(gi) of resource gi is

U(g) =
(1 − e−U

′
(g))

(1 − e−1)
(3.2)

where WNS, WNP and WNO are the weight factors of share(gi), power(gi)
and offering(gi) respectively which are selected as

(WNS +WNP +WNO)
3

= 1

and the default values of these weight factors are as:

WNS = 1.0,WNP = 0.5,WNO = 1.5

This combination of weight factors is selected because it gives smaller error
or ’deviation from the expected’ load distribution. This is explained experi-
mentally in Section 3.5. The utility U(g) (Equation 3.2) decreases the value
generated by U ′

(g) with a little biasness towards most and least loaded nodes.
The leastly and mostly loaded nodes get relatively less distribution. However,
share is fairly distributed among nodes with average load. This is acceptable
since least loaded node has less contribution whereas most loaded node has has
higher contribution but has already got higher proportion of load.

Algorithm 3 provides a pseudo code for the selection algorithm used by the
selector. It gets a list of candidates from CSG and selects a candidate with
maximum utility from each list. Example 7 demonstrates Algorithm 3.
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Algorithm 3 The Selection Algorithm.
select: ξ()
Input: Q,G // A set of Grid nodes G and a set of resource requests Q
Output: S // Selected list of candidates
S := {�}; // initially empty selection
for all r ∈ Q do

Br := generateCandidateSet(r,G);
g := �; // g to be initialized to resource with best utility
for all c ∈ Br do

if U(c) > U(g) then
g := c; // c has better utility

end if
end for
S := S + {g};

end for
return S ;// return selected candidates

Example 7 (Candidate Selection).
Table 3.2 shows the utility of nodes specified in Table 3.1. By applying se-
lection function as demonstrated in Algorithm 3, the selected candidate b is
b = ξ(G,Q) = {C}. As shown in Table 3.2, the utility U(C) is better than for
other candidates ∈ Brr. Furthermore, its worth noting that the node D ∈ Brr

is considered best node based on user’s selection criteria but with utility-based
selection, the client is offered node C instead of D. This not only improves
balance load distribution but also the client gets a node with better clock
speed and less number of concurrent clients (only one CPU is under use on
node C). ��

Table 3.2. The utility of the nodes specified in Table 3.1.

Node A B C D E F

share 0.085 0.35 0.02 0.02 0.34 0.03
power 1 0.36 0.77 0.72 0.82 0.51
offering 0.5 0.3 0.88 0.77 0.75 0.42

util n/a n/a 0.692 0.634 n/a 0.416

Besides the utility function, GridARM uses an internal ranking of nodes that
represents stability and availability of nodes. Let uptime(gi) be the uptime of
gi in milliseconds then:

rank(gi) = (share(gi) + power(gi)) × uptime(gi) (3.3)

This is not an ideal formula, however, a higher rank shows a highly available
machine. In case of equal ranks of multiple nodes, then the ranking is done
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using hash codes of the node names. This is to ensure uniqueness of ranks
across the Grid.

3.3.5 A Steady System with Proportional Distribution

The resource selection based on resource utility as defined in Definition 29,
ensures that client load distribution is done according to the proportional
share of each resource in the Grid. A resource is requested to execute an
activity (Definition 6) or an application on a selected node, and a selection or
allocation is only done if the resource has some free capacity. Let

• e be the expected or requested execution time
• c be a factor that represents contention as the resource may be shared.

c > 1 if there is a contention.
• d be the delay due to wait time in the queuing system.

Lemma 1. A load distribution according to the proportional share of re-
sources improves system steadiness and optimizes resource allocations.

Proof. Lets adopt the usual definition for the standard deviation (σ) Without
proportional distribution the standard deviation of execution time is

σ(e× c+ d)

Since there is no contention with proportional distribution that means the
c→ 0 and d < 1, in this case the standard deviation is

σ(e)

it can easily be observed that

σ(e× c+ d) ≥ σ(e) (3.4)

Thus the standard deviation of execution time of a given request with proposed
load distribution is always less than or equal to the standard deviation without
proportional distribution. Reduced σ means greater steadiness and better
optimization in allocations. ��

3.4 Implementation

GridARM is implemented based on GT4 technologies. All components are
developed as WS-Resources (Definition 12), that means they are stateful Web
services. These services are configurable and customizable. An information
service plug-in can be configured and loaded dynamically by the discoverer by
providing a configuration file. For instance, a sample Grid information service
configuration file is presented in Example 8. This configuration is represented



62 3 Grid Resource Management and Brokerage System

as XML document and it includes address of the service host, port on which
service is listening, base distinguish name basedDn required for MDS2, type
of information service, and cacheEnabled flag for enabling or disabling cache.
The default GIS type is MDS2 as it has been widely deployed in Grids.

Example 8 (Grid Information Service Config File).

1 <GISConfiguration xmlns=” h t tp : // gridarm . aska lon . org ”
2 address=” agr id . uibk . ac . at ”
3 basedDn=”mds−vo−name=lo c a l , o=gr id ”
4 name =” agr id ”
5 port =”2170”
6 type =”mds2”
7 cacheEnabled=” true ”
8 />

A graphical client application is developed that can be used to manually dis-
cover, select and browse underlying resources and their properties. The console
application is integrated in the front-end Askalon development environment.
Figure 3.5 depicts a snapshot of the GridARM console.

Constraint-based Node
discovery Dialog

Browse
Grid
Nodes

Details of Information
of selected tab

Tab
representing
various
information
types

Switch between physical and
logical resource view

Fig. 3.5. The GridARM Console: A Graphical client application.

3.4.1 Customization

An interesting feature of GridARM is its customization. Customization (a)
introduces new information services ∈ IS that represent resources (nodes)
unavailable in any of the underlying information services IS, (b) shields Grid
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users from some of the existing nodes, and (c) optionally overrides or hides
some information of a set of existing nodes ⊆ G. This is not only useful
for employing a coarse-grain access-control (by hiding/showing capacity of a
node) but also helpful in preparing a Grid testbed according to the domain-
specific experimental needs. The customization of GridARM is possible for
each client and a customized resource manager can be instantiated against the
Grid user’s identity (proxy) (Section 2.3.3) as a non-persistent WS-Resource
(Definition 12).

Example 9 (Configuration for a customized resource manager).
1 <CustomizedRMConfig x s i : type=”CustomizedRMConfigType” . . . >
2 <!−−Customize a se t o f nodes f i l t e r e d accord ing to ResourceFilter−−>
3 <ResourceFilter xs i : type=”ResourceF i l t erType”>
4 <ResourceConstraint name=”TotalCPUs” maxValue=”16” minValue=”10”/>
5 <ResourceConstraint name=”OSName” value=”Linux”/>
6 </ResourceFilter>
7
8 <!−− Customize a s p e c i f i c named node −−>
9 <AttributedNode nodeName=”a l t i x 1 . jku . au s t r i a n g r i d . at”>

10 <!−− Overridden a t t r i b u t e s o f a named node −−>
11 <NodeAttribute name=”TotalCPUs” va lue=”35”/>
12 </AttributedNode>
13
14 <AttributedNode nodeName=”karwendel . dps . uibk . ac . at”>
15 <NodeAttribute name=”TotalCPUs” va lue=”15”/>
16 </AttributedNode>
17
18 <expirationTime xs i : type=”xsd : dateTime”>
19 2006−05−31T10 : 3 5 : 5 9 . 0 6 5Z </expirationTime>
20 <cacheEnabled xs i : type=”xsd : boolean”> t rue </cacheEnabled>
21 <refreshAfter xs i : type=”xsd : durat ion”>PT2H </refreshAfter>
22 <ignoreOtherNodes xs i : type=”xsd : boolean”> f a l s e </ignoreOtherNodes>
23 </CustomizedRMConfig>

��

A sample configuration file for customization is described in Example 9 with
following elements:

• ResourceFilter: element describes constraints that need to be satisfied in
order to make a node visible to the clients. For instance in Example 9, only
nodes with Linux OS and TotalCPUs between 10 − 16 become visible.

• AttributedNode: element is used to override some of the attributes of a
named node.

• The customization of nodes expires after expirationTime.
• If cacheEnabled is set the cache of nodes is refreshed after refreshAfter

seconds.
• If ignoreOtherNodes is enabled then nodes other than AttributedNodes will

be hidden.

3.4.2 Superpeer

GridARM works in a service-oriented (Section 2.6.4) interaction pattern based
on a superpeer model (Section 2.6.4). This model provides an infrastructure in
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which multiple nodes form smaller groups. The members of each group select
one member as a group representative that is referred to as a superpeer. All
superpeers collectively make a superpeer group. The intra-group interaction
mechanism is service-oriented whereas a superpeer model is used for inter-
group interaction.

In contrast to hierarchical or centralized models [39], the superpeer model
works well with dynamic and large-scale distributed environments including
the Grid [169]. This model makes GridARM scalable and a better load-
balancer. The automatic formation of superpeer groups makes GridARM a
self-managed system.

GridARM exploits the GT4 aggregation framework and the default index
(a.k.a. WS-MDS or MDS4). In GT4, an information service that is local to
a node is called default index whereas root index is referred to as a commu-
nity index. The GT4-enabled resources register in a community index, and a
community index may register itself with another community index. In this
way, information about registered resources propagate toward index service
in a hierarchical model. Figure 3.6 shows a typical hierarchical organization
of WS-MDS. According to this configuration, there are 11 nodes (C1−C11).
The node C4 is community index of C1, C2 and C3 and in this way it is a
smaller community (labeled as A) which belongs to a larger community (la-
beled as B). Community index at C11 has the entire view of the Grid, but the
community indices at the node C4 and C8 are only aware of the underlying
nodes registered with them.

Communi ty
Index

Index

Index

Index
Index

Index

Index Index

Communi ty
Index

Super Community 
Index

A

B

C

Client1

Client2

Client3

Know only C5 node Only 

C1
C2 C3

C4

C5
C6

C7

C8

C9
C10

C11

Knows nodes C5,C6,C7,C8 only

Knows All nodes

Fig. 3.6. Globus MDS-based hierarchical advertisement of nodes in the Grid.



3.4 Implementation 65

Fig. 3.7. Grid infrastructure with GridARM services and MDS hierarchy.

This hierarchical model has some limitations: with growing number of reg-
istered nodes, the community index may become a bottleneck. For instance,
the client of node C11 (i.e. client3) knows all nodes in the Grid, but clients
of node C5 (i.e. client1) has no knowledge about nodes other than the node
C5. It has to know by some means the address of root index in order to have
a global view of the Grid. Furthermore, there is no mechanism to split the
index service load.

The new superpeer model is a remedy. The model is formed and scaled
automatically and a client of any node may reach the entire Grid. This is
explained in the following sub-sections.

Making of a Superpeer Group

The GridARM (resource manager) probes and identifies type of the index
service. Once a GridARM -enabled node identifies itself as community index
node, it becomes superpeer election coordinator and notifies all other nodes
registered in the community index. As depicted in Figure 3.7, the node C4, C8
and C11 are identified as community index node, and the GridARM notifies
all registered nodes about the discovery. The GridARM -enabled node C4 no-
tifies nodes ∈ {C1,C2,C3}, node C8 notifies nodes ∈ {C5,C6,C7} whereas
C11 notifies all nodes ∈ {C1 − C10}. Notification is done twice (with a
configurable time interval) and the second notification is acknowledged. A
notification message includes number of registered nodes in the community
index showing the community strength. In order to avoid multiple acknowl-
edgments, a message from a smaller community is acknowledged if multiple
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Fig. 3.8. Grid infrastructure after making of superpeers.

notifications are received. A responding node with higher rank is elected as a
superpeer. Depending on the number of nodes, more than one nodes can be
elected as superpeers and other members are then equally distributed among
the elected superpeers. In this way each group can have exactly one superpeer
node. Initially, these groups are made by the election coordinator who notifies
all elected superpeers about their group members after the completion of their
election.

Figure 3.8 depicts the structure of a Grid after making of superpeers with 3
groups and one superpeer group. Each member within a smaller group become
peer of each other, whereas one member elected as superpeer from each group
joins a superpeer group.

Role of a Superpeer

Once a node recognizes itself as a superpeer member after receiving notifica-
tion from the election coordinator, it does the following:

• Discovers other superpeers distributed in a larger community by interact-
ing with community or super community indices.

• Handles requests from group members. A superpeer is contacted when a
member could not find resources according to the client requirements. It
forwards requests to other superpeers and caches the results.

A service on a superpeer node is accessed when other members could not find
required resources (nodes, activities etc.). The superpeer forwards unfulfilled
requests to other superpeers and return the result if found. It also keeps cache



3.5 Experiments and Evaluation 67

of the result found from other superpeers. Furthermore, a superpeer monitors
the community index periodically to see if there is a new member. The new
members are informed about the already elected superpeer.

Self Management

GridARM is self-managed and fault tolerant. It might be possible that a su-
perpeer fails or become unavailable due to any reason. GridARM handles this
situation nicely. Once a member discovers that the superpeer is not working, it
immediately generates ranks of all member nodes excluding the missing super-
peer and notifies the highest ranked member. The rank of a node is generated
according to formula given in Equation 3.3. The highest ranked member then
(a) verifies that the superpeer is missing (b) verifies its own rank and then (c)
notifies all other member. As a result each member again verifies the unavail-
ability of the superpeer and acknowledges back to the highest ranked node.
An acknowledgment from a simple majority confirms that the superpeer is
no longer available, and the highest ranked node takes over as a new super-
peer. In this way election and re-election of superpeers takes place, and high
availability and scalability of the distributed GridARM is ensured.

3.4.3 Standard Adaptation

The GridARM services are loosely coupled in a service-oriented fashion. This
is in accordance to the Open Service-oriented Grid Architecture [71] (Sec-
tion 2.3.1) proposed by the Open Grid Forum (OGF) [129] formerly known as
Global Grid Forum (GGF) [81]. For better integration with the Askalon run-
time environment, GridARM supports the Job Submission Description Lan-
guage (JSDL) [100] as a query template which is synthesis by GridARM with
matching resources. The JSDL provides a set of rich constructs for constraint
specification. However, since JSDL is yet evolving, GridARM introduces a
simple querying format in which different constraints are expressed (Exam-
ple 6) and that can also be translated to LDAP [103] filters. LDAP is the
default querying mechanism supported by the Globus MDS version 2.

3.5 Experiments and Evaluation

GridARM is developed based-on WSRF and uses mechanisms like subscrip-
tion/notification and lifetime management of resources. It is deployed in the
AustrianGrid [33] which consists of several Grid nodes with varying capacity
contributions, having different architectures, operating systems, and various
queuing system such as Portable Batch System (PBS) [11], Sun Grid Engine
(SGE) [168] etc. The details of semi-persistent Austrian Grid testbed is given
in Table 3.3. The Globus Toolkit (GT4) (Pre-WS) is installed on all Grid
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Table 3.3. The Austrian Grid testbed.

# Node # CPU, Bit, GHz RAM Provider Location

1 hc-ma.uibk.ac.at 204 Opteron, 64, 2.2 4096 GT2/SGE Innsbruck
2 hephygr.oeaw.ac.at 84 Opteron, 64, 2.2 2048 GT2/torque -
3 karwendel.dps.uibk.ac.at 104 Opteron,64,3.0 15026 GT2/SGE Innsbruck
4 altix1.jku.austriangrid.at 64 Itanium2, 64, 1.6 61408 GT4/PBS Linz
5 hydra.gup.uni-linz.ac.at 16 Athlon, 32, 1.6 2048 GT2/PBS Linz
6 schafberg 16 Itanium2, 64, 1.6 15026 GT2/Fork Salzburg
7 altix1.uibk.ac.at 16 Itanium2, 64, 1.6 15026 GT2/Fork Innsbruck
8 grid.labs.fhv.at 12 Xeon,64,3.0 3986 GT2/SGE Innsbruck
9 astro-grid1.uibk.ac.at 2 Opteron,64,2.2 11986 GT2/SGE Innsbruck
10 agrid1.uibk.ac.at 21 Pentium4, 32, 1.8 512 GT2/PBS Innsbruck

nodes whereas GT4 core (see Section 2.3.3 for GT4 details) is installed on
some dedicated machines as part of Distributed and Parallel Systems (DPS)
domain, University of Innsbruck - Austria. Apart from node specific services
such as Grid Resource Allocation Manager (GRAM) [41] that works as the
node gatekeeper, the Network Weather Service (NWS) [190] and MDS [39]
version 2 with the Glue schema are also installed. The MDS service provides
information of all AustrianGrid nodes whereas NWS was installed only within
the DPS domain. All machines involved in the experiments were located on
a lightly loaded network with a maximum latency between two computers of
about 2 milliseconds.

First, the selection problem is analyzed with the help of uniform load
distribution among available resources. The load distribution is done by se-
lecting resources for clients according to the selection solution as described in
Section 3.3.4. The experiments are performed in the Austrian Grid testbed
with the relative contributions of each node in the Grid. Three perspectives
are chosen, utility-centric, offering-centric and share-centric. For the utility-
centric perspective the load distribution in which default weight factors (Sec-
tion 3.3.4) are assigned to the resource. Table 3.4 depicts the combinations of
weight factors for the three perspectives. These combinations are chosen in or-
der to demonstrate the broader variation in the results with relatively fair load
distribution. The combination for the utility centric perspective represents a
combination with optimal load distribution.

Table 3.4. The Weight factors for resource selection.

Perspective WNS WNP WNO

Utility-centric 1.0 0.5 1.5
Capacity(offering)-centric 0.0 0.5 2.5
Share-centric 1.0 1.0 1.0
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Fig. 3.9. Utility-centric Load distribution

A resource request (Definition 15) consists of a set of constraints, for instance,
free CPUS, free memory, operating system type, processor type, processor speed
etc. We have generated a random set of request with various constraints that
are satisfiable within the Austrian Grid testbed (Table 3.3), however, the num-
ber of CPUs requested is always one. This makes sense since in the Askalon
runtime environment (Section 2.4), a resource request is usually made sepa-
rately for each activity (Definition 6) in a workflow (Definition 10).

Following is the comparison and evaluation of proportional distribution of
load among the available Grid nodes as shown in Table 3.3 according the the
three perspectives described above. The comparison is made between ideal
(expected) and real (actual) values of the load share among the nodes. The
expected value of load distribution is calculated according the formula shown
in Equation 3.2 that gives an exact proportional load distribution. The load is
distributed among all nodes available in the Austrian Grid (Table 3.3), how-
ever we have selected four nodes for graphical depiction of load distribution.
These nodes includes:
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Fig. 3.10. Share-centric Load distribution

1. hcma.uibk.ac.at with 204 CPUs
2. karwendel.dps.uibk.ac.at with 104 CPUs
3. altix1.jku.austriangrid.at with 64 CPUs
4. schafberg.coma.sbg.ac.at with 16 CPUs

The reason behind selection of these nodes is that they represent diverse
configurations, and varying number of node shares and node powers. The
graphs compare the expected load distribution with actual selection among
four different types of nodes in the Austrian Grid. These nodes possess varying
degree of node share and node power that gives a balanced view of the load
distribution. Figures 3.9 3.10 3.11 show load distribution among the nodes
shown above with the three perspectives for selection evaluation based on the
weight factors in Table 3.4 and the utility formula given in Definition 29.

Figure 3.9(a), 3.9(b), 3.9(c) and 3.9(d) compares load distribution with
utility-centric perspective in hcma, karwendel, altix and schafberg each with
node share (share) as 204, 104, 64 and 16 respectively. The load assignment
is relative to the node share (Section 3.3.4). Since hcma machine has high-
est share in the overall Grid capacity therefore it gets slightly higher than
expected distribution whereas schafberg has lowest share thus it gets slightly
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Fig. 3.11. Offering-centric Load distribution

less load than expected. The load distribution on the karwendel is almost sim-
ilar as expected because its contribution in the Grid is closer to the average
share, and the deviation of actual distribution from the expected is negligible.
The load assigned to altix1.jku is reasonably lower, however, in contrast to
the schafberg (Figure 3.9(d)), it growth is smooth. Furthermore, due to low
share in the Grid, both altix1.jku and schafberg get their first allocations after
100th overall allocation in the Grid.

Figure 3.10(a), 3.10(b), 3.10(c) and 3.10(d) compares share-centric load
distribution. With this perspective, the distribution of load (resource alloca-
tion) is consistent but with higher degree of deviations. The depiction curves
with share-centric are similar to utility-centric depictions. However, in the
share-centric perspective, hcma (Figure 3.10(a)) gets higher than expected
load but with almost double the deviation than in case of utility-centric per-
spective. Similarly, altix1 (Figure 3.10(c)) and schafberg (Figure 3.10(d)) get
lower than expected load but with almost 2.5 times higher deviation. Kar-
wendel (Figure 3.10(b)) allocation is almost consistent with slight deviation
in initial and final allocations. Furthermore, due to low share in the Grid, both
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Fig. 3.12. Average Deviation in Load Distribution during Selection of (Physical)
Resources.

altix1.jku and schafberg get their first allocations after 200th overall allocation
in the Grid.

Here deviation σ is calculated based on actual and expected values of load
distributions. Let say x is actual and exp(x) is expected value then deviation
σd is

σd =
√
x2 − (exp(x))2 (3.5)

Figure 3.11(a), 3.11(b), 3.11(c) and 3.11(d) compares offering-centric load
distribution. With this perspective the distribution of load is very inconsistent
with much higher degree of deviation of actual load distribution (resource
allocation) than expected. It is depicted that hcma (Figure 3.11(a)) initially
gets exclusively more than 100 allocations whereas schafberg (Figure 3.11(d))
gets its first allocation after almost 350 overall Grid allocations.

Figure 3.12 compares average deviation of all three perspectives. It is quite
obvious that proportional share-based load distribution with the utility-centric
perspective is much better and has lowest deviations. This verifies that Gri-
dARM provides a steady system with a selection model that works better for
the resources (and resource providers) without compromising over the client
requirements, rather clients are being offered relatively better options as com-
pared to what they asked at the first place.

Figure 3.13 depicts GridARM overhead with and without cache enabled
with varying number of concurrent clients. Since the default information ser-
vice is Globus MDS2 which works based in LDAP [103], therefore GridARM
overhead is compared with LDAP overhead as well. The interesting finding is
that without cache enabled, the GridARM overhead grows linearly and this
linear growth is similar to the linear growth of LDAP overhead. In contrast,
the overhead remains consistent if cache is enabled. The difference between
LDAP and GridARM is due to additional overhead of WSRF (Section 2.3.2)
middleware infrastructure. This proves that GridARM overhead is negligible
if compared with combined overhead of LDAP and WSRF.
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Fig. 3.14. Performance of resource discovery and selection with varying number
of clients, including Grid middleware overhead.

Figure 3.14 depicts performance of resource selection with varying number
of clients. The response time grows linearly with clients. According to the
results, the request for the named resources is more economical. This is the
simplest form of request in which no resource matching is required. The re-
quest for all registered resources and the request with multiple constraints is
more expensive. In the Grid, which is meant for execution of time-expensive
scientific application, GridARM ’s performance is quite encouraging. The per-
formance of the customized resource manager is also comparable with other
curves even though it has to perform an additional step of overriding some of
the attributes for a specific client.
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Figure 3.15 shows average response time with concurrent discovery-requests.
A discovery request is like a selection request but it does not include ad-
ditional step of candidate set generation and synthesis. Again request for
named resources is more economical whereas a resource discovery for multi-
constrained request is relatively expensive. However, the overhead remains
under one second. The middleware initialization overhead is significantly vis-
ible in the curves.
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Figure 3.16 depicts performance of the system without the Grid middleware
(WSRF and network) overhead. The performance is almost consistent. The
selection algorithm performance does not add any significant overhead as it is
clear that main overhead is introduced by the middleware and the underlying
information Services.

Figure 3.17 depicts average overhead of the GridARM components per re-
quest. Since GridARM is implemented as WSRF-compliant GT4-based Grid
middleware, its quite logical to compare GridARM own overhead with WSRF
middleware overhead. It is depicted that WSRF-based middleware overhead
is much higher as compared to the GridARM component overhead. The fluc-
tuation in the curves is introduced because of the multi-processor node on
which GridARM was installed. Cache improves discovery phase and synthesis
phase.

Fig. 3.17. The GridARM Components Overhead.

3.6 Related Work

Resource management in parallel systems is a well studied area of research [65].
In [110] performance of several resource matching heuristics is compared. The
work in [166] introduces a proportional share resource allocation for real-time
time-shared systems. However, mostly homogeneous resources under the full
control of a resource manager are considered.

In the domain of resource management for the Grid, numerous projects
and tools are available, but most of them do not provide the required level
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of resource brokerage. This pervasive domain needs to split down further in
more self contained and adaptable sub domains. Most of the existing Grid
enabled systems try to address resource brokerage, job scheduling, and moni-
toring under the same integrated scenario. It works, but it’s not scalable and
adaptable. Also, this is un-compromising because negotiation is not possible.
The resource broker in the Globus system is missing because Globus is more
centered around operating environment.

A few Grid systems like Condor [128], Legion [119], GridLab [151], Euro-
pean Data Grid [147], Nimrod-G [25] and Maui [97] support resource man-
agement as a middleware functionary but the automatic brokerage is not a
well divulged and concretely available functionality. Furthermore, none of the
systems address resource management as self-contained module of the Grid
middleware, in which distributed resource brokerage is supported as a super-
peer model-based service-oriented infrastructure.

The resource selection problem occurs in many contexts with a vari-
ety of approaches for solution. Information systems such as SNMP [163],
LDAP [103], MDS [39], UDDI [126] provide a mechanism for publishing, ag-
gregating, and matching resources against client requirements. Such systems
differ in various dimensions, such as supported syntax for describing resources
and querying for the resources (e.g., SNMP MIBs, LDAP objects etc. Query
languages such as SQL, Xquery [192], LDAP query [103]), and the techniques
for publishing and aggregating resource descriptions. Among these, MDS and
UDDI helps in brokering resources based on user constraints, however, plan-
ning for fair or optimal selection of resources is not addressed. Furthermore,
querying mechanism supported by LDAP does not allow to specify complex
constraints like freeCPUs >= 0.

Condor [128] is a resource provisioner that supports high throughput com-
puting (HTC) on large collections of distributively owned computing re-
sources. It provides a matchmaker [91] that supports a symmetric description
mechanism in which both requests and resources are described using the same
language called ClassAds. A ClassAd can contain properties of a request or
resource, and requirements that must be satisfied by a matching ClassAd,
expressed as a boolean requirements statement. Selected resources are ranked
according to a rank statement. Two ClassAds match if the requirements ex-
pression of each evaluates to true.

UNICORE [70] (Uniform Interface to Computing Resources) claims a
ready-to-run Grid system that seamlessly makes distributed computing and
data resources available in intranets and the Internet. The UNICORE resource
broker is developed as an extension of EUROGRID [59] resource broker as part
of Grid Reosurce Interoperability Project (GRIP). It is more centered around
jobs instead of resources: it works with both Globus MDS and UNICORE IDB
information services and performs resource matching with job descriptions. It
also performs interoperability between Globus and UNICORE services. How-
ever, Globus MDS does not publish software resources whereas UNICORE
does not publish dynamic information.
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KOALA [117] is a Grid scheduler that supports co-allocation. It has been
designed, implemented, and deployed by the Technical University Delft. It
accepts job requests and uses a placement algorithm to try to place jobs.
The placement algorithms selects a Grid node or a cluster depending on the
vicinity of job’s input data. KOALA is developed based on Globus operating
environment and it ignores the issue of fair load distribution.

Some researcher are working on polices-base VO-wide resource allocation
and reservation. The work described [176], introduces a framework for pol-
icy based allocation as a part of SPHINX that is a fault-tolerant system for
scheduling in dynamic Grid. The allocation strategy in the framework adjusts
resource usage accounts or request priorities for efficient resource usage man-
agement. Similarly, in [53] authors propose a usage policy-based allocation
in VOs and evaluate both aggregate resource utilization and aggregate re-
sponse time. The usage polices involved are fixed limit, extensible-limit, and
commitment-limit, in which the limit is referred to as a fraction of the re-
sources in a node shared to a VO. This is part of GRUBER that is a proposed
usage resource broker [89].

The work presented in [101] is about fair resource sharing in hierarchi-
cal VOs. It proposed framework that uses a cooperative resource broker for
VO-wide resource allocation. Each VO has a resource broker for VO users
and resource providers. It gathers resource sharing information from VOs in
a hierarchy and performs resource allocation based on gathered sharing in-
formation. A task can be distributed among several resources depending on
their current load.

Elmroth et. al. has described in [56] a decentralized Grid-wide fair al-
location system, where each local scheduler enforces Grid-wide hierarchical
sharing policies using global resource usage data. The policy engine generates
a fairshare factor for a job to support the Grid-wide share policy.

The work in [106, 107, 140] addresses resource matching problem that fo-
cuses on finding optimal resources for a single job with resource co-selection
requirements. In contrast, instead of considering only job or client’s perspec-
tive, the GridARM considers multiple allocations to archive optimal resource
selection according to proportional share of the resources.

The work in [107] introduces a description language that improved ex-
pressiveness as compared with condor ClassAd. According to this approach
resource selection is reinterpreted as a constraint satisfaction problem that
exploits constraint-solving technologies to implement matching operations.
However, the work focus only on client perspective and tries to improve only
the client utility.

Ontology based resource matching proposed in [170] simplifies resource
matching. In contrast to the symmetric resource matching as done by the
Condor, ontological resource matching allows both resource requester and
provider to specify resources and requests independently. These asymmetric
description of resources leads to better expressiveness. However, there is no
concrete semantic-based system.
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In contrast, GridARM works to improve resource utility without compro-
mising over the clients utility. The GridARM resource brokerage and selection
mechanisms not only support resource matching but it moves a step forward
to offer relatively better than requested resources. It makes planning by fair
distribution of load among participating resources without compromising over
the quality of service required by the clients.

The Open Grid Forum (OGF) is actively working on devising new stan-
dards in different areas of resource management. The GridARM system
adopts OGF standards with minor modifications.

3.7 Summary

Unleashing the power of Grid infrastructures is a complex and tedious task
without a sophisticated resource management system. The focus of this chap-
ter is to render the boundaries of Grid resource management in general and
resource selection and brokerage of physical resources in specific.

