Principle Advancements
in Database Management
Technologies

NEW APPLICATIONS AND FRAMEWORKS

KENG SIAU & JOHN ERICKSOM

Principle Advancements
in Database Management

Technologies:
New Applications and
Frameworks

Keng Siau
University of Nebraska-Lincoln, USA

John Erickson
University of Nebraska-Omaha, USA

Information Science | INFORMATION SCIENCE REFERENCE
Hershey - New York

Director of Editorial Content: Kristin Klinger

Senior Managing Editor: Jamie Snavely

Assistant Managing Editor: Michael Brehm

Publishing Assistant: Sean Woznicki

Typesetter: Mike Killian, Sean Woznicki
Cover Design: Lisa Tosheff

Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Principle advancements in database management technologies : new applications and frameworks / Keng Siau and John
Erickson, editors.
p. cm.

Summary: "This book presents exemplary research in a variety of areas related to database development, technology, and
use"--Provided by publisher.

Includes bibliographical references and index.
ISBN 978-1-60566-904-5 (hardcover) -- ISBN 978-1-60566-905-2 (ebook) 1.
005.74/5. 1. Siau, Keng, 1964- II. Erickson, John, 1956-
QA76.9.D3P72995 2010
005.74--dc22
2009046476

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Advances in Database Research (ADR) Series

ISBN: 1537-9299

Editor-in-Chief: Keng Siau, University of Nebraska-Lincoln, USA
&
John Erickson, University of Nebraska-Omaha, USA

e Advanced Principles for Improving Database Design, Systems Modeling, and Software Development
Advanced Principles

for Enproving Database Information Science Reference e copyright 2008 305pp ® H/C (ISBN: 978-1-60566-172-8) ® $195.00 (our price)
Design, Systems Modeling, Recent years have witnessed giant leaps in the strength of database technologies, creating a new level of capabil-
and Software Development ity to develop advanced applications that add value at unprecedented levels in all areas of information manage-

ment and utilization. Parallel to this evolution is a need in the academia and industry for authoritative refer-
ences to the research in this area, to establish a comprehensive knowledge base that will enable the information
technology and managerial communities to realize maximum benefits from these innovations. Advanced Prin-
ciples for Improving Database Design, Systems Modeling, and Software Development presents cutting-edge
research and analysis of the most recent advancements in the fields of database systems and software develop-
ment. This book provides academicians, researchers, and database practitioners with an exhaustive collection
of studies that, together, represent the state of knowledge in the field.

This series also includes:

Contemporary Issues in Database Design and Information Systems Development
IGI Publishing e copyright 2007 ¢ 331pp ® H/C (ISBN: 978-1-59904-289-3) * $89.96 (our price)

Database management, design and information systems development are becoming an integral part of many business applications. Con-
temporary Issues in Database Design and Information gathers the latest development in the area to make this the most up-to-date reference
source for educators and practioners alike. Information systems development activities enable many organizations to effectively compete and |-
innovate, as new database and information systems applications are constantly being developed. Contemporary Issues in Database Design
and Information Systems Development presents the latest research ideas and topics on databases and software development. The chapters in
this innovative publication provide a representation of top notch research in all areas of the database and information systems development.

Research Issues in System Analysis and Design, Databases and Software Development
IGI Publishing e copyright 2007 286pp H/C (ISBN: 978-1-59904-927-4) ® $89.96 (our price)

New Concepts such as agile modeling, extreme programming, knowledge management, and organizational memory are stimulating new
research ideas amoung researchers, and prompting new applications and software. Revolution and evolution are common in the areas of
information systemsdevelopment and database. Research Issues in Systems Analysis is a collection of the most up-to-date research-oriented
chapters on information systems development and database. Research Issues in Systems Analysis and Design, Databases and Software De-
velopment is designed to provide the understanding of the capabilities and features of new ideas and concepts in the information systems
development, database, and forthcoming technologies. The chapters in this innovative publication provide a representation of top notch
research in all areas of systems analysis and design and database.

1G5

DISSEMINATOR o KNOWLEDGE
Hershey o New York
Order online at www.igi-global.com or call 717-533-8845 x100 — Mon-Fri 8:30 am - 5:00 pm (est) or fax 24 hours a day 717-533-8661

Editorial Advisory Board

Richard Baskerville, Georgia State University, USA
Dinesh Batra, Florida International University, USA
Shirley A. Becker, Florida Institute of Technology, USA
Hock Chan, National University of Singapore, Singapore
Roger Chiang, University of Cincinnati, USA

Guy Fitzgerald, Brunel University, UK

Mark Gillenson, University of Memphis, USA

Juhani livari, University of Oulu, Finland

Gary Koehler, University of Florida, USA

M. S. Krishnan, University of Michigan, USA

Ram L. Kumar, University of North Carolina at Charlotte, USA
Pericles Loucopoulos, Loughborough University, UK
Kalle Lyytinen, Case Western Reserve University, USA
Salvatore T. March, Vanderbilt University, USA

Vijay Mookerjee, University of Texas at Dallas, USA
Sudha Ram, University of Arizona, USA

I-Yeol Song, Drexel University, USA

Veda C. Storey, Georgia State University, USA

Bernard Tan, National University of Singapore, Singapore
Iris Vessey, University of Queensland, Australia

Yair Wand, University of British Columbia, Canada

Ron Weber, University of Monash, Australia

Kwok-kee Wei, City University of Hong Kong, China

Table of Contents

PO A oot e— et e e e e et e aa e e e a e ———————— XVvi

Chapter 1

A Multiple-Bits Watermark for Relational Data............cccceeeeviiieiiiiiiiiiiiciieeceeeee e
Yingjiu Li, Singapore Management University, Singapore
Huiping Guo, California State University at Los Angeles, USA
Shuhong Wang, University of Wollongong, Australia

Chapter 2
BROOD: Business Rules-Driven Object Oriented Design.........cc.eevveeriieriieriieriieniienieesieesieeieesieesveenens 23

Pericles Loucopoulos, Loughborough University, UK
Wan M.N. Wan Kadir, Universiti Teknologi Malaysia, Malaysia

Chapter 3

Bug Fixing Practices within Free/Libre Open Source Software Development Teams..............cc..c...... 51
Kevin Crowston, Syracuse University, USA
Barbara Scozzi, Politecnico di Bari, Italy

Chapter 4

Conflicts, Compromises, and Political Decisions: Methodological Challenges of

Enterprise-Wide E-Business Architecture Creation.........cvcveeeuieriieniienieesieesieesieereesreesseesseesseesseesseesses 82
Kari Smolander, Lappeenranta University of Technology, Finland
Matti Rossi, Helsinki School of Economics, Finland

Chapter 5
Evaluation of MDE Tools from a Metamodeling Perspective...........cccceeoeervieeienienieiiecie e 105
Joao de Sousa Saraiva, INESC-ID/Instituto Superior T ecnico, Portugal

Alberto Rodrigues da Silva, INESC-1D/Instituto Superior T ecnico, Portugal

Chapter 6

Exploring the Effects of Process Characteristics on Product Quality in Open Source

SOTtWAre DEVEIOPIMENL.eiiiiiiiiiieciiieciie ettt ettt e et eebeeeteeeteeetaeesseessseessseesssesesseeensseessseenes 132
Stefan Koch, Vienna University of Economics and Business Administration, Austria
Christian Neumann, Vienna University of Economics and Business Administration, Austria

Chapter 7

The Impact of Ideology on the Organizational Adoption of Open Source Software.............ccccceu.e... 160
Kris Ven, University of Antwerp, Belgium
Jan Verelst, University of Antwerp, Belgium

Chapter 8

Web Services, Service-Oriented Computing, and Service-Oriented Architecture:

Separating Hype from ReEaLILYc.ccciiviieriiiiieieiieece ettt sta e ra e ba e seesseennees 176
John Erickson, University of Nebraska - Omaha, USA
Keng Siau, University of Nebraska - Lincoln, USA

Chapter 9
Approximate Query Answering with Knowledge Hierarchy............ccccocuveeiiiniiiiiiiiiie e 189
Wookey Lee, Inha University, Korea
Myung-Keun Shin, Telecom Business Division, SK C&C, Korea
Soon Young Huh, Korea Advanced Institute of Science and Technology, South Korea
Donghyun Park, Inha University, South Korea
Jumi Kim, Small Business Institute, Korea

Chapter 10

Abstract DTD Graph from an XML Document: A Reverse Engineering Approachccccoeeeeeee. 204
Joseph Fong, City University of Hong Kong, China
Herbert Shiu, City University of Hong Kong, China

Chapter 11

A Dynamic Model of Adoption and Improvement for Open Source Business Applications 225
Michael Brydon, Simon Fraser University, Canada
Aidan R. Vining, Simon Fraser University, Canada

Chapter 12

Aiding the Development of Active Applications: A Decoupled Rule Management Solution............. 250
Florian Daniel, University of Trento, Italy
Giuseppe Pozzi, Politecnico di Milano, Italy

Chapter 13

Dimensions of UML Diagram Use: Practitioner Survey and Research Agendac...ccoocvvevvennnee. 271
Brian Dobing, University of Lethbridge, Canada
Jeffrey Parsons, Memorial University of Newfoundland, Canada

Chapter 14

A 360-Degree Perspective of Education in 3-D Virtual Worldsccccoeeeiiiviiiiiiiieieeieeieeeeee 291
Brenda Eschenbrenner, University of Nebraska-Lincoln, USA
Fiona Fui-Hoon Nah, University of Nebraska-Lincoln, USA
Keng Siau, University of Nebraska-Lincoln, USA

Chapter 15

Using Graphics to Improve Understanding of Conceptual Models..........c.covevvieviieviieciieciiiiieieciens 310
Kamal Masri, Simon Fraser University, Canada
Drew Parker, Simon Fraser University, Canada
Andrew Gemino, Simon Fraser University, Canada

Chapter 16

Beyond Open Source: The Business of ‘“Whole” Software Solutions..........c.ccceeevevcvircienceeiiesreenenn, 335
Joseph Feller, University College Cork, Ireland
Patrick Finnegan, University of New South Wales, Australia
Jeremy Hayes, University College Cork, Ireland

Chapter 17

The Application-Based Domain Modeling Approach: Principles and Evaluationc..cccccoeeeeeee. 350
Iris Reinhartz-Berger, University of Haifa, Israel
Arnon Sturm, Ben-Gurion University of the Negev, Israel

Chapter 18

The Use of Ontology for Data Mining with Incomplete Data...........ccccoeeveevieiiieciincieniesie e 375
Hai Wang, Saint Mary's University, Canada
Shouhong Wang, University of Massachusetts Dartmouth, USA

Compilation of REfErenCescooiiiiiiiiiiiiiie ettt e ee e ae s beesnreeennee s 389

ADOUL the COMEITDULOIS ...ttt e et e s e s esese e nnnnnes 428

Detailed Table of Contents

g (5 - T USSR XVi
Chapter 1
A Multiple-Bits Watermark for Relational Data............ccccceeecviiieiiiiiiiiiiieiieecieeeee e 1

Yingjiu Li, Singapore Management University, Singapore
Huiping Guo, California State University at Los Angeles, USA
Shuhong Wang, University of Wollongong, Australia

At the heart of the information economy, commercially and publicly useful databases must be sufficiently
protected from pirated copying. Complementary to the Database Protection Act, database watermark-
ing techniques are designed to thwart pirated copying by embedding owner-specific information into
databases so that the ownership of pirated copies of protected databases can be claimed if the embedded
information is detected. This chapter presents a robust watermarking scheme for embedding a multiple-
bits watermark to numerical attributes in database relations. The scheme is robust in the sense that it
provides an upper bound for the probability that a valid watermark is detected from unmarked data, or a
fictitious secret key is discovered from pirated data. This upper bound is independent of the size of the
data. The scheme is extended to database relations without primary-key attributes to thwart attribute-
related attacks. The scheme is also extended to multiple watermarks for defending additive attacks and
for proving joint ownership.

Chapter 2

BROOD: Business Rules-Driven Object Oriented Design.........cceevvieriieriieniienieeriieieereerieeieesieeveeeens 23
Pericles Loucopoulos, Loughborough University, UK
Wan M.N. Wan Kadir, Universiti Teknologi Malaysia, Malaysia

A critical success factor for information systems is their ability to evolve as their environment changes.
There is compelling evidence that the management of change in business policy can have a profound effect
on an information system’s ability to evolve effectively and efficiently. For this to be successful, there is
a need to represent business rules from the early requirements stage, expressed in user-understandable
terms, to downstream system design components and maintain these throughout the lifecycle of the sys-
tem. Any user-oriented changes could then be traced and if necessary propagated from requirements to
design specifications and evaluated by both end-users and developers about their impact on the system.
The BROOD approach, discussed in this chapter, aims to provide seamless traceability between require-

ments and system designs through the modelling of business rules and the successive transformations,
using UML as the modelling framework.

Chapter 3

Bug Fixing Practices within Free/Libre Open Source Software Development Teams..........ccccceueeeee.e. 51
Kevin Crowston, Syracuse University, USA
Barbara Scozzi, Politecnico di Bari, Italy

Free/Libre open source software (FLOSS, e.g., Linux or Apache) is primarily developed by distributed
teams. Developers contribute from around the world and coordinate their activity almost exclusively by
means of email and bulletin boards, yet somehow profit from the advantages and evade the challenges of
distributed software development. This chapter investigates the structure and the coordination practices
adopted by development teams during the bug-fixing process, which is considered one of main areas
of FLOSS project success. In particular, based on a codification of the messages recorded in the bug
tracking system of four projects, this chapter identifies the accomplished tasks, the adopted coordination
mechanisms, and the role undertaken by both the FLOSS development team and the FLOSS community.
The chapter concludes with suggestions for further research.

Chapter 4

Conflicts, Compromises, and Political Decisions: Methodological Challenges of

Enterprise-Wide E-Business Architecture Creation..........oeoueeriieriierieenieenieesie e 82
Kari Smolander, Lappeenranta University of Technology, Finland
Matti Rossi, Helsinki School of Economics, Finland

This chapter describes the architecture development process in an international ICT company, which is
building a comprehensive e-business system for its customers. The implementation includes the inte-
gration of data and legacy systems from independent business units and the construction of a uniform
Web-based customer interface. The authors followed the early process of architecture analysis and
definition over a year. The research focuses on the creation of e-business architecture and observes that
instead of guided by a prescribed method, the architecture emerges through somewhat non-deliberate
actions obliged by the situation and its constraints, conflicts, compromises, and political decisions. The
interview-based qualitative data is analyzed using grounded theory and a coherent story explaining the
situation and its forces is extracted. Conclusions are drawn from the observations and possibilities and
weaknesses of the support that UML and RUP provide for the process are pointed out.

Chapter 5

Evaluation of MDE Tools from a Metamodeling Perspective.........ccccevveeeiieiiieiiiieeiie e 105
Joao de Sousa Saraiva, INESC-ID/Instituto Superior T ecnico, Portugal
Alberto Rodrigues da Silva, INESC-ID/Instituto Superior T ecnico, Portugal

Ever since the introduction of computers into society, researchers have been trying to raise the abstrac-
tion level at which software programs are built. Currently an abstraction level based on graphical mod-
els instead of source code is being adopted: MDE. MDE is the driving force for some recent modeling
languages and approaches, such as OMG’s UML or Domain-Specific Modeling. All these approaches

are founded on metamodeling: defining languages that represent a problem-domain. A key factor for the
success of any approach is appropriate tool support. However, only recently have tool creators started
considering metamodeling as an important issue in their list of concerns. This chapter evaluates a small
set of MDE tools from the perspective of the metamodeling activity, focusing on both architectural and
practical aspects. Then, using the results of this evaluation, the authors discuss open research issues for
MDE-based software development tools.

Chapter 6

Exploring the Effects of Process Characteristics on Product Quality in Open Source

SOTtWAre DEVEIOPIMENL.eiieiiiiiiieiiieciee ettt ettt e et e et eeteeetaeestbeessseessseessseeesseeessseessseenns 132
Stefan Koch, Vienna University of Economics and Business Administration, Austria
Christian Neumann, Vienna University of Economics and Business Administration, Austria

There has been considerable discussion on the possible impacts of open source software development
practices, especially in regard to the quality of the resulting software product. Recent studies have shown
that analyzing data from source code repositories is an efficient way to gather information about proj-
ect characteristics and programmers, showing that OSS projects are very heterogeneous in their team
structures and software processes. However, one problem is that the resulting process metrics measuring
attributes of the development process and of the development environment do not give any hints about
the quality, complexity, or structure of the resulting software. Therefore, this chapter expands the analysis
by calculating several product metrics, most of them specifically tailored to object-oriented software.
The authors then analyzed the relationship between these product metrics and process metrics derived
from a CVS repository. The aim was to establish whether different variants of open source development
processes have a significant impact on the resulting software products. In particular, the authors analyzed
the impact on quality and design associated with the numbers of contributors and the amount of their
work, using the GINI coefficient as a measure of inequality within the developer group.

Chapter 7

The Impact of Ideology on the Organizational Adoption of Open Source Software.........c..ccccueue.e. 160
Kris Ven, University of Antwerp, Belgium
Jan Verelst, University of Antwerp, Belgium

Previous research has shown that the open source movement shares a common ideology. Employees
belonging to the open source movement often advocate the use of open source software within their
organization. Hence, their belief in the underlying open source software ideology may influence the
decision making on the adoption of open source software. This may result in an ideological—rather
than pragmatic—decision. A recent study has shown that American organizations are quite pragmatic
in their adoption decision. This chapter argues that there may be circumstances in which there is more
opportunity for ideological behavior. The authors therefore investigated the organizational adoption de-
cision in Belgian organizations. Results indicate that most organizations are pragmatic in their decision
making. However, the authors have found evidence that suggests that the influence of ideology should
not be completely disregarded in small organizations.

Chapter 8

Web Services, Service-Oriented Computing, and Service-Oriented Architecture:

Separating Hype from ReEalitycooiiiiiiiiiiieieee ettt 176
John Erickson, University of Nebraska - Omaha, USA
Keng Siau, University of Nebraska - Lincoln, USA

Service-oriented architecture (SOA), Web services, and service-oriented computing (SOC) have become
the buzz words of the day for many in the business world. It seems that virtually every company has
implemented, is in the midst of implementing, or is seriously considering SOA projects, Web services
projects, or service-oriented computing. A problem many organizations face when entering the SOA
world is that there are nearly as many definitions of SOA as there are organizations adopting it. Further
complicating the issue is an unclear picture of the value added from adopting the SOA or Web services
paradigm. This chapter attempts to shed some light on the definition of SOA and the difficulties of as-
sessing the value of SOA or Web services via return on investment (ROI) or nontraditional approaches,
examines the scant body of evidence empirical that exists on the topic of SOA, and highlights potential
research directions in the area.

Chapter 9
Approximate Query Answering with Knowledge Hierarchy...........cccocoiiiiiiiiiniiniiiiiee 189
Wookey Lee, Inha University, Korea
Myung-Keun Shin, Telecom Business Division, SK C&C, Korea
Soon Young Huh, Korea Advanced Institute of Science and Technology, South Korea
Donghyun Park, Inha University, South Korea
Jumi Kim, Small Business Institute, Korea

Approximate Query Answering is important for incorporating knowledge abstraction and query relax-
ation in terms of the categorical and the numerical data. By exploiting the knowledge hierarchy, a novel
method is addressed to quantify the semantic distances between the categorical information as well as
the numerical data. Regarding that, an efficient query relaxation algorithm is devised to modify the ap-
proximate queries to ordinary queries based on the knowledge hierarchy. Then the ranking measures
work very efficiently to cope with various combinations of complex queries with respect to the number
of nodes in the hierarchy as well as the corresponding cost model.

Chapter 10

Abstract DTD Graph from an XML Document: A Reverse Engineering Approachc............. 204
Joseph Fong, City University of Hong Kong, China
Herbert Shiu, City University of Hong Kong, China

Extensible Markup Language (XML) has become a standard for persistent storage and data interchange
via the Internet due to its openness, self-descriptiveness and flexibility. This chapter proposes a systematic
approach to reverse engineer arbitrary XML documents to their conceptual schema — Extended DTD
Graphs — which is a DTD Graph with data semantics. The proposed approach not only determines
the structure of the XML document, but also derives candidate data semantics from the XML clement
instances by treating each XML element instance as a record in a table of a relational database. One

application of the determined data semantics is to verify the linkages among elements. Implicit and
explicit referential linkages are among XML elements modeled by the parent-children structure and
ID/IDREF(S) respectively. As a result, an arbitrary XML document can be reverse engineered into its
conceptual schema in an Extended DTD Graph format.

Chapter 11

A Dynamic Model of Adoption and Improvement for Open Source Business Applications 225
Michael Brydon, Simon Fraser University, Canada
Aidan R. Vining, Simon Fraser University, Canada

This chapter develops a model of open source disruption in enterprise software markets. It addresses
the question: Is free and open source software (FOSS) likely to disrupt markets for enterprise business
applications? The conventional wisdom is that open source provision works best for low-level system-
oriented technologies while large, complex enterprise business applications are best provided by com-
mercial software vendors. The authors challenge the conventional wisdom by developing a two-stage
model of open source disruption in business application markets that emphasizes a virtuous cycle of
adoption and lead-user improvement of the software. The two stages are an initial incubation stage
(the I-Stage) and a subsequent snowball stage (the S-Stage). Case studies of several FOSS projects
demonstrate the model’s ex post predictive value. The authors then apply the model to SugarCRM, an
emerging open source CRM application, to make ex ante predictions regarding its potential to disrupt
commercial CRM incumbents.

Chapter 12

Aiding the Development of Active Applications: A Decoupled Rule Management Solution............. 250
Florian Daniel, University of Trento, Italy
Giuseppe Pozzi, Politecnico di Milano, Italy

Active applications are characterized by the need for expressing, evaluating, and maintaining a set of
rules that implement the application’s active behavior. Typically, rules follow the Event-Condition-Action
(ECA) paradigm, yet oftentimes their actual implementation is buried in the application code, as their
enactment requires a tight integration with the concepts and modules of the application. This chapter
proposes a rule management system that allows developers to easily expand its rule processing logic
with such concepts and modules and, hence, to decouple the management of their active rules from the
application code. This system derives from an exception manager that has previously been developed
in the context of an industry-scale workflow management system and effectively allows developers to
separate active and non-active design concerns.

Chapter 13

Dimensions of UML Diagram Use: Practitioner Survey and Research Agendac...cccooveeevennee. 271
Brian Dobing, University of Lethbridge, Canada
Jeffrey Parsons, Memorial University of Newfoundland, Canada

The UML is an industry standard for object-oriented software engineering. However, there is little
empirical evidence on how UML is used. This chapter reports results of a survey of UML practitioners.

The authors found differences in several dimensions of UML diagram usage on software development
projects, including frequency, the purposes for which they were used, and the roles of clients/users in
their creation and approval. System developers are often ignoring the “Use Case-driven” prescription
that permeates much of the UML literature, making limited or no use of either Use Case Diagrams or
textual Use Case descriptions. Implications and areas requiring further investigation are discussed.

Chapter 14

A 360-Degree Perspective of Education in 3-D Virtual Worldsccceoeninininininicnieee, 291
Brenda Eschenbrenner, University of Nebraska-Lincoln, USA
Fiona Fui-Hoon Nah, University of Nebraska-Lincoln, USA
Keng Siau, University of Nebraska-Lincoln, USA

Three-dimensional virtual world environments are providing new opportunities to develop engaging,
immersive experiences in education. These virtual worlds are unique in that they allow individuals to
interact with others through their avatars and with objects in the environment, and can create experiences
that are not necessarily possible in the real world. Hence, virtual worlds are presenting opportunities
for students to engage in both constructivist and collaborative learning. To assess the impact of the use
of virtual worlds on education, a literature review is conducted to identify current applications, benefits
being realized, as well as issues faced. Based on the review, educational opportunities in virtual worlds
and gaps in meeting pedagogical objectives are discussed. Practical and research implications are also
addressed. Virtual worlds are proving to provide unique educational experiences, with its potential only
at the cusp of being explored.

Chapter 15

Using Graphics to Improve Understanding of Conceptual Models..........cccevevinienieniniiniinincenee, 310
Kamal Masri, Simon Fraser University, Canada
Drew Parker, Simon Fraser University, Canada
Andrew Gemino, Simon Fraser University, Canada

Making Entity-Relationship diagrams easier to understand for novices has been a topic of previous
research. This study provides experimental evidence that suggests using small representative graphics
(iconic graphics) to replace standard entity boxes in an ER diagram can have a positive effect on domain
understanding for novice users. Cognitive Load Theory and the Cognitive Theory of Multimedia Learning
are used to hypothesize that iconic graphics reduce extraneous cognitive load of model viewers leading
to more complete mental models and consequently improved understanding. Domain understanding
was measured using comprehension and transfer (problem solving) tasks. Results confirm the main
hypothesis. In addition, iconic graphics were found to be less effective in improving domain understand-
ing with English as second language (ESL) participants. ESL results are shown to be consistent with
predictions based on the Cognitive Load Theory. The importance of this work for systems analysts and
designers comes from two considerations. First, the use of iconic graphics seems to reduce the extrane-
ous cognitive load associated with these complex systems. Secondly, the reduction in extraneous load
enables users to apply more germane load which relates directly with levels of domain understanding.
Thus iconic graphics may provide a simple tool that facilitates better understanding of ER diagrams and
the data structure for proposed information systems.

Chapter 16

Beyond Open Source: The Business of “Whole” Software Solutions.............cceeeveeciiiieiieeiecreeenene, 335
Joseph Feller, University College Cork, Ireland
Patrick Finnegan, University of New South Wales, Australia
Jeremy Hayes, University College Cork, Ireland

Researchers have argued that competitive necessities will require open source software companies to
participate in cooperative business networks in order to offer the complete product / service (whole
product) demanded by customers. It is envisaged that these business networks will enhance the business
models of participant firms by supplementing their value adding activities and increasing responsiveness
to customers. However, while such propositions have intuitive appeal, there is a paucity of empirical
research on such networks. This study examines Zea Partners, a network of small open source compa-
nies cooperating to deliver the ‘whole product’ in the area of Content Management Systems (CMS). It
investigates how network participation augments the business models of the participant companies, and
identifies the agility challenges faced by the business network. The chapter concludes that reconciling
the coordination needs of OSS networks with the operational practices of participant firms is of crucial
importance if such networks are to achieve adaptive efficiency to deliver whole products in a ‘bazaar-
friendly’ manner.

Chapter 17

The Application-Based Domain Modeling Approach: Principles and Evaluationc.ccveu.eee. 350
Iris Reinhartz-Berger, University of Haifa, Israel
Arnon Sturm, Ben-Gurion University of the Negev, Israel

Domain analysis provides guidelines and validation aids for specifying families of applications and
capturing their terminology. Thus, domain analysis can be considered as an important type of reuse,
validation, and knowledge representation. Metamodeling techniques, feature-oriented approaches, and
architectural-based methods are used for analyzing domains and creating application artifacts in these
domains. These works mainly focus on representing the domain knowledge and creating applications.
However, they provide insufficient guidelines (if any) for creating complete application artifacts that
satisfy the application requirements on one hand and the domain rules and constraints on the other
hand. This chapter claims that domain artifacts may assist in creating complete and valid application
artifacts and present a general approach, called Application-based DOmain Modeling (ADOM)), for this
purpose. ADOM enables specifying domains and applications similarly, (re)using domain knowledge in
applications, and validating applications against the relevant domain models and artifacts. The authors
demonstrate the approach, which is supported by a CASE tool, on the standard modeling language, UML,
and report experimental results which advocate that the availability of domain models may help achieve
more complete application models without reducing the comprehension of these models.

Chapter 18

The Use of Ontology for Data Mining with Incomplete Data.............ccceeveiiiviiieiciieeciecie e 375
Hai Wang, Saint Mary's University, Canada
Shouhong Wang, University of Massachusetts Dartmouth, USA

Ontology has recently received considerable attention. Based on a domain analysis of knowledge rep-
resentations in data mining, this chapter presents a structure of ontology for data mining as well as the
unique resources for data mining with incomplete data. This chapter demonstrates the effectiveness of
ontology for data mining with incomplete data through an experiment.

Compilation of REfErenCesccocoiieiiiiiiiiiiiieie ettt ee e e ae e beesaeeennee s 389

ADoUt the COoNtIIDULONS ...ttt e e e e e e e e e e e e eeeeeeeeeeaeeeeeeaaeeas 428

XVi

Preface

Databases and database systems continually assume a more critical place at the center of the information
systems architecture for many companies and organizations. Coupled with data warehouses and advanced
data mining techniques, an increasing number of organizations now have powerful analytic and predictive
tools available to help them gain and maintain competitive advantage. In addition, connecting back office
databases and data warehouses with the Web is becoming vital for a growing number of organizations.
The preceding developments and events in the practical business world provide the backdrop for research
into the creation of ever more sophisticated means to the ends regarding information systems.

In the current environment, research investigating the entire discipline of database should be at the
core of teaching as well as extending research in all related areas of database. Database lines of research
include business intelligence, query languages, query optimization, data warehouse design, data mining
algorithms, XML tool development, and tools for the modeling, design, and development of informa-
tion systems. Some of the more recent techniques involve design and deployment of object-relational
databases that include support for object-oriented systems. Other research and development streams
involve Web Services, Service Oriented Architectures, and Open Source Systems. As the complexity of
database systems increases, modeling databases and database systems has assumed increased importance
in database research. Future databases or data warehouses are likely to include real-time analysis using
advanced statistical methods, with increasing immediacy and connection to the Web, Supply Chain
Management, Customer Relationship Management, and Knowledge Management systems.

Over the past forty years, IS and database researchers have conducted empirical investigations that
have resulted in a better understanding of the impacts and values of advanced database principles in
business on a global basis. Past database research has focused primarily on technical and organizational
issues, and less on social issues. Issues such as text mining and opinion mining that depend on state of
the art database systems and can be used to infer meaning and emotional content are also likely to garner
more attention in future research.

In accordance with the high standard of previous volumes in the Advances in Database Research
Series, we edited this volume by including only the best research in the field. A majority of the chapters
included in this volume are conducted by internationally renowned scholars. We believe this volume
will provide a convenient store of valuable knowledge on the topic of database, systems analysis and
design, design science, and software engineering. This volume can serve as a starting point for refer-
ences and citation pieces for researchers, graduate students and practitioners in the field. This volume
consists of eighteen chapters; three are focused on database, three on systems analysis and design, four
on modeling, two on architecture, five on open systems development, and one on educational efforts. A
brief description of each chapter is presented below.

Xvii

Chapter 1, “AMultiple-Bits Watermark for Relational Data,” by Yingjiu Li, Huiping Guo, and Shuhong
Wang, presents a technique to mark data in databases protected by copyright. The technique is robust
enough that it can estimate the probability regarding whether the watermark itself can be detected. The
technique can also work on databases that do not use primary key attributes and it can prevent attribute
related attacks. Finally, the technique supports multiple watermarks so that joint owners can each place
their own security measure, or to detect multiple (additive) attacks.

Chapter 2, “BROOD: Business Rules-Driven Object Oriented Design,” by Pericles Loucopoulos
and Wan Kadir, identifies a critical success factor for information systems as their ability to change
with environmental changes. The authors go on to explicate their approach to deriving business rules
that include means to evolve or change information systems from an object-oriented perspective. They
propose the use of modelling techniques, in particular UML as the basis for modelling business rules
that allow or encourage changes in the depicted information systems.

Chapter 3, “Bug Fixing Practices within Free/Libre Open Source Software Development Teams,”
by Kevin Crowston and Barbara Scozzi, examine the processes and practices of distributed develop-
ment teams working on open source projects. They approach the issues involved by analyzing messages
recorded in the error tracking system of fours projects. By doing this the authors were able to identify
common tasks, coordination efforts, and roles of the development teams. The results can be compared
with those of non open source teams and other open source teams as well to provide insight into improv-
ing development efforts.

Chapter 4, “Conflicts, Compromises and Political Decisions: Methodological Challenges of En-
terprise-Wide E-Business Architecture Creation,” by Kari Smolander and Matti Rossi, examines how
an international ICT company developed its architecture. The authors monitored the early architectural
phases of the development effort as part of the research project. Results indicate that the final architecture
often derives from the conditions and environment present at the time of its creation. According to the
authors, other elements affecting the architecture can include political compromises and constraints.

Chapter 5, “Evaluation of MDE Tools from a Metamodeling Perspective,” by Jodo de Sousa Saraiva
and Alberto Rodrigues, explores and enhances the ideas of Model Driven Architecture (MDA) by creat-
ing an additional abstraction layer that they call the graphical model layer. The paper goes on to describe
the evaluation of tools supporting metamodels from the MDA perspective. Based on the evaluation, the
chapter closes with a possible research agenda for MDA development tools.

Chapter 6, “Exploring the Effects of Process Characteristics on Products Quality in Open Source
Software Development,” by Stefan Koch and Christian Neumann, proposes metrics that purport to measure
open system development processes. In particular, the metrics are aimed at object-oriented processes. A
problem the authors note is that the existing metrics do not measure quality, complexity or structure. The
goal of the research is to determine whether metrics can be used to assess the aforementioned issues.

Chapter 7, “The Impact of Ideology on the Organizational Adoption of Open Source Software,” by
Kris Ven and Jan Verelst, examines the ideology underlying the open source community of developers.
Other studies have indicated that US organizations are more interested in the practical uses of open source.
The authors propose that other opportunities might exist that allow more of the underlying ideologies to
emerge. The findings indicate that most organizations favor the practical over the ideological, but that,
in small organizations, ideological influences might yet play a role in the adoption of open source.

Chapter 8, “Web Services, Service-Oriented Computing, and Service-Oriented Architecture:
Separating Hype from Reality,” by John Erickson and Keng Siau, provides an overview of the Service
Oriented Architecture (SOA), Web services, and Service Oriented Computing (SOC) areas of software

xviii

and systems development. The authors note that the definitions of the system types are not agreed upon
by business or researchers, and provide a framework for understanding the components of SOA. The
authors provide some evidence suggesting that the areas are understudied in terms of research, and sug-
gest future directions or gaps in the current research for investigators.

Chapter 9, “Approximate Query Answering with Knowledge Hierarchy,” by Wookey Lee, Myung-
Keun Shin, Soon Young Huh, Donghyun Park, and Jumi Kim, creates an efficiency relaxation algorithm
to change approximation queries into ordinary queries. The approach uses the knowledge hierarchy as a
means to enable this transformation. Then the authors apply ranking measures to help deal with the many
complex nodes generated by using the knowledge hierarchy to simplify the approximation query.

Chapter 10, “Abstract DTD Graph from an XML Document: A Reverse Engineering Approach,” by
Joseph Fong and Herbert Shiu, proposes a means to reverse engineer XML documents back into their
“conceptual schema,” which they call Extended DTD graphs. The authors argue that their approach can
do two tasks; first to determine the structure of XML documents, and second to extract the data schemas
from the XML elements. They accomplish these tasks by considering the XML element instances as
records in a relational database.

Chapter 11, “A Dynamic Model of Adoption and Improvement for Open Source Business Applica-
tions,” by Michael Brydon and Aidan R. Vining, proposes a way to model open source disruption in
software markets. Their two stage model includes an incubation stage, where the initial adoption and
development are nurtured, followed by a snowball stage, where momentum is gathered. The authors
then apply their model to a Customer Relationship Management application named SugarCRM as a
test case.

Chapter 12, “Aiding the Development of Active Applications: A Decoupled Rule Management So-
lution,” by Florian Daniel and Giuseppe Pozzi, examines the set of rules that commonly describe what
they call active applications. They use the Event-Condition-Action paradigm as the starting point for
their explanatory vehicle, and the rules management system they derive allows developers to separate
active and non-active design issues.

Chapter 13, “Dimensions of UML Diagram Use: Practitioner Survey and Research Agenda,” by
Brian Dobing and Jeffrey Parsons, examines field use of UML. The research was executed by means
of a survey to UML practitioners. Results indicate that practitioners generally tend not to use UML Use
Case diagrams. They either do not utilize Use Cases at all or instead make use of textual based Use Case
descriptions. This finding is directly at odds with much of the literature on UML, and is also counter to
how the OMG (Object Management Group) prescribes best practices for UML.

Chapter 14,“A360-Degree Perspective of Education in 3-D Virtual Worlds,” by Brenda Eschenbrenner,
Fiona Fui-Hoon Nah, and Keng Siau, examines education from the perspective of 3D virtual worlds,
such as Second Life. The research assesses the impact of such virtual worlds on education via a review
of current literature on the subject. Based on the literature, pedagogical, practice, and research objectives
are discussed. The literature suggests that research into the impacts of virtual worlds on education is at
a very early stage, and many opportunities for education and research remain unexplored.

Chapter 15, “Using Graphics to Improve Understanding of Conceptual Models,” by Kamal Masri,
Drew Parker, and Andrew Gemino, provides the results of an experiment involving the replacement of
standard identity boxes in ERDs (Entity Relationship Diagrams) with iconic graphics (small represen-
tative graphics). The primary problem under investigation was how to enhance novice understanding
of ERDs. Findings indicate that a reduction in “extraneous” cognitive load for those using the iconic

Xix

graphics was possible, further allowing an increase in “germane” cognitive load. This implies better
understanding of the diagrams.

Chapter 16, “Beyond Open Source: The Business of ‘Whole’ Software Solutions,” by Joseph Feller,
Patrick Finnegan, and Jeremy Hayes, examines a common research notion that open source developers
will be forced (by competitive pressures) to join cooperative type networks so that a complete product
can be provided to customers. The chapter uses a case study at Zea Partners, an open source content
management application developer, to conclude that if such networks are to succeed, then the participant
organizations must reconcile the coordination concerns with the operational concerns.

Chapter 17, “The Application-Based Domain Modeling Approach: Principles and Evaluation,” by Iris
Reinhartz-Berger and Arnon Sturm, investigates the area of domain analysis with the goal of developing
an approach that can overcome some of the shortcomings of modeling the domain using metamodeling
techniques. The authors propose that domain artifacts can be used to assemble relatively complete and
valid artifacts in their approach called Application based Domain Modeling. They demonstrate the vi-
ability of their approach using a CASE tool created for UML.

Chapter 18, “The Use of Ontology for Data Mining with Incomplete Data,” by Hai Wang and
Shouhong Wang, demonstrates how a domain analysis of knowledge representations in a data warehouse
or other data set, can be used in combination with a formal ontology, developed specifically for data
mining, to extract relatively complete results with incomplete data. They provide experimental evidence
supporting their claim.

Keng Siau & John Erickson
Editors, Advances in Database Research

Chapter 1
A Multiple-Bits Watermark for
Relational Data

Yingjiu Li
Singapore Management University, Singapore

Huiping Guo
California State University at Los Angeles, USA

Shuhong Wang
University of Wollongong, Australia

ABSTRACT

At the heart of the information economy, commercially and publicly useful databases must be sufficiently
protected from pirated copying. Complementary to the Database Protection Act, database watermark-
ing techniques are designed to thwart pirated copying by embedding owner-specific information into
databases so that the ownership of pirated copies of protected databases can be claimed if the embedded
information is detected. This article presents a robust watermarking scheme for embedding a multiple-
bits watermark to numerical attributes in database relations. The scheme is robust in the sense that it
provides an upper bound for the probability that a valid watermark is detected from unmarked data, or
a fictitious secret key is discovered from pirated data. This upper bound is independent of the size of the
data. The scheme is extended to database relations without primary-key attributes to thwart attribute-
related attacks. The scheme is also extended to multiple watermarks for defending additive attacks and
for proving joint ownership.

INTRODUCTION a wide variety of applications such as parametric

specifications, surveys, and life sciences. While
With the development of information technology, demand for the use of databases is growing,
databases are becoming increasingly importantin pirated copying has become a severe threat to

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

such databases due to the low cost of copying and
the high values of the target databases. To fight
against pirated copying, database watermarking
techniques are designed to embed owner-specific
information into database relations; when a pirated
copy is found, the owner can extract the embed-
ded information and use the detection process to
assert the ownership of data. This complements
the effort of the Database Protection Act (Vaas,
2003) as people realize that the law does not pro-
vide sufficient protection to valuable databases
(Gray & Gorelick, 2004).

While watermarking multimedia data has
long been rigorously studied (Cox, Miller, &
Bloom, 2001; Johnson, Duric, & Jajodia, 2000;
Katzenbeisser & Petitcolas, 2000), the approaches
developed for multimedia watermarking cannot
be directly applied to databases because of the
difference in data properties. In general, database
relations differ from multimedia data in signifi-
cant ways and hence require a different class of
information-hiding mechanisms. Unlike multime-
dia datawhose components are highly correlated,
database relations consist of independent objects
or tuples. The tuples can be added, deleted, or
modified frequently in either benign updates or
malicious attacks. No existing watermarking
techniques for multimedia data are designed to
accommodate such tuple operations.

Perhaps the most well-known scheme for wa-
termarking relational data is the one proposed by
Agrawal and Kiernan (2002). For convenience,
we call it the AK scheme. The main idea of the
AK scheme is to change a small portion of nu-
merical data according to a secret key such that
the change can be detected for ownership proof.
Without access to the secret key, a pirate cannot
localize exactly where the change is made. It is
difficult for a pirate to confuse the ownership de-
tection unless he or she introduces an intolerable
error to the underlying data. The AK scheme can
be used in many real-world applications such as
watermarking parametric specifications, surveys,
and life-science data (Agrawal, Haas, & Kiernan,
2003; Agrawal & Kiernan).

A Multiple-Bits Watermark for Relational Data

Consider a database relation R that has a pri-
mary key P and v numerical attributes 4,..., 4 .
Letthere ben tuples. A portion oftuplesis selected
for embedding watermark information according
to a control parameter vy (y <m). The selection is
also determined by a secret key K, known only
to the owner of the data, as well as the primary
key. Any tuple r is selected if S,(K, ».P) mod y =
0, where S/(K, r.P) is the first number generated
by S(X, r.P), and S(K, r.P) is a cryptographic
pseudorandom sequence generator seeded with
a secret key K and the primary key 7. P of tuple .
Given a sequence of numbers S, S,,... generated
by S, it is computationally infeasible to derive the
secret key or to predict the next number in the
sequence. Due to the uniqueness of the primary
key, roughly one out of every vy tuples is selected
for embedding watermark information.

For each selected tuple r, the AK scheme
selects exactly one least significant bit j from at-
tribute 4, and replaces it with a mark bit x, where
i=S8,(K, r.P)ymod v, j= S,(K, r.P) mod &, and x=0
if §,(K, r.P) is even and x=1, otherwise. Here,
& is another control parameter determining the
range of least-significant bits of each value that
may be modified.

For ownership detection, the mark bits are
located using the same process provided that the
secret key is known and the primary key remains
unchanged. Let ® be the number of mark bits
being localized (o = m/p). To increase the ro-
bustness of the detection process, the ownership
is claimed if more than 1o of the localized bits
are as expected, where T € [0.5, 1) is a control
parameter that is related to the assurance of the
detection process.

The AK scheme has the following advan-
tages: It is (a) key based, meaning all aspects of
the scheme are determined by a secret key and
a primary key, (b) blind, that is, the detection
process does not require the knowledge of the
original database or the embedded information,
(c) incrementally updatable, where each tuple
is marked independently of all other tuples, (d)

A Multiple-Bits Watermark for Relational Data

error tolerable, meaning the error introduced by
embedding mark bits can be controlled such that
its impact on the mean and variance of marked
attributes is minuscule, and (e) robust, where the
detection process is robust to a variety of attacks
including bit-flipping attacks, mix-and-match
attacks, additive attacks, and invertibility at-
tacks. In particular, the scheme is robust against
tuple-related attacks such as tuple modification,
deletion, and insertion.

To motivate our research, we examine the
following assumptions that are used in the AK
scheme:

* Errortolerance: A database relation being
watermarked consists of a number of nu-
meric attributes. It is acceptable to change
a small number of & least-significant bits in
some numeric values; however, the value of
data will be degraded significantly if all or
a large number of such bits change.

* Primary-key criticality: A database rela-
tion being watermarked has a primary-key
attribute that either does not change or can
be recovered. The primary-key attribute
contains essential information such that
modification or deletion of this information
will substantially reduce the value of data.

* Attributeorderdependence: A databaserela-
tion being watermarked has a fixed order of
attributes that either does not change or can
be recovered. This assumption is implicit in
Agrawal and Kiernan (2002).

The scheme depends critically on a primary
key and the original order of database attributes.
The scheme does not apply if the data have no
primary-key attribute or if either the primary key
or the order of attributes is modified. The scheme
is therefore not robust against attribute-related
attacks such as attribute deletion and insertion.

In this article, we present the view that the
AK scheme actually embeds a 1-bit watermark,
and we extend it to a multiple-bit watermark. The

extended scheme provides an upper bound for
the probability that a valid watermark is detected
from unmarked data, or a fictitious secret key is
discovered from pirated data. This upper bound
is independent of the size of the data. Then we
drop the assumptions for primary-key criticality
and attribute order dependence by constructing a
virtual primary key from some most-significant
bits of some selected attributes. The attributes
used for constructing the virtual primary key may
vary from tuple to tuple, and the scheme does not
depend on a priori ordering over the attributes.
Our extended scheme is robust against not only
tuple-related attacks, but also attribute-related
ones. We also extend our scheme for embedding
and detecting multiple watermarks so as to thwart
additive attacks or prove joint ownership. As are-
sult of our study, ownership detection can be fully
automated for detecting any database relations
with a guarantee of low false-detection rates.

The remainder of this article is organized
as follows. We first present a multiple-bits wa-
termarking scheme for relational data. We then
extend it by removing the assumptions on the
primary key and attribute order. We also extend
our scheme to multiple watermarks. In the related-
work section, we compare our work with many
other solutions including newly published ones.
The final section presents our conclusion. For
ease of reference, Table 1 gives the notation that
is used in this article.

RELATED WORK

In this section, we summarize the related work
in three categories: robust watermarking, fragile
watermarking, and public watermarking.

Robust Watermarking
Recent development of watermarking techniques

has been targeted on relational databases to ac-
commodate typical database operations such

Table 1. Notation in watermarking

A Multiple-Bits Watermark for Relational Data

n Number of tuples that can be used in watermarking

v | Number of numerical attributes that can be used in watermarking

S Number of least-significant bits available in each value for watermarking

1/y | Fraction of tuples that are used for watermarking

K | Secret key

S Cryptographic pseudorandom sequence generator

T Threshold in watermark detection

as tuple insertion, deletion, and modification.
The AK scheme (Agrawal & Kiernan, 2002) is
a typical robust watermarking scheme that em-
beds a single-bit watermark to relational data.
The scheme alters some least-significant bits in
numerical attributes such that the alteration does
not degrade the data beyond their usability and
that the pattern of alteration can be detected even
if the data have been modified. In this article, we
extend the AK scheme to (a) allow multiple-bit
information to be embedded and detected, (b)
provide an upper bound for the probability that a
valid watermark is detected from unmarked data,
orafictitious secretkey is discovered from pirated
data, regardless of the size of data, (c) deal with
database relations without primary-key attributes,
and (d) embed and detect multiple watermarks
for thwarting additive attacks and for proving
joint ownership.

Parallel to our work, a multibit watermark
scheme was proposed by Sion, Atallah, and Prab-
hakar (2003). The scheme is designed primarily
for watermarking a set of real numbers {x ,..., x }
by manipulating its distributions. The first step of
watermark insertion is to sort the values accord-
ing to a cryptographically keyed hash of the set
of most-significant bits of the normalized values.
Then, a maximum number of nonintersecting
subsets of values are formed, where each subset
consists of a certain number of adjacent items
after sorting. Embedding a watermark bit into
a subset is achieved by making minor changes

to some of the data values in this subset such
that the number of values that are outliers in the
distribution is less than a smaller threshold (for
watermark bit 0) or greater than a larger threshold
(for watermark bit 1). Note that some of the groups
may not be able to be watermarked given user-
specified change tolerance. Also note that some
redundant bits must be embedded such that the
original multibit watermark can be recovered in
watermark detection even if some of the encoded
bits are destroyed in data attacks. Compared with
our multibit watermarking scheme, this scheme
is robust against linear transformation and does
not depend on the existence of a primary key. On
the other hand, since it requires sorting, group-
ing, and distribution manipulating, it incurs more
watermarking overhead, especially expensive
for watermarking large data sets or frequently
updated databases.

Robust watermarking schemes have also
been developed for protecting copyrights for cat-
egorical data, XML (extensible markup language)
data, and data cubes. In Sion (2004), the author
proposed to watermark a categorical attribute
by changing some of its values to other values
of the attribute (e.g., red is changed to green) if
such change is tolerable in certain applications.
Sion’s scheme is equivalent to the AK scheme in
selecting a number of tuples for watermarking a
categorical attribute 4 based on a secret key K
and the primary-key attribute P. For each selected
tuple 7, exactly one bit is chosen from watermark

A Multiple-Bits Watermark for Relational Data

information wm_data and is embedded to .4,
where the watermark information wm_data is
generated from a shorter watermark wm using the
error-correcting code (ECC). The bit position is
determined by a pseudorandom value generated
from the secret key and the primary key ».P. To
embed the chosen bit b, the current categorical
value .4 is changed to another valid value of 4,
which is chosen from a list L , of all valid values
of 4. In this process, any value a can be chosen
from L, (to replace 7.4) as long as a’s index in
L , has the least-significant bit b. For watermark
detection, anumber of tuples are selected the same
way as in watermark insertion. Then, for each
selected tuple 7, a bit position in wm_ data is lo-
cated and the corresponding bit value inwm_ data
is extracted from the least-significant bit of the
index of 7.4 in the list L ,. After all of the tuples
are processed, the ECC takes as input wm_data
and produces the corresponding wm. The ECC can
tolerate certain errors in detecting wm_ data and
still produce the same wm in watermark detec-
tion. This scheme has been extended to protect
the ownership and privacy of outsourced medical
data (Bertino, Ooi, Yang, & Deng, 2005) that are
subject to generalization (Kim, Sengupta, Fox, &
Dalkilic, 2007) and aggregation (Woo, Lee, Lee,
Loh, & Whang, 2007) attacks.

The AK scheme has also been extended by Ng
and Lau (2005) to watermarking XML data. In
this scheme, the owner of XML dataisrequired to
choose locators, which are XML elements having
unique values that can serve as primary keys as
in the AK scheme. While a textual value of an
element is selected to embed a mark bit, one of its
words is replaced by a synonym function based on
a well-known synonym database WordNet.

Gross-Amblard (2003) considered relational
or XML data that are only partially accessible
through a set of parametric queries in his query-
preserving watermarking scheme. The scheme
modifies some numerical values in watermark
insertion in a way that the distortions introduced
to theresults of those parametric queries are small

and that the watermark can be detected from the
results of those queries. Another work on wa-
termarking XML data was conducted by Zhou,
Pang, and Tan (2007). They proposed creating
queries to identify the data elements in XML data
that can be used for embedding watermarks. The
identifying queries are resilient against data reor-
ganization and redundancy removal through query
rewriting. If an identified element is a leaf node,
watermark insertion is performed by modifying
its value; otherwise, it is performed by adding to
or deleting its child nodes. The usability of XML
data is measured by query templates. The results
of certain basic queries on the data remain useful
after watermarking or attacks.

J. Guo, Li, Deng, and Chen (2006) proposed
a robust watermarking scheme to protect the
owner’s rights in data-cube applications. The
basic assumption is that all values able to be wa-
termarked in a data cube are numeric, and those
small changes in a small portion of these values
are acceptable. For each cell in a data cube, the
owner of the data seeds a cryptographically secure
pseudorandom sequence generator S with a secret
key K in concatenation with the cell’s feature
attributes. A small portion of cells are selected
and for each selected cell, a bit position among &
least-significant bits is selected to embed a mark
bit in the same way as in the AK scheme. Since
the most prevalent data-cube operations are ag-
gregation queries (Pears & Houliston, 2007), a
minicube is constructed for each cell that is modi-
fied in watermark insertion so as to eliminate the
errorsintroduced by watermarking to aggregation
queries. J. Guo et al. have shown that this can be
done effectively and efficiently in real-world ap-
plications even for very large data cubes.

The AK scheme has also been extended to
fingerprinting relational databases (Li, Swarup,
& Jajodia, 2005). Fingerprinting is used to insert
digital marks for the purpose of identifying the
recipients who have been provided data, which
is different from watermarking in which digital
marks are inserted for the purpose of identifying

the source of data. The challenge is to address the
collusion attack in which a group of legitimate
users work collaboratively to create a pirated copy
of protected data (Boneh & Shaw, 1995, 1998;
Safavi-Naini & Wang, 2001).

Fragile Watermarking

Different from robust watermarking, the purpose
of fragile watermarking is not to protect copyright,
but to detect and localize possible attacks that
modify a distributed or published database. Li,
Guo, and Jajodia’s scheme (2004) is an example
of fragile watermarking. This scheme embeds a
watermark to relational data by partitioning the
tuples into groups and manipulating the order of
the tuples in each group, where the grouping and
ordering of the tuples are determined by a secret
key and the primary key of the tuples. A water-
mark can be computed by hashing or signing all
tuple values in a group. Note that even though the
watermark can be derived from a digital signature,
it is embedded into the data, which is different
from integrating digital signatures with relational
databases (Reid & Dhillon, 2003). Any change to
theunderlying data canbe detected ata group level
with a high probability in watermark detection.
This solution introduces no error to the underlying
data and can be easily extended to watermarking
multidimensional data cubes.

To improve the precision in tamper localiza-
tion, H. Guo, Li, Liu, and Jajodia (2006) proposed
another fragile watermarking scheme under the
assumptions that the database relation to be wa-
termarked has numerical attributes and that the
errors introduced in two least-significant bits
of each value can be tolerated. In this solution,
the tuples are first divided into groups, as in the
previous scheme. Within each group, a tuple hash
(keyed) is computed for each tuple (with attributes
organized in a fixed order), and an attribute hash
(keyed) is computed for each attribute (with tuples
organized in a fixed order). When these hash
values are computed, the two least-significant

A Multiple-Bits Watermark for Relational Data

bits of all attribute values are ignored. Each tuple
hash is embedded into the corresponding tuple
and each attribute hash into the corresponding at-
tribute. The embedded hash values actually form
awatermark grid, which helps to detect, localize,
and characterize database attacks.

Recently, H. Guo, Li, and Jajodia (2007) pro-
poseda fragile watermarking scheme for detecting
malicious modifications to streaming data. The
scheme partitions a numerical data stream into
groups based on synchronization points. A data
elementx, is defined to be a synchronization point
if its keyed hash HMAC(K, xi) mod m=0, where
K is a secret key, and m is a secret parameter. For
each group of data that falls between two synchro-
nization points, the scheme computes and embeds
a fragile watermark so that any modification to
the data can be detected and localized at a group
level in watermark detection.

Public Watermarking

One common feature of most robust watermark-
ing techniques is that they are secret-key based,
where ownership is proven through the knowledge
of a secret key that is used for both watermark
insertion and detection. The secret-key-based
approach is not suitable for proving ownership
to the public (e.g., in a court). To prove owner-
ship of suspicious data, the owner has to reveal
his or her secret key to the public for watermark
detection. After beingused one time, the key is no
longer secret. With access to the key, a pirate can
invalidate watermark detection by either removing
watermarks from protected data or adding a false
watermark to nonwatermarked data.

Li and Deng (2006) proposed a unique da-
tabase watermarking scheme that can be used
for publicly verifiable ownership protection.
Given a database relation to be published or
distributed, the owner of the data uses a public
watermark key to generate a public watermark,
which is a relation with binary attributes that
are derived from the original database. Anyone

A Multiple-Bits Watermark for Relational Data

can use the watermark key and the watermark
to check whether a suspicious copy of the data
is watermarked, and, if so, prove the ownership
of the data by checking a watermark certificate
officially signed by a trusted certificate authority,
DB-CA. The watermark certificate contains the
owner’s ID, the watermark key, the hashes of the
watermark and database relation, the firsttime the
relation was certified, the validity period of the
current certificate, and the DB-CA’s signature.
The watermark certificate may be revoked and
recertified in the case of identity change, owner-
ship change, DB-CA compromise, or data update.
Therefore, the revocation status also needs to be
checked in proving the ownership.

EMBEDDING AND DETECTING
MULTIPLE-BITS WATERMARK

In this section, we extend the AK scheme under
the same set of assumptions: error tolerance,
primary-key criticality, and attribute order
dependence. The extended scheme is used for
embedding a multiple-bits watermark rather than
a 1-bit watermark as in the AK scheme. Multiple-
bits watermarks are useful for embedding owner
information such as name, logo, signature, or
description about the underlying data. We prove
that certain false-detection rates are bounded in
our extended scheme.

Embedding Multiple Bits

The AK scheme embeds a 1-bit watermark only.
This can be seen clearly by extending it to embed-
ding a multiple-bits watermark W= (w,.., w,).
To embed W, the same scheme is used to (a) select
some tuples, (b) select one attribute for each se-
lected tuple 7, (c) select one least significant bit for
each selected attribute, and (d) compute amark bit
x for each selected bit. Now the difference is that
the mark bit is not used to replace the selected bit
in data directly; instead, one watermark bit w, is
selected from W where /= S (K, r.P) mod L, and

x XOR w,is used to replace the selected bit in the
data. In watermark detection, the watermark bit
w, is recovered by computing XOR on a located
bit in the data with the computed mark bit x.
The ownership is claimed as long as the original
watermark string W can be recovered from the
data. The AK scheme can be considered to be a
special case of this extended scheme where W
is 1-bit 0.

Compared to the AK scheme, the same number
o = 1/ of least-significant bits is selected in our
extended scheme forembedding watermark infor-
mation; thus, the error introduced by the embed-
ding process is the same as the AK scheme. The
readeris referred to Agrawal etal. (2003) for more
details on the analysis of watermarking error. The
difference is that each watermark bit w, is embed-
ded @ ~ w/L times as compared to ® times in the
original scheme; thus, the robustness analysis on
the watermarking scheme must be adapted to take
this into consideration. A preliminary analysis
of our extended scheme was first reported in Li,
Swarup, and Jajodia (2003a).

Robustness Analysis for
Multiple-Bits Scheme

The robustness of a watermarking scheme can
be measured by the following probabilities: (a)
false hit rate, in which a valid watermark is
detected from unmarked data, (b) invertibility
rate, where a fictitious secret key is derived from
marked data, and (c) false miss rate, in which no
valid watermark is detected from marked data
in the presence of various types of attacks. The
smaller these probabilities, the more robust the
watermarking scheme.

Intherobustness analysis, we use the following
notation: (a) the probability function of binomial
distribution b(k; n, p)=C~ p*q"* (i.e., probability
of obtaining exactly k successes out of n Bernoulli
trials with probability p of success in any trial),
and (b) the survival function of binomial distribu-
tion B(k; n, p) ZZ?:M b(i; n, p) (i.e., probability

of having more than & successes in z independent
Bernoulli trials).

False Hit

Being aware of the existence of a watermarking
technique, a pirate may modify marked data so as
to confuse ownership proof. Therefore, watermark
detection may be applied to not only the original
marked data, but also unmarked data, both of
different sizes.

Claim 1. If the detection algorithm is applied
to unmarked data, then the false-hit rate is Hf:_ol
B(w; ®,0.5) < 2%, where ® > 0 is the number of
times that the watermark bit 7 is extracted from
data.

Proof- 1f the detection algorithm is applied to
unmarked data, itmay possibly return some binary
string (w,,..., w,) asapotential watermark. Letw,
be extracted from data . times and w > 0. Due to
the use of pseudorandom generator S'in detection,
w, is extracted each time from unmarked data as
0 or 1 with the same probability 0.5. Due to the
use of threshold t in detection, w, is detected as
0 or 1 with the same probability B(tw; ®,, 0.5).
The probability that a binary string (w,,..., w,)
is obtained in detection is H,L;o] 2B(tw; o, 0.5).
Now, there is only one watermark in the space of
2% possible binary strings. Thus, the probability
thatthe binary string obtained matches the original
watermark is 1/2*. The false-hit rate is 2%1_[;1
2B(tw; ,0.5)=B(to; ®,,0.5). The false-hit rate
has an upper bound 1/2% due to B(tw; ®,0.5) <
0.5 for T € [0.5, 1).

The upper bound is independent of ®, and 7.
Therefore, no matter what the size of the data and
the detection threshold are, the false-hit rate can
be reduced exponentially by increasing L.

The AK scheme corresponds to a special case
of our scheme where L=1. In the AK scheme, the
false-hit rate is B(tw; ®, 0.5) , where o is the total
number of mark bits extracted from targeted data.
The false-hit rate in the AK scheme may be con-

A Multiple-Bits Watermark for Relational Data

trolled by the detection threshold t. For example,
for ® = 1,000, it is required that t = 0.6 so that
the false-hit rate is less than 107, To reduce the
false-hit rate, one needs to increase the detection
threshold .

The side effect of increasing threshold T in
detection is that the scheme is more vulnerable to
some attacks. For example, the scheme will return
no valid watermark from marked dataifan attacker
flips at least 100(1-1)% of the & least-significant
bits of all values. The smaller the parameter t, the
more robust the scheme is against such attacks at
the price of a larger false-hit rate.

In our extended scheme, we can choose 1=0.5
to maximize the robustness without degrading
the false-hit rate significantly as it is bounded by
1/2%; therefore, a simple majority vote can be used
in our watermark detection as long as the length
of the watermark is long enough (e.g., L=40). In
comparison, the false-hit rate is close to 50% for
7=0.5 in the AK scheme, which is intolerable in
most cases.

Note that in the AK scheme, the false-hit rate
depends not only on 1, but also on the size of data
(in terms of ®). Since the size of data may change
due to various attacks, one has to determine an
appropriate t by solving a false-hit equation for
different sizes of data. The smaller the size of the
data,the more a largertisrequired (thus the weaker
the scheme is against attacks). For example, if ®
decreases from 1,000 to 100, then T must increase
from 0.6 to above 0.7 so as to keep the false-hit
rate below 107'°. In our extended scheme, a simple
majority vote (i.e., 7=0.5) can be used uniformly
for any size of data, which significantly simplifies
the detection process.

Invertibility

Now consider when a pirate discovers a secret
key from marked data that yields a satisfactory
watermark. A pirate can use the discovered key
to claim legitimate ownership of the data. Alter-
nately, a pirate can claim innocence by claiming

A Multiple-Bits Watermark for Relational Data

that data owner used this type of invertibility
attack to obtain the evidence of piracy.

Claim 2. If a pirate randomly selects a secret
key, then the probability that this key causes a valid
watermark to be detected from pirated data is

Lo 11
max(W,Hi:O B(roy;0;,0.5)) SW’Z_L)’

where ®>0 isthe number of times that watermark
bit 7 is extracted from data.

Proof- The first term % is the probability that
the tried key is the real secret key K (assume that
the length of the secret key is fixed and public).
The second term is the probability of detect-
ing a valid watermark from pirated data using
a different secret key, which is the same as the
probability of detecting a valid watermark from
unmarked data. An attacker may choose his or
her own parameters vy, L, and 7 to increase this
probability. In particular, if t=0.5 is selected, this
term reduces to its upper bound 1/2£.

Thwarting this invertibility attack requires
choosing along-enough watermark and secret key
(e.g., L>40and AES |K|>128). This requirement
can be enforced by a standard process or public
announcement. Note that an alternate convention
might be to require 1 to be greater than 0.5; how-
ever, an attacker may get around that convention
by firstreducing o (e.g., viaa subsetattack) before
launching an invertibility attack.

Considerthe AK scheme, which corresponds to
aspecial case of our scheme where L=1. No matter
how long a secret key is, the invertibility attack
could succeed with high probability because the
second term B(tw; o, 0.5) in the invertibility rate
may approach 50% when an attacker manipulates
the size of the data and the detection threshold.
In comparison, this term in our scheme has the
upperbound 1/2%, whichis independent of the size
of the data and the detection threshold .

Since the false-hit rate and invertibility rate
in our scheme are controlled by the length of the

watermark, we choose 1=0.5 in the following
0 as to maximize the robustness of our scheme
against various attacks.

False Miss

Watermarking schemes should be robust against
malicious attacks or benignupdate operations that
may destroy the embedded watermark. Since the
embedded watermark can always be destroyed by
making substantial modifications to marked data,
we assume that when attacks modify data, they
also degrade the value of the data. We consider the
robustness of our watermarking scheme relative to
typical database attacks. In this section, we focus
on typical tuple-related attacks that have been
considered in Agrawal and Kiernan (2002).

Value Modification

Consider value modification in which an attacker
randomly selects some data values and flips their
least-significant bits. Assume that the attacker
toggles each least-significant bit with probabil-
ity Py where r,> 0.5 (if P> 0.5, then watermark
detection can be applied to transformed data in
which each bitis flipped back) is called the flipping
probability (subscript f'stands for flipping).
Claim 3. If a value modification attack is
applied to a watermarked relation with flipping
probability p " then the false-miss rate is

=TT, B 0, p)),

where ®>0 isthe number of times that watermark
bit w, is embedded in the data.

Proof. Due to the majority vote, watermark
detection fails to detect watermark bit w, only
if at least ®,/2 embedded bits that correspond
to w, are toggled. Thus, the probability that the
watermark bit is not recovered is B(%; ®, p)
The probability that the entire watermark is not
recovered (i.e., the false-miss rate) is

In an average case, we have o, = @ = /L and
the false miss rate 1 — (1 — B(%; w, p/)L). Figure
1 plots the false-miss rate in the average case.
The two parameter values that are varied are @
and p z The figure uses the default value 100 for
L. The figure shows that with a proper choice of
parameters, a successful attack requires p fbeing
large, causing a perceptible change to the data
relation.

Tuple Deletion and Insertion

Consider tuple deletion, in which an attacker
deletes a subset of tuples from a watermarked
relation. Suppose that the attacker examines each
tuple independently and selects it with probability
p, for inclusion in the pirated relation.

Claim 4. If a tuple deletion attack is applied
to a watermarked relation, then the false-miss
rate is

1 - H,L;Ol (1_ pfi)i)a

where ® >01s the number of times that watermark
bit w, is embedded in the data, and p , is the prob-
ability that a tuple is deleted in the attack.

A Multiple-Bits Watermark for Relational Data

Proof: For the attack to be successful, it must
delete all embedded bits for atleast one watermark
bit. Now, each watermark bit w, is embedded o,
times, so the probability that all the embedded
bits for w, are deleted is B(w,— 1; , p) = py"
Therefore, the false miss rate is

1-T1, (=).

In an average case where o= @ = w/L, we
have the false-miss rate 1 — (1- p%)".

Figure 2 shows that a tuple deletion attack
is unlikely to succeed unless a large number of
tuples are deleted.

A tuple deletion attack is a less effective at-
tack than a value modification attack. However,
it is more potent when used in combination with
a value modification attack. A tuple deletion at-
tack reduces the average times a watermark bit is
embedded and hence makes the pirated relation
more susceptible to value modification attacks.
Figure 3 plots the false-miss rate as a function of
the ratio of tuples deleted and the flipping prob-
ability in a combination attack.

Another type of attack is tuple insertion at-
tack, in which an attacker takes a marked rela-
tion and mixes it with n - p, tuples from other
sources, where 1 is the number of tuples in the

Figure 1. False-miss rate under value modification attack

L=100, = =0.5

y]

10 I T T

Sl == =100
108 - =200
-+ =400

False m gs rate

& Il

1 1 1
0 5 10 15 20

I I — 1
30 35 40 45 50

Flipping probability p_i (%)

10

A Multiple-Bits Watermark for Relational Data

original relation and p, > 0 is the insertion rate.
In watermark detection, each watermark bit w,
is extracted from those additional tuples roughly
o, p, times, where , is the number of times the
watermark is extracted from the original data.
Then the probability that this watermark bit is
not recovered due to the attack is

1 .
B 0,p,09)

It is then fairly straightforward to derive the
false-miss rate for the tuple insertion attack. It is

more difficult for an attacker to confuse owner-
ship proof by launching a tuple insertion attack

Figure 2. False-miss rate under tuple deletion attack

than manipulating the same number of tuples in
a tuple deletion attack.

WATERMARKING WITHOUT
PRIMARY KEY

Both the AK scheme and our extended scheme
depend critically on aprimary key and the original
order of database attributes. These schemes do not
apply if the data have no primary key attribute
or in the case that either the primary key or the
order of attributes is modified. These schemes
are therefore not robust against attribute-related

L=100, t =0.5

10° . ; .
—— =
Jff-= -100
08 - _p00
-+ =400
102 i =800

o

False m ss rate
i
S

B
-

-
o,
T

.
c,
i

10°®

!

L L 1

50 55 60 65 7O

75 80 85 90

Percentage of tuples deleted

Figure 3. False-miss rate under combination attack

L=100, = =0.5, ©=200

=
o

=
ol

False miss rate
=)
(=3 N

Bits fipped

a7

0.5

Tuples deleted

11

attacks such as attribute deletion and insertion.
In this section, we propose alternative schemes
that do not depend on primary-key attributes or
the attribute order. A preliminary analysis of
these schemes was first reported in Li, Swarup,
and Jajodia (2003b).

Element-Based Scheme

The multiple-bits scheme discussed in the above
section can be called tuple based as it processes
data tuple by tuple in watermark insertion and
detection. An alternative approach is to process
each numerical value independently. A virtual
primary key vpk is constructed from each attri-
bute value or data element. We call such scheme
element based.

For each element .4, of tuple r, the bits of
1.4, are partitioned into two parts: Isb(r.4) and
vpk(r.4), where Isb(r.4) may be used to embed a
watermark bit and vpk(r.4) is used as its virtual
primary key. The least-significant bit portion Isb
consists of & bits in which a watermark bit may be
embedded. The virtual primary key vpk consists
of the (most significant) bits except the bits in Isb.
Changing vpk would introduce intolerable error
to the underlying data.

Recall that tuple-based schemes embed one
bit per y tuples. To maintain the same ratio, the
element-based scheme embeds one bit per yv ele-
ments: An element .4, is selected for embedding
a watermark bit if S\(K, vpk(r.4))) mod yv equals
0. If element 7.4, is selected, its least-significant
bit j in the Isb(r.4) portion is selected, where j=
S,(K, vpk(r.A)) mod E. Then the element-based
scheme embeds (or extracts) a watermark bit to
(or from) the selected bit exactly as the tuple-based
scheme does.

Combination-Based Scheme

Another solution is to combine some significant
bits from multiple attributes for constructing the
virtual primary key and process the data tuple

by tuple, based on each tuple’s virtual primary

12

A Multiple-Bits Watermark for Relational Data

key. We call such scheme combination based. The
construction of the virtual primary key does not
depend on the order of the attributes.

