

Principle Advancements
in Database Management
Technologies:
New Applications and
Frameworks

Keng Siau
University of Nebraska-Lincoln, USA

John Erickson
University of Nebraska-Omaha, USA

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Senior Managing Editor: Jamie Snavely
Assistant Managing Editor: Michael Brehm
Publishing Assistant: Sean Woznicki
Typesetter: Mike Killian, Sean Woznicki
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Principle advancements in database management technologies : new applications and frameworks / Keng Siau and John
Erickson, editors.
 p. cm.

 Summary: "This book presents exemplary research in a variety of areas related to database development, technology, and
use"--Provided by publisher.

 Includes bibliographical references and index.
 ISBN 978-1-60566-904-5 (hardcover) -- ISBN 978-1-60566-905-2 (ebook) 1.
005.74/5. I. Siau, Keng, 1964- II. Erickson, John, 1956-
 QA76.9.D3P72995 2010
 005.74--dc22
 2009046476

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Advances in Database Research (ADR) Series

Editor-in-Chief: Keng Siau, University of Nebraska–Lincoln, USA
&

John Erickson, University of Nebraska–Omaha, USA

ISBN: 1537-9299

Contemporary Issues in Database Design and Information Systems Development
IGI Publishing • copyright 2007 • 331pp • H/C (ISBN: 978-1-59904-289-3) • $89.96 (our price)

Database management, design and information systems development are becoming an integral part of many business applications. Con-
temporary Issues in Database Design and Information gathers the latest development in the area to make this the most up-to-date reference
source for educators and practioners alike. Information systems development activities enable many organizations to effectively compete and
innovate, as new database and information systems applications are constantly being developed. Contemporary Issues in Database Design
and Information Systems Development presents the latest research ideas and topics on databases and software development. The chapters in
this innovative publication provide a representation of top notch research in all areas of the database and information systems development.

This series also includes:

Order online at www.igi-global.com or call 717-533-8845 x100 – Mon-Fri 8:30 am - 5:00 pm (est) or fax 24 hours a day 717-533-8661

Hershey • New York

Research Issues in System Analysis and Design, Databases and Software Development
IGI Publishing • copyright 2007 • 286pp • H/C (ISBN: 978-1-59904-927-4) • $89.96 (our price)

New Concepts such as agile modeling, extreme programming, knowledge management, and organizational memory are stimulating new
research ideas amoung researchers, and prompting new applications and software. Revolution and evolution are common in the areas of
information systemsdevelopment and database. Research Issues in Systems Analysis is a collection of the most up-to-date research-oriented
chapters on information systems development and database. Research Issues in Systems Analysis and Design, Databases and Software De-
velopment is designed to provide the understanding of the capabilities and features of new ideas and concepts in the information systems
development, database, and forthcoming technologies. The chapters in this innovative publication provide a representation of top notch
research in all areas of systems analysis and design and database.

Advanced Principles for Improving Database Design, Systems Modeling, and Software Development
Information Science Reference • copyright 2008 • 305pp • H/C (ISBN: 978-1-60566-172-8) • $195.00 (our price)

Recent years have witnessed giant leaps in the strength of database technologies, creating a new level of capabil-
ity to develop advanced applications that add value at unprecedented levels in all areas of information manage-
ment and utilization. Parallel to this evolution is a need in the academia and industry for authoritative refer-
ences to the research in this area, to establish a comprehensive knowledge base that will enable the information
technology and managerial communities to realize maximum benefits from these innovations. Advanced Prin-
ciples for Improving Database Design, Systems Modeling, and Software Development presents cutting-edge
research and analysis of the most recent advancements in the fields of database systems and software develop-
ment. This book provides academicians, researchers, and database practitioners with an exhaustive collection
of studies that, together, represent the state of knowledge in the field.

Editorial Advisory Board
Richard Baskerville, Georgia State University, USA
Dinesh Batra, Florida International University, USA
Shirley A. Becker, Florida Institute of Technology, USA
Hock Chan, National University of Singapore, Singapore
Roger Chiang, University of Cincinnati, USA
Guy Fitzgerald, Brunel University, UK
Mark Gillenson, University of Memphis, USA
Juhani Iivari, University of Oulu, Finland
Gary Koehler, University of Florida, USA
M. S. Krishnan, University of Michigan, USA
Ram L. Kumar, University of North Carolina at Charlotte, USA
Pericles Loucopoulos, Loughborough University, UK
Kalle Lyytinen, Case Western Reserve University, USA
Salvatore T. March, Vanderbilt University, USA
Vijay Mookerjee, University of Texas at Dallas, USA
Sudha Ram, University of Arizona, USA
Il-Yeol Song, Drexel University, USA
Veda C. Storey, Georgia State University, USA
Bernard Tan, National University of Singapore, Singapore
Iris Vessey, University of Queensland, Australia
Yair Wand, University of British Columbia, Canada
Ron Weber, University of Monash, Australia
Kwok-kee Wei, City University of Hong Kong, China

Preface .. xvi

Chapter 1
A Multiple-Bits Watermark for Relational Data ... 1

Yingjiu Li, Singapore Management University, Singapore
Huiping Guo, California State University at Los Angeles, USA
Shuhong Wang, University of Wollongong, Australia

Chapter 2
BROOD: Business Rules-Driven Object Oriented Design ... 23

Pericles Loucopoulos, Loughborough University, UK
Wan M.N. Wan Kadir, Universiti Teknologi Malaysia, Malaysia

Chapter 3
Bug Fixing Practices within Free/Libre Open Source Software Development Teams 51

Kevin Crowston, Syracuse University, USA
Barbara Scozzi, Politecnico di Bari, Italy

Chapter 4
Conflicts, Compromises, and Political Decisions: Methodological Challenges of
Enterprise-Wide E-Business Architecture Creation .. 82

Kari Smolander, Lappeenranta University of Technology, Finland
Matti Rossi, Helsinki School of Economics, Finland

Chapter 5
Evaluation of MDE Tools from a Metamodeling Perspective .. 105

João de Sousa Saraiva, INESC-ID/Instituto Superior T´ecnico, Portugal
Alberto Rodrigues da Silva, INESC-ID/Instituto Superior T´ecnico, Portugal

Chapter 6
Exploring the Effects of Process Characteristics on Product Quality in Open Source
Software Development .. 132

Stefan Koch, Vienna University of Economics and Business Administration, Austria
Christian Neumann, Vienna University of Economics and Business Administration, Austria

Table of Contents

Chapter 7
The Impact of Ideology on the Organizational Adoption of Open Source Software 160

Kris Ven, University of Antwerp, Belgium
Jan Verelst, University of Antwerp, Belgium

Chapter 8
Web Services, Service-Oriented Computing, and Service-Oriented Architecture:
Separating Hype from Reality .. 176

John Erickson, University of Nebraska - Omaha, USA
Keng Siau, University of Nebraska - Lincoln, USA

Chapter 9
Approximate Query Answering with Knowledge Hierarchy .. 189

Wookey Lee, Inha University, Korea
Myung-Keun Shin, Telecom Business Division, SK C&C, Korea
Soon Young Huh, Korea Advanced Institute of Science and Technology, South Korea
Donghyun Park, Inha University, South Korea
Jumi Kim, Small Business Institute, Korea

Chapter 10
Abstract DTD Graph from an XML Document: A Reverse Engineering Approach 204

Joseph Fong, City University of Hong Kong, China
Herbert Shiu, City University of Hong Kong, China

Chapter 11
A Dynamic Model of Adoption and Improvement for Open Source Business Applications 225

Michael Brydon, Simon Fraser University, Canada
Aidan R. Vining, Simon Fraser University, Canada

Chapter 12
Aiding the Development of Active Applications: A Decoupled Rule Management Solution 250

Florian Daniel, University of Trento, Italy
Giuseppe Pozzi, Politecnico di Milano, Italy

Chapter 13
Dimensions of UML Diagram Use: Practitioner Survey and Research Agenda 271

Brian Dobing, University of Lethbridge, Canada
Jeffrey Parsons, Memorial University of Newfoundland, Canada

Chapter 14
A 360-Degree Perspective of Education in 3-D Virtual Worlds ... 291

Brenda Eschenbrenner, University of Nebraska-Lincoln, USA
Fiona Fui-Hoon Nah, University of Nebraska-Lincoln, USA
Keng Siau, University of Nebraska-Lincoln, USA

Chapter 15
Using Graphics to Improve Understanding of Conceptual Models .. 310

Kamal Masri, Simon Fraser University, Canada
Drew Parker, Simon Fraser University, Canada
Andrew Gemino, Simon Fraser University, Canada

Chapter 16
Beyond Open Source: The Business of ‘Whole’ Software Solutions ... 335

Joseph Feller, University College Cork, Ireland
Patrick Finnegan, University of New South Wales, Australia
Jeremy Hayes, University College Cork, Ireland

Chapter 17
The Application-Based Domain Modeling Approach: Principles and Evaluation 350

Iris Reinhartz-Berger, University of Haifa, Israel
Arnon Sturm, Ben-Gurion University of the Negev, Israel

Chapter 18
The Use of Ontology for Data Mining with Incomplete Data .. 375

Hai Wang, Saint Mary’s University, Canada
Shouhong Wang, University of Massachusetts Dartmouth, USA

Compilation of References ... 389

About the Contributors .. 428

Index ... 436

Preface .. xvi

Chapter 1
A Multiple-Bits Watermark for Relational Data ... 1

Yingjiu Li, Singapore Management University, Singapore
Huiping Guo, California State University at Los Angeles, USA
Shuhong Wang, University of Wollongong, Australia

At the heart of the information economy, commercially and publicly useful databases must be sufficiently
protected from pirated copying. Complementary to the Database Protection Act, database watermark-
ing techniques are designed to thwart pirated copying by embedding owner-specific information into
databases so that the ownership of pirated copies of protected databases can be claimed if the embedded
information is detected. This chapter presents a robust watermarking scheme for embedding a multiple-
bits watermark to numerical attributes in database relations. The scheme is robust in the sense that it
provides an upper bound for the probability that a valid watermark is detected from unmarked data, or a
fictitious secret key is discovered from pirated data. This upper bound is independent of the size of the
data. The scheme is extended to database relations without primary-key attributes to thwart attribute-
related attacks. The scheme is also extended to multiple watermarks for defending additive attacks and
for proving joint ownership.

Chapter 2
BROOD: Business Rules-Driven Object Oriented Design ... 23

Pericles Loucopoulos, Loughborough University, UK
Wan M.N. Wan Kadir, Universiti Teknologi Malaysia, Malaysia

A critical success factor for information systems is their ability to evolve as their environment changes.
There is compelling evidence that the management of change in business policy can have a profound effect
on an information system’s ability to evolve effectively and efficiently. For this to be successful, there is
a need to represent business rules from the early requirements stage, expressed in user-understandable
terms, to downstream system design components and maintain these throughout the lifecycle of the sys-
tem. Any user-oriented changes could then be traced and if necessary propagated from requirements to
design specifications and evaluated by both end-users and developers about their impact on the system.
The BROOD approach, discussed in this chapter, aims to provide seamless traceability between require-

Detailed Table of Contents

ments and system designs through the modelling of business rules and the successive transformations,
using UML as the modelling framework.

Chapter 3
Bug Fixing Practices within Free/Libre Open Source Software Development Teams 51

Kevin Crowston, Syracuse University, USA
Barbara Scozzi, Politecnico di Bari, Italy

Free/Libre open source software (FLOSS, e.g., Linux or Apache) is primarily developed by distributed
teams. Developers contribute from around the world and coordinate their activity almost exclusively by
means of email and bulletin boards, yet somehow profit from the advantages and evade the challenges of
distributed software development. This chapter investigates the structure and the coordination practices
adopted by development teams during the bug-fixing process, which is considered one of main areas
of FLOSS project success. In particular, based on a codification of the messages recorded in the bug
tracking system of four projects, this chapter identifies the accomplished tasks, the adopted coordination
mechanisms, and the role undertaken by both the FLOSS development team and the FLOSS community.
The chapter concludes with suggestions for further research.

Chapter 4
Conflicts, Compromises, and Political Decisions: Methodological Challenges of
Enterprise-Wide E-Business Architecture Creation .. 82

Kari Smolander, Lappeenranta University of Technology, Finland
Matti Rossi, Helsinki School of Economics, Finland

This chapter describes the architecture development process in an international ICT company, which is
building a comprehensive e-business system for its customers. The implementation includes the inte-
gration of data and legacy systems from independent business units and the construction of a uniform
Web-based customer interface. The authors followed the early process of architecture analysis and
definition over a year. The research focuses on the creation of e-business architecture and observes that
instead of guided by a prescribed method, the architecture emerges through somewhat non-deliberate
actions obliged by the situation and its constraints, conflicts, compromises, and political decisions. The
interview-based qualitative data is analyzed using grounded theory and a coherent story explaining the
situation and its forces is extracted. Conclusions are drawn from the observations and possibilities and
weaknesses of the support that UML and RUP provide for the process are pointed out.

Chapter 5
Evaluation of MDE Tools from a Metamodeling Perspective .. 105

João de Sousa Saraiva, INESC-ID/Instituto Superior T´ecnico, Portugal
Alberto Rodrigues da Silva, INESC-ID/Instituto Superior T´ecnico, Portugal

Ever since the introduction of computers into society, researchers have been trying to raise the abstrac-
tion level at which software programs are built. Currently an abstraction level based on graphical mod-
els instead of source code is being adopted: MDE. MDE is the driving force for some recent modeling
languages and approaches, such as OMG’s UML or Domain-Specific Modeling. All these approaches

are founded on metamodeling: defining languages that represent a problem-domain. A key factor for the
success of any approach is appropriate tool support. However, only recently have tool creators started
considering metamodeling as an important issue in their list of concerns. This chapter evaluates a small
set of MDE tools from the perspective of the metamodeling activity, focusing on both architectural and
practical aspects. Then, using the results of this evaluation, the authors discuss open research issues for
MDE-based software development tools.

Chapter 6
Exploring the Effects of Process Characteristics on Product Quality in Open Source
Software Development .. 132

Stefan Koch, Vienna University of Economics and Business Administration, Austria
Christian Neumann, Vienna University of Economics and Business Administration, Austria

There has been considerable discussion on the possible impacts of open source software development
practices, especially in regard to the quality of the resulting software product. Recent studies have shown
that analyzing data from source code repositories is an efficient way to gather information about proj-
ect characteristics and programmers, showing that OSS projects are very heterogeneous in their team
structures and software processes. However, one problem is that the resulting process metrics measuring
attributes of the development process and of the development environment do not give any hints about
the quality, complexity, or structure of the resulting software. Therefore, this chapter expands the analysis
by calculating several product metrics, most of them specifically tailored to object-oriented software.
The authors then analyzed the relationship between these product metrics and process metrics derived
from a CVS repository. The aim was to establish whether different variants of open source development
processes have a significant impact on the resulting software products. In particular, the authors analyzed
the impact on quality and design associated with the numbers of contributors and the amount of their
work, using the GINI coefficient as a measure of inequality within the developer group.

Chapter 7
The Impact of Ideology on the Organizational Adoption of Open Source Software 160

Kris Ven, University of Antwerp, Belgium
Jan Verelst, University of Antwerp, Belgium

Previous research has shown that the open source movement shares a common ideology. Employees
belonging to the open source movement often advocate the use of open source software within their
organization. Hence, their belief in the underlying open source software ideology may influence the
decision making on the adoption of open source software. This may result in an ideological—rather
than pragmatic—decision. A recent study has shown that American organizations are quite pragmatic
in their adoption decision. This chapter argues that there may be circumstances in which there is more
opportunity for ideological behavior. The authors therefore investigated the organizational adoption de-
cision in Belgian organizations. Results indicate that most organizations are pragmatic in their decision
making. However, the authors have found evidence that suggests that the influence of ideology should
not be completely disregarded in small organizations.

Chapter 8
Web Services, Service-Oriented Computing, and Service-Oriented Architecture:
Separating Hype from Reality .. 176

John Erickson, University of Nebraska - Omaha, USA
Keng Siau, University of Nebraska - Lincoln, USA

Service-oriented architecture (SOA), Web services, and service-oriented computing (SOC) have become
the buzz words of the day for many in the business world. It seems that virtually every company has
implemented, is in the midst of implementing, or is seriously considering SOA projects, Web services
projects, or service-oriented computing. A problem many organizations face when entering the SOA
world is that there are nearly as many definitions of SOA as there are organizations adopting it. Further
complicating the issue is an unclear picture of the value added from adopting the SOA or Web services
paradigm. This chapter attempts to shed some light on the definition of SOA and the difficulties of as-
sessing the value of SOA or Web services via return on investment (ROI) or nontraditional approaches,
examines the scant body of evidence empirical that exists on the topic of SOA, and highlights potential
research directions in the area.

Chapter 9
Approximate Query Answering with Knowledge Hierarchy .. 189

Wookey Lee, Inha University, Korea
Myung-Keun Shin, Telecom Business Division, SK C&C, Korea
Soon Young Huh, Korea Advanced Institute of Science and Technology, South Korea
Donghyun Park, Inha University, South Korea
Jumi Kim, Small Business Institute, Korea

Approximate Query Answering is important for incorporating knowledge abstraction and query relax-
ation in terms of the categorical and the numerical data. By exploiting the knowledge hierarchy, a novel
method is addressed to quantify the semantic distances between the categorical information as well as
the numerical data. Regarding that, an efficient query relaxation algorithm is devised to modify the ap-
proximate queries to ordinary queries based on the knowledge hierarchy. Then the ranking measures
work very efficiently to cope with various combinations of complex queries with respect to the number
of nodes in the hierarchy as well as the corresponding cost model.

Chapter 10
Abstract DTD Graph from an XML Document: A Reverse Engineering Approach 204

Joseph Fong, City University of Hong Kong, China
Herbert Shiu, City University of Hong Kong, China

Extensible Markup Language (XML) has become a standard for persistent storage and data interchange
via the Internet due to its openness, self-descriptiveness and flexibility. This chapter proposes a systematic
approach to reverse engineer arbitrary XML documents to their conceptual schema – Extended DTD
Graphs ― which is a DTD Graph with data semantics. The proposed approach not only determines
the structure of the XML document, but also derives candidate data semantics from the XML element
instances by treating each XML element instance as a record in a table of a relational database. One

application of the determined data semantics is to verify the linkages among elements. Implicit and
explicit referential linkages are among XML elements modeled by the parent-children structure and
ID/IDREF(S) respectively. As a result, an arbitrary XML document can be reverse engineered into its
conceptual schema in an Extended DTD Graph format.

Chapter 11
A Dynamic Model of Adoption and Improvement for Open Source Business Applications 225

Michael Brydon, Simon Fraser University, Canada
Aidan R. Vining, Simon Fraser University, Canada

This chapter develops a model of open source disruption in enterprise software markets. It addresses
the question: Is free and open source software (FOSS) likely to disrupt markets for enterprise business
applications? The conventional wisdom is that open source provision works best for low-level system-
oriented technologies while large, complex enterprise business applications are best provided by com-
mercial software vendors. The authors challenge the conventional wisdom by developing a two-stage
model of open source disruption in business application markets that emphasizes a virtuous cycle of
adoption and lead-user improvement of the software. The two stages are an initial incubation stage
(the I-Stage) and a subsequent snowball stage (the S-Stage). Case studies of several FOSS projects
demonstrate the model’s ex post predictive value. The authors then apply the model to SugarCRM, an
emerging open source CRM application, to make ex ante predictions regarding its potential to disrupt
commercial CRM incumbents.

Chapter 12
Aiding the Development of Active Applications: A Decoupled Rule Management Solution 250

Florian Daniel, University of Trento, Italy
Giuseppe Pozzi, Politecnico di Milano, Italy

Active applications are characterized by the need for expressing, evaluating, and maintaining a set of
rules that implement the application’s active behavior. Typically, rules follow the Event-Condition-Action
(ECA) paradigm, yet oftentimes their actual implementation is buried in the application code, as their
enactment requires a tight integration with the concepts and modules of the application. This chapter
proposes a rule management system that allows developers to easily expand its rule processing logic
with such concepts and modules and, hence, to decouple the management of their active rules from the
application code. This system derives from an exception manager that has previously been developed
in the context of an industry-scale workflow management system and effectively allows developers to
separate active and non-active design concerns.

Chapter 13
Dimensions of UML Diagram Use: Practitioner Survey and Research Agenda 271

Brian Dobing, University of Lethbridge, Canada
Jeffrey Parsons, Memorial University of Newfoundland, Canada

The UML is an industry standard for object-oriented software engineering. However, there is little
empirical evidence on how UML is used. This chapter reports results of a survey of UML practitioners.

The authors found differences in several dimensions of UML diagram usage on software development
projects, including frequency, the purposes for which they were used, and the roles of clients/users in
their creation and approval. System developers are often ignoring the “Use Case-driven” prescription
that permeates much of the UML literature, making limited or no use of either Use Case Diagrams or
textual Use Case descriptions. Implications and areas requiring further investigation are discussed.

Chapter 14
A 360-Degree Perspective of Education in 3-D Virtual Worlds ... 291

Brenda Eschenbrenner, University of Nebraska-Lincoln, USA
Fiona Fui-Hoon Nah, University of Nebraska-Lincoln, USA
Keng Siau, University of Nebraska-Lincoln, USA

Three-dimensional virtual world environments are providing new opportunities to develop engaging,
immersive experiences in education. These virtual worlds are unique in that they allow individuals to
interact with others through their avatars and with objects in the environment, and can create experiences
that are not necessarily possible in the real world. Hence, virtual worlds are presenting opportunities
for students to engage in both constructivist and collaborative learning. To assess the impact of the use
of virtual worlds on education, a literature review is conducted to identify current applications, benefits
being realized, as well as issues faced. Based on the review, educational opportunities in virtual worlds
and gaps in meeting pedagogical objectives are discussed. Practical and research implications are also
addressed. Virtual worlds are proving to provide unique educational experiences, with its potential only
at the cusp of being explored.

Chapter 15
Using Graphics to Improve Understanding of Conceptual Models .. 310

Kamal Masri, Simon Fraser University, Canada
Drew Parker, Simon Fraser University, Canada
Andrew Gemino, Simon Fraser University, Canada

Making Entity-Relationship diagrams easier to understand for novices has been a topic of previous
research. This study provides experimental evidence that suggests using small representative graphics
(iconic graphics) to replace standard entity boxes in an ER diagram can have a positive effect on domain
understanding for novice users. Cognitive Load Theory and the Cognitive Theory of Multimedia Learning
are used to hypothesize that iconic graphics reduce extraneous cognitive load of model viewers leading
to more complete mental models and consequently improved understanding. Domain understanding
was measured using comprehension and transfer (problem solving) tasks. Results confirm the main
hypothesis. In addition, iconic graphics were found to be less effective in improving domain understand-
ing with English as second language (ESL) participants. ESL results are shown to be consistent with
predictions based on the Cognitive Load Theory. The importance of this work for systems analysts and
designers comes from two considerations. First, the use of iconic graphics seems to reduce the extrane-
ous cognitive load associated with these complex systems. Secondly, the reduction in extraneous load
enables users to apply more germane load which relates directly with levels of domain understanding.
Thus iconic graphics may provide a simple tool that facilitates better understanding of ER diagrams and
the data structure for proposed information systems.

Chapter 16
Beyond Open Source: The Business of ‘Whole’ Software Solutions ... 335

Joseph Feller, University College Cork, Ireland
Patrick Finnegan, University of New South Wales, Australia
Jeremy Hayes, University College Cork, Ireland

Researchers have argued that competitive necessities will require open source software companies to
participate in cooperative business networks in order to offer the complete product / service (whole
product) demanded by customers. It is envisaged that these business networks will enhance the business
models of participant firms by supplementing their value adding activities and increasing responsiveness
to customers. However, while such propositions have intuitive appeal, there is a paucity of empirical
research on such networks. This study examines Zea Partners, a network of small open source compa-
nies cooperating to deliver the ‘whole product’ in the area of Content Management Systems (CMS). It
investigates how network participation augments the business models of the participant companies, and
identifies the agility challenges faced by the business network. The chapter concludes that reconciling
the coordination needs of OSS networks with the operational practices of participant firms is of crucial
importance if such networks are to achieve adaptive efficiency to deliver whole products in a ‘bazaar-
friendly’ manner.

Chapter 17
The Application-Based Domain Modeling Approach: Principles and Evaluation 350

Iris Reinhartz-Berger, University of Haifa, Israel
Arnon Sturm, Ben-Gurion University of the Negev, Israel

Domain analysis provides guidelines and validation aids for specifying families of applications and
capturing their terminology. Thus, domain analysis can be considered as an important type of reuse,
validation, and knowledge representation. Metamodeling techniques, feature-oriented approaches, and
architectural-based methods are used for analyzing domains and creating application artifacts in these
domains. These works mainly focus on representing the domain knowledge and creating applications.
However, they provide insufficient guidelines (if any) for creating complete application artifacts that
satisfy the application requirements on one hand and the domain rules and constraints on the other
hand. This chapter claims that domain artifacts may assist in creating complete and valid application
artifacts and present a general approach, called Application-based DOmain Modeling (ADOM), for this
purpose. ADOM enables specifying domains and applications similarly, (re)using domain knowledge in
applications, and validating applications against the relevant domain models and artifacts. The authors
demonstrate the approach, which is supported by a CASE tool, on the standard modeling language, UML,
and report experimental results which advocate that the availability of domain models may help achieve
more complete application models without reducing the comprehension of these models.

Chapter 18
The Use of Ontology for Data Mining with Incomplete Data .. 375

Hai Wang, Saint Mary’s University, Canada
Shouhong Wang, University of Massachusetts Dartmouth, USA

Ontology has recently received considerable attention. Based on a domain analysis of knowledge rep-
resentations in data mining, this chapter presents a structure of ontology for data mining as well as the
unique resources for data mining with incomplete data. This chapter demonstrates the effectiveness of
ontology for data mining with incomplete data through an experiment.

Compilation of References ... 389

About the Contributors .. 428

Index ... 436

xvi

Preface

Databases and database systems continually assume a more critical place at the center of the information
systems architecture for many companies and organizations. Coupled with data warehouses and advanced
data mining techniques, an increasing number of organizations now have powerful analytic and predictive
tools available to help them gain and maintain competitive advantage. In addition, connecting back office
databases and data warehouses with the Web is becoming vital for a growing number of organizations.
The preceding developments and events in the practical business world provide the backdrop for research
into the creation of ever more sophisticated means to the ends regarding information systems.

In the current environment, research investigating the entire discipline of database should be at the
core of teaching as well as extending research in all related areas of database. Database lines of research
include business intelligence, query languages, query optimization, data warehouse design, data mining
algorithms, XML tool development, and tools for the modeling, design, and development of informa-
tion systems. Some of the more recent techniques involve design and deployment of object-relational
databases that include support for object-oriented systems. Other research and development streams
involve Web Services, Service Oriented Architectures, and Open Source Systems. As the complexity of
database systems increases, modeling databases and database systems has assumed increased importance
in database research. Future databases or data warehouses are likely to include real-time analysis using
advanced statistical methods, with increasing immediacy and connection to the Web, Supply Chain
Management, Customer Relationship Management, and Knowledge Management systems.

Over the past forty years, IS and database researchers have conducted empirical investigations that
have resulted in a better understanding of the impacts and values of advanced database principles in
business on a global basis. Past database research has focused primarily on technical and organizational
issues, and less on social issues. Issues such as text mining and opinion mining that depend on state of
the art database systems and can be used to infer meaning and emotional content are also likely to garner
more attention in future research.

In accordance with the high standard of previous volumes in the Advances in Database Research
Series, we edited this volume by including only the best research in the field. A majority of the chapters
included in this volume are conducted by internationally renowned scholars. We believe this volume
will provide a convenient store of valuable knowledge on the topic of database, systems analysis and
design, design science, and software engineering. This volume can serve as a starting point for refer-
ences and citation pieces for researchers, graduate students and practitioners in the field. This volume
consists of eighteen chapters; three are focused on database, three on systems analysis and design, four
on modeling, two on architecture, five on open systems development, and one on educational efforts. A
brief description of each chapter is presented below.

 xvii

Chapter 1, “A Multiple-Bits Watermark for Relational Data,” by Yingjiu Li, Huiping Guo, and Shuhong
Wang, presents a technique to mark data in databases protected by copyright. The technique is robust
enough that it can estimate the probability regarding whether the watermark itself can be detected. The
technique can also work on databases that do not use primary key attributes and it can prevent attribute
related attacks. Finally, the technique supports multiple watermarks so that joint owners can each place
their own security measure, or to detect multiple (additive) attacks.

Chapter 2, “BROOD: Business Rules-Driven Object Oriented Design,” by Pericles Loucopoulos
and Wan Kadir, identifies a critical success factor for information systems as their ability to change
with environmental changes. The authors go on to explicate their approach to deriving business rules
that include means to evolve or change information systems from an object-oriented perspective. They
propose the use of modelling techniques, in particular UML as the basis for modelling business rules
that allow or encourage changes in the depicted information systems.

Chapter 3, “Bug Fixing Practices within Free/Libre Open Source Software Development Teams,”
by Kevin Crowston and Barbara Scozzi, examine the processes and practices of distributed develop-
ment teams working on open source projects. They approach the issues involved by analyzing messages
recorded in the error tracking system of fours projects. By doing this the authors were able to identify
common tasks, coordination efforts, and roles of the development teams. The results can be compared
with those of non open source teams and other open source teams as well to provide insight into improv-
ing development efforts.

Chapter 4, “Conflicts, Compromises and Political Decisions: Methodological Challenges of En-
terprise-Wide E-Business Architecture Creation,” by Kari Smolander and Matti Rossi, examines how
an international ICT company developed its architecture. The authors monitored the early architectural
phases of the development effort as part of the research project. Results indicate that the final architecture
often derives from the conditions and environment present at the time of its creation. According to the
authors, other elements affecting the architecture can include political compromises and constraints.

Chapter 5, “Evaluation of MDE Tools from a Metamodeling Perspective,” by João de Sousa Saraiva
and Alberto Rodrigues, explores and enhances the ideas of Model Driven Architecture (MDA) by creat-
ing an additional abstraction layer that they call the graphical model layer. The paper goes on to describe
the evaluation of tools supporting metamodels from the MDA perspective. Based on the evaluation, the
chapter closes with a possible research agenda for MDA development tools.

Chapter 6, “Exploring the Effects of Process Characteristics on Products Quality in Open Source
Software Development,” by Stefan Koch and Christian Neumann, proposes metrics that purport to measure
open system development processes. In particular, the metrics are aimed at object-oriented processes. A
problem the authors note is that the existing metrics do not measure quality, complexity or structure. The
goal of the research is to determine whether metrics can be used to assess the aforementioned issues.

Chapter 7, “The Impact of Ideology on the Organizational Adoption of Open Source Software,” by
Kris Ven and Jan Verelst, examines the ideology underlying the open source community of developers.
Other studies have indicated that US organizations are more interested in the practical uses of open source.
The authors propose that other opportunities might exist that allow more of the underlying ideologies to
emerge. The findings indicate that most organizations favor the practical over the ideological, but that,
in small organizations, ideological influences might yet play a role in the adoption of open source.

Chapter 8, “Web Services, Service-Oriented Computing, and Service-Oriented Architecture:
Separating Hype from Reality,” by John Erickson and Keng Siau, provides an overview of the Service
Oriented Architecture (SOA), Web services, and Service Oriented Computing (SOC) areas of software

xviii

and systems development. The authors note that the definitions of the system types are not agreed upon
by business or researchers, and provide a framework for understanding the components of SOA. The
authors provide some evidence suggesting that the areas are understudied in terms of research, and sug-
gest future directions or gaps in the current research for investigators.

Chapter 9, “Approximate Query Answering with Knowledge Hierarchy,” by Wookey Lee, Myung-
Keun Shin, Soon Young Huh, Donghyun Park, and Jumi Kim, creates an efficiency relaxation algorithm
to change approximation queries into ordinary queries. The approach uses the knowledge hierarchy as a
means to enable this transformation. Then the authors apply ranking measures to help deal with the many
complex nodes generated by using the knowledge hierarchy to simplify the approximation query.

Chapter 10, “Abstract DTD Graph from an XML Document: A Reverse Engineering Approach,” by
Joseph Fong and Herbert Shiu, proposes a means to reverse engineer XML documents back into their
“conceptual schema,” which they call Extended DTD graphs. The authors argue that their approach can
do two tasks; first to determine the structure of XML documents, and second to extract the data schemas
from the XML elements. They accomplish these tasks by considering the XML element instances as
records in a relational database.

Chapter 11, “A Dynamic Model of Adoption and Improvement for Open Source Business Applica-
tions,” by Michael Brydon and Aidan R. Vining, proposes a way to model open source disruption in
software markets. Their two stage model includes an incubation stage, where the initial adoption and
development are nurtured, followed by a snowball stage, where momentum is gathered. The authors
then apply their model to a Customer Relationship Management application named SugarCRM as a
test case.

Chapter 12, “Aiding the Development of Active Applications: A Decoupled Rule Management So-
lution,” by Florian Daniel and Giuseppe Pozzi, examines the set of rules that commonly describe what
they call active applications. They use the Event-Condition-Action paradigm as the starting point for
their explanatory vehicle, and the rules management system they derive allows developers to separate
active and non-active design issues.

Chapter 13, “Dimensions of UML Diagram Use: Practitioner Survey and Research Agenda,” by
Brian Dobing and Jeffrey Parsons, examines field use of UML. The research was executed by means
of a survey to UML practitioners. Results indicate that practitioners generally tend not to use UML Use
Case diagrams. They either do not utilize Use Cases at all or instead make use of textual based Use Case
descriptions. This finding is directly at odds with much of the literature on UML, and is also counter to
how the OMG (Object Management Group) prescribes best practices for UML.

Chapter 14, “A 360-Degree Perspective of Education in 3-D Virtual Worlds,” by Brenda Eschenbrenner,
Fiona Fui-Hoon Nah, and Keng Siau, examines education from the perspective of 3D virtual worlds,
such as Second Life. The research assesses the impact of such virtual worlds on education via a review
of current literature on the subject. Based on the literature, pedagogical, practice, and research objectives
are discussed. The literature suggests that research into the impacts of virtual worlds on education is at
a very early stage, and many opportunities for education and research remain unexplored.

Chapter 15, “Using Graphics to Improve Understanding of Conceptual Models,” by Kamal Masri,
Drew Parker, and Andrew Gemino, provides the results of an experiment involving the replacement of
standard identity boxes in ERDs (Entity Relationship Diagrams) with iconic graphics (small represen-
tative graphics). The primary problem under investigation was how to enhance novice understanding
of ERDs. Findings indicate that a reduction in “extraneous” cognitive load for those using the iconic

 xix

graphics was possible, further allowing an increase in “germane” cognitive load. This implies better
understanding of the diagrams.

Chapter 16, “Beyond Open Source: The Business of ‘Whole’ Software Solutions,” by Joseph Feller,
Patrick Finnegan, and Jeremy Hayes, examines a common research notion that open source developers
will be forced (by competitive pressures) to join cooperative type networks so that a complete product
can be provided to customers. The chapter uses a case study at Zea Partners, an open source content
management application developer, to conclude that if such networks are to succeed, then the participant
organizations must reconcile the coordination concerns with the operational concerns.

Chapter 17, “The Application-Based Domain Modeling Approach: Principles and Evaluation,” by Iris
Reinhartz-Berger and Arnon Sturm, investigates the area of domain analysis with the goal of developing
an approach that can overcome some of the shortcomings of modeling the domain using metamodeling
techniques. The authors propose that domain artifacts can be used to assemble relatively complete and
valid artifacts in their approach called Application based Domain Modeling. They demonstrate the vi-
ability of their approach using a CASE tool created for UML.

Chapter 18, “The Use of Ontology for Data Mining with Incomplete Data,” by Hai Wang and
Shouhong Wang, demonstrates how a domain analysis of knowledge representations in a data warehouse
or other data set, can be used in combination with a formal ontology, developed specifically for data
mining, to extract relatively complete results with incomplete data. They provide experimental evidence
supporting their claim.

Keng Siau & John Erickson
Editors, Advances in Database Research

1

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1
A Multiple-Bits Watermark for

Relational Data
Yingjiu Li

Singapore Management University, Singapore

Huiping Guo
California State University at Los Angeles, USA

Shuhong Wang
University of Wollongong, Australia

AbstrAct

At the heart of the information economy, commercially and publicly useful databases must be sufficiently
protected from pirated copying. Complementary to the Database Protection Act, database watermark-
ing techniques are designed to thwart pirated copying by embedding owner-specific information into
databases so that the ownership of pirated copies of protected databases can be claimed if the embedded
information is detected. This article presents a robust watermarking scheme for embedding a multiple-
bits watermark to numerical attributes in database relations. The scheme is robust in the sense that it
provides an upper bound for the probability that a valid watermark is detected from unmarked data, or
a fictitious secret key is discovered from pirated data. This upper bound is independent of the size of the
data. The scheme is extended to database relations without primary-key attributes to thwart attribute-
related attacks. The scheme is also extended to multiple watermarks for defending additive attacks and
for proving joint ownership.

INtrODUctION

With the development of information technology,
databases are becoming increasingly important in

a wide variety of applications such as parametric
specifications, surveys, and life sciences. While
demand for the use of databases is growing,
pirated copying has become a severe threat to

A Multiple-Bits Watermark for Relational Data

2

such databases due to the low cost of copying and
the high values of the target databases. To fight
against pirated copying, database watermarking
techniques are designed to embed owner-specific
information into database relations; when a pirated
copy is found, the owner can extract the embed-
ded information and use the detection process to
assert the ownership of data. This complements
the effort of the Database Protection Act (Vaas,
2003) as people realize that the law does not pro-
vide sufficient protection to valuable databases
(Gray & Gorelick, 2004).

While watermarking multimedia data has
long been rigorously studied (Cox, Miller, &
Bloom, 2001; Johnson, Duric, & Jajodia, 2000;
Katzenbeisser & Petitcolas, 2000), the approaches
developed for multimedia watermarking cannot
be directly applied to databases because of the
difference in data properties. In general, database
relations differ from multimedia data in signifi-
cant ways and hence require a different class of
information-hiding mechanisms. Unlike multime-
dia data whose components are highly correlated,
database relations consist of independent objects
or tuples. The tuples can be added, deleted, or
modified frequently in either benign updates or
malicious attacks. No existing watermarking
techniques for multimedia data are designed to
accommodate such tuple operations.

Perhaps the most well-known scheme for wa-
termarking relational data is the one proposed by
Agrawal and Kiernan (2002). For convenience,
we call it the AK scheme. The main idea of the
AK scheme is to change a small portion of nu-
merical data according to a secret key such that
the change can be detected for ownership proof.
Without access to the secret key, a pirate cannot
localize exactly where the change is made. It is
difficult for a pirate to confuse the ownership de-
tection unless he or she introduces an intolerable
error to the underlying data. The AK scheme can
be used in many real-world applications such as
watermarking parametric specifications, surveys,
and life-science data (Agrawal, Haas, & Kiernan,
2003; Agrawal & Kiernan).

Consider a database relation R that has a pri-
mary key P and ν numerical attributes A0,..., An–1.
Let there be η tuples. A portion of tuples is selected
for embedding watermark information according
to a control parameter γ (γ < η). The selection is
also determined by a secret key K, known only
to the owner of the data, as well as the primary
key. Any tuple r is selected if S1(K, r.P) mod γ =
0, where S1(K, r.P) is the first number generated
by S(K, r.P), and S(K, r.P) is a cryptographic
pseudorandom sequence generator seeded with
a secret key K and the primary key r.P of tuple r.
Given a sequence of numbers S1, S2,... generated
by S, it is computationally infeasible to derive the
secret key or to predict the next number in the
sequence. Due to the uniqueness of the primary
key, roughly one out of every γ tuples is selected
for embedding watermark information.

For each selected tuple r, the AK scheme
selects exactly one least significant bit j from at-
tribute Ai and replaces it with a mark bit x, where
i= S2(K, r.P) mod ν, j= S3(K, r.P) mod ξ, and x=0
if S4(K, r.P) is even and x=1, otherwise. Here,
ξ is another control parameter determining the
range of least-significant bits of each value that
may be modified.

For ownership detection, the mark bits are
located using the same process provided that the
secret key is known and the primary key remains
unchanged. Let ω be the number of mark bits
being localized (w ≈ h/j). To increase the ro-
bustness of the detection process, the ownership
is claimed if more than τω of the localized bits
are as expected, where t ∈ [0.5, 1) is a control
parameter that is related to the assurance of the
detection process.

The AK scheme has the following advan-
tages: It is (a) key based, meaning all aspects of
the scheme are determined by a secret key and
a primary key, (b) blind, that is, the detection
process does not require the knowledge of the
original database or the embedded information,
(c) incrementally updatable, where each tuple
is marked independently of all other tuples, (d)

3

A Multiple-Bits Watermark for Relational Data

error tolerable, meaning the error introduced by
embedding mark bits can be controlled such that
its impact on the mean and variance of marked
attributes is minuscule, and (e) robust, where the
detection process is robust to a variety of attacks
including bit-flipping attacks, mix-and-match
attacks, additive attacks, and invertibility at-
tacks. In particular, the scheme is robust against
tuple-related attacks such as tuple modification,
deletion, and insertion.

To motivate our research, we examine the
following assumptions that are used in the AK
scheme:

• Error tolerance: A database relation being
watermarked consists of a number of nu-
meric attributes. It is acceptable to change
a small number of ξ least-significant bits in
some numeric values; however, the value of
data will be degraded significantly if all or
a large number of such bits change.

• Primary-key criticality: A database rela-
tion being watermarked has a primary-key
attribute that either does not change or can
be recovered. The primary-key attribute
contains essential information such that
modification or deletion of this information
will substantially reduce the value of data.

• Attribute order dependence: A database rela-
tion being watermarked has a fixed order of
attributes that either does not change or can
be recovered. This assumption is implicit in
Agrawal and Kiernan (2002).

The scheme depends critically on a primary
key and the original order of database attributes.
The scheme does not apply if the data have no
primary-key attribute or if either the primary key
or the order of attributes is modified. The scheme
is therefore not robust against attribute-related
attacks such as attribute deletion and insertion.

In this article, we present the view that the
AK scheme actually embeds a 1-bit watermark,
and we extend it to a multiple-bit watermark. The

extended scheme provides an upper bound for
the probability that a valid watermark is detected
from unmarked data, or a fictitious secret key is
discovered from pirated data. This upper bound
is independent of the size of the data. Then we
drop the assumptions for primary-key criticality
and attribute order dependence by constructing a
virtual primary key from some most-significant
bits of some selected attributes. The attributes
used for constructing the virtual primary key may
vary from tuple to tuple, and the scheme does not
depend on a priori ordering over the attributes.
Our extended scheme is robust against not only
tuple-related attacks, but also attribute-related
ones. We also extend our scheme for embedding
and detecting multiple watermarks so as to thwart
additive attacks or prove joint ownership. As a re-
sult of our study, ownership detection can be fully
automated for detecting any database relations
with a guarantee of low false-detection rates.

The remainder of this article is organized
as follows. We first present a multiple-bits wa-
termarking scheme for relational data. We then
extend it by removing the assumptions on the
primary key and attribute order. We also extend
our scheme to multiple watermarks. In the related-
work section, we compare our work with many
other solutions including newly published ones.
The final section presents our conclusion. For
ease of reference, Table 1 gives the notation that
is used in this article.

rELAtED WOrK

In this section, we summarize the related work
in three categories: robust watermarking, fragile
watermarking, and public watermarking.

robust Watermarking

Recent development of watermarking techniques
has been targeted on relational databases to ac-
commodate typical database operations such

A Multiple-Bits Watermark for Relational Data

4

as tuple insertion, deletion, and modification.
The AK scheme (Agrawal & Kiernan, 2002) is
a typical robust watermarking scheme that em-
beds a single-bit watermark to relational data.
The scheme alters some least-significant bits in
numerical attributes such that the alteration does
not degrade the data beyond their usability and
that the pattern of alteration can be detected even
if the data have been modified. In this article, we
extend the AK scheme to (a) allow multiple-bit
information to be embedded and detected, (b)
provide an upper bound for the probability that a
valid watermark is detected from unmarked data,
or a fictitious secret key is discovered from pirated
data, regardless of the size of data, (c) deal with
database relations without primary-key attributes,
and (d) embed and detect multiple watermarks
for thwarting additive attacks and for proving
joint ownership.

Parallel to our work, a multibit watermark
scheme was proposed by Sion, Atallah, and Prab-
hakar (2003). The scheme is designed primarily
for watermarking a set of real numbers {x1,..., xn}
by manipulating its distributions. The first step of
watermark insertion is to sort the values accord-
ing to a cryptographically keyed hash of the set
of most-significant bits of the normalized values.
Then, a maximum number of nonintersecting
subsets of values are formed, where each subset
consists of a certain number of adjacent items
after sorting. Embedding a watermark bit into
a subset is achieved by making minor changes

to some of the data values in this subset such
that the number of values that are outliers in the
distribution is less than a smaller threshold (for
watermark bit 0) or greater than a larger threshold
(for watermark bit 1). Note that some of the groups
may not be able to be watermarked given user-
specified change tolerance. Also note that some
redundant bits must be embedded such that the
original multibit watermark can be recovered in
watermark detection even if some of the encoded
bits are destroyed in data attacks. Compared with
our multibit watermarking scheme, this scheme
is robust against linear transformation and does
not depend on the existence of a primary key. On
the other hand, since it requires sorting, group-
ing, and distribution manipulating, it incurs more
watermarking overhead, especially expensive
for watermarking large data sets or frequently
updated databases.

Robust watermarking schemes have also
been developed for protecting copyrights for cat-
egorical data, XML (extensible markup language)
data, and data cubes. In Sion (2004), the author
proposed to watermark a categorical attribute
by changing some of its values to other values
of the attribute (e.g., red is changed to green) if
such change is tolerable in certain applications.
Sion’s scheme is equivalent to the AK scheme in
selecting a number of tuples for watermarking a
categorical attribute A based on a secret key K
and the primary-key attribute P. For each selected
tuple r, exactly one bit is chosen from watermark

η Number of tuples that can be used in watermarking

ν Number of numerical attributes that can be used in watermarking

ξ Number of least-significant bits available in each value for watermarking

1/γ Fraction of tuples that are used for watermarking

K Secret key

S Cryptographic pseudorandom sequence generator

τ Threshold in watermark detection

Table 1. Notation in watermarking

5

A Multiple-Bits Watermark for Relational Data

information wm_data and is embedded to r.A,
where the watermark information wm_data is
generated from a shorter watermark wm using the
error-correcting code (ECC). The bit position is
determined by a pseudorandom value generated
from the secret key and the primary key r.P. To
embed the chosen bit b, the current categorical
value r.A is changed to another valid value of A,
which is chosen from a list LA of all valid values
of A. In this process, any value a can be chosen
from LA (to replace r.A) as long as a’s index in
LA has the least-significant bit b. For watermark
detection, a number of tuples are selected the same
way as in watermark insertion. Then, for each
selected tuple r, a bit position in wm_data is lo-
cated and the corresponding bit value in wm_data
is extracted from the least-significant bit of the
index of r.A in the list LA. After all of the tuples
are processed, the ECC takes as input wm_data
and produces the corresponding wm. The ECC can
tolerate certain errors in detecting wm_data and
still produce the same wm in watermark detec-
tion. This scheme has been extended to protect
the ownership and privacy of outsourced medical
data (Bertino, Ooi, Yang, & Deng, 2005) that are
subject to generalization (Kim, Sengupta, Fox, &
Dalkilic, 2007) and aggregation (Woo, Lee, Lee,
Loh, & Whang, 2007) attacks.

The AK scheme has also been extended by Ng
and Lau (2005) to watermarking XML data. In
this scheme, the owner of XML data is required to
choose locators, which are XML elements having
unique values that can serve as primary keys as
in the AK scheme. While a textual value of an
element is selected to embed a mark bit, one of its
words is replaced by a synonym function based on
a well-known synonym database WordNet.

Gross-Amblard (2003) considered relational
or XML data that are only partially accessible
through a set of parametric queries in his query-
preserving watermarking scheme. The scheme
modifies some numerical values in watermark
insertion in a way that the distortions introduced
to the results of those parametric queries are small

and that the watermark can be detected from the
results of those queries. Another work on wa-
termarking XML data was conducted by Zhou,
Pang, and Tan (2007). They proposed creating
queries to identify the data elements in XML data
that can be used for embedding watermarks. The
identifying queries are resilient against data reor-
ganization and redundancy removal through query
rewriting. If an identified element is a leaf node,
watermark insertion is performed by modifying
its value; otherwise, it is performed by adding to
or deleting its child nodes. The usability of XML
data is measured by query templates. The results
of certain basic queries on the data remain useful
after watermarking or attacks.

J. Guo, Li, Deng, and Chen (2006) proposed
a robust watermarking scheme to protect the
owner’s rights in data-cube applications. The
basic assumption is that all values able to be wa-
termarked in a data cube are numeric, and those
small changes in a small portion of these values
are acceptable. For each cell in a data cube, the
owner of the data seeds a cryptographically secure
pseudorandom sequence generator S with a secret
key K in concatenation with the cell’s feature
attributes. A small portion of cells are selected
and for each selected cell, a bit position among ξ
least-significant bits is selected to embed a mark
bit in the same way as in the AK scheme. Since
the most prevalent data-cube operations are ag-
gregation queries (Pears & Houliston, 2007), a
minicube is constructed for each cell that is modi-
fied in watermark insertion so as to eliminate the
errors introduced by watermarking to aggregation
queries. J. Guo et al. have shown that this can be
done effectively and efficiently in real-world ap-
plications even for very large data cubes.

The AK scheme has also been extended to
fingerprinting relational databases (Li, Swarup,
& Jajodia, 2005). Fingerprinting is used to insert
digital marks for the purpose of identifying the
recipients who have been provided data, which
is different from watermarking in which digital
marks are inserted for the purpose of identifying

A Multiple-Bits Watermark for Relational Data

6

the source of data. The challenge is to address the
collusion attack in which a group of legitimate
users work collaboratively to create a pirated copy
of protected data (Boneh & Shaw, 1995, 1998;
Safavi-Naini & Wang, 2001).

Fragile Watermarking

Different from robust watermarking, the purpose
of fragile watermarking is not to protect copyright,
but to detect and localize possible attacks that
modify a distributed or published database. Li,
Guo, and Jajodia’s scheme (2004) is an example
of fragile watermarking. This scheme embeds a
watermark to relational data by partitioning the
tuples into groups and manipulating the order of
the tuples in each group, where the grouping and
ordering of the tuples are determined by a secret
key and the primary key of the tuples. A water-
mark can be computed by hashing or signing all
tuple values in a group. Note that even though the
watermark can be derived from a digital signature,
it is embedded into the data, which is different
from integrating digital signatures with relational
databases (Reid & Dhillon, 2003). Any change to
the underlying data can be detected at a group level
with a high probability in watermark detection.
This solution introduces no error to the underlying
data and can be easily extended to watermarking
multidimensional data cubes.

To improve the precision in tamper localiza-
tion, H. Guo, Li, Liu, and Jajodia (2006) proposed
another fragile watermarking scheme under the
assumptions that the database relation to be wa-
termarked has numerical attributes and that the
errors introduced in two least-significant bits
of each value can be tolerated. In this solution,
the tuples are first divided into groups, as in the
previous scheme. Within each group, a tuple hash
(keyed) is computed for each tuple (with attributes
organized in a fixed order), and an attribute hash
(keyed) is computed for each attribute (with tuples
organized in a fixed order). When these hash
values are computed, the two least-significant

bits of all attribute values are ignored. Each tuple
hash is embedded into the corresponding tuple
and each attribute hash into the corresponding at-
tribute. The embedded hash values actually form
a watermark grid, which helps to detect, localize,
and characterize database attacks.

Recently, H. Guo, Li, and Jajodia (2007) pro-
posed a fragile watermarking scheme for detecting
malicious modifications to streaming data. The
scheme partitions a numerical data stream into
groups based on synchronization points. A data
element xi is defined to be a synchronization point
if its keyed hash HMAC(K, xi) mod m=0, where
K is a secret key, and m is a secret parameter. For
each group of data that falls between two synchro-
nization points, the scheme computes and embeds
a fragile watermark so that any modification to
the data can be detected and localized at a group
level in watermark detection.

Public Watermarking

One common feature of most robust watermark-
ing techniques is that they are secret-key based,
where ownership is proven through the knowledge
of a secret key that is used for both watermark
insertion and detection. The secret-key-based
approach is not suitable for proving ownership
to the public (e.g., in a court). To prove owner-
ship of suspicious data, the owner has to reveal
his or her secret key to the public for watermark
detection. After being used one time, the key is no
longer secret. With access to the key, a pirate can
invalidate watermark detection by either removing
watermarks from protected data or adding a false
watermark to nonwatermarked data.

Li and Deng (2006) proposed a unique da-
tabase watermarking scheme that can be used
for publicly verifiable ownership protection.
Given a database relation to be published or
distributed, the owner of the data uses a public
watermark key to generate a public watermark,
which is a relation with binary attributes that
are derived from the original database. Anyone

7

A Multiple-Bits Watermark for Relational Data

can use the watermark key and the watermark
to check whether a suspicious copy of the data
is watermarked, and, if so, prove the ownership
of the data by checking a watermark certificate
officially signed by a trusted certificate authority,
DB-CA. The watermark certificate contains the
owner’s ID, the watermark key, the hashes of the
watermark and database relation, the first time the
relation was certified, the validity period of the
current certificate, and the DB-CA’s signature.
The watermark certificate may be revoked and
recertified in the case of identity change, owner-
ship change, DB-CA compromise, or data update.
Therefore, the revocation status also needs to be
checked in proving the ownership.

EMbEDDING AND DEtEctING
MULtIPLE-bIts WAtErMArK

In this section, we extend the AK scheme under
the same set of assumptions: error tolerance,
primary-key criticality, and attribute order
dependence. The extended scheme is used for
embedding a multiple-bits watermark rather than
a 1-bit watermark as in the AK scheme. Multiple-
bits watermarks are useful for embedding owner
information such as name, logo, signature, or
description about the underlying data. We prove
that certain false-detection rates are bounded in
our extended scheme.

Embedding Multiple bits

The AK scheme embeds a 1-bit watermark only.
This can be seen clearly by extending it to embed-
ding a multiple-bits watermark W = (w0,..., wL-1).
To embed W, the same scheme is used to (a) select
some tuples, (b) select one attribute for each se-
lected tuple r, (c) select one least significant bit for
each selected attribute, and (d) compute a mark bit
x for each selected bit. Now the difference is that
the mark bit is not used to replace the selected bit
in data directly; instead, one watermark bit wl is
selected from W where l= S5(K, r.P) mod L, and

x XOR wl is used to replace the selected bit in the
data. In watermark detection, the watermark bit
wl is recovered by computing XOR on a located
bit in the data with the computed mark bit x.
The ownership is claimed as long as the original
watermark string W can be recovered from the
data. The AK scheme can be considered to be a
special case of this extended scheme where W
is 1-bit 0.

Compared to the AK scheme, the same number
w ≈ h/j of least-significant bits is selected in our
extended scheme for embedding watermark infor-
mation; thus, the error introduced by the embed-
ding process is the same as the AK scheme. The
reader is referred to Agrawal et al. (2003) for more
details on the analysis of watermarking error. The
difference is that each watermark bit wl is embed-
ded v ≈ w/L times as compared to ω times in the
original scheme; thus, the robustness analysis on
the watermarking scheme must be adapted to take
this into consideration. A preliminary analysis
of our extended scheme was first reported in Li,
Swarup, and Jajodia (2003a).

robustness Analysis for
Multiple-bits scheme

The robustness of a watermarking scheme can
be measured by the following probabilities: (a)
false hit rate, in which a valid watermark is
detected from unmarked data, (b) invertibility
rate, where a fictitious secret key is derived from
marked data, and (c) false miss rate, in which no
valid watermark is detected from marked data
in the presence of various types of attacks. The
smaller these probabilities, the more robust the
watermarking scheme.

In the robustness analysis, we use the following
notation: (a) the probability function of binomial
distribution b(k; n, p) = k

nC pk qn-k (i.e., probability
of obtaining exactly k successes out of n Bernoulli
trials with probability p of success in any trial),
and (b) the survival function of binomial distribu-
tion B(k; n, p) = 1

n
i k= +∑ b(i; n, p) (i.e., probability

A Multiple-Bits Watermark for Relational Data

8

of having more than k successes in n independent
Bernoulli trials).

False Hit

Being aware of the existence of a watermarking
technique, a pirate may modify marked data so as
to confuse ownership proof. Therefore, watermark
detection may be applied to not only the original
marked data, but also unmarked data, both of
different sizes.

Claim 1. If the detection algorithm is applied
to unmarked data, then the false-hit rate is 1

0
L
i

-
=∏

B(twi; wi, 0.5) ≤ 1
2L , where wi > 0 is the number of

times that the watermark bit i is extracted from
data.

Proof. If the detection algorithm is applied to
unmarked data, it may possibly return some binary
string (w0,..., wL–1) as a potential watermark. Let wi
be extracted from data wi times and wi > 0. Due to
the use of pseudorandom generator S in detection,
wi is extracted each time from unmarked data as
0 or 1 with the same probability 0.5. Due to the
use of threshold τ in detection, wi is detected as
0 or 1 with the same probability B(twi; wi, 0.5).
The probability that a binary string (w0,..., wL–1)
is obtained in detection is 1

0
L
i

-
=∏ 2B(twi; wi, 0.5).

Now, there is only one watermark in the space of
2L possible binary strings. Thus, the probability
that the binary string obtained matches the original
watermark is 1/2L. The false-hit rate is 1

2L
1
0

L
i

-
=∏

2B(twi; wi, 0.5) = B(twi; wi, 0.5). The false-hit rate
has an upper bound 1/2L due to B(twi; wi, 0.5) ≤
0.5 for t ∈ [0.5, 1).

The upper bound is independent of wi and τ.
Therefore, no matter what the size of the data and
the detection threshold are, the false-hit rate can
be reduced exponentially by increasing L.

The AK scheme corresponds to a special case
of our scheme where L=1. In the AK scheme, the
false-hit rate is B(tw; w, 0.5) , where ω is the total
number of mark bits extracted from targeted data.
The false-hit rate in the AK scheme may be con-

trolled by the detection threshold τ. For example,
for ω = 1,000, it is required that τ = 0.6 so that
the false-hit rate is less than 10-10. To reduce the
false-hit rate, one needs to increase the detection
threshold τ.

The side effect of increasing threshold τ in
detection is that the scheme is more vulnerable to
some attacks. For example, the scheme will return
no valid watermark from marked data if an attacker
flips at least 100(1-τ)% of the ξ least-significant
bits of all values. The smaller the parameter τ, the
more robust the scheme is against such attacks at
the price of a larger false-hit rate.

In our extended scheme, we can choose τ=0.5
to maximize the robustness without degrading
the false-hit rate significantly as it is bounded by
1/2L; therefore, a simple majority vote can be used
in our watermark detection as long as the length
of the watermark is long enough (e.g., L=40). In
comparison, the false-hit rate is close to 50% for
τ=0.5 in the AK scheme, which is intolerable in
most cases.

Note that in the AK scheme, the false-hit rate
depends not only on τ, but also on the size of data
(in terms of ω). Since the size of data may change
due to various attacks, one has to determine an
appropriate τ by solving a false-hit equation for
different sizes of data. The smaller the size of the
data, the more a larger τ is required (thus the weaker
the scheme is against attacks). For example, if ω
decreases from 1,000 to 100, then τ must increase
from 0.6 to above 0.7 so as to keep the false-hit
rate below 10-10. In our extended scheme, a simple
majority vote (i.e., τ=0.5) can be used uniformly
for any size of data, which significantly simplifies
the detection process.

Invertibility

Now consider when a pirate discovers a secret
key from marked data that yields a satisfactory
watermark. A pirate can use the discovered key
to claim legitimate ownership of the data. Alter-
nately, a pirate can claim innocence by claiming

9

A Multiple-Bits Watermark for Relational Data

that data owner used this type of invertibility
attack to obtain the evidence of piracy.

Claim 2. If a pirate randomly selects a secret
key, then the probability that this key causes a valid
watermark to be detected from pirated data is

1

| | | |0
1 1 1max(, (; ,0.5)) ,),

2 2 2
L

i iK K Li B-
=

≤∏

where wi > 0 is the number of times that watermark
bit i is extracted from data.

Proof. The first term | |
1

2 K is the probability that
the tried key is the real secret key K (assume that
the length of the secret key is fixed and public).
The second term is the probability of detect-
ing a valid watermark from pirated data using
a different secret key, which is the same as the
probability of detecting a valid watermark from
unmarked data. An attacker may choose his or
her own parameters γ, L, and τ to increase this
probability. In particular, if τ=0.5 is selected, this
term reduces to its upper bound 1/2L.

Thwarting this invertibility attack requires
choosing a long-enough watermark and secret key
(e.g., L ≥ 40 and AES |K| ≥128). This requirement
can be enforced by a standard process or public
announcement. Note that an alternate convention
might be to require τ to be greater than 0.5; how-
ever, an attacker may get around that convention
by first reducing wi (e.g., via a subset attack) before
launching an invertibility attack.

Consider the AK scheme, which corresponds to
a special case of our scheme where L=1. No matter
how long a secret key is, the invertibility attack
could succeed with high probability because the
second term B(tw; w, 0.5) in the invertibility rate
may approach 50% when an attacker manipulates
the size of the data and the detection threshold.
In comparison, this term in our scheme has the
upper bound 1/2L, which is independent of the size
of the data and the detection threshold τ.

Since the false-hit rate and invertibility rate
in our scheme are controlled by the length of the

watermark, we choose τ=0.5 in the following
so as to maximize the robustness of our scheme
against various attacks.

False Miss

Watermarking schemes should be robust against
malicious attacks or benign update operations that
may destroy the embedded watermark. Since the
embedded watermark can always be destroyed by
making substantial modifications to marked data,
we assume that when attacks modify data, they
also degrade the value of the data. We consider the
robustness of our watermarking scheme relative to
typical database attacks. In this section, we focus
on typical tuple-related attacks that have been
considered in Agrawal and Kiernan (2002).

Value Modification

Consider value modification in which an attacker
randomly selects some data values and flips their
least-significant bits. Assume that the attacker
toggles each least-significant bit with probabil-
ity pf, where pf > 0.5 (if pf > 0.5, then watermark
detection can be applied to transformed data in
which each bit is flipped back) is called the flipping
probability (subscript f stands for flipping).

Claim 3. If a value modification attack is
applied to a watermarked relation with flipping
probability pf, then the false-miss rate is

1 – 1
0

L
i

-
=∏ (1–B(

2
i ; wi, pf)),

where wi > 0 is the number of times that watermark
bit wi is embedded in the data.

Proof. Due to the majority vote, watermark
detection fails to detect watermark bit wi only
if at least wi /2 embedded bits that correspond
to wi are toggled. Thus, the probability that the
watermark bit is not recovered is B(

2
i ; wi, pf).

The probability that the entire watermark is not
recovered (i.e., the false-miss rate) is

A Multiple-Bits Watermark for Relational Data

10

1 – 1
0

L
i

-
=∏ (1–B(

2
i ; wi, pf)).

In an average case, we have wi = v = w/L and
the false miss rate 1 – (1 – B(

2
; v, pf)

L). Figure
1 plots the false-miss rate in the average case.
The two parameter values that are varied are v
and pf. The figure uses the default value 100 for
L. The figure shows that with a proper choice of
parameters, a successful attack requires pf being
large, causing a perceptible change to the data
relation.

Tuple Deletion and Insertion

Consider tuple deletion, in which an attacker
deletes a subset of tuples from a watermarked
relation. Suppose that the attacker examines each
tuple independently and selects it with probability
pd for inclusion in the pirated relation.

Claim 4. If a tuple deletion attack is applied
to a watermarked relation, then the false-miss
rate is

1 – 1
0

L
i

-
=∏ (1– i

dp),

where wi > 0 is the number of times that watermark
bit wi is embedded in the data, and pd is the prob-
ability that a tuple is deleted in the attack.

Proof. For the attack to be successful, it must
delete all embedded bits for at least one watermark
bit. Now, each watermark bit wi is embedded wi
times, so the probability that all the embedded
bits for wi are deleted is B(wi – 1; wi, pd) = i

dp .
Therefore, the false miss rate is

1 – 1
0

L
i

-
=∏ (1– i

dp).

In an average case where wi = v = w/L, we
have the false-miss rate 1 – (1– dp)L.

Figure 2 shows that a tuple deletion attack
is unlikely to succeed unless a large number of
tuples are deleted.

A tuple deletion attack is a less effective at-
tack than a value modification attack. However,
it is more potent when used in combination with
a value modification attack. A tuple deletion at-
tack reduces the average times a watermark bit is
embedded and hence makes the pirated relation
more susceptible to value modification attacks.
Figure 3 plots the false-miss rate as a function of
the ratio of tuples deleted and the flipping prob-
ability in a combination attack.

Another type of attack is tuple insertion at-
tack, in which an attacker takes a marked rela-
tion and mixes it with h · pi tuples from other
sources, where η is the number of tuples in the

Figure 1. False-miss rate under value modification attack

11

A Multiple-Bits Watermark for Relational Data

original relation and pi ≥ 0 is the insertion rate.
In watermark detection, each watermark bit wl
is extracted from those additional tuples roughly
wl · pi times, where wl is the number of times the
watermark is extracted from the original data.
Then the probability that this watermark bit is
not recovered due to the attack is

(1)
(; ,0.5)

2
l i

l i
p

B p
+ .

It is then fairly straightforward to derive the
false-miss rate for the tuple insertion attack. It is
more difficult for an attacker to confuse owner-
ship proof by launching a tuple insertion attack

than manipulating the same number of tuples in
a tuple deletion attack.

WAtErMArKING WItHOUt
PrIMArY KEY

Both the AK scheme and our extended scheme
depend critically on a primary key and the original
order of database attributes. These schemes do not
apply if the data have no primary key attribute
or in the case that either the primary key or the
order of attributes is modified. These schemes
are therefore not robust against attribute-related

Figure 2. False-miss rate under tuple deletion attack

Figure 3. False-miss rate under combination attack

A Multiple-Bits Watermark for Relational Data

12

attacks such as attribute deletion and insertion.
In this section, we propose alternative schemes
that do not depend on primary-key attributes or
the attribute order. A preliminary analysis of
these schemes was first reported in Li, Swarup,
and Jajodia (2003b).

Element-based scheme

The multiple-bits scheme discussed in the above
section can be called tuple based as it processes
data tuple by tuple in watermark insertion and
detection. An alternative approach is to process
each numerical value independently. A virtual
primary key vpk is constructed from each attri-
bute value or data element. We call such scheme
element based.

For each element r.Ai of tuple r, the bits of
r.Ai are partitioned into two parts: lsb(r.Ai) and
vpk(r.Ai), where lsb(r.Ai) may be used to embed a
watermark bit and vpk(r.Ai) is used as its virtual
primary key. The least-significant bit portion lsb
consists of ξ bits in which a watermark bit may be
embedded. The virtual primary key vpk consists
of the (most significant) bits except the bits in lsb.
Changing vpk would introduce intolerable error
to the underlying data.

Recall that tuple-based schemes embed one
bit per γ tuples. To maintain the same ratio, the
element-based scheme embeds one bit per γν ele-
ments: An element r.Ai is selected for embedding
a watermark bit if S1(K, vpk(r.Ai)) mod γν equals
0. If element r.Ai is selected, its least-significant
bit j in the lsb(r.Ai) portion is selected, where j=
S3(K, vpk(r.Ai)) mod ξ. Then the element-based
scheme embeds (or extracts) a watermark bit to
(or from) the selected bit exactly as the tuple-based
scheme does.

combination-based scheme

Another solution is to combine some significant
bits from multiple attributes for constructing the
virtual primary key and process the data tuple
by tuple, based on each tuple’s virtual primary

key. We call such scheme combination based. The
construction of the virtual primary key does not
depend on the order of the attributes.

For each tuple r, the combination-based
scheme computes its virtual primary key r.V by
concatenating k (1 ≤ k ≤ n) keyed hash message
authentication codes (in the case that the concat-
enation results in too-long binaries, the virtual
primary key can be constructed from hashing the
concatenation result) in {HMAC (K, vpk(r.Ai)):
i=0,…,ν-1} that are closest to 0 (hash values are
interpreted as natural numbers when comparing
with 0). The attributes used for constructing the
virtual primary key are not fixed but may change
from tuple to tuple. Without knowing the secret
key, an attacker is unable to determine which at-
tributes are selected for constructing the virtual
primary key in each tuple.

The combination-based scheme then uses the
tuple-based technique to process each tuple, but
with two modifications. First, the combination-
based scheme uses the virtual primary key in place
of the real primary key. Second, for each tuple
r that has been selected, attribute Ai is chosen if
its hash value HMAC (K, vpk(r.Ai)) is closest to 0
among all attributes’ HMAC hash values. Multiple
attributes may be selected if they have the same
lowest HMAC hash value. In comparison, the
tuple-based scheme selects a single attribute Ai
if i = S2 (K, vpk(r.Ai) mod ν.

Note that in the combination-based scheme,
the attribute(s) selected for embedding a water-
mark bit is (are) among those that are used for
constructing the virtual primary key (i.e., the
lowest hash value is among the k lowest hash
values). The construction of the virtual primary
key depends on the hash values rather than the
order of the attributes.

robust Analysis for Virtual-Primary-
Key-based schemes

Recall that the analysis on the tuple-based scheme
is independent of the composition of the primary

13

A Multiple-Bits Watermark for Relational Data

key; thus, it holds for the combination-based
scheme as long as the virtual primary key has
the same uniqueness property as the real primary
key. In this section, we first extend the robust-
ness analysis to attribute-related attacks and then
study the impact of using the virtual primary key
instead of the real primary key in robust analysis.
Unless otherwise stated, our analysis is applied to
the combination-based scheme. A comparison of
the combination-based scheme with the element-
based scheme is given at the end.

Attribute Deletion and Addition

Assume that k out of ν attributes are selected for
constructing the virtual primary key and that
the k attributes are randomly distributed among
ν attributes from tuple to tuple. We analyze the
false-miss rate of watermark detection when
applied to marked data in which some attributes
may be deleted or added. Our analysis is similar
to that for a value modification attack, where the
false-miss rate is measured in terms of flipping
probability pf. The flipping probability is the prob-
ability that each extracted watermark bit is not as
expected. In the context of attribute deletion and
addition, this probability is renamed equivalent
flipping probability p̂f. We study how to calculate
p̂f in attribute deletion and addition attacks. As
long as p̂f is obtained, the false-miss rate can be
computed the same way as in a value modification
attack (by replacing pf with p̂f).

Claim 5. If d out of ν attributes are deleted in
a watermarked relation where the virtual primary
key is constructed from k attributes, then the
false-miss rate is

1
0

11 (1 (; ,))
2 2 2

k
L i d

i ki
C

B
C

- -
=

- - -∏ ,

where wi > 0 is the number of times that water-
mark bit wi is extracted from the data.

Proof. An extracted bit is not as expected only
if the virtual primary key is altered; that is, some of
the k attributes that are involved in the construction
of the virtual primary key are deleted. Since the
k attributes are randomly distributed from tuple
to tuple, the probability that the virtual primary
key is altered is

1
k

d
k

C
C

-- .

It is equally likely that the altered virtual primary
key leads to a correct or incorrect bit being de-
tected. Therefore,

1ˆ
2 2

k
d

f k
C

p
C

-= - .

Note that the false-miss rate is computed based
on the extracted times rather than the embedded
times of each watermark bit. If the extracted times
are unknown, it can be estimated as d/ν of the
embedded times.

The false-miss rate in an attribute deletion at-
tack is computed exactly as in a value modification
attack, except that pf is replaced with p̂f. Figures 4
and 5 plot p̂f as functions of d and k, respectively.
Figure 4 shows that the more the attributes are
deleted, the larger the equivalent flipping prob-
ability and the larger the false-miss rate. Figure
5 indicates that the less attributes are involved in
the construction of the virtual primary key, the
less the impact of attribute deletion. However,
as it shall be shown in the next subsection, using
less attributes in the construction of the virtual
primary key will degrade the uniqueness prop-
erty of the virtual primary key, which increases
the false-miss rates against tuple-related attacks.
Therefore, there is a trade-off between tuple-
related attacks and attribute deletion in terms of
the number of attributes in the virtual-primary-key
construction. The optimal number can be decided
by minimizing the overall false-miss rates in the
evaluation of these attacks.

A Multiple-Bits Watermark for Relational Data

14

Now consider attribute addition. We assume
that all hash values HMAC(K,vpk(r.A)) are uni-
formly distributed from 0 to U, where U is the
largest possible hash value.

Claim 6. If d>0 attributes are added to a
watermarked relation where the virtual primary
key is constructed from k out of ν attributes, then
the false-miss rate is

1
0

1 11 (1 (; , (1)))
2 2 2 1

L di
ii

kB-
=

- - - -
+∏ ,

where wi > 0 is the number of times that watermark
bit wi is extracted from the data.

Proof. For each tuple r where a watermark bit is
embedded, k HMAC hash values h0,..., hk-1 are used
for constructing the virtual primary key, where the
k hash values are selected from {HMAC(K,vpk(r.
Ai)): i=0,…ν-1} that are closest to 0. The watermark
bit is embedded into the attribute whose hash
value is the closest to 0. Now consider that one
attribute Ax is added. The virtual primary key of
tuple r is unaffected by the adding of Ax only if
the hash value HMAC (K,vpk(r.Ax)) is greater than
maxi<k hi. With the assumption that all HMAC hash

values are uniformly distributed from 0 to U (the
largest possible hash value), the probability that
the virtual primary key is altered is

max
1

i k ih k
U

< ≈
+

.

If d attributes are added, the probability that the
virtual primary key is altered is

1 (1)
1

dk
- -

+
.

It is equally likely that the altered virtual primary
key leads to a correct or incorrect watermark bit
being detected. Therefore, the equivalent flipping
probability is

1 1ˆ (1)
2 2 1

d
f

kp = - -
+ .

Note that the false-miss rate is computed based
on the extracted times rather than the embedded
times of each watermark bit. If the extracted times
are unknown, it can be estimated as 1+d/ν of the
embedded times.

Figure 6 plots the equivalent flipping prob-
ability as functions of d and k, indicating that
the more attributes are added, the larger the

Figure 4. Equivalent flipping probability for attribute deletion with respect to d

15

A Multiple-Bits Watermark for Relational Data

equivalent flipping probability and the larger the
false-miss rate.

Duplicate Problem

Because the virtual primary key may not be unique
to each tuple, the average number of marked bits
may not be ω=η/γ, and each watermark bit may not
be embedded in the data roughly the same number
of times v = h/(fL). Due to the possible duplicates
of virtual-primary-key values, some watermark

bits may be embedded fewer times than the oth-
ers, rendering the scheme less robust to various
attacks. We call this the duplicate problem.

Due to the duplication of virtual-primary-key
values, different watermark bits are not embedded
(or extracted) evenly. Let wi be the actual times that
watermark bit wi is embedded (or extracted), where
i=0,…,L-1. Let wmax = maxi wi and wmin = mini wi.
We use the following duplicate index δ to measure
the severeness of the duplicate problem.

Figure 5. Equivalent flipping probability for attribute deletion with respect to k

Figure 6. Equivalent flipping probability for attribute addition

A Multiple-Bits Watermark for Relational Data

16

• Duplicate index d = (wmax - wmin)/ wmin

There will be no duplicate problem if the du-
plicate index is 0 (i.e., wi = v). If some watermark
bit is not embedded into the data (i.e., mini wi =
0), then the duplicate index is infinity (δ=∞). The
smaller the duplicate index, the more evenly the
watermark is embedded (or extracted).

We now investigate the influence of the du-
plicate index on false-miss rates. The duplicate
problem affects both tuple-related attacks and
attribute-related attacks. In this article, only the
impact on tuple-related attacks (value modification
and tuple deletion) is illustrated. The impact on
attributed-related attacks can be easily derived
from the impact on value modification attacks as
discussed in the previous subsection.

In the case of δ=0, Figures 1 and 2 illustrate
the false-miss rates under the value modification
attack and the tuple deletion attack. In the case
that δ≠0, we compute the false-miss rate based
on the assumption that the embedded times of
different watermark bits are uniformly distributed
in the interval [wmin, wmax] with mean v, where

/ii
L= ∑ . Given v and δ, wmin and wmax can

be computed as

min
2

2
=

+

and

max
2(1)

2
+

=
+

.

Figures 7 and 8 plot the false-miss rates under
the value modification attack and the tuple dele-
tion attack for different duplicate indices, where
L=100 and v = 200. The figures show that a larger
duplicate index renders the scheme more vulner-
able to the attacks.

Numerical results

The duplicate index is content based and thus
should be evaluated case by case. We used a
real-life data set, forest cover-type data, as an
example for the evaluation of the duplicate index.
The data set is available from the University of
California-Irvine KDD Archive (http://kdd.ics.
uci.edu/databases/covertype/covertype.html).
The data set consists of 581,012 tuples, each with
61 attributes and no primary key. The first 10
integer-valued attributes are chosen for embedding

Figure 7. False-miss rate under value modification attack

17

A Multiple-Bits Watermark for Relational Data

the watermark (i.e., ν=10). Let the default length
of the watermark be L=58, and the default ξ be
one fourth of the bits (least-significant part) in the
binary representation of each attribute value. For
the combination-based scheme, two attributes are
used in the construction of the virtual primary
key (i.e., k=2) unless otherwise stated.

Table 2 compares the combination-based
scheme with the tuple-based scheme and element-
based scheme in terms of duplicate index. For the
tuple-based scheme, we added an extra attribute
called id to serve as the primary key. Due to the
uniqueness of such primary key, the duplicate
index of the tuple-based scheme is closest to 0
compared to the other schemes. On the other hand,
the duplicate index of the element-based scheme
is always infinity, indicating that the element-

based scheme cannot be used for watermarking
this relation.

Figure 9 shows the duplicate index as a function
of the number of attributes used in the construction
of the virtual primary key (i.e., k). In the figure,
the duplicate index is illustrated for different γ
values and for the combination-based scheme only.
The trend is that the more the attributes used in
the construction of the virtual primary key, the
less the duplicate index. The duplicate index may
not be a strict monotonic function of k because
it depends also on the set of tuples that is chosen
for embedding the watermark. Combining this
figure with Figure 5, one may conclude that using
three attributes (k=3) for constructing the virtual
primary key is a good choice for watermarking
the forest cover-type data.

Figure 8. False-miss rate under tuple deletion attack

γ
Duplicate index δ

Tuple-based scheme Combination-based scheme Element-based scheme

100 0.58 5.46 ∞

50 0.61 2.73 ∞

25 0.14 0.85 ∞

12 0.07 1.03 ∞

Table 2. Duplicate index for different watermarking schemes

A Multiple-Bits Watermark for Relational Data

18

EXtENsION tO MULtIPLE
WAtErMArKs

Our multiple bits scheme can be easily extended
to allow for multiple watermarks. Assume that
n watermarks W1,..., Wn of length L are embed-
ded into database relation R sequentially with
different secret keys K1,..., Kn but with the same
watermarking parameters γ, ν, and ξ. Interference
exists among multiple watermarks, as an embed-
ded bit of one watermark could be flipped back
and forth by some later embedded watermarks.
The interference among multiple watermarks can
be quantified as follows. Let pc= 1/(gnx) be the
probability that a least-significant bit is used in
embedding a single watermark. For any mark bit
of watermark Wn1

, the probability that this mark
bit is modified by other watermarks is

1
1,

1 [1 (1)] 0.5
2

n n
n n cp p -= - - < .

For any least-significant bit of the original data,
the probability that this bit is modified by all
watermarks is

0,
1 [1 (1)] 0.5
2

n
n cp p= - - < .

If watermark detection is applied to unmarked
data using each of n different valid secret keys
K1,..., Kn, then the probability that at least one
valid watermark is detected, or the false-hit rate,
is 1- (1-1/2L)n, which has a lower bound 1/2L and
an upper bound n/2L. Given the number n of water-
marks, the false-hit rate can be made low enough
by increasing the length L of the watermark.

The false-miss rate can be analyzed under a
typical modification attack in which an attacker
randomly toggles each least-significant bit with a
probability pj < 0.5. Under this attack, the probabil-
ity that the n1

th watermark cannot be detected from
the modified data, or the false-miss rate, is

1- 1
0

L
i

-
=∏ (1-B(wn1,i/2; pn1,n(1 - pf) + (1 - pn1,n)pf)) ≈

1- (1-B(w/2; pn1,n(1 - pf) + (1 - pn1,n)pf))
L,

where wn1,i is the number of times that the wa-
termark bit wi in Wn1

 is embedded in the data,
and v is the average times each watermark bit
is embedded. The reason is that after modifica-
tion, each mark bit of the n1

th watermark could be
modified either due to watermark interference or
by data modification. The probability of it being
modified due to watermark interference is pn1,n,
and the probability of it being modified by a data

Figure 9. Change of duplicate index (the duplicate indices for all γ values at k=1 are infinity)

19

A Multiple-Bits Watermark for Relational Data

modification attack is pf. Therefore, the probability
of it being modified in any way is pn1,n(1 - pf) +
(1 - pn1,n)pf.The false-miss rate in this case is the
probability of at least Wn1,i/2 embedded bits out
of wn1,i bits of the n1

th watermark being modified.
It is clear that the false-miss rate of the first em-
bedded watermark is the largest while that of the
last embedded watermark is the smallest among
n watermarks.

It can be verified that as n →∞, the false-hit
rate approaches 100% and the false-miss rate ap-
proaches 50%. The more watermarks embedded
into a data copy, the larger the false-detection
rates in watermark detection, and the more errors
introduced to the underlying data in watermark
insertion.

The watermarking errors should be carefully
evaluated so as to preserve data quality. The errors
can be controlled at two different levels. At the item
level, the errors introduced to individual values are
bounded because no alteration is allowed beyond
ξ least-significant bits. At the aggregation level,
the errors introduced to descriptive statistics of
attribute values can be quantified. In particular,
one can study the watermarking error introduced
to the mean of an integer-valued attribute with
values x1,..., xh. After embedding n watermarks,
value xi becomes xi + ei (n), where ei (n) is a ran-
dom variable. For xi, if its least-significant bit j is
modified in watermark insertion, the modification
will cause change + 2j or - 2j to xi with the same
probability 1:2.

Knowing that the least-significant bit j will
be modified in watermark insertion with a prob-
ability p0,n (due to watermark interference), one
can derive that the mean of ei (n) is 0 and the
variance of ei (n) is

2
0, (2 1)

3
np - .

Let

1 ii x
==

∑

be the mean of original attribute values and let

1 ()
() ii

e
e n

n ==
∑

be the error in computing μ after watermarking.
The expected error in computing μ after water-
marking is E[me(n)] = 0 and the variance of the
error is

2
0, (2 1)

[()]
3

n
e

p
V n

-
= .

It can be verified that the variance of watermarking
error is monotonic, increasing with n to approach
its upper limit

22 1
6

- .

An application of multiple watermarks is to
defend against additive attacks. In an additive
attack, a pirate inserts additional watermarks to
watermarked data so as to confuse ownership
proof. A pirate can insert watermarks to claim
ownership of the data or claim that the data were
provided to a buyer legitimately. An additive at-
tack can be thwarted by raising the watermarking
error to a predetermined threshold such that any
additive attack would introduce more errors than
the limit (Li, Swarup, & Jajodia, 2004). In the case
of an additive attack, the ownership dispute can be
resolved by determining whose watermarks can be
detected more. To gain advantage in an ownership
dispute, a pirate is forced to embed a large-enough
number of watermarks. Consequently, the pirated
data are less useful or less competitive compared
to the originally watermarked data and it is not
necessary for the owner to claim ownership over
such data.

Multiple watermarks can also be used for prov-
ing joint ownership in a scenario where a database
relation is jointly created by n participants. Each
participant can embed a watermark with his or her
own key so that he or she can prove the ownership
independently. The question is whether the under-
lying data can be watermarked. Given a certain

A Multiple-Bits Watermark for Relational Data

20

robustness requirement and error constraint, a
maximum number of watermarks can be deter-
mined based on our analysis on false-detection
rates and watermarking errors.

cONcLUsION

In the area of database watermarking, the research
on the AK scheme is innovative. Nonetheless,
the AK scheme can be strengthened from both
theoretical and practical perspectives. In this
article, we pointed out the weaknesses of the AK
scheme and proposed our solutions to address
these weaknesses.

The theoretical contributions of this research
can be summarized as follows. First, we exposed a
unique view that the AK scheme actually embeds
1-bit watermark information, which cannot be
conveniently used to encode multibit information
about database owners or users. Based on such
a view, we extended the AK scheme to embed a
multiple-bit watermark. Our extension not only
inherits the same set of properties as the AK
scheme, but also provides an upper bound for
the probability that a valid watermark is detected
from unmarked data, and that a fictitious secret
key is discovered from pirated data. Second, we
realized that the AK scheme depends critically
on the existence of a primary key and the order of
the attributes. Due to this weakness, an attacker
can easily create a pirated copy by changing the
primary key or attribute order without being de-
tected by the AK scheme. To solve this problem,
we proposed to construct a virtual primary key
from some selected attributes. With a high prob-
ability, our solution ensures that a pirated data
copy can still be detected even if its primary key
or attribute order has been manipulated by an at-
tacker. Finally, our scheme is extended to allow for
multiple watermarks to be embedded and detected
for the purpose of thwarting additive attacks or
proving joint ownership. Rigorous analysis has
shown that our scheme is robust against a variety of

attacks including tuple-related attacks, attribute-
related attacks, invertibility attacks, primary-key
attacks, and additive attacks.

The practical contributions of this research
include the following. First, as a result of our study,
copyright detection can be fully automated for
detecting any database relations with a guarantee
of low false-detection rates. Our scheme can be
directly applied to protecting database relations
of any size since the false-detection rates are
bounded as a function of the length of the water-
mark regardless of the size of the data. Second,
our scheme can be used to protect database rela-
tions without primary keys, and protect databases
that are subject to a variety of attacks including
attribute-related attacks and additive attacks. In
the AK scheme, however, one may need to adjust
the watermark detection threshold appropriately
for detecting data of different sizes so as to keep
the false-detection rates low. One may also need
to manually check the primary key as well as the
order of attributes before launching the watermark
detection in the AK scheme.

One future research direction is to model
common database queries and minimize the
watermarking impact on those queries. It is pos-
sible that different watermarking schemes should
be designed to accommodate different types of
queries. Another future research direction is to
study the impact of watermarking to database
usability in various application contexts such as
in e-business (Pons & Aljifri, 2003).

rEFErENcEs

Agrawal, R., Haas, P. J., & Kiernan, J. (2003).
Watermarking relational data: Framework, algo-
rithms and analysis. The VLDB Journal, 12(2),
157-169.

Agrawal, R., & Kiernan, J. (2002). Watermark-
ing relational databases. Proceedings of VLDB
(pp. 155-166).

21

A Multiple-Bits Watermark for Relational Data

Bertino, E., Ooi, B. C., Yang, Y., & Deng, R.
(2005). Privacy and ownership preserving of
outsourced medical data. Proceedings of IEEE
International Conference on Data Engineering
(pp. 521-532).

Boneh, D., & Shaw, J. (1995). Collusion secure
fingerprinting for digital data (extended abstract).
Crypto, 452-465.

Boneh, D., & Shaw, J. (1998). Collusion secure
fingerprinting for digital data. IEEE Transactions
on Information Theory, 44(5), 1897-1905.

Cox, I. J., Miller, M. L., & Bloom, J. A. (2001).
Digital watermarking: Principles and practice.
Morgan Kaufmann.

Gray, B., & Gorelick, J. (2004, March 1). Database
piracy plague. The Washington Times. Retrieved
from http://www.washingtontimes.com

Gross-Amblard, D. (2003). Query-preserving
watermarking of relational databases and XML
documents. Proceedings of ACM Symposium on
Principles of Database Systems (PODS) (pp.
191-201).

Guo, H., Li, Y., & Jajodia, S. (2007). Chaining
watermarks for detecting malicious modifications
to streaming data. Information Sciences, 177(1),
281-298.

Guo, H., Li, Y., Liu, A., & Jajodia, S. (2006).
A fragile watermarking scheme for detecting
malicious modifications of relational databases.
Information Sciences, 176(10), 1350-1378.

Guo, J., Li, Y., Deng, R. H., & Chen, K. (2006).
Rights protection for data cubes. Proceedings
of Information Security Conference (ISC) (pp.
359-372).

Johnson, N. F., Duric, Z., & Jajodia, S. (2000). In-
formation hiding: Steganography and watermark-
ing. Attacks and countermeasures. Kluwer.

Katzenbeisser, S., & Petitcolas, F. A. (2000). In-
formation hiding techniques for steganography
and digital watermarking. Artech House.

Kim, H. M., Sengupta, A., Fox, M. S., & Dalkilic,
M. (2007). A measurement ontology generaliz-
able for emerging domain applications on the
Semantic Web. Journal of Database Management,
18(1), 20-42.

Li, Y., & Deng, R. (2006). Publicly verifiable
ownership protection for relational databases.
Proceedings of ACM Symposium on Informa-
tion, Computer and Communication Security
(ASIACCS) (pp. 78-89).

Li, Y., Guo, H., & Jajodia, S. (2004). Tamper
detection and localization for categorical data
using fragile watermarks. Proceedings of ACM
Digital Rights Management Workshop (DRM)
(pp. 73-82).

Li, Y., Swarup, V., & Jajodia, S. (2003a). Con-
structing a virtual primary key for fingerprinting
relational data. Proceedings of ACM Digital Rights
Management Workshop (DRM) (pp. 133-141).

Li, Y., Swarup, V., & Jajodia, S. (2003b). A robust
watermarking scheme for relational data. Proceed-
ings of 13th Workshop on Information Technology
and Systems (WITS) (pp. 195-200).

Li, Y., Swarup, V., & Jajodia, S. (2004). Defend-
ing against additive attacks with maximal errors
in watermarking relational data. Proceedings of
18th Annual IFIP WG11.3 Working Conference
on Data and Applications Security (DBSEC)
(pp. 81-94).

Li, Y., Swarup, V., & Jajodia, S. (2005). Fin-
gerprinting relational databases: Schemes and
specialties. IEEE Transactions on Dependable
and Secure Computing, 2, 34-45.

Ng, W., & Lau, H. L. (2005). Effective approaches
for watermarking XML data. International
Conference on Database Systems for Advanced
Applications (pp. 68-80).

A Multiple-Bits Watermark for Relational Data

22

Pears, R., & Houliston, B. (2007). Optimization of
multidimensional aggregates in data warehouses.
Journal of Database Management, 18(1), 69-93.

Pons, A. P., & Aljifri, H. (2003). Data protection
using watermarking in e-business. Journal of
Database Management, 14(4), 1-13.

Reid, R., & Dhillon, G. (2003). Integrating digital
signatures with relational databases: Issues and
organizational implications. Journal of Database
Management, 14(2), 42-51.

Safavi-Naini, R., & Wang, Y. (2001). Collu-
sion secure q-ary fingerprinting for perceptual
content. Digital Rights Management Workshop
(pp. 57-75).

Sion, R. (2004). Proving ownership over cat-
egorical data. Proceedings of IEEE International
Conference on Data Engineering (ICDE) (pp.
584-596).

Sion, R., Atallah, M., & Prabhakar, S. (2003).
Rights protection for relational data. Proceedings
of ACM SIGMOD International Conference on
Management of Data (pp. 98-108).

Vaas, L. (2003, September 24). Putting a stop to
database piracy. eWeek: Enterprise News and
Reviews. Retrieved from http://www.eweek.com/
print_article/0,3084,a=107965,00.asp

Woo, J. H., Lee, B. S., Lee, M. J., Loh, W. K., &
Whang, K. Y. (2007). Temporal aggregation using
a multidimensional index. Journal of Database
Management, 18(2), 62-79.

Zhou, X., Pang, H. H., & Tan, K. L. (2007). Query-
based watermarking for XML data. Proceedings
of ACM Symposium on Information, Computer
and Communication Security (ASIACCS) (pp.
253-264).

This work was previously published in the Journal of Database Management, Vol. 19, Issue 3, edited by K. Siau, pp. 1-21,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

23

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2
BROOD:

Business Rules-Driven Object
Oriented Design

Pericles Loucopoulos
Loughborough University, UK

Wan M.N. Wan Kadir
Universiti Teknologi Malaysia, Malaysia

AbstrAct

A critical success factor for information systems is their ability to evolve as their environment changes.
There is compelling evidence that the management of change in business policy can have a profound effect
on an information system’s ability to evolve effectively and efficiently. For this to be successful, there is
a need to represent business rules from the early requirements stage, expressed in user-understandable
terms, to downstream system design components and maintain these throughout the lifecycle of the sys-
tem. Any user-oriented changes could then be traced and if necessary propagated from requirements to
design specifications and evaluated by both end-users and developers about their impact on the system.
The BROOD approach, discussed in this article, aims to provide seamless traceability between require-
ments and system designs through the modelling of business rules and the successive transformations,
using UML as the modelling framework.

INtrODUctION

The ubiquitous nature of information systems
and the increasing dependency of organizations,
government and society on such systems highlight
the importance of ensuring robustness in their
operation. At the same time rapid changes in the

environment of information systems places an
increasing emphasis on the ability of these systems
to evolve according to emerging requirements. A
large proportion of a total systems’ lifecycle cost
is devoted to introducing new requirements, and
removing or changing existing system functional-
ity (Grubb & Takang, 2003). Software evolution

BROOD

24

therefore is considered as a key challenge in the
development and maintenance of information
systems (Erlikh, 2000).

In recent years there has been an increasing
interest of the IS community in business rules,
which has resulted in dedicated rule-centric
modeling frameworks and methodologies (Ross
& Lam, 1999; Zaniolo et al., 1997), international
initiatives for the investigation of business rules’
role in the context of knowledge management
(Hay & Healy, 1997), conferences, workshops and
tutorials (Mens, Wuyts, Bontridder, & Grijseels,
1998), and rule-centric rule management tools and
application development support environments
(e.g., Blaze Advisor Builder, BRS RuleTrack,
Business Rule Studio, Haley Technologies, ILOG
Rules, Platinum Aion, Usoft Developer and Visual
Rule Studio). Whilst these efforts make significant
contributions in their own right, a key challenge
remains unanswered namely the linking of busi-
ness rules specifications to software designs.

The aim of the BROOD (business rules-driven
object oriented design) approach is to address the
issue of software evolution from both requirements
and design perspectives. This confluence should
provide a seamless and traceable facility that ar-
guably should bring about a more effective way
of dealing with software evolution, by aligning
changes of the information system to changes in its
environment. BROOD adopts as its methodologi-
cal paradigm that of object orientation with UML
as its underlying graphical language. It augments
UML by explicitly considering business rules as
an integral part of an object-oriented development
effort. To this end BROOD aims:

i. To explicitly model business rules in a man-
ner understandable to end-user stakehold-
ers.

ii. To map these to formal descriptions ame-
nable to automation and analysis.

iii. To provide guidelines on the deployment of
business rules in the development process.

iv. To provide guidelines on the evolution of
requirements and related design specifica-
tions.

The article is organized as follows. Section
2 discusses the background to business rules
modeling. Section 3 introduces the motivation
for BROOD. Section 4 introduces the BROOD
metamodel as the foundation for modeling busi-
ness rules. Section 5 discusses the manner in which
business rules are linked to design components via
the concept of ‘rule phrase.’ The BROOD process
is detailed in section 6. The BROOD approach is
supported by an automated tool and this is briefly
discussed in Section 7. The article concludes with
an overview of BROOD, observations on its use
on a large application and comparisons with
traditional approaches.

The language details for business rules
definition are given in appendix A. The BROOD
approach is demonstrated through an industrial
application which is described in appendix B.
This application had originally been developed
using a traditional approach. Therefore, it proved
useful not only as a means of providing a practical
grounding on BROOD but also on comparing and
contrasting the use of BROOD with a traditional
development effort.

bUsINEss rULEs MODELLING

The motivation of BROOD is to provide a develop-
ment environment whereby the business analysis
and system design domains are supported by
business rules modeling with the specific aim to
facilitating more effective software evolution.

The term “business rule” has been used by
different authors in different ways. For example,
in (Rosca, Greenspan, Feblowitz, & Wild, 1997),
business rules are:

statements of goals, policies, or constraints on an
enterprise’s way of doing business.

25

BROOD

In (Herbst, 1996a), they are defined as:

statements about how the business is done, i.e.
about guidelines and restrictions with respect to
states and processes in an organization.

Krammer considers them as “programmatic
implementations of the policies and practices of
a business organization” (Krammer, 1997) whilst
Halle states that:

depending on whom you ask, business rules
may encompass some or all relationship verbs,
mathematical calculations, inference rules, step-
by-step instructions, database constraints, busi-
ness goals and policies, and business definitions.
(Halle, 1994).

In general, business rules in the information
systems field may be viewed in terms of two
perspectives: (a) business rules as applied to con-
ceptual modeling and (b) business rules as applied
to evolvable software systems development.

business rules in conceptual
Modeling

1. Business rules as part of requirements
gathering and systems analysis have not
been ignored by structured analysis, in-
formation engineering or object-oriented
analysis approaches (Moriarty, 1993) which,
to varying degrees, subsume or represent
business rules as part of notation schemes
used to specify application requirements
(Gottesdiener, 1997) Ross (1997) comments
that traditional IS methodologies have ad-
dressed rules poorly, and only relatively late
in the system development lifecycle. (Hay &
Healy, 1997) mention that rules dealing with
information structure may be represented by
any of several flavors of entity—relationship
or object class diagrams, and responses to
events may be shown via essential data flow

diagrams (McMenamin & Palmer, 1984) or
as entity life history diagrams (Robinson &
Berrisford, 1994).

From a conceptual perspective there are ap-
proaches that consider business rules as an integral
part of the modeling and analysis of systems’
requirements. An early effort in this direction
was the RUBRIC project (Loucopoulos & Layzell,
1986; van Assche, Layzell, Loucopoulos, &
Speltinex, 1988) parts of which were integrated
into the information engineering (Martin, 1989)
method.

In BROCOM (Herbst, 1996b, 1997), the rule
language is a type of structured English, and
therefore it is highly expressive. Moreover, rules
are organized according to a rich meta-model,
and can be retrieved based on a number of dif-
ferent criteria. As far as methodological guidance
is concerned, Herbst proposes the development
of various models which are helpful during the
analysis phase, but the process of creating and
using them is not clearly defined. The transition
from analysis to design and implementation has
not been addressed by this approach.

The DSS approach (Rosca, Greenspan, &
Wild, 2002; Rosca et al., 1995) focuses on the
analysis phase of IS development by supporting
the rationale behind the establishment of rules.
DSS adopts the ECA (event-condition-action)
paradigm for structuring rule expressions and
also links these expressions to the entities of an
underlying enterprise model. The absence of a
formal rule language confines the use of DSS on
modeling tasks.

The Business Rules Group (BRG), formerly
known as the GUIDE Business Rule Project
(Hay & Healy, 1997), investigated an appropriate
formalization for the analysis and expression of
business rules (Hay & Healy, 2000). This approach
identifies terms and facts in natural language rule
statements, and consequently, it offers a high level
of expressiveness. The meta-model it provides for
describing the relations between these terms and

BROOD

26

facts is very detailed. Therefore, rule models are
(a) highly manageable and (b) formal and fully
consistent with the information models of a spe-
cific organization.

The IDEA method (Zaniolo et al., 1997) focuses
on the maintenance of formality and consistency
with underlying business models. The method
offers guidance for every activity being involved
in the development of a rule-centric information
system. The IDEA method is directed towards
the use of specific active and deductive databases,
and of the corresponding rule languages. As a
result of this, (a) IDEA rules are rather difficult
to be expressed or even understood by business
people; and (b) the choice of technologies to be
employed for the development of an information
system is rather limited.

The BRS approach (Ross, 1997) is formal, in
accordance with the underlying data models of
an organization, offers sufficient methodologi-
cal guidance, and allows management of rule
expressions based on a very detailed meta-model.
It is also one of the few methods that adopts a
graphical notation for expressing rules. Regard-
ing the development process, BRS introduces a
business rule methodology called BRS ProteusTM
methodology that defines a number of steps for
both business and system modeling (Ross, & Lam,
2003). BRS also provides the BRS RuleTrackTM,
an automated tool for recording and organizing
business rules.

The object constraint language (OCL) of UML
(Eriksson & Penker, 2000) is tightly bound with the
widely accepted UML but lacks methodological
guidance for the collection of rules. Rule structures
are implied by the allocation of rules to classes,
attributes, associations and operations.

A comparative evaluation of the treatment of
business rules for conceptual modeling by three
widely used approaches is shown in Table 1.

business rules in Evolvable
software Evolution

The majority of approaches in this category aim
to improve the understanding and evolution of
a software system by logically and physically
separating business rule components from other
software components.

The adaptive object model (AOM), which is
also known as the dynamic object model (Riehle,
Tilman, & Johnson, 2000), is “a system that rep-
resents classes, attributes, and relationships as
metadata” (Yoder, Balaguer, & Johnson, 2001).
Unlike traditional object-oriented design, AOM
is based on objects rather than classes. It provides
descriptions (metadata) of objects that exist in the
system. In other words, AOM provides a meta-
architecture that allows users to manipulate the
concrete architectural components of the model
such as business objects and business rules. These
components are stored as an object model in a
database instead of in code. The code is only used
to interpret the stored objects. Thus, a user only
needs to change the metadata instead of changing
the code to reflect domain changes.

The coordination contract method aims to
separate coordination from computation aspects
(or core components) of a software system (An-
drade, Fiadeiro, Gouveia, & Koutsoukos, 2002).
It is motivated by the fact that there should be two
different kinds of entities in a rapidly changing
business environment—core business entities
which are relatively stable and volatile business
products which keep changing for the business to
remain competitive (Andrade & Fiadeiro, 2000).
Volatile business products are implemented as
contracts. A contract aims to externalize the
interactions between objects (core entities) by
explicitly define them in the conceptual model. It
extends the concept of association class by adding
a coordination role similar to other components
in architecture-based software evolution such as
architectural connectors (Oreizy, Medvidovic, &
Taylor, 1998), glue (Schneider, 1999), actor (Astley

27

BROOD

& Agha, 1998) or change absorbers (Evans &
Dickman, 1999).

Business Rule Beans (BRBeans), formerly
known as accessible business rules (Rouvel-
lou, Degenaro, Rasmus et al., 1999; Rouvellou,
Degenaro, Rasmus et al., 2000), is a framework
that provides guidelines and infrastructures for
the externalization of business rules in a distrib-
uted business application (IBM, 2003). Business
rules are externally developed, implemented and
managed to minimize the impact of their changes
on other components such as core business, ap-
plication, and user interface objects. They are

implemented as server objects, which are fired by
embedded trigger points in application objects. A
rule management facility is provided to help us-
ers to understand the existing rules and to locate
the rules when changes are required. BRBeans is
implemented as a part of WebSphere Application
Server by IBM “to support business applications
that externalize their business rules” (Kovari,
Diaz, Fernandes et al., 2003).

A comparative evaluation of the treatment
of business rules evolvable software systems
development by the three approaches is shown
in Table 2.

 BR Approach
 Criteria brG brOcOM brs

Concepts

Business Rule Definition IS IS Business

business rule taxonomy

- structural rules High (10) Low (0) Medium (1)

- behavioural rules Medium (8) High (>30) Medium (8)

- Derivation Medium (2) Low (0) Medium (2)

bus. rule Management Elements Medium (5) Medium (9) High (>30)

Modelling Language

Understandability Medium Medium High

Expressiveness (business rules) Medium High High

Unambiguity Medium High Medium

Formality Medium Medium High

Evolvability Medium Medium High

Process

Lifecycle coverage A A A + D

Process description N/A High High

coherence N/A High High

support for evolution No Yes Yes

Pragmatics

communicability Medium High High

Usability Medium High High

resources availability Low Medium High

Openness High Medium High

Table 1. Comparative evaluation of business rule in conceptual modeling

Lifecycle coverage: A-Analysis, D-Design, I-Implementation, M-Maintenance

BROOD

28

MOtIVAtION FOr tHE brOOD
APPrOAcH

According to Lehman’s laws (Lehman & Belady,
1985), a software system that is used in a real-world
environment inevitably must change or become
progressively less useful in that environment.
Lehman’s laws also state that the software struc-
ture tends to become more complex due to the
implemented changes and its size must continue
to grow to accommodate new user requirements.
Therefore, there is a need to introduce a method
that facilitates the management of the increasingly
complex and larger size software system due to
its evolution.

The position put forward in this article is
that developers need to identify the sources of
changes for software evolution in the system’s
environment and that some of the most volatile
of these components tend to be business rules. In
section 0 many contemporary approaches were
reviewed all of which aim to externalize business
rules from software components.

At the conceptual modeling level, there are
approaches that separate syntax and semantics
for modeling business rules. This effort localizes
the changes to business rule components, and also
increases the understanding and maintainability
of business rules specification. This category of
approaches provides a great deal of help in dealing

Table 2. Comparative evaluation of business rules in evolvable software systems

 BR Approach
 Criteria

Adaptive Object
Model (AOM)

coordina-
tion con-

tract

business rule
beans (br-

beans)

Concepts

Business Rule Definition Implicit Implicit Explicit

business rule taxonomy primitive, com-
posite, workflow ECA

derivation, con-
straint, invariant,
script, classifier

business rule Management Elements Nil Nil Yes

Modelling Language

Understandability High Medium Medium

Expressiveness (business rules) Low Medium Medium

Formality Low High Medium

Evolvability High High High

Process

Lifecycle coverage (Evolutionary) D + I + T + M A + D + I + T + M

Process description Low Medium High

coherence Medium Medium Medium

support for evolution Low Medium High

Pragmatics

communicability High Medium Medium

Usability Low Medium Medium

resources availability Medium Medium High

Openness Medium Medium Low

29

BROOD

with the concepts related to business rules, but they
provide relatively little description on the design
and implementation aspect of business rules.

At the implementation level, approaches cre-
ate separate software components that implement
business rules. As a result, the business rule
changes will only localize to such components,
and reduce the impact of changes to the overall
software structure. This group of approaches
provides very good facilities for developing
evolvable software components but is less helpful
in representing business rules at the conceptual
business level.

The BROOD approach addresses both busi-
ness modeling and the linking of business model
components to software architecture components.
By focusing on the conceptual level, BROOD
attempts to externalizing changes from software
components. This user-oriented view enhances
understandability and maintainability since it
encourages the direct involvement of business
stakeholders in the maintenance of their busi-
ness rules.

By introducing a linking component between
the conceptual model of business rules and
software design, BROOD attempts to increase
business rule traceability. Traceability is highly
desirable since one can keep ‘forward’ and
‘backward’ tracks of changes between business
and software.

BROOD considers both product and process
perspectives of the development and evolution
of a software system. The product is defined us-
ing the BROOD metamodel, which specifies the
structure for business rule specification, software
design, and their linking elements. The process
refers to a set of systematic and well-defined
steps that should be followed during software
development and evolution. The BROOD process
emphasizes several important activities in a soft-
ware lifecycle that contribute to a more resilient
software system.

tHE brOOD MEtAMODEL

The initial concept of the metamodel was intro-
duced in (Wan Kadir & Loucopoulos, 2003; Wan
Kadir & Loucopoulos, 2004). The metamodel is
complemented by a language definition based on
the context-free grammar EBNF, which is included
in appendix A. The language definition defines
the allowable sentence patterns for business rule
statements and describes the linking elements
between business rules and the related software
design elements.

At the outset, three main desirable characteris-
tics were set for developing an appropriate business
rule metamodel, which would be consistent with
the aims of BROOD:

•	 It should have an exhaustive and mutually
exclusive typology to capture different types
of business rules.

•	 It should have the structured forms of ex-
pressions for linking the business rules to
software design.

•	 It should include rule management elements
to improve business rule traceability in a
business domain.

These three characteristics form the basis for
the development of the business rule metamodel,
which is shown in Figure 1. This figure shows the
business rules metamodel together with parts of
the UML metamodel that deal with static (classes)
and dynamic (actions and events) aspects. The
key requirement of BROOD for tracing changes
from business to software through the use of
business rules is achieved by integrating these
three metamodels.

business rules typology

The metamodel classifies business rules into three
main types, which are constraint, action assertion,
and derivation.

BROOD

30

Constraints

Constraint rules specify the static characteristics
of business entities, their attributes, and their
relationships. They can be further divided into
attribute and relationship constraints. The for-
mer specifies the uniqueness, optionality (null),
and value check of an entity attribute. The latter
asserts the relationship types as well as the car-
dinality and roles of each entity participating in
a particular relationship.

Examples of attribute constraints from the
MediNet application expressed according to the
BROOD syntax (see attribute constraint
definition in appendix A) are the following:

• Patient must have a unique patient registra-
tion number.

• Patient may have a passport number.
• Bill must have a unique bill number.
• The amount of Bill must be less than the

maximum bill amount set by the paymas-
ter.

Business Rule

Constraint

Attribute constraintrelationship constraint

Action AssertionDerivation

Inferencecomputation

rule template

UMLModelElement

rule set

Owner
1..* administrator

0..*

0..*
user
representation

0..1

rule Phrase

business rule statement

Entity
Attributeterm

cardinality List relOperator

0..1

0..1

1..*

business Process

0..*

0..*

1
structure

0..1

role

Event

condition

Action
2

0..*

0..*

1..*

Value

Algorithm

1 pattern

0..*

0..*

0..*

0..11

1

0..1

0..1

0..11..*

1

1..*

0..*
instance

Fact
0..*

0..*

1

0..*

1

name : String
ModelElement

kind:ParameterKind
defaultValue:Expression

Parameter

visibility:VisibilityKind

Feature
isRoot : Boolean
isLeaf : Boolean

GeneralizableElement

Classifier

multiplicity:Multiplicity
aggregation:AggregationKind

AssociationEndAssociation

isQuery:Boolean

Operation
initialValue:Expression

Attribute

1 2..*

* +association

1 +participant

 +typedParameter
+type

1

 +parameter
+feature

* +typedFeature

{ordered}

{ordered}

+type
1

+owner
0..1

0..1

class

visibility:VisibilityKind

Generalization

1
 +parent

1
+specialization

 1 +child 1 +generalization

+powertype
0..1

 * +powertypeRange

name : String

ModelElement

stateMachine
expression : BooleanExpression

Guard

transition

Event

state

Action
0..1 +entry 0..1 +exit

+doActivity
0..1

0..1 +guard

+transition *

+deferrableEvent
0..*

+incoming
0..*

+outgoing
0..*

0..*

0..1

0..1

0..1

0..10..1
1

0..1
+trigger

+source
1

+target
1

*

0..1

0..1

Business
Rules

Metamodel

UML
Static & Dynamic
Metamodel Parts

Figure 1. The BROOD business rule metamodel

31

BROOD

• An employee level of a Panel Patient must
be in {employer, executive, production op-
erator}.

Examples of relationship constraints for
MediNET (see relationship constraint
definition in appendix A) are:

• Clinic item is a/an item type of bill item.
• Bill must have zero or more bill item.
• HCP Service Invoice is a/an Invoice.

Actions

Action assertion concerns a behavioral aspect of
the business. Action assertion specifies the action
that should be activated on the occurrence of a
certain event and possibly on the satisfaction of
certain conditions. An event can be either a simple
or a complex event where the latter is constructed
by one or more simple events using the logical
connectives AND/OR. A condition may be a
simple or complex condition. A simple condi-
tion is a Boolean expression which compares a
value of an entity attribute with any literal value
or the value of another entity attribute using a
relational operator. It can also be an inspection
of the existence of a value of an entity attribute
in a list of values.

An action is performed by a system in response
to the occurrence of an event and the satisfaction
of the relevant condition. The execution of action
may change the state of the system. An action
may be a simple action or a sequence of simple
actions. Simple actions can be further catego-
rized into three different types, trigger actions,
object manipulation actions, and user actions.
Trigger action invokes an operation, a process,
a procedure, or another rule under certain cir-
cumstances. Object manipulation action sets the
value of the attribute or create/delete an instance
of an entity. User action is a manual task that is
done by system users. During implementation,
user action is often implemented as a message
displayed to the user.

Examples of action assertion for MediNET
(see action assertion definition in ap-
pendix A) are:

• When new invoice created then calculate
invoice end date.

• When patient consultation completed then
removed the patient from consultation queue
and create bill for the patient.

• When invoice entry updated if stock of drug
smaller than re-order threshold then reorder
the drug.

Derivation

A derivation rule derives a new fact based on
existing facts. It can be of one of two types, com-
putation, which uses a mathematical calculation
or algorithm to derive a new arithmetic value, or
inference, which uses logical deduction or induc-
tion to derive a new fact. Typically, an inference
rule may be used to represent permission such
as user policy for data security. An example of a
computation derivation rule such as “The amount
HCP MediNET usage invoice is computed as the
amount of transaction fees, which are calculated
as the transaction fee multiply by the total number
of transactions, plus the monthly fee” would be
expressed as:

• let a = transaction_fee;
• let b = number_of_treated_patient;
• transaction_fees = a * b;
• invoice_amount = transaction_fees +

monthly_fee;

Examples of inference rules are given be-
low:

• If the paymaster’s last quarter transaction is
more than RM12,000.00 and the paymaster
has no past due invoices then the paymaster
is a preferred customer.

BROOD

32

• If the user type is equal to HR Officer and the
user company is equal to patient paymaster
then the user may view the patient’s medical
certificate.

the rule template

Rule templates are the formal sentence patterns
by which business rules can be expressed. They
are provided as a guideline to capture and specify
business rules as well as a way to structure the
business rule statements. Each rule template
consists of one or more well-defined rule phrases,
which are discussed in section 0.

By using the available templates, an inex-
perienced user may easily produce a consistent
business rule statement. Rule templates help users
to avoid tedious and repeated editing when creat-
ing many similar rules; and ensure uniformity by
restricting the type of rules that can be written by
business users. The use of templates also allows
the precise linking of business rules to software
design elements. The templates can be directly
derived from the rules definition in Appendix A.
Business rules templates are shown in Table 3.

the rule Management Elements

Management elements are also included in the
BROOD metamodel for facilitating the organi-
zation and management of business rules. These
elements include the rule set, business process,
and owner.

Rule set is used to group business rules into
a set of closely interrelated rules. Each business
rule model must have a single rule set, which
is considered as the root rule set. This rule set
must have at least one rule statement or another
rule set.

One of the popular ways to identify a rule set is
through its related business process. For example,
the rules ‘The bill amount is calculated as the sum
of amounts of all bill items’ and ‘If a patient is a
panel patient and his paymaster pays the bill in

full, the balance is set to 0 and the bill status is
set to paid’ can be grouped in a rule set which is
related to ‘bill preparation’ process. By properly
organizing rules, the complexity of managing a
large set of rules can be reduced.

Each business rule model must have an owner.
An owner may also be defined for a rule set. The
owner of a parent rule set is assumed to be the
owner of its child rule set if the child does not
define its owner. It is important to define the owner
information in a business rule model to determine
the access rights and responsibility to a business
rules repository, especially for software systems
with multiple user groups that possess different
business rules. An owner may be an organiza-
tional unit, an individual user, a user group or
role that is responsible for the management of the
respective business rules. During business rule
implementation, each rule set, business process,
and owner is given a unique identifier.

tHE rULE PHrAsE

A rule phrase in BROOD links a user-oriented
business rule definition to a software design
component. There are alternative ways in which
this may be achieved. For example, using a rule
object or rule engine, or making use of OCL. The
use of rule object or rule engine increases the se-
mantic distance between analysis and design and
imposes implementation considerations. The use
of constraints expressed using OCL may provide
a link between business rule specifications and
software design but OCL is still hard to under-
stand by business users although OMG claims
that no mathematical background is required in
using OCL.

Rule phrases are considered as the building
blocks for rule statements. They can be maintained
independently during implementation, in other
words, they are not deleted when a business rule
is deleted. However, the modification and deleting
of a rule phrase is not recommended since a care-

33

BROOD

ful effort is needed in reviewing its aggregated
business rules. In addition to playing a role as the
building blocks for business rule statements, rule
phrases are also important in linking business
rules to software design elements.

The mappings between rule phrase types and
UML model elements are summarized in Table 4.
Most of the rule phrases are directly linked to class
diagram model elements. Entity and attribute term
are directly connected to the respective class and
attribute in the class diagram. Cardinality and role
are correspondingly linked to multiplicity and role
of an association end of a relationship. Algorithm
is linked to operation specification.

Rule phrases for event, condition, and action,
which are the building blocks for action assertion
rules, are naturally linked to statechart diagram.
Event, condition, and action are respectively
linked to event, guard, and action of a state transi-
tion in a statechart diagram. Consequently, event
and action may be linked to a class operation, and
guard may be linked to an operation specification,
in a class diagram. List and relational operator
contain enumerated values whilst value contains a
literal value. However, value and list can be linked
to an operation that return a single and multiple
values respectively.

types templates

Attribute
Constraint

<entity> must have | may have [a unique] <attributeTerm>.
<attributeTerm1> must be | may be <relationalOperator> <value> | <attributeTerm2>.
<attributeTerm> must be in <list>.

Relationship
Constraint

[<cardinality>] <entity1> is a/an <role> of [<cardinality>]<entity2>.
[<cardinality>] <entity1> is associated with [<cardinality>]<entity2>.
<entity1> must have | may have [<cardinality>] <entity2>.
<entity1> is a/an <entity2>.

Action
Assertion

When <event> [if <condition>] then <action>.
The templates of <event> :

<attributeTerm> is updated
<entity> is deleted | is created
<operation>|<rule> is triggered
the current date/time is <dateTime>
<number> <timeUnit> time interval from <dateTime> is reached
<number> <timeUnit> after <dateTime>
<userEvent>

The templates of <condition> :
<attributeTerm1> <relationalOperator> <value | attributeTerm2>
<attributeTerm> [not] in <list>

The templates of <action> :
trigger <process> | <operation> | <rule>
set <attributeTerm> to <value>
create | delete <entity>
<userAction>

Computation <attributeTerm> is computed as <algorithm>

Derivation

if <condition> then <fact>.
The templates of <fact> :

<entity> | <attributeTerm> is [not] a <value>
<entity> may [not] <action>

Table 3. Business rule templates

BROOD

34

tHE brOOD PrOcEss

The BROOD process is described using the
process model based on the syntax and seman-
tics of the OMG software process engineering
metamodel (SPEM). SPEM was developed by
the Object Management Group to provide a
metamodel and notations for specifying software
processes and their components (OMG, 2002).
SPEM extends the unified modeling language
(UML) (OMG, 2001) metamodel with process
specific stereotypes. A part of SPEM that shows
most of the important components of a process
structure is shown in Figure 2.

In SPEM, a work product is an artifact pro-
duced, consumed, or modified by a process. It may
be a piece of information, a document, model,
or source code. It is either used as an input by
workers to perform an activity, or a result or an
output of such activities. A work product is called a
deliverable if it is needed to be formally delivered
by a process. The examples of work products in
BROOD are class diagram, statechart diagram,
and business rule specification. Each work product

is associated with a process role that is formally
responsible for its production.

A process role defines the responsibilities of
an individual, or a group of individuals working
together as a team. Each process role performs
or assists with specific activities.

The core activities of the BROOD process
are situated in the analysis, design, and evolu-
tion phases. Analysis phase produces analysis
model that contains two main work products: the
initial business rule specification and preliminary
software design models. Both work products are
refined and linked during the design phase to pro-
duce a more traceable and consequently evolvable
software system. The flow of activities in each
BROOD phase is shown in Figure 3.

the Analysis Phase

As shown in Figure 4, the analysis phase starts
with an architectural analysis activity that consid-
ers the work products from requirements phase
such as use-case model, business model, initial
architecture descriptions, and supplementary

Table 4. Association between rule phrases and design elements

rule Phrase type software Design Elements

Entity Class

Attribute Term Attribute

Operation Term Operation

Attribute Constraints Attribute.isUnique, Attribute.notNull

Cardinality AssociationEnd.multiplicity

Role AssociationEnd.role

Event Transition.event Class.operation

Condition Transition.guard, Operation.specification

Action Transition.action Class.operation

Algorithm Operation.specification

Value - (literal value), Operation.

List - (enumeration), Operation

Relational Operator - (enumeration)

35

BROOD

isDeliverable : Boolean

WorkProduct

work : WorkDefinition

ProcessPerformer

Processrole
governedProcesses : Process

LifecyclePhase

Iteration

Activity

performer : ProcessPerformer
parentWork : WorkDefinition

WorkDefinition

step

performerwork

0..*
{ordered}

assistant
0..*

activity
0..*

parentWork

0..*

subWork 0..*

step 1..*
activity 1

workProduct 0..*

responsibleRole 0..1

Figure 2. An excerpt from OMG software process engineering metamodel (OMG, 2002)

Figure 3. The flow of activities in the BROOD process

Analyze BR
Statements

Analyze a Class

Analyze a Package

Architectural Analysis

Develop BR
Specification

Design a Class

Design a Package

Architectural Design

Analyze
BR Change Request

Implement
BR Change

Examine BR Change

Soft. Architect
Component
EngineerBusiness User

Perform BR
Modification Change

simple change

complex change

Functional Analyst

Validate BR
Specification

Validate BR
Specification

BR Specification

BR Specification

A
N

 A
 L

 Y
 S

 I
S

D
 E

 S
 I

G
 N

E
V

O
 L

 U
 T

 I
O

 N

BR Specification

Analysis Model

Design Model
{completed}

Analysis Model

Design Model
{changed}

BROOD

36

requirements. A software architect performs
architectural analysis by identifying the analysis
packages based on the functional requirements
and knowledge of the application domain. Each
package realizes a set of closely related use cases
and business processes to minimize the coupling
between packages, which in turn localizes busi-
ness changes. This activity identifies analysis
classes and outlines their name, responsibilities,
attributes, and relationships. In order to extract
more information about the behavior of the classes,
collaboration or interaction diagrams can be
developed based on the process flows (scenario)
in the use case models. The main work products
produced by this activity are analysis class dia-
grams and packages in their outline version.

Considering the MediNet application, architec-
tural analysis resulted in three packages business
processes i.e. registration, billing, and invoicing.
The registration package groups all classes related
to patient registration such as Patient, Paymaster,
HCProvider, Clinic, User, and RegLocation. Billing
package contains classes related to billing and
drugs inventory such as Bill, BillPayment, Bill_Item,
TransType, TransItem, and ExpenseItem. Invoicing
package includes classes related to invoicing and
invoice payment for example Invoice, InvoiceItem,
Payment, and PaymentAllocation.

The outline of analysis class diagrams and
packages are further refined by class analysis
and package analysis activities, respectively. A
component engineer identifies more detailed
information about responsibilities and attributes
of each class. Different types of relationships
between classes such as association, aggregation,
and inheritance are also identified. The possible
states and their transitions can be identified to
understand the behavior of objects from certain
classes. These steps are repeated until a complete
analysis class diagram, statechart diagram and
package are achieved.

The activity of business rule modeling consid-
ers the informal statements captured during initial
requirements and identifies the types for each
business rule statement based on the BROOD ty-
pology. Business rule statements are transformed
into more structured business rule specifications
according to the templates’ definition.

Table 5 shows a set of structured rules for the
MediNet application. This template provides the
means of managing rules as they get discovered
and analyzed and acts as a ‘repository’ of rules
for their entire lifecycle.

the Design Phase

The design phase involves the identification
of application-specific and application-general
subsystems. The application-specific subsystems
are related to packages that group a set of closely
related services in an application domain. The
application-general subsystems are related to
implementation technology decisions such as
the introduction of user interface and database
connectivity layers. The MediNet subsystems
definition is shown in Figure 5.

The class design activity elaborates further
the static and dynamic information of classes
that were defined during the analysis phase. Ad-
ditional information on the operations, attributes,
and relationships can be added to each class. The
specification of operations and attributes is made

Figure 4. Packages for the MediNet application

reg billing

invoicing

37

BROOD

using the syntax of the chosen programming lan-
guage. If necessary, the methods that specify the
algorithm for the implementation of operations
are specified.

The class design activity for the MediNet
application resulted in detailed specification of
for the three packages of registration, billing
and invoicing. The class association diagram of
Figure 6 shows the class details for invoicing.
In order to reduce diagrammatic complexity all
parameters and return values are hidden in the
class operations.

The calculation of invoice amount is different
for different types of invoice. The amount for

healthcare service invoice is calculated as the total
of its item amounts after applying additional com-
putation rules such as bill limit, invoice limit and
discount. MediNET uses the open item invoicing
method that allows an invoice issuer to track each
unpaid invoice as an individual item for aging
purposes. Panel patient bills are considered as the
items for HCP MediNET usage and HCP service
usage invoices. For HCP MediNET usage invoice,
the number of bills issued by a particular HCP
is counted as the number of transactions, which
is later used in the invoice amount calculation.
In terms of payment, MediNET allows balance

Table 5. Business rule statements for the MediNET application

business
Process business rule Example rule type

Registration

A patient must have a unique registration number. Att. Constraint

A patient may have more than one paymaster. Rel. Constraint

If a patient has an outstanding balance, then the patient should be
banned from consultation registration Action Assertion

When consultation registration is successfully completed, then put
the patient into the consultation queue. Action Assertion

If a patient’s condition is critical then the patient is an emergency
patient. Inference

Billing

The amount of a panel patient’s bill must not exceed the maximum
bill amount set by the paymaster. Att. Constraint

Each bill item is associated with an item from the clinic transaction
items Rel. Constraint

When consultation is completed then create bill. Action Assertion

If the bill is a panel patient’s bill then create panel transaction item. Action Assertion

The amount of a bill is computed as the sum of all amounts of bill
items. Computation

The amount of bill item is computed as the unit amount multiply by
the quantity. Computation

A bill can be modified only if the user role is Chief Clinic Assistant. Inference

Invoicing

One invoice must have zero or more payments. Rel. Constraint

When a payment is not received within 30 days from the invoice
date, then the first reminder will be sent. Action Assertion

The amount of HCP MediNET usage invoice is computed as the
sum of monthly subscription fee plus transaction fees. Computation

A paymaster (panel company) is under probation if the paymaster
has an invoice with category 1 past due and the current balance is
more than RM 5,000.00.

Inference

BROOD

38

forward invoicing method in addition to open
item method.

Within the design process classes are further
elaborated in terms of the events and conditions
that trigger their transition from one state to an-
other. These are shown as statechart diagrams.
For example, a statechart diagram for the HCSer-
viceInvoice object is shown in Figure 7.

Within the BROOD design phase, rule phrase
specifications are developed. Each rule phrase
definition is stored in the repository called rule
phrase entries. The possible values for rule phrase
may be a set of enumerated values or the values of
the linked software design element. A component
engineer may define certain attributes for each
business rule specification such as rule priority,
owner, and business process. Each business rule
statement can also be arranged in an appropriate
rule set to assist the future management of the
business rules.

For the MediNet application, the rules shown
in Table 5 are specified according to rule phrases
syntax as shown in Table 6.

The first rule in Table 6 shows the rule phrase
derived from the attribute constraint rule, infor-
mally defined in the analysis phase as “A patient
must have a unique registration number.” The
rule phrases ‘a patient’ and ‘registration
number’ are respectively linked to Patient class
and patRegNo attribute. The keywords ‘must
have’ and ‘a unique’ are not statically linked
to any design element. Instead, they are used to
dynamically toggle the optionality and uniqueness
values of patRegNo attribute during the creation
or modification of the business rule statement. In
other words, they are used to enable the automated
change propagation to software design.

The second rule in Table 6 shows a relationship
constraint., The rule phrases ‘clinic item’
and ‘bill item’ are respectively linked to
TransItem class and Bill_Item class. The rule
phrases ‘one and only one’ and ‘clinic
item’ play a similar role to keywords as in the
attribute constraint rule, that is their purpose is to
propagate business changes to design elements.
The former specifies the multiplicity of an asso-

Figure 5. Software architecture for the MediNet application

reg billing invoicing

Db

«uses»

«subsystem»
myPeople

«subsystem»
myclinic

«subsystem»
myMediNEt

«uses»

core

«uses»

39

BROOD

createInvoice()
addItem()
closeInvoice()
receivePayment()
allocatePayment()
calculateAmount()
archive()

invoiceNo : int
issuerID : String
amount : double
currentBalance : double
description : String
status : String
fromDate : Date
endDate : Date

Invoice

itemNo : int
invoiceNo : int
hcpID : String
billNo : int
description : String
insertDate : Date

InvoiceItem

paymentNo : int
receiverID : String
payerID : String
type : String
referenceNo : String
paymentDate : Date
amount : double
balance : double

Payment

1
*

paymentNo : int
invoiceNo : int
issuerID : String
amount : Double
allocateStaffID : String
allocateDate : Date
receiverID : String

PaymentAllocation

1

0..*

1

0..*

payer 1

0..*

0..1 1

issuer1

0..*

calculateAmount()
hcpID : String
HcPMediNEtUsageInvoice

1..*

0..1

calculateAmount()
paymasterID : String
HcserviceInvoice

calculateAmount()
paymasterID : String
PMMedinetUsageInvoice

receiver

1

0..*

bill

payer 1

0..*
{OR}

1

0..*

receiver 1

0..*

receiver1

0..*

Paymaster

HcProvider
1

*

Figure 6. Class association diagram for invoicing for the MediNet application

ciation end whilst the latter specifies the role of
an association end.

In the action assertion rule “When a payment
is not received within 30 days from the invoice
date, then the first reminder will be sent,” the
rule phrases that represent the event, condition,
and action are not directly linked to any design
element but they are respectively used to generate
the specifications of the transition’s event, guard,

and action in the HCP service usage invoice STD.
Since event, condition, and action rule phrases
are themselves composed by other rule phrases,
they may be indirectly linked to the related design
components via these rule phrases.

The computation and inference rules are linked
to the operation specification —the computation
rule is linked to the specification of calculateA-
mount() operation in HCPMediNETUsageInvoice

BROOD

40

class and the inference rule is linked to getStatus()
operation from Paymaster class. During the de-
velopment of an inference rule, a new operation
is often needed to be added in its associated class
to perform the derivation and return the inferred
value.

the Evolution Phase

In general, business rule changes may be classified
into simple and complex changes. A simple change
is concerned with the modification, addition, or
deletion of business rules that do not need to in-

troduce new rule phrases or design elements. A
complex change involves the addition or deletion
of rule phrases or design elements.

Ordinarily, simple business rules changes
could be performed by business users. The
examples of five change scenarios that require
simple business changes in MediNET system are
shown in Table 7.

The implementation of a complex business rule
change requires more effort than that of simple
change. It involves the introduction of new rule
phrases or design elements, which is needed to
be performed by an individual with the knowl-

Figure 7. The STD HCServiceInvoice object for the MediNet application

Active

createInvoice(issuerID)/ initializeInvoice

Published
publish()[receiver.webCustomer = false] / print

Paid

archive()

receivePayment(amount)[
currentBalance = 0] / updateSuccessors

Cat1PastDue

Cat2PastDue

Cat3PastDue

after: 30 days[
currentBalance > 0] / issueFirstReminder

after: 60 days[
currentBalance > 0] / issueSecondReminder

after: 90 days[
currentBalance > 0] / blockReceiver

publish()[receiver.webCustomer = true]

receivePayment(amount)[
currentBalance = 0]

receivePayment(amount)[
currentBalance = 0] / updateSuccessors

receivePayment(amount)[
currentBalance = 0] / updateSuccessors

Rejected

when: invoice rectified/ publish

rejectInvoice(info)
Closed

after: endDate/ close

41

BROOD

edge of software design. In addition to technical
skills, it often requires creative skills in making
a design decision. Three examples of complex
rules changes are shown in Table 8.

The first scenario initiates the modification
of two existing business rule statements, the
calculation of bill and the calculation of invoice
amount. These business rule changes consequently
lead to a minor change in software design, that
is the introduction of hasMaxBill attribute in the
Paymaster class.

In the second scenario, the paymaster decided
to introduce different healthcare benefit coverage

to different levels of their payees. For example,
executive staff is entitled to any medical treatment
and medical procedures whilst production staff is
only paid for outpatient treatments. It is obvious
that simply implementing this new requirement
into the existing Paymaster or PanelPatient class
may increase the complexity of these classes.
Therefore, additional classes that are responsible
to manage the healthcare benefit coverage are re-
quired to be added to the existing software design.
The possible candidates for these classes include
BenefitCoverage, SelectedClinic, MedicalProcedure,
and Entitlement.

Table 6. Rule phrases and linked software design elements for the MediNet application

b rule category business rule Phrases software Design Elements

Attribute Constraint

<entity> = ‘a patient’ Patient (class)

 ‘must have’ - (patRegNo.optionality)

 ‘a unique’ - (patRegNo.uniqueness)

<attributeTerm> = ‘registration number’ Patient.patRegNo (attribute)

Relationship Con-
straint

<cardinality> = ‘one and only one’ - (AssociationEnd.multiplicity)

<entity> = ‘transaction item’ TransItem (class)

<role> = ‘item type’ - (AssociationEnd.name)

<entity> = ‘bill item’ Bill_Item (class)

Action Assertion

<event> = ’30 day after the
creation date of the
invoice’

- (Trans1.event.spec)

<condition> = ‘current balance of the
invoice is greater than
0’

- (Trans1.guard.body)

<action> = ‘trigger issue the first
reminder’

- (Trans1.action.initialiseIn-
voice().spec)

Computation

<attributeTerm> = ‘the amount of
HCP MediNET Usage
invoice’

HCPMediNETUsageInvoice.
amount

<algorithm> = ‘the sum of monthly
subscription fee plus transaction
fee’

HCPMediNETUsageInvoice.
calculateAmount().specification

Inference

<attributeTerm> = ‘a paymaster status’ Paymaster.status

<value> = ‘under probation’ - (literal value)

<condition> = ‘the paymaster has
an invoice with category 1 past
due’ AND ‘the current balance is
greater than RM 5,000.00’

Paymaster.getStatus().speci-
fication

BROOD

42

Table 7. Simple change scenarios for the MediNet application

change scenarios changed business rules

1. HCP allows patients to make ‘more
than one payment for their bills’
instead of the previously set ‘single
payment for each bill’.

One patient bill is associated with zero or more payments.

2. HCP makes small changes on the
conditions to issue the reminder and
block paymaster.

WHEN 15 days from the invoice date IF a payment is not
received THEN issue the first reminder.
WHEN 30 days from the invoice date IF the payment is not
received THEN issue the second reminder.
WHEN 45 days from the invoice date IF the payment is not
received THEN block the paymaster.

3. The MediNET supplier offers a more
attractive usage charge to HCPs.
They are charged based on the
number of treated patients regard-
less the number of patient visits.

The amount of HCP usage invoice IS CALCULATED AS if (opt
new package) then the transaction fee multiply by the number
of registered patients, else, the transaction fee multiply by the
number of treated patients, plus the monthly fee.

4. HCP introduces 5% discount to its
internet customer.

If the paymaster is an internet customer, then give 5% dis-
count to their invoices.

5. The HCP decides that each expense
item must belong to one of the pre-
defined types.

Zero or more expense item is associated with one and only
one transaction item.

Table 8. Complex change scenarios for the MediNet application

change scenarios changed business rules

1. HCP introduces new package for
paymaster. In this package, the
paymaster may limit the maximum
amount of each patient bill to RM
20.00, and the excessive cost is
absorbed by HCP. However, the
paymaster must pay a monthly fee of
RM5.00 for each patient.

The amount of a bill is computed as
let amount = the sum of all amounts of bill items
if (patient is a panel patient) AND (paymaster has maxi-
mum bill amount) AND (amount > RM 20.00)

amount = 20

The amount of HCP service invoice is computed as
let amount = the total of the invoice items
if (paymaster has maximum bill amount)

amount = amount + 5 * the number of paymaster’s
patients

2. Paymaster wishes to provide different
healthcare benefit coverage for differ-
ent groups of its payees.

If (the patient is a panel patient) AND (the patient is an
executive staff) then the patient is entitled to any type of
treatments and medical procedures.
If (the patient is a panel patient) AND (the patient is a
production staff) then the patient is entitled for an outpatient
treatment.

3. HCP would like to introduce a 5%
discount on the invoices to preferred
paymasters as a way to express
gratitude to the loyal, potential, and
good paying paymasters.

If (a paymaster has been a paymaster panel for
more than 5 years) then (the customer is a ‘loyal’
customer).
If (a paymaster has an average of at least
RM24000.00 for the invoices over the last five years)
then (the paymaster is considered as a ‘potential’
customer).
If (a paymaster never has a past due invoice for the
last two years) then (the paymaster is considered as
a good paying paymaster).
When (the invoice in created) if (the paymaster is a loyal,
potential and good paying customer) then (set the discount
of the invoice to 5%)

43

BROOD

The third scenario requires the intervention
of a software developer. This scenario requires a
number of new inference rules to be added to define
a loyal, potential, and good paying customer. In
addition to these business rules, an action asser-
tion rule that initializes the value of the invoice
discount during invoice creation should also be
added. The introduction of the new inference
rules consequently requires isLoyal(), isPotential(),
and isGoodPaying() operations to be added to
the Paymaster class. Similarly, the newly intro-
duced action assertion rule requires component
engineers to modify the action component of the
transition from the initial state to ‘Active’ state
in the STD for HCServiceInvoice object.

tHE brOOD sUPPOrt tOOL

The BROOD process introduces several additional
activities to the traditional object-oriented soft-
ware design process. These additional activities
include the documentation of business rules and
their linking to software design components. To
assist a developer with these BROOD-specific
activities, a tool has been developed that sup-
ports the activities of business rule specification
and management, software design editing, and
business rule change propagation.

The BROOD tool was developed on top of the
generic modeling environment (GME) (Ledeczi
et al., 2001; VU, 2003), which is a configurable
modeling environment.

The metamodel and templates, which are
discussed in section 0, were used to implement
the BROOD tool environment.

GME was used to visually edit the software de-
sign models, business rule specification, and rule
phrase entries. Three main modules (known as
interpreters in GME) were developed to simplify
the rule phrase management, business rule com-
position, and business rule modification. These
modules also perform the automated propagation
of business rule changes to the respective software

design elements, since a manual undertaking of
such propagation would be impractical for most
applications.

The BROOD tool has been designed to be used
by both software developers and business users.
A user-friendly interface is provided to ease the
management and traceability of business rules
by non-IT users. An overview of the BROOD
support tool is shown in Figure 8.

The metamodel, the graphical model editor,
the rule phrase management, the business rules
composition and the business rules modification
functions are part of the core component and user
application layer in the BROOD tool architecture.
The rule phrase entries, business rule specifica-
tion, and software design models are stored in
the storage layer.

The BROOD tool maintains the consistencies
between business rule and the linked software
design each time a business rule is created or
modified. It provides full automated support in
performing simple changes and partial support
for complex changes since these require creative
skills of software engineers in making a design
decision.

There are four main types of model that can be
managed using the BROOD tool: rule phrase en-
tries, business rule, class diagram, and statechart
diagram. Users may select the type of model to
be created from a set of choices. An example of
the BROOD model editor is shown in Figure 9.
The model editor provides a convenient way to
create a model and also to connect it or parts of
it to other models.

While graphical model editing is convenient
for visual models such as those of class and stat-
echart diagrams, it is less helpful for business
rules specification.

The graphical model editor can be used for
some simple business rules definition such as
cardinality, relational operator, list, and optionality
but for more complex rules the BROOD tool offers
a dedicated rule editor, the add business rule (ABR)
module. This module performs two main tasks:

BROOD

44

Figure 8. Overview of the BROOD tool

Figure 9: Overview of the BROOD Tool

brOOLink tools

Fact Constraint

BRManager BRLinker Change_Effect_Eva. About

BRules

Registration

Billing

Computation
Action Assertion

Constraint

Invoicing

Fact

Inference

Mandatory
Guideline

Module Explorer Current Module : Registration

Action Assertion Computation Inference

Customer

can place

< Back Next > Save Cancel

relationship

term

Orderterm

Application
Software

Software
Engineer

Software
User

+ i s P a n e l ()
+ i s A l l e r g ic ()
+ g e t P a t ie n t L i s t ()
+ f in d P a t ie n t ()
+ g e t R e g N o ()
+ P a t ie n t ()

« b u s in e s s O b j e c t »
P a t i e n t

- r e g N o : S tr in g
- n a m e : S t r in g
- N R I C : S t r in g
- D O B : D a t e
- s e x : c h a r
- b l o o d T y p e : S t r in g
- a l le r g y : B o o le a n
- m o th e r M a d d e n : S t r i n g
- h o m e A d d r e s s : S t r in g
- h o m e P h o n e : S t r in g
- n a t io n a l i ty : S t r i n g
- p a s s p o r t N o : S t r i n g
- r e g D a t e : D a t e
- is P a n e l : B o o le a n
- p a n e lC o d e : S tr in g
- d e p a r t m e n t : S t r in g
- s p o u s e R e g N o : S t r in g
- s p o u s e R e la t io n : S t r in g + is B l o c k e d ()

+ g e t P a n e lL i s t()
+ g e t P a n e lC o m p a n y ()

« b u s in e s s O b je c t »
P a n e lc o m p a n y

- p a n e l C o d e : S t r i n g
- n a m e : S t r in g
- a d d r e s s : S tr in g
- p h o n e : S t r in g
- e m a i l : S t r in g
- fa x : S tr in g
- te le x : S t r i n g
- c o n t a c tP e r s o n : S tr in g
- m a x B i l l : d o u b le
- m a x I n v o i c e : d o u b le
- d i s c o u n t : d o u b le = 0
- s t a tu s : c h a r
- r e m a r k s : S t r i n g
- r e g D a t e : D a te
- p a y m e n tM e t h o d : S t r i n g
- in v o ic e V ie w S e tt in g : c h a r = A

e m p l o y e e

*

e m p lo y e r

0 . . 1

+ g e t S t a f f ()

« b u s in e s s O b j e c t »
c l in i c s t a f f

- u s e r I D : S t r in g
- p a s s w o r d : S t r i n g
- n a m e : S tr in g
- d e s c r ip t io n : S tr in g
- c l in ic C o d e : S t r in g

« b u s in e s s O b je c t»
c l i n i c

- c l in ic C o d e : S t r in g
- n a m e : S tr in g
- a d d r e s s : S t r in g
- p h o n e : S t r i n g
- f a x : S t r in g
- c o n t a c t P e r s o n : S t r in g
- e m a i l : S t r in g

0 . .*

1 . .*

0 .. * 1

+ a d d ()
+ r e m o v e ()
+ g e t P a t ie n t L is t ()

r e g q u e u e
- i t e m : R e g Q u e u e I t e m []
- c l in i c C o d e : S t r in g

0 . . *

1

« b u s in e s s O b j e c t »
E x p e n s e s I t e m

- t r a n s D a t e : D a te
- a m o u n t : d o u b le
- d e s c r i p ti o n : S t r i n g
- c l in ic C o d e : S t r i n g
- u p d a te D a t e T im e : D a t e
- u p d a te S t a ff I D : S t r in g

0 . .*1

+ g e t S h e l f R e f ()

« b u s in e s s O b je c t »
r e g L o c a t io n

- c l in i c C o d e : S t r in g
- P a tR e g N o : S t r in g
- s h e l fR e f : S tr in g

*

1

*

1

+ R e g Q u e u e I t e m ()

r e g q u e u e I t e m
- p a t ie n t : P a t ie n t
- a r r i v a lD a te T im e : D a te

0 . . *

1

1

1

Software
Design Model

simple change

use

generate

software development,
complex change

manage
compose/

modify

propagate
changes

B Rules
Specification

Rule Phrase
Entries

User Application & core components layer

storage Layer

brOOLink tools

Fact Constraint

BRManager BRLinker Change_Effect_Eva. About

BRules

Registration

Billing

Computation
Action Assertion

Constraint

Invoicing

Fact

Inference

Mandatory
Guideline

Module Explorer Current Module : Registration

Action Assertion Computation Inference

Customer

can place

< Back Next > Save Cancel

relationship

term

Orderterm

Application
Software

brOOLink tools

Fact Constraint

BRManager BRLinker Change_Effect_Eva. About

BRules

Registration

Billing

Computation
Action Assertion

Constraint

Invoicing

Fact

Inference

Mandatory
Guideline

Module Explorer Current Module : Registration

Action Assertion Computation Inference

Customer

can place

< Back Next > Save Cancel

relationship

term

Orderterm

Application
Software

Software
Engineer
Software
Engineer

Software
User

Software
User

+ i s P a n e l ()
+ i s A l l e r g ic ()
+ g e t P a t ie n t L i s t ()
+ f in d P a t ie n t ()
+ g e t R e g N o ()
+ P a t ie n t ()

« b u s in e s s O b j e c t »
P a t i e n t

- r e g N o : S tr in g
- n a m e : S t r in g
- N R I C : S t r in g
- D O B : D a t e
- s e x : c h a r
- b l o o d T y p e : S t r in g
- a l le r g y : B o o le a n
- m o th e r M a d d e n : S t r i n g
- h o m e A d d r e s s : S t r in g
- h o m e P h o n e : S t r in g
- n a t io n a l i ty : S t r i n g
- p a s s p o r t N o : S t r i n g
- r e g D a t e : D a t e
- is P a n e l : B o o le a n
- p a n e lC o d e : S tr in g
- d e p a r t m e n t : S t r in g
- s p o u s e R e g N o : S t r in g
- s p o u s e R e la t io n : S t r in g + is B l o c k e d ()

+ g e t P a n e lL i s t()
+ g e t P a n e lC o m p a n y ()

« b u s in e s s O b je c t »
P a n e lc o m p a n y

- p a n e l C o d e : S t r i n g
- n a m e : S t r in g
- a d d r e s s : S tr in g
- p h o n e : S t r in g
- e m a i l : S t r in g
- fa x : S tr in g
- te le x : S t r i n g
- c o n t a c tP e r s o n : S tr in g
- m a x B i l l : d o u b le
- m a x I n v o i c e : d o u b le
- d i s c o u n t : d o u b le = 0
- s t a tu s : c h a r
- r e m a r k s : S t r i n g
- r e g D a t e : D a te
- p a y m e n tM e t h o d : S t r i n g
- in v o ic e V ie w S e tt in g : c h a r = A

e m p l o y e e

*

e m p lo y e r

0 . . 1

+ g e t S t a f f ()

« b u s in e s s O b j e c t »
c l in i c s t a f f

- u s e r I D : S t r in g
- p a s s w o r d : S t r i n g
- n a m e : S tr in g
- d e s c r ip t io n : S tr in g
- c l in ic C o d e : S t r in g

« b u s in e s s O b je c t»
c l i n i c

- c l in ic C o d e : S t r in g
- n a m e : S tr in g
- a d d r e s s : S t r in g
- p h o n e : S t r i n g
- f a x : S t r in g
- c o n t a c t P e r s o n : S t r in g
- e m a i l : S t r in g

0 . .*

1 . .*

0 .. * 1

+ a d d ()
+ r e m o v e ()
+ g e t P a t ie n t L is t ()

r e g q u e u e
- i t e m : R e g Q u e u e I t e m []
- c l in i c C o d e : S t r in g

0 . . *

1

« b u s in e s s O b j e c t »
E x p e n s e s I t e m

- t r a n s D a t e : D a te
- a m o u n t : d o u b le
- d e s c r i p ti o n : S t r i n g
- c l in ic C o d e : S t r i n g
- u p d a te D a t e T im e : D a t e
- u p d a te S t a ff I D : S t r in g

0 . .*1

+ g e t S h e l f R e f ()

« b u s in e s s O b je c t »
r e g L o c a t io n

- c l in i c C o d e : S t r in g
- P a tR e g N o : S t r in g
- s h e l fR e f : S tr in g

*

1

*

1

+ R e g Q u e u e I t e m ()

r e g q u e u e I t e m
- p a t ie n t : P a t ie n t
- a r r i v a lD a te T im e : D a te

0 . . *

1

1

1

Software
Design Model

+ i s P a n e l ()
+ i s A l l e r g ic ()
+ g e t P a t ie n t L i s t ()
+ f in d P a t ie n t ()
+ g e t R e g N o ()
+ P a t ie n t ()

« b u s in e s s O b j e c t »
P a t i e n t

- r e g N o : S tr in g
- n a m e : S t r in g
- N R I C : S t r in g
- D O B : D a t e
- s e x : c h a r
- b l o o d T y p e : S t r in g
- a l le r g y : B o o le a n
- m o th e r M a d d e n : S t r i n g
- h o m e A d d r e s s : S t r in g
- h o m e P h o n e : S t r in g
- n a t io n a l i ty : S t r i n g
- p a s s p o r t N o : S t r i n g
- r e g D a t e : D a t e
- is P a n e l : B o o le a n
- p a n e lC o d e : S tr in g
- d e p a r t m e n t : S t r in g
- s p o u s e R e g N o : S t r in g
- s p o u s e R e la t io n : S t r in g + is B l o c k e d ()

+ g e t P a n e lL i s t()
+ g e t P a n e lC o m p a n y ()

« b u s in e s s O b je c t »
P a n e lc o m p a n y

- p a n e l C o d e : S t r i n g
- n a m e : S t r in g
- a d d r e s s : S tr in g
- p h o n e : S t r in g
- e m a i l : S t r in g
- fa x : S tr in g
- te le x : S t r i n g
- c o n t a c tP e r s o n : S tr in g
- m a x B i l l : d o u b le
- m a x I n v o i c e : d o u b le
- d i s c o u n t : d o u b le = 0
- s t a tu s : c h a r
- r e m a r k s : S t r i n g
- r e g D a t e : D a te
- p a y m e n tM e t h o d : S t r i n g
- in v o ic e V ie w S e tt in g : c h a r = A

e m p l o y e e

*

e m p lo y e r

0 . . 1

+ g e t S t a f f ()

« b u s in e s s O b j e c t »
c l in i c s t a f f

- u s e r I D : S t r in g
- p a s s w o r d : S t r i n g
- n a m e : S tr in g
- d e s c r ip t io n : S tr in g
- c l in ic C o d e : S t r in g

« b u s in e s s O b je c t»
c l i n i c

- c l in ic C o d e : S t r in g
- n a m e : S tr in g
- a d d r e s s : S t r in g
- p h o n e : S t r i n g
- f a x : S t r in g
- c o n t a c t P e r s o n : S t r in g
- e m a i l : S t r in g

0 . .*

1 . .*

0 .. * 1

+ a d d ()
+ r e m o v e ()
+ g e t P a t ie n t L is t ()

r e g q u e u e
- i t e m : R e g Q u e u e I t e m []
- c l in i c C o d e : S t r in g

0 . . *

1

« b u s in e s s O b j e c t »
E x p e n s e s I t e m

- t r a n s D a t e : D a te
- a m o u n t : d o u b le
- d e s c r i p ti o n : S t r i n g
- c l in ic C o d e : S t r i n g
- u p d a te D a t e T im e : D a t e
- u p d a te S t a ff I D : S t r in g

0 . .*1

+ g e t S h e l f R e f ()

« b u s in e s s O b je c t »
r e g L o c a t io n

- c l in i c C o d e : S t r in g
- P a tR e g N o : S t r in g
- s h e l fR e f : S tr in g

*

1

*

1

+ R e g Q u e u e I t e m ()

r e g q u e u e I t e m
- p a t ie n t : P a t ie n t
- a r r i v a lD a te T im e : D a te

0 . . *

1

1

1

Software
Design Model

simple change

use

generate

software development,
complex change

manage
compose/

modify

propagate
changes

B Rules
Specification

B Rules
Specification

Rule Phrase
Entries

Rule Phrase
Entries

User Application & core components layer

storage Layer

Figure 9. Example of the BROOD model editor

Model
Browser

Interpreters

Attribute
Browser

Title bar

Menu bar

Tool bar

Mode bar

Model
Editing

Windows

Part
Browser

business rule composition and software design
updating. In business rule composition mode,
rule phrases are used to construct a business rule

statement. In software design updating mode the
module updates the software design model that
corresponds to the composed rule.