GridARM is implemented as a self-managed superpeer model-based re-
source management system distributed in a service-oriented fashion. Firstly,
this chapter gives a general overview of GridARM architecture that repre-
sents a modular and dynamically extensible resource management for the Grid
that is designed to fill the gap between the Grid job scheduler the underlying
computing fabric. Three components of GridARM are introduced: resource
manager covers selection and brokerage of physical resources or nodes, activ-
ity manager that deals with the lifecycle management of logical resources or
activities, and agreement manager focuses on provisioning of optimal resource
allocation and service-level agreement management.

Secondly, it introduces the GridARM model that performs resource dis-
covery, candidate set generation, and brokerage. The resource selection is per-
formed by making a fair load distribution according to the proportional share
of Grid nodes.

Thirdly, it describes a new superpeer model-based distributed service-
oriented infrastructure. This infrastructure is easily adaptable and scalable
as compared to hierarchical distributed infrastructures such as MDS.

Finally, experiments and evaluation are shown to demonstrate the effec-
tiveness of the GridARM, especially optimal load distribution based on the
proportional shares of Grid nodes.
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Grid Activity Registration, Deployment and
Provisioning Framework

Resource provisioning is a key concern for implementing an effective resource
management as part of the Grid runtime environment; it delivers both phys-
ical and logical resources on-demand and shields the application developers
from low level details. The previous chapter gives a general overview of the
resource management (GridARM) with a detailed description of selection and
brokerage problem of physical resources. This chapter introduces GLARE, an
integral part of GridARM, that covers logical resources, particularly Grid ac-
tivities [158] Existing Grid resource managers concentrate mostly on physical
resources. However, some advanced Grid programming environments allow
application developers to specify Grid application components (activities) at a
higher level of abstraction which then requires an effective mapping between
high level resource descriptions i.e. activity types and actual installations i.e.
activity deployments This chapter describes GLARE that provides dynamic
registration, automatic deployment and on-demand provisioning of activities
that can be used to build Grid applications. GLARE simplifies description
and representation of both activity types (abstract descriptions) and activity
deployments (concrete deployments) so that they can easily be located in the
Grid and become available on-demand. GLARE has been implemented as a
distributed registry and deployment service by following the superpeer model
of GridARM [154].

4.1 Introduction

Advances in network technologies and emergence of the Grid have provided
an infrastructure for computation and data intensive applications to run over
collections of distributed and heterogeneous computing resources. Provision
of a uniform access to these heterogeneous resources is one of the main goals
of resource management for the Grid; this includes both physical and logical
resources.

M. Siddiqui and T. Fahringer: Grid Resource Management, LNCS 5951, pp. 79–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Nevertheless, most existing resource management systems focus on phys-
ical resources and typically deal with clusters of computers, nodes, and job
submission systems. Some efforts like GrADS [35], AppLeS [19], Askalon [62]
and GridLab [151] have been made to provide automatic brokerage of physical
resources. There is still much work to be done to effectively support deploy-
ment and configuration management of software components that essentially
become part of workflow applications. Grid workflows [197] emerge as some of
the most challenging and important classes of truly distributed Grid-enabled
applications. Workflows require the composition of a set of application com-
ponents, for instance executables or Grid/web services, which execute on the
Grid in a well-defined order to accomplish a specific goal.

Most existing systems require manual or semi-manual deployment of soft-
ware components (activities) and force application developers to hardcode
into their workflows a set of software components deployed on specific nodes.
In addition, currently available Grid information services are not well adapted
to store complete description of software components, forcing the application
developers to use only (name,location)-like information about available activi-
ties of workflow applications. As a consequence these applications are difficult
to port to different Grid architectures, are sensitive towards dynamic changes
in the Grid, and often imply an avoidable failure rate during execution. Such a
manual and hardcoded approach forces an application developer to deal with
low level details of the Grid. For instance, application components (activities)
must be described along with their locations and access paths or URIs. All of
that makes application development a time consuming, non-trivial, tedious,
and error prone task.

There are some sophisticated Grid workflow programming environments
and paradigms such as Pegasus [58] and Askalon [64, 62] that allow a Grid
application developer to specify semantics of activities as part of a workflow
application. However, there is a gap between the description of the function-
ality of an activity and the actual deployed services and executables that can
provide such functionality. This gap can be eliminated or at least narrowed
down by separating the description of the functionality of an activity from
it’s deployments, and through a sophisticated mapping mechanisms that goes
beyond management of physical resources. Such an advanced management
system should support dynamic registration of activities, automatic deploy-
ment on selected target nodes, on-demand provisioning, and optionally activ-
ity leasing.

This chapter describes GLARE, a Grid-level activity registration, deploy-
ment and provisioning framework that provides dynamic registration, auto-
matic deployment and on-demand provisioning of Grid activities. GLARE is
designed and implemented as a distributed framework that stores and provi-
sions information about activities.Activities are the essential components of a
Grid workflow that may reside on different computers and execute in a well de-
fined order to accomplish a specific goal of the application. GLARE provides
distributed registries for activity types and activity deployments along with
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activity management service that perform registration, provisioning, monitor-
ing, and automatic deployment of new activities on different nodes.Note that
an activity type refers to as a functional description of an activity whereas
an activity deployment relates to executables or (Grid/web) services that can
actually be executed on a Grid node. Application developers can focus on
activity types and thus must not be aware of specific activity deployments.
GLARE simplifies the description and presentation of both activity types and
activity deployments in such a way that they can easily be located in a dis-
tributed Grid environment and thus become available on-demand.

Moreover, GLARE introduces a leasing mechanism that enables a client
(such as a scheduler) to reserve (or lease) an activity deployment for a certain
time period. This leasing of activities is part of advance reservation mech-
anism described in reservation chapter.GLARE has been designed and im-
plemented according to the underlying superpeer model [169] for GridARM
that supports self management and fault tolerance. GLARE ’s dynamic reg-
istration, automatic deployment and on-demand provisioning of activities, in
combination with GridARM ’s resource brokerage [158] and advanced reser-
vation [158, 156],provides a powerful base for a Grid workflow management
system and substantially improve the usability of the Grid while shielding its
complexities.

4.2 On-Demand Provisioning Motivation

A workflow consists of activities [64, 197]. An activity is a high level abstrac-
tion that refers to a single self contained computational task that corresponds
to an execution unit, initiated for instance by an executable program or a ser-
vice, deployed on a Grid node. This section presents rationale behind GLARE
and describes its usability in the Grid. Furthermore, it demonstrates activities
as generalized abstractions of the Grid tasks/jobs.

4.2.1 An Example Using Bare Grid

In order to illustrate the advantages of GLARE, consider an example of a
simple workflow with two activities: ImageConverter and Visualizer as shown
in Figure 4.1. Formally,

W = {I,O,A}|I = {Image.POV },O = {Image.PNG},A = {ImageConverter, V isualizer}

The input of ImageConverter is a POVray1 [133] source file containing de-
scription of a scene, that is used to generate a 3-D image file. A client who
wants to initiate ImageConverter activity on a Grid node (e.g. on a powerful
computer), needs to deploy POVray on the target node, then sends a request
to perform the image conversion, and finally transfer the resulting image to

1 POVray is a high-quality tool for creating stunning three-dimensional graphics.
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ImageConverter

      Visualizer     A Simple Workflow

A Grid Infrastructure

Image.POV

Image.PNG

Fig. 4.1. A simple workflow execution on the Grid.

run a visualizer activity on its computer to analyze the resulting image. To
simplify the understanding, lets assume that a Java version of POVray, called
JPOVray (Figure 4.2), is available as an open source in the form of an exe-
cutable and also a Web service, called WS-POVray which wraps the execution
of POVray in a web service.

The required components to deploy the JPOVray application are: (a) the
javac compiler (b) some (possibly required) libraries in the form of .jar
files, (c) the ant (Another Neat Tool) build tool and (d) the source code
of the JPOVray application itself. Once the application is (remotely) built
and deployed, we need to store the information about deployed application in
some information service: an Endpoint Reference (EPR) or URI in case the
deployed application is a Grid/web service, and the application name, path
and home in case the application is an executable.

The remote compilation2 and deployment procedure requires information
about the location of the compiler and built tool on the remote node, URL
of required libraries and JPOVray source code. Example 10 shows a step-by-
step procedure that is needed to perform the compilation, deployment and
execution of the workflow using the basic Globus services, that is GRAM [41],
MDS3 [39] and GridFTP [9] on a target Grid site:

Example 10 (Step-by-step execution of the workflow).
# Preparing environment
JAVA HOME = Query MDS for location of java on target Grid node
if java not found then

- Query MDS for the location of JDK installation file
- Transfer installation file to target Grid node
- Create user-defined JDK deployment script
- Submit installation script using GRAM

2 Notice that the compilation of Java code is for exemplar purpose, otherwise au-
thors are aware of ’Write once run everywhere’ slogan for Java.

3 Usually, only physical resources are registered in MDS, but it can be used for
logical resources like application components as well.
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JAVA HOME = user-defined location used to deploy JDK
- Update MDS with the information about the deployed JDK

endif
ANT HOME = Query MDS for location of ant on target Grid site
if ant not found then

- Do same steps to install ant as done for java and update MDS
endif
povray libs = Query MDS for libraries
# Transfer needed application data for deployment
- Transfer the required libraries
- Transfer java application (JPOVray) source code
# Prepare build scripts
- Create script to remotely build and deploy JPOVray
using the information from MDS (JAVA HOME, ANT HOME
and set CLASSPATH)
- Submit deployment script through GRAM
povray location = user-defined location on remote Grid site
- Update MDS with information about newly deployed JPOVray
application (i.e. jpovray location, libs location etc.)
# Using the deployed application
- Query MDS to find JPOVRay service location
if deployed application is Grid/web service then

- Contact the WS-POVRay service directly
elseif deployed application is an executable

- Create script to run jpovray using
java and libs location
- Submit execution script to run jpovray through GRAM

endif
# Visualization
- Retrieve result using GridFTP
- Visualize image on local station

In Example 10, it is necessary to put application-specific information of the
JDK (Java Development Kit) and Ant in some information or registry service
for (a) the deployment of the JPOVray and (b) the execution of JPOVray
itself, i.e. there is a special need to store activity-specific description, so that
the procedure can be automatized as much as possible. This becomes very
complex for several activities, which must be orchestrated and executed as a
Grid workflow [64].

The main problem is that the information stored in the information service
(like MDS) maps the name of the activity directly to its location. Therefore,
the description of the workflow cannot be done independently of a given appli-
cation deployment, which represents a major disadvantage of current systems.
A service which allows the registration, deployment and provisioning of ac-
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tivities is needed, in order to simplify the automation of service composition
and execution. The information stored in such a registry service should allow
to map (a) the description of the deployed application activity, and (b) the
access point (EPR or host:/path/to/application). We believe that such an ac-
tivity registry should work in coordination with MDS, which is well adapted
to store static information about available Grid resources (e.g. available Grid
nodes along with information types like operating system, etc.), but not well
adapted to store application-related information.

Creating an automatic deployment procedure for an application, as de-
scribed in Example 10, using basic Grid services is non-trivial and very com-
plex to achieve in practice. GLARE presents a more practical solution for this
problem.

 ImageFile  ImageFile 

     

 PNGImageFile 

     

Input OutputActivity

 Ant Java

 POVImageFile 

Imaging

POVray

JPOVray

The Grid with GLARE

WS-JPOVray jpovray.sh

Executable
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with URI

Activity Types:
A Layer Visible to

Application
Developers

Activity Deployments: A Layer Visible to GLARE 
and invisible to application Developers

Fig. 4.2. Activity type hierarchy and type to deployment mapping.

4.2.2 GLARE-Based Solution

GLARE introduces a mechanism to specify abstract (functional or semantics)
descriptions i.e. activity types as basic building blocks of an abstract workflow.
Figure 4.2 depicts JPOVray as an abstraction that is dynamically mapped to
its deployments: WS-JPOVray and jpovray. A developer uses only activity
types while composing a Grid workflow. GLARE transparently maps activity
types to matching activity deployments at runtime. This is a major advantage,
since the Grid workflow composer does not need to know how and where the
POVRay application is actually implemented (as an executable, Grid/web
service, etc.) and deployed on the Grid.
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Fig. 4.3. Example activities with type hierarchy and Deployments on different
Grid nodes.

Figure 4.3 shows a complete overview of the different activities that are needed
to deploy and execute the sample workflow shown in Figure 4.1. In addition
to hierarchies of activity types, the dependencies between components are also
shown. GLARE handles these dependencies as well.

In order to provide dynamic registration, automatic deployment and on-
demand provision of new activities, GLARE presents a distributed and fault
tolerant infrastructure.It consists of distributed services which perform dy-
namic registration and automatic deployment of new activities. Each Grid
node has a local GLARE service instance. The service provider describes the
activity types to be registered with GLARE. The detailed information descrip-
tion that has to be provided is described in Section 4.3. Example 11 shows
registration of JPOVray activity type in GLARE. Notice that the registration
of an activity type is done only on a single Grid node, and GLARE takes care
of distribution and deployment on other nodes on-demand.

Example 11 (Registration of JPOVray type).
JPOVray.xml = Define JPOVray activity type in a xml template file
if Template does not exist then

- Transfer template xml from local GLARE service
- Modify template xml

endif
- Register JPOVray in the local GLARE service

The workflow shown in Figure 4.1 can be composed of using activity types
stored in the GLARE registry. The workflow description only specifies that
a user needs an activity that can produce an image using a POVray scene
description source file as input. The workflow description can then be submit-
ted to the scheduler. The scheduler interacts with a local GLARE service and
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Fig. 4.4. A simple workflow execution by a scheduler with help of GLARE.

requests for an activity deployment capable to provide the requested activity,
that is ImageConverter.

Example 12 shows steps involved in executing the workflow with GLARE.
A client (scheduler) specifies activity type (any one in the type hierarchy) and
GLARE returns a list of deployment references. Figure 4.4 demonstrates regis-
tration of JPOVray activity type on one Grid node by a provider and discovery
of JPOVray deployments by the scheduler from an other node. Both activ-
ity provider and scheduler only need to interact with their local or frontend
nodes.

Example 12 (Execution of workflow using GLARE).
Result = Get ImageConversion deployments using local GLARE
if Result is empty then

- Deploy and register ImageConversion automatically on a node
Result = Get newly installed deployments using local GLARE

endif
Deployment = Select a Deployment from the Result
if Deployment is a Grid/web service then

- Contact the service(WS-JPOVRay) directly
elseif Deployment is an executable

- Instantiate JPOVray using jpovray executable as GRAM job
endif
# Visualization
- Retrieve result using GridFTP
- Visualize image on local station
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On a discovery-request by the scheduler, the local GLARE (e.g. at Grid node
2 shown in Figure 4.3) internally advances with following steps:

1. It looks up ImageConverter in the distributed GLARE registry
and finds (after an iterative look-up) JPOVray, a specialized ac-
tivity of the required type, but without any deployment anywhere
in the Grid.

2. It analyzes the JPOVray type and found that (a) JPOVray can be
installed on node 3 (b) JPOVray depends on activities Java and
Ant and (c) both Java and Ant are not available on node 3.

3. It discovers Java and Ant activity types which are (a) suitable for
target node and (b) has a build-file for automatic deployment.

4. If build-file exists, it invokes deployment service on the target node
and sends the build-file to it. Deployment handler performs all
steps described in the build-file automatically. Otherwise, it trans-
fers installation files and required libraries on the target site using
GridFTP.

5. It automatically connects to the target Grid node (as described
in Section 4.4.1) to build and install both Java and Ant activities
by automatizing the interactive installation procedure.

6. It identifies deployments (e.g. java, javac and ant) associated with
newly deployed activities and registers them in the deployment
registry along with information including executable name, path,
home and type etc. The templates for deployment descriptions are
provided in an activity type description by the activity provider, or
automatically generated by GLARE service (e.g. by examining the
bin sub directory of the deployed activity home for executables).

7. Finally, it transfers JPOVray installation file on to the target node
and deploys it automatically. Furthermore, it concretizes JPOVray
deployments (i.e. jpovray and WS-JPOVray), registers them in the
deployment registry and returns their references to the client i.e.
scheduler.

In this way, GLARE performs dynamic registration of new types and deploy-
ments, automatic installation and on-demand provision. The activity deploy-
ments jpovray and WS-JPOVray both provide same functionality but belong
to different categories, one is an executable whereas the other is a web service.
It is also possible that both deployments of the same type belong to different
nodes and provide varying degree of QoS. Clients can select one of them suit-
able to their needs. GLARE hides deployments and the installation process
of all activities thus shields the Grid complexities from its clients.
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4.3 System Model

GLARE allows activity providers to describe activities in the form of activity
types ⊆ Eand activity deployments ⊆ D. Activity types are organized in a
hierarchy of generalized types and specialized types.

A generalized activity type at
′ ∈ E is an activity type which has no directly

associated activity deployments whereas a specialized type at ∈ E may have
multiple activity deployments and it might be an extension of a generalized
activity type. For each activity type ati ∈ E there is a set Di ⊆ D of ac-
tivity deployments. If ati extends a generalized activity type at

′
i ∈ E then

Di ⊆ D̄i ⊆ D. Furthermore, Di =
∑

g∈G Dg
i , where Dg

i is a set of activity
deployments of ati which are deployed on the node g ∈ G.

A generalized activity type at
′ ∈ E may be used to represent an application

that is extended by types of application activities. Nevertheless, an activity
type may extend multiple generalized types and thus may belong to multiple
applications. An activity deployment may have multiple instances.
Definition 30. A running process of an activity deployment ad ∈ D on a
certain node g ∈ G is referred to as deployment instance.
As shown in Figure 4.2, ’Imaging’ and ’POVray’ are generalized types which
perform image processing and define functionality (render and export) with
possible input ∈ I and output ∈ O arguments. ’JPOVray’ is a specialized
activity type that extends POVray and Imaging and thus inherits functional
description of base types. WS-JPOVray ∈ D and jpovray ∈ D shown in Fig-
ure 4.2 are deployments of JPOVray which are installed on two different nodes.
Activity instances are not shown in Figure 4.2. They are specific to a given
execution of the Grid application and typically handled by the enactor [51].

Activities are registered in GLARE as activity types by activity providers.
They are first installed on a set of nodes ∈ G and then registered in GLARE
as activity deployments∈ D. This process of installation and registration of
activity deployments is done automatically on-demand (Section 4.4). If a type
is a generalized type at

′
i ∈ E , then multiple deployments Dg

i ⊆ D can be
installed and registered collectively on a node g ∈ G. The address ref(adi) of
each activity deployment adi ∈ Di is associated with activity type ati ∈ E and

∀adi ∈ Di∃ati ∈ E
For an activity ai ∈ A there is a set Ad

i = {ad
i,1, ..., a

d
i,ni

} of activities ∈ A on
which ai depends, ni may be different for different ai ∈ A. These dependencies
need to be resolved, that means each activity aj ∈ Ad

i must be installed on
a node g ∈ G in order to install ai on the same node. Figure 4.3 shows
dependencies of activities that are needed for the sample workflow shown in
Figure 4.1. As depicted,

Ad
JPOV ray = {Ant, Java}, and DJPOV ray = {jpovray,WS JPOV ray}

where jpovray ∈ D is an executable andWS JPOV ray ∈ D is as web service.
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A workflow developer uses only activity types while composing a workflow.
GLARE hides deployments before the runtime phase and transparently maps
workflow activity types to activity deployments at runtime. This is depicted in
Figure 4.4 where the registration of JPOVray activity is done on node A ∈ G
by a provider and discovery of its deployments by the scheduler is done from
node C ∈ G.

Algorithm 4 The Concretization Algorithm.
synthesize()
Input: B, q // A set of candidates B ∈ G and a resource requests q ∈ Q
Output: Ba // A set of concretized candidates
G := The Grid

a := A requested activity a in q

for all b ∈ B do
Da := getDeployments(b, a);
if D == � then

D := deploy(b, a) // perform automatic deployment of a on b

Da := getDeployments(b, a);
end if
consolidate activity deployments info Da with b

Ba := Ba + {b}
end for
return Ba// return concretized candidates
.
getDeployments()
Input: g, a // A Grid node g ∈ G and an activity a ∈ A
Output: Dg

a // A set of deployments Dg
a of type ata for node g

Dg
a := �;

if a �= � ∧ g �= � then
ata := Activity type of a

Dg
a := All registered deployments of type ata for g

else
if a �= � then

Dg
a := All registered deployments for g of any type ∈ E

else
ata := Activity type of a

Dg
a := All registered deployments of type ata for any node ∈ G

end if
end if
if Dg

a = � then
Dg

a := Contact superpeer to lookup alternative deployments

cache Dg
a

end if
return Dg

a // available deployments
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Algorithm 5 The Deploy Algorithm.
deploy()
Input: g, a // A Grid node g ∈ G and an activity a ∈ A
Ed
a := dependancies(a) // all dependancies of a

for all ai ∈ Ed
a do

deploy(g, ai)
end for
at := Get specialized activity type of activity a from activity type

registry

build file := Download build-file of at;
steps := Get ordered list of steps defined in build-file ;
for all step ∈ steps do

execute step;
end for
Dnew := Generate activity deployment descriptions

Register generated deployment descriptions Dnew in activity

deployment registery

The architecture of GLARE is depicted in Figure 4.5. It consists of four com-
ponents: activity manager, deployment manager, activity type registry and
activity deployment registry. All components are stateful web services imple-
mented based on Globus Toolkit 4. Activity types and activity deployments
are maintained in separate registries. Each occurrence of an activity type and
activity deployment in a registry is represented as a WS-Resource.

Definition 31. A WS-Resource [191] wr ∈ A is a stateful web service that
implements a standard set of operations to access and/or manipulate its state
in a service-oriented fashion. A special implied resource pattern [94] is used to
describe a specific kind of relationship between a Web service and one or more
stateful resources. WS-Addressing [184] standardizes the relationship with an
endpoint reference construct.

4.3.1 Activity Manager

The activity manager is a frontend service that represents a superpeer group.
It organizes and manages activity types ∈ E and activity deployments ∈ D
in separate registries and coordinates with multiple deployment managers .
It complements GridARM selection and brokerage of physical resources and
synthesizes them with logical resources by selecting required activities ∈ A
and associating with generated list of candidates B.

Definition 32. The synthesis is a process of provisioning a set Di ∈ D of
activity deployments of type ati ∈ E required for a candidate bi ∈ Bi generates
by csg (Candidate Set Generator) according to a request qi ∈ Q. If Di ∈ D is
a set of deployments of type ati ∈ E then the synthesize function κ : Di �→ B
maps a set Db

i ⊆ Di to b ∈ B.
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Fig. 4.5. GLARE system Architecture.

The pseudo code of the synthesis is given in Algorithm 4. According to this
function, first deployments for a specific activity on a certain node are discov-
ered assuming the requested activity has already been deployed. Otherwise,
the deploy function is called in order to perform automatic installation of
the activity requested for a certain node. The deploy function, shown in Algo-
rithm 5, is explained in Section 4.4.1. Ideally, the synthesis should be called by
csg (Candidate Set Generator) function (To be explained in previous chapter).
Nevertheless, it can be invoked directly to look-up deployments by activity
type or by node and activities can be deployed as well.

The activity manager, also refers to as GLARE service needs to be de-
ployed only on a superpeer node. It receives and handles requests both from
clients in the form of queries and from activity providers in the form of reg-
istration and updates. Furthermore, it performs monitoring of registered ac-
tivities on other nodes. The synthesize algorithm is explained in Example 13.

Example 13 (POVray activity: from registration to on-demand provisioning).
In order to understand synthesize algorithm we proceed with a simple exam-
ple of POVray activity. Lets have a set of Grid nodes

G = {A,B,C,D,E, F,G,H,K}

distributed in two superpeer groups and a set of activities A = {POV ray}.
The abstract description of POVray is registered in node C ∈ G by its provider
as shown in step 1a of Figure 4.6. This step is followed by step 1b where
GLARE propagates POVray abstract description to node A ∈ G working as
superpeer node. With this state of the Grid, a set of candidates B = {E,K} ⊂
G is generated by csg on request. One of the constraints of the requester is
that activity POVray must be available on selected nodes. This is ensured by
the following steps:
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Fig. 4.6. POVray activity: from registration to on-demand provisioning

1. A request is fulfilled by csg that generates a set of candidates B =
{E,K} ⊂ G by filtering out unwanted nodes and forwarding B to the
synthesizer.

2. Synthesizer further filters out and concretizes the candidates with required
set of activities i.e. {POV ray}. It fetches POVray deployments for can-
didates ∈ B as shown in steps 2a and 3a of Figure 4.6 and drops out
candidates for which it could not find required activity deployments.

3. On request for POVray deployments, the GLARE service instances of
node A and B discovers POVray deployments for candidate E and K
respectively. If POVray is already deployed then its deployments are re-
turned back. Otherwise GLARE service contacts deployment manager of
each candidate ∈ B and initiates automatic installation on target candi-
date. This is depicted in steps 2b and 3b for candidate E and K respec-
tively.

4. The deployment manager of each candidate downloads POVray type.
Then it fetches most specialized POVray type, its build-file (Section 4.4)
and all dependencies. Using POVray build-file it installs POVray along
with its dependencies on the local node i.e. E and K and returns back
POVray deployments. This is depicted in steps 1c and 3d.

5. If superpeer node could not find activity type then it contacts another
superpeer node for required activity type i.e. POVray. This is depicted
in step 3c where superpeer B ∈ G contacts A ∈ G for registered POVray
activity type.

6. Once POVray deployments are discovered or installed they are returned
back to synthesizer. Finally, synthesizer consolidates deployment and can-
didate descriptions and returns consolidated set of candidates as depicted
in final step 3e.
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4.3.2 Deployment Manager

The deployment manager deals with lifecycle management of activity deploy-
ments. It performs on-demand installation of new activities on a single or
multiple nodes automatically as well as concurrently. It provides an interface
to deploy, undeploy, register and unregister deployments by their association
either with an activity type or a node. The activity manager is the main client
of deployment manager. The deployment manager is an optional service that
needs to be deployed on each node on which automatic deployment of ac-
tivities is required. Nevertheless, in the absence of this service on a node, a
remote deployment procedure can be initiated automatically by a deployment
manager of the superpeer node. Otherwise, the automatic deployment is not
possible on that node and a provider has to do it manually. The deployment
entries still can be registered and unregistered by the activity manager. During
the deployment process, all the dependencies of the activity to be deployed
are resolved recursively. This is presented in Algorithm 5 and explained in
Example 13.

4.3.3 Activity Type Registry

Activity type registry maintains a set of named activity types in the form of
WS-Resources organized in a hierarchy. It presents a more generalized activity
type as root type and uses it in discovering specialized types. Specialized types
are installed on nodes in the Grid and may have associated activity deploy-
ments and/or a reference to a special kind of build-file that describes a series
of steps needed for automatic deployment on a Grid node.

Activity types are described in terms of base types, domains, functions/op-
erations, input/output arguments, installation procedure and constraints, and
dependencies upon other activities. Also, types keep track of available de-
ployments across the Grid distributed in a superpeer group. activity types are
used to discover activity deployments. Similar to activity manager, registries
are also required to be deployed on a superpeer node.

4.3.4 Activity Deployment Registry

The activity deployment registry complements type registry and maintains
activity deployments as WS-Resources. An activity deployment refers to an
executable or a web/Grid service and provides information required for the
selection and instantiation of a deployed (installed) activity. The Endpoint
Reference (EPR) of each activity deployment resource is registered in its ac-
tivity type resource presented in the type registry. Each deployment entry as
a WS-resource can be persistent as well as non-persistent. A persistent entry
remains available after its deployment whereas a non-persistent deployment
entry disappears after a configurable time interval.
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Both activity type and deployment registries are part of a distributed
framework. They can access all entries registered on different nodes enabled
with GLARE services distributed across the Grid.

4.4 Implementation

Installation and deployment of scientific applications (a set of activities) on
different nodes in the Grid is a time consuming and labour intensive task.
The GLARE automatizes this process. It provides a mechanism in which an
activity provider can register new activity types along with an installation
procedure described in an associated build-file. An example build-file with
a series of required steps for POVray installation is given in Example 14.
A new activity type registered with one node can be discovered by other
nodes in a superpeer group and installed on-demand (automatically) based
on constraints specified in the type description. Furthermore, simultaneous
installation can be performed on multiple Grid nodes, with least involvement
of sysadmins.

Example 14 (JPOVray build-file with steps for automatic deployment).

1 <Build baseDir=”$DEPLOYMENT DIR” xmlns=http : // bu i ld . g l a r e . aska lon . org ”
2 de fau l tTask=”Deploy” name=”jpovray”>
3 <Step name=”Init” task=”mkdir −p” baseDir=”$DEPLOYMENT DIR”>
4 <Env name=”ACTIVITY HOME” value=”jpovray”/>
5 <Env name=”ACTIVITY TARBALL” value=”$ACTIVITY HOME. tgz”/>
6 <Env name=”SRC URL” value=”http : // dps . uibk . ac . at / g l a r e ”/>
7 <Env name=”ACTIVITY HOME PATH”
8 value=”$DEPLOYMENT DIR/$ACTIVITY HOME/”/>
9 <Env name=”BIN DIR” value=”$ACTIVITY HOME PATH/bin/”/>

10 <Property name=”argument” va lue=”$DEPLOYMENT DIR”/>
11 </Step>
12 <Step name =”Download” depends=”Init”
13 task =”$GLOBUS LOCATION/bin/ globus−ur l−copy”
14 baseDir =”$DEPLOYMENT DIR” timeout=”80”>
15 <Property name=”source ” va lue=”$SRC URL/$ACTIVITY TARBALL”/>
16 <Property name=”d e s t i n a t i o n”
17 va lue=” f i l e :///$DEPLOYMENT DIR/$ACTIVITY TARBALL”/>
18 <Property name=”md5sum” value=””/>
19 </Step>
20 <Step name=”Expand” depends=”Download” task=”ta r x f z ”
21 baseDir=”$DEPLOYMENT DIR” timeout=”30”>
22 <Property name=”argument” va lue=”$ACTIVITY TARBALL”/>
23 </Step>
24 <Step name=”Build” depends=”Expand” task=”make”
25 baseDir=”$ACTIVITY HOME PATH” timeout=”180”/>
26 <Step name=”Deploy” depends=”Build” task=”make deploy”
27 <Dialog expect=” I n s t a l l as root or normal use r (R/U) ? : ” send=”U”/>
28 </Step>
29 <Step name=”Clean” task=”make c l ean ” baseDir=”$ACTIVITY HOME”/>
30 <Step name=”Undeploy” depends=”Clean”/>
31 </Build>

��
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4.4.1 Automatic Deployment Using Expect

Currently, installation with autoconf (configure, make, make install)
and auto build using ant is supported. The build-file should be either in-
cluded in activity type description or accessible with GridFTP . Similarly,
source URLs must be accessible with GridFTP for transfers to the target
Grid node. An activity provider can specify different constraints which must
be fulfilled before the installation, for example, pre-requisite platform and
operating system etc. An activity can be restricted to a certain number of
nodes or can be revoked temporarily. An activity provider can use default en-
vironment variables DEPLOYMENT DIR, USER HOME, GLOBUS SCRATCH DIR and
GLOBUS LOCATION in the build-file, and deployment manager substitutes their
values dynamically at runtime. These environment variables are normally set
by sysadmins of the node.