For each tuple », the combination-based
scheme computes its virtual primary key .} by
concatenating & (1 <k <v) keyed hash message
authentication codes (in the case that the concat-
enation results in too-long binaries, the virtual
primary key can be constructed from hashing the
concatenation result) in {HMAC (K, vpk(r.4)):
i=0,...,v-1} that are closest to 0 (hash values are
interpreted as natural numbers when comparing
with 0). The attributes used for constructing the
virtual primary key are not fixed but may change
from tuple to tuple. Without knowing the secret
key, an attacker is unable to determine which at-
tributes are selected for constructing the virtual
primary key in each tuple.

The combination-based scheme then uses the
tuple-based technique to process each tuple, but
with two modifications. First, the combination-
based scheme uses the virtual primary key inplace
of the real primary key. Second, for each tuple
r that has been selected, attribute 4, is chosen if
its hash value HMAC (K, vpk(r.4)) is closest to 0
among all attributes’ HMAChash values. Multiple
attributes may be selected if they have the same
lowest HMAC hash value. In comparison, the
tuple-based scheme selects a single attribute 4,
ifi =S, (K, vpk(r.4) mod v.

Note that in the combination-based scheme,
the attribute(s) selected for embedding a water-
mark bit is (are) among those that are used for
constructing the virtual primary key (i.e., the
lowest hash value is among the &k lowest hash
values). The construction of the virtual primary
key depends on the hash values rather than the
order of the attributes.

Robust Analysis for Virtual-Primary-
Key-Based Schemes

Recall thatthe analysis on the tuple-based scheme
is independent of the composition of the primary

A Multiple-Bits Watermark for Relational Data

key; thus, it holds for the combination-based
scheme as long as the virtual primary key has
the same uniqueness property as the real primary
key. In this section, we first extend the robust-
ness analysis to attribute-related attacks and then
study the impact of using the virtual primary key
instead of the real primary key in robust analysis.
Unless otherwise stated, our analysis is applied to
the combination-based scheme. A comparison of
the combination-based scheme with the element-
based scheme is given at the end.

Attribute Deletion and Addition

Assume that & out of v attributes are selected for
constructing the virtual primary key and that
the k attributes are randomly distributed among
v attributes from tuple to tuple. We analyze the
false-miss rate of watermark detection when
applied to marked data in which some attributes
may be deleted or added. Our analysis is similar
to that for a value modification attack, where the
false-miss rate is measured in terms of flipping
probability Py The flipping probability is the prob-
ability that each extracted watermark bit is not as
expected. In the context of attribute deletion and
addition, this probability is renamed equivalent
flipping probability p. We study how to calculate
p,in attribute deletion and addition attacks. As
long as [7f is obtained, the false-miss rate can be
computed the same way as in a value modification
attack (by replacing 2 with f?f).

Claim 5. If d out of v attributes are deleted in
awatermarked relation where the virtual primary
key is constructed from £ attributes, then the
false-miss rate is
1 G

L-1 ;
1-1]. ., 0-B(+0;,——
HI:O((2 2 2CVk

),

where o, > 0 is the number of times that water-
mark bit w, is extracted from the data.

Proof. An extracted bit is not as expected only
ifthe virtual primary key is altered; that is, some of
the kattributes thatare involved in the construction
of the virtual primary key are deleted. Since the
k attributes are randomly distributed from tuple
to tuple, the probability that the virtual primary
key is altered is

k
_ Cv—d

lck.

Itis equally likely that the altered virtual primary
key leads to a correct or incorrect bit being de-
tected. Therefore,

.1 cy,
pf - 2 2Ck :

v

Note thatthe false-miss rate is computed based
on the extracted times rather than the embedded
times of each watermark bit. [fthe extracted times
are unknown, it can be estimated as d/v of the
embedded times.

The false-miss rate in an attribute deletion at-
tack is computed exactly as in a value modification
attack, except that p isreplaced with ﬁf. Figures 4
and 5 plot p, as functions of d and k, respectively.
Figure 4 shows that the more the attributes are
deleted, the larger the equivalent flipping prob-
ability and the larger the false-miss rate. Figure
5 indicates that the less attributes are involved in
the construction of the virtual primary key, the
less the impact of attribute deletion. However,
as it shall be shown in the next subsection, using
less attributes in the construction of the virtual
primary key will degrade the uniqueness prop-
erty of the virtual primary key, which increases
the false-miss rates against tuple-related attacks.
Therefore, there is a trade-off between tuple-
related attacks and attribute deletion in terms of
thenumber of attributes in the virtual-primary-key
construction. The optimal number can be decided
by minimizing the overall false-miss rates in the
evaluation of these attacks.

13

A Multiple-Bits Watermark for Relational Data

Figure 4. Equivalent flipping probability for attribute deletion with respect to d

v=10

05 - - S ~ 4 "

0.4f !J

0.2¢ I /

0.1¢¥

Now consider attribute addition. We assume
that all hash values HMAC(K,vpk(r.A)) are uni-
formly distributed from 0 to U, where U is the
largest possible hash value.

Claim 6. If d>0 attributes are added to a
watermarked relation where the virtual primary
key is constructed from k out of v attributes, then
the false-miss rate is

-1 ; 1 1 k 4
1—| | 1-B(—+ 0, ———1-—))),
’:0((2 2 2(v+l) 2

where ®,>0 isthe number of times that watermark
bit w, is extracted from the data.

Proof. Foreach tuple » where a watermark bit is
embedded, k HMAChashvaluesh ..., h, areused
for constructing the virtual primary key, where the
k hash values are selected from {HMAC(K,vpk(r.
A)):i=0,...v-1} thatare closestto 0. The watermark
bit is embedded into the attribute whose hash
value is the closest to 0. Now consider that one
attribute 4 is added. The virtual primary key of
tuple » is unaffected by the adding of 4_only if
the hash value HMAC (K,vpk(r.A) is greater than
max__, i With the assumption thatall HMAChash

14

values are uniformly distributed from 0 to U (the
largest possible hash value), the probability that
the virtual primary key is altered is

max,, h; k
U v+l

If d attributes are added, the probability that the
virtual primary key is altered is

I
v +1

Itis equally likely that the altered virtual primary
key leads to a correct or incorrect watermark bit
being detected. Therefore, the equivalent flipping
probability is

.11 k

Dy _E_E(l_m))

Note that the false-miss rate is computed based
on the extracted times rather than the embedded
times of each watermark bit. Ifthe extracted times
are unknown, it can be estimated as 1+d/v of the
embedded times.

Figure 6 plots the equivalent flipping prob-
ability as functions of d and £, indicating that
the more attributes are added, the larger the

A Multiple-Bits Watermark for Relational Data

Figure 5. Equivalent flipping probability for attribute deletion with respect to k

v=10
05 g o + ____i.— — + 1/,3_
i P
f?’ /*’
0.4} A v
F P - ,/
PR rd
o3| i/ 7 }/"
o & @ /
,r B pd
ozr /f
:,IJ f/'/
0.1 =T
¥ i k=d
W 1 k=B
% 1 2z 3 4« 5 8 7 9
d
Figure 6. Equivalent flipping probability for attribute addition
05] 1 1 . 2 —;::_:_3._.—-4-—'—- e =
-Vf/,ﬁ_.'/ s /A{//y
’ r-1 e
0.4F 7 ! el 1
e "
F 8 e
. o P
03 ./ 7 e
(J £ //
n:_ flr J; 1/
£ e
0.2} 4
e
/
01F
'/ —— dm?2
o ded
1 d=B

equivalent flipping probability and the larger the
false-miss rate.

Duplicate Problem

Because the virtual primary key may notbe unique
to each tuple, the average number of marked bits
may notbe m=n/y, and each watermark bitmay not
be embedded in the dataroughly the same number
of times @ =n/(¢L). Due to the possible duplicates
of virtual-primary-key values, some watermark

bits may be embedded fewer times than the oth-
ers, rendering the scheme less robust to various
attacks. We call this the duplicate problem.

Due to the duplication of virtual-primary-key
values, different watermark bits are notembedded
(orextracted) evenly. Letw be the actual times that
watermark bitw is embedded (or extracted), where
i=0,...,L-1. Let®w_ =max o and ® . =min .
Weuse the following duplicate index d to measure
the severeness of the duplicate problem.

15

* Duplicate index 6 = (o, —®

ax min

Vo,
There will be no duplicate problem if the du-
plicate index is 0 (i.e., ®, =). If some watermark
bit is not embedded into the data (i.e., min, =
0), then the duplicate index is infinity (6=o0). The
smaller the duplicate index, the more evenly the
watermark is embedded (or extracted).

We now investigate the influence of the du-
plicate index on false-miss rates. The duplicate
problem affects both tuple-related attacks and
attribute-related attacks. In this article, only the
impacton tuple-related attacks (value modification
and tuple deletion) is illustrated. The impact on
attributed-related attacks can be easily derived
from the impact on value modification attacks as
discussed in the previous subsection.

In the case of 8=0, Figures 1 and 2 illustrate
the false-miss rates under the value modification
attack and the tuple deletion attack. In the case
that 6#0, we compute the false-miss rate based
on the assumption that the embedded times of
different watermark bits are uniformly distributed
in the interval [_. , ®] with mean @, where
@ = zi @ /L. Given w and 6, ®_. and ®__ can
be computed as

A Multiple-Bits Watermark for Relational Data

2w
m24+8
and

2148w
e 248

Figures 7 and 8 plot the false-miss rates under
the value modification attack and the tuple dele-
tion attack for different duplicate indices, where
L=100 and @ =200. The figures show that a larger
duplicate index renders the scheme more vulner-
able to the attacks.

Numerical Results

The duplicate index is content based and thus
should be evaluated case by case. We used a
real-life data set, forest cover-type data, as an
example for the evaluation of the duplicate index.
The data set is available from the University of
California-Irvine KDD Archive (http:/kdd.ics.
uci.edu/databases/covertype/covertype.html).
The data set consists of 581,012 tuples, each with
61 attributes and no primary key. The first 10
integer-valued attributes are chosen forembedding

Figure 7. False-miss rate under value modification attack

L-100, -200,t-05

—— =1
o'l —— -5
¢ 5=10
ol
o0
o
wo
E_IU.{_
3
iCts o
107
10°F
10°® . ¢

= b

P
4

0 5 i0 15 20

30 35 40 45 50

Flipping probabilily p_T (%)

16

A Multiple-Bits Watermark for Relational Data

the watermark (i.e., v=10). Let the default length
of the watermark be L=58, and the default & be
one fourth of the bits (least-significant part) in the
binary representation of each attribute value. For
the combination-based scheme, two attributes are
used in the construction of the virtual primary
key (i.e., k=2) unless otherwise stated.

Table 2 compares the combination-based
scheme with the tuple-based scheme and element-
based scheme in terms of duplicate index. For the
tuple-based scheme, we added an extra attribute
called id to serve as the primary key. Due to the
uniqueness of such primary key, the duplicate
index of the tuple-based scheme is closest to 0
compared to the other schemes. On the other hand,
the duplicate index of the element-based scheme
is always infinity, indicating that the element-

Figure 8. False-miss rate under tuple deletion attack

based scheme cannot be used for watermarking
this relation.

Figure 9 shows the duplicate index as a function
ofthenumber of attributes used in the construction
of the virtual primary key (i.e., k). In the figure,
the duplicate index is illustrated for different y
values and for the combination-based scheme only.
The trend is that the more the attributes used in
the construction of the virtual primary key, the
less the duplicate index. The duplicate index may
not be a strict monotonic function of k because
it depends also on the set of tuples that is chosen
for embedding the watermark. Combining this
figure with Figure 5, one may conclude that using
three attributes (k=3) for constructing the virtual
primary key is a good choice for watermarking
the forest cover-type data.

L-100, -200,t-0.5

o

10 L L 1 ¥ 1 1]
—— &0
—— 81
10" — 55
—— §-10
o 10°F <
® /
wm /
w oo 4
g 10
2 /
r
10t 4
i
’
. ;
107k ‘
3
’
i
10'5 1 1 L 1 1 I 1
50 55 &0 65 70 75 80 a5

Percentage of tuples deleted

Table 2. Duplicate index for different watermarking schemes

Duplicate index &
! Tuple-based scheme Combination-based scheme | Element-based scheme
100 0.58 5.46 0
50 0.61 2.73 0
25 0.14 0.85 0
12 0.07 1.03 0

17

A Multiple-Bits Watermark for Relational Data

Figure 9. Change of duplicate index (the duplicate indices for all y values at k=1 are infinity)

Duplicale index
t

Ay PR L

— et =T
i el MR
ﬁ“‘:rzf-——-ef_—:‘

EXTENSION TO MULTIPLE
WATERMARKS

Our multiple bits scheme can be easily extended
to allow for multiple watermarks. Assume that
n watermarks W,..., W of length L are embed-
ded into database relation R sequentially with
different secret keys K ..., K but with the same
watermarking parametersyy, v, and &. Interference
exists among multiple watermarks, as an embed-
ded bit of one watermark could be flipped back
and forth by some later embedded watermarks.
The interference among multiple watermarks can
be quantified as follows. Let p = 1/(yv€) be the
probability that a least-significant bit is used in
embedding a single watermark. For any mark bit
of watermark W , the probability that this mark
bit is modified b}ll other watermarks is

1 n—n
pnl,n :5[1_(1—136)]]<0.5.
For any least-significant bit of the original data,

the probability that this bit is modified by all
watermarks is

1 0
Po.n =5[l—(1—pc) 1<0.5.

18

6 7 8 9 10

3 4 5
Mum. of attr. in virtual primary key construction

Ifwatermark detection is applied to unmarked
data using each of n different valid secret keys
K,,.., K , then the probability that at least one
valid watermark is detected, or the false-hit rate,
is 1— (1-1/2%)", which has a lower bound 1/2* and
anupperbound n/2*. Given the number of water-
marks, the false-hit rate can be made low enough
by increasing the length L of the watermark.

The false-miss rate can be analyzed under a
typical modification attack in which an attacker
randomly toggles each least-significant bit with a
probability p, <0.5. Under this attack, the probabil-
ity thatthen,) watermark cannot be detected from
the modlﬁed data, or the false-miss rate, is

T (5B, /2 p, (1-p)+ (1 =p,)=
I-(1-B@/2 p, (1-p) + (1 =p, b)),

where @ is the number of times that the wa-
termark Blt w, in W is embedded in the data,
and @ is the average times each watermark bit
is embedded. The reason is that after modifica-
tion, each mark bit of the n, ™ watermark could be
modified either due to watermark interference or
by data modification. The probability of it being
modified due to watermark interference is p,

and the probability of it being modified by a data

A Multiple-Bits Watermark for Relational Data

modification attack is Py Therefore, the probability
of it being modified in any way is p, SA=p)+
I-p,)prhe false-miss rate in this case is the
probablhty of at least W /2 embedded bits out
of o bits of the n ™ watermark being modified.
Itis clear that the false -miss rate of the first em-
bedded watermark is the largest while that of the
last embedded watermark is the smallest among
n watermarks.

It can be verified that as n —oo, the false-hit
rate approaches 100% and the false-miss rate ap-
proaches 50%. The more watermarks embedded
into a data copy, the larger the false-detection
rates in watermark detection, and the more errors
introduced to the underlying data in watermark
insertion.

The watermarking errors should be carefully
evaluated so asto preserve data quality. The errors
canbe controlled attwo different levels. Atthe item
level, the errors introduced to individual values are
bounded because no alteration is allowed beyond
& least-significant bits. At the aggregation level,
the errors introduced to descriptive statistics of
attribute values can be quantified. In particular,
one can study the watermarking error introduced
to the mean of an integer-valued attribute with
values x ..., X, After embedding n watermarks,
value x, becomes x, + e, (n), where e, (n) is a ran-
dom variable. For x,, if its least-significant bit j is
modified in watermark insertion, the modification
will cause change + 2 or — 2’ to x, with the same
probability 1:2.

Knowing that the least-significant bit j will
be modified in watermark insertion with a prob-
ability p, (due to watermark interference), one
can derive that the mean of e, (n) is 0 and the
variance of e, (n) is

pO,n (22é - l)
3 .
Let

n
zi:l X

n

u:

be the mean of original attribute values and let

n
u,(n) = —Zizl 4)
n

be the error in computing p after watermarking.
The expected error in computing p after water-
marking is E[u (n)] = 0 and the variance of the
error is

Poa (25 -1

Vv (m)]= 3

Itcanbe verified that the variance of watermarking
error is monotonic, increasing with n to approach
its upper limit

2%
6n

An application of multiple watermarks is to
defend against additive attacks. In an additive
attack, a pirate inserts additional watermarks to
watermarked data so as to confuse ownership
proof. A pirate can insert watermarks to claim
ownership of the data or claim that the data were
provided to a buyer legitimately. An additive at-
tack can be thwarted by raising the watermarking
error to a predetermined threshold such that any
additive attack would introduce more errors than
the limit (Li, Swarup, & Jajodia, 2004). In the case
ofan additive attack, the ownership dispute can be
resolved by determining whose watermarks can be
detected more. To gain advantage in an ownership
dispute, a pirate is forced to embed a large-enough
number of watermarks. Consequently, the pirated
data are less useful or less competitive compared
to the originally watermarked data and it is not
necessary for the owner to claim ownership over
such data.

Multiple watermarks can also be used for prov-
ingjointownership in ascenario where a database
relation is jointly created by n participants. Each
participant can embed a watermark with his or her
own key so that he or she can prove the ownership
independently. The question is whether the under-
lying data can be watermarked. Given a certain

19

robustness requirement and error constraint, a
maximum number of watermarks can be deter-
mined based on our analysis on false-detection
rates and watermarking errors.

CONCLUSION

Inthearea of database watermarking, the research
on the AK scheme is innovative. Nonetheless,
the AK scheme can be strengthened from both
theoretical and practical perspectives. In this
article, we pointed out the weaknesses of the AK
scheme and proposed our solutions to address
these weaknesses.

The theoretical contributions of this research
canbe summarized as follows. First, we exposed a
unique view that the AK scheme actually embeds
1-bit watermark information, which cannot be
conveniently used to encode multibit information
about database owners or users. Based on such
a view, we extended the AK scheme to embed a
multiple-bit watermark. Our extension not only
inherits the same set of properties as the AK
scheme, but also provides an upper bound for
the probability that a valid watermark is detected
from unmarked data, and that a fictitious secret
key is discovered from pirated data. Second, we
realized that the AK scheme depends critically
on the existence of a primary key and the order of
the attributes. Due to this weakness, an attacker
can easily create a pirated copy by changing the
primary key or attribute order without being de-
tected by the AK scheme. To solve this problem,
we proposed to construct a virtual primary key
from some selected attributes. With a high prob-
ability, our solution ensures that a pirated data
copy can still be detected even if its primary key
or attribute order has been manipulated by an at-
tacker. Finally, our scheme is extended to allow for
multiple watermarks to be embedded and detected
for the purpose of thwarting additive attacks or
proving joint ownership. Rigorous analysis has
shown that our schemeisrobustagainsta variety of

20

A Multiple-Bits Watermark for Relational Data

attacks including tuple-related attacks, attribute-
related attacks, invertibility attacks, primary-key
attacks, and additive attacks.

The practical contributions of this research
include the following. First, asaresult of our study,
copyright detection can be fully automated for
detecting any database relations with a guarantee
of low false-detection rates. Our scheme can be
directly applied to protecting database relations
of any size since the false-detection rates are
bounded as a function of the length of the water-
mark regardless of the size of the data. Second,
our scheme can be used to protect database rela-
tions without primary keys, and protect databases
that are subject to a variety of attacks including
attribute-related attacks and additive attacks. In
the AK scheme, however, one may need to adjust
the watermark detection threshold appropriately
for detecting data of different sizes so as to keep
the false-detection rates low. One may also need
to manually check the primary key as well as the
order of attributes before launching the watermark
detection in the AK scheme.

One future research direction is to model
common database queries and minimize the
watermarking impact on those queries. It is pos-
sible that different watermarking schemes should
be designed to accommodate different types of
queries. Another future research direction is to
study the impact of watermarking to database
usability in various application contexts such as
in e-business (Pons & Aljifri, 2003).

REFERENCES

Agrawal, R., Haas, P. J., & Kiernan, J. (2003).
Watermarking relational data: Framework, algo-
rithms and analysis. The VLDB Journal, 12(2),
157-169.

Agrawal, R., & Kiernan, J. (2002). Watermark-
ing relational databases. Proceedings of VLDB
(pp- 155-166).

A Multiple-Bits Watermark for Relational Data

Bertino, E., Ooi, B. C., Yang, Y., & Deng, R.
(2005). Privacy and ownership preserving of
outsourced medical data. Proceedings of IEEE
International Conference on Data Engineering

(pp. 521-532).

Boneh, D., & Shaw, J. (1995). Collusion secure
fingerprinting for digital data (extended abstract).
Crypto, 452-465.

Boneh, D., & Shaw, J. (1998). Collusion secure
fingerprinting for digital data. [EEE Transactions
on Information Theory, 44(5), 1897-1905.

Cox, L. J., Miller, M. L., & Bloom, J. A. (2001).
Digital watermarking: Principles and practice.
Morgan Kaufmann.

Gray, B., & Gorelick, J. (2004, March 1). Database
piracy plague. The Washington Times. Retrieved
from http:/www.washingtontimes.com

Gross-Amblard, D. (2003). Query-preserving
watermarking of relational databases and XML
documents. Proceedings of ACM Symposium on
Principles of Database Systems (PODS) (pp.
191-201).

Guo, H., Li, Y., & Jajodia, S. (2007). Chaining
watermarks for detecting malicious modifications
to streaming data. Information Sciences, 177(1),
281-298.

Guo, H., Li, Y., Liu, A., & Jajodia, S. (20006).
A fragile watermarking scheme for detecting
malicious modifications of relational databases.
Information Sciences, 176(10), 1350-1378.

Guo, J,, Li, Y., Deng, R. H., & Chen, K. (20006).
Rights protection for data cubes. Proceedings
of Information Security Conference (ISC) (pp.
359-372).

Johnson, N. F.,, Duric, Z., & Jajodia, S. (2000). In-
Jformation hiding: Steganography andwatermark-
ing. Attacks and countermeasures. Kluwer.

Katzenbeisser, S., & Petitcolas, F. A. (2000). In-
formation hiding techniques for steganography
and digital watermarking. Artech House.

Kim, H. M., Sengupta, A., Fox, M. S., & Dalkilic,
M. (2007). A measurement ontology generaliz-
able for emerging domain applications on the

Semantic Web. Journal of Database Management,
18(1), 20-42.

Li, Y., & Deng, R. (2006). Publicly verifiable
ownership protection for relational databases.
Proceedings of ACM Symposium on Informa-
tion, Computer and Communication Security
(ASIACCS) (pp. 78-89).

Li, Y., Guo, H., & Jajodia, S. (2004). Tamper
detection and localization for categorical data
using fragile watermarks. Proceedings of ACM
Digital Rights Management Workshop (DRM)
(pp- 73-82).

Li, Y., Swarup, V., & Jajodia, S. (2003a). Con-
structing a virtual primary key for fingerprinting
relational data. Proceedings of ACM Digital Rights
Management Workshop (DRM) (pp. 133-141).

Li, Y., Swarup, V., & Jajodia, S. (2003b). A robust
watermarking scheme forrelational data. Proceed-

ings of 13" Workshop on Information Technology
and Systems (WITS) (pp. 195-200).

Li, Y., Swarup, V., & Jajodia, S. (2004). Defend-
ing against additive attacks with maximal errors
in watermarking relational data. Proceedings of
18" Annual IFIP WGI11.3 Working Conference
on Data and Applications Security (DBSEC)

(pp. 81-94),

Li, Y., Swarup, V., & Jajodia, S. (2005). Fin-
gerprinting relational databases: Schemes and
specialties. /[EEE Transactions on Dependable
and Secure Computing, 2, 34-45.

Ng, W., & Lau, H. L. (2005). Effective approaches
for watermarking XML data. International
Conference on Database Systems for Advanced
Applications (pp. 68-80).

21

Pears, R., & Houliston, B. (2007). Optimization of
multidimensional aggregates in data warehouses.
Journal of Database Management, 18(1), 69-93.

Pons, A. P., & Aljifti, H. (2003). Data protection
using watermarking in e-business. Journal of
Database Management, 14(4), 1-13.

Reid, R., & Dhillon, G. (2003). Integrating digital
signatures with relational databases: Issues and
organizational implications. Journal of Database
Management, 14(2), 42-51.

Safavi-Naini, R., & Wang, Y. (2001). Collu-
sion secure q-ary fingerprinting for perceptual
content. Digital Rights Management Workshop

(pp. 57-75).

Sion, R. (2004). Proving ownership over cat-
egorical data. Proceedings of IEEE International
Conference on Data Engineering (ICDE) (pp.
584-596).

A Multiple-Bits Watermark for Relational Data

Sion, R., Atallah, M., & Prabhakar, S. (2003).
Rights protection for relational data. Proceedings
of ACM SIGMOD International Conference on
Management of Data (pp. 98-108).

Vaas, L. (2003, September 24). Putting a stop to
database piracy. eWeek: Enterprise News and

Reviews. Retrieved from http:/www.eweek.com/
print_article/0,3084,a=107965,00.asp

Woo, J. H., Lee, B. S., Lee, M. J., Loh, W. K., &
Whang, K. Y.(2007). Temporal aggregation using
a multidimensional index. Journal of Database
Management, 18(2), 62-79.

Zhou, X.,Pang,H.H., & Tan, K. L. (2007). Query-
based watermarking for XML data. Proceedings
of ACM Symposium on Information, Computer
and Communication Security (ASIACCS) (pp.
253-264).

This work was previously published in the Journal of Database Management, Vol. 19, Issue 3, edited by K. Siau, pp. 1-21,

copyright 2008 by IGI Publishing (an imprint of IGI Global).

22

23

Chapter 2
BROOD:

Business Rules—-Driven Object
Oriented Design

Pericles Loucopoulos
Loughborough University, UK

Wan M.N. Wan Kadir
Universiti Teknologi Malaysia, Malaysia

ABSTRACT

A critical success factor for information systems is their ability to evolve as their environment changes.

Thereis compelling evidence that the management of change in business policy can have a profound effect
on an information system's ability to evolve effectively and efficiently. For this to be successful, there is
a need to represent business rules from the early requirements stage, expressed in user-understandable

terms, to downstream system design components and maintain these throughout the lifecycle of the sys-

tem. Any user-oriented changes could then be traced and if necessary propagated from requirements to

design specifications and evaluated by both end-users and developers about their impact on the system.

The BROOD approach, discussed in this article, aims to provide seamless traceability between require-

ments and system designs through the modelling of business rules and the successive transformations,

using UML as the modelling framework.

INTRODUCTION

The ubiquitous nature of information systems
and the increasing dependency of organizations,
government and society on such systems highlight
the importance of ensuring robustness in their
operation. At the same time rapid changes in the

environment of information systems places an
increasing emphasis on the ability of these systems
to evolve according to emerging requirements. A
large proportion of a total systems’ lifecycle cost
is devoted to introducing new requirements, and
removing or changing existing system functional-
ity (Grubb & Takang, 2003). Software evolution

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

therefore is considered as a key challenge in the
development and maintenance of information
systems (Erlikh, 2000).

In recent years there has been an increasing
interest of the IS community in business rules,
which has resulted in dedicated rule-centric
modeling frameworks and methodologies (Ross
& Lam, 1999; Zaniolo et al., 1997), international
initiatives for the investigation of business rules’
role in the context of knowledge management
(Hay & Healy, 1997), conferences, workshops and
tutorials (Mens, Wuyts, Bontridder, & Grijseels,
1998), and rule-centric rule management tools and
application development support environments
(e.g., Blaze Advisor Builder, BRS RuleTrack,
Business Rule Studio, Haley Technologies, ILOG
Rules, Platinum Aion, Usoft Developerand Visual
Rule Studio). Whilstthese efforts make significant
contributions in their own right, a key challenge
remains unanswered namely the linking of busi-
ness rules specifications to software designs.

The aim ofthe BROOD (business rules-driven
object oriented design) approach is to address the
issue of software evolution from both requirements
and design perspectives. This confluence should
provide a seamless and traceable facility that ar-
guably should bring about a more effective way
of dealing with software evolution, by aligning
changes ofthe information system to changes in its
environment. BROOD adopts as its methodologi-
cal paradigm that of object orientation with UML
as its underlying graphical language. It augments
UML by explicitly considering business rules as
anintegral part of an object-oriented development
effort. To this end BROOD aims:

i. Toexplicitly model business rules in a man-
ner understandable to end-user stakehold-
ers.

ii. To map these to formal descriptions ame-
nable to automation and analysis.

iii. To provide guidelines on the deployment of
business rules in the development process.

24

BROOD

iv. To provide guidelines on the evolution of
requirements and related design specifica-
tions.

The article is organized as follows. Section
2 discusses the background to business rules
modeling. Section 3 introduces the motivation
for BROOD. Section 4 introduces the BROOD
metamodel as the foundation for modeling busi-
nessrules. Section 5 discusses the manner in which
businessrules are linked to design components via
the concept of ‘rule phrase.” The BROOD process
is detailed in section 6. The BROOD approach is
supported by an automated tool and this is briefly
discussed in Section 7. The article concludes with
an overview of BROOD, observations on its use
on a large application and comparisons with
traditional approaches.

The language details for business rules
definition are given in appendix A. The BROOD
approach is demonstrated through an industrial
application which is described in appendix B.
This application had originally been developed
using a traditional approach. Therefore, it proved
useful not only as ameans of providing a practical
grounding on BROOD but also on comparing and
contrasting the use of BROOD with a traditional
development effort.

BUSINESS RULES MODELLING

The motivation of BROOD is to provide a develop-
ment environment whereby the business analysis
and system design domains are supported by
business rules modeling with the specific aim to
facilitating more effective software evolution.

The term “business rule” has been used by
different authors in different ways. For example,
in (Rosca, Greenspan, Feblowitz, & Wild, 1997),
business rules are:

statements of goals, policies, or constraints on an
enterprise s way of doing business.

BROOD

In (Herbst, 1996a), they are defined as:

statements about how the business is done, i.e.
about guidelines and restrictions with respect to
states and processes in an organization.

Krammer considers them as “programmatic
implementations of the policies and practices of
abusiness organization” (Krammer, 1997) whilst
Halle states that:

depending on whom you ask, business rules
may encompass some or all relationship verbs,
mathematical calculations, inference rules, step-
by-step instructions, database constraints, busi-
ness goals and policies, and business definitions.

(Halle, 1994).

In general, business rules in the information
systems field may be viewed in terms of two
perspectives: (a) business rules as applied to con-
ceptual modeling and (b) business rules as applied
to evolvable software systems development.

Business Rules in Conceptual
Modeling

1. Business rules as part of requirements
gathering and systems analysis have not
been ignored by structured analysis, in-
formation engineering or object-oriented
analysis approaches (Moriarty, 1993) which,
to varying degrees, subsume or represent
business rules as part of notation schemes
used to specify application requirements
(Gottesdiener, 1997)Ross (1997) comments
that traditional IS methodologies have ad-
dressed rules poorly, and only relatively late
inthe system development lifecycle. (Hay &
Healy, 1997) mention thatrules dealing with
information structure may be represented by
any of several flavors of entity—relationship
or object class diagrams, and responses to
events may be shown via essential data flow

diagrams (McMenamin & Palmer, 1984) or
as entity life history diagrams (Robinson &
Berrisford, 1994).

From a conceptual perspective there are ap-
proaches that consider businessrules as an integral
part of the modeling and analysis of systems’
requirements. An early effort in this direction
wasthe RUBRIC project (Loucopoulos & Layzell,
1986; van Assche, Layzell, Loucopoulos, &
Speltinex, 1988) parts of which were integrated
into the information engineering (Martin, 1989)
method.

In BROCOM (Herbst, 1996b, 1997), the rule
language is a type of structured English, and
therefore it is highly expressive. Moreover, rules
are organized according to a rich meta-model,
and can be retrieved based on a number of dif-
ferent criteria. As far as methodological guidance
is concerned, Herbst proposes the development
of various models which are helpful during the
analysis phase, but the process of creating and
using them is not clearly defined. The transition
from analysis to design and implementation has
not been addressed by this approach.

The DSS approach (Rosca, Greenspan, &
Wild, 2002; Rosca et al., 1995) focuses on the
analysis phase of IS development by supporting
the rationale behind the establishment of rules.
DSS adopts the ECA (event-condition-action)
paradigm for structuring rule expressions and
also links these expressions to the entities of an
underlying enterprise model. The absence of a
formal rule language confines the use of DSS on
modeling tasks.

The Business Rules Group (BRG), formerly
known as the GUIDE Business Rule Project
(Hay & Healy, 1997), investigated an appropriate
formalization for the analysis and expression of
businessrules (Hay & Healy, 2000). This approach
identifies terms and facts in natural language rule
statements, and consequently, it offers ahigh level
of expressiveness. The meta-model it provides for
describing the relations between these terms and

25

facts is very detailed. Therefore, rule models are
(a) highly manageable and (b) formal and fully
consistent with the information models of a spe-
cific organization.

The IDEA method (Zanioloetal., 1997) focuses
on the maintenance of formality and consistency
with underlying business models. The method
offers guidance for every activity being involved
in the development of a rule-centric information
system. The IDEA method is directed towards
the use of specific active and deductive databases,
and of the corresponding rule languages. As a
result of this, (a) IDEA rules are rather difficult
to be expressed or even understood by business
people; and (b) the choice of technologies to be
employed for the development of an information
system is rather limited.

The BRS approach (Ross, 1997) is formal, in
accordance with the underlying data models of
an organization, offers sufficient methodologi-
cal guidance, and allows management of rule
expressions based on a very detailed meta-model.
It is also one of the few methods that adopts a
graphical notation for expressing rules. Regard-
ing the development process, BRS introduces a
business rule methodology called BRS Proteus™
methodology that defines a number of steps for
both business and system modeling (Ross, & Lam,
2003). BRS also provides the BRS RuleTrack™,
an automated tool for recording and organizing
business rules.

The object constraint language (OCL) of UML
(Eriksson & Penker, 2000) is tightly bound with the
widely accepted UML but lacks methodological
guidance for the collection of rules. Rule structures
are implied by the allocation of rules to classes,
attributes, associations and operations.

A comparative evaluation of the treatment of
business rules for conceptual modeling by three
widely used approaches is shown in Table 1.

26

BROOD

Business Rules in Evolvable
Software Evolution

The majority of approaches in this category aim
to improve the understanding and evolution of
a software system by logically and physically
separating business rule components from other
software components.

The adaptive object model (4OM), which is
also known as the dynamic object model (Riehle,
Tilman, & Johnson, 2000), is “a system that rep-
resents classes, attributes, and relationships as
metadata” (Yoder, Balaguer, & Johnson, 2001).
Unlike traditional object-oriented design, AOM
is based on objects rather than classes. It provides
descriptions (metadata) of objects that exist in the
system. In other words, AOM provides a meta-
architecture that allows users to manipulate the
concrete architectural components of the model
such asbusiness objects and business rules. These
components are stored as an object model in a
database instead of in code. The code is only used
to interpret the stored objects. Thus, a user only
needs to change the metadata instead of changing
the code to reflect domain changes.

The coordination contract method aims to
separate coordination from computation aspects
(or core components) of a software system (An-
drade, Fiadeiro, Gouveia, & Koutsoukos, 2002).
It is motivated by the fact that there should be two
different kinds of entities in a rapidly changing
business environment—core business entities
which are relatively stable and volatile business
products which keep changing for the business to
remain competitive (Andrade & Fiadeiro, 2000).
Volatile business products are implemented as
contracts. A contract aims to externalize the
interactions between objects (core entities) by
explicitly define them in the conceptual model. It
extends the concept of association class by adding
a coordination role similar to other components
in architecture-based software evolution such as
architectural connectors (Oreizy, Medvidovic, &
Taylor, 1998), glue (Schneider, 1999), actor (Astley

BROOD

Table 1. Comparative evaluation of business rule in conceptual modeling

Concepts
Business Rule Definition IS IS Business
Business Rule Taxonomy
- Structural Rules High (10) Low (0) Medium (1)
- Behavioural Rules Medium (8) | High (>30) | Medium (8)
- Derivation Medium (2) Low (0) Medium (2)
Bus. Rule Management Elements | Medium (5) | Medium (9) | High (>30)
Modelling Language
Understandability Medium Medium High
Expressiveness (business rules) Medium High High
Unambiguity Medium High Medium
Formality Medium Medium High
Evolvability Medium Medium High
Process
Lifecycle coverage A A A+D
Process description N/A High High
Coherence N/A High High
Support for evolution No Yes Yes
Pragmatics
Communicability Medium High High
Usability Medium High High
Resources availability Low Medium High
Openness High Medium High

Lifecycle coverage: A-Analysis, D-Design, I-Implementation, M-Maintenance

& Agha, 1998) or change absorbers (Evans &
Dickman, 1999).

Business Rule Beans (BRBeans), formerly
known as accessible business rules (Rouvel-
lou, Degenaro, Rasmus et al., 1999; Rouvellou,
Degenaro, Rasmus et al., 2000), is a framework
that provides guidelines and infrastructures for
the externalization of business rules in a distrib-
uted business application (IBM, 2003). Business
rules are externally developed, implemented and
managed to minimize the impact of their changes
on other components such as core business, ap-
plication, and user interface objects. They are

implemented as server objects, which are fired by
embedded trigger points in application objects. A
rule management facility is provided to help us-
ers to understand the existing rules and to locate
the rules when changes are required. BRBeans is
implemented as a part of WebSphere Application
Server by IBM “‘to support business applications
that externalize their business rules” (Kovari,
Diaz, Fernandes et al., 2003).

A comparative evaluation of the treatment
of business rules evolvable software systems
development by the three approaches is shown
in Table 2.

27

Table 2. Comparative evaluation of business rules in evolvable software systems

BROOD

BR Approach | Adaptive Object C_oordina- HIEEEs [l
Criteria Model (Aom) | tion Con- ST ([l
tract Beans)
Concepts
Business Rule Definition Implicit Implicit Explicit
A derivation, con-
Business Rule Taxonomy p%nsri?g,“(/(ve(;rclglrg \;v ECA stra_int, invar@a_nt,
script, classifier
Business Rule Management Elements Nil Nil Yes
Modelling Language
Understandability High Medium Medium
Expressiveness (business rules) Low Medium Medium
Formality Low High Medium
Evolvability High High High
Process
Lifecycle coverage (Evolutionary) D+I1+T+M | A+D+1+T+M
Process description Low Medium High
Coherence Medium Medium Medium
Support for evolution Low Medium High
Pragmatics
Communicability High Medium Medium
Usability Low Medium Medium
Resources availability Medium Medium High
Openness Medium Medium Low

MOTIVATION FOR THE BROOD
APPROACH

According to Lehman’s laws (Lehman & Belady,
1985), asoftware system thatisused inareal-world
environment inevitably must change or become
progressively less useful in that environment.
Lehman’s laws also state that the software struc-
ture tends to become more complex due to the
implemented changes and its size must continue
to grow to accommodate new user requirements.
Therefore, there is a need to introduce a method
that facilitates the management of the increasingly
complex and larger size software system due to
its evolution.

28

The position put forward in this article is
that developers need to identify the sources of
changes for software evolution in the system’s
environment and that some of the most volatile
of these components tend to be business rules. In
section 0 many contemporary approaches were
reviewed all of which aim to externalize business
rules from software components.

At the conceptual modeling level, there are
approaches that separate syntax and semantics
for modeling business rules. This effort localizes
the changes to business rule components, and also
increases the understanding and maintainability
of business rules specification. This category of
approaches provides a great deal ofhelp in dealing

BROOD

with the conceptsrelated to business rules, but they
provide relatively little description on the design
and implementation aspect of business rules.

At the implementation level, approaches cre-
ate separate software components that implement
business rules. As a result, the business rule
changes will only localize to such components,
and reduce the impact of changes to the overall
software structure. This group of approaches
provides very good facilities for developing
evolvable software components but is less helpful
in representing business rules at the conceptual
business level.

The BROOD approach addresses both busi-
ness modeling and the linking of business model
components to software architecture components.
By focusing on the conceptual level, BROOD
attempts to externalizing changes from software
components. This user-oriented view enhances
understandability and maintainability since it
encourages the direct involvement of business
stakeholders in the maintenance of their busi-
ness rules.

By introducing a linking component between
the conceptual model of business rules and
software design, BROOD attempts to increase
business rule traceability. Traceability is highly
desirable since one can keep ‘forward’ and
‘backward’ tracks of changes between business
and software.

BROOD considers both product and process
perspectives of the development and evolution
of a software system. The product is defined us-
ing the BROOD metamodel, which specifies the
structure for business rule specification, software
design, and their linking elements. The process
refers to a set of systematic and well-defined
steps that should be followed during software
development and evolution. The BROOD process
emphasizes several important activities in a soft-
ware lifecycle that contribute to a more resilient
software system.

THE BROOD METAMODEL

The initial concept of the metamodel was intro-
duced in (Wan Kadir & Loucopoulos, 2003; Wan
Kadir & Loucopoulos, 2004). The metamodel is
complemented by a language definition based on
the context-free grammar EBNF, whichis included
in appendix A. The language definition defines
the allowable sentence patterns for business rule
statements and describes the linking elements
between business rules and the related software
design elements.

Atthe outset, three main desirable characteris-
tics were set for developing an appropriate business
rule metamodel, which would be consistent with
the aims of BROOD:

. It should have an exhaustive and mutually
exclusive typology to capture different types
of business rules.

. It should have the structured forms of ex-
pressions for linking the business rules to
software design.

. Itshould include rule management elements
to improve business rule traceability in a
business domain.

These three characteristics form the basis for
the development of the business rule metamodel,
which is shown in Figure 1. This figure shows the
business rules metamodel together with parts of
the UML metamodel that deal with static (classes)
and dynamic (actions and events) aspects. The
key requirement of BROOD for tracing changes
from business to software through the use of
business rules is achieved by integrating these
three metamodels.

Business Rules Typology
The metamodel classifies business rules into three

maintypes, which are constraint, action assertion,
and derivation.

29

Figure 1. The BROOD business rule metamodel

BROOD

Business iness Process >

Rules

. 0.

Rule Set

1..*| administrator

[O —————— A
Metamodel —== Rule =
fepresentation
1| pattem
. Rule Template !

JAN

Action Assertio

|Computatior” Inference |

Relationship ConstrailitlAttribu(e Constrair{t
Q

o

A 0.1

0.1

Entity

1
| |AttribuleTerni |

Value

0.

List

0.1

RelOperator

1
Algorithm

o oML |
]

ModelElement
/\

1 +child 1_+generalization

| Feature | Parameter
|visibmty:visib\\iﬁmei

+feature

warame«#

isRoot : Boolean

kind:ParameterKind
i isLeaf : Boolean

defaultValue:

+typedParameter “parent _+spedalization

visibility: Visibility Kin
s | |

UML
Static & Dynamic
Metamodel Parts

ModelElement

| StateMachine | | Guard

[expression : BooleanExpression|

(J ,|?u.w

0..1[+guard
{ordered} U ”’";’efy"e ranstion | *
o o] s sougong -
o /\ 1 [+participant State 1 0.- AL
A el S
Attribute Operation | 0.4 +entry 0.1 vent 0." ' . 0.
|im(iaIVaIue:Express\ori |isQuery:BooIean | ,_ “Action :]Tl
e o o
+assodation I_'T,
,mlA {ordered) AssociationEnd
@ —|multiplicity:Multiplicity
I—, i 2 laggregation: AggregationKind
Constraints Examples of attribute constraints from the

Constraint rules specify the static characteristics
of business entities, their attributes, and their
relationships. They can be further divided into
attribute and relationship constraints. The for-
mer specifies the uniqueness, optionality (null),
and value check of an entity attribute. The latter
asserts the relationship types as well as the car-
dinality and roles of each entity participating in
a particular relationship.

30

MediNet application expressed according to the
BROOD syntax (seeattribute constraint
definition in appendix A) are the following:

. Patient must have a unique patient registra-
tion number.

. Patient may have a passport number.

. Bill must have a unique bill number.

. The amount of Bill must be less than the
maximum bill amount set by the paymas-
ter.

BROOD

. An employee level of a Panel Patient must
be in {employer, executive, production op-
erator}.

Examples of relationship constraints for
MediNET (seerelationship constraint
definition in appendix A) are:

. Clinic item is a/an item type of bill item.
. Bill must have zero or more bill item.
. HCP Service Invoice is a/an Invoice.

Actions

Action assertion concerns a behavioral aspect of
the business. Action assertion specifies the action
that should be activated on the occurrence of a
certain event and possibly on the satisfaction of
certain conditions. An event can be eithera simple
or a complex event where the latter is constructed
by one or more simple events using the logical
connectives AND/OR. A condition may be a
simple or complex condition. A simple condi-
tion is a Boolean expression which compares a
value of an entity attribute with any literal value
or the value of another entity attribute using a
relational operator. It can also be an inspection
of the existence of a value of an entity attribute
in a list of values.

Anactionisperformed by asysteminresponse
to the occurrence of an event and the satisfaction
of the relevant condition. The execution of action
may change the state of the system. An action
may be a simple action or a sequence of simple
actions. Simple actions can be further catego-
rized into three different types, trigger actions,
object manipulation actions, and user actions.
Trigger action invokes an operation, a process,
a procedure, or another rule under certain cir-
cumstances. Object manipulation action sets the
value of the attribute or create/delete an instance
of an entity. User action is a manual task that is
done by system users. During implementation,
user action is often implemented as a message
displayed to the user.

Examples of action assertion for MediNET
(see action assertion definition in ap-
pendix A) are:

. When new invoice created then calculate
invoice end date.

* When patient consultation completed then
removed the patient from consultation queue
and create bill for the patient.

. When invoice entry updated if stock of drug
smaller than re-order threshold then reorder
the drug.

Derivation

A derivation rule derives a new fact based on
existing facts. It can be of one of two types, com-
putation, which uses a mathematical calculation
or algorithm to derive a new arithmetic value, or
inference, which uses logical deduction or induc-
tion to derive a new fact. Typically, an inference
rule may be used to represent permission such
as user policy for data security. An example of a
computation derivation rule such as “The amount
HCP MediNET usage invoice is computed as the
amount of transaction fees, which are calculated
asthe transaction fee multiply by the total number
of transactions, plus the monthly fee” would be
expressed as:

. let a = transaction_fee;

. let b =number of treated patient;

e transaction_fees =a * b;

e invoice_amount = transaction_fees +
monthly fee;

Examples of inference rules are given be-
low:

e Ifthepaymaster’s last quarter transaction is
more than RM12,000.00 and the paymaster
has no past due invoices then the paymaster
is a preferred customer.

31

. Iftheusertypeis equal to HR Officer and the
user company is equal to patient paymaster
then the user may view the patient’s medical
certificate.

The Rule Template

Rule templates are the formal sentence patterns
by which business rules can be expressed. They
are provided as a guideline to capture and specify
business rules as well as a way to structure the
business rule statements. Each rule template
consists of one or more well-defined rule phrases,
which are discussed in section 0.

By using the available templates, an inex-
perienced user may easily produce a consistent
business rule statement. Rule templates help users
to avoid tedious and repeated editing when creat-
ing many similar rules; and ensure uniformity by
restricting the type of rules that can be written by
business users. The use of templates also allows
the precise linking of business rules to software
design elements. The templates can be directly
derived from the rules definition in Appendix A.
Business rules templates are shown in Table 3.

The Rule Management Elements

Management elements are also included in the
BROOD metamodel for facilitating the organi-
zation and management of business rules. These
elements include the rule set, business process,
and owner.

Rule set is used to group business rules into
a set of closely interrelated rules. Each business
rule model must have a single rule set, which
is considered as the root rule set. This rule set
must have at least one rule statement or another
rule set.

One of the popular ways to identify arule setis
through its related business process. For example,
therules ‘The bill amount is calculated as the sum
of amounts of all bill items> and ‘If a patient is a
panel patient and his paymaster pays the bill in

32

BROOD

full, the balance is set to 0 and the bill status is
set to paid’ can be grouped in a rule set which is
related to ‘bill preparation’ process. By properly
organizing rules, the complexity of managing a
large set of rules can be reduced.

Each business rule model must have an owner.
An owner may also be defined for a rule set. The
owner of a parent rule set is assumed to be the
owner of its child rule set if the child does not
defineits owner. Itis important to define the owner
information in a business rule model to determine
the access rights and responsibility to a business
rules repository, especially for software systems
with multiple user groups that possess different
business rules. An owner may be an organiza-
tional unit, an individual user, a user group or
role that is responsible for the management of the
respective business rules. During business rule
implementation, each rule set, business process,
and owner is given a unique identifier.

THE RULE PHRASE

A rule phrase in BROOD links a user-oriented
business rule definition to a software design
component. There are alternative ways in which
this may be achieved. For example, using a rule
object or rule engine, or making use of OCL. The
use of rule object or rule engine increases the se-
mantic distance between analysis and design and
imposes implementation considerations. The use
of constraints expressed using OCL may provide
a link between business rule specifications and
software design but OCL is still hard to under-
stand by business users although OMG claims
that no mathematical background is required in
using OCL.

Rule phrases are considered as the building
blocks forrule statements. They can be maintained
independently during implementation, in other
words, they are not deleted when a business rule
is deleted. However, the modification and deleting
of arule phrase is not recommended since a care-

BROOD

Table 3. Business rule templates

Types

Templates

Attribute
Constraint

<entity> must have | may have [a unique] <attributeTerm>.

<attributeTerm1> must be | may be <relationalOperator> <value> | <attributeTerm2>.

<attributeTerm> must be in <list>.

Relationship
Constraint

[<cardinality>] <entity1> is a/an <role> of [<cardinality>]<entity2>.
[<cardinality>] <entity1> is associated with [<cardinality>]<entity2>.
<entity1> must have | may have [<cardinality>] <entity2>.
<entity1> is a/an <entity2>.

When <event> [if <condition>] then <action>.
The templates of <event> :
<attributeTerm> is updated
<entity> is deleted | is created
<operation>|<rule> is triggered
the current date/time is <dateTime>
<number> <timeUnit> time interval from <dateTime> is reached

Action <userEvent>

Assertion The templates of <condition> :

The templates of <action> :

create | delete <entity>
<userAction>

<number> <timeUnit> after <dateTime>

<attributeTerm1> <relationalOperator> <value | attributeTerm2>
<attributeTerm> [not] in <list>

trigger <process> | <operation> | <rule>
set <attributeTerm> to <value>

Computation | <attributeTerm> is computed as <algorithm>

if <condition> then <fact>.

Derivation The templates of <fact> :

<entity> | <attributeTerm> is [not] a <value>
<entity> may [not] <action>

ful effort is needed in reviewing its aggregated
business rules. In addition to playing a role as the
building blocks for business rule statements, rule
phrases are also important in linking business
rules to software design elements.

The mappings between rule phrase types and
UML model elements are summarized in Table 4.
Mostoftherule phrases are directly linked to class
diagram model elements. Entity and attribute term
are directly connected to the respective class and
attribute in the class diagram. Cardinality and role
are correspondingly linked to multiplicity and role
of an association end of a relationship. Algorithm
is linked to operation specification.

Rule phrases for event, condition, and action,
which are the building blocks for action assertion
rules, are naturally linked to statechart diagram.
Event, condition, and action are respectively
linked to event, guard, and action of a state transi-
tion in a statechart diagram. Consequently, event
and action may be linked to a class operation, and
guard may be linked to an operation specification,
in a class diagram. List and relational operator
contain enumerated values whilst value contains a
literal value. However, value and list can be linked
to an operation that return a single and multiple
values respectively.

33

BROOD

Table 4. Association between rule phrases and design elements

Rule Phrase Type

Software Design Elements

Entity Class
Attribute Term Attribute
Operation Term Operation

Attribute Constraints

Attribute.isUnique, Attribute.notNull

Cardinality AssociationEnd.multiplicity

Role AssociationEnd.role

Event Transition.event > Class.operation
Condition Transition.guard, Operation.specification
Action Transition.action - Class.operation
Algorithm Operation.specification

Value - (literal value), Operation.

List - (enumeration), Operation

Relational Operator

- (enumeration)

THE BROOD PROCESS

The BROOD process is described using the
process model based on the syntax and seman-
tics of the OMG software process engineering
metamodel (SPEM). SPEM was developed by
the Object Management Group to provide a
metamodel and notations for specifying software
processes and their components (OMG, 2002).
SPEM extends the unified modeling language
(UML) (OMG, 2001) metamodel with process
specific stereotypes. A part of SPEM that shows
most of the important components of a process
structure is shown in Figure 2.

In SPEM, a work product is an artifact pro-
duced, consumed, or modified by aprocess. [t may
be a piece of information, a document, model,
or source code. It is either used as an input by
workers to perform an activity, or a result or an
outputof such activities. A work productis calleda
deliverable ifitis needed to be formally delivered
by a process. The examples of work products in
BROOD are class diagram, statechart diagram,
and business rule specification. Each work product

34

is associated with a process role that is formally
responsible for its production.

A process role defines the responsibilities of
an individual, or a group of individuals working
together as a team. Each process role performs
or assists with specific activities.

The core activities of the BROOD process
are situated in the analysis, design, and evolu-
tion phases. Analysis phase produces analysis
model that contains two main work products: the
initial businessrule specification and preliminary
software design models. Both work products are
refined and linked during the design phase to pro-
duce amore traceable and consequently evolvable
software system. The flow of activities in each
BROOD phase is shown in Figure 3.

The Analysis Phase

As shown in Figure 4, the analysis phase starts
with an architectural analysis activity that consid-
ers the work products from requirements phase
such as use-case model, business model, initial
architecture descriptions, and supplementary

BROOD

Figure 2. An excerpt from OMG software process engineering metamodel (OMG, 2002)

subWork |0..*
parentWork WorkDefinition work performer_ | ProcessPerformer
N performer : ProcessPerformer P ; e
0. parentWork : WakDefinition {orc?éred} work : Wol'li)eﬁnltlon
I Phase I Lifecycle Activity activi assistant | ProcessRole
governedProcesses : Process 0.* 0.*
» responsibleRole |0..1
[teration_] =l
eration step |1.* workProduct [0..*
Step WorkProduct

Figure 3. The flow of activities in the BROOD process

EVOLUTION —lr DESIGN _lr ANALYSIS

r—

isDeliverable : Boolean

* Business User

=

Analysis Model

* Soft. Architect

2 D

Architectural Analysis

-
Architectural Design

\Desijn a /Flass

Z >\
~ -

Validate BR vy
Specification

I:%

{comple
f—

Examine BR Change
complex change
2 D)2
simple thange Analyze Implement
BR Change Request BR Change
N\ —
N
——— N —~
Perform BR btk S = Validate BR BR Sp
Modification Change - Specification
Design Model
{changed}

BR Specification

Design Mode

Component .
* Engineer * Functional Analyst
— e —— e—— G e— e— e— e
2 O~ 5 |
~ =
Analyze BR = =]
Stieﬂeﬁs_ = BR Specification |
\ —=T -
- - -
Analyze a Class Il T
-~
D e > |
Analyze a Package Analysis Model
_— e, e — — — — — —
2 D
\\
Develop BR \
Specification

ted

&

— 1

cification

L _

35

Figure 4. Packages for the MediNet application

[[

reg billing

(o o o o

—

invoicing

T
|
|
|
|

requirements. A software architect performs
architectural analysis by identifying the analysis
packages based on the functional requirements
and knowledge of the application domain. Each
package realizes a set of closely related use cases
and business processes to minimize the coupling
between packages, which in turn localizes busi-
ness changes. This activity identifies analysis
classes and outlines their name, responsibilities,
attributes, and relationships. In order to extract
more information about the behavior of the classes,
collaboration or interaction diagrams can be
developed based on the process flows (scenario)
in the use case models. The main work products
produced by this activity are analysis class dia-
grams and packages in their outline version.

Considering the MediNetapplication, architec-
tural analysis resulted in three packages business
processes 1.e. registration, billing, and invoicing.
Theregistration package groups all classes related
to patient registration such as Patient, Paymaster,
HCProvider, Clinic, User, and RegLocation. Billing
package contains classes related to billing and
drugs inventory such as Bill, BillPayment, Bill_Item,
TransType, Transltem, and Expenseltem. Invoicing
package includes classes related to invoicing and
invoice payment for example Invoice, Invoiceltem,
Payment, and PaymentAllocation.

36

BROOD

The outline of analysis class diagrams and
packages are further refined by class analysis
and package analysis activities, respectively. A
component engineer identifies more detailed
information about responsibilities and attributes
of each class. Different types of relationships
between classes such as association, aggregation,
and inheritance are also identified. The possible
states and their transitions can be identified to
understand the behavior of objects from certain
classes. These steps are repeated until a complete
analysis class diagram, statechart diagram and
package are achieved.

The activity of business rule modeling consid-
ers the informal statements captured during initial
requirements and identifies the types for each
business rule statement based on the BROOD ty-
pology. Business rule statements are transformed
into more structured business rule specifications
according to the templates’ definition.

Table 5 shows a set of structured rules for the
MediNet application. This template provides the
means of managing rules as they get discovered
and analyzed and acts as a ‘repository’ of rules
for their entire lifecycle.

The Design Phase

The design phase involves the identification
of application-specific and application-general
subsystems. The application-specific subsystems
are related to packages that group a set of closely
related services in an application domain. The
application-general subsystems are related to
implementation technology decisions such as
the introduction of user interface and database
connectivity layers. The MediNet subsystems
definition is shown in Figure 5.

The class design activity elaborates further
the static and dynamic information of classes
that were defined during the analysis phase. Ad-
ditional information on the operations, attributes,
and relationships can be added to each class. The
specification of operations and attributes is made

BROOD

Table 5. Business rule statements for the MediNET application

Business
Process

Business Rule Example

Rule Type

Registration

A patient must have a unique registration number.

Att. Constraint

A patient may have more than one paymaster.

Rel. Constraint

If a patient has an outstanding balance, then the patient should be
banned from consultation registration

Action Assertion

When consultation registration is successfully completed, then put
the patient into the consultation queue.

Action Assertion

If a patient’s condition is critical then the patient is an emergency
patient.

Inference

The amount of a panel patient’s bill must not exceed the maximum
bill amount set by the paymaster.

Att. Constraint

Each bill item is associated with an item from the clinic transaction
items

Rel. Constraint

When consultation is completed then create bill.

Action Assertion

more than RM 5,000.00.

Billing If the bill is a panel patient’s bill then create panel transaction item. | Action Assertion
The amount of a bill is computed as the sum of all amounts of bill .
; Computation
items.
The amognt of bill item is computed as the unit amount multiply by Computation
the quantity.
A bill can be modified only if the user role is Chief Clinic Assistant. Inference
One invoice must have zero or more payments. Rel. Constraint
When a payment is not received within 30 days from the invoice . .
) . . Action Assertion
date, then the first reminder will be sent.
Invoicing | The amount of HCP Mgd!NET usage invoice is computed as the Computation
sum of monthly subscription fee plus transaction fees.
A paymaster (panel company) is under probation if the paymaster
has an invoice with category 1 past due and the current balance is Inference

using the syntax of the chosen programming lan-
guage. If necessary, the methods that specify the
algorithm for the implementation of operations
are specified.

The class design activity for the MediNet
application resulted in detailed specification of
for the three packages of registration, billing
and invoicing. The class association diagram of
Figure 6 shows the class details for invoicing.
In order to reduce diagrammatic complexity all
parameters and return values are hidden in the
class operations.

The calculation of invoice amount is different
for different types of invoice. The amount for

healthcare service invoice is calculated as the total
ofits item amounts after applying additional com-
putation rules such as bill limit, invoice limit and
discount. MediNET uses the open item invoicing
method that allows an invoice issuer to track each
unpaid invoice as an individual item for aging
purposes. Panel patient bills are considered as the
items for HCP MediNET usage and HCP service
usage invoices. For HCP MediNET usage invoice,
the number of bills issued by a particular HCP
is counted as the number of transactions, which
is later used in the invoice amount calculation.
In terms of payment, MediNET allows balance

37

BROOD

Figure 5. Software architecture for the MediNet application

«subsystem» «subsystem» «subsystem»
myPeople myClinic myMediNET
T T T
«us_es» « us_es» «uses»
I I I
: | |
| |
core
U N NV
reg billing invoicing
1) SEEE c = --
! T T T |
{ } { i
: | | | |
| | | |
: | v [|
N A P | |
: A os |
| |
| |

forward invoicing method in addition to open
item method.

Within the design process classes are further
elaborated in terms of the events and conditions
that trigger their transition from one state to an-
other. These are shown as statechart diagrams.
For example, a statechart diagram for the HCSer-
vicelnvoice object is shown in Figure 7.

Within the BROOD design phase, rule phrase
specifications are developed. Each rule phrase
definition is stored in the repository called rule
phrase entries. The possible values forrule phrase
may be a set of enumerated values or the values of
the linked software design element. A component
engineer may define certain attributes for each
business rule specification such as rule priority,
owner, and business process. Each business rule
statement can also be arranged in an appropriate
rule set to assist the future management of the
business rules.

For the MediNet application, the rules shown
in Table 5 are specified according to rule phrases
syntax as shown in Table 6.

38

The first rule in Table 6 shows the rule phrase
derived from the attribute constraint rule, infor-
mally defined in the analysis phase as “4 patient
must have a unique registration number.” The
rulephrases ‘a patient’and ‘registration
number’ are respectively linked to Patient class
and patRegNo attribute. The keywords ‘must
have’and ‘a unique’ are not statically linked
to any design element. Instead, they are used to
dynamically toggle the optionality and uniqueness
values of patRegNo attribute during the creation
or modification of the business rule statement. In
other words, they are used to enable the automated
change propagation to software design.

The second rule in Table 6 shows arelationship
constraint., The rule phrases ‘clinic item’
and bill item’ are respectively linked to
Transltem class and Bill Item class. The rule
phrases ‘one and only one’and ‘clinic
item’ play a similar role to keywords as in the
attribute constraint rule, that is their purpose is to
propagate business changes to design elements.
The former specifies the multiplicity of an asso-

BROOD

Figure 6. Class association diagram for invoicing for the MediNet application

0. 0..*

- }..{OR}"li

Payment 0.

Invoice

paymentNo : int
receiver|D : String

invoiceNo : int
issuerID : String
amount : double

payer 1 description : String
status : String
fromDate : Date

currentBalance : double paymentDate : Date 1

payerlD : String
type : String
referenceNo : String

amount : double
balance : double

1 Paymasta endDate : Date
createlnvoice()
i addltem()
receiver .
v 1 receiver closelnvoice ()
receivePayment()

allocatePayment ()
calculateAmount()

PaymentAllocation

paymentNo : int
invoiceNo : int 0.4
issuerID : String h
amount: Double =

archive
0 0.* allocateStaffID : String
allocateDate : Date
receiver|D : String
0.*
HCServicelnvoice PMMedinetUsagelnvoice HCPMediNETUsagelnvoicd

paymasteriD : String | 0.* paymasterID : String

heplD : String

calculateAmount()

calculateAmount()

calculateAmount()

1
0.x

Invoiceltem

itemNo : int
invoiceNo : int

description : String 0.1 1
insertDate : Date

heplD : String “
billNo :int 1

0.1

1 issuer

ciation end whilst the latter specifies the role of
an association end.

Inthe action assertion rule “When a payment
is not received within 30 days from the invoice
date, then the first reminder will be sent,” the
rule phrases that represent the event, condition,
and action are not directly linked to any design
element but they are respectively used to generate
the specifications of the transition’s event, guard,

and action in the HCP service usage invoice STD.
Since event, condition, and action rule phrases
are themselves composed by other rule phrases,
they may be indirectly linked to the related design
components via these rule phrases.

The computation and inferencerules are linked
to the operation specification —the computation
rule is linked to the specification of calculateA-
mount() operation in HCPMediNETUsagelnvoice

39

BROOD

Figure 7. The STD HCServiceInvoice object for the MediNet application

o

createlnvoice(issuerlD)/ initializeInvoice

after: endDate/ close

publish()[receiver.webCustomer = true]

Closed

Rejected

rejectinvoice(info)

publish()[receiver.webCustomer = false] / print
L

receivePayment(amount)[
currentBalance = 0] /updateSuccessors

receivePayment(amount)[

~ when: invoice rectified/ publish

> Published

after: 30 days[
currentBalance > 0] /issueFirstReminder

currentBalance = 0] /updateSuccessors
Cat1PastDue

after: 60 days[
currentBalance > 0] /issueSecondReminder

archive()

receivePayment(amount)[

receivePayment(amount)[
% currentBalance = 0]
Paid Cat2PastDue

after: 90 days|
currentBalance > 0] / blockReceiver

class and the inference rule is linked to getStatus()
operation from Paymaster class. During the de-
velopment of an inference rule, a new operation
is often needed to be added in its associated class
to perform the derivation and return the inferred
value.

The Evolution Phase
Ingeneral, business rule changes may be classified
into simple and complex changes. A simple change

is concerned with the modification, addition, or
deletion of business rules that do not need to in-

40

currentBalance = 0] /updateSuccessors
L Cat3PastDue

troduce new rule phrases or design elements. A
complex change involves the addition or deletion
of rule phrases or design elements.

Ordinarily, simple business rules changes
could be performed by business users. The
examples of five change scenarios that require
simple business changes in MediNET system are
shown in Table 7.

The implementation of acomplexbusinessrule
change requires more effort than that of simple
change. It involves the introduction of new rule
phrases or design elements, which is needed to
be performed by an individual with the knowl-

BROOD

Table 6. Rule phrases and linked software design elements for the MediNet application

B Rule Category

Business Rule Phrases

Software Design Elements

Attribute Constraint

<entity> = ‘a patient’

Patient (class)

‘must have’

- (patRegNo.optionality)

‘a unique’

- (patRegNo.uniqueness)

<attributeTerm> = ‘registration number’

Patient.patRegNo (attribute)

<cardinality> = ‘one and only one’

- (AssociationEnd.multiplicity)

Action Assertion

Relationship Con- <entity> = ‘transaction item’ Transltem (class)
straint <role> = ‘item type’ - (AssociationEnd.name)
<entity> = ‘bill item’ Bill_ltem (class)
<event> =30 day after the
creation date of the - (Trans1.event.spec)
invoice’

<condition> = ‘current balance of the
invoice is greater than
o

- (Trans1.guard.body)

<action> = ‘trigger issue the first
reminder’

- (Trans1.action.initialiseln-
voice().spec)

<attributeTerm> = ‘the amount of
HCP MediNET Usage

HCPMediNETUsagelnvoice.
amount

an invoice with category 1 past
due’ AND ‘the current balance is

invoice’
Computation - ‘

<algorithm> = "the sum of monthly |\ ~o0)0 yiNETUSsagelnvoice.
subscription fee plus transaction g
fee’ calculateAmount().specification

<attributeTerm> = ‘a paymaster status’ | Paymaster.status

<value> = ‘under probation’ - (literal value)

Inference <condition> = ‘the paymaster has

Paymaster.getStatus().speci-
fication

greater than RM 5,000.00’

edge of software design. In addition to technical
skills, it often requires creative skills in making
a design decision. Three examples of complex
rules changes are shown in Table 8.

The first scenario initiates the modification
of two existing business rule statements, the
calculation of bill and the calculation of invoice
amount. These business rule changes consequently
lead to a minor change in software design, that
is the introduction of hasMaxBill attribute in the
Paymaster class.

In the second scenario, the paymaster decided
to introduce different healthcare benefit coverage

to different levels of their payees. For example,
executive staffis entitled to any medical treatment
and medical procedures whilst production staffis
only paid for outpatient treatments. It is obvious
that simply implementing this new requirement
into the existing Paymaster or PanelPatient class
may increase the complexity of these classes.
Therefore, additional classes that are responsible
to manage the healthcare benefit coverage are re-
quired to be added to the existing software design.
The possible candidates for these classes include
BenefitCoverage, SelectedClinic, MedicalProcedure,
and Entitlement.

41

Table 7. Simple change scenarios for the MediNet application

Table 8.

Change Scenarios

Changed Business Rules

1. HCP allows patients to make ‘more
than one payment for their bills’
instead of the previously set ‘single
payment for each bill’.

One patient bill is associated with zero or more payments.

2. HCP makes small changes on the
conditions to issue the reminder and
block paymaster.

WHEN 15 days from the invoice date IF a payment is not
received THEN issue the first reminder.

WHEN 30 days from the invoice date IF the payment is not
received THEN issue the second reminder.

WHEN 45 days from the invoice date IF the payment is not
received THEN block the paymaster.

3. The MediNET supplier offers a more
attractive usage charge to HCPs.
They are charged based on the
number of treated patients regard-
less the number of patient visits.

The amount of HCP usage invoice IS CALCULATED AS if (opt
new package) then the transaction fee multiply by the number
of registered patients, else, the transaction fee multiply by the
number of treated patients, plus the monthly fee.

4. HCP introduces 5% discount to its
internet customer.

If the paymaster is an internet customer, then give 5% dis-
count to their invoices.

5. The HCP decides that each expense
item must belong to one of the pre-
defined types.

Zero or more expense item is associated with one and only
one transaction item.

Complex change scenarios for the

MediNet application

Change Scenarios

Changed Business Rules

1. HCP introduces new package for
paymaster. In this package, the
paymaster may limit the maximum
amount of each patient bill to RM
20.00, and the excessive cost is
absorbed by HCP. However, the
paymaster must pay a monthly fee of
RM5.00 for each patient.

The amount of a bill is computed as
let amount = the sum of all amounts of bill items
if (patient is a panel patient) AND (paymaster has maxi-
mum bill amount) AND (amount > RM 20.00)
amount = 20

The amount of HCP service invoice is computed as
let amount = the total of the invoice items
if (paymaster has maximum bill amount)
amount = amount + 5 * the number of paymaster’s
patients

2. Paymaster wishes to provide different
healthcare benefit coverage for differ-
ent groups of its payees.

If (the patient is a panel patient) AND (the patient is an
executive staff) then the patient is entitled to any type of
treatments and medical procedures.

If (the patient is a panel patient) AND (the patient is a
production staff) then the patient is entitled for an outpatient
treatment.

3. HCP would like to introduce a 5%
discount on the invoices to preferred
paymasters as a way to express
gratitude to the loyal, potential, and
good paying paymasters.

If (a paymaster has been a paymaster panel for
more than 5 years) then (the customer is a ‘loyal’
customer).

If (a paymaster has an average of at least
RM24000.00 for the invoices over the last five years)
then (the paymaster is considered as a ‘potential’
customer).

If (a paymaster never has a past due invoice for the

last two years) then (the paymaster is considered as

a good paying paymaster).

When (the invoice in created) if (the paymaster is a loyal,
potential and good paying customer) then (set the discount
of the invoice to 5%)

42

BROOD

BROOD

The third scenario requires the intervention
of a software developer. This scenario requires a
number of new inference rules to be added to define
a loyal, potential, and good paying customer. In
addition to these business rules, an action asser-
tion rule that initializes the value of the invoice
discount during invoice creation should also be
added. The introduction of the new inference
rules consequently requires isLoyal(), isPotential(),
and isGoodPaying() operations to be added to
the Paymaster class. Similarly, the newly intro-
duced action assertion rule requires component
engineers to modify the action component of the
transition from the initial state to ‘Active’ state
in the STD for HCServicelnvoice object.