45

BROOD

The BROOD tool also helps with the imple-
mentation of business rule changes. The modify
business rule (MBR) module was developed to
assist tool users in performing this task, an ex-
ample of which is shown in Figure 10.

A full description of the tool is beyond the
scope of this article. It should be stressed how-
ever, that the tool plays an important part in the
effective application of the BROOD approach by
simplifying a sometimes tedious, error-prone,
and time-consuming task of linking and propa-
gating business rule changes to software design
components.

DIscUssION

The main aim of BROOD has been to facilitate
the process of software evolution through: (a)

externalization of business rules and their explicit
modeling and (b) the linking of each modeled
business rule with a corresponding software com-
ponent. This approach provides full traceability
between end-user concepts and software designs.
By combining BROOD to design traceability
in source code (Alves-Foss, Conte de Leon, &
Oman, 2002), it is possible to achieve effective
traceability in a software system.

The BROOD metamodel offers a complete
foundation and infrastructure for the development
of a software system that is resilient to business
rule changes.

With regard to business rule typology, BROOD
introduces three main business rule types: con-
straints, action assertion, and derivations. These
types are further divided into an adequate number
of sub-types and templates. In contrast to BRG,
BROCOM, and BRS approaches, BROOD at-

Figure 10. Example of the BROOD business rules modifier

BROOD

46

tempts to remove the redundancy by reducing
the unnecessary business rule types. At the same
time, it improves the incompleteness of business
rule types in AOM, coordination contract, and
BRBeans approaches. In terms of business rule
management elements, BROOD provides the
concept of ruleset to organize the groups and
hierarchy of the closely related business rules.

In terms of its modeling language, BROOD
offers a high level of expressiveness. The keywords
in the language definition and a sufficient number
of sentence templates should provide adequate rep-
resentation constructs. In general, achieving total
expressiveness of the modeling language business
rules is relatively hard to achieve due to the large
number of ways of expressing business rules in
a natural language. The usability of BROOD in
this context will be proved in due course once the
approach has been applied on different domains
and applications. BROOD was found to have a
high level of un-ambiguity by the introduction of
the appropriate typology and templates. BROOD
provides a mutually exclusive set of business rule
types and removes the superfluous templates in
order to avoid conflict and redundancy in repre-
senting the meaning of business rules.

In practical terms, BROOD can be applied
using the UML-based SPEM metamodel, which
provides a set of concepts and notations to de-
scribe various software process components such
as lifecycle phases, activities, process roles, and
work products. The use of business rule templates
and UML improves the usability of the BROOD
approach. The templates allow users to create
a business rule statement by simply composing
the existing rule phrases whilst UML provides
abstractions for users to naturally design a soft-
ware system. Moreover, the detailed process de-
scription is provided to guide users especially in
performing complex tasks such linking business
rules to software design and handling different
types of changes.

The utility of BROOD was demonstrated in
this paper through the use of the MediNet indus-

trial application. This application had originally
been developed using a standard object-oriented
approach. It was therefore possible (and indeed
desirable) to use the case study not only as a way
of demonstrating BROOD but also for comparing
and contrasting BROOD to a traditional develop-
ment approach.

By considering UML for software design,
BROOD maintains the well-known object-
oriented design quality attributes such as modu-
larity, high cohesion, low coupling, efficiency,
and portability. BROOD however provides ad-
ditional quality attributes such as requirements
traceability, software evolvability, and approach
usability.

The traditional approach deployed for
MediNet did not provide explicit traceability
of business policy defined during the require-
ments specification phase. Instead, it provides a
so-called ‘seamless transition’ from the use case
models that document the user requirements to
the analysis and design models. This resulted in
business rules being embedded in both require-
ments specification and software design models.
In contrast, with BROOD there was a natural
transformation of the MediNET requirements
into the structured business rules specification
and in turn this specification was directly related
to software design components.

Concerning software evolution, the imple-
mentation of changes using the traditional ap-
proach required the use of expertise with specific
knowledge of the MediNET software design.
Since software engineers do not normally initiate
business changes, they had to repeat all phases
in MediNET development lifecycle especially
requirements and analysis phases. Locating the
related software design components was hard since
there was no explicit link between the MediNET
design models and its user requirements.

In relation to approach usability, the traditional
approach was easier to apply during development
since it did not have to deal with additional steps
that were added to explicitly specify, document,

47

BROOD

and link business rules specification to software
design. These steps were found to increase the
complexity and duration of software development
process. However, the availability of the busi-
ness rule typology and templates, which provide
the guidelines for the analysis of business rule
statements and the identification of rule phrases,
were found useful in minimizing these problems.
The business rule templates have improved the
MediNET system understandability and increased
the involvement of business users in the Medi-
NET development. During evolution, BROOD
was found easier to be used than the traditional
approach. Using BROOD, business users could
perform the simple business rule changes as
demonstrated in the MediNET application. Rapid
change implementation is important especially
in business critical applications with intolerable
downtime. The detailed process description fa-
cilitated the implementation of complex changes
in MediNET.

In summary, BROOD contributes to three
critical areas namely business rules specification,
object-oriented design, and software evolution
process. The proposed business rule specification
extends the state-of-the-art approaches to busi-
ness rule representation by reducing redundancy
and avoiding conflict among business rule types
in its typology. The structures of rule templates
have been defined so as to make them suitable for
linking to software designs in support of future
software evolution. A specification is aligned
to changing user requirements via the linking
of business rules to software designs through a
detailed transformation of business rule into the
specification of related software design compo-
nents. Thus, the externalization of frequently
changing aspects of a system into detailed business
rules and the maintenance of associations between
these and corresponding software components
should provide a strong framework for effective
software evolution.

AcKNOWLEDGMENt

The authors would like to thank the human
resource department of Universiti Teknologi
Malaysia (UTM) for partially sponsoring this
research, and Penawar Medical Group, Malaysia
for the permission to use its MediNET healthcare
information system requirements specification as
the case study. The authors wish to also express
their gratitude to the three anonymous reviewers
and to the editor of the special issue, Professor
Dinesh Batra, whose insightful and detailed
comments have contributed to the production of
a much improved version of this article.

rEFErENcEs

Alves-Foss, J., Conte de Leon, D., & Oman, P.
(2002). Experiments in the use of xml to enhance
traceability between object-oriented design speci-
fications and source code. Paper presented at the
35th Annual Hawaii International Conference on
System Sciences.

Andrade, L., & Fiadeiro, J. (2000, October 15-
19). Evolution by contract. Paper presented at the
ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications
2000, Workshop on Best-practice in Business
Rules Design and Implementation, Minneapolis,
Minnesota USA.

Andrade, L., Fiadeiro, J., Gouveia, J., & Kout-
soukos, G. (2002). Separating computation,
coordination and configuration. Journal of Soft-
ware Maintenance and Evolution: Research and
Practice, 14(5), 353-359.

Astley, M., & Agha, G. A. (1998, 20-21 April).
Modular construction and composition of distrib-
uted software architectures. Paper presented at
the Int. Symposium on Software Engineering, for
Parallel and Distributed Systems, Kyoto, Japan.

BROOD

48

Eriksson, H.-E., & Penker, M. (2000). Business
modelling with uml: OMG Group, Wiley Computer
Publishing, John Wiley & Sons, Inc.

Erlikh, L. (2000). Leveraging legacy system
dollars for e-business. IEEE IT Professional,
2(3), 17 - 23.

Evans, H., & Dickman, P. (1999, October). Zones,
contracts and absorbing change: An approach
to software evolution. Paper presented at the
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA
‘99), Denver, Colorado, USA.

Gottesdiener, E. (1997). Business rules show
power, promise. Application Development Trends,
4(3, March 1997).

Grubb, P., & Takang, A. A. (2003). Software
maintenance: Concepts and practice. Singapore:
World Scientific Publishing.

Halle, B. V. (1994). Back to business rule basics.
Database Programming and Design(October
1994), 15-18.

Hay, D., & Healy, K. A. (1997). Business rules:
What are they really? GUIDE (The IBM User
Group). Retrieved from http://www.Business-
RulesGroup.org/):.

Hay, D., & Healy, K. A. (2000). Defining business
rules ~ what are they really? (No. Rev 1.3): the
Business Rules Group.

Herbst, H. (1996a). Business rule oriented con-
ceptual modelling. Verlag: Physica .

Herbst, H. (1996b). Business rules in system
analysis: A meta-model and repository system.
Information Systems, 21(2), 147-166.

Herbst, H. (1997). Business rule-oriented concep-
tual modeling. Germany: Physica-Verlag.

IBM (Cartographer). (2003). Ibm websphere ap-
plication server enterprise

Kovari, P., Diaz, D. C., Fernandes, F. C. H., Has-
san, D., Kawamura, K., Leigh, D., et al. (2003).
Websphere application server enterprise v5 and
programming model extensions: Websphere
handbook series (First Edition ed.): International
Business Machines Corporation.

Krammer, M. I. (1997). Business rules: Automat-
ing business policies and practicies. Distributed
Computing Monitor(May 1997).

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G.,
Garrett, J., Thomason, C., et al. (2001, 17 May). The
generic modeling environment. Paper presented
at the Workshop on Intelligent Signal Processing,
Budapest, Hungary.

Lehman, M. M., & Belady, L. A. (1985). Program
evolution: Processes of software change. London:
Academic Press, Inc.

Loucopoulos, P., & Layzell, P. J. (1986, 1987).
Rubric: A rule based approach for the develop-
ment of information systems. Paper presented at
the 1st European workshop on fault diagnosis,
reliability and related knowledge based ap-
proaches, Rhodes.

Martin, J. (1989). Information engineering:
Prentice-Hall.

McMenamin, S. M., & Palmer, J. F. (1984). Es-
sential systems analysis. Englewood Cliffs, NJ:
Yourdon Press.

Mens, K., Wuyts, R., Bontridder, D., & Grijseels,
A. (1998). Tools and environments for business
rules. Paper presented at the ECOOP’98, Brus-
sels, Belgium.

Moriaty, T. (1993). The next paradigm. Database
Programming and Design.

OMG (Cartographer). (2001). Omg unified model-
ing language specification

OMG (Cartographer). (2002). Software process
engineering metamodel specification

49

BROOD

Oreizy, P., Medvidovic, N., & Taylor, R. N.
(1998, April 19-25). Architecture-based runtime
software evolution. Paper presented at the Inter-
national Conference on Software Engineering
1998 (ICSE’98), Kyoto, Japan.

Riehle, D., Tilman, M., & Johnson, R. (2000).
Dynamic object model (No. WUCS-00-29): Dept.
of Computer Science, Washington University.

Robinson, K., & Berrisford, G. (1994). Object-
oriented ssadm. Englewood Cliffs, NJ: Prentice
Hall.

Rosca, D., Greenspan, S., Feblowitz, M., & Wild,
C. (1997, January 1997). A decision support meth-
odology in support of the business rules lifecycle.
Paper presented at the International Symposium
on Requirements Engineering (ISRE’97), An-
napolis, MD.

Rosca, D., Greenspan, S., & Wild, C. (2002).
Enterprise modeling and decision-support for
automating the business rules lifecycle. Automated
Software Engineering, 9(4), 361 - 404.

Rosca, D., Greenspan, S., Wild, C., Reuben-
stein, H., Maly, K., & Feblowitz, M. (1995,
November 1995). Application of a decision sup-
port mechanism to the business rules lifecycle.
Paper presented at the 10th Knowledge-Based
Software Engineering Conference (KBSE95),
Boston, MA.

Ross, R. G. (1997). The business rule book: Clas-
sifying, defining and modelling rules: Data Base
Newsletter.

Ross, R. G., & Lam, G. S. W. (1999). Ruletrack:
The brs meta-model for rule management: Busi-
ness Rule Solutions, Inc.

Ross, R. G., & Lam, G. S. W. (2003). The brs
proteustm methodology (Fourth ed.): Business
Rule Solutions.

Rouvellou, I., Degenaro, I., Rasmus, K., Ehne-
buske, D., & McKee, B. (1999, November 1-5).
Externalizing business rules from enterprise ap-
plications: An experience report. Paper presented
at the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications,
Denver, Colorado.

Rouvellou, I., Degenaro, L., Rasmus, K., Ehne-
buske, D., & McKee, B. (2000, June). Extending
business objects with business rules. Paper pre-
sented at the 33rd International Conference on
Technology of Object-Oriented Languages and
Systems (TOOLS Europe 2000), Mont Saint-
Michel/ St-Malo, France.

Schneider, J. (1999). Components, scripts, and glue
: A conceptual framework for software composi-
tion. Bern:University of Bern.

van Assche, F., Layzell, P. J., Loucopoulos, P.,
& Speltinex, G. (1988). Rubric: A rule-based
representation of information system constructs.
Paper presented at the ESPRIT Conference, Brus-
sels, Belgium.

VU (Cartographer). (2003). Gme 3 user’s man-
ual

Wan Kadir, W. M. N., & Loucopoulos, P. (2003,
23-26 June). Relating evolving business rules to
software design. Paper presented at the Inter-
national Conference on Software Engineering
Research and Practice (SERP), Las Vegas, Ne-
vada, USA.

Wan Kadir, W. M. N., & Loucopoulos, P. (2004).
Relating evolving business rules to software
design. Journal of Systems Architecture, 50(7),
367-382.

Yoder, J. W., Balaguer, F., & Johnson, R. (2001,
October 14-18). Adaptive object models for imple-
menting business rules. Paper presented at the
Third Workshop on Best-Practices for Business

BROOD

50

Rules Design and Implementation, Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2001),
Tampa Bay, Florida, USA.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass,
R., Subrahmanian, V. S., & Zicari, R. (1997). Ad-
vanced database systems: Morgan Kaufmann.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 1, edited by K. Siau, pp. 41-73,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

51

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3
Bug Fixing Practices within

Free/Libre Open Source
Software Development Teams

Kevin Crowston
Syracuse University, USA

Barbara Scozzi
Politecnico di Bari, Italy

AbstrAct

Free/Libre open source software (FLOSS, e.g., Linux or Apache) is primarily developed by distributed
teams. Developers contribute from around the world and coordinate their activity almost exclusively by
means of email and bulletin boards, yet some how profit from the advantages and evade the challenges
of distributed software development. In this article we investigate the structure and the coordination
practices adopted by development teams during the bug-fixing process, which is considered one of main
areas of FLOSS project success. In particular, based on a codification of the messages recorded in the
bug tracking system of four projects, we identify the accomplished tasks, the adopted coordination
mechanisms, and the role undertaken by both the FLOSS development team and the FLOSS community.
We conclude with suggestions for further research.

INtrODUctION

In this article, we investigate the coordination
practices for software bug fixing in Free/Libre
open source software (FLOSS) development
teams. Key to our interest is that most FLOSS
software is developed by distributed teams, that
is, geographically dispersed groups of individuals

working together over time towards a common
goal (Ahuja et al., 1997, p. 165; Weisband, 2002).
FLOSS developers contribute from around the
world, meet face to face infrequently, if at all, and
coordinate their activity primarily by means of
computer mediated communications (Raymond,
1998; Wayner, 2000). As a result, distributed teams
employ processes that span traditional boundar-

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

52

ies of place and ownership. Since such teams are
increasingly commonly used in a diversity of
settings, it is important to understand how team
members can effectively coordinate their work.

The research literature on distributed work and
on software development specifically emphasizes
the difficulties of distributed software develop-
ment, but the case of FLOSS development presents
an intriguing counter-example, at least in part:
a number of projects have been outstandingly
successful. What is perhaps most surprising is
that FLOSS development teams seem not to use
many traditional coordination mechanisms such
as formal planning, system level design, schedules
and defined development processes (Mockus et
al., 2002, p. 310). As well, many (though by no
means all) programmers contribute to projects
as volunteers, without working for a common
organization and/or being paid.

The contribution of this article is to document
the process of coordination in effective FLOSS
teams for a particularly important process, namely
bug fixing. These practices are analyzed by adopt-
ing a process theory, that is, we investigate which
tasks are accomplished, how and by whom they are
assigned, coordinated, and performed. In particu-
lar, we selected four FLOSS projects, inductively
coded the steps involved in fixing various bugs
as recorded in the projects’ bug tracking systems
and applied coordination theory to identify tasks
and coordination mechanisms carried out within
the bug-fixing process.

Studying coordination of FLOSS processes
is important for several reasons. First, FLOSS
development is an important phenomenon deserv-
ing of study for itself. FLOSS is an increasingly
important commercial issue involving all kind
of software firms. Million of users depend on
systems such as Linux and the Internet (heavily
dependent on FLOSS software tools) but as Scac-
chi notes “little is known about how people in these
communities coordinate software development
across different settings, or about what software

processes, work practices, and organizational
contexts are necessary to their success” (Scac-
chi, 2002, p. 1; Scacchi, 2005). Understanding
the reasons that some projects are effective while
others are not is a further motivation for study-
ing the FLOSS development processes. Second,
studying how distributed software developers
coordinate their efforts to ensure, at least in some
cases, high-performance outcomes has both theo-
retical and managerial implications. It can help
understanding coordination practices adopted in
social collectives that are not governed, at least
apparently, by a formal organizational structure
and are characterized by many other discontinui-
ties that is, lack of coherence in some aspects of
the work setting: organization, function, member-
ship, language, culture, etc. (Watson-Manheim
et al., 2002). As to the managerial implications,
distributed teams of all sorts are increasingly used
in many organizations. The study could be useful
to managers that are considering the adoption of
this organizational form not only in the field of
software development.

The remainder of the article is organized as
follows. In Section 2 we discuss the theoretical
background of the study. In Section 3 we stress
the relevance of process theory so explaining why
we adopted such a theoretical approach. We then
describe coordination theory and use it to describe
the bug-fixing process as carried out in traditional
organizations. The research methodology adopted
to study the bug-fixing process is described in
Section 4. In Section 5 and 6 we describe and
discuss the study’s results. Finally, in Section 7
we draw some conclusions and propose future
research directions.

bAcKGrOUND

In this section we provide an overview of the
literature on software development in distributed
environment and the FLOSS phenomenon.

53

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Distributed software Development

Distributed teams offer numerous potential
benefits, such as the possibility to perform dif-
ferent projects all over the world without paying
the costs associated with travel or relocation, or
ease of reconfiguring teams to quickly respond
to changing business needs (DeSanctis & Jack-
son, 1994; Drucker, 1988) or to exploit available
competences and distributed expertise (Grinter
et al., 1999; Orlikowski, 2002). Distributed teams
seem particularly attractive for software devel-
opment, because software, as an information
product, can be easily transferred via the same
systems used to support the teams (Nejmeh,
1994; Scacchi, 1991). Furthermore, while many
developed countries face a shortage of talented
software developers, some developing countries
have a pool of skilled professionals available, at
lower cost (Metiu & Kogut, 2001, p. 4; Taylor,
1998). As well, the need to have local developers
in each country for marketing and localization
have made distributed teams a business need for
many global software corporations (Herbsleb &
Grinter, 1999b, p. 85).

While distributed teams have many potential
benefits, distributed workers face many real
challenges. The specific challenges vary from
team to team, as there is a great diversity in their
composition and in the setting of distributed work.
As mentioned, distributed work is characterized
by numerous discontinuities that generate diffi-
culties for members in making sense of the task
and of communications from others, or produce
unintended information filtering (de Souza, 1993).
These interpretative difficulties make it hard for
team members to develop a shared mental model
of the developing project (Curtis et al., 1990, p. 52).
A lack of common knowledge about the status,
authority and competencies of participants brought
together for the first time can be an obstacle to
the creation of a social structure and the develop-

ment of team norms (Bandow, 1997, p. 88) and
conventions (Weisband, 2002), thus frustrating
the potential benefits of increased flexibility.

Numerous studies have investigated social as-
pects of software development teams (e.g., Curtis
et al., 1988; Humphrey, 2000; Sawyer & Guinan,
1998; Walz et al., 1993). These studies conclude
that large system development requires knowl-
edge from many domains, which is thinly spread
among different developers (Curtis et al., 1988).
As a result, large projects require a high degree of
knowledge integration and the coordinated efforts
of multiple developers (Brooks, 1975). However,
coordination is difficult to achieve as software
projects are non-routine, hard to decompose
perfectly and face requirements that are often
changing and conflicting, making development
activities uncertain.

Unfortunately, the problems of software devel-
opment seem to be exacerbated when development
teams work in a distributed environment with a
reduced possibility for informal communication
(Bélanger, 1998; Carmel & Agarwal, 2001; Herbs-
leb & Grinter, 1999a). In response to the problems
created by discontinuities, studies of distributed
teams stress the need for a significant amount of
time spent in “community building” (Butler et
al., 2002). In particular, members of distributed
teams need to learn how to communicate, interact
and socialize using CMC. Successful distributed
cross-functional teams share knowledge and infor-
mation and create new practices to meet the task-
oriented and social needs of the members (Robey
et al., 2000). Research has shown the importance
of formal and informal adopted coordination
mechanisms, information sharing for coordination
and communications, and conflict management
for project’s performance and quality (Walz et
al., 1993). However, the processes of coordination
suitable for distributed teams are still open topics
for research (e.g., Orlikowski, 2002).

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

54

the FLOss Phenomenon:
A Literature Overview

The growing literature on FLOSS has addressed
a variety of questions. Some researchers have
examined the implications of free software from
economic and policy perspectives (e.g., Di Bona et
al., 1999; Kogut & Metiu, 2001; Lerner & Tirole,
2001) as well as social perspective (e.g., Bessen,
2002; Franck & Jungwirth, 2002; Hann et al.,
2002; Hertel et al., 2003; Markus et al., 2000).
Other studies examine factors for the success of
FLOSS projects (Hallen et al., 1999; Leibovitch,
1999; Pfaff, 1998; Prasad, n.d.; Valloppillil, 1998;
Valloppillil & Cohen, 1998, Crowston and Scozzi,
2003). Among them, an open research question
deals with the analysis of how the contributions of
multiple developers can be brought into a single
working product (Herbsleb & Grinter, 1999b).
To answer such a question, a few authors have
investigated the processes of FLOSS development
(e.g., Jensen & Scacchi, 2005; Stewart & Ammeter,
2002). The most well-known model developed
to describe FLOSS organization structure is the
bazaar metaphor proposed by Raymond (1998).
As in a bazaar, FLOSS developers autonomously
decide the schedule and contribution modes for
software development, making a central coordina-
tion action superfluous. While still popular, the
bazaar metaphor has been broadly criticized (e.g.,
Cubranic, 1999). According to its detractors, the
bazaar metaphor disregards some aspects of the
FLOSS development process, such as the impor-
tance of the project leader control, the existence
of de-facto hierarchies, the danger of information
overloads and burnout, the possibility of conflicts
that cause a loss of interest in a project or forking,
and the only apparent openness of these commu-
nities (Bezroukov, 1999a, 1999b).

Nevertheless, many features of the bazaar
model do seem to apply. First, many teams are
largely self-organizing, often without formally
appointed leaders or formal indications of rank
or role. Individual developers may play different

roles in different projects or move from role to
role as their involvement with a project changes.
For example, a common route is for an active
user to become a co-developer by contributing a
bug fix or code for a new feature, and for active
and able co-developers to be invited to become
members of the core. Second, coordination of
project development happens largely (though
not exclusively) in a distributed mode. Members
of a few of the largest and most well-established
projects do have the opportunity to meet face-
to-face at conferences (e.g., Apache developers
at ApacheCon), but such an opportunity is rare
for most project members. Third, non-member
involvement plays an important role in the success
of the teams. Non-core developers contribute bug
fixes, new features or documentation, provide
support for new users and fill a variety of other
roles in the teams. Furthermore, even though the
core group provides a form of leadership for a
project, they do not exercise hierarchical control.
A recent study documented that self-assignment
is a typical coordination mechanism in FLOSS
projects and direct assignment are nearly non-
existent (Crowston et al., 2005). In comparison
to traditional organizations then, more people can
share power and be involved in FLOSS project
activities. However, how these diverse contribu-
tions can be harnessed to create a coherent product
is still an important question for research. Our
article addresses this question by examining in
detail a particular case, namely, coordination of
bug-fixing processes.

cONcEPtUAL DEVELOPMENt

In this section, we describe the theoretical per-
spectives we adopted to examine the coordina-
tion of bug fixing, namely, a process-oriented
perspective and the coordination theory. We also
introduce the topic of coordination and discuss
the literature on coordination in software devel-

55

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

opment and the (small) literature on coordination
in FLOSS teams.

Processes as theories

Most theories in organizational and information
system research are variance theories, compris-
ing constructs or variables and propositions or
hypotheses linking them. By adopting a statisti-
cal approach, such theories predict the levels of
dependent or outcome variables from the levels
of independent or predictor variables, where the
predictors are seen as necessary and sufficient for
the outcomes. In other words, the logical struc-
ture of such theories is that if concept a implies
concept b, then more of a means more (or less) of
b. For example, the hypothesis that the adoption
of ICT makes organization more centralized,
examined as a variance theory, is that the level
of organization centralization increases with the
number of new ICTs adopted.

An alternative to a variance theory is a process
theory (Markus & Robey, 1988). Rather than
relating levels of variables, process theories ex-
plain how outcomes of interest develop through a
sequence of events. In that case, antecedents are
considered as necessary but not sufficient for the
outcomes (Mohr, 1982). For example, a process
model of ICT and centralization might posit several
steps each of which must occur for the organiza-
tion to become centralized, such as development
and implementation of an ICT system and use of
the system to control decision premises and pro-
gram jobs, resulting in centralization of decision
making as an outcome (Pfeffer, 1978). However,
if any of the intervening steps does not happen, a
different outcome may occur. For example, if the
system is used to provide information directly to
lower-level workers, decision making may become
decentralized rather centralized (Zuboff, 1988).
Of course, theories may contain some aspects of
both variance and process theories (e.g., a variance
theory with a set of contingencies), but for this
discussion, we describe the pure case. Typically,

process theories are of some transient process
leading to exceptional outcomes, for example,
events leading up to an organizational change
or to acceptance of a system. However, we will
focus instead on what might be called “everyday”
processes: those performed regularly to create an
organization’s products or services. For example,
Sabherwal and Robey (1995) described and
compared the processes of information systems
development for 50 projects to develop five clusters
of similar processes.

Kaplan (1991, p. 593) states that process
theories can be “valuable aids in understanding
issues pertaining to designing and implementing
information systems, assessing their impacts,
and anticipating and managing the processes of
change associated with them”. The main advan-
tage of process theories is that they can deal with
more complex causal relationships than variance
theories. Also they embody a fuller description of
the steps by which inputs and outputs are related,
rather than noting the relationship between the
levels of input and output variables. Specifically,
representing a process as a sequence of activi-
ties provides insight into the linkage between
individual work and processes, since individuals
perform the various activities that comprise the
process. As individuals change what they do, they
change how they perform these activities and thus
their participation in the process. Conversely,
process changes demand different performances
from individuals. ICT use might simply make
individuals more efficient or effective at the ac-
tivities they have always performed. However,
an interesting class of impacts involves changing
which individuals perform which activities and
how activities are coordinated. Such an analysis
is the aim of this article.

coordination of Processes

In this subsection, we introduce the topic of
coordination and present the fundamentals of
coordination theory. Studying coordination means

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

56

analyzing how dependences that emerge among
the components of a system are managed. That
stands for any kind of system, for example, so-
cial, economics, organic, or information system.
Hence, the coordination of the components of
a system is a phenomenon with a universal rel-
evance (Boulding, 1956). The above definition of
coordination is consistent with the large body of
literature developed in the field of organization
theory (e.g., Galbraith, 1973; Lawrence & Lorsch,
1967; Mintzberg, 1979; Pfeffer & Salancik, 1978;
Thompson, 1967) that emphasizes the importance
of interdependence.

For example, according to Thompson (1967),
organizational action consists of the coordination
of the interdependences and the reduction of the
costs associated to their management. Two com-
ponents/systems are said to be interdependent if
the action carried out by one of them affect the
other one’s output or performance (McCann &
Ferry, 1979; Mohr, 1971; Victor & Blackburn,
1987). For space reason, it is not possible to
present all the contributions on coordination in
the literature, but because of its relevance, we
here briefly report on Thompson’s seminal work.
Thompson (1967) identified three main kinds of
interdependence, namely pooled, sequential and
reciprocal interdependence. Pooled interdepend-
ence occurs among organization units that have
the same goal but do not directly collaborate to
achieve it. Sequential dependence emerges among
serial systems. A reciprocal dependence occurs
when the output of a system is the input for a
second system and vice versa. The three kinds
of interdependence require coordination mecha-
nisms whose cost increases going from the first to
the last one. The coordination by standardization,
that is, routine and rules, is sufficient to manage
pooled-dependant systems. Coordination by plan
implies the definition of operational schemes
and plans. It can be used to manage pooled and
sequential dependences. Finally, coordination by
mutual adjustment is suitable for the management
of reciprocal dependences.

The interest devoted by scholars and prac-
titioners to the study of coordination problems
has recently increased due to the augmented
complexity of products, production processes
and to the rapid advancement in science and
technology. To address these issues scholars
have developed coordination theory, a systemic
approach to the study of coordination (Malone &
Crowston, 1994). Coordination theory synthesizes
the contributions proposed in different disciplines
to develop a systemic approach to the study of
coordination. Studies on coordination have been
developed based on two level of analysis, a micro
and a macro level. In particular, most organization
studies adopt a macro perspective, so considering
dependencies emerging among organizational
units. Other studies adopt a micro perspective, so
considering dependencies emerging among single
activities/actors. Coordination theory adopts the
latter perspective and, in particular, focuses on
the analysis of dependencies among activities
(rather that actors). Hence, it is particularly useful
to the description and analysis of organizational
processes, which can be defined as a set of inter-
dependent activities aimed to the achievement
of a goal (Crowston, 1997; Crowston & Osborn,
2003). In particular, this approach has the ad-
vantage of making it easier to model the effects
of reassignments of activities to different actors,
which is common in process redesign efforts.
We adopted this perspective because the study
focuses on analyzing coordination mechanisms
within processes.

Consistent with the definition proposed above,
Malone and Crowston (1994) analyzed group
action in terms of actors performing interdepen-
dent tasks. These tasks might require or create
resources of various types. For example, in the
case of software development, actors include the
customers and various employees of the software
company. Tasks include translating aspects of a
customer’s problem into system requirements and
code, or bug reports into bug fixes. Finally, re-
sources include information about the customer’s

57

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

problem and analysts’ time and effort. In this
view, actors in organizations face coordination
problems arising from dependencies that constrain
how tasks can be performed.

It should be noted that in developing this
framework, Malone and Crowston (1994) describe
coordination mechanisms as relying on other
necessary group functions, such as decision mak-
ing, communications, and development of shared
understandings and collective sensemaking (Brit-
ton et al., 2000; Crowston & Kammerer, 1998).
To develop a complete model of a process would
involve modeling all of these aspects: coordina-
tion, decision making, and communications. In
this article though, we will focus on the coordina-
tion aspects, bracketing the other phenomenon.

Coordination theory classifies dependencies as
occurring between a task and a resource, among
multiple tasks and a resource, and among a task
and multiple resources. Dependencies between
a task and a resource are due to the fact that a
task uses or creates a resource. Shared use of
resources can in turn lead to dependencies be-
tween the tasks that use or create the resource.
These dependencies come in three kinds. First,
the flow dependence resembles the Thompson’s
sequential dependency. Second, the fit dependence
occurs when two activities collaborate in the
creation of an output (though in the case where
the output is identical, this might better be called
synergy, since the benefit is that duplicate work
can be avoided). Finally, the share dependency
emerges among activities that share the use of
a resource. Dependencies between a task and
multiple resources are due to the fact that a task
uses, creates or produces multiple resources or a
task uses a resource and create another resource.
For example, in the case of software development,
a design document might be created by a design
task and used by programming tasks, creating a fit
dependency, while two development tasks might
both require a programmer (a share dependency)
and create outputs that must work together (a fit
dependency).

The key point in this analysis is that dependen-
cies can create problems that require additional
work to manage (or provide the opportunity to
avoid duplicate work). To overcome the coordi-
nation problems created by dependences, actors
must perform additional work, which Malone and
Crowston (1994) called coordination mechanisms.
For example, if particular expertise is necessary
to perform a particular task (a task-actor depen-
dency), then an actor with that expertise must be
identified and the task assigned to him or her.
There are often several coordination mechanisms
that can be used to manage a dependency. For
example, mechanisms to manage the dependency
between an activity and an actor include (among
others): (1) having a manager pick a subordinate to
perform the task; (2) assigning the task to the first
available actor; and (3) having a labour market in
which actors bid on jobs. To manage a usability
subdependency, the resource might be tailored
to the needs of the consumer (meaning that the
consumer has to provide that information to the
producer) or a producer might follow a standard so
the consumer knows what to expect. Mechanisms
may be useful in a wide variety of organizational
settings. Conversely, organizations with similar
goals achieved using more or less the same set of
activities will have to manage the same depen-
dencies, but may choose different coordination
mechanisms, thus resulting in different processes.
Of course, the mechanisms are themselves activi-
ties that must be performed by some actors, and
so adding coordination mechanisms to a process
may create additional dependences that must
themselves be managed.

coordination in software
Development

Coordination has long been a key issue in software
development (e.g., Brooks, 1975; Conway, 1968;
Curtis et al., 1988; Faraj & Sproull, 2000; Kraut
& Streeter, 1995; Parnas, 1972). For example,
Conway (1968) observed that the structure of a

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

58

software system mirrors the structure of the or-
ganization that develops it. Both Conway (1968)
and Parnas (1972) studied coordination as a crucial
part of software development. Curtis et al. (1988)
found that in large-scale software project, coor-
dination and communication are among the most
crucial and hard-to-manage problems. To address
such problems, software development researchers
have proposed different coordination mechanisms
such a planning, defining and following a process,
managing requirements and design specifications,
measuring process characteristics, organizing
regular meetings to track progress, implementing
workflow systems, among the others.

Herbsleb and Grinter (1999b), in a study of
geographically-distributed software develop-
ment within a large firm, showed that some of
the previously mentioned coordination mecha-
nisms—namely integration plans, component-
interface specifications, software processes and
documentation—failed to support coordination if
not properly managed. The mechanisms needed to
be modified or augmented (allowing for the filling
in of details, handling exceptions, coping with
unforeseen events and recovering from errors) to
allow the work to proceed. They also showed that
the primary barriers to coordination breakdowns
were the lack of unplanned contact, knowing whom
to contact about what, cost of initiating a contact,
ability to communicate effectively and lack of trust
or willingness to communicate openly.

Kraut and Streeter (1995), in studying the
coordination practices that influence the sharing
of information and success of software develop-
ment, identified the following coordination tech-
niques: formal-impersonal procedures (projects
documents and memos, project milestones and
delivery schedules, modification request and
error-tracking procedures, data dictionaries),
formal-interpersonal procedures (status-review
meetings, design-review meetings, code inspec-
tions), informal-interpersonal (group meetings
and co-location of requirements and development
staff, electronic communication such as e-mail

and electronics bulletin boards, and interpersonal
network). Their results showed the value of both
informal and formal interpersonal communication
for sharing information and achieving coordination
in software development. Note though that this
analysis focuses more the media for exchanging
information rather than particular dependencies or
coordination mechanisms that might be executed
via these media. That is, once you have called a
group meeting, what should you talk about?

coordination in FLOss
Development

A few studies have examined the work practices
and coordination modes adopted by FLOSS teams
in more detail, which is the focus of this article
(Iannacci, 2005; Scacchi, 2002; Weber, 2004).
Cubranic (1999) observed that the main media used
for coordination in FLOSS development teams
were mailing lists. Such a low-tech approach is
adopted to facilitate the participation of would-
be contributors, who may not have access to or
experience with more sophisticated technology.
The geographical distribution of contributors and
the variability in time of contributors precluded
the use of other systems (e.g., systems that support
synchronous communication or prescriptive coor-
dination technology, such as workflow systems).
Mailing lists supported low-level coordination
needs. Also, Cubranic (1999) found no evidence
of the use of higher-level coordination, such as
group decision making, knowledge management,
task scheduling and progress tracking. As they are
the main coordination mechanisms, the volume of
information within mailing lists can be huge. Mail-
ing lists are therefore often unique repositories of
source information on design choices and evolution
of the system. However, dealing with this volume of
information in large open source software projects
can require a large amount of manual and mental
effort from developers, who have to rely on their
memory to compensate for the lack of adequate
tools and automation.

59

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

In a well-known case study of two important
FLOSS projects, namely Apache and Mozilla,
Mockus et al. (2002) distinguished explicit (e.g.,
interface specification processes, plans, etc.) and
implicit coordination mechanisms adopted for
software development. They argued that, because
of its software structure, the Apache development
team had primarily adopted implicit coordination
mechanisms. The basic server was kept small.
Core developers worked on what interested them
and their opinion was fundamental when add-
ing new functionality. The functionality beyond
the basic server was added by means of various
ancillary projects, developed by a larger com-
munity that interacted with Apache only through
defined interfaces. Such interfaces coordinate
the effort of the Apache developers: as they had
to be designed based on what Apache provided,
the effort of the Apache core group was limited.
As a result, coordination relied on the knowledge
of who had expertise in a given area and general
communication on who is doing what and when.
On the other hand, in the Mozilla project, be-
cause of the interdependence among modules,
considerable effort is spent in coordination. In
this case, more formal and explicit coordination
mechanisms were adopted (e.g., module owners
were appointed who had to approve all changes
in their module).

Jensen & Scacchi (2005) modelled the soft-
ware-release process in three projects, namely
Mozilla, Apache and NetBeans. They identified
tasks, their dependencies and the actors perform-
ing them. However, they did not analyze the
coordination issues in depth and did not focus
specifically on the bug-fixing process, which is
the aim of this article. Rather, their final goal
was to study the relationships among the three
communities that form a Web Information In-
frastructure.

Iannacci (2005) adopted an organizational
perspective to study coordination processes within
a single large-scale and well-known FLOSS devel-
opment project, Linux. He identified three main

(traditional) coordination mechanisms, namely
standardization, loose coupling and partisan
mutual adjustment. Standardization is a coordina-
tion mechanism to manage pooled dependencies
emerging among different contributors. It implies
the definition of well-defined procedures, such
as in the case of patch submission or bug-fixing
procedures. Loose coupling is used to manage
sequential dependencies among the different
subgroups of contributors. It is the coordination
mechanisms used to, for example, incorporating
new patches. Finally, partisan mutual adjustment is
a mechanism used to manage what Iannacci (2005)
called networked interdependencies, an extension
of the reciprocal dependencies as proposed by
Thompson (1967). Networked interdependencies
are those emerging among contributors to specific
part of the software. Partisan mutual adjustment
produces a sort of structuring process so creating
an informal (sub-)organization. However, these
findings are based on a single exceptional case, the
Linux project, making it unclear how much can be
generalized to smaller projects. Indeed, most of
the existing studies are of large and well-known
projects and focused on the development process.
To our knowledge, no studies have analyzed the
bug-fixing process in depth within small FLOSS
development teams.

A coordination theory Application:
the bug-Fixing Process

To ground our discussion of coordination theory,
we will briefly introduce the bug-fixing process,
which consists of the tasks needed to correct
software bugs. We decided to focus on the bug-
fixing process for three reasons. First, bug fixing
provides “a microcosm of coordination problems”
(Crowston, 1997). Second, a quick response to
bugs has been mentioned as a particular strength
of the FLOSS process: as Raymond (1998) puts
it, “given enough eyeballs, all bugs are shallow”.
Finally, it is a process that involves the entire de-
veloper community and thus poses particular coor-

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

60

dination problems. While there have been several
studies of FLOSS bug fixing, few have analyzed
coordination issues within bug-fixing process by
adopting a process view. For example, Sandusky
et al. (2004) analyzed the bug-fixing process.
They focus their attention on the identification of
the relationships existing among bug reports, but
they do not examine in details the process itself.
In contrast to the prior work, our article provides
empirical evidence about coordination practices
within FLOSS teams. Specifically, we describe
the way the work of bug fixing is coordinated in
these teams, how these practices differ from those
of conventional software development and thus
suggest what might be learned from FLOSS and
applied in other settings.

We base our description on the work of Crow-
ston (1997), who described the bug-fixing process
observed at a commercial software company. Such
a process is below defined as traditional because
1) it is carried out within a traditional kind of or-
ganization (i.e., the boundary are well defined, the
environment is not distributed, the organization
structure is defined) and 2) refers to the produc-
tion of commercial rather than FLOSS software.
The process is started by a customer who finds
a problem when using a software system. The
problem is reported (sometimes automatically or
by the customer) to the company’s response center.
In the attempt to solve the problem, personnel in
the center look in a database of known bugs. If a
match is found, the fix is returned to the customer;
otherwise, after identifying the affected product,
the bug report is forwarded to an engineer in the
marketing center. The assigned engineer tries
to reproduce the problem and identify the cause
(possibly requesting additional information from
the reporter to do so). If the bug is real, the bug
report is forwarded to the manager responsible
for the module affected by the bug. The manager
then assigns the bug to the software engineer
responsible for that module. The software engi-
neering diagnoses the problem (if she finds that
the problem is in a different module, the report is

forwarded to the right engineer) and designs a fix.
The proposed fix is shared with other engineers
responsible for modules that might be affected.
When the feedback from those engineers is posi-
tive, the proposed design is transformed into lines
of code. If changes in other module are needed,
the software engineer also asks the responsible
engineers for changes. The proposed fix is then
tested, the eventual changed modules are sent
to the integration manager. After approving, the
integration manager recompiles the system, tests
the entire system and releases the new software
in the form of a patch. To summarize then, in the
traditional bug-fixing process, the following tasks
have been identified (Crowston, 1997):

Report, Try to solve the problem, Search database
for solution, Forward to the marketing manager,
Try to solve the problem/Diagnose the problem,
Forward to the Software Engineering Group, As-
sign the bug, Diagnose the problem, Design the
fix, Verify affected modules and ask for approval,
Write the code for the fix, Test it, Integrate changes,
Recompile the module and link it to the system.

After describing the above process, Crowston
(1997) went on to analyze the coordination
mechanisms employed. A number of the tasks
listed can be seen as coordination mechanisms.
For example, the search for duplicate bugs as well
as the numerous forward and verify tasks manage
some dependency. Searching for duplicate outputs
is the coordination mechanism to manage a de-
pendency between two tasks that might have the
same output. In this case, the tasks are to respond
to bug reports from customers. These tasks can be
performed by diagnosing and repairing the bug,
but if the solution to the bug report can be found
in the database, then the effort taken to solve it
a second time can be avoided. Thus, searching
the database for a solution is a way to manage a
potential dependency between the two bug-fixing
tasks. Forwarding and verifying tasks are coordi-
nation mechanisms used to manage dependency

61

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

between a task and the actor appropriate to perform
that task. These steps are needed because many
actors are involved in the process and each of
them carry out a very specialized task, requiring
additional work to find an appropriate person to
perform each task.

rEsEArcH MEtHODOLOGY

To address our research question, how are bug
fixes coordinated in FLOSS projects, we carried
out a multiple case study of different FLOSS
projects, using the theoretical approach developed
in the previous section. In this section, we discuss
sample selection and data sources, data collection
and data analysis, deferring a discussion of our
findings to the following section.

sample section

In this sub-section we describe the basis for select-
ing projects for analysis. Projects to be studied
were selected from those hosted on SourceForge,
(http://sourceforge.net/), a Web-based system
that currently supports the development of more
than 100,000 FLOSS projects (although only a
small proportion of these are actually active). We
chose to examine projects from a single source
to control for differences in available tools and
project visibility. Because the process of manually
reading, rereading, coding and recoding messages
is extremely labor-intensive, we had to focus
our attention on a small number of projects. We
selected projects to study in-depth by employing
a theoretical sampling strategy based on several
practical and theoretical dimensions.

First, we chose projects for which data we need
for our analysis are publicly available, meaning
a large number of bug reports. (Not all projects
use or allow public access to the bug-tracking
system.) Second, we chose teams with more than
8 developers (i.e., those with write access to the
source code control system), since smaller proj-

ects seemed less likely to experience significant
coordination problems. The threshold of eight
members was chosen based on our expectation that
coordinating tasks within a team would become
more complicated as the number of members
increases. We assumed that each member of the
team could manage 4 or 5 relationship, but with
eight members, we expected some difficulty in
coordination to arise. Only 140 projects of Source-
Forge met the first two requirements in 2002 when
we drew our sample. Third, projects were chosen
so as to provide some comparison in the target
audience and addressed topic, as discussed below.
Finally, because we wanted to link coordination
practices to project effectiveness, we tried to select
more and less effective development teams. To
this aim we used the definitions of effectiveness
proposed by Crowston et al. (2006a), who sug-
gest that a project is effective if it is active, the
resulting software is downloaded and used and
the team continues in operation. We selected 4
FLOSS projects to satisfy the mentioned criteria.
Specifically, from the 140 large active projects, we
selected two desktop chat clients that are aimed
at end users (KICQ and Gaim) and two projects
aimed primarily at developers (DynAPI, an
HTML library and phpMyAdmin, a web-based
database administration tool). A brief description
of the projects is reported in Table 1, including
the project goal, age at the time of the study, vol-
ume of communication and team membership. A
consequence of the requirement of a significant
number of bug reports is that all four projects are
relatively advanced, making them representative
of mature FLOSS projects. Based on the definition
proposed by Crowston et al. (2006a), Kicq, Gaim
and phpMyAdmin were chosen as examples of
effective projects because they were active, the
resulting software was being downloaded and the
group had been active for a while. DynAPI was
chosen as an example of a less effective project
because the number of downloads and program-
ming activity had rapidly decreased in the months
leading up to the study.

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

62

Data collection

In this sub-section we describe how data were
selected and collected. As mentioned above, all of
these projects are hosted on SourceForge, making
certain kinds of data about them easily accessible

for analysis. However, analysis of these data poses
some ethical concerns that we had to address in
gaining human subjects approval for our study.
On the one hand, the interactions recorded are
all public and developers have no expectations of
privacy for their statements (indeed, the expec-

K
IC

Q
D

yn
A

PI
G

ai
m

ph
pM

yA
dm

in

G
oa

l
IC

Q
 c

lie
nt

 fo
r t

he
 K

D
E

pr
oj

ec
t (

a
ch

at
 c

lie
nt

)
D

yn
am

ic
 H

TM
L

lib
ra

ry
M

ul
ti-

pl
at

fo
rm

 A
IM

 c
lie

nt

(a
 c

ha
t c

lie
nt

)
W

eb
-b

as
ed

da

ta
ba

se
 a

dm
in

is
tra

tio
n

R
eg

is
tr

at
io

n
da

te
19

99
-1

1-
19

20
00

-0
5-

15
19

99
-1

1-
13

20
01

-0
3-

18

D
ev

el
op

m
en

t S
ta

tu
s

4
B

et
a,

 5
 P

ro
du

ct
io

n
St

ab
le

5
Pr

od
uc

tio
n

St

ab
le

5
Pr

od
uc

tio
n

St

ab
le

5
Pr

od
uc

tio
n

St

ab
le

L
ic

en
se

G
PL

LG
PL

, G
PL

G
PL

G
PL

In
te

nd
ed

A

ud
ie

nc
e

D
ev

el
op

er
s,

En
d

U
se

rs
/

D
es

kt
op

D
ev

el
op

er
s

A
dv

an
ce

d
En

d
U

se
rs

,
D

ev
el

op
er

s,
En

d
U

se
rs

/
D

es
kt

op

D
ev

el
op

er
s,

En
d

U
se

rs
/

D
es

kt
op

, S
ys

te
m

 A
dm

in
-

is
tra

to
rs

To
pi

c
IC

Q
, K

 D
es

kt
op

 E
nv

i-
ro

nm
en

t (
K

D
E)

D
yn

am
ic

 C
on

te
nt

A
O

L
In

st
an

t M
es

se
ng

er
,

IC
Q

, I
nt

er
ne

t R
el

ay
 C

ha
t,

M
SN

 M
es

se
ng

er

Fr
on

t-E
nd

s,
D

yn
am

ic

C
on

te
nt

, S
ys

te
m

s A
dm

in
-

is
tra

tio
n

O
pe

n
bu

gs
/

To
ta

l #
 o

f b
ug

s
26

 /8
8

45
/2

20

26
9

/1
49

9
29

 /6
39

O
pe

n
Su

pp
or

t R
eq

ue
st

s/
To

ta
l #

 o
f r

eq
ue

st
s

12
/1

8
20

/1
07

3/
12

5

O
pe

n
Pa

tc
he

s/
 T

ot
al

 #
 o

f
Pa

tc
he

s
1/

8
14

/1
44

75
/5

56
7/

13
1

O
pe

n
Fe

at
ur

es
 r

eq
ue

st
s/

To
ta

l #
 o

f r
eq

ue
st

s
9/

9
5/

12
21

4/
44

7
21

4/
44

7

M
ai

lin
g

lis
ts

81
3

m
es

sa
ge

s i
n

3
m

ai
l-

in
g

lis
ts

95
95

 in
 5

 m
ai

lin
g

lis
ts

30
4

in
 1

 m
ai

lin
g

lis
t

(d
ev

el
op

er
s)

54
56

 in
 5

 m
ai

lin
g

lis
ts

of

 te
am

m

em
be

rs
9

11
9

9

Te
am

 m
em

be
r

ro
le

s (

in

ro
le

)
A

dm
in

/p
ro

je
ct

 m
an

ag
er

(2

);
pa

ck
ag

er
 (1

);
de

-
ve

lo
pe

rs
 (3

);
ad

vi
so

r/
m

en
to

r/
co

ns
ul

ta
nt

(1
);

no
t s

pe
ci

fie
d

(2
)

A
dm

in
/p

ro
je

ct
 m

an
ag

er

(1
);

de

ve
lo

pe
rs

 (4
);

ad
m

in

(3
);

no
t s

pe
ci

fie
d

(3
)

Pr
oj

ec
t m

an
ag

er
 (1

);
ad

m
in

/
de

ve
lo

pe
r (

1)
; s

up
po

rt
m

an
ag

er
 (1

);
w

eb
 d

es
ig

ne
r

(1
);

de
ve

lo
pe

rs
 (3

) n
ot

sp

ec
ifi

ed
 (2

)

Pr
oj

ec
t m

an
ag

er
/ a

dm
in

(1

);
ad

m
in

/ d
ev

el
op

er
 (2

);
de

ve
lo

pe
rs

 (6
)

Table 1. Four examined projects

63

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

tation is the opposite, that their comments will
be widely broadcast). Consent is generally not
required for studies of public behaviour. On the
other hand, the data were not made available for
research purposes but rather to support the work of
the teams. We have gone ahead with our research
after concluding that our analysis does not pose
any likelihood of additional harm to the poster
above the availability of the post to the group and
in the archive available on the Internet.

We collected several kinds of data about each
of the cases. First, we obtained data indicative of
the effectiveness of each project, such as its level
of activity, number of downloads and development
status. Unfortunately, no documentation on the or-
ganization structure, task assignment procedures
and coordination practices adopted was available
on the projects’ web sites (further supporting the
position that these teams do not employ formal
coordination methods). To get at the bug-fixing
process, we considered alternative sources of data.
Interviewing the developers might have provided
information about their perceptions of the process,
but would have required finding their identities,
which was considered problematic given privacy
concerns. Furthermore, reliance on self-reported
data raises concerns about reliability of the data,
the response rate and the likelihood that differ-
ent developers would have different perceptions.
While these issues are quite interesting to study
(e.g., to understand how a team develops shared
mental models of a project, for example, Crowston
& Kammerer, 1998), they seemed like distractions
from our main research question. Because of these
concerns, we elected to use objective data about
the bug-fixing process. Hence, the main source
of data about the bug-fixing process was obtained
from the archives of the bug tracking system,
which is the tool used to support the bug-fixing
process (Herbsleb et al., 2001, p. 13). These data are
particularly useful because they are unobtrusive
measures of the team’s behaviors (Webb & Weick,
1979) and thus provide an objective description of

the work that is actually undertaken, rather than
perceptions of the work.

In the bug tracking system, each bug has a
request ID, a summary (what the bug is about),
a category (the kind of bug, e.g., system, inter-
face), the name of the team member (or user) who
submitted it, and the name of the team member
it was assigned to. An example bug report in
shown in Figure 1 (the example is fictitious). As
well, individuals can post messages regarding
the bug, such as further symptoms, requests for
more information, etc. From this system, we
extracted data about who submitted the bugs,
who fixed them and the sequence of messages
involved in the fix. By examining the name of
the message senders, we can identify the project
and community members who are involved in
the bug-fixing process. Demographic information
for the projects and developers and data from the
bug tracking system were collected in the period
17–24 November 2002. We examined 31 closed
bugs for Kicq, 95 closed bugs for DynAPI, 51 bugs
for Gaim and 51 for PhPMyAdmin. The detailed
text of the bug reports is not reported because of
space restriction but is available on request.

Data Analysis

In this section we present our data analysis ap-
proach. For each of the bug reports, we carefully
examined the text of the exchanged messages to
identify the task carried out by each sender. We
first applied the framework developed by Check-
land & Scholes (1990), who suggested identifying
the owners, customers and environment of the
process, the actors who perform it, the transfor-
mation of inputs into outputs, the environment
and the worldview that makes the process mean-
ingful. We then followed the method described
by Crowston & Osborn (2003), who suggested
expanding the analysis of the transformation by
identifying in more detail the activities carried out
in the transformation. We identified the activities
by inductively coding the text of the messages in

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

64

the bug tracking systems of the four projects. We
started by developing a coding scheme based on
prior work on bug fixing (Crowston, 1997), which
provided a template of expected activities needed
for task assignment (those listed above). The
coding system was then evolved through exami-
nation of the applicability of codes to particular
examples. For example the message:

I’ve been getting this same error every FIRST time
I load the dynapi in NS (win32). After reloading,
it will work… loading/init problem?

represents a report submitted by another user
(someone other than the person who initially
identified and submitted the bug). This message

was coded as “report similar problems”. Table 2
shows the list of task types that were developed
for the coding. The lowest level elementary task
types were successively grouped into 6 main
types of tasks, namely Submit, Assign, Analyze,
Fix, Test & Post, and Close. A complete example
of the coded version of a bug report (the one from
Figure 1) is shown in Figure 2.

Once we had identified the process tasks, we
studied in depth the bug-fixing process as carried
out in the four cases. Specifically, we compared
the sequence of tasks across different bugs to
assess which sequences were most common and
the role of coordination mechanisms in these
sequences. We also examined which actors per-
formed which tasks as well as looked for ways to

Figure 1. Example bug report and followup messages

65

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

1.0.0 Submit (S)

1.1.0 Submit bug (code errors)

 1.1.1 Submit symptoms

 1.1.2 Provide code back trace (BT)

 1.2.0 Submit problems

 1.2.1 Submit incompatibility problems (NC)

2.0.0. Assign (As)

2.1.0 Bug self-assignment (A*)

2.2.0 Bug assignment (A)

3.0.0 Analyze (An)

3.1.0 Contribute to bug identification

 3.1.1Report similar problems (R)

 3.1.2 Share opinions about the bug (T)

3.2.0 Verify impossibility to fix the bug

 3.2.1 Verify bug already fixed (AF)

 3.2.2.Verify bug irreproducibility (NR)

 3.2.3 Verify need for a not yet supported function (NS)

 3.2.4 Verify identified bug as intentionally introduced (NCP)

3.3.0 Ask for more details

 3.3.1 Ask for Code version/command line (V)

 3.3.2 Ask for code back trace/examples (RBT/E)

3.4.0 Identify bug causes (G)

 3.4.1 Identify and explain error (EE)

 3.4.2 Identify and explain bug causes different from code (PNC)

4.0.0 Fix (F)

4.1.0 Propose temporary solutions (AC)

4.2.0 Provide problem solution (SP)

4.3.0 Provide debugging code (F)

5.0.0 Test & Post (TP)

5.1.0 Test/approve bug solution

 5.1.1 Verify application correctness (W)

5.2.0 Post patches (PP)

5.3.0 Identify further problems with proposed patch (FNW)

6.0.0 Close

6.1.0 Close fixed bug/problem

6.2.0 Closed not fixed bug/problems

 6.2.1 Close irreproducible bug (CNR) and close it

 6.2.2 Close bug that asks for not yet supported function (CNS)

 6.2.3 Close bug identified as intentionally introduced (CNCP)

Table 2. Coded tasks in the bug-fixing process

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

66

more succinctly present the pattern of tasks, for
example, by presenting them as Markov processes.
Because of the shortness and relative simplicity
of our task sequences, we could exactly match
task sequences, rather than having to statistically
assess the closeness of matches to be able to form
clusters (Sabherwal & Robey, 1995). Therefore,
we were able to analyze the sequences by simple
tabulation and counting, though more sophisti-
cated techniques would be useful for larger scale
data analysis. In the next Section we present the
results of our analysis.

FINDINGs

In this section we present the findings from our
analysis of the bug-fixing process in the four
projects and the coordination mechanisms em-
ployed. Data about the percentage of submitted,
assigned and fixed bugs both by team members and
individuals external to the team for each project
are reported in Table 3. Table 4 summarizes our
findings regarding the nature of the bugs fixing
process in the four projects.

We now present our overall analysis of the
bug-fixing process. Each instance of a bug-fixing

Bug ID Summary Assigned to Submitter

0000000 crash with
alfa chat gills kkhub

Task Person Comments

(S) kkhub

(V) cenis asks what version kkhub is running

(R) cobvnl reports the same problem as kkhub. submits information about the
operating systems and the libraries

(V) cenis asks again what version both users are running

(W) kkhub reports the most recent version of cicq works

(TP&C) cobvnl reports version information and close the bug

(C) bug closed

Figure 2. Coded version of bug report in Figure 1

Kicq DynAPI Gaim phpMyAdmin

Bugs submitted by team members 9.7% 21% 0% 21.6%

Bugs submitted by members external to the
team 90.3% 78.9% 100% 78.4%

Bug assigned/self-assigned
of which: 9.7% 0% 2% 1%

Assigned to team members 0% - 100% 100%

Self assigned 66% 0%

Assigned to members external to the team 33% - - 0%

Bug fixed 51,6% 42,1% 51% 80%

Fixed by team members 81,3% 50% 84% 90,2%

Bug fixed by members external to the team 18,7% 50% 16% 9.8%

Table 3. The bug-fixing process: Main results

67

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

process starts (by definition) with a bug submission
(S) and finishes with bug closing (C). Submitters
may submit problems/symptoms associated with
bugs (Ss), incompatibility problems (NC) or/and
also provide information about code back trace
(BT). After submission, the team’s project man-
agers or administrators may assign the bug to
someone to be fixed ((A); (A*) if they self-assign
the bug). Other members of the community may
report similar problems they encountered (R),
discuss bug causes (T), identify bug causes (G)
and/or verify the impossibility of fixing the bug.
Participants often ask for more information to
better understand the bug’s causes (An). In most
cases, but not always, after some discussion, a
team member spontaneously decides to fix (F)
the bug. Bug fixing may be followed by a test
and the submission of a patch (TP). Testing is a
coordination mechanism that manages usability
between producing and using a patch, by ensur-
ing that the patch is usable. However, as later
explained, in the examined projects this type of
activity is not often found. The bug is then closed
(C). Bugs may also be closed because they cannot
be fixed, for example, if they are not reproduc-
ible (CNR), involve functions not supported yet

(CNS) and/or are intentionally introduced to add
new functionality in the future (CNCP). Notice
that the closing activity is usually attributed to a
particular user.

For our analysis, we consider Submission,
Analysis, Fix and Close to be operative activities,
while Assignment, Test and Posting are coordi-
nation mechanisms. As already discussed, As-
signment is the coordination mechanisms used
to manage the dependency between a task and
the actor appropriate to perform it. Posting is
the mechanisms used to manage the dependency
between a task and its customers (it makes the fix
available to the persons that need it).

The tasks identified above are linked by
sequential dependencies as shown in Figure 3.
These dependencies were identified by consider-
ing the logical connection between tasks based
on the flow of resources. For example, a patch
can not be tested before it is created. Because the
dependencies can be satisfied in different orders,
different sequences of the activities are possible.
The tasks and their sequence change from bug to
bug. Figure 3 shows the most frequent sequences
observed, as identified by tabulating and counting
the sequences.

Kicq DynAPI Gaim phpMyAdmin

Min task sequence 3 2 2 2

Max task sequence 8 12 9 13

Uncommon tasks
(count) Bug assignment (3) Bug assign-

ment (0) Bug assignment (0) Bug assignment (1)

Community members 18 53 23 20

Team members’
participation 2 of 9 6 of 11 3 of 9 4 of 10

Most active team
members
Role/ name

Project mgr: denis;
Developer: davidvh

Admin:
rainwater;
Ext member:
dcpascal

Admin-developer:
warmenhoven;
Developer: rob-
flynn

Admin-developer:
loic1;
Admin-developer
lem9.

Max posting by single
community member 2 6 4 3

Not fixable bug closed 8 5 5 -

Table 4. Observed characteristics of the bug-fixing processes in the four projects

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

68

Table 5 shows the portion of processes that
follow each possible paths, based on the collected
ways the bug-fixing process is observed to be
performed within the FLOSS teams. For example,
row 1 of Table 5 is read as follows. In the Dynapi
project, submission always occurs as the first task
(as it does for all of the groups, by definition),
while the second task is S in 26% of cases, An
in 39% of cases, F in 19% of cases, TP in 1% of
cases and C in 15% of cases, and so on.

In Table 6, we describe the occurrences per
task for the four projects and the average number
of tasks to fix bugs. A χ2 test shows a significant
difference in the distribution of task types across
projects (p<0.001). On all projects, submit is the
task that always appears first, while analyze is the
most common second task and fix, third. The first
three most frequent task sequences are reported
in Table 7. As noted above, given the limited
number of examined sequences, the sequences
were manually identified. Finally, in Table 8 we
show which tasks are carried out by which roles.
Please notice that differences in percentage shown
in Table 3 and Table 8 are due to the fact that re-
sults reported in Table 8 are calculated based on
the total number of tasks carried out per bug. For
example, in Table 3 the considered submissions
are those carried out only as first task. In Table
8 all submissions tasks (i.e., also those carried
out as second, third etc. task) are considered. As

reported in Table 2, submissions tasks can be
more than one per bug because submissions can
occur also in the form of a submit sub-task. The
same stands for the fixing tasks. In Table 3 only
the final fixing tasks are considered.

A detailed description of the process as
performed in the four cases is provided below
considering both the sequence of tasks and the
participation in the bug-fixing process.

Kicq

The minimal sequence is composed of three
tasks, the longest by eight. Bug fixing is usually
the second task in the sequence, meaning that it
is most common for bugs to be fixed immediately
after they are submitted, which is different from
the overall picture in which analysis was most
common. Bug assignment is a quite rare task,
as only three bugs are formally assigned. Eight
bugs were closed because they were considered
to be not fixable.

There are 18 identified users, but many (anony-
mous) users submitted bugs and contributed to
analysis and fixing. Team members are not very
active in bug fixing, except for one of the two
project managers (denis), who is involved in
all the tasks and, in particular, in bug analysis
and fixing. Out of 23 fixed bugs, 16 are fixed by

1 submit

2 assign

3 analyze

4 fix

5 test&post

6 close

L

L

1

L

L

L

Figure 3. Task dependencies in the bug-fixing process

69

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

2 S S 42% 26% 4% 2%

 As 6% - 2% 2%

 An 39% 39% 61% 41%

 F 13% 19% 24% 45%

 TP - 1% 2% 8%

 C - 15% 8% 2%

3 S An 38% 36% 50% 100%

 F 62% 40% 50% -

 TP - 8% - -

 C - 16% - -

 As An - - 100%

F 50% - 100% -

 TP 50% - - -

 An S 8% - - 5%

 An 25% 41% 58% 52%

 F 8% 11% 3% 29%

 TP - - 3% -

 C 58% 49% 35% 14%

 F An - 11% - 13%

 F 50% 22% 8% 4%

 TP - 6% - 4%

 C 50% 61% 92% 78%

 TP An - - - 50%

 F - 100% 100% -%

 TP - - - -50%

 C - - - -

 C An - 7% - -

C - 93% - -

4 S S - - - -

 An 100% - - -

 F - - - 100%

 TP - - - -

 C - - - -

 An S - 4% 5% -

 An 13% 48% 53% 50%

 F 25% 11% 21% 11%

 TP - 4% - 6%

 C 63% 33% 21% 33%

Table 5. Portion of processes for each possible path

continued on following page

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

70

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

 F S - - - -

As 8% - - -

 An 11% 20%

 F 33% 16% - 14%

 TP - 5% - 29%

 C 58% 68% 80% 57%

 TP S - - - -

 An - - - -

 F - 33% - 33%

 TP - - - 33%

 C - 67% 100% 33%

 C C - - 100% -

5 S AN - - 100% -

 F - - - -

 TP - 100% - -

As F 100% - - -

 An S - - - -

 An 50% 27% 73% 67%

 F - 13% 18% 11%

 TP - - - 11%

 C 50% 60% 9% 11%

 F An 17% 14% - 20%

 F -- - 25% -

 TP - - 25% -

 C 83% 86% 50% 80%

 TP An - - - -

 F - - - 50%

 TP - 100% - -

 C - - - 50%

6 An S - 11% -

 As 50% - - 14%

 An - 20% 22% 43%

 F - - 11% 29%

TP - 20% - -

 C 50% 60% 56% 14%

 F S - - - -

 An - - - -

 F - - - -

Table 5. continued

continued on following page

71

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

 TP - - - 33%

 C 100% 100% - 67%

 TP An - - - -

 F - 100% - -

 TP - - - -

 C - - - 100%

7 S AN - - 50% -

 © - - 50% -

 As F 100% - - 100%

 An S - - - 33%

An - 33%

 F - 100% 100% -

 TP - - - -

 C - - - 33%

 F An - 100% - -

 F - - - -

 TP - - - -

 C - - 100% 100%

 TP F - 100% - 100%

8 S An - - - 100%

 F - - - -

An An - 100% - -

F - 100% 100%

 F An - 50% - -

TP - - - 50%

 C 100% 50% 100% 50%

9 An An - 50% - 100%

 C - 50% - -

 F AN - - - 100%

 C - - 100% -

TP TP - - - 100%

10 An An - 100% - 50%

 F - - - 50%

TP - - - 100%

11 An An - 100% 50%

 F - - - 50%

 F C - - - 100%

12 An An - - - 100%

Table 5. continued

continued on following page

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

72

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

 C - 100% - -

 F C - - - 100%

13 An C - 100% - 100%

Table 5. continued

 Task

Project (bugs)
(S) (Ag) (An) (F) (TP) (C) Avr. tasks

per bug

KICQ (31) 44 4 24 23 0 31 4.4

Dynapi (95) 121 0 94 54 9 95 3.8

Gaim (51) 71 1 77 28 4 51 4.2

Phpmyadmin (51) 54 2 66 45 15 51 4.6

Table 6. Task occurrences and average number of tasks per projects

denis. Apart from a developer (davidvh), the other
project members seem not take part in the bug-
fixing process at all. However, it is noteworthy
that the bug tracking system register three bugs
as submitted and assigned to the administrator
(bill), although he does not otherwise take part
in the process. Most of the community members
have posted just one bug, and only two of them
posted 2 bugs each.

Dynapi

The minimal sequence is composed of two tasks,
the longest by 12. Again, bug assignment is not
explicitly carried out; apparently community or
team members decide autonomously to take part
to the bug-fixing process. However, the system
reports that six bugs (out of 95) are assigned to an
administrator and the rest to a member external

First
task

Second
task

Third
task

Fourth
Task Occurrences

Kicq
S
S
S

An
F
An

C
C
F

-
-
C

13
11
2

DynAPI
S
S
S

An
F
C

C
C
-

-
-
-

34
24
17

Gaim
S
S
S

An
F
An

C
C
F

-
-
C

21
13
6

phpMyAdmin
S
S
S

F
An
An

C
C
F

-
-
C

19
8
7

All projects
S
S
S

An
F
C

C
C
-

-
-
-

76
67
22

Table 7. Most frequent task sequences

73

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

to the team. Five bugs are closed because they are
said to be not fixable. Bug fixing is usually the
second or the third task in the sequence.

Team members are not very active except for
an administrator (rainwater), who is involved in
all the tasks and, in particular, in bug analysis
and fixing. The other five team members (two
without a specific role, one administrator/devel-
oper, one developer and one administrator) are
mostly involved in bug fixing. The community

members involved in the process are 47 persons
plus some anonymous posts. Most of them submit-
ted just one bug, but some submitted more (e.g.,
one submitted six bugs). Community members
are mostly involved in bug submission but some
also carry out other tasks. In particular, one of
them (dcpascal) is very active in all the process
tasks. Out of 57 fixed bugs, 20 are fixed by a team
member (the project manager).

task ROLES/PROJECT
Kick

 devel pm % of total tasks

S 4 9%

As 4 100%

An 18 75%

F 1 15 70%

TP

 Dynapi

 devel admin admin/develop no role % of total tasks

S 9 6 1 10 21%

As

An 27 3 32%

F 18 1 2 35%

TP 2 1 33%

 Gaim

 admin/develop develop supp. mang. % of total tasks

S 0%

As 1 100%

An 33 11 1 58%

F 17 6 82%

TP 100%

 Phpmyadmin

 admin/develop pm % of total tasks

S 11 1 22%

As 2 100%

An 49 74%

F 40 89%

TP 10 93%

Table 8. Tasks carried out by different roles

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

74

Gaim

The minimal sequence is composed of two tasks,
the longest by nine. Bug assignment is not explic-
itly carried out, as community or team members
decide autonomously to take part to the bug-fixing
process. However, the system reports that 24 bugs
(out of 51) are assigned to an administrator (and
the rest to member external to the team). Five
bugs are directly closed because they are said to
be not fixable.

Team members are not very active in bug
fixing except for the administer/developer (war-
menhoven) and a developer (robflynn), who are
involved in many tasks and, in particular, in bug
analysis and fixing. Apart from them, just another
member of the project team, a developer (lschiere),
is also involved in the bug fixing. The community
members involved in the process are 21 persons
plus some anonymous users. Most of them posted
just one bug (2 of them posted five bugs, one 4
bugs). Some of them are also involved in bug
analysis and fixing. Out of 29 fixed bugs, 23 are
fixed by a team member (the project manager).

Phpmyadmin

The minimal sequence is composed of two tasks,
the longest by thirteen. Bug assignment is a quite
rare task, as only one bug is formally assigned.
The assignment is carried out by an administrator/
developer (lem9) and directed to a team member
(loic1). However, the system reports that all 51
are assigned, of which 40 to team members. Bug
fixing is usually the second or the third task.

Team members are not very active in the proc-
ess, except for two administer/developers (loic1
and lem9), who are involved in all the tasks and,
in particular, in bug analysis and fixing (but also
submission). Apart from them, two team mem-
bers take part to the process, a project manager/
adminster (swix) and a developer (robbat2), that
are involved (not heavily) in bug submission and
analysis. The community is composed of 16 mem-
bers plus some anonymous users. Most of them

have just posted one bug (two of them posted 3
bugs), but some are also involved in bug analysis
and fixing. Out of 49 fixed bugs, 44 are fixed by
team member (administrator/developers).

DIscUssION

In this section, we discuss the implications of our
findings for understanding the coordination of bug
fixing in FLOSS teams. Our findings provide some
interesting insights on the bug-fixing process for
FLOSS development in these teams. First, pro-
cess sequences are on average quite short (four
tasks) and they seem to be quite similar: submit,
(analyze), fix and close. As shown in Table 3,
formal task assignments are quite uncommon:
only few bugs are formally assigned. Coordina-
tion seems rather to spontaneously emerge. From
bug description and initial analysis, those who
have the competencies autonomously decide to
fix the bug and simply go ahead and do so. That
activity is facilitated by the supplied bug report
and analysis, which is often undertaken by several
contributors. Apart from the procedure to submit
bugs (we analyzed only bugs submitted through
the bug tracking system), we do not observe any
other formal process: roles are not predefined,
delivery dates are not assigned nor are formal-
interpersonal, formal-impersonal or informal-
interpersonal procedures adopted. The lack of
assignment is one of main aspects differentiating
the process as it occurs in FLOSS development
team from the traditional commercial bug-fixing
process described above.

Testing is also quite an uncommon task in
the data. Most of the proposed fixes are directly
posted, though presumably after personal testing
that is not documented. If no one describes the
emergence of new problems with these fixes,
they are automatically posted and the relevant
bug closed without a formal test process. It is
important also to note that many of the posted
problems do not represent real bugs (i.e., they
have been already fixed, are not reproducible,

75

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

have been intentionally produced, are associated
to functions not yet supported or are associated
to related programs), so they are directly closed
with that explanation.

Another striking finding is that the bug-fixing
process is apparently carried out without any ex-
plicit discussion about where knowledge is located
in the team, contrary to the findings of Faraj and
Sproull (2000), who stress the importance of ex-
pertise coordination for team effectiveness (they
distinguish expertise coordination from what
they call administrative coordination, which is
the focus of this article). They define expertise
coordination as the management of knowledge
and skill dependencies. To manage knowledge it
is necessary to know where it is located within
development team, where it is needed and how
to access it. However, in our observations, the
knowledge needs seem to emerge by “(informal
and asynchronous) electronic meetings”.

The bug tracking system represents a sort of
organizational memory, storing bug reports and
solutions found to submitted problems (which
not always are real bugs). However, as discussed
in Cubranic (1999), the large number of emails
stored makes it difficult for contributors to easily
identify the solutions to their own problems, so
making different users repeat the same (already
fixed or addressed) submission more times. In
those cases (i.e., for bugs closed without being
fixed or the attended patches posted), it is usually
the team members that act as “memory”.

A further difference is that in these projects,
the process is performed by few team members
(usually not more that two or three) working
with a member of the larger community. Team
members (usually project managers, adminis-
trators or developers) are most involved in bug
fixing, testing and posting. Surprisingly, only
a few members of the team are involved in the
process. The other participants are active users
who submit bugs or contribute to their analysis.
We also noted striking differences in the level of
contribution to the process. The most active users

in the projects carried out most of the tasks while
most others contributed only once or twice. Most
community members submit only one bug; only
two or three members of the involved community
are involved in fixing tasks and can be referred to
as co-developers. As expected, the most widely
dispersed type of action was submitting a bug,
while diagnosis and bug-fixing activities were
concentrated among a few individuals.

As we have few members of the team and
few members of the community (co-developers)
mostly involved in bug fixing and many users/
members of the community (active users) mostly
involved in bug submission, the organizational
models proposed in the literature (Cox, 1998)
seem to be valid for the bug-fixing process. It
would be interesting to further investigate if
those, among the active users also involved in
bug fixing also contribute to software coding, for
example, by analysis of contributions of source
code independent of bug fixes.

As an apparently less effective project, we
expected to find that DynAPI had a smaller ac-
tive user base than the other projects. However,
as noted above, our data shows the opposite.
However, our estimation of the effectiveness of
the projects is based on activity levels. It appears
that DynAPI somehow does not benefit from
its larger community in increased activity. One
striking difference is the proportion of bugs fixed
by the team members, shown in Table 3, which
is much lower in DynAPI than in the other proj-
ects. This finding suggests that the contribution
of core members may be particularly important
in the effectiveness of the team. The case stud-
ies presented here are not sufficient to test this
hypothesis, so it is one that should be followed
up in future studies.

cONcLUsION

In this article, we investigated the coordination
practices adopted within four FLOSS develop-

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

76

ment teams. In particular, we analyzed the bug-
fixing process, which is considered central to the
effectiveness of the FLOSS process. The article
provided some interesting results. The task se-
quences we observed were mostly sequential and
composed of few steps, namely submit, fix and
close. Second, our data supports the observation
that FLOSS processes seem to lack traditional
coordination mechanisms such as task assignment.
Third, effort is not equally distributed among pro-
cess actors. A few contribute heavily to all tasks,
while the majority just submit one or two bugs.
As a result, the organization structure reflected
in the process resembles the one proposed in the
literature for the FLOSS development process.
Few actors (core developers), usually team project
managers or administrators, are mostly involved
in bug fixing. Most of the involved actors are ac-
tive users instead of developers, who just submit
bug reports. In between are few actors, external
to the team, who submit bugs and contribute to
fixing them. Finally, while we did not find obvi-
ous associations between coordination practices
and project effectiveness, we did notice a link to
participation: our least effective team also had the
lowest level of participation from core developers,
suggesting their importance, even given the more
widely distributed participation possible.

The article contributes to fill a gap in the lit-
erature by providing a picture of the coordination
practices adopted within FLOSS development
team. Besides, the article proposes an innova-
tive research methodology (for the analysis of
coordination practices of FLOSS development
teams) based on the collection of process data by
electronic archives, the codification of message
texts, and the analysis of codified information
supported by the coordination theory.

Based on the analysis of the tasks carried
out and the attendant coordination mechanisms,
we argue that the bazaar metaphor proposed by
(Raymond, 1998) to describe the FLOSS orga-
nization structure is still valid for the bug-fixing
process. As in a bazaar, the actors involved in

the process autonomously decide the schedule
and contribution modes for bug fixing, making
a central coordination actor superfluous.

As with all research, the current article has
some limitations that limit the scope of our current
conclusions and suggests directions for further
research. First, although the selected projects are
quite different in terms of target audience and
topic, other characteristics (not examined because
they are not explicitly present on the project web
sites) could be shared among projects so affecting
the obtained results. In the future, we would like
to deepen our knowledge about the coordination
practices adopted by the four projects by directly
interviewing some of the involved actors. Second,
due to the limited number of examined bugs, the
process sequences have been manually examined.
In the future, we intend to enlarge the number of
examined bugs and adopt automatic techniques
(e.g., the optimal matching technique) to analyze
and classify the task sequences. In particular, we
plan to further explore the hypothesis about the
importance of core group members by examining
a larger number of projects (e.g., to examine the
change in the population over time). Finally, in the
article we only examined administrative coordi-
nation. In the future, we intend to examine also
expertise coordination in more detail. A particular
interesting consideration here is the development
of shared mental models that might support the
coordination of the teams’ processes.

rEFErENcEs

Ahuja, M. K., Carley, K., & Galletta, D. F. (1997).
Individual performance in distributed design
groups: An empirical study. Paper presented at
the SIGCPR Conference, San Francisco.

Alho, K., & Sulonen, R. (1998). Supporting
virtual software projects on the Web. Paper
presented at the Workshop on Coordinating
Distributed Software Development Projects, 7th

77

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

International Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises
(WETICE ’98).

Anthes, G. H. (2000, June 26). Software Develop-
ment goes Global. Computerworld Magazine.

Bandow, D. (1997). Geographically distributed
work groups and IT: A case study of working
relationships and IS professionals. In Proceedings
of the SIGCPR Conference (pp. 87–92).

Bélanger, F. (1998). Telecommuters and Work
Groups: A Communication Network Analysis.
In Proceedings of the International Conference
on Information Systems (ICIS) (pp. 365–369).
Helsinki, Finland.

Bessen, J. (2002). Open Source Software: Free
Provision of Complex Public Goods: Research
on Innovation.

Bezroukov, N. (1999a). A second look at the Ca-
thedral and the Bazaar. First Monday, 4(12).

Bezroukov, N. (1999b). Open source software
development as a special type of academic re-
search (critique of vulgar raymondism). First
Monday, 4(10).

Boulding, K. E. (1956). General systems theory—
The skeleton of a science. Management Science,
2(April), 197–208.

Britton, L. C., Wright, M., & Ball, D. F. (2000).
The use of co-ordination theory to improve service
quality in executive search. Service Industries
Journal, 20(4), 85–102.

Brooks, F. P., Jr. (1975). The Mythical Man-month:
Essays on Software Engineering. Reading, MA:
Addison-Wesley.

Butler, B., Sproull, L., Kiesler, S., & Kraut, R.
(2002). Community effort in online groups: Who
does the work and why? In S. Weisband & L. At-
water (Eds.), Leadership at a Distance. Mahwah,
NJ: Lawrence Erlbaum.

Carmel, E. (1999). Global Software Teams. Upper
Saddle River, NJ: Prentice-Hall.

Carmel, E., & Agarwal, R. (2001). Tactical
approaches for alleviating distance in global
software development. IEEE Software(March/
April), 22–29.

Checkland, P. B., & Scholes, J. (1990). Soft Systems
Methodology in Action. Chichester: Wiley.

Conway, M. E. (1968). How do committees invent.
Datamation, 14(4), 28–31.

Cox, A. (1998). Cathedrals, Bazaars and the Town
Council. Retrieved 22 March, 2004, from http://
slashdot.org/features/98/10/13/1423253.shtml

Crowston, K. (1997). A coordination theory ap-
proach to organizational process design. Orga-
nization Science, 8(2), 157–175.

Crowston, K., & Howison, J. (2006). Hierarchy
and centralization in free and open source software
team communications. Knowledge, Technology
& Policy, 18(4), 65–85.

Crowston, K., Howison, J., & Annabi, H. (2006a).
Information systems success in Free and Open
Source Software development: Theory and
measures. Software Process—Improvement and
Practice, 11(2), 123–148.

Crowston, K., & Kammerer, E. (1998). Coordi-
nation and collective mind in software require-
ments development. IBM Systems Journal, 37(2),
227–245.

Crowston, K., & Osborn, C. S. (2003). A coor-
dination theory approach to process description
and redesign. In T. W. Malone, K. Crowston &
G. Herman (Eds.), Organizing Business Knowl-
edge: The MIT Process Handbook. Cambridge,
MA: MIT Press.

Crowston K., Scozzi B., (2003). Open Source
Software projects as virtual organizations: com-
petency rallying for software development. IEE
Proceedings Software, 149(1), 3-17.

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

78

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y.,
& Howison, J. (2005). Coordination of Free/
Libre Open Source Software development. Pa-
per presented at the International Conference on
Information Systems (ICIS 2005), Las Vegas,
NV, USA.

Crowston, K., Wei, K., Li, Q., & Howison, J.
(2006b). Core and periphery in Free/Libre and
Open Source software team communications.
Paper presented at the Hawai’i International Con-
ference on System System (HICSS-39), Kaua’i,
Hawai’i.

Cubranic, D. (1999). Open-source software de-
velopment. Paper presented at the 2nd Workshop
on Software Engineering over the Internet, Los
Angeles.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field
study of the software design process for large
systems. Communications of the ACM, 31(11),
1268–1287.

Curtis, B., Walz, D., & Elam, J. J. (1990). Study-
ing the process of software design teams. In
Proceedings of the 5th International Software
Process Workshop On Experience With Software
Process Models (pp. 52–53). Kennebunkport,
Maine, United States.

Cutosksy, M. R., Tenenbaum, J. M., & Glicksman,
J. (1996). Madefast: Collaborative engineering
over the Internet. Communications of the ACM,
39(9), 78–87.

de Souza, P. S. (1993). Asynchronous Organiza-
tions for Multi-Algorithm Problems. Unpublished
Doctoral Thesis, Carnegie-Mellon University.

DeSanctis, G., & Jackson, B. M. (1994). Coordi-
nation of information technology management:
Team-based structures and computer-based com-
munication systems. Journal of Management
Information Systems, 10(4), 85.

Di Bona, C., Ockman, S., & Stone, M. (Eds.).
(1999). Open Sources: Voices from the Open

Source Revolution. Sebastopol, CA: O’Reilly &
Associates.

Drucker, P. (1988). The coming of the new orga-
nization. Harvard Business Review, 3-15.

Faraj, S., & Sproull, L. (2000). Coordinating
Expertise in Software Development Teams. Man-
agement Science, 46(12), 1554–1568.

Finholt, T., Sproull, L., & Kiesler, S. (1990).
Communication and Performance in Ad Hoc
Task Groups. In J. Galegher, R. F. Kraut & C.
Egido (Eds.), Intellectual Teamwork. Hillsdale,
NJ: Lawrence Erlbaum and Associates.

Franck, E., & Jungwirth, C. (2002). Reconciling
investors and donators: The governance struc-
ture of open source (Working Paper No. No. 8):
Lehrstuhl für Unternehmensführung und -politik,
Universität Zürich.

Gacek, C., & Arief, B. (2004). The many meanings
of Open Source. IEEE Software, 21(1), 34–40.

Galbraith, J. R. (1973). Designing Complex Orga-
nizations. Reading, MA: Addison-Wesley.

Grabowski, M., & Roberts, K. H. (1999). Risk
mitigation in virtual organizations. Organization
Science, 10(6), 704–721.

Grinter, R. E., Herbsleb, J. D., & Perry, D. E.
(1999). The Geography of Coordination: Dealing
with Distance in R&D Work. In Proceedings
of the GROUP ‘99 Conference (pp. 306–315).
Phoenix, Arizona, US.

Hallen, J., Hammarqvist, A., Juhlin, F., &
Chrigstrom, A. (1999). Linux in the workplace.
IEEE Software, 16(1), 52–57.

Hann, I.-H., Roberts, J., Slaughter, S., & Fielding,
R. (2002). Economic incentives for participating
in open source software projects. In Proceedings
of the Twenty-Third International Conference on
Information Systems (pp. 365–372).

Herbsleb, J. D., & Grinter, R. E. (1999a). Archi-
tectures, coordination, and distance: Conway’s

79

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

law and beyond. IEEE Software(September/
October), 63–70.

Herbsleb, J. D., & Grinter, R. E. (1999b). Split-
ting the organization and integrating the code:
Conway’s law revisited. Paper presented at the
Proceedings of the International Conference on
Software Engineering (ICSE ‘99), Los Angeles,
CA.

Herbsleb, J. D., Mockus, A., Finholt, T. A., &
Grinter, R. E. (2001). An empirical study of global
software development: Distance and speed. Paper
presented at the Proceedings of the International
Conference on Software Engineering (ICSE 2001),
Toronto, Canada.

Hertel, G., Niedner, S., & Herrmann, S. (2003).
Motivation of Software Developers in Open
Source Projects: An Internet-based Survey of
Contributors to the Linux Kernel. Research Policy,
32(7), 1159–1177.

Humphrey, W. S. (2000). Introduction to Team
Software Process: Addison-Wesley.

Iannacci, F. (2005). Coordination processes in OSS
development: The Linux case study. Retrieved
21 September, 2006, from http://opensource.mit.
edu/papers/iannacci3.pdf

Jarvenpaa, S. L., & Leidner, D. E. (1999). Com-
munication and trust in global virtual teams.
Organization Science, 10(6), 791–815.

Jensen, C., & Scacchi, W. (2005). Collaboration,
Leadership, Control, and Conflict Negotiation in
the Netbeans.org Open Source Software Develop-
ment Community. In Proceedings of the Hawai’i
International Conference on System Science
(HICSS 2005). Big Island, Hawai’i.

Kaplan, B. (1991). Models of change and infor-
mation systems research. In H.-E. Nissen, H. K.
Klein & R. Hirschheim (Eds.), Information Sys-
tems Research: Contemporary Approaches and
Emergent Traditions (pp. 593–611). Amsterdam:
Elsevier Science Publishers.

Kogut, B., & Metiu, A. (2001). Open-source
software development and distributed innova-
tion. Oxford Review of Economic Policy, 17(2),
248–264.

Kraut, R. E., Steinfield, C., Chan, A. P., Butler,
B., & Hoag, A. (1999). Coordination and virtu-
alization: The role of electronic networks and
personal relationships. Organization Science,
10(6), 722–740.

Kraut, R. E., & Streeter, L. A. (1995). Coordina-
tion in software development. Communications
of the ACM, 38(3), 69–81.

Krishnamurthy, S. (2002). Cave or Community?
An Empirical Examination of 100 Mature Open
Source Projects. First Monday, 7(6).

Lawrence, P., & Lorsch, J. (1967). Organization
and Environment. Boston, MA: Division of Re-
search, Harvard Business School.

Leibovitch, E. (1999). The business case for Linux.
IEEE Software, 16(1), 40–44.

Lerner, J., & Tirole, J. (2001). The open source
movement: Key research questions. European
Economic Review, 45, 819–826.

Madanmohan, T. R., & Navelkar, S. (2002). Roles
and Knowledge Management in Online Technol-
ogy Communities: An Ethnography Study (Work-
ing paper No. 192): IIMB.

Malone, T. W., & Crowston, K. (1994). The in-
terdisciplinary study of coordination. Computing
Surveys, 26(1), 87–119.

Markus, M. L., Manville, B., & Agres, E. C. (2000).
What makes a virtual organization work? Sloan
Management Review, 42(1), 13–26.

Markus, M. L., & Robey, D. (1988). Information
technology and organizational change: Causal
structure in theory and research. Management
Science, 34(5), 583–598.

Massey, A. P., Hung, Y.-T. C., Montoya-Weiss, M.,
& Ramesh, V. (2001). When culture and style aren’t

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

80

about clothes: Perceptions of task-technology
“fit” in global virtual teams. In Proceedings of
GROUP ’01. Boulder, CO, USA.

McCann, J. E., & Ferry, D. L. (1979). An approach
for assessing and managing inter-unit interde-
pendence. Academy of Management Review,
4(1), 113–119.

Metiu, A., & Kogut, B. (2001). Distributed
Knowledge and the Global Organization of
Software Development (Working paper). Phila-
delphia, PA: The Wharton School, University of
Pennsylvania.

Mintzberg, H. (1979). The Structuring of Organi-
zations. Englewood Cliffs, NJ: Prentice-Hall.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies Of Open Source Software
development: Apache And Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309–346.

Mohr, L. B. (1971). Organizational technology
and organizational structure. 16, 444–459.

Mohr, L. B. (1982). Explaining Organizational
Behavior: The Limits and Possibilities of Theory
and Research. San Francisco: Jossey-Bass.

Moon, J. Y., & Sproull, L. (2000). Essence of
distributed work: The case of Linux kernel. First
Monday, 5(11).

Nejmeh, B. A. (1994). Internet: A strategic tool
for the software enterprise. Communications of
the ACM, 37(11), 23–27.

O’Leary, M., Orlikowski, W. J., & Yates, J. (2002).
Distributed work over the centuries: Trust and
control in the Hudson’s Bay Company, 1670–1826.
In P. Hinds & S. Kiesler (Eds.), Distributed Work
(pp. 27–54). Cambridge, MA: MIT Press.

Orlikowski, W. J. (2002). Knowing in practice: En-
acting a collective capability in distributed orga-
nizing. Organization Science, 13(3), 249–273.

Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules. Communica-
tions of the ACM, 15(2), 1053–1058.

Pfaff, B. (1998). Society and open source: Why
open source software is better for society than
proprietary closed source software. from http://
www.msu.edu/user/pfaffben/writings/anp/oss-
is-better.html

Pfeffer, J. (1978). Organizational Design. Arling-
ton Heights, IL: Harlan Davidson.

Pfeffer, J., & Salancik, G. R. (1978). The External
Control of Organizations: A Resource Depen-
dency Perspective. New York: Harper & Row.

Prasad, G. C. (n.d.). A hard look at Linux’s claimed
strengths…. from http://www.osopinion.com/
Opinions/GaneshCPrasad/GaneshCPrasad2-2.
html

Raymond, E. S. (1998). The cathedral and the
bazaar. First Monday, 3(3).

Robey, D., Khoo, H. M., & Powers, C. (2000).
Situated-learning in cross-functional vir-
tual teams. IEEE Transactions on Professional
Communication(Feb/Mar), 51–66.

Sabherwal, R., & Robey, D. (1995). Reconcil-
ing variance and process strategies for studying
information system development. Information
Systems Research, 6(4), 303–327.

Sandusky, R. J., Gasser, L., & Ripoche, G. (2004).
Bug Report Networks: Varieties, Strategies, and
Impacts in an OSS Development Community.
Paper presented at the Proceedings of the ICSE
Workshop on Mining Software Repositories,
Edinburgh, Scotland, UK.

Sawyer, S., & Guinan, P. J. (1998). Software
development: Processes and performance. IBM
Systems Journal, 37(4), 552–568.

Scacchi, W. (1991). The software infrastructure
for a distributed software factory. Software En-
gineering Journal, 6(5), 355–369.

81

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Scacchi, W. (2002). Understanding the require-
ments for developing Open Source Software sys-
tems. IEE Proceedings Software, 149(1), 24–39.

Scacchi, W. (2005). Socio-technical interaction
networks in Free/Open Source Software devel-
opment processes. In S. T. Acuña & N. Juristo
(Eds.), Software Process Modeling (pp. 1–27).
New York: Springer.

Stewart, K. J., & Ammeter, T. (2002). An ex-
ploratory study of factors influencing the level of
vitality and popularity of open source projects.
In Proceedings of the Twenty-Third Interna-
tional Conference on Information Systems (pp.
853–857).

Taylor, P. (1998, December 2). New IT mantra
attracts a host of devotees. Financial Times,
Survey—Indian Information Technology, p. 1.

Thompson, J. D. (1967). Organizations in Action:
Social Science Bases of Administrative Theory.
New York: McGraw-Hill.

Torvalds, L. (1999). The Linux edge. Communica-
tions of the ACM, 42(4), 38–39.

Valloppillil, V. (1998). Halloween I: Open Source
Software. from http://www.opensource.org/hal-
loween/halloween1.html

Valloppillil, V., & Cohen, J. (1998). Halloween II:
Linux OS Competitive Analysis. from http://www.
opensource.org/halloween/halloween2.html

Victor, B., & Blackburn, R. S. (1987). Interdepen-
dence: An alternative conceptualization. Academy
of Management Review, 12(3), 486–498.

Walz, D. B., Elam, J. J., & Curtis, B. (1993). Inside
a software design team: knowledge acquisition,

sharing, and integration. Communications of the
ACM, 36(10), 63–77.

Watson-Manheim, M. B., Chudoba, K. M., &
Crowston, K. (2002). Discontinuities and conti-
nuities: A new way to understand virtual work.
Information, Technology and People, 15(3),
191–209.

Wayner, P. (2000). Free For All. New York:
HarperCollins.

Webb, E., & Weick, K. E. (1979). Unobtrusive mea-
sures in organizational theory: A reminder. Ad-
ministrative Science Quarterly, 24(4), 650–659.

Weber, S. (2004). The Success of Open Source.
Cambridge, MA: Harvard.

Weisband, S. (2002). Maintaining awareness in
distributed team collaboration: Implications for
leadership and performance. In P. Hinds & S.
Kiesler (Eds.), Distributed Work (pp. 311–333).
Cambridge, MA: MIT Press.

Zuboff, S. (1988). In the Age of the Smart Machine.
New York: Basic Books.

ENDNOtE

1 This research was partially supported by
US NSF Grants 03-41475, 04–14468 and
05-27457. An earlier version of this article
was presented at the First International
Workshop on Computer Supported Activity
Coordination (CSAC 2004). The authors
thank previous anonymous reviewers of the
article for their comments that have helped
to improve the article.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 2, edited by K. Siau, pp. 1-30,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

82

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4
Conflicts, Compromises, and

Political Decisions:
Methodological Challenges of Enterprise-

Wide E-Business Architecture Creation

Kari Smolander
Lappeenranta University of Technology, Finland

Matti Rossi
Helsinki School of Economics, Finland

AbstrAct

This article describes the architecture development process in an international ICT company, which is
building a comprehensive e-business system for its customers. The implementation includes the integra-
tion of data and legacy systems from independent business units and the construction of a uniform Web-
based customer interface. We followed the early process of architecture analysis and definition over a
year. The research focuses on the creation of e-business architecture and observes that instead of guided
by a prescribed method, the architecture emerges through somewhat non-deliberate actions obliged by
the situation and its constraints, conflicts, compromises, and political decisions. The interview-based
qualitative data is analyzed using grounded theory and a coherent story explaining the situation and its
forces is extracted. Conclusions are drawn from the observations and possibilities and weaknesses of
the support that UML and RUP provide for the process are pointed out.

INtrODUctION

Robust technical architecture is considered
one of the key issues when building success-
ful e-business systems. The design of technical

architecture is usually seen as a set of trade-offs
between available resources (such as available
personnel and money) and operational require-
ments related to technical architecture, such as
scalability, capacity, response times, security, and

83

Conflicts, Compromises, and Political Decisions

availability. The software architecture research
provides design tools for technical architecture
design, including, for instance, architecture de-
scription languages (Dashofy, Van der Hoek, &
Taylor, 2005; Medvidovic & Taylor, 2000), com-
mon architectural patterns and styles (Monroe,
Kompanek, Melton, & Garlan, 1997), architectural
trade-off methods (Kazman, Klein, & Clements,
2000), architectural frameworks (Leist & Zellner,
2006), and technologies for e-business implemen-
tation (Bichler, Segev, & Zhao, 1998). In an ideal
world, the work of an architect would be to find
the explicit requirements for architecture, and
select the best possible design tools and technolo-
gies to implement the architecture. Furthermore,
the architecture development team would make
rational trade-offs concerning the requirements,
and produce the best realistic solution for the
architecture with the selected design tools and
implementation technologies.

However, the literature contains many ex-
amples of cases where technical rationality has not
been sufficient for the success in IS projects (e.g.
Sauer, Southon, & Dampney, 1997). Architecture
researchers have found that the work of an archi-
tect and the usage of architecture are bound by
more diverse organizational issues and limitations
that the classical technical software architecture
research ignores. These include for example the
diverse role of an architect in an organization
observed by Grinter (1999) and varying uses and
meanings of architecture in practice (Smolander
& Päivärinta, 2002a). The main message of these
studies is that an architect has a social, and even
political, role in an organization and that different
stakeholders relate different meanings to archi-
tecture to fulfill their informational requirements
in the development process. This phenomenon
has remarkable similarities to information sys-
tems development in general. As pointed out by
Klein & Hirscheim, the implicit assumption of
rationality of the development processes hides the
legitimating of the goals and differing political

agendas of various stakeholders (Hirschheim &
Klein, 1989).

To understand the issues involved in architec-
ture development, we observed a project that was
developing e-business architecture in an inter-
national ICT company. We interviewed various
stakeholders to gain a deep insight into the process.
The company already had several e-commerce
systems in individual business units, but it needed
a more uniform customer interface for its vari-
ous systems. The e-business project included the
integration of data and legacy systems from these
units and the construction of a uniform Web-based
customer interface hiding the differences of the
business units. Our goal was to find ways for
supporting architecture development by means
of methods and description languages, such as
UML. We were aware of efforts of supporting ar-
chitecture design with UML (e.g., Conallen, 1999;
Garlan & Kompanek, 2000; Hofmeister, Nord, &
Soni, 1999b; Object Management Group, 1999,
2006), but these efforts were mostly targeted to
technical software design and we did not know how
well these would support a large socio-technical
or organizational project, such as enterprise or
e-business architecture development. Therefore
we decided to observe a real world project and
concentrate on the requirements that e-business
architecture development in its complex organi-
zational context state on description languages
and development methods. Next, we decided to
compare the observed requirements to the support
that UML and RUP offer, because they, together,
form the current methodological basis for many
systems development organizations. UML is the
de-facto standard language in software and sys-
tems development and RUP (Jacobson, Booch,
& Rumbaugh, 1999) is a widely known process
model that claims to improve development pro-
cess maturity (Kuntzmann & Kruchten, 2003).
We believed that this kind of knowledge would
benefit both practitioners in process improvement
and developers of UML extensions.

Conflicts, Compromises, and Political Decisions

84

Another interest was to find out what factors
influenced the creation of e-business architecture:
was it designed purposefully by software archi-
tects through rational decisions and trade-offs, or
did it emerge through somewhat non-deliberate
actions obliged by the situation and its constraints,
conflicts, compromises, and political decisions?
This is a very important issue, as unlike software
architecture, e-business architecture is very tightly
coupled with the business models of the company
and thus the architecture has a far more direct
impact on business than for example low-level
system architecture. Furthermore, if the busi-
ness models are not supported by the e-business
architecture, then the business strategy will not
work (Ross, Weill, & Robertson, 2006).

We used open interviews of various actors in
the projects to gather the necessary information
about the project. We analyzed the qualitative
data from the interviews using grounded theory
(Glaser & Strauss, 1967) as the research method
and concluded the analysis by categorizing the
issues that had emerged using the taxonomy of
Lyytinen (1987). Thus, we classified the issues
as belonging into technical, language and or-
ganizational context. From this classification of
issues, we extracted requirements for development
methods when developing integrated e-business
solutions and compared these requirements to
the support that the combination of UML and
RUP provides.

We observed that most of the problems encoun-
tered had very little to do with descriptions of the
architecture per se. Rather what was problematic
were the issues that architecture development ex-
posed about the underlying organization. This is
an important finding, as most of the research into
architecture has been about effective description
languages and design processes and there is a void
of research about the organizational consequences
of architecture development.

The article is organized as follows: we start
by explaining in more detail what is meant by
architecture in this article (section 2). In section

3, we describe the research process and method
used. section 4 describes the situation the com-
pany is facing and the motives for the change and
implementation of the e-business system. In sec-
tion 5, we describe the situation and the context
of the development project aiming at e-business
implementation and the consequences of the situ-
ation for the progress of the development project.
From the observed issues faced by the develop-
ment project we draw conclusions and extract
the requirements for development methods in
e-business architecture development and compare
the requirements to support that the combination
of UML and RUP provides (section 6). We point
out areas where current research is not supporting
the needs of the practice of general and particularly
e-business architecture development.

ArcHItEctUrE IN sYstEMs
DEVELOPMENt

In this study, we describe a process where compre-
hensive e-business architecture is being created. In
addition to e-commerce systems serving external
customer transactions, e-business includes both
the integration of and streamlining of internal
information systems to serve the new digitally
enabled business processes (Kalakota & Rob-
inson, 2001) and the unified customer interface
(Ross et al., 2006). For the sake of simplicity,
we understand e-business here to cover both the
transactions and processes within a firm and the
integrated external e-commerce systems as in
(Kalakota & Robinson, 2001). This enables us
to interpret the process in the studied organi-
zation as the process of building an integrated
e-business architecture. Ross et al. (2006) stress
the architecture as the necessary foundation for
execution of comprehensive, across the functions
operating, e-business.

Conventionally, architecture is understood
as a high-level logical abstraction of the system
defining the main components of the system and

85

Conflicts, Compromises, and Political Decisions

their relationships. The term architecture is also
used both in the context of an individual system
and in the context of systems integration. The
software architecture typically concentrates on the
architecture of a single software system, whereas
the terms information systems (IS) architecture
and enterprise architecture (Kim & Everest, 1994;
Ross et al., 2006; Sowa & Zachman, 1992) refer to
the overall architecture of all information systems
in an organization.

In practice, however, the borderline between
a single system and a set of systems is difficult to
determine. Practically no system today is isolated
from other systems, and the relationship of a
system to its environment may be architecturally
more important than the inner structure of the
system, especially when developing e-business
systems. Usually, systems rely on a common
technical infrastructure, (including networks,
processing services, operation services, etc.)
which is common for all the systems in an orga-
nization. Organizationally, architecture design is
a co-operative effort involving many roles in the
development environment. These roles include the
role of an architect who is specifically associated
with the task of architecture design. An architect
needs contribution and commitment from many
individuals, teams, and parts of organization to
succeed in the effort (Grinter, 1999).

By architecture development, we mean a
process where early design decisions are real-
ized into an architecture defining that defines
system’s composition from various viewpoints.
Architecture also contains the blueprints for
system’s implementation from conceptual and
physical components. This process forms a set of
documents which different stakeholders can use to
relate their concerns to the issues made concrete
by the architecture and discuss their needs in the
terms defined by the common architecture. They
can also make decisions concerning system devel-
opment strategies and policies using architecture
as a common reference. This conception sees
architecture not only as a technical artifact but

also as a boundary object (Star & Griesemer, 1989)
having strong organizational connotations.

The conventional role of architecture is to serve
as an enabler for further design and implementa-
tion (Hofmeister, Nord, & Soni, 1999a; Shaw &
Garlan, 1996). Obviously, sound and well-designed
technical architecture makes the detailed design
and implementation of a system easier and less
risky than it would be without such architecture.
Architecture defines, for example, the modules
or components which the system is composed of,
and therefore it focuses and constrains the solu-
tion space of individual designers that develop
individual components. This technical view of
architecture has produced also studies related to
UML. In the end of last decade, possibilities and
weaknesses of UML as an architecture descrip-
tion language, and its complexity (Siau & Cao,
2001; Siau, Erickson, & Lee, 2005) were widely
evaluated and enhancements were proposed
(Conallen, 1999; D’Souza & Wills, 1998; Egyed
& Medvidovic, 1999; Garlan & Kompanek, 2000;
Hofmeister et al., 1999b; Medvidovic, Egyed, &
Rosenblum, 1999; Rumpe, Schoenmakers, Rader-
macher, & Schürr, 1999). The recent developments
in this area include the SysML extension of UML
(Object Management Group, 2006). Different
profiles and enhancements to UML have been
proposed to tackle its limitations in electronic
commerce (Dori, 2001).

rEsEArcH PrOcEss

The studied organization is a globally operating
ICT company having thousands of employees
worldwide. Its customers include both consumers
and businesses for which the organization provides
various products and services. Software is one of
the key assets in the organization’s service produc-
tion and product development. Historically, the
organization has had several independent busi-
ness units targeted at diverging business sectors.
In addition, the information management of the

Conflicts, Compromises, and Political Decisions

86

organization has been distributed to these busi-
ness units and the functions of enterprise level
information management have included mainly
the provision of network infrastructure, enterprise
level accounting, and basic office tools. Most of
the information systems in use have been imple-
mented and operated by the business units that
have been quite independent in their decisions
concerning strategies for information manage-
ment. However, recent developments in markets
and technology have led the organization to set
its strategies to a more integrative direction. For
this reason, the organization has set an objective
to provide an integrated e-business solution to
both its consumer and business customers. This
will include both implementation of a uniform
Web-based customer interface and sufficient
integration between the distributed operative
back-end information systems, such as customer
management and billing systems.

The research process followed the grounded
theory method (Glaser & Strauss, 1967), which is
a research method developed originally for social
sciences by Glaser and Strauss in the 1960s and
later developed and re-interpreted by the original
authors (e.g., Glaser, 1978; Strauss & Corbin,
1990) and others (e.g., Locke, 2001; Martin &
Turner, 1986). Grounded theory promotes induc-
tive theory creation from the data. The objective
is not to validate or test theories but to create one.
The analysis process of the grounded theory is
explicitly defined and consists of several coding
phases. The coding starts from open coding in
which any incident, slice, or element of the data
may be given a conceptual label for the identi-
fication of commonalities. These commonalities
are called categories and they are described in
terms of their properties (Fernández, Lehmann,
& Underwood, 2002). The coding continues with
axial coding (Strauss & Corbin, 1990) or theo-
retical coding (Glaser, 1978), where relationships
between the categories are resolved. The coding
ends at selective coding (Strauss & Corbin, 1990)
where the resulting theory is “densified” (Glaser,

1978) or a core category selected (Strauss &
Corbin, 1990) and theory about that is described.
The data collection is based on the notion of
theoretical sampling, which means adjusting the
data collection process according to the require-
ments of the emerging theory. The sources of
data may be adjusted during the process and the
data collection can be stopped whenever a state
of theoretical saturation is achieved, meaning a
situation where no additional data would further
develop the categories and their properties.

In the study, we interviewed 19 participants of
the ongoing e-business system architecture design
project during 2002, first in January and Febru-
ary and then later in November and December.
The interviewees included six system architects,
five enterprise system managers, three project
managers, two software development managers,
one project leader, one system analyst, and one
marketing manager. Table 1 describes their rela-
tionship to the e-business development project.
The interviews lasted from 45 to 120 minutes and
they were completely transcribed as text.

The interview themes of this study were ad-
justed during the data collection to reflect better
the developing theoretical understanding of the
researchers and the specific knowledge of the
interviewees. The emphasis of the interviews
changed according to the interviewee and the spe-
cial knowledge in his or her possession. Because
the data collection proceeded partly in parallel
with the analysis, the emerging theory also caused
changes in the emphasis of the interview themes.
In grounded theory this kind of adaptation is called
theoretical sensitivity, and for theory-building
research this is considered legitimate because
“investigators are trying to understand each case
individually and in as much depth as feasible”
(Eisenhardt, 1989, p. 539). Eisenhardt calls the
process where the emergence of a new line of
thinking causes the altering of data collection
controlled opportunism “in which researchers take
advantage of the uniqueness of a specific case and

87

Conflicts, Compromises, and Political Decisions

the emergence of new themes to improve resultant
theory” (Eisenhardt, 1989, p. 539).

The analysis in this study started with the open
coding phase. In the beginning, we did not have
any explicit a priori constructs for the analysis.
Our task was to search mentions from the inter-
views that could be interpreted as meaningful
related to the research question, “What are the
conditions and constraints for creating and design-
ing architecture in a large information systems
development project?” The identified mentions
related to this question were categorized using
the software tool ATLAS.ti. During the open
coding phase, altogether 187 emergent categories
were found, and the categories were assigned to
emerging scheme of super categories or category
families, including for instance changes, conflicts,
consequences, experiences, problems, purposes,
and solutions occurring during the e-business ar-
chitecture design and implementation process.

The axial coding started in parallel with the
open coding and causal relationships between
categories were recorded with Atlas.ti’s semantic
network capability. Figure 1 shows an example of
such a network diagram. In the figure, the boxes

represent categories, the arrows between them
interpreted causalities, and the lines associations
between categories. The number of categories and
the number of identified relationships between
the categories added up to 187 categories and
200 relationships, which created a problem of
how to report such a multitude of categories and
relationships. The solution was sought through
abstracting out those categories that were rarely
occurring in the data and interpreted as not so
relevant regarding the research question. In addi-
tion, more attention was paid to those categories
that occurred frequently in the data.

Inductively, we produced an explaining story to
the events and forces under which the e-business
development project had to work. The organiza-
tion is facing market changes and changing the
organization according to the changing markets.
The objectives for the e-business development
emerge from these changes and because the
change is continuous and it brings all the time
new requirements for the e-business system, the
objectives are quite fluctuating. In addition, the
history and legacy structures of the organization
cause conflicts and problems in the development

Role Tasks Interviews

System architect Deals with technological solutions and architectural structures in
the e-business development project 6

Enterprise system manager
Is responsible for a portfolio of systems and technologies that are
used in a particular organization. Acts as a customer in the internal
e-business development project or participates it as an expert.

5

Project manager Manages resources and is responsible for the execution of a sub-
project of the e-business development project 3

Software development
manager Is responsible for a permanent software development organization 2

Project leader Manages the e-business development super-project and supervises
its set of sub-projects. 1

System analyst Participates the requirements gathering and analysis phases as an
intermediate between customers and technical experts. 1

Marketing manager
Is responsible for the public image and services of the electronic
channel. Requirements setter and a customer to the development
project.

1

Table 1. Interviewed persons and their roles

Conflicts, Compromises, and Political Decisions

88

Figure 1. An example of a semantic network from axial coding

=>

=>

=>

=>

==

=>

=>

=>

=>

=>

=>

=>

=>=>=>

=>
=>

=>

=>

=> =>
=>

=>

=>

=> =>

==
=>

=>

==

==

==

=>

<>

Pr
ob

lem
: m

ak
ing

 ag
re

em
en

ts
ab

ou
t r

ule
s a

nd
 ob

jec
tiv

es

Pr
ob

lem
: d

ec
isi

on
 m

ak
ing

Co
ns

eq
ue

nc
e:

for
ce

d d
ec

isi
on

s

Co
nfl

ict
: h

igh
-le

ve
l v

s.
low

-le
ve

l
de

cis
ion

s

Ex
pe

rie
nc

e:
ind

ep
en

de
nt

bu
sin

es
se

s

Pr
ob

lem
: u

nc
lea

r b
en

efi
ts

Co
nfl

ict
: d

iffe
re

nt
re

qu
ire

me
nts

be
tw

ee
n b

us
ine

ss
 un

its

Co
nfl

ict
: d

iffe
re

nt
leg

ac
y s

ys
tem

s

Pr
ob

lem
: c

re
ati

ng
 co

mm
on

un
de

rst
an

din
g

~P
ro

ble
m:

 un
cle

ar
 ob

jec
tiv

es

Co
nfl

ict
: d

iffe
re

nt
pe

rso
nn

el
pr

ofi
le

be
tw

ee
n b

us
ine

ss
 un

its

Co
nfl

ict
: d

iffe
re

nt
his

tor
ies

 of

bu
sin

es
s u

nit
s

Co
ns

eq
ue

nc
e:

no
 “g

ra
nd

 pl
an

”

Pr
ob

lem
: e

me
rg

en
t a

rch
ite

ctu
re

Pr
ob

lem
: ti

gh
t s

ch
ed

ule

So
lut

ion
: te

am
 bu

ild
ing

So
lut

ion
: m

ak
e d

ec
isi

on
s a

t lo
w

lev
el

Pr
ob

lem
: u

nc
lea

r p
ro

jec
t

or
ga

niz
ati

on

~P
ro

ble
m:

 av
oid

ing
 co

nfl
ict

s

Pr
ob

lem
: u

nc
lea

r p
ro

jec
t fi

na
nc

ing

Co
ns

eq
ue

ns
e:

mi
nim

al
so

lut
ion

Co
ns

eq
ue

nc
e:

lim
ite

d d
es

ign

89

Conflicts, Compromises, and Political Decisions

when combined with the need for change. These
fluctuating objectives and emerging conflicts
and problems brought certain consequences to
the e-business architecture development in the
organization. The formation and description of
this explaining story can be considered as selective
coding (Strauss & Corbin, 1990) and its details
in the studied organization are explained in the
next three sections.

The study has required extensive interpretation
and exploration in the studied organization and
therefore the main instruments of the research
has been the researchers and their ability to
interpret events and people’s actions correctly.
Robson (2002) lists three threats to validity in
this kind of research, reactivity (the interference
of the researcher’s presence), researcher bias,
and respondent bias, and strategies that reduce
these threats. We have used these strategies in
the following way:

• Prolonged involvement: Although this
study lasted for one year, the research project
altogether lasted for more than two years
in the same organization and consisted of
several phases and data collection rounds.

• Triangulation: The study has used data
and observer triangulation as presented by
Denzin (1978). To reduce the bias caused by
researchers, we used observer triangulation,
because the data collection was done by
two researchers. The bias caused by data
was minimized using data triangulation,
where different sources of data were used.
Interviews were the primary data collection
method, but we also received many kinds
of project and company documents and
architecture descriptions.

• Peer debriefing and support: The research
has included regular meetings and discus-
sions with involved research participants
from several research institutions. In addi-
tion, preliminary results of research phases
have been presented and discussed in con-

ferences and workshops (Smolander, 2003;
Smolander, Hoikka, Isokallio et al., 2002;
Smolander & Päivärinta, 2002a, 2002b;
Smolander, Rossi, & Purao, 2002, 2005).

• Member checking: The interpretation of
the data has been confirmed by presenting
the results to company participants in the
research project.

• Audit trail: All interviews have been
recorded and transcribed. The notes and
memos of the study have been preserved and
data coding and analysis results are available
through the analysis tool used, ATLAS.ti.

cHANGEs AND tHEIr EFFEcts IN
tHE DEVELOPMENt cONtEXt

starting Point: changing Markets,
changing Organization

During the time of the data collection, there
was a considerable change going on in the ICT
market and the organization under study had
undergone a deep change. A few years ago, the
strategies emphasized growth and utilization of
the possibilities in the stock market. This enforced
independent business units inside the organization
since the growth was easier to handle through
independency. Each of the business units built
independent e-commerce solutions and customer
extranets, which resulted to a fragmentary set of
e-commerce solutions to customers with own
Internet sites, sales and billing systems, and Web-
based customer support.

When the beliefs in the possibilities of ICT
sector’s continuing growth diminished, the orga-
nization had to change its strategies from growth
to profitability and from stock market to customer
orientation. With independent business units,
there was no authority in the organization, which
would see a customer as a whole. Instead, each
business unit kept track of the customers only in
the context of its independent business. To produce

Conflicts, Compromises, and Political Decisions

90

a unified customer interface a profound change to
the way of building information systems and an
integrated e-business solution was needed. This
change would also require changes in business
practices and organization. The organization
should operate in a more integrated fashion and
the barriers between independent units should
be lowered.

The organization began to see technical e-busi-
ness architecture as an enabler of change. The IS
organizations in independent business units were
obliged to cooperate and enforce commitment
to the integration of information systems. This
also emphasized the role of central information
management, which had been in a minor role this
far. Now, its roles would include the enforcement
of information systems integration and enabling
the unification of the sales channels and customer
management for the planned e-business solution.
At this point, the organization decided to estab-
lish a working group of systems architects from
various parts of the organization. In the follow-
ing section, we shall describe the context and the
forces under which this group of architects were
developing and designing the unified e-business
architecture.

Conflicts, Problems and Varying
Purposes

The context for e-business architecture develop-
ment included many issues, which the working
group for technical architecture development
had to face and be aware of. These included the
market changes as described above, historical
organizational inertia, fluctuating requirements
and objectives, and conflicts and problems emerg-
ing from the market changes, inertia, and unclear
objectives.

Historical Inertia

The organization’s history with independent
businesses and their diverging functions and

objectives had both psychological and technical
consequences causing slow progress and conflicts
in the integrated e-business development. Each
of the business units had legacy systems with
incompatible information structures, technical
architectures, and operating principles. It was
not possible in practice to replace these systems
with a uniform solution at once.

The historical inertia had effects also on the
organization responsible for information man-
agement and information systems. Because of
the independence, the organization had no clear
central information management that could take
responsibility of the e-business architecture de-
velopment. Many of the conflicts and problems
described later arose from this situation.

The Observed Objectives for the
E-Business System

The fluctuating objectives, meanings, and require-
ments for the e-business architecture created
another source of conflicts and problems. In a
large organization with a high degree of indepen-
dency, the conceptions among different business
units and individuals about the purposes of an
e-business solution vary considerably. Among the
interviewees, we identified a large set of different
purposes for the e-business system, which were
then classified in five distinct classes:

• Creation of a unified electronic customer
interface.

• Reduction of costs.
• Integration of information systems.
• Gaining business advantage.
• Implementing an organization change.

This list of observed purposes for the e-
business system looks quite comprehensive and
ambitious. Different interviewees emphasized
the purposes differently and many saw that the
only realistic objective was to implement a single
sign-on procedure with a minimal level of cus-

91

Conflicts, Compromises, and Political Decisions

tomer information integration. The list anyhow
shows the complicated and conflicting nature of
objectives for the e-business system when it is
developed for a large enterprise.

Emerging Conflicts and Problems

Changes in markets and organization, the history
of the organization, and the complicated objec-
tives for the e-business system put the architecture
development group in a difficult situation. The
group and its members were obliged to respond by
some means and these responses shaped mitigated
the role of deliberate design in the development
process. In open coding, we identified in total
48 categories of conflicts and problems. This list
was further combined to seven main categories,
as follows:

• Varying requirements and unclear objec-
tives

• Problems in the cooperation between techni-
cal and business people

• Conflict avoidance and problems in decision-
making

• Problematic role of the central information
management and its missing working prac-
tices

• Difficulties in creating common understand-
ing about the architecture

• Difficulties in determining the level of in-
tegration

• Problems of implementing the integration

As described earlier, the purposes of the system
were manifold and complicated and the require-
ments varied according to the business needs
in the business units. The architects held this
ambiguity of objectives and requirements as the
biggest obstacle in the development. Those in the
managerial level recognized the problem as well,
but explained it as unavoidable in the situation and
expected that the first prototypes of the system will
bring more clarity to the objectives. This resembles

the chicken-egg problem: architects must know
well the objectives to design the architecture, but
the objectives are further clarified only after the
first version of the architecture is built.

There were several mentions about the prob-
lems in the cooperation between technical and
business people. Architects expected the business
managers to explicate clear requirements and
objectives for the system and its architecture.
However, they considered the task impossible,
because they thought that the business manag-
ers do not possess enough understanding about
the possibilities of current technology. They felt
that this leads to unrealistic objectives, which
were manifested especially when considering
the possibilities of legacy systems integration:
people with business background had far more
optimistic views than architects.

Conflict avoidance and problems in decision-
making slowed the progress. Again, because of the
history of independency, a central authority that
could take care of the architectural decisions for
the integrated e-business solution was missing.
Because nobody took a full responsibility of the
situation, this led to avoidance of conflicts and
enforced the tendency towards compromises. A
frequently occurring phrase among the architects
included the term “lowest common denominator,”
which was usually noting to the compromised solu-
tion with a single sign-on procedure and a minimal
level of customer information integration.

The role of the central information manage-
ment was unclear and it was lacking the routine of
large development efforts. The independency of
businesses and the minor role of central informa-
tion management had implications on the working
practices. The architectural and development prac-
tices of the business units contained considerable
differences implying that also common working
practices needed to be established for the develop-
ment process of the e-business system.

Even the understanding of the designed ar-
chitecture and related technical solutions were
difficult to communicate across the organiza-

Conflicts, Compromises, and Political Decisions

92

tion. Since the business units have had their own
histories and produced their own legacy systems
and information architectures, the interpretations
on the situation and objectives diverged. This,
combined with changing organization, unclear
objectives, and missing common working prac-
tices, created difficulties in understanding and
transferring architectural knowledge between the
participants from different business units.

It was also difficult to determine the level of
integration between the systems. The ownership
of the information becomes an issue even in the
most modest single sign-on e-business solution
serving the whole organization. The question
becomes, “who owns the customer information?”
and relates to determining the integration level
to the currently independent back-end legacy
systems. The more ambitious integration, the
more out-of-control the customer information
(and possibly other information too) shifts from
the business units.

In addition to determining the integration level,
the actual implementation of integration proved
to be problematic. Since the diverging legacy
systems could not be replaced, they all had to be
interfaced. Of the seven conflicts and problems
occurring when creating e-business architecture,
only the problem of implementing the integra-
tion was mainly a technical problem. The others
were more related to the change in organization
and practices that happen when developing an
e-business system in a large organization with
independent businesses. In the following, we shall
look closer on what consequences these conflicts
and problems cause for the architecture design
and development process.

cONsEqUENcEs: LIMItED
DEsIGNs AND MINIMAL
sOLUtIONs

In the beginning of the project a unified archi-
tecture was seen as a panacea for solving the

problems of systems integration, streamlining the
organization and unifying the customer interface.
However, during the project it became clear that
the aforementioned conflicts and problems would
have some unfavorable consequences. While it was
of paramount importance for the company to be
able to streamline its systems and develop a more
coherent architecture enabling the creation of an
e-business system, the realities of legacy systems
and the organization led to situation where it was
best to seek satisfying, even minimal, solutions
instead of optimal ones.

In the early phases of the project architecture
was seen as general blueprints or roadmaps, largely
drawn from scratch. Soon, however, the technical
experts realized that evolutionary prototyping was
the only possibility for progress in the architecture
development. Because the schedule was tight, the
objectives and requirements unclear and chang-
ing, and because the business units were rather
independent, it was hard to achieve common
understanding and commitment. With prototyp-
ing, it would be possible to clarify objectives and
commit stakeholders by showing them visible
results and benefits. This could be seen as “ex-
treme” architecture design (Merisalo-Rantanen,
Tuunanen, & Rossi, 2005). This could however
lead to new problems. The technically oriented
architects were specially worried that, combined
with the quarter-based reporting system in the
organization, evolutionary prototyping can eas-
ily produce quick-and-dirty and ad hoc solutions.
We could classify the interviewees to those with
positive attitudes towards prototyping and to those
with negative or doubtful attitudes. In general,
the project management believed positively that
“somehow” the prototypes would transform to
the final e-business solution, whereas technical
architects presented more doubts and wanted to
have explicit requirements and objective state-
ments before committing to certain architectural
solutions.

Prototyping and minimal solutions formed
a vicious circle that made the development of

93

Conflicts, Compromises, and Political Decisions

robust and clear architectures nearly impos-
sible by severely limiting the options available
for the architecture developers. Existing legacy
systems, the evolutionary approach, varying
requirements, unclear objectives, difficulties in
creating common understanding, and problems
in decision making created a complex situation
where textbook methods, description languages,
and rational architecture design, as it is conceived
in the literature, had no possibilities for immediate
success. The degrees of freedom of design became
limited. The system and its architecture could not
be designed rationally as a whole, but rather one
needed to accept the conditions and limitations
caused by the factors above and to keep the day
to day operations running while the new systems
are continuously created through evolution.

The situation had also organizational con-
sequences. We found clear hints of low-level
networking and formation of shadow organiza-
tions as the result of unclear project organization
and problems of decision-making and objective
setting. As the organization and responsibilities
change, new and perhaps inexperienced persons
come into crucial official positions related to the
e-business development. At the same time, the
experienced architects and other key persons
continued to stay in contact with each other.
This unofficial shadow organization balanced
the mismatch in skills and experience that might
otherwise seriously impede the development.

The final consequence from all the above is,
that in fact the e-business architecture becomes
emergent: it is created gradually through com-
promises, constraints, and conflicts (c.f., Ciborra,
2000; Hanseth, Monteiro, & Hatling, 1996).
The exact objectives and responsibilities will
be resolved as the architecture emerges through
evolutionary prototyping. Compared to the con-
ventional view on software architecture design
(Hofmeister et al., 1999a), most of the claimed
benefits of rigorous architecture development
seem to be lost. There is no “grand plan” since
the work is proceeding in a day-to-day basis and

the well defined responses and interfaces between
systems do not necessarily emerge in a rationally
planned way, but rather most duplicate functions
are kept and there is agreement only on a few
items that become the “architecture.”

DErIVED rEqUIrEMENts FOr
E-bUsINEss sYstEMs
DEVELOPMENt MEtHODOLOGY

From the previous observations and explana-
tions, we can derive a set of requirements that
an e-business systems development methodol-
ogy should meet. The grounded theory process
resulted in an explanation model (Figure 2), from
which a set of methodological requirements can
be extracted. Changing markets and organization,
historical inertia, and unclear objectives for the
development produced a complex combination of
conflicts and problems that brought various dif-
ficult consequences to the e-business development
process. We analyzed the complex socio-technical
situation and its consequences and reasoned the
set of most pertinent methodological require-
ments. This was done by identifying and coding
the methodological requirements in the interview
transcripts and further combining them in 13
requirements as described below.

According to Lyytinen et al. a design methodol-
ogy should conform to a set of key requirements
(Lyytinen, Smolander, & Tahvanainen, 1989). It
must embed several conceptual structures and de-
scription languages, and support several levels of
abstraction at which the development process takes
place. It should also cover the whole spectrum of
activities in information systems development
(ISD), include a prescribed model of activities to
be carried out during the development process,
include a model of the organizational form of the
development (a set of human roles), and try to
reuse existing descriptions and implementations.
Tools for drawing, manipulating, and managing

Conflicts, Compromises, and Political Decisions

94

the descriptions should also support the methodol-
ogy, in a balanced manner.

We can further elaborate this conception of
ISD methodology by distinguishing between three
separate contexts in ISD, namely the technical,
language, and organization contexts (Lyytinen,
1987). The technical context is concerned with
the technical components of the system (like
hardware and software), language context forms
the environment for linguistic communication,
and the organization context provides the environ-
ment for systematic human interactions, including
decision-making and operative control. An ISD
methodology includes assumptions, models, lan-
guages, and tools related to these three contexts.
In the following, we shall extract from the case the
general requirements for e-business development
methodology and classify them according to these
contexts. The objective of this classification is to il-
lustrate the nature and requirements of e-business
architecture development in large organizations
with several business areas and to highlight the
areas with a weak methodical support.

Lyytinen commented already in 1987 that
most development methodologies have too limited
scope and they tend to concentrate on techno-
logical issues late in the development lifecycle
(Lyytinen, 1987). This limited scope omits most
of the institutional and governance issues which
seemed to be central for most stakeholders ac-
cording to this study on architectural practice.

One could argue that the organizational context is
particularly relevant for e-business area, as most
proponents of e-business emphasize the changes
it brings about to work processes and organiza-
tions (Kalakota & Robinson, 2001).

The research into e-business architecture
development is in a relatively immature stage.
Previous literature has largely assumed that it
solves technical issues for known problems (Tay-
lor, McWilliam, Forsyth, & Wade, 2002). How-
ever, from the previous passages it has become
obvious that methods for forming the problem
statement and reaching a mutual agreement on
what the architecture is in the end of the day are
crucial. In this section, we take this as a start-
ing point and observe the issues that rose in the
described case starting from the inner, technical
context and ending to the general organizational
issues. This corresponds to Lyytinen’s idea that
the contexts are hierarchically ordered, because
languages are presented by material carriers of
technology context and language is needed for
organized social action (Lyytinen, 1987). We
identify e-architecture approaches in these areas
and show how they propose solutions to the issues
raised in our study.

In the following, we shall present the meth-
odological requirements for each context. We
also refer to the rows in Table 1 with the notation
R1-R13.

Figure 2. Deriving the methodology requirements

Changing markets ,
changing

organization

Diverse objectives
for e-business

systems
development

Changing markets ,
changing

organization
Historical inertia

Consequences to e -
business architecture

development

Requirements
for e-business
development
methods

95

Conflicts, Compromises, and Political Decisions

requirements from the technology
context

Observed Requirements

The technical requirements of e-business develop-
ment methods do not differ much from those of
methods for traditional transaction-based infor-
mation systems. E-business system development
includes methodical requirements concerning
e.g. distribution, error recovery, and network-
ing, but those requirements can be met without
a special “e-business support.” A standard way
to describe such technical solutions is of course
required /R1/.

Integrated e-business architecture necessitates
the integration of information systems in the orga-
nization and the rationalization of technology and
development processes. Existing legacy systems
will be integrated to the e-business functional-
ity. This requires the selection of an integrative
technology and the construction of development
processes supporting the implementation of the
integration. Because the integration is the basis and
characteristic to e-business development, the de-
velopment methodology should have specialized
and usable techniques for describing information
systems integration /R2/.

The key issue in the development of e-business
systems is the keeping of the day-to-day opera-
tions running and at the same time implementing
the integration between existing legacy systems
and the new e-business functionality. This means
that the nature of development is in many cases
more analogous to a maintenance project than to a
green-field development project. Current systems
development methodologies and models of thought
are mostly aimed at designing new systems instead
of changing existing ones. This problem has been
recognized before the advent of e-business, but
it becomes more critical in the e-business devel-
opment. From this we can derive a requirement
that the development methodology for e-business

systems should support evolutionary approaches
to architectures and systems /R3/.

Existing Solutions

Most research on e-business systems develop-
ment in general, and e-business architecture in
particular, concentrates on this view. Much of
the support that UML and RUP or their deriva-
tives provide seems to concentrate on this area.
Component aware methodologies, such as the
Catalysis extension to UML, seem suitable for
e-business. In addition, there are UML 2.0 exten-
sions, such as SysML (Object Management Group,
2006), that provide better support for technical
architecture design. Bischler and Segev (Bichler
et al., 1998) investigate the possibilities of com-
ponent oriented approach for e-business. They
take a technical viewpoint, and provide a useful
listing of enabling technologies for e-business.
An applicable standard in this area is the SysML
extension to UML (Object Management Group,
2006). A work by Rossi & Schwabe (Rossi &
Schwabe, 2000) uses patterns and frameworks
as building blocks for e-business systems. This
kind of approach could be particularly useful for
a relatively well-specified domain, such as trade
processes, which are assumed to be generic in
nature. Baskerville & Pries-Heje see a relatively
fixed architecture as a common ground, on top of
which e-business systems can be built (Baskerville
& Pries-Heje, 2001).

As mentioned earlier, in the e-business domain
there are several layers of components available.
The InterNCA architecture in (Lyytinen, Rose, &
Welke, 1998) describes some of these and outlines
needs for new breed of development methodolo-
gies, which would take into the account the par-
ticular problems of e-business systems develop-
ment. Greunz & Stanoevska-Slabeva present an
extension of UML, which can be used to realize
systems on top of “media platform” architecture
(Greunz & Stanoevska-Slabeva, 2002).

Conflicts, Compromises, and Political Decisions

96

requirements from the Language
context

The language context provides a means and an
environment for linguistic communication which
encompasses the use, nature, content, context
and form of signs (Lyytinen, 1987). The meth-
odology requirements coming from the language
context deal with the ability of stakeholders to
communicate successfully during the e-business
architecture development process.

Observed Requirements

The chicken-egg problem between objectives and
architecture becomes problematic in e-business
development. To design a robust technical archi-
tecture, one must have clear objectives, and to
select realistic objectives, one must understand
the possibilities of the technical architecture. To
overcome this problem, it is necessary to have a
close cooperation between technical architects and
those responsible of the business. This, however,
induces a language problem. These groups often
do not have a common language. To overcome the
language problem, we need architecture descrip-
tion languages that business managers understand
/R4/ and business descriptions that are explicit
enough for technical people /R5/.

The problems of objectives and integration
culminate on architecture design because the
designs and prototypes related to technical archi-
tecture become the first concrete artifacts in the
development showing implications of decisions to
businesses and to the information management.
Before architecture design, the plans and designs
have been on the “PowerPoint presentation” level,
showing ambiguous and general roadmaps and
noble objectives. The more concrete the archi-
tecture becomes, the more various stakeholders
become aware of the consequences, conflicts,
and problems they will be facing. This leads to
two distinct requirements for the development
methodology: the methodology should take the

development to a very concrete level (both politi-
cally and technically) very soon after the project
initiation /R6/ and the architecture designs and
descriptions (and their implications) should be
approachable and intelligible by the various
stakeholders participating the process /R7/.

Existing Solutions

As a description language, UML and its exten-
sions offer a fairly strong support for engineering
in the language context. Yet, there are very few
articles describing these issues of having a com-
mon language in e-business area, but one could
expect that methodologies used in other domains
for participative processes and joint application
development could be applied here (August,
1991). In this context, architecture serves as a
language between the participants in the devel-
opment process, enabling communication and
making the consequences of the implementation
concrete to the participants. Using architecture as
an enabler of communication between a diverse
set of participants (including various levels of
management and technical experts) requires
informal and expressive approaches, which are
practically non-existent in the field of software
architecture research. This kind of conception
of “architecture as language” can be associated
with approaches that include rich and informal
description techniques, like “rich pictures” in
(Wood-Harper, 1985), the wall-charting tech-
nique (Saaren-Seppälä, 1988), and genre-based
approaches (Päivärinta, Halttunen, & Tyrväinen,
2001).

requirements from the Organization
context

Observed Requirements

These problems formed the largest bulk in our
study. They included issues such as organiza-
tional inertia as well as environmental limitations,

97

Conflicts, Compromises, and Political Decisions

characteristics of a given business environment,
codes of conduct in business, and regulatory and
societal factors. These factors form together the
‘ballpark’ for an organization to act in relationship
with its providers and customers.

The first organizational requirement comes
from the overall conclusion of the case. The transi-
tion from heterogeneous e-commerce to integrated
e-business is not only technically challenging. It
is more a profound change to the organization.
In fact, the primary challenge is in the change of
the organization, not in the implementation of
the technology. Therefore, e-business systems
development methodology should support also
the description of organizational change /R8/.

In this change of organization and implementa-
tion of technology, the role of central information
management or some kind of central authority in
the organization is crucial. The central authority
should take care of the multitude of conflicts oc-
curring when aiming at integration and coordinate
the creation of objectives for the system. An e-
business development methodology should enable
the creation of a common vision /R9/, which can
then be enforced by the central authority.

Evolution with modest but growing objec-
tives may be the only way to develop integrated
e-business systems. To foster commitment, some
immediate benefits should be shown with the
prototypes for each stakeholder. However, at the
same time, the path to robust architecture should
also be secured and enough time and resources
must be given to technical architects. This very
difficult and complex trade-off must be made in
every e-business project /R10/.

The implementation of e-business integration
deals not only with technical issues but also with
difficult political ones. An organization shift-
ing to integrated e-business must resolve issues
concerning the internal ownership of information
related for instance to customers, sales, contracts,
and products. The ownership and responsibili-
ties related to information must be decided and
described during the development process. The

development methodology should include de-
scriptions for organizational responsibilities and
ownership of information /R11/.

Identifying and agreeing about objectives
became the most difficult problem in this case.
Thus, to become valuable in practice, e-business
development methodology should support not
only the formation and recording of objectives
but also measuring of success related to objec-
tives /R12/.

The requirements directed to an e-business
development organization are quite conflicting. On
the other hand, the development requires a strong
authority that can control the process through
conflicts, and on the other hand, the formation
of unofficial and shadow organization (peer-level
networking) should be fostered to allow creative
solutions and frictionless cooperation between
businesses /R13/. This requirement is, however,
not a new one when developing organizations.

Existing Solutions

From a more managerial and decision oriented
view one could look at business- and strategy
development methods, which aim at creation of
a common understanding and vision of business
strategy. This view sees building of architecture
as a common vision building effort rather than a
system building effort. It could also be argued that
e-business architecture building is quite similar
to organizational change processes, especially
the introduction of enterprise wide information
systems, such as ERP. Koontz has argued for this
by presenting e-business architecture development
model, which is very generic (Koontz, 2000).

Organizational issues are largely neglected by
the traditional systems development methodolo-
gies, but form important context and frame for
the implementation of the e-business systems
and architectures. The work on organizational
change and observation of the power-play could
be fruitful if applied to early stages of architecture
development. However, they do merely observe the

Conflicts, Compromises, and Political Decisions

98

issues than provide solutions. Checkland’s SSM
methodology is one of the few general-purpose
methodologies that identifies and models the “es-
sence” of the organizational idea of the system
and then proceeds to actual development of the
system (Checkland & Scholes, 1990). It is clear
from the observations in this case study that the
explicit identification and framing of the problem
to be solved, and then resolving the actual goals
of the architecture forms the basis for architecture
development.

Most studies thus far seem to assume that the
development of e-architecture and infrastructure
can be guided by the deliberate actions and deci-
sions of management. However, as can be seen
here the technological changes often evolve from
designers’ and users’ experience with such tech-
nologies and are often unpredictable (Ciborra,
2000).The problem of loosing the original target

while developing partial solutions and prototypes
(e.g., see R10) could be helped by explicitly rec-
ognizing emergent and opportunistic possibilities
created on the process.

summary of Issues

The list above shows that most solutions and re-
search this far, has concentrated on the technical
level. Unfortunately, most of the problems seem
to be non-technical in nature, they are rather more
of the linguistic or organizational. E-business cuts
across functional borders in organization and is
built on a complex infrastructure of ERP and
legacy systems and it shares many of the chal-
lenges and opportunities of these organizational
technologies.

Table 2 summarizes these derived require-
ments for e-business development methodology.

Requirement Type Rationale Support in RUP employ-
ing UML

R1

Technical issues (like distri-
bution, error recovery, and
networking) must be described
in a standard way.

T
These issues will occur
as in all modern sys-
tems development

Good; this is what UML
and RUP are for

R2
Specialized techniques for
describing the information
systems integration

T
IS integration is char-
acteristic to e-business
development

Poor; no specialized tech-
nique for the description
of integration in standard
UML. Some UML 2.0
extensions are however
available.

R3

The development methodol-
ogy should support evolution-
ary approaches to architectures
and systems.

L/T

The change and main-
tenance of existing
systems forms a major
part of the e-business
systems development

Moderate; UML and RUP
are mainly targeted at
the development of new
systems

R4
Architectural description lan-
guages that business managers
understand

L

To enable realistic ob-
jective selection, busi-
ness managers must
have some understand-
ing on architecture

Poor; the descriptions
necessitate too much tech-
nical skills and knowledge

R5
Business descriptions that are
explicit enough for technical
people

L

To understand the
objectives, techni-
cal people must have
understanding on
business

Moderate; no description
techniques showing overall
aggregate view

Table 2. Summary of the requirements for e-business development methodology

continued on following page

99

Conflicts, Compromises, and Political Decisions

Requirement Type Rationale Support in RUP employ-
ing UML

R6

The methodology should take
the development to a very
concrete level (both politically
and technically) soon after the
project initiation

T/L/O

The more architecture
becomes concrete,
the more stakeholders
become aware of the
consequences, con-
flicts, and problems

Good (technically), none
(politically)

R7

The architecture designs
and descriptions (and their
implications) should be ap-
proachable and intelligible
by the various stakeholders
participating the process

L/O

To enable wide
understanding to
the consequences of
architectural selections
(cf. R4).

Moderate; no relevant de-
scription technique besides
Use Case diagrams

R8 Support for the description of
organizational change O

e-business involves
deep changes to orga-
nization

Poor; some thoughts of
“organization engineer-
ing” in RUP’s Business
Architecture

R9 Support for the description of
a common vision O Resolve conflicts,

build objectives
Poor; no common language
for all stakeholders

R10 Both prototyping and careful
architecture design needed T

Gain commitment
and resolve objectives
through prototyping,
aim at robust archi-
tecture

Moderate; iterative basis in
RUP, but its implementa-
tion is difficult in practice

R11

Methodology should contain
descriptions for organizational
responsibilities and ownership
of information

L/O

The ownership of in-
formation becomes an
issue when aiming at
e-business integration

Poor; only general thoughts

R12

e-business development
methodology should support
the formation and recording
of objectives and measuring
of success related to objectives

L/O

Identifying and agree-
ing about objectives
is one of the most
difficult issues in e-
business development

Poor; the objectives are
mostly supposed to be
given to the development
project

R13

The development process
should support organization-
ally both effective control
structures and flexibility

O

Strong authority is
needed to handle the
conflicts and unofficial
structures for creative
solutions

Poor; development organi-
zation “design” in a general
level

Table 2.continued

The requirements and their rationale are described
in the text above. The ‘Type’ column places the
requirement to the appropriate context or contexts
(T: technology, L: language, O: organizational).
The last column in the table (“Support in RUP
employing UML”) analyzes how unified model-
ing language (Object Management Group, 2005)
and the Unified Process (Rational Software Cor-
poration, 2001) support the e-business specific

characteristics of the development process. This
is important, because UML and RUP together
form the current methodological basis for many
software organizations. The column shows that
the support is generally poor. The e-business
specific requirements are not met by UML and
RUP —only the standard technical issues are
well covered. This conclusion calls for method
development supporting better these e-business
specific requirements.

Conflicts, Compromises, and Political Decisions

100

In the technical context we noted that e-
business development would benefit from method
enhancements in IS integration and evolution-
ary development. However, the language and
especially the organization context appeared to
have more importance in the development. In the
language context, there was an urgent need for
more understandable and concrete architecture
descriptions that could be used among many
groups involved in the process, including techni-
cal and non-technical people. The organization
context appeared as the most important target for
research and practical methodical improvements.
In that context, we could identify a multitude
of issues requiring improvements, including
better understanding and usable methods for
the design and implementation of organization
change, organizational vision, organizational
ownership of information, and organizational
responsibilities.

Figure 3 shows concisely our findings. When
creating e-business or enterprise architecture, the
major problems to be solved are organizational.
This does not align with the support that UML
and RUP provides, because they mostly concen-
trate on solving the problems in the language
and technical contexts. It is the task of future
research to provide improvements to this, but,
as can be seen from Table 2, it might need quite
radical extensions or changes to UML and RUP
to be able to support effectively the formation of
e-business architecture.

cONcLUsION

We have described a process where a large ICT
company is building architecture for a com-
prehensive e-business system. From the case,
we extracted 13 requirements for methodology
supporting integrated e-business systems de-
velopment and classified the requirements to
technology, language, and organization contexts.
We also compared the requirements to the support
that UML and RUP offers and concluded that the
e-business specific requirements are not met in
UML and RUP. Successful e-business develop-
ment requires alternative approaches that support
better organization change, communication be-
tween stakeholders, systems integration, objective
formation, and evolutionary development.

In our study, architecture manifested itself as
a catalyst that makes business and organizational
conflicts and problems concrete. When making
decisions about architecture, the systems archi-
tects had to take into account the organizational
situation in the company. At the same time the
architecture starts shaping and changing the or-
ganization, thus forming a double mangle (e.g.,
Jones, 1998). The architects also realized that
technical rationality is not enough for success in
this kind of a situation. To succeed in e-business
architecture development, one has to be aware
of the political and organizational forces that
are driving the development and its objectives.
E-business architecture development can there-
fore be characterized as a process of seeking

Figure 3. Support and requirements

Technical Language Organizational

High

Medium

Low

benefits of UML/rUP

Technical Language Organizational

High

Medium

Low

Problems in architecture creation

101

Conflicts, Compromises, and Political Decisions

boundaries, finding sufficient consensus, and
identifying commonalities across organizational
borders. Most previous literature on architectural
methods has neglected this and sought to develop
description languages for describing the actual
architectures for systems with clear problem
statements, whereas we claim that it would be
more important to seek tools that aid in building
common understanding about the system and its
architecture and tools for processing the emerg-
ing conflicts. Thus, we maintain that the field of
architecture for e-business would benefit from
tools that help to identify and process the emerging
conflicts than tools that aid in developing a techni-
cally “perfect” and optimized solution. These tools
could be used in early phases of development to
augment UML and RUP based tools. Examples
of such tools are group support systems and dif-
ferent participation facilitation systems. Thus we
do not call for replacing UML, but rather adding
tools that can be used to communicate with non-
technical people about the architecture.

AcKNOWLEDGMENt

We would like to thank the anonymous reviewers
of this paper for their valuable instructions and
especially the reviewer that gave us the simple
idea of Figure 3.

rEFErENcEs

August, J. H. (1991). Joint application design:
The group session approach to system design.
Englewood Cliffs, NJ: Yourdon Press.

Baskerville, R., & Pries-Heje, J. (2001, July 27-29).
Racing the e-bomb: How the internet is redefining
information systems development methodology.
Proceedings of the IFIP TC8/WG8.2 Working
Conference on Realigning Research and Practice
in Information Systems Development: The So-

cial and Organizational Perspectice (pp. 49-68).
Boise, Idaho.

Bichler, M., Segev, A., & Zhao, J. L. (1998).
Component-based e-commerce: Assesment of
current practices and future directions. SIGMOD
Record, 27(4), 7-14.

Checkland, P. B., & Scholes, J. (1990). Soft system
methodology in action. Chichester: John Wiley
and Sons.

Ciborra, C. (2000). Drifting: From control to drift.
In K. Braa, C. Sorensen & B. Dahlbom (Eds.),
Planet internet. Lund: Studentlitteratur.

Conallen, J. (1999). Modeling web application
architectures with UML. Communications of the
ACM, 42(10), 63-70.

D’Souza, D. F., & Wills, A. C. (1998). Objects,
components, and frameworks with UML: The
catalysis approach: Addison-Wesley.

Dashofy, E. M., Van der Hoek, A., & Taylor, R.
N. (2005). A comprehensive approach for the
development of modular software architecture
description languages. ACM Transactions on
Software Engineering and Methodology, 14(2),
199-245.

Denzin, N. K. (1978). The research act: A
theoretical introduction to sociological methods:
McGraw-Hill.

Dori, D. (2001). Object-process methodology ap-
plied to modeling credit card transactions. Journal
of Database Management, 12(1), 4.

Egyed, A., & Medvidovic, N. (1999, Oct). Extend-
ing Architectural Representation in UML with
View Integration. Proceedings of the 2nd Inter-
national Conference on the Unified Modelling
Language (UML), (pp. 2-16). Fort Collins, CO.

Eisenhardt, K. M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532-550.

Conflicts, Compromises, and Political Decisions

102

Fernández, W. D., Lehmann, H., & Underwood, A.
(2002, June 6-8). Rigour and relevance in studies
of IS innovation: A grounded theory methodology
approach. Proceedings of the European Confer-
ence on Information Systems (ECIS) 2002, (pp.
110-119).Gdansk, Poland.

Garlan, D., & Kompanek, A. J. (2000). Reconcil-
ing the needs of architectural description with
object-modeling notations. Proceedings of the
Third International Conference on the Unified
Modeling Language - UML 2000, (pp. 498-512).
York, UK.

Glaser, B. (1978). Theoretical sensitivity: Ad-
vances in the methodology of grounded theory.
Mill Valley: Sociology Press.

Glaser, B., & Strauss, A. L. (1967). The discovery
of grounded theory: Strategies for qualitative
research. Chigago: Aldine.