After successful installation, the activity type is marked as deployed and
specified executables or services are registered in the deployment registry in
the form of activity deployments as WS-Resources. The templates for deploy-
ments entries are provided in the activity type description by the activity
provider, or deployment manager automatically generates, for instance by ex-
amining the bin sub directory of the deployed activity home. In case of failure,
or installation mode=manual deployment manager can notify administrator
of the target node by email referring to the website of the activity or contact of
its provider. Making automatic deployment at registration time eliminates the
overhead of manual or on-demand deployment. This leads towards concurrent
installation on all nodes in the Grid. However, in order to control unwanted
installations on different nodes, only constraint-based or on-demand deploy-
ment can be supported. A smart scheduler can reduce overhead of on-demand
deployment by providing intelligent look-ahead scheduling.

Expect-Based Installation

The deployment manager provides a backend deployment handler that per-
forms interactive installation on a node programmatically that otherwise is
not possible with batch jobs.

The deployment handler is an Expect [60] based virtual terminal that
is used to automatically interact with operating systems of different
Grid nodes and perform interactive process of installation on a tar-
get node. Expect is a method of programmatically automatizing in-
teractive applications/tools such as telnet, ftp, password, ssh,
glogin etc.

The GLARE uses local shells (e.g. tcsh) or remote shell such as ssh/glogin4

[84] to login on a node securely with the expect mechanism. Alternative imple-
4 Glogin is a secure shell that uses standard Globus GRAM and GSI mechanism,

i.e. the users can use their proxy certificates to log into a remote Grid node,
without any additional server running (as gsissh).
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mentations of deployment handler with different mechanisms is possible. For
instance, as an alternative to glogin, the deployment handler can use GRAM
on target node and issues commands in the form of GRAM jobs. By default
local shell is used by the deployment handler running on a node.

The deployment handler exploits Expect for interactive installation. For
instance, the installation of POVray requires human interaction and prompts
for license acceptance, user type and install path, and activity provider spec-
ifies this interaction dialog in build-file in the form of send/expect patterns as
shown in Example 15 as a Dialog element.

4.4.2 Static and Dynamic Registration

As stated earlier, an activity or a set of activities in the form of an applica-
tion is to be registered by an activity/application provider. This can be done
by interacting with the local activity manager either by using a graphical
console application or a command-line tool. The graphical console provides
a user-friendly interface whereas the command line tool needs a Grid Work-
flow Deployment Descriptor (GWDD) for registration of an application along
with its activities. A sample GWDD for registration of POVray application is
shown in Example 15. It specifies minimum required attributes for JPOVray
application and its associated activities i.e. converter and renderer. Further-
more, executables, usage, in/out ports are defined for each activity. These
information has been described by the JPOVray provider. Figure 4.7 shows
the GLARE console application that provides a ’single-click’ functionality to
register, unregister, deploy and undeploy an application.

Example 15 (JPOVray build-file with steps for automatic deployment).

1

2 # Grid Workflow application deployment d e s c r i p t o r

3 # Fr i Jun 22 09 : 40 : 40 CET 2007

4 application = JPOVray

5 JPOVray . type = jpovray

6 JPOVray . domain = Imaging

7 JPOVray . environment = gt2

8 DELIM = AND

9

10 JPOVray . bui ldFi leURL = http :// dps . uibk . ac . at / g l a r e / jpovray . bu i ld

11 JPOVray . act iv i t ies = Converter Render

12

13 Converter . executab l e = convert . sh

14 Converter . usage = [ binDir ] [ outFileName ]

15 Converter . inports = \
16 f r ameTarba l l s frames . tar agwl : c o l l e c t i o n AND \
17 outFileName frames . png xs : s t r i n g

18 Converter . outports=outF i l e [ outFileName ] agwl : f i l e

19
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20 Render . executab l e=render . sh

21 Render . usage=[ binDir ] jpovray . i n i jpovray . pov jpovray . arg \
22 [ startFrame ] [ numFrames ] [ totalFrames ]

23 Render . inports=i n i F i l e jpovray . i n i agwl : f i l e AND \
24 povFi l e jpovray . pov agwl : f i l e AND \
25 a r gF i l e jpovray . arg agwl : f i l e AND \
26 startFrame 1 xs : i n t e g e r AND \
27 numFrames 25 xs : i n t e g e r AND \
28 totalFrames 250 xs : i n t e g e r

29 Render . outports=frameTarbal l frames [ startFrame ] . tgz agwl : f i l e

30

31 JPOVray . acces sPaths=

32 karwendel . dps . uibk . ac . at : / var /deployments/ jpovray AND \
33 a l t i x 1 . jku . au s t r i ang r i d . at : / var / agr idx/deployments/ jpovray

��

In contrast to activity type registration, activity deployments can be regis-
tered manually as well as automatically and on-demand. After successful de-
ployment of an activity on a node by a deployment manager, the possible
deployment entries associated with the installed activity are automatically
generated and registered with the deployment registry. The deployment reg-
istry must be available either on the same node or on the superpeer node. The
corresponding type registry is notified for newly registered deployments. The
type registry is responsible for preserving and discovering a matching activity
type. In case of failure in discovering a matching activity type, the deploy-
ment registry requests type registry for dynamic registration of types of newly
registered deployments.

A new activity type registered statically or dynamically with one node
can be discovered automatically by other nodes. A resource discovered from
a remote registry is optionally cached.

4.4.3 On-Demand Provisioning

Activity type and deployment registries provide an aggregation of all locally
registered and cached resources, based on a WSRF [191] service-group frame-
work, in which aggregated resources are periodically refreshed. This enables
the service to discover resources (activity types or deployments) by using stan-
dard XPath-based querying mechanism. In order to answer queries for named
resources efficiently the registry services use hash tables to access named re-
sources. This eliminates XPath-based search requirements for named resources
and significantly improves the performance.

Caching and Cache Monitoring

To ensure an efficient on-demand provision, the GLARE supports a two-level
cache; cache at normal Grid node and cache at superpeer node, and provides a
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Fig. 4.7. A snapshot of GLARE console.

mechanism to refresh cache of updated resources. The cache of activity types
and activity deployments is maintained in their registries (Figure 4.5) and
a Cache Refresher component, as part of activity manager, updates cached
resources if and when they change on the source node. Outdated resources
are discarded automatically.

A deployment status monitor, another component of activity manager, pe-
riodically checks status of locally registered activity deployments and updates
their entries (WS-Resources) and endpoint references registered with their
activity types. The deployment Endpoint Reference (EPR) may contains an
additional attribute Last Update Time (LUT) that can be used by the cache
refresher.

The deployment status monitor can register in local WS-GRAM service to
get the latest metrics associated with deployment instances (Definition 30).
For example, attributes like last execution time, return code, last invocation
time etc. can be useful in better scheduling and in an agreement enforcement
process that is described in next chapter.
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Deployment Leasing

The activity manager provides a capability to lease an activity (deployment)
with the help of GridARM Reservation mechanism. A fine-grained reservation
of a specific activity deployment, instead of the entire node, can be possible.
A user with valid reservation ticket is authorized to instantiate the reserved
activity. A lease can be exclusive or shared. In case of an exclusive lease no one
else is allowed to use the activity during the leased timeframe. In case of shared
lease, multiple clients can use the leased activity but GridARM reservation
service ensures that the number of concurrent clients does not exceed the
allowed limits and the required QoS is ensured. A detailed description of
GridARM reservation service is given in next chapter.

Local Access

The distributed GLARE ensures that clients of different Grid nodes have the
same view of the entire superpeer group. An activity is discovered and pro-
visioned by a local Grid node independent from the location of its associated
deployments. This is in contrast to the hierarchical model of MDS, in which
a client has to contact root or the community index in order to get the en-
tire view of all nodes [39]. This enables clients (end-users) to interact only
with their local nodes and get all distributed activity types and deployments.
Clients don’t have to consider or remember a centralized service and its access
mechanism.

4.4.4 Self-Management and Fault Tolerance

The GLARE framework is self-managed and fault tolerant. It is developed
based on superpeer model that uses Globus Toolkit 4 (GT4) built-in hierar-
chical aggregation and indexing mechanism to discover Grid nodes and form
superpeer groups [158]. If some nodes or services fail, the rest of the system
continues functioning. A superpeer failure leads to the re-election of a new
superpeer. The GLARE system is designed as a set of WSRF services dis-
tributed in the Grid with platform-independent interaction mechanism. This
makes it acceptable for both Grid and web services technologies. The open-
ness of underlying infrastructure and superpeer model based design makes
GLARE a scalable middleware that shields application developers from the
Grid. Furthermore, automatic superpeer election and activity installations
upgrade GLARE system to become self managed and fault tolerant.

The following section shows experiments which demonstrate the effective-
ness of the GLARE.
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4.5 Experiments and Evaluation

The GLARE has been implemented based on GT4 and integrated in Askalon
Grid environment [61] and deployed on different nodes in the Austrian Grid
infrastructure [33].

The Austrian Grid is a national computing Grid infrastructure distributed
across several cities and institutions across Austria. The infrastructure is com-
posed of more than ten Grid sites that aggregate over 200 processors. Each
local Grid site system administrator independently installed his favorite local
job manager and the Globus toolkit (GT2 or GT4) for integration within the
Austrian Grid.

The on-demand deployment of new activities is evaluated with calibra-
tion of the deployment overhead of real world scientific applications. For this
purpose three applications are selected;

1. Wien2k [21] (pre-compiled) which performs electronic structure calcula-
tion of solids based on density functional theory.

2. Invmod , a hydrological application for river modeling which has been de-
signed for inverse modelling calibration of the WaSiM-ETH program [99],

3. and counter service, a sample GT4 service that represents GT4 features
and used here to demonstrate the deployment of a Grid service.

Table 4.1 illustrates time spent in different operations and components of the
GLARE framework. On-demand deployment is performed in two alternative
ways; with JavaCoG (using GRAM and GridFTP) and with Expect by pro-
grammatically acquiring local system shell and automatizing the installation
process. The communication and deployment overhead depends on the size
of installation files and compilation respectively. As shown in the Table 4.1,
the registration of a new activity type and its deployments and notification
to the node administrator imply reasonable costs. Downloads take some time
but significant time is spent in compilation and installation. Also, Expect is
more efficient than Java CoG. The overall scheduler overhead shown in the
Table, can be eliminated by employing automatic deployment, or reduced by
providing a schedule-ahead mechanism by a scheduler.

The efficiency, performance and scalability of GLARE is tested by de-
ploying it on up to 7 Austrian Grid nodes. We have compared an integral
component of the GLARE framework, that is, activity type registry with the
GT4 Index Service (WS-MDS) by registering multiple activity types as WS-
Resources in both services. The experiments are performed with and without
transport level security enabled (i.e. with http and https). Note that, although
index service is normally used for physical resources but the underlying ag-
gregation framework (WSRF-based GT4 aggregation framework) is same for
both GT4 Index service and GLARE registries. Therefore it is logical to make
this comparison.

Figure 4.8 shows performance of both services with and without security
enabled. Throughput decreases almost by 50% for both services with trans-
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Table 4.1. Time spent (in ms) by different operations.

Deployment Method Operation/Overhead Wien2k Invmod Counter

Expect

Activity Type Addition 633 632 665

Communication Overhead 1,667 1,381 1,279

Activity Installation/Deployment 8,068 27,776 29,843

Activity Deployment Registration 355 350 352

Notification 345 345 345

Expect Overhead 2,100 2,100 2,100

Total overhead for meta-scheduler 11,068 30,484 32,484

Java CoG

Activity Type Addition 633 632 665

Communication Overhead 5,600 2,500 2,400

Activity Installation/Deployment 18,068 49,700 39,756

Activity Deployment Registration 355 350 352

Notification 345 345 345

JavaCoG Overhead 9,800 9,900 9,800

Total overhead for meta-scheduler 25,001 53,527 43,518
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Fig. 4.8. Comparison of Activity Type Registry and WS-MDS Index Service both
with and without transport level security. Throughput with varying number of con-
current clients.

port level security. Index Service is 50% slower than activity type registry be-
cause of its XPath-based querying mechanism and hashtable indexing. This
experiment was performed with both WS-MDS Index and activity type reg-
istry services running on the same Grid node with same number of registered
activity types, whereas clients were distributed among 7 other nodes.

Figure 4.9 shows a comparison of activity type registry with GT4 in-
dex service with a varying number of activity type resources in the registry
and index service, again with and without security. Throughput of Index
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Service decreases significantly with increasing number of resources whereas
it can be observed that throughput of an activity type registry is consis-
tent. A good performance comparison of previous versions of MDS is given
in [105, 200].

The scalability of GLARE on 1, 3 and 7 nodes is also tested, with and
without cache enabled. Figure 4.10 shows response time per request for a
list of deployments associated with an activity type. Deployment entries are
equally distributed on all nodes. It is observed that there is a significant
improvement in performance by increasing number of nodes or by enabling
caching mechanism.

Figure 4.11 shows the change in the 1-minute load average as the number
of clients (requesters) and event notification listeners (sinks) increases; the
load average is measured as the load on the Activity Type Registry during the
last minute (using Unix uptime command). The load average is therefore a
measure of the number of jobs waiting in the run queue. The highest load
average occurs when the notification rate is 1 sec. It peaks slightly above 16
corresponding to 210 sinks. Load average is proportional to the notification
rate. The load average against the number of requesters peaks just below 5,
which shows consistency.

Finally, it is observed that sometimes index service stops responding when
more than 130 activity type resources are registered in it and number of con-
current clients exceeds 10 (Figure 4.9). This is quite strange behavior and
could be a real shortcoming of the index service, which may become a bot-
tleneck when registered number of nodes increases. In contrast, the GLARE
registry services works well with a reasonable large number of registered re-
sources.
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4.6 Related Work

A number of efforts have been made within the Grid community to develop
automatic Grid resource management and brokerage solutions but very few of
them are addressing the issue of resource management covering software com-
ponents (activities) and their automatic deployment. A separation between
meaning, behavior, and implementation of the Grid application components
is described in [113]. The work in [80] matches a high-level application speci-
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fication to a combination of available components. In contrast, GLARE pro-
vides a high-level application specification in a hierarchy of activity types and
provides dynamic registration and automatic deployment of software compo-
nents.

Pegasus [58] uses Chimera [79] and Transformation Catalog [57] for trans-
forming an abstract workflow into a concrete workflow. The transformation
Catalog is used to map a logical representation of an executable (transfor-
mation) to a physical representation, which describes its functionality and
accessibility. The catalog uses MySQL as a centralized backend database.
Chimera Virtual Data System [79] describes and stores data derivation pro-
cedures and derived data in a central database. It provides a special language
interpreter that translates user requests. This system is useful for datagrid
applications, but works with a dedicated querying mechanism. Pegasus uses
Globus middleware services and automates replica selection. It does not pro-
vide automatic/on-demand deployment of software components.

GrADS [44] resource selection framework [108] addresses the discovery
and configuration of physical resources that match with application require-
ments. It provides a declarative language using set matching techniques, which
extend Condor matchmaking [128] and support both single and multiple re-
source matching. This system does not cover Grid application components. S.
Decker et al describe in [170] Grid resource matching using semantic web tech-
nologies. This work proposes physical resource matching by using ontologies,
background knowledge and rules. It highlights the need of semantic descrip-
tion of Grid resources and resource matching but does not address issues
of performance and efficiency. Both systems [44, 170] do not cover software
resources like Grid computational activities.

CrossGrid [37] provides a distributed component registry with peer-to-peer
technology. It supports inter-registry communication for maintaining table
coherency. Grimoire [96] extents UDDI [126] to provide invokable activities
such as workflows or legacy programs.

GridLab capability registry [151], CrossGrid component registry [37] and
MyGrid Grimoire [96] provide registries for static information of the Grid
applications. UDDI [126] and Handle System [69] can be used to augment
the GLARE but they have their own limitations. UDDI is a specification for
distributed web-based information registries for web services but unsuitable
for legacy scientific applications. Also it does not support dynamic updates.
Handle System supports a very basic querying mechanism. Furthermore, it
requires domain specific naming authorities to be registered in a root nam-
ing authority which is not managed efficiently. Globus MDS [39] provides a
hierarchical aggregation framework for distributed Grid resources.

The main difference between GLARE and the systems described above is
that while most of the above systems focus on discovering and brokering phys-
ical resources, GLARE framework focuses on logical resources (activities).
Furthermore, GLARE provides dynamic registration, automatic deployment
and on-demand provisioning and leasing of logical resources. The framework
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is self-managed, fault tolerant, distributed and scalable. In contrast to MDS,
GLARE provides a superpeer model based distributed framework which works
well for large scale environments. It is implemented in Globus Toolkit 4 a
state-of-the-art implementation of Web-Services Resource Framework [191].

Ka-tools [15], LCFG [13] and Quattor [134] provide auto deployment but
mostly deal with configuration of physical nodes or perform OS cloning in
a fabric. SmartFrog [1] requires specific components or wrappers to support
automatic deployment of software components.

Open Grid Forum CDDLM working group [31] is addressing issues of au-
tomatic deployment and provisioning of Grid services with security and fault
tolerance. The focus of this group is how to describe configuration of services,
deploy them on the Grid and manage their deployment lifecycle (instantiate,
initiate, start, stop, restart, etc.). The group is also standardizing APIs for
this purpose. The focus of the group is a WSRF-based Grid services whereas
GLARE targets both Grid services and legacy scientific applications.

4.7 Summary

In this chapter we have presented Grid activity management system that
complements GridARM and is referred to as GLARE. In contrast to most of
the existing resource management systems, which mainly focus on brokerage
of physical resources, GLARE focuses on logical resources. It extends resource
management to cover application components that can be part of distributed
workflow applications.

GLARE is a Grid-level application component registration, deployment
and provisioning mechanism that provides dynamic registration, automatic
deployment and on-demand provision of application components (activities)
that can be used to build Grid applications. Application components are de-
scribed as activity types and activity deployments. By separating activity types
from activity deployments, GLARE can shield the application developer from
low level complexities of the Grid operating environment. GLARE automat-
ically correlates activity types to a set of activity deployments that can then
be selected for instance by workflow composition tools to create a workflow
application for execution. Moreover, GLARE provides a mechanism in which
new activities can be registered dynamically, installed automatically and pro-
visioned and leased on-demand. We believe that this functionality is a major
step forward towards an invisible Grid from the application developer’s per-
spective.

The chapter starts with an introduction and a powerful motivating exam-
ple that describes how GLARE improves and automates lifecycle management
of activities in contrast to existing systems in which deployment of software
components is manual or semi-manual. After introduction, the chapter pro-
ceeds with activity management model that defines how abstract and concrete
descriptions of activities can be separated and correlated a runtime.
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We have examined the performance of GLARE and compared its reg-
istries with GT4 index service (WS-MDS) and found it quite encouraging.
We also exhaustively verifies the efficiency of the registration and provision-
ing mechanism with varying number of activity types, activity deployments
and concurrent clients.



5

Allocation Management with Advance
Reservation and Service-Level Agreement

A resource allocation for execution of an application in the future requires
advance reservation. The enssurance of agreed upon terms and conditions
for allocation becomes possible with the provision of service-level agreement
(SLA). Advance reservation plays a significant role in improving the provi-
sioning quality of a resource manager and predictability of behavior of Grid
resources. However, advance reservation in the Grid has been largely ignored
mainly due to under utilization concerns and lack of support for agreement
enforcement. As part of GridARM, this chapter introduces a mechanism for
advance reservation of Grid resources with new fairsharing algorithm and a
practical solution for agreement enforcement based on off-the-shelf Grid mid-
dleware technologies. Service-level agreement (SLA) provides a set of terms
and conditions that are to be agreed upon through a negotiation process. A
negotiation mechanism for allocation of Grid resources is proposed in which
a client can negotiate with the resource manager for improved compromises
between its goals and resource capabilities offered by the resource providers. A
resource management system works as negotiator for resources and resource
providers. The proposed mechanism contributes towards better capacity plan-
ning and improvement in predictability.

5.1 Introduction

In the Grid, the resource manager lacks control over the Grid resources. On
the one hand Grid resources are controlled and administered by their local
operating and management systems, whereas on the other hand Grid appli-
cations, which are the main consumers of the computing power, compete for
resources. This makes resource management a non-trivial process: it has to
make allocation of resource capabilities to contending applications with opti-
mal capacity distribution and in accordance with constraints set by resource
providers.

M. Siddiqui and T. Fahringer: Grid Resource Management, LNCS 5951, pp. 109–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



110 5 Allocation Management

One of the main tasks of a resource manager is on-demand provisioning
of Grid resources, no matter where they reside or who owns them, resources
should be available according to the required quality of service and policies of
participants (requesters and providers). A pervasive Grid with higher usabil-
ity is possible if its resource management becomes simple, smart, robust and
invisible. This is a real challenge to achieve because of the unpredictability
of distributed resources. A better control over underlying resources, without
undermining their autonomy, can be possible with the help of advance reserva-
tion (Definition 21). A possible solution in which a user can reserve resources
in order to make sure that resources will be available within the requested
period of time.

However, advance reservation in the Grid has been barely addressed due
to dynamic Grid environment, concerns about under-utilization of resources
and lack of support for agreement enforcement. Firstly, the highly dynamic
and unreliable Grid environment makes any assumptions concerning resource
availability and possibility of any agreement enforcement extremely difficult
if not impossible. Secondly, advance reservation in the Grid is considered as
a mean to waste computing power. This makes provision of a reliable alloca-
tion with advance reservation as one of the greatest challenges in the Grid.
Grid environments usually cannot guarantee that requests for future execu-
tions will be fulfilled within expected time intervals. Moreover, time-critical
applications, that is an important class of Grid workflow applications, cannot
be effectively executed without any guarantee of resource availability for an
expected execution time.

Advanced reservation of Grid resources enhances the predictability of the
makespan of Grid workflows (Definition 10) that leads towards better planning
for execution. A. S. McGough et. al. state in [115] that:

”Executing with reservations reduces the variance of the application’s
execution time if there is contention in the system. A reduced variance
results in more predictable execution time”.

In order to address these challenges, this chapter introduces advanced reser-
vation and co-allocation of Grid resources along with a mechanism to deal
with the dynamic Grid behavior, and a practical solution for agreement en-
forcement. The under-utilization concern is addressed with proper capacity
planning and is presented in Chapter 6. Capacity planning is a forward look-
ing process in which resources are allocated in such a way that overall resource
utilization is optimized. However, in the Grid, capacity planning is not pos-
sible without advance reservation of underlying resources and sophisticated
allocation algorithms.

A flexible mechanism is provided to plug-in different allocation algorithms
suitable to a provider’s policy. A set of allocation algorithms includes fairshar-
ing, optimal utilization, load balancing and capacity planning. An allocation
algorithm intends to improve Grid utility and load balancing whereas ad-
vance reservation improves availability and predictability. Predictability can
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be considered as an important criterion, because of a substantial impact on
the execution of time-constrained applications. Furthermore, a promising idea
of open reservation is introduced that deals with the dynamic Grid behavior.
An open reservation is a kind of priority provision, in which a promise is made
that is fulfilled by allocating next available resource at runtime.

A new mechanism for agreement enforcement is provided and implemented
based on the authorization framework of WSRF-compliant [191] Globus
toolkit version 4 (GT4) [10]. According to this mechanism, a chain of autho-
rization is possible by providing several policy decision points (PDP). By ex-
ploiting this functionality, we introduce a special policy decision point (PDP)
for the authorization of reserved allocations. The emergence of Askalon ap-
plication development with execution environment and sophistication in the
underlying middleware infrastructure has lead to the introduction of this so-
lution for agreement enforcement that is very important to ensure advance
reservation. Since GridARM is developed based on GT4, its extension for ad-
vance reservation can work with WS-GRAM and GT4 authorization frame-
work, and introduces the special policy decision point (PDP) for advance
reservation validation.

A client can negotiate with the GridARM allocation management for an
allocation of a single resource (i.e. Grid node) or a set of resources in order to
make a better compromise over the allocation.

5.2 Model

An advance reservation (Definition 21) is a form of priority provision by mak-
ing allocation of resources sometime in future and ensuring that an allocated
resource remains available during the reserved timeframe and terms and con-
ditions agreed upon during a negotiation process are not voilated. In the Grid,
where an application consists of multiple activities, simultaneous allocation of
a set of heterogeneous resources is possible. Such kind of allocation is called
co-allocation.

Definition 33. A co-allocation Lco ⊆ L is a set of allocations in which mul-
tiple resources are reserved for an application W = {Iw,Ow,Aw}. For each
sequential activity ∈ Aw there is an allocation as advance reservation ∈ Lco.
Parallel activities may have multiple allocations as well.

In a workflow, activities are executed in a sequential or parallel order. For
sequential activities, multiple allocations need to be done in future.

5.2.1 Agreement

An advance reservation is represented in an agreement document that is en-
coded in XML format and used in communication and updation during a
negotiation process (Definition 22). The agreement document comes in three
types: template, offer, and agreement.
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Definition 34. An agreement template agri ∈ LR is a logical resource that
is used in the negotiation process for allocation of resources and for the rep-
resentation of a contract between a requester and a provider. It consists of a
set Ti ⊆ T of terms and conditions on which participants negotiate to confirm
a contract.

The structure of an agreement document is depicted in Figure 5.1 that is
adapted in accordance with WS-Agreement [87]. It consists of:

• An agreement context that covers details of negotiators, agreement meta-
data, expiration time etc.

• A set of functional properties called service description terms that provide
information needed to instantiate or otherwise identify a service to which
this agreement pertains and to which guarantee terms apply. These are
further refined as service description, service reference and service property
terms. Example may include an activity type (Definition 2.2.1) that is
required during the agreed upon timeframe.

• A set of non-functional properties or quality of service constraints called
guarantee terms. The guarantee terms specify the service levels that is
to be agreed upon between parties. The allocation management may use
the guarantee terms to monitor the service and enforce the agreement. An
example may include minimum required number of processors or reliability
of activity specified in service description terms.

An agreement template may be transformed into an agreement offer or an
agreement during a negotiation process.

Definition 35. An agreement offer or simply an offer is an agreement doc-
ument that is proposed by the allocation manager to the requester. The offer
is to be confirmed (accept/reject) by the requester or can be used as a new
template for further negotiation.

A client may accept or reject an offer, otherwise may opt for re-negotiation.
Once an offer is accepted (by the client) it becomes a sealed agreement.

Fig. 5.1. Agreement Document Structure.
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Definition 36. An agreement agr ∈ L ⊆ LR is a document with agreed upon
terms and conditions ∈ T defined in the form of service description terms and
guarantee terms which are to be ensured by the allocator. An agreement refers
to an advance reservation in which a possibly limited or restricted delegation
of a particular resource capability is made available for a certain timeframe
possibly along with a set of additional quality of service constraints or term
and conditions ∈ T .
Some of the important attributes of an agreement document are as follows:

• Timeframe: It includes agreement start time startt(agr), end time
endt(agr) and duration as guarantee terms. The difference between start
time and end time could be greater than the specified duration(agr) in
order to present flexibility by the client for negotiation.

startt(agr) − endt(agr) ≥ duration(agr)

A smaller difference represents low flexibility and higher importance of the
requested duration.

• Agreement Type: The agreement type attribute, as part of the agreement
context, identifies a document as an agreement template, agreement offer
or an agreement. An agreement template is used as a request that initiates
a negotiation process.

• Reference: An agreement is represented as a stateful service that can be
accessible with a service endpoint reference (EPR). The reference is used
for future interactions with the system for manipulation of the agreement.
The endpoint reference consists of a URI of the agreement management
service and an identifier of the agreement resource.

ref(agr) = EndpointReference(EPR)

A reference is a part of the agreement context and is different from a service
reference that is an optional part of service description terms.

• Identifier: There are two identifiers, TemplateID and AgreementID . Once
an agreement is confirmed, an agreement identifier (AgreementID) is cre-
ated based on user credentials. The identifier must be consistent with the
ticket identifier.

• Flexibility: This is an important attribute that is part of each term and
condition and represents the level of importance of a term. This is used as
part of negotiation and alternative offer generation process.

An agreement represents an advance reservation, however, besides the time-
frame, it may include additional functional and non-functional properties ∈ T .
Once an agreement is sealed after the negotiation and accepted by the client,
the system returns an agreement ticket which is used:

• to probe agreement status and to update an instance of agreement;
• to acquire reserved resources. Nevertheless, this is optional and required

only if the owner of agreement is different from its initiator.
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Definition 37. An agreement ticket is referred to as a permit that is used
to represent and authenticate an agreement and its ownership. It consists of
agreement reference as well as agreement identifier i.e. AgreementId.

5.2.2 Agreement Lifecycle

An agreement template passes through different states during its lifecycle from
start of negotiation to the end of resource acquisition. It can be used to manage
and monitored an agreement. Figure 5.2 shows the state transition diagram
of an agreement. The transition of an agreement may include the following
states.