THE BROOD SUPPORT TOOL

The BROOD process introduces several additional
activities to the traditional object-oriented soft-
ware design process. These additional activities
include the documentation of business rules and
their linking to software design components. To
assist a developer with these BROOD-specific
activities, a tool has been developed that sup-
ports the activities of business rule specification
and management, software design editing, and
business rule change propagation.

The BROOD tool was developed on top of the
generic modeling environment (GME) (Ledeczi
et al., 2001; VU, 2003), which is a configurable
modeling environment.

The metamodel and templates, which are
discussed in section 0, were used to implement
the BROOD tool environment.

GME was used to visually edit the software de-
sign models, business rule specification, and rule
phrase entries. Three main modules (known as
interpreters in GME) were developed to simplify
the rule phrase management, business rule com-
position, and business rule modification. These
modules also perform the automated propagation
of businessrule changes to the respective software

design elements, since a manual undertaking of
such propagation would be impractical for most
applications.

The BROOD tool has been designed to be used
by both software developers and business users.
A user-friendly interface is provided to ease the
management and traceability of business rules
by non-IT users. An overview of the BROOD
support tool is shown in Figure 8.

The metamodel, the graphical model editor,
the rule phrase management, the business rules
composition and the business rules modification
functions are part of the core component and user
application layer in the BROOD tool architecture.
The rule phrase entries, business rule specifica-
tion, and software design models are stored in
the storage layer.

The BROOD tool maintains the consistencies
between business rule and the linked software
design each time a business rule is created or
modified. It provides full automated support in
performing simple changes and partial support
for complex changes since these require creative
skills of software engineers in making a design
decision.

There are four main types of model that can be
managed using the BROOD tool: rule phrase en-
tries, business rule, class diagram, and statechart
diagram. Users may select the type of model to
be created from a set of choices. An example of
the BROOD model editor is shown in Figure 9.
The model editor provides a convenient way to
create a model and also to connect it or parts of
it to other models.

While graphical model editing is convenient
for visual models such as those of class and stat-
echart diagrams, it is less helpful for business
rules specification.

The graphical model editor can be used for
some simple business rules definition such as
cardinality, relational operator, list, and optionality
but for more complex rules the BROOD tool offers
adedicated rule editor, the add business rule (ABR)
module. This module performs two main tasks:

43

Figure 8. Overview of the BROOD tool

software development,

BROOD

i
o
sl

Soﬂyvare complex change simple change Software
Engineer /v User
User Application & Core Components layer use
- Application
—~ = Software
manage propagate
compose/ changes
modily generate
E OeE
Rul?n':'?rase S lzcri\,t"t::I:tsion Software
s P Design Model
Storage Layer

Figure 9. Example of the BROOD model editor

Title bar "
BROON - MediNET

Menubar — | 4 £ o G w S S AmMEMED 2| components: | A b Y, M,
B | T Noine: [BRHeaHET [Dummesiides Aspect[Busresiides =] Base. Aggreaste | inhertance | Meta |
Tool bar & [ER-MedHET -
- o MadMET
i [Biling | | Creale Bil i &
Mode bar £ - “ Lw'::.mr
9 3 gg; s e Interpreters
Tl Ciruc
al Conmitatioalliunie
ol HCFUse
Model = % Tl HCPiowndes
Editing It [i T w0 ﬁ i’;":" i —~_ Model
Windows | HCProvidar }1—|—.-{ Clinic |] Pan i Paebaent Browser
T 1 pasel chis I Patient
3 DOB
Part User . g mm Attribute
: 31 isDepemaden Browser
Browser i 1 Reglocation 3?5 Ty
b | ften -
\ o 1 = 1 T = i £ %
N it [T —— /
I | Antibutes | Profeverces | Fropeties |
Class ClassCopy fr&edSTD STOHArvocs ~
flri o pansition Tranzition
flri 0] v alioey revievlInpadiroce]|
firke e lines Irveacedpn -
ClassDiagram |
Ready EDIT 100% EROOD 07:48 PM

business rule composition and software design
updating. In business rule composition mode,
rule phrases are used to construct a business rule

44

statement. In software design updating mode the
module updates the software design model that
corresponds to the composed rule.

BROOD

Figure 10. Example of the BROOD business rules modifier

M BROOD - Modify Action Assertion Rule

Rule name |cati-pastdue-of-an-invoice
Event phrase |30 day after the creation date of the invoice
Rule statement

EM 30 day after the creation date of the invoice IF curent balance ofthe
rvoice is greater than 0 THEN frigger issue the first raminder

rigger <operation=
Perform condlition and action change(s)

Current temglate WEN <gvent> IF <atiributeTerm1> <relationalOperator> <value> THEN

Change condition template [<attibuteTerm1 > <relationalOperator= <aftributeTern2=

E:|

Change action template [tngger =operation=

Selectrule phrase e |<attributeTermi >

5

=| Confirm Templates |

Selectrule phrasa
pallent registration number
patient's date of birth
paymasters status
the amount of a patient's bill

«<value> 0

-Change link to software design

Select Statachar diagram | STD-Invaica -
Selectclass | InvoiceApp vl

current balance of the Invaice

Currently selected phrases <attributeTermi=: current balance of the
<relaionalOperalor=. is greater than

=gperation=: |szue the firsl reminder

Enter =value= [

The constructed rule statement

WHERN 30 day after the creation date of the
irvaice IF current balance of the invoice is
greater than 0 THEN trigger ssue the first

reminder
Selected transition | Transition -ri

Select operation | addReminderListitern(ll « I

Commit Changes | Gluit

The BROOD tool also helps with the imple-
mentation of business rule changes. The modify
business rule (MBR) module was developed to
assist tool users in performing this task, an ex-
ample of which is shown in Figure 10.

A full description of the tool is beyond the
scope of this article. It should be stressed how-
ever, that the tool plays an important part in the
effective application of the BROOD approach by
simplifying a sometimes tedious, error-prone,
and time-consuming task of linking and propa-
gating business rule changes to software design
components.

DISCUSSION

The main aim of BROOD has been to facilitate
the process of software evolution through: (a)

externalization of business rules and their explicit
modeling and (b) the linking of each modeled
business rule with a corresponding software com-
ponent. This approach provides full traceability
between end-user concepts and software designs.
By combining BROOD to design traceability
in source code (Alves-Foss, Conte de Leon, &
Oman, 2002), it is possible to achieve effective
traceability in a software system.

The BROOD metamodel offers a complete
foundation and infrastructure for the development
of a software system that is resilient to business
rule changes.

Withregard to business rule typology, BROOD
introduces three main business rule types: con-
straints, action assertion, and derivations. These
types are further divided into an adequate number
of sub-types and templates. In contrast to BRG,
BROCOM, and BRS approaches, BROOD at-

45

tempts to remove the redundancy by reducing
the unnecessary business rule types. At the same
time, it improves the incompleteness of business
rule types in AOM, coordination contract, and
BRBeans approaches. In terms of business rule
management elements, BROOD provides the
concept of ruleset to organize the groups and
hierarchy of the closely related business rules.

In terms of its modeling language, BROOD
offersahighlevel of expressiveness. The keywords
inthe language definition and a sufficient number
of sentence templates should provide adequate rep-
resentation constructs. In general, achieving total
expressiveness of the modeling language business
rules is relatively hard to achieve due to the large
number of ways of expressing business rules in
a natural language. The usability of BROOD in
this context will be proved in due course once the
approach has been applied on different domains
and applications. BROOD was found to have a
high level of un-ambiguity by the introduction of
the appropriate typology and templates. BROOD
provides a mutually exclusive set of business rule
types and removes the superfluous templates in
order to avoid conflict and redundancy in repre-
senting the meaning of business rules.

In practical terms, BROOD can be applied
using the UML-based SPEM metamodel, which
provides a set of concepts and notations to de-
scribe various software process components such
as lifecycle phases, activities, process roles, and
work products. The use of business rule templates
and UML improves the usability of the BROOD
approach. The templates allow users to create
a business rule statement by simply composing
the existing rule phrases whilst UML provides
abstractions for users to naturally design a soft-
ware system. Moreover, the detailed process de-
scription is provided to guide users especially in
performing complex tasks such linking business
rules to software design and handling different
types of changes.

The utility of BROOD was demonstrated in
this paper through the use of the MediNet indus-

46

BROOD

trial application. This application had originally
been developed using a standard object-oriented
approach. It was therefore possible (and indeed
desirable) to use the case study not only as a way
of demonstrating BROOD but also for comparing
and contrasting BROOD to a traditional develop-
ment approach.

By considering UML for software design,
BROOD maintains the well-known object-
oriented design quality attributes such as modu-
larity, high cohesion, low coupling, efficiency,
and portability. BROOD however provides ad-
ditional quality attributes such as requirements
traceability, software evolvability, and approach
usability.

The traditional approach deployed for
MediNet did not provide explicit traceability
of business policy defined during the require-
ments specification phase. Instead, it provides a
so-called ‘seamless transition” from the use case
models that document the user requirements to
the analysis and design models. This resulted in
business rules being embedded in both require-
ments specification and software design models.
In contrast, with BROOD there was a natural
transformation of the MediNET requirements
into the structured business rules specification
and in turn this specification was directly related
to software design components.

Concerning software evolution, the imple-
mentation of changes using the traditional ap-
proach required the use of expertise with specific
knowledge of the MediNET software design.
Since software engineers do not normally initiate
business changes, they had to repeat all phases
in MediNET development lifecycle especially
requirements and analysis phases. Locating the
related software design components was hard since
there was no explicit link between the MediNET
design models and its user requirements.

Inrelation to approach usability, the traditional
approach was easier to apply during development
since it did not have to deal with additional steps
that were added to explicitly specify, document,

BROOD

and link business rules specification to software
design. These steps were found to increase the
complexity and duration of software development
process. However, the availability of the busi-
ness rule typology and templates, which provide
the guidelines for the analysis of business rule
statements and the identification of rule phrases,
were found useful in minimizing these problems.
The business rule templates have improved the
MediNET systemunderstandability and increased
the involvement of business users in the Medi-
NET development. During evolution, BROOD
was found easier to be used than the traditional
approach. Using BROOD, business users could
perform the simple business rule changes as
demonstrated in the MediNET application. Rapid
change implementation is important especially
in business critical applications with intolerable
downtime. The detailed process description fa-
cilitated the implementation of complex changes
in MediNET.

In summary, BROOD contributes to three
critical areas namely business rules specification,
object-oriented design, and software evolution
process. The proposed business rule specification
extends the state-of-the-art approaches to busi-
ness rule representation by reducing redundancy
and avoiding conflict among business rule types
in its typology. The structures of rule templates
have been defined so as to make them suitable for
linking to software designs in support of future
software evolution. A specification is aligned
to changing user requirements via the linking
of business rules to software designs through a
detailed transformation of business rule into the
specification of related software design compo-
nents. Thus, the externalization of frequently
changing aspects ofasystem into detailed business
rules and the maintenance of associations between
these and corresponding software components
should provide a strong framework for effective
software evolution.

ACKNOWLEDGMENT

The authors would like to thank the human
resource department of Universiti Teknologi
Malaysia (UTM) for partially sponsoring this
research, and Penawar Medical Group, Malaysia
for the permission to use its MediNET healthcare
information system requirements specification as
the case study. The authors wish to also express
their gratitude to the three anonymous reviewers
and to the editor of the special issue, Professor
Dinesh Batra, whose insightful and detailed
comments have contributed to the production of
a much improved version of this article.

REFERENCES

Alves-Foss, J., Conte de Leon, D., & Oman, P.
(2002). Experiments in the use of xml to enhance
traceability between object-oriented design speci-
fications and source code. Paper presented at the
35th Annual Hawaii International Conference on
System Sciences.

Andrade, L., & Fiadeiro, J. (2000, October 15-
19). Evolution by contract. Paper presented at the
ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications
2000, Workshop on Best-practice in Business
Rules Design and Implementation, Minneapolis,
Minnesota USA.

Andrade, L., Fiadeiro, J., Gouveia, J., & Kout-
soukos, G. (2002). Separating computation,
coordination and configuration. Journal of Soft-
ware Maintenance and Evolution: Research and

Practice, 14(5), 353-359.

Astley, M., & Agha, G. A. (1998, 20-21 April).
Modular construction and composition of distrib-
uted software architectures. Paper presented at
the Int. Symposium on Software Engineering, for
Parallel and Distributed Systems, Kyoto, Japan.

47

Eriksson, H.-E., & Penker, M. (2000). Business
modelling withuml: OMG Group, Wiley Computer
Publishing, John Wiley & Sons, Inc.

Erlikh, L. (2000). Leveraging legacy system
dollars for e-business. IEEE IT Professional,
2(3), 17 - 23.

Evans, H., & Dickman, P. (1999, October). Zones,
contracts and absorbing change: An approach
to software evolution. Paper presented at the
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA
99), Denver, Colorado, USA.

Gottesdiener, E. (1997). Business rules show
power, promise. Application Development Trends,
4(3, March 1997).

Grubb, P, & Takang, A. A. (2003). Software
maintenance: Concepts and practice. Singapore:
World Scientific Publishing.

Halle, B. V. (1994). Back to business rule basics.
Database Programming and Design(October
1994), 15-18.

Hay, D., & Healy, K. A. (1997). Business rules:
What are they really? GUIDE (The IBM User
Group). Retrieved from http:/www.Business-
RulesGroup.org/)..

Hay, D., & Healy, K. A. (2000). Defining business
rules ~ what are they really? (No. Rev 1.3): the
Business Rules Group.

Herbst, H. (1996a). Business rule oriented con-
ceptual modelling. Verlag: Physica .

Herbst, H. (1996b). Business rules in system
analysis: A meta-model and repository system.
Information Systems, 21(2), 147-166.

Herbst, H. (1997). Business rule-oriented concep-
tual modeling. Germany: Physica-Verlag.

IBM (Cartographer). (2003). /bm websphere ap-
plication server enterprise

48

BROOD

Kovari, P., Diaz, D. C., Fernandes, F. C. H., Has-
san, D., Kawamura, K., Leigh, D., et al. (2003).
Websphere application server enterprise v5 and
programming model extensions: Websphere
handbook series (First Edition ed.): International
Business Machines Corporation.

Krammer, M. . (1997). Business rules: Automat-
ing business policies and practicies. Distributed
Computing Monitor(May 1997).

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G.,
Garrett,J., Thomason, C., etal. (2001, 17 May). The
generic modeling environment. Paper presented
at the Workshop on Intelligent Signal Processing,
Budapest, Hungary.

Lehman, M. M., & Belady, L. A. (1985). Program
evolution: Processes of software change. London:
Academic Press, Inc.

Loucopoulos, P., & Layzell, P. J. (1986, 1987).
Rubric: A rule based approach for the develop-
ment of information systems. Paper presented at
the Ist European workshop on fault diagnosis,
reliability and related knowledge based ap-
proaches, Rhodes.

Martin, J. (1989). Information engineering:
Prentice-Hall.

McMenamin, S. M., & Palmer, J. F. (1984). Es-
sential systems analysis. Englewood Cliffs, NJ:
Yourdon Press.

Mens, K., Wuyts, R., Bontridder, D., & Grijseels,
A. (1998). Tools and environments for business
rules. Paper presented at the ECOOP’98, Brus-
sels, Belgium.

Moriaty, T. (1993). The next paradigm. Database
Programming and Design.

OMG (Cartographer). (2001). Omg unified model-

ing language specification

OMG (Cartographer). (2002). Software process
engineering metamodel specification

BROOD

Oreizy, P., Medvidovic, N., & Taylor, R. N.
(1998, April 19-25). Architecture-based runtime
software evolution. Paper presented at the Inter-

national Conference on Software Engineering
1998 (ICSE’98), Kyoto, Japan.

Riehle, D., Tilman, M., & Johnson, R. (2000).
Dynamic objectmodel (No. WUCS-00-29): Dept.
of Computer Science, Washington University.

Robinson, K., & Berrisford, G. (1994). Object-
oriented ssadm. Englewood Cliffs, NJ: Prentice
Hall.

Rosca, D., Greenspan, S., Feblowitz, M., & Wild,
C. (1997, January 1997). A decision support meth-
odology in support of the business rules lifecycle.
Paper presented at the International Symposium
on Requirements Engineering (ISRE’97), An-
napolis, MD.

Rosca, D., Greenspan, S., & Wild, C. (2002).
Enterprise modeling and decision-support for
automating the businessrules lifecycle. Automated
Software Engineering, 9(4), 361 - 404.

Rosca, D., Greenspan, S., Wild, C., Reuben-
stein, H., Maly, K., & Feblowitz, M. (1995,
November 1995). Application of a decision sup-
port mechanism to the business rules lifecycle.
Paper presented at the 10th Knowledge-Based
Software Engineering Conference (KBSE9S5),
Boston, MA.

Ross, R. G. (1997). The business rule book: Clas-
sifying, defining and modelling rules: Data Base
Newsletter.

Ross, R. G., & Lam, G. S. W. (1999). Ruletrack:
The brs meta-model for rule management: Busi-
ness Rule Solutions, Inc.

Ross, R. G., & Lam, G. S. W. (2003). The brs
proteus™ methodology (Fourth ed.): Business
Rule Solutions.

Rouvellou, I., Degenaro, 1., Rasmus, K., Ehne-
buske, D., & McKee, B. (1999, November 1-5).
Externalizing business rules from enterprise ap-
plications: An experiencereport. Paper presented
at the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications,
Denver, Colorado.

Rouvellou, 1., Degenaro, L., Rasmus, K., Ehne-
buske, D., & McKee, B. (2000, June). Extending
business objects with business rules. Paper pre-
sented at the 33rd International Conference on
Technology of Object-Oriented Languages and
Systems (TOOLS Europe 2000), Mont Saint-
Michel/ St-Malo, France.

Schneider, J. (1999). Components, scripts, and glue
: A conceptual framework for software composi-
tion. Bern:University of Bern.

van Assche, F., Layzell, P. J., Loucopoulos, P.,
& Speltinex, G. (1988). Rubric: A rule-based
representation of information system constructs.
Paperpresented atthe ESPRIT Conference, Brus-
sels, Belgium.

VU (Cartographer). (2003). Gme 3 user’s man-
ual

Wan Kadir, W. M. N., & Loucopoulos, P. (2003,
23-26 June). Relating evolving business rules to
software design. Paper presented at the Inter-
national Conference on Software Engineering
Research and Practice (SERP), Las Vegas, Ne-
vada, USA.

Wan Kadir, W. M. N., & Loucopoulos, P. (2004).
Relating evolving business rules to software

design. Journal of Systems Architecture, 50(7),
367-382.

Yoder, J. W., Balaguer, F., & Johnson, R. (2001,
October 14-18). Adaptive object models for imple-
menting business rules. Paper presented at the
Third Workshop on Best-Practices for Business

49

BROOD

Rules Design and Implementation, Conference Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass,
on Object-Oriented Programming, Systems, R., Subrahmanian, V. S., & Zicari, R. (1997). Ad-
Languages, and Applications (OOPSLA 2001), vanced database systems: Morgan Kaufmann.
Tampa Bay, Florida, USA.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 1, edited by K. Siau, pp. 41-73,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

50

51

Chapter 3
Bug Fixing Practices within
Free/Libre Open Source
Software Development Teams

Kevin Crowston
Syracuse University, USA

Barbara Scozzi
Politecnico di Bari, Italy

ABSTRACT

Free/Libre open source software (FLOSS, e.g., Linux or Apache) is primarily developed by distributed

teams. Developers contribute from around the world and coordinate their activity almost exclusively by

means of email and bulletin boards, yet some how profit from the advantages and evade the challenges

of distributed software development. In this article we investigate the structure and the coordination

practices adopted by development teams during the bug-fixing process, which is considered one of main

areas of FLOSS project success. In particular, based on a codification of the messages recorded in the

bug tracking system of four projects, we identify the accomplished tasks, the adopted coordination
mechanisms, and the role undertaken by both the FLOSS development team and the FLOSS community.

We conclude with suggestions for further research.

INTRODUCTION

In this article, we investigate the coordination
practices for software bug fixing in Free/Libre
open source software (FLOSS) development
teams. Key to our interest is that most FLOSS
software is developed by distributed teams, that
is, geographically dispersed groups of individuals

working together over time towards a common
goal (Ahuja et al., 1997, p. 165; Weisband, 2002).
FLOSS developers contribute from around the
world, meet face to face infrequently, if at all, and
coordinate their activity primarily by means of
computer mediated communications (Raymond,
1998; Wayner, 2000). As aresult, distributed teams
employ processes that span traditional boundar-

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

ies of place and ownership. Since such teams are
increasingly commonly used in a diversity of
settings, it is important to understand how team
members can effectively coordinate their work.

Theresearch literature on distributed work and
onsoftware development specifically emphasizes
the difficulties of distributed software develop-
ment, butthe case of FLOSS development presents
an intriguing counter-example, at least in part:
a number of projects have been outstandingly
successful. What is perhaps most surprising is
that FLOSS development teams seem not to use
many traditional coordination mechanisms such
as formal planning, system level design, schedules
and defined development processes (Mockus et
al., 2002, p. 310). As well, many (though by no
means all) programmers contribute to projects
as volunteers, without working for a common
organization and/or being paid.

The contribution of this article is to document
the process of coordination in effective FLOSS
teams for a particularly important process, namely
bug fixing. These practices are analyzed by adopt-
ing a process theory, that is, we investigate which
tasks are accomplished, how and by whom they are
assigned, coordinated, and performed. In particu-
lar, we selected four FLOSS projects, inductively
coded the steps involved in fixing various bugs
as recorded in the projects’ bug tracking systems
and applied coordination theory to identify tasks
and coordination mechanisms carried out within
the bug-fixing process.

Studying coordination of FLOSS processes
is important for several reasons. First, FLOSS
developmentis animportant phenomenon deserv-
ing of study for itself. FLOSS is an increasingly
important commercial issue involving all kind
of software firms. Million of users depend on
systems such as Linux and the Internet (heavily
dependent on FLOSS software tools) but as Scac-
chinotes “little isknown about how people in these
communities coordinate software development
across different settings, or about what software

52

processes, work practices, and organizational
contexts are necessary to their success” (Scac-
chi, 2002, p. 1; Scacchi, 2005). Understanding
the reasons that some projects are effective while
others are not is a further motivation for study-
ing the FLOSS development processes. Second,
studying how distributed software developers
coordinate their efforts to ensure, at least in some
cases, high-performance outcomes has both theo-
retical and managerial implications. It can help
understanding coordination practices adopted in
social collectives that are not governed, at least
apparently, by a formal organizational structure
and are characterized by many other discontinui-
ties that is, lack of coherence in some aspects of
the work setting: organization, function, member-
ship, language, culture, etc. (Watson-Manheim
et al., 2002). As to the managerial implications,
distributed teams of all sorts are increasingly used
in many organizations. The study could be useful
to managers that are considering the adoption of
this organizational form not only in the field of
software development.

The remainder of the article is organized as
follows. In Section 2 we discuss the theoretical
background of the study. In Section 3 we stress
the relevance of process theory so explaining why
we adopted such a theoretical approach. We then
describe coordination theory and use it to describe
the bug-fixing process as carried out in traditional
organizations. The research methodology adopted
to study the bug-fixing process is described in
Section 4. In Section 5 and 6 we describe and
discuss the study’s results. Finally, in Section 7
we draw some conclusions and propose future
research directions.

BACKGROUND

In this section we provide an overview of the
literature on software development in distributed
environment and the FLOSS phenomenon.

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Distributed Software Development

Distributed teams offer numerous potential
benefits, such as the possibility to perform dif-
ferent projects all over the world without paying
the costs associated with travel or relocation, or
ease of reconfiguring teams to quickly respond
to changing business needs (DeSanctis & Jack-
son, 1994; Drucker, 1988) or to exploit available
competences and distributed expertise (Grinter
etal., 1999; Orlikowski, 2002). Distributed teams
seem particularly attractive for software devel-
opment, because software, as an information
product, can be easily transferred via the same
systems used to support the teams (Nejmeh,
1994; Scacchi, 1991). Furthermore, while many
developed countries face a shortage of talented
software developers, some developing countries
have a pool of skilled professionals available, at
lower cost (Metiu & Kogut, 2001, p. 4; Taylor,
1998). As well, the need to have local developers
in each country for marketing and localization
have made distributed teams a business need for
many global software corporations (Herbsleb &
Grinter, 1999b, p. 85).

While distributed teams have many potential
benefits, distributed workers face many real
challenges. The specific challenges vary from
team to team, as there is a great diversity in their
compositionandin the setting of distributed work.
As mentioned, distributed work is characterized
by numerous discontinuities that generate diffi-
culties for members in making sense of the task
and of communications from others, or produce
unintended information filtering (de Souza, 1993).
These interpretative difficulties make it hard for
team members to develop a shared mental model
ofthe developing project (Curtisetal., 1990, p. 52).
A lack of common knowledge about the status,
authority and competencies of participants brought
together for the first time can be an obstacle to
the creation of a social structure and the develop-

ment of team norms (Bandow, 1997, p. 88) and
conventions (Weisband, 2002), thus frustrating
the potential benefits of increased flexibility.

Numerous studies have investigated social as-
pects of software development teams (e.g., Curtis
etal., 1988; Humphrey, 2000; Sawyer & Guinan,
1998; Walz et al., 1993). These studies conclude
that large system development requires knowl-
edge from many domains, which is thinly spread
among different developers (Curtis et al., 1988).
Asaresult, large projects require a high degree of
knowledge integration and the coordinated efforts
of multiple developers (Brooks, 1975). However,
coordination is difficult to achieve as software
projects are non-routine, hard to decompose
perfectly and face requirements that are often
changing and conflicting, making development
activities uncertain.

Unfortunately, the problems of software devel-
opment seem to be exacerbated when development
teams work in a distributed environment with a
reduced possibility for informal communication
(Bélanger, 1998; Carmel & Agarwal,2001; Herbs-
leb & Grinter, 1999a). In response to the problems
created by discontinuities, studies of distributed
teams stress the need for a significant amount of
time spent in “community building” (Butler et
al., 2002). In particular, members of distributed
teamsneed to learn how to communicate, interact
and socialize using CMC. Successful distributed
cross-functional teams share knowledge and infor-
mation and create new practices to meet the task-
oriented and social needs of the members (Robey
etal., 2000). Research has shown the importance
of formal and informal adopted coordination
mechanisms, information sharing for coordination
and communications, and conflict management
for project’s performance and quality (Walz et
al., 1993). However, the processes of coordination
suitable for distributed teams are still open topics
for research (e.g., Orlikowski, 2002).

53

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

The FLOSS Phenomenon:
A Literature Overview

The growing literature on FLOSS has addressed
a variety of questions. Some researchers have
examined the implications of free software from
economic and policy perspectives (e.g., Di Bona et
al., 1999; Kogut & Metiu, 2001; Lerner & Tirole,
2001) as well as social perspective (e.g., Bessen,
2002; Franck & Jungwirth, 2002; Hann et al.,
2002; Hertel et al., 2003; Markus et al., 2000).
Other studies examine factors for the success of
FLOSS projects (Hallen et al., 1999; Leibovitch,
1999; Pfaff, 1998; Prasad, n.d.; Valloppillil, 1998;
Valloppillil & Cohen, 1998, Crowston and Scozzi,
2003). Among them, an open research question
deals with the analysis of how the contributions of
multiple developers can be brought into a single
working product (Herbsleb & Grinter, 1999b).
To answer such a question, a few authors have
investigated the processes of FLOSS development
(e.g.,Jensen & Scacchi, 2005; Stewart & Ammeter,
2002). The most well-known model developed
to describe FLOSS organization structure is the
bazaar metaphor proposed by Raymond (1998).
Asin abazaar, FLOSS developers autonomously
decide the schedule and contribution modes for
software development, making a central coordina-
tion action superfluous. While still popular, the
bazaar metaphor has been broadly criticized (e.g.,
Cubranic, 1999). According to its detractors, the
bazaar metaphor disregards some aspects of the
FLOSS development process, such as the impor-
tance of the project leader control, the existence
of de-facto hierarchies, the danger of information
overloads and burnout, the possibility of conflicts
that cause a loss of interest in a project or forking,
and the only apparent openness of these commu-
nities (Bezroukov, 1999a, 1999b).

Nevertheless, many features of the bazaar
model do seem to apply. First, many teams are
largely self-organizing, often without formally
appointed leaders or formal indications of rank
or role. Individual developers may play different

54

roles in different projects or move from role to
role as their involvement with a project changes.
For example, a common route is for an active
user to become a co-developer by contributing a
bug fix or code for a new feature, and for active
and able co-developers to be invited to become
members of the core. Second, coordination of
project development happens largely (though
not exclusively) in a distributed mode. Members
of a few of the largest and most well-established
projects do have the opportunity to meet face-
to-face at conferences (e.g., Apache developers
at ApacheCon), but such an opportunity is rare
for most project members. Third, non-member
involvement plays an importantrole in the success
ofthe teams. Non-core developers contribute bug
fixes, new features or documentation, provide
support for new users and fill a variety of other
roles in the teams. Furthermore, even though the
core group provides a form of leadership for a
project, they do not exercise hierarchical control.
A recent study documented that self-assignment
is a typical coordination mechanism in FLOSS
projects and direct assignment are nearly non-
existent (Crowston et al., 2005). In comparison
to traditional organizations then, more people can
share power and be involved in FLOSS project
activities. However, how these diverse contribu-
tions can be harnessed to create a coherent product
is still an important question for research. Our
article addresses this question by examining in
detail a particular case, namely, coordination of
bug-fixing processes.

CONCEPTUAL DEVELOPMENT

In this section, we describe the theoretical per-
spectives we adopted to examine the coordina-
tion of bug fixing, namely, a process-oriented
perspective and the coordination theory. We also
introduce the topic of coordination and discuss
the literature on coordination in software devel-

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

opment and the (small) literature on coordination
in FLOSS teams.

Processes as Theories

Most theories in organizational and information
system research are variance theories, compris-
ing constructs or variables and propositions or
hypotheses linking them. By adopting a statisti-
cal approach, such theories predict the levels of
dependent or outcome variables from the levels
of independent or predictor variables, where the
predictors are seen as necessary and sufficient for
the outcomes. In other words, the logical struc-
ture of such theories is that if concept @ implies
concept b, then more of a means more (or less) of
b. For example, the hypothesis that the adoption
of ICT makes organization more centralized,
examined as a variance theory, is that the level
of organization centralization increases with the
number of new ICTs adopted.

Analternative to a variance theory isa process
theory (Markus & Robey, 1988). Rather than
relating levels of variables, process theories ex-
plain how outcomes of interest develop through a
sequence of events. In that case, antecedents are
considered as necessary but not sufficient for the
outcomes (Mohr, 1982). For example, a process
model of ICT and centralization might positseveral
steps each of which must occur for the organiza-
tion to become centralized, such as development
and implementation of an ICT system and use of
the system to control decision premises and pro-
gram jobs, resulting in centralization of decision
making as an outcome (Pfeffer, 1978). However,
if any of the intervening steps does not happen, a
different outcome may occur. For example, if the
system is used to provide information directly to
lower-level workers, decision making may become
decentralized rather centralized (Zubofft, 1988).
Of course, theories may contain some aspects of
both variance and process theories (e.g., a variance
theory with a set of contingencies), but for this
discussion, we describe the pure case. Typically,

process theories are of some transient process
leading to exceptional outcomes, for example,
events leading up to an organizational change
or to acceptance of a system. However, we will
focus instead on what might be called “everyday”
processes: those performed regularly to create an
organization’s products or services. For example,
Sabherwal and Robey (1995) described and
compared the processes of information systems
development for 50 projects to develop five clusters
of similar processes.

Kaplan (1991, p. 593) states that process
theories can be “valuable aids in understanding
issues pertaining to designing and implementing
information systems, assessing their impacts,
and anticipating and managing the processes of
change associated with them”. The main advan-
tage of process theories is that they can deal with
more complex causal relationships than variance
theories. Also they embody a fuller description of
the steps by which inputs and outputs are related,
rather than noting the relationship between the
levels of input and output variables. Specifically,
representing a process as a sequence of activi-
ties provides insight into the linkage between
individual work and processes, since individuals
perform the various activities that comprise the
process. Asindividuals change what they do, they
change how they perform these activities and thus
their participation in the process. Conversely,
process changes demand different performances
from individuals. ICT use might simply make
individuals more efficient or effective at the ac-
tivities they have always performed. However,
an interesting class of impacts involves changing
which individuals perform which activities and
how activities are coordinated. Such an analysis
is the aim of this article.

Coordination of Processes
In this subsection, we introduce the topic of

coordination and present the fundamentals of
coordination theory. Studying coordination means

55

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

analyzing how dependences that emerge among
the components of a system are managed. That
stands for any kind of system, for example, so-
cial, economics, organic, or information system.
Hence, the coordination of the components of
a system is a phenomenon with a universal rel-
evance (Boulding, 1956). The above definition of
coordination is consistent with the large body of
literature developed in the field of organization
theory (e.g., Galbraith, 1973; Lawrence & Lorsch,
1967; Mintzberg, 1979; Pfeffer & Salancik, 1978;
Thompson, 1967) that emphasizes the importance
of interdependence.

For example, according to Thompson (1967),
organizational action consists of the coordination
of the interdependences and the reduction of the
costs associated to their management. Two com-
ponents/systems are said to be interdependent if
the action carried out by one of them affect the
other one’s output or performance (McCann &
Ferry, 1979; Mohr, 1971; Victor & Blackburn,
1987). For space reason, it is not possible to
present all the contributions on coordination in
the literature, but because of its relevance, we
here briefly report on Thompson’s seminal work.
Thompson (1967) identified three main kinds of
interdependence, namely pooled, sequential and
reciprocal interdependence. Pooled interdepend-
ence occurs among organization units that have
the same goal but do not directly collaborate to
achieveit. Sequential dependence emerges among
serial systems. A reciprocal dependence occurs
when the output of a system is the input for a
second system and vice versa. The three kinds
of interdependence require coordination mecha-
nisms whose cost increases going from the first to
the last one. The coordination by standardization,
that is, routine and rules, is sufficient to manage
pooled-dependant systems. Coordination by plan
implies the definition of operational schemes
and plans. It can be used to manage pooled and
sequential dependences. Finally, coordination by
mutual adjustment is suitable for the management
of reciprocal dependences.

56

The interest devoted by scholars and prac-
titioners to the study of coordination problems
has recently increased due to the augmented
complexity of products, production processes
and to the rapid advancement in science and
technology. To address these issues scholars
have developed coordination theory, a systemic
approach to the study of coordination (Malone &
Crowston, 1994). Coordination theory synthesizes
the contributions proposed in different disciplines
to develop a systemic approach to the study of
coordination. Studies on coordination have been
developed based on two level of analysis, a micro
and amacro level. Inparticular, most organization
studies adopt amacro perspective, so considering
dependencies emerging among organizational
units. Other studies adopt a micro perspective, so
considering dependencies emerging among single
activities/actors. Coordination theory adopts the
latter perspective and, in particular, focuses on
the analysis of dependencies among activities
(rather that actors). Hence, itis particularly useful
to the description and analysis of organizational
processes, which can be defined as a set of inter-
dependent activities aimed to the achievement
of a goal (Crowston, 1997; Crowston & Osborn,
2003). In particular, this approach has the ad-
vantage of making it easier to model the effects
of reassignments of activities to different actors,
which is common in process redesign efforts.
We adopted this perspective because the study
focuses on analyzing coordination mechanisms
within processes.

Consistent with the definition proposed above,
Malone and Crowston (1994) analyzed group
action in terms of actors performing interdepen-
dent tasks. These tasks might require or create
resources of various types. For example, in the
case of software development, actors include the
customers and various employees of the software
company. Tasks include translating aspects of a
customer’s problem into system requirements and
code, or bug reports into bug fixes. Finally, re-
sources include information about the customer’s

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

problem and analysts’ time and effort. In this
view, actors in organizations face coordination
problems arising from dependencies that constrain
how tasks can be performed.

It should be noted that in developing this
framework, Malone and Crowston (1994) describe
coordination mechanisms as relying on other
necessary group functions, such as decision mak-
ing, communications, and development of shared
understandings and collective sensemaking (Brit-
ton et al., 2000; Crowston & Kammerer, 1998).
To develop a complete model of a process would
involve modeling all of these aspects: coordina-
tion, decision making, and communications. In
this article though, we will focus on the coordina-
tion aspects, bracketing the other phenomenon.

Coordination theory classifies dependencies as
occurring between a task and a resource, among
multiple tasks and a resource, and among a task
and multiple resources. Dependencies between
a task and a resource are due to the fact that a
task uses or creates a resource. Shared use of
resources can in turn lead to dependencies be-
tween the tasks that use or create the resource.
These dependencies come in three kinds. First,
the flow dependence resembles the Thompson’s
sequential dependency. Second, the fitdependence
occurs when two activities collaborate in the
creation of an output (though in the case where
the output is identical, this might better be called
synergy, since the benefit is that duplicate work
can be avoided). Finally, the share dependency
emerges among activities that share the use of
a resource. Dependencies between a task and
multiple resources are due to the fact that a task
uses, creates or produces multiple resources or a
task uses a resource and create another resource.
Forexample, in the case of software development,
a design document might be created by a design
task and used by programming tasks, creating a fit
dependency, while two development tasks might
both require a programmer (a share dependency)
and create outputs that must work together (a fit
dependency).

Thekey pointin this analysis is that dependen-
cies can create problems that require additional
work to manage (or provide the opportunity to
avoid duplicate work). To overcome the coordi-
nation problems created by dependences, actors
must perform additional work, which Malone and
Crowston (1994) called coordination mechanisms.
For example, if particular expertise is necessary
to perform a particular task (a task-actor depen-
dency), then an actor with that expertise must be
identified and the task assigned to him or her.
There are often several coordination mechanisms
that can be used to manage a dependency. For
example, mechanisms to manage the dependency
between an activity and an actor include (among
others): (1) having amanager pick a subordinate to
perform the task; (2) assigning the task to the first
available actor; and (3) having a labour market in
which actors bid on jobs. To manage a usability
subdependency, the resource might be tailored
to the needs of the consumer (meaning that the
consumer has to provide that information to the
producer) or aproducer might follow a standard so
the consumer knows what to expect. Mechanisms
may be useful in a wide variety of organizational
settings. Conversely, organizations with similar
goals achieved using more or less the same set of
activities will have to manage the same depen-
dencies, but may choose different coordination
mechanisms, thus resulting in different processes.
Ofcourse, the mechanisms are themselves activi-
ties that must be performed by some actors, and
so adding coordination mechanisms to a process
may create additional dependences that must
themselves be managed.

Coordination in Software
Development

Coordination has long been akey issue in software
development (e.g., Brooks, 1975; Conway, 1968;
Curtis et al., 1988; Faraj & Sproull, 2000; Kraut
& Streeter, 1995; Parnas, 1972). For example,
Conway (1968) observed that the structure of a

57

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

software system mirrors the structure of the or-
ganization that develops it. Both Conway (1968)
and Parnas (1972) studied coordination as a crucial
part of software development. Curtis et al. (1988)
found that in large-scale software project, coor-
dination and communication are among the most
crucial and hard-to-manage problems. To address
such problems, software development researchers
have proposed different coordination mechanisms
such a planning, defining and following a process,
managing requirements and design specifications,
measuring process characteristics, organizing
regular meetings to track progress, implementing
workflow systems, among the others.

Herbsleb and Grinter (1999b), in a study of
geographically-distributed software develop-
ment within a large firm, showed that some of
the previously mentioned coordination mecha-
nisms—namely integration plans, component-
interface specifications, software processes and
documentation—tailed to support coordination if
not properly managed. The mechanismsneeded to
be modified or augmented (allowing for the filling
in of details, handling exceptions, coping with
unforeseen events and recovering from errors) to
allow the work to proceed. They also showed that
the primary barriers to coordination breakdowns
were the lack ofunplanned contact, knowing whom
to contact about what, cost of initiating a contact,
ability to communicate effectively and lack of trust
or willingness to communicate openly.

Kraut and Streeter (1995), in studying the
coordination practices that influence the sharing
of information and success of software develop-
ment, identified the following coordination tech-
niques: formal-impersonal procedures (projects
documents and memos, project milestones and
delivery schedules, modification request and
error-tracking procedures, data dictionaries),
formal-interpersonal procedures (status-review
meetings, design-review meetings, code inspec-
tions), informal-interpersonal (group meetings
and co-location of requirements and development
staff, electronic communication such as e-mail

58

and electronics bulletin boards, and interpersonal
network). Their results showed the value of both
informal and formal interpersonal communication
for sharing information and achieving coordination
in software development. Note though that this
analysis focuses more the media for exchanging
informationrather than particular dependencies or
coordination mechanisms that might be executed
via these media. That is, once you have called a
group meeting, what should you talk about?

Coordination in FLOSS
Development

A few studies have examined the work practices
and coordination modes adopted by FLOSS teams
in more detail, which is the focus of this article
(Tannacci, 2005; Scacchi, 2002; Weber, 2004).
Cubranic (1999) observed that the main mediaused
for coordination in FLOSS development teams
were mailing lists. Such a low-tech approach is
adopted to facilitate the participation of would-
be contributors, who may not have access to or
experience with more sophisticated technology.
The geographical distribution of contributors and
the variability in time of contributors precluded
the use of other systems (e.g., systems that support
synchronous communication or prescriptive coor-
dination technology, such as workflow systems).
Mailing lists supported low-level coordination
needs. Also, Cubranic (1999) found no evidence
of the use of higher-level coordination, such as
group decision making, knowledge management,
task scheduling and progress tracking. As they are
the main coordination mechanisms, the volume of
information within mailing lists can be huge. Mail-
ing lists are therefore often unique repositories of
source information on design choices and evolution
of the system. However, dealing with this volume of
information in large open source software projects
can require a large amount of manual and mental
effort from developers, who have to rely on their
memory to compensate for the lack of adequate
tools and automation.

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

In a well-known case study of two important
FLOSS projects, namely Apache and Mozilla,
Mockus et al. (2002) distinguished explicit (e.g.,
interface specification processes, plans, etc.) and
implicit coordination mechanisms adopted for
software development. They argued that, because
ofits software structure, the Apache development
team had primarily adopted implicit coordination
mechanisms. The basic server was kept small.
Core developers worked on what interested them
and their opinion was fundamental when add-
ing new functionality. The functionality beyond
the basic server was added by means of various
ancillary projects, developed by a larger com-
munity that interacted with Apache only through
defined interfaces. Such interfaces coordinate
the effort of the Apache developers: as they had
to be designed based on what Apache provided,
the effort of the Apache core group was limited.
As aresult, coordination relied on the knowledge
of who had expertise in a given area and general
communication on who is doing what and when.
On the other hand, in the Mozilla project, be-
cause of the interdependence among modules,
considerable effort is spent in coordination. In
this case, more formal and explicit coordination
mechanisms were adopted (e.g., module owners
were appointed who had to approve all changes
in their module).

Jensen & Scacchi (2005) modelled the soft-
ware-release process in three projects, namely
Mozilla, Apache and NetBeans. They identified
tasks, their dependencies and the actors perform-
ing them. However, they did not analyze the
coordination issues in depth and did not focus
specifically on the bug-fixing process, which is
the aim of this article. Rather, their final goal
was to study the relationships among the three
communities that form a Web Information In-
frastructure.

lannacci (2005) adopted an organizational
perspective to study coordination processes within
asinglelarge-scale and well-known FLOSS devel-
opment project, Linux. He identified three main

(traditional) coordination mechanisms, namely
standardization, loose coupling and partisan
mutual adjustment. Standardization is acoordina-
tion mechanism to manage pooled dependencies
emerging among different contributors. Itimplies
the definition of well-defined procedures, such
as in the case of patch submission or bug-fixing
procedures. Loose coupling is used to manage
sequential dependencies among the different
subgroups of contributors. It is the coordination
mechanisms used to, for example, incorporating
new patches. Finally, partisan mutual adjustment is
amechanismused to manage what Iannacci (2005)
called networked interdependencies, an extension
of the reciprocal dependencies as proposed by
Thompson (1967). Networked interdependencies
are those emerging among contributors to specific
part of the software. Partisan mutual adjustment
produces a sort of structuring process so creating
an informal (sub-)organization. However, these
findings are based on a single exceptional case, the
Linux project, making itunclear how much can be
generalized to smaller projects. Indeed, most of
the existing studies are of large and well-known
projects and focused on the development process.
To our knowledge, no studies have analyzed the
bug-fixing process in depth within small FLOSS
development teams.

A Coordination Theory Application:
The Bug-Fixing Process

To ground our discussion of coordination theory,
we will briefly introduce the bug-fixing process,
which consists of the tasks needed to correct
software bugs. We decided to focus on the bug-
fixing process for three reasons. First, bug fixing
provides “amicrocosm of coordination problems”
(Crowston, 1997). Second, a quick response to
bugs has been mentioned as a particular strength
of the FLOSS process: as Raymond (1998) puts
it, “given enough eyeballs, all bugs are shallow”.
Finally, it is a process that involves the entire de-
veloper community and thus poses particular coor-

59

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

dination problems. While there have been several
studies of FLOSS bug fixing, few have analyzed
coordination issues within bug-fixing process by
adopting a process view. For example, Sandusky
et al. (2004) analyzed the bug-fixing process.
They focus their attention on the identification of
the relationships existing among bug reports, but
they do not examine in details the process itself.
In contrast to the prior work, our article provides
empirical evidence about coordination practices
within FLOSS teams. Specifically, we describe
the way the work of bug fixing is coordinated in
these teams, how these practices differ from those
of conventional software development and thus
suggest what might be learned from FLOSS and
applied in other settings.

We base our description on the work of Crow-
ston (1997), who described the bug-fixing process
observed atacommercial software company. Such
a process is below defined as traditional because
1) it is carried out within a traditional kind of or-
ganization (i.e., theboundary are well defined, the
environment is not distributed, the organization
structure is defined) and 2) refers to the produc-
tion of commercial rather than FLOSS software.
The process is started by a customer who finds
a problem when using a software system. The
problem is reported (sometimes automatically or
by the customer) to the company’s response center.
In the attempt to solve the problem, personnel in
the center look in a database of known bugs. If a
match is found, the fix isreturned to the customer;
otherwise, after identifying the affected product,
the bug report is forwarded to an engineer in the
marketing center. The assigned engineer tries
to reproduce the problem and identify the cause
(possibly requesting additional information from
the reporter to do so). If the bug is real, the bug
report is forwarded to the manager responsible
for the module affected by the bug. The manager
then assigns the bug to the software engineer
responsible for that module. The software engi-
neering diagnoses the problem (if she finds that
the problem is in a different module, the report is

60

forwarded to the right engineer) and designs a fix.
The proposed fix is shared with other engineers
responsible for modules that might be affected.
When the feedback from those engineers is posi-
tive, the proposed design is transformed into lines
of code. If changes in other module are needed,
the software engineer also asks the responsible
engineers for changes. The proposed fix is then
tested, the eventual changed modules are sent
to the integration manager. After approving, the
integration manager recompiles the system, tests
the entire system and releases the new software
in the form of a patch. To summarize then, in the
traditional bug-fixing process, the following tasks
have been identified (Crowston, 1997):

Report, Try to solve the problem, Search database
for solution, Forward to the marketing manager,
Try to solve the problem/Diagnose the problem,
Forward to the Software Engineering Group, As-
sign the bug, Diagnose the problem, Design the
fix, Verify affected modules and ask for approval,
Write the code for thefix, Test it, Integrate changes,
Recompile the module and link it to the system.

After describing the above process, Crowston
(1997) went on to analyze the coordination
mechanisms employed. A number of the tasks
listed can be seen as coordination mechanisms.
For example, the search for duplicate bugs as well
as the numerous forward and verify tasks manage
some dependency. Searching for duplicate outputs
is the coordination mechanism to manage a de-
pendency between two tasks that might have the
same output. In this case, the tasks are to respond
tobugreports from customers. These tasks can be
performed by diagnosing and repairing the bug,
but if the solution to the bug report can be found
in the database, then the effort taken to solve it
a second time can be avoided. Thus, searching
the database for a solution is a way to manage a
potential dependency between the two bug-fixing
tasks. Forwarding and verifying tasks are coordi-
nation mechanisms used to manage dependency

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

between atask and the actor appropriate to perform
that task. These steps are needed because many
actors are involved in the process and each of
them carry out a very specialized task, requiring
additional work to find an appropriate person to
perform each task.

RESEARCH METHODOLOGY

To address our research question, how are bug
fixes coordinated in FLOSS projects, we carried
out a multiple case study of different FLOSS
projects, using the theoretical approach developed
in the previous section. In this section, we discuss
sample selection and data sources, data collection
and data analysis, deferring a discussion of our
findings to the following section.

Sample Section

Inthis sub-section we describe the basis for select-
ing projects for analysis. Projects to be studied
were selected from those hosted on SourceForge,
(http://sourceforge.net/), a Web-based system
that currently supports the development of more
than 100,000 FLOSS projects (although only a
small proportion of these are actually active). We
chose to examine projects from a single source
to control for differences in available tools and
projectvisibility. Because the process of manually
reading, rereading, coding and recoding messages
is extremely labor-intensive, we had to focus
our attention on a small number of projects. We
selected projects to study in-depth by employing
a theoretical sampling strategy based on several
practical and theoretical dimensions.

First, we chose projects for which data we need
for our analysis are publicly available, meaning
a large number of bug reports. (Not all projects
use or allow public access to the bug-tracking
system.) Second, we chose teams with more than
8 developers (i.e., those with write access to the
source code control system), since smaller proj-

ects seemed less likely to experience significant
coordination problems. The threshold of eight
members was chosen based on our expectation that
coordinating tasks within a team would become
more complicated as the number of members
increases. We assumed that each member of the
team could manage 4 or 5 relationship, but with
eight members, we expected some difficulty in
coordination to arise. Only 140 projects of Source-
Forge met the firsttwo requirements in 2002 when
we drew our sample. Third, projects were chosen
so as to provide some comparison in the target
audience and addressed topic, as discussed below.
Finally, because we wanted to link coordination
practices to project effectiveness, we tried to select
more and less effective development teams. To
this aim we used the definitions of effectiveness
proposed by Crowston et al. (2006a), who sug-
gest that a project is effective if it is active, the
resulting software is downloaded and used and
the team continues in operation. We selected 4
FLOSS projects to satisfy the mentioned criteria.
Specifically, from the 140 large active projects, we
selected two desktop chat clients that are aimed
at end users (KICQ and Gaim) and two projects
aimed primarily at developers (DynAPI, an
HTML library and phpMyAdmin, a web-based
database administration tool). A brief description
of the projects is reported in Table 1, including
the project goal, age at the time of the study, vol-
ume of communication and team membership. A
consequence of the requirement of a significant
number of bug reports is that all four projects are
relatively advanced, making them representative
of mature FLOSS projects. Based on the definition
proposed by Crowston et al. (2006a), Kicq, Gaim
and phpMyAdmin were chosen as examples of
effective projects because they were active, the
resulting software was being downloaded and the
group had been active for a while. DynAPI was
chosen as an example of a less effective project
because the number of downloads and program-
ming activity had rapidly decreased in the months
leading up to the study.

61

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 1. Four examined projects

(9) s1odojoaap
() 19dotaaap urwupe (1)
urwpe /1ogeuew 399(01g

SISI] BUI[IeW G UL 9SG

Ly¥/¥1T

1E€T/L

ST/

6€9/ 6C

uonensr
-UIpY SWAISAS Juauo))
orweuk(‘Spug-1uoL|

SI01eL)ST
-urupy wsAs ‘dopysoq
/s19s) puqg ‘s1odojarag

1dD

AqeIs
uonoNpoId §

(2) payroads
jou (¢) s1odojaaap (1)

10u31S9p qam (1) 198eURW
110ddns (1) 10dojoadp
Jurupe

(1) 198euew Jo3fo1g

6

(s1odojoaap)
Is1] Burjrew | ul yOg

Ly¥/¥1¢T

9SS/SL

LO1/0T

66¥1/ 69T

13UassIN NSIA

‘Jey) Ke[ay 10uIoIu] ‘D]
108UISSIIN JURISU] TOV
dopyseq

/s1es() puq ‘s1odojors
‘s10S() puy pIOUBAPY

1dO

BICERN
uononpoId §

(€) poytoads jou £(¢)
urwpe (4) srodojorsp
(D)

103euew j00(oxd/urupy

Il

SISI[Sur[rew ¢ Ut $656

4%

124%4!

0Ce/sy

JUIU0)) dTWeUA(

s1odojoroq

1dD “1dD1

AqeIs
uonoNpoId §

() payroads jou
£(1)uB)nsuod /10judwu
/10S1ApE {(¢) s1odojoa

-op ¢(1) 1o8ey0ed (7)
193euew yo3(oxd/urupy

s3s1] Sur
-[rew ¢ ur sofessow ¢1g

6/6

8/1

81/C1

88/ 9¢

(Aa]) yuswuox
-1aug dopyso(3 ‘001

dopyseq
/s19s) puq ‘s1odojord
TdD

EICLEN
uononpoid § ‘eed ¢

(3101
Ul #) S3[0J JIQUUIW W],

sIaquIdux
ured) Jo #

SIS Surprely

sysanbau jo # [eyo],
/s3sanbaua saamyes y wadQ

soyINed
Jo # [eyo], /sayded wadQ

sysanbau jo # [eyo,
/s3sanbay] y10ddng uadQ

s3nq jo # [ejo],
/ssnq wadQ

Jdoyg,
ERLIETI A%
papudjuy

ASUIT

snye)s§ yudwdofaadQq

81-€0-100T €1-11-6661 S1-50-000T 61-11-6661 ajep uone.sISay
uonensuIwpe dseqeiep (Juarpd jeyd ©) (quaro yeyo) 109fo1d

poseq-qopy Judld NIV woperd-niny Areiqi TNLH dtweukq A Ay 10§ udI OI L9
urupyApdyd wien 1dVuiq [0J0)). |

foranalysis. However, analysis of these data poses

Data Collection

some ethical concerns that we had to address in
gaining human subjects approval for our study.

In this sub-section we describe how data were
selected and collected. As mentioned above, all of

On the one hand, the interactions recorded are

all public and developers have no expectations of

these projects are hosted on SourceForge, making
certain kinds of data about them easily accessible

privacy for their statements (indeed, the expec-

62

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

tation is the opposite, that their comments will
be widely broadcast). Consent is generally not
required for studies of public behaviour. On the
other hand, the data were not made available for
research purposes butrather to support the work of
the teams. We have gone ahead with our research
after concluding that our analysis does not pose
any likelihood of additional harm to the poster
above the availability of the post to the group and
in the archive available on the Internet.

We collected several kinds of data about each
of the cases. First, we obtained data indicative of
the effectiveness of each project, such as its level
ofactivity, number of downloads and development
status. Unfortunately, no documentation on the or-
ganization structure, task assignment procedures
and coordination practices adopted was available
on the projects’ web sites (further supporting the
position that these teams do not employ formal
coordination methods). To get at the bug-fixing
process, we considered alternative sources of data.
Interviewing the developers might have provided
information about their perceptions of the process,
but would have required finding their identities,
which was considered problematic given privacy
concerns. Furthermore, reliance on self-reported
data raises concerns about reliability of the data,
the response rate and the likelihood that differ-
ent developers would have different perceptions.
While these issues are quite interesting to study
(e.g., to understand how a team develops shared
mental models of a project, for example, Crowston
& Kammerer, 1998), they seemed like distractions
from ourmainresearch question. Because of these
concerns, we elected to use objective data about
the bug-fixing process. Hence, the main source
of data about the bug-fixing process was obtained
from the archives of the bug tracking system,
which is the tool used to support the bug-fixing
process (Herbslebetal.,2001, p. 13). These dataare
particularly useful because they are unobtrusive
measures of the team’s behaviors (Webb & Weick,
1979) and thus provide an objective description of

the work that is actually undertaken, rather than
perceptions of the work.

In the bug tracking system, each bug has a
request ID, a summary (what the bug is about),
a category (the kind of bug, e.g., system, inter-
face), the name of the team member (or user) who
submitted it, and the name of the team member
it was assigned to. An example bug report in
shown in Figure 1 (the example is fictitious). As
well, individuals can post messages regarding
the bug, such as further symptoms, requests for
more information, etc. From this system, we
extracted data about who submitted the bugs,
who fixed them and the sequence of messages
involved in the fix. By examining the name of
the message senders, we can identify the project
and community members who are involved in
the bug-fixing process. Demographic information
for the projects and developers and data from the
bug tracking system were collected in the period
17-24 November 2002. We examined 31 closed
bugs for Kicq, 95 closed bugs for DynAPI, 51 bugs
for Gaim and 51 for PhPMyAdmin. The detailed
text of the bug reports is not reported because of
space restriction but is available on request.

Data Analysis

In this section we present our data analysis ap-
proach. For each of the bug reports, we carefully
examined the text of the exchanged messages to
identify the task carried out by each sender. We
first applied the framework developed by Check-
land & Scholes (1990), who suggested identifying
the owners, customers and environment of the
process, the actors who perform it, the transfor-
mation of inputs into outputs, the environment
and the worldview that makes the process mean-
ingful. We then followed the method described
by Crowston & Osborn (2003), who suggested
expanding the analysis of the transformation by
identifying inmore detail the activities carried out
in the transformation. We identified the activities
by inductively coding the text of the messages in

63

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Figure 1. Example bug report and followup messages

[hngz MNnannn] ervash with affa chat

Date Prinrity:
2024-05-28 12:56 5

Submitted by: Assigned to:

keub (ldchulb)y 13ill Coudan (gills)
Category: Status:

system clozed

Summary:

Crach with alf chat

Eachtime I try an alfz chat session the whole program closes iteelf immediatel ¥

Followsups

Message
Drate: 2024-07-29 08:56
Swder. cenis

Ok, sinve kkhub repurled it works 01 me, Tam closing Uhis bug,

Tu wobvid I iepeal.
“pleasetry latest sources from CV3

Drate: 2024-06-29 13:02
Sender: cobvnl

IModule name: cicyg
Latest release 1s xoE]

1z wntten here did | probably install a heta version Xz

1t would be great to can chat again

Date: 2024-06-18 01:10
Sender: kkhub

I'veiriedsthe lastes version, it seems to work perfectly

That’s marvellous...

Date: 2024-06-17 06:50
Sender: cenis

Ok, lets try it one more time - WHAT VEREZION OF CICQ do you use?
There was dramatic imnprovements in chat code since :otmesm beta, so please try latest sc

CWV 5 and report your comments back

Drate: 2024-06-08 12:32
Sender: cobwnl

Hi, [have the exact same problem. It doesn’™t make difference whether I initiate or the ¢
initiates the chat. I wee CIC 6.2 and compiled CICO with the export bbbbbbAbblib
previous lib) because it needed it. Also it doesn’t male difference to run with the old o
Zotnetimes the chat request results ina user AB OR.Ted at the other sideand ...

Drate: 2024-05-29 05:03
Sender cenis
What version do you try?

the bug tracking systems of the four projects. We
started by developing a coding scheme based on
prior work on bug fixing (Crowston, 1997), which
provided a template of expected activities needed
for task assignment (those listed above). The
coding system was then evolved through exami-
nation of the applicability of codes to particular
examples. For example the message:

I’ve been getting this same error every FIRST time
1 load the dynapi in NS (win32). After reloading,
it will work... loading/init problem?

represents a report submitted by another user

(someone other than the person who initially
identified and submitted the bug). This message

64

was coded as “report similar problems”. Table 2
shows the list of task types that were developed
for the coding. The lowest level elementary task
types were successively grouped into 6 main
types of tasks, namely Submit, Assign, Analyze,
Fix, Test & Post, and Close. A complete example
ofthe coded version of a bug report (the one from
Figure 1) is shown in Figure 2.

Once we had identified the process tasks, we
studied in depth the bug-fixing process as carried
out in the four cases. Specifically, we compared
the sequence of tasks across different bugs to
assess which sequences were most common and
the role of coordination mechanisms in these
sequences. We also examined which actors per-
formed which tasks as well as looked for ways to

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 2. Coded tasks in the bug-fixing process

1.0.0 Submit (S)

1.1.0 Submit bug (code errors)
1.1.1 Submit symptoms
1.1.2 Provide code back trace (BT)
1.2.0 Submit problems
1.2.1 Submit incompatibility problems (NC)
2.0.0. Assign (As)
2.1.0 Bug self-assignment (A*)
2.2.0 Bug assignment (A)
3.0.0 Analyze (An)
3.1.0 Contribute to bug identification
3.1.1Report similar problems (R)
3.1.2 Share opinions about the bug (T)
3.2.0 Verify impossibility to fix the bug
3.2.1 Verify bug already fixed (AF)
3.2.2.Verify bug irreproducibility (NR)
3.2.3 Verify need for a not yet supported function (NS)
3.2.4 Verify identified bug as intentionally introduced (NCP)
3.3.0 Ask for more details
3.3.1 Ask for Code version/command line (V)
3.3.2 Ask for code back trace/examples (RBT/E)
3.4.0 Identify bug causes (G)
3.4.1 Identify and explain error (EE)
3.4.2 Identify and explain bug causes different from code (PNC)
4.0.0 Fix (F)
4.1.0 Propose temporary solutions (AC)
4.2.0 Provide problem solution (SP)
4.3.0 Provide debugging code (F)
5.0.0 Test & Post (TP)
5.1.0 Test/approve bug solution
5.1.1 Verify application correctness (W)
5.2.0 Post patches (PP)
5.3.0 Identify further problems with proposed patch (FNW)
6.0.0 Close
6.1.0 Close fixed bug/problem
6.2.0 Closed not fixed bug/problems
6.2.1 Close irreproducible bug (CNR) and close it
6.2.2 Close bug that asks for not yet supported function (CNS)
6.2.3 Close bug identified as intentionally introduced (CNCP)

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Figure 2. Coded version of bug report in Figure 1

BugID Summary Assigned to
crash with .

0000000 alfa chat gills

Task Person Comments

(S) kkhub

V) cenis

R) cobvnl

V) cenis

(W) kkhub

(TP&C) cobvnl

©) bug closed

Table 3. The bug-fixing process: Main results

Submitter

kkhub

asks what version kkhub is running

reports the same problem as kkhub. submits information about the
operating systems and the libraries

asks again what version both users are running
reports the most recent version of cicq works

reports version information and close the bug

Kicq DynAPI Gaim phpMyAdmin

Bugs submitted by team members 9.7% 21% 0% 21.6%
Bugs submitted by members external to the 90.3% 78.9% 100% 78.4%
team

OB;\%, }elliscslilg:gned/self-assigned 9.7% 0% 20 1%
Assigned to team members 0% - 100% 100%
Self assigned 66% 0%
Assigned to members external to the team 33% - - 0%
Bug fixed 51,6% 42,1% 51% 80%
Fixed by team members 81,3% 50% 84% 90,2%
Bug fixed by members external to the team 18,7% 50% 16% 9.8%

more succinctly present the pattern of tasks, for FINDINGS

example, by presenting them as Markov processes.
Because of the shortness and relative simplicity
of our task sequences, we could exactly match
task sequences, rather than having to statistically
assess the closeness of matches to be able to form
clusters (Sabherwal & Robey, 1995). Therefore,
we were able to analyze the sequences by simple
tabulation and counting, though more sophisti-
cated techniques would be useful for larger scale
data analysis. In the next Section we present the
results of our analysis.

66

In this section we present the findings from our
analysis of the bug-fixing process in the four
projects and the coordination mechanisms em-
ployed. Data about the percentage of submitted,
assigned and fixed bugs both by team members and
individuals external to the team for each project
are reported in Table 3. Table 4 summarizes our
findings regarding the nature of the bugs fixing
process in the four projects.

We now present our overall analysis of the
bug-fixing process. Each instance of a bug-fixing

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 4. Observed characteristics of the bug-fixing processes in the four projects

Kicq DynAPI Gaim phpMyAdmin
Min task sequence 3 2 2 2
Max task sequence 8 12 9 13
Uncommon tasks Bug assignment (3) Bug assign- Bug assignment (0) | Bug assignment (1)
(count) g assig ment (0) & assig & assig
Community members | 18 53 23 20
Team members 20f9 60of 11 30f9 40f 10
participation
. Admin: Admin-developer: | Admin-developer:
Most active team : o
members Project mgr: denis; | rainwater; warmenhoven; loicl;
Developer: davidvh | Ext member: | Developer: rob- Admin-developer
Role/ name
depascal flynn lem9.
Max pos%mg by single 5 6 4 3
community member
Not fixable bug closed | 8 5 5

process starts (by definition) with abug submission
(S) and finishes with bug closing (C). Submitters
may submit problems/symptoms associated with
bugs (Ss), incompatibility problems (NC) or/and
also provide information about code back trace
(BT). After submission, the team’s project man-
agers or administrators may assign the bug to
someone to be fixed ((A); (A*) if they self-assign
the bug). Other members of the community may
report similar problems they encountered (R),
discuss bug causes (T), identify bug causes (G)
and/or verify the impossibility of fixing the bug.
Participants often ask for more information to
better understand the bug’s causes (An). In most
cases, but not always, after some discussion, a
team member spontaneously decides to fix (F)
the bug. Bug fixing may be followed by a test
and the submission of a patch (TP). Testing is a
coordination mechanism that manages usability
between producing and using a patch, by ensur-
ing that the patch is usable. However, as later
explained, in the examined projects this type of
activity is not often found. The bug is then closed
(C). Bugs may also be closed because they cannot
be fixed, for example, if they are not reproduc-
ible (CNR), involve functions not supported yet

(CNS) and/or are intentionally introduced to add
new functionality in the future (CNCP). Notice
that the closing activity is usually attributed to a
particular user.

For our analysis, we consider Submission,
Analysis, Fix and Close to be operative activities,
while Assignment, Test and Posting are coordi-
nation mechanisms. As already discussed, A4s-
signment is the coordination mechanisms used
to manage the dependency between a task and
the actor appropriate to perform it. Posting is
the mechanisms used to manage the dependency
between a task and its customers (it makes the fix
available to the persons that need it).

The tasks identified above are linked by
sequential dependencies as shown in Figure 3.
These dependencies were identified by consider-
ing the logical connection between tasks based
on the flow of resources. For example, a patch
can not be tested before it is created. Because the
dependencies can be satisfied in different orders,
different sequences of the activities are possible.
The tasks and their sequence change from bug to
bug. Figure 3 shows the most frequent sequences
observed, asidentified by tabulating and counting
the sequences.

67

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Figure 3. Task dependencies in the bug-fixing process

> 3 analyzel
L

— ‘ 6 close I

Table 5 shows the portion of processes that
follow each possible paths, based on the collected
ways the bug-fixing process is observed to be
performed within the FLOSS teams. For example,
row | of Table 5 is read as follows. In the Dynapi
project, submission always occurs as the first task
(as it does for all of the groups, by definition),
while the second task is S in 26% of cases, An
in 39% of cases, F in 19% of cases, TP in 1% of
cases and C in 15% of cases, and so on.

In Table 6, we describe the occurrences per
task for the four projects and the average number
of tasks to fix bugs. A y’ test shows a significant
difference in the distribution of task types across
projects (p<0.001). On all projects, submit is the
task that always appears first, while analyze is the
most common second task and fix, third. The first
three most frequent task sequences are reported
in Table 7. As noted above, given the limited
number of examined sequences, the sequences
were manually identified. Finally, in Table 8 we
show which tasks are carried out by which roles.
Pleasenotice that differences in percentage shown
in Table 3 and Table 8 are due to the fact that re-
sults reported in Table 8 are calculated based on
the total number of tasks carried out per bug. For
example, in Table 3 the considered submissions
are those carried out only as first task. In Table
8 all submissions tasks (i.e., also those carried
out as second, third etc. task) are considered. As

68

/

2 assign I

reported in Table 2, submissions tasks can be
more than one per bug because submissions can
occur also in the form of a submit sub-task. The
same stands for the fixing tasks. In Table 3 only
the final fixing tasks are considered.

A detailed description of the process as
performed in the four cases is provided below
considering both the sequence of tasks and the
participation in the bug-fixing process.

Kicq

The minimal sequence is composed of three
tasks, the longest by eight. Bug fixing is usually
the second task in the sequence, meaning that it
is most common for bugs to be fixed immediately
after they are submitted, which is different from
the overall picture in which analysis was most
common. Bug assignment is a quite rare task,
as only three bugs are formally assigned. Eight
bugs were closed because they were considered
to be not fixable.

There are 18 identified users, but many (anony-
mous) users submitted bugs and contributed to
analysis and fixing. Team members are not very
active in bug fixing, except for one of the two
project managers (denis), who is involved in
all the tasks and, in particular, in bug analysis
and fixing. Out of 23 fixed bugs, 16 are fixed by

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 5. Portion of processes for each possible path

i task i-1 taski | Kicq Dynapi | Gaim PhPmyadmin

S S 42% 26% 4% 2%
As 6% - 2% 2%
An 39% 39% 61% 41%
F 13% 19% 24% 45%
TP - 1% 2% 8%
C - 15% 8% 2%

- S An 38% 36% 50% 100%

F 62% 40% 50% -
TP - 8% - -
C - 16% - -

As An - - 100%
F 50% - 100% -
TP 50% - - -

An S 8% - - 5%
An 25% 41% 58% 52%
F 8% 11% 3% 29%
TP - - 3% -
C 58% 49% 35% 14%

F An - 11% - 13%
F 50% 22% 8% 4%
TP - 6% - 4%
C 50% 61% 92% 78%

TP An - - - 50%
F - 100% 100% -%
TP - - - -50%
C - - - -

C An - 7% - -
C - 93% - -

E —T T T

An 100% - - -
F - - - 100%
TP - - - -
C - - - -

An - 4% 5% -
An 13% 48% 53% 50%
F 25% 11% 21% 11%
TP - 4% - 6%
C 63% 33% 21% 33%

continued on following page

69

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 5. continued

i task i-1 taski | Kicq Dynapi | Gaim PhPmyadmin
F S - - - -
As 8% - - -
An 11% 20%
F 33% 16% - 14%
TP - 5% - 29%
C 58% 68% 80% 57%
TP - - - -
An - - - -
F - 33% - 33%
TP - - - 33%
- 67% 100% 33%
C - - 100% -
- S AN - - 100% -
F - - - -
TP - 100% - -
As F 100% - - -
An S - - - -
An 50% 27% 73% 67%
F - 13% 18% 11%
TP - - - 11%
C 50% 60% 9% 11%
F An 17% 14% - 20%
F -- - 25% -
TP - - 25% -
C 83% 86% 50% 80%
TP An - - - -
F - - - 50%
TP - 100% - -
C - - - 50%
- An S - 11% -
As 50% - - 14%
An - 20% 22% 43%
F - - 11% 29%
TP - 20% - -
C 50% 60% 56% 14%
F - - - -
An - - - -
F - - - -

70

continued on following page

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 5. continued

i task i-1 taski | Kicq Dynapi | Gaim PhPmyadmin
TP - - - 33%
C 100% 100% - 67%
TP An - - - -
F - 100% - -
TP - - - -
C - - - 100%
- S AN - - 50% -
© - - 50% -
As F 100% - - 100%
An S - - - 33%
An - 33%
F - 100% 100% -
TP - - - -
C - - - 33%
F An - 100% - -
F - - - -
TP - - - -
C - - 100% 100%
TP - 100% - 100%
- S An - - - 100%
F - - - -
An An - 100% - -
F - 100% 100%
F An - 50% - -
TP - - - 50%
C 100% 50% 100% 50%
- An An - 50% - 100%
C - 50% - -
F AN - - - 100%
C - - 100% -
TP TP - - - 100%
- An An - 100% - 50%
F - - - 50%
TP - - - 100%
- An An - 100% 50%
- - - 50%
F C - - - 100%
- An An - - - 100%

continued on following page

71

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 5. continued

i task i-1 taski | Kicq Dynapi | Gaim PhPmyadmin
C - 100% - -
F C - - - 100%
- An C - 100% - 100%

Table 6. Task occurrences and average number of tasks per projects

Task

Avr. tasks
(©)] (Ag) (An) F) (TP) (O per bug
Project (bugs)
KICQ (31) 44 4 24 23 0 31 4.4
Dynapi (95) 121 0 94 54 9 95 3.8
Gaim (51) 71 1 77 28 4 51 4.2
Phpmyadmin (51) 54 2 66 45 15 51 4.6
Table 7. Most frequent task sequences
First Second Third Fourth Occurrences
task task task Task
S An C - 13
Kicq S F C - 11
S An F C 2
S An C - 34
DynAPI S F C - 24
S C - - 17
S An C - 21
Gaim S F C - 13
S An F C 6
S F C - 19
phpMyAdmin S An C - 8
S An F C 7
S An C - 76
All projects S F C - 67
S C - - 22
denis. Apart from a developer (davidvh), the other Dynapi

project members seem not take part in the bug-
fixing process at all. However, it is noteworthy
that the bug tracking system register three bugs
as submitted and assigned to the administrator
(bill), although he does not otherwise take part
in the process. Most of the community members
have posted just one bug, and only two of them
posted 2 bugs each.