Greunz, M., & Stanoevska-Slabeva, K. (2002).
Modeling business media platforms. 35th Annual
Hawaii International Conference on System Sci-
ences, Maui, HI.

Grinter, R. E. (1999). Systems architecture:
Product designing and social engineering. ACM
SIGSOFT Software Engineering Notes, 24(2),
11-18.

Hanseth, O., Monteiro, E., & Hatling, M. (1996).
Developing information infrastructure: The
tension between standardization and flexibility.
Science, Technology & Human Values, 21(4),
407-426.

Hirschheim, R., & Klein, H. K. (1989). Four para-
digms of information systems development. Com-
munications of the ACM, 32(10), 1199-1216.

Hofmeister, C., Nord, R., & Soni, D. (1999a).
Applied software architecture. Reading, MA:
Addison-Wesley.

Hofmeister, C., Nord, R., & Soni, D. (1999b).
Describing software architecture with UML.

Proceedings of the First Working IFIP Confer-
ence on Software Architecture (WICSA1), (pp.
145-160). San Antonio, TX.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The unified software development process. New
York: Addison-Wesley.

Jones, M. (1998). Information Systems and the
Double Mangle: Steering a Course Between the
Scylla of Embedded Structure and the Charybdis
of Strong Symmetry. IFIP WG8.2/8.6 Joint Work-
ing Conference, Helsinki, Finland.

Kalakota, R., & Robinson, M. (2001). e-Business
2.0: Roadmap for Success: Addison-Wesley.

Kazman, R., Klein, M., & Clements, P. (2000).
ATAM: Method for Architecture Evaluation
(Technical report No. CMU/SEI-2000-TR-004):
Software Engineering Institute.

Kim, Y.-G., & Everest, G. C. (1994). Building an
IS architecture: Collective wisdom from the field.
Information & Management, 26(1), 1-11.

Koontz, C. (2000). Develop a solid e-commerce
architecture. e-Business Advisor(January).

Kuntzmann, A., & Kruchten, P. (2003). The
rational unified process—an enabler for higher
process maturity. Retrieved April 19, 2007
from http://www-128.ibm.com/developerworks/
rational/library/content/03July/0000/0579/Ratio-
nal_CMM_WhitePaper.pdf.

Leist, S., & Zellner, G. (2006, April 23-27).
Evaluation of current architecture frameworks.
SAC’06, (pp. 1546-1553). Dijon, France.

Locke, K. (2001). Grounded theory in manage-
ment research: SAGE Publications.

Lyytinen, K. (1987). A taxonomic perspective of
information dystems fevelopment: Theoretical
constructs and recommendations. In R. J. Boland,
Jr. & R. A. Hirschheim (Eds.), Critical issues in
information systems research (pp. 3-41): John
Wiley & Sons.

103

Conflicts, Compromises, and Political Decisions

Lyytinen, K., Rose, G., & Welke, R. (1998). The
brave new world of development in the internet-
work computing architecture (InterNCA): Or how
distributed computing platforms will change sys-
tems development. Information Systems Journal,
8(3), 241-253.

Lyytinen, K., Smolander, K., & Tahvanainen,
V.-P. (1989). Modelling CASE environments in
systems development. Proceedings of CASE’89
the First Nordic Conference on Advanced Systems
Engineering, Stockholm.

Martin, P. Y., & Turner, B. A. (1986). Grounded
theory and organizational research. The Journal
of Applied Behavioral Science, 22(2), 141-157.

Medvidovic, N., Egyed, A., & Rosenblum, D. S.
(1999). Round-trip software engineering using
UML: From architecture to design and back.
Proceedings of the 2nd Workshop on Object-
Oriented Reengineering (WOOR), Toulouse,
France, Sept. 1999, 1-8.

Medvidovic, N., & Taylor, R. N. (2000). A clas-
sification and comparison framework for software
architecture description languages. IEEE Transac-
tions on Software Engineering, 26(1), 70-93.

Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M.
(2005). Is extreme programming just old wine in
new bottles: A comparison of two cases. Journal
of Database Management, 16(4), 41.

Monroe, R. T., Kompanek, A., Melton, R., &
Garlan, D. (1997). Architectural styles, design pat-
terns, and objects. IEEE Software, 14(1), 43-52.

Object Management Group. (1999). UML Profile
for Enterprise Distributed Object Computing:
Request for Proposals (ad/99-03-10): OMG.

Object Management Group. (2005). Unified mod-
eling language: Superstructure version 2.0 (No.
formal/05-07-04).

Object Management Group. (2006). OMG SysML
Specification (ptc/06-05-04).

Päivärinta, T., Halttunen, V., & Tyrväinen, P.
(2001). A genre-based method for information
system planning. In M. Rossi & K. Siau (Eds.),
Information modeling in the new millennium (pp.
70-93). Hershey, PA: Idea Group.

Rational Software Corporation. (2001). Rational
Unified Process [Online documentation, Version
2001A.04.00].

Robson, C. (2002). Real world research, (2nd ed.).
Blackwell Publishing.

Ross, J. W., Weill, P., & Robertson, D. C. (2006).
Enterprise architecture as strategy: Creating a
foundation for business execution: Harvard Busi-
ness School Press.

Rossi, G., & Schwabe, D. (2000). Object-oriented
web applications modeling. In M. Rossi & K. Siau
(Eds.), Information modelling in the next millen-
nium. Hershey: IDEA Group Publishing.

Rumpe, B., Schoenmakers, M., Radermacher, A.,
& Schürr, A. (1999). UML + ROOM as a Stan-
dard ADL. Fifth IEEE International Conference
on Engineering of Complex Computer Systems,
(pp. 43-53).

Saaren-Seppälä, K. (1988). Wall chart technique:
The use of wall charts for effective planning.
Helsinki: Kari Saaren-Seppälä Ky.

Sauer, C., Southon, G., & Dampney, C. N. G.
(1997). Fit, failure, and the house of horrors:
Toward a configurational theory of IS project
failure. Proceedings of the eighteenth interna-
tional conference on Information systems, (pp.
349-366). Atlanta, Georgia.

Shaw, M., & Garlan, D. (1996). Software archi-
tecture: Perspectives on an emerging discipline:
Prentice Hall.

Siau, K. & Cao, Q. (2001). Unified modeling lan-
guage (UML) — a complexity analysis. Journal
of Database Management, 12(1), 26-34.

Conflicts, Compromises, and Political Decisions

104

Siau, K., Erickson, J., & Lee, L. Y. (2005). Theo-
retical vs. practical complexity: The case of UML.
Journal of Database Management, 16(3), 40-57.

Smolander, K. (2003, January 6-9,). The birth
of an e-business system architecture: Conflicts,
compromises, and gaps in methods. Hawaii
International Conference on System Sciences
(HICSS’36), Hilton Waikoloa Village, Big Island,
Hawaii.

Smolander, K., Hoikka, K., Isokallio, J., Kataikko,
M., & Mäkelä, T. (2002, April, 8-11). What is
included in software architecture? A case study
in three software organizations. Proceedings of
9th annual IEEE International Conference and
Workshop on the Engineering of Computer-Based
Systems (pp. 131-138). (ECBS) 2002, Lund,
Sweden.

Smolander, K., & Päivärinta, T. (2002a, May 27
- 31). Describing and communicating software
architecture in practice: Observations on stake-
holders and rationale. Proceedings of CAiSE’02
- The Fourteenth International Conference on
Advanced Information Systems Engineering,
(pp. 117-133).Toronto, Canada.

Smolander, K., & Päivärinta, T. (2002b, Aug 25-
30). Practical rationale for describing software
architecture: Beyond programming-in-the-large.
Software Architecture: System Design, Develop-
ment and Maintenance - IFIP 17th World Computer
Congress - TC2 Stream / 3rd Working IEEE/IFIP
Conference on Software Architecture (WICSA3),
(pp. 113-126). Montréal, Québec, Canada.

Smolander, K., Rossi, M., & Purao, S. (2002,
December 18). Software architecture: Metaphors
across contexts. AIS Theory Development Work-
shop, Barcelona.

Smolander, K., Rossi, M., & Purao, S. (2005, May
26-28). Going beyond the blueprint: Unraveling
the complex reality of software architectures. 13th
European Conference on Information Systems:
Information Systems in a Rapidly Changing
Economy, Regensburg, Germany.

Sowa, J. F., & Zachman, J. A. (1992). Extending
and formalizing the framework for information
systems architecture. IBM Systems Journal, 31(3),
590-616.

Star, S. L., & Griesemer, J. R. (1989). Institutional
cology, “translations” and boundary objects:
Amateurs and professionals in berkeley’s museum
of vertebrate zoology, 1907-39. Social Studies of
Science, 19, 387-420.

Strauss, A. L., & Corbin, J. (1990). Basics of
qualitative research: Grounded theory proce-
dures and applications. Newbury Park, CA: Sage
Publications.

Taylor, M. J., McWilliam, J., Forsyth, H., & Wade,
S. (2002). Methodologies and website develop-
ment: A survey of practice. Information and
Software Technology, 44(6), 381-391.

Wood-Harper, T. (1985). Research methods in
information systems: Using action research. In
E. Mumford, R. A. Hirschheim, G. Fitzgerald
& T. Wood-Harper (Eds.), Research methods in
information systems. New York: North-Holland
Publishers.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 1, edited by K. Siau, pp. 19-40,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

105

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5
Evaluation of MDE Tools from a

Metamodeling Perspective
João de Sousa Saraiva

INESC-ID/Instituto Superior T´ecnico, Portugal

Alberto Rodrigues da Silva
INESC-ID/Instituto Superior T´ecnico, Portugal

AbstrAct

Ever since the introduction of computers into society, researchers have been trying to raise the abstrac-
tion level at which we build software programs. We are currently adopting an abstraction level based
on graphical models instead of source code: MDE. MDE is the driving force for some recent modeling
languages and approaches, such as OMG’s UML or Domain-Specific Modeling. All these approaches
are founded on metamodeling: defining languages that represent a problem-domain. A key factor for the
success of any approach is appropriate tool support. However, only recently have tool creators started
considering metamodeling as an important issue in their list of concerns. In this paper, we evaluate a
small set of MDE tools from the perspective of the metamodeling activity, focusing on both architectural
and practical aspects. Then, using the results of this evaluation, we discuss open research issues for
MDE-based software development tools.

INtrODUctION

Ever since the appearance of computers, research-
ers have been trying to raise the abstraction level
at which software developers write computer
programs. Looking at the history of program-
ming languages, we have witnessed this fact, with
languages evolving from raw machine code to

machine-level languages, afterward to procedural
programming languages, and finally to object-
oriented languages, which allow developers to
write software by mapping real-world concepts
into modular segments of code (called objects).
Still, object-oriented languages are too “comput-
ing-oriented” (Schmidt, 2006), abstracting over
the solution domain (computing technologies)
instead of the problem domain.

Evaluation of MDE Tools from a Metamodeling Perspective

106

Currently, the abstraction level is being raised
into the model-driven engineering (MDE) para-
digm (Schmidt, 2006). In this abstraction level,
models are considered first-class entities and
become the backbone of the entire MDE-oriented
software development process; other important
artifacts, such as code and documentation, can
be produced automatically from these models,
relieving developers from issues such as un-
derlying platform complexity or the inability of
third-generation languages to express domain
concepts.

MDE is not a new idea. Already in the 1980s
and 1990s, computer-aided software engineer-
ing (CASE) tools were focused on supplying
developers with methods and tools to express
software systems using graphical general-purpose
language representations. The developer would
then be able to perform different tasks over those
representations, such as correction analysis or
transformations to and from code. However, these
CASE tools failed due to issues such as (a) poor
mapping of general-purpose languages onto the
underlying platforms, which made generated code
much harder to understand and maintain, (b) the
inability to scale because the tools did not support
concurrent engineering, and (c) code was still
the first-class entity in the development process
while models were seen as only being suited for
documentation (Schmidt, 2006). Currently, there
are better conditions for such modeling tools to
appear. Software systems today are reaching such
a high degree of complexity that third-generation
languages simply are not sufficient anymore;
another abstraction level over those languages
is needed. This need, combined with the choices
of IT development platforms currently avail-
able (Java, .NET, etc.), to which models can be
somewhat easily mapped, is the motivation for
the adoption of MDE. There are already a few
MDE-related case studies available, such as Zhu
et al. (2004) and Fong (2007), but since most
MDE work is still in the research phase, there is

still a lack of validation through a variety of real
business case studies.

There are already multiple MDE initiatives,
languages, and approaches, such as the unified
modeling language (UML), the MetaObject
Facility (MOF), the model-driven architecture
(MDA), and domain-specific modeling (DSM)
(Kelly & Tolvanen, 2008). There are also other
derivative approaches, such as software factories
(http://msdn2.microsoft.com/en-us/teamsystem/
aa718951.aspx) that follow the MDE paradigm.
Nevertheless, it is important to note that these
initiatives are not a part of MDE; rather, MDE
itself is a paradigm that is independent of lan-
guage or technology, and is addressed by these
initiatives.

All these approaches share the same basic
concepts. A model is an interpretation of a certain
problem domain, a fragment of the real world over
which modeling and system development tasks are
focused, according to a determined structure of
concepts (Silva & Videira, 2005). This structure
of concepts is provided by a metamodel, which is
an attempt at describing the world around us for a
particular purpose through the precise definition
of the constructs and rules needed for creating
models (Metamodel.com, n.d.). These basic con-
cepts are the core of metamodeling, the activity
of specifying a metamodel that will be used to
create models, which is the foundation of MDE.

From the developer’s point of view, a key is-
sue for acceptance of any approach is good tool
support so that software programs can be created
in an easy and efficient manner. There is a wide
variety of modeling tools available today, cover-
ing most modeling standards and approaches
in existence. For example, Rational Rose and
Enterprise Architect (EA)(SparxSystems, n.d.)
are only two examples of a very long list of tools
that support UML modeling. DSM has recently
become popular with the developer community,
with tools such as Microsoft’s DSL Tools (MSD-
SLTools) or MetaCase’s MetaEdit+.

107

Evaluation of MDE Tools from a Metamodeling Perspective

The aim of this article is to present our evalu-
ation framework for tool support of the metamod-
eling activity, and to evaluate a small set of tools
according to this framework; although these tools
do not reflect everything that is currently avail-
able in MDE tools, they address the MDE-based
approaches presented in this article by providing
the features typically found in tools of their cor-
responding approach. The evaluation framework
used in this article focuses on the following is-
sues: (a) supported exchange formats, (b) support
for model transformation and code generation,
(c) tool extensibility techniques, (d) the logical
levels that can be manipulated, (e) support for
specifying metamodel syntax and semantics, and
(f) complexity of the meta-metamodel hard-coded
into the tool. The final purpose of this evaluation
is to determine the strengths and weaknesses of
the support that each of these MDE tools offer to
the developer’s tasks.

This article is divided as follows. The second
section presents a brief overview of MDE and
some related concepts, standards, and approaches.
Then the article describes the evaluation frame-
work, the selected modeling tools, and the results
of their evaluation. Next it discusses the current
status of MDE-based software tools and some
open research issues for metamodeling. The final
section presents the conclusions of this work.

MODEL-DrIVEN ENGINEErING

Software systems are reaching such a high degree
of complexity that the current third-generation
programming languages (like Java or C#) are not
sufficiently adequate to create such systems in an
easy and efficient manner. One of the problems
with current programming languages is that they
are still too oriented toward specifying how the
solution should work instead of what the solution
should be. This leads to a need for mechanisms
and techniques that allow the developer to abstract
over current programming languages and focus on
creating a good solution to a certain problem.

Model-driven engineering (sometimes called
model-driven development, or MDD) is an
emerging paradigm based on the systematic use
of models as first-class entities of the solution
specification (Schmidt, 2006). Unlike previous
software development paradigms based on source
code as a first-class entity, models become first-
class entities, and artifacts such as source code
or documentation can then be obtained from
those models.

It is very important to note that, although
MDE is often mentioned alongside MDA (which
is explained further later), MDE does not depend
on MDA, nor is MDA a subset of MDE. In fact,
MDA is one of several initiatives that intend to
address the MDE paradigm.

the OMG’s Approach to MDE

The Object Management Group (OMG) has cre-
ated its own MDE initiative based on a set of
OMG standards that make use of techniques for
metamodeling and model transformation.

Unified Modeling Language

UML (ht tp://www.omg.org/cgi-bin/apps/
doc?formal/05-07-04.pdf), currently in Version
2.1.1, is a general-purpose modeling language
originally designed to specify, visualize, con-
struct, and document information systems. UML
is traditionally used as a metamodel (i.e., develop-
ers create models using the language established
by UML). However, the UML specification also
defines the profile mechanism, which allows for
new notations or terminologies, providing a way
to extend metaclasses to adapt them for different
purposes. Profiles are collections of stereotypes,
tagged values, and constraints (Silva & Videira,
2005). A stereotype defines additional element
properties, but these properties must not contradict
the properties that are already associated with the
model element; thus, a profile does not allow the
user to edit the metamodel.

Evaluation of MDE Tools from a Metamodeling Perspective

108

Although UML was definitely a step forward
in setting a standard understood by the whole
software engineering community and aligning
it toward MDE, it is still criticized for reasons
such as (a) being easy to use in software-specific
domains (such as IT or telecom-style systems) but
not for other substantially different domains, such
as biology or finance (Thomas, 2004), (b) not be-
ing oriented to how it would be used in practice
(Henderson-Sellers, 2005), and (c) being too
complex (Siau & Cao, 2001). Nevertheless, UML
is often the target of overzealous promotion, which
raises user expectations to an unattainable level;
the criticisms that follow afterward are usually
influenced by this (France, Ghosh, Dinh-Trong, &
Solberg, 2006). An example of such a criticism is
the one regarding the difficulty in using UML to
model non-software-related domains: Although
UML is a general-purpose modeling language,
it is oriented toward the modeling of software
systems and is not intended to model each and
every domain.

MetaObject Facility

MOF (ht tp://www.omg.org/cgi-bin /apps/
doc?formal/06-01-01.pdf), currently in Version
2.0, is the foundation of OMG’s approach to MDE.
UML and MOF were designed to be themselves
instances of MOF. This was accomplished by
defining the UML Infrastructure Library (http://
www.omg.org/cgi-bin/apps/doc?formal/05-07-05.

pdf), which provides the modeling framework
and notation for UML and MOF, and can also be
used for other metamodels. Figure 1 illustrates
the dependencies between UML and MOF; note
that MOF can be described using itself, making
it reflexive (Nóbrega, Nunes, & Coelho, 2006).
Besides UML, the OMG has also defined some
other MOF-based standards, such as the XML
(extensible markup language) metadata inter-
change (XMI) and query-views-transformations
(QVT).

XMI allows the exchange of metadata infor-
mation by using XML, and it can be used for
any metadata whose metamodel can be specified
in MOF. This allows the mapping of any MOF-
based metamodel to XML, providing a portable
way to serialize and exchange models between
tools. Nevertheless, users often regard XMI as a
last resort for exchanging models between tools
because tools frequently use their own vendor-
specific XMI extensions; thus they lose informa-
tion when exchanging models between different
tools. The QVT specification defines a standard
way of transforming source models into target
models by allowing the definition of the following
operations: (a) queries on models, (b) views on
metamodels, and (c) transformations of models.
One of the most interesting ideas about QVT is
that the transformation should itself be considered
an MOF-based model, which means that QVT’s
syntax should conform to MOF. Figure 2 presents
OMG’s typical four-layer architecture: (a) MOF is

Figure 1. The dependencies between UML and MOF

109

Evaluation of MDE Tools from a Metamodeling Perspective

the meta-metamodel in the M3 layer, (b) UML,
an instance of MOF, is the metamodel in the M2
layer, (c) the user model contains model elements
and snapshots of instances of these model elements
in the M1 layer, and (d) the M0 layer contains the
runtime instances of the model elements defined
in the M1 layer.

Model-Driven Architecture

MDA is OMG’s framework for the software
development life cycle driven by the activity of
modeling the software system (Kleppe, Warmer,
& Bast, 2003). It is based on other OMG standards
such as UML, MOF, QVT, and XMI, and places a
greater emphasis on UML model transformation
techniques (through QVT) than on metamodeling
itself; however, it should be noted that QVT model
transformations are made possible only because

of the model-metamodel relationship between
UML and MOF.

MDA defines two types of models (Kleppe
et al., 2003): (a) the platform-independent model
(PIM) and (b) the platform-specific model (PSM).
A PIM is a model with a high level of abstraction
that makes it independent of any implementa-
tion technology, making it suitable to describe a
software system that supports a certain business
without paying attention to implementation details
(like specific relational databases or application
servers). A PSM also specifies the system, but in
terms of the implementation technology. A PIM
can be transformed into one or more PSMs, each
of those PSMs targeting a specific technology
because it is very common for software systems
today to make use of several technologies. Figure
3 presents an overview of MDA; the solid lines
connecting the boxes are transformations, which
are defined by transformation rules. MDA pre-

Figure 2. An example of OMG’s four-layer metamodel architecture

Evaluation of MDE Tools from a Metamodeling Perspective

110

scribes the existence of transformation rules, but
it does not define what those rules are; in some
cases, the vendor may provide rules as part of a
standard set of models and profiles.

MDA still faces some criticism in the software
engineering community because of issues such as
its usage of UML (Thomas, 2004) and the view
that while current MDA generators are able to
generate a significant portion of an application,
they are not particularly good at building code
that works within an existing code base.

Domain-Specific Modeling

DSM (Kelly & Tolvanen, 2008) uses problem-
domain concepts as the basic building blocks
of models unlike traditional CASE, which uses
programming-language concepts. From a techno-
logical perspective, DSM is supported by a DSM
system, which can be considered as an application
for making domain-specific CASE tools (or as a
tool-building environment to create CASE tools

that can be used to produce applications). Thus,
DSM adds an abstraction layer over traditional
CASE, enabling the domain-specific configuration
of the resulting modeling application as illustrated
in Figure 4. Because of this, DSM systems are

Figure 3. An overview of MDA

Figure 4. How CASE and DSM systems are
related

111

Evaluation of MDE Tools from a Metamodeling Perspective

also called meta-CASE tools. DSM is closely re-
lated to the concept of domain-specific language
(DSL). A DSL is a language designed to be useful
for a specific task (or a specific set of tasks) in a
certain problem domain unlike a general-purpose
language (Kelly & Tolvanen). As Figure 5 illus-
trates, due to a DSL’s highly specialized nature,
DSLs and corresponding generators are usually
specified by experts (i.e., experienced developers)
in the problem domain; other developers, less
experienced with the mapping between domain
concepts and source code, will invoke the DSL
in their own code. A well-known example of a
DSL is the standard query language (SQL), which
is a standard computer language for accessing
and manipulating databases (so, SQL’s problem
domain is the domain of database querying and
manipulation).

Developers usually prefer DSLs to UML be-
cause of the set of used concepts: The latter uses
programming concepts directly, which places
models at the same abstraction level as source
code; a DSL uses concepts from the problem
domain, which means developers do not need
to worry about how those concepts will map to
code.

UML itself can be seen as a set of DSLs (cor-
responding to use-case diagrams, class diagrams,
activity diagrams, etc.); however, these would be
dependent on each other in a “DSL spaghetti”
manner. UML can also be used to define DSLs
using the profile mechanism, although this does
bring some limitations that DSLs do not, such
as the ability to ignore the semantic constraints
already defined in UML.

Metamodeling

The approaches presented lead us to the point
where we can see that all concepts presented here
are deeply related among themselves. We have
a recurring pattern—the usage of metamodels
and their instances of models—and the only real
difference (in modeling terms) between all these
approaches is in the number of layers each one
uses. So, aside from a question of vocabulary, all
these MDE-based variants have their foundation
on the same topic: metamodeling.

But what is metamodeling? Metamodel.com
(Metamodel.com, n.d.) provides the following
definitions: “metamodeling is the activity that
produces, among other things, metamodels”

Figure 5. Using the expertise of some developers to orient other developers toward the problem
domain

Evaluation of MDE Tools from a Metamodeling Perspective

112

and “a metamodel is a precise definition of the
constructs and rules needed for creating models.”
These definitions agree with other definitions that
can be found in literature, such as the ones in
Kleppe et al. (2003) and Söderstrom, Andersso,
Johannesson, Perjons, & Wangler (2002). This
means that a metamodel provides a language
used to create a model, as Figure 6 illustrates;
similarly, a metamodel that defines the language
in which another metamodel is specified is called
a meta-metamodel.

Similar in concept to DSM, metamodeling
is about developing a language (a metamodel)
adapted to the problem domain; for example, MOF
is a language adapted to the domain of object-
oriented approaches to modeling (Atkinson &
Ku¨hne, 2005), while UML is a language adapted
to the domain of object-oriented programming
languages (OOPLs). A possible example, in the
context of an organization, of what could be done
with metamodeling can be the following: (a) the
specification of a new language or metamodel
(with an existing language as its metamodel,
e.g., MOF or UML) that reflects the concepts,
syntax, and semantics of the corresponding prob-
lem domain, which is the organization, (b) after
creating a tool that supports the metamodel, the
modeling of a solution using the organization’s
terms (e.g., the organization specifies a certain
role R1 that can perform activities A1 and A2),

and (c) depending on the features provided by the
tool, an application that implements the designed
solution could be generated (either by model
transformations, or by direct generation of source
code). In fact, the PSMs for the MDA approach
(oriented toward the implementation domain) can
be obtained by using UML profiles tailored to an
OOPL’s concepts (such as C#’s class, struct, etc.).
This would present an advantage over traditional
development approaches as the solution would be
created using the organization’s terms instead of
using implementation terms; we later present a
more detailed view of how software development
can be done combining metamodeling and model
transformations. An example of the need of using
metamodeling and metamodels can be found in
Zhao and Siau (2007), which uses metamodels to
handle the mediation of information sources.

The main difference (in modeling terms) be-
tween the presented modeling approaches is their
number of modeling layers (i.e., model-metamodel
relationships). Theoretically, the number of lay-
ers could be infinite, but any particular approach
should have a specific number of layers; otherwise,
its implementation would be impractical, if not
impossible.

It is still rare to find a development tool that
has explicit support for metamodel creation and/
or configuration, which can be surprising if we
consider that metamodeling is one of the found-

Figure 6. A metamodel defines a language used to create a model

113

Evaluation of MDE Tools from a Metamodeling Perspective

ing principles of MDE. This means that, until
recently, a developer who wanted to use a certain
metamodel would probably have to either (a) cre-
ate a new modeling tool, which is not reasonable
at all (Nobrega et al., 2006) or (b) settle on a
CASE tool (with a hard-coded metamodel) that
allows the developer to perform the desired task
with the least possible hassle. However, adding
metamodeling support to a tool does bring some
practical issues that should be mentioned, such as
(a) separating the OOPL class- instance relation
from the metamodel-model relation, (b) deciding
whether the number of logical levels should be
limited or potentially unbounded, and (c) deciding
whether the tool should support model transfor-
mation and/or code generation.

In addition to these issues, it is also necessary
to consider how to change a metamodel, which
should be considered a very high-risk activity
because models, consistent in the context of a
certain metamodel, can become inconsistent with
only some changes to that metamodel. Obviously,
this introduces a potential element of disruption
that should be avoided at all costs. One possible
way of ensuring the validity of existing models
when changing their metamodels is through the
specification and application of model transforma-

tions (e.g., UML transformations, such as those
presented in Selonen, Koskimies, & Sakkinen,
2003): For any change to a metamodel, a cor-
responding transformation must be defined that
receives the previously consistent models and
produces new models consistent with the new
metamodel.

However, in our research we have found no
tool that addresses all of these metamodeling is-
sues (although there are tools that address some
of the presented issues).

Implementing a modeling tool with just one
logical level (i.e., user model editing and a hard-
coded metamodel) is easily done with current
OOPLs using the class-instance relation: The
logical level is implemented by the instance level.
Metamodeling adds one (or more) logical level to
the modeling tool, complicating the implementa-
tion as the instance level now has to hold two or
more logical levels (Atkinson & Kühne, 2003).
Level compaction (Atkinson & Kühne, 2005),
an example of which is illustrated in Figure 7, is
a technique that addresses this problem. Instead
of the representation format for a level being
defined by the level above, the format for a level
is supplied by the modeling tool.

Figure 7. An example of using level compaction to compact three logical levels

Evaluation of MDE Tools from a Metamodeling Perspective

114

Although level compaction is essential for
supporting multiple modeling levels, it is also
important to determine whether the metamodel
hard-coded into the tool allows such a number of
levels. Atkinson and Kühne (2005) present the
language and library metaphors, which allow tool
creators to choose whether the number of layers
in the tool’s architecture should be restricted or
potentially unbounded. When using the language
metaphor, the basic elements of each layer (e.g.,
object, class, metaclass, etc.) are contained in the
hard-coded metamodel itself; if the user wanted
to add other basic elements, necessary for ad-
ditional layers, it would be necessary to alter the
hard-coded metamodel. This metaphor helps in
supporting a standard (such as OMG’s), but at the
cost of not being able to edit the metamodel. On
the other hand, in the library metaphor, the hard-
coded metamodel consists only of a minimal core
language, and the basic elements of each layer are
available as predefined types in libraries to which
the user can add elements (or remove them, if
the tool allows it). With this metaphor, users can
experiment with all metamodel layers because
only the minimal core is hard-coded; the burden
of syntax checking and language semantics is
placed on the remaining metamodel layers. Note
that if a tool does not use level compaction, then
it obviously uses the language metaphor because
the supported modeling levels are limited by the
class-instance relation, which only allows one
modeling level (in the instance level) besides the
hard-coded metamodel (in the class level).

Another important aspect to consider in
metamodeling tools are model-to-model trans-
formations. It would be natural that, after some
time using such a tool, a developer has created
or adopted some languages adjusted to relevant
problem domains. However, after modeling a
solution using the problem-domain language, the
developer would then need to re-create the model
in the language of the target domain. Obviously
this would render the first model useless. So, if
the tool also provided some kind of framework or

language for specifying transformations between
model languages, this would certainly benefit the
developer.

EVALUAtION OF MDE tOOLs

One of the key issues for the success of MDE is
appropriate tool support as developers will only
use a certain approach if it is supported by avail-
able tools. This section first presents the evaluation
framework used through the rest of this article.
Afterward, we present the tools that are evaluated.
Finally, the evaluation’s results are presented.

Evaluation Framework

This subsection presents the proposed evaluation
framework used in this article. This framework
focuses on a tool’s support for metamodeling and
involves the following dimensions, as illustrated
in Figure 8:

1. supported exchange formats,
2. model transformation support,
3. usage of the level-compaction technique

(Atkinson & Kühne, 2005),
4. usage of the language and library metaphors

(Atkinson & Kühne, 2005),
5. the logical levels that the user can manipu-

late,
6. support for specifying metamodel syntax

and semantics, and
7. the size of the hard-coded meta-metamod-

el.

The third and fourth dimensions were directly
based on the conceptual framework defined in
Atkinson and Kühne (2005); the other dimen-
sions are derived from the issues described in the
previous section (“Model-Driven Engineering”)
since this evaluation also tries to focus on the
practical usage of these tools instead of exclu-
sively considering architectural details. Note

115

Evaluation of MDE Tools from a Metamodeling Perspective

that we do not define a ranking system because
the ultimate objective of this evaluation is not to
determine the best tool but rather if (and how) the
industry is currently addressing metamodeling. In
addition, we believe it is up to each developer to
determine what approach and tool characteristics
are required for development. However, we do
believe that this framework provides a practical
contribution through its generic set of guidelines
that help determine whether a tool can appropri-
ately address metamodeling (both as an activity in
itself and as an activity in the context of software
development). Moreover, metamodeling is still
an active research topic that is not addressed by
many tools, and we believed that ranking these
tools would ultimately yield unfair results (as some
of the tools were not created to address this issue
in the first place).

We also highlight the fact that, although
this evaluation framework has been empirically
validated (in the context of our experience with
various MDE-based tools), some of these criteria
and measurement metrics are still subjective and
can be refined by performing an explicit validation
of the existing criteria and their measurements

metrics, according to approaches such as Moore
and Benbasat (1991), and by adding further (and
more objective) criteria that address other issues
regarding metamodeling.

Supported Standard Exchange Formats

With all the modeling tools now available, the
ability to exchange models between tools is be-
coming a very important requirement; the lack of
this ability can easily lead to a situation in which a
developer is stuck with a certain tool. This would
require that tools be able to export and import
models to and from a standard format, such as
XMI. Although each tool creator is free to create
or choose his or her own exchange format, it should
be taken into account that developers usually
choose tools that can import or export to standard
formats, allowing models to be independent of the
tools in which they are manipulated.

This dimension is divided into two subdimen-
sions: (a) metamodels, which involves determining
whether metamodels can be imported or exported,
and (b) models, which involves determining
whether user models can be imported or exported.

Figure 8. An overview of the proposed evaluation framework

Evaluation of MDE Tools from a Metamodeling Perspective

116

This division is useful because the formats used
by a tool to import, or export metamodels and
models may be different; also, a tool may only
allow the import or export of models but not
metamodels. The values for both dimensions are
the set of standards used (possibly none).

Model Transformation Framework

This dimension measures whether the tool sup-
ports model transformations, and only allows a
single value from its measurement range: yes,
meaning that the tool additionally provides a
framework or language based on the metamodel
or the meta-metamodel for specifying transfor-
mations between user models (such as QVT), and
no, meaning that the tool does not provide such
a framework.

Level Compaction

This dimension measures whether the tool uses
the level-compaction technique (Atkinson &
Kühne, 2005) and only allows a single value from
its measurement range: yes, meaning that the tool
uses level compaction and can therefore easily be
adjusted to support additional logical levels, and
no, meaning that the tool does not employ level
compaction.

Language and Library Metaphors

This dimension measures which of the two meta-
phors (language or library; Atkinson & Kühne,
2005) are used in the tool, and only allows a
single value from its measurement range: lan-
guage metaphor or library metaphor, according
to the metaphor used. Note that if the dimension
level compaction evaluates as no, then the value
of this dimension will obviously be the language
metaphor, as presented in the previous section
(“Model-Driven Engineering”).

Number of Logical Levels the User Can
Manipulate

Despite what architectural options are present in
a tool, one of the aspects that directly affects a
tool’s user is the number of logical levels that can
actually be manipulated in the tool (by creating,
editing, or deleting elements) as a limited num-
ber may force the user to compact two or more
metamodel levels into a single layer (i.e., the user
places elements from several logical levels in a
single level).

This dimension measures how many metamod-
el-model relationships can be handled by the tool,
and it only allows the usage of a single natural
number (i.e., 1, 2, etc.). For example, a typical
UML CASE tool only allows the manipulation of
one logical level (M1) as the creation of instances
is still performed in M1.

Support for Metamodel Specification

In the evaluation of the support that a tool pro-
vides for specifying metamodels, it is important
to analyze what a tool supports.

This dimension is divided into two other
dimensions, syntax and semantics, evaluating
the support that the selected tools provide to the
specification of the syntax and semantics of meta-
models, respectively. The definitions of metamodel
syntax and metamodel semantics are similar to
the ones found at http://www.klasse.nl/research/
uml-semantics.html and are described next.

• Syntax. A metamodel’s syntax consists of
the set of model elements (i.e., graphical
representations of domain elements) and
the relationships between those model ele-
ments; this is very similar to the definition
of syntax in the context of linguistics, in
which syntax is the study of the way words
are combined together to form sentences.

117

Evaluation of MDE Tools from a Metamodeling Perspective

The syntax dimension is divided into two
subdimensions: specification support and
languages used.

• Specification support. This dimension
evaluates whether the tool supports the
specification of the syntactic component of a
metamodel (i.e., the graphical representation
of its elements). It only allows a single value
from its measurement range: yes, meaning
that the tool allows the specification of the
metamodel’s syntax, and no, meaning that
the tool does not support this.

• Languages used. This dimension determines
the set of languages used by the tool to
specify the metamodel’s syntax (including
proprietary or standard languages). Note that
this dimension can only have a meaningful
value when the specification-support dimen-
sion’s value is yes.

• Semantics. A metamodel’s semantics can be
seen from two perspectives: the semantic
domain and the semantics of each model
element. The semantic domain consists of
the whole set of domain elements that the
metamodel is supposed to represent (i.e.,
the concepts that were captured during the
analysis of the problem domain). On the
other hand, the semantics of a certain model
element is determined by the relation(s) be-
tween that model element and one or more
domain elements.

This dimension is divided into two subdimen-
sions, specification support and languages used,
which evaluate some aspects of the mechanisms
provided for defining metamodel semantics.

• Specification support. This dimension
measures whether the tool supports the
specification of the semantic component of a
metamodel. It only allows a single value from
its measurement range: yes, meaning that the
tool allows specification of a metamodel’s

semantic constraints, and no, meaning that
the tool does not support this.

• Languages used. This dimension, like the
languages-used dimension of syntax, deter-
mines the set of languages used by the tool
to define a metamodel’s semantic constraints
(such as OCL for MOF-based models, avail-
able at http://www.omg.org/cgi-bin/apps/
doc?formal/06-05-01.pdf). Note that this
dimension can only have a meaningful value
if the specification-support value is yes.

Hard-Coded Meta-Metamodel Size

An important aspect to consider is the size of
the meta-metamodel hard-coded into the tool (or
metamodel if the tool only allows creating user
models) because it reflects how wide the range of
metamodel primitives is. In this evaluation, we
consider the size of a model (or a meta-metamodel,
in this case) to be defined by the quantity of infor-
mation involved in the formal specification of the
model (i.e., how many objects, relationships, and
constraints are used to specify the model); the ex-
planation for this lies in the amount of information
that the user should be aware of when creating a
metamodel in order to take full advantage of the
language provided by the meta-metamodel.

This dimension only allows a single value
from its measurement range: (a) small, mean-
ing that the tool’s hard-coded meta-metamodel
consists of 15 elements or less (in this article,
we consider an element to be either an object,
a relationship between objects, or a constraint),
(b) average, meaning that it consists of 16 to 30
elements, and (c) large, meaning that it consists
of more than 30 elements. It is important to note
that this measurement is highly subjective since
we know of no framework to objectively classify
a model’s size or complexity; ultimately, it is up
to the reader to make his or her own definition
of how large a meta-metamodel must be before
it can be considered large.

Evaluation of MDE Tools from a Metamodeling Perspective

118

MDE tools

Figure 9 presents an overview of the small set
of MDE tools used in this evaluation: Enterprise
Architect (SparxSystems, n.d.), MetaSketch
(Nobrega et al., 2006), MetaEdit+ (MetaCase,
n.d.), and Microsoft’s DSL Tools (MSDSLTools,
n.d.).

The initial criteria used for the selection of
MDE tools to evaluate were the following: (a) The
tool must be recent (or still be under development)
to ensure it addresses current MDE approaches,
(b) each tool must address one of the MDE ini-
tiatives presented in the previous section, and (c)
the tool must have a relatively smooth learning
curve as developers are usually more inclined to
choose tools that they find to be user friendly and
that facilitate their activities. We searched the
Internet for candidate tools that fit these criteria;
however, we found many candidate tools, so we
limited this evaluation to popular tools in order
to keep the evaluation (and this article) simple.
We also included MetaSketch in this evaluation
because, although it is not yet popular, it explic-
itly addresses the metamodeling activity, so we
believed that including it in the evaluation could
yield some interesting results. We did not consider

any of our own tools (i.e., developed in-house) as
candidates for this evaluation in order to maintain
an independent perspective over this tool evalua-
tion and prevent us from inadvertently specifying
dimensions that would favor any one of the tools
being evaluated.

These tools were chosen because we consider
that this set is a good representative of the current
status of MDE-supporting tools currently avail-
able (e.g., Enterprise Architect can do most of what
can be done with ArgoUML, http://argouml.tigris.
org; Poseidon for UML, http://www.gentleware.
com; Rational Rose 2003, http://www-306.ibm.
com/software/awdtools/developer/datamodeler;
or other UML modeling tools); they also presented
enough differences amongst themselves to justify
their inclusion in this evaluation. Although these
tools do not reflect everything that is currently
available in MDE tools, they address the MDE-
based approaches defined earlier by providing the
features that can often be found in typical tools
of their corresponding approach.

The reason we evaluate only a small number
of tools is article simplicity and size. However,
it is important to reiterate that there are a great
number of other tools available, such as the Ge-
neric Modeling Environment (GME; http://www.

Figure 9. The selected MDE tools

119

Evaluation of MDE Tools from a Metamodeling Perspective

isis.vanderbilt.edu/projects/gme) or the Eclipse
Graphical Modeling Framework (GMF; http://
www.eclipse.org/gmf). Although in this article we
only evaluate this small set of tools, we believe
that an evaluation of a greater number of tools,
including a wider range of areas such as ontol-
ogy modeling or enterprise architecture model-
ing, would yield some very interesting results
to complement those obtained here. An added
advantage of such an evaluation would also be
the diverse set of metamodels used by the evalu-
ated tools (e.g., enterprise modeling tools tend to
use enterprise-oriented metamodels, such as the
TOGAF or Zachman framework).

Traditional CASE Tools

Although traditional CASE tools may be ad-
equate for the development of small and simple
software systems, they clearly do not support the
development tasks that come with larger, complex
systems. One of the main problems of such tools
is that they only support a specific metamodel,
usually UML, and do not offer support for alter-
ing that metamodel (although UML does provide
the profile mechanism, supported by some UML
modeling tools).

This type of tools is included in this evaluation
to determine whether current typical CASE tools
could easily be adapted to allow the creation of
models based on a user-specified language. For
the evaluation purposes of this work, we chose
Enterprise Architect (SparxSystems, n.d.) to rep-
resent traditional CASE tools as it is quite easy
to use, provides good support for UML and its
profile mechanism (in fact, EA makes the defini-
tion of a UML profile a simple and easy task), and
seems to be one of the best representatives of the
current status of CASE tools.

(For this evaluation, we used Enterprise Ar-
chitect 6.5, which was the latest version of this
tool at the time this work was written.)

MetaSketch

MetaSketch (Nobrega et al., 2006) is a MOF-based
editor, unlike most editors, which are usually based
on UML. It is based on the following ideas: (a) A
metamodel is a model that conforms to MOF 2.0,
not to UML 2.0, (b) the UML profile mechanism
is not powerful enough to support the definition of
new modeling languages, (c) a metamodel should
be the primary artifact of a modeling language
definition and developers should not need to code
metamodels, and (d) a metamodel is not the final
goal but the means used to produce models, so
it is not reasonable to create another modeling
tool each time another metamodel is specified.
These ideas lead to MetaSketch, an editor that is
MOF compliant, allowing the definition of any
language that can be specified using MOF (i.e.,
a MOF-based metamodel). Thus, MetaSketch is
best defined as a metamodeling tool.

MetaSketch does not offer code generation
capabilities by itself, but it can import or export
defined models and metamodels to XMI; the tool
adheres strictly (with no vendor-specific exten-
sions) to XMI 2.1 (Nobrega et al., 2006), so code
generation could easily be handled by any code
generator that can understand XMI. The tool
also supports the definition of models conform-
ing to metamodels specified in XMI (e.g., MOF
or UML). Three metalevels, M3, M2, and M1,
are supported by using level compaction. Figure
10 illustrates two interesting scenarios that are
made possible by MetaSketch: the definition of
a MOF metamodel by using itself (top), and the
definition of the UML and CWM metamodels
(bottom). In the first scenario, the user takes
advantage of MOF’s reflexive property in order
to define a metamodel consisting of MOF itself
(note the hard-coded MOF and the user-defined
MOF); UML and CWM can then be defined as
user models from that metamodel. In the second
scenario, the user defines the UML metamodel
by using the hard-coded MOF meta-metamodel.
UML user models can then be created based on

Evaluation of MDE Tools from a Metamodeling Perspective

120

that metamodel (note that this second scenario
is very similar to the typical OMG architecture,
illustrated in Figure 2).

MetaEdit+

MetaEdit+, available at http://www.metacase.com,
is a DSM-oriented environment (i.e., a meta-CASE
tool) that allows the creation of modeling tools and
generators fitting to application domains without
having to write code (Tolvanen & Rossi, 2003). It
uses a meta-metamodel called GOPPRR (graph,
object, property, port, relationship, and role),
named after the metatypes that are used when
specifying the metamodel.

In MetaEdit+, an expert creates a modeling
method by (a) defining a domain-specific lan-
guage containing the problem domain’s concepts
and rules (in this article, we will treat a DSL in

MetaEdit+ as a metamodel since the tool does
treat DSLs as metamodels), and (b) specifying the
mapping from that language to source code in a
domain-specific code generator. Once the expert
creates the modeling method (or even a prototype),
the development team can start using it in Me-
taEdit+ to define models, and the corresponding
code will be automatically generated from those
models. The code generator itself uses a DSL that
allows the developer to specify how to navigate
through models and output its contents along with
additional text. The tool also provides a repository
for all modeling method information, allowing
the storage and modification of modeling method
definitions; any modifications to definitions are
also reflected in their corresponding tools, models,
and generators.

(For this evaluation, we used MetaEdit+ 4.5,
which was the latest version of this tool at the
time this work was written.)

Microsoft DSL Tools

Microsoft’s DSL Tools, available at http://msdn.
microsoft.com/vstudio/dsltools, is a suite of
tools for creating, editing, visualizing, and using
domain-specific data for automating the enter-
prise software development process. DSL Tools
allow developers to design graphical modeling
languages and to generate artifacts (such as
code or documentation) from those languages;
the visual language tools are based on Microsoft
Visual Studio.

The process of creating a new DSL begins
with the DSL Designer Wizard, which pro-
vides some metamodel templates (such as class
diagrams or use-case diagrams) and guides the
developer through specifying the features of the
desired DSL. As a result of executing the wizard,
a Visual Studio solution is created, containing a
DSL project with the language’s domain model
(classes and relationships), its visual representation
(diagram elements), and the mappings between
domain elements and visual elements. The source

Figure 10. MOF is used as a meta-metamodel
and as a metamodel

121

Evaluation of MDE Tools from a Metamodeling Perspective

code that will support the DSL tool is generated
by using text templates, which process the DSL’s
specification and output the corresponding code.
Developers can provide additional code to refine
aspects of the model designer, define constraints
over the language, and/or even alter the text tem-
plates (which can have substantial effects on the
generated source code). Testing is done within
Visual Studio by launching another instance of
the environment with the specified DSL tool.
After ensuring that the tool is working correctly,
the final step is creating a deployment package
that allows its distribution.

(For this evaluation, we used the DSL Tools’
Version 1 release, which was the latest version of
this tool at the time this article was written.)

Applying the Framework

This subsection describes the small case study
used to support this evaluation and the results
obtained by applying the evaluation framework
to each of the selected tools.

A Small Case Study: Social Network
Metamodel

An essential part of the evaluation of a tool is
determining how that tool actually supports
the activities necessary toward the resolution
of a certain problem. Thus, we use the facilities
provided by each tool to specify and implement
(when possible) a simple metamodel that supports
the specification for simple social networks. This
metamodel can be textually described by the fol-
lowing statements:

• A social network is composed of people and
relationships between people.

• A person’s participation in a relationship is
defined by the role they play in it.

• A role must have a corresponding relation-
ship.

• A role must have a corresponding person.
• A social relationship must involve at least

two different people.

Figure 11 presents this metamodel (and two
user models, for illustrative purposes) modeled
in Enterprise Architect.

Note that this case study, because of its simplic-
ity, could also be addressed with typical CASE
tools (in fact, this is done in Enterprise Architect).
However, the main objective of this article is to
evaluate how the selected tools behave in specify-
ing the Social Network metamodel and afterward
producing and adapting a tool that can be used to
create user models (i.e., with types and instances)
using the language defined by that metamodel.

Evaluating the tools

The evaluation framework’s application to the
presented tools was performed by us, so we did
not need to resort to agreement measures, such as
Cohen’s Kappa coefficient. To compensate for the
lack of a greater number of test participants, we
tried not to define any dimensions that depended on
the user’s previous familiarity with one (or more)
of the tools. Thus, the usage of each tool to define
the Social Networks metamodel case study was
accompanied by thorough reading of available tool
documentation and previous tests of the tool in
order to gain a reasonable amount of experience
with each of the selected tools. Nevertheless, we
acknowledge that such dimensions are important
to measure usability and the tool’s learning curve
(and can be a good indicator of whether the tool
will be accepted by the community).

• Enterprise Architect. Enterprise Architect
is an easy-to-use tool with a minimal learn-
ing curve. However, its traditional CASE-
tool roots make it extremely limited when
it comes to metamodeling. Since EA is a
UML modeling tool, the only mechanism
that it provides for metamodeling support

Evaluation of MDE Tools from a Metamodeling Perspective

122

is the UML profile mechanism, which only
allows adding elements and semantics to the
metamodel, but not altering it (i.e., editing
or removing elements and constraints).

The definition of a profile in EA is limited to
specifying the generic syntax of the profile (i.e.,
defining stereotypes and what metaclasses they
extend, enumerations, etc.). Other semantic and
syntactic relationships and constraints entered in
the profile definition (using a text-based notation
such as OCL) are not enforced when the user
creates a model using that profile; the only vali-
dation that EA does enforce is the application of
a stereotype to an instance of a metaclass (e.g., a
stereotype that extends the metaclass Association
cannot be applied to an instance of the metaclass
Class). EA does present the advantage of not re-
quiring the creation of a new tool adapted to the
problem domain as it supports both the definition

and application of a UML profile (as is typically
the case with profile-supporting CASE tools).

Like other CASE tools, EA does not appear
to use level compaction or any similar technique
because modeling is limited to one logical level;
in this case, adapting the tool to support more
logical levels (by using level compaction) would
require an extra effort in order to separate the
metamodel-model and class-instance relation-
ships. The tool offers code generation capabilities
and some predefined basic model transformations
to support MDA, such as PIM to PSM. However,
they require that PIMs and PSMs be specified in
UML as it is the tool’s hard-coded metamodel.

Figure 12 shows the definition of a profile
representing the Social Networks metamodel
previously presented; additionally, Figure 11
presents two user models (obtained through the
application of the profile) modeled in EA.

Figure 11. The Social Network metamodel and two user models

123

Evaluation of MDE Tools from a Metamodeling Perspective

It is important to reiterate that the reason why
EA is used in this evaluation is to show that typical
CASE tools are not adequate for the metamodeling
needs that are currently surfacing, even though
EA (as other CASE tools) is not designed to sup-
port metamodeling; this evaluation is not meant
in any way to diminish EA as a tool, and these
results should not be interpreted as such.

• MetaSketch. From the set of evaluated tools,
only MetaSketch supported metamodeling
based on the MOF standard. The tool sup-
ports the XMI import and export of models
and metamodels, so a user-defined model can
become a metamodel simply by exporting
it to XMI and then importing it from XMI
as a metamodel. In fact, the tool can easily
handle the XMI-based specifications of MOF
and UML available on the OMG Web site.

MetaSketch uses the language metaphor
(Nobrega et al., 2006), which in this case limits
the user to manipulating two logical levels: the
metamodel and the user model. However, MetaS-
ketch uses level compaction, so it could be adapted
to use the library metaphor with relatively little
effort. Although MetaSketch does not support
model transformations (to either source code or
other models), this can be remedied because of

the tool’s XMI import and export capabilities;
the user could export the model to XMI, and
then process it with a code generator (such as the
Eclipse Modeling Framework, available at http://
www.eclipse.org/emf) or a model transformation
tool (likely based on QVT).

The syntax of the metamodel is specified in
XML (outside the tool’s environment) by compos-
ing simple shapes (rectangles, ellipses, etc.) and
using the tool’s geometry management mecha-
nism (Nobrega et al., 2006), which dynamically
adjusts the spatial arrangement of those shapes.
The semantics of the metamodel is specified in
the tool itself when modeling the user model that
later becomes the metamodel; however, there is no
support yet for constraint specification. Neverthe-
less, it is important to note that the tool is still a
prototype under active development, so it can be
expected that such issues will be corrected in the
future. Thus, the results obtained in this evaluation
do not reflect the full potential of this tool.

• MetaEdit+. MetaEdit+ is based on a very
simple and flexible meta-metamodel, GOP-
PRR; however, this meta-metamodel does
not include behavioral features (only struc-
tural features), which can impact the possible
set of metamodels that can be defined by the
tool.

Figure 12. A screenshot of Enterprise Architect with a profile definition

Evaluation of MDE Tools from a Metamodeling Perspective

124

MetaEdit+ apparently uses the language meta-
phor, limiting the number of logical levels the user
can edit to the metamodel and the user model.
However, this metaphor is used not because of
programming-language restrictions, but by choice
of the tool creators, so the tool could be adapted
to use the library metaphor with relatively little
effort. Although the tool does not offer support
for model transformations, it does provide a report
mechanism that allows the generation of text-based
artifacts (such as source code, HTML [hypertext
markup language], or XML) based on the informa-
tion available in the model’s repository.

Syntax specification is done by creating in-
stances of the meta-metamodel’s elements and,
eventually, creating vectorial images to represent
those instances. Semantic specification is done
when creating an instance of a graph (which

corresponds to a type of model, like UML’s class
diagram or use-case diagram); constraints are
then entered in the graph’s corresponding form
(e.g., “Objects of a certain type may be in, at
most, a certain number of relationships”), which
is designed to avoid as much manual text entering
as possible (since it is prone to errors).

This tool did present a few important usability
problems, such as the fact that it does not allow the
altering of the superclass-subclass relationships
between object types: Once the user chooses an
object type’s superclass (when creating the ob-
ject type), it cannot be changed; the user should
first draw the metamodel on a piece of paper or
another modeling tool in order to obtain the de-
finitive metamodel, and then re-create it within
MetaEdit+.

Figure 13. Social Network metamodel and user model in MetaSketch

125

Evaluation of MDE Tools from a Metamodeling Perspective

Figure 14 presents a model derived from the
Social Network metamodel presented earlier.

• Microsoft DSL Tools for Visual Studio.
This tool’s meta-metamodel consists of the
following elements: (a) class, (b) domain
property, (c) embedding, (d) reference, and
(d) inheritance. Like MetaEdit+, this meta-
metamodel is highly object oriented but does
not include behavioral features.

The tool’s architecture is based on the language
metaphor and limits the possible logical levels
editable by the user to the metamodel and the
user model. However, this limitation is because
DSL Tools are based on the class-instance rela-
tion, so the adaptation of DSL Tools to use the
library metaphor would likely require a great
deal of effort.

The DSL designer itself is divided into two
panes: Domain Model and Diagram Elements.
In Domain Model, the developer identifies the
relevant concepts of the problem domain and
expresses them in the domain-model section of the
designer along with model details like cardinality
and source-code-specific details such as whether
an association end should generate a property.
Validations and constraints can also be specified
by typing source code in additional validation

classes. In Diagram Elements, aspects relating
to the graphical layout of the model elements
are specified, such as shapes used, association
line styles, the shapes that can be on either end
of an association, and how value properties are
graphically displayed. Thus, the specification
of the syntax and semantics of the metamodel
is done entirely in the DSL designer (except for
validations and constraints, which are expressed
in source code) as the DSL Tools are highly
focused on the graphical specification of user
models and subsequent generation of text-based
artifacts. Figure 15 presents the Social Network
user model specified in DSL Tools.

Results

The results of this evaluation are shown in Fig-
ure 16. From these results, we can see that some
tools already treat metamodel exchange as an
important issue as only Enterprise Architect and
MetaEdit+ do not export their metamodel defini-
tion. However, in Enterprise Architect’s case, this
is understandable since the metamodel (UML) is
hard-coded into the tool and never changes. We
find noteworthy the fact that MetaSketch is the
only tool allowing metamodel import and export
using a well-defined standard (XMI). User-model

Figure 14. Models of the Social Network metamodel in MetaEdit+

Evaluation of MDE Tools from a Metamodeling Perspective

126

exchange, however, is supported by all tools, using
either XMI or XML.

Model transformation does not currently seem
to be a major concern as most tools do not provide
any kind of support for it (only Enterprise Archi-
tect provides a framework for model-to-model
or model-to-code transformations in the context
of the MDA initiative), likely because of the im-
mature state of the area.

Another interesting conclusion is that each of
the evaluated tools uses the language metaphor,
although most of them support the specification
of two logical levels. This is likely due to the fact
that a tool that supports more than two logical
levels is likely to reveal itself as confusing since
it can usually be assumed that developers will not
need more than two logical levels (one to specify
a language that represents the problem domain—
and perhaps another language that represents the

Figure 15. Models of the Social Network metamodel in Microsoft’s DSL Tools

Figure 16. The evaluation results

127

Evaluation of MDE Tools from a Metamodeling Perspective

solution domain—and another to specify a solu-
tion to the problem). However, both MetaSketch
and MetaEdit+ use level compaction, and thus
could be adapted to use the library metaphor
(therefore supporting additional logical levels)
with little effort; DSL Tools would require a much
more extensive effort to support such additional
logical levels.

Most tools support the specification of a
metamodel’s syntax to some degree (either by
associating elements with external image sources
or by providing internal facilities to create such
graphical representations). However, the specifica-
tion of a metamodel’s semantic constraints seems
to be sketchy at best, with only MetaEdit+ and DSL
Tools supporting such constraint specifications.
(MetaEdit+ uses its meta-metamodel concepts
to establish constraints in the metamodel, while
DSL Tools requires that developers use source
code to specify constraints.)

Finally, the tools that do not follow a standard
meta-metamodel (e.g., MetaEdit+ and MS DSL
Tools) seem to prefer using a meta-metamodel that
is as simple as possible: MetaEdit+’s consists of
six elements, while DSL Tools’ consists of five.

Discussion

Although CASE tools failed on their first appear-
ance some years ago (Booch, Brown, Iyengar,
Rumbaugh, & Selic, 2004), they brought the idea
that development processes could be supported by
such tools as long as those tools were adjusted to the
development process. Early CASE tools were too
inflexible, usually forcing the development process
to be adjusted to the CASE tool instead of having
the CASE tool support the development process.
This led to the area of meta-CASE systems, which
allow the automatic creation of development tools
tailored to specific design processes, determined
by organizational requirements.

The core problem with traditional CASE tools
is that they only support specifying the solution;
the identification of the problem-domain require-

ments is often done apart from these tools (usually
in a word processor or similar). Hence, developers
do not have a problem-domain-oriented language
in which they can express the solution to the
problem, forcing them to think of the solution in
computational terms (toward which traditional
CASE tool metamodels are especially oriented)
rather than in problem-domain terms. The solution
inevitably becomes misaligned with the problem
domain and, therefore, with the problem itself.
The consequences of this can be seen over the
entire development process, but become especially
critical during the product maintenance phase,
when the product must be adapted to additional
problem conditions and requirements, usually
requiring extensive developer effort because of
the difficulty of assuring that the product still
solves the old problems while also solving ad-
ditional problems.

However, when considering metamodeling
and meta-CASE tools, we need to be careful
because of possible meta-metamodel fragmenta-
tion: In this evaluation, we can see an example
of this as Microsoft DSL Tools uses its own
meta-metamodel and so does MetaEdit+. This
could lead to a panorama much like the one from
a few years ago, in which there was a myriad of
modeling languages (i.e., metamodels) all doing
the same and yet all different among themselves.
Now that the community (and the industry) is
beginning to focus on metamodeling and meta-
metamodels (i.e., metamodel languages), we need
to start considering meta-metamodel standards as
they help eliminate gratuitous diversity (Booch et
al., 2004). Otherwise, the diversity of languages
that would be defined would very likely lead to
the fragmentation that UML was designed to
eliminate in the first place.

All this is theory that must be put into practice
in tools that developers can use. For such tools
to be of help to the developer, they must support
the whole software development life cycle, from
requirements specification to deployment and
maintenance. This also requires that tools allow

Evaluation of MDE Tools from a Metamodeling Perspective

128

developers to specify solutions in problem-domain
terms, which of course requires that tools support
some form of metamodeling. However, as the
results of this evaluation show, the current tool
support is primarily directed toward DSM, and
issues such as model-to-model transformations
(upon which MDA is based) are being left out
in all but a few tools (such as the Eclipse Model-
ing Project, available at http://www.eclipse.org/
modeling).

We believe MDA and UML have the potential
to adequately cover the development phases more
directly related to software itself, like implemen-
tation design and coding. However, MDA does
not address the requirements phase, leading to
the known gap between what the client wants the
system to do and what the system actually does;
in part, this is because UML is not adequate for
requirements modeling. On the other hand, DSM’s
strength over MDA comes from the fact that it is
more than adequate for requirements specification.
Using a DSM system, a developer experienced in
the problem domain creates a metamodel reflecting
that domain and specifies how domain concepts
are mapped to code (or any other artifact type).
Requirements are then specified as models (ori-
ented toward not the implementation but what the
client wants the system to do) using the defined
metamodel. These models are then mapped into
code using the mappings initially defined. How-
ever, DSM as it is used today has a weak point:
the transformation between models and code (or
even between models of different languages).
If the DSM system user wishes to switch target
platforms (for example, from Java to .NET), the
mappings will have to be re-created by the expert
developer, unlike what happens with MDA, as
PIMs and PSMs provide the ability to exchange
target platforms with minimal extra effort. This is
not unlike what is said in Schmidt (2006), which
states that MDE is evolving toward DSLs com-
bined with transformation engines and generators;

in other words, MDE seems to be evolving toward
MDA and DSM working together.

This is why we consider tools such as MetaS-
ketch to be of utter importance to the industry, as
MetaSketch reveals a genuine concern with adher-
ing to OMG standards (which opens the door for
its usage in MDA-oriented development scenarios)
while also trying to address the metamodeling
problem that we are facing today.

Another issue that we consider important
to the success of metamodeling is complexity.
The usage of standards is always conditioned
by their complexity and how well adapted they
are to the domain of interest. These points can
be decisive factors over the difficulty of creating
a model that correctly represents the problem
(from the perspectives of syntax and semantics),
which is where DSM differentiates itself. The
fundamental issue is that developers and clients
need to identify themselves with the metamodels
they use; otherwise, they will look upon those
metamodels as nuisances. An example can be
seen in MOF, sometimes considered too complex
for defining user metamodels, because it includes
concepts that would only be useful in the context
of OMG-defined metamodels. This is why tools
such as MetaEdit+ (with simple meta-metamodels)
are gaining popularity throughout the developer
community, and MOF/UML CASE tools (with
complex meta-metamodels) are typically consid-
ered as only good for documentation and a last
resort for code generation.

Finally, we consider that the evaluation frame-
work defined in this article is quite relevant because
it provides a good insight into the main problems
that metamodeling tools would face: Its dimen-
sions include support for language specification
(syntax and semantics) and model transformations,
which are essential to the creation of metamodels
and models, as well as to obtaining new models
in an automatic, MDE-oriented fashion.

129

Evaluation of MDE Tools from a Metamodeling Perspective

cONcLUsION

Just as development paradigms changed and
evolved over the last decades from assembly
code to subsequent generations of programming
languages, the development paradigm is changing
from our current third-generation programming
languages to a higher abstraction level. This
shift is gradually happening as MDE is gaining
importance as an abstraction mechanism over
traditional programming activity.

However, tools need to follow and support this
paradigm change. The only way that a modeling
tool can effectively support the software devel-
oper’s complex tasks is by providing metamodel-
ing support: Such a tool should allow a software
developer or architect to specify a language or
metamodel and be able to automatically create
tools that enable the creation of models based on
that metamodel.

This article presented a framework for evalu-
ating a tool’s adequacy in the metamodeling
activity. This framework defines some criteria
that address both theoretical and practical issues
in metamodeling and in modeling tools; never-
theless, it is still subjective and open to further
refinement by adding more important criteria
and by defining measurement metrics that can
establish a higher degree of consensus regarding
metamodeling issues.

After presenting the framework, we applied
it to a small set of current modeling tools that
we believe to be representative of the status of
the mainstream MDE area. Finally, this article
discussed some open research issues for meta-
modeling-based software development tools.

AcKNOWLEDGMENt

We would like to thank Leonel Nobrega for his
promptness in supplying the latest version of his
MetaSketch tool as well as all the documentation
that was available at the time. We would also like

to thank the reviewers of this article for all their
excellent constructive suggestions to improve
its quality.

rEFErENcEs

Atkinson, C., & Kühne, T. (2003, September-Oc-
tober). Model-driven development: A metamod-
eling foundation. IEEE Software, 20(5), 36-41.
Retrieved June 5, 2006, from http://doi.ieeecom-
putersociety.org/10.1109/MS.2003.1231149

Atkinson, C., & Kühne, T. (2005, October). Con-
cepts for comparing modeling tool architectures.
In L. Briand & C. Williams (Eds.), Model Driven
Engineering Languages and Systems: Eighth
International Conference, MoDELS 2005 (pp.
398-413). Springer. Retrieved June 23, 2006, from
http://dx.doi.org/10.1007/11557432 30

Booch, G., Brown, A., Iyengar, S., Rumbaugh,
J., & Selic, B. (2004, May). An MDA manifesto.
Business Process Trends/MDA Journal. Retrieved
June 15, 2006, from http://www.bptrends.com/
publicationfiles/05-04COLIBMManifesto-
Frankel-3.pdf

Fong, C. K. (2007, June). Successful implementa-
tion of model driven architecture: A case study of
how Borland Together MDA technologies were
successfully implemented in a large commercial
bank. Retrieved November 23, 2007, from http://
www.borland.com/resources/en/pdf/products/
together/together-successful-implementation-
mda.pdf

France, R. B., Ghosh, S., Dinh-Trong, T., &
Solberg, A. (2006, February). Model-driven de-
velopment using UML 2.0: Promises and pitfalls.
Computer, 39(2), 59-66. Retrieved June 5, 2006,
from http://doi.ieeecomputersociety.org/10.1109/
MC.2006.65

Henderson-Sellers, B. (2005, February). UML the
good, the bad or the ugly? Perspectives from a

Evaluation of MDE Tools from a Metamodeling Perspective

130

panel of experts. Software and Systems Modeling,
4(1), 4-13. Retrieved June 5, 2006, from http://
dx.doi.org/10.1007/s10270-004-0076-8

Kelly, S., & Tolvanen, J.-P. (2008). Domain-
specific modeling. Hoboken, NJ: John Wiley &
Sons.

Kleppe, A., Warmer, J., & Bast, W. (2003).
MDA explained: The model driven architecture.
Practice and promise. Reading, MA: Addison-
Wesley.

MetaCase. (n.d.). MetaCase: Domain-specific
modeling with MetaEdit+. Retrieved June 5, 2006,
from http://www.metacase.com

Metamodel.com: Community site for meta-model-
ing and semantic modeling. (n.d.). Retrieved June
5, 2006, from http://www.metamodel.com

Moore, G. C., & Benbasat, I. (1991, September).
Development of an instrument to measure the
perceptions of adopting an information technol-
ogy innovation. Information Systems Research ,
2(3), 192-222.

Nobrega, L., Nunes, N. J., & Coelho, H. (2006,
June). The meta sketch editor: A reflexive model-
ing editor. In G. Calvary, C. Pribeanu, G. Santucci,
& J. Vanderdonckt (Eds.), Computer-Aided Design
of User Interfaces V: Proceedings of the Sixth
International Conference on Computer-Aided
Design of User Interfaces (CADUI 2006) (pp.
199-212). Berlin, Germany: Springer-Verlag.

Schmidt, D. C. (2006, February). Guest edi-
tor’s introduction: Model-driven engineering.
Computer, 39(2), 25-31. Retrieved June 5, 2006,
from http://doi.ieeecomputersociety.org/10.1109/
MC.2006.58

Selonen, P., Koskimies, K., & Sakkinen, M. (2003).
Transformations between UML diagrams. Jour-
nal of Database Management , 14(3), 37-55.

Siau, K., & Cao, Q. (2001). Unified modeling
language: A complexity analysis. Journal of
Database Management, 12(1), 26-34.

Silva, A., & Videira, C. (2005). UML, metodolo-
gias e ferramentas CASE (Vol. 2, 2nd ed.). Portugal:
Centro Atlântico.

S¨oderstrom, E., Andersso, B., Johannesson, P.,
Perjons, E., & Wangler, B. (2002, May). Towards
a framework for comparing process modelling
languages. In CAiSE ’02: Proceedings of the 14th
International Conference on Advanced Informa-
tion Systems Engineering (pp. 600-611). London:
Springer-Verlag. Retrieved June 21, 2006, from
http://portal.acm.org/citation.cfm?coll=GUIDE
&dl=GUIDE&id=680389#

SparxSystems. (n.d.). Enterprise architect: UML
design tools and UML CASE tools for software
development. Retrieved June 5, 2006, from http://
www.sparxsystems.com/ products/ea.html

Thomas, D. (2004, May-June). MDA: Revenge
of the modelers or UML utopia? IEEE Soft-
ware, 21(3), 15-17. Retrieved June 5, 2006, from
http://doi.ieeecomputersociety.org/10.1109/
MS.2004.1293067

Tolvanen, J.-P., & Rossi, M. (2003, October).
MetaEdit+: Defining and using domain-specific
modeling languages and code generators. In
OOPSLA ’03: Companion of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Ap-
plications (pp. 92-93). New York: ACM Press.
Retrieved June 5, 2006, from http://doi.acm.
org/10.1145/949344.949365

Visual Studio 2005: Domain-specific language
tools. (n.d.). Retrieved June 5, 2006, from http://
msdn.microsoft.com/vstudio/dsltools

Zhao, L., & Siau, K. (2007, November). Informa-
tion mediation using metamodels: An approach
using XML and common warehouse metamodel.
Journal of Database Management , 18(3), 69-
82.

131

Evaluation of MDE Tools from a Metamodeling Perspective

Zhu, J., Tian, Z., Li, T., Sun, W., Ye, S., Ding,
W., et al. (2004). Model-driven business process
integration and management: A case study with
the Bank SinoPac regional service platform. IBM
Journal of Research and Development, 48(5/6),
649-669. Retrieved November 23, 2007, from
http://www.research.ibm.com/journal/rd/485/
zhu.pdf

This work was previously published in the Journal of Database Management, Vol. 19, Issue 4, edited by K. Siau, pp. 21-46,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

132

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6
Exploring the Effects of

Process Characteristics on
Product Quality in Open Source

Software Development
Stefan Koch

Vienna University of Economics and Business Administration, Austria

Christian Neumann
Vienna University of Economics and Business Administration, Austria

AbstrAct

There has been considerable discussion on the possible impacts of open source software development
practices, especially in regard to the quality of the resulting software product. Recent studies have shown
that analyzing data from source code repositories is an efficient way to gather information about proj-
ect characteristics and programmers, showing that OSS projects are very heterogeneous in their team
structures and software processes. However, one problem is that the resulting process metrics measuring
attributes of the development process and of the development environment do not give any hints about
the quality, complexity, or structure of the resulting software. Therefore, we expanded the analysis by
calculating several product metrics, most of them specifically tailored to object-oriented software. We
then analyzed the relationship between these product metrics and process metrics derived from a CVS
repository. The aim was to establish whether different variants of open source development processes
have a significant impact on the resulting software products. In particular we analyzed the impact on
quality and design associated with the numbers of contributors and the amount of their work, using the
GINI coefficient as a measure of inequality within the developer group.

133

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

INtrODUctION

In recent years, free and open source software
(OSS) has drawn increasing interest, both from
the business and academic worlds. Projects in dif-
ferent application domains, like most notably the
operating system Linux, together with the suite of
GNU utilities, the office suites GNOME and KDE,
Apache, sendmail, bind, and several programming
languages, have achieved huge successes in their
respective markets. Undeniably, they constitute
software systems of high quality. This has led
to discussions and analyses of the underlying
development process, as OSS is unique not only
in its licenses and legal implications.

The main ideas of this development model are
described in the seminal work of Raymond (1999),
The Cathedral and the Bazaar, first published in
1997. Raymond contrasts the traditional model of
software development, which he likens to a few
people planning a cathedral in splendid isola-
tion, with the new ‘collaborative bazaar’ form of
open source software development. In the latter
model, a large number of developer-turned-users
come together without monetary compensation
to cooperate under a model of rigorous peer re-
view and take advantage of parallel debugging,
which altogether leads to innovation and rapid
advancement in developing and evolving software
products. In order to enable this while minimizing
duplicated work, the source code of the software
needs to be accessible, which necessitates suitable
licenses, and new versions need to be released of-
ten. Most often, the license a software is under is
used to define whether it is open source software,
applying for example the open source definition
(Perens, 1999) or the approach of free software
as embodied in the GNU GPL (Stallman, 2002).
Nevertheless, usually a certain development style
and culture are also implicitly assumed, although
no formal definition or description of an open
source development process exists, and there is
considerable variance in the practices actually
employed by open source projects. Also the re-

lationship to and insights regarding practices of
agile software development (Erickson, Lyytinen,
& Siau, 2005; Turk, France, & Rumpe, 2005;
Merisalo-Rantanen, Tuunanen, & Rossi, 2005)
have been discussed (Koch, 2004a).

Possible advantages and disadvantages to the
development of software of this new development
model have been hotly debated (Vixie, 1999; Mc-
Connell, 1999; Bollinger, Nelson, Self, & Turnbull,
1999; Cusumano, 2004; Feller, Fitzgerald, Hissam,
& Lakhani, 2005). For example the question of
whether open source development positively or
negatively impacts quality and security has been
a topic of several analyses (Witten, Landwehr,
& Caloyannides, 2001; Hansen, Köhntopp, &
Pfitzmann, 2002; Payne, 2002; Stamelos, Angelos,
Oikonomou, & Bleris, 2002; Koru & Tian, 2004;
Feller et al., 2005). Different viewpoints have
also developed regarding whether or not the open
source development approach increases efficiency
of software production (Feller et al., 2005). Crit-
ics argue that the largely missing requirements
engineering and design phases, together with
the trend to search for bugs in the source code
late in the lifecycle, lead to unnecessarily high
effort hidden by the relative ease of spreading it
throughout the world (McConnell, 1999; Vixie,
1999). Proponents of the OSS development model
counter with arguments of very high modularity,
fast release cycles, and efficient communication
and coordination using the Internet (Bollinger et
al., 1999; Raymond, 1999).

Currently, much empirical research is proceed-
ing on OSS processes. Often, the research relies
on data available through mining the communica-
tion and coordination tools and their repositories
(Cook, Votta, & Wolf, 1998; Dutoit & Bruegge,
1998; Atkins, Ball, Graves, & Mockus, 1999; Ke-
merer & Slaughter, 1999) in place in OSS projects
in order to describe and characterize the develop-
ment team and processes. Most notably, the source
code control systems used have been found to be
a source of information, together with mailing
lists and bug tracking systems. These analyses

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

134

have been useful in providing an indication of
how OSS development works in practice. Work
performed has included both in-depth analyses of
small numbers of successful projects (Gallivan,
2001) like Apache and Mozilla (Mockus, Fielding,
& Herbsleb, 2002), GNOME (Koch & Schneider,
2002), or FreeBSD (Dinh-Tong & Bieman, 2005)
and also large data samples, such as those derived
from Sourceforge.net (Koch, 2004; Long & Siau,
2007). Primarily, information provided by version
control systems has been used, but so have ag-
gregated data provided by software repositories
(Crowston & Scozzi, 2002; Hunt & Johnson, 2002;
Krishnamurthy, 2002), meta-information included
in Linux Software Map entries (Dempsey, Weiss,
Jones, & Greenberg, 2002), or data retrieved
directly from the source code itself (Ghosh &
Prakash, 2000). Other approaches taken include
ethnographic studies of development communi-
ties (Coleman & Hill, 2004; Elliott & Scacchi,
2004), sometimes coupled with repository mining
(Basset, 2004). Indeed, it can be shown that im-
portant information about project characteristics
and participating programmers can be retrieved
in this fashion.

However, a key problem is that the resulting
process metrics (Conte, Dunsmore, & Shen, 1986;
Fenton, 1991; Henderson-Seller, 1996) measuring
attributes of the development process and of the
development environment, such as distinct pro-
grammers, number of commits, or inequality, do
not address the quality, complexity, or structure
of the resulting software product. Therefore, we
expanded the analysis in this article by selecting
and calculating several product metrics pertaining
to these characteristics of the software product.

This allows us to analyze whether different
development practices have an impact on prod-
uct quality. We will use process metrics derived
from the respective source code control systems
as predictors for quality as portrayed by relevant
product metrics. Uncovering these relationships
will answer the question of which values for
these variablesfor example, low inequality in

participationlead to a higher product quality.
For this analysis, we use OSS Java frameworks
as a data set. The most similar work available
is by Koru and Tian (2005), who have used two
large open source projects as a dataset to uncover
a relationship between high-change modules and
those modules rating highly on several structural
measures. They used, among others, size measures
such as lines-of-code or number of methods, cou-
pling measures such as coupling between objects,
cohesion measures such as lack of cohesion in
methods, and inheritance measures such as depth
in inheritance tree.

The research objective of this article therefore
is as follows: We investigate whether there is
an influence of different forms of open source
software development processes characterized
by process metrics on the resulting software.
Most importantly, we check for impacts on dif-
ferent quality aspects as measured by appropriate
product metrics. A comparison with proprietary
products and processes is out of scope and will
not be treated in this study.

In the following section the method employed
for arriving at the necessary data is described,
starting with the data set chosen and its impor-
tance, and proceeding to the data collection of both
product and process metrics and their combina-
tion. Then we present the analysis regarding any
relationship between process and product metrics,
both on the level of classes and of projects, fol-
lowed by a discussion. The article finishes with
conclusions and future research directions.

MEtHOD

Data set

For this empirical study, a certain fixed domain
of OSS was chosen, in order to limit variance to
the areas of interest by holding the application
domain constant. All projects included therefore
roughly implement the same requirements and

135

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

with the same programming language, so differ-
ences in software design and quality can directly
be attributed to different development practices
in place.

We examine 12 OSS frameworks for the
presentation layer of Web applications. A frame-
work is a reference architecture for a concrete
application which offers basic structures and
well-defined mechanisms for communication.
Only specific application functionality has to
be implemented by the programmer, which is
achieved by using abstract classes and interfaces
that have to be overridden (Johnson, 1997; Fayad
& Schmidt, 1997). All frameworks are based on
J2EE components like JSP, Servlets, and XML,
and can be used within every Servlet container
that implements the J2EE standard. The frame-
works are: ActionServlet, Barracuda, Cocoon,
Expresso, Jetspeed, Struts, Tapestry, Turbine,
Japple, Jpublish, Maverick, and Echo.

Besides having a fixed domain thus reduc-
ing any noise in the results, frameworks are an
important part in modern software development.
Frameworks are one possibility of reusing exist-
ing software, thus promising reduced costs, faster
time to market, and improved quality (Morisio,
Romano, & Stamelos, 2002). OSS especially lends
itself to white box reuse (Prieto-Diaz, 1993), as
it per definition contains the source code, offers
a deeper view into the architecture, and may be
modified or adapted. This reduces the disadvan-
tages encountered with using components-off-
the-shelf (COTS) offered by software companies.
Another critical issue that can be solved by using
OSS is the maintenance of frameworks, which is
usually done by the contributors of project. On the
other hand, although the source code is available
and the program could be maintained by the com-
munity, some serious problems could accompany
the development process, due to low-quality code,
design, or documentation. Object-oriented metrics
as used here provide a capability for assessing
these qualities (Chidamber & Kemerer, 1991,

1994) and may help to estimate the development
effort for adaptation and adjustment.

First, all classes are treated as a single data set;
afterwards an analysis on project level is presented.
An analysis on class level is performed for two
reasons: As we analyze the development process
and style, the differences between classes might
be larger than those between projects, and indeed
for some metrics the variation is higher within
the projects than between them. For example an
abstract class for database access might be devel-
oped similarly in all projects. We therefore might
find paired classes among different projects. In
addition, using a framework does not necessarily
mean adopting all classes within this framework.
Therefore an analysis on this detailed level is of
interest out of a reuse perspective. Afterwards, we
will try to consolidate both perspectives by using
multilevel modeling which explicitly incorporates
effects on both levels.

Data collection

For the following analysis, several steps of data
collection were conducted. As mentioned above,
this study focuses on frameworks for Web ap-
plications written in an object-oriented language.
Many of the available frameworks are not writ-
ten in object-oriented languages but scripting
languages like Perl or PHP. This would preclude
using most of the product metrics designed for
object-oriented languages. Therefore we focused
on frameworks written in Java. We conducted
preliminary research to identify potential candi-
dates that fulfilled the criteria of both language
and application area. This initial phase consisted
of performing extended Web research (online
developer forums, search engines) and perusing
reports in professional publications for developers.
This led to the identification of 12 frameworks. The
functions and features of the resulting frameworks
were compared in a prior study (Neumann, 2002)
and are not part of this article.

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

136

After the data set as defined above had been
identified, both product and process metrics had
to be retrieved and merged for further analysis. In
order to calculate the product metrics, the latest
stable version of each framework was determined
and downloaded as a packed distribution. We used
the metric plug-in (http://metrics.sourceforge.
net/) for the Eclipse SDK (http://www.eclipse.
org) to calculate these product metrics. The neces-
sary compilation of the downloaded source files
required utilization of stable versions over the
current snapshot from the source code repository,
the latter of which might produce complications
due to inconsistent code and the exclusion of ad-
ditional libraries. The plug-in creates an XML
representation of the calculated metrics which
we used in our study. This is done for source
code files only (i.e., .java-files in Java). A simple
Java program was written to process this XML
file and to store the metrics on class level into a
database. The resulting product metrics will be
described in the next section.

To retrieve the required process metrics, we
used the methodology applied in other studies
(Mockus et al., 2002; Koch & Schneider, 2002;
Robles-Martinez, Gonzalez-Barahona, Centeno-
Gonzalez, Matellan-Olivera, & Rodero-Merino,
2003; Dinh-Tong & Bieman, 2005; Hahsler &
Koch, 2005), relying on mining the source code
control repositories, for the data set in all cases
of the concurrent version system (CVS). First, we
looked up the CVS tag associated in the repository
with the stable version already downloaded. Us-
ing this information, a local checkout of the files
was performed, and a log file was generated from
the initial check-in until the corresponding date
of the stable release. This assures that the same
source code is used to calculate both the product
and process metrics. Data from the log files were
extracted for every check-in for every available
file in the local CVS repository. Once extracted,
these were stored in a normal database as has
been done in prior studies (Fischer, Pinzger, &
Gall, 2003; Koch & Schneider, 2002; Koch, 2004;

Hahsler & Koch, 2005). Each database entry
therefore consists of the filename, the name of
the committer which was anonymized for privacy
reasons (Thuraisingham, 2005), LOC added
and deleted, and the date. The end result was a
total of 45,164 records within a single table. We
then used database queries to calculate process
metrics, for example, overall commits, number
of different committers, and so on, for each class
(i.e., .java-file). Using another program, additional
metrics like the standardized GINI coefficient
were computed for every file and again stored in
the database. The product and process metrics
were merged using the file name as a unique key,
resulting in one entry for every class containing
both types of metrics. We therefore only consider
source code files (i.e., .java-files) and exclude ad-
ditional files possibly found in the CVS repository,
like documentation files or the projects’ Web
sites. Figure 1 gives a graphical overview of the
data-collection process.

Description of Process Metrics

In selecting the metrics used in this study, we
both considered the goals of the analysis (i.e., to
be able to both characterize the software process
and quality aspects of the resulting product) and
the availability of metrics within the data. We use
several well-discussed process metrics to char-
acterize the OSS development processes in the
projects analyzed. The metric of commit refers to
a single change of a file by a single programmer.
Therefore the number of commits of a file is the
sum of changes conducted over a certain period
of time and is also an indicator for the activity of a
file. In our study we cover the time from the initial
commit of a file until the last commit before the
stable version was released. The total lifetime of
a file includes all the time elapsed, not only that
time which was spent on developing and coding.
Another important process metric is the total num-
ber of distinct programmers involved in writing
and maintaining a file. A programmer is defined

137

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

by counting those people committing source code
changes through their CVS account, thus only
people with such accounts are measured. In some
projects, depending on the change and commit
policy in place, people could be contributing code
without CVS account, which sometimes is only
granted to long-time participants, by sending it
to one of those persons who then does the actual
commit. For example, German (2006) found that
110 out of 364 modification records of a user were
patches submitted by 46 different individuals.
Therefore, the number of programmers might
actually be higher than the number reported here.
This fact is very problematic to check. In general,
there are several possibilities of attributing au-
thorship of source code to persons, which are to
use the associated CVS account (as done here),
to mine the versioning system comments for any

additional attributions, to infer from attributions
in the source code itself, or by questionnaires
or intimate knowledge of a project and its par-
ticipants. Attributions in source code or commit
comments are highly dependent on existence and
form of a project’s standards, and therefore are
also difficult to implement for larger data sets.
Ghosh and Prakash (2000) have implemented a
solution based on source code attributions for a
set of more than 3,000 projects, with about 8.4%
of the code base remaining uncredited, and with
the top authors containing organizations like the
Free Software Foundation or Sun Microsystems.
Nevertheless, they have found a similar distribu-
tion of participation as found in this study’s data
set, as have most other approaches like question-
naires (Hertel, Niedner, & Hermann, 2003) or
case studies of larger projects (Mockus et al.,

Project
list

1. Project
download
(stable)

2. Product
metric

calculation

3. CVS tag
determiation

4. CVS log
download

5. Log
analysis

(process metrics)

CVS tags
list

CVS logs

Project
Source
Codes

Database

Project
CVS

Server

Figure 1. Data-collection process

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

138

2002, Koch & Schneider, 2002; Dinh-Trong &
Bieman, 2005). In a case study of the OpenACS
project under participation of project insiders and
using the strict standards for CVS comments,
Demetriou, Koch, and Neumann (2006) have
found that only 1.6% of revisions pertained to
code committed for someone without CVS privi-
lege. In this study, we have used two approaches
for checking the validity of this measure: Using
simple heuristics, we have checked all commit
comments for attributions. This shows that 11.7%
of revisions seem to be contributed by other people.
We have also manually inspected all revisions of
the Maverick project: no revision seemed to have
been committed for somebody else, which was
identical to the heuristics result.

As the participation of programmers in open
source projects is less continuous than in com-
mercial development, the number of program-
mers alone does not adequately reflect the effort
invested. Therefore we include the open source
software person month (OSSPM) as a new pro-
cess metric that characterizes the amount of work
that is committed to the object considered. This
is defined as the cumulated number of distinct
active programmers per month over the lifetime
of the object of analysis. As Koch and Schneider
(2002) have shown, this number of active pro-
grammers can be used as an effort predictor. It
should be noted that this measure assumes that
the mean time spent is constant between objects
of analysis.

As several prior studies (Koch, 2004; Mockus
et al., 2002; Ghosh & Prakash, 2000; Dinh-Tong
& Bieman, 2005) have shown the distribution of
effort between participants to be highly skewed
and differing from commercial software devel-
opment, we add an additional process metric to
characterize the development style. We used the
normalized GINI coefficient (Robles-Martinez et
al., 2003), a measure of concentration, for this.
The GINI coefficient is a number between 0 and
1, where 0 is an indicator for perfect equality and
1 for total inequality or concentration. We cal-

culated the GINI coefficient both based on LOC
added per person (which can be extracted from
the CVS repository) and on the number of com-
mits a person has done. As the further analyses
did not show significant differences between both
measures, we will only report the findings for the
GINI coefficient based on LOC added. Therefore
in the terms of OSS development, a GINI coef-
ficient of 1 means that one person has written all
the code. We performed a slight modification: As
some files only have one author, calculating the
normalized GINI coefficient results in 0 (equal-
ity). For these cases we changed the value from 0
to 1 because, for us, the fact that one person has
written all the code is an indicator of inequality
rather than equality.

Description of Product Metrics

The most popular product metric is the size of a
program, which can be derived by counting the
number of lines-of-code (LOCs). There are many
different ways to count LOCs (Humphrey, 1995;
Park, 1992; Jones, 1986). In this analysis we ap-
ply the definition used by the CVS repository,
therefore including all types of LOCs: source
code lines as well as commentaries (Fogel, 1999).
The size of the largest method (LOCm) is another
important descriptor in object-oriented classes
which can also be measured by counting LOCs.
These size metrics can be regarded as indicators
for complexity as it is very difficult to read and
understand classes with long methods and many
fields (Henderson-Seller, 1996). Other indicators
are the number of regular/static methods (NOM/
NSM) and the number of regular/static fields
(NOF/NSF). We propose that these size measures
are affected by nearly all process metrics: If more
people are working on a class, its size will increase.
The same will tend to be true for the time the class
exists and the number of commits performed.
Especially the amount of effort invested in the
class will increase the size. Most importantly,
we propose that the inequality in contributions

139

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

will affect different size measures: If the class is
programmed and maintained by a small team, or a
small core group within a team, these participants
will tend not to see the need for promoting higher
modularity. This would presumably lead to them
not splitting up a class, thus affecting LOC, or a
method, thus affecting LOCm.

The probably most well-known complex-
ity metric is McCabe’s definition of cyclomatic
complexity (VG) (McCabe, 1976). VG counts the
number of flows through a piece of code, (i.e., a
method). Each time a branch occurs (if, for, while,
do, case, catch, and logic operators), this metric is
incremented by one. We determined the maximum
(VGmax) and the average (VGavg) method com-
plexity on class level. Weighted Methods per Class
(WMC) are part of the Chidamber and Kemerer
suite, but they leave the weighting scheme as an
implementation decision (Chidamber & Kemerer,
1994). In our study WMC is defined as the sum of
all method’s complexities (VG) that occur within
a class. VG and WMC are indicators of how much
time and effort must be spent to understand, test,
maintain, or extend this component (Chidamber
& Kemerer, 1991; 1994), with McCabe giving
VG = 10 as a reasonable limit for proper testing
(McCabe, 1976). But this measure should be
treated with special care, as this metric is based
on experiences in procedural languages including
C or COBOL (Lorenz & Kidd, 1995). Subraman-
yam and Krishnan (2003) have shown that WMC
is highly correlated to LOC, which supports the
thesis that LOC can be used as a low-level com-
plexity metric. The influence of WMC on software
quality was examined in several studies (Basili,
Briand, & Melo, 1996; Subramanyam & Krishnan,
2003). Regarding the relationship of complexity
measures with process metrics, the most important
effect is proposed to exist in connection with the
inequality: Analogous to the reasoning for size,
complexity reduction will not be a high priority
when a small core group who would know the code
in any case is present. Also, classes, and software
overall, tend to accumulate more complexity as

time passes, if no counter-measures are taken.
This will decrease maintainability, which again
is less of an issue if the software is consistently
maintained by a small group.

The object-oriented product metrics we investi-
gated are mostly based on a subset of the Chidam-
ber-Kemerer-Suite (Chidamber & Kemerer, 1991,
1994; Chidamber, Darcy, & Kemerer, 1998). The
authors argued that the product metrics commonly
used before were not suitable for object-oriented
development (Chidamber & Kemerer, 1991). From
their point of view, the modern object-oriented
analysis, design, and programming processes,
which encapsulate functionality and entities in
objects, were too different from the traditional
software engineering process. The prior product
metrics were not designed to measure object-
oriented characteristics like classes, inheritance,
and the usage of methods and attributes. They
proposed six metrics, derived from a theoretical
analysis, which should be able to assist in making
predictions about the complexity and quality of
object-oriented programs. We used a subset of the
CK-suite (NOC, DIT, WMC) for which concrete
threshold values were suggested. The remaining
metrics (LCOM, RFC, CBO) are not part of this
study, as no threshold values are available. In
addition, CBO and RFC have been found to be
highly correlated with WMC (Chidamber et al.,
1998), so they would not give additional infor-
mation. These CK-metrics for our analysis are
complemented by some of the metrics defined
by Lorenz and Kidd (1995).

Number of Children (NOC) and Depth in
Inheritance Tree (DIT) are metrics for the level
of inheritance of a class. Chidamber and Kemerer
(1994) state that the deeper a class in the hierarchy,
the more complicated it is to predict its behavior
and the greater its design complexity. Though
this may lead to greater effort in maintenance
and testing, it has greater potential for the reuse
of inherited methods. In a Java environment, DIT
is defined as the longest path from the class to
the root in the inheritance hierarchythat is, the

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

140

class Object. Some studies have shown that DIT
is related to fault-proneness (Basili et al., 1996;
Briand, Wüst, Ikonomovski, & Lounis, 1998).
NOC counts the number of classes inherited
from a particular ancestorthat is, the number
of children in the inheritance hierarchy beneath
a class. A class implementing an interface counts
as a direct child of that interface. Chidamber and
Kemerer (1991) expose a similar relationship be-
tween design complexity and NOC. The greater
the number of children of a class, the greater is the
reuse. However, an excessive number of children
may indicate the misuse of sub-classing. NOC
also hints to the importance of that class within
the application, as well as to the corresponding
additional effort likely required for testing and
maintaining. NOC was evaluated by Basili et
al. (1996) and Briand et al. (1998), who differ in
their findings related to fault-proneness. NORM,
like NOC and DIT, is an inheritance metric for
class design (Lorenz & Kidd, 1995). It measures
the number of inherited methods overridden by
a subclass. Lorenz and Kidd (1995) state that,
especially in the context of frameworks, methods
are often defined in a way that requires them to
be overridden. However, very high values may
indicate a design problem because a subclass
should extend new abilities to its super-class that
should result in new method names. Similar to
the other product measures, we again propose
a relationship of the process metrics with these
object-oriented metrics. Especially the metrics
giving an indication of the use of inheritance
will be affected by different process attributes,
most importantly on project level. The correct
use of inheritance helps in achieving a modular
design which in turn allows for parallel work by
many participants. In addition, it significantly
enhances maintainability. We therefore propose
that analogous mechanisms will be found here as
for complexity measures.

We suggest two additional metrics that can be
used to describe the interior design of a class. The
number of classes (NCL) counts the number of

classes within a class and should be either 0 for
interfaces or 1 for classes. Other values indicate
the utilization of interior classes, which should be
avoided in object-oriented design. The number of
interfaces within a class (NOI) aims at the same
direction. Interfaces are used to define entry
points within or even across applications and
therefore should not be defined within a class but
in separate files.

Most of these product metrics presented are
discrete variables, where increasing (or decreas-
ing) values are not necessarily a sign of good
or bad quality, or aspects thereof. For example,
whether the cyclomatic complexity VG of an entity
is 4 or 6 is mostly determined by its function, and
does not signal any deviation from good practice
or negatively influence maintainability. Only if a
certain value is surpassed does this metric give
an indication of possible problems. Therefore,
most of these metrics can be assigned a threshold
for this purpose. Currently, there is a paucity of
threshold values for the defined metrics provided
by literature based on empirical studies, especially
using Java. This requires us for most metrics to
use the values proposed by Lorenz and Kidd
(1995) for C++ classes.

Based on the threshold values in Table 1, we
created dummy variables that take on the value
of one or zero, depending on whether the associ-
ated metric values exceed the threshold value for
that class. These dichotomous variables try to
categorize the given metrics based on different
aspects to be explored like size or complexity
(see Box 1).

MSIZE and CSIZE depend on metrics that
measure size, MCOMP on complexity, CINH
on inheritance, and CDESIGN on interior class
design.

ANALYsIs ON cLAss LEVEL

In total, 6,235 Java classes (i.e., distinct files)
have been analyzed, for which a total of 45,164

141

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

commits were made, with 2,109,989 LOCs added
and 913,455 LOCs deleted. A total of 133 distinct
programmers have contributed with at least one
commit. The number of classes investigated
therefore is considerably higher than the datasets

used in former studies on object-oriented metrics
(634 by Chidamber & Kemerer, 1994; 97 by Chi-
damber et al., 1998; 180 by Basili et al., 1996; 698
by Subramanian & Corbin, 2001; 180 by Briand,
Wüst, Daly, & Porter, 2000).

Metric Name Threshold Definition

NOC Number of Children Total number of direct subclasses of a class

NOI Number of Interfaces Total number of interfaces of the file

DIT Depth of Inheritance Tree < 6
Distance from class Object in the inheritance

hierarchy

NORM Number of Overridden Methods < 3
Total number of methods that are overridden

from an ancestor class

NOM Number of Methods < 30-40 Total number of methods

NOF Number of Fields < 3-9 Total number of class variables

NSM Number of Static Methods < 4 Total number of static methods

NSF Number of Static Fields < 3 Total number of static variables

LOCm Lines of Code < 24
Total lines of code of the greatest method in

the selected scope

VGmax
McCabe Cyclomatic Complexity

Maximum
< 10 Maximum VG for all methods within a class

VGavg
McCabe Cyclomatic Complexity

Average
< 10 Average VG for all methods within a class

WMC Weighted Methods per Class < 65
Sum of the McCabe Cyclomatic Complexity

for all methods in a class

NCL Number of Classes = 1 Indicates possible interior classes

Table 1. Overview of metrics with corresponding threshold values

1 / 18 24
0

1 max 10 10
0

1 30 4 9 4
0

1 6 15
0

1 1 1
0

MSIZE if LOC NOM > LOCm >
else

MCOMP if VG > VGavg >
else

CSIZE if NOM > NSM > NOF > NSF >
else

CINH if DIT > (NOC DIT) >
else

CDESIGN if NCL > NOI >
else

∨

∨

∨ ∨ ∨

∨ ∗

∨

Box 1.

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

142

Descriptive statistics

Descriptive statistics for all product and process
metrics can be found in Table 2. The highest
number of commits (209) can be found in the
Barracuda project. This file is a change history
in Java format containing only comments. The
file with the second highest number of commits
(188) is also the class with the highest value of
LOCs added (19,252), LOCs deleted (11,706),
and the largest file overall (7,546 LOCs). This
file is one of the most important classes of the
Expresso framework (DBObject.Java) and is re-
sponsible for DB communication. The class that
is responsible for dispatching the requests of the

Struts framework (ActionServlet.Java) is the file
with the third highest number of commits (150).
An abstract class of the Jetspeed framework that
forms the behavior of a portlet has another high
value of commits. It is obvious that components
providing key functionalities need a special
amount of interest because they are usually en-
gaged with several other objects. In accordance
with prior studies, all of the process metrics are
not ‘normal distributed’ which can be ascertained
using a Kolmogorov-Smirnov test.

In accordance with other studies (Koch, 2004),
the number of distinct programmers is quite small
with low standard deviation. The histogram of
distinct programmers per file shows a heavily

Process Metrics

N Min Max Mean s.d. 75% Percentile Median

Authors 6,235 1.00 15.00 2.66 1.59 3.00 2.00

Commits 6,235 1.00 209.00 7.24 9.96 8.00 5.00

Days 6,235 0.00 1,628.91 357.44 298.90 459.81 350.78

GINI 6,235 0.00 1.00 0.78 0.24 0.98 0.85

OSSPM 6,235 1.00 58.00 4.80 4.02 6.00 4.00

Product Metrics

N Min Max Mean s.d. 75% Percentile Median

LOC 6,235 0.00 7,546.00 207.99 279.44 237.00 124.00

DIT 5,339 1.00 10.00 2.60 1.58 3.00 2.00

NCL 5,339 1.00 51.00 1.16 1.24 1.00 1.00

NOF 5,339 0.00 119.00 2.50 4.67 3.00 1.00

NOI 915 1.00 28.00 1.07 1.19 1.00 0.00

NOM 5,339 0.00 252.00 8.37 12.32 10.00 4.00

NORM 5,339 0.00 65.00 0.61 1.89 1.00 0.00

NOC 5,339 0.00 185.00 1.18 7.05 0.00 0.00

NSF 5,339 0.00 69.00 1.54 4.30 1.00 0.00

NSM 5,339 0.00 69.00 0.71 3.03 0.00 0.00

VGavg 5,339 0.00 42.00 2.41 2.60 2.77 1.67

WMC 5,339 0.00 871.00 20.77 37.22 23.00 10.00

LOCm 5,339 0.00 601.00 22.96 35.85 30.00 24.00

VGmax 5,339 0.00 159.00 5.51 8.38 7.00 3.00

Table 2. Descriptive statistics for all classes

143

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

skewed distribution. Only 12.2% of the files have
more than three distinct authors. Most of the files
have one (24.0%) or two (56.1%) programmers,
and only 3% have more than five distinct authors.
The number of commits per file follows a simi-
lar distribution. Only 16.3% have more than 10
commits. Although our values depend on files’
respective classes, there are similarities to other
studies that have investigated the distribution of
distinct authors and commits (Koch, 2004; Krish-
namurthy, 2002; Mockus et al., 2002; Ghosh &
Prakash, 2000) on the project level.

All of the product metrics are clearly not ‘nor-
mal distributed’ as well. The distribution of LOC
is also heavily skewed, which is in accordance
with other studies (Koch, 2004; Krishnamurthy,
2002).

Due to the fact that most of the metrics men-
tioned above measure attributes of classes, we
regard real interfaces as missing values (NOI
= 1 and NCL = 0). Classes that have interior
interfaces are valid. Most of the median values
are below the threshold suggested by Lorenz and
Kidd (1995), as are most of the values for the
75% percentile. The only metric that exceeds this
recommendation is the 75% percentile of the size
of a method (30>24). The median of the average
method complexity per class VGavg (1.67) and of
the maximum method complexity (3) are below
the threshold of 10 suggested by McCabe (1976),
and only 11.5% of the classes have a maximum
method’s complexity greater than 10. Most of the
studies which investigate object-oriented metrics

used C++ source files (Briand et al., 2000; Chi-
damber & Kemerer, 1994), so our results cannot
directly be compared to them. We are aware
of only one study that investigates Java classes
(Subramanyam & Krishnan, 2003). Compared to
that study we have higher WMC values and our
classes are more deeply nested in the inheritance
hierarchy. One possible reason for this may be the
fact that we examined frameworks that provide
abstract classes that are meant to be overrid-
den. The percentage of classes that exceed our
dichotomous variables are 5.3% (CINH), 6.0%
(MCOMP), 6.1% (CDESIGN), 14.9% (CSIZE),
and 34.9% (MSIZE). The fact that one-third of the
classes investigated do not meet the requirements
for small method size gives rise to the question
whether these threshold values are suitable for
object-oriented Java programs. Our data set
consists of frameworks that provide functionality
for a lot of different scopes. Therefore the aver-
age and maximum values may be greater than in
normal applications. However we do not adjust
the threshold value as it is an indicator for easy
understanding and maintenance. The remaining
values for the dichotomous variables seem to be
reasonable.

rEsULts

In this analysis, we explore relationships between
the metrics mentioned above. Results for correla-
tions between the different process metrics can

Authors Commits Days GINI OSSPM

Authors 1.000

Commits 0.554 1.000

Days 0.471 0.685 1.000

GINI -0.524 -0.370 -0.528 1.000

OSSPM 0.639 0.925 0.689 -0.393 1.000

Table 3. Correlation between process metrics (Spearman coefficient, all at a significance level of
p<0.01)

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

144

be found in Table 3, respectively Figure 2, using
ellipses (Murdoch & Chow, 1996). Due to the fact
that all metrics are not ‘normal distributed’, we
used the nonparametric Spearman coefficient.

The correlation analysis shows expected re-
lationships, like the older a file the more distinct
programmers are involved (0.471), the more
commits are conducted (0.685), and the more
work is contributed (0.689). The amount of work
(OSSPM) is highly correlated to authors, commits,
and the active time, what is indeed reasonable.
More interesting are the relations between the
inequality as measured by the GINI coefficients
and the remaining process metrics. The results
show that the older a file, the more homogeneous
is the distribution of the added input. The negative
correlation between authors and GINI reveals the
same tendencies. The more people are involved,
the more the work is equally distributed among
the participating authors. The number of commits
only has slight influence on the GINI coefficient.
The correlation between product metrics is not
that important, but it should be mentioned that

metrics that measure size attributes of a class
(NOM, NSM, NOF, and NSF) are positively
correlated to the total size in LOC. Furthermore
there is a very strong correlation of WMC to LOC
(0.734), which is almost identical to the correlation
coefficient of 0.741 found by Subramanyam and
Krishnan (2003). More importantly, correlations
between product and process metrics have been
explored, and the results are shown in Table 4,
respectively Figure 3, using ellipses (Murdoch
& Chow, 1996).

The complexity metrics WMC and VGavg have
a slight correlation to the number of authors and
commits as well as to the effort indicator OSSPM.
A similar slight relationship appears regarding
the group of metrics that measure the size of a
class like LOC, LOCm, or NOM. The influence
of the active time on the product metrics can be
disregarded. Metrics concerned with the use of
inheritance (DIT and NOC) do not seem to be
correlated to any of the process attributes. As DIT
and NOC are important indicators of reuse and
well-structured programming, a deeper look into
source code is necessary to gather that kind of
information. The GINI coefficient does not seem
to be correlated to any product metric.

As described above we created dichotomous
variables that indicate whether a class exceeds
a certain quality threshold or not and compared
these two samples with a non-parametric rank-
sum test, the Mann-Whitney-U test, also known as
Wilcoxon rank-sum test, for example also applied
by Koru and Tian (2005). The test assesses whether
the degree of overlap between the two observed
distributions is less than would be expected by
chance. The resulting hypotheses are:

H0: There is no difference in process characteris-
tics between the group S1 that exceeds the thresh-
old values and the group S0 that does not.

HA: There is a difference between these
groups.

Figure 2. Correlation between process metrics
(Spearman coefficient, black showing significance
level of p<0.01)

145

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Authors Commits Time GINI OSSPM

LOC **0.157 **0.379 **0.179 **0.057 **0.370

DIT 0.015 0.019 0.025 *−0.027 0.021

LCOM **0.109 **0.102 0.020 **0.044 **0.137

LOCm **0.237 **0.432 **0.181 **−0.058 **0.408

NBD **0.273 **0.290 **0.138 **−0.152 **0.292

NCL **0.092 **0.139 **0.042 **0.048 **0.131

NOF **0.149 **0.199 **0.071 **0.038 **0.199

NOI **−0.080 **−0.097 0.001 **−0.034 **−0.119

NOM **0.103 **0.253 **0.066 **0.037 **0.232

NORM **0.095 **0.169 **0.108 **−0.078 **0.181

NOC **0.085 **0.084 **0.091 *−0.029 **0.093

NSF **0.129 **0.244 **0.155 −0.022 **0.235

NSM −0.019 **0.044 *0.027 0.006 0.018

SIX **0.076 **0.149 **0.108 **−0.086 **0.162

VGavg **0.242 **0.332 **0.168 **−0.112 **0.337

WMC **0.214 **0.389 **0.163 *−0.032 **0.366

Table 4. Correlation between selected process and product metrics (Spearman coefficient, * p < 0.05,
** p < 0.01)

Figure 3. Correlation between selected process and product metrics (Spearman coefficient, grey p <
0.05, black p < 0.01)

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

146

If H0 is rejected, an additional, one-sided
Mann-Whitney U-test is used with the hypoth-
eses:

HA1: The rank-sum in S1 is greater than in S0,
indicating that high values of process metrics
foster bad quality.

HA0: The rank-sum in S1 is lesser than in S0,
indicating that high values of process metrics
foster good quality.

The results of these tests are shown in Table 5.
Except for the combinations MCOMP/GINI and
CSIZE/GINI, the significance is smaller than 0.05,
so in these cases we can accept the alternative
hypothesis HA that the corresponding process
metrics have an influence on the product metric.
In this case we performed a one-sided Mann-
Whitney U-test to determine the direction of
relationshipthat is, whether the process metrics
have a positive (accept HA1) or negative (accept
HA0) influence on the product metrics.

Authors Commits Time GINI OSSPM

MSIZE

relationship (HA)
accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

direction
↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↓, HA0

(p<0.01)

↑, HA1

(p<0.01)

MCOMP

relationship (HA)
accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)
rejected

accepted

(p<0.01)

direction
↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

CSIZE

relationship (HA)
accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)
rejected

accepted

(p<0.01)

direction
↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

CINH

relationship (HA)
accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

direction
↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↓, HA0

(p<0.01)

↑, HA1

(p<0.01)

DESIGN

relationship (HA)
accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

accepted

(p<0.01)

direction
↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

↑, HA1

(p<0.01)

Table 5. Results of Mann-Whitney U-tests (↑ indicates that high values of the process metrics foster bad
quality and ↓ indicates good quality)

147

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

In case of a positive relationship (↑), the sum
of the ranks in the group that exceeds the limit
is higher than in the group that does not. In qual-
ity terms, these results indicate that the higher
the process metric is, the lower the quality is.
Therefore a higher number of distinct program-
mers, commits, time, and invested effort have a
negative influence on the quality.

To validate our results we performed the same
tests only with classes that have at least five dif-
ferent authors (n=668). The results are mainly the
same, but we could not reject H0 for the combina-
tions MCOMP/Time, CSIZE/Authors, and CSIZE/
Time. The change in the number of authors had
an influence on the relationship between GINI
and the dichotome product metrics. All combina-
tions had a positive influence (accept HA1 with
p<0.01), which confirms our prior results that the
more the work is concentrated, the worse is the
quality of software. Or the other way around, an
equal distribution of commits fosters good quality.
We will discuss this important finding in more
detail later on.

ANALYsIs ON PrOJEct LEVEL

For an analysis on project level, we aggregated the
product metrics from class level and calculated
the process metrics for the whole project, based
on those files that were examined in the former
section. We stored these results in another table
in the database.

Descriptive statistics

Cocoon is the project with the highest number of
distinct programmers, commits, and Java classes.
The project ActionServlet, Jpublish, and Echo only
have one author. Whether these should be included
in further analysis can be discussed. Using a defini-
tion of OSS based on the respective license, these
projects constitute open source projects, but they
conflict with the development model normally as-
sociated. On the other hand, these projects might
possibly have more participants but a very central
control regarding the source code, such that any
change must be reviewed and committed by the
single maintainer, although other people actually
write the code and submit it to this person. We
have already discussed this problem with the

Authors Commits Days GINI Files OSSPM

cocoon-2.1 40.00 10,131.00 439.49 0.85 2,298.00 244.00

jakarta-jetspeed 17.00 4,962.00 1,637.92 0.68 677.00 160.00

jakarta-turbine-2 17.00 2,621.00 748.17 0.81 388.00 83.00

jakarta-struts 16.00 3,092.00 1,122.33 0.60 496.00 146.00

expresso 10.00 6,389.00 761.08 0.84 649.00 94.00

jakarta-tapestry 9.00 3,001.00 409.62 0.85 535.00 53.00

Barracuda 9.00 3,543.00 1,279.08 0.75 453.00 71.00

japple 7.00 1,612.00 450.10 0.68 238.00 56.00

maverick 6.00 358.00 1,137.92 0.71 78.00 27.00

ActionServlet 1.00 199.00 223.15 1.00 106.00 4.00

echo 1.00 1,690.00 894.92 1.00 220.00 27.00

jpublish 1.00 886.00 1,172.03 1.00 97.00 34.00

Table 6. Process metrics for all projects (ordered by number of authors)

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

148

respective metric description. In the following,
we base the analysis on both the full set and a
subset with these projects removed.

Struts is the framework with the lowest GINI
coefficient, which is an indicator for equality of
input. Cocoon, Jetspeed, Struts, Tapestry, and
Turbine are projects that are hosted by the Apache
Software Foundation. The great popularity of the
Apache Web server may explain the encourage-
ment of these frameworks. The very low number
of commits for the ActionServlet is an indicator
for inactivity of the project.

Table 7 shows the mean values of the most
important product metrics. The Japple framework
has the largest files and the highest WMC. As we
have discussed in the previous chapter, there is a
very strong linear relationship between LOC and
WMC. Therefore this combination is not astonish-
ing. Struts and Jetspeed are the projects with the
highest DIT, which indicates extensive usage of
subclassing, a form of reuse. The number of chil-
dren differs across the projects. The frameworks
with the lowest average number of children only
have one author (ActionServlet, Jpublish).

To get an indication of quality and design, we
again apply the dichotomous variables used for
capturing different possible problem areas (MSIZE,
MCOMP, CSIZE, CINH, and DESIGN). As the
total number of classes that exceed our limits is
not appropriate due to different numbers of classes
between projects, we calculated the relative amount
of faulty classes within a project (see Table 8).
Metric MSIZE depicting problems with method
size has rather high values for all projects, but more
than 35% of the classes of Japple, Expresso, and
Jetspeed exceed the limit. These three frameworks
also have a large amount of methods that outrun the
upper bound for complexity. The relative amount
of misuse of inheritance CINH is small except for
the Maverick framework (14.1%). The number of
classes with interior classes or interfaces is small
except for Barracuda, Maverick, and Echo.

results

Due to the fact that only a small data set on project
level is available, the usage of correlation analysis
is not sufficient as the small number precludes
any statistically significant findings. Therefore

DIT NORM NOC SIX VGavg WMC

cocoon-2.1 2.54 0.50 1.13 0.24 2.30 18.02

jetspeed 2.97 0.81 0.81 0.45 2.63 22.41

turbine 2.53 0.42 1.40 0.26 1.82 16.33

struts 3.39 0.69 0.72 0.53 2.97 23.01

expresso 2.82 0.78 1.07 0.49 2.59 30.22

tapestry 2.28 0.29 0.92 0.18 1.65 13.49

Barracuda 2.44 1.29 2.88 0.27 2.83 26.74

japple 1.97 0.77 1.22 0.13 3.16 32.60

maverick 2.40 0.29 1.27 0.33 1.86 9.62

ActionServ-

let
1.87 0.23 0.33 0.12 2.73 17.01

echo 1.92 0.50 1.75 0.17 2.23 18.44

jpublish 1.97 0.24 0.46 0.10 1.73 13.70

Table 7. Product metrics for projects (mean values)

149

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

we performed a simple ranking based on the rela-
tive amount of classes that exceed our threshold
values. High relative amounts of ‘faulty’ classes
result in high ranks (i.e., the project with the high-
est percentage of classes violating the threshold
is ranked on the first place in this variable), and
therefore the higher the sum of ranks the higher
the overall quality. We do not weight the quality
indicators. This ranking can be used to choose
the best alternative among concurrent projects
depending on their software quality. This rank-

ing is on an ordinal scale and therefore should not
be misused to perform any kind of quantitative
comparisons, but we try to find some indicators
for our findings on class level.

It is interesting that the two projects with only
one author have the highest rank overall. Jpublish
and ActionServlet also have very low numbers of
Java-files and commits, and the OSS development
effort is rather low as well. In contrast to these
one-man-projects, Tapestry has nine distinct au-
thors but the same Ranksum as Jpublish. But this

MSIZE MCOMP CSIZE CINH CDESIGN

cocoon-2.1 24.06 4.05 11.27 4.35 7.57

jetspeed 37.08 6.06 15.36 8.71 2.81

turbine-2 26.55 1.55 12.37 4.12 2.32

jakarta-struts 34.68 8.67 17.34 3.63 1.61

expresso 45.30 8.01 15.25 4.47 2.77

tapestry 17.38 0.75 5.05 1.87 3.36

Barracuda 33.55 9.71 18.32 6.84 17.44

japple 53.78 7.98 13.03 1.26 3.36

maverick 17.95 0.00 10.26 14.10 11.54

ActionServlet 23.58 4.72 3.77 0.94 4.72

echo 28.18 5.45 22.27 3.18 15.00

jpublish 19.59 2.06 6.19 2.06 1.03

Table 8. Percentage of classes that exceeds the limits of quality metrics

MSIZE MCOMP CSIZE CINH CDESIGN Ranksum

jakarta-tapestry 12 11 11 10 6 50

jpublish 10 9 10 9 12 50

ActionServlet 9 7 12 12 5 45

jakarta-turbine-2 7 10 7 6 10 40

maverick 11 12 9 1 3 36

cocoon-2.1 8 8 8 5 4 33

japple 1 4 6 11 7 29

jakarta-struts 4 2 3 7 11 27

expresso 2 3 5 4 9 23

nextappecho 6 6 1 8 2 23

jakarta-jetspeed 3 5 4 2 8 22

Barracuda 5 1 2 3 1 12

Table 9. Ranks and sum (ordered by decreasing ranksum)

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

150

project is not that old and the invested development
effort is rather small. This can be seen as another
proof for the hypothesis that over project lifetime,
the quality decreases due to a missing necessary
redesign of the software structure.

The largest project overall with 40 distinct
authors, more than 10,000, commits and 244
OSSPM is Cocoon. Cocoon is ranked in sixth
placeright in the middleso that we cannot
state the quality as extremely bad or good. The
second largest project measured by OSSPM and
.java-files is Jetspeed, which has the second worst
quality ranking, which supports the findings on
class level.

In order to statistically underline these results,
we used the order produced by the ranksum to
compare those projects ranking highly overall
to those ranking very low. This was done by a
set of Mann-Whitney U-tests as applied above.
This time, membership in a project was used as a
dividing factor for the classes, and the distribution
of relevant process metrics was tested to uncover
whether the top projects consistently have differ-
ent distributions than the lower rated ones. We
tested each of the top three projects against each
of the bottom three projects, resulting in nine
comparisons per process metric. For validation,
we also eliminated the one-person projects within
the top group, using the next lower ones with more
participants. The results indicate that projects in
the high-quality region have more authors and
commits, but consistently lower GINI coefficient
representing more equal distributions (in six, re-
spectively seven, out of nine comparisons in the
validation sample). While the first result seems
in contradiction with the results on class level,
the effects of a high concentration are valid on
both levels. These results will be discussed in the
following section.

MULtILEVEL ANALYsIs

Multilevel models (also sometimes termed nested
or mixed-effect models) are statistical models with

parameters arranged in a hierarchical structure
(Goldstein, 1999; Snijders & Bosker, 2003; Kreft
& de Leeuw, 2002). They are appropriate for
data which involves multiple levels, for example
on individual level and group level. A classical
example is a study of students from different
schools, attributes of which might have an impact
on individual performance, or research in organi-
zational science (Klein, Tosi, & Cannella, 1999).
Multilevel models can account for direct effects
of variables on each other within any one level,
and also cross-level interaction effects between
variables located at different levels.

In our study, we have data within two dis-
tinct levels: class and project, with classes being
grouped into projects. Therefore, it is possible
that aspects of a project like different processes
or practices have an influence on the quality of
a class. Using a multilevel model, these effects
can be accounted for and tested. In the follow-
ing, we use Akaike’s information criterion (AIC)
to compare the goodness of fit of the estimated
models, which incorporates the number of param-
eters in selecting the best model, thus penalizing
overfitting. For all analysis, we employed R, a
freely available language and environment for
statistical computing, using the nlme package for
multilevel modeling.

First, we computed for comparison classical
linear models without hierarchical effects for each
dichotomous quality metric (MSIZE, MCOMP,
etc.), using the independent factors Authors, Com-
mits, Time, and GINI. The results are congruent
with the class-level analysis and show the same
general trend of negative effects on quality: In
general, all of the parameters are significant,
positive, and introducing them in a stepwise linear
regression increases model quality significantly
(all at p< 0.01). The following exceptions apply:
Time has generally a positive effect on quality
(except for CINH where the effect is negative,
and for CDESIGN where it is not significant),
and for MSIZE the GINI coefficient has a posi-
tive influence as well (again congruent with the
prior analysis). The GINI coefficient also does

151

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

not have a significant effect on CINH. Overall,
the resulting models only account for a relatively
small part in overall variation, as the R-squared
value ranges from about 0.05 to 0.10.

Following from this, we expand the analy-
sis into multilevel models. We therefore both
introduce additional fixed variables from the
project level (i.e., the overall effort OSSPM of a
project); the total number of programmers, files,
and commits; total lifetime and GINI coefficient;
and define an increasing range of first-level vari-
ables as random. This implies that for each unit,
a different slope and intercept is estimated, so
that the effect of these can differ between units.
These different setups resulted in more than 10
different models being estimated for each quality
indicator. Using statistical tests based on AIC,
these models were compared with each other and
also with the linear models without hierarchical
effects computed before.

The first result is that the inclusion of project
attributes like total number of programmers does
not increase model quality. In all cases, these pa-
rameters are not significant in the regression. In the

model comparison, introducing these terms does
therefore lead to a significant reduction in model
fit measured by AIC (except for introducing the
project’s GINI coefficient, where the reduction is
not significant) due to the penalty associated with
a higher number of parameters. In comparison to
the linear models without hierarchical effects, the
results are generally slightly better if no or a small
number of project attributes are included, due to
the random slope introduced. This underlines that
differences between the projects are significant.
If the models which define more variables like
authors as random (i.e., these are allowed to have a
different intercept and slope depending on project)
are inspected, the model quality does in all cases
increase significantly. This is, with a few excep-
tions, true for an increasing number of variables
becoming random, even though more parameters
are penalized by AIC. The exceptions are: the
GINI coefficient for both MCOMP and CINH
does not exhibit significant random effects. This
again shows that the differences between projects
are manifold and encompass the effects of several
attributes like concentration or number of develop-

Figure 4. Ranking of projects based on the dichotomous variables (high relative amounts result in low
ranks, the higher the sum of the ranks the better the quality)

(a) ranks (b) sum

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

152

ers. If the random effects estimated are evaluated
further, we find that there are even differences in
effect direction between projects: for example,
the number of authors has a positive effect on
method size in six projects, a negative effect in
the others. For problems in inheritance structure
on the other hand, the number of authors almost
uniformly shows a negative effect throughout
the projects. Also the concentration has negative
effects almost throughout the project set.

From this analysis, we can draw the conclu-
sion that the results achieved by other means hold
mostly valid, but that the multilevel approach
shows additional insights. We found that there
are indeed differences between the projects in
the way that the different process metrics have a
relationship with product quality concepts, which
can be accounted for with this analysis. We also
found that the mechanisms and attributes of proj-
ects mitigating these effects do not currently seem
to be captured by the measurements performed,
as the metrics like total number of developers of
projects did not show a significant impact. The
reasons for the different effects might therefore
lie in other attributes like process design which
need to be incorporated in future analyses and
models.

DIscUssION

The analyses on class and project level showed
several results which need to be discussed in their
reasons and in their implications. As shown, a high
number of programmers and commits, as well as
a high concentration, is associated with problems
in quality on class level, mostly to violations of
size and design guidelines. This underlines the
results of Koru and Tian (2005), who have found
that modules with many changes rate quite high
on structural measures like size or inheritance.
On project level, there is a distinct difference:
those projects with high overall quality ranking
have more authors and commits, but a smaller

concentration than those ranking poorly. We
will first address the effects associated with high
concentration on few heads, which turn out on
both levels, afterwards touching on the differ-
ences found.

A high concentration is often seen as a trade-
mark of open source software development and
has turned up in almost any study of open source
projects (e.g., Koch, 2004; Ghosh & Prakash,
2000; Dinh-Tong & Bieman, 2005). Mockus et
al. (2002) have shown this difference to com-
mercial projects in a comparison. Reasons for
this concentration are manifold: they reach from
motivational aspects like status games which
lead to different invested effort between partici-
pants, hugely different skills sets of participants
in combination with self-selection for tasks, the
founding process by one or a few people, to pos-
sible delays in achieving commiter status in some
projects. On the other hand, we find that a high
concentration is correlated with possible problems
in the product quality and maintainability. It has
to be noted that the direction of this relationship
between design aspects and development orga-
nization is not determined: If the architecture is
not modular enough, a high concentration might
show up as a result of this, as it can preclude more
diverse participation. The other explanation is that
classes that are programmed and/or maintained
by a small core team are more complex due to
the fact that these programmers ‘know’ their
own code and do not see the need for splitting
large and complex methods. One possibility in
this case is a refactoring (Fowler, 1999) for a
more modular architecture with smaller classes
and more pronounced use of inheritance. This
would increase the possible participation, thus
maybe in turn leading to lower concentration
and maintainability, together with other quality
aspects. At the beginning of the development
process, a core developer team sets up the design
which is not adjusted to cope with the increasing
number of classes and complexity. In this case it
might be better to split huge classes into several

153

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

subclasses, which may also improve the quality
of inheritance and abstraction.

Underlining these results, MacCormack,
Rusnak, and Baldwin (2006) have in a similar
study used design structure matrices to study
the difference between open source and propri-
etary developed software, without further dis-
crimination in development practices. They find
significant differences between Linux, which is
more modular, and the first version of Mozilla.
The evolution of Mozilla then shows purposeful
redesign aiming for a more modular architecture,
which resulted in modularity even higher than
Linux. They conclude that a product’s design
mirrors the organization developing it, in that a
product developed by a distributed team such as
Linux was more modular compared to Mozilla
developed by a collocated team. Alternatively, the
design also reflects purposeful choices made by
the developers based on contextual challenges,
in that Mozilla was successfully redesigned for
higher modularity at a later stage.

Regarding the number of authors, the results
need to be explored further and put into context of
the findings on concentration: We found on class
level a negative impact, while on project level a
positive effect. This underlines a central statement
of open source software development on a general
level, that as many people as possible should be
attracted to a project. On the other hand, these
resources should, from the viewpoint of product
quality, be organized in small teams. Ideally, on
both levels, the effort is not concentrated on too
few of the relevant participants. This is certainly
not contrary to conventional software engineering
knowledge, which can be found to hold in this
context as well.

The implications of these findings need to be
discussed in two different contexts, the first one
being within open source projects, and also in gen-
eral. These two settings differ significantly, most
relevantly in the general aims, the possibilities
for intervention by project management, and also
the motivation of participants. In an open source

project, a management in classical form does not
exist, although often a maintainer, inner circle,
or other authority (although with mostly minimal
impact) could be interested in the organization of
work within the project. Also the aims of a project,
and interwoven with this, the motivations of par-
ticipants are very much different from commercial
settings, and they need to be considered. Therefore
there are very limited possibilities for any central
agency to manage and steer the participants, or
they might lose motivation and leave the project.
On the other hand, management responsibilities
are often taken up by the founding group of a
project. In case of early phases of a project, the
design should therefore strive to allow for these
teams to form by providing an appropriate number
of classes within a modular architecture, termed
by MacCormack et al. (2006) as “architecture
of participation.” Executing a refactoring within
the context of a large and well-established open
source project often might prove difficult, but
a central agency should carefully monitor the
respective metrics as described in this article to
gain an understanding of possible future problems,
both in quality and participation aspects. If those
are identified, soft measures might be applied to
encourage the participants to adjust, for example
by using increased reputation and recognition for
people participating in such efforts. In addition,
the lack of formal design specification often
associated with open source projects should be
overcome. Again, taking up these tasks should be
rewarded within the reputation structure, while
other possible motivational factors like training
are naturally offered in this context. MacCormack
et al. (2006) have shown with the Mozilla case
that such efforts can be successful. In our study,
we have found evidence for a refactoring having
taken place in the Maverick project based on log
messages, which is now top ranking in method
size and complexity measures.

In a commercial context, many of the problems
as discussed above do not apply, so manage-
ment has more possibilities to enforce a certain

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

154

organization of work or a necessary refactoring.
The organizational form of ‘chief programmer
team organization’ (Mills, 1971; Baker, 1972),
also termed ‘surgical team’ by Brooks (1995),
has system development divided into tasks each
handled by a chief programmer who is responsible
for the most part of the actual design and coding,
supported by a larger number of other specialists
like a documentation writer or a tester. A similar
form of development seems to be adopted by open
source projects, although a too highly concentrated
form does not perform well given the negative ef-
fects associated with high concentration. Possibly
the single-author projects in our sample form an
example of this organization. Only one person
has access to the source code and is assisted by
a larger number of other participants.

In arriving at the results of this study, we
found that the creation of dichotomous variables
helped in several ways, although the thresholds
remain a problematic point. The huge number of
available and sometimes highly correlated product
metrics can be aggregated into a more manage-
able and interpretable set in this way, and effects
on quality can more easily be analyzed. For the
process metrics applied, we found that different
calculation approaches for the GINI coefficient
did not change the results in a significant way. The
effort indicator OSSPM introduced did not give
much additional information as well, although
the high correlation to other metrics like commits
need not be present in all data sets. We propose
that the invested effort might still be considered
as an important factor.

cONcLUsION

The analysis described in this article has tried
to enhance prior studies on OSS by providing
an empirical validation of relationships between
process attributes and product quality. We pre-
sented and applied a method to calculate and merge
both metrics, addressing both dimensions from

online versioning repositories. In this article we
have focused on the investigation of frameworks
for the development of Web-based applications,
which therefore offer similar functionalities and
are suitable for a comparison. The results clearly
show that it is possible to gather the necessary
information to find relationships between process
and product metrics. Using mostly object-oriented
product metrics focusing on quality by employing
a subset of the well-known Chidamber and Ke-
merer (1994) metrics, complemented with several
metrics proposed by Lorenz and Kidd (1995) and
several process metrics including total number of
commits and the number of distinct programmers
as well as the GINI coefficient as a measure of
inequality within the developer group, we found
that indeed significant relationships exist. This
underlines the results of MacCormack et al. (2006).
We identify the number of commits, the number
of distinct programmers, and the active time as
factors of influence which have a negative effect
on quality. In particular, complexity and size are
negatively influenced by these process metrics.
Furthermore a high concentration of added work
fosters bad quality. In discussing reasons for this
finding, one explanation for this relationship might
be found in a missing necessary refactoring of the
design. We have also discussed the reasons for
this and implications for practice.

Limitations of this work can certainly be found
in the thresholds applied for defining methods as
faulty based on experiences with C++ projects.
Using preliminary sensitivity analysis, we have
explored the impact of small changes of up to 20%
on the threshold values and found that the main
results presented here are still valid. Nevertheless,
more work should be invested in this area to ar-
rive at sensible thresholds, especially for Java and
related programming languages. Another issue
to be further explored in later studies are effects
on different levels: we have tried to account for
project-level influences on classes using a multi-
level modeling approach, but the fact that some
classes might be matched pairs across projects,

155

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

while others are not, might still pose a problem.
We have also found that differences between the
projects in the effects of process metrics exist,
but the attributes mitigating these still remain to
be explored. Although we have tried to achieve a
relatively homogeneous set of projects, differences
in functionality and other aspects persist. Natu-
rally, larger data samples would also be of high
interest, especially a comparison of OSS projects
with commercial software development, which
might more prominently show differences in the
development process. Furthermore, a longitudinal
study of both product and process metrics over the
lifetime and evolution of a project might provide
more insights, as well as exploring the influence
of process metrics on maintainability, which has
been investigated in some studies (Deligian-
nis, Shepperd, Roumeliotis, & Stamelos, 2003;
Fioravanti & Nesi, 2001; Samoladas, Stamelos,
Angelis, & Oikonomou, 2004). Our study only
gives qualitative evidence of maintainability.

Overall, we think that this study provides a first
step despite these limitations. We have provided
evidence regarding relationships between process
and product measures in open source software
development, and pointed out several characteris-
tics tending to lead to lower product quality. This
serves as a starting point for devising strategies to
effectively manage projects for achieving higher
quality and maintainability. Additional research
can also benefit from observations regarding the
method applied in this study, and might yield even
more insights, leading to improvements in OSS
and other software development processes.

rEFErENcEs

Atkins, D., Ball, T., Graves, T., & Mockus, A.
(1999). Using version control data to evaluate the
impact of software tools. Proceedings of the 21st
International Conference on Software Engineer-
ing (pp. 324–333). Los Angeles: ACM Press.

Baker, F.T. (1972). Chief programmer team
management of production programming. IBM
Systems Journal, 11(1), 56–73.

Basili, V.R., Briand, L.C., & Melo, W.L. (1996).
A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software
Engineering, 22(10), 751–761.

Basset, T. (2004). Coordination and social struc-
tures in an open source project: Videolan. In S.
Koch (Ed.), Open source software development
(pp. 125-151). Hershey, PA: Idea Group.

Bollinger, T., Nelson, R., Self, K.M., & Turn-
bull, S.J. (1999). Open-source methods: Peering
through the clutter. IEEE Software, 16(4), 8–11.

Briand, L., Wüst, J., Ikonomovski, S., & Lounis, H.
(1998). A comprehensive investigation of quality
factors in object-oriented designs: An industrial
case study. Technical Report ISERN-98-29, In-
ternational Software Engineering Network.

Briand, L.C., Wüst, J., Daly, J.W., & Porter, D.V.
(2000). Exploring the relationship between design
measures and software quality in object-oriented
systems. Journal of Systems and Software, 51(3),
245–273.

Brooks, F.P. Jr. (1995). The mythical man-month:
Essays on Software engineering (anniv. ed.).
Reading, MA: Addison-Wesley.

Chidamber, S., & Kemerer, C.F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6), 476–493.

Chidamber, S.R., Darcy, D.P., & Kemerer, C.F.
(1998). Managerial use of metrics for object-
oriented software: An exploratory analysis. IEEE
Transactions on Software Engineering, 24(8),
629–639.

Chidamber, S.R., & Kemerer, C.F. (1991). To-
wards a metric suite for object oriented design.
Proceedings of the 6th ACM Conference of Object
Oriented Programming, Systems, Languages

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

156

and Applications (pp. 197–211). Phoenix, AZ:
ACM Press.

Coleman, E.G., & Hill, B. (2004). The social
production of ethics in debian and free software
communities: Anthropological lessons for vo-
cational ethics. In S. Koch (Ed.), Open source
software development (pp. 273–295). Hershey,
PA: Idea Group.

Conte, S.D., Dunsmore, H., & Shen, V. (1986).
Software engineering metrics and models. Menlo
Park, CA: Benjamin/Cummings.

Cook, J.E., Votta, L.G., & Wolf, A.L. (1998). Cost-
effective analysis of in-place software processes.
IEEE Transactions on Software Engineering,
24(8), 650–663.

Crowston, K., & Scozzi, B. (2002). Open source
software projects as virtual organizations: Com-
petency rallying for software development. IEE
ProceedingsSoftware Engineering, 149(1),
3–17.

Cusumano, M.A. (2004). Reflections on free and
open software. Communications of the ACM,
47(10), 25–27.

Deligiannis, I., Shepperd, M., Roumeliotis, M., &
Stamelos, I. (2003). An empirical investigation of
an object-oriented design heuristic for maintain-
ability. Journal of Systems and Software, 65(2),
127–139.

Demetriou, N., Koch, S., & Neumann, G. (2006).
The development of the OpenACS community.
In M. Lytras & A. Naeve (Eds.), Open source for
knowledge and learning management: Strategies
beyond tools (pp. 298–318). Hershey, PA: Idea
Group.

Dempsey, B.J., Weiss, D., Jones, P., & Greenberg, J.
(2002). Who is an open source software developer?
Communications of the ACM, 45(2), 67–72.

Dinh-Tong, T.T., & Bieman, J.M. (2005). The
FreeBSD project: A replication case study of

open source development. IEEE Transactions on
Software Engineering, 31(6), 481–494.

Dutoit, A.H., & Bruegge‚ B. (1998). Communi-
cation metrics for software development. IEEE
Transactions on Software Engineering, 24(8),
615–628.

Elliott, M.S., & Scacchi, W. (2004). Free soft-
ware development: Cooperation and conflict in a
virtual organizational culture. In S. Koch (Ed.),
Open source software development (pp. 152–172).
Hershey, PA: Idea Group.

Erickson, J., Lyytinen, K., & Siau, K. (2005).
Agile modeling, agile software development, and
extreme programming: The state of research. Jour-
nal of Database Management, 16(4), 88–99.

Fayad, M.E., & Schmidt, D.C. (1997). Object-
oriented application frameworks. Communica-
tions of the ACM, 40(10), 32–39.

Feller, J., Fitzgerald, B., Hissam, S.A., & Lakhani,
K.R. (Eds.). (2005). Perspectives on free and open
source software. Cambridge, MA: MIT Press.

Fenton, N.E. (1991). Software metricsa rigorous
approach. London: Chapman & Hall.

Fioravanti, F., & Nesi, P. (2001). Estimation and
prediction metrics for adaptive maintenance effort
of object-oriented systems. IEEE Transactions on
Software Engineering, 27(12), 1062–1084.

Fischer, M., Pinzger, M., & Gall, H. (2003).
Populating a release history database from version
control and bug tracking systems. Proceedings
of the 19th IEEE International Conference on
Software Maintenance (pp. 23–32), Amsterdam,
The Netherlands.

Fogel, K. (1999). Open source development with
CVS. Scottsdale: CoriolisOpen Press.

Fowler, M. (1999). Refactoring: Improving the de-
sign of existing code. Boston: Addison-Wesley.

Gallivan, M.J. (2001). Striking a balance between

157

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

trust and control in a virtual organization: A con-
tent analysis of open source software case studies.
Information Systems Journal, 11(4), 277–304.

German, D. (2006). A study of contributors of
PostgreSQL. Proceedings of the International
Workshop on Mining Software Repositories
(MSR’06), Shanghai.

Ghosh, R.A., & Prakash, V.V. (2000). The Orbiten
free software survey. First Monday, 5(7).

Goldstein, H. (1999). Multilevel statistical models.
London: Arnold.

Hahsler, M., & Koch, S. (2005). Discussion of a
large-scale open source data collection method-
ology. Proceedings of the Hawaii International
Conference on System Sciences (HICSS-38), Big
Island, HI.

Hansen, M., Köhntopp, K., & Pfitzmann, A.
(2002). The open source approachopportunities
and limitations with respect to security and pri-
vacy. Computers & Security, 21(5), 461–471.

Henderson-Seller, B. (1996). Object-oriented
metrics: Measures of complexity. Upper Saddle
River, NJ: Prentice Hall.

Hertel, G., Niedner, S., & Hermann, S. (2003).
Motivation of software developers in open source
projects: An Internet-based survey of contribu-
tors to the Linux kernel. Research Policy, 32(7),
1159–1177.

Humphrey, W. (1995). A discipline for software
engineering. Reading, MA: Addison-Wesley.

Hunt, F., & Johnson, P. (2002). On the pareto dis-
tribution of sourceforge projects. Proceedings of
the Open Source Software Development Workshop
(pp. 122–129), Newcastle, UK.

Johnson, R. (1997). Frameworks=(components+
patterns). Communications of the ACM, 40(10),
39–42.

Jones, C. (1986). Programming productivity. New
York: McGraw-Hill.

Kemerer, C.F., & Slaughter, S. (1999). An em-
pirical approach to studying software evolution.
IEEE Transactions on Software Engineering,
25(4), 493–509.

Klein, K.J., Tosi, H., & Cannella, A.A. Jr. (1999).
Multilevel theory building: Benefits, barriers,
and new development. Academy of Management
Review, 24(2), 243–248.

Koch, S. (2004). Profiling an open source project
ecology and its programmers. Electronic Markets,
14(2), 77–88.

Koch, S. (2004a). Agile principles and open source
software development: A theoretical and empiri-
cal discussion. Extreme Programming and Agile
Processes in Software Engineering: Proceedings
of the 5th International Conference XP 2004 (pp.
85–93). Berlin: Springer-Verlag (LNCS 3092).

Koch, S., & Schneider, G. (2002). Effort, coopera-
tion and coordination in an open source software
project: GNOME. Information Systems Journal,
12(1), 27–42.

Koru, A.G., & Tian, J. (2004). Defect handling
in medium and large open source projects. IEEE
Software, 21(4), 54–61.

Koru, A.G., & Tian, J. (2005). Comparing high-
change modules and modules with the highest
measurement values in two large-scale open-
source products. IEEE Transactions on Software
Engineering, 31(8), 625–642.

Kreft, I., & de Leeuw, J. (2002). Introducing
multilevel modeling. London: Sage.

Krishnamurthy, S. (2002). Cave or community?
An empirical investigation of 100 mature open
source projects. First Monday, 7(6).

Long, Y., & Siau, K. (2007). Social network
structures in open source software development
teams. Journal of Database Management, 18(2),
25–40.

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

158

Lorenz, M., & Kidd, J. (1995). Object oriented
metrics. Upper Saddle River, NJ: Prentice Hall.

MacCormack, A., Rusnak, J., & Baldwin, C.Y.
(2006). Exploring the structure of complex soft-
ware designs: An empirical study of open source
and proprietary code. Management Science, 52(7),
1015–1030.

McCabe, T. (1976). A complexity measure. IEEE
Transactions on Software Engineering, 2(4),
308–320.

McConnell, S. (1999). Open-source methodol-
ogy: Ready for prime time? IEEE Software,
16(4), 6–8.

Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M.
(2005). Is extreme programming just old wine in
new bottles: A comparison of two cases. Journal
of Database Management, 16(4), 41–61.

Mills, H.D. (1971). Chief programmer teams:
Principles and procedures. Report FSC 71-5108,
IBM Federal Systems Division, USA.

Mockus, A., Fielding, R.T., & Herbsleb, J.D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309–346.

Morisio, M., Romano, D., & Stamelos, I. (2002).
Quality, productivity and learning in framework-
based development: An exploratory case study.
IEEE Transactions on Software Engineering,
28(8), 340–357.

Murdoch, D.J., & Chow, E.D. (1996). A graphical
display of large correlation matrices. The Ameri-
can Statistician, 50(2), 178–180.

Neumann, C. (2002). Jsp- und Servlet-basierte
frameworks für Web-applikationen. Master’s
Thesis, Universität Karlsruhe, Germany.

Park, P. (1992). Software size measurement:
A framework for counting source statements.
Technical Report CMU/SEI-92-TR-20, Software

Engineering Institute, Carnegie Mellon Univer-
sity, USA.

Payne, C. (2002). On the security of open source
software. Information Systems Journal, 12(1),
61–78.

Perens, B. (1999). The open source definition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution
(pp. 171–188). Cambridge, MA: O’Reilly & As-
sociates.

Prieto-Diaz, R. (1993). Status report: Software
reusability. IEEE Software, 10(3), 61–66.

Raymond, E.S. (1999). The cathedral and the
bazaar: Musings on Linux and open source by
an accidental revolutionary. Sebastopol, CA:
O’Reilly & Associates.

Robles-Martinez, G., Gonzalez-Barahona, J.M.,
Centeno-Gonzalez, J., Matellan-Olivera, V., &
Rodero-Merino, L. (2003). Studying the evolution
of libre software projects using publicly available
data. Proceedings of the 3rd Workshop on Open
Source Software Engineering25th Interna-
tional Conference on Software Engineering (pp.
111–115), Portland, OR.

Samoladas, I., Stamelos, I., Angelis, L., &
Oikonomou, A. (2004). Open source software
development should strive for even greater code
maintainability. Communications of the ACM,
47(10), 83–87.

Snijders, T.A.B., & Bosker, R.J. (2003). Multilevel
analysis: An introduction to basic and advanced
multilevel modeling. London: Sage.

Stallman, R.M. (2002). Free software, free society:
Selected essays of Richard M. Stallman. Boston:
GNU Press.

Stamelos, I., Angelis, L., Oikonomou, A., &
Bleris, G.L. (2002). Code quality analysis in
open source software development. Information
Systems Journal, 12(1), 43–60.

159

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Subramanian, G., & Corbin, W. (2001). An em-
pirical study of certain object-oriented software
metrics. Journal of Systems and Software, 59(1),
57–63.

Subramanyam, R., & Krishnan, M.S. (2003). Em-
pirical analysis of ck metrics for object-oriented
design complexity: Implications for software
defects. IEEE Transactions on Software Engi-
neering, 29(4), 297–309.

Thuraisingham, B. (2005). Privacy-preserving
data mining: Development and directions. Journal
of Database Management, 16(1), 75–87.

Turk, D., France. R., & Rumpe, B. (2005). As-
sumptions underlying agile software-development
processes. Journal of Database Management,
16(4), 62–87.

Vixie, P. (1999). Software engineering. In C.
DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolu-
tion (pp. 91–100). Cambridge, MA: O’Reilly &
Associates.

Witten, B., Landwehr, C., & Caloyannides, M.
(2001). Does open source improve system secu-
rity? IEEE Software, 18(5), 57–61.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 2, edited by K. Siau, pp. 31-57,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

160

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7
The Impact of Ideology on the

Organizational Adoption of
Open Source Software

Kris Ven
University of Antwerp, Belgium

Jan Verelst
University of Antwerp, Belgium

AbstrAct

Previous research has shown that the open source movement shares a common ideology. Employees
belonging to the open source movement often advocate the use of open source software within their
organization. Hence, their belief in the underlying open source software ideology may influence the
decision making on the adoption of open source software. This may result in an ideological—rather
than pragmatic—decision. A recent study has shown that American organizations are quite pragmatic
in their adoption decision. We argue that there may be circumstances in which there is more opportu-
nity for ideological behavior. We therefore investigated the organizational adoption decision in Belgian
organizations. Our results indicate that most organizations are pragmatic in their decision making.
However, we have found evidence that suggests that the influence of ideology should not be completely
disregarded in small organizations.

INtrODUctION

The free software movement—led by Richard
M. Stallman—has always taken an ideological,
political view on software. Adherents to the free
software movement advocate that all software

should be free, in the sense that it should be free
to read, modify, and distribute. The open source
movement on the other hand was created in order
to facilitate the introduction of free software in
organizations and takes a more pragmatic stance in
its efforts to market open source software (OSS).

161

The Impact of Ideology on the Organizational Adoption of Open Source Software

Previous research has shown that the open source
movement is characterized by a shared, underly-
ing ideology (e.g., Ljungberg, 2000; Bergquist &
Ljungberg, 2001). Lately, an increasing number of
developers are hired by commercial organizations
to work on OSS projects. These developers may
or may not share the OSS ideology. Nevertheless,
many adherents to the open source movement still
feel connected to the OSS ideology. Moreover,
commercial organizations still need to find a bal-
ance between their commercial objectives and the
traditional values of the open source movement
(Fitzgerald, 2006).

Many organizations have already adopted
OSS, especially mature server software such as
Linux and Apache. Research on the organiza-
tional adoption of OSS has shown that its use
was frequently a bottom-up initiative, suggested
by technical employees within the organization
who are an adherent to the open source movement
(Dedrick & West, 2003; West & Dedrick, 2005;
Lundell, Lings, & Lindqvist, 2006). In some
cases, decision makers could also be considered
an adherent to the open source movement. These
employees will take on the role of boundary span-
ners in their organization, bringing the organiza-
tion in contact with new innovations (Tushman
& Scanlan, 1981). West and Dedrick (2005) have
found in their study on American organizations
that although such employees try to ensure that
an open source alternative is considered in the
decision making, the final decision is made on
pragmatic grounds (i.e., based on characteristics
of the software such as cost, reliability, and func-
tionality), and not based on ideological feelings
towards OSS. The organizations included in their
study are rather large,1 which may have had an
impact on their results.

We argue that it is useful to perform a similar
study in a context in which there is more oppor-
tunity for ideological behavior. We expect that
this might be the case in smaller organizations.
In order to investigate whether decision making
in small organizations is ideological, we have

conducted 10 case studies in Belgian organiza-
tions to investigate the organizational adoption
of OSS. The article is structured as follows. We
will start by discussing the theoretical background
of this study. Next, we will discuss our research
design. Subsequently, we will present the results
of our study, focusing on three organizations that
used fairly ideological decision making. This is
followed by a discussion of our findings. Finally,
we will offer our conclusions.

tHEOrEtIcAL bAcKGrOUND

Oss Ideology

Numerous definitions have been proposed in lit-
erature for the term “ideology.” Usually, the term
is used in a pejorative meaning. Such use implies
that an ideology is based on false beliefs of real-
ity. Several authors however recommend against
using such a perspective (e.g., Hamilton, 1987).
The definition of ideology that we will use in this
article is proposed by Hamilton (1987, p. 38):

“An ideology is a system of collectively held
normative and reputedly factual ideas and beliefs
and attitudes advocating a particular pattern of
social relationships and arrangements, and/or
aimed at justifying a particular pattern of conduct,
which its proponents seek to promote, realise,
pursue or maintain.”

This definition is non-judgmental, and as
a result we do not make any pronouncements
with respect to the correctness of the beliefs,
values, and norms that characterize an ideology.
Hence, acting according to an ideology will not
necessarily have negative consequences for the
organization.

Previous research has described several ideo-
logical principles of the open source movement
(e.g., Markus, Manville, & Agres, 2000; Ljung-
berg, 2000; Stewart & Gosain, 2006). This ideol-
ogy has been shown to enhance the effectiveness
of the OSS community (Stewart & Gosain, 2006).

The Impact of Ideology on the Organizational Adoption of Open Source Software

162

Stewart and Gosain (2006) identified a number of
underlying norms, beliefs, and values of the open
source movement (see Table 1). These norms,
beliefs, and values are proposed as the tenets of
the OSS ideology.

The tenets listed in Table 1 are used to de-
scribe the attitudes of developers within the OSS
community. We argue however that some of the
OSS beliefs and values (i.e., tenets 4–15 in Table
1) can also be shared by technical employees
and decision makers in organizations. Hence,
it is interesting to investigate whether decision
makers who share these ideological ideas of the
open source movement make an ideological—
rather than pragmatic—decision. Although the
study of West and Dedrick (2005) has shown that
decision making on OSS is pragmatic, we believe
that this may be different in small organizations.
Some authors have pointed out that decision
making with respect to IT in small organizations
is often the responsibility of a single individual

(Harrison, Mykytyn, & Riemenschneider, 1997;
Riemenschneider, Harrison, & Mykytyn, 2003).
We argue that the impact of the OSS ideology
will be greater if a single decision maker—who
can be considered an OSS advocate—is present
in the organization. In such situations, the adop-
tion decision may be ideological since personal
traits and beliefs of the decision maker are more
likely to impact the final decision than in larger
organizations.

Mindful Innovation

Nowadays, many things require the attention of
managers, making their attention a scarce resource
(Hansen & Haas, 2001; Swanson & Ramiller,
2004). One of the consequences is that much in-
novation in organizations is actually driven by
bandwagon phenomena, in which organizations
mimic the adoption behavior of other organiza-
tions and do not properly evaluate alternatives

OSS Norms OSS Beliefs OSS Values

(1) Forking—There is a norm
against forking a project,
which refers to splitting the
project into two or more proj-
ects developed separately.
(2) Distribution—There is a
norm against distributing code
changes without going through
the proper channels.
(3) Named Credit—There is a
norm against removing some-
one’s name from a project
without that person’s consent.

(4) Code Quality—Open
source development methods
produce better code than
closed source.
(5) Software Freedom—Out-
comes are better when code is
freely available.
(6) Information Freedom—
Outcomes are better when
information is freely available.
(7) Bug Fixing—The more
people working on the code,
the more quickly bugs will be
found and fixed.
(8) Practicality—Practical
work is more useful than
theoretical discussion.
(9) Status Attainment—Status
is achieved through commu-
nity recognition.