• Created : A template is created and the process of negotiation is started
for a compromise over a resource allocation in future. The template is
discarded after a few seconds if there is no further action. A newly created
template is used as a request for the start of negotiation.

• Offered : A created template is populated with an available timeslot along
with other terms and conditions offered by the provider to the client. In
this state, a further confirmation is required by the client, otherwise the
allocation is discarded automatically within a configurable time interval
that defaults to 40 seconds.

• Pending : An agreement offer is tentatively held by the client. The client
may get notification before its termination by the system. Notification is
done well in time (defaults to 300 seconds) so that requester can acquire
the offer or proceed for re-negotiation.

• Accepted : An agreement offer is sealed once accepted by the client. Af-
terwards, only the owner is able to claim or cancel an accepted agreement
by providing valid credentials or a valid ticket. The reservation system can
terminate a confirmed reservation in case of contract violation.

• Cancelled : This state shows that a confirmed agreement has been can-
celled actively by the client.

• Active: This state shows that the agreement start time has been reached
and now it can be claimed by its owner anytime before its termination. In
this state,

startt(agr) ≤ current time ≤ endt(agr)

• Claimed : An agreement is active and the reserved resource has been
claimed and acquired by the client. An allocation with sealed agreement
cannot be claimed if agreement is not in active state.

• Terminated : This state shows that system has forcefully terminated the
agreement. This could happen in case of a violation made by the client or
if reserved resource is not claimed well in time.

• Completed : The claimed agreement was successfully passed through its
lifecycle and resource has been utilized by the client. In this state,

endt(agr) ≤ current time
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A client can register for the event notification. Each time an agreement
changes from one state to another, a registered client receives a state change
notification. For example, a client can initiate re-negotiation with a termi-
nated state notification or submit a job to the resource with an active state
notification.
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Fig. 5.2. State transition diagram of an agreement template.

5.3 Negotiation

Negotiation (Definition 22) is an alternative offer generation process, where
one of the offer generated by allocation manager may be accepted, rejected or
converted into a new template for renegotiation by the initiator.

By default a set of appropriate offers closer to the requested timeframe
and other terms and conditions is generated on request. A default algorithm
generates at least 3 offers with reference to the requested timeframe of a
request q as follows:

1. an offer agr is generated only if possible with exactly the same timeframe
as requested, that is

agr ⇐⇒ startt(agr) = startt(q) ∧ endt(agr) = endt(q)

2. an offer agr with time slot available with the requested duration earliest
possible after the current time, that is

startt(agr) ≥ current time

3. An offer agr with time slot available with the requested duration earliest
possible after the requested timeframe, that is

startt(agr) ≥ startt(q)

4. An offer agr with time slot available with requested duration latest pos-
sible before the requested timeframe, that is

endt(agr) ≤ startt(q)
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A client selects a suitable offer and does one of the following:

• accepts selected offer
• rejects selected offer
• converts selected offer into a new template, readjust some of the constraints

and renegotiates

A possible client-side algorithm for negotiation may be similar to the one
shown by Algorithm 6.

Algorithm 6 A Pseudo Code of a Possible Client Negotiator.
client negotiate()
make an agreement template
while not accepted do
send agreement template to the allocator as a request for negotiation
offers := get agreement Offers generated by the allocator
offer := select an offer closer to the request (template)
if offer is acceptable then
accept offer
set accepted

else
convert offer into a new template
if template can not be negotiated then
break // Negotiation cannot be continued

end if
continue // for re-negotiation

end if
end while

This interaction mechanism is also useful for co-allocations, where a co-
allocator can re-adjust various attributes while considering the dependencies
between different selected resources or allocation offers.

In its simple (default) form, an allocator can generate offers with reference
to the timeframe in one of the three ways called an attentive, progressive
and share-based. The offer generation process is depicted in Algorithm 7 and
described as follows:

5.3.1 Attentive Allocation

The attentive allocation generation algorithm always offers requested slot if
available exactly as requested, otherwise it generates alternative offers accord-
ing to the available slots closer to the requested timeframe. While generating
alternative offers, it tries to keep the reserved segments as minimum as pos-
sible, by proposing alternative options which are overlapping or adjacent to
the existing reserved slots, i.e. it tries to find slots available in parallel, latest
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Algorithm 7 A Pseudo Code of an Offer Generator.
generate offers()
Input: q, g // An allocation request and node g ∈ G selected for an allocation ∈ L
Output: OF // A set of offers generated
d := endt(q) − startt(q) // d is duration, startt(q) is start time, and endt(q)
is end time of q
if allocation mode is SHARE BASED then
g := select(q) // Select a node according to Algorithm 3

end if
OF := �
Lg := A set of current allocations (reservations) Lg ⊆ L ordered by
start time
for all alloc ∈ {{q} ∪ Lg} do
// generate an offer exactly as requested or a one with start time earliest possible
after current time
offer := generate offer(alloc)
if offer �= � then

OF := OF + {offer}
break

end if
end for
i := Last index of an allocation alloc ∈ Lg such that startt(alloc) ≤ startt(q)
while i > 0 do
offer := generate offer(alloci)
if offer �= � then

OF := OF + {offer}
break

end if
i := i − 1

end while
i := First index of an allocation alloc ∈ Lg such that startt(alloc) > startt(q)
while i ≤ |Lg| do
offer := generate offer(alloci)
if offer �= � then

OF := OF + {offer}
break

end if
i := i + 1

end while
return OF // Generated set of offers
—————–
generate offer (alloc)
for all st ∈ {startt(alloc), startt(alloc) − d, endt(alloc)} do
create offer with startt(offer) = st, endt(offer) = st + d
if slot for offer is free on node g then

if allocation mode is PROGRESSIVE and user share is consumed then
continue

end if
return offer

end if
end for
return �
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before or earliest after an existing reservation for all the available processors
(P) in a node.

Example 16 (Attentive Allocation).
Lets a node having 2 processors and 5 reservations (solid boxes), as shown in
Figure 5.3, and what happens when another slot is requested. Dotted boxes
show possible alternative offers which are generated and offered to the client
by the attentive algorithm (offers before the requested timeframe are also
generated, if possible). It is then up to the client to select one of the offers or
re-negotiate. ��

Fig. 5.3. Possible options offered by attentive algorithm when a node with two
processors was occupied by five accepted allocations (reservations).

Offers can be generated by automatically adjusting the timeframe and other
constraints (e.g. processors) in such a way that the overall requested QoS is
optimized. For this purpose, we propose adjustment like:

• Change 10% of the requested duration by adding or removing one proces-
sor,

• or adjust the requested timeframe by scaling the attributes according to
the speedup, which can be defined using different theoretical models like
Amdahl’s model [12] or using a database with application benchmarks.

The allocations for multiprocessor jobs is possible though the main focus of
this chapter is to generate allocations for single processor jobs.

5.3.2 Progressive Allocation

The progressive algorithm is an extension of the attentive algorithm that
considers fairness as well. It attempts to fairly distribute available capacity
of resources among competing clients instead of allowing a single client to
reserve the entire capacity of a node ∈ G. Having said that, the minimal time
when the reservation can be established for a specific timeframe depends on
the number and duration of reservations already made by the client during
that timeframe. This is done by introducing a new restriction on the number
of processors (∈ P) which is configurable for a Grid node ∈ G. Furthermore,
it is also possible to allow number of allowed reservations during a certain
time window. The progressive approach provides a more fair distribution so
that multiple clients can get better chances to obtain offers that fit to their
requirements.
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Example 17 (Progressive Allocation).
Consider a node with several allocations as shown in Figure 5.4. The allocation
policy is set as progressive with a fixed duration of time windows. According
to the policy, a client can have maximum two allocations in each time window.
Lets a client c1 makes an allocation request Request, shown as a rectangle
with dotted lines in Figure 5.4. Based on this request three offers can be
generated according to attentive algorithm. Nevertheless, with progressive al-
location policy, only offer 3 is valid because offer 1 and offer 2 fall in
first time window that has already two reservations R1, R3 from the same
client c1, and thus, the first two offers are ignored.

Fig. 5.4. Progressive allocation: two time windows each can have maximum 2
allocations per client.

��

5.3.3 Share-Based Allocation

In contrast to attentive and progressive allocations, in which allocation offers
are generated for a user’s selected node (Definition 11), share-based allocations
are generated based on the proportional share of the node to be reserved.
First a Grid node is selected by the allocation manager and then attentive
approach is applied for offer generation. The main difference between attentive
and share-based approach is the selection of a node.

5.4 Implementation

The proposed GridARM allocation management system consists of two main
components: a node-level component called allocator and a Grid level com-
ponents called co-allocator. This is shown in Figure 5.5). The allocator is
responsible for the negotiation and provision of advance reservation of a Grid
node, whereas co-allocator handles allocations of multiple nodes for a sin-
gle workflow application. Both allocator and co-allocator are implemented as
WSRF Grid services (WS-Resources), based on the Globus Toolkit 4 (GT4).
A co-allocator works on a superpeer node in coordination with the resource
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manager and negotiates with multiple underlying allocators in order to gen-
erate co-allocations.

5.4.1 Allocator

An allocator is to be associated with a node and further consists of two sub
components: an allocation manager (AM) and an AuthzManager. The alloca-
tion manager (AM) generates allocation offers by invoking a specific allocation
algorithm. An allocation manager provides a mechanism in which different al-
gorithms can be plugged-in and configured according to the resource usage
constraints and provider’s strategy. The AuthzManager authorizes whether
or not a client should be permitted to acquire the reserved resource e.g. by
submitting and executing a job.

AllocationManager

AuthzManager

Allocator

AllocationManager

AuthzManager

Allocator

Coallocation
Manager

Coallocator

Coallocation
Manager
Coallocation

Manager

ClientClient

Fig. 5.5. Allocation Management System Architecture.

In order to ensure sophisticated integration of the local resource manage-
ment with reservation system, the GridARM chooses not to change the low
level mechanism of the Job Submission service (as proposed in [55]), but
rather exploit the customizability of the GT4 Job submission service, that is
WS-GRAM [41, 10], which allows addition of multiple customized resource
authorization policies. The AuthzManager acts as a special policy decision
point (PDP) for WS-GRAM and ensures that whether or not a resource was
actually reserved by the client through the allocation manager.

5.4.2 Co-allocator

A co-allocator is a high-level component that covers a set of allocators and
runs on a superpeer node. A superpeer node is one that works as a frontend
or root node for a group of nodes and can coordinate with one or more other
superpeer nodes (Section 3.4.2). In such a way, if a GridARM co-allocator
cannot find an answer within its own group, then it refers to the peer services
running on other superpeer nodes for an answer.
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A co-allocator works as a factory service of a co-allocation manager (CM)
and instantiates a separate CM for each request. The CM then handles fur-
ther negotiation between a client and underlying allocators, and performs
ongoing monitoring of the accepted co-allocation. Furthermore, a co-allocator
can interact with the GridARM resource manager for candidate selection Sec-
tion 3.3.4 and may filter out nodes for which hard constraints (i.e. requests
with flexibility = 0) cannot be fulfilled. The flexibility is an attribute that
describes importance of a term and needs to be set by requesters for each
term and condition.

After making a successful reservation, the clients can submit their jobs
for execution within the reserved timeframe. By default, only a client with
valid credentials and having a valid reservation can submit a job. Moreover,
a CM generates an agreement ticket which can be delegated to other clients
who can acquire associated reservations by presenting a ticket. A client is not
authorized if it fails to provide a valid ticket or fails to prove itself as an owner
of the reservation.

Both allocator and co-allocator provide a flexible mechanism to plug-in
different offer generation algorithms. In the offer generation process, an allo-
cator tries to maximize resource utility while fulfilling client’s requirements.
Only free slots which are in accordance to the reservation policy are offered
on request.

5.4.3 Agreement Enforcement

A special policy decision point (PDP) for the authorization of reserved re-
sources is the essential component of GridARM allocation management that
exploits customizability of the WS-GRAM [41] (Section 2.3.3) in which mul-
tiple authorization points (PDPs) can be integrated. GridARM introduces
this additional PDP called ReservationPDP for the authorization of clients,
it works as part of the chained authorization points invoked by WS-GRAM.
As depicted in Figure 5.6, this additional PDP interacts with AuthzManager
and gets verification whether or not the client has advance reservation at
that particular time. The ReservationPDP is used for the enforcement of an
agreement.

AuthzManager may be configured with a customized policy, for instance,
executions can be performed only when the resource is reserved by the user or
if the resource is not reserved at all by anyone during the requested timeframe.
If an application is not finished within the reserved timeframe, the application
should be either terminated or suspended. Termination of an application that
is about to complete could be counter productive, especially when application
execution time is much longer. On the other hand, suspension of an application
requires low-level system interaction, which is an open research topic.

A reservation made by the GridARM allocator is independent from the
underlying local resource manager (LRM), e.g. PBS [11], LSF [132], SGE [168].
This means that a job can be submitted through WS-GRAM to any of the



122 5 Allocation Management

WS-GRAM

GridmapPDP

Resource (LRM)

WSRF-Authorization Framework

ReservationPDP

Globus-GSI

GridARM
(AuthzManager)

PDP
Chain

Fig. 5.6. A Policy Decision Point (PDP)-chain with a Special ReservationPDP for
WS-GRAM.

LRM and is honored only if proper reservation is made by the client. Each time
WS-GRAM is invoked, it interacts with AuthzManager through the special
Reservation PDP for verification of the caller.

In some cases (depending on the Grid node policy and configuration), it
may be possible that a client bypasses WS-GRAM and submits jobs directly to
any of the deployed LRMs. In such a case the reservation will not be enforced.
This is, in fact, a well-known open issue. One possible enhancement is to
provide low-level reservation with the help of LRMs (e.g. based on Maui [98]).
However, this will break the generality of the proposed solution. As WS-
GRAM aims to provide a higher-level job submission functionality abstracting
from various LRMs, integrating advance reservation mechanisms directly to
interact with WS-GRAM (i.e. making a LRM-independent reservation service)
is a more portable and practical approach for agreement enforcement in the
Grid operating environment.

5.4.4 Priority Provision

Priority provision is an open reservation with soft allocation of resources. In
open reservations, actual node binding either can be changed over time or
deferred until application runtime. The resources are allocated to an appli-
cation, but real binding is shielded from the client. In this way, a promise
is made that a certain capability will be available at a specific time in the
future but without making assignment of any specific node to the client. The
assignment of the next available node is done at runtime. That means that a
next available node that fulfills the requested QoS constraints is allocated at
runtime.

The priority provision is a way of keeping the promise of advance reser-
vation by dynamically associating physical resources with allocations in an
underlying unpredictable and dynamic Grid environment. Furthermore, it al-
lows reservation of logical resources as well. This is an important feature,
which according to our understanding, has not been considered for advance
reservation so far in any other Grid computing infrastructure.
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5.4.5 Standards Adaptation

GridARM adapts WS-Agreement, a proposed Grid Resource Allocation Agree-
ment Protocol [87], for contract specification. Allocations are composed as
WS-Agreement documents and maintained in the form of WS-Resources [191].
JSDL is another proposed standard for job submission description [100] that
consists of a set of constructs which are used to specify constraints as part
of the WS-Agreement specification. Furthermore, constraints like maximum
number of allowed processes and job termination time can be specified as
part of the job description in JSDL, and can be used to further strengthen
the process of agreement enforcement by exploiting these parameters.

5.5 Experiments and Evaluation

The GridARM allocation management is developed as a set of coordinating
WSRF-complaint middleware Grid services. It provides reservation in the form
of agreement documents and managed as WS-Resources [191], which makes
the service as efficient as the underlying infrastructure. We integrated alloca-
tion management in Askalon runtime environment and tested overhead of the
system by performing experiments in Austrian Grid [33]. Table 5.1 depicts av-
erage overhead of different operations of the system for making an allocation
including initialization, negotiation, confirmation, and authorization. It shows
that the negotiation, which also involves a compute intensive offer generation
process, is a bit expensive whereas confirmation does not add any significant
overhead, as it deal with existing reservation instances that are manageable
as WS-Resources.

Table 5.1. Average time overhead of different reservation service operations.

Function Time (MS)

Initialization (template creation) 110
Negotiation (Attentive) 190
Negotiation (Progressive) 194
Confirmation 30.5

WS-GRAM (Default) 600
WS-GRAM (with ReservationPDP) 636

Table 5.1 (lower part) shows the overhead of job submission to WS-GRAM
both with and without ReservationPDP. We performed this test by submitting
a small job to WS-GRAM in “quiet” and “batch” mode, that means the
client did not wait for the completion of job and returned immediately after
successful submission. The average overhead of the ReservationPDP is 36ms
per job, which is just 6.0% of the total submission overhead by WS-GRAM.
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Table 5.2. Average response time per transaction for different concurrent users.

Concurrent Users 2 4 6 8

Response Time (ms) 105 180 248 315

Table 5.2 shows an average response time for a single negotiation session with a
simple offer generation algorithm with varying number of concurrent clients. A
simple offer generation algorithm generates allocations exactly as requested by
assuming unlimited resource capacity. Response time increases with number
of users due to offer generation algorithm which is compute intensive. As most
of the Grid applications run for a longer duration, therefore the overhead of
allocation management system is quite negligible even for the time critical
Grid applications. These experiments were performed on AMD Opteron 64bit
nodes located on a lightly loaded network with a maximum latency between
two computers of about 2 milliseconds.

Figure 5.7 shows an average response time for a single negotiate-confirm
session with varying number of pre-existing confirmed allocations. It is impor-
tant to mention that number of time segments varies from 3 to 10 during the
course of experiments, as number of generated offers depends on the number
of segments. Both attentive and progressive algorithms give the same per-
formance but average response time increases slightly with the increase in
reserved slots. The simple algorithm is slightly efficient. This means that the
main overhead lies in communication and WSRF part and not in offer gener-
ation algorithm. Confirmation overhead is almost consistent as it deals with
already created agreement resources.
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Fig. 5.7. Average response time for a single negotiation and confirmation session
with different number of existing reservation instances.
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If an application does not finish within the reserved timeframe, the alloca-
tor will detect a violation of the agreement. In such a case, the tasks should be
either terminated or suspended. Termination of an application which is about
to complete could be counter productive especially when application execu-
tion time is longer. On the other hand, suspension requires low-level system
interaction, which is still an open research topic.

In our work published in [188], we have demonstrated that advance reser-
vation can have a major impact on execution time and can increase consider-
ably predictability of a Grid environment. We also showed the importance of
requesting for longer reservation time periods, because of the low reliability
of execution time predictions. This may provide very high probability that
the execution will finish within the reserved time. However, this happens at
the cost of lower resource usage and fairness of resource distribution. Fairness
can be increased by employing a special reservation strategy, for instance the
progressive reservation strategy,which gives the best results when the Grid
is not saturated. Finally, we showed that the strategies without reservations
and with progressive reservations can be applied together, and result in good
performance and fairness.

5.6 Related Work

Numerous researchers have investigated approaches of resource reservation
for networks [49], CPUs and other resources. SNAP [40] presents a resource
management model in which resource interactions are mapped onto a set of
SLAs. It defines a negotiation protocol for SLAs.

The Globus Architecture for Reservation and Allocation (GARA) [73] pro-
vides a mechanism for allocation of a resource preceded by an additional step
of reservation. Open Grid Forum [129] is actively working on standardization
of Service Level Agreement with the help of WS-Agreement .

The Maui [98] scheduler is an advanced job scheduler for cluster systems in
which an advance reservation scheme makes it possible to manually allocate
local resources in the future, however it does not support negotiation and
allocation offer generation.

The KOALA [117] Grid scheduler supports co-allocation. In order to syn-
chronize start-times of multiple jobs to be executed concurrently, it predicts
possible start-time based on transfer rate of input files of the jobs. Once
start-time is predicted, KOALA makes advance reservation. However, advance
reservation is done only if the underlying local resource manager supports ad-
vance reservation.

Thomas Roebliz et. al. presents an elastic Grid reservation with user de-
fined optimization policies and co-reservation with concept of virtual resources
in [143].

The work described in [55] introduces a resource broker that supports ad-
vance reservations. However, in order to make it work, the proposed reserva-
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tion enforcement mechanism requires modifications in the Grid operating en-
vironment i.e. low-level middleware services like GRAM [41] and GridFTP [9]-
client/server.

In contrast to above mentioned reservation and negotiation mechanisms,
the GridARM allocation management provides not only a flexible multi-phase
negotiation mechanism along with advanced reservation of a single as well as
multiple resources, but also generates multiple alternative offers. This reduces
communication overhead required for multiple interactions during the negotia-
tion and enables participants to seal a contract efficiently. The implementation
is WSRF complaint and works with WS-GRAM. This makes our system LRM
independent which can work with multiple LRMs. Furthermore, we propose
provision of LRM-specific drivers which can be plugged in with our system to
provide low level resource specific reservation so that a resource could not be
exploited by bypassing WS-GRAM. It provides a generalized mechanism for
agreement enforcement that is practical, efficient, and does not require any
modification in the Grid operating environment.

5.7 Summary

This chapter introduces allocation management with advance reservation and
service level agreement of Grid resources. A client can negotiation for reser-
vation of a resource capability with the allocation management system. The
system generates multiple alternative options that enables to reach and seal
an agreement efficiently. The system consists of distributed middleware Grid
services which coordinate with each other in order to provide simple as well
as compound reservations. We introduce an additional Policy Decision Point
(PDP) in the authorization chain to be invoked by the WS-GRAM. In this way
the authorization is done independent of the local resource manager (LRM).
In the negotiation process the system can provide best offers matching to
client requirements. Furthermore, the negotiation is a multiphase process in
which requesters and providers can adjust their constraints, QoS and offered
resource capabilities.
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Optimizing Multi-Constrained Allocations with
Capacity Planning

This chapter introduces capacity planning that exploits advance reservation
mechanism. Capacity planning plays a critical role in management of an in-
frastructure for optimized utilization of perishable resources. This applies to
the Grid as well. Once the time has passed the computing power is perished.
However, in the Grid, capacity planning is largely ignored due to the dynamic
Grid behavior, multi-constrained contending applications, lack of support for
advance reservation and its associated challenges like under utilization and
agreement enforcement concerns. These issues force a resource manager to
make resource allocations at runtime with reduced quality of service (QoS).
To remedy these, we introduce Grid capacity planning and management with
negotiation-based advance reservation and multi-constrained optimization. A
3-layer negotiation protocol is introduced along with algorithms that optimize
resource allocation in order to improve the Grid utility. We model resource al-
location as an on-line strip packing problem and introduce a new mechanism
that optimizes resource utilization and other QoS parameters while generat-
ing contention-free solutions. We have implemented the proposed solution and
experimented to demonstrate the effectiveness of our approach.

6.1 Introduction

Capacity planning plays a critical role in management of an infrastructure
for optimized utilization of its perishable resources. The Grid is no excep-
tion as its computing power is perished once time is passed. The comput-
ing power of the Grid has a great potential for proper capacity planning to
be provided as part of the resource management. Resource management is
critical in making Grid infrastructure reliable and pervasive, and in deliv-
ering resources on-demand while dealing with their heterogeneity, dynamic
behavior, and association with different trust domains. As the resources are
controlled and administered locally on a Grid node, capacity management
for the entire Grid becomes non-trivial and requires a sophisticated resource
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management as part of complex middleware infrastructure. The problem be-
comes even more challenging with the rapid growth of Grid resources and
applications, where allocation management has to allocate the Grid resource
capacity among applications contending for scarce resources. Allocations are
requested with multiple parameters and the allocation management has to
perform multi-constrained optimization.

This challenge leads to the requirement of a robust allocation manage-
ment with a sophisticated capacity planning and management for optimized
resource utilization. Capacity management is a strategic process that focuses
on the present, whereas capacity planning is a strategic forward looking pro-
cess of monitoring, understanding, and reacting to the client’s behavior in
order to maximize the global utility. However, in the Grid, capacity plan-
ning and management is largely ignored due to the dynamic Grid behavior,
multi-constrained applications, lack of support for advance reservation and its
associated challenges like under utilization concerns, and the non-supportive
environment for enforcement of an agreement. These problems force an allo-
cator to employ adhoc solutions with limited view of the overall Grid capacity
available along a time horizon. Any ad-hoc solution mostly results in resources
with wasted capacity and Grid applications with reduced utility.

To remedy this, GridARM introduces a capacity planning and manage-
ment mechanism that supports optimized allocation and negotiation-based
advance reservation of Grid resources. Advance reservation ensures that a cer-
tain resource capability will be available at some time in future thus provides
a more predictive environment suitable for the planning. It anticipates ade-
quate needs of its clients and protects a proper share of the resource capacity
for the clients who could be more profitable in the future. The resource man-
ager works as resource provisioner and performs reservations for applications
on behalf of resource provider through a negotiation process. We introduce
a 3-layered cooperative negotiation protocol that is used to efficiently reach
an acceptable agreement. Furthermore, the dynamic nature of the Grid is
handled with a priority provisioning mechanism, in which a certain capacity
is reserved in advance but bound later-on and provisioned on-demand. The
negotiation process involves generation of multiple allocation offers based on
different QoS parameters. The first layer of negotiation protocol deals with
allocation of a single Grid node. We model it as an on-line strip packing
problem [38] and introduce a new solution for it. The second layer deals with
co-allocation of multiple Grid nodes. It receives a set of allocation offers gen-
erated by the first layer for a set of available nodes and then generates a set
of co-allocation offers with optimized global utility. We frame co-allocation
as constraint satisfaction problem (CSP) [152] and employ a new approach to
solve it. The third layer eliminates contentions that may be introduced during
the first and second layer of negotiation.

We have implemented the proposed system and demonstrated through ex-
periments that the proposed system accepts more allocation requests and en-
sures improvedresourceutilizationwiththecapacitymanagementandplanning.
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6.2 System Model

The Grid resource allocation corresponds to on-demand provisioning of re-
sources for Grid workflows. The allocation process first selects matching nodes
and then determines allocatable time slots on each node during which an activ-
ity can execute. Finally, it makes a combination of all available time intervals
on all nodes. In this way, the workflow may run efficiently along with optimized
resource utilization. The resource selection mechanism is already described
elsewhere. This chapter models resource allocation as multiple-constrained
optimization problem.

The allocation management is described in previous chapter that consists
of two main components: an allocator that performs allocation of a single node,
and a co-allocator that performs allocation of multiple nodes for a single Grid
workflow application. A co-allocator accepts requests from the clients and gen-
erates alternative co-allocation offers. It instantiates a co-allocation manager
(CM) for each request that handles further negotiation between the client
and the underlying allocators, and then performs ongoing monitoring of the
agreements sealed through the negotiation. The CM negotiates with clients as
a resource trader and with allocators as a cooperative negotiation mediator.
Cooperative negotiation enables the system to generate offers efficiently with
optimized as well as contention-free capacity distribution. A co-allocation re-
quest corresponds to a workflow and may consist of a set of multi-constrained
allocation requests, each for a single activity as part of a workflow.

In previous chapters, allocation has been modelled with reference to the
entire node. This chapter models the possibility of allocating a part of the
whole (node ∈ G) with reference to the logical components i.e. the activities.

6.2.1 Allocation Problem

Grid resource allocation as defined in is a problem of assigning a set of available
nodes ∈ G, each with a scarce capacity (e.g. a number of processors P) to a
set of co-allocation requests

CQ = {CQ1, ..., CQn} ⊆ Q, n ∈ N

each for a workflow application ∈ W|W = {W1, ...,Wn} by a set of clients
C = {c1, ..., cn}. Here

CQi = {qi,1, ..., qi,ni
} and Wi = {Ii,Oi,Ai,Vi}

where i ∈ n and ni ∈ N may be different for different requests CQi ∈ CQ.
The request qj ∈ CQi is referred to as a single allocation request for a specific
activity aj ∈ Ai, which may have some dependencies Vi on other requested
activities ∈ Ai in a co-allocation request ∈ CQi. Each allocation request qj ∈
CQi requires a certain capacity Pj ∈ P for a specific duration of time
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duration(qj) = endt(qj) − startt(qj)

and may have the potential for varying utility U(qj) depending on the appli-
cation constraints ∈ Ti.
Figure 6.1 depicts the format of a request ∈ CQi that asks for of a set of
activities Ai ∈ A along with a set of constraints

{Ti,1, ..., Ti,ni}, ni ∈ N

in the form of service description terms, and of a context referring to the
participants. The right side of Figure 6.1 shows the format of a constraint ∈ T
that includes boundary values of a named constraint and flexibility flex(tj) ∈
{0..10} that represents client’s willingness for negotiation. The term flexibility
is similar to a reciprocal of the term importance defined in WS-Agreement [87].

a1

a2 a3

a4

workf low

Coallocation
Request(CQ)

Allocation Request

<Constraint>
   <name>duration</name>
   <unit>minute</unit>
   <f lexibi l i ty>4</f lexibi l i ty>
   <object ive> minimize
   </object ive>
   <minValue>45</minValue>
   <limits ...../> .... .... ....
</Constra int>

Constraint Format

q1

q4

q2 q3

Context

Node Constraints

Activity Constraints

Grid
Activi ty

al location request constraint descriptionco-al location request

Node Constraints

Activity Constraints

Terms

Fig. 6.1. A co-allocation request that corresponds to a workflow.

The goal is to maximize the global utility U , suggesting the right allocation op-
tions for applications, and achieving an optimal compromise over constraints
of the negotiators. By considering the time horizon T, the capacity of the Grid
G can be modelled as

⋃
gi∈G Pi ×T where T ∈ time is the time dimension that

represents a planning horizon. Pi represents capacity of a node gi ∈ G in terms
of processors and Pg =

∑n
i=1 Pi is the total capacity of the Grid G.

The global utility

U =
n∑

i−1

Ui with Ui ∈ 2|P
g|+T �→ R

can be maximized by generating co-allocation offers

CL : CL = {CL1, ..., CLn} with CLi �→ 2|P
g|+T

such that the utility is maximized and there is no overlap of allocations, i.e.

n∑

i=1

Ui = � ∧
n⋂

i=1

CLi = ∅
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2|P
g|+T indicates the power-set of the available allocation options (maximum

allocations possible on resource and time horizon (2|P
g|+T)). A co-allocation

CLi consists of a set of allocations as:

CLi = {alloci,1, ..., alloci,ni}, ni ∈ N

ni is different for different CLi. Note that the co-allocation process is a total
function f : CQi �→ CLi that maps each request qj ∈ CQi to an allocation
allocj ∈ CLi.