72

The minimal sequence is composed of two tasks,
the longest by 12. Again, bug assignment is not
explicitly carried out; apparently community or
team members decide autonomously to take part
to the bug-fixing process. However, the system
reports that six bugs (out of 95) are assigned to an
administrator and the rest to a member external

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 8. Tasks carried out by different roles

task RQLES/PROJECT
Kick
devel pm % of total tasks
S 4 9%
As 4 100%
An 18 75%
F 1 15 70%
TP
Dynapi
devel admin admin/develop | norole | % of total tasks
S 9 6 10 21%
As
An 27 3 32%
F 18 2 35%
TP 2 33%
Gaim
admin/develop | develop | supp. mang. % of total tasks
S 0%
As 1 100%
An 33 11 58%
F 17 6 82%
TP 100%
Phpmyadmin
admin/develop | pm % of total tasks
S 11 1 22%
As 2 100%
An 49 74%
F 40 89%
TP 10 93%

to the team. Five bugs are closed because they are
said to be not fixable. Bug fixing is usually the
second or the third task in the sequence.

Team members are not very active except for
an administrator (rainwater), who is involved in
all the tasks and, in particular, in bug analysis
and fixing. The other five team members (two
without a specific role, one administrator/devel-
oper, one developer and one administrator) are
mostly involved in bug fixing. The community

members involved in the process are 47 persons
plus some anonymous posts. Most of them submit-
ted just one bug, but some submitted more (e.g.,
one submitted six bugs). Community members
are mostly involved in bug submission but some
also carry out other tasks. In particular, one of
them (dcpascal) is very active in all the process
tasks. Out of 57 fixed bugs, 20 are fixed by a team
member (the project manager).

73

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Gaim

The minimal sequence is composed of two tasks,
the longest by nine. Bug assignment is not explic-
itly carried out, as community or team members
decide autonomously to take partto the bug-fixing
process. However, the system reports that 24 bugs
(out of 51) are assigned to an administrator (and
the rest to member external to the team). Five
bugs are directly closed because they are said to
be not fixable.

Team members are not very active in bug
fixing except for the administer/developer (war-
menhoven) and a developer (robflynn), who are
involved in many tasks and, in particular, in bug
analysisand fixing. Apart from them, just another
member of the projectteam, adeveloper (Ischiere),
is also involved in the bug fixing. The community
members involved in the process are 21 persons
plus some anonymous users. Most of them posted
just one bug (2 of them posted five bugs, one 4
bugs). Some of them are also involved in bug
analysis and fixing. Out of 29 fixed bugs, 23 are
fixed by a team member (the project manager).

Phpmyadmin

The minimal sequence is composed of two tasks,
the longest by thirteen. Bug assignment is a quite
rare task, as only one bug is formally assigned.
The assignmentis carried out by an administrator/
developer (lem9) and directed to a team member
(loicl). However, the system reports that all 51
are assigned, of which 40 to team members. Bug
fixing is usually the second or the third task.
Team members are not very active in the proc-
ess, except for two administer/developers (loicl
and lem9), who are involved in all the tasks and,
in particular, in bug analysis and fixing (but also
submission). Apart from them, two team mem-
bers take part to the process, a project manager/
adminster (swix) and a developer (robbat2), that
are involved (not heavily) in bug submission and
analysis. The community is composed of 16 mem-
bers plus some anonymous users. Most of them

74

have just posted one bug (two of them posted 3
bugs), but some are also involved in bug analysis
and fixing. Out of 49 fixed bugs, 44 are fixed by
team member (administrator/developers).

DISCUSSION

In this section, we discuss the implications of our
findings forunderstanding the coordination of bug
fixingin FLOSS teams. Our findings provide some
interesting insights on the bug-fixing process for
FLOSS development in these teams. First, pro-
cess sequences are on average quite short (four
tasks) and they seem to be quite similar: submit,
(analyze), fix and close. As shown in Table 3,
formal task assignments are quite uncommon:
only few bugs are formally assigned. Coordina-
tion seems rather to spontaneously emerge. From
bug description and initial analysis, those who
have the competencies autonomously decide to
fix the bug and simply go ahead and do so. That
activity is facilitated by the supplied bug report
and analysis, which is often undertaken by several
contributors. Apart from the procedure to submit
bugs (we analyzed only bugs submitted through
the bug tracking system), we do not observe any
other formal process: roles are not predefined,
delivery dates are not assigned nor are formal-
interpersonal, formal-impersonal or informal-
interpersonal procedures adopted. The lack of
assignment is one of main aspects differentiating
the process as it occurs in FLOSS development
team from the traditional commercial bug-fixing
process described above.

Testing is also quite an uncommon task in
the data. Most of the proposed fixes are directly
posted, though presumably after personal testing
that is not documented. If no one describes the
emergence of new problems with these fixes,
they are automatically posted and the relevant
bug closed without a formal test process. It is
important also to note that many of the posted
problems do not represent real bugs (i.e., they
have been already fixed, are not reproducible,

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

have been intentionally produced, are associated
to functions not yet supported or are associated
to related programs), so they are directly closed
with that explanation.

Another striking finding is that the bug-fixing
process is apparently carried out without any ex-
plicitdiscussion about where knowledge is located
in the team, contrary to the findings of Faraj and
Sproull (2000), who stress the importance of ex-
pertise coordination for team effectiveness (they
distinguish expertise coordination from what
they call administrative coordination, which is
the focus of this article). They define expertise
coordination as the management of knowledge
and skill dependencies. To manage knowledge it
is necessary to know where it is located within
development team, where it is needed and how
to access it. However, in our observations, the
knowledge needs seem to emerge by “(informal
and asynchronous) electronic meetings”.

The bug tracking system represents a sort of
organizational memory, storing bug reports and
solutions found to submitted problems (which
not always are real bugs). However, as discussed
in Cubranic (1999), the large number of emails
stored makes it difficult for contributors to easily
identify the solutions to their own problems, so
making different users repeat the same (already
fixed or addressed) submission more times. In
those cases (i.e., for bugs closed without being
fixed or the attended patches posted), it is usually
the team members that act as “memory”.

A further difference is that in these projects,
the process is performed by few team members
(usually not more that two or three) working
with a member of the larger community. Team
members (usually project managers, adminis-
trators or developers) are most involved in bug
fixing, testing and posting. Surprisingly, only
a few members of the team are involved in the
process. The other participants are active users
who submit bugs or contribute to their analysis.
We also noted striking differences in the level of
contribution to the process. The most active users

in the projects carried out most of the tasks while
most others contributed only once or twice. Most
community members submit only one bug; only
two or three members of the involved community
are involved in fixing tasks and can be referred to
as co-developers. As expected, the most widely
dispersed type of action was submitting a bug,
while diagnosis and bug-fixing activities were
concentrated among a few individuals.

As we have few members of the team and
few members of the community (co-developers)
mostly involved in bug fixing and many users/
members of the community (active users) mostly
involved in bug submission, the organizational
models proposed in the literature (Cox, 1998)
seem to be valid for the bug-fixing process. It
would be interesting to further investigate if
those, among the active users also involved in
bug fixing also contribute to software coding, for
example, by analysis of contributions of source
code independent of bug fixes.

As an apparently less effective project, we
expected to find that DynAPI had a smaller ac-
tive user base than the other projects. However,
as noted above, our data shows the opposite.
However, our estimation of the effectiveness of
the projects is based on activity levels. It appears
that DynAPI somehow does not benefit from
its larger community in increased activity. One
striking difference is the proportion of bugs fixed
by the team members, shown in Table 3, which
is much lower in DynAPI than in the other proj-
ects. This finding suggests that the contribution
of core members may be particularly important
in the effectiveness of the team. The case stud-
ies presented here are not sufficient to test this
hypothesis, so it is one that should be followed
up in future studies.

CONCLUSION

In this article, we investigated the coordination
practices adopted within four FLOSS develop-

75

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

ment teams. In particular, we analyzed the bug-
fixing process, which is considered central to the
effectiveness of the FLOSS process. The article
provided some interesting results. The task se-
quences we observed were mostly sequential and
composed of few steps, namely submit, fix and
close. Second, our data supports the observation
that FLOSS processes seem to lack traditional
coordination mechanisms such as task assignment.
Third, effortis not equally distributed among pro-
cess actors. A few contribute heavily to all tasks,
while the majority just submit one or two bugs.
As a result, the organization structure reflected
in the process resembles the one proposed in the
literature for the FLOSS development process.
Few actors (core developers), usually team project
managers or administrators, are mostly involved
in bug fixing. Most of the involved actors are ac-
tive users instead of developers, who just submit
bug reports. In between are few actors, external
to the team, who submit bugs and contribute to
fixing them. Finally, while we did not find obvi-
ous associations between coordination practices
and project effectiveness, we did notice a link to
participation: our least effective team also had the
lowest level of participation from core developers,
suggesting their importance, even given the more
widely distributed participation possible.

The article contributes to fill a gap in the lit-
erature by providing a picture of the coordination
practices adopted within FLOSS development
team. Besides, the article proposes an innova-
tive research methodology (for the analysis of
coordination practices of FLOSS development
teams) based on the collection of process data by
electronic archives, the codification of message
texts, and the analysis of codified information
supported by the coordination theory.

Based on the analysis of the tasks carried
out and the attendant coordination mechanisms,
we argue that the bazaar metaphor proposed by
(Raymond, 1998) to describe the FLOSS orga-
nization structure is still valid for the bug-fixing
process. As in a bazaar, the actors involved in

76

the process autonomously decide the schedule
and contribution modes for bug fixing, making
a central coordination actor superfluous.

As with all research, the current article has
some limitations that limit the scope of our current
conclusions and suggests directions for further
research. First, although the selected projects are
quite different in terms of target audience and
topic, other characteristics (not examined because
they are not explicitly present on the project web
sites) could be shared among projects so affecting
the obtained results. In the future, we would like
to deepen our knowledge about the coordination
practices adopted by the four projects by directly
interviewing some of the involved actors. Second,
due to the limited number of examined bugs, the
process sequences have been manually examined.
In the future, we intend to enlarge the number of
examined bugs and adopt automatic techniques
(e.g., the optimal matching technique) to analyze
and classify the task sequences. In particular, we
plan to further explore the hypothesis about the
importance of core group members by examining
a larger number of projects (e.g., to examine the
change in the population over time). Finally, in the
article we only examined administrative coordi-
nation. In the future, we intend to examine also
expertise coordination inmore detail. A particular
interesting consideration here is the development
of shared mental models that might support the
coordination of the teams’ processes.

REFERENCES

Ahuja, M. K., Carley, K., & Galletta, D. F. (1997).
Individual performance in distributed design

groups.: An empirical study. Paper presented at
the SIGCPR Conference, San Francisco.

Alho, K., & Sulonen, R. (1998). Supporting
virtual software projects on the Web. Paper
presented at the Workshop on Coordinating
Distributed Software Development Projects, 7th

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

International Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises
(WETICE °98).

Anthes, G. H. (2000, June 26). Software Develop-
ment goes Global. Computerworld Magazine.

Bandow, D. (1997). Geographically distributed
work groups and IT: A case study of working
relationships and IS professionals. In Proceedings
of the SIGCPR Conference (pp. 87-92).

Bélanger, F. (1998). Telecommuters and Work
Groups: A Communication Network Analysis.
In Proceedings of the International Conference
on Information Systems (ICIS) (pp. 365-369).
Helsinki, Finland.

Bessen, J. (2002). Open Source Software: Free
Provision of Complex Public Goods: Research
on Innovation.

Bezroukov, N. (1999a). A second look at the Ca-
thedral and the Bazaar. First Monday, 4(12).

Bezroukov, N. (1999b). Open source software
development as a special type of academic re-
search (critique of vulgar raymondism). First
Monday, 4(10).

Boulding, K. E. (1956). General systems theory—
The skeleton of a science. Management Science,
2(April), 197-208.

Britton, L. C., Wright, M., & Ball, D. F. (2000).
Theuse of co-ordination theory to improve service
quality in executive search. Service Industries
Journal, 20(4), 85—102.

Brooks, F. P., Jr. (1975). The Mythical Man-month:
Essays on Software Engineering. Reading, MA:
Addison-Wesley.

Butler, B., Sproull, L., Kiesler, S., & Kraut, R.
(2002). Community effort in online groups: Who
does the work and why? In S. Weisband & L. At-
water (Eds.), Leadership at a Distance. Mahwah,
NJ: Lawrence Erlbaum.

Carmel, E. (1999). Global Software Teams. Upper
Saddle River, NJ: Prentice-Hall.

Carmel, E., & Agarwal, R. (2001). Tactical
approaches for alleviating distance in global
software development. /EEE Software(March/
April), 22-29.

Checkland, P. B., & Scholes, J. (1990). Soft Systems
Methodology in Action. Chichester: Wiley.

Conway, M. E. (1968). How do committees invent.
Datamation, 14(4), 28-31.

Cox, A. (1998). Cathedrals, Bazaars and the Town
Council. Retrieved 22 March, 2004, from http://
slashdot.org/features/98/10/13/1423253.shtml

Crowston, K. (1997). A coordination theory ap-
proach to organizational process design. Orga-
nization Science, 8(2), 157-175.

Crowston, K., & Howison, J. (2006). Hierarchy
and centralizationin free and open source software

team communications. Knowledge, Technology
& Policy, 18(4), 65-85.

Crowston, K., Howison, J., & Annabi, H. (2006a).
Information systems success in Free and Open
Source Software development: Theory and
measures. Software Process—Improvement and

Practice, 11(2), 123—-148.

Crowston, K., & Kammerer, E. (1998). Coordi-
nation and collective mind in software require-
ments development. IBM Systems Journal, 37(2),
227-245.

Crowston, K., & Osborn, C. S. (2003). A coor-
dination theory approach to process description
and redesign. In T. W. Malone, K. Crowston &
G. Herman (Eds.), Organizing Business Knowl-
edge: The MIT Process Handbook. Cambridge,
MA: MIT Press.

Crowston K., Scozzi B., (2003). Open Source
Software projects as virtual organizations: com-
petency rallying for software development. /EE
Proceedings Software, 149(1), 3-17.

77

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y.,
& Howison, J. (2005). Coordination of Free/
Libre Open Source Software development. Pa-
per presented at the International Conference on
Information Systems (ICIS 2005), Las Vegas,
NV, USA.

Crowston, K., Wei, K., Li, Q., & Howison, J.
(2006b). Core and periphery in Free/Libre and
Open Source software team communications.
Paper presented at the Hawai’i International Con-
ference on System System (HICSS-39), Kaua’i,
Hawai’i.

Cubranic, D. (1999). Open-source software de-
velopment. Paper presented at the 2nd Workshop
on Software Engineering over the Internet, Los
Angeles.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field
study of the software design process for large
systems. Communications of the ACM, 31(11),
1268-1287.

Curtis, B., Walz, D., & Elam, J. J. (1990). Study-
ing the process of software design teams. In
Proceedings of the 5th International Software
Process Workshop On Experience With Software
Process Models (pp. 52-53). Kennebunkport,
Maine, United States.

Cutosksy, M. R., Tenenbaum, J. M., & Glicksman,
J. (1996). Madefast: Collaborative engineering
over the Internet. Communications of the ACM,
39(9), 78-87.

de Souza, P. S. (1993). Asynchronous Organiza-
tions for Multi-Algorithm Problems. Unpublished
Doctoral Thesis, Carnegie-Mellon University.

DeSanctis, G., & Jackson, B. M. (1994). Coordi-
nation of information technology management:
Team-based structures and computer-based com-
munication systems. Journal of Management
Information Systems, 10(4), 85.

Di Bona, C., Ockman, S., & Stone, M. (Eds.).
(1999). Open Sources: Voices from the Open

78

Source Revolution. Sebastopol, CA: O’Reilly &
Associates.

Drucker, P. (1988). The coming of the new orga-
nization. Harvard Business Review, 3-15.

Faraj, S., & Sproull, L. (2000). Coordinating
Expertise in Software Development Teams. Man-
agement Science, 46(12), 1554—1568.

Finholt, T., Sproull, L., & Kiesler, S. (1990).
Communication and Performance in Ad Hoc
Task Groups. In J. Galegher, R. F. Kraut & C.
Egido (Eds.), Intellectual Teamwork. Hillsdale,
NJ: Lawrence Erlbaum and Associates.

Franck, E., & Jungwirth, C. (2002). Reconciling
investors and donators: The governance struc-
ture of open source (Working Paper No. No. 8):
Lehrstuhl fiir Unternehmensfithrung und -politik,
Universitét Ziirich.

Gacek, C., & Arief, B. (2004). The many meanings
of Open Source. IEEE Software, 21(1), 34—40.

Galbraith, J. R. (1973). Designing Complex Orga-
nizations. Reading, MA: Addison-Wesley.

Grabowski, M., & Roberts, K. H. (1999). Risk
mitigation in virtual organizations. Organization
Science, 10(6), 704-721.

Grinter, R. E., Herbsleb, J. D., & Perry, D. E.
(1999). The Geography of Coordination: Dealing
with Distance in R&D Work. In Proceedings
of the GROUP ‘99 Conference (pp. 306-315).
Phoenix, Arizona, US.

Hallen, J., Hammarqvist, A., Juhlin, F., &
Chrigstrom, A. (1999). Linux in the workplace.
IEEE Software, 16(1), 52-57.

Hann, [.-H., Roberts, J., Slaughter, S., & Fielding,
R. (2002). Economic incentives for participating
in open source software projects. In Proceedings
of the Twenty-Third International Conference on
Information Systems (pp. 365-372).

Herbsleb, J. D., & Grinter, R. E. (1999a). Archi-
tectures, coordination, and distance: Conway’s

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

law and beyond. /EEE Software(September/
October), 63—70.

Herbsleb, J. D., & Grinter, R. E. (1999b). Split-
ting the organization and integrating the code:
Conway’s law revisited. Paper presented at the
Proceedings of the International Conference on
Software Engineering (ICSE ‘99), Los Angeles,
CA.

Herbsleb, J. D., Mockus, A., Finholt, T. A., &
Grinter, R. E. (2001). An empirical study of global
software development: Distance and speed. Paper
presented at the Proceedings of the International
Conference on Software Engineering (ICSE2001),
Toronto, Canada.

Hertel, G., Niedner, S., & Herrmann, S. (2003).
Motivation of Software Developers in Open
Source Projects: An Internet-based Survey of
Contributors to the Linux Kernel. Research Policy,
32(7), 1159—-1177.

Humphrey, W. S. (2000). Introduction to Team
Software Process: Addison-Wesley.

lannacci, F. (2005). Coordination processes in OSS
development: The Linux case study. Retrieved
21 September, 2006, from http:/opensource.mit.
edu/papers/iannacci3.pdf

Jarvenpaa, S. L., & Leidner, D. E. (1999). Com-
munication and trust in global virtual teams.
Organization Science, 10(6), 791-815.

Jensen, C., & Scacchi, W. (2005). Collaboration,
Leadership, Control, and Conflict Negotiation in
the Netbeans.org Open Source Software Develop-
ment Community. In Proceedings of the Hawai’i

International Conference on System Science
(HICSS 2005). Big Island, Hawai’i.

Kaplan, B. (1991). Models of change and infor-
mation systems research. In H.-E. Nissen, H. K.
Klein & R. Hirschheim (Eds.), Information Sys-
tems Research: Contemporary Approaches and
Emergent Traditions (pp. 593—611). Amsterdam:
Elsevier Science Publishers.

Kogut, B., & Metiu, A. (2001). Open-source
software development and distributed innova-
tion. Oxford Review of Economic Policy, 17(2),
248-264.

Kraut, R. E., Steinfield, C., Chan, A. P., Butler,
B., & Hoag, A. (1999). Coordination and virtu-
alization: The role of electronic networks and

personal relationships. Organization Science,
10(6), 722-740.

Kraut, R. E., & Streeter, L. A. (1995). Coordina-
tion in software development. Communications
of the ACM, 38(3), 69-81.

Krishnamurthy, S. (2002). Cave or Community?
An Empirical Examination of 100 Mature Open
Source Projects. First Monday, 7(6).

Lawrence, P., & Lorsch, J. (1967). Organization
and Environment. Boston, MA: Division of Re-
search, Harvard Business School.

Leibovitch, E. (1999). The business case for Linux.
1IEEE Software, 16(1), 40—44.

Lerner, J., & Tirole, J. (2001). The open source
movement: Key research questions. European
Economic Review, 45, 819—826.

Madanmohan, T. R., & Navelkar, S. (2002). Roles
and Knowledge Management in Online Technol-

ogy Communities: An Ethnography Study (Work-
ing paper No. 192): [IMB.

Malone, T. W., & Crowston, K. (1994). The in-
terdisciplinary study of coordination. Computing
Surveys, 26(1), 87-119.

Markus, M. L., Manville, B., & Agres, E. C. (2000).
What makes a virtual organization work? Sloan
Management Review, 42(1), 13-26.

Markus, M. L., & Robey, D. (1988). Information
technology and organizational change: Causal

structure in theory and research. Management
Science, 34(5), 583-598.

Massey, A. P., Hung, Y.-T. C., Montoya-Weiss, M.,
& Ramesh, V. (2001). When culture and style aren’t

79

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

about clothes: Perceptions of task-technology
“fit” in global virtual teams. In Proceedings of
GROUP ’01. Boulder, CO, USA.

McCann, J.E., & Ferry, D. L. (1979). Anapproach
for assessing and managing inter-unit interde-

pendence. Academy of Management Review,
4(1), 113-1109.

Metiu, A., & Kogut, B. (2001). Distributed
Knowledge and the Global Organization of
Software Development (Working paper). Phila-
delphia, PA: The Wharton School, University of
Pennsylvania.

Mintzberg, H. (1979). The Structuring of Organi-
zations. Englewood Cliffs, NJ: Prentice-Hall.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies Of Open Source Software
development: Apache And Mozilla. ACM Transac-

tions on Software Engineering and Methodology,
11(3), 309-346.

Mohr, L. B. (1971). Organizational technology
and organizational structure. /6, 444—459.

Mohr, L. B. (1982). Explaining Organizational
Behavior: The Limits and Possibilities of Theory
and Research. San Francisco: Jossey-Bass.

Moon, J. Y., & Sproull, L. (2000). Essence of
distributed work: The case of Linux kernel. First
Monday, 5(11).

Nejmeh, B. A. (1994). Internet: A strategic tool
for the software enterprise. Communications of
the ACM, 37(11), 23-27.

O’Leary, M., Orlikowski, W.J., & Yates, J. (2002).
Distributed work over the centuries: Trust and
controlinthe Hudson’s Bay Company, 1670—1826.
In P. Hinds & S. Kiesler (Eds.), Distributed Work
(pp. 27-54). Cambridge, MA: MIT Press.

Orlikowski, W.J. (2002). Knowing in practice: En-
acting a collective capability in distributed orga-
nizing. Organization Science, 13(3), 249-273.

80

Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules. Communica-
tions of the ACM, 15(2), 1053—-1058.

Pfaft, B. (1998). Society and open source: Why
open source software is better for society than
proprietary closed source software. from http://
www.msu.edu/user/pfaffben/writings/anp/oss-
is-better.html

Pfeffer, J. (1978). Organizational Design. Arling-
ton Heights, IL: Harlan Davidson.

Pfeffer, J., & Salancik, G. R. (1978). The External
Control of Organizations: A Resource Depen-
dency Perspective. New York: Harper & Row.

Prasad, G.C. (n.d.). A hard look at Linux’s claimed
strengths.... from http://www.osopinion.com/
Opinions/GaneshCPrasad/GaneshCPrasad2-2.
html

Raymond, E. S. (1998). The cathedral and the
bazaar. First Monday, 3(3).

Robey, D., Khoo, H. M., & Powers, C. (2000).
Situated-learning in cross-functional vir-
tual teams. /[EEE Transactions on Professional
Communication(Feb/Mar), 51-66.

Sabherwal, R., & Robey, D. (1995). Reconcil-
ing variance and process strategies for studying
information system development. Information
Systems Research, 6(4), 303-327.

Sandusky, R.J., Gasser, L., & Ripoche, G. (2004).
Bug Report Networks: Varieties, Strategies, and
Impacts in an OSS Development Community.
Paper presented at the Proceedings of the ICSE
Workshop on Mining Software Repositories,
Edinburgh, Scotland, UK.

Sawyer, S., & Guinan, P. J. (1998). Software
development: Processes and performance. /BM
Systems Journal, 37(4), 552—568.

Scacchi, W. (1991). The software infrastructure
for a distributed software factory. Software En-
gineering Journal, 6(5), 355-369.

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Scacchi, W. (2002). Understanding the require-
ments for developing Open Source Software sys-
tems. /EE Proceedings Software, 149(1), 24-39.

Scacchi, W. (2005). Socio-technical interaction
networks in Free/Open Source Software devel-
opment processes. In S. T. Acuia & N. Juristo
(Eds.), Software Process Modeling (pp. 1-27).
New York: Springer.

Stewart, K. J., & Ammeter, T. (2002). An ex-
ploratory study of factors influencing the level of
vitality and popularity of open source projects.
In Proceedings of the Twenty-Third Interna-
tional Conference on Information Systems (pp.

853-857).

Taylor, P. (1998, December 2). New IT mantra
attracts a host of devotees. Financial Times,
Survey—Indian Information Technology, p. 1.

Thompson, J. D. (1967). Organizations in Action:
Social Science Bases of Administrative Theory.
New York: McGraw-Hill.

Torvalds, L. (1999). The Linux edge. Communica-
tions of the ACM, 42(4), 38-309.

Valloppillil, V. (1998). Halloween I: Open Source
Software. from http://www.opensource.org/hal-
loween/halloween1.html

Valloppillil, V., & Cohen, J. (1998). Halloween II:
Linux OS Competitive Analysis. from http:/www.
opensource.org/halloween/halloween2.html

Victor, B., & Blackburn, R. S. (1987). Interdepen-
dence: Analternative conceptualization. Academy
of Management Review, 12(3), 486—498.

Walz, D.B., Elam, J.J., & Curtis, B. (1993). Inside
a software design team: knowledge acquisition,

sharing, and integration. Communications of the
ACM, 36(10), 63-77.

Watson-Manheim, M. B., Chudoba, K. M., &
Crowston, K. (2002). Discontinuities and conti-
nuities: A new way to understand virtual work.
Information, Technology and People, 15(3),
191-2009.

Wayner, P. (2000). Free For All. New York:
HarperCollins.

Webb, E., & Weick, K. E. (1979). Unobtrusive mea-
sures in organizational theory: A reminder. Ad-
ministrative Science Quarterly, 24(4), 650—659.

Weber, S. (2004). The Success of Open Source.
Cambridge, MA: Harvard.

Weisband, S. (2002). Maintaining awareness in
distributed team collaboration: Implications for
leadership and performance. In P. Hinds & S.
Kiesler (Eds.), Distributed Work (pp. 311-333).
Cambridge, MA: MIT Press.

Zuboff, S. (1988). In the Age of the Smart Machine.
New York: Basic Books.

ENDNOTE

This research was partially supported by
US NSF Grants 03-41475, 04-14468 and
05-27457. An earlier version of this article
was presented at the First International
Workshop on Computer Supported Activity
Coordination (CSAC 2004). The authors
thank previous anonymous reviewers of the
article for their comments that have helped
to improve the article.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 2, edited by K. Siau, pp. 1-30,

copyright 2008 by IGI Publishing (an imprint of IGI Global).

81

82

Chapter 4
Conflicts, Compromises, and

Political Decisions:
Methodological Challenges of Enterprise-
Wide E-Business Architecture Creation

Kari Smolander
Lappeenranta University of Technology, Finland

Matti Rossi
Helsinki School of Economics, Finland

ABSTRACT

This article describes the architecture development process in an international ICT company, which is
building a comprehensive e-business system for its customers. The implementation includes the integra-
tion of data and legacy systems from independent business units and the construction of a uniform Web-
based customer interface. We followed the early process of architecture analysis and definition over a
year. The research focuses on the creation of e-business architecture and observes that instead of guided
by a prescribed method, the architecture emerges through somewhat non-deliberate actions obliged by
the situation and its constraints, conflicts, compromises, and political decisions. The interview-based
qualitative data is analyzed using grounded theory and a coherent story explaining the situation and its
forces is extracted. Conclusions are drawn from the observations and possibilities and weaknesses of
the support that UML and RUP provide for the process are pointed out.

INTRODUCTION architecture is usually seen as a set of trade-offs

between available resources (such as available
Robust technical architecture is considered personnel and money) and operational require-
one of the key issues when building success- ments related to technical architecture, such as
ful e-business systems. The design of technical scalability, capacity, response times, security, and

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Conflicts, Compromises, and Political Decisions

availability. The software architecture research
provides design tools for technical architecture
design, including, for instance, architecture de-
scription languages (Dashofy, Van der Hoek, &
Taylor, 2005; Medvidovic & Taylor, 2000), com-
mon architectural patterns and styles (Monroe,
Kompanek, Melton, & Garlan, 1997), architectural
trade-off methods (Kazman, Klein, & Clements,
2000), architectural frameworks (Leist & Zellner,
2006), and technologies for e-business implemen-
tation (Bichler, Segev, & Zhao, 1998). In an ideal
world, the work of an architect would be to find
the explicit requirements for architecture, and
select the best possible design tools and technolo-
gies to implement the architecture. Furthermore,
the architecture development team would make
rational trade-offs concerning the requirements,
and produce the best realistic solution for the
architecture with the selected design tools and
implementation technologies.

However, the literature contains many ex-
amples of cases where technical rationality has not
been sufficient for the success in IS projects (e.g.
Sauer, Southon, & Dampney, 1997). Architecture
researchers have found that the work of an archi-
tect and the usage of architecture are bound by
more diverse organizational issues and limitations
that the classical technical software architecture
research ignores. These include for example the
diverse role of an architect in an organization
observed by Grinter (1999) and varying uses and
meanings of architecture in practice (Smolander
& Pidivirinta, 2002a). The main message of these
studies is that an architect has a social, and even
political, role in an organization and that different
stakeholders relate different meanings to archi-
tecture to fulfill their informational requirements
in the development process. This phenomenon
has remarkable similarities to information sys-
tems development in general. As pointed out by
Klein & Hirscheim, the implicit assumption of
rationality of the development processes hides the
legitimating of the goals and differing political

agendas of various stakeholders (Hirschheim &
Klein, 1989).

To understand the issues involved in architec-
ture development, we observed a project that was
developing e-business architecture in an inter-
national ICT company. We interviewed various
stakeholders to gainadeep insight into the process.
The company already had several e-commerce
systems in individual business units, butitneeded
a more uniform customer interface for its vari-
ous systems. The e-business project included the
integration of data and legacy systems from these
units and the construction of auniform Web-based
customer interface hiding the differences of the
business units. Our goal was to find ways for
supporting architecture development by means
of methods and description languages, such as
UML. We were aware of efforts of supporting ar-
chitecture design with UML (e.g., Conallen, 1999;
Garlan & Kompanek, 2000; Hofmeister, Nord, &
Soni, 1999b; Object Management Group, 1999,
2006), but these efforts were mostly targeted to
technical software design and we did notknow how
well these would support a large socio-technical
or organizational project, such as enterprise or
e-business architecture development. Therefore
we decided to observe a real world project and
concentrate on the requirements that e-business
architecture development in its complex organi-
zational context state on description languages
and development methods. Next, we decided to
compare the observed requirements to the support
that UML and RUP offer, because they, together,
form the current methodological basis for many
systems development organizations. UML is the
de-facto standard language in software and sys-
tems development and RUP (Jacobson, Booch,
& Rumbaugh, 1999) is a widely known process
model that claims to improve development pro-
cess maturity (Kuntzmann & Kruchten, 2003).
We believed that this kind of knowledge would
benefit both practitioners in process improvement
and developers of UML extensions.

83

Another interest was to find out what factors
influenced the creation of e-business architecture:
was it designed purposefully by software archi-
tects through rational decisions and trade-offs, or
did it emerge through somewhat non-deliberate
actions obliged by the situation and its constraints,
conflicts, compromises, and political decisions?
This is a very important issue, as unlike software
architecture, e-business architecture is very tightly
coupled with the business models of the company
and thus the architecture has a far more direct
impact on business than for example low-level
system architecture. Furthermore, if the busi-
ness models are not supported by the e-business
architecture, then the business strategy will not
work (Ross, Weill, & Robertson, 2006).

We used open interviews of various actors in
the projects to gather the necessary information
about the project. We analyzed the qualitative
data from the interviews using grounded theory
(Glaser & Strauss, 1967) as the research method
and concluded the analysis by categorizing the
issues that had emerged using the taxonomy of
Lyytinen (1987). Thus, we classified the issues
as belonging into technical, language and or-
ganizational context. From this classification of
issues, we extracted requirements for development
methods when developing integrated e-business
solutions and compared these requirements to
the support that the combination of UML and
RUP provides.

We observed that most of the problems encoun-
tered had very little to do with descriptions of the
architecture per se. Rather what was problematic
were the issues that architecture development ex-
posed about the underlying organization. This is
an important finding, as most of the research into
architecture has been about effective description
languages and design processes and there is a void
ofresearch about the organizational consequences
of architecture development.

The article is organized as follows: we start
by explaining in more detail what is meant by
architecture in this article (section 2). In section

84

Conflicts, Compromises, and Political Decisions

3, we describe the research process and method
used. section 4 describes the situation the com-
pany is facing and the motives for the change and
implementation of the e-business system. In sec-
tion 5, we describe the situation and the context
of the development project aiming at e-business
implementation and the consequences of the situ-
ation for the progress of the development project.
From the observed issues faced by the develop-
ment project we draw conclusions and extract
the requirements for development methods in
e-business architecture developmentand compare
the requirements to support that the combination
of UML and RUP provides (section 6). We point
outareas where current research is not supporting
theneeds of the practice of general and particularly
e-business architecture development.

ARCHITECTURE IN SYSTEMS
DEVELOPMENT

Inthis study, we describe a process where compre-
hensive e-business architecture is being created. In
addition to e-commerce systems serving external
customer transactions, e-business includes both
the integration of and streamlining of internal
information systems to serve the new digitally
enabled business processes (Kalakota & Rob-
inson, 2001) and the unified customer interface
(Ross et al., 2006). For the sake of simplicity,
we understand e-business here to cover both the
transactions and processes within a firm and the
integrated external e-commerce systems as in
(Kalakota & Robinson, 2001). This enables us
to interpret the process in the studied organi-
zation as the process of building an integrated
e-business architecture. Ross et al. (2006) stress
the architecture as the necessary foundation for
execution of comprehensive, across the functions
operating, e-business.

Conventionally, architecture is understood
as a high-level logical abstraction of the system
defining the main components of the system and

Conflicts, Compromises, and Political Decisions

their relationships. The term architecture is also
used both in the context of an individual system
and in the context of systems integration. The
software architecture typically concentrates on the
architecture of a single software system, whereas
the terms information systems (IS) architecture
and enterprise architecture (Kim & Everest, 1994;
Rossetal.,2006; Sowa & Zachman, 1992) refer to
the overall architecture of all information systems
in an organization.

In practice, however, the borderline between
a single system and a set of systems is difficult to
determine. Practically no system today is isolated
from other systems, and the relationship of a
system to its environment may be architecturally
more important than the inner structure of the
system, especially when developing e-business
systems. Usually, systems rely on a common
technical infrastructure, (including networks,
processing services, operation services, etc.)
which is common for all the systems in an orga-
nization. Organizationally, architecture design is
a co-operative effort involving many roles in the
developmentenvironment. Theseroles include the
role of an architect who is specifically associated
with the task of architecture design. An architect
needs contribution and commitment from many
individuals, teams, and parts of organization to
succeed in the effort (Grinter, 1999).

By architecture development, we mean a
process where early design decisions are real-
ized into an architecture defining that defines
system’s composition from various viewpoints.
Architecture also contains the blueprints for
system’s implementation from conceptual and
physical components. This process forms a set of
documents which different stakeholders can use to
relate their concerns to the issues made concrete
by the architecture and discuss their needs in the
terms defined by the common architecture. They
canalso make decisions concerning system devel-
opment strategies and policies using architecture
as a common reference. This conception sees
architecture not only as a technical artifact but

alsoasaboundary object (Star & Griesemer, 1989)
having strong organizational connotations.

The conventional role of architecture isto serve
as an enabler for further design and implementa-
tion (Hofmeister, Nord, & Soni, 1999a; Shaw &
Garlan, 1996). Obviously, sound and well-designed
technical architecture makes the detailed design
and implementation of a system easier and less
risky than it would be without such architecture.
Architecture defines, for example, the modules
or components which the system is composed of,
and therefore it focuses and constrains the solu-
tion space of individual designers that develop
individual components. This technical view of
architecture has produced also studies related to
UML. In the end of last decade, possibilities and
weaknesses of UML as an architecture descrip-
tion language, and its complexity (Siau & Cao,
2001; Siau, Erickson, & Lee, 2005) were widely
evaluated and enhancements were proposed
(Conallen, 1999; D’Souza & Wills, 1998; Egyed
& Medvidovic, 1999; Garlan & Kompanek, 2000;
Hofmeister et al., 1999b; Medvidovic, Egyed, &
Rosenblum, 1999; Rumpe, Schoenmakers, Rader-
macher, & Schiirr, 1999). The recent developments
in this area include the SysML extension of UML
(Object Management Group, 2006). Different
profiles and enhancements to UML have been
proposed to tackle its limitations in electronic
commerce (Dori, 2001).

RESEARCH PROCESS

The studied organization is a globally operating
ICT company having thousands of employees
worldwide. Its customers include both consumers
and businesses for which the organization provides
various products and services. Software is one of
the key assets in the organization’s service produc-
tion and product development. Historically, the
organization has had several independent busi-
ness units targeted at diverging business sectors.
In addition, the information management of the

85

organization has been distributed to these busi-
ness units and the functions of enterprise level
information management have included mainly
the provision of network infrastructure, enterprise
level accounting, and basic office tools. Most of
the information systems in use have been imple-
mented and operated by the business units that
have been quite independent in their decisions
concerning strategies for information manage-
ment. However, recent developments in markets
and technology have led the organization to set
its strategies to a more integrative direction. For
this reason, the organization has set an objective
to provide an integrated e-business solution to
both its consumer and business customers. This
will include both implementation of a uniform
Web-based customer interface and sufficient
integration between the distributed operative
back-end information systems, such as customer
management and billing systems.

The research process followed the grounded
theory method (Glaser & Strauss, 1967), which is
aresearch method developed originally for social
sciences by Glaser and Strauss in the 1960s and
later developed and re-interpreted by the original
authors (e.g., Glaser, 1978; Strauss & Corbin,
1990) and others (e.g., Locke, 2001; Martin &
Turner, 1986). Grounded theory promotes induc-
tive theory creation from the data. The objective
is not to validate or test theories but to create one.
The analysis process of the grounded theory is
explicitly defined and consists of several coding
phases. The coding starts from open coding in
which any incident, slice, or element of the data
may be given a conceptual label for the identi-
fication of commonalities. These commonalities
are called categories and they are described in
terms of their properties (Fernandez, Lehmann,
& Underwood, 2002). The coding continues with
axial coding (Strauss & Corbin, 1990) or theo-
retical coding (Glaser, 1978), where relationships
between the categories are resolved. The coding
ends at selective coding (Strauss & Corbin, 1990)
where the resulting theory is “densified” (Glaser,

86

Conflicts, Compromises, and Political Decisions

1978) or a core category selected (Strauss &
Corbin, 1990) and theory about that is described.
The data collection is based on the notion of
theoretical sampling, which means adjusting the
data collection process according to the require-
ments of the emerging theory. The sources of
data may be adjusted during the process and the
data collection can be stopped whenever a state
of theoretical saturation is achieved, meaning a
situation where no additional data would further
develop the categories and their properties.

In the study, we interviewed 19 participants of
the ongoing e-business system architecture design
project during 2002, first in January and Febru-
ary and then later in November and December.
The interviewees included six system architects,
five enterprise system managers, three project
managers, two software development managers,
one project leader, one system analyst, and one
marketing manager. Table 1 describes their rela-
tionship to the e-business development project.
The interviews lasted from 45 to 120 minutes and
they were completely transcribed as text.

The interview themes of this study were ad-
justed during the data collection to reflect better
the developing theoretical understanding of the
researchers and the specific knowledge of the
interviewees. The emphasis of the interviews
changed according to the interviewee and the spe-
cial knowledge in his or her possession. Because
the data collection proceeded partly in parallel
with the analysis, the emerging theory also caused
changes in the emphasis of the interview themes.
Ingrounded theory thiskind of adaptationis called
theoretical sensitivity, and for theory-building
research this is considered legitimate because
“investigators are trying to understand each case
individually and in as much depth as feasible”
(Eisenhardt, 1989, p. 539). Eisenhardt calls the
process where the emergence of a new line of
thinking causes the altering of data collection
controlled opportunism‘““inwhichresearchers take
advantage of the uniqueness of a specific case and

Conflicts, Compromises, and Political Decisions

Table 1. Interviewed persons and their roles

Role Tasks Interviews
. Deals with technological solutions and architectural structures in
System architect . . 6
the e-business development project
Is responsible for a portfolio of systems and technologies that are
Enterprise system manager | used in a particular organization. Acts as a customer in the internal | 5
e-business development project or participates it as an expert.
. Manages resources and is responsible for the execution of a sub-
Project manager . . . 3
project of the e-business development project
Software development . L
W velop Is responsible for a permanent software development organization | 2
manager
. Manages the e-business development super-project and supervises
Project leader . & . P per-proy P 1
its set of sub-projects.
Participates the requirements gathering and analysis phases as an
System analyst ;arucipal qu g 1ng anc SIS p 1
intermediate between customers and technical experts.
Is responsible for the public image and services of the electronic
Marketing manager channel. Requirements setter and a customer to the development 1
project.

the emergence of new themes to improve resultant
theory” (Eisenhardt, 1989, p. 539).

The analysis in this study started with the open
coding phase. In the beginning, we did not have
any explicit a priori constructs for the analysis.
Our task was to search mentions from the inter-
views that could be interpreted as meaningful
related to the research question, “What are the
conditions and constraints for creating and design-
ing architecture in a large information systems
development project?” The identified mentions
related to this question were categorized using
the software tool ATLAS.ti. During the open
coding phase, altogether 187 emergent categories
were found, and the categories were assigned to
emerging scheme of super categories or category
families, including forinstance changes, conflicts,
consequences, experiences, problems, purposes,
and solutions occurring during the e-business ar-
chitecture design and implementation process.

The axial coding started in parallel with the
open coding and causal relationships between
categories were recorded with Atlas.ti’s semantic
network capability. Figure 1 shows an example of
such a network diagram. In the figure, the boxes

represent categories, the arrows between them
interpreted causalities, and the lines associations
between categories. The number of categories and
the number of identified relationships between
the categories added up to 187 categories and
200 relationships, which created a problem of
how to report such a multitude of categories and
relationships. The solution was sought through
abstracting out those categories that were rarely
occurring in the data and interpreted as not so
relevant regarding the research question. In addi-
tion, more attention was paid to those categories
that occurred frequently in the data.
Inductively, we produced an explaining story to
the events and forces under which the e-business
development project had to work. The organiza-
tion is facing market changes and changing the
organization according to the changing markets.
The objectives for the e-business development
emerge from these changes and because the
change is continuous and it brings all the time
new requirements for the e-business system, the
objectives are quite fluctuating. In addition, the
history and legacy structures of the organization
cause conflicts and problems in the development

87

Isions

Conflicts, Compromises, and Political Dec

Figure 1. An example of a semantic network from axial coding

S)iuN ssauIsng
10 SaLI0SIY UBALIP 10D

<=

buipueysiapun
uowwod Burjeasd :wajqold <=

S}UN SSBUISNQ UsdMjaq

a|jo1d [ouuosiad Jusiayip JoIUOD

/

N

<

N

[senoslqo Jesjoun :welqoid~ u/ —

eyd puesB, ou :ouanbasuog i

== Z
_ aInoa)yo.e Jusbiaws :Wa|qoid -
[
<=

swajsAs Aoebia| Juaiagip ;01U -

S}IUN $SBUISNQ UsBMIa(
sjuaWaINbal JUBIBYIP JOIU0D

jonel | <=
MO] JE SUOISIOBP SYeW :UON|0S

S}ijeusq Jesjoun :wajqold i

»

S9A99[G0 puE S8jNJ Jnoge
sjuswaaibe Buiyew :wa|qoid

$8588UISNq

Juspuadapul :a0uspadx3

AH'/v

/
<= /V
// g Wes) :uopnjos

> _ UONN|OS [EWUIW :BsuaNbasu0) -

= |Buroueuy j0aloid Jesjoun :wajqoid -

A

uopeziuebio

Buiyew uoisiosp :wa|qold|
109(0.d Jesjoun :wajqoid

= _ S]01}JU0D BUIPIOAR :WB|qOId~ -

_—

88

Conflicts, Compromises, and Political Decisions

when combined with the need for change. These
fluctuating objectives and emerging conflicts
and problems brought certain consequences to
the e-business architecture development in the
organization. The formation and description of
thisexplaining story can be considered as selective
coding (Strauss & Corbin, 1990) and its details
in the studied organization are explained in the
next three sections.

The study has required extensive interpretation
and exploration in the studied organization and
therefore the main instruments of the research
has been the researchers and their ability to
interpret events and people’s actions correctly.
Robson (2002) lists three threats to validity in
this kind of research, reactivity (the interference
of the researcher’s presence), researcher bias,
and respondent bias, and strategies that reduce
these threats. We have used these strategies in
the following way:

. Prolonged involvement: Although this
study lasted for one year, the research project
altogether lasted for more than two years
in the same organization and consisted of
several phases and data collection rounds.

. Triangulation: The study has used data
and observer triangulation as presented by
Denzin (1978). To reduce the bias caused by
researchers, weused observer triangulation,
because the data collection was done by
two researchers. The bias caused by data
was minimized using data triangulation,
where different sources of data were used.
Interviews were the primary data collection
method, but we also received many kinds
of project and company documents and
architecture descriptions.

. Peer debriefing and support: Theresearch
has included regular meetings and discus-
sions with involved research participants
from several research institutions. In addi-
tion, preliminary results of research phases
have been presented and discussed in con-

ferences and workshops (Smolander, 2003;
Smolander, Hoikka, Isokallio et al., 2002;
Smolander & Péivérinta, 2002a, 2002b;
Smolander, Rossi, & Purao, 2002, 2005).

. Member checking: The interpretation of
the data has been confirmed by presenting
the results to company participants in the
research project.

* Audit trail: All interviews have been
recorded and transcribed. The notes and
memos of the study have been preserved and
datacoding and analysisresults are available
through the analysis tool used, ATLAS.ti.

CHANGES AND THEIR EFFECTS IN
THE DEVELOPMENT CONTEXT

Starting Point: Changing Markets,
Changing Organization

During the time of the data collection, there
was a considerable change going on in the ICT
market and the organization under study had
undergone a deep change. A few years ago, the
strategies emphasized growth and utilization of
the possibilities in the stock market. This enforced
independent business units inside the organization
since the growth was easier to handle through
independency. Each of the business units built
independent e-commerce solutions and customer
extranets, which resulted to a fragmentary set of
e-commerce solutions to customers with own
Internetsites, sales and billing systems, and Web-
based customer support.

When the beliefs in the possibilities of ICT
sector’s continuing growth diminished, the orga-
nization had to change its strategies from growth
to profitability and from stock market to customer
orientation. With independent business units,
there was no authority in the organization, which
would see a customer as a whole. Instead, each
business unit kept track of the customers only in
the context of its independent business. To produce

89

aunified customer interface a profound change to
the way of building information systems and an
integrated e-business solution was needed. This
change would also require changes in business
practices and organization. The organization
should operate in a more integrated fashion and
the barriers between independent units should
be lowered.

The organization began to see technical e-busi-
ness architecture as an enabler of change. The IS
organizations in independent business units were
obliged to cooperate and enforce commitment
to the integration of information systems. This
also emphasized the role of central information
management, which had been in a minor role this
far. Now, its roles would include the enforcement
of information systems integration and enabling
the unification of the sales channels and customer
management for the planned e-business solution.
At this point, the organization decided to estab-
lish a working group of systems architects from
various parts of the organization. In the follow-
ing section, we shall describe the context and the
forces under which this group of architects were
developing and designing the unified e-business
architecture.

Conflicts, Problems and Varying
Purposes

The context for e-business architecture develop-
ment included many issues, which the working
group for technical architecture development
had to face and be aware of. These included the
market changes as described above, historical
organizational inertia, fluctuating requirements
and objectives, and conflicts and problems emerg-
ing from the market changes, inertia, and unclear
objectives.

Historical Inertia

The organization’s history with independent
businesses and their diverging functions and

90

Conflicts, Compromises, and Political Decisions

objectives had both psychological and technical
consequences causing slow progress and conflicts
in the integrated e-business development. Each
of the business units had legacy systems with
incompatible information structures, technical
architectures, and operating principles. It was
not possible in practice to replace these systems
with a uniform solution at once.

The historical inertia had effects also on the
organization responsible for information man-
agement and information systems. Because of
the independence, the organization had no clear
central information management that could take
responsibility of the e-business architecture de-
velopment. Many of the conflicts and problems
described later arose from this situation.

The Observed Objectives for the
E-Business System

The fluctuating objectives, meanings, and require-
ments for the e-business architecture created
another source of conflicts and problems. In a
large organization with a high degree of indepen-
dency, the conceptions among different business
units and individuals about the purposes of an
e-business solution vary considerably. Among the
interviewees, we identified a large set of different
purposes for the e-business system, which were
then classified in five distinct classes:

. Creation of a unified electronic customer
interface.

. Reduction of costs.

e Integration of information systems.

. Gaining business advantage.

. Implementing an organization change.

This list of observed purposes for the e-
business system looks quite comprehensive and
ambitious. Different interviewees emphasized
the purposes differently and many saw that the
only realistic objective was to implement a single
sign-on procedure with a minimal level of cus-

Conflicts, Compromises, and Political Decisions

tomer information integration. The list anyhow
shows the complicated and conflicting nature of
objectives for the e-business system when it is
developed for a large enterprise.

Emerging Conflicts and Problems

Changes in markets and organization, the history
of the organization, and the complicated objec-
tives for the e-business system put the architecture
development group in a difficult situation. The
group and its members were obliged to respond by
some means and these responses shaped mitigated
the role of deliberate design in the development
process. In open coding, we identified in total
48 categories of conflicts and problems. This list
was further combined to seven main categories,
as follows:

. Varying requirements and unclear objec-
tives

. Problems in the cooperation between techni-
cal and business people

. Conflictavoidance and problems in decision-
making

. Problematic role of the central information
management and its missing working prac-
tices

. Difficulties in creating common understand-
ing about the architecture

. Difficulties in determining the level of in-
tegration

. Problems of implementing the integration

Asdescribed earlier, the purposes of the system
were manifold and complicated and the require-
ments varied according to the business needs
in the business units. The architects held this
ambiguity of objectives and requirements as the
biggest obstacle in the development. Those in the
managerial level recognized the problem as well,
butexplained itas unavoidable in the situation and
expected thatthe first prototypes of the system will
bring more clarity to the objectives. This resembles

the chicken-egg problem: architects must know
well the objectives to design the architecture, but
the objectives are further clarified only after the
first version of the architecture is built.

There were several mentions about the prob-
lems in the cooperation between technical and
business people. Architects expected the business
managers to explicate clear requirements and
objectives for the system and its architecture.
However, they considered the task impossible,
because they thought that the business manag-
ers do not possess enough understanding about
the possibilities of current technology. They felt
that this leads to unrealistic objectives, which
were manifested especially when considering
the possibilities of legacy systems integration:
people with business background had far more
optimistic views than architects.

Conflict avoidance and problems in decision-
making slowed the progress. Again, because ofthe
history of independency, a central authority that
could take care of the architectural decisions for
the integrated e-business solution was missing.
Because nobody took a full responsibility of the
situation, this led to avoidance of conflicts and
enforced the tendency towards compromises. A
frequently occurring phrase among the architects
included the term “lowest common denominator,”
which was usually noting to the compromised solu-
tion with asingle sign-on procedure and aminimal
level of customer information integration.

The role of the central information manage-
ment was unclear and it was lacking the routine of
large development efforts. The independency of
businesses and the minor role of central informa-
tion management had implications on the working
practices. The architectural and development prac-
tices of the business units contained considerable
differences implying that also common working
practices needed to be established for the develop-
ment process of the e-business system.

Even the understanding of the designed ar-
chitecture and related technical solutions were
difficult to communicate across the organiza-

91

tion. Since the business units have had their own
histories and produced their own legacy systems
and information architectures, the interpretations
on the situation and objectives diverged. This,
combined with changing organization, unclear
objectives, and missing common working prac-
tices, created difficulties in understanding and
transferring architectural knowledge between the
participants from different business units.

It was also difficult to determine the level of
integration between the systems. The ownership
of the information becomes an issue even in the
most modest single sign-on e-business solution
serving the whole organization. The question
becomes, “who owns the customer information?”’
and relates to determining the integration level
to the currently independent back-end legacy
systems. The more ambitious integration, the
more out-of-control the customer information
(and possibly other information too) shifts from
the business units.

Inaddition to determining the integration level,
the actual implementation of integration proved
to be problematic. Since the diverging legacy
systems could not be replaced, they all had to be
interfaced. Of the seven conflicts and problems
occurring when creating e-business architecture,
only the problem of implementing the integra-
tion was mainly a technical problem. The others
were more related to the change in organization
and practices that happen when developing an
e-business system in a large organization with
independent businesses. In the following, we shall
look closer on what consequences these conflicts
and problems cause for the architecture design
and development process.

CONSEQUENCES: LIMITED
DESIGNS AND MINIMAL
SOLUTIONS

In the beginning of the project a unified archi-
tecture was seen as a panacea for solving the

92

Conflicts, Compromises, and Political Decisions

problems of systems integration, streamlining the
organization and unifying the customer interface.
However, during the project it became clear that
the aforementioned conflicts and problems would
have someunfavorable consequences. While it was
of paramount importance for the company to be
able to streamline its systems and develop a more
coherent architecture enabling the creation of an
e-business system, the realities of legacy systems
and the organization led to situation where it was
best to seek satisfying, even minimal, solutions
instead of optimal ones.

In the early phases of the project architecture
was seen as general blueprints orroadmaps, largely
drawn from scratch. Soon, however, the technical
expertsrealized that evolutionary prototyping was
the only possibility for progress in the architecture
development. Because the schedule was tight, the
objectives and requirements unclear and chang-
ing, and because the business units were rather
independent, it was hard to achieve common
understanding and commitment. With prototyp-
ing, it would be possible to clarify objectives and
commit stakeholders by showing them visible
results and benefits. This could be seen as “ex-
treme” architecture design (Merisalo-Rantanen,
Tuunanen, & Rossi, 2005). This could however
lead to new problems. The technically oriented
architects were specially worried that, combined
with the quarter-based reporting system in the
organization, evolutionary prototyping can eas-
ily produce quick-and-dirty and ad hoc solutions.
We could classify the interviewees to those with
positive attitudes towards prototyping and to those
with negative or doubtful attitudes. In general,
the project management believed positively that
“somehow” the prototypes would transform to
the final e-business solution, whereas technical
architects presented more doubts and wanted to
have explicit requirements and objective state-
ments before committing to certain architectural
solutions.

Prototyping and minimal solutions formed
a vicious circle that made the development of

Conflicts, Compromises, and Political Decisions

robust and clear architectures nearly impos-
sible by severely limiting the options available
for the architecture developers. Existing legacy
systems, the evolutionary approach, varying
requirements, unclear objectives, difficulties in
creating common understanding, and problems
in decision making created a complex situation
where textbook methods, description languages,
and rational architecture design, as itis conceived
inthe literature, had no possibilities forimmediate
success. The degrees of freedom of design became
limited. The system and its architecture could not
be designed rationally as a whole, but rather one
needed to accept the conditions and limitations
caused by the factors above and to keep the day
to day operations running while the new systems
are continuously created through evolution.

The situation had also organizational con-
sequences. We found clear hints of low-level
networking and formation of shadow organiza-
tions as the result of unclear project organization
and problems of decision-making and objective
setting. As the organization and responsibilities
change, new and perhaps inexperienced persons
come into crucial official positions related to the
e-business development. At the same time, the
experienced architects and other key persons
continued to stay in contact with each other.
This unofficial shadow organization balanced
the mismatch in skills and experience that might
otherwise seriously impede the development.

The final consequence from all the above is,
that in fact the e-business architecture becomes
emergent: it is created gradually through com-
promises, constraints, and conflicts (c.f., Ciborra,
2000; Hanseth, Monteiro, & Hatling, 1996).
The exact objectives and responsibilities will
be resolved as the architecture emerges through
evolutionary prototyping. Compared to the con-
ventional view on software architecture design
(Hofmeister et al., 1999a), most of the claimed
benefits of rigorous architecture development
seem to be lost. There is no “grand plan” since
the work is proceeding in a day-to-day basis and

the well defined responses and interfaces between
systems do not necessarily emerge in a rationally
planned way, but rather most duplicate functions
are kept and there is agreement only on a few
items that become the “architecture.”

DERIVED REQUIREMENTS FOR
E-BUSINESS SYSTEMS
DEVELOPMENT METHODOLOGY

From the previous observations and explana-
tions, we can derive a set of requirements that
an e-business systems development methodol-
ogy should meet. The grounded theory process
resulted in an explanation model (Figure 2), from
which a set of methodological requirements can
beextracted. Changing markets and organization,
historical inertia, and unclear objectives for the
development produced a complex combination of
conflicts and problems that brought various dif-
ficultconsequences to the e-business development
process. We analyzed the complex socio-technical
situation and its consequences and reasoned the
set of most pertinent methodological require-
ments. This was done by identifying and coding
the methodological requirements in the interview
transcripts and further combining them in 13
requirements as described below.

Accordingto Lyytinenetal. adesign methodol-
ogy should conform to a set of key requirements
(Lyytinen, Smolander, & Tahvanainen, 1989). It
mustembed several conceptual structures and de-
scription languages, and support several levels of
abstraction at which the development process takes
place. It should also cover the whole spectrum of
activities in information systems development
(ISD), include a prescribed model of activities to
be carried out during the development process,
include a model of the organizational form of the
development (a set of human roles), and try to
reuse existing descriptions and implementations.
Tools for drawing, manipulating, and managing

93

Figure 2. Deriving the methodology requirements

Changing markets ,
changing
organization

for e-business
systems
development

Historical inertia changing

organization

the descriptions should also support the methodol-
ogy, in a balanced manner.

We can further elaborate this conception of
ISD methodology by distinguishing between three
separate contexts in ISD, namely the technical,
language, and organization contexts (Lyytinen,
1987). The technical context is concerned with
the technical components of the system (like
hardware and software), language context forms
the environment for linguistic communication,
and the organization context provides the environ-
ment for systematic human interactions, including
decision-making and operative control. An ISD
methodology includes assumptions, models, lan-
guages, and tools related to these three contexts.
Inthe following, we shall extract from the case the
general requirements for e-business development
methodology and classify themaccording to these
contexts. The objective of this classificationis toil-
lustrate the nature and requirements of e-business
architecture development in large organizations
with several business areas and to highlight the
areas with a weak methodical support.

Lyytinen commented already in 1987 that
mostdevelopment methodologies have too limited
scope and they tend to concentrate on techno-
logical issues late in the development lifecycle
(Lyytinen, 1987). This limited scope omits most
of the institutional and governance issues which
seemed to be central for most stakeholders ac-
cording to this study on architectural practice.

94

Diverse objectives

Changing markets ,

Conflicts, Compromises, and Political Decisions

Consequences to e-
business architecture
development

Requirements
for e-business
development

methods

One could argue that the organizational context is
particularly relevant for e-business area, as most
proponents of e-business emphasize the changes
it brings about to work processes and organiza-
tions (Kalakota & Robinson, 2001).

The research into e-business architecture
development is in a relatively immature stage.
Previous literature has largely assumed that it
solves technical issues for known problems (Tay-
lor, McWilliam, Forsyth, & Wade, 2002). How-
ever, from the previous passages it has become
obvious that methods for forming the problem
statement and reaching a mutual agreement on
what the architecture is in the end of the day are
crucial. In this section, we take this as a start-
ing point and observe the issues that rose in the
described case starting from the inner, technical
context and ending to the general organizational
issues. This corresponds to Lyytinen’s idea that
the contexts are hierarchically ordered, because
languages are presented by material carriers of
technology context and language is needed for
organized social action (Lyytinen, 1987). We
identify e-architecture approaches in these areas
and show how they propose solutions to the issues
raised in our study.

In the following, we shall present the meth-
odological requirements for each context. We
also refer to the rows in Table 1 with the notation
R1-R13.

Conflicts, Compromises, and Political Decisions

Requirements from the Technology
Context

Observed Requirements

Thetechnical requirements of e-business develop-
ment methods do not differ much from those of
methods for traditional transaction-based infor-
mation systems. E-business system development
includes methodical requirements concerning
e.g. distribution, error recovery, and network-
ing, but those requirements can be met without
a special “e-business support.” A standard way
to describe such technical solutions is of course
required /R1/.

Integrated e-business architecture necessitates
the integration of information systems in the orga-
nization and the rationalization of technology and
development processes. Existing legacy systems
will be integrated to the e-business functional-
ity. This requires the selection of an integrative
technology and the construction of development
processes supporting the implementation of the
integration. Because the integration is the basis and
characteristic to e-business development, the de-
velopment methodology should have specialized
and usable techniques for describing information
systems integration /R2/.

Thekey issue in the development of e-business
systems is the keeping of the day-to-day opera-
tions running and at the same time implementing
the integration between existing legacy systems
and the new e-business functionality. This means
that the nature of development is in many cases
more analogous to a maintenance project thanto a
green-field development project. Current systems
development methodologies and models of thought
aremostly aimed atdesigning new systems instead
of changing existing ones. This problem has been
recognized before the advent of e-business, but
it becomes more critical in the e-business devel-
opment. From this we can derive a requirement
that the development methodology for e-business

systems should support evolutionary approaches
to architectures and systems /R3/.

Existing Solutions

Most research on e-business systems develop-
ment in general, and e-business architecture in
particular, concentrates on this view. Much of
the support that UML and RUP or their deriva-
tives provide seems to concentrate on this area.
Component aware methodologies, such as the
Catalysis extension to UML, seem suitable for
e-business. In addition, there are UML 2.0 exten-
sions, suchas SysML (Object Management Group,
2006), that provide better support for technical
architecture design. Bischler and Segev (Bichler
et al., 1998) investigate the possibilities of com-
ponent oriented approach for e-business. They
take a technical viewpoint, and provide a useful
listing of enabling technologies for e-business.
An applicable standard in this area is the SysML
extension to UML (Object Management Group,
2006). A work by Rossi & Schwabe (Rossi &
Schwabe, 2000) uses patterns and frameworks
as building blocks for e-business systems. This
kind of approach could be particularly useful for
a relatively well-specified domain, such as trade
processes, which are assumed to be generic in
nature. Baskerville & Pries-Heje see a relatively
fixed architecture as a common ground, on top of
which e-business systems can be built (Baskerville
& Pries-Heje, 2001).

Asmentioned earlier, in the e-business domain
there are several layers of components available.
The InterNCA architecture in (Lyytinen, Rose, &
Welke, 1998) describes some of these and outlines
needs for new breed of development methodolo-
gies, which would take into the account the par-
ticular problems of e-business systems develop-
ment. Greunz & Stanoevska-Slabeva present an
extension of UML, which can be used to realize
systems on top of “media platform” architecture
(Greunz & Stanoevska-Slabeva, 2002).

95

Requirements from the Language
Context

The language context provides a means and an
environment for linguistic communication which
encompasses the use, nature, content, context
and form of signs (Lyytinen, 1987). The meth-
odology requirements coming from the language
context deal with the ability of stakeholders to
communicate successfully during the e-business
architecture development process.

Observed Requirements

The chicken-egg problem between objectives and
architecture becomes problematic in e-business
development. To design a robust technical archi-
tecture, one must have clear objectives, and to
select realistic objectives, one must understand
the possibilities of the technical architecture. To
overcome this problem, it is necessary to have a
close cooperation between technical architects and
those responsible of the business. This, however,
induces a language problem. These groups often
do nothave acommon language. To overcome the
language problem, we need architecture descrip-
tion languages that business managers understand
/R4/ and business descriptions that are explicit
enough for technical people /R5/.

The problems of objectives and integration
culminate on architecture design because the
designs and prototypes related to technical archi-
tecture become the first concrete artifacts in the
development showing implications of decisions to
businesses and to the information management.
Before architecture design, the plans and designs
have been on the “PowerPoint presentation” level,
showing ambiguous and general roadmaps and
noble objectives. The more concrete the archi-
tecture becomes, the more various stakeholders
become aware of the consequences, conflicts,
and problems they will be facing. This leads to
two distinct requirements for the development
methodology: the methodology should take the

96

Conflicts, Compromises, and Political Decisions

development to a very concrete level (both politi-
cally and technically) very soon after the project
initiation /R6/ and the architecture designs and
descriptions (and their implications) should be
approachable and intelligible by the various
stakeholders participating the process /R7/.

Existing Solutions

As a description language, UML and its exten-
sions offer a fairly strong support for engineering
in the language context. Yet, there are very few
articles describing these issues of having a com-
mon language in e-business area, but one could
expect that methodologies used in other domains
for participative processes and joint application
development could be applied here (August,
1991). In this context, architecture serves as a
language between the participants in the devel-
opment process, enabling communication and
making the consequences of the implementation
concrete to the participants. Using architecture as
an enabler of communication between a diverse
set of participants (including various levels of
management and technical experts) requires
informal and expressive approaches, which are
practically non-existent in the field of software
architecture research. This kind of conception
of “architecture as language” can be associated
with approaches that include rich and informal
description techniques, like “rich pictures” in
(Wood-Harper, 1985), the wall-charting tech-
nique (Saaren-Seppild, 1988), and genre-based
approaches (Péivirinta, Halttunen, & Tyrvéinen,
2001).

Requirements from the Organization
Context

Observed Requirements
These problems formed the largest bulk in our

study. They included issues such as organiza-
tional inertia as well as environmental limitations,

Conflicts, Compromises, and Political Decisions

characteristics of a given business environment,
codes of conduct in business, and regulatory and
societal factors. These factors form together the
‘ballpark’ for an organization to act inrelationship
with its providers and customers.

The first organizational requirement comes
from the overall conclusion of the case. The transi-
tion from heterogeneous e-commerce to integrated
e-business is not only technically challenging. It
is more a profound change to the organization.
In fact, the primary challenge is in the change of
the organization, not in the implementation of
the technology. Therefore, e-business systems
development methodology should support also
the description of organizational change /R&/.

Inthis change of organization and implementa-
tion of technology, the role of central information
management or some kind of central authority in
the organization is crucial. The central authority
should take care of the multitude of conflicts oc-
curring when aiming atintegration and coordinate
the creation of objectives for the system. An e-
business development methodology should enable
the creation of a common vision /R9/, which can
then be enforced by the central authority.

Evolution with modest but growing objec-
tives may be the only way to develop integrated
e-business systems. To foster commitment, some
immediate benefits should be shown with the
prototypes for each stakeholder. However, at the
same time, the path to robust architecture should
also be secured and enough time and resources
must be given to technical architects. This very
difficult and complex trade-off must be made in
every e-business project /R10/.

The implementation of e-business integration
deals not only with technical issues but also with
difficult political ones. An organization shift-
ing to integrated e-business must resolve issues
concerning the internal ownership of information
related for instance to customers, sales, contracts,
and products. The ownership and responsibili-
ties related to information must be decided and
described during the development process. The

development methodology should include de-
scriptions for organizational responsibilities and
ownership of information /R11/.

Identifying and agreeing about objectives
became the most difficult problem in this case.
Thus, to become valuable in practice, e-business
development methodology should support not
only the formation and recording of objectives
but also measuring of success related to objec-
tives /R12/.

The requirements directed to an e-business
development organization are quite conflicting. On
the other hand, the development requires a strong
authority that can control the process through
conflicts, and on the other hand, the formation
ofunofficial and shadow organization (peer-level
networking) should be fostered to allow creative
solutions and frictionless cooperation between
businesses /R13/. This requirement is, however,
not a new one when developing organizations.