(10) Sharing—Sharing infor-
mation is important.
(11) Helping—Aiding others is
important.
(12) Technical Knowledge—
Technical knowledge is highly
valued.
(13) Learning—There is a
value on learning for its own
sake.
(14) Cooperation—Voluntary
cooperation is important.
(15) Reputation—Reputation
gained by participating in open
source projects is valuable.

Table 1. Tenets of open source ideology (Stewart & Gosain, 2006, pp. 294–295)

163

The Impact of Ideology on the Organizational Adoption of Open Source Software

(Abrahamson, 1991; Swanson & Ramiller, 2004).
Recently, the bandwagon phenomenon has been
framed into the broader context of mindful innova-
tion (Swanson & Ramiller, 2004; Fiol & Connor,
2003). The concept of mindfulness originated in
psychology and denotes a state of an individual
involving: (1) openness to novelty; (2) alertness
to distinction; (3) sensitivity to different contexts;
(4) implicit, if not explicit, awareness of multiple
perspectives; and (5) orientation in the present
(Sternberg, 2000). Decision makers in organi-
zations who are mindful have a “watchful and
vigilant state of mind” (Fiol & Connor, 2003).
An organization that innovates mindfully with IT
will therefore not take generalized claims about
advantages for granted, but will critically examine
their relevance and validity in the organization-
specific context (Fiol & Connor, 2003). Mindless
innovation, on the other hand, is characterized by
“…acting on automatic pilot, precluding atten-
tion to new information, and fixating on a single
perspective” (Fiol & Connor, 2003; Weick, Sut-
cliffe, & Obstfeld, 1999).2 Such innovation may
result in making premature decisions based on
beliefs that do not necessarily accurately reflect
reality (Butler & Gray, 2006). Hence, a dogmatic
belief in the OSS ideology may lead to mindless
adoption, in which no proprietary alternatives
are considered.

Swanson and Ramiller (2004) note that
boundary-spanning activities are important for
mindful organizational decision making, in order
to obtain information on the innovation. We argue
that in the case of OSS, this information may be
ideologically colored. As a result, the presence of
boundary spanners in the adoption of OSS may
actually lead to ideological (mindless) behavior
instead, especially if decision makers share the
OSS ideology. There are at least two factors that
can facilitate ideological behavior in such context.
First, decision structures in small organizations
tend to be less formal (bureaucratic) than in large
organizations. Fiol and Connor (2003) argue that
underspecified decision structures may encourage

further mindless behavior, if decision making was
mindless to begin with. Second, Swanson and
Ramiller (2004) point out that although personal
mindfulness with respect to innovation does not
necessarily equate to organizational mindfulness,
it will definitely have an impact on it.

Ideology vs. Pragmatism

In order to investigate whether decision making in
organizations exhibits ideological characteristics,
we need to determine how ideological behavior
can be identified. Based on the work of Stewart
and Gosain (2006), we determine whether decision
makers and other employees shared some of the
beliefs and underlying principles (tenets) of the
free and open source movements (see Table 1),
and did not properly assess their relevancy for the
organization. For example, proponents may argue
that software should be free (similar to the views
of the FSF), may have a negative attitude towards
proprietary software, or may be convinced that
OSS delivers software of a higher quality (Stewart
& Gosain, 2006; Ljungberg, 2000). Consequently,
decision makers may have a strong preference
for using OSS, without (properly) considering
proprietary alternatives. Such decision making
may result in a less than optimal solution for the
organization. In fact, decision makers are in that
case rather mindless in their decision making.
Mindless organizations will pay little attention to
the organization’s specifics or to studying new in-
novations. This will result in making decisions on
“autopilot,” using a single perspective (Swanson &
Ramiller, 2004; Fiol & Connor, 2003). This means
that the beliefs of the OSS ideology are taken for
granted, without considering their suitability in
the organization-specific context.

On the other hand, we consider an organization
to be pragmatic in its decision making when the
organization does not exhibit any of the tenets of
the OSS ideology, or when decision makers do not
take any claims of the OSS ideology for granted,
but carefully examine their implications in the

The Impact of Ideology on the Organizational Adoption of Open Source Software

164

organization-specific context. Such organizations
are mindful in their decision making. This means
that decision makers base their decision on the
characteristics of the innovation itself and consider
how well the innovation fits within the organiza-
tion. Pragmatic decision makers will probably
consider both proprietary and OSS alternatives,
outweigh the benefits of all alternatives, and
choose the best solution based on factors such as
cost and product features. In this case, no favorit-
ism towards using OSS should be present.

It must be noted that ideological and prag-
matic decision making is not a black and white
phenomenon. In practice, we expect organizations
to exhibit some ideological and some pragmatic
characteristics. This is consistent with Geuss
(1994), who remarks that an ideology is generally
not only composed of the beliefs and values that are
shared by all members of a group. Consequently,
not all adherents to the open source movement
will share all values proposed by the OSS ideol-
ogy. This is similar to the statement of Ljungberg
(2000) who suggests that developers vary in their
adherence to the OSS ideology. Hence, there are
many shades of gray in this classification. In
this article, we will discuss decision making in
three organizations in our sample which clearly
exhibited ideological behavior.

rEsEArcH DEsIGN

To investigate whether decision making is ideo-
logical or pragmatic, we studied the organizational
adoption of OSS in Belgian organizations. In this
study, decision makers were questioned about the
reasons for using OSS and their attitudes towards
the open source movement. Based upon the infor-
mation obtained from these organizations, we were
able to determine whether their decision making
was either pragmatic or rather ideological.

scope

We decided to focus mainly on the adoption of
open source server software. We use the term
open source server software to refer to both
open source operating systems (such as Linux
and FreeBSD) and other OSS for server use (for
example, the Apache Web server or the Bind
name server). This choice is motivated by the fact
that this type of OSS is generally considered to
be stable and mature, and is already in use by a
significant number of organizations. A similar
research approach has been undertaken by other
researchers (e.g., West & Dedrick, 2005). On
the other hand, we also gathered information on
other OSS that was being used in the organiza-
tions (such as desktop software, development,
and networking tools).

Methodology

We used the exploratory case study approach
to study the organizational adoption decision
on open source server software. The case study
approach is well suited to study a contemporary
phenomenon in its natural setting, especially when
the boundaries of the phenomenon are not clearly
defined at the start of the study (Yin, 2003; Ben-
basat, Goldstein, & Mead, 1987). We conducted
a series of in-depth face-to-face interviews with
informants from 10 Belgian organizations to
identify the factors that influence the decision to
use open source server software as well as their
attitudes towards the open source movement.
Organizations were selected from the population
of all Belgian organizations and were sampled on
the basis of two criteria: the size of the organiza-
tion measured by the number of employees and
the sector in which the organization operated.
Organizations were only included in our sample
if they were using open source server software
at the time of our study. Informants within each
organization were selected using the key informant
method. Since the use of a single informant has

165

The Impact of Ideology on the Organizational Adoption of Open Source Software

been shown to give inconsistent results (Phillips,
1981), we tried to speak to both a senior manager
(e.g., the IT manager) and a technical person (e.g.,
the system administrator) whenever possible.

The interviews took place between July and
November 2005. An overview of the cases in our
study is shown in Table 2. As can be seen from this
table, the organizations in our sample are consider-
ably smaller than those in the study of West and
Dedrick (2005).3 In each organization, we have
conducted a single interview during which all
informants in the organization were present. The
interviews were semi-structured, and the format
was revised after each interview to incorporate
new findings (Benbasat et al., 1987). In the first
part of the interview, informants were asked to
freely discuss their reasons for adopting OSS. In
the second part of the interview, we probed for
specific factors that were found relevant in previ-
ous studies, as well as the informants’ perceptions
of the free and open source movements. Each
interview lasted 45-90 minutes, was recorded
and transcribed verbatim. In order to increase the
validity of our findings, informants were sent a
summary of the interview and were requested to
suggest any improvements if necessary. Follow-up
questions were asked by telephone or via e-mail.
The transcripts were coded and then further ana-

lyzed using procedures to generate theory from
qualitative data, as described in the literature (e.g.,
Benbasat et al., 1987; Eisenhardt, 1989; Dubé &
Paré, 2003). Various data displays were used to
visualize and further analyze the qualitative data
(Miles & Huberman, 1994; Eisenhardt, 1989).

EMPIrIcAL FINDINGs

The dominant attitude towards OSS in seven or-
ganizations in our sample was pragmatism. These
organizations did not exhibit any of the tenets
of the OSS ideology, or their decision makers
considered how the advantages of OSS could be
realized in their organization. Consequently, these
organizations could be considered pragmatic (and
mindful) in their decision making with respect to
the adoption of OSS. The most commonly cited
advantages—and reasons for the adoption—of
OSS were cost and reliability. In general, deci-
sion makers tended to consider both proprietary
and OSS alternatives, and based their decision on
the cost and functionality offered by the various
alternatives. Some organizations even explicitly
mentioned that they made a pragmatic adoption
decision. These seven organizations did not have
a preference for using OSS over proprietary

Name Sector Employees Informants Extent of
adoption

OrganizationA Audio, video, and telecommunications 11 2 moderate

OrganizationB Machinery and equipment 749 2 extensive

OrganizationC Telecommunications 1346 1 limited

OrganizationD Publishing and printing 31 1 extensive

OrganizationE Food products and beverages 204 2 moderate

OrganizationF Research and development 152 2 extensive

OrganizationG Information technology 583 1 moderate

OrganizationH Chemicals 4423 1 moderate

OrganizationI Education 3303 3 limited

OrganizationJ Publishing and printing 12 1 extensive

Table 2. Overview of the organizations in our study

The Impact of Ideology on the Organizational Adoption of Open Source Software

166

software, except OrganizationB where a slight
preference for OSS was present. Although they
would accept a minor workaround in order to be
able to use OSS, this effort should be limited. Or,
as expressed by an informant:

We are not going to program around something,
because we really want to use that [open source]
component. But if there is a little workaround, we
will certainly take it.

The other six organizations were quite agnostic
about using OSS. One informant in OrganizationF
expressed this as:

[The fact that the software is open source] does
not really matter for a company.

Some of the technical employees who served as
informants in our study had a background in OSS.
Although some indicated that they did suggest the
use of OSS when appropriate, they did not try to
force its use and remained pragmatic. Neverthe-
less, many OSS development and networking tools
(e.g., Nagios, Eclipse, and Maven) were being used
by the organizations in our sample.

The results obtained from these seven orga-
nizations are quite consistent with the results
obtained by West and Dedrick (2005). On the
other hand, we observed a different behavior in
the three very small organizations in our sample
(OrganizationA, OrganizationD, and Organi-
zationJ) consisting of less than 50 employees.
In those organizations, we were able to detect
several characteristics of ideological behavior.
In the remainder of this section, we will discuss
these three cases in more detail.

OrganizationA

OrganizationA specialized in telecommunication
devices. It originally started as a research and de-
velopment company. Initially, all projects within
the organization aimed to gather knowledge and

experience in order to develop the initial product.
Developers were free in their decision making
on which products to incorporate into the final
product. Consequently, decision making was
significantly influenced by the personal experi-
ence of developers.

Our informants indicated that at the time of
the organization’s founding, many employees—
including the organization’s founders and the
CIO—shared the same background, were very
familiar with Linux, and shared the philosophi-
cal ideas of the open source movement. These
employees had a “firm conviction” in OSS:

The firm conviction was coming from a number
of people who said: ‘It must be [OSS], we do not
want anything else!’…The choice for using OSS
was…just a conviction, rather than the result of
a comparative assessment.

As a result, most software that was used in the
organization was OSS. During package selection,
no objective evaluation of (proprietary) alterna-
tives was performed. Although some proprietary
software was used, this was either on demand of a
customer, or the software was eventually replaced
by an OSS alternative.

The choice for OSS at that time was primarily
motivated by the lower or non-existing license
cost, the fact that there was more confidence in
OSS, and the fact that OSS provides access to the
source code. Our informants however admitted
that these reasons were influenced by the philo-
sophical view towards OSS and that this view
on OSS dominated the adoption decision. They
were for example aware that using OSS includes
additional costs (e.g., packaging and updates),
which makes it less clear whether OSS really of-
fers a cost advantage. Such considerations were
however not taken into account at that time.

Another factor that has influenced the deci-
sion is the avoidance of vendor lock-in. The open
source movement generally depicts Microsoft as
their common “enemy.” This feeling was also

167

The Impact of Ideology on the Organizational Adoption of Open Source Software

present in the organization at that time. Vendor
lock-in with Microsoft was feared, partly due to
negative experiences in the past. The adoption
decision appeared to be anti-Microsoft oriented.
As expressed by one informant:

If you mentioned Microsoft, things exploded!

The organization also initiated its own OSS
project. It consisted of a Java virtual machine
for embedded devices. This project was started
to try to benefit from the OSS community model
(cf. tenets 4–15). This project was in fact quite
successful, and the organization took the role of
project maintainer. In the course of time, the proj-
ect became less interesting for the community (as
the product further matured) and participation of
the community declined. The software is however
still used in the organization’s products.

As illustrated, the choice for using OSS was
quite ideological in the early years of the organi-
zation. Interesting to note is that over the years,
several employees of the organization who were
adherents to the open source movement, and who
advocated the use of OSS, left the organization.
As a result, the choice for OSS became much
more pragmatic. Another factor that may have
influenced this evolution is that the organization
finished its software products, gradually became
less of an R&D organization, and other goals such
as efficiency started to become more important.

At the time of our study, a slight preference for
OSS still existed. One informant stated:

Our choice will in the first place go to open source
or Linux, but less fanatical than in the past.

Furthermore, the organization seemed to be
less willing to take risks in using OSS, or to invest
additional effort to get OSS working. This was
expressed by an informant as:

I think we are looking rather quickly towards open
source products. But if it looks that it will deliver

us more worries than it yields advantages, we will
not doubt to use a commercial product.

Hence, the organization will only consider
using OSS if the product complies with the
requirements. The “firm conviction” that was
present in the organization has now faded away.
The choice for OSS is now mainly based on the
potential cost advantages.

Nevertheless, it appears that the organization
still felt connected to the principles of the open
source movement. When asked whether the or-
ganization contributed back any modifications
they made to OSS, one informant appeared to
feel guilty about not contributing:

…we did contribute quite little, rather naughty,
isn’t it?

He further noted that the organization tried
to participate in OSS projects in other ways, for
example by filling in bug reports or by participat-
ing in mailing lists (cf. tenets 10–15).

OrganizationD

OrganizationD was active in the publishing and
printing sector. The organization had a single
person responsible for decision making on IT,
and had no internal IT staff. The organization
used OSS on a variety of systems (i.e., one In-
ternet gateway, two file servers, and one intranet
server). The organization also had 3 LAMP
(Linux–Apache–MySQL–PHP) servers, running
custom-developed software for time registration.
Finally, three desktops were equipped with the
Linux operating system in the offices, and an
additional 11 PCs function as terminals for the
time registration system. The main reason for
choosing OSS was to reduce vendor lock-in and
maximize the freedom of the IT infrastructure.
Consequently, the decision maker investigated
OSS solutions without considering proprietary
alternatives. Other reasons for using OSS were an

The Impact of Ideology on the Organizational Adoption of Open Source Software

168

increased control over the software, cost advan-
tages, and an increased flexibility. These factors
are consistent with the advantages proposed by
the OSS community. We were able to detect a few
additional ideological characteristics, although
they were not that strong.

Our informant indicated that his extensive
personal experience with Linux influenced his
decision to start using OSS within the organiza-
tion:

Following [new evolutions] is not enough: you try
out software, and free software has the advantage
that it is much easier to try out. And of course,
since you have tried it yourself, it did influence
the [organizational] decision.

His decision to start using OSS within the
organization was also influenced by some nega-
tive experiences with proprietary software in
the past (including vendor lock-in). For example,
some proprietary application the organization was
using contained a bug which the vendor refused
to resolve. As a result, our informant tried to
remain in full control over his IT infrastructure.
He therefore wanted to maximize the degree of
freedom in the IT infrastructure, not only by
using open standards, but by using OSS as well:
“I wanted to go a step further: not only by using
open standards, but also by using open source
applications to have full insurance” (cf. tenets
5–6). He felt that by having access to the source
code of OSS, he had maximum control over his
applications.

The organization was remarkably commit-
ted to its pursuit of freedom. This commitment
has moved the organization to start its own OSS
project, namely a time registration system for
employees. Existing software either did not satisfy
all requirements, or was too expensive and did
not allow for customizing the software. Hence,
the software needed to be custom developed. The
decision maker did not want to become dependent
on an external organization—not even on the

external programmer who develops the software.
Instead of performing in-house development or
closing an escrow agreement, the organization
has chosen a different path. The organization has
hired a programmer from an external organiza-
tion to develop the software, and our informant
decided to release the software under an OSS
license (the GPL) to ensure that the software
would remain completely free (cf. tenet 5). This
way, the organization aimed to remain in control
over the application, avoid vendor lock-in, and be
allowed to make modifications to the software
at a later time. The software is being developed
as a cooperation between our informant (who is
mainly responsible for the analysis) and the paid
external programmer. It was the intention of our
informant to eventually share this application
with other organizations in the same sector. He
strongly valued the ability to cooperate with other
organizations, and hoped that he would be able to
leverage the OSS development model (cf. tenets
4–15) and to receive comments, bug fixes, and
maybe even new code submissions.

Interestingly, he was the only informant in
our sample who deliberately used the term free
software.4 He preferred this term since—in his
experience—the term OSS is misused by some
vendors to refer to software of which the source
code is available, but whose license is still pro-
prietary and does not offer the same freedom
as OSS licenses. He felt that the Dutch term for
free software did not suffer from the confusion
in English, and that it better articulated the spirit
of the open source movement (cf. tenet 5).

OrganizationJ

The most prominent form of ideological behavior
was found in OrganizationJ. Our informant was
the IT and business manager of the organization,
who was the only one responsible for the IT infra-
structure. No internal IT staff was present. The
complete IT infrastructure of the organization
was based on OSS. This included two important

169

The Impact of Ideology on the Organizational Adoption of Open Source Software

servers: an intranet server running ERP software
and an Internet server running the e-commerce
site of the organization. Recently, all desktops in
the organization were migrated from MS Windows
to Linux. The desktops consisted of lightweight
terminals which booted from a server. All appli-
cations ran on the server, which placed very low
demands on the desktop itself. All administration
could be performed on the server. The desktops
were running the XFCE desktop environment and
OpenOffice.org was used as the office suite.

Our informant had a technical background
and was an experienced programmer. In fact, he
developed his own e-commerce application and
was currently rewriting his own ERP software.
His personal experience with Linux dates back
from 1999. Based on this personal experience,
he decided to migrate his Unix-based server to
Linux when he was experiencing difficulties with
that server.

Similar to our informant in OrganizationD,
the IT manager wanted to remain in control of his
IT infrastructure (cf. tenets 5–6). Consequently,
he tried to make exclusive use of open standards.
Moreover, he stated that he only considered us-
ing OSS (except for one PC running Microsoft
Windows on which specific banking software was
installed that is unavailable for Linux). He also did
not want to pay for software, hence he did not use
any of the commercial Linux distributions.

Similar to the other two organizations, our
informant indicated that his organization had
bad experiences with proprietary vendors in the
past. In fact, when migrating the server that ran
the ERP software, the organization faced huge
switching costs when transferring the software
from the Unix-based system (developed by a
small company) to Linux. He was also suspicious
of proprietary software, because it could contain
hidden features. This prevented him from having
total control over the software. OSS was believed
to be more secure, thanks to the availability of
the source code: “I think there are thousands, ten

thousands or millions of people who use and study
it, so I don’t have to worry” (cf. tenets 4 and 7).

As a result, he had a rule that proprietary soft-
ware should not be used under Linux. Proprietary
software was simply not considered as an alterna-
tive during decision making. This non-pragmatic
decision making can be illustrated with two ex-
amples. First, the organization recently acquired
a new printer/copier. Although the manufacturer
provided drivers for Linux, they were proprietary;
and the source code of the drivers was not provided.
Consequently, the drivers were not installed on the
Linux desktops. This means that default Postscript
and PCL drivers were used. If specific features
would be required, the IT manager stated that he
would rewrite the drivers, based on the Postscript
definition. He motivated his choice as follows:

Nothing is installed from which the source code is
not available: I need control.…[The manufacturer
of the printer] will probably have no bad intentions,
probably, but nowadays you never know.

Second, when the IT manager decided that the
ERP software needed replacement, he reviewed
some OSS alternatives. One of the reasons why
Compiere was not properly examined as an alter-
native, was that it required the Oracle database
server.5

The IT manager also started a small OSS
project. It consisted of a Perl module to create
OpenOffice.org documents. He also indicated
that he valued the OSS development model. Two
important advantages of this model were the peer
review process (see supra) and that it offers more
continuity. Although his ERP software was using
a graphical library that was maintained by a single
person, he was not afraid of becoming too depen-
dent. If the maintainer would quit, our informant
was convinced that other people would take over
the project. Otherwise, he would still have access
to the source code of the library and make any
required changes himself (cf. tenets 5 and 14).

The Impact of Ideology on the Organizational Adoption of Open Source Software

170

DIscUssION

As can be gathered from our findings, ideologi-
cal or pragmatic decision making is not a binary
variable. Instead, decision making will exhibit
both ideological as well as pragmatic character-
istics, which places the organization’s decision
making on a continuum between both extremes.
In practice, most organizations clearly use a
pragmatic decision-making process with respect
to the use of OSS. Nevertheless, we were able to
detect rather ideological decision making in three
small organizations in our sample. The degree
of ideology varied between these three cases. A
summary of the ideological characteristics in the
decision-making process of these organizations
is shown in Table 3.

Identifying Ideology

There were clear distinctions between the seven
organizations that we labeled “pragmatic” and the
three we identified as “ideological.” First, within
the three latter organizations, there was a clear
push behind—or favoritism towards—using OSS.
This was caused by the fact that decision makers
were adherents to the open source movement
and wanted to use OSS as much as possible, or
even exclusively. Their personal experience and
background was a major factor in this decision.
The other seven organizations did consider OSS
as one of the alternatives, but would not give
preferential treatment to OSS.

Second, the tenets of the OSS ideology were
only present in the three organizations. Among

Table 3. Ideological characteristics in the decision making of organizations in our sample

OrganizationA:
• Employees, including the organization’s founders, shared the philosophical and cultural
views of the OSS movement.
• A strong anti-Microsoft sentiment was present.
• Vendor lock-in was feared.
• The organization started its own OSS project to benefit from the OSS development model.
• All software that was used had to be OSS.
• The adoption decision was based on a “firm conviction” in OSS, not on an objective evalu-
ation of alternatives.

OrganizationD:
• The IT manager strives to maximize the freedom in the IT infrastructure by using open
standards and OSS.
• Extensive personal experience of the IT manager with Linux influenced the organizational
adoption decision.
• The organization started its own OSS project to ensure that the software would remain
totally free.
• Driven to OSS by negative experiences (including vendor lock-in) with proprietary soft-
ware in the past.
• The IT manager uses the term “free software.”

OrganizationJ:
• The IT manager does not want to pay for software, including application software.
• The switch to Linux was influenced by personal experience with Linux.
• All software that was used had to be OSS.
• Proprietary printer drivers were not used, even if this means that a work-around must be
devised.
• Commercial software is not trusted because the source code is not available.
• Driven to OSS by negative experiences (including vendor lock-in) with commercial soft-
ware in the past.
• The OSS development model is valued, because thousands of developers are reading the
source code, correcting bugs, and ensuring the continuity of the project.
• The complete IT infrastructure was migrated to OSS.
• The IT manager started his own OSS project.

171

The Impact of Ideology on the Organizational Adoption of Open Source Software

the tenets that were most prominently present were
software freedom (tenet 5), information freedom
(tenet 6), and cooperation (tenet 14).6 These tenets
are indeed central to the OSS ideology. The other
seven organizations were rather agnostic about
the values and beliefs of the open source move-
ment and considered the OSS character irrelevant
during decision making.

Third, several of the factors that influenced the
adoption decision are consistent with the advan-
tages put forward by the open source movement.
Evidently, this is not sufficient to claim that these
organizations shared the OSS ideology. However,
there are indications (particularly in Organiza-
tionA and OrganizationJ) that the perceptions with
respect to these adoption factors are influenced
by the belief in the OSS ideology, and that their
relevancy in the organization-specific environ-
ment were not or insufficiently evaluated. This
indicates mindless decision making.

Finally, these three organizations were the
only ones in our sample that initiated their own
OSS projects. OrganizationA and OrganizationD
clearly indicated that by starting their own OSS
projects they wanted to try to leverage the OSS
community model. This indicates a belief in the
underlying principles of the open source move-
ment (cf. tenets 10–15). If organizations would
not be convinced of the advantages of the OSS
development model, it seems likely that they would
not initiate an OSS project and they would simply
develop the software in-house. Nevertheless, prin-
ciples such as sharing (tenet 10) and cooperation
(tenet 14) were deemed quite important by the
three organizations.

The previous four points demonstrate that
the three organizations discussed in this article
exhibited some form of ideological behavior. It is
however not trivial to identify ideological tenets
in organizations, since the ideas and beliefs of
the OSS ideology are not explicitly formulated,
as is often the case with ideologies (Hamilton,
1987). A second difficulty is that the presence
of one of these characteristics by itself does not

automatically lead to ideological decision making.
A good example is the avoidance of vendor lock-
in. All three organizations indicated having had
bad experiences with proprietary vendors in the
past and wished to minimize vendor lock-in. The
desire to avoid vendor lock-in can be a pragmatic
reason for choosing OSS. It may however also lead
to a situation in which the decision maker—based
on negative experiences with some vendors in the
past—only wants to use OSS without considering
proprietary alternatives, leading to an ideological
position towards OSS. Similarly, the list of char-
acteristics in Table 3 is not exhaustive, and there
may be other indicators of ideological behavior. A
third issue is that there may be “instances where
actors, genuinely or otherwise, do not interpret
their behavior in terms of any commitment to a
set of beliefs but as simply pragmatic, but where
it is clear to the observer that it is, in fact, in
conformity with such a set of beliefs” (Hamilton,
1987, p. 21). Nevertheless, the evidence presented
in this article and the impression of the decision
makers obtained during the interview allowed us
to identify ideological characteristics in the deci-
sion making of these three organizations. These
characteristics had a clear impact on the adoption
decision on OSS, resulting in a strong favoritism
towards OSS. The attitude in these three organiza-
tions was fundamentally different from the other
seven organizations in our sample.

Limitations

This study has a number of limitations. First,
we used a qualitative approach consisting of 10
case studies. Although we have found that small
organizations may engage in ideological decision
making, a large-scale quantitative study could
provide more insight into the generalizability of
this result.

Second, we only included organizations that
have adopted OSS. Future research may provide
more insight into the attitudes of non-adopters.
We can make a meaningful distinction between

The Impact of Ideology on the Organizational Adoption of Open Source Software

172

two groups of non-adopters. On the one hand,
there can be organizations that have considered
using OSS, but decided not to adopt. The experi-
ences of these organizations may provide more
insight into the main drawbacks of using OSS.
On the other hand, there are organizations that
did not consider OSS as one of the alternatives.
Such organizations may have negative perceptions
towards OSS and did not further investigate them.
For example, organizations may be convinced that
OSS costs more in maintenance or is unreliable.
Similarly, organizations may also have unverified
ideas with respect to proprietary software. They
may believe that using proprietary software is less
expensive or may place more trust in a closed,
proprietary software model. In the most extreme
case, organizations may even only consider using
software from one specific vendor. In either case,
decision making will not be mindful, as not all
alternatives are being considered.

Another interesting avenue for future research
is to investigate whether decision making on OSS
will become less ideological. Since the adoption
of OSS is still a relatively recent phenomenon,
less information is available on OSS than on
proprietary software. It can be expected that as
time passes, more information on an innovation
becomes available, and decision makers will be
able to make better informed choices. On the
other hand, Swanson and Ramiller (2004) point
out that later adoption can also be driven by diffu-
sion itself, making later adoption not necessarily
more mindful than early adoption.

A final topic for further investigation concerns
situations in which the decision to start using OSS
is triggered by the mere availability of OSS, rather
than a concrete problem situation that gives rise to
a search, evaluation, and decision-making process.
This process resembles the garbage can model of
decision making (Cohen, March, & Olsen, 1972).
Hence, future research could investigate the ap-
plicability of this theory in situations in which
decision makers share the OSS ideology.

cONcLUsION

The contribution of this article is that we were
able to identify ideological characteristics in the
decision making on OSS in very small organiza-
tions. This result further elaborates on the study
of West and Dedrick (2005), who did not detect
such behavior in their sample. We argue that
while medium to large businesses are likely to be
pragmatic in their decision making, the influence
of ideological beliefs should not be completely
disregarded in small organizations.

Although a minority of organizations in our
sample has exhibited ideological behavior, it is
remarkable that all three very small organizations
in our sample—with a single decision maker—
did to some degree. If that decision maker can
be considered an open source advocate—which
was definitely the case in OrganizationA and
OrganizationJ—it is more likely that personal
beliefs and values of the decision maker have an
impact on the final decision making. Hence, the
adoption decision with respect to OSS is more
likely to be ideological. This is consistent with
the observation of Fiol and Connor (2003) who
argue that mindlessness in combination with the
absence of formal procedures will further enable
mindlessness. In larger organizations, decision
making is more likely to be pragmatic, since
there are more decision makers and procedures
involved in the OSS adoption decision.7 Ideologi-
cal decision making is however not necessarily a
static phenomenon. Since it appears that ideologi-
cal decision making is closely related to a single
decision maker, the situation may change if that
person leaves the organization, or if other deci-
sion makers join the organization. This could be
observed in OrganizationA.

The definition of ideology we have used in this
article is non-judgmental. Consequently, we do not
want to make any claims with regard to whether
the organizations have made a wrong decision in
choosing for OSS. We have found no evidence to
suggest that the decision has had a negative impact

173

The Impact of Ideology on the Organizational Adoption of Open Source Software

on the organizations. In fact, OrganizationA actu-
ally seemed to be able to innovate by using OSS
and proved to be quite successful. On the other
hand, it could be established that OrganizationA
(at the time of founding) and OrganizationJ were
not sufficiently mindful in their decision. These
organizations only considered using OSS and
did not properly investigate alternatives. Such
mindless behavior always entails the risk that the
organization does not properly reflect on whether
the innovation is suitable within the organization,
resulting in a less-than-optimal solution for the
organization (Swanson & Ramiller, 2004). A
mindful organization that adopts OSS should not
take the claims proposed by the OSS ideology for
granted. Instead, it should investigate the implica-
tions of using OSS in the organization-specific
environment. This is important since this situ-
ational context can be complex, rendering some
claims irrelevant for the organization.

Swanson and Ramiller (2004) however point
out that notwithstanding the risks, mindless deci-
sion making can have its merits for organizations.
This can be the case when the rewards are likely
to outweigh the risks, or when time limitations
do not allow for a thorough decision-making
process. Hence, mindless decision making can
be a valid strategy for routine decisions and
does not necessarily imply ideological decision
making. However, we were able to exclude this
possibility in the three small organizations in our
sample by investigating the background of the
decision-making process. In all three organiza-
tions, the adoption of OSS constituted an important
change that concerned the replacement of existing
proprietary software or the use of a new type of
software. Therefore, no similar evaluation of OSS
was previously undertaken, and decision making
was indeed ideological.

rEFErENcEs

Abrahamson, E. (1991). Managerial fads and
fashions: The diffusion and refection of innova-
tions. Academy of Management Review, 16(3),
586–612.

Benbasat, I., Goldstein, D.K., & Mead, M. (1987).
The case research strategy in studies of informa-
tion systems. MIS Quarterly, 11(3), 368–386.

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organizing social relationships in open
source communities. Information Systems Jour-
nal, 11(4), 305–315.

Butler, B.S., & Gray, P.H. (2006). Reliability,
mindfulness, and information systems. MIS
Quarterly, 30(2), 211–224.

Cohen, M.D., March, J.G., & Olsen, J.P. (1972).
A garbage can model of organizational choice.
Administrative Science Quarterly, 17(1), 1–25.

Dedrick, J., & West, J. (2003). Why firms adopt
open source platforms: A grounded theory of
innovation and standards adoption. In J.L. King
& K. Lyytinen (Eds.), Proceedings of the Work-
shop on Standard Making: A Critical Research
Frontier for Information Systems (pp. 236–257),
Seattle, WA.

Dubé, L., & Paré, G. (2003). Rigor in information
systems positivist case research: Current practices,
trends, and recommendations. MIS Quarterly,
27(4), 597–635.

Eisenhardt, K.M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532–550.

Fiol, C.M., & Connor, O.J. (2003). Waking up!
Mindfulness in the face of bandwagons. Academy
of Management Review, 28(1), 54–70.

Fitzgerald, B. (2006). The transformation of
open source software. MIS Quarterly, 30(3),
587–598.

The Impact of Ideology on the Organizational Adoption of Open Source Software

174

Geuss, R. (1994). Ideology. In T. Eagleton (Ed.),
Ideology (pp. 260–278). Essex, UK: Longman
Group.

Hamilton, M.B. (1987). The elements of the con-
cept of ideology. Political Studies, 35(1), 18–38.

Hansen, M.T., & Haas, M.R. (2001). Competing
for attention in knowledge markets: Electronic
document dissemination in a management consult-
ing company. Administrative Science Quarterly,
46(1), 1–28.

Harrison, D.A., Mykytyn, P.P. Jr., & Riemensch-
neider, C.K. (1997). Executive decisions about
adoption of information technology in small
business: Theory and empirical tests. Information
Systems Research, 8(2), 171–195.

Ljungberg, J. (2000). Open source movements
as a model for organizing. European Journal of
Information Systems, 9(4), 208–216.

Lundell, B., Lings, B., & Lindqvist, E. (2006).
Perceptions and uptake of open source in Swedish
organizations. In E. Damiani, B. Fitzgerald, W.
Scacchi, M. Scotto, & G. Succi (Eds.), IFIP inter-
national federation for information processing:
Volume 203open source systems (pp. 155–163).
Boston: Springer.

Markus, M.L., Manville, B., & Agres, C.E. (2000).
What makes a virtual organization work? Sloan
Management Review, 42(1), 13–26.

Miles, M.B., & Huberman, A.M. (1994). Qualita-
tive data analysis: An expanded sourcebook (2nd
ed.). Thousand Oaks, CA: Sage.

Phillips, L.W. (1981). Assessing measurement
error in key informant reports: A methodologi-
cal note on organizational analysis in marketing.
Journal of Marketing Research, 18(4), 395–415.

Riemenschneider, C.K., Harrison, D.A. & Myky-
tyn, P.P. Jr. (2003). Understanding IT adoption
decisions in small business: Integrating current
theories. Information & Management, 40(4),

269–285.

Sternberg, R.J. (2000). Images of mindfulness.
Journal of Social Issues, 56(1), 11–26.

Stewart, K.J., & Gosain, S. (2006). The impact
of ideology on effectiveness in open source soft-
ware development teams. MIS Quarterly, 30(2),
291–314.

Swanson, E.B., & Ramiller, N.C. (2004). Innovat-
ing mindfully with information technology. MIS
Quarterly, 28(4), 553–583.

Tushman, M.L., & Scanlan, T.J. (1981). Charac-
teristics and external orientations of boundary
spanning individuals. Academy of Management
Journal, 24(1), 83–98.

Weick, K.E., Sutcliffe, K.M., & Obstfeld, D.
(1999). Organizing for high reliability: Processes
of collective mindfulness. In R.I. Sutton & B.M.
Staw (Eds.), Research in organizational behavior
(vol. 21, pp. 81–123). Greenwich, CT: JAI Press.

West, J., & Dedrick, J. (2005). The effect of
computerization movements upon organizational
adoption of open source. Proceedings of the Social
Informatics Workshop: Extending the Contribu-
tions of Professor Rob Kling to the Analysis of
Computerization Movements, Irvine, CA.

Yin, R.K. (2003). Case study research: Design and
methods (3rd ed.). Newbury Park, CA: Sage.

ENDNOtEs

1 These organizations had on average 41,885
employees (25,529 when only counting the
unit studied in the organization).

2 The term “mindless” generally has a pe-
jorative meaning, such as “unintelligent.”
In academic literature however, the term
is used to refer to automatic or inattentive
behavior (e.g., Swanson & Ramiller, 2004;
Fiol & Connor, 2003; Butler & Gray, 2006;

175

The Impact of Ideology on the Organizational Adoption of Open Source Software

Sternberg, 2000). We use the term “mind-
less” in the second sense. Hence, we do not
wish to imply any negative connotations.

3 The organizations in our case studies have
on average 1,081 employees.

4 Actually, the Dutch equivalent was used,
namely “vrije software,” which is similar in
meaning as the French term libre software
and refers to “freedom” rather than “free of
charge.”

5 Other reasons were that it used Java (which
the IT manager did not like very much),

and the fact that he preferred using custom-
developed software that fits his business.

6 This may indicate that these organizations
preferred to cooperate with other organiza-
tions within the same industry in order to
extend their own capabilities, rather than
to outsource development to an external
firm.

7 On the other hand, Fiol and Connor (2003)
have noted that formal procedures may also
lead to mindlessness (i.e., when decision
makers follow procedures without critically
considering them).

This work was previously published in the Journal of Database Management, Vol. 19, Issue 2, edited by K. Siau, pp. 58-72,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

176

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8
Web Services, Service-Oriented
Computing, and Service-Oriented

Architecture:
Separating Hype from Reality

John Erickson
University of Nebraska - Omaha, USA

Keng Siau
University of Nebraska - Lincoln, USA

AbstrAct

Service-oriented architecture (SOA), Web services, and service-oriented computing (SOC) have become
the buzz words of the day for many in the business world. It seems that virtually every company has
implemented, is in the midst of implementing, or is seriously considering SOA projects, Web services
projects, or service-oriented computing. A problem many organizations face when entering the SOA
world is that there are nearly as many definitions of SOA as there are organizations adopting it. Further
complicating the issue is an unclear picture of the value added from adopting the SOA or Web services
paradigm. This article attempts to shed some light on the definition of SOA and the difficulties of as-
sessing the value of SOA or Web services via return on investment (ROI) or nontraditional approaches,
examines the scant body of evidence empirical that exists on the topic of SOA, and highlights potential
research directions in the area.

INtrODUctION

Service-oriented architecture (SOA); Web ser-
vices; mash-ups; Ajax; Web 2.0; some of their

underlying middleware realization schemas such
as SOAP (simple object access protocol), UDDI
(universal description, discovery, and integration),
XML (extensible markup language), and CORBA

177

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

(common object request broker architecture); and
many other ideas or approaches to cutting-edge
information system architectures have become the
buzzwords of the day for many in the business
world and also in the IT and IS communities. It is
quite difficult, perhaps nearly impossible, to pick
up any relatively current practitioner publication
without encountering an article focusing on at
least one of the above topics. A recent library
database search using keywords service-oriented
architecture, Web services, and SOA resulted in
800-plus returns. Further investigation revealed
that roughly 25 of those 800 articles were sourced
in research journals while the other (still roughly
800) articles were all from more practitioner-
oriented sources.

When it comes to adopting and implementing
SOA, it appears that businesses are doing it at
astounding rates. Of course, what they are actu-
ally doing, even though they may say that their
efforts represent a move toward service-oriented
architecture, may not match anyone else’s defi-
nition of SOA but their own. Furthermore, how
can SOA be defined, and how can we define the
benefits of moving toward such architectures? It
seems that there is little agreement among prac-
titioners and researchers alike as to a standard
definition of SOA.

Worse still, a growing number of practitio-
ners are now beginning to question the business
return of some of the approaches. For example,
Dorman (2007), Havenstein (2006), Ricadela
(2006), and Trembly (2007) indicate that there
is doubt emerging as to the real value of SOA to
adopting businesses and organizations. Perhaps
the question of return on investment (ROI) should
not be that surprising since it sometimes seems
that each organization has its own definition of
what SOA really is.

This article attempts to reach for a clearer
understanding of what SOA really is, and pro-
poses some possible areas of research into SOA
that could help clear up some of the definitional
confusion, which could in turn help lead to better

understanding of ROI as it relates to SOA. First
is the introduction. Second, the article provides
existing definitions of SOA, Web services, and
some of the related and underlying technologies
and protocols. The next section combines the vari-
ous definitions of SOA into a more coherent form,
while the section after that proposes ideas about
what SOA should be. The fifth section discusses
research possibilities and provides recommenda-
tions for future research efforts. Next, we look at
ways of measuring and justifying SOA and SOC
(service-oriented computing) success. Finally, we
conclude the article.

bAcKGrOUND AND HIstOrY
OF sErVIcE-OrIENtED
ArcHItEctUrE

A minimum of nine formal definitions of SOA
exist as of this writing, from sources such as the
Organization for the Advancement of Structured
Information Standards (OASIS), the Open Group,
XML.com, Javaworld.com, Object Management
Group (OMG), the World Wide Web Consortium
(W3C), Webopedia, TechEncyclopedia, WhatIs.
com, and Webopedia.org. In addition, many
other definitions put forth by numerous industry
experts, such as those from IBM, further cloud
the issue, and worse yet, other formal definitions
might also exist. In other words, the concept of
service-oriented architecture appears in many
ways to be a virtually content-free description
of an IT-based architecture. It is not our intent
here to add yet another definition to this already
crowded arena of definitions, but to try to cull
the common, base meanings from the various
distinct definitions.

Prior to about 2003, the term service-oriented
architecture was not in general use for the most
part, according to Wikipedia (“SOA,” 2007).
However, since that time, SOA has exploded nearly
everywhere in the business and technology world.
SOA appears to derive or develop in many cases

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

178

from more basic Web services. These services
can include enabling technologies such as SOAP,
CORBA, EJB (Enterprise Java Beans), DCOM
(distributed component object model), and even
SIP (session-initiated protocol) among many oth-
ers; services may also include other middleware
created with XML (Lee, Siau, & Hong, 2003; Siau
& Tian, 2004; Sulkin, 2007; Walker, 2007).

service-Oriented Architecture
Definitions

The Open Group (2007) defines SOA as “an ar-
chitectural style that supports service orientation.”
The definition goes on to also include descriptions
of architectural style, service orientation, service,
and salient features of SOA. OASIS defines SOA
as “a paradigm for organizing and utilizing distrib-
uted capabilities that may be under the control of
different ownership domains.” The OASIS defini-
tion includes what they call a “reference model”
in which the details of the definition are expanded
and formalized. The Object Management Group
(2007) defines SOA as “an architectural style
for a community of providers and consumers of
services to achieve mutual value.” OMG adds
that SOA allows technical independence among
the community members, specifies the standards
that the (community) members must agree to
adhere to, provides business and process value
to the (community) members, and “allows for a
variety of technologies to facilitate (community)
interactions” (OMG, 2007).

W3C (2007) defines SOA as “a form of distrib-
uted systems architecture that is typically charac-
terized by…a logical view, a message orientation,
a description orientation, granularity and platform
neutrality.” W3C adds details describing what it
means by logical view, message and description
orientations, granularity, and platform neutrality.
XML.com (2007) defines SOA as follows:

SOA is an architectural style whose goal is to
achieve loose coupling among interacting soft-
ware agents. A service is a unit of work done by a

service provider to achieve desired end results for
a service consumer. Both provider and consumer
are roles played by software agents on behalf of
their owners.

The Javaworld.com SOA definition, composed
by Raghu Kodali (2005), is as follows: “Service-
oriented architecture (SOA) is an evolution of
distributed computing based on the request/
reply design paradigm for synchronous and
asynchronous applications.” Kodali also goes on
to describe four characteristics of SOA. First, the
interfaces composed in XML, using WSDL (Web
services description language), are used for self-
description. Second, XML schema called XSD
should be used for messaging. Third, a UDDI-
based registry maintains a list of the services
provided. Finally, each service must maintain a
level of quality defined for it via a QoS (quality
of service) security requirement.

Finally, IBM proposes that SOA “describes a
style of architecture that treats software compo-
nents as a set of services” (UNL-IBM System in
Global Innovation Hub, 2007). Furthermore, it
insists that business needs should “drive defini-
tion” of the services, and that the value proposition
be centered on the reusability and flexibility of
the defined services.

sErVIcE-OrIENtED
ArcHItEctUrE

We begin the SOA discussion with an overview
of SOA provided by Krafzig, Banke, and Slama
(2005). They proposed a three-level hierarchical
perspective on SOA in which Level 1 includes
the application front end, the service, the service
repository, and the service bus (SB). Accordingly,
only the service child has children, consisting
of the contract, implementation, and interface.
Finally, the last level of the proposed hierarchy is
composed of business logic and data, children of
implementation. The next subsections will discuss
the general ideas of the elements included in the

179

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

hierarchy proposed by Krafzig et al. described
previously. This is not to recommend adoption
of the hierarchy and description as the final de-
scription of SOA, but rather as a framework for
discussing the meaning of SOA for the remainder
of this article.

Application Front End

This part of SOA comprises a source-code in-
terface, and in SOA terminology, it is referred to
as the application programming interface (API).
In accordance with most commonly accepted
design principles, the underlying service requests,
brokerage (negotiation), and provision should be
transparent to the end user.

service repository

The service repository could be thought of as the
library of services offered by a particular SOA.
This would likely consist of an internal system
that describes the services, and provides the
means in the user interface to call a particular
service. UDDI could be seen as a realization of
the service repository idea. UDDI is a global
registry that allows businesses to list themselves
on the Internet. UDDI is platform independent
and XML based. The point of UDDI is for busi-
nesses to list the Web or SOA-type services that
they provide so that other companies searching
for such services can more easily locate and ar-
range to use them.

service bus

The SB, more commonly referred to as the enter-
prise service bus (ESB), provides a transporta-
tion pathway between the data and the end-user
application interface. Using an ESB does not
necessarily mean SOA is being implemented,
but ESB or some sort of SB use is almost always
part of an SOA deployment. According to Hicks
(n.d.), Oracle’s idea of an ESB includes multiple

protocols that “separate integration concerns from
applications and logic.” What this means is that
ESBs have now become commercialized, and can
be licensed for use much like other UDDI-based
services. So, companies searching for ESB solu-
tions as part of an SOA effort now have multiple
choices and do not necessarily have to re-create
the wheel by building their own ESB.

common services

It seems apparent from many of the SOA defini-
tions that many of the technologies included in an
SOA definition, and by default SOA implementa-
tions, are established and conventional protocols.
To better understand the services provided in many
SOA definitions, a brief explanation of some of the
more commonly used underlying technologies is
provided. A particular service may or may not be
explicitly Web based, but in the end it matters little
since the services provided by the architecture
should be transparently designed, implemented,
and provided. The general consensus from most
involved in Web services is that the services are
meant to be modular. This means that no single
document encompasses all of them, and further-
more, that the specifications are multiple and (more
or less) dynamic. This results in a small number
of core specifications. Those core services can be
enhanced or supported by other services as “the
circumstances and choice of technology dictate”
(“Web Service,” 2007).

XML allows users to define and specify the
tags used to capture and exchange data, typi-
cally between distinct and usually incompatible
systems from different companies or organiza-
tions. This means that XML is a good example
of middleware; it also means that XML enables
Web services. XML was one of the initial drivers
that provided the ability to conduct e-business
for many businesses in the Internet era. XML
cannot really be considered a service, but as the
language used to write many of the Web services
or service stack protocols.

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

180

SOAP, like all protocols, consists of a set list of
instructions detailing the action(s) to be taken in a
given circumstance. SOAP is designed to call, ac-
cess, and execute objects. The original SOAP was
typically for communications between comput-
ers, and usually involved XML-based messages.
SOAP and its underlying XML programming
comprised one of the first Web service commu-
nication stacks. One of the original Web services
that SOAP provided was called remote procedure
call (RPC), which allowed a remote computer
to call a procedure from another computer or
network. More recently, SOAP has taken on a
somewhat modified meaning so that the acronym
now means service-oriented architecture protocol.
In both cases, what SOAP does is to use existing
communications protocols to provide its services.
The more common early SOAP contracts included
XML applications written for HTTP (hypertext
transfer protocol), HTTPS (HTTP over secure
socket layer), and SMTP (simple mail transfer
protocol), among others. It should be apparent
from these that many early SOAP implementations
involved e-commerce or e-business applications,
which means that the concern at the time when
many applications were first developed was to
move sales and other data collected in Web portals
to back-end data stores.

CORBA is an OMG-developed standard that
allows different software components that are usu-
ally written in different languages and installed
on different computers to work together (Zhao &
Siau, 2007). CORBA was developed in the early
1990s, and while not overtly an SOA at the time,
it actually performs many of the functions in an
SOA, using an IIOP- (Internet inter-orb protocol)
based service stack.

EJB is a component typically situated on the
server that “encapsulates the business logic of
an application” (“EJB,” 2007). EJB enables the
creation of modular enterprise (and other) ap-
plications. The intent of EJB is to facilitate the
creation of middleware that acts as a go-between

tying front-end applications to back-end applica-
tions or data sources.

SIP is a signaling protocol designed for use in
telecommunications at the application layer. It has
generally become one of the primary protocols
used in VoIP (voice over Internet protocol), H.323,
and other communications standards. SIP can be
seen as a primary provider of Web services for
Internet-based voice communications such as
VoIP (Sulkin, 2007).

contract (services)

Components of a service contract typically include
primary and secondary elements. The primary
elements consist of the header, functional require-
ments, and nonfunctional requirements. Subele-
ments for the header consist of the name, version,
owner, RACI, and type. Under functional require-
ments are functional requirement descriptions,
service operations, and invocation. Nonfunctional
requirements include security constraints, QoS,
transactional requirements (the service part of a
larger transaction), service-level agreement, and
process (“SOA,” 2007). The contract generally
includes metadata about itself, who owns it, and
how it is brokered, bound, and executed.

Interface

At this level of service provision, the interface
referred to is a segment of code that connects
the service with the data and/or business logic
(process). The interface describes how data will
be moved into and out of the data source by the
service, and must be designed to comply with the
physical (data, data structures, etc.) and process
(business logic) requirements of the existing and/
or legacy system.

Implementation

The implementation specifies the contract and
interface to be used for each service requested,

181

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

and contains the direct pathway into the data and
business logic.

Architecture

The service component of SOA has been discussed,
though admittedly at a high level. However, the
architecture component has not yet been addressed
and it will be helpful to speak briefly about the
architecture segment of SOA. Architecture in
general refers to the art (or science) behind the
design and building of structures. Alternatively,
an architecture may refer to a method or style of
a building or a computer system. So, if SOA is
taken literally as a description of its function, it
could be taken to mean a structured way of or-
ganizing or arranging the services in a business
or organization.

sOA FrAMEWOrK

It is apparent from the existing definitions and
models that service-oriented architecture is
commonly seen as an architecture or way of
assembling, building, or composing the infor-
mation technology infrastructure of a business
or organization. As such, SOA is not a technol-
ogy in itself; rather, it is a way of structuring or
arranging other technologies to accomplish a
number of other tasks. This naturally leads to
the problem of a multiplicity of definitions of
SOA since many relatively similar structural ar-
rangements of services are possible. Many of the
definitions also indicate that the arrangement and
relationships between modules should be loosely
coupled rather than tightly coupled. This allows
for customization of services based on need,
and on-demand rather than some predetermined
structure, but the downside is that it also leads
toward a plethora of definitions and approaches
to SOA implementation.

Some of the common features that seem
sensible to include in a formal definition of SOA
would relate to a common framework, such as that

specified by Krafzig et al. (2005) or one of the other
standards bodies. In other words, a framework
would include metadata describing the various
important features of SOA, how those features
can be arranged, and the libraries or location of
services that allow adopting organizations to ar-
range bindings or contracts between themselves
and the service provider, independent of whether
the service provider is internal or external. We
propose the framework depicted in Figure 1 as a
starting point for visualizing SOA.

Several of the standards bodies have taken a
stance in creating or calling for a metamodel, at
least in some form. Among them are the Open
Group, OASIS, OMG, W3C, and to a lesser extent
industry-related bodies such as Javaworld.com,
XML.com, IBM, and Oracle.

UDDI has become a very well-known
structured repository for services and service
components, which speaks to the universality of
the library or centralized database of services.
However, more standardization efforts will be
necessary to enhance the interoperability of
UDDI.

It also appears, especially with the industry
definitions of SOA, that the contracts, bindings,
interfaces, service buses, and other implementa-
tion-related portions of SOA are important ele-
ments to be considered when attempting to give
an overall definition of SOA. This unfortunately
could easily represent a stumbling block in gar-
nering consensus on a definition of SOA since
each of these companies has invested significant
time, human, and other likely resources toward
development of their specific pieces of the SOA
pie. Each company has invested heavily and thus
will likely be less willing to risk that investment
and any potential return and customer lock-in in
order to simply agree on standards. We observed a
similar occurrence of this type of behavior in the
recently ended format war in the high-definition
DVD market. Similarly, if the standards bodies
have political or industry leanings, agreement on

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

182

a common SOA definition and standards could
be difficult to achieve.

Another more recent development comes
from Shah and Kalin (2007). They proposed that
organizations adopting SOA follow a specific
path based on an analysis of business challenges,
including SOA business drivers and IT barriers.
This led them to speculate that a specific adoption
model be used to guide the SOA implementa-
tion process. They indicated that an ad hoc SOA
model is better where the benefits of new services
are specific to each individual service, where
the technologies may be inconsistently applied
(different implementations for the same service
in different projects), where services cannot be
reused, and where the increases in technologi-
cal complexity translate into decreased system
response times. Shah and Kalin ended with a call
for a strategy- or program-based SOA adoption
model that is situational.

We propose that a common definition of SOA
is possible and necessary, and call for negotiations
among interested bodies with the aim of reaching
a common definition of SOA. We realize that in
practice it might prove difficult or even nearly
impossible to expect such a consensus to be ar-
rived at, but a common definition and structure
of SOA would go a long way toward dealing with
some of the confusion, misinformation, and hype
regarding the entire subject. Difficult though it
might be to expect this, a realization that SOAP,
CORBA, RPC, and XML among many other
technological tools have reached a point of rela-
tive agreement amongst users if not ubiquity, at
least related to their underlying standards, should
provide some evidence that agreements can be
reached. Next, we will examine SOA from the
research perspective.

Figure 1. SOA framework

service
Includes:

 1. Physical transport schema
2. API (Application Programming Interface)

3. source (service Library or repository;

UDDI, internal or external)

service Implementation
Includes:

1. contract or binding detail

2. code schema

business Logic

(Process or Activity)

Data

(connection to data source;
internal or external)

service Oriented Architecture

sOA

183

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

POssIbILItIEs FOr rEsEArcH

Research into SOA is extremely limited at this
point in time. What studies exist can be classified
into several distinct categories. The first includes
exploratory or recommendation-type efforts that
propose various means to approach SOA imple-
mentation. These investigations may or may not
include proprietary industry software, but most
of these research efforts propose the use of pat-
terns or blueprints and a metamodel of SOA as
a means to understanding the SOA perspective.
Second, in this category are research proposals that
examine company-specific technologies or tools
(i.e., IBM proposing the use of Rational Software,
including the Rational Unified Process) in rela-
tion to SOA design and implementation. Neither
of the first two types of SOA research generally
involve ideas on how to measure SOA in terms
of success or failure, or even suggest metrics.
Finally, the third type of research articles focus
on empirical research.

sOA Development or Deployment
Patterns and blueprints, and the
Meta-Approach

Stal (2006) took a roughly similar approach to
what we are attempting to do in this article;
he advocated using architectural patterns and
blueprints (software engineering patterns) as a
means to enable or foster efficient deployment of
SOA. He supported loose coupling of services in
a registry or library to the extent that he thought
that removing the services’ dependency on the
registry’s or provider’s distinct location would
benefit the deployment of SOA. Stal maintained
that this would eliminate, or at least minimize, a
layer in the SOA framework. He also proposed
a more tightly defined and controlled integration
of middleware using XML or similar tools. Ba-
sically, Stal suggested a metamodel and pattern
approach to defining SOA, but did not suggest

what the research might accomplish or how the
research into SOA would be framed. Kim and
Lim (2007) also proposed a distinct means to
implementing SOA, using in this instance, busi-
ness process management, in addition to a variant
of the SOA framework specifically dealing with
the telecommunications industry. Similar to Stal,
Kim and Lim did not propose empirical research
into SOA, but rather focused on implementation
and standards in a specific industry.

Shan and Hua (2006) proposed an SOA ap-
proach for the Internet banking industry. They also
compiled a list of patterns that have been proven
successful for other online service industries.
However, the models they used and ended up with
are very detailed regarding how SOA should be
implemented for first online companies in general,
and then Internet banking specifically. This again
does not propose or frame specific research but
rather suggests an implementation approach and
a structure for SOA.

The ESB is explained in detail, but from a
general perspective rather than a company-specific
approach in Schmidt, Hutchison, Lambros, and
Phippen’s (2005) expository. The article is infor-
mative regarding ESB implementation and design
patterns, but it is not research oriented.

Crawford, Bate, Cherbakov, Holley, and Tsoca-
nos (2005) proposed a different way to structure
SOA, what they called on-demand SOA. They
essentially proposed an even looser coupling of
services and their connecting elements than in
other perspectives of SOA. They argued that this
would allow much more flexibility to the adopting
organizations and the end users.

Company-Specific and Commercial
tool-based sOA Deployment

Brown, Delbaere, Eeles, Johnston, and Weaver
(2005) presented an industry-oriented perspective
on the SOA puzzle. They suggested an approach
to service orientation using the proprietary IBM
Rational platform. Their recommendations follow

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

184

similar paths as some previous research, but are
also filtered through the IBM Rational lens. The
article is primarily illustrative in nature, sug-
gesting how to best implement SOA using IBM
Rational tools. In a similar vein, Ferguson and
Stockton (2005) also detailed IBM’s programming
model and product architecture.

De Pauw, Lei, Pring, and Villard (2005) de-
scribed the benefits of Web Services Navigator,
a proprietary tool created to provide a better
visualization of SOA and Web services in a
loosely coupled architecture. The tool can help
with design-pattern, business-logic, and business-
process analysis, and thus help with SOA archi-
tecture design and implementation.

Jones (2005) suggested that SOA, service, and
Web service standards were “on the way” and
provided a list of existing tools, such as UML
(Unified Modeling Language) and/or the rational
unified process that could aid the SOA (or service)
design process. However, he also advocated the
push toward formal definitions of such SOA basics
as services, to the end of providing a more coher-
ent and cohesive structure that he thought would
enhance the ability of developers and adopters to
understand and deploy SOA.

research-based Perspectives on
sOA

Chen, Zhou, and Zhang (2006) proposed an
ontologically based perspective on SOA, Web
services, and knowledge management. They
attempted, with some success, to integrate two
separate research streams into one. They presented
a solution to show that semantic- and syntactic-
based knowledge representations could both be
depicted with a comprehensive ontology that also
described Web service composition. While their
framework represents a step toward automated
(Web) service composition, more research is
still needed.

Borkar, Carey, Mangtani, McKinney, Pate,
and Thatte (2006) suggested a way of handling

XML-based data in an SOA or service environ-
ment. Their idea involved the use of data both
able to be queried and unable to be queried, and
would necessarily also involve XML-formatted
data. This represents empirical research into a
part of SOA, namely, the underlying services, and
is at least a step in the right direction, although
it does not enter the realm of research into the
efficacy or ROI of SOA.

Duke, Davies, and Richardson (2005) rec-
ommended and provided details on using the
Semantic Web to organize an organization’s ap-
proach to SOA and Web service orientation. They
suggested that combining the Semantic Web and
SOA into what they called Semantic SOA would
provide benefits to adopting organizations. Then
they further proposed an ontological model of the
Semantic SOA, attempting essentially to create a
meta-metamodel of SOA using their experience
with the telecommunications industry as a case
example. This is one of the few high-level articles
that can also be seen as empirical research.

Zhang (2004) explored the connection between
Web services and business process management,
and described the modular nature of the service
(and Web service) perspective. He detailed the
software industry’s approach to Web services
and provided evidence that standards develop-
ment would quickly mature, beginning in 2005.
He maintained that once standards were agreed
upon, a connection to business process manage-
ment would be easier to sell to businesses. Zhang
also developed a prototype e-procurement system
that composed external services to operate.

Malloy, Kraft, Hallstrom, and Voas (2006)
developed an extension to WSDL. They insisted
that Web services’ specifications were “typically
informal and not well-defined,” and proposed what
they called an intermediate step between requiring
more formal and rigorous service specifications
and the informal nature of the existing service
specifications. They accomplished this balance
by extending WSDL to include support for ap-
plication arguments that would help automate and

185

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

expand the ability of services to operate in multiple
environments. They provided an example of how
their WSDL extension could allow a single service
to function successfully in different applications
using multiple zip code formats (five vs. nine
digits, and hyphens vs. no hyphens).

Verheecke, Vanderperren, and Jonckers (2006)
proposed and developed a middleware level that
they called the Web services management layer
(WSML). They saw the primary advantage of
their approach in that it provided a reusable frame-
work. They further believed that the use of their
framework would enable “dynamic integration,
selection, composition, and client-side manage-
ment of Web Services in client applications” (p.
49). They were aware that their approach could
cause some problems in a distributed system
since implementation of it resulted in a central-
ized architecture.

Hutchinson, Henzel, and Thwaits (2006)
described a case in which an SOA-based system
was deployed for a library extension collabora-
tion project. Much of the case details the SOA
approach itself, and explains the experiences of
the project developers and implementers. They
noted that while the SOA architecture could be
expected to reduce the operational maintenance
costs overall, the way the system was specified
and delivered in this particular case might require
more work from IT to keep some services, such
as flash players, up to date. While the authors did
not specifically mention it in the article, perhaps a
more loosely coupled architecture might alleviate
some of those operational maintenance costs.

Li, Huang, Yen, and Cheng (2007) proposed a
methodology to migrate the functionality of legacy
systems to a Web services or SOA architecture.
They used a case study to investigate the efficacy
of their proposed methodology, finding that while
it was possible to make such a migration from
legacy systems to SOA (or Web services), the
changes that it required from the organization
were considerable, and some process reengineer-
ing would likely be necessary.

MEAsUrING sOA AND sOc
sUccEss

Another tricky issue in SOA and SOC implementa-
tion is the measurement or evaluation of success.
Traditionally, software (or system) successes and
failures have been estimated by the usual suspects:
traditional measures such as ROI, net present value
(NPV), breakeven, internal rate of return (IRR), or
other similar financially based approaches. Simi-
larly, software itself has usually been measured
in terms of errors or productivity via numeric
methodologies such as lines of code, COCOMO
(constructive cost model), and similar estimation
techniques. These approaches are all based firmly
on the idea that if we can assign some number
to a system, then we can compare them across
projects, systems, or organizations. The problem
is analogous to the question often asked regarding
enterprise resource planning (ERP) systems: If
all of the Fortune 100 companies implement the
same piece of software, such as SAP, then what
allows one organization to differentiate itself from
another if they have standardized on SAP’s best
processes and best practices? One way to answer
that question is to examine other measures of
success such as competitive advantages (Siau,
2003), competitive necessity, flexibility, agility
(Erickson, Lyytinen, & Siau, 2005), nimbleness,
responsiveness, and other relevant intangibles. We
would even propose that the best way to evaluate
SOA or SOC implementation is not ROI. Intangible
but critical factors such as competitive necessity,
agility, on-demand abilities, and responsiveness
should be the decisive factors.

Nah, Islam, and Tan (2007) proposed a frame-
work and critical success factors for estimating the
success of ERP implementations. They empiri-
cally assessed a variety of implementation suc-
cess factors including top-management support,
project team competence, and interdepartmental
cooperation, among many others. While the study
answered a number of important questions regard-
ing ERP implementations, the issue of assessing

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

186

intangibles in terms of success factors remains a
problem, not only for ERP-type implementations
but also for other system types as well, especially
for SOA since the SOA approach can be seen as
an alternative in many ways to ERP.

Langdon (2007) noted that while many
economic-based studies indicate that IT projects
add value at the macrolevel, little has been done
to assess how value is added at the more micro
or individual project level. Specifically, Langdon
proposed and evaluated a research model that
included (IS) integration and flexibility as capa-
bilities that could lead to IT business value. Of
course, flexibility and integration are only two
components of a larger IT capabilities structure,
but the study indicates that the first steps have
been taken to study intangibles in the context of
an IT systems development project.

Two intangibles in the IT success-factor
context are the oft-cited agility or nimbleness of
a company or organization. An entire genre of
systems development has emerged based on the
principle of agility. However, there is little empiri-
cal evidence supporting the value added from such
development approaches (Erickson et al., 2005).
Since a growing number of SOA installations are
constructed as ad hoc, which is in a basic sense
agile, we propose that in environments where
agility and nimbleness are important, so in turn
are SOA and SOC important.

cONcLUsION

From the literature, it appears that only a few ef-
forts can be said to be empirical research. A major-
ity of the research efforts involved created tools
or language extensions that would increase the
interoperability of services, while other research
proposed standards modifications. Many of the
remaining articles published proposed new tools
or the use of existing proprietary tools, described

an approach to SOA from specific perspectives, or
proposed model or metamodel changes. A limited
number of case studies detailing SOA, Web ser-
vices, or service deployments or implementation
efforts provide experience reports on how best to
implement such systems.

As far as we can determine, virtually no
research has been formally done regarding the
benefits and drawbacks of SOA or Web services.
Two problems with this are likely to revolve around
the nebulous nature of SOA and Web services in
terms of the widely varying definition and the
emerging standards issue. An effort to identify
SOA and Web services metrics would help to get
research into this area started.

Another area of interest involving SOA and
Web services adoption is the cultural and struc-
tural impacts on the organization or business. A
number of articles note the importance of those
elements, but little has been accomplished in terms
of research specifically connecting SOA or Web
services with cultural and structural changes in
organizations.

A variety of standards bodies are working
separately toward formal definitions including
metamodels, and a number of SOA vendors,
among them some of the very large and established
software industry players, have emerged. While
the effort toward standardization is direly needed
and commendable, a more collaborative approach
would, in our opinion, benefit the industry and
implementing companies and organizations as
well. The seeming result of the rather haphazard
approach to SOA appears to indicate that an in-
creasing number of implementing organizations
are finding it difficult to assess the cost benefit
of the entire services approach. Research efforts
at this point appear to be in a similar state of
disarray. Until a more coherent picture of SOA
emerges, its image is likely to remain slightly
out of focus, and research in the area is likely to
remain somewhat unfocused as a result.

187

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

rEFErENcEs

Borkar, V., Carey, M., Mangtani, N., McKinney, D.,
Patel, R., & Thatte, S. (2006). XML data services.
International Journal of Web Services Research,
3(1), 85-95.

Brown, A., Delbaere, M., Eeles, P., Johnston, S., &
Weaver, R. (2005). Realizing service oriented solu-
tions with the IBM Rational Software Development
Platform. IBM Systems Journal, 44(4), 727-752.

Chen, Y., Zhou, L., & Zhang, D. (2006). Ontology-
supported Web service composition: An approach
to service-oriented knowledge management in
corporate financial services. Journal of Database
Management, 17(1), 67-84.

Crawford, C., Bate, G., Cherbakov, L., Holley, K., &
Tsocanos, C. (2005). Toward an on demand service
architecture. IBM Systems Journal, 44(1), 81-107.

De Pauw, Lei, M., Pring, E., & Villard, L. (2005).
Web services navigator: Visualizing the execu-
tion of Web services. IBM Systems Journal, 44(4),
821-845.

Dorman, A. (2007). FrankenSOA. Network Com-
puting, 18(12), 41-51.

Duke, A., Davies, J., & Richardson, M. (2005). En-
abling a scalable service oriented architecture with
Semantic Web services. BT Technology Journal,
23(3), 191-201.

EJB. (2007). Wikipedia. Retrieved October 12, 2007,
from http://en.wikipedia.org/wiki/Ejb

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile
modeling, agile software development, and extreme
programming: The state of research. Journal of
Database Management, 16(4), 80-89.

Ferguson, D., & Stockton, M. (2005). Service
oriented architecture: Programming model and
product architecture. IBM Systems Journal, 44(4),
753-780.

Havenstein, H. (2006). Measuring SOA performance
is a complex art. Computer World, 40(2), 6.

Hicks, B. (n.d.). Oracle Enterprise Service Bus:
The foundation for service oriented architecture.
Retrieved October 18, 2007, from http://www.
oracle.com/global/ap/openworld/ppt_download/
middleware_oracle%20enterprise%20service%20
bus%20foundation_250.pdf

Hutchinson, B., Henzel, J., & Thwaits, A. (2006).
Using Web services to promote library-extension
collaboration. Library Hi Tech, 24(1), 126-141.

Jones, S. (2005). Toward an acceptable definition
of service. IEEE Software, 22(3), 87-93.

Kim, J., & Lim, K. (2007). An approach to service
oriented architecture using Web service and BPM
in the Telcom OSS domain. Internet Research,
17(1), 99-107.

Krafzig, D., Banke, K., & Slama, D. (2005). SOA
elements. Prentice Hall. Retrieved October 2, 2007,
from http://en.wikipedia.org/wiki/Image:SOA_Ele-
ments.png

Langdon, C. (2007). Designing information systems
to create business value: A theoretical conceptualiza-
tion of the role of flexibility and integration. Journal
of Database Management, 17(3), 1-18.

Lee, J., Siau, K., & Hong, S. (2003). Enterprise
integration with ERP and EAI. Communications
of the ACM, 46(2), 54-60.

Li, S., Huang, S., Yen, D., & Chang, C. (2007). Mi-
grating legacy information systems to Web services
architecture. Journal of Database Management,
18(4), 1-25.

Malloy, B., Kraft, N., Hallstrom, J., & Voas, J. (2006).
Improving the predictable assembly of service ori-
ented architectures. IEEE Software, 23(2), 12-15.

Nah, F., Islam, Z., & Tan, M. (2007). Empirical
assessment of factors influencing success of enter-
prise resource planning implementations. Journal
of Database Management, 18(4), 26-50.

Web Services, Service-Oriented Computing, and Service-Oriented Architecture

188

Object Management Group (OMG). (2007). Re-
trieved September 25, 2007, from http://colab.cim3.
net/cgi-bin/wiki.pl?OMGSoaGlossary#nid34QI

Open Group. (2007). Retrieved September 25,
2007, from http://opengroup.org/projects/soa/doc.
tpl?gdid=10632

Organization for the Advancement of Structured
Information Standards (OASIS). (2006). Retrieved
September 25, 2007, from http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=soa-rm

Ricadela, A. (2006, September 4). The dark side of
SOA. Information Week, pp. 54-58.

Schmidt, M., Hutchison, B., Lambros, P., & Phippen,
R. (2005). Enterprise service bus: Making service
oriented architecture real. IBM Systems Journal,
44(4), 781-797.

Shah, A., & Kalin, P. (2007, July 6). SOA adop-
tion models: Ad-hoc versus program-based. SOA
Magazine.

Shan, T., & Hua, W. (2006). Service oriented solution
framework for Internet banking. Internet Journal
of Web Services Research, 3(1), 29-48.

Siau, K. (2003). Interorganizational systems and
competitive advantages: Lessons from history.
Journal of Computer Information Systems, 44(1),
33-39.

Siau, K., & Tian, Y. (2004). Supply chains inte-
gration: Architecture and enabling technologies.
Journal of Computer Information Systems, 44(3),
67-72.

SOA. (2007). Wikipedia. Retrieved September 25,
2007, from http://en.wikipedia.org/wiki/Service-
oriented_architecture#SOA_definitions

Stal, M. (2006). Using architectural patterns and
blueprints for service oriented architecture. IEEE
Software, 23(2), 54-61.

Sulkin, A. (2007). SOA and enterprise voice com-
munications. Business Communications Review,
37(8), 32-34.

Trembly, A. (2007). SOA: Savior or snake oil? Na-
tional Underwriter Life & Health, 111(27), 50.

UNL-IBM System in Global Innovation Hub.
(2007). Making SOA relevant for business. Retrieved
October 9, 2007, from http://cba.unl.edu/outreach/
unl-ibm/documents/SOA_Relevant_Business.pdf

Verheecke, B., Vanderperren, W., & Jonckers,
V. (2006). Unraveling crosscutting concerns in
Web services middleware. IEEE Software, 23(1),
42-50.

Walker, L. (2007). IBM business transformation
enabled by service-oriented architecture. IBM
Systems Journal, 46(4), 651-667.

Web service. (2007). Wikipedia. Retrieved Octo-
ber 18, 2007, from http://en.wikipedia.org/wiki/
Web_service

World Wide Web Consortium (W3C). (2007). Re-
trieved September 25, 2007, from http://colab.cim3.
net/cgi-bin/wiki.pl?WwwCSoaGlossary#nid34R0

XML.com. (2007). Retrieved September 25, 2007,
from http://www.xml.com/pub/a/ws/2003/09/30/
soa.html

Zhang, D. (2004). Web services composition for
process management in e-business. Journal of
Computer Information Systems, 45(2), 83-91.

Zhao, L., & Siau, K. (2007). Information media-
tion using metamodels: An approach using XML
and common warehouse metamodel. Journal of
Database Management, 18(3), 69-82.

This work was previously published in the Journal of Database Management, Vol. 19, Issue 3, edited by K. Siau, pp. 42-54,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

189

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

Approximate Query Answering
with Knowledge Hierarchy

Wookey Lee
Inha University, Korea

Myung-Keun Shin
Telecom Business Division, SK C&C, Korea

Soon Young Huh
Korea Advanced Institute of Science and Technology, South Korea

Donghyun Park
Inha University, South Korea

Jumi Kim
Small Business Institute, Korea

INTRODUCTION

Database query processing has mostly focused on
addressing exact answers in terms of Boolean model.

There are a number of circumstances in which a
user desires an approximate answer rather than the
exact answer. At first, when a user does not always
understand all about the data schema or the queries
contain errors syntactically or semantically, then the
query results may be null or be thrown up too much.

AbsTRACT

Approximate Query Answering is important for incorporating knowledge abstraction and query relax-
ation in terms of the categorical and the numerical data. By exploiting the knowledge hierarchy, a novel
method is addressed to quantify the semantic distances between the categorical information as well as
the numerical data. Regarding that, an efficient query relaxation algorithm is devised to modify the ap-
proximate queries to ordinary queries based on the knowledge hierarchy. Then the ranking measures
work very efficiently to cope with various combinations of complex queries with respect to the number
of nodes in the hierarchy as well as the corresponding cost model.

DOI: 10.4018/978-1-60566-904-5.ch009

190

Approximate Query Answering with Knowledge Hierarchy

Then the user feels to amend or modify the query.
Secondly, in data mining environment, when an
initial query is answered and that can be considered
as an anchor point from which the query can be
relaxed to find more detailed information. Manual
relaxation, however, for the unsatisfactory queries
is usually a drudgery and time-consuming process,
which strongly requires a knowledge-based schema
for the database or datawarehouse as well as query
relaxation mechanism.

The query relaxation process can be explained in
more detail by the following example: Consider an
illustrative recruiting scenario in which the query:

Q: Skill == ‘C++’ ∧ Salary == $40,000 ∧ Age == 40

Assume that no result record comes out with
the conventional query answering systems. Then
in our approach, the first step to relax the query
condition is as follows:

QR: Skill in (‘Cobol’ ‘C++’ ‘Java’) ∧ $35,000 ≤
Salary ≤ $45,000 ∧ 37 ≤ Age ≤ 43.

And then, we sort the relaxed query results in
terms of a ranking measure between the original
query and the objects, which will prove very use-
ful for the applicants as they obtain a richer result
of information. Finally, we get the results sorted
by ranking distance D, such as (1) < Martin, C++,
$40000, 40, D: 0.00 >, (2) < Albert, Java, $43000,
40, D: 0.10 >, (3) < Harry, C++, $37000, 38, D:
0.21 >, and (4) < Neal, Cobol, $38000, 41, D: 0.39
>. In order to achieve this, a method of obtaining
the approximate value and to measure the distance
between the target value and the approximate value
needs to be provided. For the numerical domain,
such as Salary and Age, the difference between
two values can be used as a semantic distance
measure. For the categorical domain such as Skill,
the approximate values can be calculated by using
a predetermined item distance table (Motro, 1990)
or by the abstract hierarchy (Chu et al., 1996; Chen,
Zhou, & Zhang, 2006).

The approaches based on the semantic distance
approach (Motro, 1990; Muslea, 2004; Lee at al.,
2007) uses the notion of semantic distance to rep-
resent the degree of similarity between data values.
Since query answering systems employing the
semantic distance approach provide quantitative
measures between target values and neighbor-
hood values as a query result, users can retrieve
approximate values more effectively using the
measures as references to compare with different
approximate values. However, for categorical data,
the semantic distance approach has two problems
because it employs a two dimensional table to
store distances among all pairs of data values.
First, to find neighbor values of a target value, the
system has to scan all the records related to the
target value. Second, when a new value is added
to a domain, it is required to consider distances
between the value and all existing attribute values.
This task contains a large amount of overhead
to be done by a human operator, and moreover,
human operators are liable to lose consistency
in assigning distance data to a large number of
values. In contrast, the approaches based on the
abstraction hierarchy are suitable to dealing with
categorical data. However, abstraction approaches
could not properly handle other data types, such
as the number, money, date and time, etc, and
do not provide quantitative similarity measure
among data values.

To overcome these problems, we propose a
hierarchical quantified knowledge (HQK) that
integrates abstraction approach and semantic
distance approach. The HQK uses the hierarchy
structure of abstraction approach and provides a
quantitative measure between data values in the
hierarchy. The abstraction hierarchy facilitates
finding neighbor values for a target value quite
easily. The distance information embedded in the
HQK provides a more efficient method than the
one based on a table. Maintenance of distance
information due to the addition of a new value
can be minimized since the change is localized
in the hierarchy. This paper will demonstrate how

191

Approximate Query Answering with Knowledge Hierarchy

to calculate the similarity distance between two
data values and introduce the query relaxation
algorithm with HQK.

The rest of the paper is organized as follows.
Section 2 reviews prior related approaches. Sec-
tion 3 proposes the HQK as a new knowledge
representation framework. Section 3 explains
details of the query relaxation algorithm and
examples using the HQK. Section 4 presents the
experiment result. The final section will summa-
rize and introduce proposed concepts for future
exploratory research.

rELAtED WOrKs

Several approaches for finding best matches
instead of the exact match have been proposed,
such as nearest neighbour searches (Chan, 1998;
Beygelzimer, Kakade, & Langford, 2005), rank
aggregation (Liu et al., 2007), top-K queries
(Chakrabarti et al., 2003; Mouratidis, Bakiras,
& Papadias, 2006; Lee at al., 2007), and prefer-
ence searches (Klein & Konig-Ries, 2004). These
approaches mostly deal with either numeric
conditions or concepts such as importance or
relevance. In addition, the conceptual database
interface (Siau, Tan, & Chan, 1992; Lee & Lim,
2007) has been proposed to facilitate end users
interacting with the database, where they have
showed that the visualized conceptual level query
could provide an effective and efficient assistance
for end users than the complicated logical level
query (Chan, Wei, & Siau, 1993; Siau, Chan, &
Wei, 2004). The conceptual database interface,
however, differs from our approach where we
provide a structured query processing capability
based on the query relaxation. Also, approxi-
mate query answering approaches (Babcock et
al., 2003; Calado & Ribeiro-Neto,2003; Liu &
Chu, 2007) have been proposed that have tried
to provide relevant information with wider scope.
Typical steps for approximate query answering
consist of query analysis, query relaxation, and

providing information relevant to the query. In
order to facilitate query relaxation and to provide
relevant information on the query, a knowledge
representation framework is required. The knowl-
edge representation framework is one of the most
important factors in deciding the configuration and
corresponding performance of the approximate
query answering system.

Studies on knowledge representation have
been extensively performed using semantic dis-
tance models or abstraction models (Shin et al.,
2008). In the semantic distance approach, each
and every pair of data values within the data set
is assumed to have semantic distances (Motro,
1990), and thus this approach provides a straight-
forward method for query relaxation providing
ranked results sorted by the semantic distance.
FLEX (Motro, 1990) reaches a high tolerance to
incorrect queries by iteratively interpreting the
query at lower levels of correctness. FLEX is
also cooperative in the sense that, for any empty
result query, it provides either an explanation for
the empty result or some assistance for turning the
query into a nonempty result one. For categori-
cal data, the distance between two data values
is stored in a separate table. Since every pair of
data is supposed to have a semantic distance, the
table size usually becomes extremely large in an
explosive fashion when a realistic application
domain is considered.

In approximate query answering, the data
abstraction is useful in associating data values
with each other for query relaxation. Chu et al.
(1996) introduced type abstraction hierarchy,
which synthesize the database schema and tuples
into an abstract form. Chu et al. used three type
of operation, such as generalization, specializa-
tion, and association to relax a query. Shin et al.
(2001) proposed the approximate query answer-
ing mechanism with the knowledge abstraction
database. This paper shows that integrating
the semantic distance notion to the abstraction
hierarchy would overcome the weaknesses of
the previous approaches and can provide a more

192

Approximate Query Answering with Knowledge Hierarchy

effective and extendable approximate query
answering mechanism that can support a wider
range of approximate queries.

HIErArcHIcAL qUANtIFIED
DAtA AbstrActION

In this section we propose a hierarchical quanti-
fied data abstraction that combines abstraction
hierarchy with a semantic distance notion.

Hierarchical Data Abstraction
and Distance Metric

HQK is a knowledge representation framework
that facilitates multilevel representation of data
and meta-data for an underlying corporate da-
tabase using data abstraction. Figure 1 shows
an instance of the HQK that represents the
abstraction information on Engineering. Values
constituting the hierarchy may be parts of the
underlying database or artificial values added
to describe the semantic relationship among the
existing data values. HQK consists of two types
of abstraction hierarchies: value abstraction

hierarchy and domain abstraction hierarchy. In
the value abstraction hierarchy, there are abstrac-
tion relationships of specific node/abstract node.
One node in a level can be generalized into an
abstract node placed in an upper level. Thus, the
abstraction hierarchy is constructed on the basis
of abstraction/specification relationships among
abstract nodes and specific nodes in various
abstraction levels. This abstraction relationship
can be interpreted as an “IS-A” relationship. For
instance, COBOL is a Programming Language
while Programming Language is a (branch of)
Computer Science. As such, higher levels pro-
vide a more generalized data representation than
lower ones and the root node can be interpreted
as the most abstract but representative name
of the hierarchy. In Figure 1, the root node is
Engineering which can act as a representative
of the hierarchy.

The leaf nodes including COBOL, C++, etc.,
are given with the level value 1, and the level value
increases by one each time they are generalized
with an abstract node. A specific node may have
multiple abstract nodes that are located in dif-
ferent levels, so that COBOL has Programming
Language in level 2 and Computer Science in

Figure 1. Hierarchical data abstraction with domain abstraction

193

Approximate Query Answering with Knowledge Hierarchy

level 3 as its abstract node. The n level abstract
node of a specific node is the abstract node that
is located in n level higher than the specific node.
Note that, the level difference value n between two
arbitrary nodes is defined as the larger number
of abstracted levels from the two nodes to their
least common abstract node. The n level neighbor
nodes are the nodes that share a common abstract
node in level difference n. Figure 1 shows the
explanation of the level difference and neighbour
nodes. For example, COBOL and Database in
Figure 1 have a level difference of 2, and System
Analysis and System Design are an example of
level 1 neighbor nodes.

Now we present the concept of the distance
metric with which formal properties are derived.
To develop the distance metric, first, we assume
basic distance. The basic distances are specified
on the two types of links, vertical link and hori-
zontal link. The vertical link connects a specific
node and its 1 level abstract node, and the hori-
zontal link connects two different level 1 neighbor
nodes. The basic distance is defined modifying
the distance measure of Lee & Lim (2007). This
measure shows how closely two nodes are related
in the hierarchy. Let z represent the least common
abstract node of x and y. Then, the basic distance
between x and y, bd(x, y) is defined as

bd x y
N

N N N
(,)

*
*

= -
+ +

1
2 3

1 2 2 3 .

N1 is the number of nodes on the path from x
to z. N2 is the number of nodes on the path from
y to z. N3 is the number of nodes on the path
from z to root. For example, to calculate the ba-
sic distance between Engineering and Computer
Science in Frgure 1, we get N1=1, N2= 2, N3=1,
respectively. So,

bd(Engineering, Computer Science) =

1
2 1

1 2 2 1
-

×
+ + × = 0.6

Note that the distance represents that the
deeper the position of the two nodes, the smaller
the basic distance is. Figure 2 shows an example
of the HQK with the basic distance.

Herein, we define the distance between two
arbitrary nodes that satisfies the requirement of
the distance metric. It is possible to consider only
the basic distances on the path for distance cal-
culation; however, this approach cannot always
guarantee property 2, implying that sometimes
the calculated distance between the two nodes
having the level difference 3 might be closer than
those having the level difference 2. Therefore, the
distances between two arbitrary nodes in the HQK
are formulated using the level difference and the
basic distances on the shortest path.

Definition 1. The distance between two
arbitrary nodes x and y in the HQK, D(x, y), is
defined as

(,) level difference of andD x y x

0 1 1
0 1

1, ,...,
0,

((,))

1
r 1

Z r
r

r

i iZ Z N
iZ x Z y

MIN bd Z Z

y

where Z0, Z1, …, Zr+1 is the path of x and y so that
the distance can minimize the sum of the basic
paths with the level distance.

Property 1. For two different nodes x and y in
the HQK, the distance of definition 1, D(x, y), is
ranged according to the level difference n, as

n D x y n- < £1 (,)

where n is the level difference of x and y.
Property 2. For arbitrary nodes x, y and z in

the HQK, if the level difference of x and y is smaller
than the level difference of x and z, then,

D x y D x z(,) (,)<

The distance of Definition 1 satisfies the
requirement of the distance metric. The distance

194

Approximate Query Answering with Knowledge Hierarchy

between two arbitrary nodes can be determined,
and the distances are grouped with respect to the
level difference (Properties 1 and 2).

Data Model and Operations

In this section we present the simplified data
model and some operations to manage the HQK.
Figure 3 shows two relations (DOMAIN_AB-
STRACTION, VALUE_ABSTRACTION),
which comprise a knowledge database which
represents the HQK. Using these relations, we
consider the following operations. With the opera-
tions, the details of approximate query answering
processes and diverse query relaxation path will
be explained later.

• GetDomain(x, y) produces the domain D
of attribute x of relation y.

• GetAbstractNode(n, D, l) returns the l
level abstract node of node n in domain D
(for l=1, 2, 3,…). If n is the root, which has
no parent, null is returned. This function
refers to the VALUE_ABSTRACTION to
find the abstract node.

• GetSpecificNode(n, D, l) returns the l
level specific nodes of node n in domain

D. If n is the leaf, which has no child, null
is returned. This function refers to the
VALUE_ABSTRACTION to find the spe-
cific nodes.

qUErY rELAXAtION

When the query results may be null or too much,
and the user wants to relax the query with the
database and its additional information. It can be
done by relaxing the search conditions to include
the additional information called the HQK. The
HQK can be adopted in the process of query relax-
ation as the approximate equal and the conceptual
equal in a formal way. In the HQK, an abstract
node and its subordinate specific nodes have an
IS_A relationship called conceptual equal. The
conceptual equal implies two types of concepts
as follows. At first, an abstract node semantically
subsumes its subordinate specific nodes, and
secondly, an abstract node is a high level repre-
sentation for its subordinate specific nodes. On
the other hand, neighbor nodes are approximate
equals since they have the same abstract node
that is conceptual equal to each neighbor nodes.
The results of the approximate equal search may

Figure 2. Hierarchical quantified data abstraction on Engineering

195

Approximate Query Answering with Knowledge Hierarchy

not provide the exact answer queried by the user,
but still include information that may be helpful
for the user.

We use a similar-to operator symbolized as
‘=?’ that represnts an approximate condition
(Chu et al., 1996; Motro, 1990). The approximate
condition is specified simply by using ‘=?’ in the
where clause of the SQL statement. To explicitly
express level 2 or higher approximate searches, we
extend the similar-to operator with ‘=#?’ where #
is a numeric value larger than 1 and indicates the
level of approximate to search for. For example,
in the HQK ‘=3?’ makes the system search over
3 level approximates.

There can be one or more approximate condi-
tions in a query. So, the distance between target
conditions and the approximate answer is a
combination of the individual distances between
the corresponding conditions, and the individual
distances may be given more weight than others,
and the individual distances should be normal-
ized. We define the distance of the approximate
query as

D
w

r
D tv rv

query
i

i
i i

i

n

= ×
=
å (,)

1 (1)

where wi is the weight value for each condition,
and ri is the range value for each condition, and
tvi and rvi are the target value and relaxed value
of each condition, and D is a distance between
the target value and the relaxed value, and n is
the number of the approximate conditions in the
query, and tvi is classified two domains, such as
HQK and numerical domain. wi represents the
importance of the target domain. The range value is
a normalization factor used to scale distances, and
dividing a distance by the range yields a measure
of proximity that is independent of the particular
domain and metric. According to the domain of
the approximate condition, range value, r, and the
distance, D, is defined as:

r
- tv

tvi
i

i

=
Î

-
 height of the HiQdA for HiQdA domain;

1

max() mmin()tv tv
i i

 for Numerical domain.Î

ì
í
ïïï

î
ïïï

D tv rv
tv

i i
i(,) =
Î distance of Definition 1 for HiQdA domaain;

 for Numerica| |tv rv tv
i i i
- Î ll domain.

ì
í
ïïï

î
ïïï

query relaxation Algorithm

Figure 4 represents the query relaxation algorithm
for the HQK domain data. The input of the algo-
rithm is an approximate query, Q, which includes
one or more similar-to operators. The algorithm
translates each approximate condition to ordinary

Figure 3. Simplified data model to manage the HQK

196

Approximate Query Answering with Knowledge Hierarchy

relaxed condition that does not include the similar-
to operator. As a first step of the translation, we
decide whether the condition is a selection query
or a join query (line 6, 18). Next, we analyze the
condition more deeply to find the condition type,
t, and the search level, l (line 7, 19). The condi-
tion type indicates whether the condition is an
approximate query or a conceptual query, and the
search level indicates the number of the abstrac-
tion or the specification to relax the target value.
For the approximate selection query, the target
value is generalized and, then, specialized to gain
the relaxed query (line 9, 10). For the conceptual
selection query, the relaxed query is obtained by
specifiying the target value (line 14).

The sub functions used in the algorithm are
described in detail in the following.

Input: Condition C that consists of rela-

tion R, attribute A,

operator ?#= and target value v
t

Output:(i)condition type t, (ii) search

level l

(1) analyze_selection(C) {

(2) D
ta
 = GetDomain(R, A);

(3) ifv
t
 ∈ D

ta
 then {

(4) t = ‘approximate query’;

(5) if # is not null thenl = #;

(6) elsel = 1; // default search

level

(7) }

(8) else {

(9) t = ‘conceptual query’;

(10) D
tv
 = get domain of target value;

(11) l = level difference between

Figure 4. Query relaxation algorithm

197

Approximate Query Answering with Knowledge Hierarchy

D
ta
 and D

tv
;

(12) }

(13) } // analyze_selection()

Input: Condition C that consists of rela-

tion R1, attribute A1,

operator ?#=, relation R2 and attribute

A2

Output:(i) condition_type t, (ii) search

level l

(1) analyze_join(C) {

(2) D
a1
 = GetDomain(R1, A1);

(3) D
a2
 = GetDomain(R2, A2);

(4) l = level difference between D
a1

and D
a2
;

(5) ifl == 0 then

(6) t = ‘approximate query’;

(7) else

(8) t = ‘conceptual query’;

(9) } // analyze_join()

Input: (i) Condition C that consists of

relation R, attribute A, operator ?#= and

target value v
t

 (ii) search level l

Output: generalized condition C’

(1) generalize_condition(C, l) {

(2) v
abstract

 = GetAbstractNode(v
t
, l);

(3) rewrite C’ with v
abstract

;

(4) returnC’;

(5) } // generalize_condition()

Input:(i)Condition C that consists of re-

lation R, attribute A, operator ?#= and

 target value v
t

 (ii)search level l

Output: specialized condition C’

(1) specialize_condition(C, l) {

(2) v
specific

 = GetSpecificNode(v
t
, l);

(3) rewrite C’ with v
specific

;

(4) returnC’;

(5) } // specialize_condition()

query relaxation Example

In this section we explain an approximate selec-
tion and a conceptual join query as examples of
query relaxation. For the explanation, let’s define
two relations EMPLY_SKILL (id, skill, level) and
EXPRT_FOR_TASK (task, required_expertise).
The underlined attributes indicate the primary key.
The EMPLY_SKILL relation provides the skill
of an employee, while the EXPRT_FOR_TASK
relation prescribes the relationships between
individual tasks and the expertise requirements
for the task. At first, the approximate selection
provides not only the exact match but also its
approximate equal values. For example, consider
the query ‘find the five employees who have the
requisite skills in both Java and DBMS,’ which
is written as

Q: Skill1 == ‘Java’ ∧ Skill2 == ‘DBMS’.

If there is no employee who can satisfy the
query condition or there are an insufficient number
of qualified candidates, then other employees with
related skills need to be obtained by approximat-
ing the scope of the query. The query Q has tow
selection conditions, and each condition is decided
as approximate query with l level search (line 7
in Figure 5). Then the generalized query

Qg: Skill1 is-a ‘Programming Language’ ∧
Skill2 is-a ‘Database’

is made by finding 1-level abstract node of Java
and DBMS (line 9 in Figure 5). Finally, the re-
laxed query

Qr: Skill1 in (‘COBOL’, ‘C++’, ‘Java’) ∧

Skill2 in (‘DBMS’, ‘Data Mining’, ‘Data Ware-
house’)

is made by finding 1-level specific node of Pro-
gramming Language and Database (line 10 in

198

Approximate Query Answering with Knowledge Hierarchy

Figure 5). As a result of the relaxed query, the
system will return the employees who have the
required skills in Programming Language and
Database in addition to ones who have skills in
Java and DBMS.

As a second example, the conceptual join is
used when the two attributes in the join condition
have different domains and thus are in different
abstraction levels. In the explanatory two relations,
note that the domain of the required_expertise
attribute in the EXPRT_FOR_TASK relation is
the EXPERTISE and is more general than that of
the skill attribute in the EMPLY_SKILL relation.
In such capacity, a user may want to find people
whose skills belong to the expertise area required
for performing a certain task, e.g., Software Design
task. The query is written as

Q: EXPRT_FOR_TASK.task == ‘Software De-
sign’ ∧

EXPRT_FOR_TASK.requried_expertise =?
EMPLY_SKILL.skill.

In second condition, both join attribute domains
are different from each other but since one domain,
EXPERTISE, is the abstract domain of the other,
SKILL, the query is valid as a conceptual join query
(line 19 in Figure 5). Subsequently, abstraction
must be performed on the lower domain attribute,
EMPLY_SKILL.skill. Since the ABSTRACTION
relation provides pairs of specific value and ab-
stract value, joining the two relations on the basis
of common abstract nodes can be performed using
the ABSTRACTION relation as an intermediary.
A relaxed ordinary query can be written as

Qr: EXPRT_FOR_TASK.task == ‘Software
Design’ ∧

EXPRT_FOR_TASK.requried_expertise ==
VALUE_ABSTRACTION.abstract_node ∧

EMPLY_SKILL.skill == VALUE_ABSTRAC
TION.specific_node.

EXPErIMENts

In this section, we explain the number of pairs
to be managed by semantic distance and HQK
method, and the number of records to be retrieved
for query relaxation. We also explain a cost model
on semantic distance, abstraction, and HQK ap-
proach, and show experiment results with the
cost model.

Let c, h, and l be the average number of chil-
dren of each node (for c=2, 3, 4…), the height
of the HQK, and the approximate search level
respectively. Compared with the existing seman-
tic distance approaches, the HQK considerably
reduces the number of pairs to be managed by
the classification of the similar data values using
data abstraction. Then, the number of pairs in the
HQK and the semantic distance approach can be
calculated as follows.

For the HQK,•
the number of pairs = the number of ◦
l-level neighbour groups ×
(the number of pairs among 1-level ◦
neighbor nodes +
the number of abstraction relation) ◦

= () ()1 2 2
2

+ + +×× × + ´ +-c c c C ch
c

= [() / ()] [() /]c c c c ch- - - ´ - +1 1 1 1 2

= ()() / ()c c c ch - + -1 2 1

For the semantic distance approach,•

the number of nodes in a hierarchy =

1 1 12 1+ + +×× × + = - --c c c c ch h() / () , so

199

Approximate Query Answering with Knowledge Hierarchy

the number of pairs =

()/()
()() / ()

c c

h h
h C c c c c
- -

= - - -
1 1 2

21 2 1

Thus, the ratio of the semantic distance ap-
proach to the HQK is always greater than or
equal to 1.

2

2

(1)() / 2(1) (1)
1,

()(1) / 2(1) (1)

h h h

h

c c c c c

c c c c c

(for , 1)c h

The ratio between two approaches increases
enormously, as the height of hierarchy is gained
or the average number of children of a node in-
creases as shown in Table 1. For example, if the
height of the hierarchy is 3 and each node has 4
children on average, then the semantic distance
approach should maintain 4.2 times as many pairs
in the HQK approach.

Table 2 shows the number of the records
retrieved according to the query type, when the
query is translated by the algorithm in Figure 5.
For example, in the approximate selection query,
we must retrieve the records of 1 in line (7), l in
line (9), and c c cl+ +2... in line (10). In the
semantic distance approach, however, in order to
gain the approximate values, we must compare a

target value with all the other values within the
domain, so that we must retrieve the records of
ch- -1 1 . For example, in c=4, h=4, and l=1, by
transforming the approximate selection query, we
must retrieve 9 records in the case of the HQK,
and 63 records in the case of the semantic distance
approach. Accordingly, the HQK is superior to
the semantic distance approach in performing the
approximate query relaxation.

Table 3 shows the simplified cost model for
experiment. The cost model consists of three
costs, such as the creation cost, the relaxation
cost, and the execution cost. The creation cost
(CC) is summarized to create an abstraction
hierarchy or semantic distance matrix table that
consists of numerical data and categorical data.
For categorical data, we use the number of pairs
to be managed as the creation cost. For numerical
data, the semantic distance method needs the full
scan cost, where the abstraction hierarchy method
needs sorting costs to make the hierarchy. As for
the relaxation cost (RC), we use the numbers of
records to be retrieved for approximate selection
queries. See Table 2.

In relaxing numerical data, the cost for the se-
mantic distance method is 0 due to the correspond-
ing range values, where the Abstraction Hierarchy
method needs a cost to relax the hierarchy. The
query execution cost (EC) can be measured by the

Figure 5. Cost for a query relaxation and execution

200

Approximate Query Answering with Knowledge Hierarchy

number of records to be retrieved. It is assumed
that the abstraction hierarchy method and the HQK
method are determined by the search levels; how-
ever the cost of the abstraction hierarchy method is
twice that needed for retrieval by the HQK method
due to the wide range of the records.

Figure 5 and 6 represent the total cost
changes for the approximate query that includes
the query relaxation cost and the execution
cost. Given parameters as height h=4, search
level l=2, one categorical data, and three nu-
merical data, the x-axis represents the aver-

Table 1. The ratio of pairs to be assessed of semantic distance approach to the HQK

Height of hierarchy (h) 2 3 3 3 4 4 4

Average number of children (c) 3 3 4 5 3 4 5

Ratio () / ()c ch - -1 12 1 3.25 4.2 5.17 10 17 26

Table 2. The number of records to be retrieved for query relaxation

Approach Selection/Join Approximate Query Conceptual Query

HQK
Selection Query 1+ +c cl 2 + cl

Join Query 2 2

Semantic Distance
Selection Query ch- -1 1 N/A

Join Query N/A N/A

Table 3. Simplified cost model for experiment

Data Type Operation Semantic Distance Abstraction Hierarchy HQK

Categorical
data

Creation Cost CC
c c c

ccat
SD

h

=
- +

-
()()

()

1

2 1 2
CC

c c c

ccat
AH

h h

=
- -

-
()()

()

1

2 1 2
CC

c c c

ccat
HiQdA

h h

=
- -

-
()()

()

1

2 1 2

Relaxation
Cost RC c

cat
SD h= --1 1

RC

l c c c
cat
AH =

+ + + +1 2 1...

RC
cat
HiQdA =

1 2 1+ + + +l c c c...

Execution
Cost EC c

cat
SD l= EC c

cat
AH l= EC c

cat
HiQdA l=

Numerical
data

Creation Cost CC c
num
SD h= -1 CC c c

num
AH h h= - -1 1log() CC c

num
HiQdA h= -1

Relaxation
Cost RC

num
SD = 0

0

RC
num
AH =

1 2 1+ + + +l c c c...
RC

num
HiQdA = 0

Execution
Cost EC c

num
SD l= EC c

num
AH l= 2 EC c

num
HiQdA l=

201

Approximate Query Answering with Knowledge Hierarchy

age number of child and y-axis representslog
(RCcat + ECcat + 3(RCnum + ECnum)) for Figure 5,
log(2(CCcat + 10RCcat + 10ECcat) + 3(2(CCnum
+ 10RCnum + 10ECnum)) for Figure 6, respec-
tively.

Note that the semantic distance method costs
“0” on the relaxation stage for the numerical do-
main, but the relaxation cost for the categorical
domain increases exponentially. Thus, it is very
much sensitive for the semantic distance method
on the size of the categorical data. When the size
of the categorical data is small, the corresponding
total cost is negligible, however, the relaxation
cost (RC

cat
SD) increases exponentially as the size

of the categorical data does. Therefore, on con-
dition that the size of the categorical data is big,
in this experiment the average number of child
node is more than 7, the total cost of the semantic
distance method is the biggest among all the three
methods regardless of other conditions.

The cost of the abstraction hierarchy method is
increased and depends linearly on the search level
for the categorical domain and numerical domain.
When the data size is small, the execution cost
(EC

num
AH) is twice and the relaxation cost (RC

num
AH)

is higher than semantic distance method (RC
num
SD),

so it is higher than the semantic distance method.
The HQK method follows the advantage of the

abstraction hierarchy (RC RC
cat
HiQdA

cat
AH=) on the

categorical data, and also follows the advantage of
the semantic distance method (RC RC

num
HiQdA

num
SH=)

on the numerical domain. Therefore the cost of
the HQK method is not increased exponentially
and less than those of the abstraction hierarchy
method.

cONcLUsION

We have addressed the query relaxation algorithm
with hierarchical quantified data abstraction
(HQK) to relax the query condition of the categori-
cal data domain. The HQK has an abstraction-
based hierarchy that facilitates finding neighbor
values for a target value quite easily. All that
is needed is to identify an abstract node of the
target value and retrieve all the specific nodes
of the identified abstract nodes. The query relax-
ation algorithm has formulated this abstraction /
specification features of the abstraction hierarchy
according to the query type and the search level.
We have defined the distance metric that calculates
distances between two arbitrary nodes in the HQK,
which enables to handle the quantitative similarity
of categorical data. Also, we have introduced the
cost model for creation of abstraction hierarchy,

Figure 6. Cost for the creation, query relaxation, and execution

202

Approximate Query Answering with Knowledge Hierarchy

query relaxation and execution, and showed em-
pirically that our approach is more efficient than
other approaches.

For future research, a generic HQK derivation
mechanism should be conceived in formal fash-
ion. In addition, in order to support approximate
query answering efficiently, nearest neighbor
searches can be provided. However, since most
researches on nearest neighbor searches are de-
vised to consider numerical domains, there are
difficulties in treating the categorical domain.
Using features of the HQK, we plan to build a new
index structure that deals with categorical data as
well as numerical data. The range information on
each attribute can be saved in the internal node of
R-tree based data structure. The abstract node of
the HQK can be used as the range information of
specific nodes and this will lead us to develop a
multi-dimensional index structure which can treat
categorical data. Applying this structure, we will
research a method to support the nearest neighbor
queries efficiently. Also, in order to demonstrate
the real advantages of this approach, it would be
necessary to proceed into research to identify the
need for user studies with human users.

rEFErENcEs

Babcock, B., Chaudhuri, S., & Das, G. (2003).
Dynamic Sample Selection for Approximate
Query Processing. In Proceedings of the 2003
ACM SIGMOD International Conference on
Management of Data, San Diego, California,
USA (pp. 539-550).

Beygelzimer, A., Kakade, S., & Langford, J.
(2005). Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd international conference
on Machine learning, Pittsburgh, Pennsylvania,
USA (pp. 97-104).

Calado, P. P., & Ribeiro-Neto, B. (2003). An In-
formation Retrieval Approach for Approximate
Queries. IEEE Transactions on Knowledge and
Data Engineering, 15(1), 236–239. doi:10.1109/
TKDE.2003.1161593

Chakrabarti, M., Ortega, M., Mehrotra, S., &
Porkaew, K. (2003). Evaluating refined queries
in top-k retrieval systems. IEEE Transactions
on Knowledge and Data Engineering, 15(5),
256–270.

Chan, H., Wei, K., & Siau, K. (1993). User-
Database Interface: The Effect of Abstraction
Levels on Query Performance. Management
Information Systems Quarterly, 17(4), 441–464.
doi:10.2307/249587

Chan, T. M. (1998). Approximate Nearest Neigh-
bor Queries Revisited. Discrete & Computa-
tional Geometry, 20(3), 359–374. doi:10.1007/
PL00009390

Chen, Y., Zhou, L., & Zhang, D. (2006). Ontol-
ogy-Supported Web Service Composition: An
Approach to Service-Oriented Knowledge Man-
agement in Corporate Financial Services. Journal
of Database Management, 17(1), 67–84.

Chu, W., Yang, H., Chiang, K., Minock, M., Chow,
G., & Larson, C. (1996). CoBase: A scalable
and extensible cooperative information system.
Journal of Intelligent Information Systems, 6(2/3),
223–259. doi:10.1007/BF00122129

Klein, M., & Konig-Ries, B. (2004). Combining
Query and Preference - an Approach to Fully
Automatize Dynamic Service Binding. In Pro-
ceedings of IEEE International Conference on
Web Services (pp. 788-791).

Lee, W., Kang, S., Lim, S., Shin, M., & Kim,
Y. (2007). Adaptive Hierarchical Surrogate for
Searching Web with Mobile Devices. IEEE
Transactions on Consumer Electronics, 53(2),
796–803. doi:10.1109/TCE.2007.381762

203

Approximate Query Answering with Knowledge Hierarchy

Lee, W., & Lim, T. (2007). Architectural Measure-
ments on the World Wide Web as a Graph. Journal
of Information Technology and Architecture, 4(2),
61–69.

Liu, S., & Chu, W. (2007). CoXML: A Cooperative
XML Query Answering System. In Proceedings
of the 8th International Conference on Web-Age
Information Management, Huang Shan, China,
(pp. 614-621).

Liu, Y., Liu, T., Qin, T., Ma, Z., & Li, H. (2007).
Supervised rank aggregation. In Proceedings of
the 16th international conference on World Wide
Web, Banff, Alberta, Canada (pp. 481-490).

Motro, A. (1990). FLEX: A Tolerant and Coopera-
tive User Interface to Databases. IEEE Transac-
tions on Knowledge and Data Engineering, 2(2),
231–246. doi:10.1109/69.54722

Mouratidis, K., Bakiras, S., & Papadias, D. (2006).
Continuous monitoring of top-k queries over slid-
ing windows. In Proceedings of the 2006 ACM
SIGMOD international conference on Manage-
ment of data table of contents, Chicago, IL, USA
(pp. 635-646).

Muslea, I. (2004). Machine Learning for Online
Query Relaxation. In Proceedings of the tenth
ACM SIGKDD international conference on
Knowledge discovery and data mining, Seattle,
Washington, USA (pp. 246-255).

Shin, M., Huh, S., Park, D., & Lee, W. (2008).
Relaxing Queries with Hierarchical Quantified
Data Abstraction. Journal of Database Manage-
ment, 19(4), 76–90.

Siau, K., Chan, H., & Wei, K. (2004). Effects
of Query Complexity and Learning on Novice
User Query Performance with Conceptual and
Logical Database Interfaces. IEEE Transactions
on Systems, Man, and Cybernetics. Part A, Sys-
tems and Humans, 34(2), 276–281. doi:10.1109/
TSMCA.2003.820581

204

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

Abstract DTD Graph from
an XML Document:

A Reverse Engineering Approach

Joseph Fong
City University of Hong Kong, China

Herbert Shiu
City University of Hong Kong, China

INtrODUctION

As Extensible Markup Language (XML) (Bray,
2004) has become the standard document format,
the chance that users have to deal with XML docu-
ments with different structures is increasing. If the
schema of the XML documents in Document Type
Definition (DTD) (Bosak, 1998) is given or derived
from the XML documents right away (Kay, 1999;

Moh, 2000), it is easier to study the contents of the
XML documents. However, the formats of these
schemas are hard to read, not to mention rather
poor user-friendliness.

XML has been the common format for storing
and transferring data between software applications
and even business parties, as most software applica-
tions can generate or handle XML documents. For
example, a common scenario is that XML docu-
ments are generated and based on the data stored
in a relational database ― and there have been

AbstrAct

Extensible Markup Language (XML) has become a standard for persistent storage and data interchange
via the Internet due to its openness, self-descriptiveness and flexibility. This chapter proposes a systematic
approach to reverse engineer arbitrary XML documents to their conceptual schema – Extended DTD
Graphs ― which is a DTD Graph with data semantics. The proposed approach not only determines
the structure of the XML document, but also derives candidate data semantics from the XML element
instances by treating each XML element instance as a record in a table of a relational database. One
application of the determined data semantics is to verify the linkages among elements. Implicit and
explicit referential linkages are among XML elements modeled by the parent-children structure and
ID/IDREF(S) respectively. As a result, an arbitrary XML document can be reverse engineered into its
conceptual schema in an Extended DTD Graph format.

DOI: 10.4018/978-1-60566-904-5.ch010

205

Abstract DTD Graph from an XML Document

various approaches for doing so(Thiran, 2004;
Fernandez, 2001). The sizes of XML documents
that are generated based on the data stored in
databases can be very large. Most probably, these
documents are stored in a persistent storage for
backup purposes, as XML is the ideal format that
can be processed by any software applications in
the future.

In order to handle the above scenario, it is pos-
sible to treat XML element instances in an XML
document as individual entities, and the relation-
ships from the different XML element types can
be determined by reverse engineering them for
their conceptual models, such as Extended DTD
Graphs with data semantics. As such, users can
have a better understanding of the contents of the
XML document and further operations with the
XML document become possible, such as stor-
ing and querying (Florescu 1999; Deutsch, 1999;
Kanne, 2000).

This chapter proposes several algorithms that
analyze XML documents for their conceptual
schema. Two main categories of XML documents
exist ― data-centric and narrative. As the contents
of narrative XML documents, such as DocBook
(Bob Stayton, 2008) documents, are mainly un-
structured and their vocabulary is basically static,
the necessity of handling them as structured con-
tents and reverse engineering them into conceptual
models is far less than that of handling data-centric
ones. Therefore, this chapter will concentrate on
data centric XML documents.

referential Integrity in
XML Documents

XML natively supports one referential integrity
mechanism, which are ID/IDREF(S) types of
attribute linkages. In every XML document, the
value of an ID type attribute appears at most once
and the value of the IDREF(S) attribute must refer
to one ID type attribute value(s). An IDREF(S)
type attribute can refer to any XML element in
the same document, and each XML element can

define at most one ID type attribute. Due to the
nature of ID/IDREF(S) type attributes in XML
documents, relationships among different XML
element types can be realized and it is possible to
use them to implement data semantics.

This chapter will discuss the various data
semantics and the possible ways to implement
them. The algorithms presented in the chapter are
based on the observations of the common XML
document structures.

1. Using the nested structure of an XML
document (the relationship between a parent
element and its child element(s)), in which
the child elements implicitly refer to their
parent element.

2. For an IDREF or IDREFS type attribute, the
defining element is referred to the element(s)
with an ID type attribute by the referred
value. Such linkages are similar to the for-
eign keys in a relational database. The two
associated element types are considered to
be linked by an explicit linkage.

3. As an IDREFS type attribute can refer to
more than one element, there is a one-to-
many cardinality from the referring element
type and the referred element type(s).

The schema of an XML document can restrict
the order of the XML elements ― and the order of
the elements may be significant ― which depends
on the intentions of the original XML document
designer. For example, two XML documents with
their corresponding DTD’s are shown in Table 1
and Figure 1.

The two XML documents shown in Table 1 are
storing the same data, which are the data of two
couples. For the former one, its couple elements
use the two IDREF type attributes to denote the
corresponding husband and wife elements. How-
ever, the use of ID/IDREF cannot ensure a par-
ticular husband or wife element must be referred
by one couple element only. For the latter XML
document, the DTD restricts that the husband and

206

Abstract DTD Graph from an XML Document

wife elements must exist as a pair. Furthermore,
the use of ID type attributes hid and wid ensures
any husband and wife element instance must exist
in the document at most once.

Extended DtD Graph

As XML element instances are treated as individual
entities, the relationships from the element types
are therefore related not only to the structure of
the XML document but also to the linkages from
the different types. As such, DTD cannot clearly
indicate the relationships.

An Extended DTD Graph for XML is proposed
to add data semantics into a DTD Graph so that
the data semantics can be clearly identified, which
is an excellent way of presenting the structure of
an XML document. As such, in order to visual-
ize the data semantics determined based on the
XML document with its optional schema, it will
provide the notations to be used for presenting
the various data semantics. This chapter uses the
authors’ notations of the Extended DTD graph for
presenting the structure and the data semantics
from the elements, as follows:

Table 1. Two equivalent XML documents that can represent the same data

DTD XML Document

<!ELEMENT couples (husband*,wife*,couple*)>
<!ELEMENT husband EMPTY>
<!ELEMENT wife EMPTY>
<!ATTLIST husband
hid ID #REQUIRED
name CDATA #REQUIRED>
<!ATTLIST wife
wid ID #REQUIRED
name CDATA #REQUIRED>
<!ATTLIST couple
hid IDREF #REQUIRED
wid IDREF #REQUIRED>

<?xml version=”1.0”?>
<couples>
<husband hid=”A123456” name=”Peter”/>
<husband hid=”B234567” name=”John”/>
<wife wid=”X123456” name=”Amy”/>
<wife wid=”Y234567” name=”Bonnie”/>
<couple hid=”A123456” wid=”X123456”/>
<couple hid=”B234567” wid=”Y234567”/>
</couples>

<!ELEMENT couples
(husband,wife)*>
<!ELEMENT husband EMPTY>
<!ELEMENT wife EMPTY>
<!ATTLIST husband
hid ID #REQUIRED
name CDATA #REQUIRED>
<!ATTLIST wife
wid ID #REQUIRED
name CDATA #REQUIRED>

<?xml version=”1.0”?>
<couples>
<husband hid=”A123456” name=”Peter”/>
<wife wid=”X123456” name=”Amy”/>
<husband hid=”B234567” name=”John”/>
<wife wid=”Y234567” name=”Bonnie”/>
</couples>

Figure 1. The DTD tree of the two equivalent XML document for Table 1

207

Abstract DTD Graph from an XML Document

1. The vertexes as squares are drawn on the
graph for elements, and vertexes as circles
are drawn for occurrence operators (?, + and
*) and selection operator (|).

2. Attributes and simple elements are omitted
from the graph, as they specify a particular
attribute of their defining and parent elements
respectively.

3. Data semantics, other than one-to-one and
one-to-many cardinality relations, are pre-
sented in the graph as arrows pointing from
the referring element to the referred element
with suitable descriptions as legends.

Based on the above criteria, it is possible to
consider the ELEMENT declarations only for
constructing the Extended DTD graph. Three
types of ELEMENT declarations can be identi-
fied as follows:

1. An ELEMENT declaration defines sub-
elements only.

2. An ELEMENT declaration involves sub-
elements and #PCDATA as its contents.

3. An ELEMENT declaration that defines
#PCDATA as its contents only.

The above three types correspond to the fol-
lowing three examples:

<!ELEMENT PARENT (CHILD1+, CHILD2*)>

<!ELEMENT MIXED_ELEMENT (#PCDATA | CHILD1

| CHILD2)*>

<!ELEMENT SIMPLE_ELEMENT (#PCDATA)>

For each ELEMENT declaration of the first
type, the content model expression can be token-
ized as individual elements and occurrence indica-
tors and sequence separators (,), and represented
as a tree structure with the element name as the
root node. For example, the first example above
can be visualized as the following tree diagram.
In Figure 2, the sequence “,” is implied in the
diagram.

DTD’s mostly contain more than one ELE-
MENT declaration but each element type can
only appear once. Therefore, to construct the
complete DTD graph for a DTD, the tree struc-
tures of all ELEMENT declarations in a DTD are
constructed first and they are eventually merged
by replacing each sub-element node in a tree by
the tree structure of that element. Such merging
is repeated until there is only one tree structure
or all sub-elements have been replaced with their
corresponding tree structures.

Cardinality / Participation

Element types are visualized as rectangles in the
graph and a cardinality relationship is presented
as an arrow pointing from the referring element
type to the referred element type, with double-line
and single line for total participation and partial
participation respectively. The cardinality types,

Figure 2. A sample Extended DTD Graph

couples

husband wife couple

* * *

couples

husband wife

**

208

Abstract DTD Graph from an XML Document

including one-to-one (1/1), one-to-many (1/m),
many-to-one (m/1) and many-to-many (m/m),
are shown as legends of the arrows. If the car-
dinality relationship is implemented as explicit
ID/IDREF(S) linkages, the name of the ID type
attribute of the referring element is appended to
the legend, such as 1/m (parent_id). To identify
explicit linkages from implicit linkages, cardi-
nality relationships due to ID/IDREF(S) type
attributes are shown as arrows with a curved line.
Table 2 presents the eight possible combinations
of arrows and legends.

N-ary Relationship

An n-ary relationship is implemented as a particu-
lar element type involved in more than two binary
relationships. To represent such a relationship, a
diamond-shaped vertex is used for such element
types. Figure 3 presents a sample diagram with
an n-ary relationship.

Aggregation

An aggregation denotes that the involved ele-
ment types must exist as a unity. In Figure 3, an

aggregation exists as the defining characteristic
of mandatory participation between parent and
child elements. As such, a rectangle is to be drawn
enclosing all involved element types.

rELAtED WOrK

In order to have a complete picture of the reasons
behind the algorithms for determining various
data semantics, this chapter explains the existing
approaches of constructing XML documents, espe-
cially those exported from relational databases.

the Determination of XML schema

There is some existing work concerning the
extraction of schema, such as DTD, from XML
documents (Chidlovskii, 2001; Min, 2003). The
outputs of these algorithms are the schemas that
can validate the XML documents. However, the
derived schemas provide no semantic interpreta-
tion other than the containment structures of the
XML documents. The algorithms proposed in
this chapter concern the determination of data
semantics from the XML element instances rather

Table 2 The arrows illustrating various cardinalities with participation types

Participation /
Cardinality

Partial Total

One-to-one 1/1------------------------→ 1/1 ==============→

One-to-many 1/m-----------------------→ 1/m==============→

Many-to-one m/1-----------------------→ m/1==============→

Many-to-many m/m-----------------------------------→ m/m =============→

Figure 3. A sample diagram with an n-ary relationship

209

Abstract DTD Graph from an XML Document

than simply XML schema among XML elements.
Compared with the approach proposed by Gold-
man and Widom(Goldman, 1997) that directly
manipulates semi-structured databases, such as
an XML document, the algorithm proposed here
provides the user with a clear picture of the data
semantics from the XML element instances before
further manipulating them.

the Determination of Data
semantics from XML Documents

One approach exists that can reverse engineer
data semantics from XML documents(Fong,
2004), but the algorithm maps some predefined
templates of document structures to data seman-
tics, and the algorithm can only be implemented
with DOM(W3C, 2003), which needs to read the
entire XML document to the memory ― and that
is inappropriate for huge XML documents. The
methodology presented in this chapter, however,
determines basic candidate data semantics from
arbitrary XML documents with SAX(Saxproject,
2004), which is applicable to XML documents of
any size. Some of the determined data semantics
may not be the intentions of the original writer
and needs user supervision for verification.

the Implementation of Inheritance
among XML Elements

Schema for Object-oriented XML (SOX)(W3C,
2005) introduced the idea of element and attribute
inheritance, which enables an element to extend
another element so that the derived element can
have all attributes defined by the base element
with its own new attributes.

Due to the limitations and low extensibility of
DTD (Sahuguet, 2000), XML Schema Definition
(XSD) (Sperberg, 2000) is becoming the popular
replacement schema of DTD. Unlike DTD, XSD
is an XML document itself and it can define more
restrictive constraints and clear definitions of the
XML documents to be validated. In other words,

the set of capabilities for defining the structures
and data types of XSD are the superset of that of
DTD. As such, there has been research and soft-
ware for converting DTD to XSD(Mello, 2001;
W3C, 2000).

There are other alternative schemas, such as
RELAX NG (Relaxng, 2003) and Schematron
(Schematron, 2008) and Lee and Chu(Lee, 2000)
evaluated six common XML schemas, including
DTD and XSD.

By constructing a graph by placing vertexes
for elements ― and the elements that are involved
in a parent-child relation, which is defined by
ELEMENT declaration in DTD, are connected
with edges ― it is possible to derive a graphi-
cal representation of the DTD that is commonly
known as a DTD graph. Up to now, there is no
formal standard for DTD graphs and various re-
searchers are using their own conventions as in
(Klettke, 2002; Shanmugasundaram, 2001; Lu,
2003; Böttcher, 2003), and the graph introduced
in (Funderburk, 2002) is the first one that was
denoted as a DTD graph.

There is a graphical representation of
XSD(Fong, 2005) which derives an XML concep-
tual schema of an XML Tree Model from an XML
schema of XSD. Its approach is different from
this chapter’s approach by deriving an Extended
DTD Graph from an XML document.

As the conventions of most graphs for pre-
senting the structure of an XML document are
applicable to different schema languages, the
graph is also known as Semantic graph(An, 2005).
Some researchers proposed other graphical rep-
resentations of XML schemas, such as the use of
UML(Booch, 1999).

The Application of Extended
DTD Graph

Data Graph is a DTD in graph. (Zhao, 2007)
described that DTD can be a good common data
model when the majority of data sources are
XML sources for the interoperability between

210

Abstract DTD Graph from an XML Document

relational databases and XML databases. Reserve
engineering XML document into DTD graph is
similar to data mining XML document into a
data tree(Zhang, 2006). The former is a database
schema while the later is an internal data in tree
structure. (Trujillo, 2004) demonstrated that a
DTD can be used to define the correct structure
and content of an XML document representing
main conceptual Multidemension model for data
warehouses.

Compared with the approach proposed by
Goldman and Widom(Goldman, 1997) that di-
rectly manipulates semi-structured databases such
as an XML document, the algorithm proposed in
this chapter enables the user to have a clear pic-
ture of the data semantics from the XML element
instances before further manipulating them. Table
3 provides a comparison between the proposed
algorithms and other existing approaches.

rEVErsE ENGINEErING
MEtHODOLOGY

There are basically two different definitions in a
DTD, which are ELEMENT and ATTLIST. Each
ATTLIST definition defines the attributes of a
particular element, whereas ELEMENT defines
its possible containments, and each ELEMENT
definition can be represented in a tree structure
with the element name as the root element with
its child sub-elements as leaves, and there must

be another ELEMENT definition for each of its
child elements.

It is not mandatory to define the ELEMENT
declaration prior to all its child elements, and it
is actually uncertain which element is the root
element of the corresponding XML documents.
The root element of the XML document is defined
by the DOCTYPE declaration before the root
element start tag.

Implementations of Various
Data semantics in XML

The following subsections provide all possible
implementations of various data semantics, some
of which are consistent with those proposed by
other researchers (Lee, 2003; Lee, 2000).

Cardinalities

One-to-many cardinalities can be realized by
both explicit and implicit referential linkages. By
implicit referential linkages, a parent element can
have child elements of the same type, such as,

<PURCHASE_ORDER>

 <PURCHASE_ORDER_LINE .../>

 <PURCHASE_ORDER_LINE .../>

</PURCHASE_ORDER>

The parent element PURCHASE_ORDER
and the child elements PURCHASE_OR-

Table 3. A comparison between the proposed and other existing approaches

Proposed approach Other approaches

Input XML document with optional schema XML document

Output Conceptual schema with data semantics Schema without data semantics

Completeness All common data semantics can be determined Schemas that can validate the XML document
can be derived

User friendliness Algorithms can be implemented with a user friendly GUI, such
as the prototype.

Commercial products exist that provide a user
friendly GUI.

Performance Good Not available as no mathematical proofs were
provided.

211

Abstract DTD Graph from an XML Document

DER_LINE are implicitly in a one-to-many
relationship. If the occurrences of child element
PURCHASE_ORDER_LINE are at most one for
all PURCHASE_ORDER elements, they are in a
one-to-one relationship instead.

If the schema of the XML document is given,
it can specify the ID/IDREF(S) type attributes. If
an XML element defines an IDREF attribute and
all such elements refer to the same element type,
there is a one-to-many relationship between the
referred and referring XML elements. For example,
sample DTD and XML documents are shown in
Listing 1 and Figure 4.

Listing 1. many-to-one cardinality imple-
mented by an IDREF type attribute

<!ELEMENT PURCHASE_ORDER ...>

<!ELEMENT PURCHASE_ORDER_LINE ...>

<!ATTLIST PURCHASE_ORDER

 PO_ID ID #REQUIRED

 ...

>

<!ATTLIST PURCHASE_ORDER_LINE

 PO_ID IDREF #REQUIRED

 ...

>

<PURCHASE_ORDER PO_ID=”PO001” ... />

...

<PURCHASE_ORDER_LINE

 PO_ID=”PO001”

 ... />

<PURCHASE_ORDER_LINE

 PO_ID=”PO001”

 ... />

For explicit referential linkages, to determine if
the cardinality is one-to-one or one-to-many, it
is necessary to scan the entire XML document.
An XML element type may be involved in more
than one one-to-many relationship. In other
words, all elements of such XML element types
define more than one linkage. For example, if
an XML element type defines an IDREF(S) type
attribute, all elements of such XML element
type actually define two linkages, one implicit
linkage by the nested structure and one explicit
linkage by the IDREF(S) type attribute. If the
two linkages are both one-to-many relation-
ships, the two referred element types by such a
referring element type can be considered to be
in a many-to-many relationship. For example,
the XML document in Listing 2 and Figure 5
illustrates a many-to-many relationship.

Listing 2. A many-to-many cardinality imple-
mented by an element type with two IDREF type
attributes

<!ELEMENT KEYWORD ...>

<!ELEMENT TOPIC ...>

<!ELEMENT MESSAGE ...>

<!ATTLIST KEYWORD

KEYWORD_ID ID #REQUIRED

 ...

>

<!ATTLIST TOPIC

TOPIC_ID ID #REQUIRED

 ...

>

<!ATTLIST MESSAGE

MSG_ID ID #REQUIRED

TOPIC_ID IDREF #REQUIRED

KEYWORD_ID IDREF #REQUIRED

 ...

>

<KEYWORD KEYWORD_ID=”KW001” NAME=”XML”/>

<KEYWORD KEYWORD_ID=”KW002”

NAME=”DATABASE”/>

...

<TOPIC TOPIC_ID=”TP001” NAME=”Reverse En-

Figure 4. The DTD graph of the XML document
shown in Listing 1

212

Abstract DTD Graph from an XML Document

gineer an XML document”/>

<TOPIC TOPIC_ID=”TP002” NAME=”Exporting a

database as an XML document”/>

...

<MESSAGE MSG_ID=”MG001”

TOPIC_ID=”TP001”

KEYWORD_ID=”KW001”

.../>

<MESSAGE MSG_ID=”MG002”

TOPIC_ID=”TP002”

KEYWORD_ID=”KW002”

.../>

For an XML element type that defines two link-
ages and hence two one-to-many relationships, the
two referred XML element types can be considered
to be in a many-to-many relationship.

The linkages from the XML elements in an
XML document are identified by the referring
element name, linkage name and the referred ele-
ment name. The algorithm shown in Algorithm 1
is used to determine the following table (Table 4)
of the linkages.

Figure 6 illustrates the meanings of the four
attributes.

There are eight XML elements in the document
and there is only one implicit linkage from them.
The values of the above four linkage attributes for
such implicit linkage are shown in Table 5.

According to the combination of the values
of the four attributes, it is possible to determine
the cardinality data semantics for the involved
elements. The rules are show in Table 6.

The algorithm is composed of two passes of
parsing of the same XML document. The first pass
assigns a synthetic element identity to each XML
element in the document and determines all ID type
attribute values and their corresponding element
types. For the second pass, the XML document
is traversed again and the linkages of each XML
element are investigated and their attributes are
stored. Finally, the stored linkage attributes are
consolidated to give the four linkage attributes
mentioned above and in Table 4.

The algorithm shown below can determine
whether the XML document is valid, in particular
whether a non-existing ID value is referred by an
IDREF(S) type attribute. If the XML document
is valid, three tables can be obtained ― Refer-
ringInfo, ReferredInfo and ElementNameCount.
The key for the former two tables is the composite
key (RGE, RDE, L), that is, the referring element
name, the referred element name and the linkage
name, whereas the key for the ElementNameCount
is simply the element name. With three such tables,

Figure 5. The DTD Graph for the XML document
shown in Listing 2

Table 4. The attributes and their sources for determining data semantics

Attribute Description Value

MaxReferring The maximum number of referred elements referred by a single
referring element

Get from Referring Info with key (RGE,
RDE, L)

MaxReferred The maximum number of the referring elements that is referring to
the same referred element with the same linkage type.

Get from Referred Info with key (RGE,
RDE, L)

SumReferring The number of referring elements that possess the linkage. Get from ReferringInfo with key (RGE,
RDE, L)

NumberElements The number of referring elements in the document. Get from ElementNameCount with key
RGE

213

Abstract DTD Graph from an XML Document

Figure 6. MaxReferring, MaxReferred, SumReferring & NumberElements example

Table 5. Descriptions of variables in reverse engineering algorithms

Attribute Name Value Explanations

MaxReferring 1 All linkages are implicit and each child element has one implicit parent element only.

MaxReferred 3 The root message element with attribute id value ID1 is referred by two sub elements (with attribute
id values ID2 and ID6). The message element with attribute id value ID2 is referred by three sub
elements (with attribute id values ID3, ID4 and ID5). The message element with attribute id value
ID6 is referred by two sub elements (with attribute id values ID7 and ID8). Therefore, the value of
MND is 3.

SumReferring 7 Except the root message element with attribute id value ID1, all other message elements define such
linkages. The value of NL is therefore 7.

NumberElements 8 There are eight message elements.

Table 6. Matrix for determining cardinality & participation based on the determined linkage attri-
butes

Participation

Total Partial

Cardinality One-to-one MaxReferring= 1
MaxReferred = 1
SumReferring= NumberElements

MaxReferring = 1
MaxReferred= 1
SumReferring < NumberElements

One-to-many MaxReferring = 1
MaxReferred > 1
SumReferring = NumberElements

MaxReferring = 1
MaxReferred > 1
SumReferring < NumberElements

Many-to-one MaxReferring > 1
MaxReferred = 1
SumReferring = NumberElements

MaxReferring > 1
MaxReferred = 1
SumReferring < NumberElements

Many-to-many MaxReferring > 1
MaxReferred > 1
SumReferring = NumberElements

MaxReferring > 1
MaxReferred > 1
SumReferring < NumberElements

214

Abstract DTD Graph from an XML Document

it is possible to derive the linkage attributes as
shown in Table 4.

The complete algorithm is presented in Al-
gorithm 1 along with a list of definitions for the
variables to be used.

The above operation can be represented by the
following SQL,

SELECT

 RGE, RDE, L,

 ReferringInfo.MaxReferring,

 ReferredInfo.MaxReferred,

 ReferringInfo.SumReferring,

 ElementNameCount.NumberElements

FROM

 ReferringInfo

 INNER JOIN ReferredInfo

 ON ReferringInfo.RGE = Referred-

Info.RGE

 AND ReferringInfo.RDE = Referred-

Info.RDE

 AND ReferringInfo.L =

ReferredInfo.L

 INNER JOIN ElementNameCount

 ON ReferringInfo.RGE =

ElementNameCount.E

Once the four attributes of a linkage are deter-
mined, the data semantics can be determined by
using the matrix shown in Table 6. According to the
determined one-to-one and one-to-many relation-
ships, it is then possible to consolidate the related
ones into many-to-many and n-ary relationships.

As mentioned above, if an XML element type
defines two linkages that are determined to be
many-to-one cardinalities, the two referred XML
element types are considered to be in a many-to-
many relationship. Similarly, if an XML element
type defines more than two linkages that are
determined to be many-to-one cardinalities, the
referred XML element types are considered to
be in an n-ary relationship. Therefore, based on
the one-to-many cardinalities determined by the
previous algorithm, the many-to-many and n-ary
relationships can be determined, and the algorithm
is shown in Algorithm 2.

continued on the following page

Algorithm 1. The algorithm for determining linkage information by traversing the XML document

Variable
name

Definition

EID The current element ID. While processing the XML document sequentially, the EID determines the ID to be assigned to
individual element encountered.

E The current element to be handled.

A An attribute of the current element to be handled.

AV The attribute value of attribute A.

L A linkage of the current element. It can be an implicit linkage with its parent element or an explicit linkage with an IDREF(S)
type attribute. For a non-root element without IDREF(S) attribute, the element has only one implicit linkage to its parent
element. Otherwise, the element can have more than one linkage, one implicit linkage and at least one explicit linkages.

Lvalue The Element ID of the linkage L for the current element E. For example, if L is an implicit linkage, Lvalue is the element
ID of the parent element of E. Otherwise, Lvalue is the attribute value of IDREF value and the value should be an ID type
attribute of an element in the same document.

NG The number of referring element of the same element name is referring to the same referred element with the same link.

RGE The referring element of a link.

RDE The referred element by a link.

215

Abstract DTD Graph from an XML Document

continued on the following page

Pass One:

Let EID = 1;

Repeat until all XML document elements are read

 Let E be the current element to be processed

 If ∃ record in TableElementNameCount where ElementName = element name of E

 Get record (ElementName, NumberElement) from TableElementNameCount

 Increment NumberElement by 1;

 Update (ElementName, NumberElement) into TableElementNameCount;

 Else

 Add (ElementName, 1) into SetElementNameCount;

 End If

 Add (EID, ElementName) into SetElementIDName;

 If there exists ID type attribute A of element E with attribute value AV

 Add (AV, ElementName) into SetElementIDName;

 End If

 Increment EID by 1;

 Navigate to the next element E in the XML document

Pass Two:

Repeat until all XML document elements are read

 Let RGE is the current element to be handled

 For each linkage, L, of RGE

 For each linkage value, Lvalue of linkage L of RGE

 Get record (EID,ElementName) from TableElementIDName

 where primary key value is Lvalue

 If no such record exist in TableElementIDName

 XML document is invalid

 Else

 Let RDE = ElementName of the record obtained from TableElementIDName

 End If

 Get record (RGE, RDE, L, Lvalue, ND) from TableRawReferredInfo for primary key (RGE, RDE, L, Lvalue);

 If record exists

 Increment ND of the record by 1; Update the record to TableRawReferredInfo;

 Else

 Add record (RGE, RDE, L, Lvalue, 1) to the TableRawReferredInfo;

 End If

Algorithm 1. continued

216

Abstract DTD Graph from an XML Document

The many-to-one relationship to be considered
should be those implemented by explicit linkages;
that is, those defined by ID/IDREF(S) linkages.
Otherwise, an element type exhibits implicit a
one-to-many relationship due to nested structure
and defines a many-to-one relationship that will
be considered to be a many-to-many relationship,
but the two referred elements are actually not
related at all.

Participation

Participation concerns whether all instances of a
particular element type are involved in a relation-
ship with the corresponding element type.

For implicit referential linkage by a parent-
child relation, such as the following DTD ELE-
MENT declaration,

<!ELEMENT PARENT (CHILD*)>

and there are no other ELEMENT declarations
that define CHILD as their child elements, all
CHILD element instances must appear as the
child element of a PARENT element, and hence
the participation can be considered to be total,
as all instances of CHILD must be involved
in the one-to-many cardinality relation with
PARENT. If no schema is provided, and if all
instances of an element type always appear as
the child elements of the same parent element

 For each referred element type, RDE

 Let NG = number of RDE referred by this linkage, L;

 Get record (RGE, RDE, L,MaxReferring, SumReferring) from the TableReferringInfo for primary key (RGE, RDE, L);

 If record exists

 If NG > MaxReferring from the record

 Update MaxReferring of the record to be NG

 End If

 Increment SumReferring of the record by 1;

 Update the record to the TableReferringInfo;

 Else

 Add record (RGE, RDE, L, NG, 1) to the TableReferringInfo;

 End If

 End For

 End For

 End For

 Navigator to the next element RGE in the XML document

Consolidate the records with same combination of (RGE, RDE, L) in table RawReferredInfo;

 let MaxReferred = maximum of the ND values of all records;

 Add record (RGE, RDE, L, MaxReferred) to the table ReferredInfo;

Algorithm 1. continued

217

Abstract DTD Graph from an XML Document

type, the participation is also considered to be
total.

For explicit referential linkage by ID/IDREF(S)
attributes, if all instances of an element type use the
same attribute with values referring instances of the
same element type, the relationship is considered
to be total participation. Otherwise, the relation
is considered to be partial. The DTD of the XML
document can only identify the ID/IDREF(S) type
attributes but it cannot restrict the referring and
referred element types. As such, actually parsing
the XML document is required to determine the
type of participation.

The DTD Graph of participation is same as the
DTD Graph of cardinality except the double lines
to show total participation as shown in table 2.

Aggregation

An aggregation means that the creation of a whole
part of an element depends on the existences of
its component sub elements. An aggregation is
signified by the scenario that elements of differ-
ent types are considered to be a single entity and
all constituting elements must exist altogether.
An XML document by itself does not provide
any facility to enforce such a constraint. At best,
the schema can hint at the correlations of the
existence of the elements in the corresponding
XML document.

For implicit referential linkage by an aggre-
gation, such as the following DTD ELEMENT
declaration,

<!ELEMENT AGGREGATION (COMPONENT
1
, COMPO-

NENT
2
,….COMPONENT

N
)+>

For example, the following ELEMENT dec-
laration can restrict the existence of the elements,
enrollment, student and course.

<!ELEMENT enrollment (student, course)+>

Besides, no student or course elements exist
in the document that are not the sub-element of
an enrollment element. For example, if there is
another ELEMENT declaration in the same DTD,
such as,

<!ELEMENT student_list (student*)>

student elements can exist in the document
as the sub-elements of a student_list element. As
such, the co-existence relationship of enrollment,
student and course elements no longer holds.

Such a co-existence relationship specified in
the schema can be extended to more than one
nested level. For example, if the existence of a
course element must be accompanied by a lecturer
element and a tutor element, that is,

<!ELEMENT course (lecturer, tutor)+>

the elements, enrollment, student, course, lecturer
and tutor, must exist as a whole. Then, all these
elements are considered as an aggregation. From
another perspective, an aggregation is actually
composed of two one-to-one cardinality relations

Algorithm 2. The algorithm for determining many-to-many and n-ary relationships

Get referring XML element types from one-to-many cardinalities;
For each referring XML element Treferring type
 Get referred XML element types, Sreferred referred by Treferring via explicit linkages;
 If the size of the set Sreferred = 2
 XML element types in Sreferred = many-to-many relationship with Treferring;
 Else
 If size of Sreferred > 2
XML element types in Sreferred = n-ary relationship with Treferring ;

218

Abstract DTD Graph from an XML Document

(course – lecturer and course – tutor) which are
both total participation.

An exceptional case is that if the sub-elements
are actually the attribute of the parent element,
such as in example one, it is inappropriate to
consider that the involved elements are in an ag-
gregation. As a result, user supervision is needed
in the process.

Based on the DTD of the XML document,
it is possible to determine the aggregation from
the elements. As the requirements of an aggrega-
tion is the co-existence of the involved elements
and the order of the sub-elements for a parent
element is insignificant, the nested structure of
the elements should first be simplified with the
algorithm presented in Algorithm 3 where T is an
aggregation tree.

The determination of aggregation is separated
into two parts. The first part first discovers the pair
of parent and child elements that must co-exist.
Once the pairs are determined, the second part of
the algorithm treats each pair as a path from par-
ent element to the child element in a sub-tree, and
these sub-trees are merged to form a bigger tree.

Eventually, the nodes in each tree must co-exist,
and they are in aggregation. The second part is
straightforward except there is a tricky point that
if a child element is found to be a non-root node
of a particular sub-tree, it implies that such an
element can have more than one parent element,
and the aggregation that includes such element
must start with the parent element.

For example, for a list of ELEMENT declara-
tion in the DTD,

<!ELEMENT A (B, C)>

<!ELEMENT B (D)>

<!ELEMENT C (D)>

<!ELEMENT D (E, F)>

The determined pairs of raw aggregation are
(A, B), (A, C), (B, D), (C, D), (D, E) and (D, F).
Merging the raw aggregation is shown in Figure
7.

Algorithm 3. The algorithm for determining aggregation

Let Settemporary = empty;
For each ELEMENT declaration for element Eparent
 For each child element, elementchild
 If elementchild = mandatory and non-repeatable
 Add an aggregation relation (Eparent, Echild) to Settemporary;

Let Setaggregation and Setroot = empty;
For each relation R (Eparent, Echild) in Settemporary
 If (∃ tree, T, in Setaggregation) ∧ (Eparent is a node in T) ∧ (Echild is not a node in T)
 Add a path Eparent to Echild to T;
 Else
(∃ tree, T, in Setaggregation) ∧ (Echild is a node of T) ∧ (Eparent is not a node)
 If (Echild = root node) ∧ (Echild not in Setroot of T)
 Add the path Eparent to Echild to T;
 Else
 Add Echildto Setroot
Remove the sub-tree starting with Echild from T;
If ∃ sub-tree starting with Echild in multiple nodes
 Add sub-tree to Setaggregation;
 Else
∃ tree Ti with a node for Eparent and Tj with E child as root node;
 Merge trees Ti and Tj with a path from node for Eparent in Ti to root of Tj
 Else
 ¬∃ sub-tree in Setaggregation with node for either Eparent and Echild;
 Add a new tree with a path Eparent to Echild to Setaggregation;

219

Abstract DTD Graph from an XML Document

Unary relationship

Unary relation is a specify type of one-to-one or
one-to-many relationship, in which the referring
and referred elements are of the same element
type. Therefore, unary relation can be realized
by both implicit and explicit referential linkages,
that is, nested structure of the same element type
and IDREF(S) attribute that refers to elements
of the same type. Listing 3 illustrates two XML
documents contain elements of unary relation-
ships by implicit and explicit referential linkages
respectively.

In Listing 3, the ID attribute and PARENT_ID
attribute are ID type and IDREF type attributes
respectively for the latter XML document. For
the DTD graph (Figure 8), the same set of arrows
shown in Table 2 can be used for unary relationship
as well. The difference is that arrow is starting
from and end at the same element type.

For the former XML document above, more
than one MESSAGE elements can associate with

the parent MESSAGE element, and the parent
MESSAGE element and the child MESSAGE ele-
ments are therefore in a one-to-many relationship.
As they are of the same element type, they are in
a unary relationship as well. Regarding the latter
XML document, all MESSAGE elements appear
in the XML document in the same level under the
same parent element. The IDREF type attribute
are implementing the one-to-many relationship
and it is a unary relation because the referring and
referred elements are all MESSAGE elements.

As a result, unary relationship is a specific
relationship of one-to-one or one-to-many re-
lationship; it is possible to identify unary rela-
tionships from usual one-to-one or one-to-many

Figure 7. DTD Graph for Aggregation

Figure 8. DTD Graph for u-ary relationship

220

Abstract DTD Graph from an XML Document

relationships after they are derived from the XML
document.

cAsE stUDY AND PrOtOtYPE

To illustrate the applicability and correctness of
the algorithms mentioned in this chapter, a pro-
totype was built that implements the algorithms
proposed in this chapter. For actually drawing the
DTD graph, the algorithm proposed by (Shiren,
2001) is used to define the layout of the vertexes
on the graph. With such a prototype, a sample
XML document with DTD file as shown in List-
ing 4 is provided to the prototype.

For this case study, both ID/IDREF type at-
tributes are considered and the minimum number
of common attributes is one. All elements with at
least one attribute are sorted in ascending order of
the lengths of their attribute lists. Therefore, the
order of the elements to be processed is:

element1, element2, element3

According to the DTD of the XML document,
only one ELEMENT declaration is used for con-
structing the Extended DTD Graph, as the contents
of other element types are EMPTY.

<!ELEMENT test (element1*,element2*,elem

ent3*)>

Therefore, only those explicit one-to-many
relationships are to be added to the graph, and
the graph will become the one shown in Figure
9 and 10. The detailed derivation of the reverse
engineering can be referred to (Shiu, 2006).

cONcLUsION

In order to make use of the XML document,
software developers and end-users must have
a thorough understanding of the contents in the
XML document, especially those historical and
huge XML documents. Sometimes the schemas
of XML documents are missing and the XML
documents cannot be opened to be inspected on
the screen due to their huge size. Therefore, it
is necessary to determine as much information
as possible regarding the relationships from the
elements in the document.

By reverse engineering the XML document
with DTD, all explicit linkages can be determined
and the resultant DTD Graph can be used to verify
the correctness of ID/IDREF(S) linkages, as any
incorrect IDREF(S) linkage will be indicated as an
extra cardinality and shown in the Extended DTD
graph. This chapter provides algorithms to help

Listing 3. Two possible formats for unary relationship

<MESSAGE ID=”MSG01” ...>
 <MESSAGE ID=”MSG02” ... />
 <MESSAGE ID=”MSG03” ... />
 <MESSAGE ID=”MSG04” ...>
 <MESSAGE ID=”MSG05” .../>
 <MESSAGE ID=”MSG06” .../>
 </MESSAGE>
</MESSAGE>

<MESSAGE ID=”MSG01”>
<MESSAGE ID=”MSG02” PARENT_ID=”MSG01”>
<MESSAGE ID=”MSG03” PARENT_ID=”MSG01”>
<MESSAGE ID=”MSG04” PARENT_ID=”MSG01”>
<MESSAGE ID=”MSG05” PARENT_ID=”MSG04”>
<MESSAGE ID=”MSG06” PARENT_ID=”MSG04”>

221

Abstract DTD Graph from an XML Document

the users to understand the relationships from the
elements by reverse engineering data semantics
from the XML document, including:

1. Cardinality relationships
2. Participation relationships
3. n-ary relationships
4. Aggregations
5. Many-to-many relationships (a special case

of cardinality relationships)
6. Unary relationships

In summary, to visualize the determined
data semantics, a new Extended DTD Graph
is proposed. XML documents natively support
one-to-one, one-to-many and participation, data
semantics. With a corresponding schema, such as
DTD, the ID and IDREFS attributes of the elements
can be identified, and many-to-many, n-ary and
aggregations can also be determined.

Listing 4. test.xml and test.dtd

<?xml version=”1.0”?>
<test>
 <element1 id=”id1”/>
 <element1 id=”id2”/>
 <element2 id=”id3”/>
 <element2 id=”id4”/>
 <element3 id=”id5” idref1=”id1” idref2=”id3”/>
 <element3 id=”id6” idref1=”id2” idref2=”id4”/>
 <element3 id=”id7” idref1=”id1” idref2=”id4”/>
 <element3 id=”id8” idref1=”id2” idref2=”id3”/>
</test>

<!ELEMENT test (element1*,element2*,element3*)>
<!ELEMENT element1 EMPTY>
<!ELEMENT element2 EMPTY>
<!ELEMENT element3 EMPTY>
<!ATTLIST element1
 id ID #REQUIRED>
<!ATTLIST element2
 id ID #REQUIRED>
<!ATTLIST element3
 id ID #REQUIRED
 idref1 IDREF #REQUIRED
 idref2 IDREF #REQUIRED>

Figure 9. The determined data semantics

222

Abstract DTD Graph from an XML Document

AcKNOWLEDGMENt

This book chapter is funded by Strategic Re-
search Grant 7002325 of City University of
Hong Kong

rEFErENcEs

An, Y., Borgida, A., & Mylopoulos, J. (2005). Con-
structing Complex Semantic Mappings Between
XML Data and Ontologies. International Semantic
Web Conference ISWC 2005 (pp. 6-20).

Booch, G., Christerson, M., Fuchs, M., & Koistin-
en, J. (1999). UML for XML schema mapping
specification. Retrieved from http://xml.cover-
pages.org/fuchs-uml_xmlschema33.pdf

Bosak, J., Bray, T., Connolly, D., Maler, E., Nicol,
G., Sperberg-McQueen, C. M., et al. (1998). Guide
to the W3C XML Specification (XMLspec) DTD,
Version 2.1. Retrieved from http://www.w3.org/
XML/1998/06/xmlspec-report-v21.htm

Böttcher, S., & Steinmetz, R. (2003). A DTD
Graph Based XPath Query Subsumption Test.
Xsym, 2003, 85–99.

Bray, T., Paoli, J., Sperberg-McQueen, C.
M., Maler, E., & Yergeau, F. (2004). Exten-
sible Markup Language (XML) 1.0 (3rd ed.).
Retrieved from http://www.w3.org/TR/2004/
REC-xml-20040204

Chidlovskii, B. (2001). Schema Extraction from
XML Data: A Grammatical Inference Approach.
KRDB’01 Workshop (Knowledge Representation
and Databases)

Deutsch, A., Fernandez, M., & Suciu, D. (1999).
Storing Semi-structured Data with STORED. SIG-
MOD Conference, Philadelphia, Pennsylvania.