As resource requirements may change over time, or a particular pattern
of resource usage may be needed to obtain a utility, allocation options are
reduced on both the resource and time dimensions, hence the need for a plan-
ning horizon. Increasing the number of resources or the time horizon signif-
icantly increases the overall complexity of the allocation problem, which is
NP-complete [152, 38].

6.2.2 Multi-Constrained Optimization

Optimization is done along a planning horizon: enough capacity is allocated
for each single application in the requested order while planning for maximum
resource utilization. Depending on QoS-constraints, the utility function asso-
ciated with each application and resource may change. Generally, increasing
the resource capacity or allocating a resource with closer match to requested
QoS, improves the application utility. We model application utility as a func-
tion of distance between (co-)allocation requested and actual option offered.
If dist(t) is the distance between the requested value and offered value
of a constraint t ∈ Ti of a single allocation alloc ∈ CLi, then the utility
U(Wi) of an application Wi is the aggregated utility of all allocations i.e.

U(Wi) =
∑

allocj∈CLi

U(allocj)

where
U(allocj) =

∑

t∈Tj

U(dist(t))

and
U =

∑

Wi∈W
U(Wi)

is the global utility.
An allocation is generated, by using a set of objectives defined by the util-

ity functions, to assign resource capacity to an application. Each function is
expressed in terms of application’s utility or in terms of resource utility which
is the function of its offered QoS, for instance, the capacity, cost, and time-
frame. The application utility is derived by aggregating the distances between
ideal and real values of all QoS constraints. For a specific constraint t ∈ T , if
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requested value(t) is the required (or ideal) value, offered value(t) is the
offered (or real) value, and flex(t) is the level of flexibility for negotiation,
then distance dist(t)‘ for a constraint t is calculated as:

dist(t)
′
=

requested value(t) − offered value(t)
flex(t)

Here flex(t) ∈ {0, ..., 10}, where 0 means no flexibility over a given con-
straint. This makes it a hard constraint that has to be fulfilled in order to
make an agreement. On the other hand, 10 shows maximum flexibility for ne-
gotiation (a soft constraint). A negative distance may have a different meaning
for different constraints, for instance, in case of cost, a negative distance re-
flects that the offer is unacceptably expensive, whereas in case of capacity,
a negative distance shows that more capacity is offered than requested that
makes an offer an attractive offer and could temptate the client to accept
the attractive offer. To generalize, we use the term objective of the constraint
objective(t) ∈ {minimize, dontcare,maximize} ≡ {−1, 0, 1} that tells
whether or not a negative distance matters. Depending on objective(t) and
flex(t) of a constraint t ∈ T , the distance dist(t) can be refined as:

dist(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞ flex(t) = 0 ∧ requested value(t) − offered value(t) �= 0

0 objective(t) = maximize ∧ dist(t)
′
< 0

0 objective(t) = minimize ∧ (−1 × dist(t)
′
) < 0

|dist(t)′ | otherwise

(6.1)

The dist(t) = ∞ leads to a situation where no solution is possible with
available capacity and thus capacity planner gives up in this situation. A
negative distance becomes 0 if objective �= dontcare, and becomes positive
otherwise.

Example 18 (Application of the Distance Formula).
This example demonstrates the proposed distance formula. In the case of a
constraint cost ∈ T : if

requested value(cost) = 100, offered value(cost) = 50, objective(cost) = minimize

then
dist(cost) =

100 − 50
flex(cost)

∗ −1 =
−50

flex(cost)
< 0

a negative distance that is converted to 0 because of a cheaper offer which is
acceptable. ��

The distance of an allocation alloci is an aggregated distance of all its con-
straints Ti i.e.

dist(alloci) =
∑

t∈Ti

dist(t)
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whereas the distance of a co-allocation CLi is an aggregation of the distance
of all allocations ∈ CLi, that is

dist(CLi) =
∑

alloc∈CLi

dist(alloc)

Example 19 (Ranking with Distance Formula).
In order to demonstrate ranking of generated offers with distance formula,
consider a client that requests for a resource with required constraints as:

{{procs = 3, flex(procs) = 1}, {mem = 2GB, flex(mem) = 4},

{cost = 150, flex(cost) = 6}}

An allocator generates offers for the request with offered constraints as shown
in Table 6.1. According to the distance formula, the offer B has the least
distance (closest match) and thus has maximum utility. It is ranked as the
best offer among the available set of offers {A,B,C}. ��

Table 6.1. Ranking of offers using distances.

offer procs mem cost dist

A 4 5 180 4−3
1

+ 5−2
4

+ 180−150
6

= 6.8
B 2 6 140 2−3

1
+ 6−2

4
+ 140−150

6
= 3.9

C 6 1.5 220 6−3
1

+ 1.5−2
4

+ 1.5−2
6

= 15

The distance formula given in Equation 6.1 is inappropriate for constraints
with lexicographical values, typically used for information types such as op-
erating system, processor etc. In order to deal with lexicographical values, we
propose a different approach that uses a semantics-based hierarchical struc-
ture of the all possible values of a constraint t. If i and j refer to the levels
of requested value(t) = I and offered value(t) = J respectively in the
hierarchy and k = root(i, j) is the level of their common root, then

dist(t, I, J) =

{
0 i ≤ j ∧ i = k

2i+j−2×k

flex(t) otherwise
(6.2)

This covers two special cases related to semantically defined classes I and J ,
for requested and offered values respectively:

• I � J | I ≡ J : The ideal value belongs to a sub or equivalent concept of
the offered value class, with dist(t, I, J) = 0 i.e. an ideal match.

• I � J : The ideal value is a super concept of the offered value and thus it
leads to a next satisfiable decision. This is explained in Example 20.
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Example 20 (A Lexicographical Constraint (OS)).

1
2 OS ( Operat ing System ) Leve l 1
3 / \
4 Unix Windows (Sub c l a s s e s o f OS) Leve l 2
5 / \
6 Linux Solaris ( S p e c i a l i z e d Clas se s ) Leve l 3

For instance, in the hierarchy of operating systems as shown above, the Linux
to Unix distance

dist(OS,Linux, Unix) =
1 ∗ 21

flex(OS)
, i = 3, j = 2, k = 2

and the Linux to Windows distance

dist(OS,Linux,Windows) =
1 ∗ 23

flex(OS)
, i = 3, j = 2, k = 1

and for the same value of flexibility flex(OS), it can be deduced that

dist(OS,Linux,Windows) > dist(OS,Linux, Unix)

That is, Linux is a close match with Unix than Windows. This makes con-
straints with lexicographical values, which can be described in a hierarchy
of subsumption tree [155], comparable with the constraints having numerical
values.

6.3 Negotiation Protocol

Negotiation between the requester and provider is a 3-layer (co-)allocation
offer generation process as shown in Figure 6.2. Once initiated, the process
continues until participants reach an agreement. The requester (e.g. sched-
uler) selects a best suitable offer or re-negotiates by changing some of the
constraints. The protocol also introduces negotiation within system compo-
nents to generate co-allocation offers with minimized requester-provider inter-
actions while maximizing the resource utility. A co-allocator accepts requests
and generates (co-)allocation offers in the form of an agreement document.

At the first layer, the allocators deal with reservations of individual Grid
nodes ∈ G. The main objective of this layer is to perform resource-level capac-
ity planning and management. Offers are generated, albeit not necessarily op-
timal and/or conflict-free. The co-allocators at second layer takes the client’s
preferences into account and generates co-allocations for optimization of the
Grid utility. Therefore, the second layer improves the quality of the generated
offers in a broader sense.
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Coallocator

Allocators (on each Grid site)

Cooperation (Negotiation)

Coordination
(Negotiation)

Negotiation

Coallocator

Clients

Fig. 6.2. Cooperative Negotiation Protocol Layers.

Intra-application contentions between allocations generated for activities of
the same application, are eliminated. It is possible that an allocation made
at the second layer is optimal and contention-free for a specific application,
but, as resources are shared, the same option can be offered to multiple ap-
plications. This introduces the inter-application contentions that needs co-
ordination among co-allocators for contentions elimination. Such contentions
are propagated to and handled by the third layer, which can be activated by
clients and also by the system when resources join or leave the Grid. The third
layer also ensures provision of open reservations on-demand according to the
agreement. Different algorithms have been introduced for resource allocation
that is a NP-Complete problem.

6.3.1 Allocation Offer Generation

The allocation layer deals with the capacity planning of a single node in which
each allocator works as a capacity planner and considers only local view of
the resource capacity. Formally, an allocation request q ∈ CQi is forwarded
by a co-allocator to its underlying allocators, which then generate a set Li of
allocation offers and return Li ordered by client utility. The resource utility
may depend on the providers strategy. If k is the total number of offers, then:

Li = {alloci,1, ..., alloci,k} with U(alloci,x) > U(alloci,y), x > y}

An allocation alloci is modelled as rectangle given by its width as capacity
and height as duration. The start time of alloci is startt(alloci), the re-
quested execution time is duration(alloci), and the deadline endt(alloci) is

endt(alloci) ≥ startt(alloci) + duration(alloci)
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The capacity of an entire node is also modelled as a rectangle but with fixed
width P and infinite height T (time horizon). The allocator tries to locate a set
of available slots while fulfilling hard constraints and minimizing the distance
of soft constraints. That is,

(startt(alloci) + duration(alloci) ≤ startt(allocj)∨

(startt(allocj) + duration(allocj) ≤ startt(alloci)

whereas
∀allocj∈Aiallocj �= alloci ∧ dist(allocj) = ⊥

The allocation problem shares similarities with strip packing problem. In the
strip packing problem we try to place a set of two dimensional boxes into a
vertical strip of a specific width and an infinite height while minimizing the
total packed height of the strip. Translated to our allocation problem, the
width of the strip corresponds to the resource capacity, for instance, number
of processors |P|, and the vertical dimension corresponds to time horizon T.
If the list of rectangles is unknown in advance, the strip packing problem is
called an on-line strip packing, which is NP-hard [38], and exactly maps to
our problem. On-line strip packing is addressed by different heuristics such as
shelf algorithm [38].

The simplest on-line method is to check whether a newly requested allo-
cation finds an immediate placement. If there is none, the request is rejected.
This is a very simple but crude technique that needs to know only current
view and shows a low resource utilization resulting in the wastage of the strip
capacity. A sophisticated on-line method increases the acceptance ratio by
planning, i.e. looking into the future according to the client’s flexible condi-
tion for negotiation.

We introduce a new algorithm called Vertical Split and Horizontal Shelf-
Hanger (VSHSH, pronounced as wish), which provides a hybrid approach and
fits better to our resource allocation problem. In the classic shelf algorithm, the
strip is horizontally split into shelves and only bottom-left justified packing in
a shelf is possible. In contrast to the shelf algorithm, the VSHSH allows top-
right justified packing as well. In this way, the VSHSH keeps unused area of the
strip minimum but significantly increases application utility (Algorithm 8).
As stated earlier, the utility is derived from the distance between offered
and requested values of a constraint. This also include the constraint cost :
depending on the cost model (Section 6.3.4), an allocation far in future could
be cheaper whereas an earliest possible allocation might be expensive.

As the goal is to provide allocations as close to the requested QoS as possi-
ble, we propose either top or bottom justification for an allocation depending
on the distance from the requested timeframe. This approach increases the
global utility (more satisfied QoS constraints) as probability of wider time-
constraint distance is reduced.
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Lemma 2. The VSHSH - with allocations justified to either the top or the
bottom of a shelf whichever has a shorter distance to the requested timeframe
- increases Grid utility.

Proof. Let distshelf (alloci) and distvshsh(alloci) be the distance of an al-
location alloci ∈ CLi calculated with shelf and VSHSH algorithms respectively
for an allocation request qi, then the distance for start time with shelf algo-
rithm is

distshelf (startt(alloci)) = startt(qi) − sbot(shlf)

whereas with the VSHSH algorithm is

distvshsh(startt(alloci)) = min(startt(qi) − sbot(shlf), stop(shlf) − endt(qi))

where sbot(shlf) and stop(shlf) are base and top of a shelf shlf respec-
tively.This is depicted in Figure 6.3 and clearly shows that

distvshsh(startt(alloci)) ≤ distshelf (startt(alloci))

A reduced distance of an allocation results in improved allocation utility that
contributes towards improvement in the overall Grid utility U . ��

Fig. 6.3. VSHSH top or bottom justified allocations.

Furthermore, the VSHSH also vertically splits the strip into multiple sub-
strips so that the width of all sub-strips equals the width of main strip. The
formation of multiple sub-strips is used to protect an appropriate share of
the resource capacity for the different communities and may apply different
allocation strategies for each strip, such as different shelf height and cost
models. In this way a sub-strip becomes an independent strip.

The pseudo code of the allocation offer generation algorithm (VSHSH),
as explained above, is represented in Algorithm 8 that can be summarized as
follows:
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Algorithm 8 The Pseudo-Code of the Allocation Offer Generation Algo-
rithm.

vshsh()
Input: Request q // A request q ∈ Q with a set of constraints ∈ T .
Output: L // A set of allocation offers
shlf := A set of shelves in the strip to be allocated
shelf height := Shelf height that is fixed for all shelves
strip base := sbot(shlf0) // start time of the Strip

curr := (startt(q)−strip base)
shelf height

// current shelf index

capacity:= capacity (processors) requested in q
duration:= endt(req) − startt(q) // duration requested
L := � // Initially an empty offer set
while curr ≤ (curr + flex(endt(q)) do

// generate a bottom justified offer in current shelf shlfcurr, if possible.
Lcurr // Existing allocations belonging to shlfcurr
startt := strip base + curr × shelf height // start time of offer to be generated
offer := create a template of an allocation
offer := {capacity, duration, startt, startt + duration}
// Initialized offer with requested capacity, duration and possible available start and end
times
if Lcurr ∩ {offer} = � then

// allocation offer is possible in shlfcurr
L := L + {offer};// Add time-constrained generated offer in L

else
for all alloc ∈ Lcurr do

offer := {capacity, duration, startt(alloc), startt(alloc) + duration}
if Lcurr ∩ {offer} = � then

// allocation offer is possible on top of alloc in shlfcurr
L := L + {offer};// Add time-constrained generated offer in A

end if
end for

end if
curr := curr + 1 // Index of next shelf

end while
curr := (startt(q)−strip base)

shelf height

while curr < (curr − flex(startt(q)) do
// generate a top justified offer in shelf shlfcurr if possible.
endt := strip base + curr × shelf height + shelf height // endtime of the offer to be
generated
offer := create a template of an allocation
offer := {capacity, duration, endt − duration, endt} // Initialize
if Lcurr ∩ {offer} = � then

// top justified allocation offer is possible in shlfcurr
L := L + {offer};// Add time-constrained generated offer in L

else
for all alloc ∈ Lcurr do

offer := {capacity, duration, startt(alloc) − duration, startt(alloc)}
if Lcurr ∩ {offer} = � then

// allocation offer is possible below alloc of shlfcurr
L := L + {offer} // Add time-constrained generated offer in A

end if
end for

end if
curr := curr − 1 // Index of previous shelf

end while
// generate cost-constrained offers
if flex(cost(q)) < 4 or user belongs to economy class then

generate an offer after 2nd week or in economy strip
else

generate an offer in 1stweek or in expensive strip
end if

return L;
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• The VSHSH algorithm is a new solution for on-line strip packing problem,
and applies to a strip of fixed width (number of CPUs as node capacity),
and infinite height i.e. an infinite time during which a node is available for
allocations;

• The strip is divided in an infinite number of shelves of equal height, and a
request q, as a rectangle of a fixed width (requested capacity) and a fixed
height (timeframe: endt(q)− startt(q)), is proposed to be packed in the
strip, and multiple possible slots (options) in the strip, where q can be
packed, are proposed as follows;

• For the rectangle q, a matching slot is proposed in a shelf, closer to the
requested timeframe, with free space. The packing in a shelf is always
proposed either top justified or bottom justified depending on the utility
(Section 6.2.2) of the proposed offer;

• Additional packing possibilities (offers as L) for packing q are proposed
based on the client’s flexibility over the requested timeframe. Depending on
the flexibility flex(startt(q)) over the start time startt(q), a number
of top-justified offers (≤ flex(startt(q))) are generated latest possible
before the startt(q), and depending on the flexibility flex(endt(q)) over
the end time, a number of bottom-justified offers (≤ flex(endt(q))) are
generated earliest possible after endt(q). Only one offer in a shelf can be
generated at a time for a specific client;

• If a client is more flexible over the cost (flex(cost(q)) ≥ 4), then the
VSHSH generates a relatively expensive offer with earliest possible start
time after the current time, most likely in the first week, otherwise a
relatively cheaper offer is generated after the second week in the strip.
This is to give an attractive offer that is suitable for a specific class of
users;

• All generated offers are collected in a list L and sent to the client for its
acceptance.

Example 21 (Application of the VSHSH).
This example demonstrates the VSHSH algorithm as shown in Algorithm 8.
Figure 6.4 depicts an example strip visualizing shelf 1, 24, 45 with allocations
(already reserved) in shaded-solid boxes. We assume that all other shelves
are fully packed. In this situation, an allocation request arrives for which the
VSHSH generates three allocation offers. As the request is closer to the top of
the shelf 24, therefore the VSHSH generates a top justified time-constrained
offer, i.e. offer 1. The second offer (offer 2) targets the economy class of clients
and is generated with least cost but higher distance of other constraints. The
third offer (offer 3) is more expensive but gives the earliest possible time. The
allocator will offer these options and the co-allocator will choose the best offer
closer to the client’s overall requirements. ��

VSHSH also proposes dynamic scaling of the underlying sub-strips with k
shelves of variable widths and heights. In a variable shelf height version of
VSHSH, a new shelf is created if:
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Strip Height (Time)

Strip C
apacity

Shelf−45 (Week 2)

Shelf−24 (Week 1)

Shelf−1 (Week 0)

Offer 1
Offer 2

Request

Offer 3

Reserved

Reserved

R
e
s
e
r
v
e
d

Reserved

Reserved

R
e
s
e
r
v
e
d

Strip

Fig. 6.4. Possible offers generated by the VSHSH applied to a strip with free space
in three shelves (1,24 & 45). Offers are generated according to the client’s economic
preferences.

• an allocation does not fit in any existing shelf found within the client’s
flexible range.

sbot(shlfi) ≤ startt(alloc) ≤ sbot(shlfj) ∨ ∃Li ∈ L(Li ∩{a} = {a})

In this case a new shelf shlfk+1 is created, such that

sbot(shlfk+1) = max(stop(shlfk), startt(alloc))

• an existing shelf can be split into two shelves so that the new allocation
can be bottom-justified in upper shelf and there is no overlap with lower
shelf.

Furthermore, VSHSH also proposes the notion of borrowing space from the
adjacent shelves. For instance, if an allocation requests longer duration that
fits in the multiple adjacent shelves, then it may be honored at a higher price.

The VSHSH generates alternative offers according to different constraints
such as timeframe, cost, capacity, and client’s flexibility set for these con-
straints. In case of client’s flexibility over height (duration) and width (capac-
ity), we propose to change the area of the rectangle according to the isospeed
scalability [156] i.e.

ψ(p, p
′
) =

T ime
′
.P

T ime.P ′

of the system for the requested application component (activity in case of
workflow). For example, if the requested capacity is not available, then an
offer with reduced capacity but increased duration might be acceptable.

The contentions among multiple allocations are propagated to the co-
allocation layer instead of handling it locally by the allocators with a limited
view of overall Grid capacity. This is due to the possibility that higher local
objective may lower the global utility.
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6.3.2 Co-allocation Offer Generation

The co-allocation (Algorithm 9) is responsible for the generation of a set of
possible co-allocation offers. Formally, a co-allocator receives a co-allocation
request

CQi = {q1, ..., qk}, k ∈ N

and instantiates a co-allocation manager which then sends each allocation re-
quest qi ∈ CQi to k allocators of selected nodes and receives a set of allocation
offers Li, where

Li =
k⋃

j=1

(Li,j) : Li,j = {alloci,1, ..., alloci,kj}, kj ∈ N

where kj may be different for each Li. Now the CM generates a set of co-
allocation offers

CLi = {CLi,1, ..., CLi,ni}
with function Ψ : Li �→ CLi such that,

CLi,j = Ψ(Li,1, ...,Li,kj ) = {alloc1, ..., allockj} | ∀i∈kj (alloci ∈ Li,j)

Here Ψ is a set reduction operator whose domain is a set of all possible sets
of allocation offers received for each request qj ∈ CQi from the different allo-
cators. We frame a co-allocation as an optimization problem, that is similar
to CSP, and propose a new algorithm which is a modified form of an exist-
ing min-conflict local search algorithm [152]. In contrast to min-conflict local
search, the new algorithm allows to change the resource objective depending
on the number of conflicts, so that, a better compromise could be found with
optimal global utility. The co-allocator logically considers each allocation of-
fer as a resource and applies the new solution to these ’resources’ in order to
make a set of acceptable combinations. This is in contrast to the first layer
where resources are actual physical computers. This significantly reduces the
complexity of the problem, i.e. from 2|P

g|+T to 2|Li|.
A co-allocation manager (CM) returns to its client a set of co-allocation

offers CLi ordered by its utility. The client then filters again, by eliminating
the offers which are not acceptable and sends back in a preferred order for
confirmation. The confirmation process is two phase committable. In the first
phase, the CM tentatively reserves each allocation offer alloc ∈ CLi, and in
the second phase, it confirms each of the accepted offers provided there is no
contention. Otherwise, it propagates the contentions to the third layer.

The pseudo code of the co-allocation offer generation, as explained above,
is represented in Algorithm 9 that can be summarized as follows:

• The co-allocation offer generation algorithm addresses a constraint satis-
faction problem. It receives a co-allocation request CQ and generates a set
of co-allocation offers CL;
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Algorithm 9 The Pseudo code of the Co-Allocation Offer Generation Algo-
rithm.

coallocation()
Input: CQ = {q1, ..., qn} // co-allocation request
Output: CL // a set of co-allocation offers
B // A set of candidates of nodes ∈ G generated for each q ∈ CQ
L // a set of allocation offers to be received from B
for all qi ∈ CQ do

B := generate candidates(qi) // Candidates B ⊆ G
// negotiate with each candidate (allocator) by calling VSHSH
for all b ∈ B do

Li := Li∪ contact b ∈ G and negotiate for allocation vshsh(qi)
end for
L := L ∪ Li // L becomes {L1, ...,Ln}

end for
while n ≤ |L| do

CLj := create a co-allocation template
CLj := {alloc1, ..., allocn} // A combination of allocations L 
→ CL
if ∀i∈n(alloci ∈ Li)

∧
U(CLj) > 0

∧⋂
alloc∈CLj

alloc = ∅ then

// Each q ∈ CQ has a alloc ∈ L, utility of CLj is non-zero, and no resource
and time contentions
CL := CL + {CLj} // add a co-allocation offer in offer set CL
for all Li ∈ L do

Li := Li − {Ai ∩ CLj} // exclude from L the allocation offers that are
already consumed

end for
end if

end while
return CL;

• A co-allocation request consists of a set of allocation requests, and for each
allocation request qi ∈ CQ, a set of candidate nodes is generated;

• Each cadidate for qi is negotiated for allocation offers, and a set of alloca-
tion offers Li for qi is received from all candidates;

• After the phase of negotiation with all candidates, there is a set Li of
allocation offers for each qi ∈ CQ;

• A set of co-allocation offers is generated in such a way that each co-
allocation offer contains a set of allocation offers in such a way that for
qi ∈ CQ there is an allocation offer ∈ Li received for qi from one of its
candidates;

• The order of start time of allocation offers in a co-allocation offer is pre-
served according to the order of start times of allocation requests ∈ CQ;

• Finally, all generated co-allocation offers are collected in a list CL and sent
to the client for acceptance.
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6.3.3 Contention Elimination

In a shared environment such as the Grid where clients compete for the scarce
resources, the contentions are unavoidable. It is likely that same slots can be
offered to multiple clients simultaneously that may lead to reduced QoS and
even unacceptable solutions. The coordination layer deals with such situations
and produces contention-free solutions by eliminating either conflicting offers
from the solution domain or by lowering the objective level of some of the
underlying allocators. The contention are raised by the allocator. The noti-
fied co-allocator then mediates cooperative negotiation among the contentious
CMs.

Solution Generation

First, the notified co-allocator collects all information needed to generate al-
ternative solutions, including allocation options offered to the conflicting ap-
plications, and then enters in the solution generation process. The solution
generation process starts with ordering the solution domain according to ap-
plication utility. A solution for the highly constrained application is generated
first, assuming that this will reduce the possibility of further contentions. In
order to accommodate all requests, the mediator may lower the objective levels
of the underlying allocators, depending on the number of contentions associ-
ated with each offer. The process terminates: 1) if all suitable contention-free
co-allocations are generated, 2) or the objective of any of the allocators cannot
be reduced further.

Solution Evaluation

Second, a mediator enters in the solution evaluation phase by sending each
of the CMs a set of contention-free solutions. The CM then filters out some
of the generated solutions and orders the rest of them from best to worst,
based on the application’s overall utility. Once a mediator has the ordering
from the CMs, it generates an overall solution by choosing the highest ranked
alternatives from each of the CMs which lead to a consistent solution.

Solution Implementation

Finally, the assigned solutions are sent back to each of the CMs, which then
implement the final solution by confirming the reservations and notifying the
client.

6.3.4 Cost Model

In order to deal with cost-centric optimization, we introduce a concept of
fictitious money (Grid$) and provide a configurable cost model for different
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strips or different shelves of a strip. The client’s account for fictitious money
can be maintained by a co-allocator, and the underlying allocators can charge
the client’s account. This is in contrast to the open resource allocation model
applied to mobile code [175], in which a fictitious money is maintained based
on the lottery scheduling [185]. We support three categories of clients i.e.
economy, moderate, and privileged to be derived from the flex(cost). We
are considering different options for recharging the fictitious money account
by associating it with the lifetime of the Grid proxy that is used to access the
resources, and/or distributing fictitious money earned by a resource among
its users according to their category.

6.4 Experiments and Evaluation

The proposed system is implemented in GT4 [10] as part of GridARM that is
an integral component of Askalon [62], and deployed on the Austrian Grid [33]
for evaluation.

The VSHSH algorithm is evaluated against a set of existing on-line strip
packing algorithms [18] that includes First Fit (FF), Best Fit (BF), and Next
Fit (NF). The experiments were performed in order to compare the allocation
(at node-level) as well as the co-allocation (at Grid-level) algorithms. The start
time of each allocation request varied from 1-min to 14-days. A set of requests
was randomly generated and then consistently used for all tests. The dura-
tion of each allocation request was also randomly selected in such a way that
80% of the requests were smaller than 4 hours, and 20% were between 4− 36
hours. These values were chosen based on our experience running real Grid
workflow applications as described in [63]. For co-allocations, we have gener-
ated requests following the structure of the workflow application composed of
4 sequential regions with 2 parallel regions. The values corresponding to the
parallel region were randomly selected as a multiple of 6 minutes depending
on the problem size.

A first-fit, next-fit, and best-fit are different approaches of legacy shelf
algorithm that are used to decide which shelf an allocation rectangle should
be put on once all appropriate shelves have been determined. For the next-fit
approach, a rectangle is put onto the next available shelf on which it will fit.
Next-fit does not allow back tracking. For the first-fit approach, each rectangle
is put onto the lowest shelf that it will fit on. The best-fit approach is modified
version of first-fit in which instead of selecting lowest shelf, a shelf with lowest
allocations is selected.

For the measurements, we used strip and cost model as shown in Figure 6.5,
where the cost varies between strips as well as between shelves. We have split
main strip into three strips with 50%, 25% and 25% of the total capacity
respectively.

Figure 6.6 demonstrates comparison of VSHSH with the first-fit, next-fit
and best-fit approaches of the legacy shelf algorithm. It can be observed that
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Shelf # = 1
Height  = 7 Days
Cost     = 48 G$

Shelf # = 2
Height  = 7 Days
Cost     = 24 G$

Shelf # = 1
Height  = 24h
Cost     = 36G$

Shelf # = 8
Height  = 24h
Cost     = 18G$

Shelf # 1, Height = 8h, Cost = 24G$ 

Shelf # 2, Height = 8h, Cost = 16G$ 

Shelf # 3, Height = 8h, Cost = 8G$ 

Shelf # 22, Height = 8h, Cost = 12G$ 

Shelf # 23, Height = 8h, Cost = 8G$ 

Shelf # 24, Height = 8h, Cost = 4G$ 

1 Week

2 Week

Strip 1Strip 2Strip 3
32 Processors16 Processors16 Processors

Fig. 6.5. A possible Capacity Management model for VSHSH with three Sub-Strips
having different Capacity, Shelf Height, and Cost Models.
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Table 6.2. Average response time per transaction.

Concurrent Users 2 4 6 8

Response Time (ms) 96 124 148 168
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VSHSH maximizes the resource utility. Best-fit is slightly better than other
legacy approaches but still VSHSH is much better. Interestingly, the behavior
of VSHSH is similar to the Best Fit, but with higher utility. In addition, it
can be observed that resource utility scales well, independently of the number
of allocations.

Figure 6.7 compares application utility by comparing VSHSH with the
legacy shelf algorithm approaches. It can be observed that VSHSH maximizes
the utility. The main reason that VSHSH demonstrates better performance
than other approaches is that VSHSH makes both top and bottom justified
allocations possible.

Figure 6.8 depicts average density of allocated area, packed with varying
number of allocations. The VSHSH shows lower density due to the capacity
planning strategy which achieves better application and resource utility. We
can observe that VSHSH maintains a density of 50% between 200 and 1300
allocations. In addition, VSHSH continues accepting more requests but the
density grows linearly after 1300 requests.