Existing Solutions

From a more managerial and decision oriented
view one could look at business- and strategy
development methods, which aim at creation of
a common understanding and vision of business
strategy. This view sees building of architecture
as a common vision building effort rather than a
system building effort. It could also be argued that
e-business architecture building is quite similar
to organizational change processes, especially
the introduction of enterprise wide information
systems, such as ERP. Koontz has argued for this
by presenting e-business architecture development
model, which is very generic (Koontz, 2000).
Organizational issues are largely neglected by
the traditional systems development methodolo-
gies, but form important context and frame for
the implementation of the e-business systems
and architectures. The work on organizational
change and observation of the power-play could
be fruitful ifapplied to early stages of architecture
development. However, they do merely observe the

97

issues than provide solutions. Checkland’s SSM
methodology is one of the few general-purpose
methodologies that identifies and models the “es-
sence” of the organizational idea of the system
and then proceeds to actual development of the
system (Checkland & Scholes, 1990). It is clear
from the observations in this case study that the
explicitidentification and framing of the problem
to be solved, and then resolving the actual goals
of the architecture forms the basis forarchitecture
development.

Most studies thus far seem to assume that the
development of e-architecture and infrastructure
can be guided by the deliberate actions and deci-
sions of management. However, as can be seen
here the technological changes often evolve from
designers’ and users’ experience with such tech-
nologies and are often unpredictable (Ciborra,
2000).The problem of loosing the original target

Conflicts, Compromises, and Political Decisions

while developing partial solutions and prototypes
(e.g., see R10) could be helped by explicitly rec-
ognizing emergent and opportunistic possibilities
created on the process.

Summary of Issues

The list above shows that most solutions and re-
search this far, has concentrated on the technical
level. Unfortunately, most of the problems seem
to be non-technical in nature, they are rather more
of the linguistic or organizational. E-business cuts
across functional borders in organization and is
built on a complex infrastructure of ERP and
legacy systems and it shares many of the chal-
lenges and opportunities of these organizational
technologies.

Table 2 summarizes these derived require-
ments for e-business development methodology.

Table 2. Summary of the requirements for e-business development methodology

. . Support in RUP employ-
Requirement Type | Rationale ing UML
Technical issues (like distri- These issues will oceur
bution, error recovery, and X Good; this is what UML
R1 . . T as in all modern sys-
networking) must be described and RUP are for
. tems development
in a standard way.
Poor; no specialized tech-
Specialized techniques for IS integration is char- fque for the d.escrlptlon
R2 describing the information T acteristic to e-business of integration in standard
R . UML. Some UML 2.0
systems integration development .
extensions are however
available.
The development methodol- The change a1.1d.ma1n- Moderate; UML and RUP
ogy should support evolution- tenance of existing are mainly targeted at
R3 £y . L/T systems forms a major
ary approaches to architectures . the development of new
part of the e-business
and systems. systems
systems development
To enable realistic ob-
Architectural description lan- jective selection, busi- | Poor; the descriptions
R4 guages that business managers | L ness managers must necessitate too much tech-
understand have some understand- | nical skills and knowledge
ing on architecture
To understand the
Business descriptions that are objectives, techni- Moderate; no description
R5 explicit enough for technical L cal people must have techniques showing overall
people understanding on aggregate view
business

98

continued on following page

Conflicts, Compromises, and Political Decisions

Table 2.continued

. . Support in RUP employ-
Requirement Type | Rationale ing UML
The methodology should take The more architecture
the development to a very becomes concrete, .
R6 concrete level (both politically | T/LIO the more stakeholders Goo.d. (technically), none
. become aware of the (politically)
and technically) soon after the
roject initiation eonsequences, con-
proj flicts, and problems
The archl?ec.ture designs . To enable wide
and descriptions (and their .
o understanding to Moderate; no relevant de-
implications) should be ap- . . .
R7 . L L/O | the consequences of scription technique besides
proachable and intelligible . . .
. architectural selections | Use Case diagrams
by the various stakeholders (cf. R4)
participating the process ’ '
. . Poor; some thoughts of
Support for the description of e-business involves “organization engineer-
R8 pport P (0] deep changes to orga- . ﬁg, . N e
organizational change Lo ing” in RUP’s Business
nization .
Architecture
Support for the description of Resolve conflicts, Poor; no common language
R9 .. O . S
a common vision build objectives for all stakeholders
Gain commitment
Both prototypine and careful and resolve objectives | Moderate; iterative basis in
R10 P yping T through prototyping, RUP, but its implementa-
architecture design needed . . LT . .
aim at robust archi- tion is difficult in practice
tecture
Methodology should contain The ownership of in-
RI1 descrlpt}op.s Vfor orgamzatlon.al L/O formatlon bef:ot'nes an Poor; only general thoughts
responsibilities and ownership issue when aiming at
of information e-business integration
e-business development 'Identlfymg qnd agree- Poor: the objectives are
methodology should support ing about objectives mostly supposed to be
R12 | the formation and recording L/O | is one of the most J0SEy Supp
. given to the development
of objectives and measuring difficult issues in e- roiect
of success related to objectives business development proj
1 thority i
The development process Strong authority is .
A needed to handle the Poor; development organi-
should support organization- . . P
RI13 . (¢} conflicts and unofficial | zation “design” in a general
ally both effective control .
o structures for creative level
structures and flexibility .
solutions

Therequirements and theirrationale are described
in the text above. The “Type’ column places the
requirement to the appropriate context or contexts
(T: technology, L: language, O: organizational).
The last column in the table (“Support in RUP
employing UML”) analyzes how unified model-
ing language (Object Management Group, 2005)
and the Unified Process (Rational Software Cor-
poration, 2001) support the e-business specific

characteristics of the development process. This
is important, because UML and RUP together
form the current methodological basis for many
software organizations. The column shows that
the support is generally poor. The e-business
specific requirements are not met by UML and
RUP —only the standard technical issues are
well covered. This conclusion calls for method
development supporting better these e-business

specific requirements.

Figure 3. Support and requirements

Benefits of UML/RUP

High

wir| @ | @

Medium .

O

Technical Language Organizational

In the technical context we noted that e-
business development would benefit from method
enhancements in IS integration and evolution-
ary development. However, the language and
especially the organization context appeared to
have more importance in the development. In the
language context, there was an urgent need for
more understandable and concrete architecture
descriptions that could be used among many
groups involved in the process, including techni-
cal and non-technical people. The organization
context appeared as the most important target for
research and practical methodical improvements.
In that context, we could identify a multitude
of issues requiring improvements, including
better understanding and usable methods for
the design and implementation of organization
change, organizational vision, organizational
ownership of information, and organizational
responsibilities.

Figure 3 shows concisely our findings. When
creating e-business or enterprise architecture, the
major problems to be solved are organizational.
This does not align with the support that UML
and RUP provides, because they mostly concen-
trate on solving the problems in the language
and technical contexts. It is the task of future
research to provide improvements to this, but,
as can be seen from Table 2, it might need quite
radical extensions or changes to UML and RUP
to be able to support effectively the formation of
e-business architecture.

100

Conflicts, Compromises, and Political Decisions

Problems in architecture creation

O

o | @

Technical

Language Organizational

CONCLUSION

We have described a process where a large ICT
company is building architecture for a com-
prehensive e-business system. From the case,
we extracted 13 requirements for methodology
supporting integrated e-business systems de-
velopment and classified the requirements to
technology, language, and organization contexts.
Wealso compared the requirements to the support
that UML and RUP offers and concluded that the
e-business specific requirements are not met in
UML and RUP. Successful e-business develop-
mentrequires alternative approaches that support
better organization change, communication be-
tween stakeholders, systems integration, objective
formation, and evolutionary development.

In our study, architecture manifested itself as
a catalyst that makes business and organizational
conflicts and problems concrete. When making
decisions about architecture, the systems archi-
tects had to take into account the organizational
situation in the company. At the same time the
architecture starts shaping and changing the or-
ganization, thus forming a double mangle (e.g.,
Jones, 1998). The architects also realized that
technical rationality is not enough for success in
this kind of a situation. To succeed in e-business
architecture development, one has to be aware
of the political and organizational forces that
are driving the development and its objectives.
E-business architecture development can there-
fore be characterized as a process of seeking

Conflicts, Compromises, and Political Decisions

boundaries, finding sufficient consensus, and
identifying commonalities across organizational
borders. Most previous literature on architectural
methods has neglected this and sought to develop
description languages for describing the actual
architectures for systems with clear problem
statements, whereas we claim that it would be
more important to seek tools that aid in building
common understanding about the system and its
architecture and tools for processing the emerg-
ing conflicts. Thus, we maintain that the field of
architecture for e-business would benefit from
tools thathelp to identify and process the emerging
conflicts than tools that aid in developing a techni-
cally “perfect” and optimized solution. These tools
could be used in early phases of development to
augment UML and RUP based tools. Examples
of such tools are group support systems and dif-
ferent participation facilitation systems. Thus we
do not call for replacing UML, but rather adding
tools that can be used to communicate with non-
technical people about the architecture.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers
of this paper for their valuable instructions and
especially the reviewer that gave us the simple
idea of Figure 3.

REFERENCES

August, J. H. (1991). Joint application design:
The group session approach to system design.
Englewood Cliffs, NJ: Yourdon Press.

Baskerville,R., & Pries-Heje, J. (2001, July 27-29).
Racing the e-bomb: How the internet is redefining
information systems development methodology.
Proceedings of the IFIP TC8/WG8.2 Working
Conference on Realigning Research and Practice
in Information Systems Development: The So-

cial and Organizational Perspectice (pp. 49-68).
Boise, Idaho.

Bichler, M., Segev, A., & Zhao, J. L. (1998).
Component-based e-commerce: Assesment of
current practices and future directions. SIGMOD
Record, 27(4), 7-14.

Checkland, P. B, & Scholes, J. (1990). Soft system
methodology in action. Chichester: John Wiley
and Sons.

Ciborra, C. (2000). Drifting: From control to drift.
In K. Braa, C. Sorensen & B. Dahlbom (Eds.),
Planet internet. Lund: Studentlitteratur.

Conallen, J. (1999). Modeling web application
architectures with UML. Communications of the
ACM, 42(10), 63-70.

D’Souza, D. F., & Wills, A. C. (1998). Objects,
components, and frameworks with UML: The
catalysis approach: Addison-Wesley.

Dashofy, E. M., Van der Hoek, A., & Taylor, R.
N. (2005). A comprehensive approach for the
development of modular software architecture
description languages. ACM Transactions on
Software Engineering and Methodology, 14(2),
199-245.

Denzin, N. K. (1978). The research act: A
theoretical introduction to sociological methods:
McGraw-Hill.

Dori, D. (2001). Object-process methodology ap-
pliedto modeling credit card transactions. Journal
of Database Management, 12(1), 4.

Egyed, A., & Medvidovic, N. (1999, Oct). Extend-
ing Architectural Representation in UML with
View Integration. Proceedings of the 2nd Inter-
national Conference on the Unified Modelling
Language (UML), (pp. 2-16). Fort Collins, CO.

Eisenhardt, K. M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532-550.

101

Fernandez, W.D., Lehmann, H., & Underwood, A.
(2002, June 6-8). Rigour and relevance in studies
of ISinnovation: A grounded theory methodology
approach. Proceedings of the European Confer-
ence on Information Systems (ECIS) 2002, (pp.
110-119).Gdansk, Poland.

Garlan, D., & Kompanek, A. J. (2000). Reconcil-
ing the needs of architectural description with
object-modeling notations. Proceedings of the
Third International Conference on the Unified
Modeling Language - UML 2000, (pp. 498-512).
York, UK.

Glaser, B. (1978). Theoretical sensitivity: Ad-
vances in the methodology of grounded theory.
Mill Valley: Sociology Press.

Glaser, B., & Strauss, A. L. (1967). The discovery
of grounded theory: Strategies for qualitative
research. Chigago: Aldine.

Greunz, M., & Stanoevska-Slabeva, K. (2002).
Modeling business media platforms. 35th Annual
Hawaii International Conference on System Sci-
ences, Maui, HI.

Grinter, R. E. (1999). Systems architecture:
Product designing and social engineering. ACM
SIGSOFT Software Engineering Notes, 24(2),
11-18.

Hanseth, O., Monteiro, E., & Hatling, M. (1996).
Developing information infrastructure: The
tension between standardization and flexibility.
Science, Technology & Human Values, 21(4),
407-426.

Hirschheim, R., & Klein, H. K. (1989). Four para-
digms of information systems development. Com-
munications of the ACM, 32(10), 1199-1216.

Hofmeister, C., Nord, R., & Soni, D. (1999a).
Applied software architecture. Reading, MA:
Addison-Wesley.

Hofmeister, C., Nord, R., & Soni, D. (1999b).
Describing software architecture with UML.

102

Conflicts, Compromises, and Political Decisions

Proceedings of the First Working IFIP Confer-
ence on Software Architecture (WICSA1), (pp.
145-160). San Antonio, TX.

Jacobson, 1., Booch, G., & Rumbaugh, J. (1999).
The unified software development process. New
York: Addison-Wesley.

Jones, M. (1998). Information Systems and the
Double Mangle: Steering a Course Between the
Scylla of Embedded Structure and the Charybdis
of Strong Symmetry. IFIP WG8.2/8.6 Joint Work-
ing Conference, Helsinki, Finland.

Kalakota, R., & Robinson, M. (2001). e-Business
2.0: Roadmap for Success: Addison-Wesley.

Kazman, R., Klein, M., & Clements, P. (2000).
ATAM: Method for Architecture Evaluation
(Technical report No. CMU/SEI-2000-TR-004):
Software Engineering Institute.

Kim, Y.-G., & Everest, G. C. (1994). Building an
IS architecture: Collective wisdom from the field.
Information & Management, 26(1), 1-11.

Koontz, C. (2000). Develop a solid e-commerce
architecture. e-Business Advisor(January).

Kuntzmann, A., & Kruchten, P. (2003). The
rational unified process—an enabler for higher
process maturity. Retrieved April 19, 2007
from http://www-128.ibm.com/developerworks/
rational/library/content/03July/0000/0579/Ratio-
nal CMM_WhitePaper.pdf.

Leist, S., & Zellner, G. (2006, April 23-27).
Evaluation of current architecture frameworks.
SAC’06, (pp. 1546-1553). Dijon, France.

Locke, K. (2001). Grounded theory in manage-
ment research: SAGE Publications.

Lyytinen, K. (1987). A taxonomic perspective of
information dystems fevelopment: Theoretical
constructs and recommendations. InR. J. Boland,
Jr. & R. A. Hirschheim (Eds.), Critical issues in
information systems research (pp. 3-41): John
Wiley & Sons.

Conflicts, Compromises, and Political Decisions

Lyytinen, K., Rose, G., & Welke, R. (1998). The
brave new world of development in the internet-
work computing architecture (InterNCA): Or how
distributed computing platforms will change sys-

tems development. Information Systems Journal,
8(3), 241-253.

Lyytinen, K., Smolander, K., & Tahvanainen,
V.-P. (1989). Modelling CASE environments in
systems development. Proceedings of CASE’89
the First Nordic Conference on Advanced Systems
Engineering, Stockholm.

Martin, P. Y., & Turner, B. A. (1986). Grounded
theory and organizational research. The Journal
of Applied Behavioral Science, 22(2), 141-157.

Medvidovic, N., Egyed, A., & Rosenblum, D. S.
(1999). Round-trip software engineering using
UML: From architecture to design and back.
Proceedings of the 2nd Workshop on Object-
Oriented Reengineering (WOOR), Toulouse,
France, Sept. 1999, 1-8.

Medvidovic, N., & Taylor, R. N. (2000). A clas-
sification and comparison framework for software
architecture description languages. I[EEE Transac-
tions on Software Engineering, 26(1), 70-93.

Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M.
(2005). Is extreme programming just old wine in
new bottles: A comparison of two cases. Journal
of Database Management, 16(4), 41.

Monroe, R. T., Kompanek, A., Melton, R., &
Garlan, D. (1997). Architectural styles, design pat-
terns, and objects. IEEE Software, 14(1), 43-52.

Object Management Group. (1999). UML Profile
for Enterprise Distributed Object Computing:
Request for Proposals (ad/99-03-10): OMG.

Object Management Group. (2005). Unified mod-
eling language: Superstructure version 2.0 (No.
formal/05-07-04).

Object Management Group. (2006). OMG SysML
Specification (ptc/06-05-04).

Péivérinta, T., Halttunen, V., & Tyrvéiinen, P.
(2001). A genre-based method for information
system planning. In M. Rossi & K. Siau (Eds.),
Information modeling in the new millennium (pp.
70-93). Hershey, PA: Idea Group.

Rational Software Corporation. (2001). Rational
Unified Process [Online documentation, Version
2001A.04.00].

Robson, C. (2002). Real world research, (2" ed.).
Blackwell Publishing.

Ross, J. W., Weill, P., & Robertson, D. C. (2006).
Enterprise architecture as strategy: Creating a
foundation for business execution: Harvard Busi-
ness School Press.

Rossi, G., & Schwabe, D. (2000). Object-oriented
web applications modeling. In M. Rossi & K. Siau
(Eds.), Information modelling in the next millen-
nium. Hershey: IDEA Group Publishing.

Rumpe, B., Schoenmakers, M., Radermacher, A.,
& Schiirr, A. (1999). UML + ROOM as a Stan-
dard ADL. Fifth IEEE International Conference
on Engineering of Complex Computer Systems,
(pp. 43-53).

Saaren-Seppald, K. (1988). Wall chart technique:
The use of wall charts for effective planning.
Helsinki: Kari Saaren-Seppélé Ky.

Sauer, C., Southon, G., & Dampney, C. N. G.
(1997). Fit, failure, and the house of horrors:
Toward a configurational theory of IS project
failure. Proceedings of the eighteenth interna-

tional conference on Information systems, (pp.
349-366). Atlanta, Georgia.

Shaw, M., & Garlan, D. (1996). Software archi-
tecture: Perspectives on an emerging discipline:
Prentice Hall.

Siau, K. & Cao, Q. (2001). Unified modeling lan-
guage (UML) — a complexity analysis. Journal
of Database Management, 12(1), 26-34.

103

Siau, K., Erickson, J., & Lee, L. Y. (2005). Theo-
retical vs. practical complexity: The case of UML.
Journal of Database Management, 16(3), 40-57.

Smolander, K. (2003, January 6-9,). The birth
of an e-business system architecture: Conflicts,
compromises, and gaps in methods. Hawaii
International Conference on System Sciences
(HICSS’36), Hilton Waikoloa Village, BigIsland,
Hawaii.

Smolander, K., Hoikka, K., Isokallio, J., Kataikko,
M., & Mikeld, T. (2002, April, 8-11). What is
included in software architecture? A case study
in three software organizations. Proceedings of
9th annual IEEE International Conference and
Workshop on the Engineering of Computer-Based
Systems (pp. 131-138). (ECBS) 2002, Lund,
Sweden.

Smolander, K., & Péivirinta, T. (2002a, May 27
- 31). Describing and communicating software
architecture in practice: Observations on stake-
holders and rationale. Proceedings of CAiSE’02
- The Fourteenth International Conference on
Advanced Information Systems Engineering,
(pp- 117-133).Toronto, Canada.

Smolander, K., & Péivirinta, T. (2002b, Aug 25-
30). Practical rationale for describing software
architecture: Beyond programming-in-the-large.
Software Architecture: System Design, Develop-
mentand Maintenance - IFIP 17th World Computer
Congress - TC2 Stream / 3rd Working IEEE/IFIP
Conference on Software Architecture (WICSA3),
(pp. 113-126). Montréal, Québec, Canada.

Conflicts, Compromises, and Political Decisions

Smolander, K., Rossi, M., & Purao, S. (2002,
December 18). Software architecture: Metaphors
across contexts. AIS Theory Development Work-
shop, Barcelona.

Smolander, K., Rossi, M., & Purao, S. (2005, May
26-28). Going beyond the blueprint: Unraveling
the complex reality of software architectures. 13th
European Conference on Information Systems:
Information Systems in a Rapidly Changing
Economy, Regensburg, Germany.

Sowa, J. F., & Zachman, J. A. (1992). Extending
and formalizing the framework for information

systems architecture. IBM Systems Journal, 31(3),
590-616.

Star, S. L., & Griesemer, J. R. (1989). Institutional
cology, “translations” and boundary objects:
Amateurs and professionals in berkeley’s museum
of vertebrate zoology, 1907-39. Social Studies of
Science, 19, 387-420.

Strauss, A. L., & Corbin, J. (1990). Basics of
qualitative research: Grounded theory proce-
dures and applications. Newbury Park, CA: Sage
Publications.

Taylor, M. J., McWilliam, J., Forsyth, H., & Wade,
S. (2002). Methodologies and website develop-

ment: A survey of practice. Information and
Software Technology, 44(6), 381-391.

Wood-Harper, T. (1985). Research methods in
information systems: Using action research. In
E. Mumford, R. A. Hirschheim, G. Fitzgerald
& T. Wood-Harper (Eds.), Research methods in
information systems. New York: North-Holland
Publishers.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 1, edited by K. Siau, pp. 19-40),

copyright 2008 by IGI Publishing (an imprint of IGI Global).

104

105

Chapter 5
Evaluation of MDE Tools from a
Metamodeling Perspective

Jodo de Sousa Saraiva
INESC-ID/Instituto Superior T ecnico, Portugal

Alberto Rodrigues da Silva
INESC-ID/Instituto Superior T ecnico, Portugal

ABSTRACT

Ever since the introduction of computers into society, researchers have been trying to raise the abstrac-

tion level at which we build software programs. We are currently adopting an abstraction level based
on graphical models instead of source code: MDE. MDE is the driving force for some recent modeling
languages and approaches, such as OMG's UML or Domain-Specific Modeling. All these approaches
are founded on metamodeling: defining languages that represent a problem-domain. A key factor for the
success of any approach is appropriate tool support. However, only recently have tool creators started
considering metamodeling as an important issue in their list of concerns. In this paper, we evaluate a

small set of MDE tools from the perspective of the metamodeling activity, focusing on both architectural

and practical aspects. Then, using the results of this evaluation, we discuss open research issues for

MDE-based sofiware development tools.

INTRODUCTION

Eversince the appearance of computers, research-
ers have been trying to raise the abstraction level
at which software developers write computer
programs. Looking at the history of program-
ming languages, we have witnessed this fact, with
languages evolving from raw machine code to

machine-level languages, afterward to procedural
programming languages, and finally to object-
oriented languages, which allow developers to
write software by mapping real-world concepts
into modular segments of code (called objects).
Still, object-oriented languages are too “comput-
ing-oriented” (Schmidt, 2006), abstracting over
the solution domain (computing technologies)
instead of the problem domain.

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Evaluation of MDE Tools from a Metamodeling Perspective

Currently, the abstraction level is being raised
into the model-driven engineering (MDE) para-
digm (Schmidt, 2006). In this abstraction level,
models are considered first-class entities and
become the backbone of the entire MDE-oriented
software development process; other important
artifacts, such as code and documentation, can
be produced automatically from these models,
relieving developers from issues such as un-
derlying platform complexity or the inability of
third-generation languages to express domain
concepts.

MDE is not a new idea. Already in the 1980s
and 1990s, computer-aided software engineer-
ing (CASE) tools were focused on supplying
developers with methods and tools to express
software systems using graphical general-purpose
language representations. The developer would
then be able to perform different tasks over those
representations, such as correction analysis or
transformations to and from code. However, these
CASE tools failed due to issues such as (a) poor
mapping of general-purpose languages onto the
underlying platforms, which made generated code
much harder to understand and maintain, (b) the
inability to scale because the tools did not support
concurrent engineering, and (c) code was still
the first-class entity in the development process
while models were seen as only being suited for
documentation (Schmidt, 2006). Currently, there
are better conditions for such modeling tools to
appear. Software systems today are reaching such
a high degree of complexity that third-generation
languages simply are not sufficient anymore;
another abstraction level over those languages
is needed. This need, combined with the choices
of IT development platforms currently avail-
able (Java, .NET, etc.), to which models can be
somewhat easily mapped, is the motivation for
the adoption of MDE. There are already a few
MDE-related case studies available, such as Zhu
et al. (2004) and Fong (2007), but since most
MDE work is still in the research phase, there is

106

still a lack of validation through a variety of real
business case studies.

There are already multiple MDE initiatives,
languages, and approaches, such as the unified
modeling language (UML), the MetaObject
Facility (MOF), the model-driven architecture
(MDA), and domain-specific modeling (DSM)
(Kelly & Tolvanen, 2008). There are also other
derivative approaches, such as software factories
(http://msdn2.microsoft.com/en-us/teamsystem/
aa718951.aspx) that follow the MDE paradigm.
Nevertheless, it is important to note that these
initiatives are not a part of MDE; rather, MDE
itself is a paradigm that is independent of lan-
guage or technology, and is addressed by these
initiatives.

All these approaches share the same basic
concepts. A model is an interpretation of a certain
problem domain, a fragment of the real world over
whichmodeling and system development tasks are
focused, according to a determined structure of
concepts (Silva & Videira, 2005). This structure
of concepts is provided by a metamodel, which is
an attempt at describing the world around us for a
particular purpose through the precise definition
of the constructs and rules needed for creating
models (Metamodel.com, n.d.). These basic con-
cepts are the core of metamodeling, the activity
of specifying a metamodel that will be used to
create models, which is the foundation of MDE.

From the developer’s point of view, a key is-
sue for acceptance of any approach is good tool
support so that software programs can be created
in an easy and efficient manner. There is a wide
variety of modeling tools available today, cover-
ing most modeling standards and approaches
in existence. For example, Rational Rose and
Enterprise Architect (EA)(SparxSystems, n.d.)
are only two examples of a very long list of tools
that support UML modeling. DSM has recently
become popular with the developer community,
with tools such as Microsoft’s DSL Tools (MSD-
SLTools) or MetaCase’s MetaEdit+.

Evaluation of MDE Tools from a Metamodeling Perspective

The aim of this article is to present our evalu-
ation framework for tool support of the metamod-
eling activity, and to evaluate a small set of tools
according to this framework; although these tools
do not reflect everything that is currently avail-
able in MDE tools, they address the MDE-based
approaches presented in this article by providing
the features typically found in tools of their cor-
responding approach. The evaluation framework
used in this article focuses on the following is-
sues: (a) supported exchange formats, (b) support
for model transformation and code generation,
(c) tool extensibility techniques, (d) the logical
levels that can be manipulated, (e) support for
specifying metamodel syntax and semantics, and
(f) complexity of the meta-metamodel hard-coded
into the tool. The final purpose of this evaluation
is to determine the strengths and weaknesses of
the support that each of these MDE tools offer to
the developer’s tasks.

This article is divided as follows. The second
section presents a brief overview of MDE and
somerelated concepts, standards, and approaches.
Then the article describes the evaluation frame-
work, the selected modeling tools, and the results
of their evaluation. Next it discusses the current
status of MDE-based software tools and some
open research issues for metamodeling. The final
section presents the conclusions of this work.

MODEL-DRIVEN ENGINEERING

Software systems are reaching such ahigh degree
of complexity that the current third-generation
programming languages (like Java or C#) are not
sufficiently adequate to create such systems in an
easy and efficient manner. One of the problems
with current programming languages is that they
are still too oriented toward specifying how the
solution should work instead of what the solution
should be. This leads to a need for mechanisms
and techniques thatallow the developer to abstract
over current programming languages and focus on
creating a good solution to a certain problem.

Model-driven engineering (sometimes called
model-driven development, or MDD) is an
emerging paradigm based on the systematic use
of models as first-class entities of the solution
specification (Schmidt, 2006). Unlike previous
software development paradigms based on source
code as a first-class entity, models become first-
class entities, and artifacts such as source code
or documentation can then be obtained from
those models.

It is very important to note that, although
MDE is often mentioned alongside MDA (which
is explained further later), MDE does not depend
on MDA, nor is MDA a subset of MDE. In fact,
MDA is one of several initiatives that intend to
address the MDE paradigm.

The OMG’s Approach to MDE

The Object Management Group (OMG) has cre-
ated its own MDE initiative based on a set of
OMG standards that make use of techniques for
metamodeling and model transformation.

Unified Modeling Language

UML (http://www.omg.org/cgi-bin/apps/
doc?formal/05-07-04.pdf), currently in Version
2.1.1, is a general-purpose modeling language
originally designed to specify, visualize, con-
struct, and document information systems. UML
istraditionally used as ametamodel (i.e., develop-
ers create models using the language established
by UML). However, the UML specification also
defines the profile mechanism, which allows for
new notations or terminologies, providing a way
to extend metaclasses to adapt them for different
purposes. Profiles are collections of stereotypes,
tagged values, and constraints (Silva & Videira,
2005). A stereotype defines additional element
properties, but these properties must not contradict
the properties that are already associated with the
model element; thus, a profile does not allow the
user to edit the metamodel.

107

Evaluation of MDE Tools from a Metamodeling Perspective

Although UML was definitely a step forward
in setting a standard understood by the whole
software engineering community and aligning
it toward MDE, it is still criticized for reasons
such as (a) being easy to use in software-specific
domains (such as IT or telecom-style systems) but
not for other substantially different domains, such
as biology or finance (Thomas, 2004), (b) not be-
ing oriented to how it would be used in practice
(Henderson-Sellers, 2005), and (c) being too
complex (Siau & Cao, 2001). Nevertheless, UML
is often the target of overzealous promotion, which
raises user expectations to an unattainable level,
the criticisms that follow afterward are usually
influenced by this (France, Ghosh, Dinh-Trong, &
Solberg, 2006). An example of such a criticism is
the one regarding the difficulty in using UML to
model non-software-related domains: Although
UML is a general-purpose modeling language,
it is oriented toward the modeling of software
systems and is not intended to model each and
every domain.

MetaObject Facility

MOF (http:// www.omg.org/cgi-bin/apps/
doc?formal/06-01-01.pdf), currently in Version
2.0, isthe foundation of OMG’s approach to MDE.
UML and MOF were designed to be themselves
instances of MOF. This was accomplished by
defining the UML Infrastructure Library (http:/
www.omg.org/cgi-bin/apps/doc?formal/05-07-05.

pdf), which provides the modeling framework
and notation for UML and MOF, and can also be
used for other metamodels. Figure 1 illustrates
the dependencies between UML and MOF; note
that MOF can be described using itself, making
it reflexive (Nobrega, Nunes, & Coelho, 2006).
Besides UML, the OMG has also defined some
other MOF-based standards, such as the XML
(extensible markup language) metadata inter-
change (XMI) and query-views-transformations
QVT).

XMI allows the exchange of metadata infor-
mation by using XML, and it can be used for
any metadata whose metamodel can be specified
in MOF. This allows the mapping of any MOF-
based metamodel to XML, providing a portable
way to serialize and exchange models between
tools. Nevertheless, users often regard XMI as a
last resort for exchanging models between tools
because tools frequently use their own vendor-
specific XMI extensions; thus they lose informa-
tion when exchanging models between different
tools. The QVT specification defines a standard
way of transforming source models into target
models by allowing the definition of the following
operations: (a) queries on models, (b) views on
metamodels, and (c) transformations of models.
One of the most interesting ideas about QVT is
thatthe transformation should itselfbe considered
an MOF-based model, which means that QVT’s
syntax should conform to MOF. Figure 2 presents
OMG s typical four-layer architecture: (a) MOF is

Figure 1. The dependencies between UML and MOF

UML2 Infrastructure |

zinstance0fs | smetamodels
- - Z== MOF2 Metamodel

108

.l-;‘;:-2r l\?:-:'\.

zimportss

zimponss

zmetamodels
UML2 Metamodel

zinstanceOfs

Evaluation of MDE Tools from a Metamodeling Perspective

the meta-metamodel in the M3 layer, (b) UML,
an instance of MOF, is the metamodel in the M2
layer, (c) the user model contains model elements
and snapshots of instances of these model elements
in the M1 layer, and (d) the MO layer contains the
runtime instances of the model elements defined
in the M1 layer.

Model-Driven Architecture

MDA is OMG’s framework for the software
development life cycle driven by the activity of
modeling the software system (Kleppe, Warmer,
& Bast, 2003). Itis based on other OMG standards
suchas UML, MOF, QVT, and XM, and places a
greater emphasis on UML model transformation
techniques (through QVT) than on metamodeling
itself; however, it should be noted that QVT model
transformations are made possible only because

of the model-metamodel relationship between
UML and MOF.

MDA defines two types of models (Kleppe
et al., 2003): (a) the platform-independent model
(PIM) and (b) the platform-specific model (PSM).
A PIM is a model with a high level of abstraction
that makes it independent of any implementa-
tion technology, making it suitable to describe a
software system that supports a certain business
without paying attention to implementation details
(like specific relational databases or application
servers). A PSM also specifies the system, but in
terms of the implementation technology. A PIM
can be transformed into one or more PSMs, each
of those PSMs targeting a specific technology
because it is very common for software systems
today to make use of several technologies. Figure
3 presents an overview of MDA the solid lines
connecting the boxes are transformations, which
are defined by transformation rules. MDA pre-

Figure 2. An example of OMG S four-layer metamodel architecture

M3 Layer (MOF Metametamodel)

Class

b < - i
« 20t caOf, 20T

i e Exsiel %

M2 Layer (UML Metamodel) |
1

! b . 1

I

: Operation Class Instance i

| |

1 |

: 1
i

-) 1 A !

ulnstml'_w.e(}{n -instaln'u:‘.eol'- -Insmn!rmr-
M1 Layer (Model)
Car Lar

+ " StartEngine() : void

A

uln:itur:lceolx

MO Layer {Instances)

109

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 3. An overview of MDA

| |
! I
: I
1
: Abstract Model 1
| of a System |
: Architecture 1
! |
| I
U N i
stransformed tos stransformed to»
«transformed tox
:PIaﬂorm-Speci Model (PSM) :
. |
! I
: Concrete Concrete Concrete 1
I Model A Model C !
1
! i
! I
: I
L i e M s e i
atransformed to. «transformed to» stransformed tos
Deployment|artifacts
Java code C++

scribes the existence of transformation rules, but
it does not define what those rules are; in some
cases, the vendor may provide rules as part of a
standard set of models and profiles.

MDA still faces some criticism in the software
engineering community because of issues such as
its usage of UML (Thomas, 2004) and the view
that while current MDA generators are able to
generate a significant portion of an application,
they are not particularly good at building code
that works within an existing code base.

Domain-Specific Modeling

DSM (Kelly & Tolvanen, 2008) uses problem-
domain concepts as the basic building blocks
of models unlike traditional CASE, which uses
programming-language concepts. Fromatechno-
logical perspective, DSM is supported by a DSM
system, which can be considered as an application
for making domain-specific CASE tools (or as a
tool-building environment to create CASE tools

110

Figure 4. How CASE and DSM systems are
related

MetaCASE Tool
Hard-coded
metametamodel
Traditional CASE Tool 7
Hard-coded User-defined
metamodel metamodel
A 7
User-defined User-defined
model model

that can be used to produce applications). Thus,
DSM adds an abstraction layer over traditional
CASE, enabling the domain-specific configuration
of theresulting modeling application asillustrated
in Figure 4. Because of this, DSM systems are

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 5. Using the expertise of some developers to orient other developers toward the problem

domain

Expert Doveloper

Regular Davelopar

Final Product

also called meta-CASE tools. DSM is closely re-
lated to the concept of domain-specific language
(DSL). A DSL is alanguage designed to be useful
for a specific task (or a specific set of tasks) in a
certain problem domain unlike a general-purpose
language (Kelly & Tolvanen). As Figure 5 illus-
trates, due to a DSL’s highly specialized nature,
DSLs and corresponding generators are usually
specified by experts (i.e., experienced developers)
in the problem domain; other developers, less
experienced with the mapping between domain
concepts and source code, will invoke the DSL
in their own code. A well-known example of a
DSL is the standard query language (SQL), which
is a standard computer language for accessing
and manipulating databases (so, SQL’s problem
domain is the domain of database querying and
manipulation).

Developers usually prefer DSLs to UML be-
cause of the set of used concepts: The latter uses
programming concepts directly, which places
models at the same abstraction level as source
code; a DSL uses concepts from the problem
domain, which means developers do not need
to worry about how those concepts will map to
code.

UML itself can be seen as a set of DSLs (cor-
responding to use-case diagrams, class diagrams,
activity diagrams, etc.); however, these would be
dependent on each other in a “DSL spaghetti”
manner. UML can also be used to define DSLs
using the profile mechanism, although this does
bring some limitations that DSLs do not, such
as the ability to ignore the semantic constraints
already defined in UML.

Metamodeling

The approaches presented lead us to the point
where we can see that all concepts presented here
are deeply related among themselves. We have
a recurring pattern—the usage of metamodels
and their instances of models—and the only real
difference (in modeling terms) between all these
approaches is in the number of layers each one
uses. So, aside from a question of vocabulary, all
these MDE-based variants have their foundation
on the same topic: metamodeling.

But what is metamodeling? Metamodel.com
(Metamodel.com, n.d.) provides the following
definitions: “metamodeling is the activity that
produces, among other things, metamodels”

1M

Evaluation of MDE Tools from a Metamodeling Perspective

and “a metamodel is a precise definition of the
constructs and rules needed for creating models.”
These definitions agree with other definitions that
can be found in literature, such as the ones in
Kleppe et al. (2003) and Séderstrom, Andersso,
Johannesson, Perjons, & Wangler (2002). This
means that a metamodel provides a language
used to create a model, as Figure 6 illustrates;
similarly, a metamodel that defines the language
in which another metamodel is specified is called
a meta-metamodel.

Similar in concept to DSM, metamodeling
is about developing a language (a metamodel)
adapted to the problem domain; for example, MOF
is a language adapted to the domain of object-
oriented approaches to modeling (Atkinson &
Ku“hne, 2005), while UML is alanguage adapted
to the domain of object-oriented programming
languages (OOPLs). A possible example, in the
context of an organization, of what could be done
with metamodeling can be the following: (a) the
specification of a new language or metamodel
(with an existing language as its metamodel,
e.g., MOF or UML) that reflects the concepts,
syntax, and semantics of the corresponding prob-
lem domain, which is the organization, (b) after
creating a tool that supports the metamodel, the
modeling of a solution using the organization’s
terms (e.g., the organization specifies a certain
role R1 that can perform activities Al and A2),

and (c) depending on the features provided by the
tool, an application that implements the designed
solution could be generated (either by model
transformations, or by direct generation of source
code). In fact, the PSMs for the MDA approach
(oriented toward the implementation domain) can
be obtained by using UML profiles tailored to an
OOPL’s concepts (such as C#’s class, struct, etc.).
This would present an advantage over traditional
development approaches as the solution would be
created using the organization’s terms instead of
using implementation terms; we later present a
more detailed view of how software development
can be done combining metamodeling and model
transformations. An example of the need of using
metamodeling and metamodels can be found in
Zhao and Siau (2007), which uses metamodels to
handle the mediation of information sources.

The main difference (in modeling terms) be-
tween the presented modeling approaches is their
number of modeling layers (i.e., model-metamodel
relationships). Theoretically, the number of lay-
ers could be infinite, but any particular approach
should have a specificnumber of layers; otherwise,
its implementation would be impractical, if not
impossible.

It is still rare to find a development tool that
has explicit support for metamodel creation and/
or configuration, which can be surprising if we
consider that metamodeling is one of the found-

Figure 6. A metamodel defines a language used to create a model

Metamodel

Metamodeling
is written in Language

is defined by

Model is written in

Modeling
Language

112

Evaluation of MDE Tools from a Metamodeling Perspective

ing principles of MDE. This means that, until
recently, a developer who wanted to use a certain
metamodel would probably have to either (a) cre-
ate a new modeling tool, which is not reasonable
at all (Nobrega et al., 2006) or (b) settle on a
CASE tool (with a hard-coded metamodel) that
allows the developer to perform the desired task
with the least possible hassle. However, adding
metamodeling support to a tool does bring some
practical issues that should be mentioned, such as
(a) separating the OOPL class- instance relation
from the metamodel-model relation, (b) deciding
whether the number of logical levels should be
limited or potentially unbounded, and (¢c) deciding
whether the tool should support model transfor-
mation and/or code generation.

In addition to these issues, it is also necessary
to consider how to change a metamodel, which
should be considered a very high-risk activity
because models, consistent in the context of a
certainmetamodel, can become inconsistent with
only some changes to that metamodel. Obviously,
this introduces a potential element of disruption
that should be avoided at all costs. One possible
way of ensuring the validity of existing models
when changing their metamodels is through the
specification and application of model transforma-

tions (e.g., UML transformations, such as those
presented in Selonen, Koskimies, & Sakkinen,
2003): For any change to a metamodel, a cor-
responding transformation must be defined that
receives the previously consistent models and
produces new models consistent with the new
metamodel.

However, in our research we have found no
tool that addresses all of these metamodeling is-
sues (although there are tools that address some
of the presented issues).

Implementing a modeling tool with just one
logical level (i.e., user model editing and a hard-
coded metamodel) is easily done with current
OOPLs using the class-instance relation: The
logical level is implemented by the instance level.
Metamodeling adds one (or more) logical level to
the modeling tool, complicating the implementa-
tion as the instance level now has to hold two or
more logical levels (Atkinson & Kiihne, 2003).
Level compaction (Atkinson & Kiihne, 2005),
an example of which is illustrated in Figure 7, is
a technique that addresses this problem. Instead
of the representation format for a level being
defined by the level above, the format for a level
is supplied by the modeling tool.

Figure 7. An example of using level compaction to compact three logical levels

CMOF 2.0

Class

R

winstanceOf»

MetaType

sinstantiates

-
Instance
> 10: M3
7
«instanceOfs
Type
L1 M2+ M
A

113

Evaluation of MDE Tools from a Metamodeling Perspective

Although level compaction is essential for
supporting multiple modeling levels, it is also
important to determine whether the metamodel
hard-coded into the tool allows such a number of
levels. Atkinson and Kiihne (2005) present the
language and library metaphors, which allow tool
creators to choose whether the number of layers
in the tool’s architecture should be restricted or
potentially unbounded. When using the language
metaphor, the basic elements of each layer (e.g.,
object, class, metaclass, etc.) are contained in the
hard-coded metamodel itself; if the user wanted
to add other basic elements, necessary for ad-
ditional layers, it would be necessary to alter the
hard-coded metamodel. This metaphor helps in
supporting a standard (such as OMG’s), but at the
cost of not being able to edit the metamodel. On
the other hand, in the library metaphor, the hard-
coded metamodel consists only of aminimal core
language, and the basic elements of each layer are
available as predefined types in libraries to which
the user can add elements (or remove them, if
the tool allows it). With this metaphor, users can
experiment with all metamodel layers because
only the minimal core is hard-coded; the burden
of syntax checking and language semantics is
placed on the remaining metamodel layers. Note
that if a tool does not use level compaction, then
it obviously uses the language metaphor because
the supported modeling levels are limited by the
class-instance relation, which only allows one
modeling level (in the instance level) besides the
hard-coded metamodel (in the class level).

Another important aspect to consider in
metamodeling tools are model-to-model trans-
formations. It would be natural that, after some
time using such a tool, a developer has created
or adopted some languages adjusted to relevant
problem domains. However, after modeling a
solution using the problem-domain language, the
developer would then need to re-create the model
in the language of the target domain. Obviously
this would render the first model useless. So, if
the tool also provided some kind of framework or

114

language for specifying transformations between
model languages, this would certainly benefit the
developer.

EVALUATION OF MDE TOOLS

One of the key issues for the success of MDE is
appropriate tool support as developers will only
use a certain approach if it is supported by avail-
abletools. This section first presents the evaluation
framework used through the rest of this article.
Afterward, we present the tools that are evaluated.
Finally, the evaluation’s results are presented.

Evaluation Framework

This subsection presents the proposed evaluation
framework used in this article. This framework
focuses on a tool’s support for metamodeling and
involves the following dimensions, as illustrated
in Figure 8:

1. supported exchange formats,

2. model transformation support,

3. usage of the level-compaction technique
(Atkinson & Kiihne, 2005),

4. usageofthelanguage and library metaphors
(Atkinson & Kiihne, 2005),

5. the logical levels that the user can manipu-
late,

6. support for specifying metamodel syntax
and semantics, and

7. the size of the hard-coded meta-metamod-
el.

The third and fourth dimensions were directly
based on the conceptual framework defined in
Atkinson and Kiihne (2005); the other dimen-
sions are derived from the issues described in the
previous section (“Model-Driven Engineering”)
since this evaluation also tries to focus on the
practical usage of these tools instead of exclu-
sively considering architectural details. Note

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 8. An overview of the proposed evaluation framework

Dimension Measurement range Observations
s e Metamodels
Supported - 3 ; oo
AR Get of standards (possibly MNone) Measure can only be either a combination of standards, or MNone|
Models
Model transformation framework Yes. No Walues are mutually exclusive
Level Compaction Yes. Mo Values are mutually exclusive

Language and Library metaphors

Number of levels the user can

Supports

specification Yes, No

specilication

Language metaphor. Library metaphor

Set of natural numbers

specificatlon Yesiiho
Syntax L
Support for u::guaggg Set of languages (possibly None)
metamodel
Supports

Values are mutually exclusive; If Level Compaction is No, value

is Language metaphor

Values are mutually exclusive

Values are mutually exclusive

Maasure can only be sither a combination of languages, or
Nune, Il "Suppwils specifivalion™ is No, this shuuld be emply

Values are mutually exclusive

Languages
used

Set of languages (possibly None)

Measure can only be sither a combination of languages. or
Nune, Il "Suppwis specifivalion™ is Ne, this should be emply

Hard-coded metametamodel size

Small, Average, Large

Values are mutually exclusive

that we do not define a ranking system because
the ultimate objective of this evaluation is not to
determine the best tool but rather if (and how) the
industry is currently addressing metamodeling. In
addition, we believe it is up to each developer to
determine what approach and tool characteristics
are required for development. However, we do
believe that this framework provides a practical
contribution through its generic set of guidelines
that help determine whether a tool can appropri-
ately address metamodeling (both as an activity in
itself and as an activity in the context of software
development). Moreover, metamodeling is still
an active research topic that is not addressed by
many tools, and we believed that ranking these
tools would ultimately yield unfair results (as some
of the tools were not created to address this issue
in the first place).

We also highlight the fact that, although
this evaluation framework has been empirically
validated (in the context of our experience with
various MDE-based tools), some of these criteria
and measurement metrics are still subjective and
canberefined by performing an explicit validation
of the existing criteria and their measurements

metrics, according to approaches such as Moore
and Benbasat (1991), and by adding further (and
more objective) criteria that address other issues
regarding metamodeling.

Supported Standard Exchange Formats

With all the modeling tools now available, the
ability to exchange models between tools is be-
coming a very important requirement; the lack of
this ability can easily lead to a situation in which a
developer is stuck with a certain tool. This would
require that tools be able to export and import
models to and from a standard format, such as
XMI. Although each tool creator is free to create
or choose his or her own exchange format, it should
be taken into account that developers usually
choose tools that can import or export to standard
formats, allowing models to be independent of the
tools in which they are manipulated.

This dimension is divided into two subdimen-
sions: () metamodels, which involves determining
whether metamodels can be imported or exported,
and (b) models, which involves determining
whetheruser models can be imported or exported.

115

Evaluation of MDE Tools from a Metamodeling Perspective

This division is useful because the formats used
by a tool to import, or export metamodels and
models may be different; also, a tool may only
allow the import or export of models but not
metamodels. The values for both dimensions are
the set of standards used (possibly none).

Model Transformation Framework

This dimension measures whether the tool sup-
ports model transformations, and only allows a
single value from its measurement range: yes,
meaning that the tool additionally provides a
framework or language based on the metamodel
or the meta-metamodel for specifying transfor-
mations between user models (such as QVT), and
no, meaning that the tool does not provide such
a framework.

Level Compaction

This dimension measures whether the tool uses
the level-compaction technique (Atkinson &
Kiihne, 2005) and only allows a single value from
its measurement range: yes, meaning that the tool
uses level compaction and can therefore easily be
adjusted to support additional logical levels, and
no, meaning that the tool does not employ level
compaction.

Language and Library Metaphors

This dimension measures which of the two meta-
phors (language or library; Atkinson & Kiihne,
2005) are used in the tool, and only allows a
single value from its measurement range: lan-
guage metaphor or library metaphor, according
to the metaphor used. Note that if the dimension
level compaction evaluates as no, then the value
of this dimension will obviously be the language
metaphor, as presented in the previous section
(“Model-Driven Engineering”).

116

Number of Logical Levels the User Can
Manipulate

Despite what architectural options are present in
a tool, one of the aspects that directly affects a
tool’s user is the number of logical levels that can
actually be manipulated in the tool (by creating,
editing, or deleting elements) as a limited num-
ber may force the user to compact two or more
metamodel levels into a single layer (i.e., the user
places elements from several logical levels in a
single level).

This dimension measures how many metamod-
el-model relationships can be handled by the tool,
and it only allows the usage of a single natural
number (i.e., 1, 2, etc.). For example, a typical
UML CASE tool only allows the manipulation of
one logical level (M1) as the creation of instances
is still performed in M1.

Support for Metamodel Specification

In the evaluation of the support that a tool pro-
vides for specifying metamodels, it is important
to analyze what a tool supports.

This dimension is divided into two other
dimensions, syntax and semantics, evaluating
the support that the selected tools provide to the
specification of the syntax and semantics of meta-
models, respectively. The definitions of metamodel
syntax and metamodel semantics are similar to
the ones found at http:/www.klasse.nl/research/
uml-semantics.html and are described next.

. Syntax. A metamodel’s syntax consists of
the set of model elements (i.e., graphical
representations of domain elements) and
the relationships between those model ele-
ments; this is very similar to the definition
of syntax in the context of linguistics, in
which syntax is the study of the way words
are combined together to form sentences.

Evaluation of MDE Tools from a Metamodeling Perspective

The syntax dimension is divided into two
subdimensions: specification support and
languages used.

. Specification support. This dimension
evaluates whether the tool supports the
specification of the syntactic component ofa
metamodel (i.e., the graphical representation
of'its elements). It only allows a single value
from its measurement range: yes, meaning
that the tool allows the specification of the
metamodel’s syntax, and no, meaning that
the tool does not support this.

* Languagesused. Thisdimension determines
the set of languages used by the tool to
specify the metamodel’s syntax (including
proprietary or standard languages). Note that
this dimension can only have a meaningful
value when the specification-support dimen-
sion’s value is yes.

e Semantics. Ametamodel’s semantics can be
seen from two perspectives: the semantic
domain and the semantics of each model
element. The semantic domain consists of
the whole set of domain elements that the
metamodel is supposed to represent (i.e.,
the concepts that were captured during the
analysis of the problem domain). On the
other hand, the semantics of a certain model
element is determined by the relation(s) be-
tween that model element and one or more
domain elements.

This dimension is divided into two subdimen-
sions, specification support and languages used,
which evaluate some aspects of the mechanisms
provided for defining metamodel semantics.

. Specification support. This dimension
measures whether the tool supports the
specification of the semantic component ofa
metamodel. [tonly allows a single value from
itsmeasurement range: yes, meaning that the
tool allows specification of a metamodel’s

semantic constraints, and no, meaning that
the tool does not support this.

* Languages used. This dimension, like the
languages-used dimension of syntax, deter-
mines the set of languages used by the tool
todefine ametamodel’s semantic constraints
(such as OCL for MOF-based models, avail-
able at http:/www.omg.org/cgi-bin/apps/
doc?formal/06-05-01.pdf). Note that this
dimension can only have ameaningful value
if the specification-support value is yes.

Hard-Coded Meta-Metamodel Size

An important aspect to consider is the size of
the meta-metamodel hard-coded into the tool (or
metamodel if the tool only allows creating user
models) because it reflects how wide the range of
metamodel primitives is. In this evaluation, we
consider the size of amodel (or ameta-metamodel,
in this case) to be defined by the quantity of infor-
mation involved in the formal specification of the
model (i.e., how many objects, relationships, and
constraints are used to specify the model); the ex-
planation for this lies in the amount of information
that the user should be aware of when creating a
metamodel in order to take full advantage of the
language provided by the meta-metamodel.

This dimension only allows a single value
from its measurement range: (a) small, mean-
ing that the tool’s hard-coded meta-metamodel
consists of 15 elements or less (in this article,
we consider an element to be either an object,
a relationship between objects, or a constraint),
(b) average, meaning that it consists of 16 to 30
elements, and (c) /arge, meaning that it consists
of more than 30 elements. It is important to note
that this measurement is highly subjective since
we know of no framework to objectively classify
a model’s size or complexity; ultimately, it is up
to the reader to make his or her own definition
of how large a meta-metamodel must be before
it can be considered large.

117

Evaluation of MDE Tools from a Metamodeling Perspective

MDE Tools

Figure 9 presents an overview of the small set
of MDE tools used in this evaluation: Enterprise
Architect (SparxSystems, n.d.), MetaSketch
(Nobrega et al., 2006), MetaEdit+ (MetaCase,
n.d.), and Microsoft’s DSL Tools (MSDSLTools,
n.d.).

The initial criteria used for the selection of
MDE tools to evaluate were the following: (a) The
tool must be recent (or still be under development)
to ensure it addresses current MDE approaches,
(b) each tool must address one of the MDE ini-
tiatives presented in the previous section, and (c)
the tool must have a relatively smooth learning
curve as developers are usually more inclined to
choose tools that they find to be user friendly and
that facilitate their activities. We searched the
Internet for candidate tools that fit these criteria;
however, we found many candidate tools, so we
limited this evaluation to popular tools in order
to keep the evaluation (and this article) simple.
We also included MetaSketch in this evaluation
because, although it is not yet popular, it explic-
itly addresses the metamodeling activity, so we
believed that including it in the evaluation could
yield some interesting results. We did not consider

Figure 9. The selected MDE tools

any of our own tools (i.e., developed in-house) as
candidates for this evaluation in order to maintain
an independent perspective over this tool evalua-
tion and prevent us from inadvertently specifying
dimensions that would favor any one of the tools
being evaluated.

These tools were chosen because we consider
that this set is a good representative of the current
status of MDE-supporting tools currently avail-
able (e.g., Enterprise Architect can do most of what
canbe done with ArgoUML, http://argouml.tigris.
org; Poseidon for UML, http://www.gentleware.
com; Rational Rose 2003, http:/www-306.ibm.
com/software/awdtools/developer/datamodeler;
orother UML modeling tools); they also presented
enough differences amongst themselves to justify
their inclusion in this evaluation. Although these
tools do not reflect everything that is currently
available in MDE tools, they address the MDE-
based approaches defined earlier by providing the
features that can often be found in typical tools
of their corresponding approach.

The reason we evaluate only a small number
of tools is article simplicity and size. However,
it is important to reiterate that there are a great
number of other tools available, such as the Ge-
neric Modeling Environment (GME; http:/www.

| QMG MDA N
I e - -
| | : DSM !
' ' | [
I I | |
: stools : «tools | «tools «tools !
: Enterprise : MetaSketch | | MetaEdit+ Microsoft I
I | Architect . : DSLTools | |
: i) Ep— e Lo o o —— [
L____i __________________ | r

based on based on hased on based on
zmetamodels zmetamodels zmetamodelz zmetamodelz
UML MOF GOPPRR DSL Tools

118

Evaluation of MDE Tools from a Metamodeling Perspective

isis.vanderbilt.edu/projects/gme) or the Eclipse
Graphical Modeling Framework (GMF; http:/
www.eclipse.org/gmf). Althoughinthis article we
only evaluate this small set of tools, we believe
that an evaluation of a greater number of tools,
including a wider range of areas such as ontol-
ogy modeling or enterprise architecture model-
ing, would yield some very interesting results
to complement those obtained here. An added
advantage of such an evaluation would also be
the diverse set of metamodels used by the evalu-
ated tools (e.g., enterprise modeling tools tend to
use enterprise-oriented metamodels, such as the
TOGAF or Zachman framework).

Traditional CASE Tools

Although traditional CASE tools may be ad-
equate for the development of small and simple
software systems, they clearly do not support the
development tasks that come with larger, complex
systems. One of the main problems of such tools
is that they only support a specific metamodel,
usually UML, and do not offer support for alter-
ing that metamodel (although UML does provide
the profile mechanism, supported by some UML
modeling tools).

Thistype of tools is included in this evaluation
to determine whether current typical CASE tools
could easily be adapted to allow the creation of
models based on a user-specified language. For
the evaluation purposes of this work, we chose
Enterprise Architect (SparxSystems, n.d.) to rep-
resent traditional CASE tools as it is quite easy
to use, provides good support for UML and its
profile mechanism (in fact, EA makes the defini-
tion ofa UML profile a simple and easy task), and
seems to be one of the best representatives of the
current status of CASE tools.

(For this evaluation, we used Enterprise Ar-
chitect 6.5, which was the latest version of this
tool at the time this work was written.)

MetaSketch

MetaSketch (Nobregaetal.,2006)isa MOF-based
editor, unlike most editors, which are usually based
on UML. It is based on the following ideas: (a) A
metamodel is a model that conforms to MOF 2.0,
not to UML 2.0, (b) the UML profile mechanism
isnot powerful enough to support the definition of
new modeling languages, (c) a metamodel should
be the primary artifact of a modeling language
definition and developers should not need to code
metamodels, and (d) a metamodel is not the final
goal but the means used to produce models, so
it is not reasonable to create another modeling
tool each time another metamodel is specified.
These ideas lead to MetaSketch, an editor that is
MOF compliant, allowing the definition of any
language that can be specified using MOF (i.e.,
a MOF-based metamodel). Thus, MetaSketch is
best defined as a metamodeling tool.
MetaSketch does not offer code generation
capabilities by itself, but it can import or export
defined models and metamodels to XMI; the tool
adheres strictly (with no vendor-specific exten-
sions) to XMI 2.1 (Nobrega et al., 2006), so code
generation could easily be handled by any code
generator that can understand XMI. The tool
also supports the definition of models conform-
ing to metamodels specified in XMI (e.g., MOF
or UML). Three metalevels, M3, M2, and M1,
are supported by using level compaction. Figure
10 illustrates two interesting scenarios that are
made possible by MetaSketch: the definition of
a MOF metamodel by using itself (top), and the
definition of the UML and CWM metamodels
(bottom). In the first scenario, the user takes
advantage of MOF’s reflexive property in order
to define a metamodel consisting of MOF itself
(note the hard-coded MOF and the user-defined
MOF); UML and CWM can then be defined as
user models from that metamodel. In the second
scenario, the user defines the UML metamodel
by using the hard-coded MOF meta-metamodel.
UML user models can then be created based on

119

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 10. MOF is used as a meta-metamodel
and as a metamodel

cd MOF Metamodel

zhard-codeds
MOF

zUser-defined metamodels
MOF

Ed

zuser-defined models zUser-defined models
umL cwm

cd UML Metamodel

zhard-codeds
MOF

zuser-defined metamodels
UmML

7

zUser-defined modelz
UML Model

zUser-defined modelz
UML Model

that metamodel (note that this second scenario
is very similar to the typical OMG architecture,
illustrated in Figure 2).

MetaEdit+

MetaEdit+, available at http://www.metacase.com,
isaDSM-oriented environment (i.e., ameta-CASE
tool) thatallows the creation of modeling tools and
generators fitting to application domains without
having to write code (Tolvanen & Rossi, 2003). It
uses a meta-metamodel called GOPPRR (graph,
object, property, port, relationship, and role),
named after the metatypes that are used when
specifying the metamodel.

In MetaEdit+, an expert creates a modeling
method by (a) defining a domain-specific lan-
guage containing the problem domain’s concepts
and rules (in this article, we will treat a DSL in

120

MetaEdit+ as a metamodel since the tool does
treat DSLs as metamodels), and (b) specifying the
mapping from that language to source code in a
domain-specific code generator. Once the expert
creates the modeling method (or even a prototype),
the development team can start using it in Me-
taEdit+ to define models, and the corresponding
code will be automatically generated from those
models. The code generator itselfuses a DSL that
allows the developer to specify how to navigate
through models and output its contents along with
additional text. The tool also provides arepository
for all modeling method information, allowing
the storage and modification of modeling method
definitions; any modifications to definitions are
alsoreflected in their corresponding tools, models,
and generators.

(For this evaluation, we used MetaEdit+ 4.5,
which was the latest version of this tool at the
time this work was written.)

Microsoft DSL Tools

Microsoft’s DSL Tools, available at http:/msdn.
microsoft.com/vstudio/dsltools, is a suite of
tools for creating, editing, visualizing, and using
domain-specific data for automating the enter-
prise software development process. DSL Tools
allow developers to design graphical modeling
languages and to generate artifacts (such as
code or documentation) from those languages;
the visual language tools are based on Microsoft
Visual Studio.

The process of creating a new DSL begins
with the DSL Designer Wizard, which pro-
vides some metamodel templates (such as class
diagrams or use-case diagrams) and guides the
developer through specifying the features of the
desired DSL. As a result of executing the wizard,
a Visual Studio solution is created, containing a
DSL project with the language’s domain model
(classes andrelationships), its visual representation
(diagram elements), and the mappings between
domain elements and visual elements. The source

Evaluation of MDE Tools from a Metamodeling Perspective

code that will support the DSL tool is generated
by using text templates, which process the DSL’s
specification and output the corresponding code.
Developers can provide additional code to refine
aspects of the model designer, define constraints
over the language, and/or even alter the text tem-
plates (which can have substantial effects on the
generated source code). Testing is done within
Visual Studio by launching another instance of
the environment with the specified DSL tool.
After ensuring that the tool is working correctly,
the final step is creating a deployment package
that allows its distribution.

(For this evaluation, we used the DSL Tools’
Version 1 release, which was the latest version of
this tool at the time this article was written.)

Applying the Framework

This subsection describes the small case study
used to support this evaluation and the results
obtained by applying the evaluation framework
to each of the selected tools.

A Small Case Study: Social Network
Metamodel

An essential part of the evaluation of a tool is
determining how that tool actually supports
the activities necessary toward the resolution
of a certain problem. Thus, we use the facilities
provided by each tool to specify and implement
(when possible) a simple metamodel that supports
the specification for simple social networks. This
metamodel can be textually described by the fol-
lowing statements:

. A social network is composed of people and
relationships between people.

* A person’s participation in a relationship is
defined by the role they play in it.

. A role must have a corresponding relation-
ship.

. A role must have a corresponding person.
* A social relationship must involve at least
two different people.

Figure 11 presents this metamodel (and two
user models, for illustrative purposes) modeled
in Enterprise Architect.

Note that this case study, because of'its simplic-
ity, could also be addressed with typical CASE
tools (in fact, this is done in Enterprise Architect).
However, the main objective of this article is to
evaluate how the selected tools behave in specify-
ing the Social Network metamodel and afterward
producing and adapting a tool that can be used to
create user models (i.e., with types and instances)
using the language defined by that metamodel.

Evaluating the Tools

The evaluation framework’s application to the
presented tools was performed by us, so we did
not need to resort to agreement measures, such as
Cohen’s Kappa coefficient. To compensate for the
lack of a greater number of test participants, we
tried notto define any dimensions that depended on
the user’s previous familiarity with one (or more)
of'the tools. Thus, the usage of each tool to define
the Social Networks metamodel case study was
accompanied by thorough reading of available tool
documentation and previous tests of the tool in
order to gain a reasonable amount of experience
with each of the selected tools. Nevertheless, we
acknowledge that such dimensions are important
to measure usability and the tool’s learning curve
(and can be a good indicator of whether the tool
will be accepted by the community).

. Enterprise Architect. Enterprise Architect
is an easy-to-use tool with a minimal learn-
ing curve. However, its traditional CASE-
tool roots make it extremely limited when
it comes to metamodeling. Since EA is a
UML modeling tool, the only mechanism
that it provides for metamodeling support

121

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 11. The Social Network metamodel and two user models

=

Social Network

Metamodel

- sodalContext string

Person

Role Relationship

- name: sting |4 0.*|-

name: string|2 * 1|- name: string

«Persons

teacher

Academic [1.* «Roles 1| AcademicResearchGroup Types
student

1. =Roles 1

&

«Persons

Alberto ;
Academi

User Models

teacher
«Roles

<Relationships Instances
:AcademicResearchGroup

Student qu ent
«Roles «Roles
&

«Persons

Joao :Academic

«Persons

David :
Academic

is the UML profile mechanism, which only
allows adding elements and semantics to the
metamodel, but not altering it (i.e., editing
or removing elements and constraints).

The definition of a profile in EA is limited to
specifying the generic syntax of the profile (i.e.,
defining stereotypes and what metaclasses they
extend, enumerations, etc.). Other semantic and
syntactic relationships and constraints entered in
the profile definition (using a text-based notation
such as OCL) are not enforced when the user
creates a model using that profile; the only vali-
dation that EA does enforce is the application of
a stereotype to an instance of a metaclass (e.g., a
stereotype that extends the metaclass Association
cannot be applied to an instance of the metaclass
Class). EA does present the advantage of not re-
quiring the creation of a new tool adapted to the
problem domain as it supports both the definition

122

L
\.!

and application of a UML profile (as is typically
the case with profile-supporting CASE tools).
Like other CASE tools, EA does not appear
to use level compaction or any similar technique
because modeling is limited to one logical level;
in this case, adapting the tool to support more
logical levels (by using level compaction) would
require an extra effort in order to separate the
metamodel-model and class-instance relation-
ships. The tool offers code generation capabilities
and some predefined basic model transformations
to support MDA, such as PIM to PSM. However,
they require that PIMs and PSMs be specified in
UML as it is the tool’s hard-coded metamodel.
Figure 12 shows the definition of a profile
representing the Social Networks metamodel
previously presented; additionally, Figure 11
presents two user models (obtained through the
application of the profile) modeled in EA.

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 12. A screenshot of Enterprise Architect with a profile definition

| He B pem Powe Dagem Seper Dok ASidm fetngs fedem bed

DEH LB DS Bel «

s Auks OB ARIE B G- -ﬂ

Tooken T | Coan i oo Hetwok™ crested: Q5072000 185005 modbed DEO0-2006 Praject Viem L
fa =i o B B oy Rl G A
] AmALaaase amptaclasss = [Ve -
e 1 Class Ansociaton (m] TA
L = £
e = dirgcion Diecion = Sourcs - Dusll j :I'??:;:'l CMOF
|3 =1 [Social hetwede
My = \ 8- 2] atares
I St " - «#ENOEs] Made
* u]f.nu:- mmc'\n linui. O e J
| Men] wprofies 3o
R Porson £ Hlabonstep§ ¥ Role §¥ o8 BecaN
B ek
e | i B renciy
e irtarfeor Hag | ¥ :JI I M
Scal ttwork 3 . StwtPage, *Socullictwork | b | o (Hitee. TaProor.. |

It is important to reiterate that the reason why
EAisusedinthis evaluationis to show that typical
CASEtoolsarenotadequate for the metamodeling
needs that are currently surfacing, even though
EA (as other CASE tools) is not designed to sup-
port metamodeling; this evaluation is not meant
in any way to diminish EA as a tool, and these
results should not be interpreted as such.

. MetaSketch. From the set of evaluated tools,
only MetaSketch supported metamodeling
based on the MOF standard. The tool sup-
ports the XMI import and export of models
and metamodels, so auser-defined model can
become a metamodel simply by exporting
it to XMI and then importing it from XMI
as a metamodel. In fact, the tool can easily
handle the XMI-based specifications of MOF
and UML available on the OMG Web site.

MetaSketch uses the language metaphor
(Nobrega et al., 2006), which in this case limits
the user to manipulating two logical levels: the
metamodel and the user model. However, MetaS-
ketchuses level compaction, so it could be adapted
to use the library metaphor with relatively little
effort. Although MetaSketch does not support
model transformations (to either source code or
other models), this can be remedied because of

the tool’s XMI import and export capabilities;
the user could export the model to XMI, and
then process it with a code generator (such as the
Eclipse Modeling Framework, available at http://
www.eclipse.org/emf) or amodel transformation
tool (likely based on QVT).

The syntax of the metamodel is specified in
XML (outside the tool’s environment) by compos-
ing simple shapes (rectangles, ellipses, etc.) and
using the tool’s geometry management mecha-
nism (Nobrega et al., 2006), which dynamically
adjusts the spatial arrangement of those shapes.
The semantics of the metamodel is specified in
the tool itself when modeling the user model that
later becomes the metamodel; however, there isno
supportyet for constraint specification. Neverthe-
less, it is important to note that the tool is still a
prototype under active development, so it can be
expected that such issues will be corrected in the
future. Thus, the results obtained in this evaluation
do not reflect the full potential of this tool.

* MetaEdit+. MetaEdit+ is based on a very
simple and flexible meta-metamodel, GOP-
PRR; however, this meta-metamodel does
not include behavioral features (only struc-
tural features), which can impact the possible
set of metamodels that can be defined by the
tool.

123

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 13. Social Network metamodel and user model in MetaSketch

Person ‘:L!— Rols {—9—" e Relaticn -
) |t emeralisabon
| i
T 4l | .’J—“I-mﬂ-

B Moia Sheich Edee M=k
Be Eft Yew [ome Tosh Deyes fiedee Hen
B2H v q s
N Opis Seve Uy ¢ Zosm i JoomOd Pat
- - A A d T :[EEx]

Socisl Network Disgram ko (sl i1 |[Tasken LES
i gl —
£

Sudent Ea Paciage
y 1 -y & Felatonahip
T " Role
-w
= 2= o} — PemenAsie
g e
il — Relyonihip-Rain
Toashsr
o | v

MetaEdit+apparently uses the language meta-
phor, limiting the number of logical levels the user
can edit to the metamodel and the user model.
However, this metaphor is used not because of
programming-language restrictions, but by choice
of the tool creators, so the tool could be adapted
to use the library metaphor with relatively little
effort. Although the tool does not offer support
formodel transformations, it does provide areport
mechanism thatallows the generation of text-based
artifacts (such as source code, HTML [hypertext
markup language], or XML) based on the informa-
tion available in the model’s repository.

Syntax specification is done by creating in-
stances of the meta-metamodel’s elements and,
eventually, creating vectorial images to represent
those instances. Semantic specification is done
when creating an instance of a graph (which

124

corresponds to a type of model, like UML’s class
diagram or use-case diagram); constraints are
then entered in the graph’s corresponding form
(e.g., “Objects of a certain type may be in, at
most, a certain number of relationships”), which
is designed to avoid as much manual text entering
as possible (since it is prone to errors).

This tool did present a few important usability
problems, such as the fact that it does not allow the
altering of the superclass-subclass relationships
between object types: Once the user chooses an
object type’s superclass (when creating the ob-
ject type), it cannot be changed; the user should
first draw the metamodel on a piece of paper or
another modeling tool in order to obtain the de-
finitive metamodel, and then re-create it within
MetaEdit+.

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 14. Models of the Social Network metamodel in MetaEdit+

3= ocaal bt work Model - Flssearchirmn . Domngo, ki 2006, 14:17

Eich £t Yo Lpe b
Bé L vo H

— |l

oH

Hile

e Sludant
Parsan

Hams: Ressarcher
-] RoW

Tapete

|

—— " Ralationtieg .
_‘i. ResaanciGoup |

— —

£

Figure 14 presents a model derived from the
Social Network metamodel presented earlier.

* Microsoft DSL Tools for Visual Studio.
This tool’s meta-metamodel consists of the
following elements: (a) class, (b) domain
property, (c) embedding, (d) reference, and
(d) inheritance. Like MetaEdit+, this meta-
metamodel is highly object oriented but does
not include behavioral features.