Fernandez, M., Morishima, A., & Suciu, D. (2001).
Publishing Relational Data in XML:the SilkRoute
Approach. A Quarterly Bulletin of the Computer
Society of the IEEE Technical Committee on Data
Engineering, 24(2), 12–19.

Florescu, D., & Kossmann, D. (1999). Storing
and Querying XML Data Using an RDBMS. A
Quarterly Bulletin of the Computer Society of the
IEEE Technical Committee on Data Engineering,
22(3), 27–34.

Figure 10. Extended DTD Graph based on the DTD and the determined cardinality References

223

Abstract DTD Graph from an XML Document

Fong, J., & Cheung, S. K. (2005). Translating
relational schema into XML schema definition
with data semantic preservation and XSD graph
. Information and Software Technology, 47(7),
437–462. doi:10.1016/j.infsof.2004.09.010

Fong, J., & Wong, H. K. (2004). XTOPO, An
XML-based Technology for Information Highway
on the Internet . Journal of Database Manage-
ment, 15(3), 18–44.

Funderburk, J. E., Kiernan, G., Shanmugasun-
daram, J., Shekita, E., & Wei, C. (2002). XTA-
BLES: Bridging relational technology and XML.
IBM Systems Journal, 41(4).

Goldman, R., & Widom, J. (1997). DataGuides:
Enabling Query Formulation and Optimization in
Kanne, CC.,(2000). Guido Moerkotte. Efficient
storage of xml data. In Proc. of ICDE, California,
USA (p. 198).

Kay, M. (1999) DTDGenerator – A tool to generate
XML DTDs. Retrieved from http://users.breathe.
com/mhkay/saxon/dtdgen.html

Klettke, M., Schneider, L., & Heuer, A. (2002).
Metrics for XML document collections. Akmal
Chaudri and Rainer Unland, XMLDM Workshop,
Prague, Czech Republic (pp.162-176).

Koike, Y. (2001). A Conversion Tool from DTD
to XML Schema. Retrieved from http://www.
w3.org/2000/04/schema_hack/

Lee, D. W., & Chu, W. W. (2000). Comparative
Analysis of Six XML Schema Languages. SIGMOD
Record, 29(3). doi:10.1145/362084.362140

Lee, D. W., & Chu, W. W. (2000). Constraints-Pre-
serving Transformation from {XML} Document
Type Definition to Relational Schema. Interna-
tional Conference on Conceptual Modeling / the
Entity Relationship Approach (pp. 323-338).

Lee, D. W., Mani, M., & Chu, W. W. (2003).
Schema Conversion Methods between XML and
Relational Models. Knowledge Transformation
for the Semantic Web.

Lu, S., Sun, Y., Atay, M., & Fotouhi, F. (2003).
A New Inlining Algorithm for Mapping XML
DTDs to Relational Schemas. In Proc. Of the
First International Workshop on XML Schema
and Data Management, in conjunction with the
22nd ACM International Conference on Conceptual
Modeling (ER2003).

Mello, R., & Heuser, C. (2001). A Rule-Based
Conversion of a {DTD} to a Conceptual Schema
(LNCS 2224).

Min, J. K., Ahn, J. Y., & Chung, C. W. (2003).
Efficient extraction of schemas for XML docu-
ments . Information Processing Letters, 85(1).
doi:10.1016/S0020-0190(02)00345-9

Moh. C., Lim, e., & Ng, W. (2000). DTD-Miner:
A tool for mining DTD from XML documents. In
Proceedings of the Second International Workshop
on Advanced Issues of E-Commerce.

Relaxng (2003). RELAX NG. Retrieved from
http://www.relaxng.org/

Sahuguet, A. (2000). Everything You Ever Wanted
to Know About DTDs, But Were Afraid to Ask.
WebDB-2000.

Shanmugasundaram, J., Shekita, E., Kiernan, J.,
Krishnamurthy, R., Viglas, E., Naughton, J., et al.
(2008). Shematron. Retrieved from http://www.
schematron.com

Shiren, Y., Xiujun, G., Zhongzhi, S., & Bing, W.
(2001). Tree’s Drawing Algorithm and Visualizing
Method. In CAD/Graphics’2001.

Shiu, H. (2006). Reverse Engineering Data Seman-
tics from Arbitrary XML document. Unpublished
master’s thesis, City University of Hong Kong,
Hong Kong, China.

224

Abstract DTD Graph from an XML Document

Sperberg-McQueen, C., & Thompson, H. (2000).
W3C XML schema. Retrieved from http://www.
w3.org/XML/Schema

Stayton, B. (2008). DocBook. Retrieved from
http://www.docbook.org

Tatarinov, I. (2001). A general technique for query-
ing XML documents using a relational database
system. SIGMOD Record, 30(3), 261–270.

Thiran, P. H., & Estiévenart, F. Hainaut. J.L., &
Houben, G.J. (2004). Exporting Databases in
XML - A Conceptual and Generic Approach. In
Proceedings of CAiSE Workshops (WISM’04).

Trujillo, J., & Luján-Mora, S. (2004). Applying
UML and XML for Designing and Interchang-
ing Information for Data Warehouses and OLAP
Applications. Journal of Database Management,
15(1), 41–72.

World Wide Web Consortium. (W3C). (1998).
Schema for object-oriented XML. Retrieved
from http://www.w3.org/TR/1998/NOTE-
SOX-19980930

World Wide Web Consortium. (W3C). (2003).
Document object model DOM. Retrieved from
http://www.w3.org/DOM

World Wide Web Consortium. (W3C). (2004).
Simple API for XML, SAX. Retrieved from http://
www. saxproject.org

Zhang, J., Liu, H., Ling, T., Bruckner, R., & Tija,
A. (2006). A framework for efficient association
rule mining in XML data. Journal of Database
Management, 17(3), 19–40.

Zhao, L., & Siau, K. (2007). Information media-
tion using metamodels: An approach using XML
and common warehouse metamodel. Journal of
Database Management, 18(3), 69–82.

225

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

A Dynamic Model of Adoption
and Improvement for Open

Source Business Applications
Michael Brydon

Simon Fraser University, Canada

Aidan R. Vining
Simon Fraser University, Canada

INtrODUctION

Many commercial software firms face the possibil-
ity that free and open source software (FOSS) will
disrupt their markets. A “disruptive innovation” is
a new product, service, or business model that ini-
tially enters a market as a low-priced, lower-quality
alternative to the products of market incumbents

but which, through a process of rapid improvement,
eventually satisfies mainstream consumers and sup-
plants some or all incumbents (Christensen, 1997;
Markides, 2006). Prototypical examples of disrup-
tive innovations include discount online brokerages
(which won significant market share away from
established full-service brokerages) and personal
computers (which evolved into a viable substitute
for larger, more expensive mini and mainframe
computers). The disruptive effect of FOSS on com-

AbstrAct

This chapter develops a model of open source disruption in enterprise software markets. It addresses
the question: Is free and open source software (FOSS) likely to disrupt markets for enterprise business
applications? The conventional wisdom is that open source provision works best for low-level system-
oriented technologies while large, complex enterprise business applications are best provided by com-
mercial software vendors. The authors challenge the conventional wisdom by developing a two-stage
model of open source disruption in business application markets that emphasizes a virtuous cycle of
adoption and lead-user improvement of the software. The two stages are an initial incubation stage
(the I-Stage) and a subsequent snowball stage (the S-Stage). Case studies of several FOSS projects
demonstrate the model’s ex post predictive value. The authors then apply the model to SugarCRM, an
emerging open source CRM application, to make ex ante predictions regarding its potential to disrupt
commercial CRM incumbents.

DOI: 10.4018/978-1-60566-904-5.ch011

226

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

mercial software markets has been variable so far.
On the one hand, the Apache project has forced
commercial vendors of web servers to either exit
the market (IBM, Netscape), offer their products
for free (Sun), or bundle their software at zero
price with other offerings (Microsoft’s IIS). On
the other, FOSS entrants in the desktop operating
system and office productivity software markets
have had almost no impact on incumbents. Despite
the economic significance of the software industry,
there has been little formal analysis of the factors
that lead to major disruption by FOSS in some
markets but negligible disruption in others. This
is especially true of enterprise applications—the
complex software programs that support critical,
cross-functional business processes, such as order
management, financial reporting, inventory con-
trol, human resource planning, and forecasting.

What drives FOSS? Like all forms of open
innovation, FOSS is characterized by recursive
interdependence between user adoption and
technological improvement (West & Gallagher,
2006). To this point, open source production has
worked most effectively for software developed
by hackers (software experts) for use by hackers.
However, enterprise applications differ in im-
portant ways from well-known FOSS successes,
such as Apache, the Perl programming language,
and the Linux operating system. The intrinsic and
culture-specific motivations that drive voluntary
participation in FOSS projects by software experts
are likely to be weaker or non-existent for business-
oriented software (Fitzgerald, 2006). Accordingly,
one might expect FOSS to have less disruptive
impact on the market for enterprise applications.
However, an alternative scenario is possible. Under
certain conditions profit-maximizing firms have
clear incentives to contribute to the development of
open source enterprise software, such as enterprise
resource planning (ERP), customer relationship
management (CRM), and supply chain manage-
ment (SCM) packages. The willingness of firms
to pay programmers to write code and contribute
it to a FOSS project as part of their employees’

regular duties reduces or eliminates dependence on
conventional hacker-level incentives in predicting
who will contribute to FOSS projects. Instead, the
emphasis shifts to understanding the conditions
that lead profit-maximizing firms to invest in
projects from which they cannot fully appropriate
the benefits of their investment.

We estimate the probable impact of FOSS in en-
terprise software markets by developing a dynamic
model of FOSS adoption and improvement. The
objective is to help predict whether open source
entrants will disrupt commercial incumbents in a
particular software market. The model draws on
both the disruptive technology and the adoption
of technology literatures because neither literature
alone can fully account for the high variability in
the level of disruption achieved by FOSS.

The disruptive technology literature empha-
sizes the role of technological improvement
over time in fostering disruption. For example,
Christensen (1997) illustrates the disruption
dynamic by plotting the historical performance
improvement demanded by the market against
the performance improvements supplied by the
technology, as shown in Figure 1. Improvements
in performance over time are undoubtedly criti-
cal to disruption; however, little is said about the
precise mechanisms by which the improvements
—or “sustaining innovations”—are achieved. As
Danneels (2004) points out, an ex post analysis of
general trends is of little use when making ex ante
predictions about the disruptive potential of a par-
ticular technology. The key to predicting whether
a technology is potentially disruptive or “merely
inferior” (Adner, 2002) is the identification of
plausible mechanisms for rapid and significant
improvement along dimensions of performance
that matter to mainstream users.

Models from the adoption of technology
literature, in contrast, tend to focus on specific
attributes of the innovation or environment in
order to predict the innovation’s adoptability. The
critical shortcoming of most adoption models for
our purposes is that they are static. Disruption is

227

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

a fundamentally dynamic process where the at-
tributes of both the innovation and the adopters
of the innovation change over time. We attempt
to capture these dynamics by modeling disruption
as two distinct stages.

The paper proceeds as follows: Section 1 re-
views the adoption literature and focuses on Fich-
man and Kemerer’s (1993) distinction between or-
ganizational and community adoptability. Section
2 examines the open source model of production
and the incentives for firm-level contribution to
the production of a public good. In Section 3, we
draw on the concepts of organizational and com-
munity adoptability to develop a two-stage model
of FOSS adoption and disruption. We assess the
ex post predictive power of the model in Section
4 by examining the development histories and
subsequent disruptive impacts of several estab-
lished FOSS projects. In Section 5, we apply the
model to one type of enterprise software, CRM, to
predict, ex ante, whether SugarCRM, a relatively
new FOSS entrant, will disrupt the commercial
CRM market. We summarize our conclusions and
suggest some implications for theory and practice
in Section 6.

INNOVAtION AND
tEcHNOLOGY ADOPtION

A number of different adoption models in the
literature seek to explain variability in the market
success of new technologies (e.g., Ravichandran,
2005; Riemenschneider, Hardgrave, & Davis,
2002; Rai, Ravichandran, & Samaddar, 1998;
Iacovou, Benbasat, & Dexter, 1995; Taylor &
Todd, 1995). The theoretical foundations of these
models are diverse (Fichman, 2000). Variously,
they build on classic communication and dif-
fusion mechanisms (e.g., Rogers, 1995), insti-
tutional theory (e.g., Tingling & Parent, 2002),
organizational learning (e.g., Attewell, 1992) or
on industrial economics (e.g., Katz and Shapiro,
1994). The purpose here is not to provide another
general adoption model but rather to develop a
middle-range theory that is applicable to the spe-
cific context of open source production and the
markets for enterprise software (Fichman, 2000;
Merton, 1967, p. 39).

The initial point of our analysis is Fichman and
Kemerer’s (1993) Adoption Grid, as reproduced
in Figure 2. The grid integrates the “Diffusion of
Innovations perspective” (Rogers, 1995) and the
“Economics of Technology Standards perspec-

Figure 1. Changes in performance over time for incumbent and disruptive technologies (Christensen,
2006, p. 40)

228

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

tive”, each of which emphasizes a complementary
set of adoption antecedents. The original Diffu-
sion of Innovations perspective identified five
attributes—relative advantage, compatibility,
complexity, observability, and trialability—that
affect the likelihood that a given population will
adopt a new idea, product, or practice (hereafter, a
“technology”). Although the subsequent literature
has augmented and extended these attributes (e.g.,
Moore & Benbasat, 1991; Davis, 1989), the model
retains its original focus on the technology and the
technology’s fit within the adopting population.
Fichman and Kermerer (1993, p. 9) aggregate
these attributes as organizational adoptability,
arguing that “[…] organizations are more likely
to be willing and able to adopt innovations that
offer clear advantages, that do not drastically in-
terfere with existing practices, and that are easier
to understand. […]. Adopters look unfavorably
on innovations that are difficult to put through a
trial period or whose benefits are difficult to see
or describe”.

The Economics of Technology Standards
perspective, in contrast, focuses on increasing
returns to adoption. In considering this perspective,
it is useful to make a distinction between direct
increasing returns (network benefits or positive
network externalities) and indirect increasing

returns (Katz & Shapiro, 1994). The fax machine
is a classic example of a technology that exhibits
direct network benefits: the value a machine to
a given user increases when the technology is
adopted by others. However, indirect sources of
increasing returns to adoption, such as learning-
by-using and technology interrelatedness, are
often more important in the enterprise software
context. Learning-by-using is the process whereby
the technology’s price-performance ratio improves
as users accumulate experience and expertise
in using it (Attewell, 1992). Occasionally, the
technology is reinvented during adoption and the
resulting improvements feed back to the supplier
and other adopters, further amplifying indirect
benefits (Rogers, 1995). Technological interrelat-
edness considers a technology’s ability to attract
the provision of complementary technologies by
third parties. In some cases, complementarity is
straightforward: the adoption of Blu-Ray video
players relies on the availability of movies in this
format and televisions that can display higher
resolutions. In other cases, complementarity may
emerge in the form of propagating organizations,
such as consultants, publishers, and standards
organizations (Fichman, 2000). Fichman and
Kemerer summarize a technology’s community
adoptability in terms of four attributes: prior

Figure 2. Adoption Grid (Fichman & Kemerer, 1993)

229

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

technology drag, irreversibility of investments,
sponsorship, and expectations. The presence of
increasing returns to adoption mediate all four
attributes to varying degrees.

The historical evidence shows that community
adoptability can trump organizational adopt-
ability in determining market outcomes when a
technology exhibits strong increasing returns to
adoption. Superior technology-related attributes
(such as relative advantage) do not always ensure
dominance, as the outcomes of the standards wars
between Betamax and VHS and between DOS
and Mac OS illustrate (Hill, 1997). However,
relying on community adoptability as the basis for
predicting market success is problematic because
the presence of direct and indirect increasing re-
turns can create a “logic of opposition” (Robey
& Boudreau, 1999). Direct increasing returns,
learning-by-using, and the existence of comple-
ments can all catalyze the rapid adoption of a
new technology (e.g., the MP3 format for digital
audio). Alternatively, increasing returns can be a
potent source of prior technology drag (e.g., the
QWERTY keyboard). A technology market that
exhibits strong increasing returns to adoption
often tips in favor of a single product or standard.
Organizations that choose to bypass the established
standard in order to adopt a new and “better” tech-
nology must forego the benefits of the standard’s
installed base (Shapiro & Varian, 1999; Farrell &
Saloner, 1986). For example, firms that migrate
to the desktop version of Linux from Microsoft
Windows face high switching costs (independent
of any quality differences between the two prod-
ucts) because of numerous incompatibilities with
the large installed base of Windows.

Variations in organizational adoptability and
community adoptability define the four quadrants
of the Adoption Grid (Figure 2). Innovations in
the experimental quadrant rate poorly in terms of
both organizational and community adoptability
and are unlikely to succeed in the market without
further development. Innovations in the niche

quadrant rank highly in terms of organizational
adoptability but poorly in terms of community
adoptability. Niche innovations typically achieve
quick adoption by a small base of dedicated us-
ers who value the product’s attributes. However,
either the absence of increasing returns to adoption
or the presence of barriers to community adopt-
ability (the logic of opposition) dampens adoption
beyond the niche. Innovations in the slow mover
quadrant provide community benefits but do not
offer a compelling rationale (in terms of improved
functionality or fit) for organizational adoption.
These technologies are usually adopted only when
replacement of the firm’s existing generation
of technology becomes necessary (Hovav, Pat-
nayakuni, & Schuff, 2004). Finally, innovations
in the dominant technology quadrant score well
in terms of both organizational and community
adoptability.

In some cases technologies become dominant
by “disrupting” their markets. A technology
is disruptive in the specific sense proposed by
Christensen (1997) if it satisfies several conditions
(Tellis, 2006, p. 34). The four conditions relevant
for our purposes are:

The technology initially underperforms the •
incumbent technologies along dimensions
mainstream customers have historically
valued.
The disruptive technology has features that •
are valued by a relatively small group of
customers. For example, the new technol-
ogy is generally cheaper, simpler, smaller,
or more convenient than the dominant
technology.
The new technology steadily improves •
in performance over time until it satisfies
the requirements of the mainstream mar-
ket (recall Figure 1). Disruption can only
occur once the new technology satisfies
the requirements threshold of mainstream
customers.

230

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

Since the disruptive technology retains the
features (cheaper, simpler, smaller, or more con-
venient) that led to its initial adoption, and since
increases in performance provide diminishing
returns for users once the requirements threshold
of mainstream customers is attained, the disruptive
entrant is able to displace the previously dominant
technology in the mainstream market. Disruption
is thus, at its core, a dynamic process in which a
mechanism for technological improvement over
time is central.

A rEVIEW OF OPEN
sOUrcE PrODUctION

There are two requirements for open source
production. The first requirement is the form of
licensing—often referred to as copyleft—which
precludes the enforcement of exclusionary prop-
erty rights for the good (Weber, 2004). Under a
FOSS license, the program’s source code can be
downloaded, compiled, used, and modified by
anyone. The second requirement is the availability
of low-cost, ubiquitous networks and collaborative
tools that enable software development and testing
by large, geographically-dispersed groups. Open
source software is thus “free” in two senses. First,
the joint presence of non-excludability provided
by FOSS licensing and the availability of low-cost
telecommunications means that the software can
be acquired at low cost. Second, unrestricted access
to the software’s source code means that users are
able to adapt and improve the software.

Although low cost and the freedom to inno-
vate make FOSS attractive to potential adopters,
it is less clear why developers might choose to
participate in the provision of such software. The
central problem is that FOSS is a public good
(Lerner & Tirole, 2002; Weber, 2004). Like all
software, FOSS is non-rivalrous in consumption
(consumption by one users does not preclude
consumption by other users). But, in contrast to
commercial software, FOSS licensing explicitly

stipulates non-excludability (no one can be denied
consumption or use of the good). Economic theory
predicts that markets will undersupply pure public
goods because individual contributors to the pro-
duction of the good are not financially rewarded
for their investment of time and other resources
(Arrow, 1970; Weimer & Vining, 2005). The
question facing any potential adopter of FOSS
software—but especially firms seeking complex,
mission-critical systems—is whether provision
and continuous improvement of a public good
will be reliably sustained over time.

Critics of what might be called the “naive pure
public goods” characterization of FOSS point
out that a blanket prediction of undersupply is
an oversimplification of the incentive structures
facing developers. Benkler (2002), for example,
notes that Internet-based collaboration tools permit
developers to make small, incremental contribu-
tions to open source projects at low, essentially
negligible, personal opportunity cost. Others
have emphasized the non-pecuniary and delayed
or indirect pecuniary rewards that individuals
receive from membership in the hacker culture
(Roberts, Hann, & Slaughter, 2006; Weber, 2004;
Himanen, Torvalds, & Castells, 2002; Lerner &
Tirole, 2002). It is also important to recognize
that the popular image of a lone hacker working
voluntarily on a piece of shared code is no longer
representative of the largest, most established
FOSS projects. For example, although the initial
releases of the Linux kernel was the result of
massive personal investments by Linus Torvalds,
further refinement is increasingly dominated by
professional software developers as part of their
contracts with their employers (Lyons, 2004;
Morton, 2005). Not surprisingly, developers who
are paid to contribute to an open source project are
more likely to spend time doing so than volunteers
(Hertel et al., 2003).

So what is the motivation for profit-maximizing
firms to participate in FOSS? The economic incen-
tives of for-profit firms are diverse. Some firms,
such as IBM, Sun, and HP, expect to benefit by

231

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

stimulating the adoption of a wide spectrum of
FOSS products in order to sell complementary
products and/or consulting services (Dahlander,
2007). Other firms, such as Redhat and MySQL
AB have a similar interest, but have focused
their attention on a single FOSS project. In some
cases, dual licensing models are used in which
the for-profit firm develops and sells an enhanced
version of a commercial product built on a FOSS
core. For example, MySQL AB maintains an
FOSS version of the MySQL database system,
but sells a commercial version of the database as
well as technical support and training. Firms that
maintain dual (FOSS and commercial) licenses
have incentives to use revenues from their com-
mercial products and services to cross-subsidize
the development of the open software at the center
of their technological system.

Of special interest in this research are “user
firms” that choose to contribute to the development
of FOSS. User-firms are organizations—such as
banks, utilities, consumer goods firms, govern-
ments, and non-profits—that rely on software to
support the production and delivery of their core
products and services but whose core business
model does not necessarily involve the produc-
tion and sale of computer hardware, software, or
services. There are many aspects of organizational
adoptability that attract user-firms to FOSS. The
most obvious is initial price—an entire stack of
software applications can be assembled without
paying licensing fees. User-firms may also adopt
FOSS to avoid lock-in and excessive dependence
on a particular commercial vendor (Hicks & Pa-
chamanova, 2007). Finally, and most importantly
from the perspective of this paper, user-firms
adopt FOSS because it provides them with the
flexibility to innovate and customize. There are
several examples of firms exploiting this flexibil-
ity. Siemens’ ICN division constructed its award-
winning ShareNet knowledge management system
by modifying an open source content management
system from ArsDigita (MacCormack, 2002).
Google has recently initiated the Android Open

Handset Alliance in an attempt to enable broader
participation in the innovation process for mobile
phones. According to Google, Android permits all
players in the mobile phone industry—including
users, content providers, handset manufacturers,
and wireless service providers—to contribute to
evolution of mobile phone functionality (Dano,
2008).

Product modification by “lead-users” can be
a valuable source of innovation and product im-
provement (von Hippel, 1998). Such innovations
typically have a high potential for market success
for two reasons (Franke, von Hippel, & Schreier,
2006). First, lead-users have incentives to inno-
vate because the expected payoffs from finding
solutions to their problems are large. Second, as
leads, they anticipate emerging market trends and
the requirements of mainstream users. Lead-user
development has traditionally functioned well
in FOSS due to the capability of the lead-users
and the ease with which software products can
be modified. For example, computer specialists
have contributed much of the source code for
system-oriented software such as Linux utilities,
Sendmail, and Perl. As information technology
professionals, lead-users understand how the
software could be modified to make their primary
jobs easier (Weber, 2004). They also possess the
specialized knowledge and skills required to
implement solutions to their software problems.
An “innovation toolkit” has been shown to be a
critical enabler of lead-user development and such
a toolkit is implicit in the norms and collaboration
infrastructure provided by FOSS projects. Finally,
FOSS licenses and the established culture of
hacker community encourage users to contribute
their solutions to the project, thereby ensuring a
positive feedback loop between software adoption
and its improvement.

The conditions that foster lead-user improve-
ment of systems-oriented FOSS seem much less
likely to occur, however, for business software.
First, individual users of enterprise applications
tend not to be software experts. They possess valu-

232

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

able local knowledge about the business processes
that the software supports but lack the specialized
knowledge and skills to navigate a version control
system, to modify source code, or communicate
with the software developer community. Thus,
most users of enterprise business software lack the
technical expertise required to access the innova-
tion toolkit provided by the open source model.
Second, firms normally discourage any valuable
internal innovation from permeating the boundar-
ies of the firm (Liebeskind, 1996). Consequently,
we might expect any lead-user development that
does occur to be kept within the firm rather than
contributed to the FOSS community.

We argue, however, that user firms have both
the means and the motivation to act as leads in the
development of enterprise FOSS. A fundamental
reason that firms exist is to enable the division
of labor and foster specialization within the firm.
Accordingly, firms can and do hire experienced
FOSS developers to implement the functionality
desired by non-technical users of enterprise busi-
ness software. The question is thus not whether
a firm can participate in the improvement of
enterprise FOSS, but rather why a firm would be
willing to forego the advantages of proprietary
control over its enhancements. We hypothesize two
reasons, both of which are unrelated to altruism or
the open source culture of reciprocity. First, firms
typically adopt packaged enterprise applications
(whether commercial or open source) to imple-
ment important but non-strategic functionality
(Hitt & Brynjolfsson, 1996). According to Beatty
and Williams (2006), “The vast majority of firms
that chose to undertake ERP projects based their
decision on vendor promises that their organiza-
tions would realize significant cost savings in
their core business.” An analysis of performance
following ERP implementation supports the
view that such systems are better at providing
internal gains in efficiency and productivity (e.g.,
decreases in the number of employees per unit of
revenue) than in conferring sustainable competi-
tive advantage based on differentiation (Poston &

Grabski, 2001). Firms will not view the enforce-
ment of property rights for incremental enterprise
software customization as a high priority if they
recognize that such modifications are unlikely to
confer sustainable competitive advantage. Instead,
firms may be more concerned with the significant
maintenance liability that arises whenever pack-
aged software is customized (Beatty & Williams,
2006). Local modifications to packaged software
may not be compatible with future releases. Thus,
firms face a dilemma: they must either forego the
new version’s improvements or re-implement
their customizations to make them compatible
with the new release. A firm that customizes and
enhances a FOSS application can eliminate its
maintenance liability by contributing its changes
to the project’s main source tree. If accepted by
the project’s maintainers, the modifications will be
included in subsequent releases of the software and
receive institutionalized support (Ven & Mannaert,
2008). A survey of embedded Linux developers
showed that a primary motivation for revealing
source code was to increase the probability of
“external development support” (Henkel, 2006).
Thus, a firm may be willing to pass a potentially-
valuable software innovation to the open source
community (and thus competitors) in order to
maximize compatibility with future releases of the
software package and to benefit from continued
maintenance and development by others.

A DYNAMIc MODEL OF
OPEN sOUrcE ADOPtION
AND DIsrUPtION

Open source software has the potential to satisfy
the conditions discussed previously for disrup-
tion. Although most FOSS projects are initially
less capable than their commercial counterparts,
the lack of licensing fees makes FOSS attractive
to cost-sensitive users. And although being a
low-price alternative to an existing technology is
typically insufficient to disrupt existing markets,

233

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

lead-user contribution of source code provides
FOSS business applications with a mechanism
to improve over time. We propose here to model
the process of FOSS disruption as two distinct
stages: an initial incubation stage (I-Stage) and
a subsequent snowball stage (S-Stage). During
the I-Stage, the software is developed and refined
until it achieves a threshold level of functionality
and compatibility with existing practices. These
improvements along the organizational adopt-
ability dimension may permit the software to
attract a critical mass of adopters. Rogers (1995)
defines “critical mass” as the level of adoption
that ensures that the innovation’s further rate of
adoption is self-sustaining. As we discuss below,
the notion of critical mass in our model is more
specific: it triggers the transition from the I-Stage
to the S-Stage. The S-Stage is characterized by
gradual, but cumulatively significant changes in
both the adoption and improvement mechanisms.
These changes are similar in scope to the distinct
pre- and post-critical mass “diffusion regimes”
identified by Cool, Dierickx, & Szulanski (1997).
The change in adoption mechanism occurs as
attributes of organizational adoptability (that is,
properties of the technology itself) become rela-
tively less important than attributes of community
adoptability. For example, adoption beyond a
niche typically requires what Moore (2002) calls

a “whole product solution”—the provision of
complementary products (such as middleware
for connections to existing systems) and services
(such as consulting and education) from propagat-
ing organizations. The change in improvement
mechanism typically occurs as the development
process shifts from developers to lead-users and
from a small, cohesive team to a large, heteroge-
neous community (Long & Siau, 2007).

The two stages of our model can be conceived
as a specific trajectory through the quadrants of
the Adoption Grid shown in Figure 3. First, the
I-Stage results in development effort that moves
the technology from the experimental quadrant
to the niche quadrant. The key to this transition
is a threshold increase along the organizational
adoptability dimension. Second, in the absence
of barriers such as prior technology drag, the
S-Stage results in improvements that move the
technology from the niche quadrant to the domi-
nant technology quadrant. Increasing returns and
determinants of community adoptability, rather
than the intrinsic attributes of the technology,
drive adoption during the S-Stage.

Why then is all FOSS not disruptive? Despite
the advantages of low cost and flexibility, most
FOSS projects fail to achieve adoption beyond
the original development team and leave the
experimental quadrant. Of the tens of thousands

Figure 3. A Dynamic Model of Adoption and Disruption

234

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

of software development projects hosted on
SourceForge.net, a central repository for FOSS,
only a small proportion are viable products with
established niche markets (Hunt & Johnson,
2002). According to one analysis, “the typical
[SourceForge.net] project has one developer, no
discussion or bug reports, and is not downloaded
by anyone” (Healy & Schussman, 2003, p. 16). The
difficulty development projects encounter moving
from the experimental to niche quadrants during
I-Stage development should come as no surprise.
Success in the I-Stage requires that “somebody”
make significant investments to provide a pure
public good of an uncertain value.

For the small proportion of FOSS projects
that attract a critical mass of adoption, the inter-
nal mechanisms used to achieve success during
the I-Stage are seldom transparent and can vary
significantly from project to project. In many
prominent FOSS projects, the threshold level of
organizational adoptability was achieved through
the efforts of a single individual or by a small
group of hackers. As noted above, the incentives
for such investments are often highly idiosyncratic.
In other cases, the threshold level of organizational
adoptability was achieved when the property rights
holder granted the source code for an established
product to the FOSS community. A more deliberate
and increasingly common means of achieving a
high level organizational adoptability for a new
FOSS product is for a for-profit firm to develop
a the product under an open source license with
the expectation of selling complementary com-
mercial products and services (Dahlander, 2005).
Regardless of the internal mechanisms of the I-
Stage, some FOSS projects rate sufficiently high
along the organizational adoptability dimension
to attract a critical mass and make the transition
to the S-Stage.

We define the transition from the I-Stage to
the S-Stage in terms of a critical mass of adopt-
ers (rather than a critical level of functionality or
relative advantage) because of the importance
of adoption in the improvement of FOSS. As

in the I-Stage, development during the S-Stage
requires individuals to make investments in a
pure public good. However, compared to the I-
Stage, the scale of S-Stage investments is much
lower, reciprocity is more easily observable, and
value of the final outcome is much more certain.
Although only a small proportion of adopters
of the most successful FOSS projects actually
contribute code, non-developers may contribute
to the project in other important ways, such as
clarifying requirements, submitting bug reports,
or providing valuable knowledge to other users
through discussion forums and mailing lists.
Even users who do nothing other than download
the software (and thus apparently free ride on
the efforts of project participants) can contribute
incrementally to the increasing returns associated
with FOSS adoption because the decision by
providers of complementary products to support
a particular FOSS project often depends critically
on the size of the installed base of users.

It is important to note that these indirect increas-
ing returns to adoption in FOSS are independent
of any direct network benefits associated with
the technology itself. Thus, a project such as the
Apache web server can achieve dominance due to
learning-by-using during the S-Stage even though
the software itself exhibits only weak network
benefits.1 Conversely, the presence of increasing
returns in the incumbent market can prevent S-
Stage improvement for a new technology. This can
occur if the market has already tipped in favor of
an incumbent or if several similar and competing
technologies split the pool of early adopters with
the result that no technology achieves critical
mass.

Ex PosT PrEDIctION:
FOss cAsE stUDIEs

We assess the predictive value of our model by
examining the development and adoption histories
of a number of well-known FOSS projects. The

235

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

flow chart in Figure 3 summarizes the main deter-
minants of adoption and disruption that our model
posits in terms of four sequential questions: (1)
Does the software have sufficient organizational
adoptability to attract a niche of adopters? (2) Does
a mechanism for S-Stage improvement exist that
is subject to increasing returns to adoption? (3)
Are there significant barriers to an S-Stage transi-
tion, such as prior technology drag? (4) Is there a
competing product with similar advantages that
divide community attention and resources?

the Apache Web server

One of the earliest freely available web servers
was developed by a group at the National Center
for Supercomputer Applications (NCSA), a re-
search lab sponsored by the US government. The
market for web servers developed quickly at the
start of the Internet boom in the early 1990s and
several core members of the NCSA web server
development team left NCSA to join Netscape, a
commercial developer of web browser and server
software. By October 1994, Netscape’s Commu-
nications Server 1.0, was selling for $1,495 while
its Commerce Server 1.0 was selling for $5,000.2
The NCSA web server continued to be both popu-
lar and freely available; however, the loss of key
personnel meant that the mechanism for collecting
and applying updated excerpts of source code (or
“patches”) ceased to function effectively. In 1995,
an independent web site developer named Brian
Behlendorf and a small group of developers took
over responsibility for managing patches and later
that year they released “a patchy server”. By 2005,
Apache was running on roughly 70% of all web
servers (Netcraft Inc., 2005).

The transition from the experimental to niche
quadrant for the NCSA server occurred due to
development subsidized by the US government.
As both the NCSA and Netscape web servers
had similar functionality (and development
teams), the NCSA server’s relative advantage
in organizational adoptability was initially due

to its low cost and its ability to run on multiple
server platforms. In contrast, Apache’s S-Stage
transition to market dominance can be attributed
to improvements in its community adoptability.
First, the emergence of standard protocols for
content (HTML), transfer between web servers
and browsers (HTTP) and eventually security
(SSL) eliminated the risk of a single firm con-
trolling both sides of a of a two-sided network
(Parker & Van Alstyne, 2005). Open standards
meant that all web servers were essentially com-
patible with all web browsers, thus eliminating
an important sources of prior technology drag.
Second, Apache’s architecture was designed to
be highly modular. The flexibility provided by
modularity was essential during the period when
the concept of a “web server” was being continu-
ously redefined. Complementary modules were
developed, such as mod_ssl, which permitted the
Apache web server to draw on the encryption and
authentication services of the OpenSSL package
to provide secure transactions. In their survey of
adoption of security-related modules by Apache
users, Franke and von Hippel (2005) found that
lead-user development played an important role
in the provision of modules. Although only 37%
of users in the sample reported having sufficient
programming skills within their server mainte-
nance groups to modify Apache source code (that
is, to exploit the innovation toolkit), and although
less than 20% of the respondents reported making
actual improvements to the code, 64% of users
were able and willing to install modular enhance-
ments to the web server developed by lead-users. A
third element in Apache’s increase in community
adoptability during the S-Stage was the emergence
of a well-regarded governance mechanism for
the web server project. The Apache community
(formalized in 1999 as the Apache Foundation)
facilitated inputs by lead-users through effective
patch management and emerged as a credible
sponsor of the project. The Apache Foundation
has since become the sponsoring organization for
a large number of FOSS projects, many of which

236

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

have no direct relationship to web servers. Simi-
larly, the O’Reilly Group, a publisher of technical
books, contributed to the expectation that Apache
would become dominant by promoting books
describing the use of the Apache web server in
concert with the Linux operating system, MySQL
database and the Perl/Phython/PHP scripting
languages. Combined with the Linux operating
system, these tools comprise the “LAMP stack”
of complementary FOSS applications.

Eclipse

Eclipse is an open source development framework
used for writing software in Java and other stan-
dardized programming languages. The product
was originally developed commercially by Object
Technology International (OTI) but was acquired
by IBM in 1996 as a replacement for VisualAge,
IBM’s own commercial development environ-
ment. IBM subsequently invested an estimated
$40 million in further refinements to Eclipse.
However, rather than releasing it as a commer-
cial product, IBM granted the source code to the
Eclipse Foundation in 2001 (McMillan, 2002)
and has since remained a major supporter of the
Eclipse project (Babcock, 2005). By late 2005,
Eclipse had acquired a market share in the inte-
grated development environment (IDE) market
of 20-30% and continues to grow, primarily at
the expense of incumbent commercial products
such as Borland’s JBuilder and BEA’s WebLogic
Workshop (Krill, 2005).

Eclipse’s I-Stage development resulted from
the commercial development efforts of OTI and
IBM. At the time that Eclipse was converted to
a FOSS project, it already compared favorably
along the organizational adoptability dimension to
enterprise-level tools from incumbent commercial
vendors. Eclipse’s S-Stage improvement has been
rapid, due largely to the sponsorship of IBM, the
relative absence of prior technology drag (due to
support for standardized computer languages), the
modularity of Eclipse, and the accessibility of the

innovation toolkit to the professional programmers
that constitute the Eclipse user base. In addition,
the reaction of commercial incumbents to the
entry of Eclipse both increased its community
adoptability and reduced barriers to adoption.
Rather than compete with a high-performing FOSS
product, incumbents such as Borland and BEA
have ceded the basic IDE market to Eclipse and
have repositioned their commercial products as
complements to the Eclipse core. The membership
of these former competitors in the Eclipse Founda-
tion has increased expectations that the Eclipse
platform will become a dominant standard.

MysqL relational Database

MySQL is a FOSS relational database management
system (RDBMS) controlled by MySQL AB, a
for-profit firm that retains copyright to most of
the program’s source code. Owing to MySQL’s
dual license, the program is available under both
the GNU General Public License (GPL) and a
commercial software license. Unlike the GPL,
the commercial license enables firms to sell
software that builds on or extends the MySQL
code. MySQL’s I-Stage development depended
primarily on the development effort of the found-
ing members of MySQL AB. Once in the niche
quadrant, however, MySQL competed with other
multiplatform FOSS RDBMSs, notably Postgr-
eSQL and Interbase (now Firebird). In terms of
organizational adoptability, both PostgreSQL and
Interbase initially had significant technical advan-
tages over MySQL, including support for atomic
transactions and stored procedures. However, such
features mattered less to developers of dynamic
web sites than stability, speed, and simplicity—
particular strengths for MySQL. MySQL’s edge
over PostgreSQL in terms of these attributes led to
MySQL’s inclusion in the LAMP stack, an impor-
tant factor in attracting complementary products
such as middleware and education materials.

The impact of prior technology drag on the
community adoptability of MySQL has been

237

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

relatively small, despite the presence of well-
established incumbents such as Oracle, IBM, and
Microsoft in the client/server database market.
One explanation for this is “new market disrup-
tion” (Christensen, 1997). Dynamic website
development was a relatively new activity that
was not particularly well served by the com-
mercial incumbents. Many of the small firms
and experimental web design units within larger
firms had neither the resources nor the functional
imperative to acquire enterprise-level client/server
databases and thus favored the simpler, low-cost
alternatives offered by the open source commu-
nity. In addition, the standardized use of SQL by
all RDBMSs and existing middleware standards
such as ODBC, JDBC, and Perl DBI minimized
prior technology drag. According to the MySQL
AB website, the program is now the world’s most
popular database.

Much of MySQL’s improvement along the
organizational adoptability dimension resulted
from the continued development efforts of MySQL
AB (based, ostensibly, on feedback from lead-
users). However, as MySQL became more widely
adopted, it also attracted and incorporated comple-
mentary technologies from other FOSS projects.
For example, InnoDB is a separate FOSS project
that provides a more sophisticated alternative to
MySQL’s MyISAM storage engine. Integration
with InnoDB permitted MySQL to close the gap
with PostgreSQL and Interbase by offering many
of the advanced RDBMS features absent from
MySQL’s original storage engine.

Despite its improvements, however, a clear
demarcation remains between the enterprise-
level RDBMS segment dominated by Oracle
and IBM and the middle and low-end segments
now dominated by MySQL. The heterogeneity
in consumer requirements responsible for market
segmentation generally becomes less important as
performance of products in all segments exceed
customer requirements (Adner, 2002). However,
the S-Stage improvement that would permit
MySQL to challenge enterprise-level incumbents

has likely been adversely affected by competition
from other FOSS databases. SAP AG released its
SAP DB database under an open source license
2000. Shortly thereafter, Computer Associates
transferred its Ingres database (a commercial
predecessor of PostgreSQL) to the open source
community. The coexistence of these mature,
enterprise-level FOSS databases created com-
petition for database specialists within the open
source community and has made it difficult of
any of the products to achieve the critical mass
required for S-Stage improvement. At one point,
MySQL entered into an agreement with SAP to
rebrand SAP DB as MaxDB and “combine the
performance and stability of MySQL and the
enterprise-level functionality of [SAP DB].”1
However, this agreement was terminated in 2007
and SAP DB as reverted to a closed-source license
under SAP’s control.

OpenOffice

The OpenOffice suite of desktop productivity
tools (a word processor, spreadsheet, and pre-
sentation design program) is meant to compete
with Microsoft’s dominant Office suite. The
original product, known as StarOffice, was cre-
ated by StarDivision, a commercial firm, but
was purchased by Sun Microsystems in 1999.
Sun released the source code for the product to
the OpenOffice project in 2000, but continues to
develop a commercial version of StarOffice that
includes a number of proprietary enhancements
to the OpenOffice core. The I-Stage development
of OpenOffice thus resembles the early develop-
ment of Eclipse: a fledgling but viable product
was purchased by a large software vendor and
released as a fully functional FOSS project. The
organizational adoptability of the niche product
rested on two advantages over Microsoft Office:
the ability to run on multiple platforms and the
absence of a licensing fee. Despite its promising
start, however, OpenOffice remains in the niche
quadrant for three reasons. First, Microsoft Of-

238

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

fice imposes significant prior technology drag.
Although OpenOffice is almost fully compatible
with Microsoft Office, the lack of full compat-
ibility imposes costs on those who choose not
to participate in the dominant Microsoft Office
network. Microsoft, as the incumbent technology
standard, has strong incentives to prevent Ope-
nOffice from achieving complete compatibility
with Microsoft Office’s proprietary file formats
(Hill, 1997). Second, OpenOffice suffers from
a relative disadvantage in the number and qual-
ity of complementary products such as learning
materials, templates, and add-ins. Third, and
more controversially, the widespread piracy of
Microsoft Office, particularly in the developing
world, has partially neutralized OpenOffice’s
cost advantage. Indeed, Microsoft’s reluctance
to impose stricter piracy controls on its Office
suite amounts to a versioning strategy to combat
the emergence of disruptive alternatives (Farrell
& Saloner, 1986).

Of the relatively small number of adopters of
OpenOffice who have overcome the prior technol-
ogy drag imposed by the dominant commercial
incumbent, many are non-programmers and are
therefore unable to enhance OpenOffice’s source
code (Brown, 2005). Although we argued above
that firm-level contributions eliminate the need
for users to also be developers, the components
of the OpenOffice suite are primarily intended for
individual use within the firm, not firm-level use.
Firms may be willing to underwrite improvements
to an enterprise database or web server at the
core of their enterprises. To this point, however,
they have been less willing to pay to fix stability
problems or interface annoyances in a PowerPoint
clone. The barriers to adoption imposed by Mi-
crosoft Office combined with the lack of strong
mechanisms for firm- or individual-level user
development prevent OpenOffice from achieving
the S-Stage improvement required for transition
to the dominant technology quadrant. Barring an
exogenous and significant increase in community
adoptability—for example, widespread legislation

mandating the use of non-proprietary file for-
mats by government agencies—OpenOffice will
remain in the niche quadrant and fail to achieve
dominant status.

summary of the Ex Post
case studies

Table 1 summarizes each of the FOSS examples in
terms of the mechanisms used for I-Stage devel-
opment and S-Stage improvement. Both Apache
and MySQL have already achieved disruption
in their markets (or market segment in the case
of MySQL). Eclipse is almost certain to achieve
dominance, given the supportive response from
commercial incumbents and the potential for
significant learning-by-using effects in a market
in which all users are software developers. Ope-
nOffice, in contrast, illustrates the failure of a
major FOSS project to ignite the virtuous cycle of
S-Stage adoption and improvement despite offer-
ing a base level of functionality that is comparable
to commercial competitors.

The I-Stage investment required to move a
technology or product from the experimental quad-
rant to the niche quadrant is significant. Grants
to the FOSS community of commercial products
with established niches have become increasingly
common, especially for products that have failed to
achieve the dominant position in tippy markets. For
example, both SAP DB and Ingres were mature,
enterprise-level products competing in a market
segment dominated by Oracle and IBM prior to
being converted to FOSS. Such grants are seen
by some as a way for commercial software firms
to abandon underperforming products without
alienating the product’s installed base. In the cases
of Eclipse and StarOffice, the contributors’ moti-
vations may have been more strategic, prompted
by direct competition with Microsoft.

Once in the niche quadrant, the forces of
community adoption appear to be more impor-
tant than the overall organizational adoptability
of the technology. S-Stage improvement leads

239

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

to increasing adoption and increasing adoption
feeds further S-Stage improvement. For Apache,
Eclipse, and, to a lesser extent, MySQL, lead-
user development continues to be the dominant
improvement mechanism because many users of
such products have strong technical skills. Apache
and MySQL benefit from firm-level contributions,
since they occupy critical roles in a firm’s tech-
nology infrastructure. On the other hand, all three
of the disruptive FOSS projects have benefited
from open industry standards, which reduced or
eliminated prior technology drag.

Community adoptability becomes more dif-
ficult to assess when multiple FOSS projects
compete against one another. The probability
that multiple FOSS projects achieve niche sta-
tus within the same market segment increases
as commercial products are converted to FOSS
projects. For example, the conversion of Interbase
to an FOSS project in 2000 by Borland created
competition within the mid-tier FOSS database
segment for both users and developers. Much the
same problem exists in the high-end segment due

to the conversion of SAP DB and Ingres to FOSS
licenses. As the economics of technology standards
literature predicts, and the confusion around SAP
DB/MaxDB vividly illustrates, predicting the
dominant technology in the face of competing
standards is extremely difficult.

Ex ANTE PrEDIctION: crM AND
tHE tHrEAt OF FOss DIsrUPtION

CRM software enables firms to develop, docu-
ment, and improve relationships with their cus-
tomers. At its most basic level, CRM software
provides the data and interfaces necessary for
sales force automation. More generally, however,
CRM “requires a cross-functional integration
of processes, people, operations, and marketing
capabilities that is enabled through information,
technology, and applications” (Payne & Frow,
2005, p. 168). CRM is thus similar to ERP and
SCM systems in terms of its scope, organizational
impact and technological requirements. All three

Table 1. Summary of FOSS cases

FOSS project Mechanism
for I-Stage

development

Key attributes of
organizational

adoptability (niche
quadrant)

Mechanism for S-Stage
improvement

Key attributes of community
adoptability (dominant
technology quadrant)

Apache web
server

Grant of web server
code from NCSA

Low cost, modular struc-
ture, multiplatform

Lead-user development
by web administrators

Adherence to emerging W3 stan-
dards, sponsorship by the Apache
Foundation, increased expecta-
tions due to central role in the
LAMP stack

Eclipse integrated
development
framework

Grant of code by
IBM; subsequent
investments by IBM
in the FOSS project

Low cost, enterprise-level
functionality

Commitment to develop-
ment by major com-
mercial tool vendors;
lead-user development

Adherence to standards, multiplat-
form, development of modules for
multiple languages, sponsorship
of IBM

MySQL relational
database

Development effort
by founders of
MySQL AB

Low cost, speed, simplic-
ity

Lead-user requests for
features, development by
MySQL AB

Integration into LAMP stack,
formal sponsorship of MySQL
AB, informal sponsorship through
O’Reilly LAMP books

Open Office per-
sonal productivity
software

Grant of source code
by Sun Microsys-
tems

Low cost, basic function-
ality, basic compatibility
with Microsoft Office file
formats

Development by Sun
(StarOffice)

Slow adoption due to prior tech-
nology drag (network benefits,
complementary assets), some
incompatibility with MS Office
formats

240

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

types of enterprise software involve significant
organization-wide commitments to shared pro-
cesses and infrastructure. Moreover, all three
provide support for important, but ultimately non-
strategic, business processes. We therefore believe
that our model and analysis extend beyond CRM
and apply to enterprise software generally.

Commercial CRM software firms can be di-
vided into three major strategic groups. The first
group consists of the three leading CRM vendors:
SAP, Oracle, and Siebel (now owned by Oracle).
These firms target large organizations with com-
plex, high-performance CRM implementations.
The second group consists of a larger number of
smaller vendors that target small-to-medium size
businesses (SMB) and includes Microsoft, Pivotal,
Onyx, and SalesLogix (Close, 2003). The third
strategic group consists of software-as-a-service
(SaaS) CRM vendors, such as Salesforce.com.
Application service providers rent access to SaaS-
enabled CRM software over the Internet for a
subscription fee. Salesforce.com actively targets
the SMB segment with particular emphasis on
non-users (i.e., SMBs that have yet to adopt any
CRM product).

The CRM industry’s separation into strategic
groups is consistent with segmentation theories
in information goods’ markets. Suppliers of in-
formation goods incur high initial development
costs in order to produce the first copy of the
product. Once produced, however, the marginal
cost of producing an additional copy is effectively
zero and suppliers of information goods face no
physical limitations on production capacity. Con-
sequently, the competitive equilibrium price of an
undifferentiated information good available from
multiple suppliers approximates the good’s zero
marginal cost (Shapiro & Varian, 1999). Suppli-
ers in information markets therefore risk a cata-
strophic price collapse if their products become
commoditized. Such collapses have occurred in
several markets, including web browsers, ency-
clopaedias, and online stock quotes. In general,
there are three generic strategies for avoiding

ruinous price-based competition in markets for
information goods: differentiation, domination,
and lock-in (Shapiro & Varian, 1999). Suppliers
seek to avoid commoditization by differentiat-
ing their offerings based on some combination
of their own capabilities and the heterogeneous
requirements of customers. Accordingly, Oracle,
and SAP compete on the advanced features, scal-
ability, and reliability of their CRM software.
Since many SMBs are unwilling to pay for these
attributes, an opportunity exists for lower cost,
lower functionality mid-tier CRM vendors (Band
et al., 2005). Domination, in contrast, requires
cost leadership through supply-side economies of
scale in fixed-cost activities such as administra-
tion, distribution and marketing. For this reason,
competition within a segment often leads to con-
solidation. Finally, first movers may be able to
retain a degree of pricing power by erecting high
switching costs that lock-in customers. Lock-in is
common in enterprise software markets because
of the high switching costs that flow from dif-
ferences in underlying data models and formats,
and the existence of indirect increasing returns to
adoption. Moreover, the magnitude of the ongo-
ing revenue streams generated from upgrades,
customization, and integration provide explicit
disincentives for vendors to reduce switching
costs. A study of packaged enterprise software by
Forrester estimated that the annual cost for such
maintenance activities is 2.75 times the initial
license fee (Gormley et al,, 1998).

Commercial CRM software vendors have
attempted each of the three generic strategies
for avoiding price-based competition: they have
differentiated themselves into high- and mid-
range segments, moved towards domination of
a segment by consolidation, and erected high
switching costs through proprietary data models
and product-specific training. The result is a rela-
tively stable two-tiered CRM market. However,
the stability of this market structure is threatened
by three potential sources of disruption. The first
is prototypical, low-end disruption from contact

241

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

management products, such as Maximizer and
Act. Although such tools are superficially similar
to CRM software (they contain customer data,
for example), contact management products are
intended for single users or workgroups and do
not provide the enterprise-wide integration of true
CRM tools. The second and third potential sources
of disruption are business model disruptions rather
than product disruptions. Business model disrup-
tion alters the way in which an existing product is
offered to customers rather than defining a new
product (Markides, 2006). The SaaS model for
CRM pioneered by Salesforce.com constitutes
a business model disruption because it permits
customers to use CRM without installing and
maintaining CRM software. Software providers
service all their clients from a single central re-
source over the Internet. The lower up-front cost
of SaaS to consumers leads to increased adoption,
which in turn leads to greater economies of scale
for the software provider. This virtuous cycle of
adoption may ultimately permit Salesforce.com
to achieve market dominance. The third candi-
date for disrupting the CRM market is emerging
FOSS enterprise applications, such as Hipergate,
Vtiger, Compiere, CentricCRM, and SugarCRM.
Of these FOSS entrants, SugarCRM is currently
the clear frontrunner.

According to our dynamic model, both low-end
disruption (by Act and Maximizer) and business
model disruption by a single firm (e.g., Salesforce.
com) are unlikely. The I-Stage development re-
quired to upgrade existing contact management
packages to full CRM functionality requires a
significant investment by either the software’s
developer or by others. However, both the mid- and
high-end segments of the CRM market are already
contested by firms with mature products and in-
stalled customer bases. There is little incentive for
Act or Maximizer to make large investments in
order to enter these highly competitive segments.
The community adoptability of Salesforce.com,
in contrast, is bounded by the ease with which
competitors can match both its SaaS delivery

mechanism and its pricing model. The presence
of high switching costs means that the structure of
the commercial CRM market will change more as
a result of consolidation than disruption by other
vendors of closed-source software.

Disruption by a FOSS CRM program, such
as SugarCRM, is more likely. SugarCRM is
a dual-licensed application built on top of the
Apache-MySQL-PHP stack. The application is
entirely web-based, allowing it to be offered in
SaaS mode, much like Salesforce.com. Sugar-
CRM’s functionality, simplicity, and low cost
have allowed it to establish a position in the niche
quadrant. According to SugarCRM’s website,
the product has been downloaded more than 5.2
million times.3

Professional software developers backed by
venture financing undertook the I-Stage develop-
ment of SugarCRM. The founders of SugarCRM
Inc., all former employees of a commercial CRM
vendor, secured more than $26M in three rounds
of financing in the eighteen months following the
company’s incorporation in 2004. Given its estab-
lishment as a niche product, the question is whether
SugarCRM possess a plausible mechanism for
S-Stage improvement? Following our ex post
analyses from the previous section, we decompose
this question into two parts: (1) whether com-
mercial and open source competitors in the CRM
market impose significant barriers to community
adoptability, and (2) whether the SugarCRM com-
munity has the capacity to improve the product to
a point to where it is functionally comparable to
the offerings from mid-tier incumbents.

barriers to community Adoptability

The lack of direct network benefits in the CRM
market means that the primary source of prior
technology drag is switching costs. The use of
proprietary data models and user interfaces for
CRM software mean that changing to a different
CRM product involves significant data migration
and retraining. Consequently, SugarCRM will

242

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

appeal to non-users—firms that have been to this
point unable to justify the cost of commercial
CRM products. However, some firms that have
already adopted CRM may perceive that they
are excessively dependent on their current CRM
vendor and may seek to avoid long-term vendor
hold-up (an extreme form of lock-in) by switching
to a FOSS CRM provider.

Extreme vendor dependence also arises in the
enterprise software market due to the irrevers-
ibility of investments. Enterprise applications
typically exhibit increasing returns to adoption
within the firm. Specifically, many of the benefits
of enterprise systems accrue from sharing data
across multiple business processes and functional
areas. The benefits of integration are difficult to
assess during a localized pilot or trial and thus
implementation of an application such as CRM
requires a significant, organizational-wide com-
mitment in training and process redesign. The risk
of making such large-scale investments and then
being stranded with a non-viable technology may
lead some firms to favor well-established CRM
vendors, such as Oracle and SAP. However, FOSS
licensing and access to source code also reduce
vendor dependence. The risk of being stranded
with an orphaned FOSS technology depends more
on the viability of an entire community of adopters
than on the viability of a single firm. The relatively
large amount of venture financing accumulated
by SugarCRM Inc. has established it as a credible
sponsor of the SugarCRM community and has
reinforced expectations that the community of
adopters will continue to grow.

Mechanisms for s-stage
Improvement

In our view, FOSS CRM has a plausible mecha-
nism for S-Stage improvement. New adopters of
CRM and firms seeking to decrease their vendor
dependence will help FOSS CRM achieve a
critical mass. As discussed previously, these us-
ers have incentives to improve the product and

contribute their improvements back to the main
project. The SugarForge.org website provides a
forum for SugarCRM developers to share their
enhancements with others. To cite one of many
examples on SugarForge, a developer working
for a call center recently posted the source code
for a small program that integrates SugarCRM
with the Asterisk telephony application. Such
incremental enhancements by lead-users can help
FOSS CRM make the transition from the niche
quadrant to the dominant quadrant and disrupt
the commercial CRM market.

Whether SugarCRM in particular will disrupt
the commercial CRM market is more difficult
to answer for two reasons. First, heterogeneous
requirements across different vertical markets
(e.g., financial services and consumer products)
may lead to a large number of vertical-specific
customizations. In these circumstances, the com-
munity may decide to fork the code into different
projects for different vertical markets rather than
attempt to manage the complexity of a single large
code base. The resulting fragmentation of the de-
veloper base threatens the S-Stage development
of a FOSS project. This risk is illustrated by the
emergence of CiviCRM, a FOSS CRM intended
specifically for non-profit and non-governmental
organizations. Second, the economic opportunities
facing incumbent commercial CRM vendors are
at least as favorable as those facing SugarCRM
Inc. Any incumbent commercial vendor could
convert its application to a FOSS license and
rely on revenue from complementary products
and services to replace lost license revenue. At
this point, major CRM incumbent firms have the
benefit of larger installed bases and networks of
complements.

summary: Predicting
Disruption by FOss

As the flow chart in Figure 4 shows, SugarCRM
satisfies the conditions in our model for successful
disruption. However, the flow chart also suggests

243

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

Figure 4. A flow chart to predict disruption by FOSS

244

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

possible defensive responses by commercial in-
cumbents to the emergence of niche FOSS com-
petitors. Commercial software vendors may be
able to erect barriers to community adoptability by
maximizing prior technology drag or by attempt-
ing to control the ecology of complementors that
support the new entrant. A possible example of the
latter response is Oracle’s acquisition of InnoDB.
Commercial vendors may also release (or threaten
to release) a competing FOSS or “community” ver-
sion of their products. For example, Sun’s release
of its Unix-based operating system, OpenSolaris,
may have been an attempt to further fragment
the open source community that develops and
maintains Linux. Oracle’s scaled-down Express
Edition provides price-sensitive users of client/
server database with a free alternative to FOSS
products such as MySQL. The requirement to
achieve a critical mass of adoption before S-Stage
improvement can become self-sustaining means
that such tactics by commercial incumbents can
be effective in slowing or preventing disruption
by FOSS entrants.

IMPLIcAtIONs FOr tHEOrY
AND PrActIcE

In this paper, we present a dynamic model of
adoption and disruption that can help managers
better understand the process of disruption by
free and open source software. We illustrate the
application of the model by analyzing the history
of four well-known FOSS projects and applying
the model to the case of SugarCRM, a FOSS CRM
project. We predict that the FOSS model of pro-
duction will disrupt the existing commercial CRM
market; however, we cannot make theory-based
predictions about whether a particular FOSS CRM
project, such as SugarCRM, will be disruptive.
SugarCRM currently rates highest among FOSS
CRM products along the dimension of community
adoptability. However, a measure of Christensen’s
influence on practice is that firms are now more

aware of the effects of disruptive innovations.
Commercial incumbents facing disruption may act
preemptively to undermine SugarCRM’s sources
of relative advantage or to displace it entirely as
the leading FOSS contender.

The model contributes to the developing theory
of disruptive innovation (Christensen, 2006; Dan-
neels, 2004) by explaining the disruption process
in terms of an established model of adoption. We
build on the synthesis provided by Fichman and
Kermerer’s (1993) Adoption Grid to identify two
temporally distinct stages that must occur before
a FOSS project can move from an experimental
to dominant level of adoption. Our model can be
seen as a middle-range theory that describes the
adoption of a particular technology (FOSS) in a
particular context (enterprise applications such
as CRM, ERP, and SCM).

Our work suggests several avenues for future
theoretical and empirical research. First, our
hypothesized inflection point between I-Stage
and S-Stage development challenges the no-
tion of a monolithic FOSS production method.
Several researchers have noted inconsistencies
in cross-sectional studies of practices as they are
embodied in a few FOSS successes versus those
in the vast majority of FOSS projects (Niederman,
et al., 2006; Healy & Schussman, 2003). We be-
lieve that our theoretical understanding of many
aspects of the FOSS phenomenon not addressed
in this paper—including governance structures,
software development techniques, and innovation-
generating processes—will have to become more
dynamic, temporal, and consequently contingent.
Moreover, longitudinal studies of FOSS showing
dramatic shifts in, for example, project governance
and internal project dynamics, are required to
support our hypothesis of a two-stage progression
from obscurity to dominance.

A second area for future research is the devel-
opment of a better understanding of the expand-
ing role of user-firms in FOSS development. For
example, much of the economic rationale for
firm-level lead-user development rests on the

245

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

assumption that a user-firm can work within the
FOSS community to have the firm’s modifications
and enhancements incorporated into a particular
project. However, it is not clear how conflicting
objectives between multiple firms within a FOSS
project might be resolved or whether firms have
incentives to behave strategically within the
project. In this way, the dynamics of firm-level
participation in FOSS resemble those of firm-
level participation in standard-setting bodies
(Foray, 1994).

Finally, the policy implications of our two-stage
model have not been addressed. As our analysis
of existing FOSS projects show, some valuable
software applications become public goods by
accident. Substantial sunk investments are made
during the I-Stage with the expectation that the
resulting software will be a commercially-viable
private good. The public policy implications of
subsidizing I-Stage development in order to exploit
S-Stage expansion and refinement have not been
explored, but are worthy of further research.

AcKNOWLEDGMENt

The authors acknowledge the Social Sciences and
Humanities Research Council of Canada (SSHRC)
Initiatives for the New Economy (INE) program
for financial support.

rEFErENcEs

Adner, R. (2002). When are technologies disrup-
tive? A demand-based view of the emergence
of competition. Strategic Management Journal,
23(8), 667–688. doi:10.1002/smj.246

Arrow, K. (1970). Social choice and individual
values (2nd ed.). New Haven, CT: Yale University
Press.

Attewell, P. (1992). Technology diffusion and
organizational learning: the case of business
computing. Organization Science, 3(1), 1–19.
doi:10.1287/orsc.3.1.1

Babcock, C. (2005). Eclipse on the rise. [Electronic
version]. InformationWeek. Retrieved January
29, 2006.

Band, W., Kinikin, E., Ragsdale, J., & Harrington,
J. (2005). Enterprise CRM suites, Q2, 2005: Evalu-
ation of top enterprise CRM software vendors
across 177 criteria. Cambridge, MA: Forrester
Research Inc.

Beatty, R., & Williams, C. (2006). ERP II: Best
practices for successfully implementing an ERP
upgrade. Communications of the ACM, 49(3),
105–109. doi:10.1145/1118178.1118184

Benkler, Y. (2002). Coase’s penguin, or, Linux
and the nature of the firm. The Yale Law Journal,
112(3), 1–42. doi:10.2307/1562247

Brown, A. (2005). If this suite’s a success, why is
it so buggy? [Electronic version]. The Guardian,
Retrieved March 15, 2006.

Christensen, C. M. (1997). The innovator’s
dilemma: When new technologies cause great
firms to fail. Boston, MA: Harvard Business
School Press.

Christensen, C. M. (2000). After the gold rush.
Innosight. Retrieved January 30, 2006.

Christensen, C. M. (2006). The ongoing process
of building a theory of disruption. Journal of
Product Innovation Management, 23(1), 39–55.
doi:10.1111/j.1540-5885.2005.00180.x

Close, W. (2003). CRM suites for North American
MSBs markets: 1H03 magic quadrant. Stamford,
CT: Gartner Inc. Markets.

246

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

Cool, K. O., Dierickx, I., & Szulanski, G. (1997).
Diffusion of innovative within organizations:
Electronic switching in the Bell system, 1971-
1982. Organization Science, 8(5), 543–560.
doi:10.1287/orsc.8.5.543

Dahlander, L. (2005). Appropriation and appropri-
ability in open source software. International Jour-
nal of Innovation Management, 9(3), 259–285.
doi:10.1142/S1363919605001265

Dahlander, L. (2007). Penguin in a new suit: A
tale of how de novo entrants emerged to harness
free and open source software communities. In-
dustrial and Corporate Change, 16(5), 913–943.
doi:10.1093/icc/dtm026

Danneels, E. (2004). Disruptive technology recon-
sidered: A critique and research agenda. Journal of
Product Innovation Management, 21(4), 246–258.
doi:10.1111/j.0737-6782.2004.00076.x

Dano, M. (2008). Android founder makes the
case for Google’s mobile strategy. RCR Wireless
News, 27(34), 1–8.

Davis, F. (1989). Perceived usefulness, perceived
ease of use, and user acceptance of information
technology. MIS Quarterly, 13(3), 318–339.
doi:10.2307/249008

Farrell, J., & Saloner, G. (1986). Installed base and
compatibility: Innovation, product preannounce-
ments, and predation. The American Economic
Review, 76(5), 940–955.

Fichman, R. G. (2000). The diffusion and assimi-
lation of information technology innovations. In
R. Zmud (Ed.), Framing the domains of IT man-
agement: Projecting the future through the past.
Cincinnati, OH: Pinnaflex Publishing.

Fichman, R. G., & Kemerer, C. F. (1993). Adop-
tion of software engineering process innovations:
The case of object orientation. Sloan Management
Review, 34(2), 7–22.

Fitzgerald, B. (2006). The Transformation of
Open Source Software. MIS Quarterly, 30(3),
587–598.

Foray, D. (1994). Users, standards and the eco-
nomics of coalitions and committees. Informa-
tion Economics and Policy, 6(3-4), 269–293.
doi:10.1016/0167-6245(94)90005-1

Franke, N., & von Hippel, E. (2003). Satisfying
heterogeneous user needs via innovation toolkits:
The case of Apache security software. Research
Policy, 32(7), 1199–1216. doi:10.1016/S0048-
7333(03)00049-0

Franke, N., von Hippel, E., & Schreier, M.
(2006). Finding commercially attractive user in-
novations: A test of lead user theory. Journal of
Product Innovation Management, 23(4), 301–315.
doi:10.1111/j.1540-5885.2006.00203.x

Gormley, J., W. Bluestein, J. Gatoff & H. Chun
(1998). The runaway costs of packaged applica-
tions. The Forrester Report, 3(5). Cambridge,
MA: Forrester Research, Inc.

Healy, K., & Schussman, A. (2003). The ecology of
open source software development. Open Source,
MIT. Working paper. http://opensource.mit.edu/
papers/healyschussman.pdf. Last accessed Janu-
ary 8, 2007.

Henkel, J. (2006). Selective revealing in open in-
novation processes: The case of embedded Linux.
Research Policy, 35(7), 953–969. doi:10.1016/j.
respol.2006.04.010

Hertel, G., Niedner, S., & Herrmann, S. (2003).
Motivation of software developers in open source
projects: an Internet-based survey of contributors
to the Linux kernel. Research Policy, 32, 1159–
1177. doi:10.1016/S0048-7333(03)00047-7

Hicks, C., & Pachamanova, D. (2007). Back-
propagation of user innovations: The open source
compatibility edge. Business Horizons, 50(4),
315–324. doi:10.1016/j.bushor.2007.01.006

247

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

Hill, C. W. L. (1997). Establishing a standard:
Competitive strategy and technological standards
in winner-take-all industries. The Academy of
Management Executive, 11(2), 7–25.

Himanen, P., Torvalds, L., & Castells, M. (2002).
The Hacker Ethic. New York: Random House.

Hitt, L., & Brynjolfsson, E. (1996). Productivity,
profit, and consumer welfare: Three different
measures of information technology’s value. MIS
Quarterly, 20(20), 144–162.

Hovav, A., Patnayakuni, R., & Schuff, D. (2004).
A model of internet standards adoption: The case
of IPv6. Information Systems Journal, 14(3), 265–
294. doi:10.1111/j.1365-2575.2004.00170.x

Hunt, F., & Johnson, P. (2002). On the Pareto
distribution of SourceForge projects. In Proceed-
ings of the Open Source Software Development
Workshop, Newcastle, UK (pp. 122-129).

Iacovou, C. L., Benbasat, I., & Dexter, A. S. (1995).
Electronic data interchange and small organiza-
tions: Adoption and impact of technology. MIS
Quarterly, 19(4), 465–485. doi:10.2307/249629

Katz, M. L., & Shapiro, C. (1994). Systems
competition and network effects. The Journal of
Economic Perspectives, 8(2), 93–115.

Krill, P. (2005). Borland upgrading IDE while
preparing for eclipse future. [Electronic version].
InfoWorld. Retrieved January 30, 2006.

Lerner, J., & Tirole, J. (2002). Some simple eco-
nomics of open source. The Journal of Industrial
Economics, 50(2), 197–234.

Liebeskind, J. P. (1996). Knowledge, strategy,
and the theory of the firm. Strategic Management
Journal, 17, 93–107.

Long, Y., & Siau, K. (2007). Social network struc-
tures in open source software development teams.
Journal of Database Management, 18, 25–40.

Lyons, D. (2004). Peace, love and paychecks.
[Electronic version]. Forbes. Retrieved January
30, 2006.

MacCormack, A. (2002) Siemens ShareNet:
Building a knowledge network. Harvard Business
School Publishing, Case 603036, Cambridge,
MA.

Markides, C. (2006). Disruptive innovation: In
need of better theory. Journal of Product Inno-
vation Management, 23(1), 19–25. doi:10.1111/
j.1540-5885.2005.00177.x

McMillan, R. (2002). Will Big Blue eclipse the
Java tools market? [Electronic version]. Java-
World. Retrieved January 27, 2006.

Moore, G. A. (2002). Crossing the chasm: Market-
ing and selling high-tech products to mainstream
customers (revised edition). New York: Harper-
Business Essentials.

Moore, G. C., & Benbasat, I. (1991). Development
of an instrument to measure the perceptions of
adopting an information technology innovation.
Information Systems Research, 2(3), 192–222.
doi:10.1287/isre.2.3.192

Morton, A. (2005). Lead Maintainer, Linux
Production Kernel. IT Conversations: SDForum
Distinguished Speaker Series. Retrieved January
31, 2006.

Netcraft Inc. (2005). October 2005 web server
survey. Retrieved December 5, 2006 from http://
news.netcraft.com/archives/2005/10/04/octo-
ber_2005_web_server_survey.html.

Niederman, F., Davis, A., Greiner, M., Wynn, D.,
& York, P. (2006). A research agenda for studying
open source I: A multi-level framework . Com-
munications of the AIS, 18(7), 2–38.

Parker, G. G., & Van Alstyne, M. W. (2005). Two-
sided network effects: A theory of information
product design. Management Science, 51(10),
1494–1504. doi:10.1287/mnsc.1050.0400

248

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

Payne, A., & Frow, P. (2005). A strategic frame-
work for customer relationship management. Jour-
nal of Marketing, 69(4), 167–176. doi:10.1509/
jmkg.2005.69.4.167

Poston, R., & Grabski, S. (2001). Financial impacts
of enterprise resource planning implementations.
International Journal of Accounting Information
Systems, 2(4), 271–294. doi:10.1016/S1467-
0895(01)00024-0

Rai, A., Ravichandran, T., & Samaddar, S. (1998).
How to anticipate the Internet’s global diffusion.
Communications of the ACM, 41(10), 97–106.
doi:10.1145/286238.286253

Ravichandran, T. (2005). Organizational assimila-
tion of complex technologies: An empirical study
of component-based software development. IEEE
Transactions on Engineering Management, 52(2),
249–268. doi:10.1109/TEM.2005.844925

Riemenschneider, C. K., Hardgrave, B. C., &
Davis, F. D. (2002). Explaining software devel-
oper acceptance of methodologies: A comparison
of five theoretical models. IEEE Transactions
on Software Engineering, 28(12), 1135–1145.
doi:10.1109/TSE.2002.1158287

Robey, D., & Boudreau, M. (1999). Accounting
for the contradictory organizational consequences
of information technology: Theoretical directions
and methodological implications. Information
Systems Research, 10(2), 167–185. doi:10.1287/
isre.10.2.167

Rogers, E. M. (1995). Diffusion of innovations
(4th ed.). New York, NY: The Free Press.

Shapiro, C., & Varian, H. R. (1999). Information
rules: A strategic guide to the network economy.
Cambridge, MA: Harvard Business School
Press.

Taylor, S., & Todd, P. A. (1995). Understanding
information technology usage: A test of compet-
ing models. Information Systems Research, 6(2),
144–176. doi:10.1287/isre.6.2.144

Tellis, G. J. (2006). Disruptive technology or vi-
sionary leadership? Journal of Product Innovation
Management, 23(1), 34–38. doi:10.1111/j.1540-
5885.2005.00179.x

Tingling, P., & Parent, M. (2002). Mimetic isomor-
phism and technology evaluation: Does imitation
transcend judgment? Journal of the Association
for Information Systems, 3(5), 113–143.

Ven, K., & Mannaert, H. (2008). Challenges
and strategies in the use of open source software
by independent software vendors. Information
and Software Technology, 50(9), 991–1002.
doi:10.1016/j.infsof.2007.09.001

von Hippel, E. (1998). Economics of product
development by users: The impact of ‘sticky’
local information. Management Science, 44(5),
629–644. doi:10.1287/mnsc.44.5.629

von Hippel, E. (2005). Democratizing innovation.
Cambridge, MA: MIT Press.

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Weimer, D., & Vining, A. (2005). Policy Analysis:
Concepts and Practice. Upper Saddle River, NJ:
Pearson Prentice-Hall.

West, J., & Gallagher, S. (2006). Challenges of
open innovation: the paradox of firm invest-
ment in open-source software. R & D Man-
agement, 36(3), 319–331. doi:10.1111/j.1467-
9310.2006.00436.x

ENDNOtEs

1 All leading web servers rely on the same
standard protocols including HTML, HTTP

249

A Dynamic Model of Adoption and Improvement for Open Source Business Applications

and SSL. The strong network benefits thus
occur at the protocol level, rather than the
level of the application software that imple-
ments the protocols.

2 Netscape’s company name at the time was
Mosaic Communications. They changed it
shortly after. An order form is shown at http://

www.dotnetat.net/mozilla/mcom.10.1994/
MCOM/ordering_docs/index.html.

3 From http://www.sugarforge.org/: 1.5 mil-
lion downloads as of 22 March, 2006; 5.2
million downloads as of 23 December,
2008.

250

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

Aiding the Development
of Active Applications:

A Decoupled Rule Management Solution

Florian Daniel
University of Trento, Italy

Giuseppe Pozzi
Politecnico di Milano, Italy

INtrODUctION

Until the emergence of the first operating systems
and high-level programming languages allowed
developers to disregard hardware peculiarities,
computers had to be programmed directly in ma-
chine code Then, only in the eighties, Database
Management Systems (DBMSs) provided efficient,
external data management solutions, and in the
nineties Workflow Management Systems (WfMSs)

extended this idea and extracted entire processes
from still rather monolithic software systems. We
believe that in similar way also active (also known
as reactive) behaviors, which are present in many
modern applications (see for instance Section 2),
can be more efficiently managed by proper active
software supports, such as active rules and rule
engines (Section 3).

The basic observation underlying this idea is
that, when abstracting from the particular applica-
tion and domain, most of the active behaviors in
software systems adhere to the rather regular and

AbstrAct

Active applications are characterized by the need for expressing, evaluating, and maintaining a set of
rules that implement the application’s active behavior. Typically, rules follow the Event-Condition-Action
(ECA) paradigm, yet oftentimes their actual implementation is buried in the application code, as their
enactment requires a tight integration with the concepts and modules of the application. This chapter
proposes a rule management system that allows developers to easily expand its rule processing logic
with such concepts and modules and, hence, to decouple the management of their active rules from the
application code. This system derives from an exception manager that has previously been developed
in the context of an industry-scale workflow management system and effectively allows developers to
separate active and non-active design concerns.

DOI: 10.4018/978-1-60566-904-5.ch012

251

Aiding the Development of Active Applications

stable ECA (Event-Condition-Action) paradigm.
ECA rules have first been introduced in the context
of active DBMSs, where operations on data may
raise events, conditions check the status of the
database, and actions perform operations on data.
Our previous experience in the field of WfMSs
(Casati, Ceri, Paraboschi, and Pozzi, 1999; Combi
and Pozzi, 2004) allowed us to successfully apply
high-level ECA rules to WfMSs for the specifica-
tion and handling of expected exceptions that may
occur during process execution. By leveraging
this experience, in this paper, we propose an ECA
paradigm accompanied by a suitable rule language,
where events represent data, temporal, application
or external events, conditions check the state of
data or of the application, and actions may act on
data, applications, or external resources. Active
rules may thus not only refer to the data layer, but
as well to the whole application, comprising data
and application-specific characteristics. Elevating
active rules from the data layer to the applica-
tion layer allows designers to express a broader
range of active behaviors and, more importantly,
to address them at a suitable level of abstraction
(Section 4). This could turn out beneficial for
example in requirements engineering approaches,
such as the ones described by Loucopoulos and
Kadir (2008) or by Amghar, Meziane, and Flory
(2002), as well as in re-engineering approaches
like the one described in Huang, Hung, Yen, Li,
and Wu (2006).

For the execution and management of ECA
rules, we further propose an open ECA server
(OES), which runs in a mode that is completely
detached from the execution of the actual ap-
plication, so as to alleviate the application from
the burden of event management. OES is highly
customizable, which allows developers to easily
add application- or domain-specific features to
the rule engine (Section 5 describes the customi-
zation process, Section 6 illustrates a use case of
the system). Instead of implementing the OES
system from the scratch, we shall show how we
unbundled and reconfigured the necessary com-

ponents from a previously developed exception
manager for a WfMS (Casati et al., 1999) (Sec-
tion 7) – unbundling is the activity of breaking
up monolithic software systems into smaller
units (Gatziu and Koschel, 1998). We thus move
from the ECA server we developed within the
EC project WIDE to manage exceptions in the
context of Sema’s FORO commercial WfMS,
where the exception manager (FAR) was tightly
bundled into FORO.

rAtIONALE AND bAcKGrOUND

Active mechanisms or behaviors have been ex-
tensively studied in the field of active DBMSs
as a flexible and efficient solution for complex
data management problems. Many of the results
achieved for relational or object-oriented active
databases have recently been extended to tightly
related research areas such as XML repositories
and ontology storage systems. To the best of our
knowledge, only few works (Dittrich, Fritschi,
Gatziu, Geppert, and Vaduva, 2003; Chakravarthy
and Liao, 2001; Cugola, Di Nitto, and Fuggetta,
2001) try to elevate the applicability of active
rules from the data level to the application level
and to eliminate the tedious mapping from ac-
tive behavior requirements to data-centric active
rules (Section 8 discusses related works in more
detail). Besides DBMSs, there are several ap-
plication areas, which could significantly benefit
from an active rule support that also takes into
account their application- or domain-specific
peculiarities. Among these application areas, we
mention here:

WfMSs or in general business process •
management systems allow one to define
the system-assisted execution of office/
business processes that may involve sev-
eral actors, documents, and work items.
Active mechanisms could be exploited
for an efficient enactment of the single

252

Aiding the Development of Active Applications

tasks or work items, and the management
of time constraints during process execu-
tion (Combi and Pozzi, 2003; Combi and
Pozzi, 2004).
Web services and (Web) applications, •
which use Web services as data sources or
incorporate their business logic (Li, Huang,
Yen, and Chang, 2007), may rely on an
asynchronous communication paradigm
where an autonomous management of in-
coming and outgoing events (i.e., messag-
es) is crucial. Suitable active rules could
ease the integration of Web services with
already existing (Web) applications. Active
rules could further serve for the coordina-
tion of service compositions, similar to the
coordination of actors and work items in a
WfMS (Charfi and Mezini, 2004; Daniel,
Matera, and Pozzi, 2006).
Exception handling is gaining more and •
more attention as a cross-cutting aspect
in both WfMSs and service compositions.
The adoption of active rules for the specifi-
cation of exception handlers to react to ap-
plication events has already proved its vi-
ability in the context of WfMSs (Casati et
al., 1999; Combi, Daniel, and Pozzi, 2006).
Their adoption for handling exception also
in service compositions would thus repre-
sent a natural evolution.
Time-critical systems or production and •
control systems, as well as the emerging
approaches to self-healing software sys-
tems (Mok, Konana, Liu, Lee, and Woo,
2004; Minsky, 2003), intrinsically contain
features or functionalities that are asyn-
chronous with respect to the normal execu-
tion of the system (e.g., alerting the user of
the occurrence of a production error). Their
execution may indeed be required at any ar-
bitrary time during system execution, and
may thus not be predictable. Active rules
are able to capture this peculiarity at an ap-
propriate level of abstraction.

Adaptive applications or context-aware, •
ubiquitous, mobile, and multi-channel ap-
plications incorporate active or reactive be-
haviors as functional system requirements
(Wyse, 2006). The event-condition-action
paradigm of active rules thus perfectly
integrates with the logic of adaptivity,
proper of such classes of software systems.
The use of a dedicated rule engine for the
execution of rules representing adaptiv-
ity requirements fosters the separation of
concerns and the possibility of evolution
of the overall system (Daniel, Matera, and
Pozzi, 2006; Daniel, Matera, and Pozzi,
2008: Beer et al., 2003: Bonino da Silva
Santos, L. O., van Wijnen, R. P., & Vink,
P., 2007).

sUPPOrtING ActIVE
bEHAVIOrs IN APPLIcAtIONs

The above mentioned application areas show a
wide range of potential applications of active
mechanisms and rule engines. Current approaches,
however, mainly operate on the data level and do
not provide an adequate abstraction to also address
application logic when specifying events, condi-
tions, and actions. As a consequence, develop-
ing applications with active behaviors requires
developers to address – each time anew – some
typical problems:

the definition of a set of events that trig-•
ger active behaviors and the development
of suitable event management logic (the
event manager);
the implementation of generic and appli-•
cation-specific action executors, which
enable the enactment of the actual active
behaviors;
possibly, the design of appropriate • rule
metadata, required to control rule execu-
tion and prioritization;

253

Aiding the Development of Active Applications

the specification of a suitable • rule spec-
ification formalism; and
the development of an according rule •
interpretation and execution logic (the
rule engine).

Figure 1 arranges the previous design con-
cerns into a possible architecture for active
applications. Of course, in most cases, the
described modules and features might not be
as easily identifiable, because the respective
functions are buried in the application code
or because they are just not thought of as
independent application features. Neverthe-
less, conceptually we can imagine the internal
architecture be structured like in Figure 1.

Typically, we classify events as applica-
tion events, data events, temporal events, or
external events. Application events originate
from the inside of the application; data events
originate from the application’s data source;
temporal events originate from the system
clock; and external events originate from the
outside of the application. All possible events
in active applications can be re-conducted to
these four classes of events (Eder and Lieb-
hart, 1995).

Given the previous considerations, de-
veloping active application may represent a
cumbersome undertaking. We however believe
that developers can largely be assisted in the
development of such applications by introduc-
ing a dedicated, detached rule execution envi-
ronment that extracts the previously described
active components from applications and acts
as intermediate layer between the application’s
data and its application logic. This further
fosters the separation of concerns between
application logic and (independent) active
behaviors and the reuse and maintainability
of active rules.

The idea is graphically shown in Figure 2.
Applications provide for the necessary applica-
tion events (now external events with respect to
the rule engine) and the set of action executors
that enact the respective active behaviors; each
application may have its own set of executors.
The customizable rule engine allows the appli-
cations to delegate the capturing of data events,
temporal events, and external events as well as
the management of the set of rules that charac-
terize the single applications. The rule engine
includes the necessary logic for maintaining
suitable rule metadata for multiple applica-

Figure 1. Without decoupled support for the management of active rules, each application internally
needs to cater for suitable rule management functions and rule metadata

254

Aiding the Development of Active Applications

tions. The described architecture requires thus
to address the following research topics:

the specification of a customizable • rule
specification language;
the development of a proper • runtime frame-
work for rule evaluation;
the provisioning of easy • extension/custom-
ization mechanisms for the tailoring of the
generic rule engine to application-specific
requirements.

In the following, we propose the OES system,
a rule execution environment that provides an
implementation of the idea expressed in Figure
2. OES is based on the so-called OpenChimera
language for rule specification and provides for
advanced customization support.

tHE OEs sYstEM

The OES system consists of two main logical
components that complement each other: the
OpenChimera rule language for the definition
of active behaviors and the OES rule engine

for the execution of OpenChimera rules. Both
rule language and rule engine are extensible and
easily customizable, in order to be able to man-
age application-specific events, conditions, and
actions.

the Openchimera Language

The OpenChimera language is derived from the
Chimera-Exception language (Casati et al., 1999),
a language for the specification of expected excep-
tions in WfMSs. Chimera-Exception is based, in
turn, on the Chimera language (Ceri and Fraternali,
1997) for active DBMSs. OpenChimera builds on
an object-oriented formalism, where classes are
typed and represent records of typed attributes that
can be accessed by means of a simple dot-notation.
Rules adhere to the following structure:

define trigger <TriggerName>

 events <Event> [(,<Event>)+]

 condition [<Cond> [(,<Cond>)+]|none]

 actions <Action> [(,<Action>+)]

 [order <PriorityValue>]

end

Figure 2. The introduction of a decoupled rule engine may largely assist the development of active ap-
plications

255

Aiding the Development of Active Applications

A trigger <TriggerName> has one or more dis-
junctive triggering events (<Event>), a condi-
tion with one or more conjunctive conditional
statements (<Cond>), and one or more actions
(<Action>) to be performed in case the condi-
tion of the triggered rule holds. Rules may have
an associated priority (<PriorityValue>) in the
range from 0 (lowest) to 1000 (highest). Priori-
ties enable the designer to define a rule execu-
tion order.

Events

Events in OES can be specified according to the
following taxonomy:

• Data events enable the monitoring of op-
erations that change the content of data
stored in the underlying (active) DBMS.
Similarly to rules in active databases, mon-
itored events are insert, delete, and update.
Data events are detected at the database
level by defining suitable rules (or triggers)
for the adopted active DBMS.

• External events must be first registered by
applications in order to be handled prop-
erly. External events are recognized by
means of the raise primitive, which – when
an external event occurs – provides the
name of the triggering event and suitable
parameters (if needed).

• Temporal events are related to the occur-
rence of a given timestamp and are based
on the internal clock of the system. In order
to cope with a worldwide environment, all
the temporal references of these events are
converted to the GMT time zone. Temporal
events are categorized as instant, periodic
and interval events:

• Instant events are expressed as constants
preceded by an @-sign (e.g. @timestamp
‘‘December 15th, 2008, 18:00:00’’);

• Periodic events are defined using the dur-
ing keyword, separating the start of the

event from the respective time interval (e.g.
1/days during weeks denotes the periodic
time defined by the first day of each week).
The full notation and additional details can
be found in (Casati et al., 1999);

• Interval events are expressed as elapsed
duration since instant, where instant is
any type of event used as anchor event
(e.g. elapsed (interval 1 day) since modify
(amount)).

Conditions

Conditions bind elements and perform tests
on data. Since the adopted mechanism for rule
execution is detached, i.e. the triggering event
and the rule execution take place in two separate
transactions, at rule execution time the context of
the triggering event is reconstructed for condition
evaluation. For instance, if we consider a data
event triggered by the modification of a tuple, the
occurred predicate of the OpenChimera language
is used to select only the tuples that have really
been modified and on which the trigger can, pos-
sibly, execute the specified action.

Actions

Standard actions that can be performed include
changes to the database and notifications via e-mail
messages. Other application-specific actions can
be defined by means of external executors. Several
executors may be available, each one typically
dedicated to one specific action. As we shall show
in Section 5, the customization of the actions that
are available for rule definition represent the real
value of the OES system.

the OEs rule Engine

The internal architecture of the OES system,
detailed in Figure 3, is composed of: Rule Com-
piler, Event Manager, Scheduler, Interpreter, DB
access API, and Dispatcher. The main features

256

Aiding the Development of Active Applications

of the constituent modules are described in the
following.

• OES Rule Compiler: The Compiler accepts
rules at rule creation time and translates
them into an intermediate execution lan-
guage, proper configurations of the Event
Manager, and suitable rule metadata that
are accessed at rule evaluation time. The
Compiler is invoked by specifying (i) the
name of the file containing the source code
of the rule and (ii) the name of a file con-
taining a Data Dictionary for the specific
application domain, which is basically a
standard text file describing the data types
used for type checking at compile time.

Besides rule compilation, the Compiler is also
in charge of rule management: commands inside
a source file provided in input to the compiler
allow the developer to add new rules (define
trigger), to remove existing rules (remove trig-
ger), or to modify existing rules (modify trigger),
thus enabling an incremental rule definition and
a flexible rule management.

• OES Event Manager: The Event Manager
is sensitive to external and temporal events.
For the correct interpretation of interval
events, the module registers those events
that are used as anchor events and raises
the actual event only once the respective
interval has elapsed. Instant and periodical
events are managed by means of a proper
WakeUpRequest service. Finally, the Event
Manager may invoke the OES Scheduler
directly if a real-time event is raised.

• OES Scheduler: The Scheduler periodi-
cally determines the rule instances which
have been triggered by monitoring the rule
metadata and schedules triggered rules for
execution according to the rules’ priorities.
The Scheduler is automatically invoked in
a periodical fashion, but it can also be in-
voked directly by the Event Manager: this
forces an immediate scheduling of the re-
spective rule, still respecting possible pri-
ority constraints.

• OES Interpreter: The Interpreter is called
by the OES Scheduler to execute a spe-
cific rule in the intermediate language. The

Figure 3. The architecture of the autonomous ECA server OES

257

Aiding the Development of Active Applications

Interpreter evaluates the rule’s condition
and computes respective parameters. If
a condition holds, actions are performed
via the DB access API or via the OES
Dispatcher.

• OES Dispatcher: The Dispatcher provides
a uniform interface for the execution of ac-
tions by external executors and hides their
implementation details to OES. External
executors play a key role in the customiza-
tion of the system.

• OES DB Access API: The DB Access
API provides a uniform access to differ-
ent DBMSs. At installation time, OES is
configured with the driver for the specific
DBMS adopted. Specific drivers are need-
ed, since OES also exploits some DBMS-
specific functionalities for the efficient ex-
ecution of database triggers.

cUstOMIzING tHE OEs sYstEM

As described in the previous section, OES
comes with a default set of generic events and
actions; domain-specific events and actions can
be specified in form of external events and suit-
able external executors. Hence, if the default set
of events and actions suffices the needs of the
developer, he/she can immediately define rules
without performing any additional customiza-
tion. If, instead, domain-or application-specific
events and actions are required, he/she needs to
customize the OES system.

customizing Events

New events are specified as external events, which
are supported by the OES system through a proper
raising mechanism. External events must be reg-
istered in the OES system, in order to enable their
use in the definition of OpenChimera triggers. If
notified of the occurrence of an external event,

OES inserts a respective tuple into the rule meta-
data. The metadata is periodically checked by the
OES Scheduler and enables condition evaluation
and action execution.

When customizing events, the customizer has
to implement the external program(s) that might
raise the event(s). Communications between ex-
ternal program(s) and OES are enabled through a
CORBA message passing mechanism. We observe
that if the adopted DBMS has no active behavior,
no data event can be defined; temporal and external
events, instead, can be normally defined, detected,
and managed as they do not require any specific
active behavior from the DBMS.

customizing conditions

The syntax of OpenChimera conditions can be
extended with new data types, abstracting tables
in the underlying database. The definition of new
types occurs by means of a so-called Data Diction-
ary, which is a standard text file containing a name
and a set of attributes for each new data type. At
rule compilation time, the OES Compiler, besides
rule definitions themselves, requires the Data
Dictionary to evaluate the proper use of data types
for the variables included in the trigger definition.
The definition of the Data Dictionary is the only
situation where the Compiler has to read data that
are specific to the application domain.

OES adopts a detached trigger execution
model, where the triggering part of a rule is de-
tected in one transaction, and the condition and
action parts of the trigger are executed in another
transaction. The definition of suitable data types in
the Data Dictionary allows OES to reconstruct at
condition evaluation time the status of the transac-
tion in which the rule was triggered.

customizing Actions

Adding a new action to the syntax of the OpenChi-
mera language requires adding suitable descrip-

258

Aiding the Development of Active Applications

tions and action executors to a so-called Action
Dictionary. At rule compilation time, if the OES
Compiler encounters an action that is not included
in the set of predefined actions, it checks whether
the specified action is included in a specific view
in the database (the view Action-Dictionary can be
seen in Figure 6) by searching the specified action
in the ActionName attribute of the table Action. If
the action is described in the view and its signature
(as specified by the Action_Tag table) complies
with the parameters of the rule to be compiled,
the action is valid. If the OES Compiler fails in
finding a matching tuple in the Action Diction-
ary, a suitable error message is generated. At rule
execution time, the OES Interpreter processes the
rule and the OES Dispatcher invokes the specified
executor, as defined by the Action Dictionary,
launching it as a child process.

Executors in OES can be characterized ac-
cording to three orthogonal aspects: the location
of the executor, dynamic vs. static parameters,
and XML support:

• Location. Executors can be either local
applications, running on the same system
where OES is running, or remote services
accessible via the Internet. We observe that
services, even if running on the same sys-
tem as OES, are always considered remote
services.

• Parameters. Executors typically require
input data. Parameters can be dynami-
cally computed by the OES Interpreter
at run time, or they can be statically de-
fined. If dynamic parameters are required,
the Interpreter performs a query over the
application data, computes the actual pa-
rameters, and writes them into an XML
file. Static parameters can be directly taken
from the definition of the action and added
to the XML file.

• XML support. Some executors are able to
parse XML files, others do not. If an ex-
ecutor parses XML, it is up to the executor

to extract the parameters correctly. If an
executor does not parse XML, an inter-
mediate parser is used to extract the pa-
rameters from the XML file and to invoke
the executor, suitably passing the required
parameters.

According to the above criteria, executors are
divided into the following categories:

a) Commands. Local applications with static
parameters that are not capable of parsing
XML. The Dispatcher of OES constructs
the command line and invokes the local
system service according to the parameters
stored in the Executor table of Figure 6.
Such an executor is identified by the at-
tribute CommandType=”CMD”, e.g. this
may happen for a periodical backup service
performed via the tar command of a Unix
system.

b) Executors capable of reading XML files.
Dynamic parameters are computed by the
OES Interpreter and stored in an XML file.
The executor, in turn, can be a local ap-
plication or a client connecting to a remote
service. Executors reading XML files are
classified as follows:
b1) Local applications. The Dispatcher of

OES invokes the local application and
passes it the name of the XML file with
the parameters.

b2) Client connecting to an XML-enabled
remote service. The Dispatcher of
OES starts a client application that
connects to the remote service and
sends the XML file via the HTTP
POST method. The executor, in turn,
may reply with another XML file, e.g.
containing the results or the return code
of the service.

c) Executors not capable of reading XML files.
Dynamic parameters are computed by the
OES Interpreter and stored in an XML file.

259

Aiding the Development of Active Applications

The invocation of the executors is performed
via specific, intermediate parsers, which
extract the necessary parameters from the
XML file and invoke the executors by suitably
passing the required dynamic parameters.
Analogously to XML-enabled executors,
not XML-enabled executors are classified
as follows:
c1) Local applications. The parser invokes the

local application passing it the dynamic
parameters in the appropriate format.

c2) Client connecting to a remote service
which is not XML-enabled. The parser
sets up a client-server connection with
the remote service and passes it the
dynamic parameters in the appropri-
ate format, possibly receiving results
back.

It can be observed that executors not capable of
reading XML files are internally treated like execu-
tors capable of reading XML files by leveraging an
intermediate layer of suitable parsers, one parser
for each specific executor. Figure 4 summarizes
the taxonomy of executors.

cAsE stUDY – tHE
AUctION WEb sItE

In order to show how to customize OES in practice,
we consider an auction web-site, where a seller
can monitor the auction prices at which the market
accepts to sell goods.

The potential seller of a given good would like
to be notified via an e-mail message if the auc-
tion price of the same good sold by other sellers
exceeds predefined limits, in order to understand
whether the prices paid by the buyers of that good
meet his/her expectations or not. If yes, the seller
posts the offer to the auction web site; if not, he/
she keeps the good. Auction prices are checked
every 30 minutes during working days. Figure 5
shows an excerpt of the data structure underlying
the auction software, to be used for the integration
with OES: the good table represents the current
status of the auctions, the notification table rep-
resents the notifications set up by the sellers, and
the customer table identifies the sellers.

As we shall show in the following, support-
ing the required e-mail feature requires the OES
system to be extended with two new actions: one
(updateAuctionPrice) for the periodic update of
the auction prices, and one (sendEMail) to send
the e-mail notification message.

customizing Openchimera
and the rule Engine

The event for the periodic update of the stock
price in the underlying database is a periodic
temporal event, while the event triggering the
sending of the e-mail notification is a data event.
As both events are default OpenChimera events,
no customization of OpenChimera events needs
to be performed.

The definition of suitable conditions over the
database tables described in Figure 5, requires

Figure 4. Taxonomy of executors

260

Aiding the Development of Active Applications

the definition of according data types in the
Data Dictionary. More precisely, the three data
types good, notification, and customer, referring
to the respective tables in the database, must be
included into the Data Dictionary, in order to
be able to bind variables to them and formulate
proper data queries.

The two new actions (updateAuctionPrice
and sendEMail) can be made available to the
OpenChimera environment by means of two new
tuples in the Action table of the OES system. In
table Action_Tag of Figure 6, the three tuples with
attribute ActionName set to sendEMail or upda-

teAuctionPrice, respectively, serve this purpose
and conclude the customization of the OpenChi-
mera syntax. For the customization of the rule
engine, we need to implement and to register the
two actions sendEMail and updateAuctionPrice
as external executors.

As for the sendEMail action, the transmission
of the e-mail message to the specified e-mail
address is performed free of charge by the Web
site. Our executor for the new defined sendEmail
action thus connects to a suitable Web server and
requests the transmission of the messages. We
assume that the executor myMailer serves this

Figure 5. The goods, customer, and notification tables as defined by the management software

Figure 6. Action-Dictionary view: Action, Executor, and Action_Tag tables. By joining them on the
ExecutorId and on the ActionName attributes, we obtain the Action-Dictionary view. The Action_Tag
table is used to check the signature of executors at rule compilation time. The names of system tables
and of related attributes are capitalized

261

Aiding the Development of Active Applications

purpose. The definition of the new action requires
thus the insertion of a new tuple into the Action
table and the definition of proper attributes (see
Figure 6):

ActionName defines the name of the •
action;
Priority defines the default priority for the •
action (i.e. 10), which can be overwritten
by means of the order statement in the rule
definition;
CommandType defines whether the action •
corresponds to an executor not capable of
reading XML files and with static parame-
ters (“CMD”), or an XML-enabled execu-
tor (“XML”);
CommandRequest defines the actual in-•
vocation command to be launched by the
Dispatcher;
ExecutorId is the unique identifier of the •
executor.

We consider now the action named sendEMail
with executor id 25: CommandType is “XML”,
indicating that the executor is XML-enabled.
CommandRequest is the name of the executor that
receives the XML file via the command line, con-
nects to the remote server, and forwards the XML
file. The first tuple of the Action table thus binds
the sendEMail action to a proper executor.

To complete the definition of the action, we
have to specify how static parameters can be passed
to the executor. Static parameters are defined by
tuples in the Executor table (see Figure 6):

ExecutorId is the unique identifier of the •
executor;
Location defines the location where the ex-•
ecutor can find the remote service, if need-
ed. In fact, if the executor requires a remote
service, the executor runs as a client, con-
nects to a valid URL defined by Location,
and sends out the XML file created by the

Interpreter. If Location is set to localhost,
no remote service is needed;
Par1, Par2, Par3 define the static parameters •
that may be used by local commands which
are not capable of reading XML files. We
recall that this kind of executors is labeled
“CMD” in the attribute CommandType of
the Action table.

As can be seen in Figure 6, the sendEMail
action requires dynamic parameters that will be
computed at runtime and stored in an XML file.
Specified parameters are translated into suitable
tags in the XML file and sorted according to the
order in which they appear in the source code of
the rule. Dynamic parameters are specified in the
Action_Tag table:

ActionName defines the name of the •
action;
Tag is the name of the tag inside the •
XML file (tag names must match the Data
Dictionary);
Pos defines the order of the parameters to •
be used in the OpenChimera language.

Thus, if the action is sendEMail, the three
corresponding tuples of Action_Tag define that
the XML file to be sent to the executor must be
constructed as follows: the first dynamic parameter
is the subject of the e-mail message, the second
dynamic parameter is the e-mail address of the
seller, and the third dynamic parameter is the text
of the e-mail message.

The specification of the executor for the
updateAuctionPrice action is analogous to the
one of the sendEMail executor. The information
we need to store represents the auction price at
a given time instant. To access this information,
we again use an executor that uses the Web to
accomplish its task by searching the Web for the
auction price and storing it into the application’s
data source.

262

Aiding the Development of Active Applications

To make the action updateAuctionPrice
available, we deploy a suitable executor, namely
myUpdateAuction, available in the directory /usr/
local/bin. Again, its inclusion into OES requires
inserting a suitable tuple in the ActionDiction-
ary view of Figure 6. The name of the action is
updateAuctionPrice, its priority is 20, its type is
“XML”, the executor is myUpdateAuction, and
the id is 6. Dynamic parameters for the executor
are defined by the Action_Tag table: for the current
action, the only dynamic parameter needed is the
name of the stock. The executor myUpdateAuc-
tion thus receives in input an XML file containing
the name of the stock and connects to the remote
server. The invoked remote service replies with
another XML file, from which myUpdateAuc-
tion reads the auction price and its timestamp as
defined by the remote server, and stores these
data in the database.

specifying the Active rules

Now we can specify the actual rules to define the
required active behavior. For presentation pur-
poses, we assume that all customers are interested
in the “myPhone” good, only.

The myUpdateAuction executor accesses
the DBMS and stores the good name, the cur-
rent auction price and its timestamp in the good
table. According to the customized syntax of the
OpenChimera language, we can now define the
periodicalAuctionUpdate rule as follows.

define trigger periodicalAuctionUpdate

 events 30/minutes during days

 condition good(G), G.name=”myPhone”

 actions updateAuctionPrice(G.name)

end

The event part of the rule states that the rule
must be invoked every 30 minutes. The condition
part considers all the instances G of the good
type (i.e., all the tuples inside the table named
good) and selects only the tuples where G.name

equals “myPhone”. The action part invokes the
executor myUpdateAuction, corresponding to the
updateAuctionPrice action. The OES Interpreter
computes the required dynamic parameter by as-
signing the value “myPhone” to the tag GoodName
inside the XML file passed to the myUpdateAuc-
tion executor. The periodicalAuctionUpdate rule
thus periodically stores the price of the chosen
stock in the database.

A second rule is needed to compare the stored
price with the minimum price the seller is inter-
ested in. The respective data are stored in the
database and can be accessed by the following
rule priceOfGoodReached, in order to trigger
possible e-mail notifications:

define trigger priceOfGoodReached

 events modify(good.value)

 condition good(G), notification(N),

customer(C),

 G.name=N.goodName,

N.customerId=C.Id,

 occurred(modify(good.

value),G),

 G.value>N.price,

N.active=”yes”

 action sendEMail(“Monitored good

has reached minimum price”,

 C.eMailAddress,

 “Good ” + G.name + ” reached

your specified

 minimum price. Its current

price is “

 + G.value + ” euros.”),

N.active=”no”

end

The event part of the rule states that the rule
must be invoked each time the attribute value
of a tuple inside the good table is changed (data
event). The condition part has a twofold goal.
First, it aims at binding the instances of goods
(G), of notification (N) and of customer (C). The
binding states that the good must be related to a

263

Aiding the Development of Active Applications

request of notification by an interested customer:
this is performed by a join operation. Second, the
conditions part verifies that tuples selected from
the good table are only those for which there has
been a change of the value attribute since the last
execution of the rule (occurred(modify(good.
value),G)), that the new price exceeds the specified
threshold (G.value>N.Max)), and that the notifica-
tion service is active (N.active=“yes”). The action
part is executed after all the conditions are true.
The action invokes the executor sendEMail whose
parameters are the subject of the email message,
the e-mail address of the seller, and the body of
the e-mail message including the auction price of
the good. In order to prevent a continuous sending
of the same message, a second action disables the
notification service (N.active=“no”) for the sent
message. Users can easily enable the service again
through their stock management software.

IMPLEMENtAtION

The OES system described in this paper is derived
from the exception manager FAR (FORO Active
Rules), developed within the EC project WIDE
and aimed at managing expected exceptions in the
workflow management system FORO (Casati et
al., 1999). In the following, we shortly outline the
architecture of the FAR system and show how OES
has been unbundled from FAR. Then, we discuss
termination, confluence, and security in OES.

the FAr system

Exception handling in WfMSs typically involves a
wide scenario of events and actions. In the case of
the FAR system, the rule engine is able to manage
the following four categories of events (Casati et
al., 1999): data events, temporal events, workflow
events (e.g. the start or the end of a task or of a
case), and external events. Concerning the actions
that can be enacted through FAR, the rule engine
supports the following actions: data manipula-

tion actions, workflow actions (e.g. the start or
completion of a task or a process instance, the
assignment of a task or case to a specific agent),
and notification actions.

Figure 7 graphically summarizes the FORO/
FAR architecture. Exceptions are specified by
means of the active rule language Chimera-
Exception (Casati et al., 1999), from which we
derived the OpenChimera language adopted in
OES. Besides data events (originating from an
active Oracle database shared with the FORO
system), temporal events and external events, FAR
is directly notified of workflow events coming
from the FORO workflow engine. On the action
side, database actions are directly supported by
the FAR system, while notifications and workflow
actions are performed via the FORO workflow
engine.

Unbundling the rule Engine

The implementation of the OES system leveraged
as much as possible the already existing implemen-
tation of the FAR system. Instead of developing
a new rule engine from scratch, we decided to
unbundle (Gatziu, Koschel, von Bultzingsloewen,
and Fritschi, 1998; Silberschatz and Zdonik, 1997)
the necessary functionalities and modules from
the FORO/FAR system. When unbundling the rule
engine from FORO/FAR, we had to re-consider
all the interactions of the tightly-coupled, bundled
modules. In particular, we had to consider how
events are notified to the rule engine and how the
rule engine enacts actions.

An extension of FAR’s built-in support for
both external events and external executors
provided efficient means to enable users of OES
(i.e., developers of active applications) to define
application-specific events and actions. The un-
bundled OES system thus inherits the support for
data events, temporal events, and external events
from the FAR system, while workflow events are
not supported any longer, due to the unbundling
of the rule engine from the WfMS. Analogously,

264

Aiding the Development of Active Applications

we were able to reuse FAR solutions to support
the execution of database actions and the flexible
definition of external executors for customizable
actions; again, workflow-specific actions were
discarded. The introduction of intermediate pars-
ers allows OES to select appropriate executors
according to the specifications received from the
rule engine.

In order to be capable of detecting events and
of performing actions, the unbundled OES system
must implement suitable communication channels
among the modules composing the system. For
example, OES must be able to start transactions
over a given DBMS and to invoke external applica-
tions, possibly passing some parameters. For the
communication between internal modules, OES
leverages CORBA and shared tables in the underly-
ing database. While a shared database works fine
for internal modules, the adoption of a specific
DBMS (i.e., Oracle) may cause interoperability
difficulties with external modules, such as external
executors for customized actions. Therefore, the
communication with external executors added
to the OES system is based on XML as common
format for accessing and sharing information. Data
is passed in form of XML documents, containing
possible static and/or dynamic parameter values
or responses from the external executors.

remarks

Termination

An active system guarantees termination if its
rules are not allowed to trigger each other in-
definitely. If we define a rule r1 that reacts to the
event e1 by executing the action a1, which in turn
triggers the event e1, the active system enters an
endless loop if the condition of r1 always holds
(self-triggering). We may also define a rule r1
that reacts to the event e1 by executing the action
a1, which in turn triggers the event e2 of a rule
r2 whose action a2 triggers again e1. Should the
conditions of r1 and r2 always hold, the active
system enters an endless loop (cross-triggering).
Similarly, an active system may encounter a situ-
ation of cascaded triggering, if the endless cycle
involves more than two rules.

Potential situations of non-termination can
be avoided by static and dynamic checks. Com-
pile time (static) detection is performed at rule
compilation time by the OES Compiler: for each
potential loop, it issues a proper warning mes-
sage. The static check is performed by a suitable
termination analysis machine, properly adapted
to OES from (Casati et al., 1999). The resolution
of possible loops is up to the developer.

Run time (dynamic) detection of loops is
more complex in OES than in FAR, as involved
actions can be external to OES itself. A self-
triggering situation may occur when an action
a1 invokes the server s1, which in turn invokes

Figure 7. FAR architecture and dependencies with FORO. FAR is bundled into FORO

265

Aiding the Development of Active Applications

a server s2 that is external and unknown to OES,
and s2 invokes another server s3, whose actions
trigger the event e1 of r1. This self-triggering
situation is very hard to detect, as it comes from
subsequent server invocations outside OES.
A simple yet effective avoidance mechanism
is limiting the maximum cascading level for
rules: rules are simply not allowed to trigger
other rules indefinitely. OES (like most active
DBMSs) adopts this solution and uses an upper
limit for cascaded activations that can be easily
configured. With respect to generic DBMSs,
OES however does not limit this technique to
data events only.

Confluence

In a system featuring active behaviors, confluence
means that the final effect of the processing of
multiple concurrently triggered rules is indepen-
dent of the ordering by which rules are triggered
and executed. The problem of confluence arises
in many situations, like SQL triggers and stored
procedures in most conventional database ap-
plications. Typically, those situations generate
non-confluent behaviors, because actions are
performed over sets of tuples, which by definition
come with no ordering criteria.

The same consideration applies to OES: each
rule is intrinsically non-confluent, because it as-
sociates a set-oriented, declarative condition with
a tuple-oriented imperative action, and there is
no language construct to impose a rule-internal
order on the bindings that are selected by the
condition evaluation part. If in OES we assume
to trigger a rule t1, its condition part may for in-
stance return a set of n unordered data tuples to
which the rule’s actions are to be applied; at this
point, we cannot say for sure in which order the
actions are enacted, as this typically depends on
the underlying active DBMS.

If, instead, we assume to trigger two (or more)
rules t1, t2, the usage of priorities (i.e., the order
token of OpenChimera) enables the designer to

define an ordering among the rules t1, t2, where
the highest priority rule is processed first. This
option enables the designer to state a partial order
among the triggered rules t1, t2, but not an order
that is internal to each rule.

Security

Security in OES relates to three different aspects:
rule definition, event generation, and action ex-
ecution. At rule definition time, the customizer
logs into OES and uses the OES Compiler. As
triggers and rule metadata are stored inside the
DBMS, the security level provided by OES is the
one provided by the DBMS.

At event generation time, security issues con-
cern data events, temporal events, and external
events. Data events require to access the DBMS
and to insert, delete, or update data: again, the
security level provided by OES is the one pro-
vided by the underlying DBMS. Temporal events
are triggered by the internal clock of OES: their
security level is the one provided by the operating
system on which OES is running. External events
are triggered by external applications: the security
level of the entire system is the one implemented
by the external application, which has however to
be registered into OES by the customizer prior to
being able to trigger any event.

At action execution time, security issues
concern database actions and external actions.
Database actions are preformed locally by OES
itself, which connects to the local DBMS and
performs all the actions defined by the involved
rule over locally stored data: the security level
provided by OES is the same as the one provided
by the DBMS. External actions, instead, require
OES to reach executors external to OES itself.
The same criteria as those for external applica-
tions apply.

266

Aiding the Development of Active Applications

rELAtED WOrK

We consider now some relevant research areas
where event management plays a key role.

Active Database
Management systems

The scenario of event management in active
DBMSs is the most relevant one.

Samos (Dittrich et al., 2003) is a very complex
active OODBMS, which provides several active
functionalities, including event management simi-
lar to the one of OES. Samos runs coupled to the
Object-Store passive OODBMS, only. OES, which
is not an active DBMS but a pure event manager,
can be mapped onto any active DBMS accepting
the SQL language, and it provides suitable inter-
faces for most common DBMSs. Samos provides a
very powerful event definition language, including
relationships in event capturing (before..., after...),
event composition (sequence..., conjunction...),
and an execution model which accepts both at-
tached and detached exception management. On
the contrary, OES provides a very simple model
featuring a numeric prioritization of rules and the
only detached mode of execution.

Sentinel (Chakravarthy, 1997) was started as
an OODBMS with event based rules capable of
defining composite events by an extended set of
operators. Later on, the authors (Chakravarthy
and Liao, 2001) extended the system to include
asynchronous events for a distributed cooperative
environment, obtaining a server which is not con-
nected to any particular DBMS, but runs as a mes-
sage broker. With respect to Sentinel, OES adopts
a more simplified event definition mechanism and
language. OES can detect database modification
events at the very database level, without requiring
services from external event detectors, as required
by Chakravarthy and Liao, 2001. According to
OES, the event detection takes place only locally,
even if in a distributed database environment, and

the consequent action – if needed – may require
communication with other sites of the distributed
environment. Thus, in OES distributed events
cannot be defined directly but need to be mapped
as sets of local events and of local actions. Local
actions may also include communications among
the sites of the distributed environment.

EvE (Geppert,Tombros, and Dittrich, 1998)
is an event engine implementing event-driven
execution of distributed workflows. Similarly
to OES, EvE adopts a registration, detection,
and management mechanism, and it runs on a
distributed, multi-server architecture. The main
differences of OES, with respect to EvE, are
that: a) OES does not use rules to schedule tasks
according to a process model for the managed
business process defined inside the WfMS; b)
OES does not select executors (brokers in EvE’s
terminology) at runtime, choosing from a pool of
resources since only one executor is defined for
every action; c) OES does not require a WfMS
environment as a core unit. In fact, OES can be
run as a completely autonomous ECA server
and the definition of events is not related to any
WfMS. OES is extremely free, autonomous, can
reference heterogeneous executors and allows one
to define almost any type of event.

Framboise (Fritschi, Gatziu, and Dittrich,
1998) is a framework for the construction of active
DBMSs inheriting the rule language of Samos.
Framboise represents a database middleware, ex-
tending (Dittrich et al., 2003) to provide individual
and customizable active services for any arbitrary
passive DBMS. With respect to Framboise, OES
aims at providing active services exploiting ECA
rules over an existing active DBMS, capable of
accepting standard SQL statements and the defi-
nition of triggers. While the language of OES is
much simpler than Framboise’s, OES does not
necessarily require a DBMS, thus limiting itself to
manage temporal and external events. On the other
hand, if the application domain requires a DBMS,
data events can be managed by OES provided that

267

Aiding the Development of Active Applications

the DBMS supports active behaviors. OES can be
more conveniently mapped on most commercial
active DBMS, without requiring to recompile the
kernel of the active DBMS itself neither requiring
to modify existing applications.

Workflow Management Systems

Some WfMSs - e.g., Mentor (Wodtke, Weißen-
fels, Weikum, Kotz Dittrich, and Muth, 1997),
Meteor (Krishnakumar and Sheth, 1995) - allow
one to define a task to be executed whenever a
specified exception is detected and the related
event is raised. Pitfalls for this solution are that
there is a wide separation between the normal
evolution flow and the exception management
flow, and that an exception can only start as a
new activity. Additionally, the detection of the
event must be formally performed whenever
a task is terminated and before the next one
is started: the detection cannot be performed
while a task is running. In other systems - e.g.,
ObjectFlow (Hsu and Kleissner, 1996) - a human
agent is formally dedicated to the detection of
asynchronous exceptions: after the event occurs,
task execution is aborted and suitably defined
execution paths are executed.

The use of OES coupled to a WfMS to manage
asynchronous events overcomes some of these
limitations. In fact, the detection of an event can
take place even during the execution of a task,
and not only after the completion of the task and
before the successor is activated. Furthermore, the
management of the exception can be completely
automated, and may not require any human inter-
vention to identify compensation paths.

Active Middleware systems

Middleware technology aims at providing low- to
medium-level services, which can be exploited
by higher-level applications. In this area, Siena
(Carzaniga, Rosenblum, and Wolf, 2001) is a wide
area notification service, and it is mainly focused

on scalability issues. With respect to OES, Siena
can capture a reduced number of events, e.g.
temporal events are not considered.

Amit (Adi and Etzion, 2004) is a “situation
manager” which extends the concept of composite
events. An event is a significant instantaneous
atomic occurrence identified by the system; a
situation requires the system to react to an event.
The middleware aims at reducing the gap between
events and situations. Amit comes with a situa-
tion definition language enabling one to capture
events (immediate, delayed, deferred) and to
detect situations. Applications are then notified
when required situations occur.

López de Ipiña and Katsiri (2001) developed
a CORBA-based event-condition-action (ECA)
rule matching service, featuring a composite event
matching engine. The provided rule specification
language is translated to an intermediate language
(CLIPS), while the architecture of the system has
few similarities with the one proposed by OES.
However, the expressiveness, the ease of coding,
the customizability of external executors, and the
variety of considerable events of the OpenChimera
language are much richer.

cONcLUsION AND FUtUrE WOrK

In this paper, we described the autonomous, open
ECA server OES and its active rule language,
OpenChimera. OpenChimera supports the defini-
tion and the management of generic active rules
following the Event-Condition-Action (ECA)
paradigm, while the OES rule engine, derived from
the FAR exception handler (Casati et al., 1999)
of the FORO WfMS, supports the execution of
OpenChimera rules.

OES comes with a standard set of events
and actions. Events cover data manipulation
events, temporal events, and events raised by
external applications; the standard set of actions
includes data manipulation actions. It is possible
to customize the OES system to application- or

268

Aiding the Development of Active Applications

domain-specific needs by adding new events and
actions. OES can be coupled and customized with
relatively little effort with any existing system
that requires event and rule management solu-
tions. The extended system allows designers to
easily define application-specific active rules and
to insulate active application requirements from
the core application logic.

OES therefore fosters separation of concerns
in the application development process (i.e., ac-
tive and non-active requirements) and provides a
robust solution to a cross-cutting implementation
issue: active rule management. The nature of the
OES rule engine minimizes the efforts required to
integrate OES into other applications and further
supports a flexible management of rules even after
application deployment, i.e., during runtime. At
design time, the built-in support for the detec-
tion of infinite loops represents a valuable tool
to developers who typically have to deal with a
multitude of rules and interdependencies.

AcKNOWLEDGMENt

We are grateful to Catia Garatti and Marco Riva
for the implementation of the OES system, start-
ing from FAR, and we thank prof. Stefano Ceri
of Politecnico di Milano, Italy, prof. Stefano
Paraboschi of the University of Bergamo, Italy,
and prof. Fabio Casati of the University of Trento,
Italy, for fruitful discussions and suggestions.

rEFErENcEs

Adi, A., & Etzion, O. (2004). Amit - the situation
manager. The VLDB Journal, 13(2), 177–203.
doi:10.1007/s00778-003-0108-y

Amghar, Y., Meziane, M., & Flory, A. (2002). Us-
ing business rules within a design process of active
databases. In S. Becker (Ed.), Data Warehousing
and Web Engineering (pp. 161-184), Hershey,
PA: IRM Press.

Beer, W., Volker, C., Ferscha, A., & Mehrmann,
L. (2003) Modeling context-aware behavior by
interpreted ECA rules. In H. Kosch, L. Böször-
ményi, & H. Hellwagner (Eds.), Euro-Par 2003
(LNCS 2790, pp. 1064-1073).

Bonino da Silva Santos, L. O., van Wijnen, R. P.,
& Vink, P. (2007). A service-oriented middleware
for context-aware applications. MPAC, (pp. 37-
42). New York: ACM Press.

Carzaniga, A., Rosenblum, D. S., & Wolf, A.
L. (2001). Design and evaluation of a wide-
Area event notification service. ACM Transac-
tions on Computer Systems, 19(3), 332–383.
doi:10.1145/380749.380767

Casati, F., Ceri, S., Paraboschi, S., & Pozzi, G.
(1999). Specification and implementation of
exceptions in workflow management systems.
ACM Transactions on Database Systems, 24(3),
405–451. doi:10.1145/328939.328996

Ceri, S., & Fraternali, P. (1997). Designing data-
base applications with objects and rules: the IDEA
methodology. Reading, MA: Addison-Wesley.

Ceri, S., Fraternali, P., Bongio, A., Brambilla,
M., Comai, S., & Matera, M. (2002). Designing
Data-Intensive Web Applications. San Francisco,
CA: Morgan Kauffmann.

Chakravarthy, S. (1997). Sentinel: An object-
oriented DBMS with event-based rules. In J.
Peckham (Ed.), SIGMOD Conference (pp. 572-
575). New York: ACM Press.

269

Aiding the Development of Active Applications

Chakravarthy, S., & Liao, H. (2001). Asynchro-
nous monitoring of events for distributed coopera-
tive environments. In H. Lu, & S. Spaccapietra
(Eds.), Proceedings of CODAS’01 (pp. 25-32).
Beijing: IEEE Computer Society.

Charfi, A., & Mezini, M. (2004). Hybrid Web
service composition: business processes meet
business rules. In M. Aiello, M. Aoyama, F. Curb-
era, & M. P. Papazoglou (Eds.), Proceedings of
ICSOC’04 (pp. 30-38). New York: ACM Press.

Combi, C., Daniel, F., & Pozzi, G. (2006). A por-
table approach to exception handling in workflow
management systems. In R. Meersman & Z. Tari
(Eds.), OTM Conferences (1), LNCS 4275 (pp.
201-218). Montpellier, France: Springer Verlag.

Combi, C., & Pozzi, G. (2003). Temporal con-
ceptual modelling of workflows. In I. Song, S. W.
Liddle, T. Wang Ling, & P. Scheuermann (Eds.),
Proceedings of ER’03 (LNCS 2813, pp. 59-76).

Combi, C., & Pozzi, G. (2004). Architectures
for a temporal workflow management system. In
H. Haddad, A. Omicini, R. L. Wainwright, & L.
M. Liebrock (Eds.), Proceedings of SAC’04 (pp.
659-666). New York: ACM Press.

Cugola, G., Di Nitto, E., & Fuggetta, A. (2001).
The JEDI event-based infrastructure and its ap-
plication to the development of the OPSS wfMS.
IEEE Transactions on Software Engineering,
27(9), 827–850. doi:10.1109/32.950318

Daniel, F., Matera, & Pozzi, G. (2008). Managing
runtime adaptivity through active rules: the Bel-
lerofonte framework . Journal of Web Engineering,
7(3), 179–199.

Daniel, F., Matera, M., & Pozzi, G. (2006). Com-
bining conceptual modeling and active rules for the
design of adaptive web applications. In N. Koch &
L. Olsina (Eds.), ICWE’06 Workshop Proceedings
(article no.10). New York: ACM Press.

Dittrich, K. R., Fritschi, H., Gatziu, S., Geppert, A.,
& Vaduva, A. (2003). Samos in hindsight: experi-
ences in building an active object-oriented DBMS.
Information Systems Journal, 28(5), 369–392.
doi:10.1016/S0306-4379(02)00022-4

Eder, J., & Liebhart, W. (1995). The workflow
activity model WAMO. In S. Laufmann, S.
Spaccapietra, & T. Yokoi (Eds.), Proceedings of
CoopIS’95 (pp. 87-98). Vienna, Austria.

Fritschi, H., Gatziu, S., & Dittrich, K. R. (1998).
Framboise - an Approach to framework-based ac-
tive database management system construction. In
G. Gardarin, J. C. French, N. Pissinou, K. Makki,
& L. Bouganim (Eds.), Proceedings of CIKM ‘98
(pp. 364-370). New York: ACM Press.

Gatziu, S., Koschel, A., von Bultzingsloewen,
G., & Fritschi, H. (1998). Unbundling active
functionality. SIGMOD Record, 27(1), 35–40.
doi:10.1145/273244.273255

Geppert, A., Tombros, D., & Dittrich, K. R. (1998).
Defining the semantics of reactive components
in event-driven workflow execution with event
histories. Information Systems Journal, 23(3-4),
235–252. doi:10.1016/S0306-4379(98)00011-8

Hsu, M., & Kleissner, C. (1996). Objectflow:
towards a process management infrastructure. Dis-
tributed and Parallel Databases, 4(2), 169–194.
doi:10.1007/BF00204906

Huang, S., Hung, S., Yen, D., Li, S., & Wu, C.
(2006). Enterprise application system reengineer-
ing: a business component approach . Journal of
Database Management, 17(3), 66–91.

Krishnakumar, N., & Sheth, A. P. (1995). Man-
aging heterogeneous multi-system tasks to sup-
port enterprise-wide operations. Distributed and
Parallel Databases, 3(2), 155–186. doi:10.1007/
BF01277644

270

Aiding the Development of Active Applications

Li, S. H., Huang, S. M., Yen, D. C., & Chang, C.
C. (2007). Migrating legacy information systems
to web services architecture. Journal of Database
Management, 18(4), 1–25.

López de Ipiña, D., & Katsiri, E. (2001). An ECA
rule-matching service for simpler development
of reactive applications, Middleware 2001. IEEE
Distributed Systems Online, 2(7).

Loucopoulos, P., & Kadir, W. M. N. W. (2008).
BROOD: Business rules-driven object oriented
design. Journal of Database Management Sys-
tems, 19(1), 41–73.

Minsky, N. H. (2003). On conditions for self-
healing in distributed software systems. [Los
Alamitos, CA: IEEE Computer Society.]. Pro-
ceedings of AMS, 03, 86–92.

Mok, A. K., Konana, P., Liu, G., Lee, C., & Woo,
H. (2004). Specifying timing constraints and
composite events: an application in the design of
electronic brokerages. IEEE Transactions on Soft-
ware Engineering, 30(12), 841–858. doi:10.1109/
TSE.2004.105

271

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

Dimensions of UML
Diagram Use:

Practitioner Survey and Research Agenda

Brian Dobing
University of Lethbridge, Canada

Jeffrey Parsons
Memorial University of Newfoundland, Canada

INtrODUctION

The Unified Modeling Language (UML) emerged
in the mid-1990s through the combination of pre-
viously competing Object-Oriented Analysis and
Design (OOAD) approaches (Rumbaugh, Blaha,
Premerlani, Eddy, and Lorensen, 1991; Jacobson,
Christerson, Jonsson, and Overgaard, 1992; Booch,
1994), along with other contributions to modeling
complex systems (e.g., Harel, 1987). Control over
its formal evolution was placed in the hands of the

Object Management Group (www.omg.org), which
oversaw a major revision to Version 2 in 2006 (Selic,
2006) and recently released the UML 2.2 (Object
Management Group, 2009). The UML became
widely accepted as the standard for OOAD soon
after its introduction (Kobryn, 1999) and remains so
today (Evermann and Wand, 2006). A large number
of practitioner articles and dozens of textbooks
have been devoted to articulating various aspects
of the language, including guidelines for using it.
More recently, a substantial body of research on the
UML has emerged, including ontological analysis
of its modeling constructs (Evermann and Wand,

AbstrAct

The Unified Modeling Language (UML) is an industry standard for object-oriented software engineer-
ing. However, there is little empirical evidence on how the UML is used. This chapter reports results of
a survey of UML practitioners. The authors found differences in several dimensions of UML diagram
usage on software development projects, including frequency, the purposes for which they were used,
and the roles of clients/users in their creation and approval. System developers are often ignoring the
“Use Case-driven” prescription that permeates much of the UML literature, making limited or no use
of either Use Case Diagrams or textual Use Case descriptions. Implications and areas requiring further
investigation are discussed.

DOI: 10.4018/978-1-60566-904-5.ch013

272

Dimensions of UML Diagram Use

2001a, 2001b) and a more recent empirical as-
sessment (Evermann and Wand, 2006), analysis
of the language’s complexity (Siau and Cao, 2001,
2002;Erickson and Siau, 2007), related learning
difficulties (Siau and Loo, 2006) and means to
address them (Batra and Satzinger, 2006), and
experiments that evaluate various aspects of the
effectiveness of UML models (Burton-Jones and
Weber, 2003, Burton-Jones and Meso, 2006).
Batra (2008, p.i) also lists a number of recent
UML research areas.

The UML was not developed based on any
theoretical principles regarding the constructs
required for an effective and usable modeling
language for analysis and design; instead, it arose
from (sometimes conflicting) “best practices”
in parts of the software engineering community
(Booch, 1999; Booch, Rumbaugh, and Jacobson,
1999). This resulted in a language containing
many modeling constructs, which has thus been
criticized on the grounds that it is excessively
complex (Dori, 2002; Kobryn, 2002; DeJong,
2006). However, more recently research has sug-
gested the “practical complexity” is not as great
(Siau, Erickson and Lee, 2005; Erikson and Siau,
2007). At the same time, the UML has also been
criticized for lacking the flexibility to handle cer-
tain modeling requirements in specific domains
(Duddy, 2002) . As a consequence, the UML has
evolved to allow for the definition of “profiles”
that have enabled Domain Specific Languages
(Cook, 2000; DeJong, 2006).

While the UML is intended to be “largely
process-independent,” some of the key origina-
tors recommend a Use Case-driven process (e.g.,
Booch et al., 1999, p.33). A majority of UML
books since then have endorsed this view, and
most contain at least some further prescriptions
for applying the language in modeling (Stevens
and Pooley, 2000; Schneider and Winters, 2001;
Larman, 2005). As would be expected with a best
practices approach, their prescriptions sometimes
differ. While some accept the original view that
only Use Case Narratives (or, more simply, Use

Cases) be used to verify requirements with users
(Jacobson, Ericsson, and Jacobson, 1994), others
explicitly or implicitly indicate that other UML
diagrams can be used for this purpose, e.g., Activity
Diagrams “can be safely shared with customers,
even those unfamiliar with software engineering”
(Schneider and Winters, 2001, p.67).

There are also differences in guidelines for
using the language, and Use Case Narratives in
particular (Dobing and Parsons, 2000). This is not
surprising since the official UML documentation
(currently 2.2) has never provided guidance on
Narrative format, stating only that “use cases
are typically specified in various idiosyncratic
formats such as natural language, tables, trees,
etc.” (Object Management Group, 2009, p.592).
However, there is no shortage of information on
Use Cases. As of November 2009, Amazon.com
lists nine books with “Use Case” in the title (re-
lated to system modeling), but none with “Class
Diagram” (although there are many UML books
covering both). Finally, when the Use Case-
driven approach is used, concerns have been
raised about the potential communication discon-
nect (Dobing and Parsons, 2000) that can occur
when Use Cases are the primary communication
tool among analysts and the clients/users on the
project team while Class Diagrams play that role
among analysts and programmers. While Use
Case Narratives have been found to be the most
comprehensible artifact for managers, users and
domain experts, and even more so when used with
Use Case Diagrams (Gemino and Parker, 2008),
they are the least comprehensible for designers
and programmers (Arlow and Neustadt, 2004)
when they require knowledge of the organizational
context that programmers do not have. Conversely,
Class Diagrams are highly comprehensible by
programmers, but not clients/users (Arlow and
Neustadt, 2004).

In view of these issues, it would not be surpris-
ing to find a variety of practices followed by UML
practitioners. We believe understanding current
practice can make an important contribution to

273

Dimensions of UML Diagram Use

both theoretical and applied research on UML.
From a theoretical perspective, understanding
how the language is used can support or challenge
theoretical analyses of UML capabilities and de-
ficiencies (Evermann and Wand, 2001a, 2001b).
From a practical perspective, usage patterns can
inform best practices.

However, to our knowledge, only two previ-
ous surveys addressed the extent to which UML
diagrams are used in practice (Zeichick, 2002;
Grossman, Aronson, and McCarthy, 2005) and
neither examined why analysts choose to use
some diagrams and ignore others. (We are defining
“UML diagram” to include Use Case Narratives,
even though they are generally used to describe
Use Cases in text form.) Moreover, there have
been few field studies of any type on the UML;
Erikson (2008, p.iv) summarizes those that have
been done. This is particularly surprising in view
of the explosion of academic interest in UML. Our
research seeks to address this issue by surveying
UML use in practice.

Our objective was to study three key dimen-
sions of UML diagram usage: how often each
diagram was being used, the reasons why ana-
lysts chose to use or avoid them (emphasizing
their role in facilitating team communication),
and the roles of clients/users in their creation
and approval. Such an understanding can also
support the development of theory to explain
observed usage patterns. From a practical point
of view, understanding how the language is used
can help support its evolution. For example, if
certain parts of the language are not widely used
or seen as useful, further research is needed to
understand why this is so, and may lead to evo-
lution or elimination of those parts.

rEsEArcH MEtHODOLOGY

The research began with participation in a local
UML user group, along with mostly informal
interviews of about a dozen UML practitioners

(none belonging to that user group and most in
different cities) and some of their clients. Their
approaches to using UML all differed to some
degree from each other, some substantially. Some
of the differences can be attributed to situational
factors. For example, one project began with the
database, and the associated Class Diagram, al-
ready in place. In other projects, analysts took a
Use Case-driven approach and relied on someone
else to do the Class Diagram later. Some clients
wrote most of the Use Cases themselves, while
others reviewed them.

The level of Use Case modeling varied, even
in systems of roughly the same size, from a
small number (less than 20) of relatively short
Use Cases to much larger sets of detailed Use
Cases and Scenarios (usually defined as paths
through a Use Case illustrating its application
to particular instances) that attempted to capture
very complex rules and regulations. The use of
other UML diagrams depended on the analyst’s
knowledge of how to use them, client requests
(e.g., one client insisted on at least one Activity
Diagram for every Use Case), system domain, and
other factors. Some learned the UML by starting
with only a few of the diagram types while others
took a more ambitious approach and attempted
to use them all.

To get a broader picture of UML usage, a web
survey was developed based on the preliminary
interviews and a literature review. The survey
contained 38 questions, many with multiple parts
(e.g., a list of possible reasons for not using a
particular UML diagram). Both the survey and
this paper use UML 1.5 terminology, such as
“Collaboration Diagrams” rather than the newer
“Communication Diagrams.” The original survey
was first reviewed by colleagues and then pretested
with two people involved in the interviews and
one who had not been. Minor wording changes
were made to several questions as a result. The
pretest data were retained because the changes
made were consistent with what these subjects
had in mind.

274

Dimensions of UML Diagram Use

The survey was intended for the population of
analysts familiar with object-oriented techniques
and UML in particular. To obtain a sample of
such analysts, the OMG was contacted and they
agreed to support the project. Their members were
informed by email of the survey and the OMG en-
dorsement. A link to the survey was also provided
from the main OMG web page. OMG members
were encouraged to share the link with others using
the UML in their organizations. Subsequently, an
invitation to participate in the survey was posted
to the comp.object Usenet newsgroup. No partici-
pation incentive was offered. Some limitations of
this approach are discussed later. However, other
researchers in this area (e.g., Johnson and Hard-
grave, 1999; Grossman et al., 2005) have used
similar methods due to the difficulty of finding
more representative samples.

rEsULts

Almost 2700 hits on the survey site were recorded
during the survey period from March 21, 2003
to March 31, 2004. About half (1369) provided
no response to any item. After eliminating these
responses along with test data, minimal responses,
meaningless or invalid responses, and inappropri-
ate respondents (primarily students), there were
284 usable responses. While these criteria are
difficult to define precisely, invalid responses

were easily identified in practice based on either
meaningless numerical entries (e.g., 1 for all
entries including budget, number of classes, etc.)
or comments that showed the response was not
serious. Any response that had meaningful com-
ments was included, no matter how incomplete.
The 284 analyzed responses either contained data
on UML diagram usage (182) or reasons why the
UML was not being used (102). Of the 182 analysts
using UML diagrams, most (171) responded that
they were using the UML while 11 indicated they
were using some UML diagrams in conjunction
with other modeling approaches.

Demographic Data

The survey gathered some data on respondent
experience in IT, but did not ask about age, gender
or nationality. Respondents have a wide range
of experience in the IT field, reporting up to 45
years and 200 projects (Table 1). Their UML
experience is understandably less. In all cases,
the minimum value reported was zero except for
Years of Experience in IT (2 years) and All IT
Projects (3). While respondents report more project
experience with UML than other object-oriented
approaches, it represents less than a quarter of
their projects and about a third of their years of
experience. The figures reported for Years of
Experience with OOAD include both UML and
non-UML experience.

Table 1. Respondent Experience in Years and Projects

Mean Median Max Std Dev N

Yrs Experience IT 15.1 14.0 45 9.2 96

Yrs Experience OO Prog 8.4 7.5 25 5.1 95

Yrs Experience OOAD 7.4 6.0 25 4.7 95

Yrs Experience UML 4.7 5.0 10 2.4 101

Yrs Experience OO DB 2.5 0.5 20 4.1 84

All IT Projects 27.0 15.0 200 32.6 93

No. of UML Projects 6.2 4.0 51 7.0 168

Other OO Projects 4.0 2.0 50 7.6 127

275

Dimensions of UML Diagram Use

The survey also asked in what type of industry
the respondent was primarily employed, either as
a direct employee or as a consultant. Respondents
could select only one industry. Of the respondents
using the UML who provided their industry type,
47% were in software development, 13% in finan-
cial services, and 8% each in education, aerospace
and defense, and health care and pharmaceuticals.
About 44% also indicated they were associated
with their industry through a consulting firm.

The survey asked respondents, “How large are
the typical object oriented and/or UML projects
you have worked on?” Table 2 shows the results,
with budgets in U.S. dollars (with euros and Ca-
nadian dollars taken at par). The Use Cases and
Classes measures reflect both the size of the project
and the extent to which these diagrams were used
and exclude responses where they were not used
at all. The inclusion of a few very large reported
project sizes skewed the means, so the medians
are also reported.

Overall UML Diagram Usage

Table 3 shows the relative usage of UML analysis
diagrams, with our results compared to others
(Zeichick, 2002; Grossman et al., 2005). To keep
our survey to a reasonable length, we only asked
about Use Case Narratives and UML diagrams
covering system structure and behavior that are
used to document system functionality. This
excluded the Object Diagram, which is closely
related to the Class Diagram, and the Component

and Deployment Diagrams, used in application
architecture modeling. Respondents were asked,
“What proportion of the object-oriented/UML
projects that you have been involved with have
used the following UML components?” The five-
point Usage scale was: None, <1/3, 1/3 – 2/3, >
2/3 and All. The question asked about diagrams
used in projects rather than personally by the re-
spondent because the initial interviews found that
team members often specialized in one or a few
diagrams (e.g., focusing on Use Case Narratives
or the Class Diagram).

Although the UML is often presented as be-
ing used with a Use Case-driven approach in the
UML literature, and in particular by the Unified
Process (Jacobson et al., 1999), only 44% of
respondents report that Use Case Narratives are
used in two-thirds or more of their projects. Over
a third of the respondents say their projects never
use them, or use them less than a third of the time
(15% and 22%, respectively). Class Diagrams
were the most frequently used, with 73% of
respondents using them in two-thirds or more of
their projects. Use Case Narratives were ranked
fourth, behind Sequence Diagrams and Use Case
Diagrams. Only 3% of respondents report that
their projects never use Class Diagrams, while
Collaboration Diagrams have the highest non-
usage rate of 25%. The number of respondents
to this question varied from 152 (Statechart) to
172 (Class Diagram).

Our results are reasonably consistent with
other studies (Table 3), except for a much lower

Table 2. “Typical” Project Sizes

Budget
(US 000$)

Person
Years

Lines
Of Code

Use
Cases

Classes

Mean 5 342 57.5 478 910 88 1311

Median 1 000 6.5 50 000 35 150

Maximum 75 000 3 000 5 000 000 800 25 000

Std Dev 12 000 297 1 050 000 137 4 215

N 71 118 64 75 95

276

Dimensions of UML Diagram Use

Use Case Narrative usage in our study compared
to Grossman et al. (2005) and a possibly related
lower use of Use Case Diagrams than in Ze-
ichick (2002). In all three studies, Collaboration
Diagrams were found to be the least frequently
used. The differences may be attributable to
question wording; for example, Grossman et al.
(2005) simply asked if the diagram was being
used rather than in what percentage of projects.
The usage data in all three studies are based on
respondents rather than projects. Due to the low
correlations (maximum of 0.2) between UML
experience and diagram usage, weighting usage

by the respondent’s number of UML projects
increases the averages only slightly.

Most projects made only partial use of the
seven UML diagram types studied (Table 4). Of
the 135 respondents who reported project usage
levels for all seven UML diagrams studied, 51%
reported that five or more of them were used in at
least a third of their projects while 21% reported
five or more used in at least two-thirds of their
projects.

Usage rates of the different UML diagram types
were all positively correlated with each other,
from an r2 of 0.64 between Use Case Narratives

Table 3. UML Diagram Usage

UML
Diagram

Usage1 Never
Used
(%)

>2/3
usage
(%)

>1/3
usage
(%)

G2
(%)

Z3
(%)

Class 4.19** 3 73 87 93 75

Use Case
Diagram

3.56** 7 51 72 NA 89

Sequence 3.51 8 50 75 89 75

Use Case
Narrative

3.25 15 44 63 93 NA

Activity 2.87** 22 32 55 60 52

Statechart 2.82* 19 29 53 63 52

Collab’tion 2.54** 25 22 42 50 37
1 Usage is measured on a scale from 1 (Never Used) to 5 (Used on All Projects)
2 From Grossman et al. (2005)
3 From Zeichick (2002)
*,** Significantly different from Use Case Narrative mean,
** p<=0.01, * p<0.05 (t-test)

Table 4. Number of UML Diagram Types Used

UML Diagram
Types Used

>1/3 Projects
(%)

>2/3 Projects
(%)

0 6 13

1 4 14

2 8 13

3 10 23

4 21 16

5 16 10

6 19 3

7 16 8

277

Dimensions of UML Diagram Use

and Use Case Diagrams to 0.16 between Use Case
Narratives and Statechart Diagrams. Thus, there
is apparently no general tendency for projects
to use certain diagrams at the expense of others
(which would result in a negative correlation).
For example, given that Sequence Diagrams and
Collaboration Diagrams are “semantically close”
so that “only minor visual information may be
lost” when transforming one to the other (Selonen,
Koskimies, and Sakkinen, 2003, p.45), one might
expect to find that projects use either the Collabo-
ration Diagram or the Sequence Diagram but not
both. However, among our respondents, usage of
the two was correlated at 0.38 (p < 0.01). There
were 24 respondents (out of 153) who reported
that all their projects use Collaboration Diagrams
and 19 of the 24 reported always using Sequence
Diagrams as well.

In contrast, of the 50 always using Sequence
Diagrams in their projects, 18 used Collaboration
Diagrams less than one-third of the time (and 11
of these never used them). While 87 respondents
reported a higher usage level for Sequence than
for Collaboration Diagrams, only 12 reported the
opposite. Analysts clearly prefer using Sequence
Diagrams but many apparently value depicting
the same information in different ways for dif-
ferent purposes. Their isomorphic nature also
means that Sequence and Collaboration Diagrams
share underlying data, so the incremental cost of
producing both (after committing to either one)
is low with some UML tools.

UML Diagram Usage Patterns

The survey collected demographic data about
respondents, their organizations, use of tools, and
types of systems being built. Not all respondents
completed these sections so the sample sizes for
this analysis are somewhat smaller. Differences
that are not reported were statistically insignifi-
cant.

Organization Size

There are a number of significant positive relation-
ships between organization size measures and the
use of UML diagrams. Comparing organizations
above to those at or below $10 million in annual
revenue, the former are significantly more likely
to use Use Case Narratives (p=0.001), Use Case
Diagrams (p=0.02) and Sequence Diagrams
(p=0.02) and they use an average 4.75 diagram
types compared to 3.65 for smaller organizations
(p=0.01). Comparing usage by organizations with
50 or more IT employees to those with fewer, the
former are more likely to use Sequence Diagrams
(p=0.01) and Activity Diagrams (p=0.03). How-
ever, those with more employees use only slightly
more Use Case Narratives and total number of dia-
gram types. Both points used to divide the samples
were chosen to create roughly equal subsamples
so they are somewhat arbitrary. Moreover, the two
size measures are not independent (r=0.72).

Project Size

Larger projects might be expected to make wider
use of UML diagram types, but this is generally
not the case. A similar analysis using the five
project size measures (Table 2) found that re-
spondents reporting larger than average budgets
reported more use of Use Case Narratives and
more diagram types used over a third of the time
(p<0.05). Larger projects based on person-years
also reported greater use of Use Case Narratives
(p<0.05). However, no other comparisons were
significant.

UML Tools

The availability of UML tools is also related to the
use of UML diagram types. Those with tools are
significantly more likely to use Class Diagrams
(p=0.02) and Sequence Diagrams (p<0.001) with
usage levels higher for all remaining diagram types
as well (none significant). Respondents from larger

278

Dimensions of UML Diagram Use

organizations might be expected to have better
access to tools and they do, but only slightly so
this does not explain why larger organizations are
using more diagram types. Correlations between
the organization size measures (annual revenue
and number of employees) and spending on tools
are also low (0.25 and 0.29, respectively, neither
significant) even though tool cost is typically partly
dependent on the number of installations.

Organizational UML Usage

Overall usage of the UML in an organization
could affect practices within individual projects.
For example, analysts (and presumably organiza-
tions) could begin learning the UML by focusing
on a subset of diagrams (Ambler, 2002, pp.46-47).
The survey data do not permit any direct testing
to determine whether individual analysts are tak-
ing this approach. However, respondents from
organizations using the UML in 40% or fewer
of their projects use an average of 2.4 diagram
types two-thirds of the time or more. Those from
organizations using the UML in over 40% of proj-
ects average a significantly greater (p = 0.02) 3.3
diagram types and are also making significantly
(p = 0.03) more use of Sequence Diagrams (3.84
usage level compared to the 3.51 average in Table
3 and 3.23 level for those using the UML 40% of
the time or less). Usage levels of all the remaining
diagram types are very similar to those reported
in Table 3 for both groups.

Respondent Experience

There are generally weak relationships between
respondent experience and their projects’ UML di-
agram usage. Experience measures (Table 1) were
correlated with use of each UML diagram type
(Table 3). The strongest relationships involved
Statechart Diagrams and years of experience in
OOAD (0.45, p<0.01) and years of experience with
the UML (0.35, p<0.01). Class Diagram usage also
correlated significantly (p<0.01) with these two

experience measures at 0.36 and 0.40 respectively,
and with years of object-oriented programming
(0.31). No other correlations between experience
measures and diagram type usage exceeded 0.30
(and thus they explained less than 10% of the
observed variance).

Industry

The survey provided 15 possible industrial clas-
sifications, with all but one receiving 12 or fewer
responses (insufficient to be useful in analysis).
The 46 respondents working in the software
development industry, who do not always have
identifiable clients in the same sense as those work-
ing in other organizations, had somewhat (but not
significantly) lower use of Use Case Narratives,
Sequence Diagrams and Activity Diagrams.

In our initial informal interviews, consultants
were always described (by themselves and by
others) as enthusiastic proponents of Use Case
Narratives and the Use Case-driven philosophy.
While we expected similar results from the
survey, instead consultants reported lower Use
Case Narrative usage than non-consultants (but
not significantly, p=0.07). However, consultants
were significantly more likely (p=0.04) to use
Collaboration Diagrams.

System Type

Respondents were asked to indicate the application
area(s) in which their systems were being built. The
seven choices (with the number of responses in
parentheses) were e-commerce (90), administrative
(71), embedded (36), manufacturing (28), customer
relationship management (26), data mining (21) and
mobile commerce (17). There were also 58 who
provided “other” categories, although many used
this option to further describe one of the existing
categories. Building software tools (6) was the most
common selection not listed in the survey.

Use Case Narratives were used most by those
developing customer relationship management

279

Dimensions of UML Diagram Use

(3.57) and e-commerce systems (3.48), and least by
those developing embedded systems (2.64). (The
numbers shown use the same five-point scale as in
Table 3.) T-test significance levels were 0.01 and
0.001, respectively, after excluding respondents
who selected both the system types being com-
pared. However, embedded system projects had
the highest reported usage of Sequence Diagrams
(3.56), while customer relationship management
had the least (2.14) (p<0.005). Activity Diagrams
were used most in developing manufacturing
systems (3.12) and least in embedded (2.58), but
this difference was not significant.

Respondents were also asked to identify the
proportion of their object oriented/UML projects
that were new systems, complete replacements
of existing systems, or enhancements to existing
systems. Most entered percentages that totaled
100, but others entered the number of each type
and these were converted to percentages. There
were 154 usable responses, averaging 56% new,
20% replacement and 24% enhancements. Table 5
computed the usage of each UML diagram (com-
puted as in Table 3) for those who reported at least
50% of their projects were of that type; there were
96 responses for new systems, 23 for replacement
projects and 34 for enhancement projects. (Some
responses were split 50/50 between two types
and were counted twice while others were split
more evenly among all three types and were not
counted at all.) Most notable is the greater use of

Class Diagrams and Use Case Narratives when
developing replacement systems.