Figure 6.9 compares average capacity wastage (unused total area) with
different capacity planning strategies. We have set different capacity values to
the strips in order to see how wastage can be reduced. It can be observed
that setting equal capacity to each strip is worse than our base settings
(50%,25%,25%) used for the previous measurements, and that increasing the
first strip capacity (75%,12.5%,12.5%) does not reduces the wastage. This
is due to the multiple QoS constraints which effects the trade-off between
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resource utility and application utility. The strategy with dynamically scal-
able strips shows minimum resource wastage but it depends on the history of
resource allocation requests.

Figure 6.10 depicts comparison of the proposed co-allocation offer genera-
tion algorithm that optimizes overall Grid and application utilities. The mea-
surements were performed using 4 allocator instances. We compare the pro-
posed algorithm with two other algorithms: (a) a Grid-ideal that maximizes
Grid utility (i.e. the aggregated resource utilities), and (b) an application-
ideal that maximizes application utility. We can observe that the application
ideal algorithm reduces the resource utility significantly, whereas the resource
ideal introduces small reduction to the application utility. In the case of our
approach, the results are quite encouraging: the Grid utility is closer to the
Grid-ideal, and application utility is closer to the application-ideal algorithm.

According to Figure 6.12 an average response time for a single negotiate-
reserve session with varying number of allocations is initially similar for all
algorithms. However, afterward in contrast to existing algorithms, the VSHSH
response time increases linearly instead of exponentially with allocations.

Figure 6.11 and 6.13 show the response time of the VSHSH compared
with expected and worst possible performance with different number of con-
current clients, i.e. 2, 4, and 8, with and without Grid middleware overhead,
respectively. The relative values of worse performance are taken with the first
two weeks are fully packed (reserved), and approximately 23000+ allocations
were already made. The values for the expected performance correspond to
the maximum utility, i.e. minimum response time required to perform the al-
location, and to send the result to the client. The actual value corresponds
to the response time of our VSHSH algorithm. We can observe that the per-
formance of VSHSH is close to the expected performance, and that response-
time grows linearly after approximately 1024 allocations. This is because of
the increase in number of data structures (agreement documents) needed to
store the allocations instances. Furthermore, the Grid middleware overhead
as shown in Figure 6.13 is much higher due to communication, WSRF, and
container overheads. In addition, there is an observable startup overhead (un-
til 128 reservations), because of the initialization of the middleware and the
data objects. It is obvious from these depictions that the main overhead lies
in the Grid middleware rather than in the proposed system.

We have developed a graphical application tool as part of GridARM con-
sole, that can be used to specify multiple terms and conditions (constraints),
visualize generated allocations and allocation offers and utility of the gen-
erated offers (explained in next chapter) that shows comparison of offers.
Figure 6.14 shows reservations and allocation offers made in the entire Grid
as well as made for a single node. It is depicted that allocations are made in
a sequence and segmentation of unused slots is minimized that results in im-
proved utilization. Lower part shows a dialog that is used to specify or browse
multiple terms and conditions for allocation requests or received offers.
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Fig. 6.14. Visualization of reservations (red) and allocation offers (green) for a
single nodes as well as for the entire Grid. Lower part shows a dialog to compose
multiple terms and conditions.

6.5 Related Work

Capacity planning has been addressed in several fields, for instance yield man-
agement in airline reservation system, where perishable resources are adver-
tised and sold in a way to maximize overall profit [123]. However, capac-
ity planning is rather new for the Grid. Negotiation-based advance reser-
vation for optimized QoS delivery has been a subject of numerous stud-
ies [92, 189, 186, 123]. A few researchers are investigating the negotiation
based advance reservation for the Grid.

GARA [73] and DUROC [54] defined a basic architecture and simple API
for the manipulation of advance reservation of Grid resources. However, they
concentrate mainly on its applicability for job management. On the other
hand, SNAP [40] proposes a negotiation protocol for a distributed model in
which resource interactions are mapped onto a set of Service Level Agreements
(SLAs). SNAP has been replaced by the OGF proposed standard [87] on
which we based our 3-layered negotiation protocol for agreement and capacity
management.
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The usefulness of advance reservation is theoretically presented in [115].
Modelling and solving resource allocation problems with soft constraint tech-
niques is discussed in [199]. Performance impact of advance reservations on
workflows is depicted in [159], and effects of different models to support ad-
vance reservations are presented in [162]. However, none of them has dis-
cussed capacity planning. An algorithm described in [142] supports fuzziness
in a limited set of parameters and applies speedup models to propose flexible
allocations. Co-reservations are proposed as virtual resources. However, dy-
namic Grid behavior, reservation of logical resources, and optimization from
the perspective of the Grid had not been considered.

ICENI [115] uses a two tier system for reserving resources on the Grid.
It exposes reservation capability of underlying resource managers such as
SGE [168] without considering dynamic behavior of the Grid. No flexible ne-
gotiation mechanism that considers multiple QoS parameters other than the
timeframe is available.

Gridbus [27] provides a broker service for the Grid resources that takes
into account the fact that deadline and budget are specified, and then op-
timizes the usage of resources only by considering the current state of the
resources but without any planning horizon. Buyya et. al. proposed in [167]
a time optimization algorithm in auction-based proportional share systems
with multiple VOs, in which a user broker periodically adjusts a bidding price
in order to meet the deadline and minimize the cost.

A resource co-allocation across multiple nodes is presented in [24], they
studied co-allocation in multicluster systems with both analytic means and
with simulations for a wide range of parameters based on their previous work
on influences of various parameters, such the job structure and size.

KOALA [117] Grid scheduler supports co-allocation with a limited plan-
ning to synchronize start-times of tasks to be co-allocated on multiple nodes.
It focuses only on the make span of an application.

Many heuristics [48, 179] have been proposed for allocation optimization
but they optimize a single objective, for instance minimizing execution time.
Several heuristics have been proposed to address allocation problems based
on multiple QoS constraints such as budget and deadline. The approaches
given in [148] adjust a schedule generated by a time optimized heuristic and a
cost optimized heuristic to meet users’ budget constraints respectively. GRIA
(Grid Resources for Industrial Applications) [82] provides various resource
allocation strategies for workflow execution based on QoS requirements.

In [196], authors have developed algorithms based on the genetic algo-
rithms to minimize either execution cost or time. In their extended work
in [198] they have proposed a workflow execution planning approach, which
optimize two objectives. The planner can generate a set of alternative options
if the optimization objectives are conflicted. Alternative options provides more
flexibility to users to choose a desired option based on their QoS requirements.
It applies Multi-objective evolutionary algorithms (MOEAs) for the work-
flow execution planning problem. The goal is to simultaneously minimize two
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conflicting objectives-execution time and execution cost while meeting users’
maximum time constraint (deadline) and price constraint (budget).

Different reservation-aware schedulers such as [11, 168] do not consider
flexibility of different constraints, thus resulting in lack of negotiability.
Maui/Silver [111] is a job scheduler for cluster/Grid systems that makes it
possible to allocate local resources in the future. On a Grid node, it can be
used in combination with the other LRMs. However, an extention in the Grid
job submission service is required. Also, it does not support negotiation and
capacity planning.

In contrast to these existing works, we focus on optimizing multi-con-
strained allocations with effective capacity planning and management. A 3-
layer negotiation-based advance reservation is supported in order to make
flexible allocations. Generalized and practical solutions for priority provision
and agreement enforcement are introduced to deal with the dynamic Grid
behavior.

6.6 Summary

The Grid possesses a great potential for capacity planning and management
along with advance reservation. In this paper, we have addressed several chal-
lenges and introduced Grid capacity planning with negotiation-based advance
reservation for optimized QoS. Advance reservation enables a Grid resource
manager to deliver resources on-demand with significantly improved QoS. A
new 3-layer negotiation protocol with a smart offer generation mechanism
makes it possible to optimally generate multi-constrained allocations and to
efficiently reach an agreement. For an effective capacity planning, we model
resource allocation problem as on-line strip packing problem and introduce
a new algorithm to solve it. The new algorithm called VSHSH significantly
improves Grid resource utilization. Contention elimination and open reserva-
tions are supported to deal with dynamic Grid behavior, whereas, a practical
solution for agreement enforcement is provided based on the state-of-the-art
Grid technologies.

A prototype of the proposed system has been implemented to examine
the effectiveness of our approach. We have demonstrated that with proper
capacity planning using negotiation-based advance reservation, the utilization
can be maximized independently of the number of requested allocations. In
addition, the proposed approach better deals with the dynamic nature of the
Grid and generates more optimal allocations compared to existing heuristics
used for NP-hard resource allocation problems. Furthermore, it is observed
that the proposed approach does not add any significant overhead to the
existing Grid middleware services.
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Semantics in the Grid: Towards
Ontology-Based Resource Provisioning

Automatic Grid resource discovery and brokerage shields the Grid middleware
complexities from the Grid users and leads towards an invisible, easy to use,
and robust Grid runtime environment. Realizing this vision requires a ma-
chine understandable resource description and intelligent resource matching
mechanisms. Semantic technologies like ontologies provide vocabularies with
explicit definition, unambiguous machine-interpretable meanings which make
automatic resource brokerage possible. We propose an ontology-based resource
description, discovery, and correlation mechanism. For the resource descrip-
tion model, it is proposed to replace the classical symmetric attribute based
resource description model with an extensible asymmetric resource descrip-
tion model. This model provides a foundation for a flexible and extensible
resource discovery and resource matching mechanism.

7.1 Introduction

With the emergence of the Grid and increase in its resources, resource manage-
ment with automatic brokerage gains importance. Automatic Grid resource
brokerage is a challenging task; it has to provide a mechanism in which the
Grid resources can be advertised by resource providers, automatically dis-
covered by a resource manager, and allocated to the resource requesters on-
demand. The discovery and allocation of resources is part of resource man-
agement (Chapter 3). In addition, the resource management also provide ne-
gotiation mechanism between resource provider and requester (Chapter 5).

Different types of resources, including physical resources such as nodes
(Definition 11), and logical resources such as activities (Definition 6), can pro-
vide similar capabilities but with varying degrees of quality of service. This
highlights that resource capabilities are required to be presented in such a
way that consumers can easily discover resources matching their requirements,
by following sophisticated patterns of resource discovery, matchmaking, and

M. Siddiqui and T. Fahringer: Grid Resource Management, LNCS 5951, pp. 157–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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negotiation. A powerful discovery mechanism can be built on expressive de-
scription mechanisms. This means, it is necessary to explicitly, precisely, and
unambiguously describe Grid resources and specify various constraints over
resource descriptions. The description should be automatically interpretable
and understandable by services (Definition 9) operating as part of the Grid
runtime environment (Section 2.4).

Attribute based resource description (Section 3.3.1), used mostly in state-
of-the-art Grid middlewares, such as UniCore [70] and Condor [128], has sev-
eral short comings: they lack power of representations, capability to dynam-
ically update, and independence between the resource provider and resource
consumer for expressiveness. This resource description mechanism is symmet-
ric, i.e. both resource provider and consumer have to agree on a certain syntax
or schema.

This chapter proposes an ontology-based resource description and match-
ing mechanism. The resource matching, also refers to as matchmaking, is a
process of creating associations between resource requests, the available re-
sources, and their characteristics at a specific point in time. Resource matching
is a central part, however we use it as a more general concept. An ontology pro-
vides vocabularies with explicitly defined and machine understandable mean-
ings. We propose Grid resource ontologies in the form of OWL-DL classes and
concepts for describing resources in such a way that they can be unambigu-
ously interpreted and automatically understood by the management system.
Our discovery mechanism is based on a simple but expressive request-response
mechanism in which clients express requests based on OWL Query Language
SPARQL (Section 2.5.3) or (OWL-QL) [66].

Our use of the Semantic Web technologies, such as (OWL) [180],
SPARQL [182] and Jena APIs [32] for semantics based resource management,
is in the line of the Semantic Grid vision [47, 43, 46] and its service-oriented
architecture [36].

Resource ontologies are asymmetrically extensible so that resource pro-
viders can easily extend them without loosing the semantic soundness. We do
not have to agree on a certain terminology while extending the ontological con-
cepts. For instance, a term Unix defined as a class of OS in our base ontology
of computing resources, then one can asymmetrically extend the term Unix to
Linux and Linux to ScientificLinux. After this, a reasoner can automat-
ically and unambiguously infer that ScientificLinux is a specialization of
Linux as well as Unix.

7.2 Describing Resources with Semantics

The popular approach being used in the semantic web is the use of description
logic with ontologies (Section 2.5.2). A commonly used definition of ontologies
is that they are formal explicit specifications of a shared conceptualization
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[90]. An ontology is a set of hierarchical description of important concepts in
a domain, along with descriptions of properties of each concept.

In OWL (Section 2.5.2), an ontology is a set of definitions of classes and
properties and the constraints on the way those classes and properties are
employed. Using the powerful expressiveness and fact stating ability of OWL,
one can declare classes as taxonomy of concepts and organize them in a sub-
sumption hierarchy; classes can be expressed as a logical combination of other
classes. Properties can also be organized in a sub-property hierarchy. Ap-
plying different kinds of restrictions on classes and properties leads towards
introduction of specialized classes of new concepts.

In the context of the Semantic Web [181], ontologies play an important
role in automatizing processes to access information. For this, ontologies pro-
vide structured and extensible vocabularies that demonstrate the relation-
ships between different terms allowing intelligent agents to flexibly and un-
ambiguously interpret their semantics. For example, a computing resource
ontology might include the information that the terms Pentium and Celeron
are Intel Processors, that Intel is not AMD or SPARC, and that an Intel
system includes a Pentium or Celeron processor. This information allows the
term "Computer with Pentium or Celeron Processor" to be unambigu-
ously interpreted (e.g. by a resource broker) as a specialization of "Intel
System". In the Description Logics, the fundamental reasoning of concept
expression is a subsumption [109], which checks whether one concept is a
subset (or superset) of an other concept.

The matching of a request to the available resources depends on their
proper and accurate description. Different languages, based on different logi-
cal formalism, can be used for resource descriptions. One can use Description
Logics [16], Logical Programming, and First Order Logic as a logical formal-
ism. Since in our case we need to propose alternative option as well, that
is possible with hierarchical relationships between classes of resource and re-
quest descriptions, we have considered a Description Logics based language,
i.e. OWL-DL. It provides a rich set of modeling primitives with powerful
expressiveness for our requirements. By using the OWL-DL we attain the
following:

• Grid resource management and brokerage takes a large step towards com-
patibility within the Semantic Web and the Grid resource descriptions
become web-understandable.

• The resource provider can describe resources with different levels of com-
plexity and completeness by extending existing concepts.

• The XML-schema data types and structures can be exploited for the prop-
erty ranges in resource descriptions.

• A subsumption relationship enables us to perform complex resource match-
ing, that otherwise could be very difficult if not impossible.
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• A more natural conceptual definition of resources based on the restriction
over the resource attributes is possible and a semantics based agreement
between resource provider and consumer can be achieved.

• After having the conceptual resource descriptions, the resource provisioner
can categorize sets of resources and generate alternative options for re-
questers.

• Most promisingly, clients can express complex requests in a simple-human
as well as machine-understandable format.

• The management system can fulfill more resource requests or improve
provisioning capability. For instance, in a legacy system without ontology-
based description, a request for a Unix system fails if the term Unix is not
specified. However, this might be successful while using an ontology.

• Spelling or typing errors in descriptions and requests can be prevented by
using a controlled vocabulary.

The OWL-DL supports a reasonable set of tools for creation and manipulation
of ontologies such as Protege ontology editor [177], Jena ontology APIs [32]
along with different implementations of reasoners, such as the RACER [178]
and Pellet [160].

7.2.1 Concept Description

We use OWL-DL for the description of resources and their components. How-
ever, the syntax of OWL is rather verbose and complex. In order to hide the
complexity and simplify the expressibility, we introduce a very simple concept
description language, that is automatically translated into OWL concepts and
knowledge base. The purpose of introducing a very simple yet a new language
is that it enables us to update dynamic information at runtime. For instance,
in case of node (Definition 11), the totalCPUs is a static attribute whereas
freeCPUs is dynamic. A resource provider can hardcode totalCPUs while de-
scribing resources but freeCPUs needs to be updated periodically. Different
information providers (IP) can be configured as part of concepts and invoked
dynamically to populate properties of a concept. The simplified concept de-
scription language can be defined as:

concepts name : [Node|Application|Goal] {
concept name [: baseType+]? [as baseProperty] {
[property name [: type+]? = value]*
[meta property name [: type+]? value]*
[constraint [constraint]* op [bounds]?]*
[concept]*

}
}

This shows that one concept can be defined by other concepts. A concept can
be derived from a set of other concepts. Enclosing concepts possess has-a or
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part-of relationships. Similarly, a property can also be inherited and multiple
properties can be added to a specific concept. A standard XML schema type
can be used as a range of a property. The presence of ’as’ in a concept definition
indicates name of ’has-a’ relationship. Meta property is not considered as part
of the concept but can be used during prepossessing. Following text shows an
example description of a node using concept language:

Example 22.

concept node : Node {

meta ontology = http://dps.../~mumtaz/glare/segrid_2.0.owl

meta conceptBuilder = org.askalon.gridarm.segrid.ConceptBuilder

meta reasoner = http://kreusspitze.dps.uibk.ac.at:8081

concept Host : Cluster {

name = ${HOSTNAME}

concept CoreDuo : Itanium {

clockSpeed = cpu.clockSpeed()

vendor = Intel

model = Centrino Duo

meta cpu : infoProvider =

org.askalon.gridarm.segrid.ip.CPUInfoProvider

concept IA64 : Architecture { }

} concept Redhat : Linux {

version = os.version()

release = os.release()

meta os:infoProvider = /home/mumtaz/.../libexec/osinfo

}

}

concept CE : ComputingElement {

totalCPUs = 16

freeCPUs = ce.freeCPUs()

meta ce:infoProvider = org.askalon.....GlueCEInfoProvider

concept GRAM : Gatekeeper { ... }

}

}

��

This example depicts a description of a node with a Host and a CE that is
converted in OWL concepts. The Host is further defined in terms of CoreDuo
processor and Redhat operating system, whereas CE is defined in terms of
GRAM gatekeeper and properties totalCPUs and freeCPUs. Each concept
may have some information providers (IP). An IP can be either a Java class
or a shell script that is invoked dynamically to retrieve and substitute the
actual values of associated properties at runtime. However, the values of static
properties may be hardcoded as well. Besides, IPs, meta properties can also
be used, for example, to specify URI of the foundation ontology, URL of a
reasoner, and a concept builder class that transforms specified concepts into
OWL classes and properties.
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The concepts defined by the Grid resource requester or provider are then
automatically translated into OWL, and a description logic reasoner such as
pellet is used for inference. The translation or ontology building is imple-
mented using Jena Ontology APIs [32]. Jena allows us to create new ontology
model using a set of concepts. Furthermore, new individuals are created dy-
namically once a resource is available. In ontological terms, an individual refers
to as a concrete description of a resource.

Furthermore, we propose the same concept language to define high-level
user requirements or goals as a request that is transformed into SPARQL
query:

Example 23.

concepts query : Goal {

meta select = node totalCPUs

concept node : Node {

concept host : Host {

constraint hasOperatingSystem {

bounds range=Redhat

}

}

concept ce : ComputingElement {

constraint and {

constraint totalCPUs {

bounds min=4

} constraint freeCPUs {

bounds min=2

}

}

}

}

}

This query of type Goal can be described in plain English as:

Select a node and its totalCPUs if the node has Redhat as operating
system and a computing element with at least 4 totalCPUs and at
least 2 freeCPUs.

This query can be transformed into SPARQL format that looks as follows:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX seg: <http://segrid.gridarm.askalon.org/segrid_2.0#>

SELECT ?node ?totalCPUs

WHERE {

?node rdf:type seg:Node .

?node seg:hasHost ?host .

?node seg:hasComputingElement ?ce .

?host rdf:type seg:Host .
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?ce rdf:type seg:ComputingElement .

?ce seg:totalCPUs ?totalCPUs .

?ce seg:freeCPUs ?freeCPUs .

FILTER ((?totalCPUs>8)&&(?freeCPUs>8))

}

Here seg, rdfs and rdf are prefixes referring to namespaces of our foundation
ontology, RDF, and RDFS respectively. ��

Fig. 7.1. Concept description to resource provisioning flow.

Resource providers can define and register their resources with the resource
manager that can be contacted by the users/requesters in order to make re-
quests, and, to get semantically generated matching offers. Figure 7.1 depicts
an information flow starting from concept description by resource provider to
semantically enabled resource provisioning by resource manager.

7.3 Architectural Extension

As described in Chapter 3, GridARM consists of a set of services loosely cou-
pled in a service-oriented fashion. As shown in Figure 7.2, three core services
include a broker (Chapter 3) that performs matchmaking of physical resources
such as computers, the GLARE (Chapter 4) that is a Grid application regis-
tration, deployment, and provisioning framework, an allocator that provides
agreement management, negotiation, and capacity planning for computing
resources (Chapter 5, Chapter 6).

This chapter introduces the semantics based extension to GridARM in
which the core services are extended with semantically-enabled services loosely
coupled to enable coordinated resource sharing and provisioning with seman-
tics. In such an environment, both kind of services can co-exist and coordinate
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Fig. 7.2. Grid Resource Management Architecture.

with each other according to the vision of proposed architecture for the Se-
mantic Grid. Semantically-enabled services can interact with multiple shared
reasoners [178, 160] for entailment of ontological concepts advertised by ser-
vice providers. For instance, one reasoner can be used to policy entailment,
whereas other can be used for resource entailment. The main services include:

• a provisioner that performs resource matching with semantics covering
both physical (computers) and logical (activities) resources. This service
mainly coordinate with resource broker (Chapter 3) and GLARE (Chap-
ter 4),

• a planner service extends planning capability of allocator (Chapter 5) with
semantics for optimal resource allocation. For example, a planner can take
two major responsibilities; planning for optimal allocation, and planning
for optimal execution. The later is responsibility of scheduler therefore we
focus on planning for optimized resource allocation;

• a negotiator is a semantic extension of reservation and negotiation mech-
anism (Chapter 6) provided by the legacy allocator.

7.4 Resource Ontologies

Physical and logical resource ontologies are proposed in the form of OWL-
DL concepts that is collectively referred to as base ontology or foundation
ontology. A subset is shown in the Figure 7.3. The physical resource ontol-
ogy describes concepts related to the Grid nodes such as processor, operating
system, whereas logical resource ontology represents concepts associated with
logical resources such as activities (Definition 6), agreement (Definition 34),
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configuration etc. Based on these concepts, new entailment may also be in-
ferred by the resource manager/provisioner. For instance, a specific purpose
resource ensemble with aggregated power of physical resources or synthesized
capabilities of logical resources.

Resource providers and requesters use these ontologies to describe their
resources and resource requests in an ontological format. The resource match-
ing mechanism uses these ontological concepts in reasoning while matching a
resource request with available resources.

We created a basic ontology in OWL-DL [146] using Protege 1. It de-
fines fundamental concepts of Grid nodes and activities. Advertisement of
resources is done by providing semantics descriptions either by using a simple
concept description mechanism (Section 7.2.1), or automatically transforming
from syntactical descriptions generated by resource discoverer (Section 3.3.1)
as node descriptions or registered in GLARE as an XML-based internal rep-
resentation of activities. Each activity is modelled as an extension of basic
concepts defined in the foundation ontology.

7.4.1 Physical Resource Ontology

The physical resource ontology provides a vocabulary that enables resource
providers to describe their resources in a more expressive way. The basic
ontological model can be extended to add more domain specific concepts while
describing a specific resource.

It is proposed to represent the concepts related to the Grid resources as
OWL-DL classes in a hierarchical way. The resource description is defined as
the boolean combination of a set of constraints over the resource concepts and
properties. The constraints can be expressed either through OWL restrictions
or XML schema restrictions. The resources can be described by using different
classes and properties and also by importing domain specific ontologies. In
order to use the ontology model more effectively, a resource request is also
considered as a hypothetical resource and can be subsumed in the latest model
of the resource ontology available at the time of request.

The base ontology of the physical resources consists of classes and proper-
ties that describe nodes, Network, Storage, like Computing element,
Cluster, SubCluster, and Host. These classes includes Policy, Processor,
OperatingSystem, Architecture, Filesystem, Memory, State, etc. A Com-
puting element of a resource consists of concepts like resource Info, State,
Jobs and Policy. Each class defines the most generic prospects of the con-
cept being modelled. In order to achieve this model using OWL, each class
is defined to be a subclass of a set of anonymous classes and each class re-
stricts some of its properties. For instance, the Node class shown in Figure 7.3
is defined as subclass of several anonymous classes that each of which re-
stricts one of the class properties such as hasFileSystem, hasArchitecture,
hasNetworkAdapter, etc.
1 An ontology editor available at http://protege.stanford.edu
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Fig. 7.3. An incomplete class hierarchy of different concepts of the Grid resources.

The vocabularies are extensible. A user can extend them asymmetrically with-
out loosing their semantics. For example, we can add a new term NetGear as
a specialization of GigabitEthernet which is not compatible with Solaris
operating system. The new term added independently by a user can be in-
ferred by a reasoner as it is-a NetworkAdaptor. Also integrity of requests can
be verified by the reasoner with request satisfiability check, e.g. if someone
requests that:

’I need a computing resource with Solaris OS and with NetGear
Ethernet adapter’

The reasoner can easily identify that this request cannot be fulfilled since
NetGear is incompatible with the OS Solaris.

7.4.2 Resource Ensembles

The resource ensemble ontology deals with the conceptual grouping of Grid
resources. A resource provisioner generates different resource ensembles based
on the concepts and restrictions given under the foundation ontology. The
resources in a resource ensemble share some common features; either they
collectively provide a new and complex capability or a more powerful aggre-
gated capability. For instance, a set of all nodes that share a specific network
filesystem, or a set of nodes, in which each node is connected to other nodes
through a specific/common fast interconnect.

A resource ensemble ontology may also group nodes in ensembles in which
enclosed nodes collectively achieve a certain minimum number of Mflops as
part of the ensemble. In this way a resource ensemble provides a required
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number of MFlops which is otherwise not possible by a single node. This kind
of resource ontology enables a resource provisioner to accept requests in a
more generic form that is closer to a natural language.

7.4.3 Logical Resource Ontology

Similar to physical resource ontology, logical resource ontology covers concepts
related to activities (Definition 6): software components with functional and
non-functional properties and arguments, and workflow applications (Defini-
tion 10). Using a basic vocabulary of concepts defined as part of the foundation
ontology, an application provider can add new concepts asymmetrically. That
means, an application provider doesn’t have to restrict itself to a specific ter-
minology, concept, or property names and/or their values. For instance, an
activity can be categorized as PosixActivity and ServiceActivity. A PosixAc-
tivity can be further categorized according to different versions, supporting
architectures, and other QoS based categories. Similarly, input/output argu-
ments can be defined in terms of primitive and complex arguments: a FileAr-
gument can be further categorized as ImageDescription, DocumentArgument,
and MediaFile etc.

Following example shows a description of an application with DVI2PDF-
Converter as a PosixActivity, whereas DVIFile as an input DocumentArgu-
ment and PDFFile as an output DocumentArgument.

concepts PDFTools {

concept DVI2PDFConverter : PosixActivity {

...

}

concept DVIFile : DocumentArgument as input { ...

}

concept PDFFile : DocumentArgument as output { ...

}

concept Reliability : QualityOfService {

property value : xsd:float qos.reliability()

.....

}

}

Using a subsumption hierarchy of concepts, an application requester can de-
scribe its high-level requirements. These requirements are mapped to concrete
descriptions after reasoning with the latest ontological model. In this way
multiple alternative options can be generated and proposed matching user
requirements.

7.5 Discovering Resources with Semantics

As described in Section 2.5.3, both SPARQL and OWL-QL can be used for
querying ontology models and knowledge bases. SPARQL is centered around
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RDF whereas OWL-QL is specifically designed for OWL(-DL). The OWL-QL
can be used to describe a resource request in a simple and very expressive for-
mat by using a collection of the OWL facts and axioms. An OWL-QL query
includes a query pattern as a collection of OWL sentences and a list of must-
bind, may-bind, and don’t-bind variables. These different types of variable
bindings distinguish OWL-QL from other query languages and help in access-
ing alternative or close matches. Furthermore, a query optionally includes a
query premise, an answer pattern and a reference to answer knowledge base.
For example, a client can request for nodes with the following query pattern:

Example 24.

Query:
("Which nodes have 64bit Solaris operating system?")
Query Pattern: {(hasOperatingSystem ?node ?os)

(type ?os Solaris)
(hasArchitecture ?os 64Bit)}

Must-Bind Variables List : (?node)
May-bind Varables List : ()
Don’t-bind Variable List : ()
Answer Pattern : {(?node)}
Answer:
("altix1.uibk.ac.at" "hcma.uibk.ac.at")

��

The OWL-QL is designed for answering queries of the form ”What URIrefs
and literals from the answer knowledge base and OWL denote objects that
make the query pattern true?” [66].
In the OWL-QL queries, URLs of answering servers and references to the
answer knowledge bases can be specified. This feature can be exploited in
making a distributed resource matching framework. For example, a resource
ontology and a usage policy knowledge base can be installed on different
nodes and a requester can specify them dynamically while making a request.
The use of human readable surface syntax for queries and answers are very
useful in a Semantic Grid context. It could be possible to devise a translation
mechanism in which a simple request in the form of a formal natural language
syntax could be translated into a query pattern. For instance, in the above
example the modal verbs can be replaced with a variables to be found/bound
(e.g. ’which node’ with ?node), objects with OWL classes, and so on. An
equivalent query in SPARQL, of OWL-QL example shown above, looks like:

Example 25.

SELECT a node ?node having Solaris operating system with 64Bit
architecture.
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SELECT ?node
WHERE {
?node seg:hasOperatingSystem ?os .
?os rdf:type ?Solaris .
?os seg:hasArchitecture ?arch .
?arch rdf:type 64Bit .

}
��

Example 26. This example shows that a client can request for an activity with
the following SPARQL query:

SELECT an activity ?activity that converts a DVI document into a
PDF document and has reliability greater than 0.5.