Thetool’s architecture is based on the language
metaphor and limits the possible logical levels
editable by the user to the metamodel and the
user model. However, this limitation is because
DSL Tools are based on the class-instance rela-
tion, so the adaptation of DSL Tools to use the
library metaphor would likely require a great
deal of effort.

The DSL designer itself is divided into two
panes: Domain Model and Diagram Elements.
In Domain Model, the developer identifies the
relevant concepts of the problem domain and
expresses them in the domain-model section of the
designer along with model details like cardinality
and source-code-specific details such as whether
an association end should generate a property.
Validations and constraints can also be specified
by typing source code in additional validation

Aok liwe | Subgraphs) More | Giid: 10810 | Zoos: 100%

classes. In Diagram Elements, aspects relating
to the graphical layout of the model elements
are specified, such as shapes used, association
line styles, the shapes that can be on either end
of an association, and how value properties are
graphically displayed. Thus, the specification
of the syntax and semantics of the metamodel
is done entirely in the DSL designer (except for
validations and constraints, which are expressed
in source code) as the DSL Tools are highly
focused on the graphical specification of user
models and subsequent generation of text-based
artifacts. Figure 15 presents the Social Network
user model specified in DSL Tools.

Results

The results of this evaluation are shown in Fig-
ure 16. From these results, we can see that some
tools already treat metamodel exchange as an
important issue as only Enterprise Architect and
MetaEdit+ do not export their metamodel defini-
tion. However, in Enterprise Architect’s case, this
is understandable since the metamodel (UML) is
hard-coded into the tool and never changes. We
find noteworthy the fact that MetaSketch is the
only tool allowing metamodel import and export
using a well-defined standard (XMI). User-model

125

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 15. Models of the Social Network metamodel in Microsoft’s DSL Tools

% Desbumuing - Meornsol! Wil Sude

o

|

5

Fleady

Figure 16. The evaluation results

a Tigos Enterprise Architect MataSketch MetaEdit+ Mycrgsaftl) o
D Tools
Other (USL
Smparad damined Metamodels Mone M Mone dofinition format)
exchange formats
Models XM XM XML XML
Model transformation framework Yes Mo Mo Mo
Level Compaction Mo Yes Yes Mo
Language metaphor or Library tanquagesmataibin | anguage R . . | anguage
metaphor guag P metaphor guag P metaphor
Number of logical levels the user can ’ 9 9 5
manipulate
5“"'3“’“‘ R Yes Yes Yes Yes
i specification
: Languages |Mone (Association between Mone {Graphical vectorial drawing
. AML s XML
bueport Iurl used stereotypes and icons) within the tool)
specification Sappoits: No Mo Yes Yes
. . |specification
Languages - GOPPRR (uses metamodel \MNET source-
used concepts to establish constraints)| code (e.g., C#)
y ¥ Large Large Small Small
Hand-cuded tanmel del
e e T {MOF + UML metamodel) |(MOF metamodel)| (GOPPRR - 6 elements) (5 elements)

exchange, however, is supported by all tools, using
either XMI or XML.

Model transformation does not currently seem
to be amajor concern as most tools do not provide
any kind of support for it (only Enterprise Archi-
tect provides a framework for model-to-model
or model-to-code transformations in the context
of the MDA initiative), likely because of the im-
mature state of the area.

126

Another interesting conclusion is that each of
the evaluated tools uses the language metaphor,
although most of them support the specification
of two logical levels. This is likely due to the fact
that a tool that supports more than two logical
levels is likely to reveal itself as confusing since
it can usually be assumed that developers will not
need more than two logical levels (one to specify
alanguage thatrepresents the problem domain—
and perhaps another language that represents the

Evaluation of MDE Tools from a Metamodeling Perspective

solution domain—and another to specify a solu-
tion to the problem). However, both MetaSketch
and MetaEdit+ use level compaction, and thus
could be adapted to use the library metaphor
(therefore supporting additional logical levels)
with little effort; DSL Tools would require a much
more extensive effort to support such additional
logical levels.

Most tools support the specification of a
metamodel’s syntax to some degree (either by
associating elements with external image sources
or by providing internal facilities to create such
graphical representations). However, the specifica-
tion of a metamodel’s semantic constraints seems
to be sketchy atbest, with only MetaEdit+and DSL
Tools supporting such constraint specifications.
(MetaEdit+ uses its meta-metamodel concepts
to establish constraints in the metamodel, while
DSL Tools requires that developers use source
code to specify constraints.)

Finally, the tools that do not follow a standard
meta-metamodel (e.g., MetaEdit+ and MS DSL
Tools) seem to prefer using ameta-metamodel that
is as simple as possible: MetaEdit+’s consists of
six elements, while DSL Tools’ consists of five.

Discussion

Although CASE tools failed on their first appear-
ance some years ago (Booch, Brown, lyengar,
Rumbaugh, & Selic, 2004), they brought the idea
that development processes could be supported by
suchtools as long as those tools were adjusted to the
development process. Early CASE tools were too
inflexible, usually forcing the development process
to be adjusted to the CASE tool instead of having
the CASE tool support the development process.
Thisledtothe area of meta-CASE systems, which
allow the automatic creation of development tools
tailored to specific design processes, determined
by organizational requirements.

The core problem with traditional CASE tools
is that they only support specifying the solution;
the identification of the problem-domain require-

ments is often done apart from these tools (usually
inaword processor or similar). Hence, developers
donot have a problem-domain-oriented language
in which they can express the solution to the
problem, forcing them to think of the solution in
computational terms (toward which traditional
CASE tool metamodels are especially oriented)
rather than in problem-domain terms. The solution
inevitably becomes misaligned with the problem
domain and, therefore, with the problem itself.
The consequences of this can be seen over the
entire development process, butbecome especially
critical during the product maintenance phase,
when the product must be adapted to additional
problem conditions and requirements, usually
requiring extensive developer effort because of
the difficulty of assuring that the product still
solves the old problems while also solving ad-
ditional problems.

However, when considering metamodeling
and meta-CASE tools, we need to be careful
because of possible meta-metamodel fragmenta-
tion: In this evaluation, we can see an example
of this as Microsoft DSL Tools uses its own
meta-metamodel and so does MetaEdit+. This
could lead to a panorama much like the one from
a few years ago, in which there was a myriad of
modeling languages (i.e., metamodels) all doing
the same and yet all different among themselves.
Now that the community (and the industry) is
beginning to focus on metamodeling and meta-
metamodels (i.e., metamodel languages), we need
to start considering meta-metamodel standards as
they help eliminate gratuitous diversity (Booch et
al., 2004). Otherwise, the diversity of languages
that would be defined would very likely lead to
the fragmentation that UML was designed to
eliminate in the first place.

All this is theory that must be put into practice
in tools that developers can use. For such tools
to be of help to the developer, they must support
the whole software development life cycle, from
requirements specification to deployment and
maintenance. This also requires that tools allow

127

Evaluation of MDE Tools from a Metamodeling Perspective

developersto specify solutions in problem-domain
terms, which of course requires that tools support
some form of metamodeling. However, as the
results of this evaluation show, the current tool
support is primarily directed toward DSM, and
issues such as model-to-model transformations
(upon which MDA is based) are being left out
in all but a few tools (such as the Eclipse Model-
ing Project, available at http:/www.eclipse.org/
modeling).

We believe MDA and UML have the potential
to adequately cover the development phases more
directly related to software itself, like implemen-
tation design and coding. However, MDA does
not address the requirements phase, leading to
the known gap between what the client wants the
system to do and what the system actually does;
in part, this is because UML is not adequate for
requirements modeling. On the other hand, DSM’s
strength over MDA comes from the fact that it is
more than adequate forrequirements specification.
Using a DSM system, a developer experienced in
the problem domain creates ametamodel reflecting
that domain and specifies how domain concepts
are mapped to code (or any other artifact type).
Requirements are then specified as models (ori-
ented toward not the implementation but what the
client wants the system to do) using the defined
metamodel. These models are then mapped into
code using the mappings initially defined. How-
ever, DSM as it is used today has a weak point:
the transformation between models and code (or
even between models of different languages).
If the DSM system user wishes to switch target
platforms (for example, from Java to .NET), the
mappings will have to be re-created by the expert
developer, unlike what happens with MDA, as
PIMs and PSMs provide the ability to exchange
target platforms with minimal extra effort. Thisis
not unlike what is said in Schmidt (2006), which
states that MDE is evolving toward DSLs com-
bined with transformation engines and generators;

128

in other words, MDE seems to be evolving toward
MDA and DSM working together.

This is why we consider tools such as MetaS-
ketch to be of utter importance to the industry, as
MetaSketch reveals a genuine concern with adher-
ing to OMG standards (which opens the door for
itsusage in MDA -oriented development scenarios)
while also trying to address the metamodeling
problem that we are facing today.

Another issue that we consider important
to the success of metamodeling is complexity.
The usage of standards is always conditioned
by their complexity and how well adapted they
are to the domain of interest. These points can
be decisive factors over the difficulty of creating
a model that correctly represents the problem
(from the perspectives of syntax and semantics),
which is where DSM differentiates itself. The
fundamental issue is that developers and clients
need to identify themselves with the metamodels
they use; otherwise, they will look upon those
metamodels as nuisances. An example can be
seen in MOF, sometimes considered too complex
for defining user metamodels, because it includes
concepts that would only be useful in the context
of OMG-defined metamodels. This is why tools
suchas MetaEdit+ (with simple meta-metamodels)
are gaining popularity throughout the developer
community, and MOF/UML CASE tools (with
complex meta-metamodels) are typically consid-
ered as only good for documentation and a last
resort for code generation.

Finally, we consider that the evaluation frame-
work defined inthis articleis quiterelevant because
it provides a good insight into the main problems
that metamodeling tools would face: Its dimen-
sions include support for language specification
(syntax and semantics) and model transformations,
which are essential to the creation of metamodels
and models, as well as to obtaining new models
in an automatic, MDE-oriented fashion.

Evaluation of MDE Tools from a Metamodeling Perspective

CONCLUSION

Just as development paradigms changed and
evolved over the last decades from assembly
code to subsequent generations of programming
languages, the development paradigmis changing
from our current third-generation programming
languages to a higher abstraction level. This
shift is gradually happening as MDE is gaining
importance as an abstraction mechanism over
traditional programming activity.

However, tools need to follow and support this
paradigm change. The only way that a modeling
tool can effectively support the software devel-
oper’s complex tasks is by providing metamodel-
ing support: Such a tool should allow a software
developer or architect to specify a language or
metamodel and be able to automatically create
tools that enable the creation of models based on
that metamodel.

This article presented a framework for evalu-
ating a tool’s adequacy in the metamodeling
activity. This framework defines some criteria
that address both theoretical and practical issues
in metamodeling and in modeling tools; never-
theless, it is still subjective and open to further
refinement by adding more important criteria
and by defining measurement metrics that can
establish a higher degree of consensus regarding
metamodeling issues.

After presenting the framework, we applied
it to a small set of current modeling tools that
we believe to be representative of the status of
the mainstream MDE area. Finally, this article
discussed some open research issues for meta-
modeling-based software development tools.

ACKNOWLEDGMENT

We would like to thank Leonel Nobrega for his
promptness in supplying the latest version of his
MetaSketch tool as well as all the documentation
that was available at the time. We would also like

to thank the reviewers of this article for all their
excellent constructive suggestions to improve
its quality.

REFERENCES

Atkinson, C., & Kiihne, T. (2003, September-Oc-
tober). Model-driven development: A metamod-
eling foundation. /[EEE Software, 20(5), 36-41.
Retrieved June 5, 2006, from http:/doi.ieeecom-
putersociety.org/10.1109/MS.2003.1231149

Atkinson, C., & Kiihne, T. (2005, October). Con-
cepts for comparing modeling tool architectures.
In L. Briand & C. Williams (Eds.), Model Driven
Engineering Languages and Systems: Eighth
International Conference, MoDELS 2005 (pp.
398-413). Springer. Retrieved June 23,2006, from
http://dx.doi.org/10.1007/11557432 30

Booch, G., Brown, A., Iyengar, S., Rumbaugh,
J., & Selic, B. (2004, May). An MDA manifesto.
Business Process Trends/MDA Journal. Retrieved
June 15, 2006, from http://www.bptrends.com/
publicationfiles/05-04COLIBMManifesto-
Frankel-3.pdf

Fong, C. K. (2007, June). Successful implementa-
tion of model driven architecture: A case study of
how Borland Together MDA technologies were
successfully implemented in a large commercial
bank. Retrieved November 23, 2007, from http:/
www.borland.com/resources/en/pdf/products/
together/together-successful-implementation-
mda.pdf

France, R. B., Ghosh, S., Dinh-Trong, T., &
Solberg, A. (2006, February). Model-driven de-
velopment using UML 2.0: Promises and pitfalls.
Computer, 39(2), 59-66. Retrieved June 5, 2006,
from http://doi.ieeecomputersociety.org/10.1109/
MC.2006.65

Henderson-Sellers, B. (2005, February). UML the
good, the bad or the ugly? Perspectives from a

129

Evaluation of MDE Tools from a Metamodeling Perspective

panel of experts. Software and Systems Modeling,
4(1), 4-13. Retrieved June 5, 2006, from http:/
dx.doi.org/10.1007/s10270-004-0076-8

Kelly, S., & Tolvanen, J.-P. (2008). Domain-
specific modeling. Hoboken, NJ: John Wiley &
Sons.

Kleppe, A., Warmer, J., & Bast, W. (2003).
MDA explained: The model driven architecture.
Practice and promise. Reading, MA: Addison-
Wesley.

MetaCase. (n.d.). MetaCase: Domain-specific
modeling with MetaEdit+. Retrieved June 5,20006,
from http:/www.metacase.com

Metamodel.com: Community site for meta-model-
ing and semantic modeling. (n.d.). Retrieved June
5, 2006, from http:/www.metamodel.com

Moore, G. C., & Benbasat, 1. (1991, September).
Development of an instrument to measure the
perceptions of adopting an information technol-
ogy innovation. Information Systems Research ,
2(3), 192-222.

Nobrega, L., Nunes, N. J., & Coelho, H. (2006,
June). The meta sketch editor: A reflexive model-
ingeditor. In G. Calvary, C. Pribeanu, G. Santucci,
& J. Vanderdonckt (Eds.), Computer-Aided Design
of User Interfaces V: Proceedings of the Sixth
International Conference on Computer-Aided
Design of User Interfaces (CADUI 2006) (pp.
199-212). Berlin, Germany: Springer-Verlag.

Schmidt, D. C. (2006, February). Guest edi-
tor’s introduction: Model-driven engineering.
Computer, 39(2), 25-31. Retrieved June 5, 2006,
from http://doi.ieeecomputersociety.org/10.1109/
MC.2006.58

Selonen, P., Koskimies, K., & Sakkinen, M. (2003).
Transformations between UML diagrams. Jour-
nal of Database Management , 14(3), 37-55.

130

Siau, K., & Cao, Q. (2001). Unified modeling
language: A complexity analysis. Journal of
Database Management, 12(1), 26-34.

Silva, A., & Videira, C. (2005). UML, metodolo-
gias eferramentas CASE (Vol. 2,2"ed.). Portugal:
Centro Atlantico.

S“oderstrom, E., Andersso, B., Johannesson, P.,
Perjons, E., & Wangler, B. (2002, May). Towards
a framework for comparing process modelling
languages. In CAiSE ’02: Proceedings of the 14"
International Conference on Advanced Informa-
tion Systems Engineering (pp. 600-611). London:
Springer-Verlag. Retrieved June 21, 2006, from
http:/portal.acm.org/citation.cfm?coll=GUIDE
&dl=GUIDE&id=680389#

SparxSystems. (n.d.). Enterprise architect: UML
design tools and UML CASE tools for software
development. Retrieved June 5, 2006, from http://
www.sparxsystems.com/ products/ea.html

Thomas, D. (2004, May-June). MDA: Revenge
of the modelers or UML utopia? IEEE Soft-
ware, 21(3), 15-17. Retrieved June 5, 2006, from
http://doi.ieeecomputersociety.org/10.1109/
MS.2004.1293067

Tolvanen, J.-P., & Rossi, M. (2003, October).
MetaEdit+: Defining and using domain-specific
modeling languages and code generators. In
OOPSLA °03: Companion of the 18" Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Ap-
plications (pp. 92-93). New York: ACM Press.
Retrieved June 5, 2006, from http://doi.acm.
org/10.1145/949344.949365

Visual Studio 2005: Domain-specific language
tools. (n.d.). Retrieved June 5, 2006, from http://
msdn.microsoft.com/vstudio/dsltools

Zhao, L., & Siau, K. (2007, November). Informa-
tion mediation using metamodels: An approach
using XML and common warehouse metamodel.
Journal of Database Management , 18(3), 69-
82.

Evaluation of MDE Tools from a Metamodeling Perspective

Zhu, J., Tian, Z., Li, T., Sun, W., Ye, S., Ding,
W., et al. (2004). Model-driven business process
integration and management: A case study with
the Bank SinoPac regional service platform. /BM
Journal of Research and Development, 48(5/6),
649-669. Retrieved November 23, 2007, from
http://www.research.ibm.com/journal/rd/485/
zhu.pdf

This work was previously published in the Journal of Database Management, Vol. 19, Issue 4, edited by K. Siau, pp. 21-46,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

131

132

Chapter 6
Exploring the Effects of
Process Characteristics on
Product Quality in Open Source
Software Development

Stefan Koch
Vienna University of Economics and Business Administration, Austria

Christian Neumann
Vienna University of Economics and Business Administration, Austria

ABSTRACT

There has been considerable discussion on the possible impacts of open source software development
practices, especially in regard to the quality of the resulting software product. Recent studies have shown
that analyzing data from source code repositories is an efficient way to gather information about proj-
ect characteristics and programmers, showing that OSS projects are very heterogeneous in their team
structures and software processes. However, one problem is that the resulting process metrics measuring
attributes of the development process and of the development environment do not give any hints about
the quality, complexity, or structure of the resulting software. Therefore, we expanded the analysis by
calculating several product metrics, most of them specifically tailored to object-oriented software. We
then analyzed the relationship between these product metrics and process metrics derived from a CVS
repository. The aim was to establish whether different variants of open source development processes
have a significant impact on the resulting software products. In particular we analyzed the impact on
quality and design associated with the numbers of contributors and the amount of their work, using the
GINI coefficient as a measure of inequality within the developer group.

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

INTRODUCTION

In recent years, free and open source software
(OSS) has drawn increasing interest, both from
the business and academic worlds. Projects in dif-
ferent application domains, like most notably the
operating system Linux, together with the suite of
GNU utilities, the office suites GNOME and KDE,
Apache, sendmail, bind, and several programming
languages, have achieved huge successes in their
respective markets. Undeniably, they constitute
software systems of high quality. This has led
to discussions and analyses of the underlying
development process, as OSS is unique not only
in its licenses and legal implications.

The main ideas of this development model are
described in the seminal work of Raymond (1999),
The Cathedral and the Bazaar, first published in
1997. Raymond contrasts the traditional model of
software development, which he likens to a few
people planning a cathedral in splendid isola-
tion, with the new ‘collaborative bazaar’ form of
open source software development. In the latter
model, a large number of developer-turned-users
come together without monetary compensation
to cooperate under a model of rigorous peer re-
view and take advantage of parallel debugging,
which altogether leads to innovation and rapid
advancementin developing and evolving software
products. In order to enable this while minimizing
duplicated work, the source code of the software
needsto be accessible, which necessitates suitable
licenses, and new versions need to be released of-
ten. Most often, the license a software is under is
used to define whether it is open source software,
applying for example the open source definition
(Perens, 1999) or the approach of free software
as embodied in the GNU GPL (Stallman, 2002).
Nevertheless, usually a certain development style
and culture are also implicitly assumed, although
no formal definition or description of an open
source development process exists, and there is
considerable variance in the practices actually
employed by open source projects. Also the re-

lationship to and insights regarding practices of
agile software development (Erickson, Lyytinen,
& Siau, 2005; Turk, France, & Rumpe, 2005;
Merisalo-Rantanen, Tuunanen, & Rossi, 2005)
have been discussed (Koch, 2004a).

Possible advantages and disadvantages to the
development of software of this new development
model have been hotly debated (Vixie, 1999; Mc-
Connell, 1999; Bollinger, Nelson, Self, & Turnbull,
1999; Cusumano, 2004; Feller, Fitzgerald, Hissam,
& Lakhani, 2005). For example the question of
whether open source development positively or
negatively impacts quality and security has been
a topic of several analyses (Witten, Landwehr,
& Caloyannides, 2001; Hansen, Kohntopp, &
Pfitzmann,2002; Payne, 2002; Stamelos, Angelos,
Oikonomou, & Bleris, 2002; Koru & Tian, 2004;
Feller et al., 2005). Different viewpoints have
also developed regarding whether or not the open
source development approach increases efficiency
of software production (Feller et al., 2005). Crit-
ics argue that the largely missing requirements
engineering and design phases, together with
the trend to search for bugs in the source code
late in the lifecycle, lead to unnecessarily high
effort hidden by the relative ease of spreading it
throughout the world (McConnell, 1999; Vixie,
1999). Proponents of the OSS development model
counter with arguments of very high modularity,
fast release cycles, and efficient communication
and coordination using the Internet (Bollinger et
al., 1999; Raymond, 1999).

Currently, much empirical research is proceed-
ing on OSS processes. Often, the research relies
ondataavailable through mining the communica-
tion and coordination tools and their repositories
(Cook, Votta, & Wolf, 1998; Dutoit & Bruegge,
1998; Atkins, Ball, Graves, & Mockus, 1999; Ke-
merer & Slaughter, 1999) in place in OSS projects
in order to describe and characterize the develop-
mentteam and processes. Mostnotably, the source
code control systems used have been found to be
a source of information, together with mailing
lists and bug tracking systems. These analyses

133

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

have been useful in providing an indication of
how OSS development works in practice. Work
performed has included both in-depth analyses of
small numbers of successful projects (Gallivan,
2001) like Apache and Mozilla(Mockus, Fielding,
& Herbsleb, 2002), GNOME (Koch & Schneider,
2002), or FreeBSD (Dinh-Tong & Bieman, 2005)
and also large data samples, such as those derived
from Sourceforge.net (Koch, 2004; Long & Siau,
2007). Primarily, information provided by version
control systems has been used, but so have ag-
gregated data provided by software repositories
(Crowston & Scozzi, 2002; Hunt & Johnson, 2002;
Krishnamurthy,2002), meta-information included
in Linux Software Map entries (Dempsey, Weiss,
Jones, & Greenberg, 2002), or data retrieved
directly from the source code itself (Ghosh &
Prakash, 2000). Other approaches taken include
ethnographic studies of development communi-
ties (Coleman & Hill, 2004; Elliott & Scacchi,
2004), sometimes coupled with repository mining
(Basset, 2004). Indeed, it can be shown that im-
portant information about project characteristics
and participating programmers can be retrieved
in this fashion.

However, a key problem is that the resulting
process metrics (Conte, Dunsmore, & Shen, 1986;
Fenton, 1991; Henderson-Seller, 1996) measuring
attributes of the development process and of the
development environment, such as distinct pro-
grammers, number of commits, or inequality, do
not address the quality, complexity, or structure
of the resulting software product. Therefore, we
expanded the analysis in this article by selecting
and calculating several product metrics pertaining
to these characteristics of the software product.

This allows us to analyze whether different
development practices have an impact on prod-
uct quality. We will use process metrics derived
from the respective source code control systems
as predictors for quality as portrayed by relevant
product metrics. Uncovering these relationships
will answer the question of which values for
these variables—for example, low inequality in

134

participation—Iead to a higher product quality.
For this analysis, we use OSS Java frameworks
as a data set. The most similar work available
is by Koru and Tian (2005), who have used two
large open source projects as a dataset to uncover
arelationship between high-change modules and
those modules rating highly on several structural
measures. Theyused, among others, size measures
such as lines-of-code or number of methods, cou-
pling measures such as coupling between objects,
cohesion measures such as lack of cohesion in
methods, and inheritance measures such as depth
in inheritance tree.

The research objective of this article therefore
is as follows: We investigate whether there is
an influence of different forms of open source
software development processes characterized
by process metrics on the resulting software.
Most importantly, we check for impacts on dif-
ferent quality aspects as measured by appropriate
product metrics. A comparison with proprietary
products and processes is out of scope and will
not be treated in this study.

In the following section the method employed
for arriving at the necessary data is described,
starting with the data set chosen and its impor-
tance, and proceeding to the data collection of both
product and process metrics and their combina-
tion. Then we present the analysis regarding any
relationship between process and product metrics,
both on the level of classes and of projects, fol-
lowed by a discussion. The article finishes with
conclusions and future research directions.

METHOD
Data Set

For this empirical study, a certain fixed domain
of OSS was chosen, in order to limit variance to
the areas of interest by holding the application
domain constant. All projects included therefore
roughly implement the same requirements and

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

with the same programming language, so differ-
ences in software design and quality can directly
be attributed to different development practices
in place.

We examine 12 OSS frameworks for the
presentation layer of Web applications. A frame-
work is a reference architecture for a concrete
application which offers basic structures and
well-defined mechanisms for communication.
Only specific application functionality has to
be implemented by the programmer, which is
achieved by using abstract classes and interfaces
that have to be overridden (Johnson, 1997; Fayad
& Schmidt, 1997). All frameworks are based on
J2EE components like JSP, Servlets, and XML,
and can be used within every Servlet container
that implements the J2EE standard. The frame-
works are: ActionServlet, Barracuda, Cocoon,
Expresso, Jetspeed, Struts, Tapestry, Turbine,
Japple, Jpublish, Maverick, and Echo.

Besides having a fixed domain thus reduc-
ing any noise in the results, frameworks are an
important part in modern software development.
Frameworks are one possibility of reusing exist-
ing software, thus promising reduced costs, faster
time to market, and improved quality (Morisio,
Romano, & Stamelos, 2002). OSS especially lends
itself to white box reuse (Prieto-Diaz, 1993), as
it per definition contains the source code, offers
a deeper view into the architecture, and may be
modified or adapted. This reduces the disadvan-
tages encountered with using components-oft-
the-shelf (COTS) offered by software companies.
Another critical issue that can be solved by using
OSS is the maintenance of frameworks, which is
usually done by the contributors of project. On the
other hand, although the source code is available
and the program could be maintained by the com-
munity, some serious problems could accompany
the development process, due to low-quality code,
design, or documentation. Object-oriented metrics
as used here provide a capability for assessing
these qualities (Chidamber & Kemerer, 1991,

1994) and may help to estimate the development
effort for adaptation and adjustment.

First, all classes are treated as a single data set;
afterwards an analysis on projectlevel is presented.
An analysis on class level is performed for two
reasons: As we analyze the development process
and style, the differences between classes might
be larger than those between projects, and indeed
for some metrics the variation is higher within
the projects than between them. For example an
abstract class for database access might be devel-
oped similarly in all projects. We therefore might
find paired classes among different projects. In
addition, using a framework does not necessarily
mean adopting all classes within this framework.
Therefore an analysis on this detailed level is of
interest out ofareuse perspective. Afterwards, we
will try to consolidate both perspectives by using
multilevel modeling which explicitly incorporates
effects on both levels.

Data Collection

For the following analysis, several steps of data
collection were conducted. As mentioned above,
this study focuses on frameworks for Web ap-
plications written in an object-oriented language.
Many of the available frameworks are not writ-
ten in object-oriented languages but scripting
languages like Perl or PHP. This would preclude
using most of the product metrics designed for
object-oriented languages. Therefore we focused
on frameworks written in Java. We conducted
preliminary research to identify potential candi-
dates that fulfilled the criteria of both language
and application area. This initial phase consisted
of performing extended Web research (online
developer forums, search engines) and perusing
reports in professional publications for developers.
Thisledtotheidentification of 12 frameworks. The
functions and features of the resulting frameworks
were compared in a prior study (Neumann, 2002)
and are not part of this article.

135

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

After the data set as defined above had been
identified, both product and process metrics had
to be retrieved and merged for further analysis. In
order to calculate the product metrics, the latest
stable version of each framework was determined
and downloaded as a packed distribution. Weused
the metric plug-in (http://metrics.sourceforge.
net/) for the Eclipse SDK (http.//www.eclipse.
org)to calculate these product metrics. The neces-
sary compilation of the downloaded source files
required utilization of stable versions over the
current snapshot from the source code repository,
the latter of which might produce complications
due to inconsistent code and the exclusion of ad-
ditional libraries. The plug-in creates an XML
representation of the calculated metrics which
we used in our study. This is done for source
code files only (i.e., .java-files in Java). A simple
Java program was written to process this XML
file and to store the metrics on class level into a
database. The resulting product metrics will be
described in the next section.

To retrieve the required process metrics, we
used the methodology applied in other studies
(Mockus et al., 2002; Koch & Schneider, 2002;
Robles-Martinez, Gonzalez-Barahona, Centeno-
Gonzalez, Matellan-Olivera, & Rodero-Merino,
2003; Dinh-Tong & Bieman, 2005; Hahsler &
Koch, 2005), relying on mining the source code
control repositories, for the data set in all cases
of the concurrent version system (CVS). First, we
looked up the CVS tag associated in the repository
with the stable version already downloaded. Us-
ing this information, a local checkout of the files
was performed, and a log file was generated from
the initial check-in until the corresponding date
of the stable release. This assures that the same
source code is used to calculate both the product
and process metrics. Data from the log files were
extracted for every check-in for every available
file in the local CVS repository. Once extracted,
these were stored in a normal database as has
been done in prior studies (Fischer, Pinzger, &
Gall, 2003; Koch & Schneider, 2002; Koch, 2004;

136

Hahsler & Koch, 2005). Each database entry
therefore consists of the filename, the name of
the committer which was anonymized for privacy
reasons (Thuraisingham, 2005), LOC added
and deleted, and the date. The end result was a
total of 45,164 records within a single table. We
then used database queries to calculate process
metrics, for example, overall commits, number
of different committers, and so on, for each class
(i.e., java-file). Using another program, additional
metrics like the standardized GINI coefficient
were computed for every file and again stored in
the database. The product and process metrics
were merged using the file name as a unique key,
resulting in one entry for every class containing
both types of metrics. We therefore only consider
source code files (i.e., .java-files) and exclude ad-
ditional files possibly found inthe CVSrepository,
like documentation files or the projects’ Web
sites. Figure 1 gives a graphical overview of the
data-collection process.

Description of Process Metrics

In selecting the metrics used in this study, we
both considered the goals of the analysis (i.e., to
be able to both characterize the software process
and quality aspects of the resulting product) and
the availability of metrics within the data. We use
several well-discussed process metrics to char-
acterize the OSS development processes in the
projects analyzed. The metric of commit refers to
a single change of a file by a single programmer.
Therefore the number of commits of a file is the
sum of changes conducted over a certain period
of time and is also an indicator for the activity of a
file. In our study we cover the time from the initial
commit of a file until the last commit before the
stable version was released. The total lifetime of
a file includes all the time elapsed, not only that
time which was spent on developing and coding.
Anotherimportant process metric is the total num-
ber of distinct programmers involved in writing
and maintaining a file. A programmer is defined

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Figure 1. Data-collection process

Project
list

1. Project
download

Project
CVs
Server

(stable)

4. CVS log

3.CVSta
g download

determiation

Project
Source
Codes

2. Product
metric
calculation

CVS tags
list

CVS logs

5. Log
analysis
(process metrics)

Database

by counting those people committing source code
changes through their CVS account, thus only
people with such accounts are measured. In some
projects, depending on the change and commit
policy inplace, people could be contributing code
without CVS account, which sometimes is only
granted to long-time participants, by sending it
to one of those persons who then does the actual
commit. For example, German (2006) found that
110 out of 364 modification records of a user were
patches submitted by 46 different individuals.
Therefore, the number of programmers might
actually be higher than the number reported here.
This fact is very problematic to check. In general,
there are several possibilities of attributing au-
thorship of source code to persons, which are to
use the associated CVS account (as done here),
to mine the versioning system comments for any

additional attributions, to infer from attributions
in the source code itself, or by questionnaires
or intimate knowledge of a project and its par-
ticipants. Attributions in source code or commit
comments are highly dependent on existence and
form of a project’s standards, and therefore are
also difficult to implement for larger data sets.
Ghosh and Prakash (2000) have implemented a
solution based on source code attributions for a
set of more than 3,000 projects, with about 8.4%
of the code base remaining uncredited, and with
the top authors containing organizations like the
Free Software Foundation or Sun Microsystems.
Nevertheless, they have found a similar distribu-
tion of participation as found in this study’s data
set, as have most other approaches like question-
naires (Hertel, Niedner, & Hermann, 2003) or
case studies of larger projects (Mockus et al.,

137

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

2002, Koch & Schneider, 2002; Dinh-Trong &
Bieman, 2005). In a case study of the OpenACS
projectunder participation of project insiders and
using the strict standards for CVS comments,
Demetriou, Koch, and Neumann (2006) have
found that only 1.6% of revisions pertained to
code committed for someone without CVS privi-
lege. In this study, we have used two approaches
for checking the validity of this measure: Using
simple heuristics, we have checked all commit
comments for attributions. This shows that 11.7%
of revisions seem to be contributed by other people.
We have also manually inspected all revisions of
the Maverick project: no revision seemed to have
been committed for somebody else, which was
identical to the heuristics result.

As the participation of programmers in open
source projects is less continuous than in com-
mercial development, the number of program-
mers alone does not adequately reflect the effort
invested. Therefore we include the open source
software person month (OSSPM) as a new pro-
cess metric that characterizes the amount of work
that is committed to the object considered. This
is defined as the cumulated number of distinct
active programmers per month over the lifetime
of the object of analysis. As Koch and Schneider
(2002) have shown, this number of active pro-
grammers can be used as an effort predictor. It
should be noted that this measure assumes that
the mean time spent is constant between objects
of analysis.

As several prior studies (Koch, 2004; Mockus
et al., 2002; Ghosh & Prakash, 2000; Dinh-Tong
& Bieman, 2005) have shown the distribution of
effort between participants to be highly skewed
and differing from commercial software devel-
opment, we add an additional process metric to
characterize the development style. We used the
normalized GINI coefficient (Robles-Martinez et
al., 2003), a measure of concentration, for this.
The GINI coefficient is a number between 0 and
1, where 0 is an indicator for perfect equality and
1 for total inequality or concentration. We cal-

138

culated the GINT coefficient both based on LOC
added per person (which can be extracted from
the CVS repository) and on the number of com-
mits a person has done. As the further analyses
did not show significant differences between both
measures, we will only report the findings for the
GINI coefficient based on LOC added. Therefore
in the terms of OSS development, a GINI coef-
ficient of 1 means that one person has written all
the code. We performed a slight modification: As
some files only have one author, calculating the
normalized GINI coefficient results in 0 (equal-
ity). For these cases we changed the value from 0
to 1 because, for us, the fact that one person has
written all the code is an indicator of inequality
rather than equality.

Description of Product Metrics

The most popular product metric is the size of a
program, which can be derived by counting the
number of lines-of-code (LOCs). There are many
different ways to count LOCs (Humphrey, 1995;
Park, 1992; Jones, 1986). In this analysis we ap-
ply the definition used by the CVS repository,
therefore including all types of LOCs: source
code lines as well as commentaries (Fogel, 1999).
The size of the largest method (LOCm) is another
important descriptor in object-oriented classes
which can also be measured by counting LOCs.
These size metrics can be regarded as indicators
for complexity as it is very difficult to read and
understand classes with long methods and many
fields (Henderson-Seller, 1996). Other indicators
are the number of regular/static methods (NOM/
NSM) and the number of regular/static fields
(NOF/NSF). We propose that these size measures
are affected by nearly all process metrics: [f more
people are working onaclass, its size will increase.
The same will tend to be true for the time the class
exists and the number of commits performed.
Especially the amount of effort invested in the
class will increase the size. Most importantly,
we propose that the inequality in contributions

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

will affect different size measures: If the class is
programmed and maintained by asmall team, ora
small core group within ateam, these participants
will tend not to see the need for promoting higher
modularity. This would presumably lead to them
not splitting up a class, thus affecting LOC, or a
method, thus affecting LOCm.

The probably most well-known complex-
ity metric is McCabe’s definition of cyclomatic
complexity (VG) (McCabe, 1976). VG counts the
number of flows through a piece of code, (i.e., a
method). Each time abranch occurs (if, for, while,
do, case, catch, and logic operators), this metric is
incremented by one. We determined the maximum
(VGmax) and the average (VGavg) method com-
plexity onclass level. Weighted Methods per Class
(WMC) are part of the Chidamber and Kemerer
suite, but they leave the weighting scheme as an
implementation decision (Chidamber & Kemerer,
1994). In our study WMC is defined as the sum of
all method’s complexities (V'G) that occur within
aclass. VG and WMC are indicators of how much
time and effort must be spent to understand, test,
maintain, or extend this component (Chidamber
& Kemerer, 1991; 1994), with McCabe giving
VG = 10 as a reasonable limit for proper testing
(McCabe, 1976). But this measure should be
treated with special care, as this metric is based
onexperiences in procedural languages including
Cor COBOL (Lorenz & Kidd, 1995). Subraman-
yam and Krishnan (2003) have shown that WMC
is highly correlated to LOC, which supports the
thesis that LOC can be used as a low-level com-
plexity metric. The influence of WMC on software
quality was examined in several studies (Basili,
Briand, & Melo, 1996; Subramanyam & Krishnan,
2003). Regarding the relationship of complexity
measures with process metrics, the mostimportant
effect is proposed to exist in connection with the
inequality: Analogous to the reasoning for size,
complexity reduction will not be a high priority
when a small core group who would know the code
in any case is present. Also, classes, and software
overall, tend to accumulate more complexity as

time passes, if no counter-measures are taken.
This will decrease maintainability, which again
is less of an issue if the software is consistently
maintained by a small group.

The object-oriented product metrics we investi-
gated are mostly based on a subset of the Chidam-
ber-Kemerer-Suite (Chidamber & Kemerer, 1991,
1994; Chidamber, Darcy, & Kemerer, 1998). The
authors argued thatthe product metrics commonly
used before were not suitable for object-oriented
development (Chidamber & Kemerer, 1991). From
their point of view, the modern object-oriented
analysis, design, and programming processes,
which encapsulate functionality and entities in
objects, were too different from the traditional
software engineering process. The prior product
metrics were not designed to measure object-
oriented characteristics like classes, inheritance,
and the usage of methods and attributes. They
proposed six metrics, derived from a theoretical
analysis, which should be able to assist in making
predictions about the complexity and quality of
object-oriented programs. We used a subset of the
CK-suite (NOC, DIT, WMC) for which concrete
threshold values were suggested. The remaining
metrics (LCOM, RFC, CBO) are not part of this
study, as no threshold values are available. In
addition, CBO and RFC have been found to be
highly correlated with WMC (Chidamber et al.,
1998), so they would not give additional infor-
mation. These CK-metrics for our analysis are
complemented by some of the metrics defined
by Lorenz and Kidd (1995).

Number of Children (NOC) and Depth in
Inheritance Tree (DIT) are metrics for the level
ofiinheritance of a class. Chidamber and Kemerer
(1994) state that the deepera class in the hierarchy,
the more complicated it is to predict its behavior
and the greater its design complexity. Though
this may lead to greater effort in maintenance
and testing, it has greater potential for the reuse
of inherited methods. In a Java environment, DIT
is defined as the longest path from the class to
the root in the inheritance hierarchy—that is, the

139

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

class Object. Some studies have shown that DIT
is related to fault-proneness (Basili et al., 1996;
Briand, Wiist, Ikonomovski, & Lounis, 1998).
NOC counts the number of classes inherited
from a particular ancestor—that is, the number
of children in the inheritance hierarchy beneath
aclass. A class implementing an interface counts
as a direct child of that interface. Chidamber and
Kemerer (1991) expose a similar relationship be-
tween design complexity and NOC. The greater
the number of children of a class, the greater is the
reuse. However, an excessive number of children
may indicate the misuse of sub-classing. NOC
also hints to the importance of that class within
the application, as well as to the corresponding
additional effort likely required for testing and
maintaining. NOC was evaluated by Basili et
al. (1996) and Briand et al. (1998), who differ in
their findings related to fault-proneness. NORM,
like NOC and DIT, is an inheritance metric for
class design (Lorenz & Kidd, 1995). It measures
the number of inherited methods overridden by
a subclass. Lorenz and Kidd (1995) state that,
especially in the context of frameworks, methods
are often defined in a way that requires them to
be overridden. However, very high values may
indicate a design problem because a subclass
should extend new abilities to its super-class that
should result in new method names. Similar to
the other product measures, we again propose
a relationship of the process metrics with these
object-oriented metrics. Especially the metrics
giving an indication of the use of inheritance
will be affected by different process attributes,
most importantly on project level. The correct
use of inheritance helps in achieving a modular
design which in turn allows for parallel work by
many participants. In addition, it significantly
enhances maintainability. We therefore propose
that analogous mechanisms will be found here as
for complexity measures.

We suggest two additional metrics that can be
used to describe the interior design of a class. The
number of classes (NCL) counts the number of

140

classes within a class and should be either 0 for
interfaces or 1 for classes. Other values indicate
the utilization of interior classes, which should be
avoided in object-oriented design. The number of
interfaces within a class (NOI) aims at the same
direction. Interfaces are used to define entry
points within or even across applications and
therefore should not be defined within a class but
in separate files.

Most of these product metrics presented are
discrete variables, where increasing (or decreas-
ing) values are not necessarily a sign of good
or bad quality, or aspects thereof. For example,
whether the cyclomatic complexity VG ofan entity
is 4 or 6 is mostly determined by its function, and
does not signal any deviation from good practice
or negatively influence maintainability. Only if a
certain value is surpassed does this metric give
an indication of possible problems. Therefore,
most of these metrics can be assigned a threshold
for this purpose. Currently, there is a paucity of
threshold values for the defined metrics provided
by literature based on empirical studies, especially
using Java. This requires us for most metrics to
use the values proposed by Lorenz and Kidd
(1995) for C++ classes.

Based on the threshold values in Table 1, we
created dummy variables that take on the value
of one or zero, depending on whether the associ-
ated metric values exceed the threshold value for
that class. These dichotomous variables try to
categorize the given metrics based on different
aspects to be explored like size or complexity
(see Box 1).

MSIZE and CSIZE depend on metrics that
measure size, MCOMP on complexity, CINH
on inheritance, and CDESIGN on interior class
design.

ANALYSIS ON CLASS LEVEL

In total, 6,235 Java classes (i.e., distinct files)
have been analyzed, for which a total of 45,164

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Table 1. Overview of metrics with corresponding threshold values

Metric Name Threshold | Definition
NOC Number of Children Total number of direct subclasses of a class
NOI Number of Interfaces Total number of interfaces of the file
Distance from class Object in the inheritance
DIT Depth of Inheritance Tree <6
hierarchy
Total number of methods that are overridden
NORM Number of Overridden Methods <3
from an ancestor class
NOM Number of Methods <30-40 Total number of methods
NOF Number of Fields <39 Total number of class variables
NSM Number of Static Methods <4 Total number of static methods
NSF Number of Static Fields <3 Total number of static variables
Total lines of code of the greatest method in
LOCm Lines of Code <24
the selected scope
McCabe Cyclomatic Complexity
VGmax <10 Maximum VG for all methods within a class
Maximum
McCabe Cyclomatic Complexity
VGavg <10 Average VG for all methods within a class
Average
Sum of the McCabe Cyclomatic Complexity
WMC Weighted Methods per Class <65
for all methods in a class
NCL Number of Classes =1 Indicates possible interior classes
Box 1.
MSIZE 1 if LOC/NOM >18v LOCm > 24

0 else

MCOMP 1 if VGmax

(e}
)
Y
Q

(e}
2
©
Q

CINH

o
)
1)
Q

CDESIGN

0 else

1 if DIT>6v(NOC*DIT)>15

CSIZE {1 if NOM >30v NSM >4v NOF >9v NSF > 4
{1 if NCL>1v NOI>1

>10v VGavg > 10

commits were made, with 2,109,989 LOCs added
and 913,455 LOCs deleted. A total of 133 distinct
programmers have contributed with at least one
commit. The number of classes investigated
therefore is considerably higher than the datasets

used in former studies on object-oriented metrics
(634 by Chidamber & Kemerer, 1994; 97 by Chi-
damber et al., 1998; 180 by Basili et al., 1996; 698
by Subramanian & Corbin, 2001; 180 by Briand,
Wiist, Daly, & Porter, 2000).

141

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Table 2. Descriptive statistics for all classes

Process Metrics
N Min | Max Mean s.d. 75% Percentile | Median

Authors 6,235 | 1.00 15.00 2.66 1.59 3.00 2.00
Commits 6,235 1.00 209.00 7.24 9.96 8.00 5.00
Days 6,235 | 0.00 | 1,628.91 357.44 298.90 459.81 350.78
GINI 6,235 | 0.00 1.00 0.78 0.24 0.98 0.85
OSSPM 6,235 | 1.00 58.00 4.80 4.02 6.00 4.00
Product Metrics

N | Min Max Mean s.d. | 75% Percentile | Median
LOC 6,235 | 0.00 | 7,546.00 207.99 279.44 237.00 124.00
DIT 5,339 | 1.00 10.00 2.60 1.58 3.00 2.00
NCL 5,339 | 1.00 51.00 1.16 1.24 1.00 1.00
NOF 5,339 | 0.00 119.00 2.50 4.67 3.00 1.00
NOI 915 1.00 28.00 1.07 1.19 1.00 0.00
NOM 5,339 | 0.00 252.00 8.37 12.32 10.00 4.00
NORM 5,339 | 0.00 65.00 0.61 1.89 1.00 0.00
NOC 5,339 | 0.00 185.00 1.18 7.05 0.00 0.00
NSF 5,339 | 0.00 69.00 1.54 430 1.00 0.00
NSM 5,339 | 0.00 69.00 0.71 3.03 0.00 0.00
VGavg 5,339 | 0.00 42.00 2.41 2.60 2.77 1.67
WMC 5,339 | 0.00 871.00 20.77 37.22 23.00 10.00
LOCm 5,339 | 0.00 601.00 22.96 35.85 30.00 24.00
VGmax 5,339 | 0.00 159.00 5.51 8.38 7.00 3.00

Descriptive Statistics

Descriptive statistics for all product and process
metrics can be found in Table 2. The highest
number of commits (209) can be found in the
Barracuda project. This file is a change history
in Java format containing only comments. The
file with the second highest number of commits
(188) is also the class with the highest value of
LOCs added (19,252), LOCs deleted (11,706),
and the largest file overall (7,546 LOCs). This
file is one of the most important classes of the
Expresso framework (DBObject.Java) and is re-
sponsible for DB communication. The class that
is responsible for dispatching the requests of the

142

Struts framework (ActionServlet.Java) is the file
with the third highest number of commits (150).
An abstract class of the Jetspeed framework that
forms the behavior of a portlet has another high
value of commits. It is obvious that components
providing key functionalities need a special
amount of interest because they are usually en-
gaged with several other objects. In accordance
with prior studies, all of the process metrics are
not ‘normal distributed’ which can be ascertained
using a Kolmogorov-Smirnov test.
Inaccordance with other studies (Koch, 2004),
the number of distinct programmers is quite small
with low standard deviation. The histogram of
distinct programmers per file shows a heavily

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

skewed distribution. Only 12.2% of the files have
more than three distinct authors. Most of the files
have one (24.0%) or two (56.1%) programmers,
and only 3% have more than five distinct authors.
The number of commits per file follows a simi-
lar distribution. Only 16.3% have more than 10
commits. Although our values depend on files’
respective classes, there are similarities to other
studies that have investigated the distribution of
distinct authors and commits (Koch, 2004; Krish-
namurthy, 2002; Mockus et al., 2002; Ghosh &
Prakash, 2000) on the project level.

All of the product metrics are clearly not ‘nor-
mal distributed’ as well. The distribution of LOC
is also heavily skewed, which is in accordance
with other studies (Koch, 2004; Krishnamurthy,
2002).

Due to the fact that most of the metrics men-
tioned above measure attributes of classes, we
regard real interfaces as missing values (NOI
= [and NCL = 0). Classes that have interior
interfaces are valid. Most of the median values
are below the threshold suggested by Lorenz and
Kidd (1995), as are most of the values for the
75% percentile. The only metric that exceeds this
recommendation is the 75% percentile of the size
of a method (30>24). The median of the average
method complexity per class VGavg (1.67) and of
the maximum method complexity (3) are below
the threshold of 10 suggested by McCabe (1976),
and only 11.5% of the classes have a maximum
method’s complexity greater than 10. Most of the
studies which investigate object-oriented metrics

used C++ source files (Briand et al., 2000; Chi-
damber & Kemerer, 1994), so our results cannot
directly be compared to them. We are aware
of only one study that investigates Java classes
(Subramanyam & Krishnan, 2003). Compared to
that study we have higher WMC values and our
classes are more deeply nested in the inheritance
hierarchy. One possible reason for this may be the
fact that we examined frameworks that provide
abstract classes that are meant to be overrid-
den. The percentage of classes that exceed our
dichotomous variables are 5.3% (CINH), 6.0%
(MCOMP), 6.1% (CDESIGN), 14.9% (CSIZE),
and 34.9% (MSIZE). The fact that one-third of the
classes investigated do not meet the requirements
for small method size gives rise to the question
whether these threshold values are suitable for
object-oriented Java programs. Our data set
consists of frameworks that provide functionality
for a lot of different scopes. Therefore the aver-
age and maximum values may be greater than in
normal applications. However we do not adjust
the threshold value as it is an indicator for easy
understanding and maintenance. The remaining
values for the dichotomous variables seem to be
reasonable.

RESULTS

Inthis analysis, we explore relationships between
the metrics mentioned above. Results for correla-
tions between the different process metrics can

Table 3. Correlation between process metrics (Spearman coefficient, all at a significance level of

p<0.01)
Authors | Commits Days GINI OSSPM
Authors 1.000
Commits 0.554 1.000
Days 0.471 0.685 1.000
GINI -0.524 -0.370 -0.528 | 1.000
OSSPM 0.639 0.925 0.689 | -0.393 1.000

143

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

be found in Table 3, respectively Figure 2, using
ellipses (Murdoch & Chow, 1996). Due to the fact
that all metrics are not ‘normal distributed’, we
used the nonparametric Spearman coefficient.
The correlation analysis shows expected re-
lationships, like the older a file the more distinct
programmers are involved (0.471), the more
commits are conducted (0.685), and the more
work is contributed (0.689). The amount of work
(OSSPM) is highly correlated to authors, commits,
and the active time, what is indeed reasonable.
More interesting are the relations between the
inequality as measured by the GINI coefficients
and the remaining process metrics. The results
show that the older a file, the more homogeneous
isthe distribution of the added input. The negative
correlation between authors and GINI reveals the
same tendencies. The more people are involved,
the more the work is equally distributed among
the participating authors. The number of commits
only has slight influence on the GINI coefficient.
The correlation between product metrics is not
that important, but it should be mentioned that

Figure 2. Correlation between process metrics
(Spearman coefficient, black showing significance
level of p<0.01)

Authors
Commits
Time
GINI
DESFNM

— /

e @/

- 08/

- QQN
224 Y

144

metrics that measure size attributes of a class
(NOM, NSM, NOF, and NSF) are positively
correlated to the total size in LOC. Furthermore
there is a very strong correlation of WMC to LOC
(0.734), which is almost identical to the correlation
coefficient of 0.741 found by Subramanyam and
Krishnan (2003). More importantly, correlations
between product and process metrics have been
explored, and the results are shown in Table 4,
respectively Figure 3, using ellipses (Murdoch
& Chow, 1996).

The complexity metrics WMCand VGavghave
a slight correlation to the number of authors and
commits as well as to the effortindicator OSSPM.
A similar slight relationship appears regarding
the group of metrics that measure the size of a
class like LOC, LOCm, or NOM. The influence
of the active time on the product metrics can be
disregarded. Metrics concerned with the use of
inheritance (DIT and NOC) do not seem to be
correlated to any of the process attributes. As DIT
and NOC are important indicators of reuse and
well-structured programming, a deeper look into
source code is necessary to gather that kind of
information. The GINI coefficient does not seem
to be correlated to any product metric.

As described above we created dichotomous
variables that indicate whether a class exceeds
a certain quality threshold or not and compared
these two samples with a non-parametric rank-
sum test, the Mann-Whitney-U test, also known as
Wilcoxon rank-sum test, for example also applied
by Koruand Tian (2005). The test assesses whether
the degree of overlap between the two observed
distributions is less than would be expected by
chance. The resulting hypotheses are:

HO: Thereis no difference in process characteris-
tics between the group S1 that exceeds the thresh-
old values and the group S0 that does not.

HA: There is a difference between these
groups.

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Table 4. Correlation between selected process and product metrics (Spearman coefficient, * p < 0.05,

**p <0.01)
Authors Commits | Time GINI OSSPM
LOC **0.157 **0.379 | **0.179 **0.057 **0.370
DIT 0.015 0.019 0.025 *-0.027 0.021
LCOM **0.109 **0.102 0.020 **0.044 **0.137
LOCm **0.237 **0.432 | **0.181 **—0.058 **0.408
NBD **0.273 **%0.290 | **0.138 | **-0.152 **0.292
NCL **0.092 **0.139 | **0.042 **0.048 **0.131
NOF **0.149 *¥*0.199 | **0.071 **0.038 **0.199
NOI **-0.080 | **-0.097 0.001 **-0.034 | **-0.119
NOM **0.103 **0.253 | **0.066 **0.037 *#*(.232
NORM **0.095 *¥*0.169 | **0.108 | **-0.078 **0.181
NOC **0.085 **0.084 | **0.091 *-0.029 **0.093
NSF **0.129 **0.244 | **0.155 —0.022 **(.235
NSM —-0.019 **0.044 *0.027 0.006 0.018
SIX **0.076 **0.149 | **0.108 | **-0.086 **0.162
VGavg **0.242 **0.332 | **0.168 | **—0.112 **(.337
WMC **0.214 **0.389 | **0.163 *-0.032 **0.366

Figure 3. Correlation between selected process and product metrics (Spearman coefficient, grey p <

0.05, black p < 0.01)

LOGC
DIT

(@ Authors
O. Commits

LCOM @
Locm @@
NED @@
Vel I |
NOF @
el T
NOM @4
NORM 4
Nolol I |
NSF @@
NsM (O
FAR @
six PP

ve @

WMC @

®
00000 00000000000 N
VROV V0V OVVVNVOC® OssFv

145

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Table 5. Results of Mann-Whitney U-tests (1 indicates that high values of the process metrics foster bad

quality and | indicates good quality)

| Authors | Commits Time | GINI | OSSPM

MSIZE

accepted accepted accepted accepted | accepted
relationship (HA)

(p<0.01) (p<0.01) (p<0.01) (p<0.01) | (p<0.01)

1, HAI 1, HAI 1, HAI 1 HAO | 1, HAI
direction

(p<0.01) (p<0.01) (p<0.01) (p<0.01) | (p<0.01)
MCOMP

accepted accepted accepted accepted
relationship (HA) rejected

(p<0.01) (p<0.01) (p<0.01) (p<0.01)

1, HAI 1, HAI 1, HAI 1, HAI
direction

(p<0.01) (p<0.01) (p<0.01) (p<0.01)
CSIZE

accepted accepted accepted accepted
relationship (HA) rejected

(p<0.01) (p<0.01) | (p<0.01) (p<0.01)

1, HAI 1, HAI 1, HAl 1, HAl
direction

(p<0.01) (p<0.01) (p<0.01) (p<0.01)
CINH

accepted accepted accepted accepted | accepted
relationship (HA)

(p<0.01) (p<0.01) (p<0.01) (p<0.01) | (p<0.01)

1, HAl 1, HAl 1, HAl 1, HAO 1, HAl
direction

(p<0.01) (p<0.01) (p<0.01) (p<0.01) | (p<0.01)
DESIGN

accepted accepted accepted accepted | accepted
relationship (HA)

(p<0.01) (p<0.01) (p<0.01) (p<0.01) | (p<0.01)

1, HAI 1, HAI 1, HAI 1, HAl 1, HAl
direction

(p<0.01) (p<0.01) (p<0.01) (p<0.01) | (p<0.01)

If HO is rejected, an additional, one-sided
Mann-Whitney U-test is used with the hypoth-
eses:

HA1: The rank-sum in S1 is greater than in SO,
indicating that high values of process metrics
foster bad quality.

HAO: The rank-sum in S1 is lesser than in SO0,

indicating that high values of process metrics
foster good quality.

146

The results of these tests are shown in Table 5.
Except for the combinations MCOMP/GINI and
CSIZE/GINI, the significance is smaller than 0.05,
so in these cases we can accept the alternative
hypothesis HA that the corresponding process
metrics have an influence on the product metric.
In this case we performed a one-sided Mann-
Whitney U-test to determine the direction of
relationship—thatis, whether the process metrics
have a positive (accept HAI) or negative (accept
HADO) influence on the product metrics.

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

In case of a positive relationship (1), the sum
of the ranks in the group that exceeds the limit
is higher than in the group that does not. In qual-
ity terms, these results indicate that the higher
the process metric is, the lower the quality is.
Therefore a higher number of distinct program-
mers, commits, time, and invested effort have a
negative influence on the quality.

To validate our results we performed the same
tests only with classes that have at least five dif-
ferent authors (n=668). The results are mainly the
same, but we could not reject HO for the combina-
tions MCOMP/Time, CSIZE/Authors, and CSIZE/
Time. The change in the number of authors had
an influence on the relationship between GINI
and the dichotome product metrics. All combina-
tions had a positive influence (accept HA1 with
p<0.01), which confirms our prior results that the
more the work is concentrated, the worse is the
quality of software. Or the other way around, an
equal distribution of commits fosters good quality.
We will discuss this important finding in more
detail later on.

ANALYSIS ON PROJECT LEVEL

Foran analysis on project level, we aggregated the
product metrics from class level and calculated
the process metrics for the whole project, based
on those files that were examined in the former
section. We stored these results in another table
in the database.

Descriptive Statistics

Cocoon is the project with the highest number of
distinct programmers, commits, and Java classes.
Theproject ActionServlet, Jpublish, and Echo only
have one author. Whether these should be included
in furtheranalysis can be discussed. Using a defini-
tion of OSS based on the respective license, these
projects constitute open source projects, but they
conflictwith the development model normally as-
sociated. On the other hand, these projects might
possibly have more participants but a very central
control regarding the source code, such that any
change must be reviewed and committed by the
single maintainer, although other people actually
write the code and submit it to this person. We
have already discussed this problem with the

Table 6. Process metrics for all projects (ordered by number of authors)

Authors | Commits | Days GINI Files OSSPM
cocoon-2.1 40.00 | 10,131.00 439.49 0.85 2,298.00 244.00
jakarta-jetspeed 17.00 4,962.00 1,637.92 0.68 677.00 160.00
jakarta-turbine-2 17.00 2,621.00 748.17 0.81 388.00 83.00
jakarta-struts 16.00 3,092.00 1,122.33 0.60 496.00 146.00
expresso 10.00 6,389.00 761.08 0.84 649.00 94.00
jakarta-tapestry 9.00 3,001.00 409.62 0.85 535.00 53.00
Barracuda 9.00 3,543.00 1,279.08 0.75 453.00 71.00
japple 7.00 1,612.00 450.10 0.68 238.00 56.00
maverick 6.00 358.00 1,137.92 0.71 78.00 27.00
ActionServlet 1.00 199.00 223.15 1.00 106.00 4.00
echo 1.00 1,690.00 894.92 1.00 220.00 27.00
jpublish 1.00 886.00 1,172.03 1.00 97.00 34.00

147

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

respective metric description. In the following,
we base the analysis on both the full set and a
subset with these projects removed.

Struts is the framework with the lowest GINI
coefficient, which is an indicator for equality of
input. Cocoon, Jetspeed, Struts, Tapestry, and
Turbine are projects that are hosted by the Apache
Software Foundation. The great popularity of the
Apache Web server may explain the encourage-
ment of these frameworks. The very low number
of commits for the ActionServlet is an indicator
for inactivity of the project.

Table 7 shows the mean values of the most
important product metrics. The Japple framework
has the largest files and the highest WMC. As we
have discussed in the previous chapter, there is a
very strong linear relationship between LOC and
WMC. Therefore this combination is not astonish-
ing. Struts and Jetspeed are the projects with the
highest DIT, which indicates extensive usage of
subclassing, a form of reuse. The number of chil-
dren differs across the projects. The frameworks
with the lowest average number of children only
have one author (ActionServlet, Jpublish).

Table 7. Product metrics for projects (mean values)

To get an indication of quality and design, we
again apply the dichotomous variables used for
capturing different possible problem areas (MSIZE,
MCOMP, CSIZE, CINH, and DESIGN). As the
total number of classes that exceed our limits is
not appropriate due to different numbers of classes
between projects, we calculated the relative amount
of faulty classes within a project (see Table 8).
Metric MSIZE depicting problems with method
size hasrather high values forall projects, but more
than 35% of the classes of Japple, Expresso, and
Jetspeed exceed the limit. These three frameworks
alsohavealarge amount of methods that outrun the
upper bound for complexity. The relative amount
of misuse of inheritance C/INH is small except for
the Maverick framework (14.1%). The number of
classes with interior classes or interfaces is small
except for Barracuda, Maverick, and Echo.

Results

Due to the fact that only a small data set on project
level is available, the usage of correlation analysis
is not sufficient as the small number precludes
any statistically significant findings. Therefore

DIT NORM | NOC | SIX VGavg | WMC
cocoon-2.1 2.54 0.50 1.13 0.24 2.30 18.02
jetspeed 2.97 0.81 0.81 0.45 2.63 22.41
turbine 2.53 0.42 1.40 0.26 1.82 16.33
struts 3.39 0.69 0.72 0.53 2.97 23.01
expresso 2.82 0.78 1.07 0.49 2.59 30.22
tapestry 2.28 0.29 0.92 0.18 1.65 13.49
Barracuda 2.44 1.29 2.88 0.27 2.83 26.74
japple 1.97 0.77 1.22 0.13 3.16 32.60
maverick 2.40 0.29 1.27 0.33 1.86 9.62
ActionServ-
1.87 0.23 0.33 0.12 2.73 17.01
let
echo 1.92 0.50 1.75 0.17 2.23 18.44
jpublish 1.97 0.24 0.46 0.10 1.73 13.70

148

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Table 8. Percentage of classes that exceeds the limits of quality metrics

MSIZE MCOMP | CSIZE | CINH CDESIGN
cocoon-2.1 24.06 4.05 11.27 435 7.57
jetspeed 37.08 6.06 15.36 8.71 2.81
turbine-2 26.55 1.55 12.37 4.12 232
jakarta-struts 34.68 8.67 17.34 3.63 1.61
expresso 45.30 8.01 15.25 4.47 2.77
tapestry 17.38 0.75 5.05 1.87 3.36
Barracuda 33.55 9.71 18.32 6.84 17.44
japple 53.78 7.98 13.03 1.26 3.36
maverick 17.95 0.00 10.26 14.10 11.54
ActionServlet 23.58 4.72 3.77 0.94 4.72
echo 28.18 5.45 2227 3.18 15.00
jpublish 19.59 2.06 6.19 2.06 1.03
Table 9. Ranks and sum (ordered by decreasing ranksum)
MSIZE | MCOMP | CSIZE | CINH | CDESIGN | Ranksum
jakarta-tapestry 12 11 11 10 6 50
jpublish 10 9 10 9 12 50
ActionServlet 9 7 12 12 5 45
jakarta-turbine-2 7 10 7 6 10 40
maverick 11 12 9 1 3 36
cocoon-2.1 8 8 8 5 4 33
japple 1 4 6 11 7 29
jakarta-struts 4 2 3 7 11 27
expresso 2 3 5 4 9 23
nextappecho 6 6 1 8 2 23
jakarta-jetspeed 3 5 4 2 8 22
Barracuda 5 1 2 3 1 12

we performed a simple ranking based on the rela-
tive amount of classes that exceed our threshold
values. High relative amounts of ‘faulty’ classes
resultin high ranks (i.e., the project with the high-
est percentage of classes violating the threshold
is ranked on the first place in this variable), and
therefore the higher the sum of ranks the higher
the overall quality. We do not weight the quality
indicators. This ranking can be used to choose
the best alternative among concurrent projects
depending on their software quality. This rank-

ing is on an ordinal scale and therefore should not
be misused to perform any kind of quantitative
comparisons, but we try to find some indicators
for our findings on class level.

Itis interesting that the two projects with only
one author have the highest rank overall. Jpublish
and ActionServlet also have very low numbers of
Java-files and commits, and the OSS development
effort is rather low as well. In contrast to these
one-man-projects, Tapestry has nine distinct au-
thors but the same Ranksum as Jpublish. But this

149

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

projectisnotthatold and the invested development
effort is rather small. This can be seen as another
proof for the hypothesis that over project lifetime,
the quality decreases due to a missing necessary
redesign of the software structure.

The largest project overall with 40 distinct
authors, more than 10,000, commits and 244
OSSPM is Cocoon. Cocoon is ranked in sixth
place—right in the middle—so that we cannot
state the quality as extremely bad or good. The
second largest project measured by OSSPM and
Java-files is Jetspeed, which has the second worst
quality ranking, which supports the findings on
class level.

Inorder to statistically underline these results,
we used the order produced by the ranksum to
compare those projects ranking highly overall
to those ranking very low. This was done by a
set of Mann-Whitney U-tests as applied above.
This time, membership in a project was used as a
dividing factor for the classes, and the distribution
of relevant process metrics was tested to uncover
whether the top projects consistently have differ-
ent distributions than the lower rated ones. We
tested each of the top three projects against each
of the bottom three projects, resulting in nine
comparisons per process metric. For validation,
we also eliminated the one-person projects within
the top group, using the next lower ones with more
participants. The results indicate that projects in
the high-quality region have more authors and
commits, but consistently lower GINI coefficient
representing more equal distributions (in six, re-
spectively seven, out of nine comparisons in the
validation sample). While the first result seems
in contradiction with the results on class level,
the effects of a high concentration are valid on
both levels. These results will be discussed in the
following section.

MULTILEVEL ANALYSIS

Multilevel models (also sometimes termed nested
or mixed-effect models) are statistical models with

150

parameters arranged in a hierarchical structure
(Goldstein, 1999; Snijders & Bosker, 2003; Kreft
& de Leeuw, 2002). They are appropriate for
data which involves multiple levels, for example
on individual level and group level. A classical
example is a study of students from different
schools, attributes of which might have an impact
onindividual performance, or research in organi-
zational science (Klein, Tosi, & Cannella, 1999).
Multilevel models can account for direct effects
of variables on each other within any one level,
and also cross-level interaction effects between
variables located at different levels.

In our study, we have data within two dis-
tinct levels: class and project, with classes being
grouped into projects. Therefore, it is possible
that aspects of a project like different processes
or practices have an influence on the quality of
a class. Using a multilevel model, these effects
can be accounted for and tested. In the follow-
ing, we use Akaike’s information criterion (AIC)
to compare the goodness of fit of the estimated
models, which incorporates the number of param-
eters in selecting the best model, thus penalizing
overfitting. For all analysis, we employed R, a
freely available language and environment for
statistical computing, using the nlme package for
multilevel modeling.

First, we computed for comparison classical
linear models without hierarchical effects foreach
dichotomous quality metric (MSIZE, MCOMP,
etc.), using the independent factors Authors, Com-
mits, Time, and GINI. The results are congruent
with the class-level analysis and show the same
general trend of negative effects on quality: In
general, all of the parameters are significant,
positive, and introducing themin a stepwise linear
regression increases model quality significantly
(all at p< 0.01). The following exceptions apply:
Time has generally a positive effect on quality
(except for CINH where the effect is negative,
and for CDESIGN where it is not significant),
and for MSIZE the GINI coefficient has a posi-
tive influence as well (again congruent with the
prior analysis). The GINI coefficient also does

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Figure 4. Ranking of projects based on the dichotomous variables (high relative amounts result in low
ranks, the higher the sum of the ranks the better the quality)

10

Rank

oy

(a) ranks

not have a significant effect on C/INH. Overall,
the resulting models only account for a relatively
small part in overall variation, as the R-squared
value ranges from about 0.05 to 0.10.

Following from this, we expand the analy-
sis into multilevel models. We therefore both
introduce additional fixed variables from the
project level (i.e., the overall effort OSSPM of a
project); the total number of programmers, files,
and commits; total lifetime and GINI coefficient;
and define an increasing range of first-level vari-
ables as random. This implies that for each unit,
a different slope and intercept is estimated, so
that the effect of these can differ between units.
These different setups resulted in more than 10
different models being estimated for each quality
indicator. Using statistical tests based on AIC,
these models were compared with each other and
also with the linear models without hierarchical
effects computed before.

The first result is that the inclusion of project
attributes like total number of programmers does
not increase model quality. In all cases, these pa-
rameters are notsignificantin the regression. Inthe

Ranssum

50 —

a0 - =

30 4

20 4

L]
E
H

Barracuda
expresso
a-jetspesd
arta-struts
a-tapesty
~hurtine-2
japple
jpubsish
maverck
app_scho

e n=2. 1
~
NS
2
<
3

model comparison, introducing these terms does
therefore lead to a significant reduction in model
fit measured by AIC (except for introducing the
project’s GINI coefficient, where the reduction is
not significant) due to the penalty associated with
a higher number of parameters. In comparison to
the linear models without hierarchical effects, the
results are generally slightly better ifno or asmall
number of project attributes are included, due to
the random slope introduced. Thisunderlines that
differences between the projects are significant.
If the models which define more variables like
authorsasrandom (i.e., these are allowed to have a
differentinterceptand slope depending on project)
are inspected, the model quality does in all cases
increase significantly. This is, with a few excep-
tions, true for an increasing number of variables
becoming random, even though more parameters
are penalized by AIC. The exceptions are: the
GINI coefficient for both MCOMP and CINH
does not exhibit significant random effects. This
again shows that the differences between projects
are manifold and encompass the effects of several
attributes like concentration ornumber of develop-

151

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

ers. [f the random effects estimated are evaluated
further, we find that there are even differences in
effect direction between projects: for example,
the number of authors has a positive effect on
method size in six projects, a negative effect in
the others. For problems in inheritance structure
on the other hand, the number of authors almost
uniformly shows a negative effect throughout
the projects. Also the concentration has negative
effects almost throughout the project set.

From this analysis, we can draw the conclu-
sion that the results achieved by other means hold
mostly valid, but that the multilevel approach
shows additional insights. We found that there
are indeed differences between the projects in
the way that the different process metrics have a
relationship with product quality concepts, which
can be accounted for with this analysis. We also
found that the mechanisms and attributes of proj-
ects mitigating these effects do not currently seem
to be captured by the measurements performed,
as the metrics like total number of developers of
projects did not show a significant impact. The
reasons for the different effects might therefore
lie in other attributes like process design which
need to be incorporated in future analyses and
models.