Information Provided
by UML Diagrams

There are a number of reasons for using multiple
diagram types to describe system functionality,
beginning with the possibility that different dia-
grams convey different information. To investigate
this, the survey asked which diagrams provide
new information beyond that contained in Use
Case Narratives. The Use Case Narratives were
chosen as the benchmark because a Use Case-
driven approach had been endorsed by much of
the early UML literature. Both the interviews and
a literature review (Dobing and Parsons, 2000)
showed that Use Case Narratives varied widely in
level of detail, so simply knowing that Use Case
Narratives are being employed does not answer the
question of how much information they contain.
In contrast, the level of redundancy across other
pairs of diagrams is largely determinable from
their syntax. The question used a five-point scale
from “No New Info” to “All New Info,” with
“Some New Info” as the midpoint (3). This item
was only seen by those whose projects had used
both Use Case Narratives and the other diagram
in question so there were fewer respondents,
from 89 (Collaboration Diagram) to 125 (Class
Diagram).

Table 5. UML Diagram Usage by Project Type

UML Diagram New
System

Replacement
System

Enhancement
of System

Class 4.19 4.82 4.38

Use Case Diag 3.62 3.90 3.56

Sequence 3.55 3.95 3.43

Use Case Narr 3.08 3.82 3.23

Activity 2.99 2.95 2.69

Statechart 2.87 2.75 2.63

Collaboration 2.59 2.95 2.45

280

Dimensions of UML Diagram Use

Table 6 shows that the diagram of highest
value for conveying new information not already
contained in the Use Case Narratives was the
Class Diagram, with a score of 3.51 on the five-
point scale, and 86% of respondents believe it
offers at least some new information (at least 3
on the 5-point scale). The Use Case Diagram was
least useful in providing additional information,
which is not surprising given its role is to depict
the Use Cases and their relationships to actors
and to each other.

Stronger relationships were expected between
the belief that a UML diagram provides additional
information beyond the Use Case Narrative and the
usage level of that diagram. For Activity Diagrams,
the correlation was 0.42 (p<0.01). However, other
correlations of this type were all weak (i.e., none
exceeded 0.30, so none explained more than 10%
of the variance).

There was also a strong correlation (0.77) be-
tween the beliefs that Collaboration and Sequence
Diagrams provide new information beyond Use
Case Narratives, the highest correlation found
among all pairs of diagrams. This could be at-
tributed to the isomorphic relationship between
Collaboration and Sequence Diagrams (i.e., that
they convey similar information but in different
ways).

role of UML Diagrams

Table 7 examines reasons for including each UML
diagram in a project, with the focus on communi-
cation within the project team. Each respondent
who reported using a particular diagram at least
a third of the time was asked about four possible
purposes. As expected, Use Case Narratives had
the highest score for “Verifying and validating
requirements with client representatives on the
project team” at 4.00 (on a 5-point scale). The use
of other diagrams for this purpose was higher than
expected, based on interview responses and our
review of the UML literature. These high levels
of client involvement show that use of the more
technical diagrams of the UML is not limited to
the technical members of the development team.
The survey also included a single item that asked,
“How successful has the UML been in facilitating
communication with clients?” The items used a
five-point scale from Not to Very Successful. The
mean was 3.28 with 25% choosing the lowest
two levels.

Of those respondents who reported using a
particular diagram at least a third of the time,
Table 8 shows the percentage who rated them
from “Moderately Useful” to “Essential” for four
different purposes. The results show higher than
expected levels of usefulness for all UML dia-
grams in “Verifying and validating requirements

Table 6. New Information (Not in Use Case Narratives) from UML Diagrams

UML Diagram New
Information1

Some – All New
Information (%)

Class 3.51 86

Use Case 2.42** 48

Sequence 3.37 78

Activity 2.89** 63

Statechart 3.38* 79

Collaboration 2.98** 67
1 New information is measured on a scale from 1 (No New Information) to 5 (All New Information)
*,** Significantly different from Class Diagram mean, ** p<=0.01, * p<0.05 (t-test)

281

Dimensions of UML Diagram Use

with users.” Only Statecharts, at 49%, were under
the 50% level.

The other three purposes listed are more re-
lated to communication within the project team,
among analysts, programmers and maintenance
staff. For these three purposes, the Class Diagram
was considered most useful with the Use Case

Diagram least useful (but all diagram types were
rated as at least “moderately useful” by over 60%
of respondents). As noted earlier, the Use Case
Diagram provides an overview of the project while
programming tends to focus on implementing
particular functionality. In Table 8, the usefulness
levels reported for Sequence Diagrams are all

Table 7. Roles for UML Diagrams

UML
Diagram

Client
Validation1

Implement2 Document3 Clarify4

Use Case
Narrative 4.00 3.62† 3.15†† 3.52††

Activity 3.50** 3.43†† 3.35†† 3.50††

Use Case
Diagram 3.36** 3.06†† 2.90†† 3.17††

Sequence 2.91** 3.71† 3.76†† 4.14†

Class 2.90** 4.06 4.18†† 4.35††

Statechart 2.63** 3.51†† 3.35†† 3.74††

Collab’tion 2.62** 3.25†† 2.96†† 3.40††

1 Verifying and validating requirements with client representatives on the project team
2 Specifying system requirements for programmers
3 Documenting for future maintenance and other enhancements
4 Clarifying understanding of application among technical members of the project team
** Significantly different from Use Case Narrative mean,
** p<=0.01 (t-tests)
†,†† Significantly different from Class Diagram mean,
†† p<=0.01, † p<0.05 (t-tests)

Table 8. Percent of Respondents Who Believe Each UML Diagram is at Least Moderately Useful

UML
Diagram

Client
Validation1

Implement2 Document3 Clarify4

Use Case
Narrative

87 79 68 74

Activity 77 81 73 80

Use Case
Diagram

74 62 61 66

Sequence 62 84 85 92

Class 57 89 92 93

Statechart 49 79 71 82

Collab’tion 51 70 62 74
1 Verifying and validating requirements with client representatives on the project team
2 Specifying system requirements for programmers
3 Documenting for future maintenance and other enhancements
4 Clarifying understanding of application among technical members of the project team

282

Dimensions of UML Diagram Use

significantly higher (p<0.01) on the three project
team communication measures than those for the
isomorphic Collaboration Diagram.

These reported levels of client involvement
with the full range of UML diagrams exceed
those generally recommended in the literature
and, in particular, seem inconsistent with the
dominant Use Case-driven philosophy. Concerns
have been raised about a potential disconnect that
could result from relying on Use Case Narratives
when working with clients and Class Diagrams
when working with technical team members
(Dobing and Parsons, 2000). The survey results
confirm that Use Case Narratives are indeed the
primary diagram for communication with clients
and Class Diagrams for communication within
the technical members of the team. However, all
diagrams received at least “moderately useful”
ratings from over 50% of respondents across all
forms of communication (Table 8), except using
Statechart Diagrams for communication with
clients which was 49%. In particular, Use Case
Narratives are widely used among the technical
members of project teams. This suggests that the
disconnect problem may well have been addressed
in practice, if not in the UML literature.

Those who reported that their projects used
a particular diagram less than a third of the time
(including not at all) were asked why they were

not using it more often. There were fewer respon-
dents for these questions, ranging from only 8 for
Class Diagrams to 59 for Collaboration Diagrams.
Table 9 shows the percentage of respondents who
selected each possible reason. Respondents were
encouraged to select all reasons that applied so
row totals exceed 100%. A lack of understanding
by analysts was the primary factor among the
few not using Class Diagrams (50%). Similar
concerns were expressed by 48% of respondents
about Activity Diagrams. Leading concerns for the
remaining diagrams were over how useful they
are (Statechart), their value (Sequence and Use
Case Diagrams and Narratives) and the degree
of redundancy (Collaboration, presumably with
respect to Sequence Diagrams).

client Participation

Client participation has long been considered
crucial to successful system development. The
survey asked about the client’s role in relation to
each of the UML diagram types being studied.
Respondents were able to select more than one
(e.g., they could report that clients helped to
develop Use Case Narratives, reviewed some or
all of them upon completion and had formal ap-
proval authority). The results are summarized in
Table 10. For example, 76% of respondents who

Table 9. Reasons for not using Some UML Diagrams (% responses)

UML Diagram
Not well

understood by
analysts

Not useful for
most projects

Insufficient
value to justify

cost

Information
captured

redundant

Not useful
with clients

Not useful with
programmers

Class 50 13 13 25 25 25

Sequence 32 23 36 14 23 23

Use Case
Narrative 29 26 37 29 11 26

Use Case
Diagram 32 32 42 19 29 42

Statechart 35 42 28 12 28 33

Activity 48 23 35 35 14 25

Collab’tion 27 32 24 49 29 24

283

Dimensions of UML Diagram Use

used Use Case Narratives reported that clients
were involved in their development. When UML
diagram types are ranked on the level of client
participation, the order is very similar (with only
Class and Collaboration Diagrams transposed)
to “comprehensibility” rankings for managers,
users and domain experts (Arlow and Neustadt,
2004, p.91).

The results show that clients were most likely
to be involved in developing, reviewing and ap-
proving Use Case Narratives and the Use Case
Diagram. Of the remaining diagrams, Activity
Diagrams are probably the easiest for clients to
understand and almost half the analysts report
some involvement by clients in their development,
consistent with the quote from Schneider and Win-
ters (2001) in the Introduction. While clients were
less likely to be involved in developing the Class
Diagram, just over half were involved in review-
ing this widely used diagram. The wide range of
client involvement practices in our interviews and
survey results is not unexpected given that most
organizations have relatively limited experience
with the UML.

Not surprisingly, clients were least likely to be
involved in developing or reviewing Statechart
Diagrams. The fact that about one quarter to a
third were involved in these tasks may reflect
the technical sophistication of some clients in the
survey sample, since the composition of OMG
membership includes many large companies in
the computer industry.

Respondents were also asked about possible
difficulties that had occurred which “could be
attributed to the UML.” They could check any
or all of the five categories listed. User interface
concerns were checked most frequently (36%),
followed by roles and responsibilities of particular
users (21%), security (18%), data requirements
(18%), and system capabilities and functionality
(13%).

respondents Not Using the UML

Some limited analysis was also done based on
the 102 responses from those not using the UML.
Software development was also the largest orga-
nization type for this group (31%) with education
second (25%). These respondents were less ex-
perienced than the UML practitioners (averaging
8.1 years IT experience and 16.3 IT projects vs.
15.1 years and 27.0 projects for UML practitio-
ners). The sample selection method suggests this
group is probably more knowledgeable about the
UML (and more interested in it) than the average
non-practitioner. The primary reasons given by
those not using the UML or any object-oriented
approach were a lack of people familiar with
the UML (51%) and a lack of suitable projects
(16%). Of those whose organizations were using
an object-oriented approach but not the UML,
55% cited a lack of people familiar with the UML
while 23% said they had no suitable projects,
17% said it was too complex, 17% said it was not

Table 10. Client Participation

UML Diagram Develop (%) Review (%) Approve (%) N

Use Case Narr 76 63 54 78

Use Case Diag 57 69 46 77

Activity 47 60 19 57

Sequence 37 52 16 87

Class 33 53 20 103

Collaboration 38 48 13 48

Statechart 28 36 20 61

284

Dimensions of UML Diagram Use

yet standardized or accepted and 15% indicated
their tools were not compatible with the UML.
Respondents could select more than one answer
so the percentage total exceeds 100%.

DIscUssION AND
rEcOMMENDAtIONs

This appears to have been the first survey investi-
gating both how often, and more importantly, why
UML diagrams are used (or not used) in systems
analysis. We found variations on all three of the
major dimensions studied, including frequency
of use for each diagram type, the purposes for
which they were being used, and the role of cli-
ents/users in their creation and approval. While
the UML is “unified” in that it brought together
elements from disparate modeling notations,
considerable variations remain in its use. These
variations are somewhat inconsistent with the
notion of the UML as a “unified” language in the
sense of implying coordinated and cohesive use
of diagram types within a development project.
Moreover, we found that use of only a subset of
UML diagrams on a project is widespread. The
data also show a variety of reasons why certain
UML diagrams are not used.

While surveys can address which UML dia-
grams are used, they cannot easily determine if they
are being used appropriately. As one respondent
put it, “Used, vs. used appropriately, is probably
a telling difference. Many places are using the
components but in a relatively brain-dead manner.”
Of course, this type of comment can be made about
most technologies, particularly when, as with the
UML, they are relatively new and complex.

The findings of this research can be useful in
a number of ways. First, information on UML use
can provide valuable input in the evolution of the
standard. For example, on the issue of complexity,
the language could be simplified by eliminating
Collaboration Diagrams. Based on our findings,
Collaboration Diagrams are used less often,

deemed to be less useful, and appear to offer little
additional value in relation to Sequence Diagrams.
Statechart Diagrams are also used less often than
most and seem to be less useful most of the time,
but are rated highly for providing new informa-
tion in some situations (e.g., real-time systems)
and have low redundancy. Admittedly, both these
diagrams also have some strong supporters. As one
interview subject said about Statecharts, “When
they are useful, they are very useful.”

Second, some projects do not follow a Use
Case-driven approach with over a third of the
respondents saying they use them less than a third
of the time. At the same time, there is limited
empirical evidence to support the proposition that
Use Case Narratives are a more effective way to
communicate with clients than are the other UML
diagrams. Some respondents were particularly
critical of Use Cases, referring to them as “close
to useless,” “imprecise,” and “just unformatted
text notes,” noting that the “ambiguity of Use
Cases in particular is problematic” and they “tend
to become remarkably complex and highly error
prone.” (These comments come from four different
respondents.) Research is needed to determine an
appropriate level of granularity and level of detail
for Use Case Narratives.

Third, more attention may be needed on the
issue of how clients/users can be better prepared to
participate in development and review of artifacts
beyond Use Case Narratives. As one respondent
put it, “The only problem is communicating with
people not familiar with the UML.” We found
that the use of diagrams other than Use Case
Narratives among clients/users was higher than
expected based on the extant prescriptive literature
on ‘how to use’ the language. The UML practi-
tioner literature generally seems to assume that
UML diagrams, except for Use Case Diagrams
and Narratives, are too complex or technical to be
understood by clients. However, our results show
that clients frequently approve, review, and even
help develop all of the UML diagrams. But those
respondents who chose to comment on this issue

285

Dimensions of UML Diagram Use

generally took the opposite view, saying that the
UML is “too geeky and techie for non-technical
people,” their “eyes glaze over” and there is “little
involvement of key business people.” The views
of clients and intended users of systems on the us-
ability and usefulness of UML have received little
attention from researchers (including this study).
Nor has much consideration been given to how to
prepare clients for this level of involvement.

Fourth, research is needed to understand which
UML diagrams can best facilitate communication
between clients and analysts, particularly as the
use of the UML to support Agile Modeling grows
(Ambler, 2002). In addition, work might be needed
to modify these diagrams (e.g., by simplifying or
otherwise changing the syntax and grammar of
the diagram type) to enable them to support com-
munication and verification more effectively.

Research on Activity Diagrams might be
particularly interesting. Following Use Cases,
the respondents expressed the sharpest disagree-
ment on their usefulness, with the critics saying
they are “very time-consuming to produce,” have
“unclear semantics and an unclear connection to
the rest of the UML Diagrams,” do not represent
“the concept of a ‘business process,’” and are
redundant “if Use Cases are well written and
well modeled” (from four different respondents).
Some also noted that Activity Diagrams are not
well covered in the UML literature and not well
supported by UML tools. A search using ABI/
Inform Global (November 2009) found only
three research articles with “Activity Diagram”
in the title so this could an unmined opportunity
for researchers.

Another related question is how to best use
UML diagrams with Agile methods. There have
been several books on this subject, beginning with
Ambler (2002), but few journal research articles
have been published.Fifth, as noted earlier, 36%
of respondents agreed that they had experienced
“difficulties … [with user interfaces] that could
be attributed to the UML.” User interfaces have
become much more complex over the past decade

with the use of both visual programming and web
environments, complicating development using
any methodology or notation. Based on accom-
panying comments, respondents would welcome
better ways to integrate user interface design with
UML modeling. One approach is to distinguish
between “System” and “Essential” Use Case
Narratives (Constantine and Lockwood, 1999),
where Essential Use Cases are independent of
technology (and user interfaces) while System Use
Cases include these details. Currently, the UML
has no standards for Use Case Narratives (OMG,
2005) or System Use Cases in particular, which
might explain why many respondents experienced
user interface issues that they attributed to the
UML. Another approach is to use prototyping or
other screen design tools in conjunction with the
UML. One respondent noted that, “It is easier for
clients to understand the functionality of software
through user interface sketches” while another
said that clients had difficulty validating Use
Case Narratives “without any draft of the [user
interface].” The principle that system analysis
should be technology independent long precedes
the development of the UML and is widely ac-
cepted among leading writers in the field but, as
several respondents pointed out, some difficulties
can arise when applying this principle in practice.
Another respondent noted difficulties in creating a
vocal interface, pointing out that not all interfaces
are purely visual. There are some very interesting
research opportunities in this area.

Respondents provided fewer comments on
other difficulties with the UML. Concerns about
security are to be expected but no suggested
solutions were mentioned. One difficulty with
database design is that many respondents were
using a Relational, rather than Object-Oriented,
DBMS. Difficulties identifying the “roles and
responsibilities of particular users” suggest that
there may be problems mapping the UML “actor”
to specific individuals or job descriptions. There
are some strong parallels with this issue and user
interfaces; at least some clients prefer to work

286

Dimensions of UML Diagram Use

with more concrete designs that clearly show
who does what rather than with more abstract
approaches that take a higher level view. More
research is needed on how clients can more ef-
fectively validate designs.

Sixth, some respondents discussed additional
modeling constructs they used to supplement the
UML. While this might seem to make a com-
plex modeling language even more so, some of
these constructs could be used to replace UML
diagrams. Entity-relationship diagrams remain
popular (but 15 of the 17 who discussed using
them also use the Class Diagram). Data Flow
and Process Flow Diagrams are still being used
as well. Six respondents reported using tools for
user interface design to address some of the issues
mentioned above.

Finally, there have been numerous attempts
to evaluate UML from a theoretical standpoint
including assigning ontological semantics to UML
constructs (Evermann and Wand, 2001a; Opdahl
and Henderson-Sellers, 2001) and assessing the
complexity of the UML (Siau and Cao, 2001,
2002; Siau, Erickson, and Lee, 2005; Erickson
and Siau, 2007). In cases such as these, theoreti-
cal conclusions can be substantiated or refuted
by empirical data on usage. To illustrate, some
UML constructs appear to have no ontological
counterpart and such constructs may not be suitable
for conceptual modeling (Evermann and Wand,
2001a). We then might expect that diagrams that
have more such constructs would be less useful
and less used in conceptual modeling. In terms
of this study, this would correspond to less use
of such diagrams/constructs for verifying and
validating requirements with users. Our study did
not examine use at the level of constructs within
diagrams, but future empirical studies might do
an analysis at that level of detail (perhaps for a
single diagram type).

sUrVEY rEsPONDENt
cHArActErIstIcs: PrOFILE
AND LIMItAtIONs

Given the lack of any defined population of
UML practitioners from which to obtain a ran-
dom sample, we chose to survey primarily OMG
members and those who use its web site. This may
have produced biased responses. However, given
that the goals of this research were to examine
how UML practitioners (the target population)
were using the language, rather than the extent to
which it is being used in software development
in general, the participation of the OMG seemed
appropriate. While respondents may not be rep-
resentative of all UML practitioners, they can be
considered leading edge adopters. Their UML
experience was naturally low when this survey was
conducted, with medians of five years and four
projects. As such, respondents might not be typical
of the eventual set of UML practitioners (which
could become the majority of system developers
if object-oriented system development and the
UML become more widely accepted). Based on
other research in technology adoption, albeit in
different areas (e.g., Brown and Venkatesh, 2003),
early adopters might approach the UML quite
differently from those who come later.

In addition, there are some obvious limitations
with using a convenience sample. The number
of people who received or read the invitation to
participate is unknown because of the possibility
of it being forwarded. Visitors to the OMG site
need not be members, so the results should not
be considered as a survey of OMG’s membership
even prior to inviting readers of the comp.object
Usenet newsgroup. It is also likely that some
people found the survey through search engines,
since the survey was, for some time, the top result
of a Google search on “UML survey.” Despite the
lack of control over respondents, reviewing the
comments and contact information suggests that
the group as a whole does belong to the target
population and are reasonably diverse on a range

287

Dimensions of UML Diagram Use

of demographic measures. Moreover, whether they
worked for OMG member companies or found the
survey by other means, the respondents clearly
were very interested in the UML. Whether respon-
dents are representative of the target population of
all analysts who use the UML is unknown.

A majority of respondents opted to remain
anonymous so they could have submitted two
or more responses, but there was no reason for
them to do so and there are no obvious patterns
of duplicate responses. It is also conceivable that
results could be skewed by heavy participation by
a single organization. However, responses came
from a wide variety of organization types and sizes
and there were no bursts of unusual activity levels.
Among those who did provide an email address,
no company domain had more than one response
except for email providers (15 from Yahoo! ac-
counts, five from Hotmail, etc.). So there is no
evidence to suggest the results were manipulated
by any individual or group.

The survey took a Use Case-driven approach,
consistent with a majority of the books written on
the UML up to the time of this survey. However,
only 44% of respondents reported using Use
Case Narratives in at least two-thirds of their
UML/object-oriented projects. Measuring the
value of the information provided by different
UML diagrams by comparing them to Use Case
Narratives therefore seems insufficient and new
measures are needed.

The measures used for project size were also
problematic. Low numbers of Classes and Use
Case Narratives used in some “typical” projects
probably reflect limited usage of those diagram
types rather than the real size of the project, and
many projects are not using them at all. Some
unrealistically low budgets (which were coded
as missing data) were perhaps intended to be in
thousands of dollars while others appear to exclude
salaries. On the other hand, some larger budgets
might have included training and tool acquisition
costs that do not reflect project size. Lines of code
is commonly used as a measure of project size, and

was used here because of its simplicity. However,
respondents may or may not have included shared
code, comments, etc. and programming style can
also affect code size. Low correlations among these
size measures also suggest a lack of reliability.
Budget and number of classes correlated at 0.65
while person-years and lines of code correlated
at 0.44 (both with p<0.01). But the next largest
correlation is only 0.25.

Measures of user/client involvement have
a long history in the IS literature. This survey
measures only the perspective of IT professionals
rather than the clients themselves. In the earlier
interviews, there were several cases of strong dis-
agreement between the clients and analysts on their
roles and even on appropriate use of some UML
diagram types. There can also be differences in
what ‘client’ means across different organizations
and situations. Are clients those sponsoring the
system or does this term also include the intended
direct users? Some external consultants might view
the IT Department that hires them as the client,
while those developing commercial software may
have certain types of clients in mind but have
limited interaction with them.

cONcLUsION

The UML has rapidly become the de facto stan-
dard for object-oriented systems development.
However, this survey suggests there is no stan-
dard approach to using the UML within a group
of arguably leading edge practitioners. There is
considerable variation in use of diagrams across
projects and in the role clients/users play in the
development of UML models. Clearly, in view of
the popular interest in the UML, further research
is needed to better understand UML use in order
to gain insight on how it can be effectively used to
support systems development. The results of this
survey suggest several aspects of UML adoption
and use that need to be studied.

288

Dimensions of UML Diagram Use

AcKNOWLEDGMENt

The authors would like to thank the Object Man-
agement Group, and Richard Soley in particular,
for their support of our research. Thanks also to
Dinesh Batra and other anonymous reviewers for
their helpful suggestions and comments. Funding
for this research was provided by the Natural
Sciences and Engineering Research Council of
Canada.

Some of the results in this chapter appeared
earlier in the Communications of the ACM - “How
the UML is Used,” May 2006.

rEFErENcEs

Ambler, S. (2002). Agile Modeling: Effective
Practices for Extreme Programming and Unified
Process. New York: John Wiley.

Arlow, J., & Neustadt, I. (2004). Enterprise Pat-
terns and MDA: Building Better Software with
Archetype Patterns and UML. Boston: Addison-
Wesley.

Batra, D. (2008). Unified Modeling Language
(UML) Topics: The Past, the Problems, and the
Prospects. Journal of Database Management,
19(1), i–vii.

Batra, D., & Satzinger, J. (2006). Contemporary
Approaches and Techniques for the Systems Ana-
lyst. Journal of Information Systems Education,
17(3), 257–265.

Booch, G. (1994). Object-Oriented Analysis and
Design with Applications (2nd ed.). Redwood City,
CA: Benjamin/Cummings.

Booch, G. (1999). UML in Action. Com-
munications of the ACM, 42(10), 26–28.
doi:10.1145/317665.317672

Booch, G., Rumbaugh, J., & Jacobson, I. (1999).
The Unified Modeling Language User Guide.
Reading, MA: Addison Wesley.

Brown, S., & Venkatesh, V. (2003). Bringing
Non-Adopters Along: The Challenge Facing the
PC Industry. Communications of the ACM, 46(4),
76–80. doi:10.1145/641205.641208

Burton-Jones, A., & Meso, P. (2006). Conceptual-
izing Systems for Understanding: An Empirical
Test of Decomposition Principles in Object-
Oriented Analysis. Information Systems Research,
17(1), 101–114. doi:10.1287/isre.1050.0079

Burton-Jones, A., & Weber, R. (2003). Properties
do not have properties: Investigating a question-
able conceptual modeling practice. In Proceedings
of the 2nd Annual Symposium on Research in Sys-
tems Analysis and Design, St. John’s, Canada.

Constantine, L. L., & Lockwood, L. A. D. (1999).
Software for Use. Reading, MA: Addison-
Wesley.

Cook, S. (2000). The UML Family: Profiles,
Prefaces, and Packages. In Proceedings of UML
2000 - The Unified Modeling Language. Advanc-
ing the Standard (LNCS 1939, pp. 255-264).

DeJong, J. (2006, June 15). Of Different Minds
About Modeling. SD Times. Retrieved from http://
www.sdtimes.com/article/special-20060615-02.
html.

Dobing, B., & Parsons, J. (2000). Understanding
the Role of Use Cases in UML: A Review and
Research Agenda. Journal of Database Manage-
ment, 11(4), 28–36.

Dori, D. (2002). Why Significant UML Change
is Unlikely. Communications of the ACM, 45(11),
82–85. doi:10.1145/581571.581599

Duddy, K. (2002). UML2 Must Enable A Family of
Languages. Communications of the ACM, 45(11),
73–75. doi:10.1145/581571.581596

Erickson, J. (2008). A Decade and More of UML:
An Overview of UML Semantic and Structural
Issues and UML Field Use. Journal of Database
Management, 19(3), i–vii.

289

Dimensions of UML Diagram Use

Erickson, J., & Siau, K. (2007). Theoretical and
Practical Complexity of Modeling Methods.
Communications of the ACM, 50(8), 46–51.
doi:10.1145/1278201.1278205

Evermann, J., & Wand, Y. (2001a). Towards on-
tologically based semantics for UML constructs.
Proceedings of the 20th International Conference
on Conceptual Modeling, Yokohama, Japan (pp.
354-367).

Evermann, J., & Wand, Y. (2001b). An Ontological
Examination of Object Interaction in Conceptual
Modeling. In Proceedings of the 11th Workshop
on Information Technologies and Systems, New
Orleans, Louisiana (pp. 91-96).

Evermann, J., & Wand, Y. (2006). Ontological
Modeling Rules For UML: An Empirical Assess-
ment. Journal of Computer Information Systems,
46(5), 14–29.

Gemino, A., & Parker, D. (2009). Use Case Dia-
grams in Support of Use Case Modeling: Deriv-
ing Understanding from the Picture. Journal of
Database Management, 20(1), 1–24.

Grossman, M., Aronson, J., & McCarthy, R.
(2005). Does UML make the grade? Insights from
the software development community. Informa-
tion and Software Technology, 47(6), 383–397.
doi:10.1016/j.infsof.2004.09.005

Harel, D. (1987). Statecharts: A visual formal-
ism for complex systems. Science of Computer
Programming, 8(3), 231–274. doi:10.1016/0167-
6423(87)90035-9

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The Unified Software Development Process. Read-
ing, MA: Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., &
Overgaard, G. (1992). Object-Oriented Software
Engineering: A Use Case Driven Approach. Read-
ing, MA: Addison-Wesley.

Jacobson, I., Ericsson, M., & Jacobson, A. (1994).
The Object Advantage: Business Process Reengi-
neering with Object Technology. Reading, MA:
Addison-Wesley.

Johnson, R., & Hardgrave, B. (1999). Object-
oriented methods: current practices and attitudes.
Journal of Systems and Software, 48(1), 5–12.
doi:10.1016/S0164-1212(99)00041-2

Kobryn, C. (1999). UML 2001: A Standardization
Odyssey. Communications of the ACM, 42(10),
29–37. doi:10.1145/317665.317673

Kobryn, C. (2002). Will UML 2.0 Be Agile or
Awkward? Communications of the ACM, 45(1),
107–110. doi:10.1145/502269.502306

Larman, C. (2005). Applying UML and Patterns:
An Introduction to Object-Oriented Analysis and
Design and Iterative Development (3rd ed.). Upper
Saddle River, NJ: Prentice Hall.

Moore, A. (2001). Extending UML to Enable
the Definition and Design of Real-Time Embed-
ded Systems. Crosstalk: The Journal of Defense
Software Engineering, 14(6), 4–9.

Object Management Group. (2009). OMG Unified
Modeling Language: Superstructure, Version 2.2.
Retrieved November 4, 2009 from http://www.
omg.org/spec/UML/2.2/Superstructure/PDF/

Odell, J., Van Dyke, P., & Bauer, B. (2000). Ex-
tending UML for Agents. In Proceedings of the
Agent-Oriented Information Systems Workshop at
the 17th National conference on Artificial Intel-
ligence, Austin, Texas (pp. 3-17).

Opdahl, A. L., & Henderson-Sellers, B. (2001).
Grounding the OML metamodel in ontology.
Journal of Systems and Software, 57, 119–143.
doi:10.1016/S0164-1212(00)00123-0

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy,
F., & Lorensen, W. (1991). Object-Oriented
Modeling and Design. Englewood Cliffs, NJ:
Prentice Hall.

290

Dimensions of UML Diagram Use

Schneider, G., & Winters, J. (2001). Applying
Use Cases: A Practical Guide (2nd ed.). Boston:
Addison-Wesley.

Selic, B. (2006). UML 2: A model driven de-
velopment tool. IBM Systems Journal, 45(3),
607–620.

Selonen, P., Koskimies, K., & Sakkinen, M. (2003).
Transformations between UML diagrams. Journal
of Database Management, 14(3), 37–55.

Siau, K., & Cao, Q. (2001). Unified Modeling
Language (UML) - a complexity analysis. Journal
of Database Management, 12(1), 26–34.

Siau, K., & Cao, Q. (2002). How Complex Is the
Unified Modeling Language? Advanced Topics in
Database Research, 1, 294–306.

Siau, K., Erickson, J., & Lee, L. Y. (2005).
Theoretical vs. Practical Complexity: The Case
of UML. Journal of Database Management,
16(3), 40–57.

Siau, K., & Loo, P.Identifying Difficulties in
Learning UML. Information Systems Manage-
ment, 23(3), 43–51. doi:10.1201/1078.1058053
0/46108.23.3.20060601/93706.5

Stevens, P., & Pooley, R. (2000). Using UML:
Software Engineering with Object and Compo-
nents. Reading, MA: Addison-Wesley.

Zeichick, A. (2002, July 15). Modeling Usage
Low; Developers Confused About UML 2.0,
MDA. SD Times. Retrieved from http://www.
sdtimes.com/article/story-20020715-03.html

291

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

A 360-Degree Perspective of
Education in 3-D Virtual Worlds

Brenda Eschenbrenner
University of Nebraska-Lincoln, USA

Fiona Fui-Hoon Nah
University of Nebraska-Lincoln, USA

Keng Siau
University of Nebraska-Lincoln, USA

INtrODUctION

Advanced technological media have the potential to
enhance online learning and education. As courses
move to on-line formats, challenges emerge in
meeting some of the common and core objectives in
learning and education, which include engagement,
interactivity, collaboration, and experimentation.

Many instructors have looked to a range of technolo-
gies such as wikis and blogs (Guru & Siau, 2008) to
discussion forums on Blackboard to better achieve
these objectives but there are limitations faced.

One particular technology that presents new
opportunities to achieving these objectives is three-
dimensional (3-D) virtual world technology which
provides a common space for individuals to interact
and creates a learning environment that can better
suit their needs. One may establish replications

AbstrAct

Three-dimensional virtual world environments are providing new opportunities to develop engaging,
immersive experiences in education. These virtual worlds are unique in that they allow individuals to
interact with others through their avatars and with objects in the environment, and can create experiences
that are not necessarily possible in the real world. Hence, virtual worlds are presenting opportunities
for students to engage in both constructivist and collaborative learning. To assess the impact of the use
of virtual worlds on education, a literature review is conducted to identify current applications, benefits
being realized, as well as issues faced. Based on the review, educational opportunities in virtual worlds
and gaps in meeting pedagogical objectives are discussed. Practical and research implications are also
addressed. Virtual worlds are proving to provide unique educational experiences, with its potential only
at the cusp of being explored.

DOI: 10.4018/978-1-60566-904-5.ch014

292

A 360-Degree Perspective of Education in 3-D Virtual Worlds

of reality in this virtual space for individuals to
explore or interact with. Stoerger (2008) suggests
that one of the key elements of a virtual world is
the visual creativity that it affords, while Gaimster
(2008) identifies the rich immersive experiences as
highlights of virtual worlds. Johnson and Levine
(2008) suggest that a distinctive characteristic
of virtual worlds is that users can determine the
course of events to be experienced because of
their ability to interact with peers (through their
avatars) and objects in the environment. What-
ever the purpose, the nature of virtual reality is
such that students have the potential to become
engaged in a simulated activity and collaborate
in a dispersed setting that more closely replicates
the advantages of being face-to-face.

In addition, changes in educational paradigms
are creating a need for new technologies to support
new learning environments. Dickey (2005a) cites
that creating interactive learning environments is
a current trend being supported by the increasing
paradigm shift towards constructivism. The para-
digm advocates that knowledge is constructed and
learners need to be more engaged in the learning
process. Therefore, environments that are con-
ducive to learners being able to manipulate and
explore are more conducive to constructivist ac-
tivities and learning. Coffman and Klinger (2007)
suggest that being immersed in an environment
that supports creativity and discovery provides a
better means for students to transfer their knowl-
edge to real-world applications. Also, Barab et al.
(2000) cite that many learning environments are
becoming more collaborative in nature. There-
fore, technology incorporated into a curriculum
should engage students in the learning process,
allow students to experiment and explore so as to
construct their own knowledge, and provide an
adequate platform for rich communication and
cooperation to take place. Johnson and Levine
(2008) have noted that virtual world environments
provide platforms for rich expressions as well as
social interactions.

3-D virtual world environments may prove
to enhance existing technologies’ capabilities
to better achieve these goals. The environments
offer abilities to communicate and collaborate
with others in a shared virtual space that is cre-
ated by the users and foster potential for educa-
tional and cooperative activities. Typically, the
virtual environments are created by the users.
These capabilities afford new opportunities for
creativity to abound and for idea generation and
experimentation to flourish. Users can learn
through their own discovery processes, as well as
learn through their interactions and collaborative
efforts with others.

Accounts of educational applications of virtual
worlds provide insights into various opportuni-
ties that exist and are being realized, along with
issues that have been encountered. This article
addresses these applications and opportunities
by focusing on 3-D virtual world environments
in educational contexts. Specifically, this article
reviews the literature that addresses current ap-
plications, benefits, and issues of virtual worlds
in education, then summarizes opportunities and
gaps of these virtual worlds for consideration in
education, and highlights implications for both
practice and research.

3-D VIrtUAL WOrLDs
IN EDUcAtION

Educational institutions continually explore new
opportunities to bring the classroom online as
technology continues to grow in sophistication
and capabilities (Erickson & Siau, 2003). Some
pursue this endeavor to create greater opportuni-
ties to reach students through distance education
programs. However, some have extended this
concept of using Internet-based technologies to
teach by creating more sophisticated virtual reali-
ties or virtual worlds to expand on the interaction
that takes place among students as well as with

293

A 360-Degree Perspective of Education in 3-D Virtual Worlds

their instructors. Bryson (1996) has defined vir-
tual reality as “the use of computers and human-
computer interfaces to create the effect of a three-
dimensional world containing interactive objects
with a strong sense of three-dimensional presence”
(p. 62). He notes three important attributes of
virtual reality environments: computer-generated,
three-dimensional, and interactive. Also, he em-
phasizes that virtual reality environments entail
creating an effect of interacting with things and
are characterized by the interface. Other features
and characterizations of 3-D virtual worlds include
the illusion of 3-D space that allows real-time
interaction/interactive capabilities, avatars that
are digital representations of users, chat tools fa-
cilitating communication, first person viewpoints,
navigation freedom, and abilities of participants
to share space as well as time and to design their
own spaces (Dickey, 2005a, 2005b; Mikropoulos,
2001; Ondrejka, 2008)

3-D virtual worlds extend the functionality of
other technologies by generating more dynamic
environments in that individuals can participate
or view objects, simulations, or others in a 3-D
space. Mennecke, McNeill, Ganis, and Roche
(2008) suggest that the popularity of these 3-D
virtual environments has been increasing because
of “stunning visuals, animations, role playing op-
portunities, and social communities” as well as
“the interaction that users experience” (p. 373).
Engagement is being enhanced by the nature of
a shared environment.

For instance, Dickey (2005b) found from her
case studies of educational institutions (one using
the Active World environment for an undergradu-
ate business computing course and the other an
object modeling course) that these 3-D virtual
worlds afford various opportunities for students
and instructors. In the business computing course,
students utilized the virtual world to complete and
submit assignments, review their grades, locate
web-linked resources, collaborate with other
students, and communicate by way of a chat tool.
In the object modeling course, the instructor used

chat tools to promote discussion, and presented
examples of 3-D objects.

The opportunities realized included promot-
ing collaborative and cooperative learning (Siau,
2003), self-defining the learning context, creating
interactive experiences with materials or models
that may not be replicable in a traditional class-
room (Siau et al., 2006), and providing engaging,
constructivist activities. Students indicated that
they felt a sense of presence in the environment,
while instructors indicated that a significant
drop in attrition rates occurred (Dickey, 2005b).
Instructors also noted that the environment
advocated constructivist approaches in that it
provided collaboration opportunities, real-time
communication, as well as a visual learning en-
vironment. The researcher noted that the sense
of anonymity promoted more daring interactions
among students/avatars.

Virtual worlds have also been designed to
create simulations of real world phenomena to
provide an environment for experiential learn-
ing and training. An example is the simulation
of a toddler’s initial cognitive experience when
joining a daycare to improve caregiver’s aware-
ness of these experiences (Passig, Klein, &
Noyman, 2001). In a research study that focused
on validating virtual environments as a means
to study child pedestrian behaviors, Schwebel,
Gaines, and Severson (2008) demonstrated that
virtual environments can replicate the real-world
environment such that behaviors are consistent
in both.

Also, Mantovani, Castelnuovo, Gaggioli, and
Riva (2003) cite specific health care related learn-
ing applications that include creating simulations
for emergency training, mental health training
(e.g., experience hallucinations of schizophrenia
patients), brain and body interactivity training,
and telesurgical training (focused on teaching
certain skill sets). The authors suggest that learn-
ing environment and individual factors such as the
material to be learned, characteristics of learners,
as well as the learning and interactive experience

294

A 360-Degree Perspective of Education in 3-D Virtual Worlds

can influence the process of learning and result-
ing outcomes.

Various 3-D virtual world environments uti-
lized in educational contexts exist today to support
these endeavors. For example, Active Worlds
Educational Universe, launched in 1999, is a
browser-based virtual environment that consists
of user-created 3-D worlds inhabited by avatars
(Dickey, 2005a; Peterson, 2006). Avatars are digi-
tal personas used to represent a person’s identity
in a virtual world environment (Conway, 2007).
An avatar is typically a caricature, a full body, or
can be just a head shot. In Active Worlds, avatars
can be customized if the user is registered, other-
wise users are restricted to standardized avatars
that can walk, run, slide, and fly throughout the
virtual world (Dickey, 2005a; Peterson, 2006).
Users can interact within the environment or ac-
cess Web pages. Sensors or triggers can be placed
throughout the world such that when an avatar
encounters one, pre-specified actions will occur
(e.g., transporting to a new location).

Similarly, Adobe Atmosphere (established in
2001) is a 3-D virtual world environment that
allows avatars to navigate and interact with one
another (Dickey, 2005a). Worlds are created by
users and can be linked together. Another example
of virtual world environments that is increasing
in popularity is Second Life. Second Life was
launched in 2003 by Linden Lab (Joly, 2007).
Individuals are able to create avatars, also called
residents of Second Life, that can be navigated
to explore the environment, socialize with other
avatars, participate in activities, and produce and
trade items and services. Avatars don’t necessarily
have to be human, they can range from animal
forms to a “giant bowl of Jell-O” (Graves, 2008
p. 49).

Nearly 12 million unique avatar accounts exist
in early 2008 in Second Life (Mennecke et al.,
2008). Also, Second Life provides textual, visual,
and auditory communication channels (Junglas,
Johnson, Steel, Abraham, & Loughlin, 2007).
Ondrejka (2008) and Goral (2008) clarify that

Second Life is not a game, but has a plethora of
opportunities being pursued by various educa-
tional and research communities. Schultze, Hiltz,
Nardi, Rennecker, and Stucky (2008) indicate that
over 100 universities have conducted classes or
sessions in Second Life. Also, Second Life has
created a new avenue for business opportunities.
The Linden Dollar currency can be exchanged
for U.S. dollars and objects can be set to “copy”
or as “for sale” to facilitate economic exchange
(Jennings & Collins, 2007).

Second Life is unique in that the environment
is created by its users. Linden Lab offers the foun-
dational and communication tools for residents to
build their own unique worlds and experiences.
Educational institutions can purchase islands
in Second Life for around US$700 per region
(Second Life, 2008).

According to the Second Life website (www.
secondlife.com), Second Life functionality that
supports educational endeavors includes (Second
Life, 2008):

Conducting distance education courses•
Simulations and interactive content•
Training seminars•
Collaborative work efforts•
Studies in new media•
Security through private island purchases•
Skill practice or opportunities to experi-•
ment with new ideas

Hence, various applications of 3-D virtual
world environments in an educational context are
possible and are discussed below.

current Applications

Educational applications of 3-D virtual world
environments continue to grow and are capital-
izing on the unique capabilities that these virtual
environments can offer. These capabilities provide
avenues for novel expressions to emerge, a new
means to “participate” in classes, as well as new

295

A 360-Degree Perspective of Education in 3-D Virtual Worlds

ways to reach wider audiences. Rich forms of
communications provide new venues for class
or group discussions.

For example, capabilities associated with Sec-
ond Life include (Jennings & Collins, 2007):

Accenting site with logos, maps, welcome •
signs, and various forms of greetings
Offering promotional materials to visitors •
(e.g., free t-shirts for avatar)
Sidewalks, pathways/footpaths, bridges, •
and elevators for avatar to navigate within
site
Links to other Internet websites and tele-•
ports to other Second Life locations
Communication tools – text or audio•
Space for classrooms, auditoriums (in-•
cludes podium, video screen, chalkboard,
and seating for avatars), libraries, theater,
offices (includes chairs and desk), research
labs, sandbox (for building), role-playing,
student projects, assignment distribution
and submission, apartments/housing, art
galleries, visitor centers, resource centers,
meetings for campus organizations, and
socializing (e.g., bars, restaurants, dance
clubs, beaches, gardens, game rooms, cof-
fee shops)
Creating sense of openness (e.g., buildings •
with mesh ceilings and no walls, bubbles
floating in the air, pane glass windows
looking at ocean/patios/vegetation)
Replication of real-world environment and •
building connections with real-world (e.g.,
animal life, natural vegetation, historic
buildings, campus layout)
Social accommodations (e.g., offering •
beverages, listening to radio, vending
machines)
Simulations of events, games, etc.•

In regards to the structure that shapes these
virtual worlds in educational applications, Jen-

nings and Collins (2007) have noted that some
institutions are choosing to develop a “reflective
virtual campus environment” or developing a
replication of its physical campus and orchestrat-
ing connections to the real-world, while others
are developing an “operative virtual campus
environment” or creating a virtual location that is
unique from its physical campus and performing
activities virtually (p. 184). Hence, the applica-
tions for higher education are various and they
are provided in Table 1. These applications are
categorized into three categories or types based
on their purpose: (i) replicating reality and exist-
ing activities, (ii) developing novel spaces and
conducting activities unique to the virtual world
environment, (iii) those focusing on accomplish-
ing both of the above.

Some instructors have chosen to hold classes
fully through Second Life, while others are utiliz-
ing a hybrid method (Jennings & Collins, 2007).
Richter, Anderson-Inman, and Frisbee (2007)
identify five different types of learner engagement
that are possible in Second Life: demonstrative,
experiential, diagnostic, role play, and constructiv-
ist. For example, Schultze et al. (2008) suggest
that students could participate in role-playing
scenarios such as discussing an ethical dilemma
and debating over the various perspectives that
arise. All students could ask questions and vote.
Therefore, applications and opportunities of
Second Life in education continue to emerge,
and with these developments certain benefits and
issues have been identified.

benefits

A variety of potential beneficial outcomes ex-
perienced when utilizing 3-D virtual worlds in
an educational context have been cited. Benefits
that were identified based on our review include
conducting educational activities in a risk-free
environment, enhancements in collaboration and
communication, engaging learners, and being

296

A 360-Degree Perspective of Education in 3-D Virtual Worlds

continued on the following page

Table 1. Examples of educational applications in 3-D virtual environments for higher education

Organization Application Source

1. Replicating Reality – Utilizing Alternative Space for Existing Activities

Appalachian State Universi-
ty and Clemson University

3-D virtual world created to improve online learning for master’s degree
students. “ASU Partners”, 2008

Ball State University –
Middletown Island Intellagirl conducts freshman English-composition class. Foster, 2007b

Bard College Students practice using a 3D replica of an optical telescope before using the
real device. Johnson & Levine, 2008

Duke University’s Fuqua
School of Business

Partnering with ProtonMedia to create 3-D spaces for education or “telepres-
ence portal.”

“Bringing Virtual Worlds,”
2008

INSEAD - France and
Singapore

School/library is open-air building with auditorium seating 36. Clickable
computer screens provide access to other web pages and library offers hot tea.
Research lab provides notecards to describe research and request consent.
Public space/beach provides clickable kiosks to obtain more information
about INSEAD, space for reflecting and conversing, bar with drinks avail-
able, and listening to radio.

Jennings & Collins, 2007

Northwestern University Students design productions and develop appropriate stage configuration in
virtual theater. Johnson & Levine, 2008

Princeton University Created island that includes lecture hall, art museum, and performance
location. Graves, 2008

2. Developing Novel Space – Conducting Activities Unique to Virtual World

Immersive Education proj-
ect - Boston College, Har-
vard University, Amherst
College, Columbia Univer-
sity, Massachusetts Institute
of Technology, Sweden’s
Royal Institute of Technol-
ogy, Japan’s University of
Aizu, the Israeli Association
of Grid Technologies, Na-
tional Aeronautics and Space
Administration (NASA),
Sun Microsystems, the City
of Boston, and the New
Media Consortium

Created tours inside Egyptian tomb, created interactive lessons (Croquet
and Project Wonderland), developed park and replica of Boston’s subway
system to tour city’s neighborhoods, developed Restaurant Game to help
waiters/waitresses acquire skills/training through simulations of restaurant
experiences.

Foster, 2007a

Indiana University Created a Virtual Solar System project for astronomy undergraduate
course. Barab et al., 2000

Lehigh Carbon Community
College and adjunct at De-
Sales University (professor
at both)

Professor created Literature Alive – provides guided tours of famous literary
locations (e.g., Dante’s Inferno). Foster, 2007b

Vassar College – Vassar
Island

Re-creation of Sistine Chapel – visitors can fly to ceiling or view tapestries
designed for the walls. Foster, 2007b

3. Replicating Reality and Developing Novel Space

Boise State University
EDTech island utilized for teaching educational games and providing stu-
dents testing area (building own objects), includes information center, and
condominium.

Goral, 2008

Bowling Green State, Ohio
Use virtual campus for teaching, research, office hours (space pods situated
into mountain sides), exhibiting art and music, and presentations by guest
speakers. In process of creating a writing center ran by graduate students.

Goral, 2008

297

A 360-Degree Perspective of Education in 3-D Virtual Worlds

able to utilize an alternative space for conduct-
ing courses and associated tasks, explained as
follows:

(i) Conducting Activities in a Risk-free
Environment

As noted previously, a variety of activities
and tasks can be conducted in 3-D virtual worlds,
and many of these can be carried out with less
apprehension by the learner. For instance, some

have cited the benefits of Second Life that include
providing a platform in which students can conduct
role-playing, experiment with new ideas, enhance
their skill sets, and create simulations in essen-
tially a risk-free way and in a safe environment
(Graves, 2008; Johnson & Levine, 2008; Wood,
Solomon, & Allan, 2008). Dickey (2005a) cites
previous research demonstrating benefits of virtual
environments including being able to experiment
without concern for “real-world repercussions”
and being able to “learn by doing.” Ondrejka

Organization Application Source

Bradley University Students have conducted analyses of avatar fans of musicians that conduct
performances in Second Life as well as other topics such as online hackers. Foster, 2007b

Georgia Institute of Tech-
nology

Augmented Reality lab created software to associate actual physical spaces
with virtual – creating ability to combine video feeds from the real world
with Second Life avatars.

Goral, 2008

Johnson & Wales Uni-
versity

Created a Virtual Morocco in conjunction with Ministry of Tourism
of Morocco. Includes monuments and opportunities to learn about
Moroccan culture. Students created and developed plans and proto-
types, and worked with individuals from other countries on project.
Virtual BLAST (Balloon-borne Large-Aperture Sub-millimeter Telescope)
brought attention to scientific ballooning projects by flying over the Second
Life main grid and stopping to visit various educational and scientific locations.
Entrepreneurship students create business plans and develop prototypes in
Second Life

Mason, 2007

Massachusetts Institute of
Technology

75% of island dedicated to student projects, remainder replicates physical
campus (including outdoor theater area). Avatars can address a crowd with a
megaphone and determine average viewpoint by avatars moving to right or left
of line on platform. Sponsored contest for students to design dormitories.

Foster, 2007b

Montclair State University
Use mountain sides for displaying syllabus and spheres for deadlines, Literature
Alive spots include Willow Springs and encountering evil in Young Goodman
Brown, and provide sun bathing area as well as covered deck near lake.

Foster, 2007b

New Media Consortium Created New Media Consortium campus for educational experiences Johnson & Levine, 2008

Ohio University or Ohio
University Without Bound-
aries

Entry way provides historical information and historic rep-
licas of campus (along with Standards and Privacy Statement).
Locations include Welcome Center (video display of learning initia-
tives), Art and Music Center, Classroom and Meeting Center (with seat-
ing capacity of 25), Learning Center (displaying e-learning activities),
Student Center (coffee shop, stage which includes microphone, pool
tables, kiosk publicizing real-world entertainment activities, student
video lounge, vending machines, and reading space), Featured Games
(simulation of fast food restaurant – avatar selects food to learn nutri-
tional value), Stocker Center and Sandbox (building objects by permission).
Collaborated with The Princeton Review for SAT preparation.

Jennings & Collins, 2007;
Goral, 2008

Simon Fraser University Professor produced films for posting on YouTube and created cartoons for
first-year calculus students. Conway, 2007

Table 1. continued

298

A 360-Degree Perspective of Education in 3-D Virtual Worlds

(2008) cites that some students have cited a greater
level of comfort in asking questions, and are able
to develop a sense of shared learning. Goral (2008)
cites exploring new domains of interest and in-
novation as possibilities in Second Life. Students
who are interested in on-line courses may be more
attuned to those taught via avatars because it could
provide opportunities to introduce more creativity
into the classroom (Conway, 2007).

(ii) Collaboration and Communication

Benefits of using 3-D virtual worlds in edu-
cation include enhanced collaboration and com-
munication capabilities. In research conducted
in virtual world environments, the creation of
an avatar increased the individual user’s sense
of telepresence or copresence, which has been
suggested to improve communication, as well
as social and educational experiences in virtual
environments (Peterson, 2006; Wood, Solomon,
& Allan, 2008). Active Worlds allows non-verbal
communication cues and emotional states to be
displayed by one’s avatar in real-time, which
extends the capabilities of technologies that are
only text-based. According to Bronack, Reidl,
and Tashner (2006) who utilize the AET Zone, a
3-D virtual world created with an Active Worlds
Inc. universe server and developed for Appala-
chian State University, the benefits of education
in virtual worlds include “a sense of presence,
immediacy, movement, artifacts, and communica-
tions unavailable within traditional Internet-based
learning environments” (p. 220). Bronack, Reidl,
and Tashner (2006) also noted that they are able
to have interactions with their students in “more
fluid and natural ways” (p. 230), are allowing
students to select their own paths of learning,
resources, and activities, and are “encouraging
cross-class collaboration” (p. 230). Their students
have indicated that they have found the interac-
tions with other students to be stimulating and the
experience to be enriching. Dickey (2005a, 2005b)
has also cited that the chat tools and communica-

tion capabilities in environments such as Active
Worlds provide a platform for collaborative and
cooperative learning, which is highly valued in
the socio-constructivist paradigm.

Some have noted the ability to interact with
individuals who are physically located through-
out the world (Graves, 2008). Having the ability
to create an avatar that is not only human in
form but can be modeled to be almost identical
to oneself can help to enhance on-line commu-
nication (Foster, 2007a). Goral (2008) cites the
benefits of collaborating and interacting with oth-
ers who are geographically dispersed, engaging
with others in discussions of similar interests,
and engaging in rich forms of communication.
Johnson and Levine (2008) identify the benefits
of learning a foreign language and about remote
locations by interacting with natives from these
remote locations. Chang Liu, director of Virtual
Immersive Technologies and Arts for Learning
Lab that is associated with Ohio University
Without Boundaries, argues that Second Life
is “a very rich form of communication and the
main task of education is communication” (Goral,
2008 p. 62). Also, Second Life has been cited
as providing a culturally diverse experience and
providing livelier communication in distance
education courses (Foster, 2007b). Research
conducted by Jarmon, Traphagan, and Mayrath
(2008) indicates that team projects and the as-
sociated virtual social relationships can enhance
the learning experience. Gaimster (2008) has also
suggested that having positive social interactions
can influence academic achievement.

(iii) Engagement

Increased engagement has also been associated
with the use of 3-D virtual world environments in
education and is important for learning success
according to the constructivist methodology (Coff-
man & Klinger, 2007). In research conducted by
Mikropoulos (2001), brain activity was measured
for tasks performed in real as well as virtual reality

299

A 360-Degree Perspective of Education in 3-D Virtual Worlds

environments. Research findings demonstrated
subjects were more attentive, responsive, and
utilized less mental effort in the virtual world,
demonstrating that knowledge transfer is possible
(such that knowledge gained in one world can be
transferred to the other world).

Mason (2007) cites students being more en-
gaged in learning tasks and spending more time
thinking and discussing the subject material, while
Richter, Anderson-Inman, and Frisbee (2007) cite
perceptions of immersion into another world and
engaging in learning in the first person (which is
more interactive and experiential). Second Life
experiences can be created such that information
is available when the learner needs and wants it
(Ondrejka, 2008). Dickey (2005b) has also cited
that allowing learners to interact with information
in the first person facilitates constructivist-based
learning activities, and that the user-extensible op-
tions in Active Worlds provide greater opportunity
for learner engagement. Also, Dickey (2005a) has
cited that previous research indicates that being
able to interact with virtual objects may assist in
developing a stronger conceptual understanding,
depending on the content.

Using virtual worlds increases enthusiasm for
learning and introduces some to an experience (in
virtual worlds) that they may have never realized
(Foster, 2007b).

(iv) Alternative Space for Instruction and
Tasks

Some educational professionals see opportu-
nities to conduct courses or related activities in
places other than the classroom including visiting
simulations of places that no longer exist in real life
(Graves, 2008). One associate dean has even cited
that these virtual campuses could be a back-up to
the physical location in cases of natural disasters
such as Katrina (Graves, 2008). Others, who are
situated in more risky locations, find Second Life
a safer venue to have undergraduates conduct field
research projects (Foster, 2007b) or activities that

may be too dangerous or expensive in real-life
(Johnson & Levine, 2008).

Conway (2007) suggests that teaching through
an academic avatar that follows the traditional
classroom instructional methods in a virtual envi-
ronment can provide the instructor opportunities to
spend more time on spontaneous and productive
interactions through group work or class discus-
sions in the real-world classroom by freeing up
precious time. Experiential learning programs
can be designed such that relevant skills can be
practiced and acquired (Mason, 2007). Dickey
(2005a) has cited the ability to personalize one’s
learning space.

(iv) Visualization for Difficult Content

Some subject-matter is more difficult to learn
through material that is presented in a static format.
For example, Barab et al. (2000) indicated that
concepts such as “lines of nodes” and the variety
of scales and sizes are typically disregarded in
introductory astronomy courses because of the
difficulty in understanding these concepts which
are dynamic and 3-D in nature. Hence, their use
of a 3-D virtual environment allowed students to
more easily grasp these concepts.

Hence, virtual worlds present their own unique
set of opportunities, but with that, their own
unique issues.

Issues

Applications of virtual environments in an edu-
cational context pose unique issues. These issues
include identifying value-added educational
applications; being able to read people’s natural
physical cues; technological issues; costs; behav-
ioral, health and safety issues; and user adoption.
Issues cited for virtual world environments in
education are discussed as follows:

(i) Appropriate Value-Added Educational
Applications

300

A 360-Degree Perspective of Education in 3-D Virtual Worlds

Identifying appropriate value-added educa-
tional content and activities in which 3-D virtual
worlds can be effectively utilized has been cited as
an issue. Mantovani, Castelnuovo, Gaggioli, and
Riva (2003) indicate two challenges to utilizing
virtual worlds in education: 1) determining situa-
tions in which virtual world learning presents value
beyond what traditional education can provide,
and 2) determining how to effectively utilize and
adapt these worlds to support learning. Although
3-D virtual worlds may be utilized to conduct
educational games, some indicate that promoting
games in learning environments is degrading to
education (Foster, 2007a). Furthermore, existing
virtual worlds may not be designed for optimal
teaching (e.g., integrating quizzes) (Schultze et
al., 2008). Johnson and Levine (2008) suggest that
some faculty, especially those who are novices
to virtual worlds, attempt to “retrofit” existing
teaching practices and strategies to the new virtual
environment.

(ii) Inability to read “natural” physical cues

There has been discontent with not being able
to read natural body language. Although an avatar
can present certain facial expressions, one pro-
fessor indicates that these forced expressions are
meaningless and doesn’t provide sound evidence
of a student’s attentiveness or boredom (Graves,
2008). Dickey (2005a) also notes that the tradi-
tional classroom setting provides a broader range
of non-verbal communication. Similarly, Wood,
Solomon, and Allan (2008) suggest that it is more
challenging to gauge student comprehensions
without natural body language.

(iii) Technological Issues

Technological issues that may arise include
proprietary applications with limited adaptabil-
ity to other contexts as well as system usability
(Mantovani, Castelnuovo, Gaggioli, & Riva,
2003). Bryson (1996) cites virtual reality issues

that include the re-invention of interfaces that
accommodate the three-dimensional versus tra-
ditional two-dimensional designs and requiring
exceptionally high system performance such that
the virtual-reality effect can be experienced. In
previous applications of Second Life in educa-
tion, Schultze et al. (2008) reported that some
learners did not have enough hardware power
or bandwidth to properly utilize Second Life
and most of the discussions were focused on the
features of Second Life and not the to-be-learned
topic. Dickey (2005a) indicates that in some
virtual environments, such as Active Worlds
and Adobe Atmosphere, only text communica-
tion is available. Also, in Active Worlds, objects
can not easily be built or moved while in Adobe
Atmosphere because the object-building process
is time intensive and requires some basic skills
before one can become proficient.

(iv) Costs

Concerns have also been generated over costs
(Dickey, 2005a; Mantovani, Castelnuovo, Gag-
gioli, & Riva, 2003). Schultze et al. (2008) note
that a common concern for any implementation of
technology in education is costs. Costs may include
not only the purchase of one’s own island, but also
the cost associated with building and maintaining
the island. Costs to consider include initial set-
up expenses as well as recurring licensing and/
or rental fees (“What Does It Cost”, 2008). For
instance, if one wanted a private and customized
island that could accommodate 50 individuals, it
could cost anywhere from $10,000 to $20,000. If
a fully customized and completely private virtual
world that was able to accommodate thousands
of individuals was desired, the cost could reach
one million dollars. However, if one wanted to
rent public space from existing campuses, the
costs could include rentals of $200-300 each day,
management fees of $20-30 for each participant,
and customization costs of $1,000-2,000 for each
simulation. Although the latter option provides

301

A 360-Degree Perspective of Education in 3-D Virtual Worlds

easier affordability, it also presents new issues
of utilizing public spaces which poses other
potential issues, such as safety issues, addressed
as follows.

(v) Behavioral, Health, and Safety Issues

Other issues that may arise include health
and safety issues (e.g., simulator sickness, ocular
problems, addictive behaviors) (Gaimster, 2008;
Mantovani, Castelnuovo, Gaggioli, & Riva, 2003;
Wood, Solomon, & Allan, 2008). Also, activi-
ties may become more playful than educational,
and monitoring behavior can present challenges
(Graves, 2008). For example, Ohio University’s
Second Life campus experienced a virtual shooting
and Woodbury University students were engag-
ing in “disruptive and hostile behavior” (Graves,
2008 p. 50). Bugeja (2008) cites that the two most
common violations in Second Life are assault and
harassment. He indicates that issues may arise
when the company’s terms of service agreements
may conflict with academic due process in cases
such as violence, or students are required to agree
to these service terms in order to participate in
this virtual world. Questions to be considered, as
posed by the author, include: Has the professor
included warnings if he/she required an exercise
to be performed in a virtual world? Is your institu-
tion aware of harassment issues in virtual worlds
or has issued guidelines on its use?

(vi) User Adoption

Lack of experience with using virtual worlds
can raise issues for teachers (Dickey, 2005a; Gaim-
ster, 2008; Mantovani, Castelnuovo, Gaggioli, &
Riva, 2003; Wood, Solomon, & Allan, 2008) as
well as students (Dickey, 2005a). For instance,
concerns include acquiring the skills to function
in a virtual world, such as being able to teleport
and master basic communication (Graves, 2008),
and becoming acquainted with the virtual social
space (Jarmon, Traphagan, & Mayrath, 2008). As

noted by Dickey (2005a), in virtual environments,
such as Active Worlds, in which text-only com-
munication is available, those individuals who
do not have adequate typing or written language
skills may suffer. Virtual worlds have been noted
as not scaling well when too many avatars are
participating simultaneously (Mennecke et al.,
2008). Another issue is trust (Gaimster, 2008;
Siau & Shen, 2003, Siau et al., 2004). Are the
teachers and students going to trust the technol-
ogy, the environments, and the people that they
meet in the environments?

In experiences with conducting a single ses-
sion class in Second Life, Schultze et al. (2008)
indicated that learners (ranging in age from 25
to 50) encountered many problems in naviga-
tion, as well as experienced disorientation and
confusion. However, a four-week set of sessions
with learners who had significant online gaming
experience and were averaging 20 years of age
indicated that Second Life was simple, but the
graphics appeared outdated. In addition, Baber et
al. (2000) found that learners spent a significant
amount of time learning the software for their 3-D
virtual world learning environment, resulting in a
delay of exploring the to-be-learned subject mat-
ter. They, however, felt that this could have been
avoided if they would have used a scaffolding
approach in accomplishing technical skills and
subject-matter concepts.

EDUcAtIONAL OPPOrtUNItIEs
IN 3-D VIrtUAL WOrLDs

Based on the review above, we present Figure 1
which summarizes aspects of 3-D virtual worlds
and their implications for educational opportuni-
ties. The use of virtual worlds in an educational
context generates certain issues as well as af-
fords various capabilities. When considering
educational opportunities, certain factors can be
considered to address the issues that are inherent.
For example, it is important to assure that individu-

302

A 360-Degree Perspective of Education in 3-D Virtual Worlds

als engaging in 3-D virtual world environments
have the appropriate technological requirements,
training, orientation, and time to become accus-
tomed to the virtual world so the technology is
not distracting to their learning. Also, utilizing
assessment criteria for determining the value
that can be derived from the use of 3-D virtual
world environments in education can help deter-
mine “when” and “where” they can be applied.
Participating in a learning community in which
tools and experiences can be shared to address
concerns can help to identify “how” educational
value can be derived, such as joining the Second
Life education (SLED) listserv to communicate
with other educators or browse the Second Life

Education Wiki. Appropriate safety measures and
disciplinary policies should also be considered to
address health and safety concerns.

The 3-D virtual world environments provide
many capabilities, including simulations and
visualizations that cannot feasibly take place in
reality but can be incorporated in the design of
educational opportunities. These capabilities also
generate various experiences that can be leveraged
as well. For example, the ability to experiment
and explore in 3-D virtual world environments
can generate educational opportunities that foster
innovation. The ability to move one’s avatar, com-
municate through various channels, and conduct
more natural interactions can foster rich and real-

Figure 1. Virtual world implications in education

303

A 360-Degree Perspective of Education in 3-D Virtual Worlds

time communication which can enhance educa-
tional activities focused on collaboration. Also,
providing opportunities to practice or participate
in simulations can generate greater engagement
and interactivity.

Hence, educational opportunities in 3-D virtual
world environments can be derived through the
virtual world’s existing capabilities and associated
experiences. These opportunities can be enhanced
by consideration of various factors that address
the associated issues that accompany 3-D virtual
world experiences. To appropriately address the
potential of 3-D virtual world environments in
meeting pedagogical objectives, we compare the
capabilities of these environments to a taxonomy
of learning objectives to identify the possibili-
ties as well as the gaps that remain, described as
follows.

GAPs IN 3-D VIrtUAL
WOrLD ENVIrONMENt
cAPAbILItIEs IN EDUcAtION

The 3-D virtual world environments have demon-
strated potential usage in an educational context,
but gaps may remain. To assess the potential as
well as the gaps, we compare these capabilities
to Fink’s (2003) taxonomy of significant learn-
ing. Fink identified a need to broaden Bloom’s
taxonomy of educational objectives considering
“individuals and organizations involved in higher
education are expressing a need for important
kinds of learning that do not emerge easily from
the Bloom taxonomy” (Fink, 2003 p. 29). There-
fore, Fink created a new taxonomy that focuses on
learning in terms of change. The taxonomy and
its relation to 3-D virtual world environments are
listed in Table 2.

Table 2. Fink’s (2003) Taxonomy of significant learning – application to 3-D virtual world environ-
ments

Category Description 3-D Virtual Environment Affordances

Foundational Knowledge Being able to understand and remember – the basic
knowledge that is foundational to other learning

Provides ability to acquire information when
needed and understand concepts (some too
difficult to learn through traditional instruction
but possible through 3-D visualizations)

Application
Engaging in other actions or thinking (e.g., critical,
creative), acquiring certain skills, and managing complex
projects – basis for other learning to be useful

Environment provides creative expression op-
portunities, ability to practice, and encourages
critical thinking and risk-taking

Integration
Identifying and comprehending connections between
different ideas, people, or realms – creation of intel-
lectual power

Collaboration and cooperative activities
allow connections between people; environ-
ment allows viewing creations from multiple
perspectives; creating simulations allow
opportunities to understand entire dynamic
relationships

Human Dimension
Understanding important aspects of one’s self or others,
includes understanding personal and social implications
– derivation of human significance of subject matter

Interactions with others can provide insights
into social and personal factors

Caring
Changes in feelings, interests, or values in which the
student cares about subject – acquisition of energy
needed for learning

Engaging and becoming immersed in a subject
can generate increased sense of caring

Learning How to Learn
Learn how to learn: becoming a more successful student,
engaging in inquiry, or self-directing learning – support
more effective and continuous learning

No immediate application identified; may
depend on learning tasks

304

A 360-Degree Perspective of Education in 3-D Virtual Worlds

As noted in Table 2, all but one of Fink’s cat-
egories of significant learning can potentially be
addressed in some regards in 3-D virtual world
environments. Learners are able to acquire a
foundational knowledge as well as learn its ap-
plication. Through collaborative, interactive,
and cooperative activities, learners can integrate
knowledge and understand its social and individual
implications. Also, learners can become more
engaged and immersed in an activity, and they
can develop a deeper sense of caring for the topic.
However, no indications of educational applica-
tions in such environments indicate that students
become more capable, self-directed learners or
have developed strategies (e.g., metacognitive
strategies) that imply that they have learned how
to learn. Therefore, many educational opportuni-
ties exist and much potential for meeting various
pedagogical objectives are possible in 3-D virtual
world environments. Gaps may remain in the abil-
ity for students to “learn how to learn.”

IMPLIcAtIONs

Practical Implications

Various opportunities have arisen and continue
to evolve in applying 3-D virtual worlds in the
field of education. Examples for business-related
courses include:

Strategic Management: create competition •
in which each team manages an existing
business or designs a new business that
markets a particular product or service. The
activities can include conducting research
and development, making manufacturing
production decisions, establishing prices,
and developing advertising campaigns.
Operations Management: create simula-•
tions of supply chains
Management Information Systems: create •
virtual simulation of data and information

flowing through an enterprise resource
planning system, or a simulation of e-
commerce(electronic commerce)/u-com-
merce (ubiquitous commerce) transactions
Management/Leadership: role playing as •
a manager training/evaluating/managing
employees, facilitate virtual presentations
from guest speakers who are geographi-
cally dispersed
International Management: meeting indi-•
viduals from across cultures and collabo-
rating with students from other universities
on projects
Marketing: role playing sales presentations •
or advertising strategies, experiment with
brand management, create a service enter-
prise to provide marketing/advertising ser-
vices to businesses (or other organizations)
joining 3-D virtual world environments,
and experimenting with and studying con-
sumer behavior and product development
(Park et al., 2008; Wood, et al. 2008)
Finance: create simulations of actively •
trading stocks
Economics: study the entire ecosystem •
within a 3-D virtual world environment
that is emerging

The examples given above are a few of the
many educational opportunities that exist for
business-related courses. Many others exist out-
side the domain of business as well. Hence, the
potential for applications of virtual worlds in any
field of education is just starting to be realized
and will continue to develop.

Therefore, it will be important for instructors
to consider all the capabilities and derived experi-
ences that are associated with 3-D virtual worlds
(see Figure 1), and consider the pedagogical ob-
jectives they want to achieve (see Table 2). These
capabilities can be leveraged in various manners to
provide new or enhanced educational opportuni-
ties. For pedagogical objectives that are focused
on innovation, exploration, and risk-taking, an

305

A 360-Degree Perspective of Education in 3-D Virtual Worlds

instructor can capitalize on virtual worlds’ abilities
to provide platforms for prompting these experi-
ences. If practice or training of certain skills is
necessary, simulations can be created in virtual
worlds to promote such activities. Also, if collabo-
ration is desired, an educator can take advantage
of the rich communication media available in
3-D virtual worlds, such as the audio, visual, and
textual features of Second Life.

However, instructors will also want to take
into account various factors that address issues
inherent in a 3-D virtual world environment. As-
sessing the value that can be derived as well as
incorporating appropriate disciplinary measures
will be essential for an optimal education experi-
ence to be achieved. John Lester (SL: Pathfinder
Linden) of Linden Lab suggests the following
strategies for success in utilizing Second Life in
education (Lester, 2006):

1. Explore and learn about Second Life as much
as possible

2. Converse with other educators currently
utilizing Second Life

3. Develop concise, measurable goals
4. Write a paper about your Second Life experi-

ences and utilize other venues to share your
knowledge

5. Be open to the potential of Second Life and
the variations in activities possible

6. Think creatively about new uses for in-
struction and avoid applying old models of
thinking

7. Capitalize on feedback from students’
experiences

Specific projects are being undertaken to en-
hance and capitalize on the educational opportuni-
ties within 3-D virtual worlds. For example, the
SaLamander Project’s goal is to “survey, collect,
and describe 3D objects, materials, resources,
and environments in Second Life created specifi-
cally for use in teaching and learning or with the
potential to be useful in such activities” (Richter,

Anderson-Inman, & Frisbee, 2007, p. 21). Hence,
educators will benefit from accessing these de-
veloping resources as well as communicating
with the existing community of educators in 3-D
virtual world environments.

research Implications

Based on the literature review conducted, research-
ers will need to be aware of issues that have arisen
as well as the experiences and capabilities that
are possible in 3-D virtual world environments.
For example, 3-D virtual environments require
advanced technology resources, appropriate train-
ing and orientation before users can be expected
to perform specific tasks, and adequate time for
users to become familiar with the environment.
Also, safety measures may be needed, such as
acquiring one’s own island so usage is restricted,
so that behaviors can be properly monitored.

The capabilities and opportunities that exist in
virtual environments provide much potential for
insightful research experiments. Research that may
not have been practical or feasible in real life can
be created through simulations in environments.
With abilities to collaborate and a variety of com-
munication channels, researchers can study social
behaviors in various contexts. Also, the experi-
ences of creative expression and innovation that
are possible in virtual worlds can be studied at an
individual level with a variety of tasks.

Various educational institutions are citing plans
for future research in 3-D virtual world environ-
ments. For example, Louisiana has implemented a
statewide initiative to explore the value of virtual
world environments for higher education, which
includes the purchase and development of five
islands in Second Life (Graves, 2008). The Im-
mersive Education project is developing virtual-
reality software for Second Life spaces that incor-
porates Web cameras, Internet-based telephony,
three-dimensional graphics that are interactive, as
well as other digital media (Foster, 2007a). The
ultimate goal is to develop interactive activities

306

A 360-Degree Perspective of Education in 3-D Virtual Worlds

that can capture a student’s attention similar to
gaming environments enticements. Some of the
environments being developed have publicly
available code (i.e., open source) (see Long &
Siau, 2007; Crowston & Scozzi, 2008) allowing
others to customize as needed. Other endeavors
include developing best practices and open stan-
dards. Using Second Life as a laboratory, busi-
ness professors are exploring it as developmental
ground for entrepreneurs (Foster, 2007b).

Mennecke et al. (2008) highlight three broad
themes to provide perspective on future research:
psychological, sociological, and technical. The
psychological theme encompasses the individual
personality, dispositions, and traits that influence a
user’s experience. Sociological theme recognizes
the dynamic interactions of agents (i.e., avatars)
and the influence of these on group outcomes
and individual experiences. Finally, the technical
theme addresses the progression of interweaving
existing technologies with virtual worlds and im-
proving functionality. Therefore, future research
can expand on Figure 1 to study the influence
of specific psychological, social, and technical
factors, along with the capabilities and experi-
ences that are possible in 3-D virtual worlds on
educational experiences (see Figure 2).

Schultze et al. (2008) suggest that pedagogical
techniques need to be explored that promote effec-
tive collaboration as well as constructivist learning

in 3-D virtual world environments. Junglas, John-
son, Steel, Abraham, and Loughlin (2007) argue
that social psychological theories that have been
previously applied to understand learning styles
in the real world need to be readdressed in the
virtual world. Junglas and Steel (2007) indicate
that future research can more closely examine
variations in the capabilities that 3-D virtual worlds
can provide, including visualization, simulation,
and social presence. Hence, future research can
explore additional applications of 3-D virtual
world environments in education.

One method of doing so is to conduct a focus
group study or Delphi study of individuals cur-
rently utilizing 3-D virtual worlds for teaching and
research. Focus sessions can identify criteria for
evaluating value-added activities as well as strate-
gies for effectively integrating 3-D virtual worlds
into a curriculum. Factors that are associated with
adoption of 3-D virtual worlds into educational
activities by educators can be explored as well.
Also, experiments of various constructivist activi-
ties and their effect on learning outcomes can be
conducted. The learning experience may vary
among individuals; hence, additional research can
focus on individual learner profiles that are more
likely to capitalize on the learning experience in
3-D virtual worlds.

Figure 2. Virtual worlds in education

307

A 360-Degree Perspective of Education in 3-D Virtual Worlds

cONcLUsION

In summary, virtual reality environments present
new opportunities for education. The unique op-
portunities of creating an interactive environment
occupied by avatars with advanced communica-
tion abilities have opened up new avenues for a
variety of educational experiences. This article
specifically reviews aspects of 3-D virtual world
environments to assess current applications,
benefits that are being realized, and issues that
have emerged. In the context of educational
opportunities, factors, capabilities, and derived
experiences in 3-D virtual world environments
are identified. The capabilities range from creat-
ing simulations and role-playing to collaboration.
The derived experiences include a sense of pres-
ence as well as promoting innovation to name a
few. However, factors to be taken into account
for educational opportunities include proper
training and orientation, appropriate strategies
for integration (Langdon, 2006), and criteria for
determining value-added activities. Hence, this
review provides various practical implications
for those interested in exploring educational op-
portunities in 3-D virtual world environments, as
well as provides suggestions for future research.
As educational applications of 3-D virtual worlds
are beginning to evolve, their true potential and
influence on education is yet to be fully explored
and discovered.

rEFErENcEs

ASU partners with Clemson to create virtual
world technology. (2008). Techniques: Connect-
ing Education & Careers, 83(2), 60.

Barab, S. A., Hay, K. E., Squire, K., Barnett, M.,
Schmidt, R., & Karrigan, K. (2000). Virtual solar
system project: Learning through a technology-
rich, inquiry-based, participatory learning environ-
ment. Journal of Science Education and Technol-
ogy, 9(1), 7–25. doi:10.1023/A:1009416822783

Bringing virtual worlds to business school. (2008).
BizEd, 7(1), 34.

Bronack, S., Riedl, R., & Tashner, J. (2006). Learn-
ing in the zone: A social constructivist framework
for distance education in a 3-dimensional virtual
world. Interactive Learning Environments, 14(3),
219–232. doi:10.1080/10494820600909157

Bryson, S. (1996). Virtual reality in scientific vi-
sualization. Communications of the ACM, 39(5),
62–71. doi:10.1145/229459.229467

Bugeja, M. J. (2008). Second thoughts about
Second Life. Education Digest, 73(5), 18–22.

Coffman, T., & Klinger, M. B. (2007). Utilizing
virtual worlds in education: The implications for
practice. International Journal of Social Sciences,
2(1), 29–33.

Conway, C. (2007). Professor Avatar. Inside
Higher Ed. Retrieved April 24, 2008, from http://
www.insidehighered.com/views/2007/10/16/
conway.

Crowston, K., & Scozzi, B. (2008). Bug fixing
practices within free/libre open source software
development teams. Journal of Database Man-
agement, 19(2), 1–30.

Davis, S., Siau, K., & Dhenuvakonda, K. (2003).
A fit-gap analysis of e-business curricula vs. in-
dustry need. Communications of the ACM, 46(12),
167–177. doi:10.1145/953460.953497

Dickey, M. D. (2005a). Brave new (interac-
tive) worlds: A review of the design affordances
and constraints of two 3D virtual worlds as
interactive learning environments. Interactive
Learning Environments, 13(1-2), 121–137.
doi:10.1080/10494820500173714

Dickey, M. D. (2005b). Three-dimensional
virtual worlds and distance learning: Two case
studies of Active Worlds as a medium for dis-
tance education. British Journal of Educational
Technology, 36(3), 439–451. doi:10.1111/j.1467-
8535.2005.00477.x

308

A 360-Degree Perspective of Education in 3-D Virtual Worlds

Erickson, J., & Siau, K. (2003). e-ducation.
Communications of the ACM, 46(9), 134–140.
doi:10.1145/903893.903928

Finke, L. D. (2003). Creating Significant Learning
Experiences. San Francisco, CA: Jossey-Bass,
John Wiley & Sons Inc.

Foster, A. (2007a). ‘Immersive education’
submerges students in online worlds made for
learning. The Chronicle of Higher Education,
54(17), A22.

Foster, A. (2007b). Professor avatar. The Chronicle
of Higher Education, 54(4), A24–A26.

Gaimster, J. (2008). Reflections on interactions in
virtual worlds and their implication for learning
art and design. Art, Design, & . Communication
in Higher Education, 6(3), 187–199. doi:10.1386/
adch.6.3.187_1

Goral, T. (2008). Sizing up Second Life. University
Business, 11(3), 60–64.

Graves, L. (2008). A Second Life for higher ed.
U.S. News & World Report, 144(2), 49–50.

Guru, A., & Siau, K. (2008). Developing the
IBM I Virtual Community – iSociety. Journal of
Database Management, 19(4), i–xiii.

Jarmon, L., Traphagan, T., & Mayrath, M. (2008).
Understanding project-based learning in Second
Life with pedagogy, training, and assessment trio.
Educational Media International, 45(3), 157–176.
doi:10.1080/09523980802283889

Jennings, N., & Collins, C. (2007). Virtual or virtu-
ally U. International Journal of Social Sciences,
2(3), 180-186. Retrieved April 7, 2008, from http://
www.waset.org/ijss/v2/v2-3-28.pdf

Johnson, L. F., & Levine, A. H. (2008). Virtual
worlds: Inherently immersive, highly social learn-
ing spaces. Theory into Practice, 47(2), 161–170.
doi:10.1080/00405840801992397

Joly, K. (2007). A Second Life for higher educa-
tion? University Business. Retrieved April 17,
2008 from http://www.universitybusiness.com/
viewarticle.aspx?articleid=797.

Junglas, I. A., Johnson, N. A., Steel, D. J., Abra-
ham, D. C., & Loughlin, P. M. (2007). Identify
formation, learning styles and trust in virtual
worlds. The Data Base for Advances in Informa-
tion Systems, 38(4), 90–96.

Junglas, I. A., & Steel, D. J. (2007). The virtual
sandbox. The Data Base for Advances in Informa-
tion Systems, 38(4), 26–28.

Langdon, C. S. (2006). Designing information
systems capabilities to create business value:
A theoretical conceptualization of the role of
flexibility and integration. Journal of Database
Management, 17(3), 1–18.

Lester, J. (2006). Pathfinder Linden’s guide to
getting started in Second Life. In D. Livingstone
and J. Kemp (Eds.) Proceedings of the Second
Life Education Workshop at the Second Life Com-
munity Convention, San Francisco (pp. v.-vii.).
United Kingdom: University of Paisle. Retrieved
May 28, 2008, from http://www.simteach.com/
SLCC06/slcc2006-proceedings.pdf

Long, Y., & Siau, K. (2007). Social network
structures in open source software development
teams. Journal of Database Management, 18(2),
25–40.

Mantovani, F., Castelnuovo, G., Gaggio-
li, A., & Riva, G. (2003). Virtual reality
training for health-care professionals. Cy-
berPscyhology & Behavior, 6(4), 389–395.
doi:10.1089/109493103322278772

Mason, H. (2007). Experiential education in
Second Life. In Proceedings of the Second Life
Education Workshop 2007 (pp. 14-18). Retrieved
May 28, 2008 from http://www.simteach.com/
slccedu07proceedings.pdf.

309

A 360-Degree Perspective of Education in 3-D Virtual Worlds

Mennecke, B., McNeill, D., Ganis, M., & Roche,
E. M. (2008). Second Life and other virtual
worlds: A roadmap for research. Communications
of the Association for Information Systems, 22,
371–388.

Mikropoulos, T. A. (2001). Brain activity on
navigation in virtual environments. Journal of
Educational Computing Research, 24(1), 1–12.
doi:10.2190/D1W3-Y15D-4UDW-L6C9

Ondrejka, C. (2008). Education unleashed: Par-
ticipatory culture, education, and innovation in
Second Life. In K. Salen (Ed.), The Ecology of
Games: Connecting Youth, Games, and Learning,
The John D. and Catherine T. MacArthur Founda-
tion Series on Digital Media and Learning (pp.
229-252). Cambridge, MA: The MIT Press.

Park, S., Nah, F., DeWester, D., Eschenbrenner,
B., & Jeon, S. (2008). Virtual world affordances:
Enhancing brand value. Journal of Virtual Worlds
Research, 1(2), 1–18.

Passig, D., Klein, P., & Noyman, T. (2001). Aware-
ness of toddler’s initial cognitive experiences
with virtual reality. Journal of Computer As-
sisted Learning, 17, 332–344. doi:10.1046/j.0266-
4909.2001.00190.x

Peterson, M. (2006). Learner interaction manage-
ment in an avatar and chat-based virtual world.
Computer Assisted Language Learning, 19(1),
79–103. doi:10.1080/09588220600804087

Richter, J., Anderson-Inman, L., & Frisbee, M.
(2007). Critical engagement of teachers in Second
Life: Progress in the SaLamander project. In Pro-
ceedings of the Second Life Education Workshop
2007 (pp. 19-26). Retrieved May 28, 2008 from
http://www.simteach.com/slccedu07proceedings.
pdf.

Schultze, U., Hiltz, S. R., Nardi, B., Rennecker, J.,
& Stucky, S. (2008). Using synthetic worlds for
work and learning. Communications of the Asso-
ciation for Information Systems, 22, 351–370.

Schwebel, D., Gaines, J., & Severson, J. (2008).
Validation of virtual reality as a tool to understand
and prevent child pedestrian injury. Accident;
Analysis and Prevention, 40(4), 1394–1400.
doi:10.1016/j.aap.2008.03.005

Second Life. (2008). Retrieved on April 23, 2008
from www.secondlife.com.

Siau, K. (2003). Evaluating the usability of a group
support system using co-discovery. Journal of
Computer Information Systems, 44(2), 17–28.

Siau, K., Nah, F., Eschenbrenner, B., & Guru, A.
(2007). An augmented approach to support col-
laborative distance learning of unified modeling
language. Americas Conference on Information
Systems (AMCIS 2007), Colorado, USA.

Siau, K., & Shen, Z. (2003). Building customer trust
in mobile commerce. Communications of the ACM,
46(4), 91–94. doi:10.1145/641205.641211

Siau, K., Sheng, H., & Nah, F. (2006). Use of a
classroom response system to enhance classroom
interactivity. IEEE Transactions on Education,
49(3), 398–403. doi:10.1109/TE.2006.879802

Siau, K., Sheng, H., Nah, F., & Davis, S. (2004).
A qualitative investigation on consumer trust
in mobile commerce. International Journal of
Electronic Business, 2(3), 283–300. doi:10.1504/
IJEB.2004.005143

Stoerger, S. (2008). Virtual worlds, virtual literacy:
An educational exploration. Knowledge Quest,
36(3), 50–56.

What does it cost to use a virtual world learning
environment? (2008). Training & Development,
62(11), 88.

Wood, N., Solomon, M. R., & Allan, D. (2008).
Welcome to the matrix: E-learning gets a Sec-
ond Life. Marketing Education Review, 18(2),
47–53.

310

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

Using Graphics to
Improve Understanding
of Conceptual Models

Kamal Masri
Simon Fraser University, Canada

Drew Parker
Simon Fraser University, Canada

Andrew Gemino
Simon Fraser University, Canada

AbstrAct

Making Entity-Relationship diagrams easier to understand for novices has been a topic of previous
research. This study provides experimental evidence that suggests using small representative graphics
(iconic graphics) to replace standard entity boxes in an ER diagram can have a positive effect on domain
understanding for novice users. Cognitive Load Theory and the Cognitive Theory of Multimedia Learning
are used to hypothesize that iconic graphics reduce extraneous cognitive load of model viewers leading
to more complete mental models and consequently improved understanding. Domain understanding was
measured using comprehension and transfer (problem solving) tasks. Results confirm the main hypothesis.
In addition, iconic graphics were found to be less effective in improving domain understanding with
English as second language (ESL) participants. ESL results are shown to be consistent with predictions
based on the Cognitive Load Theory. The importance of this work for systems analysts and designers
comes from two considerations. First, the use of iconic graphics seems to reduce the extraneous cognitive
load associated with these complex systems. Secondly, the reduction in extraneous load enables users
to apply more germane load which relates directly with levels of domain understanding. Thus iconic
graphics may provide a simple tool that facilitates better understanding of ER diagrams and the data
structure for proposed information systems.

DOI: 10.4018/978-1-60566-904-5.ch015

311

Using Graphics to Improve Understanding of Conceptual Models

INtrODUctION

The entity relationship (ER) diagram (Chen, 1976),
remains an important element in information
systems documentation and development (Batra,
2005). As information systems become more
sophisticated, information systems professionals
recognize that an understanding of the concep-
tual structure of a system becomes increasingly
important in implementation decisions (Moody,
1996). The conceptual data model often holds
the key to understanding what a system is able to
accomplish and, perhaps more importantly, un-
able to accomplish. For this reason, developing
useful ER diagrams able to communicate these
capabilities is of growing importance. While much
research attention has been focused on how to
develop consistent and complete ER diagrams,
less research has been directed on how to make
ER diagrams more understandable, particularly
to users who have little or no experience with the
diagramming methods (Topi & Ramesh, 2002).
One of the main roles of ER diagramming is to
support communication between developers and
users (who are often novices modelers) (Kung
& Solvberg, 1986). Therefore, we believe it is
important to research techniques for improving
understanding of ER diagrams for novice users.

This chapter addresses research opportunities
identified by Wand & Weber’s (2002) framework.
Specifically, we rely on cognitive theory to inves-
tigate the effects of using small pictorial represen-
tations, what we call iconic images, embedded in
ER diagrams on model viewer’s understanding.
Although our findings are specific to ER diagrams,
these findings suggest the potential for further
research into the use of multimedia elements in
other conceptual modeling techniques leading to
new applications of existing systems development
methodologies.

The following section of this chapter provides
a brief overview of conceptual modeling and com-
parative research in the field. Next, descriptions
of the Cognitive Load Theory (Sweller, 1988;

Sweller & Chandler, 1994) and the Cognitive
Theory of Multimedia Learning (Mayer, 2001)
are presented. This is followed by an overview
of the experimental procedures including hypoth-
eses generation, method, and results. The chapter
closes with a discussion of the results along with
research implications and conclusions.

cOMPArAtIVE rEsEArcH IN
cONcEPtUAL MODELING

Conceptual modeling provides the means to
organize requirements for a system to form a
meaningful whole (Andrade, et al., 2004). ER dia-
gramming is an example of conceptual modeling
that focuses on data structure. Approaches to IS
development often include conceptual modeling
tools to communicate and validate requirements.
Curtis, Krasner and Iscoe (1988) found that prob-
lems of fluctuating and conflicting requirements
in software design projects can be associated with
communication breakdown. They identified a need
for increased communication in requirements
development. The breakdown in communications
can happen across many levels.

Figure 1 offers a generic model of interac-
tions between parties involved during systems
development projects. The three parties are: 1)
Stakeholders of the to-be system (e.g. end-users,
managers), 2) Systems Analysts (intermediaries),
and 3) Developer/Designers of the to-be system.
Stakeholders often have the best understanding of
the business process and the needs of the new sys-
tem. Systems analysts are typically responsible for
determining what should be built (requirements)
via direct communication with stakeholders, while
developers/designers are responsible for how the
system will be put together to meet business objec-
tives. Communication between systems analysts
and stakeholders involves a two stage iterative
process: requirements gathering and requirements
validation. Stage 1, requirements gathering, is a
process that analysts use to understand the busi-

312

Using Graphics to Improve Understanding of Conceptual Models

ness and technical requirements of the system;
whereas, stage 2, requirements validation, is the
process stakeholders use to approve requirements
as conceptualized and documented by the analysts.
In practice, stages 1 and 2 occur in an iterative
process of discovery and learning. Developing a
common understanding of the system documenta-
tion, which often includes conceptual models, as
presented to stakeholders is often important to the
overall success of a development project.

Research in requirements gathering and valida-
tion has focused on the importance of conceptual
modeling (Topi & Ramesh, 2002; Wand & Weber,
2002) which occurs early in the analysis phase of
information systems projects. The large number
of techniques available to analysts suggests that
comparison of conceptual modeling techniques is
of particular importance. Comparative research
can be separated into three major categories
(Gemino & Wand, 2004; Rockwell & Bajaj, 2005):
1) product comparisons (modeling effectiveness),
2) process comparisons (modeling efficiency), and
3) understanding-level comparisons (readability
efficiency).

Product comparison research focuses on
comparing modeling effectiveness of competing
techniques from model designers’ perspective.
Some research consider modeling dimensions
such as syntactic, semantic, communicability and
usability (Y.-G. Kim & March, 1995; Yadav, Bra-
voco, Chatfield, & Rajkumar, 1988), while others

consider abilities of analysts to learn competing
techniques (Jarvenpaa & Machesky, 1989; Wang,
1996) or abilities of end-users to produce the mod-
els using competing techniques (Batra, Hoffer, &
Bostrom, 1990; Batra & Wishart, 2004).

Process comparisons focus on how concep-
tual models are created or analyzed and place
less attention on the ensuing products generated
from the process. For example, Vessey & Con-
ger (1994) compared three different techniques
by documenting the cognitive processes novice
systems analysts use to produce models by closely
monitoring participants as they created these
models. Kim, Hahn & Hahn (2000) studied the
cognitive processes involved in understanding
multiple diagrams representing different elements
of the same system. They tested the hypothesis
that visual cues and contextual information relating
diagrams to each other enable viewers to better
identify problems embedded within the diagrams.
Their results supported the hypothesis suggesting
that visual cues increased the probability of model
viewers identifying errors with the model but did
not attempt to measure user understanding.

The third category of research investigates
effectiveness of modeling techniques from a
problem solving (understanding) perspective
which is often overlooked by the first two cat-
egories. Understanding-level comparisons focus
on the final outcome of the conceptual modeling
process; that is, whether or not the person view-

Figure 1. Interaction among the various players during system development

313

Using Graphics to Improve Understanding of Conceptual Models

ing the system understands the domain being
represented. This category has attracted more
attention recently.

Understanding-level research often relies on
cognitive theory or ontological models to predict
and explain documented effects. Agarwal, De,
& Sinha (1999) used the theory of cognitive fit
(Vessey, 1991) to compare the comprehensibility
of object-oriented and process oriented models.
Bodart, Patel, Sim, & Weber (2001) generated
propositions using the theory of semantic net-
works (Collins & Quillian, 1969) to conclude
that optional properties in ER diagrams impede
deep-level understanding of users. The cognitive
theory of multimedia learning (Mayer, 2001)
provided theoretical background to investigate ad-
ditions of animation and narration in requirements
validation (Gemino, 2004), and to reach similar
conclusions as Bodart et al. (2001) regarding the
impact of optional properties in ER diagrams
(Gemino & Wand, 2005). Finally, Wand & Weber’s
(1990) representation model based on the theory
of ontology was used to investigate how model
decomposition impacts analysts’ understanding of
a domain (Burton-Jones & Meso, 2006) and the
effect number of concepts presented has on the
readability of the model (Bajaj, 2004). Following
the lead of these studies, we rely on the cognitive
theory of multimedia learning (Mayer, 2001) and
the cognitive load theory (Sweller, 1988; Sweller
& Chandler, 1994) to investigate the effects of
embedding iconic images in ER diagrams.

This chapter details an experiment designed
to test the level of understanding developed by
model viewers reading ER diagrams with and
without iconic graphics. Cognitive load theory
and the cognitive theory of multimedia learning
are used to hypothesize that embedding iconic
graphics will increase the sophistication of mental
models developed by viewers leading to higher
scores on transfer tasks. The transfer task involves
participants answering a set of problem solving
questions as a measure of the level of domain un-
derstanding attained by the viewer (Mayer, 1989,

1996, 2001). Consequently, improved understand-
ing as measured by the transfer task may lead to
improved requirements validation (Figure 1). It
is important to note that the research is designed
to measure domain understanding only. It does
not address task efficiency.

Research exists to support the use of icons
in the field of Human-Computer Interaction
which can be used to support the structure of our
research. For example, adding pictorial icons
to text warning messages in industrial training
manuals improved comprehension and recall of
the warning messages (Young & Wogalter, 1990).
Combining icons with text labels was found
to be more effective in facilitating learning of
application programs than using labels or icons
alone (Wiedenbeck, 1999). Pictorial icons were
found to enhance learning in a computer-based
training exercise (Kunnath, Cornell, Kysilka, &
Witta, 2007). Finally, contextualizing the problem
domain increased performance of interpreting
icons (Siau, 2005).

The use of iconic images in system analysis
was suggested by Moody (1996) who introduced
the idea of a graphical entity relational model to
simplify the ER model for non-technical users.
The graphical entity relational model had multiple
levels of abstractions that included context data
models using entities to represent subject areas,
subject area data models consisting of detailed
ER models, and foreign entities used to relate the
different subject areas. Images were only included
in the context data model and their effectiveness
on user understanding was not directly measured.
Our research is differentiated from Moody (1996)
by directly measuring the effects of embedding
iconic images into detailed ER diagrams on user
understanding while grounding the research in
cognitive theory.

314

Using Graphics to Improve Understanding of Conceptual Models

tHEOrEtIcAL bAcKGrOUND

Davis (1982) provided three reasons to explain
problems encountered in requirements gathering
and validation: 1) the constraints on humans as
information processors and problem solvers, 2)
the variety and complexity of information require-
ments, and 3) the complex patterns of interaction
among users and analysts in defining requirements.
It is not surprising that complex conceptual models
will result from complex systems requirements. In
addition, requirements validation can be consid-
ered a learning process (Gemino & Wand, 2003)
where stakeholders use information presented in
the model, coupled with prior knowledge of the
problem domain (Khatri, Vessey, Ramesh, Clay,
& Park, 2006), to build understanding. Theories
of how humans develop understanding from
presented information are therefore important in
improving our understanding of the conceptual
modeling process.

cognitive Load theory

We have focused on two related cognitive theories
to develop our hypotheses. Cognitive Load Theory
(CLT) defines the cognitive constraints associated
with humans (Sweller, 1988; Sweller & Chandler,
1994). The Cognitive Theory of Multimedia
Learning (CTML) provides principles to improve
messages and promote learning (Mayer, 2001).
The main assumptions of the cognitive load theory
are limited working memory and its interaction
with a practically unlimited long term memory
(Sweller & Chandler, 1994). Working memory
has the capacity to process approximately seven
items of information at any given time (Miller,
1956). However, schema acquisition allows the
individual items used by working memory to vary
in complexity without using additional working
memory space (Sweller & Chandler, 1994).

For example, a “dog” can be considered a single
element occupying one of the seven locations in
working memory for an individual familiar with

dogs; or, a dog can be decomposed into its various
descriptive elements (paws, eyes, ears, tail, etc)
with each element occupying one of the working
memory locations for an individual not familiar
with dogs. Schema acquisition relies on prior
experiences and knowledge that enables individu-
als to construct bigger chunks of information to
use as single elements in working memory. This
supports the evidence that long term memory
provides the basis of intellectual performance
and differentiates the problem solving skills (i.e.,
speed and accuracy) between novices and experts.
The CLT suggests properly designed learning
mechanisms will enable learners to use material
stored in long term memory to reduce the burden
(cognitive load) on working memory. The CLT
proposes three sources of cognitive load: intrinsic,
extraneous, and germane. It argues that using
learning mechanisms structured to reduce either
of the intrinsic or extraneous sources of cognitive
load allows an increase of germane cognitive load
causing improved learning and understanding.

Intrinsic Cognitive Load

Intrinsic Cognitive Load is strongly related to the
interactivity of elements in the task being learned.
Sweller and Chandler (1994) argue the more ele-
ments that need to be simultaneously assimilated
in a particular task will increase the intrinsic cog-
nitive load on working memory thus reducing an
individual’s overall ability to process information.
The definition of an element is subjective and
dependent on the learner’s prior knowledge. For
example, when viewing the same ER diagram,
an element might be a property of an entity to a
novice viewer whereas a more experienced viewer
might view an entity with all its corresponding
properties as an element.

Intrinsic cognitive load is determined by the
interactivity of elements in an instructional mes-
sage. Conceptual models present elements of
the system (e.g., entities and attributes) and their
associated interactivity (e.g., relationships) to

315

Using Graphics to Improve Understanding of Conceptual Models

describe the problem domain. Intrinsic cognitive
load is expected to be high with more complex
models. Element interactivity and its associated
cognitive load can be influenced by model design
by omitting some interacting elements (Paas,
Renkl, & Sweller, 2003; Sweller & Chandler,
1994). For example, the choice of using optional
or mandatory properties in ER diagrams can influ-
ence element interactivity.

Extraneous Cognitive Load

The intrinsic nature of the task involves schema
acquisition and knowledge construction by com-
bining new information with prior knowledge. The
process of manipulating elements of the message
to construct knowledge (such as locating and men-
tally arranging elements of a conceptual model)
involves extraneous cognitive activity. This ma-
nipulation is not relevant to schema acquisition
and knowledge construction. The CLT argues
that reducing this irrelevant cognitive activity by
carefully presenting the information will facilitate
learning (Sweller & Chandler, 1994). We propose
that embedding iconic images into conceptual
models helps to reduce extraneous cognitive load
by supporting the process of efficiently manipulat-
ing model elements in preparation for knowledge
construction.

Germane Cognitive Load

Intrinsic and extraneous cognitive loads are
additive and consume working memory capac-
ity. Remaining capacity is used for knowledge
construction (developing understanding) (Paas,
Tuovinen, Tabbers, & Van Gerven, 2003). Ger-
mane cognitive load enhances learning by allowing
remaining working memory capacity to be devoted
to schema acquisition and knowledge construc-
tion (Paas, Renkl, et al., 2003). In other words,
germane cognitive load is the effort imposed by
the learner to understand the material presented.
The amount of effort used for understanding is

dependent on the amount of available cognitive
resources and the willingness or capabilities of
the learner to exert the additional load (Seufert,
Jänen, & Brünken, 2007).

Balancing intrinsic and extraneous cognitive
activity is therefore essential to maximizing the
efficiency of working memory. Challenging tasks
like reading ER diagrams, with high intrinsic cog-
nitive loads, are susceptible to extraneous cognitive
overload. In these situations, extraneous cognitive
load will reduce cognitive resources available for
knowledge construction, significantly impeding
the learning process. Reducing extraneous cogni-
tive load therefore becomes essential to promote
learning and understanding. A primary goal in
requirements validation should be to minimize the
effects of extraneous cognitive load on complex
modeling tasks for model users.

cOGNItIVE tHEOrY OF
MULtIMEDIA LEArNING

The Cognitive Theory of Multimedia Learning
(CTML) was developed by Mayer using a va-
riety of empirical research (Mayer, 1989, 1996,
2001). The theory’s main objective is to use
multimedia presentations to reduce extraneous
cognitive load.

The CTML is founded on three major assump-
tions: 1) Dual Channels, 2) Limited Capacity, and
3) Active Processing. The dual channel assump-
tion is based on the dual coding theory (Paivio,
1986, 1991). Individuals are assumed to have
two separate processing channels for interpreting
visual and auditory information. The two channels
complement each other since receiving simultane-
ous information through each channel improves
overall recall compared to receiving information
through only one channel (Paivio, 1986). The
theory of working memory (Baddeley, 1992) along
with assumptions from the cognitive load theory
(Sweller, 1988) provide the framework for the
limited capacity assumption. Baddeley’s theory

316

Using Graphics to Improve Understanding of Conceptual Models

states that individuals have limits to the amount of
information processed by each channel and held in
working memory. Finally, the active processing as-
sumption is based on generative theory (Wittrock,
1990) that suggests people are active processors
of information rather than passive processors. Ac-
tive processing implies individuals pay attention,
organize incoming information, and integrate the
information with knowledge stored in long term
memory (prior knowledge). The implication for
multimedia message design is that information
presented must have a coherent structure. The
messages should provide the receiver guidance
for building structure.

Multimedia presentation, as defined by Mayer
(1989) is “the presentation of material using both
words and pictures” (Mayer, 2001, p. 2). Unlike
the popular definition of “multimedia,” Mayer’s
definition is not associated to the media (such as
computers) used to deliver the message nor to the
presentation mode (such as animation); instead,
he associates it to the sensory mode. According
to the sensory modality description, a textbook
with pictures would be considered multimedia as
readers will visually process pictures and convert
words into sounds for verbal processing (auditory
processing). Adding iconic images or pictures to
static conceptual models would produce multi-
media diagrams that fit the description defined
by Mayer (1989). An overview of the CTML is
shown in Figure 2.

The CTML suggests three cognitive processes
are employed by learners to make sense of a mes-
sage. First, incoming information is selected into
one of two available channels where verbal infor-
mation is processed through the auditory channel
and visual information is processed through the
pictorial channel. Second, the information is or-
ganized in working memory to form verbal and
pictorial based models. These models are created
by building connections among pieces of informa-
tion received through either channel. The third
process involves integration of the two models
to create a single integrated representation of the
information to be assimilated with prior knowledge
from long term memory. This implies the level of
understanding of the message will depend on the
learner’s prior knowledge.

The foundations of the CTML enabled Mayer
(2001) to suggest seven design principles to assist
designers to create effective multimedia presenta-
tions. The principles with a description of each
are presented in Table 1.

HYPOtHEsEs

Having developed our theoretical background, we
are now able to consider the research hypotheses.
Standard methods for presenting entities in ER
diagrams use an entity name surrounded by a
simple box as shown in Appendices 1a and 2a.

Figure 2. The Cognitive Theory of Multimedia Learning (Mayer, 2001, p. 44)

317

Using Graphics to Improve Understanding of Conceptual Models

The use of iconic graphics, as a substitute for the
standard entity in an ERD is illustrated by Appen-
dices 1b and 2b. We argue below that incorporat-
ing a relevant graphical icon with an entity name
instead of a standard box with an entity name can
increase the domain understanding developed by
model viewers.

Hypotheses for this experiment are based on
the multimedia principle from the CTML (Table
1). The multimedia principle suggests that incorpo-
rating graphical images in messages will improve
learner understanding. Words and pictures are
qualitatively different as words describe informa-
tion in an abstract manner while pictures present
information in an intuitive manner (Mayer, 2001).
The iconic graphic provides more content and
reduces the extraneous cognitive load associated
with the ER diagram. Lowering the extraneous
load allows more cognitive capacity to be used for
knowledge construction to increase the sophisti-
cation of the cognitive model developed by the
model viewer. Model viewers who are provided
with iconic graphics should therefore perform
better on tasks related to domain understanding
than model viewers provided with standard boxes
to describe entities.

The level of understanding is assessed using
three variables. Multiple variables are necessary
as three learning outcomes are associated with

any learning process: 1) no learning, 2) retention
(remembering), and 3) understanding (Mayer,
2001). No learning is self evident. Retention is
the ability to reproduce presented information.
Understanding is the ability to apply constructed
knowledge for use in new situations. Mayer (2001)
suggests using recognition and recall tasks to
measure retention, and transfer tests to measure
understanding.

The goal of this study is to identify the impact
of embedded iconic images on understanding,
but it is important to test the impact of iconic im-
ages on retention as well as understanding to be
consistent with research grounded in the CTML.
The research hypotheses are:

H1: Participants using conceptual models with
embedded iconic graphics will show high-
er levels of retention (higher scores on rec-
ognition and recall) than participants using
standard ER diagrams.

H2: Participants using conceptual models with
embedded iconic graphics will develop
higher levels of understanding (higher
transfer scores) than participants using
standard ER diagrams.

H1 is necessary to establish a framework for
interpreting the results of the primary hypothesis

Table 1. The Seven Principles of the Cognitive Theory of Multimedia Learning

Design Principal Description

Multimedia Principle Recipients learn better from words and pictures than from words alone.

Spatial Contiguity Principle Recipients learn better when corresponding words and pictures are presented near rather than
far from each other on a page or screen.

Temporal Contiguity Principle Recipients learn better when corresponding words and pictures are presented simultaneously
rather than successively.

Coherence Principle Recipients learn better when extraneous material is excluded rather than included in the pre-
sentation.

Modality Principle Recipients learn better from animation and narration than from animation and on-screen text
(spoken text rather than printed text).

Redundancy Principle Recipients learn better from animation and narration than from animation, narration, and text.

Individual Differences Principle Design effects are stronger for low-knowledge learners than for high-knowledge learners, and
for high-spatial learners rather than for low-spatial learners.

318

Using Graphics to Improve Understanding of Conceptual Models

H2. Care must be taken when evaluating modeling
techniques to carefully control for informational
equivalence (Siau, 2004). Siau (2004) introduced
the notion of informational and computational
equivalence (Larkin & Simon, 1987) as mecha-
nisms for evaluating effectiveness of modeling
techniques. Comparison of different techniques is
more valid if these techniques are informationally
equivalent as significance detected will not be
attributed to the different information provided
by the technique. Informational equivalence is
defined as “two representations are information-
ally equivalent if all the information in the one
is also inferable from the other, and vice versa”
(Larkin & Simon, 1987, p. 67).

Hypothesis H2 suggests that higher transfer
scores result from incorporating iconic graphics
into the ERD. But different transfer scores might
also result from having different information.
Retention is defined as the ability to reproduce
presented information. Therefore, retention pro-
vides a baseline for informational equivalency.
If the information provided by both treatments
is not equivalent, i.e. has significantly different
retention scores, then differences in transfer score
may be related to differences in retention instead
of a lowered extraneous load. Since representations
in both treatments groups are identical except for
the icons, we expect differences in understand-
ing (H2) to be attributed to the use of embedded
iconic images. Significant differences in H1 may
indicate that the treatment condition is not infor-
mationally equivalent to the control group leading
to concerns whether different information in the
treatment is the cause of measured significant
differences in H2.

MEtHOD

Participants

A total of 206 valid responses from 211 participants
were collected. Undergraduates were paid $10 to

participate in the experiment. Previous research
has established differences between novice and
expert modelers (Batra & Davis, 1992; Lee &
Truex, 2000; Shanks, 1997). Gemino & Wand
(2004) note participants with high domain or
modeling technique knowledge may have diffi-
culty in overcoming developed expertise leading
to biases. Students with similar expected levels
of modeling and domain experience were there-
fore considered an appropriate population. Table
2 lists a breakdown of key pretest variables by
treatment group.

Instruments

Two business cases, “Voyager Bus Company”
(Voyager) and “Far East Repair” (Far East), were
used. These two cases adapted from previous
studies (Batra, et al., 1990; Bodart, et al., 2001;
Gemino & Wand, 2005) were used to control for
case effect bias. Four experimental groups were
created: two treatment groups (one for each case),
and two control groups. Participants received a one
page text description of the case, an ER diagram
with or without the treatment condition, and a
training page that explained the grammar used.
The ER diagrams for both cases are presented in
Appendices 1a through 2b.. The training document
is displayed as Appendix 3. The graphics used for
the treatment conditions were obtained from cli-
part.com (all images embedded in the ER diagrams
are © 2006 JupiterImages Corporation).

Procedures

The procedure used for the study is based on Mayer
(2001) and follows examples of previous research
(Bodart, et al., 2001; Burton-Jones & Meso, 2006;
Gemino, 2004; Gemino & Wand, 2005; Khatri, et
al., 2006). A computer laboratory, equipped with
27 workstations and customized software, was
used to collect the data. Sessions varied in size
from 11 to 26 participants lasting approximately
one hour. Experimental material was distributed

319

Using Graphics to Improve Understanding of Conceptual Models

randomly. Participants seated next to each other
did not receive the same case or treatment condi-
tion. Participants were monitored and asked to
work independently.

Sessions began with a brief training period to
review the one page explanation of the grammar
(Appendix 3). The training was followed by a
pretest to capture demographics, prior experiences,
prior domain knowledge, and prior knowledge of
ER diagrams (Table 3).

The three experimental tasks were administered
immediately after the pretest. The recognition task
was first. Participants had 15 minutes to review

the material and answer 12 “Yes/No/Unknown”
questions listed in Table 4. The recognition score
was defined as the number of correct answers. The
participants were told all case materials would be
taken away at the conclusion of the first task. This
way, participants completed the final two tasks
using only their mental models. Participants could
not revisit any completed task.

The recall task followed. Participants were
asked the following question: “Using what you
have learned about this company, please write
down an explanation of how the company oper-
ates.” Six minutes were allotted to complete the

Table 2. Summary of important pretest variables

Case: Far East Case: Voyager

Graphic Standard Graphic Standard

N 52 51 51 52

Age (mean) 20.2 20.3 20.7 20.7

Gender (% Male) 67.3% 52.9% 54.9% 50.0%

ESL (%) 50.0% 58.8% 62.7% 65.4%

ERD Courses (mean) 0.92 0.90 1.20 1.27

Used ERD (Total) 4 2 2 3

Case Knowledge1 (mean) 1.77 1.43 1.76 1.83

PDK2 (mean) 0.36 -0.36 0.07 -0.07
1 Mean of question 5 listed in Table 3 where 1 indicates no knowledge on a seven point self reporting scale
2 standardized means of questions 5 to 10 listed in Table 3

Table 3. Information collected during the pretest for each case

Voyager Case Far Eastern Case

1. Number of System Analysis course taken 1. Number of System Analysis course taken

2. Level of ERD knowledge (1 to 7) 2. Level of ERD knowledge (1 to 7)

3. Used ERD in a business setting (Yes/No) 3. Used ERD in a business setting (Yes/No)

4. English as first language (Yes/No) 4. English as first language (Yes/No)

5. Level of knowledge of a bus tour company (1 to 7) 5. Level of knowledge of a machine repair facility (1 to 7)

6. Taken a bus tour (Yes/No) 6. Worked as a mechanic (Yes/No)

7. Worked as a bus driver (Yes/No) 7. Worked in a warehouse (Yes/No)

8. Made reservations for a bus trip (Yes/No) 8. Replaced a part of an engine (Yes/No)

9. Traveled by bus to a special event (Yes/No) 9. Had your engine overhauled (Yes/No)

10. Organized a set of short bus trips (Yes/No) 10. Helped to organize a repair shop (Yes/No)

320

Using Graphics to Improve Understanding of Conceptual Models

recall exercise. The recall score was defined as
the total number of distinct and correct idea units
listed. One rater scored the recall responses using
scoring procedures from previous research (Mayer
& Moreno, 1998). The treatment condition was
hidden from the rater to eliminate rater bias.

The final task was the transfer task composed of
four questions each describing a specific problem.
Examples are provided in Table 5. Participants
were asked to record as many solutions as they
could think of for each question. Two minutes
were allotted per question. The total number of
responses as well as the number of acceptable
responses for all four questions was determined
by a single rater. A template of possible acceptable
answers was prepared. Examples of acceptable
answers for the first question (Table 5) included:

parts not available, mechanics with required skill
not available, and machine already repaired but
customer not yet contacted.

The open-ended nature of these questions
allowed participants to provide answers based
either on information attained from the case ma-
terial or from other experiences. One example of
a solution to question 1 (Table 5) that would be
outside the case information was “Far Eastern
burned down.” The structure of the transfer task
may have encouraged participants to record so-
lutions regardless whether these solutions were
based on knowledge from the case or otherwise.
We worked to isolate this effect from transfer
scores. We chose to compute the ratio of accept-
able answers provided by each participant to the
total number of solutions noted. Analysis of this

Table 4. Recognition Questions used for the Far Eastern Repair Facility case

1. Do all repairs require parts?

2. Can a repair be worked on by more than one mechanic?

3. Are all repairs assigned to at least one mechanic

4. Are there parts stored in the warehouse that are not used for repairs?

5. Does Far Eastern collect different information for different machine types?

6. Does Far Eastern differentiate their local customers in any way?

7. Can a mechanic who does not have a special skill be assigned to more than one repair?

8. Do all the mechanics related to the same repair, pool their hours to create a single entry for hours worked?

9. Can a piece of equipment undergo more than one repair?

10. Can more than one part be listed in a single repair detail?

11. Is the cylinder volume recorded for all pumps that are repaired?

12. Can a part be supplied by more than one manufacturer?

Table 5. Problem solving questions used for the Far Eastern Repair Facility case

1. A customer of Far Eastern has called to complain that the machine they sent for repair has not been repaired yet. What possible reasons
can you provide for what might have gone wrong?

2. Far Eastern is experiencing a very large increase in the number of machines that they should repair. What problems might Far Eastern
experience because of this increase in repairs?

3. Customers of Far Eastern are not happy when the actual repair price is higher than the estimated repair price. The sales person says that
it is not his fault because the estimation is so difficult. Provide as many possibilities as you can think of that make the accurate estimation
of the total repair price difficult.

4. Far Eastern is considering investing in a machine that can be used to repair large turbine engines. How would the current data structure
be affected by the purchase of the new machine? Try to think of as many affects as possible.

321

Using Graphics to Improve Understanding of Conceptual Models

ratio provides a more accurate analysis of the
differences between treatment groups.

rEsULts

Table 6 lists means and standard deviations for
the three dependent variables (recognition, recall,
and transfer) as well as total number of responses
and ratio of acceptable to total for the transfer task
(Transfer Ratio).

Multivariate Analysis of covariance (MAN-
COVA) was used to test for statistical significance.
MANCOVA was chosen because of multiple
dependent variables and the need to control
for covariates. MANCOVA assumptions were
investigated prior to analysis. Histograms and
P-P plots were constructed and used to verify
the normality assumption. The homogeneity of
variances assumptions was verified using the
Box’s statistic.

Two covariates were used in the model: previ-
ous domain knowledge (PDK), as defined in Table
2, and English as a second language (ESL). Both
covariates were found to be significant for some
of transfer ratios and recall scores although the
level of significance varied between cases. Table
7 provides complete results of the MANCOVA
analysis.

covariates

Previous research (Shaft & Vessey, 1995, 1998) has
indicated important differences between applica-
tion experts and novices. Differences are also ex-
pected through considerations of the cognitive load
theory (Sweller & Chandler, 1994), the cognitive
theory of multimedia learning (Mayer, 2001), and
findings of Khatri et al. (2006). The CLT suggests
that high PDK will lower the intrinsic cognitive
load. The individual differences principle outlined
by the CTML again suggests that design effects
will have a lower impact for those with high PDK.
Khatri et al. (2006) suggests the level of previous
domain knowledge has an effect on the level of
understanding achieved. Results in Table 7 suggest
that PDK may have some effect on understanding
as significance was detected in the Far East case.
The impact was not observed in the Voyager case.
The lack of significance may have to do with the
instrument used to measure PDK.

The results from ESL imply the precise seman-
tics associated with ER modeling may be more
difficult for individuals with less familiarity with
the language. The ESL covariate shows a strong
relationship with recall and transfer ratios. ESL
significance reported by Table 7 indicates a pos-
sible effect of the experimental condition between
ESL and non-ESL groups. Simple Analysis of

Table 6. Means and Standard Deviations of the dependent variables (by case and treatment condition)

Dependent Variable Case: Far East Cse: Voyager

Graphic
n=52

Standard
n=51

Gaphic
n=51

Standard
n=52

Recognition 7.08
(1.79)

7.04
(1.84)

708
(1.41)

7.27
(1.68)

Recall 6.92
(3.31)

6.20
(3.18)

882
(4.83)

9.52
(5.85)

Transfer (Acceptable) 10.00
(4.39)

7.90
(4.09)

1.73
(4.53)

9.37
(4.08)

Transfer (All Responses) 14.87
(5.59)

13.92
(4.86)

1.12
(5.11)

15.81
(5.31)

Transfer Ratio:
Acceptable/All Responses

0.67
(0.22)

0.55
(0.19)

0.70
(0.22)

0.59
(0.18)

322

Using Graphics to Improve Understanding of Conceptual Models

Variance (ANOVA) was used to investigate the
degree and direction of any difference. Table 8
displays ANOVA results for the ESL group and
Table 9 displays analysis results for the non-ESL
group. Results indicate the treatment condition had
a higher positive impact on the non-ESL group
for transfer ratios.

The effects of ESL need to be interpreted cau-
tiously. An alternative explanation for at least a
portion of the results may be related to possible task
bias. The yes/no type of answer in the recognition
task requires less language skills than respond-
ing in point form or complete sentences which is
the format for the recall and transfer tasks. The
potential task bias might explain why recognition
results differ less than recall and transfer results
across Table 8 and Table 9. It may not be clear,
for ESL participants, whether comprehension
and understanding was measured as opposed to

written language skill. Therefore, a portion of the
ESL findings may be the result of task bias. The
results for non-ESL participants would more likely
reflect the true effect of iconic graphics.

treatment Effects

Having established the significance of the covari-
ates, we turn our attention to the treatment variable.
The results provide support for hypothesis H2
only (Table 7). H2, the hypothesis that embedded
graphics will improve understanding, is confirmed
for both cases. Both cases showed significant
transfer ratio score differences between treatment
and non-treatment conditions after accounting for
covariate influence (F=11.16 and F=8.73 for Far
East and Voyager respectively).

The results in Table 7 show no evidence of
significant differences across treatment groups for

Table 7. MANCOVA results for the treatment condition and covariates (ESL and PDK)

Case: Far East Case: Voyager

Treatment: Covariates: Treatment: Covariates:

EL PDK EL PDK

F ig. F sig. F Sig. F ig. F ig. F ig.

Recog. 0.04 0.84 1.72 0.19 1.05 0.31 0.35 0.56 0.37 0.54 1.08 0.30

Recall 1.65 0.20 5.87 0.02 2.78 0.10 0.48 0.49 6.08 0.02 1.02 0.31

Transfer
Ratio 11.16 0.00 4.41 0.04 6.10 0.02 8.73 0.00 4.30 0.04 1.17 0.28

Table 8. ANOVA analysis for participants with English as a second language (ESL)

Case: Far East Case: Voyager

Graphic Standard Graphic Standard

N26 N=30 ANOVA N=32 N=34 ANOVA

Man sd. Mean sd. F Sig. Mean sd. Mean sd. F Sig.

Recog. 6.65 1.98 7.00 1.80 0.47 0.50 6.97 1.51 7.24 1.79 0.42 0.52

Recall 5.92 3.14 5.77 3.29 0.03 0.86 7.38 4.17 9.03 5.67 1.81 0.18

Transfer:

Acept. 7.77 3.76 6.37 3.39 2.16 0.15 8.66 3.71 8.65 3.95 0.00 0.99

All 12.08 4.03 12.00 4.28 0.01 0.95 13.31 4.41 15.06 5.27 2.12 0.15

Ratio 0.63 0.26 0.51 0.18 4.24 0.04 0.65 0.25 0.58 0.18 1.90 0.17

323

Using Graphics to Improve Understanding of Conceptual Models

recognition or recall. Lack of significant differ-
ences between the treatment groups for recognition
and recall across the two cases may imply that
treatment and control groups received informa-
tionally equivalent experimental material.

In summary, the results of the MANCOVA
support hypothesis H2 that suggests the use of
iconic graphics generates a significant increase
in the level of understanding when compared
with participants viewing standard ER models.
In addition, two covariates were shown to be
significantly related to levels of understanding:
PDK and ESL. The effect of the treatment condi-
tion was strongest for participants with English
as their native language.

DIscUssION AND rEsEArcH
IMPLIcAtIONs

This study presented experimental findings on the
use of embedded graphics in ER diagrams. The mo-
tivations for the study were based on an objective to
improve overall effectiveness of ER diagramming
for model viewers. Standard ER diagrams were
adapted to include entities represented as iconic
images and text titles. ER diagrams were chosen
for their continued popularity in systems analysis
and the ease of representing entities with embedded
graphics. An experiment was conducted with two

cases used in previous research (Batra, et al., 1990;
Bodart, et al., 2001). The cognitive load theory
and the cognitive theory of multimedia learning
provided the theoretical foundation to generate
hypotheses predicting the impact of embedded
graphics on retention and understanding.

Results provide support for our primary hy-
potheses generated from the CTML and CLT.
Iconic graphics did not have any significant
impact on retention as measured by recognition
and recall tasks; however, in both cases, iconic
graphics did support significantly higher levels of
understanding as measured by the transfer task.
These results suggest iconic graphics can posi-
tively impact the level of understanding gained
by persons viewing ER diagrams. These results
should encourage further research into the use of
graphics and other multimedia enhancements in
standard ER diagrams.

In addition to the effect of iconic graphics,
the study also indicated that previous domain
knowledge (PDK) and English as a second
language (ESL) are two important variables to
consider in any measurement of understanding.
PDK was investigated as an element in explaining
higher levels of understanding based on assump-
tions from the CLT (Sweller & Chandler, 1994),
CTML (Mayer, 2001), and findings from Khatri
et al (2006) that previous domain knowledge may
play an important role in IS analysis and design.

Table 9. ANOVA analysis for participants with English as native language (non-ESL)

Case: Far East Case: Voyager

Graphic Standard Graphic Standard

N26 N=21 ANOVA N=19 N=18 ANOVA

Man sd. Mean sd. F Sig. Mean sd. Mean sd. F Sig.

Recog. 7.50 1.50 7.10 1.95 0.65 0.43 7.26 1.24 7.33 1.50 0.02 0.88

Recall 7.92 3.22 6.81 2.98 1.48 0.23 11.26 4.99 10.44 6.23 0.20 0.66

Transfer:

Acept. 12.23 3.85 10.10 4.07 3.39 0.07 14.21 3.57 10.72 4.10 7.65 0.01

All 17.65 5.61 16.67 4.37 0.44 0.51 18.16 4.83 17.22 5.25 0.32 0.58

Ratio 0.71 0.19 0.61 0.18 3.69 0.06 0.79 0.09 0.61 0.17 15.28 0.00

324

Using Graphics to Improve Understanding of Conceptual Models

PDK findings did not provide robust results. We
believe this may in large part be due to the mea-
surement instrument for PDK. Pretest results for
the Far East case indicated a low self reported
prior case knowledge of 1.7 (1 is no knowledge).
Only 9 (of 33) participants who reported a score
greater than one also answered positively to two
or more of the PDK related pretest questions
(Questions 6 to 10 in Table 3). We believe this
may have caused a statistical anomaly leading to
a significant result. PDK is likely an important
factor that impacts understanding, but this experi-
ment may not have a robust enough data set to
provide valid inferences.

ESL was introduced to isolate possible effects
due to language processing. Our results indicate
that embedding graphics in ER diagrams provided
a larger effect on understanding for non-ESL
participants. As noted earlier, comparison of the
ESL and non-ESL group is preliminary and may
be affected by task bias. The initial ESL result may
seem counterintuitive because use of representa-
tive images would typically be expected to allow
users to relate textual description to graphical
elements perhaps surpassing the limitations of
written language. However, working with a foreign
language can lead to additional sources of intrinsic
cognitive load. Since the effects of cognitive load
are cumulative, the CLT would suggest that an in-
crease in intrinsic cognitive load necessarily results

in a decreased ability of the user to exert germane
cognitive load used for knowledge construction
and understanding. ESL users would be subject to
higher overall intrinsic and extraneous cognitive
loads compared to those working in their native
language. Therefore, any positive effect of using
graphics on reducing extraneous cognitive load for
ESL users would not necessarily compensate for
the increase in intrinsic load required to process
language (See Figure 3).

This result should not be surprising as ER
diagrams often pose a significant challenge for
users even when presented in their native lan-
guage. The results perhaps suggest that increased
precision of semantics in ER diagrams requires a
high familiarity with the language. As ‘offshoring’
and multilingual communication requirements
become more the norm, this finding could prove
more important in considering methods to support
effective communication.

An alternative explanation may provide some
additional insight into the ESL results. The com-
prehension task required only yes/no type answers
whereas retention and transfer tasks required writ-
ten answers. It is possible the written tasks may
have been more difficult for ESL participants to
complete which introduces a task bias accounting
for some of the measured variance.

It is clear that more work needs to be done to
fully uncover the impact of presentation on model

Figure 3. Cognitive Loads on working memory of ESL vs. non-ESL groups

325

Using Graphics to Improve Understanding of Conceptual Models

viewer understanding. We expect model viewer
characteristics such as language, domain experi-
ence, and modeling experience to be important
considerations in multilingual contexts.

cONcLUsION, LIMItAtIONs,
AND FUtUrE rEsEArcH

This study provides evidence that iconic graph-
ics embedded in ER diagrams can have a posi-
tive effect on domain understanding for viewers
with relatively low levels of familiarity with ER
diagrams. The importance of this work for practic-
ing Systems Analysts and designers comes from
two key elements of their job. First, modern IS
projects are complex. The ability to understand
large and complex projects requires tools that
break these projects into meaningful, manageable
components. The use of iconic graphics seems to
reduce the extraneous cognitive load associated
with these complex systems and deserves further
attention. Secondly, the reduction in extraneous
cognitive load seems to enable novice users to
apply more germane cognitive load which relates
directly with levels of domain understanding. ER
diagrams are used as communication tools among
systems experts, and among project stakeholders.
A supporting tool, like iconic graphics, that more
efficiently and effectively presents the modeled
system has the potential to facilitate better under-
standing of the current and proposed information
system. While the alteration in the diagram may
seem small, the effect on understanding can be
significant as shown in this chapter.

A limitation of these findings is using students
as participants to review the two cases. While using
student subjects does not represent experienced
system analysts, students are a good sample for the
general population of system users to which these
conceptual models are often addressed (Gemino
and Wand, 2004). Some effect differences were
also found across cases which may suggest the
potential for additional work in indentifying when

case differences impact measures of recognition,
recall and transfer.

Another limitation is the size and complexity of
the ER diagrams selected for the cases. Although
the ER diagrams used in this study are smaller
than the average model used in practice, it was an
important consideration to control the effects of
other variables not considered in this study. For
example, the CTML’s spatial and temporal con-
tiguity principles suggest that splitting a diagram
onto multiple sheets of paper (or computer screens)
will not be as effective as having the diagram
presented in one location. Previous research (J.
Kim, et al., 2000) has considered this issue and
future research could more carefully consider the
effects in combination with graphical represen-
tations. There is also a need for more thorough
discussion and development of cases that can be
used for this type of experimental research. It is
difficult to establish external validity but use of
widely accepted cases would improve the impact
of results from similar experiments.

One important consideration is the choice of
icons to be used. It seems natural to expect the use
of icons to be more effective as graphics would
more closely represent the domain experience of
the viewer. We, therefore, suggest that embed-
ding icons using actual domain relevant images
captured with digital cameras to enhance entities
would more likely provide a better opportunity
to promote understanding of conceptual models.
Further research into the effect of icons with
differing levels of domain relevance can address
this issue.

Another interesting consideration is the
impact of using icons on task efficiency. It is
possible that icons could have an impact on
understanding or recall efficiency. The research
was designed to control for time used during
each experimental task which limited the ability
to measure task efficiency in conjunction with
performance levels. Further research without
a time restriction may be able to uncover the
impact on task efficiency.

326

Using Graphics to Improve Understanding of Conceptual Models

Results from this experiment suggest improve-
ments can be made in presenting information in a
way that is more effective than standard text based
diagrams. This study focused on a single CTML
principle. Further improvements are likely when
more of the principles are considered. For example,
including graphical elements combined with narra-
tion and user interactivity (such as computer aided
navigation of the conceptual model) may lead to
better understanding than standard techniques.
We therefore suggest that further efforts should
be made in developing conceptual models with a
lower cognitive burden for systems analysis and
design. Developing these methods will lead to
improved communication of system requirements
and, consequently, increased rates of success in
information systems development projects.

The issues raised by results involving ESL
in this study suggest new directions for future
research. Possibility of interaction between writ-
ing skills and measurement of understanding
suggests that researchers should measure ESL
(or language) when studying conceptual models’
impact on understanding.

Further research will be required to extend
the findings to other diagramming techniques.
Class diagrams under the UML represent a strong
candidate for embedding graphics to improve
understanding. Class diagrams consist of class
objects associated with attributes and opera-
tions. The potentially large number of attributes
and operational elements per class requires an
inexperienced user to spend valuable cognitive
resources to manipulate these elements in prepa-
ration for knowledge construction. This can lead
to an increase in extraneous cognitive load. It
is predicted by the CLT and the CTML that a
reduction of this load with help from multimedia
elements will improve the process of knowledge
construction and overall understanding.

rEFErENcEs

Agarwal, R., De, P., & Sinha, A. P. (1999). Compre-
hending object and process models: An empirical
study. IEEE Transactions on Software Engineer-
ing, 25(4), 541–556. doi:10.1109/32.799953

Andrade, J., Ares, J., Garcia, R., Pazos, J., Rodri-
guez, S., & Silva, A. (2004). A methodological
framework for generic conceptualisation: prob-
lem-sensitivity in software engineering. Informa-
tion and Software Technology, 46(10), 635–649.
doi:10.1016/j.infsof.2003.11.003

Baddeley, A. (1992). Working Memory. Sci-
ence, 255(5044), 556–559. doi:10.1126/sci-
ence.1736359

Bajaj, A. (2004). The effect of the number of
concepts on the readability of schemas: an em-
pirical study with data models. Requirements
Engineering, 9(4), 261–270. doi:10.1007/s00766-
004-0202-8

Batra, D. (2005). Conceptual Data Modeling Pat-
terns: Representation and Validation. Journal of
Database Management, 16(2), 84–106.

Batra, D., & Davis, J. G. (1992). Conceptual
data modelling in database design: similarities
and differences between expert and novice de-
signers. International Journal of Man-Machine
Studies, 37(1), 83–101. doi:10.1016/0020-
7373(92)90092-Y

Batra, D., Hoffer, J. A., & Bostrom, R. P. (1990).
Comparing Representations with Relational and
EER Models. Communications of the ACM, 33(2),
126–139. doi:10.1145/75577.75579

Batra, D., & Wishart, N. A. (2004). Comparing a
rule-based approach with a pattern-based approach
at different levels of complexity of conceptual data
modelling tasks. International Journal of Human-
Computer Studies, 61(4), 397–419. doi:10.1016/j.
ijhcs.2003.12.019

327

Using Graphics to Improve Understanding of Conceptual Models

Bodart, F., Patel, A., Sim, M., & Weber, R. (2001).
Should optional properties be used in conceptual
modelling? A theory and three empirical tests.
Information Systems Research, 12(4), 384–405.
doi:10.1287/isre.12.4.384.9702

Burton-Jones, A., & Meso, P. (2006). Conceptual-
izing Systems for Understanding: An Empirical
Test of Decomposition Principles in Object-
Oriented Analysis. Information Systems Research,
17(1), 38–60. doi:10.1287/isre.1050.0079

Chen, P. P.-S. (1976). The Entity-Relationship
Model-Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1), 9–36.
doi:10.1145/320434.320440

Collins, A. M., & Quillian, M. R. (1969). Retreival
Times from Semantic Memory. Journal of Ver-
bal Learning and Verbal Behavior, 8, 240–247.
doi:10.1016/S0022-5371(69)80069-1

Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field
Study of the Software Design Process for Large
Systems. Communications of the ACM, 31(11),
1268–1287. doi:10.1145/50087.50089

Davis, G. B. (1982). Strategies for information
requirements determination. IBM Systems Jour-
nal, 21(1), 4–30.

Gemino, A. (2004). Empirical comparisons of
animation and narration in requirements valida-
tion. Requirements Engineering, 9(3), 153–168.
doi:10.1007/s00766-003-0182-0

Gemino, A., & Wand, Y. (2003). Evaluating
modeling techniques based on models of learn-
ing. Communications of the ACM, 46(10), 79–84.
doi:10.1145/944217.944243

Gemino, A., & Wand, Y. (2004). A framework
for empirical evaluation of conceptual modeling
techniques. Requirements Engineering, 9(4),
248–260. doi:10.1007/s00766-004-0204-6

Gemino, A., & Wand, Y. (2005). Complexity and
clarity in conceptual modeling: Comparison of
mandatory and optional properties. Data & Knowl-
edge Engineering, 55(3), 301–326. doi:10.1016/j.
datak.2004.12.009

Jarvenpaa, S. L., & Machesky, J. J. (1989). Data
analysis and learning: an experimental study
of data modeling tools. International Journal
of Man-Machine Studies, 31(4), 367–391.
doi:10.1016/0020-7373(89)90001-1

Khatri, V., Vessey, I., Ramesh, V., Clay, P., & Park,
S.-J. (2006). Understanding Conceptual Schemas:
Exploring the Role of Application and IS Domain
Knowledge. Information Systems Research, 17(1),
81–99. doi:10.1287/isre.1060.0081

Kim, J., Hahn, J., & Hahn, H. (2000). How Do We
Understand a System with (So) Many Diagrams?
Cognitive Integration Processes in Diagrammatic
Reasoning. Information Systems Research, 11(3),
284–303. doi:10.1287/isre.11.3.284.12206

Kim, Y.-G., & March, S. T. (1995)... Comparing
Data Modeling Formalisms, 38(6), 103–115.

Kung, C. H., & Solvberg, A. (1986). Activity mod-
elling and behaviour modelling. Paper presented
at the Proceedings of the IFIP WG 8.1 working
conference on comparative review of information
systems design methodologies: improving the
practice, North-Holland, Amsterdam.

Kunnath, M. L. A., Cornell, R. A., Kysilka, M.
K., & Witta, L. (2007). An experimental research
study on the effect of pictorial icons on a user-
learner’s performance. Computers in Human
Behavior, 23(3), 1454–1480. doi:10.1016/j.
chb.2005.05.005

Larkin, J. H., & Simon, H. A. (1987). Why a Dia-
gram is (Sometimes) Worth Ten Thousand Words.
Cognitive Science, 11(1), 65–100. doi:10.1016/
S0364-0213(87)80026-5

328

Using Graphics to Improve Understanding of Conceptual Models

Lee, J., & Truex, D. P. (2000). Exploring the impact
of formal training in ISD methods on the cognitive
structure of novice information systems develop-
ers. Information Systems Journal, 10(4), 347–367.
doi:10.1046/j.1365-2575.2000.00086.x

Mayer, R. E. (1989). Models for Understanding.
Review of Educational Research, 59(1), 43–64.

Mayer, R. E. (1996). Learning strategies for mak-
ing sense out of expository text: The SOI model
for guiding three cognitive processes in knowledge
construction. Educational Psychology Review,
8(4), 357–371. doi:10.1007/BF01463939

Mayer, R. E. (2001). Multimedia Learning. New
York: Cambridge University Press.

Mayer, R. E., & Moreno, R. (1998). A Split-At-
tention Effect in Multimedia Learning: Evidence
for Dual Processing Systems in Working Memory.
Journal of Educational Psychology, 90(4), 312–
320. doi:10.1037/0022-0663.90.2.312

Miller, G. A. (1956). The magical number seven,
plus or minus two: some limits on our capacity
for processing information. Psychological Review,
81–97. doi:10.1037/h0043158

Moody, D. (1996). Graphical Entity Relationship
models: Towards a more user understandable
representation of data. Conceptual Modeling ER
‘96 (LNCS 1157, pp. 227-244). Berlin / Heidel-
berg: Springer.

Paas, F., Renkl, A., & Sweller, J. (2003). Cogni-
tive load theory and instructional design: Recent
developments. Educational Psychologist, 38(1),
1–4. doi:10.1207/S15326985EP3801_1

Paas, F., Tuovinen, J. E., Tabbers, H., & Van
Gerven, P. W. M. (2003). Cognitive Load Mea-
surement as a Means to Advance Cognitive Load
Theory. Educational Psychologist, 38(1), 63–71.
doi:10.1207/S15326985EP3801_8

Paivio, A. (1986). Mental Representations: A
Dual Coding Approach. Oxford, UK: Oxford
University Press.

Paivio, A. (1991). Dual coding theory: Retrospect
and current status. Canadian Journal of Psychol-
ogy, 45(3), 255–287. doi:10.1037/h0084295

Rockwell, S., & Bajaj, A. (2005). COGEVAL:
Applying Cognitive Theories to Evaluate Concep-
tual Models. In K. Siau (Ed.), Advanced Topics
in Database Research (Vol. 4). Hershey, PA: Idea
Group Publishing.

Seufert, T., Jänen, I., & Brünken, R. (2007). The
impact of intrinsic cognitive load on the effective-
ness of graphical help for coherence formation.
Computers in Human Behavior, 23(3), 1055–1071.
doi:10.1016/j.chb.2006.10.002

Shaft, T. M., & Vessey, I. (1995). The Relevance
of Application Domain Knowledge: The Case of
Computer Program Comprehension. Information
Systems Research, 6(3), 286–299. doi:10.1287/
isre.6.3.286

Shaft, T. M., & Vessey, I. (1998). The Relevance of
Application Domain Knowledge: Characterizing
the Computer Program Comprehension Process.
Journal of Management Information Systems,
15(1), 51–78.

Shanks, G. (1997). Conceptual Data Modelling:
An Empirical Study of Expert and Novice Data
Modellers. Australian Journal of Information
Systems, 4(2), 63–73.

Siau, K. (2004). Informational and computational
equivalence in comparing information modeling
methods. Journal of Database Management,
15(1), 73–86.

Siau, K. (2005). Human-computer interaction: The
effect of application domain knowledge on icon
visualization. Journal of Computer Information
Systems, 45(3), 53–62.

329

Using Graphics to Improve Understanding of Conceptual Models

Sweller, J. (1988). Cognitive load during problem
solving: Effects on learning. Cognitive Science,
12(2), 257–285.

Sweller, J., & Chandler, P. (1994). Why Some
Material Is Difficult to Learn. Cognition and
Instruction, 12(3), 185–223.

Topi, H., & Ramesh, V. (2002). Human Factors
Research on Data Modeling: A Review of Prior
Research, An Extended Framework and Future
Research Directions. Journal of Database Man-
agement, 13(2), 3–19.

Vessey, I. (1991). Cognitive Fit: A Theory-
Based Analysis of the Graphs Versus Tables
Literature. Decision Sciences, 22(2), 219–240.
doi:10.1111/j.1540-5915.1991.tb00344.x

Vessey, I., & Conger, S. (1994). Requirements
Specification: Learning Object, Process, and
Data Methodologies. Association for Computing
Machinery. Communications of the ACM, 37(5),
102–113. doi:10.1145/175290.175305

Wand, Y., & Weber, R. (1990). An Ontologi-
cal Model of an Information System. IEEE
Transactions on Software Engineering, 16(11),
1282–1292. doi:10.1109/32.60316

Wand, Y., & Weber, R. (2002). Information
Systems and Conceptual Modeling - A Research
Agenda. Information Systems Research, 13(4),
363–376. doi:10.1287/isre.13.4.363.69

Wang, S. (1996). Two MIS analysis methods: An
experimental comparison. Journal of Education
for Business, 71(3), 136–141.

Wiedenbeck, S. (1999). The use of icons and
labels in an end user application program: an
empirical study of learning and retention. Behav-
iour & Information Technology, 18(2), 68–82.
doi:10.1080/014492999119129

Wittrock, M. C. (1990). Generative processes of
comprehension. Educational Psychologist, 24(4),
345–376. doi:10.1207/s15326985ep2404_2

Yadav, S. B., Bravoco, R. R., Chatfield, A. T., &
Rajkumar, T. M. (1988). Comparison Of Analysis
Techniques For Information Requirement Deter-
mination. Communications of the ACM, 31(9),
1090–1097. doi:10.1145/48529.48533

Young, S. L., & Wogalter, M. S. (1990). Com-
prehension and Memory of Instruction Manual
Warnings: Conspicuous Print and Pictorial Icons
Human Factors. The Journal of the Human Factors
and Ergonomics Society, 32(6), 637–649.

330

Using Graphics to Improve Understanding of Conceptual Models

APPENDIcEs

Appendix 1a: the Far East repair standard ErD
used during the experiment (Figure 4)

Figure 4.

331

Using Graphics to Improve Understanding of Conceptual Models

Appendix 1b: the Far East repair treatment condition ErD (Figure 5)

Figure 5.

332

Using Graphics to Improve Understanding of Conceptual Models

Appendix 2a: the Voyager standard ErD (Figure 6)

Figure 6.

333

Using Graphics to Improve Understanding of Conceptual Models

Appendix 2b: the Voyager treatment condition ErD (Figure 7)

Figure 7.

334

Using Graphics to Improve Understanding of Conceptual Models

Appendix 3: training documentation (Explanation
of Grammar used by the ErDs) (Figure 8)

Figure 8.

335

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

Beyond Open Source:
The Business of ‘Whole’ Software Solutions

Joseph Feller
University College Cork, Ireland

Patrick Finnegan
University of New South Wales, Australia

Jeremy Hayes
University College Cork, Ireland

INtrODUctION

Researchers (Agerfalk et al., 2006; Feller et al.
2006a; Fitzgerald, 2006) have recently argued that
Open Source Software firms should adopt a ‘whole
product’ approach (cf. Moore, 1999) by forming a
network / ecosystem of partners with complementary

capabilities “to offer a professional product and
service in an agile, bazaar-friendly manner” (Fitzger-
ald, 2006, p.294). This ‘whole product’ approach is
consistent with the challenges of ‘productizing OSS’
discussed by Woods and Guliani (2005) as well as
developments in the production and use of other
complex product/service offerings as discussed by
Davidow and Malone (1992). This approach is re-
garded as appropriate when there is a need for firms

AbstrAct

Researchers have argued that competitive necessities will require open source software companies to
participate in cooperative business networks in order to offer the complete product / service (whole
product) demanded by customers. It is envisaged that these business networks will enhance the business
models of participant firms by supplementing their value adding activities and increasing responsiveness
to customers. However, while such propositions have intuitive appeal, there is a paucity of empirical
research on such networks. This study examines Zea Partners, a network of small open source compa-
nies cooperating to deliver the ‘whole product’ in the area of Content Management Systems (CMS). It
investigates how network participation augments the business models of the participant companies, and
identifies the agility challenges faced by the business network. The chapter concludes that reconciling
the coordination needs of OSS networks with the operational practices of participant firms is of crucial
importance if such networks are to achieve adaptive efficiency to deliver whole products in a ‘bazaar-
friendly’ manner.

DOI: 10.4018/978-1-60566-904-5.ch016

336

Beyond Open Source

to quickly deliver a variety of customised products,
and when the nature of the product development
process means that individual organisations do
not have sufficient competencies to deal with all
parts of product design (Davidow and Malone,
1992; Huang, 2001). In such circumstances,
market forces require organisations with similar
goals to align themselves in IT-mediated partner
networks in order to meet customer requirements
(Stafford 2002).

Moore (1999) popularised the concept of the
‘whole product’ as the cornerstone of market-
driven, rather than product-driven, businesses.
However, the concept resonates with the dynamics
of the open source software phenomenon, which,
due to the licensing structure, emphasises services
and meta-services surrounding the artefact. In-
deed, Woods and Guliani (2005) describe as the
challenge of ‘productizing’ open source software
as the need to offer support, implementation,
modification and related services. Thus, networks
of co-operating small open source software or-
ganizations may represent what Clemons and
Row (1992) term a “move-to-the middle” where
networks of organisations interact in order to
deliver value (in the form of the whole product)
to the end consumer.

This paper examines Zea Partners, a business
network of firms developing Content Management
Systems and selling related services, all based
around the Zope application server. It investigates
how participation in the network augments the
business models of participant firms in order to
adopt a ‘whole product’ approach, and identifies
the challenges faced by the network in trying to
ensure the business agility necessary to offer the
‘whole product’. The paper begins by discussing
the theoretical foundation for the study. Next,
the research objective and research methods are
discussed. The case environment is then outlined
and the findings presented. The paper illustrates
that participation in the network allows firms to
share business model components within a cen-
trally managed network, and to engage in agile

competitive practices by making network-level
changes in response to changes in the external
environment. The need to address adaptability and
alignment issues in addition to business agility is
highlighted, however. Consequently, the paper
concludes that reconciling the coordination needs
of OSS networks with the operational practices of
participant firms is a critical issue if such networks
are to achieve adaptive efficiency to deliver whole
products in a bazaar-friendly manner.

tHEOrEtIcAL FOUNDAtION

OSS has been investigated from a variety of
disciplinary and theoretical perspectives. The
two dominant research themes, however, have
been (1) OSS software engineering tools and
techniques and (2) the socio-cultural analysis of
OSS communities. The open source model of
software development has been popularised as
a realistic option for commercial organisations
in recent years (Agerfalk and Fitzgerald, 2008;
Watson et al. 2008). Commercial organisations,
however, are under-represented in OSS research,
not just in terms of quantity, but more importantly
in terms of depth of research. In particular, there
is a need for greater research on commercial
aspects (Agerfalk and Fitzgerald, 2008) and
business model issues surrounding OSS (Feller
et al. 2006b). In this section, we draw on the
wider literature on business models and business
networks to develop the theoretical grounding for
our study. In particular, we examine how extant
research on business models and networks can
improve our understanding of the issues facing
firms seeking to form the type of agile business
ecosystems envisaged by Fitzgerald (2006).

In keeping with the increasing commerciali-
sation of OSS, researchers such as Watson et al.
(2008), Krishnamurthy (2005), Weber (2004),
Spiller and Wichmann (2002), Raymond (2001)
and Hecker (2000) have documented a series of
OSS business models. However, much of this

337

Beyond Open Source

work concentrates on the source of the revenue
stream and neglects other aspects of the business
models. This is not surprising, as the terms ‘busi-
ness model’ and ‘revenue model’ are frequently,
and incorrectly, used interchangeably. Looking
outside the OSS literature, it is evident from the
work of Timmers (1999), Mahadevan (2000), and
Osterwalder and Pigneur (2002) that business
models must examine value-adding activities
in the context of a supply chain or business net-
work. Osterwalder and Pigneur (2002) propose a
comprehensive approach, and detail an ontology
that focuses on four aspects of the organisation:
product innovation, infrastructure management,
customer relationship and financials. Mahadevan
(2000) defines a business model as a blend of three
streams: value, revenue, and logistics. The value
stream is concerned with the value proposition for
buyers, sellers and market makers. The revenue
stream identifies how the organisations will earn
revenue, and the logistics stream involves detailing
how supply chain issues will affect the organisa-
tions involved. Timmers (1999) argued that ar-
chitectures for business models can be identified
through the deconstruction and reconstruction of
a value chain. Value chain elements are identified,
as are the possible ways that information can be
integrated both within the value chain and between
the respective value chains of interacting parties.
Furthermore, Evans and Wurster (2000) argue
that as more advanced information standards are
introduced, levels of collaboration between or-
ganizations can be achieved that were previously
only possible within a vertically integrated hier-
archical intra-organisational structure. Recently,
there has been a focus on the business model
aspects of ‘open innovation’ (Chesbrough 2003,
2006; West et al. 2006) where firms supplement,
or even supplant, internal research and develop-
ment efforts by leveraging a variety of sources for
knowledge inflows including suppliers, partners,
customers, competitors, academic researchers, etc.
Thus, many economic entities have recognised the
importance of the composition of the supply chain

(or business network) to the overall performance
of the firm (Christiaanse 2005).