SELECT ?activity
WHERE {
?activity seg:input ?input .
?input rdf:type seg:DVIFile .
?activity seg:output ?output .
?output rdf:type seg:PDFFile .
?activity seg:hasReliability ?reliability .
?reliability seg:hasValue ?rvalue .

FILTER (?rvalue > 0.5)
}

��

A query premise can also be added like Linux and IA64 as shown in the
following SPARQL example below:

Example 27.

If a node has Linux operating system and IA64 architecture then what
is the available memory of that node?”

SELECT ?node ?freeMemory
WHERE {
?node rdf:type seg:Node .
?node seg:hasOperatingSystem ?os .
?os rdf:type Linux .
?node seg:hasArchitecture ?arch .
?arch rdf:type IA64 .
?node seg:hasMemory ?mem .
?mem seg:freeMemory ?freeMemory .

}
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Answer: node | freeMemory
--------------------------------------
hcma.uibk.ac.at | 2.4GB

��

SPARQL provides a mechanism to add filters in the query.

Example 28.

Select a set of nodes with ScientificLinux as operating system, at
least 3GB free memory, at most 64 total CPUs, and free CPUs not
less than 16.

SELECT ?node ?freeMemory ?totalCPUs ?freeCPUs
WHERE {
?node rdf:type seg:Node .
?node seg:hasOperatingSystem ?os .
?os rdf:type seg:ScientificLinux .
?node seg:hasMemory ?mem .
?mem seg:freeMemory ?freeMemory .
?node seg:hasComputingElement ?ce .
?node seg:totalCPUs ?totalCPUs .
?ce seg:freeCPUs ?freeCPUs .
FILTER
((?totalCPUs<=64)&&(?freeCPUs>15)&&(?freeMemory>3000))

}
Answer:
?node |?freeMemory |?totalCPUs |?freeCPUs
-------------------------------------------------------------
hcma.uibk.ac.at | 3.4GB | 64 | 20
altix1.jku.austriangrid.at| 3.1GB | 48 | 16

��

7.6 Subsumption-Based Resource Matching

The resource matching mechanism is introduced based on the subsumption of
concepts and roles represented by the description logics formalisms. Descrip-
tion logics techniques are employed to classify the Grid resource descriptions.
The resource descriptions are maintained in a hierarchy of concepts or classes,
where classes are linked through roles established by using the restrictions on
classes and properties. Each resource description is embedded in the hierar-
chy persistently once it is satisfied. A request for the resource(s) could also be
made similar to the resource description and subsumed in the taxonomy.

This mechanism enables the Grid resource provisioner to generate an ex-
act or a close match. Based on the subsumption of the request in the resource
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ontology model, the provisioner can easily suggest alternative options that can
be exercised if an exact match can not be found. This kind of alternative offer-
ing is hard to achieve without an ontological model. The resource subsumption
in the taxonomy and the request matching is performed by considering the
matching concepts based on the following propositions:

• Request � Resource∨ Request ≡ Resource
This shows that the Request is a sub concept or an equivalent concept
of the Resource, which means an exact and ideal match satisfying all
necessary and sufficient conditions.

• Request � Resource
Represents a Request as a super concept of Resource. Resources belonging
to the super-concept do not fulfill all constraints set by the request, but are
considered as the best possible match and used as an alternative option.

• ¬ (Request� Resource � ⊥)
The intersection of both Resource and Request concepts is satisfiable and
considered as a least suitable option as an alternative.

• (Request� Resource � ⊥)
This means that there is no match possible.

These concept matching propositions clearly organize the relationships in a
well defined discrete scale and provides a solid ground for a Description Log-
ics reasoner to be used for the classification of the Request to compute its
subsumption relationship with all registered resources.

7.7 Evaluation

The foundation or basic ontology is created by using Protege ontology editor
with OWL plugin [177]. Then our simple concept language (Section 7.2.1)
converter, developed in Jena [32], is used to dynamically generate new con-
cepts and populate knowledge base. The Pellet reasoner is used to see the
classification of a resource request in the knowledge base. The subsumption
of resource requests in the model proves the propositions given above and
matches with OWL-QL query result. According to our initial findings, the
time needed for inference and subsumption grows significantly with increas-
ing number of ontological concepts. Although this overhead matters, but in
the Grid, the number of instances of the concepts is more important.

We compared throughput of proposed semantics-based asymmetric re-
source matching with syntax-based symmetric resource match in GLARE and
WS-MDS. We performed following tests with activity (Definition 6) entries of
real world applications deployed in the Austrian Grid [33]. We use the sim-
ple concept description language for semantically describing activity concepts,
and Jena [32] APIs for translating concepts into ontology model. Same set of
activities were registered in WS-MDS and GLARE as described in Section 4.5.
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Figure 7.4 and 7.5 demonstrate comparison of semantically enabled re-
source matching with conventional asymmetric attribute-based approaches
adapted by GLARE and WS-MDS (Section 2.3.3). Both figures represent
throughput. Figure 7.4 depicts with varying number of concurrent clients
whereas Figure 7.5 depicts with varying number of entries respectively. It
is shown that semantics has a greater overhead resulting in less throughput.
This is because of: the expensive mechanism required for the reasoning, and
XML-based OWL that is very verbose and thus takes longer for parsing.
However, the semantics based resource matching mechanism is adapted for
accurate provisioning of resources instead of performance.
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7.7.1 Subsumption: An Example

The following example demonstrate the usefulness of the taxonomy subsump-
tion and OWL-QL. It contains a query to search for nodes with Solaris oper-
ating system and with SGE as local resource manager (LRM).

Example 29.

SELECT ?node

WHERE {

?node rdf:type seg:Node .

?node seg:hasOperatingSystem ?os .

seg:Solaris owl:subClassOf ?ost .

?os rdf:type ?ost .

?node seg:hasComputingElement ?ce .

?ce seg:hasLRM ?lrm .
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?lrm rdf:type ?SGE .

}

Answer: ("Node4, Node5, Node1")

This query is performed at the time when the resource ontology model as
shown in the Figure 7.6 with solid lines was available. The presence of
’Solaris subClassOf ?ost’ statement indicates that the provisioner can
return not only the exact match but close matches as well.

The example ontology shown in Fig. 7.6 explains how the resource match-
ing is achieved. At the time of request we have a subtree of the main sub-
sumption tree in the system with seven Grid nodes. Nodes are individuals of
concepts organized in a hierarchy in which resource description in each lower
level is a specialization of the resource concept given in the upper levels. We
added the request to the knowledge base as follows:

concepts Request : Goal {

concept node : Node {

concept host : Host {

constraint hasOperatingSystem {

bounds range=Solaris

}

}

concept ce : ComputingElement {

constraint hasLRM {

bounds range=SGE

}

}

}

}
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Fig. 7.6. Subsumption of a Request in the existing resource taxonomy.

The request is transformed in OWL concepts and then classified in the sub-
sumption tree by the reasoner as shown in the subsumption tree as ’Request’
surrounded by the dotted rectangle and its relation with other nodes is de-
picted as dotted lines. It is observed that nodes Node4 and Node5 are special-
ized concepts of the Request and as such are marked as exact matches. There
is no equivalent concept. If we look for the super concepts of the Request up
to the root, then nodes NodeX and NodeY would be marked as a match. By
employing the third proposition as specified in Section 7.6, node Node1 is
found compatible with the request. All other nodes are declared inconsistent
as the restrictions over the properties do not match.
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7.8 Related Work

The most prominent information services in the Grid and Web communities
are the Meta-computing Directory Service (MDS) [39] and UDDI [126] respec-
tively. These services support a simple query language for the resource and
service selection but lack in descriptive expressiveness. Thereby, there is no
sophisticated resource matching mechanism available. In the traditional Grid
resource management systems, different syntax-based synchronous resource
matching mechanisms are used. These mechanisms provide expressiveness to
some extent but the drawback is that they still require symmetric attribute-
based description mechanisms.

The Condor [128] system is one example in which a symmetric syntax-
based matchmaking is performed for the resource allocation in the Grid in-
frastructure. For this purpose, a classified advertisement-like matchmaking
framework has been developed. In this framework, resources and requests
are described in the form of attribute name-value pairs and the resource con-
sumers and providers specify their matching constraints. These constraints are
then evaluated to determine a match for each request with available resources.
The drawback of this matchmaking is that it works only if both request and
resource descriptions use the same attribute names and agreed upon attribute
values, it fails otherwise. A sample Request ClassAd can be specified as:

Example 30.

Request JobClassAd:

[

Type = "Job";

Owner="mumtaz";

Constraint =

type == "Machine" &&

Arch == "Intel" &&

Disk >= 20000 &&

OpSys =="Linux260";

]

This example shows a request for a machine with Intel architecture, Linux
operating system, and at least 20GB disk space. The Resource ClassAds are
described in a similar way by using the similar syntax. The constraint
clause of request classAd is matched with the constraint clauses of resource
classAds to find the solution. The disadvantage of this system is that both
the resource provider and the requester have to agree on a unique syntax and
they cannot extend the terms or concepts independently. In contrast, this kind
of asymmetric extension of concepts, that can be performed independently, is
possible in our proposed resource matching mechanism. For instance, as shown
in Figure 7.7, the term Intel can be extended to Pentium and Xeon without
coordination between the participants and the provisioner can automatically
understand the semantics of the new terms.
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Fig. 7.7. Processor Class hierarchy.

The work described in [170] is the first effort for ontology-based Grid re-
source matching devised based on semantic web technology. In this work, an
asymmetric description of resources and requests are modeled and described
separately. Instead of a syntax-based resource matching, a semantics based
matchmaking is proposed. Due to the asymmetric description, no coordina-
tion between resource providers and consumers is required before adding a
new vocabulary. A simple example of a Job Request is given below:

Example 31.

JobRequest.Name "request1"

JobRequest.Owner "mumtaz"

JobRequest.JobType "MPI"

JobRequest.RequestResource.ResourceType

"ComputerSystem"

JobRequest.RequestResource.RequiredOS.OSType

"Unix"

Based on the domain background knowledge and rules specified in
TRIPLE [67], the matchmaker concludes that Linux and SunOS can be used as
a Unix operating system, and the requested MPI job can run on any tightly-
coupled machine like Linux cluster or a shared memory system. The system is
based on RDF-Schema for an ontology description. The domain background
knowledge and matching rules, described in the TRIPLE rule language, are
explicitly required to perform resource matching. The TRIPLE rules are first
compiled into XSB rules, which are then compiled into instructions for XSB
virtual machine. TRIPLE/XSB evaluates rules and finds the best match for
the request with the help of background knowledge and ontologies. The dis-
advantage of this system is the overhead of explicit rules definition when the
semantics vocabulary increases. Furthermore, the recursive rules and two-
phase compilation is time consuming. The underlying ontology language of
this system, i.e. RDFS, supports a smaller set of semantic vocabulary (W3C
approved axioms and constructors) as compared to the OWL-DL which is
the language of our proposed system. An extension to the standard RDFS is
possible but it leads to the requirement of a non-standard specialized reasoner
and query constructs. Our proposed system has no such limitation.

Although one can extend standard RDFS semantics to make it more ex-
pressive by introducing new constructs, but then one has to implement a
specific reasoner and have to construct specialized queries in order to take
advantage of new constructs. This approach is against standardization efforts
being done by the Semantics Web community.
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7.9 Summary

This chapter introduces semantic enhancement of resource provisioning and
management for the Grid. The semantics are introduced by proposing an
ontology-based resource description and resource matching mechanism which
is used to make Grid resources available on-demand. It is shown that OWL
is a powerful language that suits our needs. It is demonstrated that SPARQL
can be used as the request-response mechanism to find exact or close matches.

A simple concept description language is introduced that can be used by
requesters and providers to represent resource/request descriptions. Re-
sources can be described asymmetrically. These descriptions are then auto-
matically translated into OWL concepts and knowledge base and requests are
translated into SPARQL query. A taxonomy subsumption mechanism is in-
troduced that can be exploited to generate alternative offers if exact match is
not possible.

The advantages of the proposed semantics-based resource matching mech-
anism is highlighted by providing several examples. It is observed that on-
demand provisioning of the Grid resources can be improved significantly with
the possibility of semantics-based alternative offer generation process.



8

Semantics-Based Activity Synthesis: Improving
On-Demand Provisioning and Planning

In the previous chapter, the possible role of semantics in Grid resource match-
ing and brokerage is discussed. This chapter introduces semantics-based syn-
thesis of activities for automatic workflow generation and improving on-
demand resource provisioning. On-demand synthesis of Grid activities plays
a significant role in automatic workflow composition and in improving ser-
vice quality of a Grid resource provisioner. However, in the Grid, synthesis of
activities has not been considered due to limited expressiveness of the repre-
sentation of activity capabilities and the lack of adapted resource management
means to take advantage of such activity synthesis. This chapter introduces
a new mechanism for automatic synthesis of available activities for the Grid
by applying ontology rules. Rule-based synthesis combines multiple primitive
activities to form new compound activities. The synthesis process generates
new compound activities that can be provisioned as new or alternative options
for negotiation and advance reservation. This is a major advantage compared
to other approaches that only focus on resource matching. The newly gener-
ated compound activities provide aggregated capabilities that otherwise may
not be possible; this leads towards an automatic generation of complex work-
flow applications. Furthermore, we introduce semantics in capacity planning
for improving optimization in resource allocation. We demonstrate advantages
of semantic-based automatic synthesis of Grid activities.

8.1 Introduction

The Grid enables resource sharing and coordinated problem-solving across
computers and humans in a distributed and heterogeneous environment [144].
In such a complex and dynamic environment, some pf the challenges lie in
coupling resources with components of potential applications which may be
executed across matching resources as workflows. Enabling scientific work-
flow applications for the Grid has been identified as an important research
topic [58, 197, 63, 112, 157] and is an ongoing challenge for the research
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community working in the area of workflows [62]. A Grid workflow (Defini-
tion 10) as a collection of activities (software components) may be executed
across multiple Grid nodes in order to achieve a common goal [136]. Abstract
activities are mapped to concrete deployments at runtime in order to deal
with the dynamicity and heterogeneity of Grid resources (Chapter 4). The
workflow mapping and execution has been automated [62, 158] but the work-
flow composition is still manual. Decoupling of abstract activity descriptions
from concrete deployments has been successfully done as described in Chap-
ter 4. This enables a Grid user to manually compose an abstract workflow
independently from the dynamic Grid environment. The manually generated
workflow can be mapped dynamically to Grid resources at runtime.

Automatic synthesis of Grid activities plays a significant role in automatic
composition of workflows and in improving provisioning quality of the Grid
resource manager. The synthesis involves combining or integrating multiple
activities into a single complex activity. Performing such a synthesis is useful
in: 1) improving usability of the Grid by aggregating capabilities of underlying
resources, 2) generating multiple options built on scarce resources (activities)
to be provisioned on-demand by the Grid resource manager, and 3) optimizing
resource allocation with adapted planning mechanism.

However, synthesis of activities in the Grid has been largely ignored due
to limited representation of their capabilities and lack of adapted resource
management mechanisms to take advantage of the newly generated activities.

This chapter introduces a new mechanism for automatic synthesis of ac-
tivities by applying the ontology rules [183]. In the extendable foundation
ontology each primitive activity is modelled as a separate concept in terms of
its inputs, outputs, usage assumptions and after effects [180]. Ontology rules
can be used to define new concepts and applying them to existing ontology
results in new entailment. We introduce a set of new rules for synthesis of ac-
tivities which integrate primitive activities to form new synthesized activities.
These rules are defined by following a set of well defined workflow patterns
and applied to the activity knowledge base with the help of rule-based rea-
soning tools such as Pellet [160] or Racer [178]. Rules-based semantics gives
the declarative descriptions of activities a well-defined meaning by specify-
ing ontological foundations and by showing how such foundations are realized
in practice. Activities are described obtrusively, advertised dynamically, and
provisioned on-demand according to user goals.

The extension in the semantics work, presented in previous chapter, with
activity synthesis enables a resource manager to become a smart provisioner
that automatically generates a set of complex activities according to defined
rules and delivers them on-demand. These complex activities can be treated
as standalone workflows or can be used as building blocks of new workflows. A
workflow can be generated as a side effect in the form of an abstract workflow.
Askalon’s high-level Abstract Grid Workflow Language (AGWL) [62], execu-
tion and scheduling services, and a set of monitoring and prediction tools are
used to:
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• visualize workflows,
• map their components to the concrete deployments [158],
• execute onto the Grid [62].

Since synthesized activities provide new or aggregated capability of its found-
ing constituents, provisioner becomes a better capacity planner and negotia-
tor. After the synthesis, a provisioner gets more to offer possibly with different
service qualities than originally it could have been left with. The provisioner
accepts user goals and generates workflows based on user goals leaving the
user to focus on its problem.

Furthermore, semantics are introduced not only for resource matching but
for the capacity planning as well. The role of semantics in optimizing resource
allocation is demonstrated.

The resource descriptions may be queried with abstract goals, may fore-
sight required capabilities, or may be checked to avoid inconsistencies in the
declarations. Rules-based management builds a rigorous approach towards
giving the declarative descriptions of resources a well-defined meaning by spec-
ifying ontological foundations and by showing how such foundations may be
realized in practice. Semantic description and rule-based synthesis of primitive
resources enable a provisioner to accept user goals, generate complex workflow
and make it available for execution. This enables a Grid user to focus on its
problems and let the provisioner to help in achieving its goals.

8.2 Motivation

The Semantic Grid is considered as an extension of the current Grid in which
information and services are given well-defined and explicitly represented
meaning with the power to enable better cooperation [46]. Resource repre-
sentations are enriched with semantics using ontologies [146] and discovered
based on high-level user goals. A goal is a specific measurable and time tar-
geted objective. On a personal level, goal setting is a process that allows people
to specify the work towards their own objectives. In the Grid, a goal may be
a data set that is to be generated by using some input. The generation may
involve a series of activities and aggregated power of computing resources. In
the Grid, aggregated capability of activities can be utilized to achieve a goal
that otherwise may not be possible especially with needed quality of service.

Provision of aggregated computing power (in MFlops) of various Grid
nodes is one example of aggregated capacity. However, aggregating capabili-
ties of software components or activities is rather challenging. The activities
deployed across multiple computers may provide aggregated capability that
leads to utilize aggregated computing power. Since activities represent self-
contained autonomous software components, the aggregation is possible with
synthesis.

Lets assume we want to solve a problem that needs an aggregated power
of computers distributed in a Grid. We can opt for one of the following:
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1. design and develop a new application from scratch that is fully integrated
in the Grid and can be executed on multiple nodes in a distributed fashion,

2. create an association of a set of legacy activities that are already deployed
on various nodes in the Grid and that can collectively achieve the same
goal.

The later option is similar to writing a shell script by using available com-
mands in a shell instead of developing a new application from scratch.

Analogous to a shell script, in which each command with well defined
interfaces is a self contained activity, a Grid script i.e. workflow also comprises
independent (legacy) applications that collectively achieve a single goal. Th
shell commands are registered in its path whereas activities in the Grid are
registered in a registry or information service such as GLARE described in
Chapter 4.

This model can be explained with a concrete example. Consider a client
wants to render a movie based on a textual description of its scenes. It is
likely that there is no (free) tool available that can perform such task, and
even if there is one, it is possible that the tool is not Grid-aware and is not
able to distribute the rendering of different scenes of the movie across the
Grid among different computers. Note that the movie rendering is a compute-
intensive task. What we can assume is the existence of some freely available
tools that collectively can perform this task. For instance, three tools can be
selected as:

1. POVray i.e. Persistence of Vision Raytracer [133] is a high-quality tool for
creating stunning three-dimensional graphics used not only by hobbyists
and artists, but also in biochemistry research, medicine, architecture and
mathematical visualization. POVray renders a scene description into a
series of PNG files (pictures),

2. Png2yuv that pipes an archive of PNG frames generated by POVray, to
stdout as a YUV4MPEG2 stream,

3. ffmpeg tool that converts a stream into MPEG format or display it on a
computer screen.

To perform the movie rendering on the Grid, there are following options:

1. assuming that all required tools are available on a single Grid node, a user
builds a job script and submits to a Grid node by using a middleware
operating environment. This is trivial and can be achieved easily e.g. by
using the Globus Toolkit.

2. if all tools are available but distributed across the Grid on different nodes,
then a user composes a workflow and submits to a Grid workflow execution
system. This can be done with the Askalon [62] workflow composition and
runtime environment and the POVray workflow is successfully executed
on the Austrian Grid testbed [122]. Figure 8.1 shows a possible POVray
wokflow, where different primitive or aggregated activities can be executed
on different Grid sites.
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Fig. 8.1. A POVray workflow application.

POVray is known to be a very time consuming and parallelizable process; one
can model POVray rendering scenario as a workflow depicted in Figure 8.1.
According to this scenario, the description of a movie can be separated in
several scenes, where each scene is composed of several frames that can be
rendered as parallel activities on the Grid. Finally, all the frames are merged
into a .mpg movie using a png2yuv followed by a ffmpeg activity.

Both options described above not only need manual steps for composition,
but also require a user to have additional knowledge of each component. For
instance, specific usage of each tool and whether or not several instances of
the tool can be executed in parallel etc. The manual process becomes even
harder if a user knows its goals but does not know how to efficiently generate
a movie with the POVray description by executing some tools on the Grid.
Even a graphical interface may not be helpful without consulting a POVray
and a Grid expert. Furthermore, there may be several options that could do
the same task with varying QoS. For instance, same task can be done with an
executable or with a Web service. This further confuses a domain specialist
and makes even graphical composition a non-trivial task.

However, with the help of our proposed semantic-based activity synthesis,
the workflow can be generated automatically. A client needs to specify its
goals, e.g. ’to generate a movie in a specific format based on textual description
of scenes’. However, it may not need to provide input descriptions, instead,
the provisioner can generate multiple options with different types of possible
inputs. Since each activity of a workflow can be performed by different tools,
this may lead to the generation of multiple alternative options. The provisioner
can select the best option based on a user or system defined criteria.

Our proposed solution gives explicit meanings to activities and makes them
understandable for machine processing. Synthesis rules correlate input and
output arguments of activities and combine them to form complex activi-
ties that provide aggregated or new capabilities. For instance, png2yuv and
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ffmpeg can be combined to make a compound activity png2mpeg whose input
becomes input of png2yuv and output becomes output of ffmpeg. Opng2yuv =
Iffmpeg =⇒ png2mpegwhere Ipng2mpeg = Ipng2yuv and Opng2mpeg = Offmpeg

This activity synthesis process iteratively generates all possible combinations
and ultimately ends up with a workflow that fulfills the user’s goals. In case of
POVray, the input of complex resource is a textual description of scenes and
output is a MPEG movie. The ontology rules for iteratively generating complex
workflows (compound activities) are explained in Section 8.3.1.

A provisioner with multiple options becomes a better negotiator for the
resource. It can offer alternative options with varying QoS. For instance, a
provisioner may offer the following alternative options that independently
fulfill a similar goal:

1. a single application or service that is available on a Grid node at a certain
timeframe for which a client needs to make advance reservation (Defini-
tion 21).

2. a set of tools that can collectively perform the same task. The provisioner
can generate a workflow and offer it to the client. The client then contacts
the workflow enactor service to execute the generated workflow onto the
Grid.

3. a provisioner can propose to generate a generic or tailor-made service
using a wrapper generator [83, 93, 50]. This could be relatively expensive
but the trade-off is that a client does not care about additional steps
of advance reservation or workflow scheduling as the generated wrapper
service works as a dedicated self-contained workflow execution service.

8.3 Synthesis Model

The foundation ontology includes concepts that are associated with logical
resources such as activity, input/output argument, assumption, effect, primi-
tive and complex activities, application, software, gatekeeper etc. Agreement
concepts represents a special kind of logical resources including agreement,
temporal concepts, reservation etc. The ontologies are asymmetrically exten-
sible thus activity providers can easily extend fundamental concepts without
loosing their semantic soundness.

8.3.1 Ontology Rules

Although a reasoner can derive additional ontological entailment, based on
property and class hierarchies i.e. subsumptions, sometimes it is necessary to
infer pertinent information that cannot be determined otherwise. This empha-
sizes the need of rules [32, 183]. Since rules are based upon OWL Lite and DL
therefore they may have bindings to the underlying ontology. Ontology rules
play a vital role in the proposed activity synthesis. Foundation ontology also



8.3 Synthesis Model 185

includes a set of rules that are fired iteratively and are applied to generate
complex activities by combining legacy primitive activities as basic building
blocks in a well defined pattern. The synthesized activities either provide a
new capability or aggregated capability of its basic building blocks.

8.3.2 Activity Synthesis Problem

The synthesis of activities is a problem of combining multiple activities by
correlating output of one activity to the matching input of an other activity
in order to form a new synthesized activity. Let A be a set of activities involved
in the synthesis, M = I ∪O a set of arguments (like files, integers etc.), then
a synthesized activity α is modelled as a triple:
α = {Iα,Oα,Aα} where α ∩ Aα = � ∧ Iα ∩ Oα = � and Iα ⊆ M is a set
of input arguments of α, Oα ⊆ M is a set of output arguments of α and
Aα ⊆ A is a set of activities which are combined during synthesis to form
α. Let Iβ =

⋃
∀δ∈Aα

Iδ is a set of input arguments of all activities ∈ Aα,
Oβ =

⋃
∀δ∈Aα

Oδ is a set of output arguments of all activities ∈ Aα, and Mβ

is a set of arguments that are produced and consumed internally by activities
∈ Aα

Mβ = Iβ ∩Oβ then Iα = Iβ −Mβ and Oα = Oβ −Mβ.

The synthesis can be explained with help of example activities shown in Fig-
ure 8.2. A set A of primitive activities is given as A = {a,b,c,d,e,f,g,h,i}.
Activity ’a’ is defined as {{5}, {6}, {�}}: a primitive activity with argument
5 as input and argument 6 as output. Similarly, activity ’b’ is defined as
{{6}, {7}, {�}}: a primitive activity with argument 6 as input and argument
7 as output. Since the output of activity ’a’ is same as the input of activ-
ity ’b’, therefore both activities can be combined to form a new synthesized
activity ’A’, such that A = {{5}, {7}, {a,b}}: a compound activity with argu-
ment 5 as input, argument 7 as output, and a,b as internal primitive activities
of ’A’.

Similarly, a compound activity ’C’, as shown in Figure 8.2, is defined
as C = {{15, 16}, {18, 19}, {h,i}}. This activity is formed by combining two
primitive activities h = {{16}, {17, 18}, {�}} and i = {{15, 17}, {19}, {�}}.
Since one output argument of ’h’ matches one input argument of ’i’, there-
fore the matching argument i.e. 17 is consumed internally, whereas the un-
matched output argument of ’h’ (i.e. 18) becomes part of output arguments
of ’C’, and unmatched input argument of ’i’ (i.e. 15) becomes part of input
arguments of ’C’.

A compound activity ’B’, as shown in Figure 8.2, is defined as B =
{{1}, {11}, {c,d,e,f,g}}: an activity that is formed based on a workflow
pattern described in the following section.
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8.4 Applying Patterns for Activity Synthesis

Activity synthesis follows workflow patterns, and the resulting synthesized
activity either provides new functionality or gives an aggregated capability
of combined activities. We provide a set of synthesis rules that follow data
flow pattern for primitive activities as shown in Figure 8.2. These rules are
fired iteratively resulting in automatic generation of complex activities. From
data flow perspective, both sequential and parallel flows are very important
workflow patterns.

8.4.1 Sequential Flow Patterns

This is one of the basic workflow patterns in which two activities are combined
with each other such that the output (a set of arguments) of one activity is
correlated or mapped to the input of second activity. Formally, if we have two
activities α ∈ A and β ∈ A such that

α = {Iα,Oα,Aα} β = {Iβ,Oβ ,Aβ} Oα = Iβ

=⇒ γ = {Iα,Oβ , {α, β}}

A new synthesized activity γ is generated that pipes output Oα of activity α
to input Iβ of activity β. This is depicted in Figure 8.2 as compound activity
’A’ that is formed by synthesis of ’a’ and ’b’, that is

A = {{5}, {7}, {a,b}}

We transform this formal description into ontology concept by introducing
following rule:

[SynthesisRule1 :

(?a input ?x)(?a output ?y1)

(?b input ?y2)(?b output ?z)

(?y1 rdf:type ?T)(?y2 rdf:type ?T) makeTemp(?c)

=⇒ (?c rdf:type PipedActivity)

(?c input ?x)(?c output ?z)]

According to this rule a new activity c is generated; makeTemp is a built-
in [32] that is used to create a new concept in the underlying ontology.
PipedActivity is a basic concept defined in foundation ontology and rdf,
rdfs and owl represent namespace prefixes which are used as default names-
pace for RDF [34], RDFS [42] and OWL [146] in the Jena rule-based reasoner.
A non-trivial form of sequential flow synthesis is the one in which output Oα

of an activity α matches with input Iβ of an other activity β but at least
one side always matches partially. In this case, partially matched arguments
are consumed internally whereas un-matched arguments become part of in-
put/output of resulting synthesized activity γ. Formally, let D = Oα ∩ Iβ

then
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Oα ∩ Iβ �= � ∧ Oα ∩ Iβ �= Oα ∪ Iβ =⇒
γ = {{Iα + (Iβ − D)}, {Oβ + (Oα − D)}, {α, β}}

This defines that if the output of an activity α partially matches with the
input of an other activity β then both activities can synthesized to form a
third activity γ with the input and output arguments as shown above. Such
kind of synthesis is very useful for generating complex workflows, the following
rule is applied to make it possible:

[SynthesisRule2 :

(?a rdf:type GridActivity)

(?b rdf:type GridActivity)

(?a owl:differentFrom ?b)

partialDataFlow(?a,?b) makeTemp(?c)

=⇒ (?c rdf:type SequentialPairedActivity)

partialDataFlow(?c, ?a, ?b)]

Fig. 8.2. Sequential and parallel flows patterns.

An example of this rule is depicted in Figure 8.2 as a compound activity ’C’
that is formed by synthesis of ’h’ and ’i’, that is

C = {{15, 16}, {18, 19}, {h,i}}

The partialDataFlow is a customized builtin implemented in Java and used
in Jena library to simplify the reasoning that is otherwise non-trivial to pro-
vide as a rule. In the rule body it returns true if a and b has partial output and
input match whereas in the rule head, it associates input/output arguments
to newly created activity c accordingly.