DISCUSSION

The analyses on class and project level showed
several results which need to be discussed in their
reasons and in theirimplications. As shown, ahigh
number of programmers and commits, as well as
a high concentration, is associated with problems
in quality on class level, mostly to violations of
size and design guidelines. This underlines the
results of Koru and Tian (2005), who have found
that modules with many changes rate quite high
on structural measures like size or inheritance.
On project level, there is a distinct difference:
those projects with high overall quality ranking
have more authors and commits, but a smaller

152

concentration than those ranking poorly. We
will first address the effects associated with high
concentration on few heads, which turn out on
both levels, afterwards touching on the differ-
ences found.

A high concentration is often seen as a trade-
mark of open source software development and
has turned up in almost any study of open source
projects (e.g., Koch, 2004; Ghosh & Prakash,
2000; Dinh-Tong & Bieman, 2005). Mockus et
al. (2002) have shown this difference to com-
mercial projects in a comparison. Reasons for
this concentration are manifold: they reach from
motivational aspects like status games which
lead to different invested effort between partici-
pants, hugely different skills sets of participants
in combination with self-selection for tasks, the
founding process by one or a few people, to pos-
sible delays in achieving commiter status in some
projects. On the other hand, we find that a high
concentration is correlated with possible problems
in the product quality and maintainability. It has
to be noted that the direction of this relationship
between design aspects and development orga-
nization is not determined: If the architecture is
not modular enough, a high concentration might
show up as aresult of this, as it can preclude more
diverse participation. The other explanation is that
classes that are programmed and/or maintained
by a small core team are more complex due to
the fact that these programmers ‘know’ their
own code and do not see the need for splitting
large and complex methods. One possibility in
this case is a refactoring (Fowler, 1999) for a
more modular architecture with smaller classes
and more pronounced use of inheritance. This
would increase the possible participation, thus
maybe in turn leading to lower concentration
and maintainability, together with other quality
aspects. At the beginning of the development
process, a core developer team sets up the design
which is not adjusted to cope with the increasing
number of classes and complexity. In this case it
might be better to split huge classes into several

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

subclasses, which may also improve the quality
of inheritance and abstraction.

Underlining these results, MacCormack,
Rusnak, and Baldwin (2006) have in a similar
study used design structure matrices to study
the difference between open source and propri-
etary developed software, without further dis-
crimination in development practices. They find
significant differences between Linux, which is
more modular, and the first version of Mozilla.
The evolution of Mozilla then shows purposeful
redesign aiming for a more modular architecture,
which resulted in modularity even higher than
Linux. They conclude that a product’s design
mirrors the organization developing it, in that a
product developed by a distributed team such as
Linux was more modular compared to Mozilla
developed by acollocated team. Alternatively, the
design also reflects purposeful choices made by
the developers based on contextual challenges,
in that Mozilla was successfully redesigned for
higher modularity at a later stage.

Regarding the number of authors, the results
need to be explored further and put into context of
the findings on concentration: We found on class
level a negative impact, while on project level a
positive effect. Thisunderlines a central statement
of open source software development on a general
level, that as many people as possible should be
attracted to a project. On the other hand, these
resources should, from the viewpoint of product
quality, be organized in small teams. Ideally, on
both levels, the effort is not concentrated on too
few of the relevant participants. This is certainly
not contrary to conventional software engineering
knowledge, which can be found to hold in this
context as well.

The implications of these findings need to be
discussed in two different contexts, the first one
being within open source projects, and also in gen-
eral. These two settings differ significantly, most
relevantly in the general aims, the possibilities
for intervention by project management, and also
the motivation of participants. In an open source

project, a management in classical form does not
exist, although often a maintainer, inner circle,
or other authority (although with mostly minimal
impact) could be interested in the organization of
work within the project. Also the aims ofa project,
and interwoven with this, the motivations of par-
ticipants are very much different from commercial
settings, and they need to be considered. Therefore
there are very limited possibilities for any central
agency to manage and steer the participants, or
they might lose motivation and leave the project.
On the other hand, management responsibilities
are often taken up by the founding group of a
project. In case of early phases of a project, the
design should therefore strive to allow for these
teams to form by providing an appropriate number
of classes within a modular architecture, termed
by MacCormack et al. (2006) as “architecture
of participation.” Executing a refactoring within
the context of a large and well-established open
source project often might prove difficult, but
a central agency should carefully monitor the
respective metrics as described in this article to
gain anunderstanding of possible future problems,
both in quality and participation aspects. [f those
are identified, soft measures might be applied to
encourage the participants to adjust, for example
by using increased reputation and recognition for
people participating in such efforts. In addition,
the lack of formal design specification often
associated with open source projects should be
overcome. Again, taking up these tasks should be
rewarded within the reputation structure, while
other possible motivational factors like training
arenaturally offered in this context. MacCormack
et al. (2006) have shown with the Mozilla case
that such efforts can be successful. In our study,
we have found evidence for a refactoring having
taken place in the Maverick project based on log
messages, which is now top ranking in method
size and complexity measures.

Inacommercial context, many of the problems
as discussed above do not apply, so manage-
ment has more possibilities to enforce a certain

153

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

organization of work or a necessary refactoring.
The organizational form of ‘chief programmer
team organization’ (Mills, 1971; Baker, 1972),
also termed ‘surgical team’ by Brooks (1995),
has system development divided into tasks each
handled by a chief programmer who isresponsible
for the most part of the actual design and coding,
supported by a larger number of other specialists
like a documentation writer or a tester. A similar
form of development seems to be adopted by open
source projects, although a too highly concentrated
form does not perform well given the negative ef-
fects associated with high concentration. Possibly
the single-author projects in our sample form an
example of this organization. Only one person
has access to the source code and is assisted by
a larger number of other participants.

In arriving at the results of this study, we
found that the creation of dichotomous variables
helped in several ways, although the thresholds
remain a problematic point. The huge number of
available and sometimes highly correlated product
metrics can be aggregated into a more manage-
able and interpretable set in this way, and effects
on quality can more easily be analyzed. For the
process metrics applied, we found that different
calculation approaches for the GINI coefficient
did not change the results in asignificant way. The
effort indicator OSSPM introduced did not give
much additional information as well, although
the high correlation to other metrics like commits
need not be present in all data sets. We propose
that the invested effort might still be considered
as an important factor.

CONCLUSION

The analysis described in this article has tried
to enhance prior studies on OSS by providing
an empirical validation of relationships between
process attributes and product quality. We pre-
sented and applied amethod to calculate and merge
both metrics, addressing both dimensions from

154

online versioning repositories. In this article we
have focused on the investigation of frameworks
for the development of Web-based applications,
which therefore offer similar functionalities and
are suitable for a comparison. The results clearly
show that it is possible to gather the necessary
information to find relationships between process
and product metrics. Using mostly object-oriented
product metrics focusing on quality by employing
a subset of the well-known Chidamber and Ke-
merer (1994) metrics, complemented with several
metrics proposed by Lorenz and Kidd (1995) and
several process metrics including total number of
commits and the number of distinct programmers
as well as the GINI coefficient as a measure of
inequality within the developer group, we found
that indeed significant relationships exist. This
underlinestheresults of MacCormack etal. (2006).
We identify the number of commits, the number
of distinct programmers, and the active time as
factors of influence which have a negative effect
on quality. In particular, complexity and size are
negatively influenced by these process metrics.
Furthermore a high concentration of added work
fosters bad quality. In discussing reasons for this
finding, one explanation for this relationship might
be found in amissing necessary refactoring of the
design. We have also discussed the reasons for
this and implications for practice.

Limitations of this work can certainly be found
in the thresholds applied for defining methods as
faulty based on experiences with C++ projects.
Using preliminary sensitivity analysis, we have
explored the impact of small changes of up to 20%
on the threshold values and found that the main
results presented here are still valid. Nevertheless,
more work should be invested in this area to ar-
rive at sensible thresholds, especially for Javaand
related programming languages. Another issue
to be further explored in later studies are effects
on different levels: we have tried to account for
project-level influences on classes using a multi-
level modeling approach, but the fact that some
classes might be matched pairs across projects,

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

while others are not, might still pose a problem.
We have also found that differences between the
projects in the effects of process metrics exist,
but the attributes mitigating these still remain to
be explored. Although we have tried to achieve a
relatively homogeneous set of projects, differences
in functionality and other aspects persist. Natu-
rally, larger data samples would also be of high
interest, especially a comparison of OSS projects
with commercial software development, which
might more prominently show differences in the
developmentprocess. Furthermore, alongitudinal
study of both product and process metrics over the
lifetime and evolution of a project might provide
more insights, as well as exploring the influence
of process metrics on maintainability, which has
been investigated in some studies (Deligian-
nis, Shepperd, Roumeliotis, & Stamelos, 2003;
Fioravanti & Nesi, 2001; Samoladas, Stamelos,
Angelis, & Oikonomou, 2004). Our study only
gives qualitative evidence of maintainability.

Overall, we think that this study provides a first
step despite these limitations. We have provided
evidence regarding relationships between process
and product measures in open source software
development, and pointed out several characteris-
tics tending to lead to lower product quality. This
serves as a starting point for devising strategies to
effectively manage projects for achieving higher
quality and maintainability. Additional research
can also benefit from observations regarding the
method applied in this study, and might yield even
more insights, leading to improvements in OSS
and other software development processes.

REFERENCES

Atkins, D., Ball, T., Graves, T., & Mockus, A.
(1999). Using version control data to evaluate the
impact of software tools. Proceedings of the 2I*

International Conference on Software Engineer-
ing (pp. 324-333). Los Angeles: ACM Press.

Baker, F.T. (1972). Chief programmer team
management of production programming. /BM
Systems Journal, 11(1), 56-73.

Basili, V.R., Briand, L.C., & Melo, W.L. (1996).
A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software
Engineering, 22(10), 751-761.

Basset, T. (2004). Coordination and social struc-
tures in an open source project: Videolan. In S.
Koch (Ed.), Open source software development
(pp. 125-151). Hershey, PA: Idea Group.

Bollinger, T., Nelson, R., Self, K.M., & Turn-
bull, S.J. (1999). Open-source methods: Peering
through the clutter. /[EEE Software, 16(4), 8—11.

Briand, L., Wiist, J., Ikonomovski, S., & Lounis, H.
(1998). A comprehensive investigation of quality
factors in object-oriented designs: An industrial
case study. Technical Report ISERN-98-29, In-
ternational Software Engineering Network.

Briand, L.C., Wiist, J., Daly, JW., & Porter, D.V.
(2000). Exploring the relationship between design
measures and software quality in object-oriented
systems. Journal of Systems and Software, 51(3),
245-273.

Brooks, F.P. Jr. (1995). The mythical man-month:
Essays on Software engineering (anniv. ed.).
Reading, MA: Addison-Wesley.

Chidamber, S., & Kemerer, C.F. (1994). A metrics
suite for object oriented design. /EEE Transactions
on Software Engineering, 20(6), 476—493.

Chidamber, S.R., Darcy, D.P., & Kemerer, C.F.
(1998). Managerial use of metrics for object-
oriented software: An exploratory analysis. [EEE

Transactions on Software Engineering, 24(8),
629—-639.

Chidamber, S.R., & Kemerer, C.F. (1991). To-
wards a metric suite for object oriented design.
Proceedings of the 6th ACM Conference of Object
Oriented Programming, Systems, Languages

155

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

and Applications (pp. 197-211). Phoenix, AZ:
ACM Press.

Coleman, E.G., & Hill, B. (2004). The social
production of ethics in debian and free software
communities: Anthropological lessons for vo-
cational ethics. In S. Koch (Ed.), Open source
software development (pp. 273-295). Hershey,
PA: Idea Group.

Conte, S.D., Dunsmore, H., & Shen, V. (1986).
Software engineering metrics and models. Menlo
Park, CA: Benjamin/Cummings.

Cook, J.E., Votta, L.G., & Wolf, A.L. (1998). Cost-
effective analysis of in-place software processes.
IEEE Transactions on Software Engineering,
24(8), 650—663.

Crowston, K., & Scozzi, B. (2002). Open source
software projects as virtual organizations: Com-
petency rallying for software development. /EE
Proceedings—Software Engineering, 149(1),
3-17.

Cusumano, M. A. (2004). Reflections on free and
open software. Communications of the ACM,
47(10), 25-27.

Deligiannis, I., Shepperd, M., Roumeliotis, M., &
Stamelos, I. (2003). An empirical investigation of
an object-oriented design heuristic for maintain-
ability. Journal of Systems and Software, 65(2),
127-139.

Demetriou, N., Koch, S., & Neumann, G. (2006).
The development of the OpenACS community.
In M. Lytras & A. Naeve (Eds.), Open source for
knowledge and learning management: Strategies
beyond tools (pp. 298-318). Hershey, PA: Idea
Group.

Dempsey, B.J., Weiss, D., Jones, P., & Greenberg, J.
(2002). Whois an open source software developer?
Communications of the ACM, 45(2), 67-72.

Dinh-Tong, T.T., & Bieman, J.M. (2005). The
FreeBSD project: A replication case study of

156

open source development. /EEE Transactions on
Software Engineering, 31(6), 481-494.

Dutoit, A.H., & Bruegge, B. (1998). Communi-
cation metrics for software development. /EEE
Transactions on Software Engineering, 24(8),
615-628.

Elliott, M.S., & Scacchi, W. (2004). Free soft-
ware development: Cooperation and conflict in a
virtual organizational culture. In S. Koch (Ed.),
Open source software development (pp. 152—172).
Hershey, PA: Idea Group.

Erickson, J., Lyytinen, K., & Siau, K. (2005).
Agilemodeling, agile software development, and
extreme programming: The state of research. Jour-
nal of Database Management, 16(4), 88—99.

Fayad, M.E., & Schmidt, D.C. (1997). Object-
oriented application frameworks. Communica-
tions of the ACM, 40(10), 32-39.

Feller, J., Fitzgerald, B., Hissam, S.A., & Lakhani,
K.R.(Eds.).(2005). Perspectives on free and open
source software. Cambridge, MA: MIT Press.

Fenton, N.E. (1991). Software metrics—arigorous
approach. London: Chapman & Hall.

Fioravanti, F., & Nesi, P. (2001). Estimation and
prediction metrics for adaptive maintenance effort
of object-oriented systems. IEEE Transactions on
Software Engineering, 27(12), 1062-1084.

Fischer, M., Pinzger, M., & Gall, H. (2003).
Populating arelease history database from version
control and bug tracking systems. Proceedings
of the 19th IEEE International Conference on
Software Maintenance (pp. 23-32), Amsterdam,
The Netherlands.

Fogel, K. (1999). Open source development with
CVS. Scottsdale: CoriolisOpen Press.

Fowler, M. (1999). Refactoring: Improving the de-
sign of existing code. Boston: Addison-Wesley.

Gallivan, M.J. (2001). Striking a balance between

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

trust and control in a virtual organization: A con-
tentanalysis of open source software case studies.
Information Systems Journal, 11(4), 277-304.

German, D. (2006). A study of contributors of
PostgreSQL. Proceedings of the International

Workshop on Mining Software Repositories
(MSR’06), Shanghai.

Ghosh, R.A., & Prakash, V.V. (2000). The Orbiten
free software survey. First Monday, 5(7).

Goldstein, H. (1999). Multilevel statistical models.
London: Arnold.

Habhsler, M., & Koch, S. (2005). Discussion of a
large-scale open source data collection method-
ology. Proceedings of the Hawaii International
Conference on System Sciences (HICSS-38), Big
Island, HI.

Hansen, M., Koéhntopp, K., & Pfitzmann, A.
(2002). The open source approach—opportunities
and limitations with respect to security and pri-
vacy. Computers & Security, 21(5), 461-471.

Henderson-Seller, B. (1996). Object-oriented
metrics: Measures of complexity. Upper Saddle
River, NJ: Prentice Hall.

Hertel, G., Niedner, S., & Hermann, S. (2003).
Motivation of software developers in open source
projects: An Internet-based survey of contribu-
tors to the Linux kernel. Research Policy, 32(7),
1159-1177.

Humphrey, W. (1995). 4 discipline for software
engineering. Reading, MA: Addison-Wesley.

Hunt, F., & Johnson, P. (2002). On the pareto dis-
tribution of sourceforge projects. Proceedings of

the Open Source Software Development Workshop
(pp- 122—-129), Newcastle, UK.

Johnson, R. (1997). Frameworks=(components+
patterns). Communications of the ACM, 40(10),
39-42.

Jones, C. (1986). Programming productivity. New
York: McGraw-Hill.

Kemerer, C.F., & Slaughter, S. (1999). An em-
pirical approach to studying software evolution.

IEEE Transactions on Software Engineering,
25(4), 493-500.

Klein, K.J., Tosi, H., & Cannella, A.A. Jr. (1999).
Multilevel theory building: Benefits, barriers,

and new development. Academy of Management
Review, 24(2), 243-248.

Koch, S. (2004). Profiling an open source project
ecology and its programmers. Electronic Markets,
14(2), 77-88.

Koch, S.(2004a). Agile principles and open source
software development: A theoretical and empiri-
cal discussion. Extreme Programming and Agile
Processesin Software Engineering: Proceedings
of the 5th International Conference XP 2004 (pp.
85-93). Berlin: Springer-Verlag (LNCS 3092).

Koch, S., & Schneider, G. (2002). Effort, coopera-
tion and coordination in an open source software

project: GNOME. Information Systems Journal,
12(1), 27-42.

Koru, A.G., & Tian, J. (2004). Defect handling
in medium and large open source projects. /[EEE
Software, 21(4), 54—61.

Koru, A.G., & Tian, J. (2005). Comparing high-
change modules and modules with the highest
measurement values in two large-scale open-

source products. IEEE Transactions on Software
Engineering, 31(8), 625—642.

Kreft, I, & de Leeuw, J. (2002). Introducing
multilevel modeling. London: Sage.

Krishnamurthy, S. (2002). Cave or community?
An empirical investigation of 100 mature open
source projects. First Monday, 7(6).

Long, Y., & Siau, K. (2007). Social network
structures in open source software development

teams. Journal of Database Management, 18(2),
25-40.

157

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Lorenz, M., & Kidd, J. (1995). Object oriented
metrics. Upper Saddle River, NJ: Prentice Hall.

MacCormack, A., Rusnak, J., & Baldwin, C.Y.
(2006). Exploring the structure of complex soft-
ware designs: An empirical study of open source
and proprietary code. Management Science, 52(7),
1015-1030.

McCabe, T. (1976). A complexity measure. [EEE
Transactions on Software Engineering, 2(4),
308-320.

McConnell, S. (1999). Open-source methodol-
ogy: Ready for prime time? [EEE Software,
16(4), 6-8.

Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M.
(2005). Is extreme programming just old wine in
new bottles: A comparison of two cases. Journal
of Database Management, 16(4), 41—61.

Mills, H.D. (1971). Chief programmer teams:
Principles and procedures. Report FSC 71-5108,
IBM Federal Systems Division, USA.

Mockus, A., Fielding, R.T., & Herbsleb, J.D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309-346.

Morisio, M., Romano, D., & Stamelos, 1. (2002).
Quality, productivity and learning in framework-
based development: An exploratory case study.
IEEE Transactions on Software Engineering,

28(8), 340-357.

Murdoch, D.J., & Chow, E.D. (1996). A graphical
display of large correlation matrices. The Ameri-
can Statistician, 50(2), 178—180.

Neumann, C. (2002). Jsp- und Servlet-basierte
frameworks fiir Web-applikationen. Master’s
Thesis, Universitdt Karlsruhe, Germany.

Park, P. (1992). Software size measurement:
A framework for counting source statements.
Technical Report CMU/SEI-92-TR-20, Software

158

Engineering Institute, Carnegie Mellon Univer-
sity, USA.

Payne, C. (2002). On the security of open source
software. Information Systems Journal, 12(1),
61-78.

Perens, B. (1999). The open source definition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution
(pp. 171-188). Cambridge, MA: O’Reilly & As-
sociates.

Prieto-Diaz, R. (1993). Status report: Software
reusability. [EEE Software, 10(3), 61-66.

Raymond, E.S. (1999). The cathedral and the
bazaar: Musings on Linux and open source by
an accidental revolutionary. Sebastopol, CA:
O’Reilly & Associates.

Robles-Martinez, G., Gonzalez-Barahona, J.M.,
Centeno-Gonzalez, J., Matellan-Olivera, V., &
Rodero-Merino, L. (2003). Studying the evolution
of libre software projects using publicly available
data. Proceedings of the 3rd Workshop on Open
Source Software Engineering—25th Interna-
tional Conference on Software Engineering (pp.
111-115), Portland, OR.

Samoladas, 1., Stamelos, 1., Angelis, L., &
Oikonomou, A. (2004). Open source software
development should strive for even greater code
maintainability. Communications of the ACM,
47(10), 83-87.

Snijders, T.A.B., & Bosker, R.J. (2003). Multilevel
analysis: An introduction to basic and advanced
multilevel modeling. London: Sage.

Stallman, R.M. (2002). Free software, free society:
Selected essays of Richard M. Stallman. Boston:
GNU Press.

Stamelos, 1., Angelis, L., Oikonomou, A., &
Bleris, G.L. (2002). Code quality analysis in
open source software development. Information
Systems Journal, 12(1), 43—60.

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Subramanian, G., & Corbin, W. (2001). An em-
pirical study of certain object-oriented software
metrics. Journal of Systems and Software, 59(1),
57-63.

Subramanyam, R., & Krishnan, M.S. (2003). Em-
pirical analysis of ck metrics for object-oriented
design complexity: Implications for software
defects. IEEE Transactions on Software Engi-
neering, 29(4), 297-309.

Thuraisingham, B. (2005). Privacy-preserving
datamining: Developmentand directions. Journal
of Database Management, 16(1), 75-87.

Turk, D., France. R., & Rumpe, B. (2005). As-
sumptions underlying agile software-development

processes. Journal of Database Management,
16(4), 62-87.

Vixie, P. (1999). Software engineering. In C.
DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolu-
tion (pp. 91-100). Cambridge, MA: O’Reilly &
Associates.

Witten, B., Landwehr, C., & Caloyannides, M.
(2001). Does open source improve system secu-
rity? IEEE Software, 18(5), 57-61.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 2, edited by K. Siau, pp. 31-57,

copyright 2008 by IGI Publishing (an imprint of IGI Global).

159

160

Chapter 7
The Impact of Ideology on the
Organizational Adoption of
Open Source Software

Kris Ven
University of Antwerp, Belgium

Jan Verelst
University of Antwerp, Belgium

ABSTRACT

Previous research has shown that the open source movement shares a common ideology. Employees
belonging to the open source movement often advocate the use of open source sofiware within their
organization. Hence, their belief in the underlying open source software ideology may influence the
decision making on the adoption of open source software. This may result in an ideological—rather
than pragmatic—decision. A recent study has shown that American organizations are quite pragmatic
in their adoption decision. We argue that there may be circumstances in which there is more opportu-
nity for ideological behavior. We therefore investigated the organizational adoption decision in Belgian
organizations. Our results indicate that most organizations are pragmatic in their decision making.
However, we have found evidence that suggests that the influence of ideology should not be completely

disregarded in small organizations.

INTRODUCTION

The free software movement—Ied by Richard
M. Stallman—has always taken an ideological,
political view on software. Adherents to the free
software movement advocate that all software

should be free, in the sense that it should be free
to read, modify, and distribute. The open source
movement on the other hand was created in order
to facilitate the introduction of free software in
organizations and takes amore pragmatic stance in
its efforts to market open source software (OSS).

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

The Impact of Ideology on the Organizational Adoption of Open Source Software

Previous research has shown that the open source
movement is characterized by a shared, underly-
ing ideology (e.g., Ljungberg, 2000; Bergquist &
Ljungberg,2001). Lately, an increasing number of
developers are hired by commercial organizations
to work on OSS projects. These developers may
or may not share the OSS ideology. Nevertheless,
many adherents to the open source movement still
feel connected to the OSS ideology. Moreover,
commercial organizations still need to find a bal-
ance between their commercial objectives and the
traditional values of the open source movement
(Fitzgerald, 2006).

Many organizations have already adopted
OSS, especially mature server software such as
Linux and Apache. Research on the organiza-
tional adoption of OSS has shown that its use
was frequently a bottom-up initiative, suggested
by technical employees within the organization
who are an adherent to the open source movement
(Dedrick & West, 2003; West & Dedrick, 2005;
Lundell, Lings, & Lindqvist, 2006). In some
cases, decision makers could also be considered
an adherent to the open source movement. These
employees will take on the role of boundary span-
ners in their organization, bringing the organiza-
tion in contact with new innovations (Tushman
& Scanlan, 1981). West and Dedrick (2005) have
found in their study on American organizations
that although such employees try to ensure that
an open source alternative is considered in the
decision making, the final decision is made on
pragmatic grounds (i.e., based on characteristics
of the software such as cost, reliability, and func-
tionality), and not based on ideological feelings
towards OSS. The organizations included in their
study are rather large,' which may have had an
impact on their results.

We argue that it is useful to perform a similar
study in a context in which there is more oppor-
tunity for ideological behavior. We expect that
this might be the case in smaller organizations.
In order to investigate whether decision making
in small organizations is ideological, we have

conducted 10 case studies in Belgian organiza-
tions to investigate the organizational adoption
of OSS. The article is structured as follows. We
will start by discussing the theoretical background
of this study. Next, we will discuss our research
design. Subsequently, we will present the results
of our study, focusing on three organizations that
used fairly ideological decision making. This is
followed by a discussion of our findings. Finally,
we will offer our conclusions.

THEORETICAL BACKGROUND
OSS Ideology

Numerous definitions have been proposed in lit-
erature for the term “ideology.” Usually, the term
is used in a pejorative meaning. Such use implies
that an ideology is based on false beliefs of real-
ity. Several authors however recommend against
using such a perspective (e.g., Hamilton, 1987).
The definition of ideology that we will use in this
article is proposed by Hamilton (1987, p. 38):

“An ideology is a system of collectively held
normative and reputedly factual ideas and beliefs
and attitudes advocating a particular pattern of
social relationships and arrangements, and/or
aimed atjustifyingaparticular pattern of conduct,
which its proponents seek to promote, realise,
pursue or maintain.”

This definition is non-judgmental, and as
a result we do not make any pronouncements
with respect to the correctness of the beliefs,
values, and norms that characterize an ideology.
Hence, acting according to an ideology will not
necessarily have negative consequences for the
organization.

Previous research has described several ideo-
logical principles of the open source movement
(e.g., Markus, Manville, & Agres, 2000; Ljung-
berg, 2000; Stewart & Gosain, 2006). This ideol-
ogy has been shown to enhance the effectiveness
ofthe OSS community (Stewart & Gosain, 2006).

161

The Impact of Ideology on the Organizational Adoption of Open Source Software

Stewart and Gosain (2006) identified a number of
underlying norms, beliefs, and values of the open
source movement (see Table 1). These norms,
beliefs, and values are proposed as the tenets of
the OSS ideology.

The tenets listed in Table 1 are used to de-
scribe the attitudes of developers within the OSS
community. We argue however that some of the
OSS beliefs and values (i.e., tenets 4—15 in Table
1) can also be shared by technical employees
and decision makers in organizations. Hence,
it is interesting to investigate whether decision
makers who share these ideological ideas of the
open source movement make an ideological—
rather than pragmatic—decision. Although the
study of West and Dedrick (2005) has shown that
decision making on OSS is pragmatic, we believe
that this may be different in small organizations.
Some authors have pointed out that decision
making with respect to I'T in small organizations
is often the responsibility of a single individual

(Harrison, Mykytyn, & Riemenschneider, 1997;
Riemenschneider, Harrison, & Mykytyn, 2003).
We argue that the impact of the OSS ideology
will be greater if a single decision maker—who
can be considered an OSS advocate—is present
in the organization. In such situations, the adop-
tion decision may be ideological since personal
traits and beliefs of the decision maker are more
likely to impact the final decision than in larger
organizations.

Mindful Innovation

Nowadays, many things require the attention of
managers, making their attention a scarce resource
(Hansen & Haas, 2001; Swanson & Ramiller,
2004). One of the consequences is that much in-
novation in organizations is actually driven by
bandwagon phenomena, in which organizations
mimic the adoption behavior of other organiza-
tions and do not properly evaluate alternatives

Table 1. Tenets of open source ideology (Stewart & Gosain, 20006, pp. 294-295)

OSS Norms

OSS Beliefs

OSS Values

(1) Forking—There is a norm
against forking a project,
which refers to splitting the
project into two or more proj-
ects developed separately.

(2) Distribution—There is a
norm against distributing code
changes without going through
the proper channels.

(3) Named Credit—There is a
norm against removing some-
one’s name from a project

without that person’s consent.

(4) Code Quality—Open
source development methods
produce better code than
closed source.

(5) Software Freedom—Out-
comes are better when code is
freely available.

(6) Information Freedom—

Outcomes are better when

information is freely available.

(7) Bug Fixing—The more
people working on the code,
the more quickly bugs will be
found and fixed.

(8) Practicality—Practical
work is more useful than
theoretical discussion.

(9) Status Attainment—Status
is achieved through commu-

nity recognition.

(10) Sharing—Sharing infor-
mation is important.

(11) Helping—Aiding others is
important.

(12) Technical Knowledge—
Technical knowledge is highly
valued.

(13) Learning—There is a
value on learning for its own
sake.

(14) Cooperation—VNoluntary
cooperation is important.

(15) Reputation—Reputation
gained by participating in open
source projects is valuable.

The Impact of Ideology on the Organizational Adoption of Open Source Software

(Abrahamson, 1991; Swanson & Ramiller, 2004).
Recently, the bandwagon phenomenon has been
framed into the broader context of mindful innova-
tion (Swanson & Ramiller, 2004; Fiol & Connor,
2003). The concept of mindfulness originated in
psychology and denotes a state of an individual
involving: (1) openness to novelty; (2) alertness
to distinction; (3) sensitivity to different contexts;
(4) implicit, if not explicit, awareness of multiple
perspectives; and (5) orientation in the present
(Sternberg, 2000). Decision makers in organi-
zations who are mindful have a “watchful and
vigilant state of mind” (Fiol & Connor, 2003).
Anorganization thatinnovates mindfully with [T
will therefore not take generalized claims about
advantages for granted, but will critically examine
their relevance and validity in the organization-
specific context (Fiol & Connor, 2003). Mindless
innovation, on the other hand, is characterized by
“...acting on automatic pilot, precluding atten-
tion to new information, and fixating on a single
perspective” (Fiol & Connor, 2003; Weick, Sut-
cliffe, & Obstfeld, 1999).2 Such innovation may
result in making premature decisions based on
beliefs that do not necessarily accurately reflect
reality (Butler & Gray, 2006). Hence, a dogmatic
belief in the OSS ideology may lead to mindless
adoption, in which no proprietary alternatives
are considered.

Swanson and Ramiller (2004) note that
boundary-spanning activities are important for
mindful organizational decision making, in order
to obtain information on the innovation. We argue
that in the case of OSS, this information may be
ideologically colored. As a result, the presence of
boundary spanners in the adoption of OSS may
actually lead to ideological (mindless) behavior
instead, especially if decision makers share the
OSS ideology. There are at least two factors that
can facilitate ideological behavior in such context.
First, decision structures in small organizations
tend to be less formal (bureaucratic) than in large
organizations. Fiol and Connor (2003) argue that
underspecified decision structures may encourage

further mindless behavior, if decision making was
mindless to begin with. Second, Swanson and
Ramiller (2004) point out that although personal
mindfulness with respect to innovation does not
necessarily equate to organizational mindfulness,
it will definitely have an impact on it.

Ideology vs. Pragmatism

Inordertoinvestigate whether decision makingin
organizations exhibits ideological characteristics,
we need to determine how ideological behavior
can be identified. Based on the work of Stewart
and Gosain (2006), we determine whether decision
makers and other employees shared some of the
beliefs and underlying principles (tenets) of the
free and open source movements (see Table 1),
and did not properly assess their relevancy for the
organization. For example, proponents may argue
that software should be free (similar to the views
of the FSF), may have a negative attitude towards
proprietary software, or may be convinced that
OSS delivers software of a higher quality (Stewart
& Gosain, 2006; Ljungberg, 2000). Consequently,
decision makers may have a strong preference
for using OSS, without (properly) considering
proprietary alternatives. Such decision making
may result in a less than optimal solution for the
organization. In fact, decision makers are in that
case rather mindless in their decision making.
Mindless organizations will pay little attention to
the organization’s specifics or to studying new in-
novations. This will result in making decisions on
“autopilot,”’using a single perspective (Swanson &
Ramiller, 2004; Fiol & Connor, 2003). This means
that the beliefs of the OSS ideology are taken for
granted, without considering their suitability in
the organization-specific context.

Onthe otherhand, we consider an organization
to be pragmatic in its decision making when the
organization does not exhibit any of the tenets of
the OSS ideology, or when decision makers donot
take any claims of the OSS ideology for granted,
but carefully examine their implications in the

163

The Impact of Ideology on the Organizational Adoption of Open Source Software

organization-specific context. Such organizations
are mindful in their decision making. This means
that decision makers base their decision on the
characteristics of the innovationitselfand consider
how well the innovation fits within the organiza-
tion. Pragmatic decision makers will probably
consider both proprietary and OSS alternatives,
outweigh the benefits of all alternatives, and
choose the best solution based on factors such as
cost and product features. In this case, no favorit-
ism towards using OSS should be present.

It must be noted that ideological and prag-
matic decision making is not a black and white
phenomenon. In practice, we expect organizations
to exhibit some ideological and some pragmatic
characteristics. This is consistent with Geuss
(1994), who remarks that an ideology is generally
notonly composed of the beliefs and values thatare
shared by a/l members of a group. Consequently,
not all adherents to the open source movement
will share a/l values proposed by the OSS ideol-
ogy. This is similar to the statement of Ljungberg
(2000) who suggests that developers vary in their
adherence to the OSS ideology. Hence, there are
many shades of gray in this classification. In
this article, we will discuss decision making in
three organizations in our sample which clearly
exhibited ideological behavior.

RESEARCH DESIGN

To investigate whether decision making is ideo-
logical or pragmatic, we studied the organizational
adoption of OSS in Belgian organizations. In this
study, decision makers were questioned about the
reasons for using OSS and their attitudes towards
the open source movement. Based upon the infor-
mation obtained from these organizations, we were
able to determine whether their decision making
was either pragmatic or rather ideological.

164

Scope

We decided to focus mainly on the adoption of
open source server software. We use the term
open source server software to refer to both
open source operating systems (such as Linux
and FreeBSD) and other OSS for server use (for
example, the Apache Web server or the Bind
name server). This choice is motivated by the fact
that this type of OSS is generally considered to
be stable and mature, and is already in use by a
significant number of organizations. A similar
research approach has been undertaken by other
researchers (e.g., West & Dedrick, 2005). On
the other hand, we also gathered information on
other OSS that was being used in the organiza-
tions (such as desktop software, development,
and networking tools).

Methodology

We used the exploratory case study approach
to study the organizational adoption decision
on open source server software. The case study
approach is well suited to study a contemporary
phenomenoninits natural setting, especially when
the boundaries of the phenomenon are not clearly
defined at the start of the study (Yin, 2003; Ben-
basat, Goldstein, & Mead, 1987). We conducted
a series of in-depth face-to-face interviews with
informants from 10 Belgian organizations to
identify the factors that influence the decision to
use open source server software as well as their
attitudes towards the open source movement.
Organizations were selected from the population
of all Belgian organizations and were sampled on
the basis of two criteria: the size of the organiza-
tion measured by the number of employees and
the sector in which the organization operated.
Organizations were only included in our sample
if they were using open source server software
at the time of our study. Informants within each
organization were selected using the key informant
method. Since the use of a single informant has

The Impact of Ideology on the Organizational Adoption of Open Source Software

been shown to give inconsistent results (Phillips,
1981), we tried to speak to both a senior manager
(e.g., the IT manager) and a technical person (e.g.,
the system administrator) whenever possible.
The interviews took place between July and
November 2005. An overview of the cases in our
study is shownin Table 2. As can be seen from this
table, the organizations in our sample are consider-
ably smaller than those in the study of West and
Dedrick (2005).® In each organization, we have
conducted a single interview during which all
informants in the organization were present. The
interviews were semi-structured, and the format
was revised after each interview to incorporate
new findings (Benbasat et al., 1987). In the first
part of the interview, informants were asked to
freely discuss their reasons for adopting OSS. In
the second part of the interview, we probed for
specific factors that were found relevant in previ-
ous studies, as well as the informants’ perceptions
of the free and open source movements. Each
interview lasted 45-90 minutes, was recorded
and transcribed verbatim. In order to increase the
validity of our findings, informants were sent a
summary of the interview and were requested to
suggestany improvements if necessary. Follow-up
questions were asked by telephone or via e-mail.
The transcripts were coded and then further ana-

Table 2. Overview of the organizations in our study

lyzed using procedures to generate theory from
qualitative data, as described in the literature (e.g.,
Benbasat et al., 1987; Eisenhardt, 1989; Dubé &
Par¢, 2003). Various data displays were used to
visualize and further analyze the qualitative data
(Miles & Huberman, 1994; Eisenhardt, 1989).

EMPIRICAL FINDINGS

The dominant attitude towards OSS in seven or-
ganizations in our sample was pragmatism. These
organizations did not exhibit any of the tenets
of the OSS ideology, or their decision makers
considered how the advantages of OSS could be
realized intheir organization. Consequently, these
organizations could be considered pragmatic (and
mindful) in their decision making with respect to
the adoption of OSS. The most commonly cited
advantages—and reasons for the adoption—of
OSS were cost and reliability. In general, deci-
sion makers tended to consider both proprietary
and OSS alternatives, and based their decision on
the cost and functionality offered by the various
alternatives. Some organizations even explicitly
mentioned that they made a pragmatic adoption
decision. These seven organizations did not have
a preference for using OSS over proprietary

Name Sector Employees | Informants aE;;:l:ito(;f
OrganizationA Audio, video, and telecommunications 11 2 moderate
OrganizationB Machinery and equipment 749 2 extensive
OrganizationC Telecommunications 1346 1 limited

OrganizationD Publishing and printing 31 1 extensive
OrganizationE Food products and beverages 204 2 moderate
OrganizationF Research and development 152 2 extensive
OrganizationG Information technology 583 1 moderate
OrganizationH Chemicals 4423 1 moderate
Organizationl Education 3303 3 limited

Organization] Publishing and printing 12 1 extensive

165

The Impact of Ideology on the Organizational Adoption of Open Source Software

software, except OrganizationB where a slight
preference for OSS was present. Although they
would accept a minor workaround in order to be
able to use OSS, this effort should be limited. Or,
as expressed by an informant:

We are not going to program around something,
because we really want to use that [open source]
component. But if there is a little workaround, we
will certainly take it.

The other six organizations were quite agnostic
aboutusing OSS. One informantin OrganizationF
expressed this as:

[The fact that the software is open source] does
not really matter for a company.

Some of the technical employees who served as
informants in our study had abackground in OSS.
Although some indicated that they did suggest the
use of OSS when appropriate, they did not try to
force its use and remained pragmatic. Neverthe-
less, many OSS development and networking tools
(e.g.,Nagios, Eclipse, and Maven) were being used
by the organizations in our sample.

The results obtained from these seven orga-
nizations are quite consistent with the results
obtained by West and Dedrick (2005). On the
other hand, we observed a different behavior in
the three very small organizations in our sample
(OrganizationA, OrganizationD, and Organi-
zationJ) consisting of less than 50 employees.
In those organizations, we were able to detect
several characteristics of ideological behavior.
In the remainder of this section, we will discuss
these three cases in more detail.

OrganizationA
OrganizationA specialized in telecommunication
devices. It originally started as a research and de-

velopment company. Initially, all projects within
the organization aimed to gather knowledge and

166

experience in order to develop the initial product.
Developers were free in their decision making
on which products to incorporate into the final
product. Consequently, decision making was
significantly influenced by the personal experi-
ence of developers.

Our informants indicated that at the time of
the organization’s founding, many employees—
including the organization’s founders and the
CIO—shared the same background, were very
familiar with Linux, and shared the philosophi-
cal ideas of the open source movement. These
employees had a “firm conviction” in OSS:

The firm conviction was coming from a number
of people who said: ‘It must be [OSS], we do not
want anything else!’... The choice for using OSS
was...just a conviction, rather than the result of
a comparative assessment.

As aresult, most software that was used in the
organization was OSS. During package selection,
no objective evaluation of (proprietary) alterna-
tives was performed. Although some proprietary
software was used, this was either on demand of a
customer, or the software was eventually replaced
by an OSS alternative.

The choice for OSS at that time was primarily
motivated by the lower or non-existing license
cost, the fact that there was more confidence in
0SS, and the fact that OSS provides access to the
source code. Our informants however admitted
that these reasons were influenced by the philo-
sophical view towards OSS and that this view
on OSS dominated the adoption decision. They
were for example aware that using OSS includes
additional costs (e.g., packaging and updates),
which makes it less clear whether OSS really of-
fers a cost advantage. Such considerations were
however not taken into account at that time.

Another factor that has influenced the deci-
sion is the avoidance of vendor lock-in. The open
source movement generally depicts Microsoft as
their common “enemy.” This feeling was also

The Impact of Ideology on the Organizational Adoption of Open Source Software

present in the organization at that time. Vendor
lock-in with Microsoft was feared, partly due to
negative experiences in the past. The adoption
decision appeared to be anti-Microsoft oriented.
As expressed by one informant:

If you mentioned Microsoft, things exploded!

The organization also initiated its own OSS
project. It consisted of a Java virtual machine
for embedded devices. This project was started
to try to benefit from the OSS community model
(cf. tenets 4—15). This project was in fact quite
successful, and the organization took the role of
project maintainer. In the course of time, the proj-
ectbecame less interesting for the community (as
the product further matured) and participation of
the community declined. The software is however
still used in the organization’s products.

As illustrated, the choice for using OSS was
quite ideological in the early years of the organi-
zation. Interesting to note is that over the years,
several employees of the organization who were
adherents to the open source movement, and who
advocated the use of OSS, left the organization.
As a result, the choice for OSS became much
more pragmatic. Another factor that may have
influenced this evolution is that the organization
finished its software products, gradually became
less ofan R&D organization, and other goals such
as efficiency started to become more important.

Atthe time of our study, a slight preference for
OSS still existed. One informant stated:

Our choice willin the first place go to open source
or Linux, but less fanatical than in the past.

Furthermore, the organization seemed to be
less willing to take risks in using OSS, or to invest
additional effort to get OSS working. This was
expressed by an informant as:

1thinkwe are looking rather quickly towards open
source products. But if it looks that it will deliver

us more worries than it yields advantages, we will
not doubt to use a commercial product.

Hence, the organization will only consider
using OSS if the product complies with the
requirements. The “firm conviction” that was
present in the organization has now faded away.
The choice for OSS is now mainly based on the
potential cost advantages.

Nevertheless, it appears that the organization
still felt connected to the principles of the open
source movement. When asked whether the or-
ganization contributed back any modifications
they made to OSS, one informant appeared to
feel guilty about not contributing:

...we did contribute quite little, rather naughty,
isntit?

He further noted that the organization tried
to participate in OSS projects in other ways, for
example by filling in bug reports or by participat-
ing in mailing lists (cf. tenets 10—15).

OrganizationD

OrganizationD was active in the publishing and
printing sector. The organization had a single
person responsible for decision making on IT,
and had no internal IT staff. The organization
used OSS on a variety of systems (i.e., one In-
ternet gateway, two file servers, and one intranet
server). The organization also had 3 LAMP
(Linux—Apache-MySQL—-PHP) servers, running
custom-developed software for time registration.
Finally, three desktops were equipped with the
Linux operating system in the offices, and an
additional 11 PCs function as terminals for the
time registration system. The main reason for
choosing OSS was to reduce vendor lock-in and
maximize the freedom of the IT infrastructure.
Consequently, the decision maker investigated
OSS solutions without considering proprietary
alternatives. Other reasons forusing OSS were an

167

The Impact of Ideology on the Organizational Adoption of Open Source Software

increased control over the software, cost advan-
tages, and an increased flexibility. These factors
are consistent with the advantages proposed by
the OSS community. We were able to detect a few
additional ideological characteristics, although
they were not that strong.

Our informant indicated that his extensive
personal experience with Linux influenced his
decision to start using OSS within the organiza-
tion:

Following [new evolutions] is not enough: you try
out software, and free software has the advantage
that it is much easier to try out. And of course,
since you have tried it yourself, it did influence
the [organizational] decision.

His decision to start using OSS within the
organization was also influenced by some nega-
tive experiences with proprietary software in
the past (including vendor lock-in). For example,
some proprietary application the organization was
using contained a bug which the vendor refused
to resolve. As a result, our informant tried to
remain in full control over his IT infrastructure.
He therefore wanted to maximize the degree of
freedom in the IT infrastructure, not only by
using open standards, but by using OSS as well:
“I wanted to go a step further: not only by using
open standards, but also by using open source
applications to have full insurance” (cf. tenets
5-6). He felt that by having access to the source
code of OSS, he had maximum control over his
applications.

The organization was remarkably commit-
ted to its pursuit of freedom. This commitment
has moved the organization to start its own OSS
project, namely a time registration system for
employees. Existing software either did not satisfy
all requirements, or was too expensive and did
not allow for customizing the software. Hence,
the software needed to be custom developed. The
decision maker did not want to become dependent
on an external organization—not even on the

168

external programmer who develops the software.
Instead of performing in-house development or
closing an escrow agreement, the organization
has chosen a different path. The organization has
hired a programmer from an external organiza-
tion to develop the software, and our informant
decided to release the software under an OSS
license (the GPL) to ensure that the software
would remain completely free (cf. tenet 5). This
way, the organization aimed to remain in control
over the application, avoid vendor lock-in, and be
allowed to make modifications to the software
at a later time. The software is being developed
as a cooperation between our informant (who is
mainly responsible for the analysis) and the paid
external programmer. It was the intention of our
informant to eventually share this application
with other organizations in the same sector. He
strongly valued the ability to cooperate with other
organizations, and hoped that he would be able to
leverage the OSS development model (cf. tenets
4-15) and to receive comments, bug fixes, and
maybe even new code submissions.

Interestingly, he was the only informant in
our sample who deliberately used the term free
software.* He preferred this term since—in his
experience—the term OSS is misused by some
vendors to refer to software of which the source
code is available, but whose license is still pro-
prietary and does not offer the same freedom
as OSS licenses. He felt that the Dutch term for
free software did not suffer from the confusion
in English, and that it better articulated the spirit
of the open source movement (cf. tenet 5).

OrganizationJ

The most prominent form of ideological behavior
was found in OrganizationJ. Our informant was
the IT and business manager of the organization,
who was the only one responsible for the IT infra-
structure. No internal IT staff was present. The
complete IT infrastructure of the organization
was based on OSS. This included two important

The Impact of Ideology on the Organizational Adoption of Open Source Software

servers: an intranet server running ERP software
and an Internet server running the e-commerce
site of the organization. Recently, all desktops in
the organization were migrated from MS Windows
to Linux. The desktops consisted of lightweight
terminals which booted from a server. All appli-
cations ran on the server, which placed very low
demands on the desktop itself. All administration
could be performed on the server. The desktops
were running the XFCE desktop environment and
OpenOffice.org was used as the office suite.

Our informant had a technical background
and was an experienced programmer. In fact, he
developed his own e-commerce application and
was currently rewriting his own ERP software.
His personal experience with Linux dates back
from 1999. Based on this personal experience,
he decided to migrate his Unix-based server to
Linux when he was experiencing difficulties with
that server.

Similar to our informant in OrganizationD,
the IT manager wanted to remain in control of his
IT infrastructure (cf. tenets 5—6). Consequently,
he tried to make exclusive use of open standards.
Moreover, he stated that he only considered us-
ing OSS (except for one PC running Microsoft
Windows on which specific banking software was
installed thatis unavailable for Linux). He also did
not want to pay for software, hence he did notuse
any of the commercial Linux distributions.

Similar to the other two organizations, our
informant indicated that his organization had
bad experiences with proprietary vendors in the
past. In fact, when migrating the server that ran
the ERP software, the organization faced huge
switching costs when transferring the software
from the Unix-based system (developed by a
small company) to Linux. He was also suspicious
of proprietary software, because it could contain
hidden features. This prevented him from having
total control over the software. OSS was believed
to be more secure, thanks to the availability of
the source code: “I think there are thousands, ten

thousands or millions of people who use and study
it, so [don’t have to worry” (cf. tenets 4 and 7).
As aresult, he had a rule that proprietary soft-
ware should not be used under Linux. Proprietary
software was simply not considered as an alterna-
tive during decision making. This non-pragmatic
decision making can be illustrated with two ex-
amples. First, the organization recently acquired
a new printer/copier. Although the manufacturer
provided drivers for Linux, they were proprietary;
and the source code of the drivers was not provided.
Consequently, the drivers were not installed on the
Linux desktops. This means that default Postscript
and PCL drivers were used. If specific features
would be required, the IT manager stated that he
would rewrite the drivers, based on the Postscript
definition. He motivated his choice as follows:

Nothing is installed from which the source code is
notavailable: Ineed control. ... [The manufacturer
of the printer] will probably have no bad intentions,
probably, but nowadays you never know.

Second, when the IT manager decided that the
ERP software needed replacement, he reviewed
some OSS alternatives. One of the reasons why
Compiere was not properly examined as an alter-
native, was that it required the Oracle database
server.’

The IT manager also started a small OSS
project. It consisted of a Perl module to create
OpenOffice.org documents. He also indicated
that he valued the OSS development model. Two
important advantages of this model were the peer
review process (see supra) and that it offers more
continuity. Although his ERP software was using
agraphical library that was maintained by a single
person, he was not afraid of becoming too depen-
dent. If the maintainer would quit, our informant
was convinced that other people would take over
the project. Otherwise, he would still have access
to the source code of the library and make any
required changes himself (cf. tenets 5 and 14).

169

The Impact of Ideology on the Organizational Adoption of Open Source Software

DISCUSSION

As can be gathered from our findings, ideologi-
cal or pragmatic decision making is not a binary
variable. Instead, decision making will exhibit
both ideological as well as pragmatic character-
istics, which places the organization’s decision
making on a continuum between both extremes.
In practice, most organizations clearly use a
pragmatic decision-making process with respect
to the use of OSS. Nevertheless, we were able to
detectrather ideological decision making in three
small organizations in our sample. The degree
of ideology varied between these three cases. A
summary of the ideological characteristics in the
decision-making process of these organizations
is shown in Table 3.

Identifying Ideology

There were clear distinctions between the seven
organizations that we labeled “pragmatic” and the
three we identified as “ideological.” First, within
the three latter organizations, there was a clear
push behind—or favoritism towards—using OSS.
This was caused by the fact that decision makers
were adherents to the open source movement
and wanted to use OSS as much as possible, or
even exclusively. Their personal experience and
background was a major factor in this decision.
The other seven organizations did consider OSS
as one of the alternatives, but would not give
preferential treatment to OSS.

Second, the tenets of the OSS ideology were
only present in the three organizations. Among

Table 3. Ideological characteristics in the decision making of organizations in our sample

OrganizationA:
views of the OSS movement.

e Vendor lock-in was feared.

e Employees, including the organization’s founders, shared the philosophical and cultural

e A strong anti-Microsoft sentiment was present.

170

o The organization started its own OSS project to benefit from the OSS development model.
o All software that was used had to be OSS.

o The adoption decision was based on a “firm conviction” in OSS, not on an objective evalu-
ation of alternatives.

OrganizationD:

o The IT manager strives to maximize the freedom in the IT infrastructure by using open
standards and OSS.

o Extensive personal experience of the IT manager with Linux influenced the organizational
adoption decision.

o The organization started its own OSS project to ensure that the software would remain
totally free.

e Driven to OSS by negative experiences (including vendor lock-in) with proprietary soft-
ware in the past.

o The IT manager uses the term “free software.”

OrganizationJ:

e The IT manager does not want to pay for software, including application software.

o The switch to Linux was influenced by personal experience with Linux.

o All software that was used had to be OSS.

e Proprietary printer drivers were not used, even if this means that a work-around must be

devised.

o Commercial software is not trusted because the source code is not available.

e Driven to OSS by negative experiences (including vendor lock-in) with commercial soft-
ware in the past.

e The OSS development model is valued, because thousands of developers are reading the
source code, correcting bugs, and ensuring the continuity of the project.

o The complete IT infrastructure was migrated to OSS.

o The IT manager started his own OSS project.

The Impact of Ideology on the Organizational Adoption of Open Source Software

the tenets that were most prominently present were
software freedom (tenet 5), information freedom
(tenet6), and cooperation (tenet 14).° These tenets
are indeed central to the OSS ideology. The other
seven organizations were rather agnostic about
the values and beliefs of the open source move-
ment and considered the OSS character irrelevant
during decision making.

Third, several of the factors thatinfluenced the
adoption decision are consistent with the advan-
tages put forward by the open source movement.
Evidently, this is not sufficient to claim that these
organizations shared the OSS ideology. However,
there are indications (particularly in Organiza-
tionA and OrganizationJ) that the perceptions with
respect to these adoption factors are influenced
by the belief in the OSS ideology, and that their
relevancy in the organization-specific environ-
ment were not or insufficiently evaluated. This
indicates mindless decision making.

Finally, these three organizations were the
only ones in our sample that initiated their own
OSS projects. OrganizationA and OrganizationD
clearly indicated that by starting their own OSS
projects they wanted to try to leverage the OSS
community model. This indicates a belief in the
underlying principles of the open source move-
ment (cf. tenets 10—15). If organizations would
not be convinced of the advantages of the OSS
development model, it seems likely that they would
not initiate an OSS project and they would simply
develop the software in-house. Nevertheless, prin-
ciples such as sharing (tenet 10) and cooperation
(tenet 14) were deemed quite important by the
three organizations.

The previous four points demonstrate that
the three organizations discussed in this article
exhibited some form of ideological behavior. It is
however not trivial to identify ideological tenets
in organizations, since the ideas and beliefs of
the OSS ideology are not explicitly formulated,
as is often the case with ideologies (Hamilton,
1987). A second difficulty is that the presence
of one of these characteristics by itself does not

automatically lead to ideological decision making.
A good example is the avoidance of vendor lock-
in. All three organizations indicated having had
bad experiences with proprietary vendors in the
past and wished to minimize vendor lock-in. The
desire to avoid vendor lock-in can be a pragmatic
reason for choosing OSS. [tmay howeveralso lead
to asituation in which the decision maker—based
onnegative experiences with some vendors in the
past—only wants to use OSS without considering
proprietary alternatives, leading to an ideological
position towards OSS. Similarly, the list of char-
acteristics in Table 3 is not exhaustive, and there
may be other indicators ofideological behavior. A
third issue is that there may be “instances where
actors, genuinely or otherwise, do not interpret
their behavior in terms of any commitment to a
set of beliefs but as simply pragmatic, but where
it is clear to the observer that it is, in fact, in
conformity with such a set of beliefs” (Hamilton,
1987, p. 21). Nevertheless, the evidence presented
in this article and the impression of the decision
makers obtained during the interview allowed us
to identify ideological characteristics in the deci-
sion making of these three organizations. These
characteristics had a clear impact on the adoption
decision on OSS, resulting in a strong favoritism
towards OSS. The attitude in these three organiza-
tions was fundamentally different from the other
seven organizations in our sample.

Limitations

This study has a number of limitations. First,
we used a qualitative approach consisting of 10
case studies. Although we have found that small
organizations may engage in ideological decision
making, a large-scale quantitative study could
provide more insight into the generalizability of
this result.

Second, we only included organizations that
have adopted OSS. Future research may provide
more insight into the attitudes of non-adopters.
We can make a meaningful distinction between

171

The Impact of Ideology on the Organizational Adoption of Open Source Software

two groups of non-adopters. On the one hand,
there can be organizations that have considered
using OSS, but decided not to adopt. The experi-
ences of these organizations may provide more
insight into the main drawbacks of using OSS.
On the other hand, there are organizations that
did not consider OSS as one of the alternatives.
Such organizations may have negative perceptions
towards OSS and did not further investigate them.
For example, organizations may be convinced that
OSS costs more in maintenance or is unreliable.
Similarly, organizations may also have unverified
ideas with respect to proprietary software. They
may believe that using proprietary software is less
expensive or may place more trust in a closed,
proprietary software model. In the most extreme
case, organizations may even only consider using
software from one specific vendor. In either case,
decision making will not be mindful, as not all
alternatives are being considered.

Another interesting avenue for future research
is to investigate whether decision making on OSS
will become less ideological. Since the adoption
of OSS is still a relatively recent phenomenon,
less information is available on OSS than on
proprietary software. It can be expected that as
time passes, more information on an innovation
becomes available, and decision makers will be
able to make better informed choices. On the
other hand, Swanson and Ramiller (2004) point
out that later adoption can also be driven by diffu-
sion itself, making later adoption not necessarily
more mindful than early adoption.

A final topic for further investigation concerns
situations in which the decision to startusing OSS
istriggered by the mere availability of OSS, rather
than a concrete problem situation that gives rise to
asearch, evaluation, and decision-making process.
This process resembles the garbage can model of
decision making (Cohen, March, & Olsen, 1972).
Hence, future research could investigate the ap-
plicability of this theory in situations in which
decision makers share the OSS ideology.

172

CONCLUSION

The contribution of this article is that we were
able to identify ideological characteristics in the
decision making on OSS in very small organiza-
tions. This result further elaborates on the study
of West and Dedrick (2005), who did not detect
such behavior in their sample. We argue that
while medium to large businesses are likely to be
pragmatic in their decision making, the influence
of ideological beliefs should not be completely
disregarded in small organizations.

Although a minority of organizations in our
sample has exhibited ideological behavior, it is
remarkable thatall three very small organizations
in our sample—with a single decision maker—
did to some degree. If that decision maker can
be considered an open source advocate—which
was definitely the case in OrganizationA and
Organization]—it is more likely that personal
beliefs and values of the decision maker have an
impact on the final decision making. Hence, the
adoption decision with respect to OSS is more
likely to be ideological. This is consistent with
the observation of Fiol and Connor (2003) who
argue that mindlessness in combination with the
absence of formal procedures will further enable
mindlessness. In larger organizations, decision
making is more likely to be pragmatic, since
there are more decision makers and procedures
involved in the OSS adoption decision.” Ideologi-
cal decision making is however not necessarily a
static phenomenon. Since itappears that ideologi-
cal decision making is closely related to a single
decision maker, the situation may change if that
person leaves the organization, or if other deci-
sion makers join the organization. This could be
observed in OrganizationA.

The definition of ideology we have used in this
articleisnon-judgmental. Consequently, we donot
want to make any claims with regard to whether
the organizations have made a wrong decision in
choosing for OSS. We have found no evidence to
suggest that the decision has had anegative impact

The Impact of Ideology on the Organizational Adoption of Open Source Software

onthe organizations. In fact, OrganizationA actu-
ally seemed to be able to innovate by using OSS
and proved to be quite successful. On the other
hand, it could be established that OrganizationA
(at the time of founding) and Organization] were
not sufficiently mindful in their decision. These
organizations only considered using OSS and
did not properly investigate alternatives. Such
mindless behavior always entails the risk that the
organization does not properly reflect on whether
the innovation is suitable within the organization,
resulting in a less-than-optimal solution for the
organization (Swanson & Ramiller, 2004). A
mindful organization that adopts OSS should not
take the claims proposed by the OSS ideology for
granted. Instead, it should investigate the implica-
tions of using OSS in the organization-specific
environment. This is important since this situ-
ational context can be complex, rendering some
claims irrelevant for the organization.

Swanson and Ramiller (2004) however point
out that notwithstanding the risks, mindless deci-
sion making can have its merits for organizations.
This can be the case when the rewards are likely
to outweigh the risks, or when time limitations
do not allow for a thorough decision-making
process. Hence, mindless decision making can
be a valid strategy for routine decisions and
does not necessarily imply ideological decision
making. However, we were able to exclude this
possibility in the three small organizations in our
sample by investigating the background of the
decision-making process. In all three organiza-
tions, the adoption of OSS constituted an important
change that concerned the replacement of existing
proprietary software or the use of a new type of
software. Therefore, no similar evaluation of OSS
was previously undertaken, and decision making
was indeed ideological.

REFERENCES

Abrahamson, E. (1991). Managerial fads and
fashions: The diffusion and refection of innova-
tions. Academy of Management Review, 16(3),
586—612.

Benbasat, I., Goldstein, D.K., & Mead, M. (1987).
The case research strategy in studies of informa-
tion systems. MIS Quarterly, 11(3), 368—386.

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organizing social relationships in open
source communities. /nformation Systems Jour-

nal, 11(4), 305-315.

Butler, B.S., & Gray, P.H. (2006). Reliability,
mindfulness, and information systems. MIS
Quarterly, 30(2), 211-224.

Cohen, M.D., March, J.G., & Olsen, J.P. (1972).
A garbage can model of organizational choice.
Administrative Science Quarterly, 17(1), 1-25.

Dedrick, J., & West, J. (2003). Why firms adopt
open source platforms: A grounded theory of
innovation and standards adoption. In J.L.. King
& K. Lyytinen (Eds.), Proceedings of the Work-
shop on Standard Making: A Critical Research
Frontier for Information Systems (pp. 236-257),
Seattle, WA.

Dubé, L., & Paré, G. (2003). Rigor in information
systems positivist case research: Current practices,
trends, and recommendations. MIS Quarterly,
27(4), 597-635.

Eisenhardt, K.M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532-550.

Fiol, C.M., & Connor, O.J. (2003). Waking up!
Mindfulness in the face of bandwagons. Academy
of Management Review, 28(1), 54-70.

Fitzgerald, B. (2006). The transformation of
open source software. MIS Quarterly, 30(3),
587-598.

173

The Impact of Ideology on the Organizational Adoption of Open Source Software

Geuss, R. (1994). Ideology. In T. Eagleton (Ed.),
Ideology (pp. 260-278). Essex, UK: Longman
Group.

Hamilton, M.B. (1987). The elements of the con-
cept of ideology. Political Studies, 35(1), 18-38.

Hansen, M.T., & Haas, M.R. (2001). Competing
for attention in knowledge markets: Electronic
document dissemination ina management consult-

ing company. Administrative Science Quarterly,
46(1), 1-28.

Harrison, D.A., Mykytyn, P.P. Jr., & Riemensch-
neider, C.K. (1997). Executive decisions about
adoption of information technology in small
business: Theory and empirical tests. Information
Systems Research, 8(2), 171-195.

Ljungberg, J. (2000). Open source movements
as a model for organizing. European Journal of
Information Systems, 9(4), 208-216.

Lundell, B., Lings, B., & Lindqvist, E. (2006).
Perceptions and uptake of open source in Swedish
organizations. In E. Damiani, B. Fitzgerald, W.
Scacchi, M. Scotto, & G. Succi (Eds.), IFIP inter-
national federation for information processing:
Volume 203—open source systems (pp. 155-163).
Boston: Springer.

Markus, M.L., Manville, B., & Agres, C.E. (2000).
What makes a virtual organization work? Sloan
Management Review, 42(1), 13-26.

Miles, M.B., & Huberman, A.M. (1994). Qualita-
tive data analysis: An expanded sourcebook (2nd
ed.). Thousand Oaks, CA: Sage.

Phillips, L.W. (1981). Assessing measurement
error in key informant reports: A methodologi-
cal note on organizational analysis in marketing.
Journal of Marketing Research, 18(4), 395—415.

Riemenschneider, C.K., Harrison, D.A. & Myky-
tyn, P.P. Jr. (2003). Understanding IT adoption
decisions in small business: Integrating current
theories. Information & Management, 40(4),

174

269-285.

Sternberg, R.J. (2000). Images of mindfulness.
Journal of Social Issues, 56(1), 11-26.

Stewart, K.J., & Gosain, S. (2006). The impact
of ideology on effectiveness in open source soft-

ware development teams. MIS Quarterly, 30(2),
291-314.

Swanson, E.B., & Ramiller, N.C. (2004). Innovat-
ing mindfully with information technology. MIS
Quarterly, 28(4), 553-583.

Tushman, M.L., & Scanlan, T.J. (1981). Charac-
teristics and external orientations of boundary
spanning individuals. Academy of Management
Journal, 24(1), 83-98.

Weick, K.E., Sutcliffe, K.M., & Obstfeld, D.
(1999). Organizing for high reliability: Processes
of collective mindfulness. In R.I. Sutton & B.M.

Staw (Eds.), Researchin organizational behavior
(vol. 21, pp. 81-123). Greenwich, CT: JAI Press.

West, J., & Dedrick, J. (2005). The effect of
computerization movements upon organizational
adoption of open source. Proceedings of the Social
Informatics Workshop: Extending the Contribu-
tions of Professor Rob Kling to the Analysis of
Computerization Movements, Irvine, CA.

Yin,R.K. (2003). Case study research: Designand
methods (3rd ed.). Newbury Park, CA: Sage.

ENDNOTES

These organizations had on average 41,885
employees (25,529 when only counting the
unit studied in the organization).

The term “mindless” generally has a pe-
jorative meaning, such as “unintelligent.”
In academic literature however, the term
is used to refer to automatic or inattentive
behavior (e.g., Swanson & Ramiller, 2004;
Fiol & Connor, 2003; Butler & Gray, 2006;

Sternberg, 2000). We use the term “mind-
less” in the second sense. Hence, we do not
wish to imply any negative connotations.
The organizations in our case studies have
on average 1,081 employees.

Actually, the Dutch equivalent was used,
namely “vrije software,” which is similar in
meaning as the French term /ibre software
and refers to “freedom” rather than “free of
charge.”

Other reasons were that it used Java (which
the IT manager did not like very much),

The Impact of Ideology on the Organizational Adoption of Open Source Software

and the fact that he preferred using custom-
developed software that fits his business.
This may indicate that these organizations
preferred to cooperate with other organiza-
tions within the same industry in order to
extend their own capabilities, rather than
to outsource development to an external
firm.

On the other hand, Fiol and Connor (2003)
have noted that formal procedures may also
lead to mindlessness (i.e., when decision
makers follow procedures without critically
considering them).

This work was previously published in the Journal of Database Management, Vol. 19, Issue 2, edited by K. Siau, pp. 58-72,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

175

176

Chapter 8
Web Services, Service-Oriented
Computing, and Service-Oriented

Architecture:
Separating Hype from Reality

John Erickson
University of Nebraska - Omaha, USA

Keng Siau
University of Nebraska - Lincoln, USA

ABSTRACT

Service-oriented architecture (SOA), Web services, and service-oriented computing (SOC) have become
the buzz words of the day for many in the business world. It seems that virtually every company has
implemented, is in the midst of implementing, or is seriously considering SOA projects, Web services
projects, or service-oriented computing. A problem many organizations face when entering the SOA
world is that there are nearly as many definitions of SOA as there are organizations adopting it. Further
complicating the issue is an unclear picture of the value added from adopting the SOA or Web services
paradigm. This article attempts to shed some light on the definition of SOA and the difficulties of as-
sessing the value of SOA or Web services via return on investment (ROI) or nontraditional approaches,
examines the scant body of evidence empirical that exists on the topic of SOA, and highlights potential
research directions in the area.

INTRODUCTION underlying middleware realization schemas such
as SOAP (simple object access protocol), UDDI
Service-oriented architecture (SOA); Web ser- (universal description, discovery, and integration),

vices; mash-ups; Ajax; Web 2.0; some of their XML (extensible markup language),and CORBA

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

(common object request broker architecture); and
many other ideas or approaches to cutting-edge
information system architectures have become the
buzzwords of the day for many in the business
world and also in the IT and IS communities. It is
quite difficult, perhaps nearly impossible, to pick
up any relatively current practitioner publication
without encountering an article focusing on at
least one of the above topics. A recent library
database search using keywords service-oriented
architecture, Web services, and SOA resulted in
800-plus returns. Further investigation revealed
that roughly 25 of those 800 articles were sourced
in research journals while the other (still roughly
800) articles were all from more practitioner-
oriented sources.

When it comes to adopting and implementing
SOA, it appears that businesses are doing it at
astounding rates. Of course, what they are actu-
ally doing, even though they may say that their
efforts represent a move toward service-oriented
architecture, may not match anyone else’s defi-
nition of SOA but their own. Furthermore, how
can SOA be defined, and how can we define the
benefits of moving toward such architectures? It
seems that there is little agreement among prac-
titioners and researchers alike as to a standard
definition of SOA.

Worse still, a growing number of practitio-
ners are now beginning to question the business
return of some of the approaches. For example,
Dorman (2007), Havenstein (2006), Ricadela
(2006), and Trembly (2007) indicate that there
is doubt emerging as to the real value of SOA to
adopting businesses and organizations. Perhaps
the question of return on investment (ROI) should
not be that surprising since it sometimes seems
that each organization has its own definition of
what SOA really is.

This article attempts to reach for a clearer
understanding of what SOA really is, and pro-
poses some possible areas of research into SOA
that could help clear up some of the definitional
confusion, which could in turn help lead to better

understanding of ROI as it relates to SOA. First
is the introduction. Second, the article provides
existing definitions of SOA, Web services, and
some of the related and underlying technologies
and protocols. The next section combines the vari-
ous definitions of SOA into a more coherent form,
while the section after that proposes ideas about
what SOA should be. The fifth section discusses
research possibilities and provides recommenda-
tions for future research efforts. Next, we look at
ways of measuring and justifying SOA and SOC
(service-oriented computing) success. Finally, we
conclude the article.

BACKGROUND AND HISTORY
OF SERVICE-ORIENTED
ARCHITECTURE

A minimum of nine formal definitions of SOA
exist as of this writing, from sources such as the
Organization for the Advancement of Structured
Information Standards (OASIS), the Open Group,
XML.com, Javaworld.com, Object Management
Group (OMG), the World Wide Web Consortium
(W3C), Webopedia, TechEncyclopedia, Whatls.
com, and Webopedia.org. In addition, many
other definitions put forth by numerous industry
experts, such as those from IBM, further cloud
the issue, and worse yet, other formal definitions
might also exist. In other words, the concept of
service-oriented architecture appears in many
ways to be a virtually content-free description
of an IT-based architecture. It is not our intent
here to add yet another definition to this already
crowded arena of definitions, but to try to cull
the common, base meanings from the various
distinct definitions.

Prior to about 2003, the term service-oriented
architecture was not in general use for the most
part, according to Wikipedia (“SOA,” 2007).
However, since thattime, SOA has exploded nearly
everywhere in the business and technology world.
SOA appears to derive or develop in many cases

177

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

from more basic Web services. These services
can include enabling technologies such as SOAP,
CORBA, EJB (Enterprise Java Beans), DCOM
(distributed component object model), and even
SIP (session-initiated protocol) among many oth-
ers; services may also include other middleware
created with XML (Lee, Siau, & Hong, 2003; Siau
& Tian, 2004; Sulkin, 2007; Walker, 2007).