The benefits of cooperative business relation-
ships have been advocated for decades (Kaufman,
1966; Van de Ven, 1976; Cash and Konsynski,
1985; Henderson, 1990; Finnegan et al., 2003).
These relationships have been described as Busi-
ness webs (Tapscott et al, 2000), partnerships
(Henderson, 1990), networks (Nelson, 1988;
Joynt, 1991; Finnegan et al, 2003), strategic al-
liances (Joynt, 1991; Bronder and Pritzl, 1992;
Lei and Slocum, 1992), virtual organisations
(Davidow and Malone, 1992; Goldman et al.,
1995), joint ventures (Kanter, 1989; Oliver, 1990;
Campell et al., 1991) service consortia, and stake-
holder or value-chain partnerships (Kanter, 1989),
promotional and obligation networks (Campell et
al., 1991), agency federations, trade associations,
social service joint programs, corporate-financial
interlocks and agency-sponsor linkages (Oliver,
1990).

The reasons for such business cooperation
include; resource procurement and allocation
(Galaskiewicz, 1985; Clemons and Row, 1992;
Alter and Hage, 1993), political advantages
(Galaskiewicz, 1985), risk sharing and acquiring
expertise (Alter and Hage, 1993), stability (Oliver,
1990), legitimacy (Galaskiewicz, 1985; Oliver,
1990), efficiency (Oliver, 1990; Clemons and
Row, 1992), and innovating (Ticoll et al., 1998).
Participants in business networks believe that
collaboration will result in adaptive efficiency;
the ability to change rapidly while providing cus-
tomised services or products at a low cost (Alter
and Hage, 1993). Thus, the ability to quickly
assess new business opportunities, to identify
suitable trading partners, and to effectively co-
ordinate delivery of products and services across
the business network is important (Sadeh et al.
2003). Following this logic, agility is seen as an
important characteristic of business networks.

Agility is a business-wide capability that
includes organisational structures, informa-
tion systems, logistics processes, and mindsets

338

Beyond Open Source

(Christopher 2000). The term agility has created
significant interest in the business world (Lo 1998)
and is recognised as a prerequisite for success in
dynamic or turbulent environments (Christopher
2000; Camarinha-Matos et al. 2003). Fingar (2000)
believes that “the ability to change is now more
important than the ability to create… Change
becomes a first class design goal and requires
business and technology architectures whose
components can be added, modified, replaced and
configured” (p.66). Sharifi and Zhang (1999) argue
that the concept of agility has two main attributes:
responding to change promptly and appropriately,
and capitalising on the opportunities that are
created by change. In a business network, agility
is highly dependent not only on the skills of the
individual firms, but also on the flexibility of the
supporting infrastructure (Camarinha-Matos et al.
2003). Infrastructure flexibility has been identi-
fied as an important characteristic of the agile
organisation (Christopher 2000), and is dependent
on both internal and external factors (Thomke
and Reinertsen, 1998). External factors include
changes in the needs of the end customer, while
internal factors include changes in the develop-
ment process. Thomke and Reinertsen (1998)
argue that design flexibility can be brought about
by (1) following a development strategy that can
endure a higher probability of design changes, (2)
having the ability to produce late changes to the
product design in order to better integrate it with
the technology and the needs of the customer,
and (3) preventing late changes to the product
design by making design commitments at a very
late stage in the development process.

To conclude, agile business networks designed
to meet customer demands for customised products
are reasonably well understood outside the OSS
domain. Within the OSS field, recent work by
Woods and Guliani (2005), Feller et al. (2008),
Fitzgerald (2006), (Agerfalk and Fitzgerald, 2008)
and Watson et al. (2008) has drawn attention to the
importance of networks to OSS business models.
However, small OSS firms have emerged from

various OSS communities and, thus, cannot be
considered to be the same as the type of firms
that have been the subject of research on busi-
ness networks to-date. Therefore, there is a need
for further research on the development of agile
bazaar-friendly business ecosystems to deliver
whole products in the OSS domain.

rEsEArcH ObJEctIVE
AND MEtHOD

The objective of this study is to explore the emerg-
ing phenomenon of a business network of OSS
firms cooperating to deliver the ‘whole product’.
Two research questions were formulated to sup-
port this objective:

RQ1: How does an OSS network affect the busi-
ness models of participant organisations?

RQ2: What challenges are faced in ensuring that
the network is agile?

Case studies are regarded as the most com-
monly used qualitative research method in IS, and
are especially useful for studying organisational
aspects of IS (Benbasat et al, 1987). Cases are most
appropriate when the objective involves studying
contemporary events, without the need to control
variables or subject behaviour (Yin, 1994). The
single case study method is considered to be a
potentially rich and valuable source of data, while
suited to exploring relationships between variables
in their given context (Yin, 1994; Benbasat et
al., 1987). We thus adopted a “soft positivist”
epistemology as discussed by Kirsch (2004) and
our method follows in the tradition of Eisenhardt
(1989) and Madill et al. (2000); it is designed to
reveal pre-existing, relatively stable and objec-
tively extant phenomena and the relationships
among them in a manner that is not limited to
examining only pre-identified constructs.

The subject of the case study (Zea Partners)
was chosen as it represented an interesting case

339

Beyond Open Source

in the area of open source business practice in
that it is one of a small number of such networks
aiming to deliver the ‘whole product’ in an OSS
environment. The researchers first conducted a
thorough archival search to determine the exis-
tence of public domain material on the network
and participant companies. As a result of this
preliminary analysis, the researchers prepared a
case study protocol (cf. Yin, 1994). Based on this
protocol, 16 interviews took place with key person-
nel from participant firms over a 17-month period
from November 2004 to April 2006. In Addition,
the researchers had 5 separate interviews with the
network founder (elite interviewing, cf. Marshall
and Rossman, 1989), and also participated in 4
intensive workshops with network members dur-
ing this time, which facilitated member checking.
The choice of interviewees was based on a number
of factors. These were:

1. Willingness to co-operate. In order to ob-
tain useful material, it was necessary for a
potential interviewee to be interested in the
study, and willing to co-operate.

2. History of network involvement. Interviewees
had to have been involved in ongoing net-
work planning and / or project activity over a
period of time. A consequence of this selec-
tion criterion was that the views of recent
members were not studied.

3. Seniority. In order to get contextual material
on business strategy and experience with
network activities, it was necessary to speak
with senior staff within each partner firm.
A consequence of this selection criterion
was that the views of junior staff were not
studied.

Interviews, conducted using an interview
guide (cf. Patton, 1980), were generally of one
to two-hour duration with follow-up telephone
interviews used to clarify and refine issues that
emerged during transcription. Interviews were
complemented by comprehensive reviews of docu-

ments and presentations at the workshops. The
content analysis was conducted using Osterwalder
and Pigneur’s (2002) business model framework
as well as Aitken et al.’s (2002) and Lee’s (2004)
agility frameworks. This is in line with Lee and
Baskerville (2003) who, in addressing the issue of
generalization, describe the process of generaliz-
ing from theory to empirical description (whereby
the research seeks to apply findings confirmed in
one setting to another one).

cAsE ENVIrONMENt

Zea Partners was founded in 2003 as the Zope
Europe Association (ZEA), and changed its name
to Zea Partners in 2006. Headquartered in Belgium,
Zea Partners operates as an international network
of businesses that build software and deliver
services around the application server technol-
ogy called Zope; widely used for developing
content management systems, intranets, portals,
and related applications. Zea Partners consists of
19 firms; 3 managing partners and 16 associate
partners located in the Netherlands, Italy, Norway,
Belgium, Germany, the United Kingdom, Lithu-
ania, the USA, Spain, France, and South Africa.
The management team seeks project contracts
on behalf of network members and performs
network management activities such as marketing
and project management. They also develop the
network’s business strategy in conjunction with
the managing partners.

The partner companies are typically small (10
people or less). These companies have recognized
that their size limits the contract (deal) sizes for
which they could effectively compete, as well as
their geographic range. One of the benefits of the
network is, thus, that a number of companies can
pool their resources to compete for larger contracts
on a global scale. More importantly, in the context
of competing on the basis of a whole product, the
network allows partners to offer a full range of
value chain activities, rather than concentrating

340

Beyond Open Source

exclusively on their own specialities (e.g. devel-
opment, consultancy, training, etc.). The network
is currently working on ensuring that all partners
can conduct marketing under the one brand.

According to the network’s Founder, the
goal is “to say that we have the whole product.
We are going to group together all the people
who need a whole product made but can’t invest
the resources to do it, and then take that whole
product and make it offerable by anyone in the
network. It has so many benefits on profitability
it’s just amazing. It’s really the only way to impact
profitability.” He sees this as being the value
proposition of the Network, and acknowledges
that, through partnering, the network can compete
for larger deal sizes without competing directly
with the large international consulting companies.
In comparing the Zea Partners network with such
consulting companies, he notes the increased
flexibility offered to customers. In particular, he
argues that: “instead of having a cathedral1model
of Accenture, or something like that, we want to
have multiple players in multiple countries. We
can move things around as new trends emerge,
new specialities emerge, stuff like that.” He also
highlights the importance of the fact “that the
people in the network are the people that created
Silva, the creators of Plone, the creators of Work-
flow, the creators of Multilingual, the creators of
each one of these things. And we want to explain
to customers that it’s in their interests to have a
relationship that rewards these people. It’s in their
interests, first, because the guy who wrote it can
get the job done at a pretty effective rate.”

However, due to the early stage of development
at which the network finds itself, co-ordination
amongst partners is still on a person-to-person
basis. There is an acknowledged need amongst
members to evolve the organisation of the network
towards the use of quotas, geographical regions
etc. To date, coordination has meant observing
trademark and domain rules, as well as some net-
work terms and conditions to ensure that products/
services delivered by partners meet the expecta-

tions of the customer. Finally, he acknowledges
that it is critical to build trust amongst partners so
that invoices are paid on time and other respon-
sibilities are met.

FINDINGs

The Osterwalder and Pigneur business model
ontology was used as a lens to investigate how
the presence of the Zea Partners network affects
the business models of the member firms. The
results are summarised in Table 1, classified as per
the pillars of the Osterwalder and Pigneur (2002)
framework, and are discussed below.

Zea Partners enhances the value that member
firms can offer to a specific target customer seg-
ment (Value Proposition) by allowing smaller
organisations to group together to deliver the
whole product as part of a consortium. The fact
that the network spans many geographic territories
with multiple languages and specialised local
knowledge means that a consortium made up of
small organisations can compete with the larger
consultancy firms. This co-operation increases the
range of projects in which members can become
involved. Zea Partners covers 12 different coun-
tries which, from a geographical spread makes
it comparable with a large company. In terms of
targeting customers, the Zea Partners brand is
purposefully designed to be a mark that distin-
guishes participants in the network as being leaders
in the market. Thus, organisations must already
have a good reputation before they can join the
network. The Zea Partners network also enhances
the business model of participants by adding to
the range of capabilities that underpin their value
propositions. Many of the Zea Partners members
are small start-ups that consist of two to four
people with mostly specialised technical exper-
tise. A major benefit of Zea Partners membership
has, thus, been the ability to access Zea Partners’
expertise in areas such as project management,
customer relationship management, requirements

341

Beyond Open Source

management, tendering and sales to complement
technical expertise. According to the founder of
one of the participant companies (Infrae), the
development of capabilities within Zea Partners
is vital to delivering a professional service. In
relation to the production of documentation, he
noted that “over time we gradually removed all
dependencies on the community, because it was
completely unpredictable”.

With regard to information strategy, Zea
Partners’ stated aim is to “learn together, share
experiences and refer leads to each other”. How-
ever, as yet, resource problems have limited Zea
Partners’ ability to meet their ideal in terms of in-
formation strategy. Nevertheless, Zea Partners are
proving very successful in enhancing the manner
in which a participant firm reaches its customers
(Feel and Serve). The market for Zope and Plone
is characterised by customers approaching firms

in the network with whom they want to do busi-
ness. A key value added by Zea Partners is that the
profile-building activities of the network results
in ‘leads’ for member firms. In some countries
where the demand for Plone services exceeds
supply, Zea Partners can partner with member
firms in that country by co-signing the deal but
leaving the local participant with ownership of the
customer. Furthermore, a key aspect of customer
relationships amongst open source firms is that
trust and loyalty can be enhanced by providing
access to the originator of the software. Thus,
Zea Partners aims to assemble project teams
that contain relevant software originators from
participant firms.

The OSS network model necessitates the inter-
organisational management of business infrastruc-
ture. A key challenge has been integrating different
participants in a seamless manner to deliver the

Table 1. Effects of Zea Partners network on participants’ business models

Business Model Pillar Effect of Zea Partners on member’s business models

Product Innovation Target Customer Segment Enhances reputation and branding of participants by providing a single ‘market
leader’ brand.

Value Proposition Extends geographic coverage, supports the ability to offer specialised expertise,
products and services in many languages and leveraging local knowledge.

Capabilities Enhances existing capabilities by providing a broader range of business
capabilities, especially project management and customer Relationship
Management.

Customer Relationship Information Strategy ZEA aims to provide lead referrals and to contribute to the sharing of experi-
ences and knowledge.

Feel & Serve Facilitates profile building through common branding.

Trust & Loyalty Leverages access to expertise of software originators to build customer
trust.

Infrastructure Manage-
ment

Resources Lowers friction when building teams, through information sharing, common
methodology, tracking results, reporting bugs, etc.

Activity Configuration Enables members to act as a “value shop” configuration. Network reduces the
information asymmetry between client and consultant resulting in customers
‘joining’ the community.

Partner Network ZEA network means that members do not have to outsource to partners outside
the network.

Financials Revenue Model Increases deal size for members by creating “whole product” consortia.

Cost Structure Enables cost-sharing amongst members.

Profit/Loss Increases revenue and lowers expenses through sharing among members,
leading to bigger profits.

342

Beyond Open Source

‘whole product’ to customers. Zea Partners aims
to lower friction in inter-organisational teams
by establishing a common approach through the
use of resources e.g. standing contracts, having
customer references on file, having a common
methodology; a common way of thinking about
a problem, assigning work, tracking results and
reporting bugs. This is summed up by the Zea Part-
ners Founder as being the “big difference between
a rabble and an army. You can take a thousand
people that speak different languages, that never
worked together and they can get defeated by 50
people that are well trained”. This approach is
also evident in the Zea Partners approach to the
configuration of activities and processes at the
level of individual firms and at network level. The
Zea Partners network allows members to act as
a ‘value shop’ (cf. Stabell and Fjelstad, 1998) or
service provider and carry out the phases of this
configuration (problem-finding and acquisition,
problem-solving, choice, execution, control and
evaluation) as if they were one integrated organisa-
tion. One of the areas where Zea Partners differs
from the “value shop” concept (as per Stabell and
Fjeldstad, 1998) is that in the traditional “value
shop” model the information asymmetry between
the client and the service provider (in this case a
consultancy firm) is one of the main value driv-
ers and results in high prices. This is not seen as
desirable by Zea Partners. Instead the network
endeavours to reduce this asymmetry so that the
customer, instead of being a recipient of content
management, becomes a participant in the OSS
community: “there are certain people that need
support contracts. There has not been a need for
it in any of the projects we have been involved
in. I’m a big believer in teaching the people to
know enough about the solution to mostly fix it
themselves” (Chief Architect, Plone Solutions).
Finally, in relation to infrastructure manage-
ment, the partner network aspect of the business
model is a service that Zea Partners completely
operates on behalf of its members. Thus they do

not need to outsource activities to non-member
organisations.

Enhancing the financial aspects of the busi-
ness models of participants is a key objective of
the Zea Partners network. Zea Partners aims to
increase the ‘deal size’ that members can tender
for leading to increased profit margin. A key
aspect of the Zea Partners’ approach is, thus,
the sharing of resources and common expenses.
Thus participants can focus on key value adding
activities of their business models, while sharing
the resources, costs and risks of secondary value
activities. An interesting revenue model arising in
relation to OSS companies providing consulting
services is an effort to move away from a ‘bill-
by-the hour’ model to fixed price. This move is
occurring as the constant innovation with OSS
results in the need for much less customisation,
and thus, shorter development times. However,
fixed price billing creates challenges for network-
based project management as time overruns cut
into the profit margins of the participant providing
the service.

The discussion of Table 1 above refers to the
effects of the Zea Partners network on the business
models of the network participants, and not the
business model(s) of Zea Partners itself. However,
the various effects, taken as whole, result in the
Zea Partners network operating as an entity in
its own right, and engaging in agile competitive
practices. Aitken et al., (2002) present a frame-
work for understanding agility in the context of
internal activities such as marketing, production,
design, organisation, management and people.
This framework is utilised in the present study
as a tool for describing the agile characteristics
of Zea Partners, as summarised in Table 2 and
discussed below.

The members of Zea Partners are already
independently able to utilise recognition of the
Zope and Plone brands as a marketing tool, but
this is only relevant to client firms already aware
of Zope/Plone. The unified brand image of Zea

343

Beyond Open Source

Partners promotes agile marketing in several ways,
such as simplifying brand management (one brand
versus many) and allowing the network to devote
resources to unified brand building, reducing the
burden on individual members (e.g., in order to
increase brand awareness of Zea Partners and its
member organisations, the founder is active in
giving interviews, attending conferences etc.).
The long-term goal of Zea Partners is to build up
sufficient resources so that the network can project
a professional image on behalf of the member
organisations that simply would not possess the
resources to do this individually.

The most important characteristic of Zea Part-
ners vis-à-vis production is its ability to leverage
the large amount of diverse skills possessed by
the member organisations. According to the Chief
Architect of Plone Solutions, “the thing that will
make the network strong is that there is no single
point of failure; you can swap out components
or companies. If one company does not have the
domain knowledge we normally have another
company…It’s very agile and very flexible”. Thus,
the network allows delivery of the ‘whole prod-
uct’, which would not be possible for the smaller
members to do as a stand-alone provider. Likewise,
many design issues associated with delivering the
whole product are addressed through leveraging
common experience with a common set of tools,
working practices, communication norms and

culture that serve to harmonise and integrate the
practices of individual firms.

In terms of organisational activity, while the
network facilitates matching member compe-
tency with customer need, Zea Partners does not
currently use explicit coordination processes to
schedule work. Previous attempts to do so have
had negative results – for example, an incident
in which a member firm was advised not to ac-
cept new work for a certain time period based
on a client’s intention, only to find that the client
organisation was unable to sign the contracts in
the agreed time frame, thus trapping the member
firm into a period of non-productivity. However,
by not having explicit scheduling mechanisms in
place, Zea Partners believes that it is more agile
than traditional consulting firms as the network
is able to allocate resources more dynamically
and effectively and thus to smooth out the peaks
and valleys that are a characteristic of technology
consulting and development work.

From a management perspective, the goal of
Zea Partners is to ensure that network management
and governance does not impede realising the po-
tential benefits associated with the fact that open
source software is by nature highly decentralised.
The founder of Zea Partners believes that this fact
results in “a higher velocity of innovation,” and
that firms in the open source space are thus better
equipped to adapt to the very specific needs of

Table 2. Agile Characteristics of Zea Partners

Activity Area Key Characteristics

Marketing Network provides and maintains unified Zope and Zea Partners brand.

Production Network provides harmonised and integrated collection of diverse production processes and capabilities to deliver
the whole product.

Design Network provides harmonised and integrated collection of diverse design processes and capabilities to deliver
the whole product.

Organisation Network serves as competency rallying mechanism to deliver multi-lingual, whole product services across a
wide geographic area.

Management Network distributes responsibility and revenue through simple, decentralised and transparent network governance
structures.

People Network provides customers with access to original software authors and/or experts with unique competencies.

344

Beyond Open Source

clients. For example, while a larger proprietary
software development firm may decide not to
support a particular language because the market
is not big enough to sustain it, open source firms
can leverage the work of individual developers and
smaller groups who wish to support that language.
Having a decentralised governance / management
structure and a decentralised approach to consult-
ing, means that if a need is encountered for an
unanticipated skill set, it is less of a problem to
meet the need than it would be in the traditional
consulting model. Finally, in relation to people,
Zea Partners leverages the availability of access
to the original author(s) and/or core maintainer(s)
of the software products to respond to customer
demand in an agile fashion.

Zea Partners is made up of a number of au-
tonomous organisations, each having different
philosophies, operating in different countries and
meeting the needs of a diverse group of clients;
meaning that it can draw from a wider variety of
experiences. The Chief Architect of Plone noted
that there are consequential social and manage-
ment challenges; “you will, of course, get the
complexity that comes from coordinating differ-
ent companies with different working styles, and
the whole chemistry thing where not all people
have worked with the other people all the time.”
The business agility challenges that are faced
by the network were analysed using the work of
Lee (2004) as a lens. He expands on the concept
of internal agility by also considering the adapt-
ability of a supply chain as well as the alignment
of players within that supply chain. Lee’s work
is used to frame the content analysis of agility-
related challenges facing Zea Partners, and is
summarised in Table 3. The categorisation of chal-
lenges according to this classification reveals that
the challenges extend beyond agility to matters of
adaptability and alignment. Consequently, while
Zea Partners has been able to engage in agile com-
petitive practices, the challenges that management
have articulated indicate the need to move beyond
short-term agile practices to consider structural

and technological changes in OSS markets, and
creating performance incentives.

cONcLUsION

This paper has responded to the need to expand our
understanding of economic and business aspects of
the OSS phenomenon (cf. Feller et al. 2006b) by
exploring the business model and agility aspects
of participation by open source companies in a
business network designed to deliver the ‘whole
product’ (cf. Fitzgerald, 2006). This participation
is seen by those studied as a business imperative
in order for small OSS firms to compete for large
‘deal sizes’ with traditional integrated companies.
In a study of 13 companies, Morgan and Finnegan
(2007) found that support from the open source
community was less important to them than sup-
port from a trusted third party. Network participa-
tion is, thus, an important factor when competing
for contracts with larger firms, and the ability of
the small firms to access experts from other firms
in the network can facilitate building trust and
loyalty aspect of the customer relationship.

The study also indicates that participation in the
network allows small firms to, in effect, outsource
some elements of their business model to the net-
work. This is particularly evident in the division
of responsibility for customer-facing activities
between participants and the central network. It
is this division of responsibility that results in the
network being able to engage in agile competitive
practices as network-level changes can be made
rapidly in response to changes in the external en-
vironment. Thus, the challenges that the network
faces in ensuring that the multitude of reciprocal
interdependencies necessary for the delivery of a
whole product do not adversely affect the agility
of the network. Nevertheless, it is clear that agile
practices are only the first step for the network in
competing in the software and consulting sector.
It is evident that further work is necessary to ad-
dress adaptability and alignment issues.

345

Beyond Open Source

The need for agility, adaptability and alignment
is a problem in all business networks. However,
Zea Partners is not typical of other business
networks, which rely on formal coordination
mechanisms and legal agreements. Rather we
observe that the relatively informal characteristics,
found in the Zea Partners network, reflects the
informal structures characteristic of the online
communities of OSS developers from which the
firms emerged. Reconciling these two approaches
to the coordination issue is a critical issue for
future research if OSS networks are to achieve
adaptive efficiency (cf. Alter and Hage, 1993) and
to deliver whole products in a ‘bazaar-friendly’
manner (Fitzgerald, 2006).

Overall, our study contributes to the under-
standing of the commercialisation of open source
software. Previous studies of commercial firms

have been dominated by studies of single firms,
whether OSS start-ups such as RedHat and JBoss
(e.g. Krishnamurthy, 2005; Watson et al, 2005)
or very large multi-nationals like Apple, IBM
and Sun (e.g. West, 2003). Our study examines
the perspective of small/micro firms engaged in
a cooperative business network in a manner that
takes a more complete consideration of the busi-
ness model concept than has been done to date
in the OSS domain. Nevertheless, the methodol-
ogy utilised for the study was exploratory, and
thus the findings need further investigation. This
study should be duplicated as part of the process
of validating its findings in a context that is not
just exploratory. In particular, further research
is needed to replicate the study by assessing the
results in a wider variety of networks.

Table 3. Key Challenges for Zea Partners

AGILITY

Objectives:
To respond to short-term changes in demand or supply
quickly and to handle external disruptions smoothly.

Key Challenges:
• Co-ordinate information flow amongst network participants to ‘smooth out
peaks and valleys’ associated with traditional work.
• Foster collaborative relationships with partners based on the need for particu-
lar competencies.
• Develop network level competencies (e.g. project management) to comple-
ment the core activities of participants.

ADAPTABILITY

Objectives:
To adjust the network’s design to meet structural shifts
in markets; to modify supply network to strategies,
products, and technologies.

Key Challenges:
• Leverage partner expertise in different geographical regions to understand
market for the total product.
• Plan for the introduction of new members into the network to meet require-
ments for particular competencies. Also, ensure an adequate evaluation of
potential members.
• Create an understanding of the needs of different types of customers (typi-
cally niche markets that traditional competitors don’t serve).
• To effectively manage the expertise of network partners to ensure that the
competencies of the network evolve in response to changes in the product
technologies that originate outside the network.

ALIGNMENT

Objectives:
To create incentives for better performance.

Key Challenges:
• To exchange information and knowledge freely amongst network partners.
• Manage partner responsibilities in delivering the whole product in a manner
that allows partners to focus on their core competencies.
• Effectively provide non-core competencies in a manner that participants can
confidently delegate important business model components to the network.
• Equitably share risks, costs, and gains of initiatives.
• Enable customers to understand the business value of engaging with and
contributing to the OSS community.

346

Beyond Open Source

AcKNOWLEDGMENt

The present work was funded by the European
Commission (via IST Project 004337) and by the
Irish Research Council for the Humanities and
Social Sciences (via the O3C Business Models
project).

rEFErENcEs

Agerfalk, P., Finnegan, P., Hayes, J., Lundell, B.,
& Ostling, M. (2006). 12 (not so) easy pieces:
Grand challenges for Open Source Software. Panel
Presentation at the 14th European Conference on
Information Systems, Gotenburg, Sweden, June.

Ågerfalk, P., & Fitzgerald, B. (2008). Outsourcing
to an Unknown Workforce: Exploring Opensourc-
ing as a Global Sourcing Strategy . MIS Quarterly,
32(2), 385–409.

Alter, C., & Hage, J. (1993). Organisations work-
ing together. London: Sage Publications.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987).
The case research strategy in studies of Informa-
tion Systems. MIS Quarterly, 11(3), 369–386.
doi:10.2307/248684

Bronder, C., & Pritzl, R. (1992). Developing
strategic alliances: A conceptual framework for
successful co-operation. European Management
Journal, 10(4), 412–421. doi:10.1016/0263-
2373(92)90005-O

Camarinha-Matos, L. M., Afsarmanesh, H., &
Rabelo, R. J. (2003). Infrastructure developments
for agile virtual enterprises. International Journal
of Computer Integrated Manufacturing, 16(4-5),
235–254. doi:10.1080/0951192031000089156

Campell, J. L., Hollingsworth, J. R., & Lind-
berg, L. N. (Eds.). (1991). The governance of
the American economy. New York: Cambridge
University Press.

Cash, J. I., & Konsynski, B. R. (1985). IS redraws
competitive boundaries. Harvard Business Re-
view, 63(2), 131–142.

Chesbrough, H. (2005). Open Innovation: A New
Paradigm for Understanding Industrial Innova-
tion. In H. Chesbrough, W. Vanhaverbeke, &
J. West (eds.), Open Innovation: Researching a
New Paradigm (pp. 1-14). Oxford, UK: Oxford
University Press.\

Chesbrough, H. (2006). Open Business Models:
How to Thrive in the New Innovation Landscape.
Boston: Harvard Business School Press.

Christ iaanse, E. (2005). Performance
benefits through integration hubs. Com-
munications of the ACM, 48(4), 95–100.
doi:10.1145/1053291.1053294

Christopher, M. (2000). The agile supply chain
– competing in volatile markets. Industrial Mar-
keting Management, 29(1), 37–44. doi:10.1016/
S0019-8501(99)00110-8

Clemons, E. K., & Row, M. C. (1992). Information
technology and industrial cooperation: The role of
changing transaction costs. Journal of Manage-
ment Information Systems, 9(2), 9–28.

Davidow, W. H., & Malone, M. S. (1992). The
virtual corporation. New York: HarperCollins.

Eisenhardt, K. M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532–550. doi:10.2307/258557

Evans, P., & Wurster, T. S. (2000). Blown to bits:
How the new economics of information transforms
strategy. Boston, MA: Harvard Business School
Press.

Feller, J., Finnegan, P., Fitzgerald, B., & Hayes, J.
(2008). From Peer Production to Productization:
A Study of Socially Enabled Business Exchanges
in Open Source Service Networks. Information
Systems Research, 19(4), 475–493. doi:10.1287/
isre.1080.0207

347

Beyond Open Source

Feller, J., Finnegan, P., Hayes, J., & Lundell, B.
(2006a, June 8-10). Business models for Open
Source Software: Towards a mature understanding
of the concept and its implications for practice.
Panel Presentation at the IFIP 2.13 Conference
on Open Source Software, Genoa Italy 8th-10th
June.

Feller, J., Finnegan, P., Kelly, D., & MacNamara,
M. (2006b, July 12-15). Developing Open Source
Software: A Community-based Analysis of Re-
search. In Proceedings of the IFIP 8.2 Working
Conference on Social Exclusion--Societal and
Organisational Implications for Information
Systems, Limerick, Ireland.

Fingar, P. (2000). Component-based frameworks
for e-commerce. Communications of the ACM,
43(10), 61–66. doi:10.1145/352183.352204

Finnegan, P., Galliers, R. D., & Powell, P.
(2003). Applying Triple Loop Learning to
planning electronic trading systems. Informa-
tion Technology & People, 16(4), 461–483.
doi:10.1108/09593840310509662

Fitzgerald, B. (2006). The transformation of
Open Source Software. MIS Quarterly, 30(3),
587–598.

Galaskiewicz, J. (1985). Interorganisational rela-
tions. Annual Review of Sociology, 11, 281–304.
doi:10.1146/annurev.so.11.080185.001433

Goldman, S. L., Nagel, R. N., & Preiss, K. (1995).
Agile competitors and virtual organisations:
Strategies for enriching the customer. New York:
Van Nostrand Reinhold.

Hecker, F. (2000). Setting up shop: The busi-
ness of Open-Source Software [Working paper].
Retrieved from http://www.hecker.org/writings/
setting-up-shop

Henderson, J. C. (1990). Plugging into strategic
partnerships: The critical IS connection. Sloan
Management Review, 30(3), 7–18.

Huang, C. (2001). Using Intelligent Agents
to Manage Fuzzy Business Processes. IEEE
Transactions on Systems, Man, and Cybernetics.
Part A, Systems and Humans, 31(6), 508–523.
doi:10.1109/3468.983409

Joynt, P. (1991). International dimensions of
managing technology. Journal of General Man-
agement, 16(3), 73–84.

Kanter, R. M. (1989). The future of bureaucracy
and hierarchy in organisational theory: A report
from the field. In P. Bourdieu & J. Coleman (Eds.),
Social Theory for a Changing Society. Boulder:
Westview.

Kaufman, F. (1966). Data systems that cross
company boundaries. Harvard Business Review,
44(1), 141–155.

Kirsch, L. J. (2004). Deploying common systems
globally: The dynamics of control. Information
Systems Research, 15(4), 375–395. doi:10.1287/
isre.1040.0036

Krishnamurthy, S. (2005). An analysis of open
source business models. In J. Feller, B. Fitzgerald,
S. Hissam, & K. Lakhani (Eds.), Perspectives on
free and open source software. Cambridge, MA:
MIT Press.

Lee, A. S., & Baskerville, R. L. (2003). General-
izing generalizability in Information Systems
research. Information Systems Research, 14(3),
221–243. doi:10.1287/isre.14.3.221.16560

Lee, H. (2004). The Triple-A Supply Chain. Har-
vard Business Review, 82(10), 102–112.

Lei, D., & Slocum, J. W. (1992). Global strategy,
competence-building and strategic alliances. Cali-
fornia Management Review, 35(1), 81–97.

Lo, W. K. (1998). Agility, job satisfaction and
organizational excellence: Their factors and re-
lationships. Third Proceedings of ISO 9000 and
Total Quality Management (pp. 330–336).

348

Beyond Open Source

Madill, A., Jordan, A., & Shirley, C. (2000).
Objectivity and reliability in qualitative analysis:
Realist, contextualist and radical constructionist
epistemologies. The British Journal of Psychology,
91(1), 1–20. doi:10.1348/000712600161646

Mahadevan, B. (2000). Business models for
Internet-based e-commerce: An anatomy. Cali-
fornia Management Review, 42(4), 55–69.

Marshall, C., & Rossman, B. G. (1989). Design-
ing Qualitative Research, Thousand Oaks, CA:
Sage Publications.

Moore, G. (1999). Crossing the Chasm. New
York: Harper-Perennial.

Morgan, L., & Finnegan, P. (2007). Benefits
and Drawbacks of Open Source Software: An
Exploratory Study of Secondary Software
Firms. In J. Feller, B. Fitzgerald, W. Scaachi, &
A. Sillitti (Eds.), IFIP International Federation
for Information Processing, Volume 234, Open
Source Development, Adoption and Innovation
(pp. 307-312). Boston, MA: Springer.

Nelson, R. E. (1988). Social network analysis as
intervention tool. Group and Organisation Stud-
ies, 13(1), 139–158.

Oliver, C. (1990). Determinants of interorganisa-
tional relationships: Integration and future direc-
tions. Academy of Management Review, 15(2),
241–265. doi:10.2307/258156

Osterwalder, A., Ben Lagha, S., & Pigneur, Y.
(2002, July 3–7). An ontology for developing e-
business models. In Proceedings of IFIP DSIAge
2002, Cork, Ireland.

Osterwalder, A., & Pigneur, Y. (2002, June 17–19).
An e-business model ontology for modelling
ebusiness. In Proceedings of the 15th Bled eCom-
merce Conference, Bled, Slovenia.

Patton, M. Q. (1980). Qualitative evaluation
and research methods. Newbury Park, CA: Sage
Publications.

Raymond, E. S. (2001). The Cathedral and the
Bazaar (2nd Ed.). Sebastopol, CA: O’Reilly.

Sadeh, N. M., Hildum, D. W., & Kjenstad, D.
(2003). Agent-based e-supply chain decision
support. Journal of Organizational Computing
and Electronic Commerce, 13(3-4), 225–241.
doi:10.1207/S15327744JOCE133&4_05

Sharifi, H., & Zhang, Z. (1999). A methodology for
achieving agility in manufacturing organisations:
An introduction. International Journal of Pro-
duction Economics, 62(1-2), 7–22. doi:10.1016/
S0925-5273(98)00217-5

Spiller, D., & Wichmann, T. (2002). Basics of
Open Source Software markets and business
models. FLOSS Final Report - Part 3. Berlin:
Berlecon Research.

Stabell, C. B., & Fjeldstad, O. D. (1998). Con-
figuring value for competitive advantage: On
chains, shops, and networks. Strategic Manage-
ment Journal, 19(5), 413–437. doi:10.1002/
(SICI)1097-0266(199805)19:5<413::AID-
SMJ946>3.0.CO;2-C

Stafford, T. (2002). Trust, transactions, and re-
lational exchange: Virtual integration and agile
supply chain management. In Proceedings of the
8th Americas Conference on Information Systems
(AMCIS 02).

Tapscott, D., Ticoll, D., & Lowy, A. (2000).
Digital capital: Harnessing the power of busi-
ness webs. Cambridge, MA: Harvard Business
School Press.

Thomke, E., & Reinertsen, D. G. (1998). Agile
product development: Managing development
flexibility in uncertain environments. California
Management Review, 41(1), 8–30.

349

Beyond Open Source

Ticoll, D., Lowy, A., & Kalakota, R. (1998).
Joined at the bit: The emergence of the e-business
community. In Tapscott, D. (Ed.) Blueprint to the
digital economy: Creating wealth in the era of
e-business, New York: McGraw-Hill.

Timmers, P. (1999). Electronic Commerce: Strate-
gies and models for business-to-business trading,
Chichester: Wiley.

Van de Ven, A. H. (1976). On the nature, formation
and maintenance of relations among organisations.
Academy of Management Review, 1(4), 24–36.
doi:10.2307/257722

Watson, R. T., Boudreau, M., York, P. T., Greiner,
M. E., & Wynn, D. (2008). The Business of Open
Source. Communications of the ACM, 51(4),
41–46. doi:10.1145/1330311.1330321

Watson, R. T., Wynn, D., & Boudreau, M. (2005).
Jboss: The evolution of Professional Open
Source Software. MIS Quarterly Executive, 4(3),
329–341.

Weber, S. (2004). The success of open source,
Cambridge, MA: Harvard University Press.

West, J. (2003). How open is open enough?
Melding proprietary and open source platform
strategies. Research Policy, 32(7), 1259–1285.
doi:10.1016/S0048-7333(03)00052-0

West, J., Vanhaverbeke, W., & Chesbrough, H.
(2006). Open Innovation: A Research Agenda.
In H. Chesbrough, W. Vanhaverbeke, & J. West
(eds.), Open Innovation: Researching a New
Paradigm (pp. 285-307). Oxford, UK: Oxford
University Press.

Woods, D., & Guliani, G. (2005). Open source
for the enterprise. Sebastopol, CA: O’Reilly
Media.

Yin, R. K. (1994). Case study research, design and
methods. Newbury Park: Sage Publications.

ENDNOtE

1 Raymond (2001) first articulated the much
cited contrast between the hierarchical
cathedral model characterising proprietary
software and the distributed model of the
open source bazaar.

350

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 17

The Application-Based
Domain Modeling Approach:

Principles and Evaluation

Iris Reinhartz-Berger
University of Haifa, Israel

Arnon Sturm
Ben-Gurion University of the Negev, Israel

INtrODUctION

Domain Engineering enables identifying, model-
ing, constructing, cataloging, and disseminating
the commonalities and differences of applications

in a domain (Prieto-Diaz, 1990; Champeaux, 1993;
Nakatani et al. 1999; Czarnecki & Eisenecker, 2000).
A domain in this context is an area of knowledge
which uses common concepts that are accepted by
practitioners in that area. Similarly, software product
line engineering provides aids for specifying sets
of software-intensive systems that share common,

AbstrAct

Domain analysis provides guidelines and validation aids for specifying families of applications and
capturing their terminology. Thus, domain analysis can be considered as an important type of reuse,
validation, and knowledge representation. Metamodeling techniques, feature-oriented approaches, and
architectural-based methods are used for analyzing domains and creating application artifacts in these
domains. These works mainly focus on representing the domain knowledge and creating applications.
However, they provide insufficient guidelines (if any) for creating complete application artifacts that
satisfy the application requirements on one hand and the domain rules and constraints on the other
hand. This chapter claims that domain artifacts may assist in creating complete and valid application
artifacts and presents a general approach, called Application-based DOmain Modeling (ADOM), for this
purpose. ADOM enables specifying domains and applications similarly, (re)using domain knowledge in
applications, and validating applications against the relevant domain models and artifacts. The authors
demonstrate the approach, which is supported by a CASE tool, on the standard modeling language,
UML, and report experimental results which advocate that the availability of domain models may help
achieve more complete application models without reducing the comprehension of these models.

DOI: 10.4018/978-1-60566-904-5.ch017

351

The Application-Based Domain Modeling Approach

managed sets of features satisfying the specific
needs of particular market segments or missions
(Pohl et al., 2005; SEI-CMU, 2008). In this dis-
cipline, the term ‘software product line’ replaces
‘domain’. Domain engineering and software
product line methods receive special attention
from communities which deal with reuse, valida-
tion, and knowledge representation (Meekel et al.,
1997; Addy, 1998; SEI-CMU, 2008). Important
reasons for this tendency might be the increasing
variability of information and software systems,
the need to acquire expertise in different, evolving
domains, and the requirements to develop “simi-
lar” artifacts taking into consideration business
drivers, such as time-to-market, cost, productivity,
and quality.

A core activity in domain engineering and soft-
ware product line engineering is domain analysis,
which identifies a domain and captures its ontology
(Valerio et al., 1997). It should specify the basic
elements of the domain, organize an understand-
ing of the relationships among these elements,
and represent this understanding in a useful way
(Czarnecki & Eisenecker, 2000). Departing from
“regular” reuse techniques, domain analysis
methods are expected to provide some kind of
support to specification of variability within the
domain and not just to the commonality. Several
methods and architectures have been developed
to support domain analysis through modeling.
However, these mainly focus on the specification
and representation of the domain knowledge and
lack in guiding and validating the reuse of domain
knowledge in particular application models.

In this chapter, we present the Application-
based DOmain Modeling (ADOM) approach
which provides aids for capturing and representing
domain knowledge, creating application artifacts
from them, and validating these artifacts according
to the domain knowledge. ADOM’s framework
consists of three layers: language, domain, and
application. The language layer includes meta-
models of modeling languages (or methods),
such as UML. In the domain layer, the domain

elements, structure, and behavior are modeled
using a modeling language that is defined in the
language layer. Finally, in the application layer,
the designated applications are modeled using
the knowledge and constraints presented in the
domain layer and the modeling constructs speci-
fied in the language layer.

ADOM supports different inter-layer activi-
ties, and in particular domain layer artifacts may
be used for creation and validation of applica-
tion layer artifacts, while applications may be
generalized into domain artifacts in a process of
knowledge elicitation. Furthermore, ADOM can
be used with different modeling languages for
performing various modeling tasks (e.g., business
modeling, requirements analysis, and design).
However, when adopting ADOM to a specific
modeling language, this language is used in both
application and domain layers, easing the inter-
layer activities. Here we use the standard model-
ing language, UML, for demonstrating ADOM’s
principles and capabilities in both application and
domain layers. This dialect of ADOM is called
ADOM-UML.

The rest of the chapter is organized as follows.
The next section reviews related work in the area
of domain analysis. Following, ADOM-UML is
presented, describing the domain layer and its
provided guidelines, the application layer, and the
validation mechanism between these layers. This
section also includes an overview of the CASE
tool used for ADOM-UML. Next, experimental
results regarding the usefulness of ADOM-UML
in terms of application model correctness and
completeness are reported. Finally, conclusions
and future research plans are outlined.

LItErAtUrE rEVIEW

Domain analysis deals with identifying stakehold-
ers and their objectives in a domain, defining
selection criteria, identifying boundary conditions,
examples, and counter examples, characterizing

352

The Application-Based Domain Modeling Approach

main common features and variants of the domain,
determining relations to other domains, dividing
the domain into sub-domains, acquiring domain in-
formation from experts, legacy systems, literature,
and prototyping, describing domain terminology,
and building overall domain models.

Three main groups of domain analysis meth-
ods are architectural-based, feature-oriented, and
metamodeling. Architectural-based methods (e.g.,
Neighbors, 1989; Meekel et al., 1997) define the
domain knowledge in components, libraries, or
architectures, which may be reused in an applica-
tion as they are, but can be also modified to support
the particular requirements at hand. They usually
do not provide the designer with guidelines to
support a specific application design; rather they
allow selecting the relevant elements required by
the designated application, while adaptation and
assembly of these elements are usually out of the
method scope. Furthermore, these methods do not
support validation of specific applications accord-
ing to the domain constraints and rules.

Feature-oriented methods (e.g., Gomaa &
Kerschberg, 1995; Kang et al., 1990; Kang et
al., 1998; Gomaa, 2004) suggest that a system
specification will be derived by tailoring the do-
main model according to the features desired in
a specific system. That is, a specific system uses
the reusable architecture and instantiates a sub-
set of features from the domain model. Deursen
& Klint (2002) suggest a formal textual notation
for feature diagrams, which can be used as a basis
for tool development and as mediation between
the options provided by software applications and
the user requirements. They further show how
feature diagrams can be directly mapped to UML
class diagrams and consequently be generated to
Java code. These methods usually guide the ap-
plication designer of how to select the required
features, while validation is supported by check-
ing whether the feature constraints defined in the
domain model hold in the specific application.
The main limitation of these methods is that they
only partially support adding application-specific

features, through closed variation points, affect-
ing the completeness of the created application
models.

Metamodeling techniques (e.g., Schleicher
& Westfechtel, 2001; Gomaa and Eonsuk-Shin,
2002; Nordstrom et al., 1999) enable definition
of domains as metamodels that serve both for
capturing domain knowledge and validating
particular applications in the domain. Follow-
ing these techniques the domain and application
models are described in two abstraction levels
and support only closed variability, i.e., choosing
from predefined sets of variants determined at the
domain level. The UML-based language for speci-
fying domain-specific patterns (France, 2004;
Kim & Shen, 2008), which can be considered as
a metamodeling approach, modifies UML meta-
model in order to express the domain variability
in terms of element multiplicity. When specifying
a particular application, stereotypes are used for
connecting the application elements to the relevant
domain (pattern) elements. Kim (2007) suggests a
conformance mechanism which validates applica-
tion models against the relevant domain models.
However, this mechanism does not include special
treatments for application-specific additions. For
example, if a direct association in the structural
domain model (termed Static Pattern Specifica-
tion, SPS) is replaced by indirect associations
through an additional application-specific class
in the class diagram, the conformance mechanism
will result with the conclusion that the class dia-
gram does not conform to the SPS, limiting the
possible variants of a SPS.

To summarize, the main lack of current do-
main analysis methods is their partial support for
inter-layer activities, namely guiding the creation
of complete and valid applications from domain
models and validating application models against
the relevant domain rules and constraints. The
Application-based DOmain Modeling (ADOM)
aims at filling this lack.

353

The Application-Based Domain Modeling Approach

tHE APPLIcAtION-bAsED DOMAIN
MODELING (ADOM) APPrOAcH

The Application-based DOmain Modeling
(ADOM) approach is based on a three layered
framework, which is embedded within the clas-
sical framework for metamodeling presented in
OMG-MOF (2003). The application layer, which
is the lowest layer, consists of models of particular
applications, including their structure (scheme)
and behavior. The language layer, which is upper-
most layer, includes metamodels of modeling
languages. Finally, the intermediate domain layer
consists of specifications of various domains,
such as web applications, multi agent systems,
and process control systems. The application and
domain layers are included within the model layer
(M1) of the classical framework for metamodel-
ing, while the language layer consolidates with
the metamodel layer (M2) of this framework. As
noted, in ADOM-UML the language used in both
application and domain layers is UML.

A domain model in ADOM-UML captures
generic knowledge (know-how), in terms of
common elements and the allowed variability
among them. In particular, the UML stereotypes
mechanism is used in the domain layer in order
to denote multiplicity-related variability. Each
element in the domain layer is associated with a
multiplicity indicator (stereotype), which specifies
a range for the number of variants of the specific

domain element that may or should be included in
an application model in that domain. This is done
using two tagged values with this stereotype: min
and max. The most commonly used multiplicity
indicators are mandatory many, mandatory single,
optional many, and optional single, whose mean-
ings are summarized in Table 1. Note that other
multiplicity indicators can be specified using the
general <<multiplicity>> stereotype with its as-
sociated min and max tagged values.

An application model can be constructed on
the basis of the knowledge captured in the domain
model. In this case, we refer to the application
model as an instantiation of the domain model.
Instantiation can be mainly achieved by configu-
ration or specialization operations, performed at
design time (when the application model is cre-
ated). Configuration is the selection of a subset
of existing elements from a domain model for the
purpose of specifying a lawful specific application
model. Specialization, on the other hand, is the
result of concretization of a domain model ele-
ment into a specific application model element.
The generic (domain) elements can be specialized
through operations of refinement, sub-typing, and
contextual adoption, so that one generic element
may be specialized into more than one element
(variant) in the specific application model (Soffer
et al., 2007). The relations between a generic ele-
ment and its instantiations are maintained by UML
stereotypes. In addition, some generic elements

Table 1. Defined multiplicity indicators (stereotypes) in ADOM-UML

Abbreviated notation Full notation Meaning

<<optional many>> <<multiplicity min = 0 max = *>> The element may appear any number (including 0) of times
in any application model of that domain

<<optional single>> <<multiplicity min = 0 max = 1>> The element should appear at most once in any application
model of that domain

<<mandatory many>> <<multiplicity min = 1 max = *>> The element must appear at least once in any application
model of that domain

<<mandatory single>> <<multiplicity min = 1 max = 1>> The element must appear exactly once in any application
model of that domain

<<multiplicity min = n max = m>> The element must appear between n to m times in any ap-
plication model of that domain

354

The Application-Based Domain Modeling Approach

may be omitted and some new specific elements
may be inserted to the specific (application) model.
Nevertheless, the domain knowledge embedded
in the generic model must be maintained in the
specific one.

the Domain Layer in ADOM-UML

As noted, models within the domain layer capture
the commonality and variability within the domain.
This is done by attaching a multiplicity indica-
tor to each element specifying the minimal and
maximal number of instantiations of that element
in a specific application model. As an example,
consider a domain of process control systems
(PCS). Applications in this domain monitor and
control the values of certain variables through a
set of components that work together to achieve
a common objective or purpose (Duffy, 2004).
Application areas within this domain include
engineering and industrial control systems, con-
trol systems in the human body, and financial
derivation-tracking products.

During the functional requirements analysis of
applications in this domain, operators, controlled
devices, and sensors are identified as mandatory
actors. However, a particular application in the
domain may have more than one type of operators,
controlled devices, and sensors. Similarly, System

Activation, Monitoring & Acting, and Checking
are recognized as mandatory use cases that may
be instantiated more than once in a particular ap-
plication in the domain, while System Settings is
an optional use case. Figure 1 depicts these ele-
ments, as well as the relationships between them,
in a use case diagram.

The domain class diagram, presented in Fig-
ure 2, defines the terminology in the domain.
According to this model, all applications in the
domain should define their sensors, controlled
elements and values, and controlled devices. In
particular, each application in the PCS domain
should have exactly one controller, which exhibits
at least one operation for monitoring and acting.
A PCS application should also have at least one
controlled element, each of which exhibits at least
one attribute specifying its identity, zero or more
enumerated attributes specifying its statuses, at
least one Boolean operation checking certain
conditions, and at least one operation for monitor-
ing and activating the controlled element at hand.
A controller may be connected to zero or more
types of controlled elements, while a controlled
element must be connected to at least one type
of controller.

The behavior of applications in this domain
is manifested in two ways: the sequence diagram
depicted in Figure 3 specifies a typical scenario

Figure 1. The PCS domain model in ADOM-UML: A use case diagram

355

The Application-Based Domain Modeling Approach

of monitoring the controlled values and activat-
ing the controlled devices accordingly1, while the
state diagram in Figure 4 describes the changes
in the status of a controlled device over the time.
In a typical monitoring and acting scenario, for
example, a controller object may appear or not.
If it appears, it may activate the monitoring and
acting operation of its controlled elements, which
in turn sample their controlled values and sensors
and activate the relevant controlled devices, if
required. A controlled device has a single state
presenting that it is off, while several states may
represent its activation (“on”).

Domain Models Guidance
in ADOM-UML

As explained and demonstrated previously, do-
main models capture the domain knowledge and
specify a variety of rules and constraints that should
be enforced on all applications in the domain.
A special and important type of rules that does

not depend on the used modeling language and
its semantics is multiplicity-related variability.
Domain models enable specifying mandatory
and optional elements: mandatory elements must
be instantiated in any application in the domain,
while optional ones most likely appear in ap-
plications in the domain, but may not appear in
particular applications in that domain. ADOM
also distinguishes between domain elements that
may be instantiated several times in the same
application in the domain (“many”) and domain
elements that may be instantiated at most once in
a particular application (“single”). Furthermore,
ADOM defines three types of elements: relational,
dependent, and first order. A relational element
explicitly connects other elements (e.g., associa-
tions and messages), while a dependent element
relies on other elements such that the omission of
these elements from the model implies the omis-
sion of the dependent element (e.g., attributes and
operations). First order elements are elements
which are not dependent neither relational. The

Figure 2. The PCS domain model in ADOM-UML: a class diagram

356

The Application-Based Domain Modeling Approach

meanings of the multiplicity indicators are slightly
different for the three defined elements types.
The multiplicity indicator of a first order element
specifies the range of times this domain element
can be instantiated in any application model of
that domain, while a multiplicity indicator of a
relational element specifies the range of times
this domain element can be instantiated in any
application model of that domain giving that its
connected elements have been instantiated.
Finally, a multiplicity indicator of a dependent
element specifies the range of times this domain

element can be instantiated in any application
model of that domain giving that its dependees
have been instantiated.

Examples of rules that can be specified for the
process control systems (PCS) domain, guiding
the creation of application models in this domain,
are given below.

Rule 1 (from the use case diagram): An applica-
tion in the PCS domain interacts with three
types of actors, Operator, Sensor, and
Controlled Device, each of which must be

Figure 3. The PCS domain model in ADOM-UML: a sequence diagram of monitoring & acting

Figure 4. The PCS domain model in ADOM-UML: a state diagram of a controlled device

357

The Application-Based Domain Modeling Approach

instantiated at least once in any application
in this domain.

Rule 2 (from the use case diagram): Each ap-
plication in the domain has at least one use
case in the following categories: System
Activation, Monitoring & Acting, and
Checking.

Rule 3 (from the class diagram): Each ap-
plication in the domain has exactly one
class classified as Controller and at least
one class in each of the following catego-
ries: SensorInfo, ControlledDeviceInfo,
ControlledElement, and Controlled
Value. Furthermore, the domain model
provides additional knowledge on the
structure of each concept, including its
attributes, operations, and relations to
other concepts. Each ControlledElement
class, for example, has at least one at-
tribute classified as controlledElemen-
tIdentity, at least one operation classi-
fied as monitorAndAct, and at least one

operation classified as checkCondition
(each of which returns a Boolean value).
In addition, ControlledElement may
have enumerated attributes classified as
controlledElementStatus.

Rule 4 (from the sequence diagram): Each ap-
plication in the domain deals with monitor-
ing and acting in the following way. The
Controller activates a monitorAndAct
operation on the ControlledElements.
This operation acts in two stages: in the
first stage the condition is checked, while
in the second stage the action takes place.
The activation part of the sequence is em-
bedded within the condition checking part
and each one of them can appear several
times.

Rule 5 (from the state diagram): Each
ControlledDevice has exactly one “off”
state and at least one “on” state. The tran-
sition between “off” and “on” states is
done by an action, while no additional

Figure 5. The HCC application model in ADOM-UML: a use case diagram

358

The Application-Based Domain Modeling Approach

information is provided in the domain lev-
el about the transitions between “on” and
“off” states.

the Application Layer in ADOM-UML

An application model, specified in the application
layer of ADOM, aims at satisfying the (particu-
lar) requirements at hand, while not violating the
domain constraints. For this purpose, elements in
an application model can be classified according
to domain elements specified in the domain layer.
In ADOM-UML this is done using the stereo-
types mechanism. Each element, be it relational,
dependent, or first order, can be stereotyped by a
domain counterpart of the same meta-class. Dif-
ferently from profiles, in which stereotypes are
specified as classes and associated to meta-classes
from the language (metamodel) layer, stereotypes
in ADOM-UML are directly specified using the
relevant meta-classes. For example, stereotypes
that can be used for actors, use cases, classes, at-
tributes, operations, associations, messages, and
states will be respectively specified in the domain
layer as actors, use cases, classes, attributes,
operations, associations, messages, and states.
The purpose of this decision is to ease the task of
creating application specifications from domain
models, since the same modeling constructs are
applied in both application and domain layers.
However, as is explained and demonstrated
next, relational and dependent elements can use
stereotypes from their relevant context (i.e., their
connected elements and dependees, respectively).
An application element is required to preserve
the constraints of its stereotypes in the relevant
domain model.

Returning to the PCS example, the variety
of applications in this domain is quite large. Ap-
plications in the domain defer in the number of
the controlled elements, the numbers and types
of controlled values and sensors, whether the
system is configurable, how the system monitors

controlled values and acts, etc. In this section,
two applications in the domain are specified: a
Home Climate Control (HCC) application and a
Water Level Control (WLC) system. The HCC
application ensures that the temperature in the
rooms of a house remains in the closed range [TL,
TH] and the humidity in these rooms remains in
the closed range [HL, HH]. Each room has its
own limit values (TL, TH, HH, and HL) which
are configurable. The actual levels of temperature
and humidity are measured by thermometers and
humidity gauges, respectively. An air conditioner
and a water sprayer are installed in each room,
enabling changing the temperature and humidity
at will. The ADOM-UML model of the HCC ap-
plication appears in Figures 5, 6, 7, 8, and 9. Note
that these diagrams include application-specific
elements that are not stereotyped according to
the domain, e.g., the size attribute of Room and
the service company attribute of Air Conditioner.
Furthermore, relationships (associations) are not
always stereotyped even if they originate from
the domain model (e.g., when the domain rela-
tionship name is not explicitly specified). Thus,
the association of an application relationship to
its domain counterpart is done through its ste-
reotype (if exists) and context, i.e. the elements
which it connects. Pay attention that the objects
and procedure calls in the sequence diagram are
not explicitly stereotyped, since their stereotypes
can be concluded from the class diagram. As
explained latter, application-specific elements
can be added as long as they do not violate the
domain constraints.

The purpose of the WLC application is to moni-
tor and control the water levels in tanks, ensuring
that the actual water level is always in the closed
range [Lowest Limit, Highest Limit]. The values
of the lowest and highest limits are configurable.
The actual level is measured by a boundary stick.
The tanks are also coupled to emptying faucets
that drain water from the tank and to filling faucets
that inject water into the tank. The ADOM-UML

359

The Application-Based Domain Modeling Approach

model of the WLC application is presented in
Figures 10, 11, 12, and 13.

Although different, both applications use the
knowledge captured in the PCS domain model
and preserve its constraints. In particular, they
both maintain the five rules exemplified before.
Note that these rules may not explicitly appear
in the requirement specification of a particular
application, as they may be common property of
the domain.

Validating Application
Models against Domain
Models in ADOM-UML

To check the validity of application models in
a domain, an automatic validation procedure is
taken. This procedure refers to the adherence of
the application model to the domain model. It
does not refer to the verification of the specific

application requirements in the application model.
In other words, the validation capability of ADOM
checks the fulfillment of the domain constraints
and rules in the application model. The inputs
of this procedure are an application model and a
domain model. The application model could be
developed using the domain model or without
it. In the latter case, preprocessing is required,
in which the application elements are classified
according to the domain elements.

The validation in ADOM is performed in three
phases: element reduction, element unification,
and model matching.

Element Reduction

In this step, application-specific elements are omit-
ted from the application model. These elements
are recognized using the classification (stereo-
types) mechanism and the context within which

Figure 6. The HCC application model in ADOM-UML: a class diagram

360

The Application-Based Domain Modeling Approach

Figure 7. The HCC application model in ADOM-UML: a sequence diagram of heating/cooling

361

The Application-Based Domain Modeling Approach

Figure 8. The HCC application model in ADOM-UML: a state diagram of a water sprayer

Figure 9. The HCC application model in ADOM-UML: a state diagram of an air-conditioner

Figure 10. The WLC application model in ADOM-UML: a use case diagram

362

The Application-Based Domain Modeling Approach

particular elements participate (for relational and
dependent elements). As a consequence, compen-
sating operations may be required for percolat-
ing the omission to the remaining model. If, for
example, the application model includes three
classes, A, B, and C, which are connected with
two bi-directional associations A-B and B-C, and
B is determined as application-specific, then the
omission of B from the model will require adding
a bi-directional association between A and C in
order to specify that in the original (application)
model there were navigational paths from A to C
and vice versa. The resultant model, after making
these changes to the application model, is termed
a reduced model.

Element Unification

In this step, elements that have the same clas-
sification (stereotype) in the reduced model are
unified, leaving only one element for each cat-
egory. Stereotypes, called actual multiplicity, are
associated to these elements in order to denote the
number of elements that are classified the same in
the reduced model. Similarly to the multiplicity
indicators in domain models, actual multiplicity
stereotypes have two values, minimum and maxi-
mum, which respectively specify the minimal and
maximal application elements that are classified
as the corresponding domain element in the par-
ticular application. Finally, the resultant model,
termed the verifiable model, can be matched to
the domain model. The verifiable model of the
HCC application appears in Figure 14, whereas the
verifiable model of the WLC application appears

Figure 11. The WLC application model in ADOM-UML: a class diagram

363

The Application-Based Domain Modeling Approach

in Figure 15. For clarity purposes, we reduced the
notation <<ActualMultiplicity min=m max=n> to
<m..n> in these figures.

Note that for first order elements the minimal
and maximal tagged values of the actual multiplic-
ity are equal. However, these tagged values may
be different for dependent and relational elements.

The actual multiplicity of dependent elements
is calculated over all the dependees of the same
type, whereas the actual multiplicity of relational
elements is calculated over all their connected
elements. The actual multiplicity of the action
operation of Controlled Device Info in the HCC
verifiable model, for example, is 1..5, since both

Figure 12. The WLC application model in ADOM-UML: a sequence diagram of filling/stop filling

364

The Application-Based Domain Modeling Approach

Figure 13. The WLC application model in ADOM-UML: a state diagram of a faucet

Figure 14. The verifiable model of the HCC application: (a) the use case diagram, (b) the class diagram,
(c) the state diagram, and (d) the sequence diagram

365

The Application-Based Domain Modeling Approach

Air-conditioner and Water Sprayer are classified
as controlled devices in the HCC application
and the Air-conditioner has 5 action operations
(heat, cool, pause, resume, stop), while the Water

Sprayer has only one (spray). Thus, action appears
between 1 to 5 times in a controlled device ele-
ment. The actual multiplicity of all the messages
in the sequence diagrams in both applications is

Figure 15. The verifiable model of the WLC application: (a) the use case diagram, (b) the class diagram,
(c) the state diagram, and (d) the sequence diagram

366

The Application-Based Domain Modeling Approach

1..1, since each message appears exactly once in
its owning frame (although each sequence diagram
contains two frames of each type).

Model Matching

This step matches the verifiable model with the
domain model, where matching models satisfy
the following conditions:

1. All the classified elements in the verifiable
model are termed as elements of the same
meta-classes from the domain model. All
the non-classified elements in the verifi-
able model have counterparts of the same
meta-classes in the domain model. These
counterparts have no names in the domain
model (e.g., associations).

2. For each element in the verifiable model, the
values of the actual multiplicity are within
the boundaries of the multiplicity indicator of
the relevant element in the domain model.

3. Each element in the domain model that does
not appear in the verifiable model is optional
(i.e., has minimal multiplicity in the domain
model of 0).

supporting ADOM-UML
with a cAsE tool

Creating domain and application models in
ADOM is not a trivial task. Thus, we developed
a tool which supports guiding and validating the
creation of valid application models in ADOM-
UML. This tool plugs into an existing UML
tool, called TOPCASED (2008). TOPCASED
promotes model-driven engineering and formal
methods as key technologies. It uses the eclipse
modeling framework (Eclipse Foundation, 2008)
for manipulating the modeling tool and models.
We mainly chose this CASE tool since it is open
source and enabled us adding the following
ADOM-related functionality: domain model

creation, application model guiding, and applica-
tion model validation2. At its current stage, this
ADOM-related functionality is supported only in
UML class and activity diagrams.

Domain Model Creation

The creation of domain models is supported by
defining an ADOM-UML profile that includes
the different multiplicity stereotypes with their
associated tagged values. These stereotypes are
assigned to the top level Element class in the UML
metamodel, allowing specification the commonal-
ity and variability of all domain elements.

Application Model Guiding

When creating a new modeling project, the mod-
eler requests the tool to semi-automatically create
an application model from the selected domain
model. A profile based on the selected domain
model is created, including the different domain
model elements, each of which attached to the
relevant element types. Domain elements that are
described by classes, for examples, are translated
to stereotypes which are attached to the Class
meta-class. The modeler can use this profile when
developing the application model. The tool adds to
the current application model one instantiation for
each mandatory first order domain element. For
each such instantiated element, all its mandatory
dependent elements are instantiated (once each).
After creating the initial application model, the
modeler can continue developing the application
model by adding, removing, and updating various
model elements, as well as assigning the proper
domain classifiers (stereotypes) to them.

Application Model Validation

At any moment in the application development
process, the modeler can choose to activate this
option, which executes the three-step algorithm
specified in the previous section, and results with

367

The Application-Based Domain Modeling Approach

a report of errors that refer to violation of domain
model constraints. Figure 16 is a screenshot from
the tool, showing an error report resulted when
validating an erroneous HCC application model
against the PCS domain model. “-1” represents
infinity in this report.

EXPErIMENtING WItH ADOM-UML

In this section we report about our experience
regarding the usefulness of the ADOM approach
in general and ADOM-UML in particular for
creating correct and complete application mod-
els. According to Major and McGregor (1999),
correctness is measured as how accurately the
model represents the information specified within
the requirements. For defining the correctness of
a model, a source that is assumed to be (nearly)
infallible is identified. This source, termed a
“test oracle”, is usually a human expert whose

personal knowledge is judged to be sufficiently
reliable to be used as a reference. The accuracy
of the model representation is measured relatively
to the results expected by the oracle. Complete-
ness, on the other hand, deals with the necessity
and usefulness of the model to represent the real
life application, as well as the lack of required
elements within the model (Major & McGregor,
1999). In other words, completeness is judged
as to whether the information being modeled is
described in sufficient details for the established
goals. This judgment is based on the model’s abil-
ity to represent the required situations, as well as
on the knowledge of experts.

In order to check whether domain analysis
with ADOM-UML may contribute to develop-
ment of more complete and correct applications,
we conducted an experiment, whose hypotheses,
settings, and results are detailed next.

Figure 16. An error report resulted when validation an erroneous HCC application model against the
PCS domain model

368

The Application-Based Domain Modeling Approach

Experiment Hypotheses

In the experiment we aimed at checking the fol-
lowing three hypotheses.

Hypothesis #1: Application models are more
completely developed when a domain
model is available. This hypothesis is
derived from the observation that domain
models may include relevant elements and
constraints that do not explicitly appear in
the requirements of each application in the
domain. Furthermore, “best practices” can
be incorporated into the domain models
as optional elements (i.e., elements whose
minimal multiplicity is 0), helping the de-
signer not to miss information.

Hypothesis #2: Application models are more
correctly developed when a domain
model is available. Here, again, wrong in-
terpretation of requirements may be avoid-
ed by the domain artifacts and knowledge.

Hypothesis #3: The comprehension of appli-
cation models remains unchanged when
the relevant domain model and elements
are added. The reason for this hypothesis
originates from the observation that do-
main and application models belong to two
different abstraction levels. When answer-
ing concrete questions about the applica-
tions, the more abstract domain elements
might generalize the needed information,
blurring the sought answer. However, the
existence of these domain elements may
help answer questions which relate to gen-
eralized application information.

Experiment settings

The subjects of the experiment were third year
students in a four-year engineering B.Sc. program
at Ben-Gurion University of the Negev, Israel,
who took the course “Object-Oriented Analysis
and Design” at the winter semester of the 2004-

5 academic year. All of them were students of
the Information Systems Engineering program
and had no previous knowledge or experience in
system modeling and specification. During the
course, the students studied mainly UML and its
applicability to software analysis and design, while
the last lecture was devoted to ADOM.

The experiment took place during the final
three-hour examination of the course. The ex-
amination contained two tasks, one of which
was related to the reported experiment. In this
task the students were asked to respond to nine
true/false comprehension questions about the
HCC application and to build a model of a WLC
application. The students were told that both ap-
plications belong to the same PCS domain. The
comprehension questions are listed along with
their expected answers in the appendix, which
also includes the modeling question that refers
to the WLC application. An acceptable model to
this application is given in Figures 10-13.

The students were divided arbitrarily into two
groups of 34 and 36 students. Each group got a dif-
ferent test form type, ADOM-UML and “regular”
UML, respectively. The “regular” UML test form
included a UML model of the HCC application,
as given in Figures 5-9 without the stereotypes.
The ADOM-UML test form included the PCS
domain model and the HCC application model
as given in Figures 1-4 and 5-9, respectively.
The students were provided with alternating
form types according to their seating positions, so
this arbitrary division into the two experimental
groups closely approximated random division.
Executing a t-test on the average grades of the
students in their studies, we indeed found that
no significant difference exists between the two
groups (t = 0.32, p ~ 0.75).

In order to validate the correctness and com-
pleteness of the models that participate in the
experiment, as well as to check that the compre-
hension questions can be accurately answered and
the WLC application can be accurately modeled
in both form types, four UML design experts

369

The Application-Based Domain Modeling Approach

examined them carefully. Only after reaching an
agreement on all the aforementioned issues, the
experiment was conducted.

We also addressed ethical concerns that may
rise using the author’s students as participants
(Singer & Vinson, 2002). In particular, the students
were notified at the beginning of the semester
about the exam being used as an experiment; the
students had the opportunity of getting a grade in
the course without participating in the experiment
(by taking term B of the exam); the grades of the
two test forms were normalized; and confidenti-
ality was kept throughout the entire data grading
and analysis processes, so no identification of the
subjects can be done.

Experiment results

The comprehension and modeling questions were
checked according to a pre-defined detailed grad-
ing policy, which included potential errors along
with the number of points that should be reduced
for each error. Each comprehension question
could score a maximum of 2 points (18 points in
total), while the modeling question could score
as much as 32 points. Incomplete answers, or
incorrect answers, scored less according to the
detailed grading policy.

Table 2 summarizes the average scores of the
comprehension, modeling, and overall grades. A
t-test, which was used to analyze these results,
showed that although the average comprehen-
sion score of the ADOM-UML group was higher
than that of the “regular” UML group, it was not
found as statistically significant (p<0.094). This

outcome can be considered as in-line with our third
hypothesis, as we claimed that domain models
sometimes help find generalized answers (i.e.,
answers that are relevant to several applications
in the domain or to several instantiations of the
same domain element) and sometimes blur the
sought answers (for questions that are individual
to the specific application). Since the questions
in the experiment belong to both categories, no
significant differences were found.

However, the statistical analysis shows that
the availability of the domain model was very
important for modeling a new application in the
domain. This is especially true, since the students
that participated in the experiment were non-
experts (in the domain, the modeling language,
and the development task).

In order to carry out an in-depth analysis of the
domain model influence on both correctness and
completeness of application models, we further
checked the average amount of points reduced
due to incompleteness and incorrectness, whereas
incompleteness referred to missing elements and
correctness was measured in terms of redundancy,
incorrect facts, and inconsistency among the dia-
grams. Note that some of the points were reduced
due to miscellaneous defects (Shull et al., 2000)
and, thus, they are omitted from the calculations
regarding correctness and completeness.

Table 3 presents the average amount of points
reduced due to incompleteness and incorrectness.
As claimed in hypothesis #1, the results clearly
show that ADOM-UML helped gain a more com-
plete model. We believe that the main reason for
this outcome is using the ADOM-UML domain

Table 2. Results of the comprehension, modeling, and overall grades

Average score

t p-valueADOM-UML Regular UML

Comprehension 76.31% 68.98% 1.698 <0.094

Modeling 89.11% 77.73% 3.605 <0.001

Overall 84.50% 74.58% 3.214 <0.002

370

The Application-Based Domain Modeling Approach

model as guidelines for building the application
model, rather than starting from scratch or from a
similar application. These guidelines were applied
properly as the students had another application
from the same domain (the HCC model) that ap-
plied the same guidelines.

Regarding correctness, Table 3 shows that the
students had fewer errors when using ADOM-
UML. However, this was not found as statisti-
cally significant (p<0.062). The main differences
between the two groups were that students who
used the “regular” UML test forms had signifi-
cantly less errors related to the class diagram,
while students who used the ADOM-UML test
forms had significantly less errors related to mes-
sages in the sequence diagram and to states and
their transitions in the state diagram. We believe
that the reason for the statistical insignificance
of these results was the similarity between the
two applications: the given HCC model and the
requested WLC model. Our belief relies on the
observation that the students who got “regular”
UML test forms consider the HCC model as a
reference for modeling the WLC system. This
could be done since the particular applications
are very similar. However, in the general case,
only the domain model can serve as a template
to guide the developer in the development of new
domain-specific applications.

sUMMArY AND FUtUrE WOrK

In this chapter we presented and exemplified
the principles of the Application-based DOmain
Modeling (ADOM) approach, which enables
specifying both domain and application models

with similar software engineering techniques and
languages. Furthermore, the approach provides
means for using domain models for guiding and
validating application models in certain domains:
when developing a particular application in the
domain, the domain model is used as a reference
for guiding the modeler to create complete and
valid application models and the application model
can be validated against the relevant domain model
in order to detect completeness and correctness
errors. An ADOM-UML tool was developed in
order to support these activities.

We empirically evaluated our approach on
undergraduate students, i.e., inexperienced us-
ers who need additional tools and techniques in
order to develop qualitative application models.
The results presented in this chapter suggest
that the availability of the domain model help
develop better application models, mainly with
respect to their completeness, without affecting
their comprehension. When developing totally
new applications inexperienced designers tend
to create erroneous models, but even experienced
ones cannot anticipate the implication of a change
on an overall model (Sunye et al, 2001). Indeed,
Lange et al. (2006) showed that model defects
often remain undetected, even if practitioners
check the model attentively. These results may
advocate and justify the costs and efforts required
in developing complete and correct domain models
for mature, stable, economically viable domains,
as these domain models can be used for guiding
the development of high quality applications in
these domains.

The separation in ADOM between the model
(the application and domain layers) and meta-
model (the language layer) levels enables adopting

Table 3. The average percentages of points reduced due to completeness and correctness errors

p-value t Regular UML ADOM-UML Inspected aspect

<0.002 -3.324 10.84% 5.59% Completeness

<0.062 -1.904 7.66& 5.34% Correctness

371

The Application-Based Domain Modeling Approach

ADOM and its associated activities to different
modeling languages and tasks. We have already
adopted ADOM for business process modeling
with UML activity diagrams (Reinhartz-Berger
et al., 2005) and EPC (Soffer et al., 2007), for
requirement and design modeling with Object-
Process Methodology (Sturm et al., 2006), and
for web site development with Tersus (Tersus,
2006).

In the future, we plan to continuously evaluate
the effectiveness of using ADOM (by novice and
experienced users) to support the construction
of consistent, correct, and complete application
models in various modeling languages. In addi-
tion, we work on developing a formal and accurate
process for instantiating and utilizing domain
models, which we believe will help improve the
accuracy, correctness, and completeness of the
resultant application models. Finally, continuous
improvements and enhancements for the CASE
tool are planned.

rEFErENcEs

Addy, E.A. (1998). A framework for performing
verification and validation in reuse-based software
engineering, 5(1), 279-292.

Czarnecki, K., & Eisenecker, U. W. (2000).
Generative Programming - Methods, Tools, and
Applications. Addison-Wesley.

de Champeaux, D., Lea, D., & Faure, P. (1993).
Object-Oriented System Development. Addison
Wesley.

Deursen, van A. & Klint, P. (2002). Domain-
Specific Language Design Requires Feature De-
scriptions, Journal of Computing and Information
Technology, 10(1), 1-17.

Duffy, D. J. (2004). Domain Architectures: Models
and Architectures for UML Applications. New
York: John Wiley & Sons.

Eclipse Foundation. (2008). Eclipse modeling
frameworks. Retrieved from http://www.eclipse.
org/modeling/emf/

France, R. B., Kim, D.-K., Ghosh, S., & Song,
E. (2004). A UML-Based Pattern Specification
Technique . IEEE Transactions on Software
Engineering, 30(3), 193–206. doi:10.1109/
TSE.2004.1271174

Gomaa, H. (2004). Designing Software Product
Lines with UML: From Use Cases to Pattern-based
Software Architectures. The Addison-Wesley
Object Technology Series.

Gomaa, H., & Eonsuk-Shin, M. (2002). Multiple-
View Meta-Modeling of Software Product Lines.
In Proceedings of the Eighth IEEE International
Conference on Engineering of Complex Computer
Systems.

Gomaa, H., & Kerschberg, L. (1995). Domain
Modeling for Software Reuse and Evolution.
In Proceedings of Computer Assisted Software
Engineering Workshop (CASE 95).

Kang, K., Cohen, S., Hess, J., Novak, W. & Peter-
son, A. (1990). Feature-Oriented Domain Analysis
(FODA) Feasibility Study, CMU/SEI-90-TR-021
ADA235785.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E.,
& Huh, M. (1998). FORM: A feature-oriented
reuse method with domain-specific reference
architectures. Annals of Software Engineering,
5(1), 143–168. doi:10.1023/A:1018980625587

Kim, D. K. (2007). The Role-Based Metamodeling
Language for Specifying Design Patterns. In T.
Taibi (Ed.), Design Pattern Formalization Tech-
niques (pp. 183-205). Hershey, PA: IGI Global.

Kim. D. K., & Shen, W. (2008). Evaluating Pattern
Conformance of UML Models: A Divide-and-
Conquer Approach and Case Studies. Software
Quality Journal.

372

The Application-Based Domain Modeling Approach

Lange, C. F. J., Chaudron, M. R. V., & Muskens,
J. (2006). In Practice: UML Software Architecture
and Design Description. IEEE Software, 23(2),
40–46. doi:10.1109/MS.2006.50

Major, M., & McGregor, J. (1999). Using Guided
Inspection to Validate UML Models. Paper pre-
sented at the 24th Annual IEEE/NASA Software
Engineering Workshop.

Meekel, J., Horton, T. B., France, R. B., Mellone,
C., & Dalvi, S. (1997). From domain models to
architecture frameworks. In Proceedings of the
1997 symposium on Software reusability (pp.
75-80).

Nakatani, L. H., Ardis, M. A., Olsen, R. G., &
Pontrelli, P. M. (1999). Jargons for domain engi-
neering, In Proceedings of the 2nd Conference on
Domain-Specific Languages (pp. 15-24).

Neighbors, J. (1989). Draco: A Method for En-
gineering Reusable Software Systems. In T. Big-
gerstaff & A. Perlis (Eds.), Software Reusability.
Volume I: Concepts and Models (pp. 295-319).
Reading, MA: ACM Press, Frontier Series,
Addison-Wesley.

Nordstrom, G., Sztipanovits, J., Karsai, G., &
Ledeczi, A. (1999). Metamodeling - Rapid De-
sign and Evolution of Domain-Specific Modeling
Environments. In Proceedings of the IEEE Sixth
Symposium on Engineering Computer-Based
Systems (ECBS) (pp. 68-74).

OMG-MOF (2003). Meta-Object Facility
(MOF™), version 1.4.

OMG-UML (2003). The Unified Modeling Lan-
guage (UML™), version 1.5.

OMG-UML (2006). UML 2.0 Superstructure,
2006.

Pohl, K., Gunter, B., & van der Linden, F. (2005).
Software Product Line Engineering – Founda-
tions, Principles, and Techniques. Springer.

Prieto-Diaz, R. (1990). Domain analy-
sis: an introduction. ACM SIGSOFT Soft-
ware Engineering Notes, 15(2), 47–54.
doi:10.1145/382296.382703

Reinhartz-Berger, I., Soffer, P., & Sturm, A. (2005).
A Domain Engineering Approach to Specifying
and Applying Reference Models. In Proceedings
of Enterprise Modeling Information Systems Ar-
chitecture (EMISA’05) (pp. 50-63).

Schleicher, A., & Westfechtel, B. (2001). Beyond
Stereotyping: Metamodeling Approaches for the
UML, In Proceedings of the 34th Annual Hawaii
International Conference on System Sciences
(pp.1243-1252).

SEI-CMU. (2008). A Framework for Software
Product Line Practice, Version 5.0. Retrieved
from http://www.sei.cmu.edu/productlines/
framework.html

Shull, F., Rus, I., & Basili, V. (2000). How Perspec-
tive-Based Reading Can Improve Requirements
Inspections. IEEE Computer, 33(7), 73–79.

Singer, J., & Vinson, N. G. (2002). Ethical Issues in
Empirical Studies of Software Engineering. IEEE
Transactions on Software Engineering, 28(12),
1171–1180. doi:10.1109/TSE.2002.1158289

Soffer, P., Reinhartz-Berger, I., & Sturm, A. (2007).
Facilitating Reuse by Specialization of Reference
Models for Business Process Design. Accepted
to the 8th Workshop on Business Process Model-
ing, Development, and Support (BPMDS’07), in
conjunction with CAiSE’07.

Sturm, A., Dori, D., & Shehory, O. (2006). Domain
Modeling with Object-Process Methodology, In
Proceedings of the Eighth International Confer-
ence on Enterprise Information Systems, ICEIS
(3) (pp. 144-151).

Sunye, G., Pollet, D., Le Taraon, Y., & Jezkel, J.-M.
(2001). Refactoring UML models. In Proceedings
of UML 2001 (LNCS 2185, pp. 134-148).

373

The Application-Based Domain Modeling Approach

Tersus (2006). Retrieved from http://www.tersus.
com

TOPCASED. (2008). Retrieved from http://top-
cased.gforge.enseeiht.fr/

Valerio, A., Giancarlo, S., & Massimo, F. (1997).
Domain analysis and framework-based software de-
velopment. ACM SIGAPP Applied Computing Re-
view, 5(2), 4–15. doi:10.1145/297075.297081

ENDNOtEs

1 In order to be comprehensible to both UML
1.x (OMG-UML, 2003) and UML 2.x
(OMG-UML, 2006) users, we use here ele-
ments that exist in both versions. The only
exception is frame combined fragments,
which are used in UML 2.x sequence dia-
grams for referring to sequences of messages.
We could replace these combined fragments
with notes in UML 1.x.

2 This ADOM-UML CASE Tool can be freely
downloaded from http://mis.hevra.haifa.
ac.il/~iris/ADOM-UMLtool.zip.

374

The Application-Based Domain Modeling Approach

APPENDIX. tHE EXPErIMENt qUEstIONNAIrE

Part 1: the Hcc comprehension questions and expected answers

For each statement, state weather it is true or false and shortly explain why.

1. There are two types of devices that are controlled by the system.
 True – air-conditioners and water sprayers.

2. The system checks its sensor data, the thermometer and the humidity gauge, only through the
Heating/Cooling use case.
 False – also from spraying.

3. The only possibility for the home user to activate the system is by turning it on, in addition to set-
ting the desired temperature and humidity.
 False – also turning off.

4. According to the model, it can certainly be determined that a room is uniquely identified by its
room number.
 False – there is no evidence for it in the model.

5. There are three controlled values that are controlled by the system.
 False – only temperature and humidity.

6. There can be a situation in which the water sprayer is working and the air-conditioner is not.
 True – there is no contradiction to any specification.

7. In each situation when the air-conditioner is on and the room temperature is lower than the lowest
bound of the desired temperature, the heating operation of the air-conditioner is activated.
 False – only if the air-conditioner did not heat before.

8. In case that the air-conditioner is on, it cools or heats.
 False – it can be idle.

9. There are at least two sensors in each room.
 True – one thermometer and one humidity gauge.

Part 2: the WLs modeling question (abbreviated summary)

The Water Level Control (WLC) application, similarly to the HCC system, belongs to a domain of
Process Control Systems (PCS). Its purpose is to monitor and control the water levels in tanks in order
to ensure that the actual water level is always in the closed range [Lowest Limit, Highest Limit]. The
values of the lowest and highest limits are defined per water tank and are configurable. In each tank, a
boundary stick which measures the actual height of the water in the tank is installed. The tank is also
coupled to filling and emptying faucets which respectively inject and drain water when the water height
in the tank reaches its lowest or highest desirable limits.

You are requested to provide the following four diagrams for the WLC application: (1) the system
use case diagram, (2) the system class diagram, (3) a sequence diagram of tank filling, and (4) a state
diagram of a water faucet

375

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 18

The Use of Ontology for Data
Mining with Incomplete Data

Hai Wang
Saint Mary’s University, Canada

Shouhong Wang
University of Massachusetts Dartmouth, USA

INtrODUctION

Knowledge management has become one of the
important topics in the database management field
(Zhang and Zhao 2006). There have been two im-
portant research themes in knowledge management:
data mining (Cunningham et al. 2006; Fayyad et
al. 1996) and ontology (Green and Rosemann
2004; Kim 2002). Data mining is the process of
trawling through data to find interesting patterns
(Hand 1998). As such a process reveals previously
unknown relationships among the data, data mining
has become a widely used knowledge discovery
technique (Brachman et al. 1996). On the other
hand, ontology is a science that studies explicit

formal specifications of the resources and relations
among them in the domain (Gruber 1993). An
ontology is a specification of a conceptualization
(Gruber 1995), and intended for knowledge sharing
among applications (Welty 2003). In the past few
years, the two themes have become well-recognized
substrate for research into knowledge management
(Nilakanta et al. 2006; Li and Zhong 2006). Yet,
potential benefits of joining the two themes have
not been explored.

Intuitively, the use of ontology for data mining
can be beneficial for knowledge management in
the following aspects.

1. To share common understanding of the con-
text of data mining among data miners. For
example, given a set of marketing survey

AbstrAct

Ontology has recently received considerable attention. Based on a domain analysis of knowledge rep-
resentations in data mining, this chapter presents a structure of ontology for data mining as well as the
unique resources for data mining with incomplete data. This chapter demonstrates the effectiveness of
ontology for data mining with incomplete data through an experiment.

DOI: 10.4018/978-1-60566-904-5.ch018

376

The Use of Ontology for Data Mining with Incomplete Data

data, the data miners would like to know the
scope of the database, the definitions of the
data items, the meta-data (e.g., proportion
of missing values) of the database, and the
a priori knowledge of data mining on the
database (e.g., applicable theories of market
segments).

2. To use the ontology as a tool to accumulate
and extend human knowledge. Following the
above example, the data miners can use the
ontology as a vehicle to record data mining
activities and data mining results for market-
ing planning. The ontology is updated based
on the available data mining techniques and
data mining results.

3. To make specifications of the data mining
resources (e.g., data and data mining tools)
and their relations explicit so that computers
can automate data mining process. Following
the above example, if many marketing
survey databases share the same ontology,
then an intelligent software agent can extract
and aggregate data mining results on these
databases at a collective level.

Clearly, applications of ontology to data mining
can be promising for effective knowledge manage-
ment. However, little research on this issue has
been reported in the literature. In this paper, we
first discuss the key knowledge elements of data
mining, and propose a generic structure of ontol-
ogy for the domain. We then place the emphasis on
ontology development for novel data mining with
incomplete data. Through a project of ontology-
based data mining system, we demonstrate the
effectiveness of ontology in data mining.

ONtOLOGY FOr DAtA MINING

Ontology

According to Resource Description Framework
(RDF) (W3C 2007), a primitive ontology consists
of a pair of resource objects and a relational link-
age between them. It is formalized as shown in
Figure 1. A large ontology for an entire domain is
a composition of a set of primitive ontology.

Resources in ontology are knowledge rep-
resentations, including data, procedures, rules,
ideas that guide actions and decisions (Beckman
1999; Alter 1996); Tobin 1996; van der Spek
and Spijkervet 1997). In this study, an ontology
is a network of all these resources that shows the
paths of data mining actions for the data miner
to achieve a certain goal.

categories of resources
of Data Mining

An ontology for the domain is usually large. To
make a large ontology manageable to the developer
and user, the entire ontology must be partitioned
into parts. The partition is done through catego-
rizing resources and identifying their relations
pertinent to the domain. Taxonomy of formalized
generic resource categories can help people to
better understand and share the ontology. Based
on the available limited literature on ontology
associated with data mining (e.g., (Bernstein et
al. 2005; Kim 2002; Li and Zhong 2006; Welty
2003), and their references) we propose generic
resource categories for the domain of data min-
ing as follows.

Figure 1. Primitive Ontology

377

The Use of Ontology for Data Mining with Incomplete Data

Task

Data mining is a task to discover unsuspected
patterns of the data for decision making. A task
is formally described as a hierarchical structure
of its sub-tasks. For instance, the task of market-
ing data mining with incomplete data can be to
identify new segments of consumers. It can have
two sub-tasks: (1) to reveal new consumer seg-
ments based on complete data; and (2) to verify
the new consumer segments using a data set with
missing values.

Data

Data is the key resource in data mining. Definitions
of the data items and metadata of the database
are all the attributes of the data resource. In data
mining with incomplete data, the data resource
includes data with complete values and data with
missing values.

Procedure

One of the major objectives of data mining is to
support the data miner to conduct data mining
processes through the execution of structured
procedures. Each structural procedure is usually
formalized by defining the sequence (e.g., when)
and instructions (e.g., how). An algorithm is a
primitive procedure, and a complex procedure
is a set of algorithms. The formal descriptions of
procedures represent explicit expertise of data min-
ing. The combination of the structured procedures
can be the data miner’s selection.

Hypothesis

Hypothetical concepts are powerful appliances
to symbolize a priori knowledge representations
for data mining. In fact, the ultimate objective of
data mining is to verify hypotheses which have
been kept in the data miner’s mind. For instance,
common conjectures of the correlations of data

variables are often used for data mining (e.g.,
consumers who purchase product A are also pur-
chase product B). Profound data mining requires
sophisticated hypotheses in order to accomplish
a significant task.

Instrument

An elementary model that can be used for the
data miner for operations, deriving conclusions,
or testing hypotheses, is called an instrument. An
instrument could a statistical tool, an artificial
intelligence model (e.g., neural networks), or
a nondefinitional model (e.g., reasoning logic,
simulation, inference engine, search engine).

Reference

A free-format document other than the resources
discussed above is called a reference. A reference
may not be applied for data mining directly, but
could be useful for knowledge sharing. For in-
stance, the history of data mining on the database
is a useful document for the data miner to learn
what data mining results have been obtained.

relations between resources

The relations between the resources could be
diversified. Yet, there are generic semantics that
commonly exist among these resources and can
be used for general purposes of knowledge man-
agement for data mining. The general relations
between resources in the business data mining
domain are articulated in Table 1.

construction of an Ontology

An ontology for data mining is a synthesis of the
above six categories of resources based on the con-
tingency of knowledge sharing among data miners.
The first step of the development of an ontology
is to identify the independent resources in each
of categories (task, data, procedure, hypothesis,

378

The Use of Ontology for Data Mining with Incomplete Data

instrument, and reference). The second step of
the development is to synthesize these resources
by creating a semantic network and specifying
the relations between them. The third step of the
development of an ontology is to maintain the
ontology through adding or deleting resources on
the ontology and modifying the relations between
them. The updated ontology reflects the current
structure of knowledge for data mining.

AN ILLUstrAtIVE EXAMPLE
OF tHE UsE OF ONtOLOGY
FOr DAtA MINING

In this section, we illustrate the development of
ontology for data mining using a simple example.
This example is based on a well known super-
market data mining story that consumers who
purchase beer are more likely to purchase diaper
at the same time. This story sounds interesting
because such a purchase pattern is unsuspected
and might stimulate a business decision for the
supermarket. The ontology behind the data min-
ing example is fairly simple. The task of this data
mining process is to find an unusual customers’
purchase pattern. The data used in this example
are customers’ purchase records, including the
merchandise items purchased by the customer
each time. The procedure for this task includes
data retrieval and evaluation of the correlation of
any two merchandise items purchased by the same
customers each time. The hypothesis in this case

can be “customer who purchase product A is more
likely to purchase product B, given that A and B
are not known to be related to each other.” The
instrument used for this data mining case can be
a simple SQL query with COUNT function. The
above description can be briefly formalized into
an ontology, as depicted in Figure 2.

The ontology in Figure 2 can be further for-
malized using a computer language such as Web
ontology language (OWL 2007). Several advan-
tages of the use of ontology can be perceived
from this example.

1. Knowledge of this data mining process is
described explicitly, and can be easily shared
by people.

2. The ontology can be re-used for similar data
mining tasks. For instance, a music store can
also use the ontology with few changes for
its data mining.

3. More importantly, the formalized ontol-
ogy can be used by computer software to
automate the data mining process. In this
case, computer can detect similar unusual
purchase patterns for all products.

UNIqUE rEsOUrcEs IN DAtA
MINING WItH INcOMPLEtE DAtA

In this section we focus on the sub-domain of data
mining with incomplete data. Data mining with
incomplete data is an important area, since data

Table 1. The relations between resources

Task Data Procedure Hypothesis Instrument Reference

Task Has_a Associates Uses Associates Uses Explained

Data Is_a Applied Associates Applied Described

Procedure Has_a Applies Applies Described

Hypothesis Is_a Applied Explained

Instrument Is_a Explained

Reference Has_a

379

The Use of Ontology for Data Mining with Incomplete Data

mining commonly deals with survey data (Brin et
al. 2003; Zhang et al. 2006) and surveys and ques-
tionnaires are often only partially completed by
respondents. The possible reasons for incomplete
data could be numerous, including negligence,
deliberate avoidance for privacy, ambiguity of the
survey question, and aversion (Brown and Kros
2003). The extent of damage of missing data is
unknown when it is virtually impossible to return
the survey or questionnaires to the data source
for completion, but is one of the most important
parts of knowledge for data mining to discover.
In fact, missing data is an important debatable
issue in the knowledge engineering field (Tseng
et al. 2003).

There have been three traditional approaches
to handling missing data in data mining. One of
the convenient solutions to incomplete data is to
eliminate from the data set those records that have
missing values (Little and Rubin, 2002). This,
however, ignores potentially useful information
in those records. In cases where the proportion of
missing data is large, the data mining conclusions
drawn from the screened data set are more likely
misleading. Another simple approach of dealing
with missing data is to use generic “unknown” for
all missing data items. However, this approach
does not provide much information that might
be useful for interpretation of missing data. The

third solution to dealing with missing data is to
estimate the missing value in the data item through
imputation methods (Dempster and Rubin 1983).
In the case of time series data, interpolation based
on two adjacent data points that are observed is
possible. In general cases, one may use some
expected value in the data item based on statisti-
cal measures (Dempster et al. 1977). However,
data in data mining are commonly of the types of
ranking, category, multiple choices, and binary.
Imputation is generally inadequate for data min-
ing. More importantly, a meaningful treatment of
missing data shall always be independent of the
problem being investigated (Batista and Monard,
2003).

The above mentioned three traditional statisti-
cal approaches to missing values are commonly
used in standard data mining tools (e.g., SPSS
and SAS), but not particularly helpful for data
mining as data mining ought to discover valuable
knowledge about the patterns of the missing data
as well as the potential impacts of the missing data
on the mining results. For instance, a data miner
often wishes to know how reliable a data mining
result is, if only the complete data entries are used;
when and why certain types of values are often
missing; what variables are correlated in terms
of having missing values at the same time; what
reason for incomplete data is likely, etc. These

Figure 2. The Ontology of the Illustrative Data Mining Example

380

The Use of Ontology for Data Mining with Incomplete Data

valuable pieces of knowledge can be discovered
only after the missing part of the data set is fully
explored (Wang and Wang 2004).

Next, we consider two special resources of
ontology for data mining with incomplete data:
hypotheses for conceptual construction and
instruments for enhanced mining, to allow the
data miner to deal with incomplete data in a non-
traditional way.

Hypotheses for conceptual
construction

Conceptual construction on incomplete data
reveals the patterns of the missing data as well
as the potential impacts of these missing data on
the mining results. It is a knowledge development
process that consists of two phases. In the first
phase, complete data are used for data mining to
discover preliminary knowledge. In the second
phase, incomplete data are included to verify and
extend the preliminary knowledge through new
concept construction. To construct new concepts
on incomplete data, the data miner needs to develop
hypotheses as a base for the construction and test
the hypotheses. For example, suppose a data miner
is investigating the profile of the consumers who
are interested in a particular product. Using the
complete data, the data miner has found that the
variable income is an important factor of the con-
sumers’ purchasing behavior. To understand more
about the impact of missing values in income, the
data miner must develop new knowledge through
mining the incomplete data.

Five typical types of hypotheses in data mining
with incomplete data are described as follows.

1. Reliability - A hypothesis of reliability hy-
pothesizes the scope of the missing data in
terms of the preliminary knowledge based
only on complete data. To test a hypothesis
of reliability, the data miner can define in-
dex SM/SC where SM is the number of data

samples with missing values, and SC is the
number of data samples with complete
values. Generally, the higher SM/SC is, the
lower the reliability of the observation of the
clusters would be. Index VM(i)/VC(i), where
VM(i) is the number of missing values in
variable i and VC(i) is the number of samples
used for the data mining process in variable
i, would more pertinent for a test when i is
an important factor. Normally, the higher
VM(i)/VC(i) is, the lower the reliability of
the factor would be.

2. Complementing - A hypothesis of comple-
menting hypothesizes what variables are
more likely to have missing values at the
same time; that is, the inclusive correlation
of missing values related to the problem
being investigated. The data miner can de-
fine index VM(i,j)/VM(i) where VM(i,j) is the
number of missing values in both variables
i and j, and VM(i) is the number of missing
values in variable i. This concept discloses
the inclusive correlation of two variables in
terms of missing values. The higher the value
VM(i,j)/VM(i) is, the stronger the inclusive
correlation of missing values would be.

3. Clashing - A hypothesis of clashing hypoth-
esizes what variables are unlikely to have
missing values at the same time; that is, the
exclusive correlation of missing values re-
lated to the problem being investigated. Index
VM(i,j)/VM(i) can also be used to measure
clashing. The lower the value VM(i,j)/VM(i)
is, the stronger the exclusive correlation of
missing values would be.

4. Hiding – A hypothesis of hiding hypothesizes
how likely an observation with a certain
range of values in one variable is to have a
missing value in another variable. The data
miner can define index VM(i)|x(j)∈(a,b)
where VM(i) is the number of missing val-
ues in variable i, x(j) is the occurrence of
variable j (e.g., education years), and (a,b)

381

The Use of Ontology for Data Mining with Incomplete Data

is the range of x(j). This index is to disclose
the hiding relationships between variables i
and j.

5. Conditional effects – A hypothesis of con-
ditional effects hypothesizes the potential
changes to the understanding of the problem
caused by the missing values. To develop
the concept of conditional effects, the data
miner assumes different possible values for
the missing values, and then observe the
possible changes of the nature of the prob-
lem. For instance, the data miner can define
index ΔP|∀z(i)=k where ΔP is the change of
the data mining result perceived by the data
miner, ∀z(i) represents all missing values of
variable i, and k is the possible value vari-
able i might have for the survey. Typically,
k={max, min, p} where max is the maximal
value of the scale, min is the minimal value
of the scale, and p is the random variable
with the same distribution function of the
values in the complete data. By setting dif-
ferent possible values of k for the missing
values, the data miner is able to observe the
change of the data mining result.

The above five typical types of hypotheses
for conceptual construction are general. Clearly,
specifics of hypotheses for a particular data mining
task always depend on the data miner’s a priori
knowledge.

Instruments for Enhanced
Data Mining

The second special type of resource for data
mining with incomplete data is instruments for
enhanced data mining. Enhanced data mining is
carried out through two phases. In the first phase,
observations with missing data are transformed
into fuzzy observations. Since missing values
make the observation fuzzy, according to fuzzy set
theory (Zadeh, 1978), an observation with missing
values can be transformed into fuzzy patterns that

are equivalent to the observation. For instance,
suppose there is an observation A=X(x1, x2, . .
. xc . . .xm) where xc is the variable with missing
value, and xc∈{ r1, r2 ... rp } where rj (j=1, 2, ... p)
is the possible occurrence of xc. Let μj = Pj(xc =
rj), the fuzzy membership (or possibility) that xc
belongs to rj, (j=1, 2, ...p), and ∑j μj = 1. Then, μj
[X |(xc= rj)] (j=1, 2, ... p) are fuzzy patterns that
are the equivalence to the observation A.

In the second phase of enhanced data mining,
an instrument is applied to the entire data set. The
instruments used for enhanced data mining are
variations of traditional data mining tools, such
as discriminant analysis (Hand 1981), self-orga-
nizing maps (SOM) (Kohonen, 1989; Deboeck
and Kohonen, 1998), and neural networks (Wang,
2000; Wang 2002). They are different from the
original ones in that they are capable of retain-
ing information of fuzzy membership for each
fuzzy pattern. For instance, using a SOM-based
enhanced data mining model (Wang 2003), the
data miner is allowed to compare SOM based
on complete data and fuzzy SOM based on all
incomplete data to perceive covert patterns of
the data set. The data miner is allowed to conduct
what-if trials by including different portions of the
incomplete data to disclose more accurate facts. A
data mining model of Hopfield neural networks
(Hopfield and Tank 1986) utilizes information of
fuzzy patterns of incomplete data to make the data
mining results more accurate than that based only
on complete data. More importantly, the model
produces rich information about the uncertainty
of the data mining results (Wang 2005).

A PrOJEct OF ONtOLOGY
FOr DAtA MINING WItH
INcOMPLEtE DAtA

An ontology provides a guide for the data miner
as well as computer software to utilize the data
mining resources at different levels of the tasks.
The knowledge structure represented by the on-

382

The Use of Ontology for Data Mining with Incomplete Data

tology facilitates task-related problem solving.
Technically, an ontology provides a network
of information repository and tools that are ca-
pable of supporting the data miner to transform
unstructured data mining activities to structured
processes.

To learn more about ontology in data mining,
a project was conducted to investigate the effec-
tiveness of ontology for novel data mining with
incomplete data. We developed an ontology with a
small scale using the proposed resource structure
for ontology development and the domain knowl-
edge discussed in the previous section. We then
developed a software system, called MidOn (Min-
ing Incomplete Data through the Ontology), that
can support data mining processes in accordance
with the ontology knowledge structure. We finally
tested the MidOn system. The following subsec-
tions describe the project and our experiences.

the Ontology for the Project

The resources of the ontology developed for the
project are briefly summarized below.

1. Task – The general task of this project is data
mining on a survey data set with incomplete
data through classification. It will discover
the following specific knowledge.
a. Critical factors for the classification

problem.
b. Implications of the missing values in

these critical factors.
c. Impact of the missing values on the

accuracy of prediction of the classifica-
tion problem.

2. Data – A survey data set that can lead to
classification (e.g., favour/not-favour in a
marketing survey of consumers’ opinions
on a product).

3. Procedure – The procedure for this data
mining task includes the following major
steps.

a. Choose variables of the survey, and
retrieve observations with complete
data (S1) and observations with incom-
plete data (S2) in accordance with the
specified format.

b. Apply the instrument linear discrimi-
nant analysis (LDA) to the data set S1,
and obtain the correct-classification
rate.

c. For Task-a, find the minimal number
of important variables, called critical
factors, that contribute a significant
portion of the correct-classification
rate, through an iteration of executions
of LDA on S1.

d. For Task-b, test hypothesis-a through
hypothesis-d using statistical Data
Analysis Tools.

e. For Task-c, test hypotheses-e using the
instrument LDA.

4. Hypothesis – Five hypotheses for data min-
ing with incomplete data are used for the
project.
a. Reliability - As the survey contains

missing values, the preliminary knowl-
edge based only on complete data is
not generally valid.

b. Complementing – Two variables are
more likely to have missing values at
the same time.

c. Clashing - Two variables are unlikely
to have missing values at the same
time.

d. Hiding – Observations with a certain
range of values in one variable is to have
a missing value in another variable.

e. Conditional effects – The preliminary
knowledge based only on complete
data might be no longer true when the
missing value of a variable takes a
certain possible value.

5. Instrument – The instrument used for the
project include Data Analysis Tools built
in Microsoft Excel and linear discriminant

383

The Use of Ontology for Data Mining with Incomplete Data

analysis (LDA). These simple data mining
instruments are easy to learn and use for our
experiments.

6. Reference – The references include explana-
tions of the data mining task, data format,
procedures, hypotheses and examples, and
the two instruments.

MidOn: Mining Incomplete
Data based on the Ontology

The computing environment of MidOn is Mi-
crosoft Excel. This makes it easy to integrate the
data base, basic statistical data analysis tools, the
program of procedures, and the user-computer
interface into a single computing environment.
Using Microsoft Excel, the data base is held
by the spreadsheet, the program of procedures
is implemented by macros (Visual Basic for
Applications), and the user-computer interface
is supported by the build-in graphics utilities.
Technical details of the system architecture are
depicted in Figure 3.

MidOn includes three major modules, as
described below.

1. The largest module of MidOn is the execution
functions for the procedures of the ontology.
The user can call these functions through the
menus.

2. The second module of MidOn is the navi-
gation functions that reflect the relations
between the resources of the ontology (Table
1). MidOn provides the graphical user in-
terface for navigation.

3. The third module of MidOn is general
operational functions for the data mining
process, such as data selection.

An Experiment

In this section we present an experiment to dem-
onstrate the use of MidOn for data mining with
incomplete survey data. This experiment is not
intended to establish any statistically signifi-
cant results; rather, it is merely to show that the
ontology-based data mining system can be useful
for knowledge development through discovering
unsuspected patterns of incomplete data. The data
miner in this experiment was a group of three
MBA students who were taking individual study

Figure 3. The Architecture of MidOn

384

The Use of Ontology for Data Mining with Incomplete Data

of data mining from one of the authors. They had
no experience of data mining before the individual
study. The use of MidOn to analyze a set of data
was an assignment for them to receive practical
experiences of data mining. They worked in group
on this assignment for the credit of the individual
study. The reference resources of the ontology
provided them sufficient information of MidOn
for their assignment.

The data assigned in this study came from a
student opinion of teachers survey (see Appen-
dix) at a Canadian university. In this case, twenty
one questions describe the characteristics of a
teacher’s performance. Each question is rated on
a five-point scale for students to answer. A high
mark for a question indicates a positive answer to
the question. The twenty questions related to the
evaluation of effectiveness of teaching for a class
session represent the twenty variables (v1 through
v20). The last one question was associated to the
classification of teachers. Data of 4235 survey
samples were given to the data mining group.
Among them, 1857 (44%) observations were
incomplete. Among the complete data set, 86%
(2045) were class-1 (effective as above the mean)
and 14% were class-2 (ineffective as below the
mean). Among the incomplete data, observations
of class-2 (ineffective) were 48% (891).

The assignment for the group of the three MBA
as the data miner was to follow the semantics of
MidOn to develop knowledge on this data set.

Interestingly, after less than four hours of
learning and doing, they went through the data
mining procedures and developed new knowledge.
To our judgment, their knowledge on the data set
was correct although it can certainly be further
expanded. Their data mining results for each of
procedures are summarized below.

1. The correct-classification rate for the com-
plete data set was 75.3%. The very relevant
variables (critical factors) were v1, v14,
v15, v16, v18, and v20 that lead to 64.5%
correct-classification rate.

2. The rate of incomplete observations for the
entire survey was as high as 44%; however,
the average missing data rate in the critical
factors (v1, v14, v15, v16, v18, and v20)
was 9.8%, indicating that the critical factors
were less ignored by students. Among the
six critical factors, the rate of missing values
in v20 was the highest at 12.4%, indicating
that the dependability of ineffective teaching
on this variable (i.e., the usefulness of the
textbook and teaching material) might not
be as reliable as other critical factors.

3. The rate of missing values in v15 was 7.8%;
however, 69.2% of the missing values came
from the observations with v18=[1,3]. This
indicated that students who were not satisfied
with feedback often disregarded whether
they received grade promptly.

4. The values of v15 and v16 were often miss-
ing together. Among all observations with
incomplete data, 36.6% observations had
missing values in the both variables. This
indicated that students who omitted the
opinion on prompt grading often disregarded
whether helpful comments were provided.

5. Among the six critical factors, v1 and
v14 were unlikely to have missing values
together. Among all observations with in-
complete data, only 4.1% observations had
missing values in the both variables. This
indicated that students who expressed the
opinion on the clarity and understandability
of the instructor were also concerned with
the measures of tests and assignments.

6. Among the six critical factors, v20 had the
highest rate of missing values (12.4%).
Twenty five (25) observations with miss-
ing values in v20 only were found in the
incomplete data set. After setting 1 though
5 for the missing values of v20 of these ob-
servations and adding them to the complete
data set, LDA was applied for the trials.
The range of the trial correct-classification
rates was 64.3%-64.7%, compared with the

385

The Use of Ontology for Data Mining with Incomplete Data

preliminary result 64.5%. This indicated
that missing values in v20 seemed to have
moderate impact on the preliminary result.

DIscUssION

The MidOn system is a prototype of ontology-
based knowledge discovery system for data
mining with incomplete data. MidOn contains
general knowledge of data mining in the ontology,
including predefined tasks, data organization, data
mining procedures, domain-based hypotheses, and
data mining instruments. The novice data miner
is allowed to interact with MidOn to generate
knowledge through the development and testing
hypotheses. MidOn is not designed to replace the
data miner for so called “knowledge discovery
automation”; rather, it transmits a priori data min-
ing knowledge to the data miner for relevant and
accurate data mining. While the system makes no
claim to best possible data mining, the experiment
does show that ontology contributes data mining
with incomplete data in this case.

cONcLUsION

This paper discusses the crucial combination ontol-
ogy and data mining for knowledge management.
The competence of a data mining depends not
only on the amount of information discovered,
but also on a priori knowledge as the base for
the data mining. To provide a tool of data mining
for knowledge management, this paper proposes
a framework of ontology for data mining based
primarily on the domain analysis of the resources
involved in data mining. This framework shifts
the data mining activities from ad hoc styles to
knowledge management through ontology.

For knowledge sharing, an ontology of the
data mining domain can have six typical catego-
ries resources: task, data, procedure, hypothesis,
instrument, and reference. The relationships of the

resources can be generalized. The use of ontology
would allow the data miner to fully utilize a priori
knowledge of data mining to develop his/her own
knowledge based on a specific data set. We have
developed MidOn, a prototype of ontology-based
data mining tool, for mining incomplete data in a
non-traditional way. Our experiences with MidOn
demonstrate the effectiveness of ontology in data
mining for knowledge discovery.

This study raises new tasks for parties involved
in data mining and knowledge management. For
enterprises, knowledge sharing through ontology
is crucial for the success of data mining for the
enterprise. For software developers, new semantic
techniques and tools for knowledge management
in data mining are imperative. Isolated data min-
ing tools are no longer adequate for knowledge
management. New knowledge management
techniques need to be fully integrated into the
data mining environment. For data miners, new
skills are required in the knowledge management
era. They must better understand the ontology of
data mining, and possess the ability of transform-
ing their own knowledge into ontology for data
mining.

AcKNOWLEDGMENt

The first author is supported in part by the Natural
Sciences and Engineering Research Council of
Canada (NSERC Grant No. 312423). This article
is an enhanced version of the following article:
Wang, H., and Wang, S. (2008). Ontology for Data
Mining and Its Application to Mining Incomplete
Data, Journal of Database Management, 19(4),
20-29.

rEFErENcEs

W3C. (2008). World Wide Web Consortium.
Retrieved December 20, 2008 from http://www.
w3.org/

386

The Use of Ontology for Data Mining with Incomplete Data

Alter, S. (1996). Information Systems: A Manage-
ment Perspective, New York: Benjamin/Cum-
mings Publishing.

Batista, G., & Monard, M. (2003). An analysis of
four missing data treatment methods for supervised
learning. Applied Artificial Intelligence, 17(5/6),
519–533. doi:10.1080/713827181

Beckman, T. J. (1999). The current state of
knowledge management. In J. Liebowitz (Ed.),
Knowledge Management Handbook (pp. 1.1-
1.22), Boca Raton, FL: CRC Press.

Bernstein, A., Provost, F., & Hill, S. (2005).
Toward intelligent assistance for a data min-
ing process: An ontology-based approach for
cost-sensitive classification. IEEE Transactions
on Knowledge and Data Engineering, 17(4),
503–518. doi:10.1109/TKDE.2005.67

Brachman, R. J., Khabaza, T., Kloesgen, W., Pia-
tetsky-Shapiro, G., & Simoudis, E. (1996). Mining
business databases. Communications of the ACM,
39(11), 42–48. doi:10.1145/240455.240468

Brin, S., Rastogi, R., & Shim, K. (2003). Min-
ing optimized gain rules for numeric attributes.
IEEE Transactions on Knowledge and Data
Engineering, 15(2), 324–338. doi:10.1109/
TKDE.2003.1185837

Brown, M. L., & Kros, J. F. (2003). Data min-
ing and the impact of missing data. Industrial
Management & Data Systems, 103(8), 611–621.
doi:10.1108/02635570310497657

Cunningham, C., Song, I. Y., & Chen, P. P. (2006).
Data warehouse design to support customer
relationship management analysis. Journal of
Database Management, 17(2), 62–88.

Deboeck, G., & Kohonen, T. (1998). Visual Ex-
plorations in Finance with Self-Organizing Maps,
London, UK: Springer-Verlag.

Dempster, A., & Rubin, D. (1983). Incomplete
data in sample surveys. In W. G. Madow, I. Ol-
kin, & D. Rubin (Eds.), Sample Surveys Vol. II:
Theory and Annotated Bibliography (pp. 3-10),
New York: Academic Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B.
(1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal
Statistical Society. Series B. Methodological,
39(1), 1–38.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P.
(1996). The KDD process for extracting useful
knowledge from volumes of data. Communica-
tions of the ACM, 39(11), 7–34.

Green, P., & Rosemann, M. (2004). Applying
ontologies to business and systems modeling tech-
niques and perspectives: Lessons learned. Journal
of Database Management, 15(2), 105–117.

Gruber, T. (1993). A translation approach to
portable ontology specifications. Knowledge
Acquisition, 5(2), 199–220. doi:10.1006/
knac.1993.1008

Gruber, T. (1995). Toward principles for the design
of ontologies used for knowledge sharing. Inter-
national Journal of Human-Computer Studies,
43(5/6), 907–928. doi:10.1006/ijhc.1995.1081

Hand, D. J. (1981). Discrimination and Classifi-
cation. New York: Wiley.

Hand, D. J. (1998). Data mining: Statistics and
more? The American Statistician, 52(2), 112–118.
doi:10.2307/2685468

Hopfield, J. J., & Tank, D. W. (1986). Com-
puting with neural circuits. The Sciences, 233,
625–633.

Kim, H. (2002). Predicting how ontologies
for the semantic Web will evolve. Com-
munications of the ACM, 45(2), 48–54.
doi:10.1145/503124.503148

387

The Use of Ontology for Data Mining with Incomplete Data

Kohonen, T. (1989). Self-Organization and As-
sociative Memory (3rd ed.). New York: Springer-
Verlag.

Li, Y., & Zhong, N. (2006). Mining ontology for
automatically acquiring Web user information
needs . IEEE Transactions on Knowledge and
Data Engineering, 18(4), 554–568. doi:10.1109/
TKDE.2006.1599392

Little, R. J. A., & Rubin, D. B. (2002). Statistical
Analysis with Missing Data (2nd ed.). New York:
John Wiley and Sons.

Nilakanta, S., Miller, L. L., & Zhu, D. (2006).
Organizational memory management: Techno-
logical and research issues. Journal of Database
Management, 17(1), 85–94.

OWL. (2008). Web Ontology Language (OWL).
Retrieved December 20, 2008 from http://www.
w3.org/TR/owl-features/

Tobin, D. (1996). Transformational Learning:
Renewing Your Company through Knowledge and
Skills. New York: John Wiley & Sons.

Tseng, S., Wang, K., & Lee, C. (2003). A pre-
processing method to deal with missing values by
integrating clustering and regression techniques.
Applied Artificial Intelligence, 17(5/6), 535–544.
doi:10.1080/713827170

van der Spek, R., & Spijkervet, A. (1997).
Knowledge management: dealing intelligently
with knowledge. In Liebowitz & Wilcox (Eds.),
Knowledge Management and Its Integrative Ele-
ments. Boca Raton, FL: CRC Press.

Wang, S. (2000). Neural networks. In M. Zeleny
(Ed.), IEBM Handbook of IT in Business (pp.
382-391). London: International Thomson Busi-
ness Press.

Wang, S. (2002). Nonlinear pattern hypothesis
generation for data mining. Data & Knowledge
Engineering, 40(3), 273–283. doi:10.1016/S0169-
023X(01)00059-3

Wang, S. (2003). Application of self-organizing
maps for data mining with incomplete data Sets.
Neural Computing & Applications, 12(1), 42–48.
doi:10.1007/s00521-003-0372-1

Wang, S. (2005). Classification with incomplete
survey data: A Hopfield neural network approach.
Computers & Operations Research, 32(10),
2583–2594. doi:10.1016/j.cor.2004.03.018

Wang, S., & Wang, H. (2004). Conceptual
construction on incomplete survey data. Data
& Knowledge Engineering, 49(3), 311–323.
doi:10.1016/j.datak.2003.10.007

Welty, C. (2003). Ontology research . AI Maga-
zine, 24(3), 11–12.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a
theory of possibility. Fuzzy Sets and Systems, 1,
3–28. doi:10.1016/0165-0114(78)90029-5

Zhang, D., & Zhao, J. L. (2006). Knowledge man-
agement in organizations. Journal of Database
Management, 17(1), 1–7.

Zhang, S., Qin, Z., Ling, C., & Sheng, S. (2005).
Missing is useful: Missing values in cost-sensitiv-
ity decision trees. IEEE Transactions on Knowl-
edge and Data Engineering, 17(12), 1689–1693.
doi:10.1109/TKDE.2005.188

388

The Use of Ontology for Data Mining with Incomplete Data

APPENDIX

the questionnaire of student Opinion of teachers survey

Q1(v1): The instructor explains difficult concepts clearly and understandably.
Q2(v2): Class sessions appear to be carefully planned.
Q3(v3): The instructor conveys strong interest and enthusiasm.
Q4(v4): Students are encouraged to express their views and participate in class.
Q5(v5): The instructor shows a genuine concern for student progress.
Q6(v6): The instructor stimulates students to think for themselves.
Q7(v7): Effective use is made of examples and illustrations.
Q8(v8): The instructor speaks in a way which can be clearly understood.
Q9(v9): The instructor makes it clear how each topic fits into the course.
Q10(v10): This course was a positive learning experience.
Q11(v11): Classes are held regularly to an agreed schedule.
Q12(v12): The various parts of the course are effectively co-ordinated.
Q13(v13): Course requirements are communicated clearly and explicitly.
Q14(v14): Tests and assignments are reasonable measures of student learning.
Q15(v15): Where appropriate, student work is graded promptly.
Q16(v16): Where appropriate, helpful comments are provided when student work is graded.
Q17(v17): There is close agreement between stated course objectives and what is taught.
Q18(v18): Test and assignments provide adequate feedback on student progress.
Q19(v19): The instructor is willing to schedule consultation time with the students.
Q20(v20): The text book(s) and course material are useful.
Q21: In comparison to other instructors, this instructor is an effective teacher.

 389

Compilation of References

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abrahamson, E. (1991). Managerial fads and fashions:
The diffusion and refection of innovations. Academy of
Management Review, 16(3), 586–612.

Addy, E.A. (1998). A framework for performing verifica-
tion and validation in reuse-based software engineering,
5(1), 279-292.

Adi, A., & Etzion, O. (2004). Amit - the situation man-
ager. The VLDB Journal, 13(2), 177–203. doi:10.1007/
s00778-003-0108-y

Adner, R. (2002). When are technologies disruptive?
A demand-based view of the emergence of competi-
tion. Strategic Management Journal, 23(8), 667–688.
doi:10.1002/smj.246

Agarwal, R., De, P., & Sinha, A. P. (1999). Comprehend-
ing object and process models: An empirical study. IEEE
Transactions on Software Engineering, 25(4), 541–556.
doi:10.1109/32.799953

Ågerfalk, P., & Fitzgerald, B. (2008). Outsourcing to
an Unknown Workforce: Exploring Opensourcing
as a Global Sourcing Strategy. MIS Quarterly, 32(2),
385–409.

Agerfalk, P., Finnegan, P., Hayes, J., Lundell, B., &
Ostling, M. (2006). 12 (not so) easy pieces: Grand chal-
lenges for Open Source Software. Panel Presentation at
the 14th European Conference on Information Systems,
Gotenburg, Sweden, June.

Agrawal, R., & Kiernan, J. (2002). Watermarking rela-
tional databases. Proceedings of VLDB (pp. 155-166).

Ahuja, M. K., Carley, K., & Galletta, D. F. (1997). In-
dividual performance in distributed design groups: An

empirical study. Paper presented at the SIGCPR Confer-
ence, San Francisco.

Alho, K., & Sulonen, R. (1998). Supporting virtual
software projects on the Web. Paper presented at the
Workshop on Coordinating Distributed Software De-
velopment Projects, 7th International Workshop on
Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE ’98).

Alter, C., & Hage, J. (1993). Organisations working
together. London: Sage Publications.

Alter, S. (1996). Information Systems: A Management
Perspective, New York: Benjamin/Cummings Publish-
ing.

Alves-Foss, J., Conte de Leon, D., & Oman, P. (2002).
Experiments in the use of xml to enhance traceability
between object-oriented design specifications and source
code. Paper presented at the 35th Annual Hawaii Inter-
national Conference on System Sciences.

Ambler, S. (2002). Agile Modeling: Effective Practices
for Extreme Programming and Unified Process. New
York: John Wiley.

Amghar, Y., Meziane, M., & Flory, A. (2002). Using busi-
ness rules within a design process of active databases. In
S. Becker (Ed.), Data Warehousing and Web Engineering
(pp. 161-184), Hershey, PA: IRM Press.

An, Y., Borgida, A., & Mylopoulos, J. (2005). Construct-
ing Complex Semantic Mappings Between XML Data
and Ontologies. International Semantic Web Conference
ISWC 2005 (pp. 6-20).

390

Compilation of References

Andrade, J., Ares, J., Garcia, R., Pazos, J., Rodriguez,
S., & Silva, A. (2004). A methodological framework for
generic conceptualisation: problem-sensitivity in soft-
ware engineering. Information and Software Technology,
46(10), 635–649. doi:10.1016/j.infsof.2003.11.003

Andrade, L., & Fiadeiro, J. (2000, October 15-19). Evolu-
tion by contract. Paper presented at the ACM Conference
on Object-Oriented Programming, Systems, Languages,
and Applications 2000, Workshop on Best-practice in
Business Rules Design and Implementation, Minneapolis,
Minnesota USA.

Andrade, L., Fiadeiro, J., Gouveia, J., & Koutsoukos,
G. (2002). Separating computation, coordination and
configuration. Journal of Software Maintenance and
Evolution: Research and Practice, 14(5), 353-359.

Anthes, G. H. (2000, June 26). Software Development
goes Global. Computerworld Magazine.

Arlow, J., & Neustadt, I. (2004). Enterprise Patterns and
MDA: Building Better Software with Archetype Patterns
and UML. Boston: Addison-Wesley.

Arrow, K. (1970). Social choice and individual values
(2nd ed.). New Haven, CT: Yale University Press.

Astley, M., & Agha, G. A. (1998, 20-21 April). Modular
construction and composition of distributed software
architectures. Paper presented at the Int. Symposium
on Software Engineering, for Parallel and Distributed
Systems, Kyoto, Japan.

ASU partners with Clemson to create virtual world
technology. (2008). Techniques: Connecting Education
& Careers, 83(2), 60.

Atkins, D., Ball, T., Graves, T., & Mockus, A. (1999).
Using version control data to evaluate the impact of
software tools. Proceedings of the 21st International
Conference on Software Engineering (pp. 324–333). Los
Angeles: ACM Press.

Atkinson, C., & Kühne, T. (2003, September-October).
Model-driven development: A metamodeling founda-
tion. IEEE Software, 20(5), 36-41. Retrieved June 5,
2006, from http://doi.ieeecomputersociety.org/10.1109/
MS.2003.1231149

Atkinson, C., & Kühne, T. (2005, October). Concepts for
comparing modeling tool architectures. In L. Briand & C.
Williams (Eds.), Model Driven Engineering Languages
and Systems: Eighth International Conference, MoDELS
2005 (pp. 398-413). Springer. Retrieved June 23, 2006,
from http://dx.doi.org/10.1007/11557432 30

Attewell, P. (1992). Technology diffusion and organiza-
tional learning: the case of business computing. Organi-
zation Science, 3(1), 1–19. doi:10.1287/orsc.3.1.1

August, J. H. (1991). Joint application design: The group
session approach to system design. Englewood Cliffs,
NJ: Yourdon Press.

Babcock, B., Chaudhuri, S., & Das, G. (2003). Dynamic
Sample Selection for Approximate Query Processing. In
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, Cali-
fornia, USA (pp. 539-550).

Babcock, C. (2005). Eclipse on the rise. [Electronic ver-
sion]. InformationWeek. Retrieved January 29, 2006.

Baddeley, A. (1992). Working Memory. Science,
255(5044), 556–559. doi:10.1126/science.1736359

Bajaj, A. (2004). The effect of the number of concepts
on the readability of schemas: an empirical study with
data models. Requirements Engineering, 9(4), 261–270.
doi:10.1007/s00766-004-0202-8

Baker, F.T. (1972). Chief programmer team management
of production programming. IBM Systems Journal,
11(1), 56–73.

Band, W., Kinikin, E., Ragsdale, J., & Harrington, J.
(2005). Enterprise CRM suites, Q2, 2005: Evaluation of
top enterprise CRM software vendors across 177 criteria.
Cambridge, MA: Forrester Research Inc.

Bandow, D. (1997). Geographically distributed work
groups and IT: A case study of working relationships
and IS professionals. In Proceedings of the SIGCPR
Conference (pp. 87–92).

Barab, S. A., Hay, K. E., Squire, K., Barnett, M.,
Schmidt, R., & Karrigan, K. (2000). Virtual solar
system project: Learning through a technology-rich,

 391

Compilation of References

inquiry-based, participatory learning environment.
Journal of Science Education and Technology, 9(1),
7–25. doi:10.1023/A:1009416822783

Basili, V.R., Briand, L.C., & Melo, W.L. (1996). A
validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering,
22(10), 751–761.

Baskerville, R., & Pries-Heje, J. (2001, July 27-29). Racing
the e-bomb: How the internet is redefining information
systems development methodology. Proceedings of the
IFIP TC8/WG8.2 Working Conference on Realigning
Research and Practice in Information Systems Develop-
ment: The Social and Organizational Perspectice (pp.
49-68). Boise, Idaho.

Basset, T. (2004). Coordination and social structures in
an open source project: Videolan. In S. Koch (Ed.), Open
source software development (pp. 125-151). Hershey,
PA: Idea Group.

Batista, G., & Monard, M. (2003). An analysis of four
missing data treatment methods for supervised learn-
ing. Applied Artificial Intelligence, 17(5/6), 519–533.
doi:10.1080/713827181

Batra, D. (2005). Conceptual Data Modeling Patterns:
Representation and Validation. Journal of Database
Management, 16(2), 84–106.

Batra, D. (2008). Unified Modeling Language (UML)
Topics: The Past, the Problems, and the Prospects. Journal
of Database Management, 19(1), i–vii.

Batra, D., & Davis, J. G. (1992). Conceptual data model-
ling in database design: similarities and differences be-
tween expert and novice designers. International Journal
of Man-Machine Studies, 37(1), 83–101. doi:10.1016/0020-
7373(92)90092-Y

Batra, D., & Satzinger, J. (2006). Contemporary Ap-
proaches and Techniques for the Systems Analyst. Journal
of Information Systems Education, 17(3), 257–265.

Batra, D., & Wishart, N. A. (2004). Comparing a rule-
based approach with a pattern-based approach at different
levels of complexity of conceptual data modelling tasks.

International Journal of Human-Computer Studies, 61(4),
397–419. doi:10.1016/j.ijhcs.2003.12.019

Batra, D., Hoffer, J. A., & Bostrom, R. P. (1990).
Comparing Representations with Relational and EER
Models. Communications of the ACM, 33(2), 126–139.
doi:10.1145/75577.75579

Beatty, R., & Williams, C. (2006). ERP II: Best
practices for successfully implementing an ERP up-
grade. Communications of the ACM, 49(3), 105–109.
doi:10.1145/1118178.1118184

Beckman, T. J. (1999). The current state of knowledge
management. In J. Liebowitz (Ed.), Knowledge Manage-
ment Handbook (pp. 1.1-1.22), Boca Raton, FL: CRC
Press.

Beer, W., Volker, C., Ferscha, A., & Mehrmann, L. (2003)
Modeling context-aware behavior by interpreted ECA
rules. In H. Kosch, L. Böszörményi, & H. Hellwagner
(Eds.), Euro-Par 2003 (LNCS 2790, pp. 1064-1073).

Bélanger, F. (1998). Telecommuters and Work Groups:
A Communication Network Analysis. In Proceedings
of the International Conference on Information Systems
(ICIS) (pp. 365–369). Helsinki, Finland.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The
case research strategy in studies of Information Systems.
MIS Quarterly, 11(3), 369–386. doi:10.2307/248684

Benkler, Y. (2002). Coase’s penguin, or, Linux and the
nature of the firm. The Yale Law Journal, 112(3), 1–42.
doi:10.2307/1562247

Bergquist, M., & Ljungberg, J. (2001). The power of gifts:
Organizing social relationships in open source communi-
ties. Information Systems Journal, 11(4), 305–315.

Bernstein, A., Provost, F., & Hill, S. (2005). Toward
intelligent assistance for a data mining process: An
ontology-based approach for cost-sensitive classification.
IEEE Transactions on Knowledge and Data Engineering,
17(4), 503–518. doi:10.1109/TKDE.2005.67

Bertino, E., Ooi, B. C., Yang, Y., & Deng, R. (2005).
Privacy and ownership preserving of outsourced medical
data. Proceedings of IEEE International Conference on
Data Engineering (pp. 521-532).

392

Compilation of References

Bessen, J. (2002). Open Source Software: Free Provision
of Complex Public Goods: Research on Innovation.

Beygelzimer, A., Kakade, S., & Langford, J. (2005).
Cover trees for nearest neighbor. In Proceedings of the
23rd international conference on Machine learning,
Pittsburgh, Pennsylvania, USA (pp. 97-104).

Bezroukov, N. (1999a). A second look at the Cathedral
and the Bazaar. First Monday, 4(12).

Bezroukov, N. (1999b). Open source software develop-
ment as a special type of academic research (critique of
vulgar raymondism). First Monday, 4(10).

Bichler, M., Segev, A., & Zhao, J. L. (1998). Component-
based e-commerce: Assesment of current practices and
future directions. SIGMOD Record, 27(4), 7-14.

Bodart, F., Patel, A., Sim, M., & Weber, R. (2001). Should
optional properties be used in conceptual modelling? A
theory and three empirical tests. Information Systems Re-
search, 12(4), 384–405. doi:10.1287/isre.12.4.384.9702

Bollinger, T., Nelson, R., Self, K.M., & Turnbull, S.J.
(1999). Open-source methods: Peering through the clut-
ter. IEEE Software, 16(4), 8–11.

Boneh, D., & Shaw, J. (1995). Collusion secure finger-
printing for digital data (extended abstract). Crypto,
452-465.

Boneh, D., & Shaw, J. (1998). Collusion secure fingerprint-
ing for digital data. IEEE Transactions on Information
Theory, 44(5), 1897-1905.

Bonino da Silva Santos, L. O., van Wijnen, R. P., &
Vink, P. (2007). A service-oriented middleware for
context-aware applications. MPAC, (pp. 37-42). New
York: ACM Press.

Booch, G. (1994). Object-Oriented Analysis and Design
with Applications (2nd ed.). Redwood City, CA: Benjamin/
Cummings.

Booch, G. (1999). UML in Action. Communications of
the ACM, 42(10), 26–28. doi:10.1145/317665.317672

Booch, G., Brown, A., Iyengar, S., Rumbaugh, J., &
Selic, B. (2004, May). An MDA manifesto. Business

Process Trends/MDA Journal. Retrieved June 15, 2006,
from http://www.bptrends.com/publicationfiles/05-
04COLIBMManifesto-Frankel-3.pdf

Booch, G., Christerson, M., Fuchs, M., & Koistinen,
J. (1999). UML for XML schema mapping specifica-
tion. Retrieved from http://xml.coverpages.org/fuchs-
uml_xmlschema33.pdf

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The
Unified Modeling Language User Guide. Reading, MA:
Addison Wesley.

Borkar, V., Carey, M., Mangtani, N., McKinney, D., Patel,
R., & Thatte, S. (2006). XML data services. International
Journal of Web Services Research, 3(1), 85-95.

Bosak, J., Bray, T., Connolly, D., Maler, E., Nicol, G.,
Sperberg-McQueen, C. M., et al. (1998). Guide to the
W3C XML Specification (XMLspec) DTD, Version
2.1. Retrieved from http://www.w3.org/XML/1998/06/
xmlspec-report-v21.htm

Böttcher, S., & Steinmetz, R. (2003). A DTD Graph Based
XPath Query Subsumption Test. Xsym, 2003, 85–99.

Boulding, K. E. (1956). General systems theory—The
skeleton of a science. Management Science, 2(April),
197–208.

Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-
Shapiro, G., & Simoudis, E. (1996). Mining business
databases. Communications of the ACM, 39(11), 42–48.
doi:10.1145/240455.240468

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler,
E., & Yergeau, F. (2004). Extensible Markup Language
(XML) 1.0 (3rd ed.). Retrieved from http://www.w3.org/
TR/2004/REC-xml-20040204

Briand, L., Wüst, J., Ikonomovski, S., & Lounis, H.
(1998). A comprehensive investigation of quality factors
in object-oriented designs: An industrial case study.
Technical Report ISERN-98-29, International Software
Engineering Network.

Briand, L.C., Wüst, J., Daly, J.W., & Porter, D.V. (2000).
Exploring the relationship between design measures and

 393

Compilation of References

software quality in object-oriented systems. Journal of
Systems and Software, 51(3), 245–273.

Brin, S., Rastogi, R., & Shim, K. (2003). Mining optimized
gain rules for numeric attributes. IEEE Transactions
on Knowledge and Data Engineering, 15(2), 324–338.
doi:10.1109/TKDE.2003.1185837

Bringing virtual worlds to business school. (2008).
BizEd, 7(1), 34.

Britton, L. C., Wright, M., & Ball, D. F. (2000). The
use of co-ordination theory to improve service quality
in executive search. Service Industries Journal, 20(4),
85–102.

Bronack, S., Riedl, R., & Tashner, J. (2006). Learn-
ing in the zone: A social constructivist framework for
distance education in a 3-dimensional virtual world.
Interactive Learning Environments, 14(3), 219–232.
doi:10.1080/10494820600909157

Bronder, C., & Pritzl, R. (1992). Developing strategic
alliances: A conceptual framework for successful
co-operation. European Management Journal, 10(4),
412–421. doi:10.1016/0263-2373(92)90005-O

Brooks, F. P., Jr. (1975). The Mythical Man-month: Es-
says on Software Engineering. Reading, MA: Addison-
Wesley.

Brooks, F.P. Jr. (1995). The mythical man-month: Essays
on Software engineering (anniv. ed.). Reading, MA:
Addison-Wesley.

Brown, A. (2005). If this suite’s a success, why is it so
buggy? [Electronic version]. The Guardian, Retrieved
March 15, 2006.

Brown, A., Delbaere, M., Eeles, P., Johnston, S., &
Weaver, R. (2005). Realizing service oriented solutions
with the IBM Rational Software Development Platform.
IBM Systems Journal, 44(4), 727-752.

Brown, M. L., & Kros, J. F. (2003). Data mining and the im-
pact of missing data. Industrial Management & Data Sys-
tems, 103(8), 611–621. doi:10.1108/02635570310497657

Brown, S., & Venkatesh, V. (2003). Bringing Non-
Adopters Along: The Challenge Facing the PC In-

dustry. Communications of the ACM, 46(4), 76–80.
doi:10.1145/641205.641208

Bryson, S. (1996). Virtual reality in scientific visual-
ization. Communications of the ACM, 39(5), 62–71.
doi:10.1145/229459.229467

Bugeja, M. J. (2008). Second thoughts about Second Life.
Education Digest, 73(5), 18–22.

Burton-Jones, A., & Meso, P. (2006). Conceptualizing
Systems for Understanding: An Empirical Test of De-
composition Principles in Object-Oriented Analysis. In-
formation Systems Research, 17(1), 101–114. doi:10.1287/
isre.1050.0079

Burton-Jones, A., & Weber, R. (2003). Properties do not
have properties: Investigating a questionable conceptual
modeling practice. In Proceedings of the 2nd Annual
Symposium on Research in Systems Analysis and Design,
St. John’s, Canada.

Butler, B., Sproull, L., Kiesler, S., & Kraut, R. (2002).
Community effort in online groups: Who does the work
and why? In S. Weisband & L. Atwater (Eds.), Leadership
at a Distance. Mahwah, NJ: Lawrence Erlbaum.

Butler, B.S., & Gray, P.H. (2006). Reliability, mindful-
ness, and information systems. MIS Quarterly, 30(2),
211–224.

Calado, P. P., & Ribeiro-Neto, B. (2003). An Informa-
tion Retrieval Approach for Approximate Queries. IEEE
Transactions on Knowledge and Data Engineering, 15(1),
236–239. doi:10.1109/TKDE.2003.1161593

Camarinha-Matos, L. M., Afsarmanesh, H., & Ra-
belo, R. J. (2003). Infrastructure developments for
agile virtual enterprises. International Journal of
Computer Integrated Manufacturing, 16(4-5), 235–254.
doi:10.1080/0951192031000089156

Campell, J. L., Hollingsworth, J. R., & Lindberg, L. N.
(Eds.). (1991). The governance of the American economy.
New York: Cambridge University Press.

Carmel, E. (1999). Global Software Teams. Upper Saddle
River, NJ: Prentice-Hall.

394

Compilation of References

Carmel, E., & Agarwal, R. (2001). Tactical approaches
for alleviating distance in global software development.
IEEE Software(March/April), 22–29.

Carzaniga, A., Rosenblum, D. S., & Wolf, A. L. (2001).
Design and evaluation of a wide-Area event notification
service. ACM Transactions on Computer Systems, 19(3),
332–383. doi:10.1145/380749.380767

Casati, F., Ceri, S., Paraboschi, S., & Pozzi, G. (1999). Spec-
ification and implementation of exceptions in workflow
management systems. ACM Transactions on Database
Systems, 24(3), 405–451. doi:10.1145/328939.328996

Cash, J. I., & Konsynski, B. R. (1985). IS redraws com-
petitive boundaries. Harvard Business Review, 63(2),
131–142.

Ceri, S., & Fraternali, P. (1997). Designing database ap-
plications with objects and rules: the IDEA methodology.
Reading, MA: Addison-Wesley.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai,
S., & Matera, M. (2002). Designing Data-Intensive Web
Applications. San Francisco, CA: Morgan Kauffmann.

Chakrabarti, M., Ortega, M., Mehrotra, S., & Porkaew,
K. (2003). Evaluating refined queries in top-k retrieval
systems. IEEE Transactions on Knowledge and Data
Engineering, 15(5), 256–270.

Chakravarthy, S. (1997). Sentinel: An object-oriented
DBMS with event-based rules. In J. Peckham (Ed.),
SIGMOD Conference (pp. 572-575). New York: ACM
Press.

Chakravarthy, S., & Liao, H. (2001). Asynchronous
monitoring of events for distributed cooperative environ-
ments. In H. Lu, & S. Spaccapietra (Eds.), Proceedings
of CODAS’01 (pp. 25-32). Beijing: IEEE Computer
Society.

Chan, H., Wei, K., & Siau, K. (1993). User-Database
Interface: The Effect of Abstraction Levels on Query
Performance. Management Information Systems Quar-
terly, 17(4), 441–464. doi:10.2307/249587

Chan, T. M. (1998). Approximate Nearest Neighbor
Queries Revisited. Discrete & Computational Geometry,
20(3), 359–374. doi:10.1007/PL00009390

Charfi, A., & Mezini, M. (2004). Hybrid Web service
composition: business processes meet business rules. In
M. Aiello, M. Aoyama, F. Curbera, & M. P. Papazoglou
(Eds.), Proceedings of ICSOC’04 (pp. 30-38). New York:
ACM Press.

Checkland, P. B., & Scholes, J. (1990). Soft system meth-
odology in action. Chichester: John Wiley and Sons.

Chen, P. P.-S. (1976). The Entity-Relationship Model-
Toward a Unified View of Data. ACM Transactions on Da-
tabase Systems, 1(1), 9–36. doi:10.1145/320434.320440

Chen, Y., Zhou, L., & Zhang, D. (2006). Ontology-
supported Web service composition: An approach to
service-oriented knowledge management in corporate
financial services. Journal of Database Management,
17(1), 67-84.

Chesbrough, H. (2005). Open Innovation: A New
Paradigm for Understanding Industrial Innovation. In H.
Chesbrough, W. Vanhaverbeke, & J. West (eds.), Open
Innovation: Researching a New Paradigm (pp. 1-14).
Oxford, UK: Oxford University Press.\

Chesbrough, H. (2006). Open Business Models: How
to Thrive in the New Innovation Landscape. Boston:
Harvard Business School Press.

Chidamber, S., & Kemerer, C.F. (1994). A metrics suite
for object oriented design. IEEE Transactions on Software
Engineering, 20(6), 476–493.

Chidamber, S.R., & Kemerer, C.F. (1991). Towards a
metric suite for object oriented design. Proceedings of the
6th ACM Conference of Object Oriented Programming,
Systems, Languages and Applications (pp. 197–211).
Phoenix, AZ: ACM Press.

Chidamber, S.R., Darcy, D.P., & Kemerer, C.F. (1998).
Managerial use of metrics for object-oriented software:
An exploratory analysis. IEEE Transactions on Software
Engineering, 24(8), 629–639.

Chidlovskii, B. (2001). Schema Extraction from XML
Data: A Grammatical Inference Approach. KRDB’01
Workshop (Knowledge Representation and Databases)

 395

Compilation of References

Christensen, C. M. (1997). The innovator’s dilemma:
When new technologies cause great firms to fail. Boston,
MA: Harvard Business School Press.

Christensen, C. M. (2000). After the gold rush. Innosight.
Retrieved January 30, 2006.

Christensen, C. M. (2006). The ongoing process of
building a theory of disruption. Journal of Product In-
novation Management, 23(1), 39–55. doi:10.1111/j.1540-
5885.2005.00180.x

Christiaanse, E. (2005). Performance benefits through
integration hubs. Communications of the ACM, 48(4),
95–100. doi:10.1145/1053291.1053294

Christopher, M. (2000). The agile supply chain – compet-
ing in volatile markets. Industrial Marketing Manage-
ment, 29(1), 37–44. doi:10.1016/S0019-8501(99)00110-
8

Chu, W., Yang, H., Chiang, K., Minock, M., Chow, G.,
& Larson, C. (1996). CoBase: A scalable and extensible
cooperative information system. Journal of Intelligent
Information Systems, 6(2/3), 223–259. doi:10.1007/
BF00122129

Ciborra, C. (2000). Drifting: From control to drift. In K.
Braa, C. Sorensen & B. Dahlbom (Eds.), Planet internet.
Lund: Studentlitteratur.

Clemons, E. K., & Row, M. C. (1992). Information tech-
nology and industrial cooperation: The role of changing
transaction costs. Journal of Management Information
Systems, 9(2), 9–28.

Close, W. (2003). CRM suites for North American MSBs
markets: 1H03 magic quadrant. Stamford, CT: Gartner
Inc. Markets.

Coffman, T., & Klinger, M. B. (2007). Utilizing virtual
worlds in education: The implications for practice. Inter-
national Journal of Social Sciences, 2(1), 29–33.

Cohen, M.D., March, J.G., & Olsen, J.P. (1972). A garbage
can model of organizational choice. Administrative Sci-
ence Quarterly, 17(1), 1–25.

Coleman, E.G., & Hill, B. (2004). The social produc-
tion of ethics in debian and free software communities:

Anthropological lessons for vocational ethics. In S. Koch
(Ed.), Open source software development (pp. 273–295).
Hershey, PA: Idea Group.

Collins, A. M., & Quillian, M. R. (1969). Retreival Times
from Semantic Memory. Journal of Verbal Learning
and Verbal Behavior, 8, 240–247. doi:10.1016/S0022-
5371(69)80069-1

Combi, C., & Pozzi, G. (2003). Temporal conceptual
modelling of workflows. In I. Song, S. W. Liddle, T.
Wang Ling, & P. Scheuermann (Eds.), Proceedings of
ER’03 (LNCS 2813, pp. 59-76).

Combi, C., & Pozzi, G. (2004). Architectures for a tem-
poral workflow management system. In H. Haddad, A.
Omicini, R. L. Wainwright, & L. M. Liebrock (Eds.),
Proceedings of SAC’04 (pp. 659-666). New York: ACM
Press.

Combi, C., Daniel, F., & Pozzi, G. (2006). A portable
approach to exception handling in workflow manage-
ment systems. In R. Meersman & Z. Tari (Eds.), OTM
Conferences (1), LNCS 4275 (pp. 201-218). Montpellier,
France: Springer Verlag.

Conallen, J. (1999). Modeling web application architec-
tures with UML. Communications of the ACM, 42(10),
63-70.

Constantine, L. L., & Lockwood, L. A. D. (1999). Software
for Use. Reading, MA: Addison-Wesley.

Conte, S.D., Dunsmore, H., & Shen, V. (1986). Software
engineering metrics and models. Menlo Park, CA: Ben-
jamin/Cummings.

Conway, C. (2007). Professor Avatar. Inside Higher Ed.
Retrieved April 24, 2008, from http://www.insidehigh-
ered.com/views/2007/10/16/conway.

Conway, M. E. (1968). How do committees invent.
Datamation, 14(4), 28–31.

Cook, J.E., Votta, L.G., & Wolf, A.L. (1998). Cost-effec-
tive analysis of in-place software processes. IEEE Trans-
actions on Software Engineering, 24(8), 650–663.

396

Compilation of References

Cook, S. (2000). The UML Family: Profiles, Prefaces,
and Packages. In Proceedings of UML 2000 - The Unified
Modeling Language. Advancing the Standard (LNCS
1939, pp. 255-264).

Cool, K. O., Dierickx, I., & Szulanski, G. (1997). Dif-
fusion of innovative within organizations: Electronic
switching in the Bell system, 1971-1982. Organization
Science, 8(5), 543–560. doi:10.1287/orsc.8.5.543

Cox, A. (1998). Cathedrals, Bazaars and the Town Coun-
cil. Retrieved 22 March, 2004, from http://slashdot.org/
features/98/10/13/1423253.shtml

Cox, I. J., Miller, M. L., & Bloom, J. A. (2001). Digital
watermarking: Principles and practice. Morgan Kauf-
mann.

Crawford, C., Bate, G., Cherbakov, L., Holley, K., &
Tsocanos, C. (2005). Toward an on demand service
architecture. IBM Systems Journal, 44(1), 81-107.

Crowston K., Scozzi B., (2003). Open Source Software
projects as virtual organizations: competency rallying
for software development. IEE Proceedings Software,
149(1), 3-17.

Crowston, K. (1997). A coordination theory approach
to organizational process design. Organization Science,
8(2), 157–175.

Crowston, K., & Howison, J. (2006). Hierarchy and
centralization in free and open source software team
communications. Knowledge, Technology & Policy,
18(4), 65–85.

Crowston, K., & Kammerer, E. (1998). Coordination and
collective mind in software requirements development.
IBM Systems Journal, 37(2), 227–245.

Crowston, K., & Osborn, C. S. (2003). A coordination
theory approach to process description and redesign. In T.
W. Malone, K. Crowston & G. Herman (Eds.), Organiz-
ing Business Knowledge: The MIT Process Handbook.
Cambridge, MA: MIT Press.

Crowston, K., & Scozzi, B. (2002). Open source software
projects as virtual organizations: Competency rallying
for software development. IEE Proceedings—Software
Engineering, 149(1), 3–17.

Crowston, K., & Scozzi, B. (2008). Bug fixing practices
within free/libre open source software development
teams. Journal of Database Management, 19(2), 1–30.

Crowston, K., Howison, J., & Annabi, H. (2006). Informa-
tion systems success in Free and Open Source Software
development: Theory and measures. Software Process—
Improvement and Practice, 11(2), 123–148.

Crowston, K., Wei, K., Li, Q., & Howison, J. (2006).
Core and periphery in Free/Libre and Open Source
software team communications. Paper presented at the
Hawai’i International Conference on System System
(HICSS-39), Kaua’i, Hawai’i.

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., & Howison,
J. (2005). Coordination of Free/Libre Open Source Soft-
ware development. Paper presented at the International
Conference on Information Systems (ICIS 2005), Las
Vegas, NV, USA.

Cubranic, D. (1999). Open-source software develop-
ment. Paper presented at the 2nd Workshop on Software
Engineering over the Internet, Los Angeles.

Cugola, G., Di Nitto, E., & Fuggetta, A. (2001). The
JEDI event-based infrastructure and its application
to the development of the OPSS wfMS. IEEE Trans-
actions on Software Engineering, 27(9), 827–850.
doi:10.1109/32.950318

Cunningham, C., Song, I. Y., & Chen, P. P. (2006). Data
warehouse design to support customer relationship
management analysis. Journal of Database Manage-
ment, 17(2), 62–88.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study
of the software design process for large systems. Com-
munications of the ACM, 31(11), 1268–1287.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field
Study of the Software Design Process for Large Sys-
tems. Communications of the ACM, 31(11), 1268–1287.
doi:10.1145/50087.50089

Curtis, B., Walz, D., & Elam, J. J. (1990). Studying the
process of software design teams. In Proceedings of
the 5th International Software Process Workshop On

 397

Compilation of References

Experience With Software Process Models (pp. 52–53).
Kennebunkport, Maine, United States.

Cusumano, M.A. (2004). Reflections on free and open
software. Communications of the ACM, 47(10), 25–27.

Cutosksy, M. R., Tenenbaum, J. M., & Glicksman, J.
(1996). Madefast: Collaborative engineering over the
Internet. Communications of the ACM, 39(9), 78–87.

Czarnecki, K., & Eisenecker, U. W. (2000). Genera-
tive Programming - Methods, Tools, and Applications.
Addison-Wesley.

D’Souza, D. F., & Wills, A. C. (1998). Objects, com-
ponents, and frameworks with UML: The catalysis
approach: Addison-Wesley.

Dahlander, L. (2005). Appropriation and appropriabil-
ity in open source software. International Journal of
Innovation Management, 9(3), 259–285. doi:10.1142/
S1363919605001265

Dahlander, L. (2007). Penguin in a new suit: A tale of
how de novo entrants emerged to harness free and open
source software communities. Industrial and Corporate
Change, 16(5), 913–943. doi:10.1093/icc/dtm026

Daniel, F., Matera, & Pozzi, G. (2008). Managing runtime
adaptivity through active rules: the Bellerofonte frame-
work. Journal of Web Engineering, 7(3), 179–199.