8.4.2 Parallel Flow Patterns

Synthesis of sequential activities is enough for generating complex activities.
However, the true essence of the Grid is to execute at least some of the activi-
ties in parallel on different nodes so that a speedup or significant improvement
in QoS can be achieved. Achieving a speedup is crucial for scientific applica-
tion. We define rules that result in the creation of complex activities that
can execute in parallel, partially or as a whole, for instance, by following the
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master/slave pattern. This is a common form of parallel flow in which one
activity (say α) splits a task into sub tasks and distributes them among mul-
tiple instances of a slave activity (say γ). Then a third activity (say β) collects
results from slaves and consolidates them. Since we assume that all activities
are autonomous and self-contained therefore the splitter, merger, and slave
activities (see activity ’B’ in Figure 8.2) are disjoint activities, that leads to:

α = {Iα,Oα,Aα} β = {Iβ ,Oβ ,Aβ} γ = {Iγ ,Oγ ,Aγ}
Oα = Iγ ∧ Iβ = Oγ =⇒ δ = {Iα,Oβ, {α, β, γ}}

which can be translated to ontology rule as:

[SynthesisRule3 :

(?a output ?x)(?x rdfs:subClassOf all(argument ?y1))

(?b input ?z)(?z rdfs:subClassOf all(argument ?y2))

(?a input ?ain)(?b output ?bout) (?c input ?y1)

(?c output ?y2)makeTemp(?d)

=⇒ (?d rdf:type MasterSlaveActivity)

(?d splitter ?a) (?d merger ?b)(?d slave ?c)

(?d input ?ain) (?d output ?bout)]

In another form of parallel flow, any two activities α and β can be connected
through a set of slave activities As so that Oα is connected to the Iβ by
activities ∈ As.

α = {Iα,Oα,Aα} β = {Iβ,Oβ ,Aβ} As ∈ A

Oα =
⋃

s∈As

Is ∧ Iβ =
⋃

s∈As

Os

=⇒ γ = {Iα,Oβ , {{α, β} + As}}

This is a well known workflow pattern. As shown in Figure 8.2 (parallel flow),
activities ’f’ and ’g’ work as splitter and merger respectively. Each activity
ci ∈ {c1, ..., cn} works as a slave and can be executed in parallel. According
to this rule, a new compound activity ’B’ (Figure 8.2) is formed as:

B = {{1}, {11}, {c,d,e}}

If the output of an activity α is a collection of similar arguments (|Oα| = 1)
and the input of another activity β is also a collection of similar arguments
(|Iβ | = 1) but different from Oα, then a set As of slave activities is As =
{s}. They are instances of same activity and thus synthesized activity can
be composed in a parallel loop, for instance parallelFor that is a high-level
construct of AGWL. If an activity provider adds some information about
activity usage, such as Parallelizable and Iteratable, then synthesis may
lead to repeatable control flow activities.
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Figure 8.3 depicts a set of primitive activities A = {a − h}, a set of
arguments M = {1, ..., 13}. All primitive activities are independently defined.
The flow of arguments is formed after synthesis. First of all primitive activities
are combined in pairs (shown as shaded rectangles) and then more complex
activities are formed (shown as rectangles). Synthesized activities are labeled
as {A−H}. The most complex activity is I that transforms argument 1 into
argument 13. After the activity synthesis, compound activities are formed as
follows:

A = {{1}, {5, 6, 7}, {a, E}} ={{1}, {5, 6, 7}, {a, b, c}}
B = {{2, 3}, {9, 10}, {E, F}} ={{2, 3}, {9, 10}, {b, c, d, f}}
C = {{5, 6, 7}, {13}, {D, h}} ={{5, 6, 7}, {13}, {d, e, f, g, h}}
D = {{5, 6, 7}, {12}, {F, G}} ={{5, 6, 7}, {12}, {d, e, f, g}}
E = {{2, 3}, {5, 6, 7}, {b, c}} ={{2, 3}, {5, 6, 7}, {b, c}}
F = {{5, 7}, {9, 10}, {d, f}} ={{5, 7}, {9, 10}, {d, f}}
G = {{6, 9, 10}, {12}, {e, g}} ={{1}, {13}, {e, g}}
H = {{9, 10, 11}, {13}, {g, h}} ={{9, 10, 11}, {13}, {g, h}}
I = {{1}, {13}, {A, C}} ={{1}, {13}, {a, b, c, d, e, f, g, h}}

This shows that the activity synthesis significantly increases number of ac-
tivities with different capabilities. The increase in activity search space may
result in query hits that otherwise may not be possible.
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Fig. 8.3. A Sample Synthesis of activities.

8.5 On-Demand Provisioning

The provisioning is a way of matching user goals to available activities, espe-
cially complex activities or workflows. A user can specify its available input
optionally accompanied by some quality of service parameters. We propose
to use SPARQL [182] query language for defining goals as it is a proposed
standard query language for ontologies and well supported by various tools
and APIs, and can be used to define constraints along with rules. A goal in
the form of SPARQL query can take the following form:
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SELECT ?a

WHERE {?a rdf:type MovieRenderer .

?a outout ?out .

?out rdf:type MPEGFile .

}

In order to address multiple constraints while generating complex activities,
we introduce constraints in ontology rules. For intstance, a complex activity
should be generated only if average reliability (a QoS parameter) of primi-
tive activities is at least 0.5%. This is however, not trivial with current rule
language [183]. To overcome this limitation, we propose to use built-ins in
rules.

8.5.1 Built-Ins and Constraints

Provision of Built-in constructs in a rule language is a modular approach of
adding new entailment that otherwise is not possible with current reasoners.
A set of built-ins are available for Jena that can be executed on underlying on-
tology model and knowledge-base. This set includes built-ins for mathematical
calculations, comparisons, boolean evaluations, string and collection manipu-
lations, etc. A set of custom built-ins is introduced that augments process of
rule-based entailment. Customized built-ins can also be provided such as the
following rule that generates an activity if and only if the average reliability
of primitive activities is higher than 0.5.

[SynthesisRuleReliableActivity :

(?a input ?x)(?a output ?y)(?b input ?y)

(?b output ?z)(?a reliability ?i) (?b reliability ?j)

average(?i,?j,?av) greaterThan(?av,0.5)

makeTemp(?c)

=⇒ (?c rdf:type ReliableActivity)

(?c input ?x)(?c output ?j)

(?c reliability ?avg)]

Similarly, user goals may also contain constraints in the form of filters as part
of SPARQL query.

SELECT ?a

WHERE {?a rdf:type MovieRender .

?a outout ?out .

?out rdf:type MPEGFile .

?a reliability ?reliability .

?a animation ?animation .

?animation rdf:type CyclicAnimation .

FILTER (?reliability >= 0.5)

}
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A custom built-in called agwl is provided. Once user goals are mapped to
at least one possible candidate activity then agwl is fired that transforms a
matching synthesized activity into an AGWL document as a side effect.

The built-in rpdp is a reservation policy decision point that optionally
works as a part of assumptions and interact with Askalon reservation service
for user authorization to check if it has advance reservation. The advance
reservation mechanism [156] is presented in detail in Chapter 5.

8.5.2 Assumptions and Effects

As described in Section 7.4, an activity or application provider may have some
assumption about the user or a user may assume something about providers.
Similarly, there could be some after-effects once an activity is executed. An
assumption and effects described in primitive activities are aggregated in com-
pound activities. The assumptions need to be true before activity execution
and effects may be exercised after activity execution. For instance, an activity
provider may assume that a user has advance reservation for activity execution
on a certain Grid node and user account is charged as an after-effect.

[SynthesisRuleResAssumption :

... ...

(?a rdf:type AGridActivity)

(?a hasAssumption ?r) (?r rdf:type Reservation)

(?r owner ?o) isCaller(?o) =⇒ ...]

This rule defines an assumption that the client can initiate an action for an
activity only if it has advance reservation. Similarly, the following rule defines
an effect that a client account is charged if it has already executed a reserved
activity.

[SynthesisRuleChargingEffect :

... ...

(?u rdf:type sg:AGridUser)

(?u hasExecuted ?a) (?a hasAssumption ?r)

(?r rdf:type Reservation) (?r owner ?o)

=⇒ charge(?o,?r)]

Rules can be included in an ontology model as a file or URL. This enables
application providers to update them dynamically as well as remotely.

8.6 Improving Capacity Planning

Beside improvement in on-demand provisioning and synthesis of activities
to automatic generation of workflows, this chapter also introduces the use
of ontologies in improving capacity planning. Chapter 6 introduces a new
algorithm, called VSHSH (Section 6.3.1), for capacity planning and resource
allocation with improved resources utilization. We also demonstrated that
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the VSHSH improves utility (Definition 18) of both requester and provider
of the Grid resources (Section 6.4). The utility is derived by aggregating the
distances between ideal and real values of all QoS constraints.

The details of the distance formula, shown in Equation 6.1, is given in
Section 6.2 as well as in [156]. This distance formula is inappropriate for
lexicographical values. In order to deal with lexicographical values, a new
approach is proposed based on semantics. This approach uses an ontology-
based hierarchical structure of all possible values of a constraint in order to
evaluate distance or deviation of offered value from the ideal or requested
value.

8.7 Discussion and Experiments

We designed our foundation ontology using the Protege-OWL [177] editor, and
implemented prototype of the proposed activity synthesis mechanism using
Jena APIs [32]. Jena provides Java APIs for dynamically creating new onto-
logical concepts, populating knowledge base, and reasoning based on ontology
rules. Based on the foundation ontology, an activity (application) provider can
add new concepts and provides semantic description of their resources. This
can be done either using Protege ontology editor or our simplified configura-
tion description mechanism as described in Section 7.2.1.

Workflow Generation: In order to demonstrate an automatic work-
flow generation with synthesis of activities, we independently register three
tools as primitive activities as described below in our triple notation i.e.
α = {Iα,Oα,Aα}:
povray = { {InitializationFile,ArgumentFile,
SceneDescriptionFile,StartFrameInt,

FramesCountInt,TotalFramesInt}
{PNGArchiveFile}{�} }

png2yuv = { {PNGArchiveFile}{YUVStream}{�} }

ffmpeg = { {YUVStream}{MPEGFile}{�} }

An ontology generator component reads the descriptions, generates ontologies
and registers in the knowledgebase. All these concepts including activities
and argument are defined as distinguished OWL concepts. After applying the
synthesis rules and making a query with a goal such as:

SELECT ?a

WHERE {?a input ?x .

?a outout ?y .

?x rdf:type SceneDescriptionFile .

?y rdf:type MPEGFile .

}
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(a) Generated AGWL

< < A c t i v i t y > >
png2yuv

< < A c t i v i t y > >
f fmpeg

< < A c t i v i t y > >
png2jpg

< < A c t i v i t y > >
jpg2yum

Yes No

Success?

(b) Control Flow

Fig. 8.4. POVray Workflow

we generate an agwl document that can be visualized in Askalon graphical
workflow composition tool. The generated workflow is shown in Figure 8.4(a).

Provisioning Improvement: An interesting aspect of synthesis is that it
generates more options for provisioner to select or negotiate for. For instance,
consider three activities α, β and, γ as described below:

α = {Ix,Oy,Aα} β = {Iy,Oz,Aβ} γ = {Ix,Oz,Aγ}

By applying synthesis rules, beside others, a complex activity δ is generated
where δ = {Ix,Oz , {α, β}} is a combination of first two activities α and β
since Oα = Iβ . As the synthesized activity δ is same as γ the provisioner gets
two options to offer instead of just one as it was the case before synthesis.
Furthermore, in case if there is no deployment of γ in the Grid, the provisioner
may select/offer δ as an alternative option or vice versa, i.e. γ as a replacement
of δ.

By following this approach, activity png2yum in Figure 8.4(a) can be re-
placed with following two activities:

png2jpg={{PNGArchiveFile}{JPGArchiveFile}{�}}
jpg2yum={{JPGArchiveFile}{YUVStream}{�} }
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Similar to png2yuv both png2jpg and jpg2yum transform PNGArchiveFile
to the YUVStream(see Figure 8.4(b)). This may lead to the generation of a
complex workflow with an alternative control-flow as shown in Figure 8.4(b),
that means if png2yuv does not succeed then control moved towards png2jpg
followed by jpg2yum.

Throughput: Figure 8.5 compares average throughput of different types of
queries for available activities.

• No Synthesis: a query for a primitive activity without applying any rule
for synthesis and reasoner involvement;

• Simple Synthesis: a query for a compound or synthesized activity gener-
ated by synthesizing with a simple combination of primitive activities with
single input and output;

• Partial Synthesis: a query for a compound activity generated after complex
combination of multiple (2 − 4) activities with partially matching (2 − 6)
arguments;

• Complex Synthesis: a query for a compound activity generated after com-
plex combination of multiple (5 − 14) activities with partially matching
(≥ 6) arguments.

It is depicted that overhead of queries for primitive activities (no synthesis)
is very small. However, the overhead of queries for synthesized activities is
significantly high because of the rule based reasoning. Simple synthesis is
slightly better than partial synthesis and much better than complex synthesis.

Overhead: Figure 8.6 compares average overhead of synthesis rules when
applied dynamically with the query. The overhead is about 10−30s for varying
number of activities. This is due to the fact that rules are fired iteratively
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for new entailment and process stops only when further entailment is not
possible. Overhead of complex combinations is slightly higher than simple
combinations. However, for a few hundred activities it is just under 30s that
is rather negligible compared with manual composition time.

Figure 8.7 and 8.8 demonstrate improvement in resource and application
utilities respectively. As described in Section 8.6, we applied semantics to our
distance formula shown in Equation 6.2. Semantics significantly improves re-
source utility without compromising the client or application utility and thus
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results in better capacity planning. See Chapter 6 for details about capac-
ity planning, resource and application utilities, and optimization of resource
allocations.

Firing rules: The introduction of a new rule in an ontology starts an iterative
entailment process that stops when new entailment become impossible. This
is called forward chaining and is considered an inefficient approach. However,
iteration is necessary for determining interdependency of multiple rules and
thus generating all possible combination of primitive and new activities. This
results in faster subsequent queries as facts in the knowledge base are not
required to be recalculated. Thus, user goals are efficiently mapped to an
already generated workflow. A backward chaining is also possible in which
only required entailment are generated. This is an efficient entailment process
but the rules are fired for each new instance. This slowed down query response
time.

8.8 Related Work

Synthesis and decomposition of processes in organizations has been addressed
by various researchers, for instance, a work in [17] examines the synthesis and
decomposition of processes in an organization by developing three metaphoric
concepts such as full connectivity, independence, and redundancy and then
deriving union and intersection of processes based on these concepts.

The work in [172] introduces synthesis of cost optimal workflow struc-
ture and identifies the mixed programming model with P-graph [173] based
network algorithm.
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Numerous researchers are working in the area of semantics Grid [46, 36,
86]. However, most of the work has focused on the problem of physical Grid
resource matching [170]. The work in [23] provides a mechanism to map a small
subset of Unicore resource descriptions with GLUE schema using ontologies.

ActOn (Active Ontology) [86] is an ontology-based information integration
approach for EGEE that can be used to generate and maintain up-to-date
metadata for a large scale distributed system.

Web service composition is similar to Grid workflow composition and syn-
thesis. In the area of Semantic Web, a lot of conceptual work has been done
but it does not focus on legacy applications. One such example is WSMO [45]
that provides an ontology-based description mechanism only for Web services.
The work described in [114] applies planning to the problem of web service
composition.

In the area of Semantic Grid, very few researchers has been working on
automatic composition of workflows. The work in [194] addresses problem of
machine-assisted composition of workflows for E-Science data using deductive
synthesis. The role of planning is discussed in [193] for Pegasus. The authors
propose a workflow planner that uses heuristic control rules and searches a
number of alternative pre-built complete plans in order to find better quality
plan.

A semi-automated approach is introduced in [161] for knowledge evolu-
tion of ontology schemas that is applied to the process of new Grid service
registration. In K-WfGrid project, knowledge evolution supporting automatic
workflow composition has been studied using ontology alignment methods and
Petri-net based Grid workflows [161].

In contrast, this book introduces a semantic-based on-demand synthesis of
Grid activities to form complex activities. This leads to on-demand generation
of abstract workflow applications that can be concretized automatically at
runtime. The synthesized activities provide an entirely new capability, an
alternative option of an existing activity and/or an aggregated capability of
its basic building blocks. Furthermore, our approach exploits semantic-based
synthesis of activities that improves provisioning and brokerage capability of
resource management for the Grid.

8.9 Summary

In this chapter we formalized the problem of the Grid activity synthesis. Grid
activities are software components (executables/services) which are repre-
sented in terms of abstract and concrete descriptions. We propose a rule-based
synthesis mechanism that can be used to combine multiple activities to form
compound activities. A set of custom built-ins is introduced that augments
process of rule-based entailment. The synthesized activities either provide a
new or an aggregated functionality of combined activities, or alternative op-
tions with different quality of service. This synthesis of activities leads to
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automatic generation of Grid workflows that can be offered on-demand and
mapped to the Grid dynamically at runtime.

Furthermore, the synthesis generates more (compound) activities thus in-
creases activity search space and result in improved negotiability of a provi-
sioner. That means a provisioner gets more options to offer than it originally
may have.

We demonstrated the effectiveness of the synthesis with examples and
experiments. Furthermore, role of semantics in improving capacity planning
with optimization in resource allocations and better utilization of resource
capabilities is presented.



9

Conclusion

In this monograph, we have addressed various research challenges: we have
identified different research issues, proposed novel solutions and introduced
new approaches in order to develop a resource management system for the
Grid. The proposed system is implemented based on state-of-the-art Grid
and Web technologies and deployed in a real world Grid infrastructure. We
have demonstrated applicability and effectiveness of the new system through
experiments. This chapter concludes this book by highlighting major contri-
butions and future directions.

The contributions includes our research findings and development of new
mechanisms that can be used by researchers working in the area of Grid
computing in general and Grid resource management in particular. Following
subsections describe our major contributions.

9.1 Resource Management Model

In this book we provide formal descriptions of various aspects of the Grid and
resource management as part of the Grid middleware (Chapter 2).

• We have rendered the boundaries of various components of the Grid mid-
dleware covering both operating and runtime environments. These compo-
nents include a Grid scheduler (Section 2.4.3), an enactor/executor (Sec-
tion 2.4.4), and a resource manager (Section 2.6). The Grid scheduler is
separated from resource manager in our proposed model. The scheduler
focuses on execution planning and job control whereas resource manager
focuses on on-demand resource provisioning.

• We have further identified characteristics of a resource manager (Sec-
tion 2.6) that includes mechanisms such as provisioning, brokerage, de-
ployments, activity registrations, activity synthesis, capacity planning and
management.

M. Siddiqui and T. Fahringer: Grid Resource Management, LNCS 5951, pp. 201–206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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9.2 Towards Automatic Resource Management

We have designed and developed a new resource management system with
automatic resource selection and brokerage. A client can specify its goals in
the form of resource requests and the resource manager performs automatic
resource brokerage and generates multiple options with matching resources.
The main features of the newly developed resource management system are:

• GridARM (Section 3.3) is a distributed infrastructure in which services
are loosely coupled and coordinate in a service-oriented fashion. Multiple
instances of the resource manager can run autonomously while managing
different sets of Grid resources. These resource managers can cooperate
with each other in order to share expensive and/or idle resources;

• a flexible resource discovery mechanism (Section 3.3.1) in which multiple
information services can be registered from which different information
types can be retrieved and consolidated in a widely used GLUE schema
format.

• a candidate set generation process is introduced (Section 3.3.2) in which
matching of discovered resources with user goals takes place; a user can
specify a selection criteria as part of the resource request and the ordered
list of generated set of candidates is offered;

• a matching resource of highest rank can be selected automatically, where
the rank is calculated according to default or user’s specified selection
criteria;

• in case of multiple contending applications or clients, the Grid resources
are allocated according to the proportional share of resources in the Grid;

• the resource manager is customizable, it can be used to setup a dedicated
experimental environment and a coarse-grained access control policy for
the Grid resources;

• the resource management system is developed as a custodian of resource
providers, it negotiates with clients to lease resources according to their
proportional share in the Grid. As a result, a resource with more capac-
ity gets more allocations without being unfair with low-share resources.
This improves fairness and protects different sets of resources for different
classes of users;

• GridARM is developed as a distributed scalable infrastructure based on
the superpeer model (Section 3.4.2) that is a self-managing and fault-
tolerant model. A new superpeer is re-elected automatically if existing
superpeer stops working;

• we have evaluated proportional share-based load distribution and found
that our approach is better as standard deviation of actual allocations.
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9.3 Dynamic Registration and Automatic Deployment

In contrast to most of the existing resource management systems for the Grid,
we have designed and developed a framework (Chapter 4) that covers logical
resources such as activities (Definition 6), applications (Definition 10), and
service-level agreements (Definition 34). It provides dynamic registration, au-
tomatic deployment, and on-demand provisioning of the Grid activities that
can be used in building Grid-enabled complex workflow applications. This
framework, called GLARE, is implemented as an extension of GridARM with
the following functionalities:

• GLARE separates activities in abstract and concrete descriptions known
as activity types (Definition 7) and activity deployments (Definition 8)
respectively. It clearly describes both representations of activities so that
they can be advertised unambiguously and located automatically. Activity
types are mapped to activity deployments and delivered on-demand;

• the distinguished feature of GLARE is that it provides automatic deploy-
ment of applications and activities on a manually or automatically selected
node (Section 4.4.1). The deployment procedure is needed to be associated
with the activity types by the activity providers. The procedure is executed
automatically on the target node by GLARE ;

• it enables an activity or application provider to perform undeployment of
applications once they are utilized and no longer required;

• GLARE proposes a flexible mechanism to use different ways to perform
automatic deployments. This includes expect-based deployment, GRAM-
based deployment etc;

• GLARE enables application providers to perform registration and un-
registration of deployed applications in order to control their visibility
for different timeframes or for different users;

• we compared our superpeer model-based distributed framework with ex-
isting hierarchical Globus WS-MDS. We have found that our system is
better in performance and is capable to handle more more registrations of
activities.

9.4 Negotiation for Service-Level Agreement (SLA)

We have designed and developed a mechanism for allocation of Grid resources
with negotiation-based advance reservation (Section 5.3) and a practical so-
lution for agreement enforcement (Section 5.4.3). This mechanism enables a
client to negotiate for required resources and to make an agreement with a bet-
ter compromise between application requirements and resource capabilities.
Major contributions in this context are given below:
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• a flexible negotiation mechanisms has been developed by introducing dif-
ferent allocation offer generation algorithms to support different types of
allocation strategies including fairsharing and optimization in resource uti-
lization;

• a 3-layered protocol introduced for negotiation between the resource re-
questers and providers in order to reach and seal an agreement;

• a practical solution, based on the off-the-shelf Grid technologies, is pro-
vided for the enforcement of an agreement;

• mechanism for open reservations is introduced in order to deal with the dy-
namic Grid environment. This mechanism represents a priority provision,
that is, a promise for allocation is made in advance but actual allocation
of the resource deferred until runtime. The next available resource that
fulfills user goals is allocated at runtime;

• we have demonstrated that advance reservation can have a major impact
on execution time and can considerably increase predictability of the Grid
environment.

9.5 Multi-Constrained Optimization and Capacity
Planning

Beside negotiation-based advance reservation, we have introduced a mech-
anism for capacity management and planning that is developed based on
advance reservations. The idea of capacity planning is new in the Grid, and
it can be used in improving resource utilization while addressing concerns
about under-utilization of Grid resources and reduction in quality of service
(QoS). The proposed Grid capacity planning and management is performed
with the help of advance reservation and multi-constrained allocation opti-
mization. We have introduced a new algorithm called VSHSH (Algorithm 8)
for optimized utilization of resources. The new algorithm models resource al-
location as an on-line strip packing problem and provides a new mechanism
that optimizes resource utilization and other QoS parameters while gener-
ating contention-free solutions. Major contributions of GridARM from the
perspective of multi-constrained optimization and capacity planning are as
follows:

• it provides a forward looking process in which allocations are made along
a planning or time horizon;

• it exploits advance reservation for optimized resource allocations with
service-level agreement (SLA). In this way, it proves usefulness of advance
reservation and multi-constrained optimization;

• it provides a mechanism to plug-in different allocation offer generation
algorithms that can be used flexibly according to the policy of the resource
providers;
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• an algorithm generates multiple options to be offered to the client. The
options are generated as alternative offers based on multi-constrained op-
timization process for resource utilization;

• the allocation offers are generated in such a way that resource capacity
is optimally utilized and capacity wastage is minimized. We have demon-
strated the usefulness of our approach for capacity planning and manage-
ment.

9.6 Semantics in the Grid

We have introduced an ontology-based resource description, discovery and
selection mechanism. As a resource description model, we have proposed to
replace the classic attribute-based symmetrical resource description model
with an extensible ontology-based asymmetric model. This model provides
foundation to a flexible and extensible discovery and correlation mechanism.

Furthermore, we have introduced a new mechanism for automatic synthesis
of resources and software components by applying ontology rules. Rule-based
synthesis combines multiple primitive resources to form new compound re-
sources. Here are some of the main steps we have taken towards the Semantic
Grid:

• we have introduced an asymmetric resource description mechanism with
ontologies so that resource requesters and providers can flexibly describe
their resources without having to agree on certain terms and their agreed
upon values;

• we have proposed to exploit the subsumption of ontological concepts for
resource selection that allows to propose alternative options if exact match
does not exist;

• in contrast to the current trends in which semantics is used for match-
making, we exploit semantics to synthesize description of Grid resources
in order to generate multiple compound resources that can be provisioned
as new or alternative options. The newly generated synthesized resources
could provide aggregated capabilities that otherwise may not be possible;

• the synthesis has enabled the automatic generation of Grid workflow ap-
plications, and we have demonstrated it.

To summarize, we have designed and developed a new, coherent and consistent
system which covers the most important aspects of Grid resource manage-
ment, and demonstrated its usefulness for running real scientific applications
on the Grid. GridARM, our Grid Resource Management system described
in this book is a key component of the Askalon Grid runtime system (Sec-
tion 2.4).



206 9 Conclusion

9.7 Future Research

We have addressed several research challenges in the context of resource man-
agement for the Grid. However, we believe it is a starting point and the
research in this direction has a long way to go. We identify the following po-
tential research directions that are either currently being considered or will
be considered for future research:

• Physical resources possess great research potential for the lifecycle manage-
ment with the help of virtualization technologies such as virtual machine
systems, virtual LAN, and other state-of-the-art computing and network
technologies.

• Porting of different kinds of legacy scientific and business application need
to be addressed with more seriousness by applying different wrapping and
integration patterns.

• We believe that configuration management of both physical and logical
resources can be automatized. We intend to examine various possibilities
and challenges in this dimension.

• The role of semantics in the Grid needs to be extended to cover not only
resource descriptions but also configurations, policies, and agreement doc-
uments.

• Possible security loopholes, while performing automatic deployments of
applications on nodes, need to be explored and the challenge of possible
security threats is also a great topic of research.

• Fine-grained optimization techniques are to be studies for compilation of
workflow applications in order to cement the process of automatic deploy-
ments.

• The allocation strategies and capacity planning with multiple planning
horizons by considering more QoS parameters are to be examined.

• More complex ontology rules can be applied to generate more complex
workflows with different types of control and data flows. Furthermore, the
analysis of possible improvement in query-hits with resource synthesis can
be done.

• A Grid portal technology with easy to use interfaces can be introduced for
Web-based decentralized distributed management of the Grid.
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Notations

Symbol Description
G The Grid: a set of Grid nodes or Grid sites
Gc The Computational Grid
Gd The Data Grid
Gk The Knowledge Grid
R A set of Grid resources
Q A set of resource requests
PR A set of physical resources⊆ R
LR A set of logical resources⊆ R
A A set of Grid activities ⊆ LR
E A set of activity types
D A set of activity deployments
at An activity type of an activity
at

′
A generalized activity type of an activity

Da An activity deployment of an activity a
IS A set of Grid Information Service
IT A set of information types associated with Grid resources
T A set of onstraints (terms and conditions)
C A set of clients
M A set of arguments
V Edges (Dependancies)
�→ Function mapping
P A set of processors
Υ Allocation function
W A workflow application ∈ W
W A set of workflow applications
B A set of candidates
S A set of selections
L A set of allocations
CL A set of co-allocations
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Symbol Description
I A set of input arguments ⊆ M
O A set of output arguments ⊆ M
U Utilities and utility function

ref(r) A reference of a resource r
� Empty set

tcpu(g) Total CPUs of a node g ∈ G
fcpu(g) Free CPUs of a node g ∈ G
clock(g) Processor clock speed of a node g ∈ G
rank(g) Rank of a node g ∈ G

uptime(g) System uptime of node g ∈ G
ς Candidate set generator function
ξ Resource selection function
� Maximized
⊥ Minimized

capacity Capacity of a resource
duration Time duration or interval between to points in time

Υ Allocation function
δ Discovery function

lookup lookup function
agr An agreement document
OF A set of offers
T time dimension

dist Distance function
ξ Section function

startt Start time
endt End time
≡ Equivalent
N Set of natural numbers
N

∗ Set of positive natural numbers (non-zero)
R Set of real numbers

R+ Set of positive real numbers
⇐⇒ If and only if (iff)
=⇒ Implication
∀ For all
∃ Exists
| Set restriction
∈ Set membership
|S| Cardinality of set S
P(S) Power set of S
× Cross product
∧ Logical conjunction
∨ Logical disjunction
∪ Set union
∩ Set intersection
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Symbol Description
\ Set difference
⊂ Subset of
≺ Totally ordered set precedence

pred(a) Predecessor of a workflow activity a
succ(a) Successor of a workflow activity a
predp(a) Predecessor of rank p a workflow activity a
succp(a) Successor of rank p a workflow activity a
sched Schedule function
� Sub concept or equivalent concept
� Super concept or equivalent concept∑

Summation
�� End of an example, algorithm or proof
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