Service-Oriented Architecture
Definitions

The Open Group (2007) defines SOA as “an ar-
chitectural style that supports service orientation.”
The definition goes on to also include descriptions
ofarchitectural style, service orientation, service,
and salient features of SOA. OASIS defines SOA
as “aparadigm for organizing and utilizing distrib-
uted capabilities that may be under the control of
different ownership domains.” The OASIS defini-
tion includes what they call a “reference model”
in which the details of the definition are expanded
and formalized. The Object Management Group
(2007) defines SOA as “an architectural style
for a community of providers and consumers of
services to achieve mutual value”” OMG adds
that SOA allows technical independence among
the community members, specifies the standards
that the (community) members must agree to
adhere to, provides business and process value
to the (community) members, and “allows for a
variety of technologies to facilitate (community)
interactions” (OMG, 2007).

W3C (2007) defines SOA as “a form of distrib-
uted systems architecture thatis typically charac-
terized by...alogical view, a message orientation,
adescription orientation, granularity and platform
neutrality.” W3C adds details describing what it
means by logical view, message and description
orientations, granularity, and platform neutrality.
XML.com (2007) defines SOA as follows:

SOA is an architectural style whose goal is to
achieve loose coupling among interacting soft-
ware agents. A service is a unit of work done by a

178

service provider to achieve desired end results for
aservice consumer. Both provider and consumer
are roles played by software agents on behalf of
their owners.

The Javaworld.com SOA definition, composed
by Raghu Kodali (2005), is as follows: “Service-
oriented architecture (SOA) is an evolution of
distributed computing based on the request/
reply design paradigm for synchronous and
asynchronous applications.” Kodali also goes on
to describe four characteristics of SOA. First, the
interfaces composedin XML, using WSDL (Web
services description language), are used for self-
description. Second, XML schema called XSD
should be used for messaging. Third, a UDDI-
based registry maintains a list of the services
provided. Finally, each service must maintain a
level of quality defined for it via a QoS (quality
of service) security requirement.

Finally, IBM proposes that SOA “describes a
style of architecture that treats software compo-
nents as a set of services” (UNL-IBM System in
Global Innovation Hub, 2007). Furthermore, it
insists that business needs should “drive defini-
tion” of the services, and that the value proposition
be centered on the reusability and flexibility of
the defined services.

SERVICE-ORIENTED
ARCHITECTURE

We begin the SOA discussion with an overview
of SOA provided by Krafzig, Banke, and Slama
(2005). They proposed a three-level hierarchical
perspective on SOA in which Level 1 includes
the application front end, the service, the service
repository, and the service bus (SB). Accordingly,
only the service child has children, consisting
of the contract, implementation, and interface.
Finally, the last level of the proposed hierarchy is
composed of business logic and data, children of
implementation. The next subsections will discuss
the general ideas of the elements included in the

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

hierarchy proposed by Krafzig et al. described
previously. This is not to recommend adoption
of the hierarchy and description as the final de-
scription of SOA, but rather as a framework for
discussing the meaning of SOA for the remainder
of this article.

Application Front End

This part of SOA comprises a source-code in-
terface, and in SOA terminology, it is referred to
as the application programming interface (API).
In accordance with most commonly accepted
design principles, theunderlying service requests,
brokerage (negotiation), and provision should be
transparent to the end user.

Service Repository

The service repository could be thought of as the
library of services offered by a particular SOA.
This would likely consist of an internal system
that describes the services, and provides the
means in the user interface to call a particular
service. UDDI could be seen as a realization of
the service repository idea. UDDI is a global
registry that allows businesses to list themselves
on the Internet. UDDI is platform independent
and XML based. The point of UDDI is for busi-
nesses to list the Web or SOA-type services that
they provide so that other companies searching
for such services can more easily locate and ar-
range to use them.

Service Bus

The SB, more commonly referred to as the enter-
prise service bus (ESB), provides a transporta-
tion pathway between the data and the end-user
application interface. Using an ESB does not
necessarily mean SOA is being implemented,
but ESB or some sort of SB use is almost always
part of an SOA deployment. According to Hicks
(n.d.), Oracle’s idea of an ESB includes multiple

protocols that “separate integration concerns from
applications and logic.” What this means is that
ESBs have now become commercialized, and can
be licensed for use much like other UDDI-based
services. So, companies searching for ESB solu-
tions as part of an SOA effort now have multiple
choices and do not necessarily have to re-create
the wheel by building their own ESB.

Common Services

It seems apparent from many of the SOA defini-
tions that many of the technologies included in an
SOA definition, and by default SOA implementa-
tions, are established and conventional protocols.
To betterunderstand the services provided inmany
SOA definitions, a briefexplanation of some of the
more commonly used underlying technologies is
provided. A particular service may or may not be
explicitly Web based, but in the end it matters little
since the services provided by the architecture
should be transparently designed, implemented,
and provided. The general consensus from most
involved in Web services is that the services are
meant to be modular. This means that no single
document encompasses all of them, and further-
more, that the specifications are multiple and (more
or less) dynamic. This results in a small number
of core specifications. Those core services can be
enhanced or supported by other services as “the
circumstances and choice of technology dictate”
(“Web Service,” 2007).

XML allows users to define and specify the
tags used to capture and exchange data, typi-
cally between distinct and usually incompatible
systems from different companies or organiza-
tions. This means that XML is a good example
of middleware; it also means that XML enables
Web services. XML was one of the initial drivers
that provided the ability to conduct e-business
for many businesses in the Internet era. XML
cannot really be considered a service, but as the
language used to write many of the Web services
or service stack protocols.

179

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

SOAP, like all protocols, consists of a set list of
instructions detailing the action(s) to be takenin a
given circumstance. SOAP is designed to call, ac-
cess, and execute objects. The original SOAP was
typically for communications between comput-
ers, and usually involved XML-based messages.
SOAP and its underlying XML programming
comprised one of the first Web service commu-
nication stacks. One of the original Web services
that SOAP provided was called remote procedure
call (RPC), which allowed a remote computer
to call a procedure from another computer or
network. More recently, SOAP has taken on a
somewhat modified meaning so that the acronym
now means service-oriented architecture protocol.
In both cases, what SOAP does is to use existing
communications protocols to provide its services.
The more common early SOAP contracts included
XML applications written for HTTP (hypertext
transfer protocol), HTTPS (HTTP over secure
socket layer), and SMTP (simple mail transfer
protocol), among others. It should be apparent
fromthese that many early SOAP implementations
involved e-commerce or e-business applications,
which means that the concern at the time when
many applications were first developed was to
move sales and other data collected in Web portals
to back-end data stores.

CORBA is an OMG-developed standard that
allows different software components thatare usu-
ally written in different languages and installed
on different computers to work together (Zhao &
Siau, 2007). CORBA was developed in the early
1990s, and while not overtly an SOA at the time,
it actually performs many of the functions in an
SOA, using an [1OP- (Internet inter-orb protocol)
based service stack.

EJB is a component typically situated on the
server that “encapsulates the business logic of
an application” (“EJB,” 2007). EJB enables the
creation of modular enterprise (and other) ap-
plications. The intent of EJB is to facilitate the
creation of middleware that acts as a go-between

180

tying front-end applications to back-end applica-
tions or data sources.

SIP is a signaling protocol designed for use in
telecommunications at the application layer. Ithas
generally become one of the primary protocols
used in VoIP (voice over Internet protocol), H.323,
and other communications standards. SIP can be
seen as a primary provider of Web services for
Internet-based voice communications such as
VoIP (Sulkin, 2007).

Contract (Services)

Components of aservice contracttypically include
primary and secondary elements. The primary
elements consist of the header, functional require-
ments, and nonfunctional requirements. Subele-
ments for the header consist of the name, version,
owner, RACI, and type. Under functional require-
ments are functional requirement descriptions,
service operations, and invocation. Nonfunctional
requirements include security constraints, QoS,
transactional requirements (the service part of a
larger transaction), service-level agreement, and
process (“SOA,” 2007). The contract generally
includes metadata about itself, who owns it, and
how it is brokered, bound, and executed.

Interface

At this level of service provision, the interface
referred to is a segment of code that connects
the service with the data and/or business logic
(process). The interface describes how data will
be moved into and out of the data source by the
service, and must be designed to comply with the
physical (data, data structures, etc.) and process
(business logic) requirements of the existing and/
or legacy system.

Implementation

The implementation specifies the contract and
interface to be used for each service requested,

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

and contains the direct pathway into the data and
business logic.

Architecture

The service component of SOA has beendiscussed,
though admittedly at a high level. However, the
architecture component has notyetbeenaddressed
and it will be helpful to speak briefly about the
architecture segment of SOA. Architecture in
general refers to the art (or science) behind the
design and building of structures. Alternatively,
an architecture may refer to a method or style of
a building or a computer system. So, if SOA is
taken literally as a description of its function, it
could be taken to mean a structured way of or-
ganizing or arranging the services in a business
or organization.

SOA FRAMEWORK

It is apparent from the existing definitions and
models that service-oriented architecture is
commonly seen as an architecture or way of
assembling, building, or composing the infor-
mation technology infrastructure of a business
or organization. As such, SOA is not a technol-
ogy in itself; rather, it is a way of structuring or
arranging other technologies to accomplish a
number of other tasks. This naturally leads to
the problem of a multiplicity of definitions of
SOA since many relatively similar structural ar-
rangements of services are possible. Many of the
definitions also indicate that the arrangement and
relationships between modules should be loosely
coupled rather than tightly coupled. This allows
for customization of services based on need,
and on-demand rather than some predetermined
structure, but the downside is that it also leads
toward a plethora of definitions and approaches
to SOA implementation.

Some of the common features that seem
sensible to include in a formal definition of SOA
would relate to acommon framework, such as that

specified by Krafzigetal. (2005) or one of the other
standards bodies. In other words, a framework
would include metadata describing the various
important features of SOA, how those features
can be arranged, and the libraries or location of
services that allow adopting organizations to ar-
range bindings or contracts between themselves
and the service provider, independent of whether
the service provider is internal or external. We
propose the framework depicted in Figure 1 as a
starting point for visualizing SOA.

Several of the standards bodies have taken a
stance in creating or calling for a metamodel, at
least in some form. Among them are the Open
Group, OASIS, OMG, W3C, and to a lesser extent
industry-related bodies such as Javaworld.com,
XML.com, IBM, and Oracle.

UDDI has become a very well-known
structured repository for services and service
components, which speaks to the universality of
the library or centralized database of services.
However, more standardization efforts will be
necessary to enhance the interoperability of
UDDL

It also appears, especially with the industry
definitions of SOA, that the contracts, bindings,
interfaces, service buses, and other implementa-
tion-related portions of SOA are important ele-
ments to be considered when attempting to give
an overall definition of SOA. This unfortunately
could easily represent a stumbling block in gar-
nering consensus on a definition of SOA since
each of these companies has invested significant
time, human, and other likely resources toward
development of their specific pieces of the SOA
pie. Each company has invested heavily and thus
will likely be less willing to risk that investment
and any potential return and customer lock-in in
orderto simply agree on standards. We observed a
similar occurrence of this type of behavior in the
recently ended format war in the high-definition
DVD market. Similarly, if the standards bodies
have political or industry leanings, agreement on

181

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

Figure 1. SOA framework

Service Oriented Architecture

SOA

WN =

Service

. Physical Transport Schema

. API (Application Programming Interface)

. Source (Service Library or Repository;
UDDI, internal or external)

Includes:

3

Service Implementation

1. Contract or binding detail
2. Code Schema

Includes:

N

Business Logic

(Process or Activity)

Data

(connection to data source;
internal or external)

a common SOA definition and standards could
be difficult to achieve.

Another more recent development comes
from Shah and Kalin (2007). They proposed that
organizations adopting SOA follow a specific
path based on an analysis of business challenges,
including SOA business drivers and IT barriers.
This led them to speculate that a specific adoption
model be used to guide the SOA implementa-
tion process. They indicated that an ad hoc SOA
model is better where the benefits of new services
are specific to each individual service, where
the technologies may be inconsistently applied
(different implementations for the same service
in different projects), where services cannot be
reused, and where the increases in technologi-
cal complexity translate into decreased system
response times. Shah and Kalin ended with a call
for a strategy- or program-based SOA adoption
model that is situational.

182

We propose that a common definition of SOA
ispossible and necessary, and call for negotiations
among interested bodies with the aim of reaching
a common definition of SOA. We realize that in
practice it might prove difficult or even nearly
impossible to expect such a consensus to be ar-
rived at, but a common definition and structure
of SOA would go a long way toward dealing with
some of the confusion, misinformation, and hype
regarding the entire subject. Difficult though it
might be to expect this, a realization that SOAP,
CORBA, RPC, and XML among many other
technological tools have reached a point of rela-
tive agreement amongst users if not ubiquity, at
least related to their underlying standards, should
provide some evidence that agreements can be
reached. Next, we will examine SOA from the
research perspective.

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

POSSIBILITIES FOR RESEARCH

Research into SOA is extremely limited at this
point in time. What studies exist can be classified
into several distinct categories. The first includes
exploratory or recommendation-type efforts that
propose various means to approach SOA imple-
mentation. These investigations may or may not
include proprietary industry software, but most
of these research efforts propose the use of pat-
terns or blueprints and a metamodel of SOA as
a means to understanding the SOA perspective.
Second, inthis category are research proposals that
examine company-specific technologies or tools
(i.e., IBM proposing the use of Rational Software,
including the Rational Unified Process) in rela-
tion to SOA design and implementation. Neither
of the first two types of SOA research generally
involve ideas on how to measure SOA in terms
of success or failure, or even suggest metrics.
Finally, the third type of research articles focus
on empirical research.

SOA Development or Deployment
Patterns and Blueprints, and the
Meta-Approach

Stal (2006) took a roughly similar approach to
what we are attempting to do in this article;
he advocated using architectural patterns and
blueprints (software engineering patterns) as a
means to enable or foster efficient deployment of
SOA. He supported loose coupling of services in
a registry or library to the extent that he thought
that removing the services’ dependency on the
registry’s or provider’s distinct location would
benefit the deployment of SOA. Stal maintained
that this would eliminate, or at least minimize, a
layer in the SOA framework. He also proposed
a more tightly defined and controlled integration
of middleware using XML or similar tools. Ba-
sically, Stal suggested a metamodel and pattern
approach to defining SOA, but did not suggest

what the research might accomplish or how the
research into SOA would be framed. Kim and
Lim (2007) also proposed a distinct means to
implementing SOA, using in this instance, busi-
ness process management, in addition to a variant
of the SOA framework specifically dealing with
the telecommunications industry. Similar to Stal,
Kim and Lim did not propose empirical research
into SOA, but rather focused on implementation
and standards in a specific industry.

Shan and Hua (2006) proposed an SOA ap-
proach for the Internet banking industry. They also
compiled a list of patterns that have been proven
successful for other online service industries.
However, the models they used and ended up with
are very detailed regarding how SOA should be
implemented for first online companies in general,
and then Internet banking specifically. This again
does not propose or frame specific research but
rather suggests an implementation approach and
a structure for SOA.

The ESB is explained in detail, but from a
general perspectiverather thana company-specific
approach in Schmidt, Hutchison, Lambros, and
Phippen’s (2005) expository. The article is infor-
mativeregarding ESB implementation and design
patterns, but it is not research oriented.

Crawford, Bate, Cherbakov, Holley, and Tsoca-
nos (2005) proposed a different way to structure
SOA, what they called on-demand SOA. They
essentially proposed an even looser coupling of
services and their connecting elements than in
other perspectives of SOA. They argued that this
would allow much more flexibility to the adopting
organizations and the end users.

Company-Specific and Commercial
Tool-Based SOA Deployment

Brown, Delbaere, Eeles, Johnston, and Weaver
(2005) presented an industry-oriented perspective
on the SOA puzzle. They suggested an approach
to service orientation using the proprietary IBM
Rational platform. Theirrecommendations follow

183

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

similar paths as some previous research, but are
also filtered through the IBM Rational lens. The
article is primarily illustrative in nature, sug-
gesting how to best implement SOA using IBM
Rational tools. In a similar vein, Ferguson and
Stockton (2005) also detailed IBM’s programming
model and product architecture.

De Pauw, Lei, Pring, and Villard (2005) de-
scribed the benefits of Web Services Navigator,
a proprietary tool created to provide a better
visualization of SOA and Web services in a
loosely coupled architecture. The tool can help
with design-pattern, business-logic, and business-
process analysis, and thus help with SOA archi-
tecture design and implementation.

Jones (2005) suggested that SOA, service, and
Web service standards were “on the way” and
provided a list of existing tools, such as UML
(Unified Modeling Language) and/or the rational
unified process that could aid the SOA (or service)
design process. However, he also advocated the
push toward formal definitions of such SOA basics
as services, to the end of providing a more coher-
ent and cohesive structure that he thought would
enhance the ability of developers and adopters to
understand and deploy SOA.

Research-Based Perspectives on
SOA

Chen, Zhou, and Zhang (2006) proposed an
ontologically based perspective on SOA, Web
services, and knowledge management. They
attempted, with some success, to integrate two
separateresearch streams into one. They presented
a solution to show that semantic- and syntactic-
based knowledge representations could both be
depicted with a comprehensive ontology that also
described Web service composition. While their
framework represents a step toward automated
(Web) service composition, more research is
still needed.

Borkar, Carey, Mangtani, McKinney, Pate,
and Thatte (2006) suggested a way of handling

184

XML-based data in an SOA or service environ-
ment. Their idea involved the use of data both
able to be queried and unable to be queried, and
would necessarily also involve XML-formatted
data. This represents empirical research into a
partof SOA, namely, the underlying services, and
is at least a step in the right direction, although
it does not enter the realm of research into the
efficacy or ROI of SOA.

Duke, Davies, and Richardson (2005) rec-
ommended and provided details on using the
Semantic Web to organize an organization’s ap-
proach to SOA and Web service orientation. They
suggested that combining the Semantic Web and
SOA into what they called Semantic SOA would
provide benefits to adopting organizations. Then
they further proposed an ontological model of the
Semantic SOA, attempting essentially to create a
meta-metamodel of SOA using their experience
with the telecommunications industry as a case
example. This is one of the few high-level articles
that can also be seen as empirical research.

Zhang (2004) explored the connection between
Web services and business process management,
and described the modular nature of the service
(and Web service) perspective. He detailed the
software industry’s approach to Web services
and provided evidence that standards develop-
ment would quickly mature, beginning in 2005.
He maintained that once standards were agreed
upon, a connection to business process manage-
ment would be easier to sell to businesses. Zhang
also developed a prototype e-procurement system
that composed external services to operate.

Malloy, Kraft, Hallstrom, and Voas (2006)
developed an extension to WSDL. They insisted
that Web services’ specifications were “typically
informal and not well-defined,” and proposed what
they called an intermediate step between requiring
more formal and rigorous service specifications
and the informal nature of the existing service
specifications. They accomplished this balance
by extending WSDL to include support for ap-
plication arguments that would help automate and

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

expand the ability of services to operate inmultiple
environments. They provided an example of how
their WSDL extension could allow a single service
to function successfully in different applications
using multiple zip code formats (five vs. nine
digits, and hyphens vs. no hyphens).

Verheecke, Vanderperren, and Jonckers (2006)
proposed and developed a middleware level that
they called the Web services management layer
(WSML). They saw the primary advantage of
theirapproachinthatitprovided areusable frame-
work. They further believed that the use of their
framework would enable “dynamic integration,
selection, composition, and client-side manage-
ment of Web Services in client applications” (p.
49). They were aware that their approach could
cause some problems in a distributed system
since implementation of it resulted in a central-
ized architecture.

Hutchinson, Henzel, and Thwaits (2006)
described a case in which an SOA-based system
was deployed for a library extension collabora-
tion project. Much of the case details the SOA
approach itself, and explains the experiences of
the project developers and implementers. They
noted that while the SOA architecture could be
expected to reduce the operational maintenance
costs overall, the way the system was specified
and delivered in this particular case might require
more work from IT to keep some services, such
as flash players, up to date. While the authors did
not specifically mention it in the article, perhaps a
more loosely coupled architecture mightalleviate
some of those operational maintenance costs.

Li, Huang, Yen, and Cheng (2007) proposed a
methodology to migrate the functionality of legacy
systems to a Web services or SOA architecture.
They used a case study to investigate the efficacy
of their proposed methodology, finding that while
it was possible to make such a migration from
legacy systems to SOA (or Web services), the
changes that it required from the organization
were considerable, and some process reengineer-
ing would likely be necessary.

MEASURING SOA AND SOC
SUCCESS

Anothertrickyissuein SOA and SOC implementa-
tion is the measurement or evaluation of success.
Traditionally, software (or system) successes and
failures have been estimated by the usual suspects:
traditional measures such as ROI, net present value
(NPV), breakeven, internal rate of return (IRR), or
other similar financially based approaches. Simi-
larly, software itself has usually been measured
in terms of errors or productivity via numeric
methodologies such as lines of code, COCOMO
(constructive cost model), and similar estimation
techniques. These approaches are all based firmly
on the idea that if we can assign some number
to a system, then we can compare them across
projects, systems, or organizations. The problem
isanalogous to the question often asked regarding
enterprise resource planning (ERP) systems: If
all of the Fortune 100 companies implement the
same piece of software, such as SAP, then what
allows one organization to differentiate itself from
another if they have standardized on SAP’s best
processes and best practices? One way to answer
that question is to examine other measures of
success such as competitive advantages (Siau,
2003), competitive necessity, flexibility, agility
(Erickson, Lyytinen, & Siau, 2005), nimbleness,
responsiveness, and other relevantintangibles. We
would even propose that the best way to evaluate
SOA or SOC implementation is not ROI. Intangible
but critical factors such as competitive necessity,
agility, on-demand abilities, and responsiveness
should be the decisive factors.

Nah, Islam, and Tan (2007) proposed a frame-
work and critical success factors for estimating the
success of ERP implementations. They empiri-
cally assessed a variety of implementation suc-
cess factors including top-management support,
project team competence, and interdepartmental
cooperation, among many others. While the study
answered anumber of important questions regard-
ing ERP implementations, the issue of assessing

185

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

intangibles in terms of success factors remains a
problem, not only for ER P-type implementations
but also for other system types as well, especially
for SOA since the SOA approach can be seen as
an alternative in many ways to ERP.

Langdon (2007) noted that while many
economic-based studies indicate that IT projects
add value at the macrolevel, little has been done
to assess how value is added at the more micro
or individual project level. Specifically, Langdon
proposed and evaluated a research model that
included (IS) integration and flexibility as capa-
bilities that could lead to IT business value. Of
course, flexibility and integration are only two
components of a larger IT capabilities structure,
but the study indicates that the first steps have
been taken to study intangibles in the context of
an IT systems development project.

Two intangibles in the IT success-factor
context are the oft-cited agility or nimbleness of
a company or organization. An entire genre of
systems development has emerged based on the
principle of agility. However, there is little empiri-
cal evidence supporting the value added from such
development approaches (Erickson et al., 2005).
Since a growing number of SOA installations are
constructed as ad hoc, which is in a basic sense
agile, we propose that in environments where
agility and nimbleness are important, so in turn
are SOA and SOC important.

CONCLUSION

From the literature, it appears that only a few ef-
forts can be said to be empirical research. A major-
ity of the research efforts involved created tools
or language extensions that would increase the
interoperability of services, while other research
proposed standards modifications. Many of the
remaining articles published proposed new tools
or the use of existing proprietary tools, described

186

anapproach to SOA from specific perspectives, or
proposed model or metamodel changes. A limited
number of case studies detailing SOA, Web ser-
vices, or service deployments or implementation
efforts provide experience reports on how best to
implement such systems.

As far as we can determine, virtually no
research has been formally done regarding the
benefits and drawbacks of SOA or Web services.
Two problems with this are likely to revolve around
the nebulous nature of SOA and Web services in
terms of the widely varying definition and the
emerging standards issue. An effort to identify
SOA and Web services metrics would help to get
research into this area started.

Another area of interest involving SOA and
Web services adoption is the cultural and struc-
tural impacts on the organization or business. A
number of articles note the importance of those
elements, butlittle has been accomplished in terms
of research specifically connecting SOA or Web
services with cultural and structural changes in
organizations.

A variety of standards bodies are working
separately toward formal definitions including
metamodels, and a number of SOA vendors,
among them some of the very large and established
software industry players, have emerged. While
the effort toward standardization is direly needed
and commendable, amore collaborative approach
would, in our opinion, benefit the industry and
implementing companies and organizations as
well. The seeming result of the rather haphazard
approach to SOA appears to indicate that an in-
creasing number of implementing organizations
are finding it difficult to assess the cost benefit
of the entire services approach. Research efforts
at this point appear to be in a similar state of
disarray. Until a more coherent picture of SOA
emerges, its image is likely to remain slightly
out of focus, and research in the area is likely to
remain somewhat unfocused as a result.

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

REFERENCES

Borkar, V., Carey, M., Mangtani, N., McKinney, D.,
Patel, R., & Thatte, S. (2006). XML data services.

International Journal of Web Services Research,
3(1), 85-95.

Brown, A., Delbaere, M., Eeles, P., Johnston, S., &
Weaver, R. (2005). Realizing service oriented solu-
tions with the IBM Rational Software Development
Platform. IBM Systems Journal, 44(4), 727-752.

Chen, Y., Zhou, L., & Zhang, D. (2006). Ontology-
supported Web service composition: An approach
to service-oriented knowledge management in
corporate financial services. Journal of Database
Management, 17(1), 67-84.

Crawford, C., Bate, G., Cherbakov, L., Holley, K., &
Tsocanos, C. (2005). Toward an on demand service
architecture. IBM Systems Journal, 44(1), 81-107.

De Pauw, Lei, M., Pring, E., & Villard, L. (2005).
Web services navigator: Visualizing the execu-
tion of Web services. IBM Systems Journal, 44(4),
821-845.

Dorman, A. (2007). FrankenSOA. Network Com-
puting, 18(12), 41-51.

Duke, A., Davies, J., & Richardson, M. (2005). En-
abling a scalable service oriented architecture with

Semantic Web services. BT Technology Journal,
23(3), 191-201.

EJB.(2007). Wikipedia. Retrieved October 12,2007,
from http://en.wikipedia.org/wiki/Ejb

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile
modeling, agile software development, and extreme
programming: The state of research. Journal of
Database Management, 16(4), 80-89.

Ferguson, D., & Stockton, M. (2005). Service
oriented architecture: Programming model and
product architecture. IBM Systems Journal, 44(4),
753-780.

Havenstein, H. (2006). Measuring SOA performance
is a complex art. Computer World, 40(2), 6.

Hicks, B. (n.d.). Oracle Enterprise Service Bus:
The foundation for service oriented architecture.
Retrieved October 18, 2007, from http:/www.
oracle.com/global/ap/openworld/ppt _download/
middleware oracle%20enterprise%20service%20
bus%20foundation 250.pdf

Hutchinson, B., Henzel, J., & Thwaits, A. (2006).
Using Web services to promote library-extension
collaboration. Library Hi Tech, 24(1), 126-141.

Jones, S. (2005). Toward an acceptable definition
of service. IEEE Software, 22(3), 87-93.

Kim, J., & Lim, K. (2007). An approach to service
oriented architecture using Web service and BPM
in the Telcom OSS domain. Internet Research,
17(1), 99-107.

Krafzig, D., Banke, K., & Slama, D. (2005). SOA4
elements. Prentice Hall. Retrieved October 2,2007,
from http://en.wikipedia.org/wiki/Image:SOA_Ele-
ments.png

Langdon, C. (2007). Designing information systems
to create business value: A theoretical conceptualiza-
tion of the role of flexibility and integration. Journal
of Database Management, 17(3), 1-18.

Lee, J., Siau, K., & Hong, S. (2003). Enterprise
integration with ERP and EAI. Communications
of the ACM, 46(2), 54-60.

Li, S., Huang, S., Yen, D., & Chang, C. (2007). Mi-
grating legacy information systems to Web services

architecture. Journal of Database Management,
18(4), 1-25.

Malloy, B., Kraft, N., Hallstrom, J., & Voas, J. (2006).
Improving the predictable assembly of service ori-
ented architectures. IEEE Software, 23(2), 12-15.

Nah, F., Islam, Z., & Tan, M. (2007). Empirical
assessment of factors influencing success of enter-
prise resource planning implementations. Journal
of Database Management, 18(4), 26-50.

187

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

Object Management Group (OMG). (2007). Re-
trieved September 25,2007, from http://colab.cim3.
net/cgi-bin/wiki.pl?OMGSoaGlossary#nid34QI

Open Group. (2007). Retrieved September 25,
2007, from http:/opengroup.org/projects/soa/doc.
tpl?gdid=10632

Organization for the Advancement of Structured
Information Standards (OASIS). (2006). Retrieved
September 25, 2007, from http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=soa-rm

Ricadela, A. (2006, September 4). The dark side of
SOA. Information Week, pp. 54-58.

Schmidt, M., Hutchison, B., Lambros, P., & Phippen,
R. (2005). Enterprise service bus: Making service

oriented architecture real. IBM Systems Journal,
44(4), 781-797.

Shah, A., & Kalin, P. (2007, July 6). SOA adop-
tion models: Ad-hoc versus program-based. SOA
Magazine.

Shan, T., & Hua, W. (2006). Service oriented solution
framework for Internet banking. Internet Journal
of Web Services Research, 3(1), 29-48.

Siau, K. (2003). Interorganizational systems and
competitive advantages: Lessons from history.
Journal of Computer Information Systems, 44(1),
33-39.

Siau, K., & Tian, Y. (2004). Supply chains inte-
gration: Architecture and enabling technologies.
Journal of Computer Information Systems, 44(3),
67-72.

SOA. (2007). Wikipedia. Retrieved September 25,
2007, from http://en.wikipedia.org/wiki/Service-
oriented_architecture#SOA _definitions

Stal, M. (2006). Using architectural patterns and
blueprints for service oriented architecture. /EEE
Software, 23(2), 54-61.

Sulkin, A. (2007). SOA and enterprise voice com-
munications. Business Communications Review,
37(8), 32-34.

Trembly, A. (2007). SOA: Savior or snake oil? Na-
tional Underwriter Life & Health, 111(27), 50.

UNL-IBM System in Global Innovation Hub.
(2007). Making SOA relevant for business. Retrieved
October 9, 2007, from http://cba.unl.edu/outreach/
unl-ibm/documents/SOA_Relevant Business.pdf

Verheecke, B., Vanderperren, W., & Jonckers,
V. (2006). Unraveling crosscutting concerns in
Web services middleware. /[EEE Software, 23(1),
42-50.

Walker, L. (2007). IBM business transformation
enabled by service-oriented architecture. /BM
Systems Journal, 46(4), 651-667.

Web service. (2007). Wikipedia. Retrieved Octo-
ber 18, 2007, from http:/enwikipedia.org/wiki/
Web_service

World Wide Web Consortium (W3C). (2007). Re-
trieved September 25, 2007, from http://colab.cim3.
net/cgi-bin/wiki.pl?WwwCSoaGlossary#nid34R0

XML.com. (2007). Retrieved September 25, 2007,
from http://www.xml.com/pub/a/ws/2003/09/30/
soa.html

Zhang, D. (2004). Web services composition for
process management in e-business. Journal of
Computer Information Systems, 45(2), 83-91.

Zhao, L., & Siau, K. (2007). Information media-
tion using metamodels: An approach using XML
and common warehouse metamodel. Journal of
Database Management, 18(3), 69-82.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 3, edited by K. Siau, pp. 42-54,

copyright 2008 by IGI Publishing (an imprint of IGI Global).

188

189

Chapter 9

Approximate Query Answering
with Knowledge Hierarchy

Wookey Lee
Inha University, Korea

Myung-Keun Shin
Telecom Business Division, SK C&C, Korea

Soon Young Huh
Korea Advanced Institute of Science and Technology, South Korea

Donghyun Park
Inha University, South Korea

Jumi Kim
Small Business Institute, Korea

ABSTRACT

Approximate Query Answering is important for incorporating knowledge abstraction and query relax-
ation in terms of the categorical and the numerical data. By exploiting the knowledge hierarchy, a novel
method is addressed to quantify the semantic distances between the categorical information as well as
the numerical data. Regarding that, an efficient query relaxation algorithm is devised to modify the ap-
proximate queries to ordinary queries based on the knowledge hierarchy. Then the ranking measures
work very efficiently to cope with various combinations of complex queries with respect to the number
of nodes in the hierarchy as well as the corresponding cost model.

INTRODUCTION There are a number of circumstances in which a
user desires an approximate answer rather than the
Database query processing has mostly focused on exact answer. At first, when a user does not always
addressing exact answers in terms of Boolean model. understand all about the data schema or the queries
contain errors syntactically or semantically, then the

query results may be null or be thrown up too much.
DOI: 10.4018/978-1-60566-904-5.ch009

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Approximate Query Answering with Knowledge Hierarchy

Then the user feels to amend or modify the query.
Secondly, in data mining environment, when an
initial query is answered and that can be considered
as an anchor point from which the query can be
relaxed to find more detailed information. Manual
relaxation, however, for the unsatisfactory queries
is usually a drudgery and time-consuming process,
which strongly requires a knowledge-based schema
for the database or datawarehouse as well as query
relaxation mechanism.

The query relaxation process can be explained in
more detail by the following example: Consider an
illustrative recruiting scenario in which the query:

Q: Skill == *C++ A Salary == $40,000 A Age == 40

Assume that no result record comes out with
the conventional query answering systems. Then
in our approach, the first step to relax the query
condition is as follows:

Q,.: Skill in (‘Cobol’ ‘C++’ *Java’) A $35,000 <
Salary < $45,000 A 37 < Age <43,

And then, we sort the relaxed query results in
terms of a ranking measure between the original
query and the objects, which will prove very use-
ful for the applicants as they obtain a richer result
of information. Finally, we get the results sorted
by ranking distance D, such as (1) < Martin, C++,
$40000, 40, D: 0.00 >, (2) <Albert, Java, $43000,
40, D: 0.10 >, (3) < Harry, C++, $37000, 38, D:
0.21 >, and (4) <Neal, Cobol, $38000, 41, D: 0.39
>. In order to achieve this, a method of obtaining
the approximate value and to measure the distance
between the target value and the approximate value
needs to be provided. For the numerical domain,
such as Salary and Age, the difference between
two values can be used as a semantic distance
measure. For the categorical domain such as Skill,
the approximate values can be calculated by using
a predetermined item distance table (Motro, 1990)
or by the abstract hierarchy (Chu etal., 1996; Chen,
Zhou, & Zhang, 2006).

190

The approaches based on the semantic distance
approach (Motro, 1990; Muslea, 2004; Lee at al.,
2007) uses the notion of semantic distance to rep-
resent the degree of similarity between data values.
Since query answering systems employing the
semantic distance approach provide quantitative
measures between target values and neighbor-
hood values as a query result, users can retrieve
approximate values more effectively using the
measures as references to compare with different
approximate values. However, for categorical data,
the semantic distance approach has two problems
because it employs a two dimensional table to
store distances among all pairs of data values.
First, to find neighbor values of a target value, the
system has to scan all the records related to the
target value. Second, when a new value is added
to a domain, it is required to consider distances
between the value and all existing attribute values.
This task contains a large amount of overhead
to be done by a human operator, and moreover,
human operators are liable to lose consistency
in assigning distance data to a large number of
values. In contrast, the approaches based on the
abstraction hierarchy are suitable to dealing with
categorical data. However, abstraction approaches
could not properly handle other data types, such
as the number, money, date and time, etc, and
do not provide quantitative similarity measure
among data values.

To overcome these problems, we propose a
hierarchical quantified knowledge (HQK) that
integrates abstraction approach and semantic
distance approach. The HQK uses the hierarchy
structure of abstraction approach and provides a
quantitative measure between data values in the
hierarchy. The abstraction hierarchy facilitates
finding neighbor values for a target value quite
easily. The distance information embedded in the
HQK provides a more efficient method than the
one based on a table. Maintenance of distance
information due to the addition of a new value
can be minimized since the change is localized
in the hierarchy. This paper will demonstrate how

Approximate Query Answering with Knowledge Hierarchy

to calculate the similarity distance between two
data values and introduce the query relaxation
algorithm with HQK.

The rest of the paper is organized as follows.
Section 2 reviews prior related approaches. Sec-
tion 3 proposes the HQK as a new knowledge
representation framework. Section 3 explains
details of the query relaxation algorithm and
examples using the HQK. Section 4 presents the
experiment result. The final section will summa-
rize and introduce proposed concepts for future
exploratory research.

RELATED WORKS

Several approaches for finding best matches
instead of the exact match have been proposed,
such as nearest neighbour searches (Chan, 1998;
Beygelzimer, Kakade, & Langford, 2005), rank
aggregation (Liu et al., 2007), top-K queries
(Chakrabarti et al., 2003; Mouratidis, Bakiras,
& Papadias, 2006; Lee at al., 2007), and prefer-
ence searches (Klein & Konig-Ries, 2004). These
approaches mostly deal with either numeric
conditions or concepts such as importance or
relevance. In addition, the conceptual database
interface (Siau, Tan, & Chan, 1992; Lee & Lim,
2007) has been proposed to facilitate end users
interacting with the database, where they have
showed that the visualized conceptual level query
could provide an effective and efficient assistance
for end users than the complicated logical level
query (Chan, Wei, & Siau, 1993; Siau, Chan, &
Wei, 2004). The conceptual database interface,
however, differs from our approach where we
provide a structured query processing capability
based on the query relaxation. Also, approxi-
mate query answering approaches (Babcock et
al., 2003; Calado & Ribeiro-Net0,2003; Liu &
Chu, 2007) have been proposed that have tried
to provide relevant information with wider scope.
Typical steps for approximate query answering
consist of query analysis, query relaxation, and

providing information relevant to the query. In
order to facilitate query relaxation and to provide
relevant information on the query, a knowledge
representation framework is required. The knowl-
edge representation framework is one of the most
important factors in deciding the configuration and
corresponding performance of the approximate
query answering system.

Studies on knowledge representation have
been extensively performed using semantic dis-
tance models or abstraction models (Shin et al.,
2008). In the semantic distance approach, each
and every pair of data values within the data set
is assumed to have semantic distances (Motro,
1990), and thus this approach provides a straight-
forward method for query relaxation providing
ranked results sorted by the semantic distance.
FLEX (Motro, 1990) reaches a high tolerance to
incorrect queries by iteratively interpreting the
query at lower levels of correctness. FLEX is
also cooperative in the sense that, for any empty
result query, it provides either an explanation for
the empty result or some assistance for turning the
query into a nonempty result one. For categori-
cal data, the distance between two data values
is stored in a separate table. Since every pair of
data is supposed to have a semantic distance, the
table size usually becomes extremely large in an
explosive fashion when a realistic application
domain is considered.

In approximate query answering, the data
abstraction is useful in associating data values
with each other for query relaxation. Chu et al.
(1996) introduced type abstraction hierarchy,
which synthesize the database schema and tuples
into an abstract form. Chu et al. used three type
of operation, such as generalization, specializa-
tion, and association to relax a query. Shin ef al.
(2001) proposed the approximate query answer-
ing mechanism with the knowledge abstraction
database. This paper shows that integrating
the semantic distance notion to the abstraction
hierarchy would overcome the weaknesses of
the previous approaches and can provide a more

191

Approximate Query Answering with Knowledge Hierarchy

Figure 1. Hierarchical data abstraction with domain abstraction

MAJOR
GROUP

Computer

%\

Engineering

Science

Programming
Language

Information
Systems

Manufacturing]

AN

‘ De!urmatiun“- Machining

ANTANNAN

SKILL | [COBOL

Minin

|| Data Data
DEMS J Warehouse| Analysig

System

Casting| Joining

Syste ; .
Dcsigvlﬂ Fnrmm% Remov ln%

Domain Abstraction

effective and extendable approximate query
answering mechanism that can support a wider
range of approximate queries.

HIERARCHICAL QUANTIFIED
DATA ABSTRACTION

In this section we propose a hierarchical quanti-
fied data abstraction that combines abstraction
hierarchy with a semantic distance notion.

Hierarchical Data Abstraction
and Distance Metric

HQK is a knowledge representation framework
that facilitates multilevel representation of data
and meta-data for an underlying corporate da-
tabase using data abstraction. Figure 1 shows
an instance of the HQK that represents the
abstraction information on Engineering. Values
constituting the hierarchy may be parts of the
underlying database or artificial values added
to describe the semantic relationship among the
existing data values. HQK consists of two types
of abstraction hierarchies: value abstraction

192

Value Abstraction

hierarchy and domain abstraction hierarchy. In
the value abstraction hierarchy, there are abstrac-
tion relationships of specific node/abstract node.
One node in a level can be generalized into an
abstract node placed in an upper level. Thus, the
abstraction hierarchy is constructed on the basis
ofabstraction/specification relationships among
abstract nodes and specific nodes in various
abstraction levels. This abstraction relationship
can be interpreted as an “IS-A” relationship. For
instance, COBOL is a Programming Language
while Programming Language is a (branch of)
Computer Science. As such, higher levels pro-
vide amore generalized data representation than
lower ones and the root node can be interpreted
as the most abstract but representative name
of the hierarchy. In Figure 1, the root node is
Engineering which can act as a representative
of the hierarchy.

The leaf nodes including COBOL, C++, etc.,
are given with the leve/ value 1, and the level value
increases by one each time they are generalized
with an abstract node. A specific node may have
multiple abstract nodes that are located in dif-
ferent levels, so that COBOL has Programming
Language in level 2 and Computer Science in

Approximate Query Answering with Knowledge Hierarchy

level 3 as its abstract node. The n level abstract
node of a specific node is the abstract node that
is located in n level higher than the specific node.
Note that, the level difference value n between two
arbitrary nodes is defined as the larger number
of abstracted levels from the two nodes to their
least common abstract node. The n level neighbor
nodes are the nodes that share a common abstract
node in level difference n. Figure 1 shows the
explanation of the level difference and neighbour
nodes. For example, COBOL and Database in
Figure 1 have a level difference of 2, and System
Analysis and System Design are an example of
level 1 neighbor nodes.

Now we present the concept of the distance
metric with which formal properties are derived.
To develop the distance metric, first, we assume
basic distance. The basic distances are specified
on the two types of links, vertical link and hori-
zontal link. The vertical link connects a specific
node and its 1 level abstract node, and the hori-
zontal link connects two different level 1 neighbor
nodes. The basic distance is defined modifying
the distance measure of Lee & Lim (2007). This
measure shows how closely two nodes are related
in the hierarchy. Let z represent the least common
abstract node of x and y. Then, the basic distance
between x and y, bd(x, y) is defined as

2*N3

bd('xay>:1_
N1+ N2+42*N3.

N1 is the number of nodes on the path from x
to z. N2 is the number of nodes on the path from
vy to z. N3 is the number of nodes on the path
from z to root. For example, to calculate the ba-
sic distance between Engineering and Computer
Science in Frgure 1, we get N/=1, N2=2, N3=1,
respectively. So,

bd(Engineering, Computer Science) =
2-1

T1x2+42.1 06

Note that the distance represents that the
deeper the position of the two nodes, the smaller
the basic distance is. Figure 2 shows an example
of the HQK with the basic distance.

Herein, we define the distance between two
arbitrary nodes that satisfies the requirement of
the distance metric. It is possible to consider only
the basic distances on the path for distance cal-
culation; however, this approach cannot always
guarantee property 2, implying that sometimes
the calculated distance between the two nodes
having the level difference 3 might be closer than
those having the level difference 2. Therefore, the
distances between two arbitrary nodes in the HQK
are formulated using the level difference and the
basic distances on the shortest path.

Definition 1. The distance between two
arbitrary nodes x and y in the HOK, D(x, y), is
defined as

D(z,y) = level difference of z and

IN_ (D bd(Z,.Z,))
s

Il N

%)7
y—1+-—

r+1

where Z,Z , ..., Z _is the path of x and y so that
the distance can minimize the sum of the basic
paths with the level distance.

Property 1. For two different nodes x and y in
the HOK, the distance of definition 1, D(x,), is
ranged according to the level difference n, as

n—1<D(zy)<n

where n is the level difference of x and y.

Property 2. For arbitrary nodes x, y and z in
the HOK, ifthe level difference of x andy is smaller
than the level difference of x and z, then,

D(z,y) < D(z,2)
The distance of Definition 1 satisfies the

requirement of the distance metric. The distance

193

Approximate Query Answering with Knowledge Hierarchy

Figure 2. Hierarchical quantified data abstraction on Engineering

Engineering
0.6 0.6,).6
. 0.67 i 0.67
Computer Information Manufacturing
Science Systems

Programming| 0.5
Language

Data Data System Systen TR
=4 t —{ —J
Minind ¢ 4 | 0,4 |Warehousd 4 Analysigp, 4 Desigr Casting 0.4 Hemen I[-H .

\’—'4 U!____,/ ____L//

Il)lllllil

D. If n is the leaf, which has no child, null
is returned. This function refers to the
VALUE_ ABSTRACTION to find the spe-
cific nodes.

between two arbitrary nodes can be determined,
and the distances are grouped with respect to the
level difference (Properties 1 and 2).

Data Model and Operations

In this section we present the simplified data QUERY RELAXATION
model and some operations to manage the HQK.
Figure 3 shows two relations (DOMAIN AB-
STRACTION, VALUE ABSTRACTION),
which comprise a knowledge database which
represents the HQK. Using these relations, we
consider the following operations. With the opera-
tions, the details of approximate query answering
processes and diverse query relaxation path will
be explained later.

When the query results may be null or too much,
and the user wants to relax the query with the
database and its additional information. It can be
done by relaxing the search conditions to include
the additional information called the HQK. The
HQK canbe adopted in the process of query relax-
ation as the approximate equal and the conceptual
equal in a formal way. In the HQK, an abstract
node and its subordinate specific nodes have an

194

GetDomain(x, y) produces the domain D
of attribute x of relation y.
GetAbstractNode(n, D, [) returns the /
level abstract node of node n in domain D
(for [=1, 2, 3,...). If n is the root, which has
no parent, null is returned. This function
refers to the VALUE _ABSTRACTION to
find the abstract node.
GetSpecificNode(n, D, [) returns the !/
level specific nodes of node » in domain

IS A relationship called conceptual equal. The
conceptual equal implies two types of concepts
as follows. At first, an abstract node semantically
subsumes its subordinate specific nodes, and
secondly, an abstract node is a high level repre-
sentation for its subordinate specific nodes. On
the other hand, neighbor nodes are approximate
equals since they have the same abstract node
that is conceptual equal to each neighbor nodes.
The results of the approximate equal search may

Figure 3. Simplified data model to manage the HOK

DOMAIN_ABSTRACTION

Approximate Query Answering with Knowledge Hierarchy

domain abstract_domain HQK level
MAJOR GROUP NULL Major & Skill 4
MAJOR MAJOR GROUP Major & Skill 3
EXPERTISE MAJOR Major & Skill 2
SKILL EXPERTISE Major & Skill 1

VALUE_ABSTRACTION

specific_node domain abstract_node distance
Computer Science MAJOR Engineering 0.6
Programming Language EXPERTISE Computer Science 0.43
Datab EXPERTISE Computer Science 043
COBOL SKILL Programming Language 0.33
C++ SKILL Programming Language 0.33
Java SKILL Programming Language 0.33

not provide the exact answer queried by the user,
but still include information that may be helpful
for the user.

We use a similar-to operator symbolized as
‘=?’ that represnts an approximate condition
(Chuetal., 1996; Motro, 1990). The approximate
condition is specified simply by using ‘=?’in the
where clause of the SQL statement. To explicitly
express level 2 or higher approximate searches, we
extend the similar-to operator with ‘=#?’ where #
is a numeric value larger than 1 and indicates the
level of approximate to search for. For example,
in the HQK ‘=3?’ makes the system search over
3 level approximates.

There can be one or more approximate condi-
tions in a query. So, the distance between target
conditions and the approximate answer is a
combination of the individual distances between
the corresponding conditions, and the individual
distances may be given more weight than others,
and the individual distances should be normal-
ized. We define the distance of the approximate

query as

n

- D(tv,,mv,)
(1)

query

w.
T

where w, is the weight value for each condition,
and r, is the range value for each condition, and
tv. and rv, are the target value and relaxed value
of each condition, and D is a distance between
the target value and the relaxed value, and # is
the number of the approximate conditions in the
query, and #v, is classified two domains, such as
HQK and numerical domain. w, represents the
importance of the target domain. The range valueis
anormalization factor used to scale distances, and
dividing a distance by the range yields a measure
of proximity that is independent of the particular
domain and metric. According to the domain of
the approximate condition, range value, , and the
distance, D, is defined as:

for tv, € HiIQdA domain;

for tv, € Numerical domain.

height of the HiQdA -1
e max(tv,) — min(tv,)

distance of Definition 1 for {v, € HiQdA domain;

[tv, =1, | for tv, € Numerical domain.

D(tv,rv,) = [

Query Relaxation Algorithm

Figure 4 represents the query relaxation algorithm
for the HQK domain data. The input of the algo-
rithm is an approximate query, O, which includes
one or more similar-to operators. The algorithm
translates each approximate condition to ordinary

195

Approximate Query Answering with Knowledge Hierarchy

Figure 4. Query relaxation algorithm

Input:

original approximate query 0
Qutput:

relaxed query Q'
(1) translate query(){

(2) condition type t;

(3) int 1; // search level

4) Q'=0;

(5) for each approximate condition C; in Q'{

(6) if C, is a selection condition{

(7) (t, 1) = analyze selection(C;);

(8) if t == ‘approximate query’ {

(9 C;' = generalize_condition(C;, 1);

(10} C;"= specialize condition(C,', 1);

(11) replace C; with C," in Q';

(12) }

(13) if t == ‘conceptual query’ ({

(14) C;' = specialize condition (C;, 1);

(15) replace C; with C;' in Q';

(16) }

(17) }

(18) else { // Ci is a join condition

(19) {t, 1) = analyze_join(C;);

(20) C;'= two attributes of C; are appropriately
joined with ABSTRACTION;

(21 replace C; with C,' in Q%

22 }

23) } /1 for c,

(24) return 0’;

(25) } // translate query()

relaxed condition that does notinclude the similar-
to operator. As a first step of the translation, we

decide whether the condition is a selection query
or a join query (line 6, 18). Next, we analyze the
condition more deeply to find the condition type,
t, and the search level, [(line 7, 19). The condi-
tion type indicates whether the condition is an
approximate query or a conceptual query, and the
search level indicates the number of the abstrac-
tion or the specification to relax the target value.
For the approximate selection query, the target
value is generalized and, then, specialized to gain
the relaxed query (line 9, 10). For the conceptual
selection query, the relaxed query is obtained by
specifiying the target value (line 14).

The sub functions used in the algorithm are
described in detail in the following.

196

Input: Condition C that consists of rela-
tion R, attribute A4,

operator ?#= and target value v,

Output: (i)condition type t, (ii) search
level 1

(1) analyze_selection(C) {

(2) D_ = GetDomain (R, A);

(3) ifv; € D then {

(4) t = ‘approximate query’;

(5) if # is not null thenl = #;

(6) elsel = 1; // default search
level

(7) }

(8) else {

(9) t = ‘conceptual query’;

(10) D, = get domain of target value;
(11) 1 = level difference between

Approximate Query Answering with Knowledge Hierarchy

D,, and D_;
(12) }

(13) } // analyze selection()

Input: Condition C that consists of rela-
tion RI, attribute AI,

operator ?#=, relation R2 and attribute
A2

Output: (i) condition type t, (ii) search
level 1

(1) analyze join(C) {

(2) D, = GetDomain (R1, Al);

(3) = GetDomain (R2, A2);

(4) 1 = level difference between D,
and D_;

(5) if] == 0 then

(6) t = ‘approximate query’;

(7) else

(8) t = ‘conceptual query’;

(9) '} // analyze_join()

Input: (i) Condition C that consists of
relation R, attribute A, operator ?#= and
target wvalue v,
(ii) search level 1
Output: generalized condition C”’
generalize condition(C, 1) {

= GetAbstractNode (v, 1);

v
abstract

(1)
(2)
(3) rewrite C’/ with V opserace?
(4) returnC’;
(5) '} // generalize condition()
Input: (i)Condition C that consists of re-
lation R, attribute A, operator ?#= and
target value v,
(ii) search level 1
Output: specialized condition C”’
(1) specialize condition(C, 1) {
(2) Viopecizic = GetSpecificNode(vH 1);
(3) rewrite C’/ with Vipeciich
(4)
(5)

returnC’;

} // specialize condition()

Query Relaxation Example

In this section we explain an approximate selec-
tion and a conceptual join query as examples of
query relaxation. For the explanation, let’s define
tworelations EMPLY SKILL (id, skill, level) and
EXPRT FOR TASK (task, required expertise).
Theunderlined attributes indicate the primary key.
The EMPLY_ SKILL relation provides the skill
of an employee, while the EXPRT FOR TASK
relation prescribes the relationships between
individual tasks and the expertise requirements
for the task. At first, the approximate selection
provides not only the exact match but also its
approximate equal values. For example, consider
the query ‘find the five employees who have the
requisite skills in both Java and DBMS,” which
is written as

Q: Skilll == ‘Java’ A Skill2 == ‘DBMS".

If there is no employee who can satisfy the
query condition or there are an insufficient number
of qualified candidates, then other employees with
related skills need to be obtained by approximat-
ing the scope of the query. The query Q has tow
selection conditions, and each condition is decided
as approximate query with 1 level search (line 7
in Figure 5). Then the generalized query

0Q,: Skilll is-a *Programming Language’ A
Skill2 is-a ‘Database’

is made by finding 1-level abstract node of Java
and DBMS (line 9 in Figure 5). Finally, the re-
laxed query

Q. Skilll in (*“COBOL’, ‘C++’, “Java’) A

Skill2 in (‘DBMS’, ‘Data Mining’, ‘Data Ware-
house”)

is made by finding 1-level specific node of Pro-
gramming Language and Database (line 10 in

197

Approximate Query Answering with Knowledge Hierarchy

Figure 5). As a result of the relaxed query, the
system will return the employees who have the
required skills in Programming Language and
Database in addition to ones who have skills in
Java and DBMS.

As a second example, the conceptual join is
used when the two attributes in the join condition
have different domains and thus are in different
abstraction levels. Inthe explanatory tworelations,
note that the domain of the required expertise
attribute in the EXPRT FOR_TASK relation is
the EXPERTISE and is more general than that of
the skill attribute in the EMPLY SKILL relation.
In such capacity, a user may want to find people
whose skills belong to the expertise area required
for performinga certain task, e.g., Software Design
task. The query is written as

Q: EXPRT FOR TASK.task == ‘Software De-
sign’ A

EXPRT FOR_TASK.requried expertise =?
EMPLY SKILL.skill.

Insecond condition, both join attribute domains
are different from each other but since one domain,
EXPERTISE, is the abstract domain of the other,
SKILL, the queryis valid as aconceptual join query
(line 19 in Figure 5). Subsequently, abstraction
must be performed on the lower domain attribute,
EMPLY_SKILL.skill. Sincethe ABSTRACTION
relation provides pairs of specific value and ab-
stract value, joining the two relations on the basis
of common abstract nodes can be performed using
the ABSTRACTION relation as an intermediary.
A relaxed ordinary query can be written as

Q. EXPRT _FOR_TASK task == ‘Software
Design’ A

EXPRT FOR_TASK.requried_expertise ==
VALUE ABSTRACTION.abstract _node N

198

EMPLY SKILL.skill == VALUE ABSTRAC
TION.specific_node.

EXPERIMENTS

In this section, we explain the number of pairs
to be managed by semantic distance and HQK
method, and the number of records to be retrieved
for query relaxation. We also explain a cost model
on semantic distance, abstraction, and HQK ap-
proach, and show experiment results with the
cost model.

Let ¢, A, and [be the average number of chil-
dren of each node (for ¢=2, 3, 4...), the height
of the HQK, and the approximate search level
respectively. Compared with the existing seman-
tic distance approaches, the HQK considerably
reduces the number of pairs to be managed by
the classification of the similar data values using
data abstraction. Then, the number of pairs in the
HQK and the semantic distance approach can be
calculated as follows.

. For the HQK,
° the number of pairs = the number of
l-level neighbour groups x
° (the number of pairs among 1-level
neighbor nodes +
° the number of abstraction relation)

=(l4c+++)x(.C,+¢)
=" =1 /(c=Dlx[e(c—1) /2+]
=(c"—c)c+1)/2(c—1)

. For the semantic distance approach,

the number of nodes in a hierarchy =

—1)/(c—1),s0

1+C+02 +"'+C’L71:(Ch

Approximate Query Answering with Knowledge Hierarchy

Figure 5. Cost for a query relaxation and execution

log { Cost for an executio

(5
L

4 5

the number of pairs =

_ h h —1)2
e Ca = (€ =D =)/ 2Ae—1)

Thus, the ratio of the semantic distance ap-
proach to the HQK is always greater than or
equal to 1.

(for ¢,h >1)

The ratio between two approaches increases
enormously, as the height of hierarchy is gained
or the average number of children of a node in-
creases as shown in Table 1. For example, if the
height of the hierarchy is 3 and each node has 4
children on average, then the semantic distance
approach should maintain 4.2 times as many pairs
in the HQK approach.

Table 2 shows the number of the records
retrieved according to the query type, when the
query is translated by the algorithm in Figure 5.
For example, in the approximate selection query,
we must retrieve the records of 1 in line (7), / in
line (9), and ¢+ c’...+ ¢ in line (10). In the
semantic distance approach, however, in order to
gain the approximate values, we must compare a

6 7 8
Average number of child of a no

—&— Semantic Distance

—*— Abstraction Hierarch
—O—HiQdA

| 10 11

target value with all the other values within the
domain, so that we must retrieve the records of
¢ — 1. For example, in c=4, h=4, and /=1, by
transforming the approximate selection query, we
must retrieve 9 records in the case of the HQK,
and 63 records in the case of the semantic distance
approach. Accordingly, the HQK is superior to
the semantic distance approach in performing the
approximate query relaxation.

Table 3 shows the simplified cost model for
experiment. The cost model consists of three
costs, such as the creation cost, the relaxation
cost, and the execution cost. The creation cost
(CC) is summarized to create an abstraction
hierarchy or semantic distance matrix table that
consists of numerical data and categorical data.
For categorical data, we use the number of pairs
to be managed as the creation cost. For numerical
data, the semantic distance method needs the full
scan cost, where the abstraction hierarchy method
needs sorting costs to make the hierarchy. As for
the relaxation cost (RC), we use the numbers of
records to be retrieved for approximate selection
queries. See Table 2.

In relaxing numerical data, the cost for the se-
mantic distance method is 0 due to the correspond-
ingrange values, where the Abstraction Hierarchy
method needs a cost to relax the hierarchy. The
query execution cost (EC) can be measured by the

199

Approximate Query Answering with Knowledge Hierarchy

Table 1. The ratio of pairs to be assessed of semantic distance approach to the HOK

Height of hierarchy (%) 2 3 3 3 4 4 4
Average number of children (c) 3 3 4 5 3 4 5
Ratio (Ch _ 1) / (62 _ 1) 1 3.25 4.2 5.17 10 17 26
Table 2. The number of records to be retrieved for query relaxation
Approach Selection/Join Approximate Query Conceptual Query
Selection Query l !
HQK l4+c+ec 2+¢
Join Query 2 2
Selection Query it | N/A
Semantic Distance
Join Query N/A N/A
Table 3. Simplified cost model for experiment
Data Type Operation Semantic Distance Abstraction Hierarchy HQK
i h h h h
. o _ (" =)+ an _ (" =D(" —¢) nigua _ (" =D(c" —¢)
Creation Cost CC@@[- —2 CCC(“ - —2 cat — —2
2(c—1) 2(c—1)) 2(0 - 1)
Categorical AH HiQdA __
data Relaxation SD -1 Rth = RCM -
RC =c¢" =1
Cost cat 2 1 9 1
I1+l+c+c...+c 1+l+c+c...+c
Execution SD 1 AH 1 HiQdA __ 1
Cost EC(tat =¢c ECcat =c ECcat =c
Creation Cost 5D ot ccMt =t log(Chfl) HiQdd bl
num num num
AH
Numerical Relaxation SD num HiQdA __
data Cost Cnum - O 0 9 1 num - O
1+l4+c+c...+c
Execcution ECSD _ cl CAH _ 201 HiQdA __ Cl
OSt num num num

number of records to be retrieved. It is assumed
that the abstraction hierarchy method and the HQK
method are determined by the search levels; how-
everthe costofthe abstraction hierarchy method is
twice thatneeded for retrieval by the HQK method
due to the wide range of the records.

Figure 5 and 6 represent the total cost
changes for the approximate query that includes
the query relaxation cost and the execution
cost. Given parameters as height 4=4, search
level /=2, one categorical data, and three nu-
merical data, the x-axis represents the aver-

200

Approximate Query Answering with Knowledge Hierarchy

Figure 6. Cost for the creation, query relaxation, and execution

16

log (Cost for the creation a
10 executions)
oo

4 5

i

—&— Semantic Distance
—*— Abstraction Hierarct
—L—HiQdA

7 8 9 10 11

Average number of child of a no

age number of child and y-axis representslog
(RC,,+EC, ,+3(RC, +EC) forFigure5,
log(2(CC_, + 10RC_ , + 10EC) + 3(2(CC,
+ 10RC, + 10EC)) for Figure 6, respec-
tively.

Note that the semantic distance method costs
“0” on the relaxation stage for the numerical do-
main, but the relaxation cost for the categorical
domain increases exponentially. Thus, it is very
much sensitive for the semantic distance method
on the size of the categorical data. When the size
ofthe categorical data is small, the corresponding
total cost is negligible, however, the relaxation

cost (RC"”) increases exponentially as the size
of the categorical data does. Therefore, on con-
dition that the size of the categorical data is big,
in this experiment the average number of child
node is more than 7, the total cost of the semantic
distance method is the biggest among all the three
methods regardless of other conditions.

The costof the abstraction hierarchy method is
increased and depends linearly on the search level
for the categorical domain and numerical domain.
When the data size is small, the execution cost
(E C’:jﬂ)istwice and therelaxation cost (R C:uf]n)
ishigher than semantic distance method (RC' fz f:),
so it is higher than the semantic distance method.
The HQK method follows the advantage of the

abstraction hierarchy (R CZZQM =R ij)onthe
categorical data, and also follows the advantage of
thesemanticdistancemethod(R C ijd‘l = RC’:ﬁn)
on the numerical domain. Therefore the cost of
the HQK method is not increased exponentially
and less than those of the abstraction hierarchy

method.

CONCLUSION

We have addressed the query relaxation algorithm
with hierarchical quantified data abstraction
(HQK) torelax the query condition of the categori-
cal data domain. The HQK has an abstraction-
based hierarchy that facilitates finding neighbor
values for a target value quite easily. All that
is needed is to identify an abstract node of the
target value and retrieve all the specific nodes
of the identified abstract nodes. The query relax-
ation algorithm has formulated this abstraction /
specification features of the abstraction hierarchy
according to the query type and the search level.
We have defined the distance metric that calculates
distances between two arbitrary nodes in the HQK,
which enables to handle the quantitative similarity
of categorical data. Also, we have introduced the
cost model for creation of abstraction hierarchy,

201

Approximate Query Answering with Knowledge Hierarchy

query relaxation and execution, and showed em-
pirically that our approach is more efficient than
other approaches.

For future research, a generic HQK derivation
mechanism should be conceived in formal fash-
ion. In addition, in order to support approximate
query answering efficiently, nearest neighbor
searches can be provided. However, since most
researches on nearest neighbor searches are de-
vised to consider numerical domains, there are
difficulties in treating the categorical domain.
Using features of the HQK, we plan to build anew
index structure that deals with categorical data as
well as numerical data. The range information on
each attribute can be saved in the internal node of
R-tree based data structure. The abstract node of
the HQK can be used as the range information of
specific nodes and this will lead us to develop a
multi-dimensional index structure which can treat
categorical data. Applying this structure, we will
research a method to support the nearest neighbor
queries efficiently. Also, in order to demonstrate
the real advantages of this approach, it would be
necessary to proceed into research to identify the
need for user studies with human users.

REFERENCES

Babcock, B., Chaudhuri, S., & Das, G. (2003).
Dynamic Sample Selection for Approximate
Query Processing. In Proceedings of the 2003
ACM SIGMOD International Conference on
Management of Data, San Diego, California,
US4 (pp. 539-550).

Beygelzimer, A., Kakade, S., & Langford, J.
(2005). Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd international conference
on Machine learning, Pittsburgh, Pennsylvania,

USA (pp. 97-104).

202

Calado, P. P., & Ribeiro-Neto, B. (2003). An In-
formation Retrieval Approach for Approximate
Queries. IEEE Transactions on Knowledge and
Data Engineering, 15(1), 236-239. doi:10.1109/
TKDE.2003.1161593

Chakrabarti, M., Ortega, M., Mehrotra, S., &
Porkaew, K. (2003). Evaluating refined queries
in top-k retrieval systems. /[EEE Transactions
on Knowledge and Data Engineering, 15(5),
256-270.

Chan, H., Wei, K., & Siau, K. (1993). User-
Database Interface: The Effect of Abstraction
Levels on Query Performance. Management
Information Systems Quarterly, 17(4), 441-464.
doi:10.2307/249587

Chan, T. M. (1998). Approximate Nearest Neigh-
bor Queries Revisited. Discrete & Computa-
tional Geometry, 20(3), 359-374. doi:10.1007/
PL00009390

Chen, Y., Zhou, L., & Zhang, D. (2006). Ontol-
ogy-Supported Web Service Composition: An
Approach to Service-Oriented Knowledge Man-
agement in Corporate Financial Services. Journal
of Database Management, 17(1), 67-84.

Chu, W., Yang, H., Chiang, K., Minock, M., Chow,
G., & Larson, C. (1996). CoBase: A scalable
and extensible cooperative information system.
Journal of Intelligent Information Systems, 6(2/3),
223-259. doi:10.1007/BF00122129

Klein, M., & Konig-Ries, B. (2004). Combining
Query and Preference - an Approach to Fully
Automatize Dynamic Service Binding. In Pro-
ceedings of IEEE International Conference on
Web Services (pp. 788-791).

Lee, W., Kang, S., Lim, S., Shin, M., & Kim,
Y. (2007). Adaptive Hierarchical Surrogate for
Searching Web with Mobile Devices. IEEE
Transactions on Consumer Electronics, 53(2),
796-803. doi:10.1109/TCE.2007.381762

Approximate Query Answering with Knowledge Hierarchy

Lee, W., & Lim, T. (2007). Architectural Measure-
ments on the World Wide Web as a Graph. Journal

of Information Technology and Architecture, 4(2),
61-69.

Liu, S., & Chu, W.(2007). CoXML: A Cooperative
XML Query Answering System. In Proceedings
of the 8th International Conference on Web-Age

Information Management, Huang Shan, China,
(pp. 614-621).

Liu, Y., Liu, T, Qin, T., Ma, Z., & Li, H. (2007).
Supervised rank aggregation. In Proceedings of
the 16th international conference on World Wide
Web, Bantt, Alberta, Canada (pp. 481-490).

Motro, A. (1990). FLEX: A Tolerantand Coopera-
tive User Interface to Databases. /[EEE Transac-
tions on Knowledge and Data Engineering, 2(2),
231-246. doi:10.1109/69.54722

Mouratidis, K., Bakiras, S., & Papadias, D. (2006).
Continuous monitoring of top-k queries over slid-
ing windows. In Proceedings of the 2006 ACM
SIGMOD international conference on Manage-
ment of data table of contents, Chicago, IL, USA
(pp- 635-646).

Muslea, 1. (2004). Machine Learning for Online
Query Relaxation. In Proceedings of the tenth
ACM SIGKDD international conference on

Knowledge discovery and data mining, Seattle,
Washington, USA (pp. 246-255).

Shin, M., Huh, S., Park, D., & Lee, W. (2008).
Relaxing Queries with Hierarchical Quantified
Data Abstraction. Journal of Database Manage-
ment, 19(4), 76-90.

Siau, K., Chan, H., & Wei, K. (2004). Effects
of Query Complexity and Learning on Novice
User Query Performance with Conceptual and
Logical Database Interfaces. IEEE Transactions
on Systems, Man, and Cybernetics. Part A, Sys-
tems and Humans, 34(2), 276-281. doi:10.1109/
TSMCA.2003.820581

203

204

Chapter 10

Abstract DTD Graph from

an XML Document:
A Reverse Engineering Approach

Joseph Fong
City University of Hong Kong, China

Herbert Shiu
City University of Hong Kong, China

ABSTRACT

Extensible Markup Language (XML) has become a standard for persistent storage and data interchange
via the Internet due to its openness, self-descriptiveness and flexibility. This chapter proposes a systematic
approach to reverse engineer arbitrary XML documents to their conceptual schema — Extended DTD
Graphs — which is a DTD Graph with data semantics. The proposed approach not only determines
the structure of the XML document, but also derives candidate data semantics from the XML element
instances by treating each XML element instance as a record in a table of a relational database. One
application of the determined data semantics is to verify the linkages among elements. Implicit and
explicit referential linkages are among XML elements modeled by the parent-children structure and
ID/IDREF (S) respectively. As a result, an arbitrary XML document can be reverse engineered into its
conceptual schema in an Extended DTD Graph format.

INTRODUCTION

As Extensible Markup Language (XML) (Bray,
2004) has become the standard document format,
the chance that users have to deal with XML docu-
ments with different structures is increasing. If the
schema of the XML documents in Document Type
Definition (DTD) (Bosak, 1998)is given or derived
from the XML documents right away (Kay, 1999;

DOI: 10.4018/978-1-60566-904-5.ch010

Moh, 2000), it is easier to study the contents of the
XML documents. However, the formats of these
schemas are hard to read, not to mention rather
poor user-friendliness.

XML has been the common format for storing
and transferring data between software applications
and even business parties, as most software applica-
tions can generate or handle XML documents. For
example, a common scenario is that XML docu-
ments are generated and based on the data stored
in a relational database — and there have been

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract DTD Graph from an XML Document

various approaches for doing so(Thiran, 2004;
Fernandez, 2001). The sizes of XML documents
that are generated based on the data stored in
databases can be very large. Most probably, these
documents are stored in a persistent storage for
backup purposes, as XML is the ideal format that
can be processed by any software applications in
the future.

In order to handle the above scenario, it is pos-
sible to treat XML element instances in an XML
document as individual entities, and the relation-
ships from the different XML element types can
be determined by reverse engineering them for
their conceptual models, such as Extended DTD
Graphs with data semantics. As such, users can
have a better understanding of the contents of the
XML document and further operations with the
XML document become possible, such as stor-
ing and querying (Florescu 1999; Deutsch, 1999;
Kanne, 2000).

This chapter proposes several algorithms that
analyze XML documents for their conceptual
schema. Two main categories of XML documents
exist— data-centric and narrative. As the contents
of narrative XML documents, such as DocBook
(Bob Stayton, 2008) documents, are mainly un-