Daniel, F., Matera, M., & Pozzi, G. (2006). Combining
conceptual modeling and active rules for the design
of adaptive web applications. In N. Koch & L. Olsina
(Eds.), ICWE’06 Workshop Proceedings (article no.10).
New York: ACM Press.

Danneels, E. (2004). Disruptive technology reconsidered:
A critique and research agenda. Journal of Product Inno-
vation Management, 21(4), 246–258. doi:10.1111/j.0737-
6782.2004.00076.x

Dano, M. (2008). Android founder makes the case for
Google’s mobile strategy. RCR Wireless News, 27(34),
1–8.

Dashofy, E. M., Van der Hoek, A., & Taylor, R. N.
(2005). A comprehensive approach for the development

of modular software architecture description languages.
ACM Transactions on Software Engineering and Meth-
odology, 14(2), 199-245.

Davidow, W. H., & Malone, M. S. (1992). The virtual
corporation. New York: HarperCollins.

Davis, F. (1989). Perceived usefulness, perceived ease of
use, and user acceptance of information technology. MIS
Quarterly, 13(3), 318–339. doi:10.2307/249008

Davis, G. B. (1982). Strategies for information require-
ments determination. IBM Systems Journal, 21(1),
4–30.

Davis, S., Siau, K., & Dhenuvakonda, K. (2003). A
fit-gap analysis of e-business curricula vs. industry
need. Communications of the ACM, 46(12), 167–177.
doi:10.1145/953460.953497

de Champeaux, D., Lea, D., & Faure, P. (1993). Object-
Oriented System Development. Addison Wesley.

De Pauw, Lei, M., Pring, E., & Villard, L. (2005). Web
services navigator: Visualizing the execution of Web
services. IBM Systems Journal, 44(4), 821-845.

de Souza, P. S. (1993). Asynchronous Organizations for
Multi-Algorithm Problems. Unpublished Doctoral Thesis,
Carnegie-Mellon University.

Deboeck, G., & Kohonen, T. (1998). Visual Explorations
in Finance with Self-Organizing Maps, London, UK:
Springer-Verlag.

Dedrick, J., & West, J. (2003). Why firms adopt open
source platforms: A grounded theory of innovation and
standards adoption. In J.L. King & K. Lyytinen (Eds.),
Proceedings of the Workshop on Standard Making: A
Critical Research Frontier for Information Systems (pp.
236–257), Seattle, WA.

DeJong, J. (2006, June 15). Of Different Minds About
Modeling. SD Times. Retrieved from http://www.sdtimes.
com/article/special-20060615-02.html.

Deligiannis, I., Shepperd, M., Roumeliotis, M., & Stame-
los, I. (2003). An empirical investigation of an object-
oriented design heuristic for maintainability. Journal of
Systems and Software, 65(2), 127–139.

398

Compilation of References

Demetriou, N., Koch, S., & Neumann, G. (2006). The
development of the OpenACS community. In M. Lytras &
A. Naeve (Eds.), Open source for knowledge and learn-
ing management: Strategies beyond tools (pp. 298–318).
Hershey, PA: Idea Group.

Dempsey, B.J., Weiss, D., Jones, P., & Greenberg, J.
(2002). Who is an open source software developer?
Communications of the ACM, 45(2), 67–72.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series
B. Methodological, 39(1), 1–38.

Dempster, A., & Rubin, D. (1983). Incomplete data in
sample surveys. In W. G. Madow, I. Olkin, & D. Rubin
(Eds.), Sample Surveys Vol. II: Theory and Annotated
Bibliography (pp. 3-10), New York: Academic Press.

Denzin, N. K. (1978). The research act: A theoretical
introduction to sociological methods: McGraw-Hill.

DeSanctis, G., & Jackson, B. M. (1994). Coordination
of information technology management: Team-based
structures and computer-based communication sys-
tems. Journal of Management Information Systems,
10(4), 85.

Deursen, van A. & Klint, P. (2002). Domain-Specific Lan-
guage Design Requires Feature Descriptions, Journal of
Computing and Information Technology, 10(1), 1-17.

Deutsch, A., Fernandez, M., & Suciu, D. (1999). Storing
Semi-structured Data with STORED. SIGMOD Confer-
ence, Philadelphia, Pennsylvania.

Di Bona, C., Ockman, S., & Stone, M. (Eds.). (1999).
Open Sources: Voices from the Open Source Revolution.
Sebastopol, CA: O’Reilly & Associates.

Dickey, M. D. (2005). Brave new (interactive) worlds: A
review of the design affordances and constraints of two
3D virtual worlds as interactive learning environments.
Interactive Learning Environments, 13(1-2), 121–137.
doi:10.1080/10494820500173714

Dickey, M. D. (2005). Three-dimensional virtual worlds
and distance learning: Two case studies of Active Worlds

as a medium for distance education. British Journal of
Educational Technology, 36(3), 439–451. doi:10.1111/
j.1467-8535.2005.00477.x

Dinh-Tong, T.T., & Bieman, J.M. (2005). The FreeBSD
project: A replication case study of open source devel-
opment. IEEE Transactions on Software Engineering,
31(6), 481–494.

Dittrich, K. R., Fritschi, H., Gatziu, S., Geppert, A., &
Vaduva, A. (2003). Samos in hindsight: experiences in
building an active object-oriented DBMS. Information
Systems Journal, 28(5), 369–392. doi:10.1016/S0306-
4379(02)00022-4

Dobing, B., & Parsons, J. (2000). Understanding the Role
of Use Cases in UML: A Review and Research Agenda.
Journal of Database Management, 11(4), 28–36.

Dori, D. (2001). Object-process methodology applied to
modeling credit card transactions. Journal of Database
Management, 12(1), 4.

Dori, D. (2002). Why Significant UML Change is
Unlikely. Communications of the ACM, 45(11), 82–85.
doi:10.1145/581571.581599

Dorman, A. (2007). FrankenSOA. Network Computing,
18(12), 41-51.

Drucker, P. (1988). The coming of the new organization.
Harvard Business Review, 3-15.

Dubé, L., & Paré, G. (2003). Rigor in information systems
positivist case research: Current practices, trends, and
recommendations. MIS Quarterly, 27(4), 597–635.

Duddy, K. (2002). UML2 Must Enable A Family of
Languages. Communications of the ACM, 45(11), 73–75.
doi:10.1145/581571.581596

Duffy, D. J. (2004). Domain Architectures: Models and
Architectures for UML Applications. New York: John
Wiley & Sons.

Duke, A., Davies, J., & Richardson, M. (2005). Enabling
a scalable service oriented architecture with Semantic
Web services. BT Technology Journal, 23(3), 191-201.

 399

Compilation of References

Dutoit, A.H., & Bruegge‚ B. (1998). Communication
metrics for software development. IEEE Transactions
on Software Engineering, 24(8), 615–628.

Eclipse Foundation. (2008). Eclipse modeling frame-
works. Retrieved from http://www.eclipse.org/modeling/
emf/

Eder, J., & Liebhart, W. (1995). The workflow activity
model WAMO. In S. Laufmann, S. Spaccapietra, & T.
Yokoi (Eds.), Proceedings of CoopIS’95 (pp. 87-98).
Vienna, Austria.

Egyed, A., & Medvidovic, N. (1999, Oct). Extending
Architectural Representation in UML with View Integra-
tion. Proceedings of the 2nd International Conference
on the Unified Modelling Language (UML), (pp. 2-16).
Fort Collins, CO.

Eisenhardt, K. M. (1989). Building theories from case
study research. Academy of Management Review, 14(4),
532–550. doi:10.2307/258557

EJB. (2007). Wikipedia. Retrieved October 12, 2007,
from http://en.wikipedia.org/wiki/Ejb

Elliott, M.S., & Scacchi, W. (2004). Free software devel-
opment: Cooperation and conflict in a virtual organiza-
tional culture. In S. Koch (Ed.), Open source software
development (pp. 152–172). Hershey, PA: Idea Group.

Erickson, J. (2008). A Decade and More of UML: An
Overview of UML Semantic and Structural Issues and
UML Field Use. Journal of Database Management,
19(3), i–vii.

Er ickson, J., & Siau, K. (2003). e-ducation.
Communications of the ACM, 46(9), 134–140.
doi:10.1145/903893.903928

Erickson, J., & Siau, K. (2007). Theoretical and Practical
Complexity of Modeling Methods. Communications of
the ACM, 50(8), 46–51. doi:10.1145/1278201.1278205

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile
modeling, agile software development, and extreme
programming: The state of research. Journal of Database
Management, 16(4), 80-89.

Eriksson, H.-E., & Penker, M. (2000). Business model-
ling with uml: OMG Group, Wiley Computer Publishing,
John Wiley & Sons, Inc.

Erlikh, L. (2000). Leveraging legacy system dollars for
e-business. IEEE IT Professional, 2(3), 17 - 23.

Evans, H., & Dickman, P. (1999, October). Zones, con-
tracts and absorbing change: An approach to software
evolution. Paper presented at the Conference on Object-
Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA ‘99), Denver, Colorado, USA.

Evans, P., & Wurster, T. S. (2000). Blown to bits: How
the new economics of information transforms strategy.
Boston, MA: Harvard Business School Press.

Evermann, J., & Wand, Y. (2001). Towards ontologically
based semantics for UML constructs. Proceedings of the
20th International Conference on Conceptual Modeling,
Yokohama, Japan (pp. 354-367).

Evermann, J., & Wand, Y. (2001). An Ontological Ex-
amination of Object Interaction in Conceptual Modeling.
In Proceedings of the 11th Workshop on Information
Technologies and Systems, New Orleans, Louisiana
(pp. 91-96).

Evermann, J., & Wand, Y. (2006). Ontological Modeling
Rules For UML: An Empirical Assessment. Journal of
Computer Information Systems, 46(5), 14–29.

Faraj, S., & Sproull, L. (2000). Coordinating Expertise
in Software Development Teams. Management Science,
46(12), 1554–1568.

Farrell, J., & Saloner, G. (1986). Installed base and
compatibility: Innovation, product preannouncements,
and predation. The American Economic Review, 76(5),
940–955.

Fayad, M.E., & Schmidt, D.C. (1997). Object-oriented
application frameworks. Communications of the ACM,
40(10), 32–39.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996).
The KDD process for extracting useful knowledge from
volumes of data. Communications of the ACM, 39(11),
7–34.

400

Compilation of References

Feller, J., Finnegan, P., Fitzgerald, B., & Hayes, J. (2008).
From Peer Production to Productization: A Study of
Socially Enabled Business Exchanges in Open Source
Service Networks. Information Systems Research, 19(4),
475–493. doi:10.1287/isre.1080.0207

Feller, J., Finnegan, P., Hayes, J., & Lundell, B. (2006,
June 8-10). Business models for Open Source Software:
Towards a mature understanding of the concept and its
implications for practice. Panel Presentation at the IFIP
2.13 Conference on Open Source Software, Genoa Italy
8th-10th June.

Feller, J., Finnegan, P., Kelly, D., & MacNamara, M.
(2006, July 12-15). Developing Open Source Software:
A Community-based Analysis of Research. In Pro-
ceedings of the IFIP 8.2 Working Conference on Social
Exclusion--Societal and Organisational Implications
for Information Systems, Limerick, Ireland.

Feller, J., Fitzgerald, B., Hissam, S.A., & Lakhani, K.R.
(Eds.). (2005). Perspectives on free and open source
software. Cambridge, MA: MIT Press.

Fenton, N.E. (1991). Software metricsa rigorous ap-
proach. London: Chapman & Hall.

Ferguson, D., & Stockton, M. (2005). Service oriented
architecture: Programming model and product architec-
ture. IBM Systems Journal, 44(4), 753-780.

Fernandez, M., Morishima, A., & Suciu, D. (2001).
Publishing Relational Data in XML:the SilkRoute Ap-
proach. A Quarterly Bulletin of the Computer Society
of the IEEE Technical Committee on Data Engineering,
24(2), 12–19.

Fernández, W. D., Lehmann, H., & Underwood, A.
(2002, June 6-8). Rigour and relevance in studies of IS
innovation: A grounded theory methodology approach.
Proceedings of the European Conference on Information
Systems (ECIS) 2002, (pp. 110-119).Gdansk, Poland.

Fichman, R. G. (2000). The diffusion and assimilation of
information technology innovations. In R. Zmud (Ed.),
Framing the domains of IT management: Projecting
the future through the past. Cincinnati, OH: Pinnaflex
Publishing.

Fichman, R. G., & Kemerer, C. F. (1993). Adoption of
software engineering process innovations: The case of
object orientation. Sloan Management Review, 34(2),
7–22.

Fingar, P. (2000). Component-based frameworks for e-
commerce. Communications of the ACM, 43(10), 61–66.
doi:10.1145/352183.352204

Finholt, T., Sproull, L., & Kiesler, S. (1990). Commu-
nication and Performance in Ad Hoc Task Groups. In
J. Galegher, R. F. Kraut & C. Egido (Eds.), Intellectual
Teamwork. Hillsdale, NJ: Lawrence Erlbaum and As-
sociates.

Finke, L. D. (2003). Creating Significant Learning Ex-
periences. San Francisco, CA: Jossey-Bass, John Wiley
& Sons Inc.

Finnegan, P., Galliers, R. D., & Powell, P. (2003). Ap-
plying Triple Loop Learning to planning electronic trad-
ing systems. Information Technology & People, 16(4),
461–483. doi:10.1108/09593840310509662

Fiol, C.M., & Connor, O.J. (2003). Waking up! Mindful-
ness in the face of bandwagons. Academy of Management
Review, 28(1), 54–70.

Fioravanti, F., & Nesi, P. (2001). Estimation and prediction
metrics for adaptive maintenance effort of object-oriented
systems. IEEE Transactions on Software Engineering,
27(12), 1062–1084.

Fischer, M., Pinzger, M., & Gall, H. (2003). Populating
a release history database from version control and bug
tracking systems. Proceedings of the 19th IEEE Interna-
tional Conference on Software Maintenance (pp. 23–32),
Amsterdam, The Netherlands.

Fitzgerald, B. (2006). The transformation of Open Source
Software. MIS Quarterly, 30(3), 587–598.

Florescu, D., & Kossmann, D. (1999). Storing and Query-
ing XML Data Using an RDBMS. A Quarterly Bulletin of
the Computer Society of the IEEE Technical Committee
on Data Engineering, 22(3), 27–34.

Fogel, K. (1999). Open source development with CVS.
Scottsdale: CoriolisOpen Press.

 401

Compilation of References

Fong, C. K. (2007, June). Successful implementation
of model driven architecture: A case study of how
Borland Together MDA technologies were successfully
implemented in a large commercial bank. Retrieved
November 23, 2007, from http://www.borland.com/
resources/en/pdf/products/together/together-successful-
implementation-mda.pdf

Fong, J., & Cheung, S. K. (2005). Translating rela-
tional schema into XML schema definition with data
semantic preservation and XSD graph. Information
and Software Technology, 47(7), 437–462. doi:10.1016/j.
infsof.2004.09.010

Fong, J., & Wong, H. K. (2004). XTOPO, An XML-based
Technology for Information Highway on the Internet.
Journal of Database Management, 15(3), 18–44.

Foray, D. (1994). Users, standards and the economics of
coalitions and committees. Information Economics and
Policy, 6(3-4), 269–293. doi:10.1016/0167-6245(94)90005-
1

Foster, A. (2007). ‘Immersive education’ submerges stu-
dents in online worlds made for learning. The Chronicle
of Higher Education, 54(17), A22.

Foster, A. (2007). Professor avatar. The Chronicle of
Higher Education, 54(4), A24–A26.

Fowler, M. (1999). Refactoring: Improving the design of
existing code. Boston: Addison-Wesley.

France, R. B., Ghosh, S., Dinh-Trong, T., & Solberg,
A. (2006, February). Model-driven development using
UML 2.0: Promises and pitfalls. Computer, 39(2), 59-66.
Retrieved June 5, 2006, from http://doi.ieeecomputerso-
ciety.org/10.1109/MC.2006.65

France, R. B., Kim, D.-K., Ghosh, S., & Song, E. (2004).
A UML-Based Pattern Specification Technique. IEEE
Transactions on Software Engineering, 30(3), 193–206.
doi:10.1109/TSE.2004.1271174

Franck, E., & Jungwirth, C. (2002). Reconciling investors
and donators: The governance structure of open source
(Working Paper No. No. 8): Lehrstuhl für Unterneh-
mensführung und -politik, Universität Zürich.

Franke, N., & von Hippel, E. (2003). Satisfying hetero-
geneous user needs via innovation toolkits: The case
of Apache security software. Research Policy, 32(7),
1199–1216. doi:10.1016/S0048-7333(03)00049-0

Franke, N., von Hippel, E., & Schreier, M. (2006). Finding
commercially attractive user innovations: A test of lead
user theory. Journal of Product Innovation Management,
23(4), 301–315. doi:10.1111/j.1540-5885.2006.00203.x

Fritschi, H., Gatziu, S., & Dittrich, K. R. (1998). Fram-
boise - an Approach to framework-based active database
management system construction. In G. Gardarin, J. C.
French, N. Pissinou, K. Makki, & L. Bouganim (Eds.),
Proceedings of CIKM ‘98 (pp. 364-370). New York:
ACM Press.

Funderburk, J. E., Kiernan, G., Shanmugasundaram,
J., Shekita, E., & Wei, C. (2002). XTABLES: Bridging
relational technology and XML. IBM Systems Journal,
41(4).

Gacek, C., & Arief, B. (2004). The many meanings of
Open Source. IEEE Software, 21(1), 34–40.

Gaimster, J. (2008). Reflections on interactions in virtual
worlds and their implication for learning art and design.
Art, Design, &. Communication in Higher Education,
6(3), 187–199. doi:10.1386/adch.6.3.187_1

Galaskiewicz, J. (1985). Interorganisational relations.
Annual Review of Sociology, 11, 281–304. doi:10.1146/
annurev.so.11.080185.001433

Galbraith, J. R. (1973). Designing Complex Organiza-
tions. Reading, MA: Addison-Wesley.

Gallivan, M.J. (2001). Striking a balance between trust
and control in a virtual organization: A content analysis
of open source software case studies. Information Systems
Journal, 11(4), 277–304.

Garlan, D., & Kompanek, A. J. (2000). Reconciling the
needs of architectural description with object-modeling
notations. Proceedings of the Third International Confer-
ence on the Unified Modeling Language - UML 2000,
(pp. 498-512). York, UK.

402

Compilation of References

Gatziu, S., Koschel, A., von Bultzingsloewen, G., &
Fritschi, H. (1998). Unbundling active functionality. SIG-
MOD Record, 27(1), 35–40. doi:10.1145/273244.273255

Gemino, A. (2004). Empirical comparisons of animation
and narration in requirements validation. Requirements
Engineering, 9(3), 153–168. doi:10.1007/s00766-003-
0182-0

Gemino, A., & Parker, D. (2009). Use Case Diagrams in
Support of Use Case Modeling: Deriving Understanding
from the Picture. Journal of Database Management,
20(1), 1–24.

Gemino, A., & Wand, Y. (2003). Evaluating modeling
techniques based on models of learning. Communications
of the ACM, 46(10), 79–84. doi:10.1145/944217.944243

Gemino, A., & Wand, Y. (2004). A framework for em-
pirical evaluation of conceptual modeling techniques.
Requirements Engineering, 9(4), 248–260. doi:10.1007/
s00766-004-0204-6

Gemino, A., & Wand, Y. (2005). Complexity and clarity
in conceptual modeling: Comparison of mandatory and
optional properties. Data & Knowledge Engineering,
55(3), 301–326. doi:10.1016/j.datak.2004.12.009

Geppert, A., Tombros, D., & Dittrich, K. R. (1998). Defin-
ing the semantics of reactive components in event-driven
workflow execution with event histories. Information
Systems Journal, 23(3-4), 235–252. doi:10.1016/S0306-
4379(98)00011-8

German, D. (2006). A study of contributors of Postgr-
eSQL. Proceedings of the International Workshop on
Mining Software Repositories (MSR’06), Shanghai.

Geuss, R. (1994). Ideology. In T. Eagleton (Ed.), Ideology
(pp. 260–278). Essex, UK: Longman Group.

Ghosh, R.A., & Prakash, V.V. (2000). The Orbiten free
software survey. First Monday, 5(7).

Glaser, B. (1978). Theoretical sensitivity: Advances
in the methodology of grounded theory. Mill Valley:
Sociology Press.

Glaser, B., & Strauss, A. L. (1967). The discovery of
grounded theory: Strategies for qualitative research.
Chigago: Aldine.

Goldman, R., & Widom, J. (1997). DataGuides: En-
abling Query Formulation and Optimization in Kanne,
CC.,(2000). Guido Moerkotte. Efficient storage of xml
data. In Proc. of ICDE, California, USA (p. 198).

Goldman, S. L., Nagel, R. N., & Preiss, K. (1995). Ag-
ile competitors and virtual organisations: Strategies
for enriching the customer. New York: Van Nostrand
Reinhold.

Goldstein, H. (1999). Multilevel statistical models.
London: Arnold.

Gomaa, H. (2004). Designing Software Product Lines
with UML: From Use Cases to Pattern-based Software
Architectures. The Addison-Wesley Object Technology
Series.

Gomaa, H., & Eonsuk-Shin, M. (2002). Multiple-View
Meta-Modeling of Software Product Lines. In Proceed-
ings of the Eighth IEEE International Conference on
Engineering of Complex Computer Systems.

Gomaa, H., & Kerschberg, L. (1995). Domain Model-
ing for Software Reuse and Evolution. In Proceedings
of Computer Assisted Software Engineering Workshop
(CASE 95).

Goral, T. (2008). Sizing up Second Life. University
Business, 11(3), 60–64.

Gormley, J., W. Bluestein, J. Gatoff & H. Chun (1998). The
runaway costs of packaged applications. The Forrester
Report, 3(5). Cambridge, MA: Forrester Research, Inc.

Gottesdiener, E. (1997). Business rules show power,
promise. Application Development Trends, 4(3, March
1997).

Grabowski, M., & Roberts, K. H. (1999). Risk mitiga-
tion in virtual organizations. Organization Science,
10(6), 704–721.

Graves, L. (2008). A Second Life for higher ed. U.S.
News & World Report, 144(2), 49–50.

 403

Compilation of References

Gray, B., & Gorelick, J. (2004, March 1). Database piracy
plague. The Washington Times. Retrieved from http://
www.washingtontimes.com

Green, P., & Rosemann, M. (2004). Applying ontolo-
gies to business and systems modeling techniques and
perspectives: Lessons learned. Journal of Database
Management, 15(2), 105–117.

Greunz, M., & Stanoevska-Slabeva, K. (2002). Modeling
business media platforms. 35th Annual Hawaii Interna-
tional Conference on System Sciences, Maui, HI.

Grinter, R. E. (1999). Systems architecture: Product de-
signing and social engineering. ACM SIGSOFT Software
Engineering Notes, 24(2), 11-18.

Grinter, R. E., Herbsleb, J. D., & Perry, D. E. (1999). The
Geography of Coordination: Dealing with Distance in
R&D Work. In Proceedings of the GROUP ‘99 Confer-
ence (pp. 306–315). Phoenix, Arizona, US.

Gross-Amblard, D. (2003). Query-preserving watermark-
ing of relational databases and XML documents. Pro-
ceedings of ACM Symposium on Principles of Database
Systems (PODS) (pp. 191-201).

Grossman, M., Aronson, J., & McCarthy, R. (2005). Does
UML make the grade? Insights from the software develop-
ment community. Information and Software Technology,
47(6), 383–397. doi:10.1016/j.infsof.2004.09.005

Grubb, P., & Takang, A. A. (2003). Software maintenance:
Concepts and practice. Singapore: World Scientific
Publishing.

Gruber, T. (1993). A translation approach to portable
ontology specifications. Knowledge Acquisition, 5(2),
199–220. doi:10.1006/knac.1993.1008

Gruber, T. (1995). Toward principles for the design of
ontologies used for knowledge sharing. International
Journal of Human-Computer Studies, 43(5/6), 907–928.
doi:10.1006/ijhc.1995.1081

Guo, H., Li, Y., & Jajodia, S. (2007). Chaining watermarks
for detecting malicious modifications to streaming data.
Information Sciences, 177(1), 281-298.

Guo, H., Li, Y., Liu, A., & Jajodia, S. (2006). A fragile
watermarking scheme for detecting malicious modifi-
cations of relational databases. Information Sciences,
176(10), 1350-1378.

Guo, J., Li, Y., Deng, R. H., & Chen, K. (2006). Rights
protection for data cubes. Proceedings of Information
Security Conference (ISC) (pp. 359-372).

Guru, A., & Siau, K. (2008). Developing the IBM I
Virtual Community – iSociety. Journal of Database
Management, 19(4), i–xiii.

Hahsler, M., & Koch, S. (2005). Discussion of a large-scale
open source data collection methodology. Proceedings of
the Hawaii International Conference on System Sciences
(HICSS-38), Big Island, HI.

Halle, B. V. (1994). Back to business rule basics. Database
Programming and Design(October 1994), 15-18.

Hallen, J., Hammarqvist, A., Juhlin, F., & Chrigstrom,
A. (1999). Linux in the workplace. IEEE Software,
16(1), 52–57.

Hamilton, M.B. (1987). The elements of the concept of
ideology. Political Studies, 35(1), 18–38.

Hand, D. J. (1981). Discrimination and Classification.
New York: Wiley.

Hand, D. J. (1998). Data mining: Statistics and
more? The American Statistician, 52(2), 112–118.
doi:10.2307/2685468

Hann, I.-H., Roberts, J., Slaughter, S., & Fielding, R.
(2002). Economic incentives for participating in open
source software projects. In Proceedings of the Twenty-
Third International Conference on Information Systems
(pp. 365–372).

Hansen, M., Köhntopp, K., & Pfitzmann, A. (2002).
The open source approach—opportunities and limita-
tions with respect to security and privacy. Computers &
Security, 21(5), 461–471.

Hansen, M.T., & Haas, M.R. (2001). Competing for
attention in knowledge markets: Electronic document
dissemination in a management consulting company.
Administrative Science Quarterly, 46(1), 1–28.

404

Compilation of References

Hanseth, O., Monteiro, E., & Hatling, M. (1996). Devel-
oping information infrastructure: The tension between
standardization and flexibility. Science, Technology &
Human Values, 21(4), 407-426.

Harel, D. (1987). Statecharts: A visual formalism for
complex systems. Science of Computer Programming,
8(3), 231–274. doi:10.1016/0167-6423(87)90035-9

Harrison, D.A., Mykytyn, P.P. Jr., & Riemenschneider,
C.K. (1997). Executive decisions about adoption of
information technology in small business: Theory and
empirical tests. Information Systems Research, 8(2),
171–195.

Havenstein, H. (2006). Measuring SOA performance is
a complex art. Computer World, 40(2), 6.

Hay, D., & Healy, K. A. (1997). Business rules: What are
they really? GUIDE (The IBM User Group). Retrieved
from http://www.BusinessRulesGroup.org/):.

Hay, D., & Healy, K. A. (2000). Defining business rules
~ what are they really? (No. Rev 1.3): the Business
Rules Group.

Healy, K., & Schussman, A. (2003). The ecology of open
source software development. Open Source, MIT. Work-
ing paper. http://opensource.mit.edu/papers/healyschuss-
man.pdf. Last accessed January 8, 2007.

Hecker, F. (2000). Setting up shop: The business of Open-
Source Software [Working paper]. Retrieved from http://
www.hecker.org/writings/setting-up-shop

Henderson, J. C. (1990). Plugging into strategic partner-
ships: The critical IS connection. Sloan Management
Review, 30(3), 7–18.

Henderson-Seller, B. (1996). Object-oriented metrics:
Measures of complexity. Upper Saddle River, NJ: Pren-
tice Hall.

Henderson-Sellers, B. (2005, February). UML the
good, the bad or the ugly? Perspectives from a panel
of experts. Software and Systems Modeling, 4(1), 4-13.
Retrieved June 5, 2006, from http://dx.doi.org/10.1007/
s10270-004-0076-8

Henkel, J. (2006). Selective revealing in open innovation
processes: The case of embedded Linux. Research Policy,
35(7), 953–969. doi:10.1016/j.respol.2006.04.010

Herbsleb, J. D., & Grinter, R. E. (1999). Architectures,
coordination, and distance: Conway’s law and beyond.
IEEE Software(September/October), 63–70.

Herbsleb, J. D., & Grinter, R. E. (1999). Splitting the
organization and integrating the code: Conway’s law
revisited. Paper presented at the Proceedings of the In-
ternational Conference on Software Engineering (ICSE
‘99), Los Angeles, CA.

Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter,
R. E. (2001). An empirical study of global software de-
velopment: Distance and speed. Paper presented at the
Proceedings of the International Conference on Software
Engineering (ICSE 2001), Toronto, Canada.

Herbst, H. (1996). Business rule oriented conceptual
modelling. Verlag: Physica .

Herbst, H. (1996). Business rules in system analysis: A
meta-model and repository system. Information Systems,
21(2), 147-166.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Moti-
vation of software developers in open source projects:
an Internet-based survey of contributors to the Linux
kernel. Research Policy, 32, 1159–1177. doi:10.1016/
S0048-7333(03)00047-7

Hicks, B. (n.d.). Oracle Enterprise Service Bus: The
foundation for service oriented architecture. Retrieved
October 18, 2007, from http://www.oracle.com/global/
ap/openworld/ppt_download/middleware_oracle%20
enterprise%20service%20bus%20foundation_250.pdf

Hicks, C., & Pachamanova, D. (2007). Back-propagation
of user innovations: The open source compatibility
edge. Business Horizons, 50(4), 315–324. doi:10.1016/j.
bushor.2007.01.006

Hill, C. W. L. (1997). Establishing a standard: Competitive
strategy and technological standards in winner-take-all
industries. The Academy of Management Executive,
11(2), 7–25.

 405

Compilation of References

Himanen, P., Torvalds, L., & Castells, M. (2002). The
Hacker Ethic. New York: Random House.

Hirschheim, R., & Klein, H. K. (1989). Four paradigms
of information systems development. Communications
of the ACM, 32(10), 1199-1216.

Hitt, L., & Brynjolfsson, E. (1996). Productivity, profit,
and consumer welfare: Three different measures of
information technology’s value. MIS Quarterly, 20(20),
144–162.

Hofmeister, C., Nord, R., & Soni, D. (1999). Applied
software architecture. Reading, MA: Addison-Wesley.

Hofmeister, C., Nord, R., & Soni, D. (1999). Describing
software architecture with UML. Proceedings of the
First Working IFIP Conference on Software Architecture
(WICSA1), (pp. 145-160). San Antonio, TX.

Hopfield, J. J., & Tank, D. W. (1986). Computing with
neural circuits. The Sciences, 233, 625–633.

Hovav, A., Patnayakuni, R., & Schuff, D. (2004). A model
of internet standards adoption: The case of IPv6. Informa-
tion Systems Journal, 14(3), 265–294. doi:10.1111/j.1365-
2575.2004.00170.x

Hsu, M., & Kleissner, C. (1996). Objectflow: towards
a process management infrastructure. Distributed
and Parallel Databases, 4(2), 169–194. doi:10.1007/
BF00204906

Huang, C. (2001). Using Intelligent Agents to Manage
Fuzzy Business Processes. IEEE Transactions on Sys-
tems, Man, and Cybernetics. Part A, Systems and Humans,
31(6), 508–523. doi:10.1109/3468.983409

Huang, S., Hung, S., Yen, D., Li, S., & Wu, C. (2006).
Enterprise application system reengineering: a business
component approach. Journal of Database Management,
17(3), 66–91.

Humphrey, W. (1995). A discipline for software engineer-
ing. Reading, MA: Addison-Wesley.

Humphrey, W. S. (2000). Introduction to Team Software
Process: Addison-Wesley.

Hunt, F., & Johnson, P. (2002). On the pareto distribu-
tion of sourceforge projects. Proceedings of the Open
Source Software Development Workshop (pp. 122–129),
Newcastle, UK.

Hutchinson, B., Henzel, J., & Thwaits, A. (2006). Using
Web services to promote library-extension collaboration.
Library Hi Tech, 24(1), 126-141.

Iacovou, C. L., Benbasat, I., & Dexter, A. S. (1995).
Electronic data interchange and small organizations:
Adoption and impact of technology. MIS Quarterly,
19(4), 465–485. doi:10.2307/249629

Iannacci, F. (2005). Coordination processes in OSS
development: The Linux case study. Retrieved 21
September, 2006, from http://opensource.mit.edu/papers/
iannacci3.pdf

IBM (Cartographer). (2003). Ibm websphere application
server enterprise

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The
unified software development process. New York:
Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard,
G. (1992). Object-Oriented Software Engineering: A
Use Case Driven Approach. Reading, MA: Addison-
Wesley.

Jacobson, I., Ericsson, M., & Jacobson, A. (1994). The
Object Advantage: Business Process Reengineering with
Object Technology. Reading, MA: Addison-Wesley.

Jarmon, L., Traphagan, T., & Mayrath, M. (2008).
Understanding project-based learning in Second
Life with pedagogy, training, and assessment trio.
Educational Media International, 45(3), 157–176.
doi:10.1080/09523980802283889

Jarvenpaa, S. L., & Leidner, D. E. (1999). Communication
and trust in global virtual teams. Organization Science,
10(6), 791–815.

Jarvenpaa, S. L., & Machesky, J. J. (1989). Data analysis
and learning: an experimental study of data modeling
tools. International Journal of Man-Machine Studies,
31(4), 367–391. doi:10.1016/0020-7373(89)90001-1

406

Compilation of References

Jennings, N., & Collins, C. (2007). Virtual or virtually
U. International Journal of Social Sciences, 2(3), 180-
186. Retrieved April 7, 2008, from http://www.waset.
org/ijss/v2/v2-3-28.pdf

Jensen, C., & Scacchi, W. (2005). Collaboration, Leader-
ship, Control, and Conflict Negotiation in the Netbeans.
org Open Source Software Development Community. In
Proceedings of the Hawai’i International Conference on
System Science (HICSS 2005). Big Island, Hawai’i.

Johnson, L. F., & Levine, A. H. (2008). Virtual
worlds: Inherently immersive, highly social learn-
ing spaces. Theory into Practice, 47(2), 161–170.
doi:10.1080/00405840801992397

Johnson, N. F., Duric, Z., & Jajodia, S. (2000). Informa-
tion hiding: Steganography and watermarking. Attacks
and countermeasures. Kluwer.

Johnson, R. (1997). Frameworks=(components+pattern
s). Communications of the ACM, 40(10), 39–42.

Johnson, R., & Hardgrave, B. (1999). Object-oriented
methods: current practices and attitudes. Journal of
Systems and Software, 48(1), 5–12. doi:10.1016/S0164-
1212(99)00041-2

Joly, K. (2007). A Second Life for higher educa-
tion? University Business. Retrieved April 17, 2008
from http://www.universitybusiness.com/viewarticle.
aspx?articleid=797.

Jones, C. (1986). Programming productivity. New York:
McGraw-Hill.

Jones, M. (1998). Information Systems and the Double
Mangle: Steering a Course Between the Scylla of Embed-
ded Structure and the Charybdis of Strong Symmetry.
IFIP WG8.2/8.6 Joint Working Conference, Helsinki,
Finland.

Jones, S. (2005). Toward an acceptable definition of
service. IEEE Software, 22(3), 87-93.

Joynt, P. (1991). International dimensions of managing
technology. Journal of General Management, 16(3),
73–84.

Junglas, I. A., & Steel, D. J. (2007). The virtual sandbox.
The Data Base for Advances in Information Systems,
38(4), 26–28.

Junglas, I. A., Johnson, N. A., Steel, D. J., Abraham, D.
C., & Loughlin, P. M. (2007). Identify formation, learn-
ing styles and trust in virtual worlds. The Data Base for
Advances in Information Systems, 38(4), 90–96.

Kalakota, R., & Robinson, M. (2001). e-Business 2.0:
Roadmap for Success: Addison-Wesley.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., &
Huh, M. (1998). FORM: A feature-oriented reuse
method with domain-specific reference architec-
tures. Annals of Software Engineering, 5(1), 143–168.
doi:10.1023/A:1018980625587

Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson,
A. (1990). Feature-Oriented Domain Analysis (FODA)
Feasibility Study, CMU/SEI-90-TR-021 ADA235785.

Kanter, R. M. (1989). The future of bureaucracy and
hierarchy in organisational theory: A report from the
field. In P. Bourdieu & J. Coleman (Eds.), Social Theory
for a Changing Society. Boulder: Westview.

Kaplan, B. (1991). Models of change and information
systems research. In H.-E. Nissen, H. K. Klein & R.
Hirschheim (Eds.), Information Systems Research:
Contemporary Approaches and Emergent Traditions (pp.
593–611). Amsterdam: Elsevier Science Publishers.

Katz, M. L., & Shapiro, C. (1994). Systems competition
and network effects. The Journal of Economic Perspec-
tives, 8(2), 93–115.

Katzenbeisser, S., & Petitcolas, F. A. (2000). Informa-
tion hiding techniques for steganography and digital
watermarking. Artech House.

Kaufman, F. (1966). Data systems that cross company
boundaries. Harvard Business Review, 44(1), 141–155.

Kay, M. (1999) DTDGenerator – A tool to generate XML
DTDs. Retrieved from http://users.breathe.com/mhkay/
saxon/dtdgen.html

 407

Compilation of References

Kazman, R., Klein, M., & Clements, P. (2000). ATAM:
Method for Architecture Evaluation (Technical report
No. CMU/SEI-2000-TR-004): Software Engineering
Institute.

Kelly, S., & Tolvanen, J.-P. (2008). Domain-specific
modeling. Hoboken, NJ: John Wiley & Sons.

Kemerer, C.F., & Slaughter, S. (1999). An empirical ap-
proach to studying software evolution. IEEE Transactions
on Software Engineering, 25(4), 493–509.

Khatri, V., Vessey, I., Ramesh, V., Clay, P., & Park, S.-J.
(2006). Understanding Conceptual Schemas: Exploring
the Role of Application and IS Domain Knowledge. In-
formation Systems Research, 17(1), 81–99. doi:10.1287/
isre.1060.0081

Kim, D. K. (2007). The Role-Based Metamodeling
Language for Specifying Design Patterns. In T. Taibi
(Ed.), Design Pattern Formalization Techniques (pp.
183-205). Hershey, PA: IGI Global.

Kim. D. K., & Shen, W. (2008). Evaluating Pattern Confor-
mance of UML Models: A Divide-and-Conquer Approach
and Case Studies. Software Quality Journal.

Kim, H. (2002). Predicting how ontologies for the se-
mantic Web will evolve. Communications of the ACM,
45(2), 48–54. doi:10.1145/503124.503148

Kim, H. M., Sengupta, A., Fox, M. S., & Dalkilic, M.
(2007). A measurement ontology generalizable for emerg-
ing domain applications on the Semantic Web. Journal
of Database Management, 18(1), 20-42.

Kim, J., & Lim, K. (2007). An approach to service oriented
architecture using Web service and BPM in the Telcom
OSS domain. Internet Research, 17(1), 99-107.

Kim, J., Hahn, J., & Hahn, H. (2000). How Do We Un-
derstand a System with (So) Many Diagrams? Cognitive
Integration Processes in Diagrammatic Reasoning. Infor-
mation Systems Research, 11(3), 284–303. doi:10.1287/
isre.11.3.284.12206

Kim, Y.-G., & Everest, G. C. (1994). Building an IS ar-
chitecture: Collective wisdom from the field. Information
& Management, 26(1), 1-11.

Kim, Y.-G., & March, S. T. (1995). Comparing Data
Modeling Formalisms, 38(6), 103–115.

Kirsch, L. J. (2004). Deploying common systems globally:
The dynamics of control. Information Systems Research,
15(4), 375–395. doi:10.1287/isre.1040.0036

Klein, K.J., Tosi, H., & Cannella, A.A. Jr. (1999).
Multilevel theory building: Benefits, barriers, and new
development. Academy of Management Review, 24(2),
243–248.

Klein, M., & Konig-Ries, B. (2004). Combining Query
and Preference - an Approach to Fully Automatize Dy-
namic Service Binding. In Proceedings of IEEE Interna-
tional Conference on Web Services (pp. 788-791).

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA ex-
plained: The model driven architecture. Practice and
promise. Reading, MA: Addison-Wesley.

Klettke, M., Schneider, L., & Heuer, A. (2002). Metrics
for XML document collections. Akmal Chaudri and
Rainer Unland, XMLDM Workshop, Prague, Czech
Republic (pp.162-176).

Kobryn, C. (1999). UML 2001: A Standardization
Odyssey. Communications of the ACM, 42(10), 29–37.
doi:10.1145/317665.317673

Kobryn, C. (2002). Will UML 2.0 Be Agile or Awk-
ward? Communications of the ACM, 45(1), 107–110.
doi:10.1145/502269.502306

Koch, S. (2004). Profiling an open source project ecol-
ogy and its programmers. Electronic Markets, 14(2),
77–88.

Koch, S. (2004). Agile principles and open source
software development: A theoretical and empirical
discussion. Extreme Programming and Agile Processes
in Software Engineering: Proceedings of the 5th In-
ternational Conference XP 2004 (pp. 85–93). Berlin:
Springer-Verlag (LNCS 3092).

Koch, S., & Schneider, G. (2002). Effort, cooperation and
coordination in an open source software project: GNOME.
Information Systems Journal, 12(1), 27–42.

408

Compilation of References

Kogut, B., & Metiu, A. (2001). Open-source software
development and distributed innovation. Oxford Review
of Economic Policy, 17(2), 248–264.

Kohonen, T. (1989). Self-Organization and Associative
Memory (3rd ed.). New York: Springer-Verlag.

Koike, Y. (2001). A Conversion Tool from DTD to XML
Schema. Retrieved from http://www.w3.org/2000/04/
schema_hack/

Koontz, C. (2000). Develop a solid e-commerce archi-
tecture. e-Business Advisor(January).

Koru, A.G., & Tian, J. (2004). Defect handling in me-
dium and large open source projects. IEEE Software,
21(4), 54–61.

Koru, A.G., & Tian, J. (2005). Comparing high-change
modules and modules with the highest measurement val-
ues in two large-scale open-source products. IEEE Trans-
actions on Software Engineering, 31(8), 625–642.

Kovari, P., Diaz, D. C., Fernandes, F. C. H., Hassan, D.,
Kawamura, K., Leigh, D., et al. (2003). Websphere ap-
plication server enterprise v5 and programming model
extensions: Websphere handbook series (First Edition
ed.): International Business Machines Corporation.

Krafzig, D., Banke, K., & Slama, D. (2005). SOA elements.
Prentice Hall. Retrieved October 2, 2007, from http://
en.wikipedia.org/wiki/Image:SOA_Elements.png

Krammer, M. I. (1997). Business rules: Automating
business policies and practicies. Distributed Computing
Monitor(May 1997).

Kraut, R. E., & Streeter, L. A. (1995). Coordination in
software development. Communications of the ACM,
38(3), 69–81.

Kraut, R. E., Steinfield, C., Chan, A. P., Butler, B., &
Hoag, A. (1999). Coordination and virtualization: The
role of electronic networks and personal relationships.
Organization Science, 10(6), 722–740.

Kreft, I., & de Leeuw, J. (2002). Introducing multilevel
modeling. London: Sage.

Krill, P. (2005). Borland upgrading IDE while prepar-
ing for eclipse future. [Electronic version]. InfoWorld.
Retrieved January 30, 2006.

Krishnakumar, N., & Sheth, A. P. (1995). Managing
heterogeneous multi-system tasks to support enterprise-
wide operations. Distributed and Parallel Databases,
3(2), 155–186. doi:10.1007/BF01277644

Krishnamurthy, S. (2002). Cave or Community? An
Empirical Examination of 100 Mature Open Source
Projects. First Monday, 7(6).

Krishnamurthy, S. (2005). An analysis of open source
business models. In J. Feller, B. Fitzgerald, S. Hissam, &
K. Lakhani (Eds.), Perspectives on free and open source
software. Cambridge, MA: MIT Press.

Kung, C. H., & Solvberg, A. (1986). Activity modelling and
behaviour modelling. Paper presented at the Proceedings
of the IFIP WG 8.1 working conference on comparative
review of information systems design methodologies:
improving the practice, North-Holland, Amsterdam.

Kunnath, M. L. A., Cornell, R. A., Kysilka, M. K., &
Witta, L. (2007). An experimental research study on the
effect of pictorial icons on a user-learner’s performance.
Computers in Human Behavior, 23(3), 1454–1480.
doi:10.1016/j.chb.2005.05.005

Kuntzmann, A., & Kruchten, P. (2003). The ratio-
nal unified process—an enabler for higher process
maturity. Retrieved April 19, 2007 from http://
www-128.ibm.com/developerworks/rational/library/
content/03July/0000/0579/Rational_CMM_WhitePaper.
pdf.

Langdon, C. S. (2006). Designing information systems
capabilities to create business value: A theoretical con-
ceptualization of the role of flexibility and integration.
Journal of Database Management, 17(3), 1–18.

Lange, C. F. J., Chaudron, M. R. V., & Muskens, J. (2006).
In Practice: UML Software Architecture and Design
Description. IEEE Software, 23(2), 40–46. doi:10.1109/
MS.2006.50

Larkin, J. H., & Simon, H. A. (1987). Why a Diagram is
(Sometimes) Worth Ten Thousand Words. Cognitive Sci-

 409

Compilation of References

ence, 11(1), 65–100. doi:10.1016/S0364-0213(87)80026-
5

Larman, C. (2005). Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design
and Iterative Development (3rd ed.). Upper Saddle River,
NJ: Prentice Hall.

Lawrence, P., & Lorsch, J. (1967). Organization and En-
vironment. Boston, MA: Division of Research, Harvard
Business School.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J.,
Thomason, C., et al. (2001, 17 May). The generic model-
ing environment. Paper presented at the Workshop on
Intelligent Signal Processing, Budapest, Hungary.

Lee, A. S., & Baskerville, R. L. (2003). Generalizing
generalizability in Information Systems research. Infor-
mation Systems Research, 14(3), 221–243. doi:10.1287/
isre.14.3.221.16560

Lee, D. W., & Chu, W. W. (2000). Comparative Analysis
of Six XML Schema Languages. SIGMOD Record, 29(3).
doi:10.1145/362084.362140

Lee, D. W., & Chu, W. W. (2000). Constraints-Preserving
Transformation from {XML} Document Type Defini-
tion to Relational Schema. International Conference on
Conceptual Modeling / the Entity Relationship Approach
(pp. 323-338).

Lee, D. W., Mani, M., & Chu, W. W. (2003). Schema Con-
version Methods between XML and Relational Models.
Knowledge Transformation for the Semantic Web.

Lee, H. (2004). The Triple-A Supply Chain. Harvard
Business Review, 82(10), 102–112.

Lee, J., & Truex, D. P. (2000). Exploring the impact of
formal training in ISD methods on the cognitive structure
of novice information systems developers. Information
Systems Journal, 10(4), 347–367. doi:10.1046/j.1365-
2575.2000.00086.x

Lee, J., Siau, K., & Hong, S. (2003). Enterprise integra-
tion with ERP and EAI. Communications of the ACM,
46(2), 54-60.

Lee, W., & Lim, T. (2007). Architectural Measurements
on the World Wide Web as a Graph. Journal of Informa-
tion Technology and Architecture, 4(2), 61–69.

Lee, W., Kang, S., Lim, S., Shin, M., & Kim, Y. (2007).
Adaptive Hierarchical Surrogate for Searching Web with
Mobile Devices. IEEE Transactions on Consumer Elec-
tronics, 53(2), 796–803. doi:10.1109/TCE.2007.381762

Lehman, M. M., & Belady, L. A. (1985). Program evolu-
tion: Processes of software change. London: Academic
Press, Inc.

Lei, D., & Slocum, J. W. (1992). Global strategy,
competence-building and strategic alliances. California
Management Review, 35(1), 81–97.

Leibovitch, E. (1999). The business case for Linux. IEEE
Software, 16(1), 40–44.

Leist, S., & Zellner, G. (2006, April 23-27). Evaluation
of current architecture frameworks. SAC’06, (pp. 1546-
1553). Dijon, France.

Lerner, J., & Tirole, J. (2001). The open source move-
ment: Key research questions. European Economic
Review, 45, 819–826.

Lerner, J., & Tirole, J. (2002). Some simple economics
of open source. The Journal of Industrial Economics,
50(2), 197–234.

Lester, J. (2006). Pathfinder Linden’s guide to getting
started in Second Life. In D. Livingstone and J. Kemp
(Eds.) Proceedings of the Second Life Education Work-
shop at the Second Life Community Convention, San
Francisco (pp. v.-vii.). United Kingdom: University
of Paisle. Retrieved May 28, 2008, from http://www.
simteach.com/SLCC06/slcc2006-proceedings.pdf

Li, S. H., Huang, S. M., Yen, D. C., & Chang, C. C.
(2007). Migrating legacy information systems to Web
services architecture. Journal of Database Management,
18(4), 1–25.

Li, Y., & Deng, R. (2006). Publicly verifiable ownership
protection for relational databases. Proceedings of ACM
Symposium on Information, Computer and Communica-
tion Security (ASIACCS) (pp. 78-89).

410

Compilation of References

Li, Y., & Zhong, N. (2006). Mining ontology for auto-
matically acquiring Web user information needs. IEEE
Transactions on Knowledge and Data Engineering, 18(4),
554–568. doi:10.1109/TKDE.2006.1599392

Li, Y., Guo, H., & Jajodia, S. (2004). Tamper detection
and localization for categorical data using fragile water-
marks. Proceedings of ACM Digital Rights Management
Workshop (DRM) (pp. 73-82).

Li, Y., Swarup, V., & Jajodia, S. (2003). Constructing a
virtual primary key for fingerprinting relational data.
Proceedings of ACM Digital Rights Management Work-
shop (DRM) (pp. 133-141).

Li, Y., Swarup, V., & Jajodia, S. (2003). A robust wa-
termarking scheme for relational data. Proceedings of
13th Workshop on Information Technology and Systems
(WITS) (pp. 195-200).

Li, Y., Swarup, V., & Jajodia, S. (2004). Defending against
additive attacks with maximal errors in watermarking
relational data. Proceedings of 18th Annual IFIP WG11.3
Working Conference on Data and Applications Security
(DBSEC) (pp. 81-94).

Li, Y., Swarup, V., & Jajodia, S. (2005). Fingerprinting
relational databases: Schemes and specialties. IEEE
Transactions on Dependable and Secure Computing,
2, 34-45.

Liebeskind, J. P. (1996). Knowledge, strategy, and the
theory of the firm. Strategic Management Journal, 17,
93–107.

Little, R. J. A., & Rubin, D. B. (2002). Statistical Analy-
sis with Missing Data (2nd ed.). New York: John Wiley
and Sons.

Liu, S., & Chu, W. (2007). CoXML: A Cooperative
XML Query Answering System. In Proceedings of the
8th International Conference on Web-Age Information
Management, Huang Shan, China, (pp. 614-621).

Liu, Y., Liu, T., Qin, T., Ma, Z., & Li, H. (2007). Su-
pervised rank aggregation. In Proceedings of the 16th
international conference on World Wide Web, Banff,
Alberta, Canada (pp. 481-490).

Ljungberg, J. (2000). Open source movements as a
model for organizing. European Journal of Information
Systems, 9(4), 208–216.

Lo, W. K. (1998). Agility, job satisfaction and organiza-
tional excellence: Their factors and relationships. Third
Proceedings of ISO 9000 and Total Quality Management
(pp. 330–336).

Locke, K. (2001). Grounded theory in management
research: SAGE Publications.

Long, Y., & Siau, K. (2007). Social network structures
in open source software development teams. Journal of
Database Management, 18(2), 25–40.

López de Ipiña, D., & Katsiri, E. (2001). An ECA rule-
matching service for simpler development of reactive
applications, Middleware 2001. IEEE Distributed Sys-
tems Online, 2(7).

Lorenz, M., & Kidd, J. (1995). Object oriented metrics.
Upper Saddle River, NJ: Prentice Hall.

Loucopoulos, P., & Kadir, W. M. N. W. (2008). BROOD:
Business rules-driven object oriented design. Journal of
Database Management Systems, 19(1), 41–73.

Loucopoulos, P., & Layzell, P. J. (1986, 1987). Rubric: A
rule based approach for the development of information
systems. Paper presented at the 1st European workshop
on fault diagnosis, reliability and related knowledge
based approaches, Rhodes.

Lu, S., Sun, Y., Atay, M., & Fotouhi, F. (2003). A new
inlining algorithm for mapping xml dtds to relational
schemas. In Proc. Of the First International Workshop on
XML Schema and Data Management, in conjunction with
the 22nd ACM International Conference on Conceptual
Modeling (ER2003).

Lundell, B., Lings, B., & Lindqvist, E. (2006). Perceptions
and uptake of open source in Swedish organizations. In
E. Damiani, B. Fitzgerald, W. Scacchi, M. Scotto, & G.
Succi (Eds.), IFIP international federation for informa-
tion processing: Volume 203, open source systems (pp.
155–163). Boston: Springer.

 411

Compilation of References

Lyons, D. (2004). Peace, love and paychecks. [Electronic
version]. Forbes. Retrieved January 30, 2006.

Lyytinen, K. (1987). A taxonomic perspective of infor-
mation dystems fevelopment: Theoretical constructs and
recommendations. In R. J. Boland, Jr. & R. A. Hirschheim
(Eds.), Critical issues in information systems research
(pp. 3-41): John Wiley & Sons.

Lyytinen, K., Rose, G., & Welke, R. (1998). The brave
new world of development in the internetwork computing
architecture (InterNCA): Or how distributed computing
platforms will change systems development. Information
Systems Journal, 8(3), 241-253.

Lyytinen, K., Smolander, K., & Tahvanainen, V.-P. (1989).
Modelling CASE environments in systems development.
Proceedings of CASE’89 the First Nordic Conference on
Advanced Systems Engineering, Stockholm.

MacCormack, A. (2002) Siemens ShareNet: Building a
knowledge network. Harvard Business School Publish-
ing, Case 603036, Cambridge, MA.

MacCormack, A., Rusnak, J., & Baldwin, C.Y. (2006).
Exploring the structure of complex software designs:
An empirical study of open source and proprietary code.
Management Science, 52(7), 1015–1030.

Madanmohan, T. R., & Navelkar, S. (2002). Roles and
Knowledge Management in Online Technology Com-
munities: An Ethnography Study (Working paper No.
192): IIMB.

Madill, A., Jordan, A., & Shirley, C. (2000). Objec-
tivity and reliability in qualitative analysis: Realist,
contextualist and radical constructionist epistemolo-
gies. The British Journal of Psychology, 91(1), 1–20.
doi:10.1348/000712600161646

Mahadevan, B. (2000). Business models for Internet-
based e-commerce: An anatomy. California Management
Review, 42(4), 55–69.

Major, M., & McGregor, J. (1999). Using Guided In-
spection to Validate UML Models. Paper presented at
the 24th Annual IEEE/NASA Software Engineering
Workshop.

Malloy, B., Kraft, N., Hallstrom, J., & Voas, J. (2006).
Improving the predictable assembly of service oriented
architectures. IEEE Software, 23(2), 12-15.

Malone, T. W., & Crowston, K. (1994). The interdis-
ciplinary study of coordination. Computing Surveys,
26(1), 87–119.

Mantovani, F., Castelnuovo, G., Gaggioli, A., & Riva,
G. (2003). Virtual reality training for health-care profes-
sionals. CyberPscyhology & Behavior, 6(4), 389–395.
doi:10.1089/109493103322278772

Markides, C. (2006). Disruptive innovation: In need of
better theory. Journal of Product Innovation Management,
23(1), 19–25. doi:10.1111/j.1540-5885.2005.00177.x

Markus, M. L., & Robey, D. (1988). Information technol-
ogy and organizational change: Causal structure in theory
and research. Management Science, 34(5), 583–598.

Markus, M. L., Manville, B., & Agres, E. C. (2000). What
makes a virtual organization work? Sloan Management
Review, 42(1), 13–26.

Marshall, C., & Rossman, B. G. (1989). Designing
Qualitative Research, Thousand Oaks, CA: Sage Pub-
lications.

Martin, J. (1989). Information engineering: Prentice-
Hall.

Martin, P. Y., & Turner, B. A. (1986). Grounded theory
and organizational research. The Journal of Applied
Behavioral Science, 22(2), 141-157.

Mason, H. (2007). Experiential education in Second Life.
In Proceedings of the Second Life Education Workshop
2007 (pp. 14-18). Retrieved May 28, 2008 from http://
www.simteach.com/slccedu07proceedings.pdf.

Massey, A. P., Hung, Y.-T. C., Montoya-Weiss, M., &
Ramesh, V. (2001). When culture and style aren’t about
clothes: Perceptions of task-technology “fit” in global
virtual teams. In Proceedings of GROUP ’01. Boulder,
CO, USA.

Mayer, R. E. (1989). Models for Understanding. Review
of Educational Research, 59(1), 43–64.

412

Compilation of References

Mayer, R. E. (1996). Learning strategies for making sense
out of expository text: The SOI model for guiding three
cognitive processes in knowledge construction. Educa-
tional Psychology Review, 8(4), 357–371. doi:10.1007/
BF01463939

Mayer, R. E. (2001). Multimedia Learning. New York:
Cambridge University Press.

Mayer, R. E., & Moreno, R. (1998). A Split-Attention
Effect in Multimedia Learning: Evidence for Dual Pro-
cessing Systems in Working Memory. Journal of Edu-
cational Psychology, 90(4), 312–320. doi:10.1037/0022-
0663.90.2.312

McCabe, T. (1976). A complexity measure. IEEE Trans-
actions on Software Engineering, 2(4), 308–320.

McCann, J. E., & Ferry, D. L. (1979). An approach for
assessing and managing inter-unit interdependence.
Academy of Management Review, 4(1), 113–119.

McConnell, S. (1999). Open-source methodology: Ready
for prime time? IEEE Software, 16(4), 6–8.

McMenamin, S. M., & Palmer, J. F. (1984). Essential sys-
tems analysis. Englewood Cliffs, NJ: Yourdon Press.

McMillan, R. (2002). Will Big Blue eclipse the Java
tools market? [Electronic version]. JavaWorld. Retrieved
January 27, 2006.

Medvidovic, N., & Taylor, R. N. (2000). A classification
and comparison framework for software architecture
description languages. IEEE Transactions on Software
Engineering, 26(1), 70-93.

Medvidovic, N., Egyed, A., & Rosenblum, D. S. (1999).
Round-trip software engineering using UML: From
architecture to design and back. Proceedings of the 2nd
Workshop on Object-Oriented Reengineering (WOOR),
Toulouse, France, Sept. 1999, 1-8.

Meekel, J., Horton, T. B., France, R. B., Mellone, C., &
Dalvi, S. (1997). From domain models to architecture
frameworks. In Proceedings of the 1997 symposium on
Software reusability (pp. 75-80).

Mello, R., & Heuser, C. (2001). A Rule-Based Conversion
of a {DTD} to a Conceptual Schema (LNCS 2224).

Mennecke, B., McNeill, D., Ganis, M., & Roche, E. M.
(2008). Second Life and other virtual worlds: A roadmap
for research. Communications of the Association for
Information Systems, 22, 371–388.

Mens, K., Wuyts, R., Bontridder, D., & Grijseels, A.
(1998). Tools and environments for business rules. Paper
presented at the ECOOP’98, Brussels, Belgium.

Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M. (2005).
Is extreme programming just old wine in new bottles: A
comparison of two cases. Journal of Database Manage-
ment, 16(4), 41–61.

MetaCase. (n.d.). MetaCase: Domain-specific modeling
with MetaEdit+. Retrieved June 5, 2006, from http://
www.metacase.com

Metamodel.com: Community site for meta-modeling and
semantic modeling. (n.d.). Retrieved June 5, 2006, from
http://www.metamodel.com

Metiu, A., & Kogut, B. (2001). Distributed Knowledge
and the Global Organization of Software Development
(Working paper). Philadelphia, PA: The Wharton School,
University of Pennsylvania.

Mikropoulos, T. A. (2001). Brain activity on naviga-
tion in virtual environments. Journal of Educational
Computing Research, 24(1), 1–12. doi:10.2190/D1W3-
Y15D-4UDW-L6C9

Miles, M.B., & Huberman, A.M. (1994). Qualitative data
analysis: An expanded sourcebook (2nd ed.). Thousand
Oaks, CA: Sage.

Miller, G. A. (1956). The magical number seven, plus or
minus two: some limits on our capacity for processing
information. Psychological Review, 81–97. doi:10.1037/
h0043158

Mills, H.D. (1971). Chief programmer teams: Principles
and procedures. Report FSC 71-5108, IBM Federal
Systems Division, USA.

 413

Compilation of References

Min, J. K., Ahn, J. Y., & Chung, C. W. (2003). Efficient
extraction of schemas for XML documents. Informa-
tion Processing Letters, 85(1). doi:10.1016/S0020-
0190(02)00345-9

Minsky, N. H. (2003). On conditions for self-healing in
distributed software systems. [Los Alamitos, CA: IEEE
Computer Society.]. Proceedings of AMS, 03, 86–92.

Mintzberg, H. (1979). The Structuring of Organizations.
Englewood Cliffs, NJ: Prentice-Hall.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002).
Two case studies Of Open Source Software development:
Apache And Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3), 309–346.

Moh. C., Lim, e., & Ng, W. (2000). DTD-Miner: A tool
for mining DTD from XML documents. In Proceedings
of the Second International Workshop on Advanced Is-
sues of E-Commerce.

Mohr, L. B. (1971). Organizational technology and or-
ganizational structure. 16, 444–459.

Mohr, L. B. (1982). Explaining Organizational Behavior:
The Limits and Possibilities of Theory and Research. San
Francisco: Jossey-Bass.

Mok, A. K., Konana, P., Liu, G., Lee, C., & Woo, H. (2004).
Specifying timing constraints and composite events: an
application in the design of electronic brokerages. IEEE
Transactions on Software Engineering, 30(12), 841–858.
doi:10.1109/TSE.2004.105

Monroe, R. T., Kompanek, A., Melton, R., & Garlan, D.
(1997). Architectural styles, design patterns, and objects.
IEEE Software, 14(1), 43-52.

Moody, D. (1996). Graphical Entity Relationship models:
Towards a more user understandable representation of
data. Conceptual Modeling ER ‘96 (LNCS 1157, pp.
227-244). Berlin / Heidelberg: Springer.

Moon, J. Y., & Sproull, L. (2000). Essence of distributed
work: The case of Linux kernel. First Monday, 5(11).

Moore, A. (2001). Extending UML to Enable the Defi-
nition and Design of Real-Time Embedded Systems.

Crosstalk: The Journal of Defense Software Engineer-
ing, 14(6), 4–9.

Moore, G. (1999). Crossing the Chasm. New York:
Harper-Perennial.

Moore, G. A. (2002). Crossing the chasm: Marketing and
selling high-tech products to mainstream customers (re-
vised edition). New York: HarperBusiness Essentials.

Moore, G. C., & Benbasat, I. (1991). Development of an
instrument to measure the perceptions of adopting an
information technology innovation. Information Systems
Research, 2(3), 192–222. doi:10.1287/isre.2.3.192

Morgan, L., & Finnegan, P. (2007). Benefits and Draw-
backs of Open Source Software: An Exploratory Study
of Secondary Software Firms. In J. Feller, B. Fitzgerald,
W. Scaachi, & A. Sillitti (Eds.), IFIP International
Federation for Information Processing, Volume 234,
Open Source Development, Adoption and Innovation
(pp. 307-312). Boston, MA: Springer.

Moriaty, T. (1993). The next paradigm. Database Pro-
gramming and Design.

Morisio, M., Romano, D., & Stamelos, I. (2002). Quality,
productivity and learning in framework-based develop-
ment: An exploratory case study. IEEE Transactions on
Software Engineering, 28(8), 340–357.

Morton, A. (2005). Lead Maintainer, Linux Production
Kernel. IT Conversations: SDForum Distinguished
Speaker Series. Retrieved January 31, 2006.

Motro, A. (1990). FLEX: A Tolerant and Coopera-
tive User Interface to Databases. IEEE Transactions
on Knowledge and Data Engineering, 2(2), 231–246.
doi:10.1109/69.54722

Mouratidis, K., Bakiras, S., & Papadias, D. (2006).
Continuous monitoring of top-k queries over sliding
windows. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data table
of contents, Chicago, IL, USA (pp. 635-646).

Murdoch, D.J., & Chow, E.D. (1996). A graphical display
of large correlation matrices. The American Statistician,
50(2), 178–180.

414

Compilation of References

Muslea, I. (2004). Machine Learning for Online Query
Relaxation. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, Seattle, Washington, USA (pp. 246-255).

Nah, F., Islam, Z., & Tan, M. (2007). Empirical assess-
ment of factors influencing success of enterprise resource
planning implementations. Journal of Database Manage-
ment, 18(4), 26-50.

Nakatani, L. H., Ardis, M. A., Olsen, R. G., & Pontrelli,
P. M. (1999). Jargons for domain engineering, In Pro-
ceedings of the 2nd Conference on Domain-Specific
Languages (pp. 15-24).

Neighbors, J. (1989). Draco: A Method for Engineer-
ing Reusable Software Systems. In T. Biggerstaff & A.
Perlis (Eds.), Software Reusability. Volume I: Concepts
and Models (pp. 295-319). Reading, MA: ACM Press,
Frontier Series, Addison-Wesley.

Nejmeh, B. A. (1994). Internet: A strategic tool for
the software enterprise. Communications of the ACM,
37(11), 23–27.

Nelson, R. E. (1988). Social network analysis as inter-
vention tool. Group and Organisation Studies, 13(1),
139–158.

Netcraft Inc. (2005). October 2005 web server survey.
Retrieved December 5, 2006 from http://news.netcraft.
com/archives/2005/10/04/october_2005_web_server_
survey.html.

Neumann, C. (2002). Jsp- und Servlet-basierte frame-
works für Web-applikationen. Master’s Thesis, Univer-
sität Karlsruhe, Germany.

Ng, W., & Lau, H. L. (2005). Effective approaches for
watermarking XML data. International Conference
on Database Systems for Advanced Applications (pp.
68-80).

Niederman, F., Davis, A., Greiner, M., Wynn, D., &
York, P. (2006). A research agenda for studying open
source I: A multi-level framework. Communications of
the AIS, 18(7), 2–38.

Nilakanta, S., Miller, L. L., & Zhu, D. (2006). Orga-
nizational memory management: Technological and
research issues. Journal of Database Management,
17(1), 85–94.

Nobrega, L., Nunes, N. J., & Coelho, H. (2006, June).
The meta sketch editor: A reflexive modeling editor. In
G. Calvary, C. Pribeanu, G. Santucci, & J. Vanderdonckt
(Eds.), Computer-Aided Design of User Interfaces V:
Proceedings of the Sixth International Conference on
Computer-Aided Design of User Interfaces (CADUI 2006)
(pp. 199-212). Berlin, Germany: Springer-Verlag.

Nordstrom, G., Sztipanovits, J., Karsai, G., & Ledeczi,
A. (1999). Metamodeling - Rapid Design and Evolution
of Domain-Specific Modeling Environments. In Pro-
ceedings of the IEEE Sixth Symposium on Engineering
Computer-Based Systems (ECBS) (pp. 68-74).

O’Leary, M., Orlikowski, W. J., & Yates, J. (2002). Dis-
tributed work over the centuries: Trust and control in the
Hudson’s Bay Company, 1670–1826. In P. Hinds & S.
Kiesler (Eds.), Distributed Work (pp. 27–54). Cambridge,
MA: MIT Press.

Object Management Group (OMG). (2007). Retrieved
September 25, 2007, from http://colab.cim3.net/cgi-bin/
wiki.pl?OMGSoaGlossary#nid34QI

Object Management Group. (1999). UML Profile for
Enterprise Distributed Object Computing: Request for
Proposals (ad/99-03-10): OMG.

Object Management Group. (2005). Unified model-
ing language: Superstructure version 2.0 (No. for-
mal/05-07-04).

Object Management Group. (2006). OMG SysML Speci-
fication (ptc/06-05-04).

Object Management Group. (2009). OMG Unified Model-
ing Language: Superstructure, Version 2.2. Retrieved
November 4, 2009 from http://www.omg.org/spec/
UML/2.2/Superstructure/PDF/

Odell, J., Van Dyke, P., & Bauer, B. (2000). Extending
UML for Agents. In Proceedings of the Agent-Oriented
Information Systems Workshop at the 17th National

 415

Compilation of References

conference on Artificial Intelligence, Austin, Texas
(pp. 3-17).

Oliver, C. (1990). Determinants of interorganisa-
tional relationships: Integration and future directions.
Academy of Management Review, 15(2), 241–265.
doi:10.2307/258156

OMG (Cartographer). (2001). Omg unified modeling
language specification

OMG (Cartographer). (2002). Software process engineer-
ing metamodel specification

OMG-MOF (2003). Meta-Object Facility (MOF™),
version 1.4.

OMG-UML (2003). The Unified Modeling Language
(UML™), version 1.5.

OMG-UML (2006). UML 2.0 Superstructure, 2006.

Ondrejka, C. (2008). Education unleashed: Participatory
culture, education, and innovation in Second Life. In K.
Salen (Ed.), The Ecology of Games: Connecting Youth,
Games, and Learning, The John D. and Catherine T. Mac-
Arthur Foundation Series on Digital Media and Learning
(pp. 229-252). Cambridge, MA: The MIT Press.

Opdahl, A. L., & Henderson-Sellers, B. (2001). Ground-
ing the OML metamodel in ontology. Journal of
Systems and Software, 57, 119–143. doi:10.1016/S0164-
1212(00)00123-0

Open Group. (2007). Retrieved September 25, 2007, from
http://opengroup.org/projects/soa/doc.tpl?gdid=10632

Oreizy, P., Medvidovic, N., & Taylor, R. N. (1998, April
19-25). Architecture-based runtime software evolution.
Paper presented at the International Conference on Soft-
ware Engineering 1998 (ICSE’98), Kyoto, Japan.

Organization for the Advancement of Structured Infor-
mation Standards (OASIS). (2006). Retrieved September
25, 2007, from http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=soa-rm

Orlikowski, W. J. (2002). Knowing in practice: Enacting
a collective capability in distributed organizing. Orga-
nization Science, 13(3), 249–273.

Osterwalder, A., & Pigneur, Y. (2002, June 17–19). An
e-business model ontology for modelling ebusiness. In
Proceedings of the 15th Bled eCommerce Conference,
Bled, Slovenia.

Osterwalder, A., Ben Lagha, S., & Pigneur, Y. (2002, July
3–7). An ontology for developing e-business models. In
Proceedings of IFIP DSIAge 2002, Cork, Ireland.

OWL. (2008). Web Ontology Language (OWL). Re-
trieved December 20, 2008 from http://www.w3.org/
TR/owl-features/

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load
theory and instructional design: Recent developments.
Educational Psychologist, 38(1), 1–4. doi:10.1207/
S15326985EP3801_1

Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P.
W. M. (2003). Cognitive Load Measurement as a Means to
Advance Cognitive Load Theory. Educational Psycholo-
gist, 38(1), 63–71. doi:10.1207/S15326985EP3801_8

Päivärinta, T., Halttunen, V., & Tyrväinen, P. (2001). A
genre-based method for information system planning. In
M. Rossi & K. Siau (Eds.), Information modeling in the
new millennium (pp. 70-93). Hershey, PA: Idea Group.

Paivio, A. (1986). Mental Representations: A Dual Coding
Approach. Oxford, UK: Oxford University Press.

Paivio, A. (1991). Dual coding theory: Retrospect and
current status. Canadian Journal of Psychology, 45(3),
255–287. doi:10.1037/h0084295

Park, P. (1992). Software size measurement: A framework
for counting source statements. Technical Report CMU/
SEI-92-TR-20, Software Engineering Institute, Carnegie
Mellon University, USA.

Park, S., Nah, F., DeWester, D., Eschenbrenner, B., & Jeon,
S. (2008). Virtual world affordances: Enhancing brand
value. Journal of Virtual Worlds Research, 1(2), 1–18.

Parker, G. G., & Van Alstyne, M. W. (2005). Two-sided
network effects: A theory of information product design.
Management Science, 51(10), 1494–1504. doi:10.1287/
mnsc.1050.0400

416

Compilation of References

Parnas, D. L. (1972). On the criteria to be used in de-
composing systems into modules. Communications of
the ACM, 15(2), 1053–1058.

Passig, D., Klein, P., & Noyman, T. (2001). Awareness of
toddler’s initial cognitive experiences with virtual reality.
Journal of Computer Assisted Learning, 17, 332–344.
doi:10.1046/j.0266-4909.2001.00190.x

Patton, M. Q. (1980). Qualitative evaluation and research
methods. Newbury Park, CA: Sage Publications.

Payne, A., & Frow, P. (2005). A strategic framework for
customer relationship management. Journal of Market-
ing, 69(4), 167–176. doi:10.1509/jmkg.2005.69.4.167

Payne, C. (2002). On the security of open source software.
Information Systems Journal, 12(1), 61–78.

Pears, R., & Houliston, B. (2007). Optimization of mul-
tidimensional aggregates in data warehouses. Journal of
Database Management, 18(1), 69-93.

Perens, B. (1999). The open source definition. In C.
DiBona, S. Ockman, & M. Stone (Eds.), Open sources:
Voices from the open source revolution (pp. 171–188).
Cambridge, MA: O’Reilly & Associates.

Peterson, M. (2006). Learner interaction manage-
ment in an avatar and chat-based virtual world. Com-
puter Assisted Language Learning, 19(1), 79–103.
doi:10.1080/09588220600804087

Pfaff, B. (1998). Society and open source: Why open
source software is better for society than proprietary
closed source software. from http://www.msu.edu/user/
pfaffben/writings/anp/oss-is-better.html

Pfeffer, J. (1978). Organizational Design. Arlington
Heights, IL: Harlan Davidson.

Pfeffer, J., & Salancik, G. R. (1978). The External Control
of Organizations: A Resource Dependency Perspective.
New York: Harper & Row.

Phillips, L.W. (1981). Assessing measurement error in
key informant reports: A methodological note on orga-
nizational analysis in marketing. Journal of Marketing
Research, 18(4), 395–415.

Pohl, K., Gunter, B., & van der Linden, F. (2005). Software
Product Line Engineering – Foundations, Principles,
and Techniques. Springer.

Pons, A. P., & Aljifri, H. (2003). Data protection using
watermarking in e-business. Journal of Database Man-
agement, 14(4), 1-13.

Poston, R., & Grabski, S. (2001). Financial impacts of
enterprise resource planning implementations. Interna-
tional Journal of Accounting Information Systems, 2(4),
271–294. doi:10.1016/S1467-0895(01)00024-0

Prasad, G. C. (n.d.). A hard look at Linux’s claimed
strengths…. from http://www.osopinion.com/Opinions/
GaneshCPrasad/GaneshCPrasad2-2.html

Prieto-Diaz, R. (1990). Domain analysis: an introduc-
tion. ACM SIGSOFT Software Engineering Notes, 15(2),
47–54. doi:10.1145/382296.382703

Prieto-Diaz, R. (1993). Status report: Software reusability.
IEEE Software, 10(3), 61–66.

Rai, A., Ravichandran, T., & Samaddar, S. (1998). How to
anticipate the Internet’s global diffusion. Communications
of the ACM, 41(10), 97–106. doi:10.1145/286238.286253

Rational Software Corporation. (2001). Rational
Unified Process [Online documentation, Version
2001A.04.00].

Ravichandran, T. (2005). Organizational assimilation of
complex technologies: An empirical study of component-
based software development. IEEE Transactions on
Engineering Management, 52(2), 249–268. doi:10.1109/
TEM.2005.844925

Raymond, E. S. (1998). The cathedral and the bazaar.
First Monday, 3(3).

Raymond, E. S. (2001). The Cathedral and the Bazaar
(2nd Ed.). Sebastopol, CA: O’Reilly.

Raymond, E.S. (1999). The cathedral and the bazaar:
Musings on Linux and open source by an accidental
revolutionary. Sebastopol, CA: O’Reilly & Associates.

Reid, R., & Dhillon, G. (2003). Integrating digital signa-
tures with relational databases: Issues and organizational

 417

Compilation of References

implications. Journal of Database Management, 14(2),
42-51.

Reinhartz-Berger, I., Soffer, P., & Sturm, A. (2005). A
Domain Engineering Approach to Specifying and Ap-
plying Reference Models. In Proceedings of Enterprise
Modeling Information Systems Architecture (EMISA’05)
(pp. 50-63).

Relaxng (2003). RELAX NG. Retrieved from http://
www.relaxng.org/

Ricadela, A. (2006, September 4). The dark side of SOA.
Information Week, pp. 54-58.

Richter, J., Anderson-Inman, L., & Frisbee, M. (2007).
Critical engagement of teachers in Second Life: Progress
in the SaLamander project. In Proceedings of the Second
Life Education Workshop 2007 (pp. 19-26). Retrieved
May 28, 2008 from http://www.simteach.com/slccedu-
07proceedings.pdf.

Riehle, D., Tilman, M., & Johnson, R. (2000). Dynamic
object model (No. WUCS-00-29): Dept. of Computer
Science, Washington University.

Riemenschneider, C. K., Hardgrave, B. C., & Davis, F.
D. (2002). Explaining software developer acceptance of
methodologies: A comparison of five theoretical models.
IEEE Transactions on Software Engineering, 28(12),
1135–1145. doi:10.1109/TSE.2002.1158287

Riemenschneider, C.K., Harrison, D.A. & Mykytyn,
P.P. Jr. (2003). Understanding IT adoption decisions in
small business: Integrating current theories. Information
& Management, 40(4), 269–285.

Robey, D., & Boudreau, M. (1999). Accounting for the
contradictory organizational consequences of informa-
tion technology: Theoretical directions and methodologi-
cal implications. Information Systems Research, 10(2),
167–185. doi:10.1287/isre.10.2.167

Robey, D., Khoo, H. M., & Powers, C. (2000). Situ-
ated-learning in cross-functional virtual teams. IEEE
Transactions on Professional Communication(Feb/
Mar), 51–66.

Robinson, K., & Berrisford, G. (1994). Object-oriented
ssadm. Englewood Cliffs, NJ: Prentice Hall.

Robles-Martinez, G., Gonzalez-Barahona, J.M., Centeno-
Gonzalez, J., Matellan-Olivera, V., & Rodero-Merino, L.
(2003). Studying the evolution of libre software projects
using publicly available data. Proceedings of the 3rd
Workshop on Open Source Software Engineering 25th
International Conference on Software Engineering (pp.
111–115), Portland, OR.

Robson, C. (2002). Real world research, (2nd ed.). Black-
well Publishing.

Rockwell, S., & Bajaj, A. (2005). COGEVAL: Applying
Cognitive Theories to Evaluate Conceptual Models. In
K. Siau (Ed.), Advanced Topics in Database Research
(Vol. 4). Hershey, PA: Idea Group Publishing.

Rogers, E. M. (1995). Diffusion of innovations (4th ed.).
New York, NY: The Free Press.

Rosca, D., Greenspan, S., & Wild, C. (2002). Enterprise
modeling and decision-support for automating the busi-
ness rules lifecycle. Automated Software Engineering,
9(4), 361 - 404.

Rosca, D., Greenspan, S., Feblowitz, M., & Wild, C.
(1997, January 1997). A decision support methodology
in support of the business rules lifecycle. Paper presented
at the International Symposium on Requirements Engi-
neering (ISRE’97), Annapolis, MD.

Rosca, D., Greenspan, S., Wild, C., Reubenstein, H.,
Maly, K., & Feblowitz, M. (1995, November 1995).
Application of a decision support mechanism to the
business rules lifecycle. Paper presented at the 10th
Knowledge-Based Software Engineering Conference
(KBSE95), Boston, MA.

Ross, J. W., Weill, P., & Robertson, D. C. (2006). Enter-
prise architecture as strategy: Creating a foundation for
business execution: Harvard Business School Press.

Ross, R. G. (1997). The business rule book: Classifying,
defining and modelling rules: Data Base Newsletter.

Ross, R. G., & Lam, G. S. W. (1999). Ruletrack: The
brs meta-model for rule management: Business Rule
Solutions, Inc.

418

Compilation of References

Ross, R. G., & Lam, G. S. W. (2003). The brs proteustm
methodology (Fourth ed.): Business Rule Solutions.

Rossi, G., & Schwabe, D. (2000). Object-oriented web
applications modeling. In M. Rossi & K. Siau (Eds.),
Information modelling in the next millennium. Hershey:
IDEA Group Publishing.

Rouvellou, I., Degenaro, I., Rasmus, K., Ehnebuske, D., &
McKee, B. (1999, November 1-5). Externalizing business
rules from enterprise applications: An experience report.
Paper presented at the Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Denver, Colorado.

Rouvellou, I., Degenaro, L., Rasmus, K., Ehnebuske, D.,
& McKee, B. (2000, June). Extending business objects
with business rules. Paper presented at the 33rd Inter-
national Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Europe 2000), Mont
Saint-Michel/ St-Malo, France.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., &
Lorensen, W. (1991). Object-Oriented Modeling and
Design. Englewood Cliffs, NJ: Prentice Hall.

Rumpe, B., Schoenmakers, M., Radermacher, A., &
Schürr, A. (1999). UML + ROOM as a Standard ADL.
Fifth IEEE International Conference on Engineering of
Complex Computer Systems, (pp. 43-53).

S¨oderstrom, E., Andersso, B., Johannesson, P., Perjons,
E., & Wangler, B. (2002, May). Towards a framework
for comparing process modelling languages. In CAiSE
’02: Proceedings of the 14th International Conference
on Advanced Information Systems Engineering (pp.
600-611). London: Springer-Verlag. Retrieved June 21,
2006, from http://portal.acm.org/citation.cfm?coll=GU
IDE&dl=GUIDE&id=680389#

Saaren-Seppälä, K. (1988). Wall chart technique: The
use of wall charts for effective planning. Helsinki: Kari
Saaren-Seppälä Ky.

Sabherwal, R., & Robey, D. (1995). Reconciling vari-
ance and process strategies for studying information
system development. Information Systems Research,
6(4), 303–327.

Sadeh, N. M., Hildum, D. W., & Kjenstad, D. (2003). Agent-
based e-supply chain decision support. Journal of Orga-
nizational Computing and Electronic Commerce, 13(3-4),
225–241. doi:10.1207/S15327744JOCE133&4_05

Safavi-Naini, R., & Wang, Y. (2001). Collusion secure
q-ary fingerprinting for perceptual content. Digital Rights
Management Workshop (pp. 57-75).

Sahuguet, A. (2000). Everything You Ever Wanted to
Know About DTDs, But Were Afraid to Ask. Web-
DB-2000.

Samoladas, I., Stamelos, I., Angelis, L., & Oikonomou, A.
(2004). Open source software development should strive
for even greater code maintainability. Communications
of the ACM, 47(10), 83–87.

Sandusky, R. J., Gasser, L., & Ripoche, G. (2004). Bug
Report Networks: Varieties, Strategies, and Impacts in
an OSS Development Community. Paper presented at the
Proceedings of the ICSE Workshop on Mining Software
Repositories, Edinburgh, Scotland, UK.

Sauer, C., Southon, G., & Dampney, C. N. G. (1997).
Fit, failure, and the house of horrors: Toward a con-
figurational theory of IS project failure. Proceedings of
the eighteenth international conference on Information
systems, (pp. 349-366). Atlanta, Georgia.

Sawyer, S., & Guinan, P. J. (1998). Software develop-
ment: Processes and performance. IBM Systems Journal,
37(4), 552–568.

Scacchi, W. (1991). The software infrastructure for a
distributed software factory. Software Engineering
Journal, 6(5), 355–369.

Scacchi, W. (2002). Understanding the requirements
for developing Open Source Software systems. IEE
Proceedings Software, 149(1), 24–39.

Scacchi, W. (2005). Socio-technical interaction networks
in Free/Open Source Software development processes.
In S. T. Acuña & N. Juristo (Eds.), Software Process
Modeling (pp. 1–27). New York: Springer.

Schleicher, A., & Westfechtel, B. (2001). Beyond Ste-
reotyping: Metamodeling Approaches for the UML, In

 419

Compilation of References

Proceedings of the 34th Annual Hawaii International
Conference on System Sciences (pp.1243-1252).

Schmidt, D. C. (2006, February). Guest editor’s introduc-
tion: Model-driven engineering. Computer, 39(2), 25-31.
Retrieved June 5, 2006, from http://doi.ieeecomputerso-
ciety.org/10.1109/MC.2006.58

Schmidt, M., Hutchison, B., Lambros, P., & Phippen, R.
(2005). Enterprise service bus: Making service oriented
architecture real. IBM Systems Journal, 44(4), 781-797.

Schneider, G., & Winters, J. (2001). Applying Use Cases:
A Practical Guide (2nd ed.). Boston: Addison-Wesley.

Schneider, J. (1999). Components, scripts, and glue
: A conceptual framework for software composition.
Bern:University of Bern.

Schultze, U., Hiltz, S. R., Nardi, B., Rennecker, J., &
Stucky, S. (2008). Using synthetic worlds for work and
learning. Communications of the Association for Infor-
mation Systems, 22, 351–370.

Schwebel, D., Gaines, J., & Severson, J. (2008). Validation
of virtual reality as a tool to understand and prevent child
pedestrian injury. Accident; Analysis and Prevention,
40(4), 1394–1400. doi:10.1016/j.aap.2008.03.005

Second Life. (2008). Retrieved on April 23, 2008 from
www.secondlife.com.

SEI-CMU. (2008). A Framework for Software Product
Line Practice, Version 5.0. Retrieved from http://www.
sei.cmu.edu/productlines/framework.html

Selic, B. (2006). UML 2: A model driven development
tool. IBM Systems Journal, 45(3), 607–620.

Selonen, P., Koskimies, K., & Sakkinen, M. (2003).
Transformations between UML diagrams. Journal of
Database Management , 14(3), 37-55.

Seufert, T., Jänen, I., & Brünken, R. (2007). The impact of
intrinsic cognitive load on the effectiveness of graphical
help for coherence formation. Computers in Human Be-
havior, 23(3), 1055–1071. doi:10.1016/j.chb.2006.10.002

Shaft, T. M., & Vessey, I. (1995). The Relevance of Ap-
plication Domain Knowledge: The Case of Computer

Program Comprehension. Information Systems Research,
6(3), 286–299. doi:10.1287/isre.6.3.286

Shah, A., & Kalin, P. (2007, July 6). SOA adoption models:
Ad-hoc versus program-based. SOA Magazine.

Shan, T., & Hua, W. (2006). Service oriented solution
framework for Internet banking. Internet Journal of Web
Services Research, 3(1), 29-48.

Shanks, G. (1997). Conceptual Data Modelling: An Em-
pirical Study of Expert and Novice Data Modellers. Aus-
tralian Journal of Information Systems, 4(2), 63–73.

Shanmugasundaram, J., Shekita, E., Kiernan, J., Krish-
namurthy, R., Viglas, E., Naughton, J., et al. (2008). Sh-
ematron. Retrieved from http://www.schematron.com

Shapiro, C., & Varian, H. R. (1999). Information rules:
A strategic guide to the network economy. Cambridge,
MA: Harvard Business School Press.

Sharifi, H., & Zhang, Z. (1999). A methodology for achiev-
ing agility in manufacturing organisations: An introduc-
tion. International Journal of Production Economics,
62(1-2), 7–22. doi:10.1016/S0925-5273(98)00217-5

Shaw, M., & Garlan, D. (1996). Software architecture:
Perspectives on an emerging discipline: Prentice Hall.

Shin, M., Huh, S., Park, D., & Lee, W. (2008). Relaxing
Queries with Hierarchical Quantified Data Abstraction.
Journal of Database Management, 19(4), 76–90.

Shiren, Y., Xiujun, G., Zhongzhi, S., & Bing, W. (2001).
Tree’s Drawing Algorithm and Visualizing Method. In
CAD/Graphics’2001.

Shiu, H. (2006). Reverse Engineering Data Semantics
from Arbitrary XML document. Unpublished master’s
thesis, City University of Hong Kong, Hong Kong,
China.

Shull, F., Rus, I., & Basili, V. (2000). How Perspective-
Based Reading Can Improve Requirements Inspections.
IEEE Computer, 33(7), 73–79.

Siau, K., & Cao, Q. (2001). Unified modeling language:
A complexity analysis. Journal of Database Manage-
ment, 12(1), 26-34.

420

Compilation of References

Siau, K., & Cao, Q. (2002). How Complex Is the Uni-
fied Modeling Language? Advanced Topics in Database
Research, 1, 294–306.

Siau, K. (2003). Evaluating the usability of a group sup-
port system using co-discovery. Journal of Computer
Information Systems, 44(2), 17–28.

Siau, K. (2003). Interorganizational systems and com-
petitive advantages: Lessons from history. Journal of
Computer Information Systems, 44(1), 33-39.

Siau, K., & Shen, Z. (2003). Building customer trust in
mobile commerce. Communications of the ACM, 46(4),
91–94. doi:10.1145/641205.641211

Siau, K. (2004). Informational and computational equiva-
lence in comparing information modeling methods.
Journal of Database Management, 15(1), 73–86.

Siau, K. (2005). Human-computer interaction: The
effect of application domain knowledge on icon visu-
alization. Journal of Computer Information Systems,
45(3), 53–62.

Siau, K., & Loo, P.Identifying Difficulties in Learning
UML. Information Systems Management, 23(3), 43–51. do
i:10.1201/1078.10580530/46108.23.3.20060601/93706.5

Siau, K., & Tian, Y. (2004). Supply chains integration:
Architecture and enabling technologies. Journal of
Computer Information Systems, 44(3), 67-72.

Siau, K., Chan, H., & Wei, K. (2004). Effects of Query
Complexity and Learning on Novice User Query Perfor-
mance with Conceptual and Logical Database Interfaces.
IEEE Transactions on Systems, Man, and Cybernetics.
Part A, Systems and Humans, 34(2), 276–281. doi:10.1109/
TSMCA.2003.820581

Siau, K., Erickson, J., & Lee, L. Y. (2005). Theoretical
vs. practical complexity: The case of UML. Journal of
Database Management, 16(3), 40-57.

Siau, K., Erickson, J., & Lee, L. Y. (2005). Theoretical
vs. Practical Complexity: The Case of UML. Journal of
Database Management, 16(3), 40–57.

Siau, K., Nah, F., Eschenbrenner, B., & Guru, A. (2007).
An augmented approach to support collaborative dis-

tance learning of unified modeling language. Americas
Conference on Information Systems (AMCIS 2007),
Colorado, USA.

Siau, K., Sheng, H., & Nah, F. (2006). Use of a classroom
response system to enhance classroom interactivity. IEEE
Transactions on Education, 49(3), 398–403. doi:10.1109/
TE.2006.879802

Siau, K., Sheng, H., Nah, F., & Davis, S. (2004). A
qualitative investigation on consumer trust in mobile
commerce. International Journal of Electronic Business,
2(3), 283–300. doi:10.1504/IJEB.2004.005143

Silva, A., & Videira, C. (2005). UML, metodologias e
ferramentas CASE (Vol. 2, 2nd ed.). Portugal: Centro
Atlântico.

Singer, J., & Vinson, N. G. (2002). Ethical Issues in
Empirical Studies of Software Engineering. IEEE Trans-
actions on Software Engineering, 28(12), 1171–1180.
doi:10.1109/TSE.2002.1158289

Sion, R. (2004). Proving ownership over categorical data.
Proceedings of IEEE International Conference on Data
Engineering (ICDE) (pp. 584-596).

Sion, R., Atallah, M., & Prabhakar, S. (2003). Rights
protection for relational data. Proceedings of ACM
SIGMOD International Conference on Management of
Data (pp. 98-108).

Smolander, K. (2003, January 6-9,). The birth of an e-
business system architecture: Conflicts, compromises,
and gaps in methods. Hawaii International Conference
on System Sciences (HICSS’36), Hilton Waikoloa Vil-
lage, Big Island, Hawaii.

Smolander, K., & Päivärinta, T. (2002, May 27 - 31).
Describing and communicating software architecture in
practice: Observations on stakeholders and rationale.
Proceedings of CAiSE’02 - The Fourteenth International
Conference on Advanced Information Systems Engineer-
ing, (pp. 117-133).Toronto, Canada.

Smolander, K., & Päivärinta, T. (2002, Aug 25-30). Prac-
tical rationale for describing software architecture: Be-
yond programming-in-the-large. Software Architecture:

 421

Compilation of References

System Design, Development and Maintenance - IFIP
17th World Computer Congress - TC2 Stream / 3rd Work-
ing IEEE/IFIP Conference on Software Architecture
(WICSA3), (pp. 113-126). Montréal, Québec, Canada.

Smolander, K., Hoikka, K., Isokallio, J., Kataikko, M.,
& Mäkelä, T. (2002, April, 8-11). What is included in
software architecture? A case study in three software
organizations. Proceedings of 9th annual IEEE Interna-
tional Conference and Workshop on the Engineering of
Computer-Based Systems (pp. 131-138). (ECBS) 2002,
Lund, Sweden.

Smolander, K., Rossi, M., & Purao, S. (2002, December
18). Software architecture: Metaphors across contexts.
AIS Theory Development Workshop, Barcelona.

Smolander, K., Rossi, M., & Purao, S. (2005, May 26-28).
Going beyond the blueprint: Unraveling the complex
reality of software architectures. 13th European Confer-
ence on Information Systems: Information Systems in a
Rapidly Changing Economy, Regensburg, Germany.

Snijders, T.A.B., & Bosker, R.J. (2003). Multilevel analy-
sis: An introduction to basic and advanced multilevel
modeling. London: Sage.

SOA. (2007). Wikipedia. Retrieved September 25, 2007,
from http://en.wikipedia.org/wiki/Service-oriented_
architecture#SOA_definitions

Soffer, P., Reinhartz-Berger, I., & Sturm, A. (2007). Fa-
cilitating Reuse by Specialization of Reference Models for
Business Process Design. Accepted to the 8th Workshop on
Business Process Modeling, Development, and Support
(BPMDS’07), in conjunction with CAiSE’07.

Sowa, J. F., & Zachman, J. A. (1992). Extending and
formalizing the framework for information systems
architecture. IBM Systems Journal, 31(3), 590-616.

SparxSystems. (n.d.). Enterprise architect: UML design
tools and UML CASE tools for software development.
Retrieved June 5, 2006, from http://www.sparxsystems.
com/ products/ea.html

Sperberg-McQueen, C., & Thompson, H. (2000). W3C
XML schema. Retrieved from http://www.w3.org/XML/
Schema

Spiller, D., & Wichmann, T. (2002). Basics of Open
Source Software markets and business models. FLOSS
Final Report - Part 3. Berlin: Berlecon Research.

Stabell, C. B., & Fjeldstad, O. D. (1998). Configuring
value for competitive advantage: On chains, shops, and
networks. Strategic Management Journal, 19(5), 413–437.
doi:10.1002/(SICI)1097-0266(199805)19:5<413::AID-
SMJ946>3.0.CO;2-C

Stafford, T. (2002). Trust, transactions, and relational
exchange: Virtual integration and agile supply chain
management. In Proceedings of the 8th Americas Con-
ference on Information Systems (AMCIS 02).

Stal, M. (2006). Using architectural patterns and blue-
prints for service oriented architecture. IEEE Software,
23(2), 54-61.

Stallman, R.M. (2002). Free software, free society:
Selected essays of Richard M. Stallman. Boston: GNU
Press.

Stamelos, I., Angelis, L., Oikonomou, A., & Bleris, G.L.
(2002). Code quality analysis in open source software de-
velopment. Information Systems Journal, 12(1), 43–60.

Star, S. L., & Griesemer, J. R. (1989). Institutional col-
ogy, “translations” and boundary objects: Amateurs and
professionals in berkeley’s museum of vertebrate zoology,
1907-39. Social Studies of Science, 19, 387-420.

Stayton, B. (2008). DocBook. Retrieved from http://
www.docbook.org

Sternberg, R.J. (2000). Images of mindfulness. Journal
of Social Issues, 56(1), 11–26.

Stevens, P., & Pooley, R. (2000). Using UML: Software
Engineering with Object and Components. Reading,
MA: Addison-Wesley.

Stewart, K. J., & Ammeter, T. (2002). An exploratory
study of factors influencing the level of vitality and
popularity of open source projects. In Proceedings of the
Twenty-Third International Conference on Information
Systems (pp. 853–857).

422

Compilation of References

Stewart, K.J., & Gosain, S. (2006). The impact of ideology
on effectiveness in open source software development
teams. MIS Quarterly, 30(2), 291–314.

Stoerger, S. (2008). Virtual worlds, virtual literacy:
An educational exploration. Knowledge Quest, 36(3),
50–56.

Strauss, A. L., & Corbin, J. (1990). Basics of qualitative
research: Grounded theory procedures and applications.
Newbury Park, CA: Sage Publications.

Sturm, A., Dori, D., & Shehory, O. (2006). Domain Mod-
eling with Object-Process Methodology, In Proceedings
of the Eighth International Conference on Enterprise
Information Systems, ICEIS (3) (pp. 144-151).

Subramanian, G., & Corbin, W. (2001). An empirical
study of certain object-oriented software metrics. Journal
of Systems and Software, 59(1), 57–63.

Subramanyam, R., & Krishnan, M.S. (2003). Empirical
analysis of ck metrics for object-oriented design complex-
ity: Implications for software defects. IEEE Transactions
on Software Engineering, 29(4), 297–309.

Sulkin, A. (2007). SOA and enterprise voice communica-
tions. Business Communications Review, 37(8), 32-34.

Sunye, G., Pollet, D., Le Taraon, Y., & Jezkel, J.-M. (2001).
Refactoring UML models. In Proceedings of UML 2001
(LNCS 2185, pp. 134-148).

Swanson, E.B., & Ramiller, N.C. (2004). Innovating
mindfully with information technology. MIS Quarterly,
28(4), 553–583.

Sweller, J. (1988). Cognitive load during problem solving:
Effects on learning. Cognitive Science, 12(2), 257–285.

Sweller, J., & Chandler, P. (1994). Why Some Material
Is Difficult to Learn. Cognition and Instruction, 12(3),
185–223.

Tapscott, D., Ticoll, D., & Lowy, A. (2000). Digital capi-
tal: Harnessing the power of business webs. Cambridge,
MA: Harvard Business School Press.

Tatarinov, I. (2001). A general technique for querying
XML documents using a relational database system.
SIGMOD Record, 30(3), 261–270.

Taylor, M. J., McWilliam, J., Forsyth, H., & Wade, S.
(2002). Methodologies and website development: A
survey of practice. Information and Software Technol-
ogy, 44(6), 381-391.

Taylor, P. (1998, December 2). New IT mantra attracts
a host of devotees. Financial Times, Survey—Indian
Information Technology, p. 1.

Taylor, S., & Todd, P. A. (1995). Understanding informa-
tion technology usage: A test of competing models. In-
formation Systems Research, 6(2), 144–176. doi:10.1287/
isre.6.2.144

Tellis, G. J. (2006). Disruptive technology or visionary
leadership? Journal of Product Innovation Management,
23(1), 34–38. doi:10.1111/j.1540-5885.2005.00179.x

Tersus (2006). Retrieved from http://www.tersus.com

Thiran, P. H., & Estiévenart, F. Hainaut. J.L., & Houben,
G.J. (2004). Exporting Databases in XML - A Concep-
tual and Generic Approach. In Proceedings of CAiSE
Workshops (WISM’04).

Thomas, D. (2004, May-June). MDA: Revenge of the
modelers or UML utopia? IEEE Software, 21(3), 15-17.
Retrieved June 5, 2006, from http://doi.ieeecomputerso-
ciety.org/10.1109/MS.2004.1293067

Thomke, E., & Reinertsen, D. G. (1998). Agile product
development: Managing development flexibility in un-
certain environments. California Management Review,
41(1), 8–30.

Thompson, J. D. (1967). Organizations in Action: Social
Science Bases of Administrative Theory. New York:
McGraw-Hill.

Thuraisingham, B. (2005). Privacy-preserving data min-
ing: Development and directions. Journal of Database
Management, 16(1), 75–87.

Ticoll, D., Lowy, A., & Kalakota, R. (1998). Joined at
the bit: The emergence of the e-business community.
In Tapscott, D. (Ed.) Blueprint to the digital economy:
Creating wealth in the era of e-business, New York:
McGraw-Hill.

 423

Compilation of References

Timmers, P. (1999). Electronic Commerce: Strategies
and models for business-to-business trading, Chich-
ester: Wiley.

Tingling, P., & Parent, M. (2002). Mimetic isomorphism
and technology evaluation: Does imitation transcend
judgment? Journal of the Association for Information
Systems, 3(5), 113–143.

Tobin, D. (1996). Transformational Learning: Renewing
Your Company through Knowledge and Skills. New York:
John Wiley & Sons.

Tolvanen, J.-P., & Rossi, M. (2003, October). MetaEdit+:
Defining and using domain-specific modeling languages
and code generators. In OOPSLA ’03: Companion of the
18th Annual ACM SIGPLAN Conference on Object-Ori-
ented Programming, Systems, Languages, and Applica-
tions (pp. 92-93). New York: ACM Press. Retrieved June 5,
2006, from http://doi.acm.org/10.1145/949344.949365

TOPCASED. (2008). Retrieved from http://topcased.
gforge.enseeiht.fr/

Topi, H., & Ramesh, V. (2002). Human Factors Research
on Data Modeling: A Review of Prior Research, An
Extended Framework and Future Research Directions.
Journal of Database Management, 13(2), 3–19.

Torvalds, L. (1999). The Linux edge. Communications
of the ACM, 42(4), 38–39.

Trembly, A. (2007). SOA: Savior or snake oil? National
Underwriter Life & Health, 111(27), 50.

Trujillo, J., & Luján-Mora, S. (2004). Applying UML
and XML for Designing and Interchanging Information
for Data Warehouses and OLAP Applications. Journal
of Database Management, 15(1), 41–72.

Tseng, S., Wang, K., & Lee, C. (2003). A pre-processing
method to deal with missing values by integrating
clustering and regression techniques. Applied Artificial
Intelligence, 17(5/6), 535–544. doi:10.1080/713827170

Turk, D., France. R., & Rumpe, B. (2005). Assumptions
underlying agile software-development processes. Jour-
nal of Database Management, 16(4), 62–87.

Tushman, M.L., & Scanlan, T.J. (1981). Characteristics
and external orientations of boundary spanning individu-
als. Academy of Management Journal, 24(1), 83–98.

UNL-IBM System in Global Innovation Hub. (2007).
Making SOA relevant for business. Retrieved October
9, 2007, from http://cba.unl.edu/outreach/unl-ibm/docu-
ments/SOA_Relevant_Business.pdf

Vaas, L. (2003, September 24). Putting a stop to
database piracy. eWeek: Enterprise News and Re-
views. Retrieved from http://www.eweek.com/print_
article/0,3084,a=107965,00.asp

Valerio, A., Giancarlo, S., & Massimo, F. (1997). Domain
analysis and framework-based software development.
ACM SIGAPP Applied Computing Review, 5(2), 4–15.
doi:10.1145/297075.297081

Valloppillil, V. (1998). Halloween I: Open Source
Software. from http://www.opensource.org/halloween/
halloween1.html

Valloppillil, V., & Cohen, J. (1998). Halloween II: Linux
OS Competitive Analysis. from http://www.opensource.
org/halloween/halloween2.html

van Assche, F., Layzell, P. J., Loucopoulos, P., & Speltinex,
G. (1988). Rubric: A rule-based representation of infor-
mation system constructs. Paper presented at the ESPRIT
Conference, Brussels, Belgium.

Van de Ven, A. H. (1976). On the nature, forma-
tion and maintenance of relations among organisa-
tions. Academy of Management Review, 1(4), 24–36.
doi:10.2307/257722

van der Spek, R., & Spijkervet, A. (1997). Knowledge
management: dealing intelligently with knowledge. In
Liebowitz & Wilcox (Eds.), Knowledge Management and
Its Integrative Elements. Boca Raton, FL: CRC Press.

Ven, K., & Mannaert, H. (2008). Challenges and strate-
gies in the use of open source software by independent
software vendors. Information and Software Technology,
50(9), 991–1002. doi:10.1016/j.infsof.2007.09.001

Verheecke, B., Vanderperren, W., & Jonckers, V. (2006).
Unraveling crosscutting concerns in Web services
middleware. IEEE Software, 23(1), 42-50.

424

Compilation of References

Vessey, I. (1991). Cognitive Fit: A Theory-Based Analysis
of the Graphs Versus Tables Literature. Decision Sciences,
22(2), 219–240. doi:10.1111/j.1540-5915.1991.tb00344.x

Vessey, I., & Conger, S. (1994). Requirements Specifica-
tion: Learning Object, Process, and Data Methodologies.
Association for Computing Machinery. Communications
of the ACM, 37(5), 102–113. doi:10.1145/175290.175305

Victor, B., & Blackburn, R. S. (1987). Interdependence:
An alternative conceptualization. Academy of Manage-
ment Review, 12(3), 486–498.

Visual Studio 2005: Domain-specific language tools.
(n.d.). Retrieved June 5, 2006, from http://msdn.microsoft.
com/vstudio/dsltools

Vixie, P. (1999). Software engineering. In C. DiBona, S.
Ockman, & M. Stone (Eds.), Open sources: Voices from
the open source revolution (pp. 91–100). Cambridge,
MA: O’Reilly & Associates.

von Hippel, E. (1998). Economics of product develop-
ment by users: The impact of ‘sticky’ local information.
Management Science, 44(5), 629–644. doi:10.1287/
mnsc.44.5.629

von Hippel, E. (2005). Democratizing innovation. Cam-
bridge, MA: MIT Press.

VU (Cartographer). (2003). Gme 3 user’s manual

W3C. (2008). World Wide Web Consortium. Retrieved
December 20, 2008 from http://www.w3.org/

Walker, L. (2007). IBM business transformation enabled
by service-oriented architecture. IBM Systems Journal,
46(4), 651-667.

Walz, D. B., Elam, J. J., & Curtis, B. (1993). Inside a
software design team: knowledge acquisition, sharing,
and integration. Communications of the ACM, 36(10),
63–77.

Wan Kadir, W. M. N., & Loucopoulos, P. (2003, 23-26
June). Relating evolving business rules to software de-
sign. Paper presented at the International Conference on
Software Engineering Research and Practice (SERP),
Las Vegas, Nevada, USA.

Wan Kadir, W. M. N., & Loucopoulos, P. (2004). Relat-
ing evolving business rules to software design. Journal
of Systems Architecture, 50(7), 367-382.

Wand, Y., & Weber, R. (1990). An Ontological Model of
an Information System. IEEE Transactions on Software
Engineering, 16(11), 1282–1292. doi:10.1109/32.60316

Wand, Y., & Weber, R. (2002). Information Systems
and Conceptual Modeling - A Research Agenda. Infor-
mation Systems Research, 13(4), 363–376. doi:10.1287/
isre.13.4.363.69

Wang, S. (1996). Two MIS analysis methods: An experi-
mental comparison. Journal of Education for Business,
71(3), 136–141.

Wang, S. (2000). Neural networks. In M. Zeleny (Ed.),
IEBM Handbook of IT in Business (pp. 382-391). London:
International Thomson Business Press.

Wang, S. (2002). Nonlinear pattern hypothesis generation
for data mining. Data & Knowledge Engineering, 40(3),
273–283. doi:10.1016/S0169-023X(01)00059-3

Wang, S. (2003). Application of self-organizing maps
for data mining with incomplete data Sets. Neural
Computing & Applications, 12(1), 42–48. doi:10.1007/
s00521-003-0372-1

Wang, S. (2005). Classification with incomplete survey
data: A Hopfield neural network approach. Computers &
Operations Research, 32(10), 2583–2594. doi:10.1016/j.
cor.2004.03.018

Wang, S., & Wang, H. (2004). Conceptual construction on
incomplete survey data. Data & Knowledge Engineering,
49(3), 311–323. doi:10.1016/j.datak.2003.10.007

Watermarking relational data: Framework, algorithms
and analysis. The VLDB Journal, 12(2), 157-169.

Watson, R. T., Boudreau, M., York, P. T., Greiner,
M. E., & Wynn, D. (2008). The Business of Open
Source. Communications of the ACM, 51(4), 41–46.
doi:10.1145/1330311.1330321

Watson, R. T., Wynn, D., & Boudreau, M. (2005). Jboss:
The evolution of Professional Open Source Software.
MIS Quarterly Executive, 4(3), 329–341.

 425

Compilation of References

Watson-Manheim, M. B., Chudoba, K. M., & Crowston,
K. (2002). Discontinuities and continuities: A new way
to understand virtual work. Information, Technology
and People, 15(3), 191–209.

Wayner, P. (2000). Free For All. New York: HarperCol-
lins.

Web service. (2007). Wikipedia. Retrieved October 18,
2007, from http://en.wikipedia.org/wiki/Web_service

Webb, E., & Weick, K. E. (1979). Unobtrusive measures
in organizational theory: A reminder. Administrative
Science Quarterly, 24(4), 650–659.

Weber, S. (2004). The success of open source, Cambridge,
MA: Harvard University Press.

Weick, K.E., Sutcliffe, K.M., & Obstfeld, D. (1999).
Organizing for high reliability: Processes of collective
mindfulness. In R.I. Sutton & B.M. Staw (Eds.), Re-
search in organizational behavior (vol. 21, pp. 81–123).
Greenwich, CT: JAI Press.

Weimer, D., & Vining, A. (2005). Policy Analysis: Con-
cepts and Practice. Upper Saddle River, NJ: Pearson
Prentice-Hall.

Weisband, S. (2002). Maintaining awareness in distrib-
uted team collaboration: Implications for leadership and
performance. In P. Hinds & S. Kiesler (Eds.), Distributed
Work (pp. 311–333). Cambridge, MA: MIT Press.

Welty, C. (2003). Ontology research. AI Magazine,
24(3), 11–12.

West, J. (2003). How open is open enough? Melding
proprietary and open source platform strategies. Re-
search Policy, 32(7), 1259–1285. doi:10.1016/S0048-
7333(03)00052-0

West, J., & Dedrick, J. (2005). The effect of computeriza-
tion movements upon organizational adoption of open
source. Proceedings of the Social Informatics Workshop:
Extending the Contributions of Professor Rob Kling to the
Analysis of Computerization Movements, Irvine, CA.

West, J., & Gallagher, S. (2006). Challenges of open
innovation: the paradox of firm investment in open-
source software. R & D Management, 36(3), 319–331.
doi:10.1111/j.1467-9310.2006.00436.x

West, J., Vanhaverbeke, W., & Chesbrough, H. (2006).
Open Innovation: A Research Agenda. In H. Chesbrough,
W. Vanhaverbeke, & J. West (eds.), Open Innovation:
Researching a New Paradigm (pp. 285-307). Oxford,
UK: Oxford University Press.

What does it cost to use a virtual world learning environ-
ment? (2008). Training & Development, 62(11), 88.

Wiedenbeck, S. (1999). The use of icons and labels in an
end user application program: an empirical study of learn-
ing and retention. Behaviour & Information Technology,
18(2), 68–82. doi:10.1080/014492999119129

Witten, B., Landwehr, C., & Caloyannides, M. (2001).
Does open source improve system security? IEEE Soft-
ware, 18(5), 57–61.

Wittrock, M. C. (1990). Generative processes of com-
prehension. Educational Psychologist, 24(4), 345–376.
doi:10.1207/s15326985ep2404_2

Wodtke, D., Weißenfels, J., Weikum, G., Kotz Dittrich,
A., & Muth, P. (1997). The Mentor workbench for
enterprise-wide workflow management. In J. Peckham
(Ed.), Proceedings of SIGMOD’97 (pp. 576-579). New
York: ACM Press.

Woo, J. H., Lee, B. S., Lee, M. J., Loh, W. K., & Whang,
K. Y. (2007). Temporal aggregation using a multidi-
mensional index. Journal of Database Management,
18(2), 62-79.

Wood, N., Solomon, M. R., & Allan, D. (2008). Welcome
to the matrix: E-learning gets a Second Life. Marketing
Education Review, 18(2), 47–53.

Wood-Harper, T. (1985). Research methods in informa-
tion systems: Using action research. In E. Mumford, R.
A. Hirschheim, G. Fitzgerald & T. Wood-Harper (Eds.),
Research methods in information systems. New York:
North-Holland Publishers.

426

Compilation of References

Woods, D., & Guliani, G. (2005). Open source for the
enterprise. Sebastopol, CA: O’Reilly Media.

World Wide Web Consortium (W3C). (2007). Retrieved
September 25, 2007, from http://colab.cim3.net/cgi-bin/
wiki.pl?WwwCSoaGlossary#nid34R0

World Wide Web Consortium. (W3C). (1998). Schema
for object-oriented XML. Retrieved from http://www.
w3.org/TR/1998/NOTE-SOX-19980930

World Wide Web Consortium. (W3C). (2003). Docu-
ment object model DOM. Retrieved from http://www.
w3.org/DOM

World Wide Web Consortium. (W3C). (2004). Simple
API for XML, SAX. Retrieved from http://www. sax-
project.org

Wyse, J. E. (2006). Location-aware query resolution for
location-based mobile commerce: performance evalua-
tion and optimization. Journal of Database Management,
17(3), 41–65.

XML.com. (2007). Retrieved September 25, 2007, from
http://www.xml.com/pub/a/ws/2003/09/30/soa.html

Yadav, S. B., Bravoco, R. R., Chatfield, A. T., & Rajkumar,
T. M. (1988). Comparison Of Analysis Techniques For In-
formation Requirement Determination. Communications
of the ACM, 31(9), 1090–1097. doi:10.1145/48529.48533

Yin, R. K. (1994). Case study research, design and
methods. Newbury Park: Sage Publications.

Yin, R.K. (2003). Case study research: Design and
methods (3rd ed.). Newbury Park, CA: Sage.

Yoder, J. W., Balaguer, F., & Johnson, R. (2001, October
14-18). Adaptive object models for implementing business
rules. Paper presented at the Third Workshop on Best-
Practices for Business Rules Design and Implementation,
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2001), Tampa
Bay, Florida, USA.

Young, S. L., & Wogalter, M. S. (1990). Comprehension
and Memory of Instruction Manual Warnings: Con-
spicuous Print and Pictorial Icons Human Factors. The

Journal of the Human Factors and Ergonomics Society,
32(6), 637–649.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a the-
ory of possibility. Fuzzy Sets and Systems, 1, 3–28.
doi:10.1016/0165-0114(78)90029-5

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R., Sub-
rahmanian, V. S., & Zicari, R. (1997). Advanced database
systems: Morgan Kaufmann.

Zeichick, A. (2002, July 15). Modeling Usage Low;
Developers Confused About UML 2.0, MDA. SD
Times. Retrieved from http://www.sdtimes.com/article/
story-20020715-03.html

Zhang, D. (2004). Web services composition for process
management in e-business. Journal of Computer Infor-
mation Systems, 45(2), 83-91.

Zhang, D., & Zhao, J. L. (2006). Knowledge management
in organizations. Journal of Database Management,
17(1), 1–7.

Zhang, J., Liu, H., Ling, T., Bruckner, R., & Tija, A.
(2006). A framework for efficient association rule min-
ing in XML data. Journal of Database Management,
17(3), 19–40.

Zhang, S., Qin, Z., Ling, C., & Sheng, S. (2005). Missing
is useful: Missing values in cost-sensitivity decision trees.
IEEE Transactions on Knowledge and Data Engineering,
17(12), 1689–1693. doi:10.1109/TKDE.2005.188

Zhao, L., & Siau, K. (2007). Information mediation us-
ing metamodels: An approach using XML and common
warehouse metamodel. Journal of Database Manage-
ment, 18(3), 69-82.

Zhou, X., Pang, H. H., & Tan, K. L. (2007). Query-based
watermarking for XML data. Proceedings of ACM Sym-
posium on Information, Computer and Communication
Security (ASIACCS) (pp. 253-264).

Zhu, J., Tian, Z., Li, T., Sun, W., Ye, S., Ding, W., et
al. (2004). Model-driven business process integration
and management: A case study with the Bank SinoPac
regional service platform. IBM Journal of Research and

 427

Compilation of References

Development, 48(5/6), 649-669. Retrieved November
23, 2007, from http://www.research.ibm.com/journal/
rd/485/zhu.pdf

Zuboff, S. (1988). In the Age of the Smart Machine. New
York: Basic Books.

428

About the Contributors

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keng Siau is the E. J. Faulkner Chair Professor of Management Information Systems (MIS) and Full
Professor of Management at the University of Nebraska, Lincoln (UNL). He is the Director of the UNL-
IBM Global Innovation Hub, Editor-in-Chief of the Journal of Database Management, North America
Regional Editor of the Requirements Engineering journal, and Co-Editor-in-Chief of the Advances
in Database Research series. He received his Ph.D. degree from the University of British Columbia
(UBC). His master and bachelor degrees are in Computer and Information Sciences from the National
University of Singapore. Professor Siau has over 200 academic publications. He has published more
than 100 refereed journal articles, and these articles have appeared in journals such as Management
Information Systems Quarterly, Journal of the Association for Information Systems, Communications
of the ACM, IEEE Computer, Information Systems Journal, Journal of Strategic Information Systems,
Information Systems, ACM SIGMIS’s Database, IEEE Transactions on Systems, Man, and Cybernet-
ics, IEEE Transactions on Professional Communication, IEEE Transactions on Information Technology
in Biomedicine, IEICE Transactions on Information and Systems, Data and Knowledge Engineering,
Journal of Information Technology, International Journal of Human-Computer Studies, and others. He
served as the Organizing and Program Chairs of the International Conference on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD) (1996 – 2005). He also served on the organizing
committees of AMCIS 2005, ER 2006, AMCIS 2007, EuroSIGSAND 2007, EuroSIGSAND 2008, and
ICMB 2009. He received the International Federation for Information Processing (IFIP) Outstanding
Service Award in 2006, and the IBM Faculty Award in 2006 and 2008.

John Erickson is an assistant professor in the College of Business Administration at the University
of Nebraska at Omaha. His research interests include UML, software complexity and Systems Analysis
and design issues. He has published in journals such as the CACM, JDM, and in conferences such as
AMICIS, ICIS WITS, EMMSAD, and CAiSE. He has also co-authored several book chapters.

* * *

Michael Brydon is an Associate Professor in the Faculty of Business Administration at Simon Fraser
University in Vancouver, Canada. He received his Ph.D. in Management Information Systems from
the University of British Columbia and M.Eng. and B.Eng. degrees in Engineering Management from
the Royal Military College of Canada. His research interests lie at the intersection of decision theory,
economics, and computer science and include computational economies, decision-theoretic valuation
of real options, and markets for public goods such as knowledge and open source software. Recent

 429

About the Contributors

articles have appeared in Decision Support Systems, Information & Management and Information and
Technology Management.

Kevin Crowston joined the School of Information Studies at Syracuse University in 1996. He received
his PhD in information technologies from the Sloan School of Management, Massachusetts Institute of
Technology (MIT) in 1991. Before moving to Syracuse he was a founding member of the Collaboratory
for Research on Electronic Work at the University of Michigan and of the Centre for Coordination Sci-
ence at MIT. His current research focuses on new ways of organizing made possible by the extensive
use of information technology.

Florian Daniel is a postdoctoral researcher at the University of Trento. He holds a Ph.D. in Informa-
tion Technology (2007) and a M.Sc. in Computer Engineering (2003) from Politecnico di Milano, Italy.
His main research interests include Web engineering, mashups, service and UI composition, conceptual
modeling in Web engineering, active/context-aware Web applications and business intelligence applica-
tions. Contact him at daniel@disi.unitn.it

Brian Dobing is an Associate Professor of Information Systems in the Faculty of Management at the
University of Lethbridge. His research interests include system development using the Unified Modeling
Language, influence of culture on web site design, and visual programming languages. His research has
been published journals such as Communications of the ACM, Journal of Database Management, Journal
of Internet Research, and the Journal of Computer Information Systems. He is a member of the Editorial
Board for the Journal of Database Management and Journal of Information Systems Education.

Brenda Eschenbrenner is currently pursuing her PhD in Management Information Systems,
with concentrations in accounting, information technology, and human cognition, at the University of
Nebraska—Lincoln. Her research interests include virtual world environments, human acceptance and
use of current and emerging technologies, factors contributing to information system proficiency, and
technology applications in education and training. She has over 10 years of work experience including
management positions with a former Fortune 500 company and involvement with system implementa-
tion efforts.

Joseph Feller, Ph.D., is a senior lecturer in Business Information Systems at University College Cork,
Ireland. His research focuses on open source software and other forms of collaborative production. He
has published four books and his work has appeared in leading international journals and conferences
including Information Systems Research, Information Systems Journal, Journal of Strategic Information
Systems, Journal of Database Management, the International Conference on Information Systems, the
European Conference on Information Systems, and working conferences of IFIP. He has also published
widely in practitioner-oriented publications and is a frequent contributor to the Cutter Consortium. He
was program chair for the IEEE/ACM workshop series on open source software engineering (2001–2005)
and the Third International Conference on Open Source Systems (IFIP 2.13) and has edited several
journal special issues on the subject of open source.

Patrick Finnegan received his PhD from the University of Warwick, England, and is currently an
Associate Professor in Information Systems in the Australian School of Business at the University of

430

About the Contributors

New South Wales, Australia, as well as a Senior Editor of the Information Systems Journal. He previ-
ously held an Associate Professorship in Management Information Systems at University College Cork,
Ireland, and was President of the Irish Association for Information Systems. His research on Inter-
Organizational Systems and Electronic Business has been published in leading international journals
and conferences, including Information Systems Research, Information Technology and People, The
Information Systems Journal, The International Journal of Electronic Commerce, DATABASE, Elec-
tronic Markets, ICIS and ECIS.

Joseph Fong received his PhD degree in computing at University of Sunderland in 1993, and is an
associate professor at computer science department of City University of Hong Kong. He is a fellow
member of the Hong Kong Computer Society and the honorary founder chairman of Hong Kong Web
Society. He has published above 100 publications including US and Hong Kong patents, SCI journals,
conference proceedings, and text books. His research interests are in database reengineering and
interoperability, XML and hybrid Learning, and has been organizing many international eLearning
conferences.

Andrew Gemino is an associate professor of management information systems in the faculty of
business administration at Simon Fraser University. His primary research interests are in the evaluation
of conceptual modeling techniques and information technology project management. His papers have
been published in the Journal of Management Information Systems, Communications of the ACM, Re-
quirements Engineering Journal, Journal of Asynchronous Learning Networks and Data and Knowledge
Engineering. He is funded through grants from the National Sciences and Research Council (NSERC)
and the Social Sciences and Humanities Research Council (SSHRC). Andrew is currently President of
the AIS Special Interest Group on Systems Analysis and Design (SIGSAND).

Huiping Guo is an assistant professor in the Department of Computer Science at California State
University, Los Angeles. She received her PhD degree in computer science from University of Ottawa
in 2003 and did postdoctoral research for two years at George Mason University. Her research interests
focus on multimedia communications, digital rights management and information security.

Jeremy Hayes is a Lecturer in Business Information Systems at University College Cork. His re-
search interests are in the area of electronic business models, inter-organisational systems, open source
software, and business agility. He has published his research findings at international conferences and
journals including the European Journal of Operational Research, Information Systems Research,
Journal of Database Management, the European Conference on Information Systems (ECIS) and IFIP
working conferences.

Wan Mohd Nasir Wan Kadir received his B.Sc. from Universiti Teknologi Malaysia in 1994, and
his MSc and PhD degrees from UMIST, Manchester in 1996 and 2005 respectively. He is an academic
member of staff at the Software Engineering Department, Faculty of Computer Science and Information
Systems, Universiti Teknologi Malaysia, and currently, he is the Head of the Department. He is also
a member of pro-tem committee of Malaysian Software Engineering Interest Group (MySEIG). His
research interests include architecture-based software evolution, requirements traceability, component
reusability, business rules, object- oriented design and CASE tools.

 431

About the Contributors

Jumi Kim received the Ph.D. in the Department of Industrial and Manufacturing Systems Engineer-
ing at Iowa State University. She got her B.S. in Industrial Engineering from the Kangnung National
University of Korea, and a M.S. in Industrial Engineering from the Seoul National University of Korea.
She is now a senior researcher in Korea Small Business Institute. Her research interests are in simulation
optimization, web based information systems, and data mining.

Stefan Koch is associate professor of information business at the Vienna University of Economics
and Business Administration, Austria. He received an MBA in management information systems from
Vienna University and Vienna Technical University, and a PhD from Vienna University of Econom-
ics and Business Administration. Currently he is involved in the undergraduate and graduate teaching
program, especially in software project management and ERP packages. His research interests include
cost estimation for software projects, the open source development model, software process improve-
ment, the evaluation of benefits from information systems, and ERP systems. He edited a book, Free/
Open Source Software Development, for an international publisher in 2004 and acted as guest editor for
Upgrade for a special issue on libre software. He has published more than 10 papers in peer-reviewed
journals, and over 30 in international conference proceedings and book collections.

Wookey Lee received the B.S., M.S., and Ph.D. in Industrial Engineering from Seoul National Uni-
versity, Korea. Currently, he is a Professor in the department of Industrial Engineering, Inha University,
Incheon, Korea. He finished the MSE in Carnegie-Mellon University, PA, USA and he has been a visiting
scholar at CS, UBC, Canada. He got the best paper award in KORMS. He is now Editor-in-chief in the
Journal of Information Technology and Architecture. His research interests include Web Structuring,
mobile and multimedia DB, Data Warehousing, and EA.

Yingjiu Li is currently an assistant professor in the School of Information Systems at Singapore
Management University. He received his PhD degree in Information Technology from George Mason
University in 2003. His research interests include application security, privacy protection, and data
rights management.

Pericles Loucopoulos is professor of information systems in the Business School, Loughborough
University, United Kingdom and adjunct professor at the University of Manchester. He is the co-editor-
in-chief of the Journal of Requirements Engineering, associate editor for Information Systems and
serves on the editorial boards of the Information Systems Journal, the Journal of Computer Research,
Business Process Management Journal, International Journal of Computer Science & Applications, the
International Journal of Computing and ICT research, among others. He is a fellow of the British Com-
puter Society and has served as general chair and programme chair of six international conferences and
has been a member of over 150 Programme Committees of international conferences. He has published
over 150 papers in academic journals and conference proceedings on the engineering of information,
and the tools, methods and processes used to design, develop and deploy information systems in order
to meet organisational goals. He has written or edited 10 books related to requirements and information
systems engineering.

Kamal Masri is a lecturer in management information systems in the Faculty of Business Adminis-
tration at Simon Fraser University. He spent over 12 years involved in all aspects of developing special-

432

About the Contributors

ized information systems for a variety of industries including: health care, transportation, education,
and sports and entertainment. His main research interest is the effective use of conceptual models and
effective systems development.

Fiona Fui-Hoon Nah is an Associate Professor of Management Information Systems (MIS) at the
University of Nebraska-Lincoln. Her research interests include human-computer interaction, 3-D vir-
tual worlds, computer-supported collaborative work, knowledge-based and decision support systems,
enterprise resource planning, and mobile and ubiquitous commerce. She has published her research in
journals such as Journal of the Association for Information Systems, Communications of the Association
for Information Systems, Communications of the ACM, IEEE Transactions on Education, International
Journal of Human-Computer Studies. She is an Associate Editor of Journal of the Association for Infor-
mation Systems and Journal of Electronic Commerce Research. She also serves on the Editorial Board of
more than ten other MIS journals. She is a co-Founder and Past Chair of the Association for Information
Systems Special Interest Group on Human-Computer Interaction, and is a featured volunteer for the
Association for Information Systems (June 2008). She received her Ph.D. in MIS from the University
of British Columbia, and her M.S. and B.S. (Honors) in Computer and Information Sciences from the
National University of Singapore. She was previously on the faculty of School of Computing, National
University of Singapore, and the Krannert School of Management, Purdue University.

Christian Neumann holds a PhD from the Department of Information Business at the Vienna Univer-
sity of Economics and Business Administration, Austria. He received his masters degree in engineering
and management from the University of Karlsruhe, Germany. His research interests include quality of
open source projects, usability of frameworks, cost estimation, and software investment analysis. He is
now working for an international management consulting company.

Drew Parker is an Associate Professor of Information Systems in the Faculty of Business Adminis-
tration at Simon Fraser University. He is interested in online team performance, adoption of information
technology and internet-related business applications. Papers have appeared in journals including the
Journal of Management Information Systems, Journal of Asynchronous Learning Networks, Journal
of Educational Media International, European Journal of Operational Research, INFOR, and Journal
of the Operational Research Society.

Jeffrey Parsons is Professor of Information Systems in the Faculty of Business Administration at
Memorial University of Newfoundland. His research interests include systems analysis and design using
UML, database management, and the semantic web. His research has been published in journals such as
Management Science, Communications of the ACM, ACM Transactions on Database Systems, Journal
of Management Information Systems, and IEEE Transactions on Software Engineering. He serves as
a senior editor for the Journal of the Association for Information Systems and is on the editorial board
of the Journal of Database Management, and is Program Co-chair of the 2008 Americas Conference
on Information Systems (AMCIS).

Giuseppe Pozzi is associate professor of Computer Engineering at the Politecnico di Milano, Italy,
where he teaches the classes of Database Systems and of Workgroup and Workflow Systems. He received
a M.Sc in E.E. in 1986 and a Ph.D. in 1992 from Politecnico di Milano, respectively. His main research

 433

About the Contributors

interests include temporal and active database systems, workflow management systems, temporal in-
formation in workflow systems. Contact him at giuseppe.pozzi@polimi.it

Iris Reinhartz-Berger received her B.Sc. degree in Applied Mathematics and Computer Science
from the Technion, Israel Institute of Technology in 1994. She obtained a M.Sc. degree in 1999 and a
PhD in 2003 in Information Management Engineering from the Technion, Israel Institute of Technol-
ogy. She is currently a faculty member at the Department of Management Information Systems, Haifa
University, Israel. Her research interests include conceptual modeling, modeling languages and tech-
niques for analysis and design, domain analysis, development processes, and methodologies. Her work
has been published in journals and international conferences.

Matti Rossi is a professor of information systems at Helsinki School of Economics. He has worked
as research fellow at Erasmus University Rotterdam and as a visiting assistant professor at Georgia
State University, Atlanta. He received his PhD degree in business administration from the University
of Jyväskylä in 1998. He is currently the European and African representative in the Association of
Information Systems. He has been the principal investigator in several major research projects funded
by the technological development center of Finland and Academy of Finland. His research papers have
appeared in journals such as CACM, Journal of AIS, Information and Management, and Information
Systems, and over thirty of them have appeared in conferences such as ICIS, HICSS and CAiSE.

João Saraiva is currently a PhD student (in the area of computer science and engineering) at In-
stituto Superior Técnico (IST/UTL) since 2007. He is also a researcher at INESC-ID, as a member
of the Information Systems Group (GSI) since 2004, where he participates in ProjectIT (PhD focus),
WebComfort, and EscolaNaNet projects. His professional and research interests are in modeling and
metamodeling, modeldriven engineering, domain-specific modeling, CMS and ECM systems, and
CASE and CSCW tools.

Barbara Scozzi is an assistant professor at the Politecnico of Bari, Italy. She received her PhD in
management engineering from the University of Rome Tor Vergata/Polytechnic of Bari in 2001. Since
1997 she has been involved in many research projects at the Politecnico di Bari. Her main research
interests are coordination, knowledge management and innovation in business organizations.

Myung-Keun Shin received the BS and MS in computer science and the PhD in information &
communication from Korea Advanced Institute of Science and Technology, Korea. He is currently a
researcher in the Telecom Business Division, SK C&C, Korea. His research interests are knowledge
management system, database transaction processing, and information retrieval, etc.

Herbert Shiu was the project manager of a funded research project under the Department of com-
puter Science at City University of Hong Kong. He graduated with a B.Sc. in Computer Science from
the University of Hong Kong in 1992, a MSc, and MPhil in Computer Science from City University of
Hong Kong in1998 and 2006 respectively. He is now a PhD student at City University of Hong Kong.
His current research interests are in database, XML and object-oriented software design and develop-
ment.

434

About the Contributors

Alberto Rodrigues da Silva is professor of information systems at the Department of Computer
Science and Engineering at Technical University of Lisbon (IST/UTL) Portugal. He is also a senior
researcher at INESC-ID and director at the SIQuant Company. His professional and research interests
are in modeling and metamodeling, model-driven engineering, requirement engineering, enterprise
knowledge-based platforms, and CSCW and CASE Tools.

Kari Smolander is a professor of software engineering in the Department of Information Tech-
nology, Lappeenranta University of Technology, Finland. He has a PhD (2003) in computer science
from Lappeenranta University of Technology and a Licentiate (1993) and Master (1988) degree from
University of Jyväskylä, Finland. In addition to his long teaching experience, he has worked several
years in industry and in 1990's he was the main architect in the development of MetaEdit CASE tool.
He has published more than 50 refereed research papers in international journals and conferences. His
current research interests include architectural aspects of systems development and organizational view
of software development.

Arnon Sturm is a faculty member within the department of Information Systems Engineering at
Ben-Gurion University. He obtained a M.Sc. degree in 1999 and a PhD in 2004 in Information Man-
agement Engineering from the Technion, Israel Institute of Technology. His research concentrates on
software engineering and in particular domain engineering and software development methods. Prior
to his studies, Arnon has gained extensive experience in developing software systems in the industry.
He also served as a member of a software engineering team that addressed problems of software de-
velopment.

Kris Ven graduated from the Faculty of Applied Economics of the University of Antwerp, Belgium,
in 2002. He is currently working in the Department of Management Information Systems at the Univer-
sity of Antwerp. He is preparing a PhD on the organizational adoption of open source software. Related
research interests include the link between innovation in organizations and open source software, and
the adoption of open source software by public administrations. He has authored and presented several
papers at international conferences on open source software and information systems.

Jan Verelst received his PhD in Management Information Systems from the Faculty of Applied Eco-
nomics of the University of Antwerp, Belgium, in 1999. He is working in the Department of Management
Information Systems at the University of Antwerp, where he teaches courses on analysis and design of
information systems. He is also an executive professor at the Management School of the University of
Antwerp. His research interests include conceptual modeling of information systems, evolvability and
maintainability of information systems, empirical software engineering, and open source software.

Aidan R. Vining is the CNABS Professor of Business & Government Relations in the Segal Gradu-
ate School of Business, Simon Fraser University in Vancouver, Canada. He obtained his Ph.D. at the
University of California, Berkeley. He also has an MBA from the University of California, Riverside
and an LLB from King’s College, London University. His research interests focus on both public policy
and business strategy, especially strategy and organizational incentives. Recent articles have appeared
in the Journal of Policy Analysis and Management, the Journal of Management Studies, Industrial and
Corporate Change, American Behavioral Scientist, Journal of Public Affairs, and Public Administration

 435

About the Contributors

Review. He is a co-author of Policy Analysis; Concepts and Practice (4th. Edition, Pearson Prentice-Hall,
2005) and Cost-Benefit Analysis: Concepts and Practice (3rd. Edition, Pearson Prentice-Hall, 2006.)

Hai Wang is an Assistant Professor of Computing and Information Systems at Saint Mary’s Uni-
versity. He received his PhD from University of Toronto. His research interests are in areas of database,
data mining, knowledge management, and performance modeling. His papers have been published in
VLDB, Performance Evaluation, ACM SIGMETRICS Performance Evaluation Review, Knowledge and
Information Systems, Journal of the Operational Research Society, Managerial and Decision Economics,
International Journal of Mobile Communications, Data and Knowledge Engineering, and others.

Shouhong Wang is a Professor of Management Information Systems at University of Massachusetts
Dartmouth. He received his PhD from McMaster University. His research interests include data min-
ing, knowledge management, and business intelligence. He has published over 90 papers in academic
journals, including Information Resources Management Journal, Journal of Organizational and End
User Computing, Journal of Management Information Systems, Information & Management, Interna-
tional Journal of Information Management, Information Systems Management, Management Science,
Decision Sciences, Journal of The Operational Research Society, and others.

Shuhong Wang is currently a Research Fellow in the Faculty of Informatics at University of Wol-
longong. He received his PhD degree in Mathematics from Peking University in 2005. His research
interests include cryptography and its application in information security.

436

Index

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Symbols
3-D virtual world environment capabilities in

education, gaps in 303
3-D virtual world environments, educational

applications of 294
3-D virtual world environments in education,

increased engagement 298
3-D virtual worlds, benefits of utilizing in

education 295
3-D virtual worlds in education 292
3-D virtual worlds in education, enhanced col-

laboration and communication capabili-
ties 298

A
action assertion 31
actions, customizing 257
active applications 250
active behaviors in applications, supporting

252
active database management systems 266
active middleware systems 267
active rules, specifying the 262
adaptive object model (AOM) 26
ADOM (application-based domain modeling)

351
ADOM-UML, application layer in 358
ADOM-UML, dialect of ADOM 351
ADOM-UML, domain layer in 354
ADOM-UML, domain models guidance in 355
ADOM-UML, experimenting with 367
ADOM-UML, literature review 351
ADOM-UML, supporting with a CASE Tool

366

ADOM-UML, validating application models
against domain models in 359

aggregation 208, 217
agile network, challenges are faced in ensuring

338
AK scheme, assumptions used in 3
alternative space for instruction and tasks, in

3-D virtual worlds in education 299
analysis phase, in BROOD 34
Apache Web server 235
application-based domain modeling (ADOM)

350 ,351, 352
application-based domain modeling (ADOM)

approach 351, 353, 370
application front end 179
application model guiding 366
application model validation 366
application programming interface (API) 179
approximate query answering 189
architecture development, emerging conflicts

and problems 91
architecture, in systems development 84
ational Center for Supercomputer Applications

(NCSA) 235
attribute, deletion and addition 13

B
BROCOM 25
BROOD approach 23
BROOD approach, motivation for the 28
BROOD (business rules-driven object oriented

design) 24
BROOD metamodel 29, 45
BROOD process 34
BROOD support tool 43

 437

Index

business network of OSS firms, cooperating to
deliver the ‘whole product’ 338

business rule beans (BRBeans) 27
business rules-driven object oriented design

(BROOD) 24
Business Rules Group (BRG), 25
business rules, in conceptual modeling 25
business rules, in evolvable software evolution

26
business rules modelling 24

C
cardinality relationship 207
CASE (computer-aided software engineering)

106
CASE tool 350
CASE tools, traditional 119
changing markets-changing organization 89
class dagrams 272
class level, analysis on 140
cognitive load theory (CLT) 314
cognitive theory of multimedia learning

(CTML) 314, 315
collaboration diagram 282
combination-based scheme 12
components-off-the-shelf (COTS) 135
comprehensive e-business system, architectural

development process of 82
computation and inference rules, in BROOD

39
computer-aided software engineering (CASE)

106
conceptual modeling, comparative research in

311
conditions, customizing 257
confluence 265
constraint rules 30
content management systems (CMS) 335
controlled opportunism 86
coordination contract method 26
CORBA-based event-condition-action (ECA)

267
CORBA (common object request broker archi-

tecture) 176
covariates 321
CRM, and the threat of FOSS disruption 239

CRM application 225
customer relationship management (CRM) 226

D
database management systems (DBMSs) 250
Database Protection Act 1
database watermarking techniques 1
data mining, categories of resources of 376
data mining, ontology for 376
data mining, use of ontology for 378
data mining, with incomplete data 375
data mining with incomplete data, project of

ontology for 381
data mining with incomplete data, unique re-

sources in 378
data semantics from XML documents, determi-

nation of 209
data triangulation 89
depth in inheritance tree (DIT) 139
derivation rule 31
design phase, in BROOD 36
development context, changes and their effects

in the 89
distributed software development 53
document type definition (DTD) 204
domain model creation 366
domain-specific language (DSL) 111
domain-specific modeling (DSM)

105, 106, 110
DSM (domain-specific modeling) 106
DTD graph, extended 206
DTD graph, with data semantics 204
duplicate problem 15
Dynapi 72
DynAPI 75

E
e-business development methods, technical

requirements of 95
e-business system, observed objectives for the

90
e-business systems development methodology,

derived requirements for 93
ECA (event-condition-action) 25, 251
Eclipse 236

438

Index

Economics of Technology Standards perspec-
tive 228

element-based scheme 12
element reduction 359
element unification 362
English as a second language (ESL) 323
English as second language (ESL) 310
enhanced data mining, instruments for 381
enterprise architect (EA) 106
enterprise resource planning (ERP) 226
enterprise service bus (ESB) 179
entity-relationship diagrams 310
entity relationship (ER) 311
ER diagrams 325
error-correcting code (ECC) 5
evaluation framework 114
event-condition-action (ECA) 25, 250
events, customizing 257
evolution phase, in BROOD 40
execution cost (EC) 199
Ex Post prediction, FOSS case studies 234
extended DTD graph, application of 209
extensible markup language (XML) 4, 204
extraneous cognitive load 315

F
false hit 8
false miss 9
FAR (FORO active rules) 263
FAR system 263
FLOSS, conceptual development 54
FLOSS, data analysis approach 63
FLOSS development, coordination in 58
FLOSS (free/libre open source software) 51
FLOSS phenomenon, a literature overview 54
FLOSS phenomenon, background of 52
FLOSS projects, research methodology 61
FOSS (free and open source software) 225
FOSS, predicting disruption by 242
fragile watermarking 6
free and open source software (FOSS) 225
FreeBSD 134
free/libre open source software (FLOSS) 51

G
Gaim 74

generic modeling environment (GME) 118
germane cognitive load 315
GNOME 133, 134

H
hard-coded meta-metamodel size 117
hierarchical data abstraction and distance met-

ric 192
hierarchical quantified data abstraction 192
hierarchical quantified data abstraction (HQK)

201
hierarchical quantified knowledge (HQK) 190
historical inertia 90
home climate control (HCC) 358
HTTP (hypertext transfer protocol) 180
HTTPS (HTTP over secure socket layer) 180

I
IDEA method 26
ideology vs. pragmatism 163
IDREF(S) attribute 205
ID type attribute 205
information systems development (ISD) 93
internal rate of return (IRR) 185
intrinsic cognitive load 314
invertibility 8

J
J2EE standard 135

K
KDE 133
Kicq 68
knowledge management 375

L
language and library metaphors 116
language context, requirements from the 96
level-compaction technique 116
lines-of-code (LOCs) 138
logical levels, number of the user can manipu-

late 116

 439

Index

M
McCabe’s definition of cyclomatic complexity

(VG) 139
MDE-based software development tools 105
MDE (model-driven engineering) 106
MDE tools 105, 118
MDE tools, evaluation of 114
MediNET 31, 37, 40
MediNet application 30, 38
MediNET software design 46
MetaCase’s MetaEdit+ 106
MetaEdit+ 120
metamodeling 111
metamodel specification, support for 116
metaobject facility (MOF) 106, 108
MetaSketch 119
Microsoft’s DSL tools 120
Microsoft’s DSL Tools (MSDSLTools) 106
MidOn 383, 385
MidOn, mining incomplete data based on the

ontology 383
mindful innovation 162
model-driven architecture (MDA) 109
model-driven development (MDD) 107
model-driven engineering 107
model-driven engineering (MDE) 106
model matching 366
model transformation framework 116
MOF (MetaObject Facility) 106
multiple bits, embedding 7
multiple-bits scheme, robustness analysis for 7
multiple-bits watermarking, embedding and

detecting 7
multiple watermarks, extension to 18
MySQL relational database 236

N
n-ary relationship 208
net present value (NPV) 185
number of children (NOC) 139
number of classes (NCL) 140
number of interfaces within a class (NOI) 140
number of regular/static fields (NOF/NSF) 138
number of regular/static methods (NOM/NSM)

138

O
object constraint language (OCL) 26
Object Management Group (OMG) 107, 177
object-oriented analysis and design (OOAD)

271
object-oriented programming languages

(OOPLs) 112
object-oriented software engineering 271
Object Technology International (OTI) 236
observer triangulation 89
OES, events in 255
OES rule engine 255
OES, security in 265
OES system 254
OES system, customizing the 257
OMG’s approach, to MDE 107
ontology, description of 376
ontology, for data mining 375
ontology for data mining, construction of 377
OpenChimera and the rule engine, customizing

259
OpenChimera conditions, syntax of 257
OpenChimera language 254
OpenOffice 237
open source adoption and disruption, a dynamic

model of 232
open source movement, common ideology 160
open source production, review of 230
open source production, two requirements for

230
open source server software, adoption of 164
open source software (OSS) 133, 160
open source software person month (OSSPM)

138
organization context, requirements from the 96
Organization for the Advancement of Struc-

tured Information Standards (OASIS)
177

OSS ideology 161
OSS network, how does it affect the business

models of participant organisation 338
OSS network model 341
OSS networks 335

440

Index

P
partial participation 207
peer debriefing and support 89
Phpmyadmin 74
pirated copying 1
pirated data 1
platform-independent model (PIM) 109
platform-specific model (PSM) 109
previous domain knowledge (PDK) 323
process control systems (PCS) 356
processes, as theories 55
processes, coordination of 55
process metrics, description of 136
product metrics, description of 138
public watermarking 6

Q
query relaxation 194
query relaxation algorithm 195
query relaxation example 197
query-views-transformations (QVT) 108

R
reduced model 362
remote procedure call (RPC) 180
resource description framework (RDF) 376
resources, relations between the 377
return on investment (ROI) 176
reverse engineering methodology 210
robust watermarking 3
robust watermarking scheme for embedding a

multiple-bits watermark 1
RUBRIC project 25
rule engine, unbundling the 263
rule management elements 32
rule phrase, in BROOD 32

S
Second Life 297, 305
Second Life education (SLED) listserv 302
selective coding 86
service bus (SB) 178
service-oriented architecture 178
service-oriented architecture, background and

history of 177

service-oriented architecture definitions 178
service-oriented architecture (SOA) 176, 178
service-oriented computing (SOC) 176
service repository 179
small-to-medium size businesses (SMB) 240
SMTP (simple mail transfer protocol) 180
SOA and SOC success, measuring 185
SOA development or deployment patterns,

Blueprints and the meta-approach 183
SOA framework 181
SOAP (simple object access protocol) 176
SOA, research-based perspectives on 184
social network metamodel 121
software development, coordination in 57
software process engineering metamodel

(SPEM). 34
s-stage improvement, mechanisms for 242
Stallman, Richard M. 160
static pattern specification (SPS) 352
SugarCRM 225, 227, 242, 244
supply chain management (SCM) 226
supported standard exchange formats 115

T
technology adoption, innovation and 227
technology, adoption of 226
technology, disruptive 226
termination, of active system 264
theoretical sampling 86
theoretical saturation 86
theoretical sensitivity 86
three-dimensional (3-D) virtual world technol-

ogy 291
three-dimensional virtual world environments

291
traceability, between requirements and system

designs 23
triangulation 89
tuple, deletion and insertion 10

U
UDDI (universal description, discovery, and

integration) 176
UML diagram 271
UML diagram, overall usage 275
UML diagrams, information provided by 279

 441

Index

UML diagrams, role of 280
UML diagram usage patterns 277
UML (unified modeling language) 106
UML usage, organizational 278
unary relation 219
unified architecture 92
unified modeling language (UML)

34, 106, 107, 271
University of California-Irvine KDD Archive

16
use case diagrams 272
use case modeling 273
use case narratives 272

V
value modification 9
verifiable model 362
virtual-primary-key-based schemes, robust

analysis for 12
visualization for difficult content, in 3-D virtual

worlds in education 299

W
water level control (WLC) 358
watermaking, without primary key 11
Web services 176
Web services management layer (WSML) 185
weighted methods per class (WMC) 139
workflow management systems 267
workflow management systems (WfMSs) 250

X
XML documents, referential integrity in 205
XML elements, implementation of inheritance

among 209
XML (extensible markup language)

4, 108, 176
XML, implementations of various data seman-

tics in 210
XML schema, determination of 208

Z
Zea Partners 344
Zea Partners network 340
Zope Europe Association (ZEA) 339

	IGI Global - Principle Advancements in Database Management Technologies:New Applications and Frameworks (2010) (ATTiCA)
	Title

	Editorial Advisory Board
	Table of Contents
	Detailed Table of Contents
	Preface
	A Multiple-Bits Watermark for Relational Data
	BROOD: Business Rules-Driven Object Oriented Design
	Bug Fixing Practices within Free/Libre Open Source Software Development Teams
	Conflicts, Compromises, and Political Decisions: Methodological Challenges of Enterprise-Wide E-Business Architecture Creation
	Evaluation of MDE Tools from a Metamodeling Perspective
	Exploring the Effects of Process Characteristics on Product Quality in Open Source Software Development
	The Impact of Ideology on the Organizational Adoption of Open Source Software
	Web Services, Service-Oriented Computing, and Service-Oriented Architecture: Separating Hype from Reality
	Approximate Query Answering with Knowledge Hierarchy
	Abstract DTD Graph froman XML Document: A Reverse Engineering Approach
	A Dynamic Model of Adoption and Improvement for Open Source Business Applications
	Aiding the Development of Active Applications: A Decoupled Rule Management Solution
	Dimensions of UML Diagram Use: Practitioner Survey and Research Agenda
	A 360-Degree Perspective of Education in 3-D Virtual Worlds
	Using Graphics to Improve Understanding of Conceptual Models
	Beyond Open Source:The Business of ‘Whole’ Software Solutions
	The Application-Based Domain Modeling Approach: Principles and Evaluation
	The Use of Ontology for Data Mining with Incomplete Data
	Compilation of References
	About the Contributors
	Index

